PR tree-optimization/17468
[official-gcc.git] / gcc / reload.c
blob990cf209613f9837958858da5276db846dcc34e1
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "hard-reg-set.h"
103 #include "flags.h"
104 #include "real.h"
105 #include "output.h"
106 #include "function.h"
107 #include "toplev.h"
108 #include "params.h"
109 #include "target.h"
111 #ifndef REGNO_MODE_OK_FOR_BASE_P
112 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
113 #endif
115 #ifndef REG_MODE_OK_FOR_BASE_P
116 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
117 #endif
119 /* True if X is a constant that can be forced into the constant pool. */
120 #define CONST_POOL_OK_P(X) \
121 (CONSTANT_P (X) \
122 && GET_CODE (X) != HIGH \
123 && !targetm.cannot_force_const_mem (X))
125 /* All reloads of the current insn are recorded here. See reload.h for
126 comments. */
127 int n_reloads;
128 struct reload rld[MAX_RELOADS];
130 /* All the "earlyclobber" operands of the current insn
131 are recorded here. */
132 int n_earlyclobbers;
133 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
135 int reload_n_operands;
137 /* Replacing reloads.
139 If `replace_reloads' is nonzero, then as each reload is recorded
140 an entry is made for it in the table `replacements'.
141 Then later `subst_reloads' can look through that table and
142 perform all the replacements needed. */
144 /* Nonzero means record the places to replace. */
145 static int replace_reloads;
147 /* Each replacement is recorded with a structure like this. */
148 struct replacement
150 rtx *where; /* Location to store in */
151 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
152 a SUBREG; 0 otherwise. */
153 int what; /* which reload this is for */
154 enum machine_mode mode; /* mode it must have */
157 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
159 /* Number of replacements currently recorded. */
160 static int n_replacements;
162 /* Used to track what is modified by an operand. */
163 struct decomposition
165 int reg_flag; /* Nonzero if referencing a register. */
166 int safe; /* Nonzero if this can't conflict with anything. */
167 rtx base; /* Base address for MEM. */
168 HOST_WIDE_INT start; /* Starting offset or register number. */
169 HOST_WIDE_INT end; /* Ending offset or register number. */
172 #ifdef SECONDARY_MEMORY_NEEDED
174 /* Save MEMs needed to copy from one class of registers to another. One MEM
175 is used per mode, but normally only one or two modes are ever used.
177 We keep two versions, before and after register elimination. The one
178 after register elimination is record separately for each operand. This
179 is done in case the address is not valid to be sure that we separately
180 reload each. */
182 static rtx secondary_memlocs[NUM_MACHINE_MODES];
183 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
184 static int secondary_memlocs_elim_used = 0;
185 #endif
187 /* The instruction we are doing reloads for;
188 so we can test whether a register dies in it. */
189 static rtx this_insn;
191 /* Nonzero if this instruction is a user-specified asm with operands. */
192 static int this_insn_is_asm;
194 /* If hard_regs_live_known is nonzero,
195 we can tell which hard regs are currently live,
196 at least enough to succeed in choosing dummy reloads. */
197 static int hard_regs_live_known;
199 /* Indexed by hard reg number,
200 element is nonnegative if hard reg has been spilled.
201 This vector is passed to `find_reloads' as an argument
202 and is not changed here. */
203 static short *static_reload_reg_p;
205 /* Set to 1 in subst_reg_equivs if it changes anything. */
206 static int subst_reg_equivs_changed;
208 /* On return from push_reload, holds the reload-number for the OUT
209 operand, which can be different for that from the input operand. */
210 static int output_reloadnum;
212 /* Compare two RTX's. */
213 #define MATCHES(x, y) \
214 (x == y || (x != 0 && (REG_P (x) \
215 ? REG_P (y) && REGNO (x) == REGNO (y) \
216 : rtx_equal_p (x, y) && ! side_effects_p (x))))
218 /* Indicates if two reloads purposes are for similar enough things that we
219 can merge their reloads. */
220 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
221 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
222 || ((when1) == (when2) && (op1) == (op2)) \
223 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
224 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
225 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
226 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
227 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
229 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
230 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
231 ((when1) != (when2) \
232 || ! ((op1) == (op2) \
233 || (when1) == RELOAD_FOR_INPUT \
234 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
235 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
237 /* If we are going to reload an address, compute the reload type to
238 use. */
239 #define ADDR_TYPE(type) \
240 ((type) == RELOAD_FOR_INPUT_ADDRESS \
241 ? RELOAD_FOR_INPADDR_ADDRESS \
242 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
243 ? RELOAD_FOR_OUTADDR_ADDRESS \
244 : (type)))
246 #ifdef HAVE_SECONDARY_RELOADS
247 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
248 enum machine_mode, enum reload_type,
249 enum insn_code *);
250 #endif
251 static enum reg_class find_valid_class (enum machine_mode, int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
274 int, enum reload_type,int, rtx);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 enum machine_mode, int,
277 enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
279 int, rtx);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static int find_inc_amount (rtx, rtx);
283 #ifdef HAVE_SECONDARY_RELOADS
285 /* Determine if any secondary reloads are needed for loading (if IN_P is
286 nonzero) or storing (if IN_P is zero) X to or from a reload register of
287 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
288 are needed, push them.
290 Return the reload number of the secondary reload we made, or -1 if
291 we didn't need one. *PICODE is set to the insn_code to use if we do
292 need a secondary reload. */
294 static int
295 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
296 enum reg_class reload_class,
297 enum machine_mode reload_mode, enum reload_type type,
298 enum insn_code *picode)
300 enum reg_class class = NO_REGS;
301 enum machine_mode mode = reload_mode;
302 enum insn_code icode = CODE_FOR_nothing;
303 enum reg_class t_class = NO_REGS;
304 enum machine_mode t_mode = VOIDmode;
305 enum insn_code t_icode = CODE_FOR_nothing;
306 enum reload_type secondary_type;
307 int s_reload, t_reload = -1;
309 if (type == RELOAD_FOR_INPUT_ADDRESS
310 || type == RELOAD_FOR_OUTPUT_ADDRESS
311 || type == RELOAD_FOR_INPADDR_ADDRESS
312 || type == RELOAD_FOR_OUTADDR_ADDRESS)
313 secondary_type = type;
314 else
315 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
317 *picode = CODE_FOR_nothing;
319 /* If X is a paradoxical SUBREG, use the inner value to determine both the
320 mode and object being reloaded. */
321 if (GET_CODE (x) == SUBREG
322 && (GET_MODE_SIZE (GET_MODE (x))
323 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
325 x = SUBREG_REG (x);
326 reload_mode = GET_MODE (x);
329 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
330 is still a pseudo-register by now, it *must* have an equivalent MEM
331 but we don't want to assume that), use that equivalent when seeing if
332 a secondary reload is needed since whether or not a reload is needed
333 might be sensitive to the form of the MEM. */
335 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
336 && reg_equiv_mem[REGNO (x)] != 0)
337 x = reg_equiv_mem[REGNO (x)];
339 #ifdef SECONDARY_INPUT_RELOAD_CLASS
340 if (in_p)
341 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
342 #endif
344 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
345 if (! in_p)
346 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
347 #endif
349 /* If we don't need any secondary registers, done. */
350 if (class == NO_REGS)
351 return -1;
353 /* Get a possible insn to use. If the predicate doesn't accept X, don't
354 use the insn. */
356 icode = (in_p ? reload_in_optab[(int) reload_mode]
357 : reload_out_optab[(int) reload_mode]);
359 if (icode != CODE_FOR_nothing
360 && insn_data[(int) icode].operand[in_p].predicate
361 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
362 icode = CODE_FOR_nothing;
364 /* If we will be using an insn, see if it can directly handle the reload
365 register we will be using. If it can, the secondary reload is for a
366 scratch register. If it can't, we will use the secondary reload for
367 an intermediate register and require a tertiary reload for the scratch
368 register. */
370 if (icode != CODE_FOR_nothing)
372 /* If IN_P is nonzero, the reload register will be the output in
373 operand 0. If IN_P is zero, the reload register will be the input
374 in operand 1. Outputs should have an initial "=", which we must
375 skip. */
377 enum reg_class insn_class;
379 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
380 insn_class = ALL_REGS;
381 else
383 const char *insn_constraint
384 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
385 char insn_letter = *insn_constraint;
386 insn_class
387 = (insn_letter == 'r' ? GENERAL_REGS
388 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
389 insn_constraint));
391 gcc_assert (insn_class != NO_REGS);
392 gcc_assert (!in_p
393 || insn_data[(int) icode].operand[!in_p].constraint[0]
394 == '=');
397 /* The scratch register's constraint must start with "=&". */
398 gcc_assert (insn_data[(int) icode].operand[2].constraint[0] == '='
399 && insn_data[(int) icode].operand[2].constraint[1] == '&');
401 if (reg_class_subset_p (reload_class, insn_class))
402 mode = insn_data[(int) icode].operand[2].mode;
403 else
405 const char *t_constraint
406 = &insn_data[(int) icode].operand[2].constraint[2];
407 char t_letter = *t_constraint;
408 class = insn_class;
409 t_mode = insn_data[(int) icode].operand[2].mode;
410 t_class = (t_letter == 'r' ? GENERAL_REGS
411 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
412 t_constraint));
413 t_icode = icode;
414 icode = CODE_FOR_nothing;
418 /* This case isn't valid, so fail. Reload is allowed to use the same
419 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
420 in the case of a secondary register, we actually need two different
421 registers for correct code. We fail here to prevent the possibility of
422 silently generating incorrect code later.
424 The convention is that secondary input reloads are valid only if the
425 secondary_class is different from class. If you have such a case, you
426 can not use secondary reloads, you must work around the problem some
427 other way.
429 Allow this when a reload_in/out pattern is being used. I.e. assume
430 that the generated code handles this case. */
432 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
433 || t_icode != CODE_FOR_nothing);
435 /* If we need a tertiary reload, see if we have one we can reuse or else
436 make a new one. */
438 if (t_class != NO_REGS)
440 for (t_reload = 0; t_reload < n_reloads; t_reload++)
441 if (rld[t_reload].secondary_p
442 && (reg_class_subset_p (t_class, rld[t_reload].class)
443 || reg_class_subset_p (rld[t_reload].class, t_class))
444 && ((in_p && rld[t_reload].inmode == t_mode)
445 || (! in_p && rld[t_reload].outmode == t_mode))
446 && ((in_p && (rld[t_reload].secondary_in_icode
447 == CODE_FOR_nothing))
448 || (! in_p &&(rld[t_reload].secondary_out_icode
449 == CODE_FOR_nothing)))
450 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
451 && MERGABLE_RELOADS (secondary_type,
452 rld[t_reload].when_needed,
453 opnum, rld[t_reload].opnum))
455 if (in_p)
456 rld[t_reload].inmode = t_mode;
457 if (! in_p)
458 rld[t_reload].outmode = t_mode;
460 if (reg_class_subset_p (t_class, rld[t_reload].class))
461 rld[t_reload].class = t_class;
463 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
464 rld[t_reload].optional &= optional;
465 rld[t_reload].secondary_p = 1;
466 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
467 opnum, rld[t_reload].opnum))
468 rld[t_reload].when_needed = RELOAD_OTHER;
471 if (t_reload == n_reloads)
473 /* We need to make a new tertiary reload for this register class. */
474 rld[t_reload].in = rld[t_reload].out = 0;
475 rld[t_reload].class = t_class;
476 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
477 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
478 rld[t_reload].reg_rtx = 0;
479 rld[t_reload].optional = optional;
480 rld[t_reload].inc = 0;
481 /* Maybe we could combine these, but it seems too tricky. */
482 rld[t_reload].nocombine = 1;
483 rld[t_reload].in_reg = 0;
484 rld[t_reload].out_reg = 0;
485 rld[t_reload].opnum = opnum;
486 rld[t_reload].when_needed = secondary_type;
487 rld[t_reload].secondary_in_reload = -1;
488 rld[t_reload].secondary_out_reload = -1;
489 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
490 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
491 rld[t_reload].secondary_p = 1;
493 n_reloads++;
497 /* See if we can reuse an existing secondary reload. */
498 for (s_reload = 0; s_reload < n_reloads; s_reload++)
499 if (rld[s_reload].secondary_p
500 && (reg_class_subset_p (class, rld[s_reload].class)
501 || reg_class_subset_p (rld[s_reload].class, class))
502 && ((in_p && rld[s_reload].inmode == mode)
503 || (! in_p && rld[s_reload].outmode == mode))
504 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
505 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
506 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
507 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
508 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
509 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
510 opnum, rld[s_reload].opnum))
512 if (in_p)
513 rld[s_reload].inmode = mode;
514 if (! in_p)
515 rld[s_reload].outmode = mode;
517 if (reg_class_subset_p (class, rld[s_reload].class))
518 rld[s_reload].class = class;
520 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
521 rld[s_reload].optional &= optional;
522 rld[s_reload].secondary_p = 1;
523 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
524 opnum, rld[s_reload].opnum))
525 rld[s_reload].when_needed = RELOAD_OTHER;
528 if (s_reload == n_reloads)
530 #ifdef SECONDARY_MEMORY_NEEDED
531 /* If we need a memory location to copy between the two reload regs,
532 set it up now. Note that we do the input case before making
533 the reload and the output case after. This is due to the
534 way reloads are output. */
536 if (in_p && icode == CODE_FOR_nothing
537 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
539 get_secondary_mem (x, reload_mode, opnum, type);
541 /* We may have just added new reloads. Make sure we add
542 the new reload at the end. */
543 s_reload = n_reloads;
545 #endif
547 /* We need to make a new secondary reload for this register class. */
548 rld[s_reload].in = rld[s_reload].out = 0;
549 rld[s_reload].class = class;
551 rld[s_reload].inmode = in_p ? mode : VOIDmode;
552 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
553 rld[s_reload].reg_rtx = 0;
554 rld[s_reload].optional = optional;
555 rld[s_reload].inc = 0;
556 /* Maybe we could combine these, but it seems too tricky. */
557 rld[s_reload].nocombine = 1;
558 rld[s_reload].in_reg = 0;
559 rld[s_reload].out_reg = 0;
560 rld[s_reload].opnum = opnum;
561 rld[s_reload].when_needed = secondary_type;
562 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
563 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
564 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
565 rld[s_reload].secondary_out_icode
566 = ! in_p ? t_icode : CODE_FOR_nothing;
567 rld[s_reload].secondary_p = 1;
569 n_reloads++;
571 #ifdef SECONDARY_MEMORY_NEEDED
572 if (! in_p && icode == CODE_FOR_nothing
573 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
574 get_secondary_mem (x, mode, opnum, type);
575 #endif
578 *picode = icode;
579 return s_reload;
581 #endif /* HAVE_SECONDARY_RELOADS */
583 #ifdef SECONDARY_MEMORY_NEEDED
585 /* Return a memory location that will be used to copy X in mode MODE.
586 If we haven't already made a location for this mode in this insn,
587 call find_reloads_address on the location being returned. */
590 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
591 int opnum, enum reload_type type)
593 rtx loc;
594 int mem_valid;
596 /* By default, if MODE is narrower than a word, widen it to a word.
597 This is required because most machines that require these memory
598 locations do not support short load and stores from all registers
599 (e.g., FP registers). */
601 #ifdef SECONDARY_MEMORY_NEEDED_MODE
602 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
603 #else
604 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
605 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
606 #endif
608 /* If we already have made a MEM for this operand in MODE, return it. */
609 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
610 return secondary_memlocs_elim[(int) mode][opnum];
612 /* If this is the first time we've tried to get a MEM for this mode,
613 allocate a new one. `something_changed' in reload will get set
614 by noticing that the frame size has changed. */
616 if (secondary_memlocs[(int) mode] == 0)
618 #ifdef SECONDARY_MEMORY_NEEDED_RTX
619 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
620 #else
621 secondary_memlocs[(int) mode]
622 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
623 #endif
626 /* Get a version of the address doing any eliminations needed. If that
627 didn't give us a new MEM, make a new one if it isn't valid. */
629 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
630 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
632 if (! mem_valid && loc == secondary_memlocs[(int) mode])
633 loc = copy_rtx (loc);
635 /* The only time the call below will do anything is if the stack
636 offset is too large. In that case IND_LEVELS doesn't matter, so we
637 can just pass a zero. Adjust the type to be the address of the
638 corresponding object. If the address was valid, save the eliminated
639 address. If it wasn't valid, we need to make a reload each time, so
640 don't save it. */
642 if (! mem_valid)
644 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
645 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
646 : RELOAD_OTHER);
648 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
649 opnum, type, 0, 0);
652 secondary_memlocs_elim[(int) mode][opnum] = loc;
653 if (secondary_memlocs_elim_used <= (int)mode)
654 secondary_memlocs_elim_used = (int)mode + 1;
655 return loc;
658 /* Clear any secondary memory locations we've made. */
660 void
661 clear_secondary_mem (void)
663 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
665 #endif /* SECONDARY_MEMORY_NEEDED */
667 /* Find the largest class for which every register number plus N is valid in
668 M1 (if in range) and is cheap to move into REGNO.
669 Abort if no such class exists. */
671 static enum reg_class
672 find_valid_class (enum machine_mode m1 ATTRIBUTE_UNUSED, int n,
673 unsigned int dest_regno ATTRIBUTE_UNUSED)
675 int best_cost = -1;
676 int class;
677 int regno;
678 enum reg_class best_class = NO_REGS;
679 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
680 unsigned int best_size = 0;
681 int cost;
683 for (class = 1; class < N_REG_CLASSES; class++)
685 int bad = 0;
686 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
687 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
688 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
689 && ! HARD_REGNO_MODE_OK (regno + n, m1))
690 bad = 1;
692 if (bad)
693 continue;
694 cost = REGISTER_MOVE_COST (m1, class, dest_class);
696 if ((reg_class_size[class] > best_size
697 && (best_cost < 0 || best_cost >= cost))
698 || best_cost > cost)
700 best_class = class;
701 best_size = reg_class_size[class];
702 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
706 gcc_assert (best_size != 0);
708 return best_class;
711 /* Return the number of a previously made reload that can be combined with
712 a new one, or n_reloads if none of the existing reloads can be used.
713 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
714 push_reload, they determine the kind of the new reload that we try to
715 combine. P_IN points to the corresponding value of IN, which can be
716 modified by this function.
717 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
719 static int
720 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
721 enum reload_type type, int opnum, int dont_share)
723 rtx in = *p_in;
724 int i;
725 /* We can't merge two reloads if the output of either one is
726 earlyclobbered. */
728 if (earlyclobber_operand_p (out))
729 return n_reloads;
731 /* We can use an existing reload if the class is right
732 and at least one of IN and OUT is a match
733 and the other is at worst neutral.
734 (A zero compared against anything is neutral.)
736 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
737 for the same thing since that can cause us to need more reload registers
738 than we otherwise would. */
740 for (i = 0; i < n_reloads; i++)
741 if ((reg_class_subset_p (class, rld[i].class)
742 || reg_class_subset_p (rld[i].class, class))
743 /* If the existing reload has a register, it must fit our class. */
744 && (rld[i].reg_rtx == 0
745 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
746 true_regnum (rld[i].reg_rtx)))
747 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
748 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
749 || (out != 0 && MATCHES (rld[i].out, out)
750 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
751 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
752 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
753 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
754 return i;
756 /* Reloading a plain reg for input can match a reload to postincrement
757 that reg, since the postincrement's value is the right value.
758 Likewise, it can match a preincrement reload, since we regard
759 the preincrementation as happening before any ref in this insn
760 to that register. */
761 for (i = 0; i < n_reloads; i++)
762 if ((reg_class_subset_p (class, rld[i].class)
763 || reg_class_subset_p (rld[i].class, class))
764 /* If the existing reload has a register, it must fit our
765 class. */
766 && (rld[i].reg_rtx == 0
767 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
768 true_regnum (rld[i].reg_rtx)))
769 && out == 0 && rld[i].out == 0 && rld[i].in != 0
770 && ((REG_P (in)
771 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
772 && MATCHES (XEXP (rld[i].in, 0), in))
773 || (REG_P (rld[i].in)
774 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
775 && MATCHES (XEXP (in, 0), rld[i].in)))
776 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
777 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
778 && MERGABLE_RELOADS (type, rld[i].when_needed,
779 opnum, rld[i].opnum))
781 /* Make sure reload_in ultimately has the increment,
782 not the plain register. */
783 if (REG_P (in))
784 *p_in = rld[i].in;
785 return i;
787 return n_reloads;
790 /* Return nonzero if X is a SUBREG which will require reloading of its
791 SUBREG_REG expression. */
793 static int
794 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
796 rtx inner;
798 /* Only SUBREGs are problematical. */
799 if (GET_CODE (x) != SUBREG)
800 return 0;
802 inner = SUBREG_REG (x);
804 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
805 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
806 return 1;
808 /* If INNER is not a hard register, then INNER will not need to
809 be reloaded. */
810 if (!REG_P (inner)
811 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
812 return 0;
814 /* If INNER is not ok for MODE, then INNER will need reloading. */
815 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
816 return 1;
818 /* If the outer part is a word or smaller, INNER larger than a
819 word and the number of regs for INNER is not the same as the
820 number of words in INNER, then INNER will need reloading. */
821 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
822 && output
823 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
824 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
825 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
828 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
829 requiring an extra reload register. The caller has already found that
830 IN contains some reference to REGNO, so check that we can produce the
831 new value in a single step. E.g. if we have
832 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
833 instruction that adds one to a register, this should succeed.
834 However, if we have something like
835 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
836 needs to be loaded into a register first, we need a separate reload
837 register.
838 Such PLUS reloads are generated by find_reload_address_part.
839 The out-of-range PLUS expressions are usually introduced in the instruction
840 patterns by register elimination and substituting pseudos without a home
841 by their function-invariant equivalences. */
842 static int
843 can_reload_into (rtx in, int regno, enum machine_mode mode)
845 rtx dst, test_insn;
846 int r = 0;
847 struct recog_data save_recog_data;
849 /* For matching constraints, we often get notional input reloads where
850 we want to use the original register as the reload register. I.e.
851 technically this is a non-optional input-output reload, but IN is
852 already a valid register, and has been chosen as the reload register.
853 Speed this up, since it trivially works. */
854 if (REG_P (in))
855 return 1;
857 /* To test MEMs properly, we'd have to take into account all the reloads
858 that are already scheduled, which can become quite complicated.
859 And since we've already handled address reloads for this MEM, it
860 should always succeed anyway. */
861 if (MEM_P (in))
862 return 1;
864 /* If we can make a simple SET insn that does the job, everything should
865 be fine. */
866 dst = gen_rtx_REG (mode, regno);
867 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
868 save_recog_data = recog_data;
869 if (recog_memoized (test_insn) >= 0)
871 extract_insn (test_insn);
872 r = constrain_operands (1);
874 recog_data = save_recog_data;
875 return r;
878 /* Record one reload that needs to be performed.
879 IN is an rtx saying where the data are to be found before this instruction.
880 OUT says where they must be stored after the instruction.
881 (IN is zero for data not read, and OUT is zero for data not written.)
882 INLOC and OUTLOC point to the places in the instructions where
883 IN and OUT were found.
884 If IN and OUT are both nonzero, it means the same register must be used
885 to reload both IN and OUT.
887 CLASS is a register class required for the reloaded data.
888 INMODE is the machine mode that the instruction requires
889 for the reg that replaces IN and OUTMODE is likewise for OUT.
891 If IN is zero, then OUT's location and mode should be passed as
892 INLOC and INMODE.
894 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
896 OPTIONAL nonzero means this reload does not need to be performed:
897 it can be discarded if that is more convenient.
899 OPNUM and TYPE say what the purpose of this reload is.
901 The return value is the reload-number for this reload.
903 If both IN and OUT are nonzero, in some rare cases we might
904 want to make two separate reloads. (Actually we never do this now.)
905 Therefore, the reload-number for OUT is stored in
906 output_reloadnum when we return; the return value applies to IN.
907 Usually (presently always), when IN and OUT are nonzero,
908 the two reload-numbers are equal, but the caller should be careful to
909 distinguish them. */
912 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
913 enum reg_class class, enum machine_mode inmode,
914 enum machine_mode outmode, int strict_low, int optional,
915 int opnum, enum reload_type type)
917 int i;
918 int dont_share = 0;
919 int dont_remove_subreg = 0;
920 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
921 int secondary_in_reload = -1, secondary_out_reload = -1;
922 enum insn_code secondary_in_icode = CODE_FOR_nothing;
923 enum insn_code secondary_out_icode = CODE_FOR_nothing;
925 /* INMODE and/or OUTMODE could be VOIDmode if no mode
926 has been specified for the operand. In that case,
927 use the operand's mode as the mode to reload. */
928 if (inmode == VOIDmode && in != 0)
929 inmode = GET_MODE (in);
930 if (outmode == VOIDmode && out != 0)
931 outmode = GET_MODE (out);
933 /* If IN is a pseudo register everywhere-equivalent to a constant, and
934 it is not in a hard register, reload straight from the constant,
935 since we want to get rid of such pseudo registers.
936 Often this is done earlier, but not always in find_reloads_address. */
937 if (in != 0 && REG_P (in))
939 int regno = REGNO (in);
941 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
942 && reg_equiv_constant[regno] != 0)
943 in = reg_equiv_constant[regno];
946 /* Likewise for OUT. Of course, OUT will never be equivalent to
947 an actual constant, but it might be equivalent to a memory location
948 (in the case of a parameter). */
949 if (out != 0 && REG_P (out))
951 int regno = REGNO (out);
953 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
954 && reg_equiv_constant[regno] != 0)
955 out = reg_equiv_constant[regno];
958 /* If we have a read-write operand with an address side-effect,
959 change either IN or OUT so the side-effect happens only once. */
960 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
961 switch (GET_CODE (XEXP (in, 0)))
963 case POST_INC: case POST_DEC: case POST_MODIFY:
964 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
965 break;
967 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
968 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
969 break;
971 default:
972 break;
975 /* If we are reloading a (SUBREG constant ...), really reload just the
976 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
977 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
978 a pseudo and hence will become a MEM) with M1 wider than M2 and the
979 register is a pseudo, also reload the inside expression.
980 For machines that extend byte loads, do this for any SUBREG of a pseudo
981 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
982 M2 is an integral mode that gets extended when loaded.
983 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
984 either M1 is not valid for R or M2 is wider than a word but we only
985 need one word to store an M2-sized quantity in R.
986 (However, if OUT is nonzero, we need to reload the reg *and*
987 the subreg, so do nothing here, and let following statement handle it.)
989 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
990 we can't handle it here because CONST_INT does not indicate a mode.
992 Similarly, we must reload the inside expression if we have a
993 STRICT_LOW_PART (presumably, in == out in the cas).
995 Also reload the inner expression if it does not require a secondary
996 reload but the SUBREG does.
998 Finally, reload the inner expression if it is a register that is in
999 the class whose registers cannot be referenced in a different size
1000 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1001 cannot reload just the inside since we might end up with the wrong
1002 register class. But if it is inside a STRICT_LOW_PART, we have
1003 no choice, so we hope we do get the right register class there. */
1005 if (in != 0 && GET_CODE (in) == SUBREG
1006 && (subreg_lowpart_p (in) || strict_low)
1007 #ifdef CANNOT_CHANGE_MODE_CLASS
1008 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1009 #endif
1010 && (CONSTANT_P (SUBREG_REG (in))
1011 || GET_CODE (SUBREG_REG (in)) == PLUS
1012 || strict_low
1013 || (((REG_P (SUBREG_REG (in))
1014 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1015 || MEM_P (SUBREG_REG (in)))
1016 && ((GET_MODE_SIZE (inmode)
1017 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1018 #ifdef LOAD_EXTEND_OP
1019 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1020 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1021 <= UNITS_PER_WORD)
1022 && (GET_MODE_SIZE (inmode)
1023 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1024 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1025 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1026 #endif
1027 #ifdef WORD_REGISTER_OPERATIONS
1028 || ((GET_MODE_SIZE (inmode)
1029 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1030 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1031 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1032 / UNITS_PER_WORD)))
1033 #endif
1035 || (REG_P (SUBREG_REG (in))
1036 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1037 /* The case where out is nonzero
1038 is handled differently in the following statement. */
1039 && (out == 0 || subreg_lowpart_p (in))
1040 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1041 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1042 > UNITS_PER_WORD)
1043 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1044 / UNITS_PER_WORD)
1045 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1046 [GET_MODE (SUBREG_REG (in))]))
1047 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1048 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1049 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1050 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1051 GET_MODE (SUBREG_REG (in)),
1052 SUBREG_REG (in))
1053 == NO_REGS))
1054 #endif
1055 #ifdef CANNOT_CHANGE_MODE_CLASS
1056 || (REG_P (SUBREG_REG (in))
1057 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1058 && REG_CANNOT_CHANGE_MODE_P
1059 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1060 #endif
1063 in_subreg_loc = inloc;
1064 inloc = &SUBREG_REG (in);
1065 in = *inloc;
1066 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1067 if (MEM_P (in))
1068 /* This is supposed to happen only for paradoxical subregs made by
1069 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1070 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1071 #endif
1072 inmode = GET_MODE (in);
1075 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1076 either M1 is not valid for R or M2 is wider than a word but we only
1077 need one word to store an M2-sized quantity in R.
1079 However, we must reload the inner reg *as well as* the subreg in
1080 that case. */
1082 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1083 code above. This can happen if SUBREG_BYTE != 0. */
1085 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1087 enum reg_class in_class = class;
1089 if (REG_P (SUBREG_REG (in)))
1090 in_class
1091 = find_valid_class (inmode,
1092 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1093 GET_MODE (SUBREG_REG (in)),
1094 SUBREG_BYTE (in),
1095 GET_MODE (in)),
1096 REGNO (SUBREG_REG (in)));
1098 /* This relies on the fact that emit_reload_insns outputs the
1099 instructions for input reloads of type RELOAD_OTHER in the same
1100 order as the reloads. Thus if the outer reload is also of type
1101 RELOAD_OTHER, we are guaranteed that this inner reload will be
1102 output before the outer reload. */
1103 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1104 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1105 dont_remove_subreg = 1;
1108 /* Similarly for paradoxical and problematical SUBREGs on the output.
1109 Note that there is no reason we need worry about the previous value
1110 of SUBREG_REG (out); even if wider than out,
1111 storing in a subreg is entitled to clobber it all
1112 (except in the case of STRICT_LOW_PART,
1113 and in that case the constraint should label it input-output.) */
1114 if (out != 0 && GET_CODE (out) == SUBREG
1115 && (subreg_lowpart_p (out) || strict_low)
1116 #ifdef CANNOT_CHANGE_MODE_CLASS
1117 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1118 #endif
1119 && (CONSTANT_P (SUBREG_REG (out))
1120 || strict_low
1121 || (((REG_P (SUBREG_REG (out))
1122 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1123 || MEM_P (SUBREG_REG (out)))
1124 && ((GET_MODE_SIZE (outmode)
1125 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1126 #ifdef WORD_REGISTER_OPERATIONS
1127 || ((GET_MODE_SIZE (outmode)
1128 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1129 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1130 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1131 / UNITS_PER_WORD)))
1132 #endif
1134 || (REG_P (SUBREG_REG (out))
1135 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1136 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1137 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1138 > UNITS_PER_WORD)
1139 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1140 / UNITS_PER_WORD)
1141 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1142 [GET_MODE (SUBREG_REG (out))]))
1143 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1144 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1145 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1146 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1147 GET_MODE (SUBREG_REG (out)),
1148 SUBREG_REG (out))
1149 == NO_REGS))
1150 #endif
1151 #ifdef CANNOT_CHANGE_MODE_CLASS
1152 || (REG_P (SUBREG_REG (out))
1153 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1154 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1155 GET_MODE (SUBREG_REG (out)),
1156 outmode))
1157 #endif
1160 out_subreg_loc = outloc;
1161 outloc = &SUBREG_REG (out);
1162 out = *outloc;
1163 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1164 gcc_assert (!MEM_P (out)
1165 || GET_MODE_SIZE (GET_MODE (out))
1166 <= GET_MODE_SIZE (outmode));
1167 #endif
1168 outmode = GET_MODE (out);
1171 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1172 either M1 is not valid for R or M2 is wider than a word but we only
1173 need one word to store an M2-sized quantity in R.
1175 However, we must reload the inner reg *as well as* the subreg in
1176 that case. In this case, the inner reg is an in-out reload. */
1178 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1180 /* This relies on the fact that emit_reload_insns outputs the
1181 instructions for output reloads of type RELOAD_OTHER in reverse
1182 order of the reloads. Thus if the outer reload is also of type
1183 RELOAD_OTHER, we are guaranteed that this inner reload will be
1184 output after the outer reload. */
1185 dont_remove_subreg = 1;
1186 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1187 &SUBREG_REG (out),
1188 find_valid_class (outmode,
1189 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1190 GET_MODE (SUBREG_REG (out)),
1191 SUBREG_BYTE (out),
1192 GET_MODE (out)),
1193 REGNO (SUBREG_REG (out))),
1194 VOIDmode, VOIDmode, 0, 0,
1195 opnum, RELOAD_OTHER);
1198 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1199 if (in != 0 && out != 0 && MEM_P (out)
1200 && (REG_P (in) || MEM_P (in))
1201 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1202 dont_share = 1;
1204 /* If IN is a SUBREG of a hard register, make a new REG. This
1205 simplifies some of the cases below. */
1207 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1208 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1209 && ! dont_remove_subreg)
1210 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1212 /* Similarly for OUT. */
1213 if (out != 0 && GET_CODE (out) == SUBREG
1214 && REG_P (SUBREG_REG (out))
1215 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1216 && ! dont_remove_subreg)
1217 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1219 /* Narrow down the class of register wanted if that is
1220 desirable on this machine for efficiency. */
1221 if (in != 0)
1222 class = PREFERRED_RELOAD_CLASS (in, class);
1224 /* Output reloads may need analogous treatment, different in detail. */
1225 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1226 if (out != 0)
1227 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1228 #endif
1230 /* Make sure we use a class that can handle the actual pseudo
1231 inside any subreg. For example, on the 386, QImode regs
1232 can appear within SImode subregs. Although GENERAL_REGS
1233 can handle SImode, QImode needs a smaller class. */
1234 #ifdef LIMIT_RELOAD_CLASS
1235 if (in_subreg_loc)
1236 class = LIMIT_RELOAD_CLASS (inmode, class);
1237 else if (in != 0 && GET_CODE (in) == SUBREG)
1238 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1240 if (out_subreg_loc)
1241 class = LIMIT_RELOAD_CLASS (outmode, class);
1242 if (out != 0 && GET_CODE (out) == SUBREG)
1243 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1244 #endif
1246 /* Verify that this class is at least possible for the mode that
1247 is specified. */
1248 if (this_insn_is_asm)
1250 enum machine_mode mode;
1251 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1252 mode = inmode;
1253 else
1254 mode = outmode;
1255 if (mode == VOIDmode)
1257 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1258 mode = word_mode;
1259 if (in != 0)
1260 inmode = word_mode;
1261 if (out != 0)
1262 outmode = word_mode;
1264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1265 if (HARD_REGNO_MODE_OK (i, mode)
1266 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1268 int nregs = hard_regno_nregs[i][mode];
1270 int j;
1271 for (j = 1; j < nregs; j++)
1272 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1273 break;
1274 if (j == nregs)
1275 break;
1277 if (i == FIRST_PSEUDO_REGISTER)
1279 error_for_asm (this_insn, "impossible register constraint in `asm'");
1280 class = ALL_REGS;
1284 /* Optional output reloads are always OK even if we have no register class,
1285 since the function of these reloads is only to have spill_reg_store etc.
1286 set, so that the storing insn can be deleted later. */
1287 gcc_assert (class != NO_REGS
1288 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1290 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1292 if (i == n_reloads)
1294 /* See if we need a secondary reload register to move between CLASS
1295 and IN or CLASS and OUT. Get the icode and push any required reloads
1296 needed for each of them if so. */
1298 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1299 if (in != 0)
1300 secondary_in_reload
1301 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1302 &secondary_in_icode);
1303 #endif
1305 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1306 if (out != 0 && GET_CODE (out) != SCRATCH)
1307 secondary_out_reload
1308 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1309 type, &secondary_out_icode);
1310 #endif
1312 /* We found no existing reload suitable for re-use.
1313 So add an additional reload. */
1315 #ifdef SECONDARY_MEMORY_NEEDED
1316 /* If a memory location is needed for the copy, make one. */
1317 if (in != 0 && (REG_P (in) || GET_CODE (in) == SUBREG)
1318 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1319 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1320 class, inmode))
1321 get_secondary_mem (in, inmode, opnum, type);
1322 #endif
1324 i = n_reloads;
1325 rld[i].in = in;
1326 rld[i].out = out;
1327 rld[i].class = class;
1328 rld[i].inmode = inmode;
1329 rld[i].outmode = outmode;
1330 rld[i].reg_rtx = 0;
1331 rld[i].optional = optional;
1332 rld[i].inc = 0;
1333 rld[i].nocombine = 0;
1334 rld[i].in_reg = inloc ? *inloc : 0;
1335 rld[i].out_reg = outloc ? *outloc : 0;
1336 rld[i].opnum = opnum;
1337 rld[i].when_needed = type;
1338 rld[i].secondary_in_reload = secondary_in_reload;
1339 rld[i].secondary_out_reload = secondary_out_reload;
1340 rld[i].secondary_in_icode = secondary_in_icode;
1341 rld[i].secondary_out_icode = secondary_out_icode;
1342 rld[i].secondary_p = 0;
1344 n_reloads++;
1346 #ifdef SECONDARY_MEMORY_NEEDED
1347 if (out != 0 && (REG_P (out) || GET_CODE (out) == SUBREG)
1348 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1349 && SECONDARY_MEMORY_NEEDED (class,
1350 REGNO_REG_CLASS (reg_or_subregno (out)),
1351 outmode))
1352 get_secondary_mem (out, outmode, opnum, type);
1353 #endif
1355 else
1357 /* We are reusing an existing reload,
1358 but we may have additional information for it.
1359 For example, we may now have both IN and OUT
1360 while the old one may have just one of them. */
1362 /* The modes can be different. If they are, we want to reload in
1363 the larger mode, so that the value is valid for both modes. */
1364 if (inmode != VOIDmode
1365 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1366 rld[i].inmode = inmode;
1367 if (outmode != VOIDmode
1368 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1369 rld[i].outmode = outmode;
1370 if (in != 0)
1372 rtx in_reg = inloc ? *inloc : 0;
1373 /* If we merge reloads for two distinct rtl expressions that
1374 are identical in content, there might be duplicate address
1375 reloads. Remove the extra set now, so that if we later find
1376 that we can inherit this reload, we can get rid of the
1377 address reloads altogether.
1379 Do not do this if both reloads are optional since the result
1380 would be an optional reload which could potentially leave
1381 unresolved address replacements.
1383 It is not sufficient to call transfer_replacements since
1384 choose_reload_regs will remove the replacements for address
1385 reloads of inherited reloads which results in the same
1386 problem. */
1387 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1388 && ! (rld[i].optional && optional))
1390 /* We must keep the address reload with the lower operand
1391 number alive. */
1392 if (opnum > rld[i].opnum)
1394 remove_address_replacements (in);
1395 in = rld[i].in;
1396 in_reg = rld[i].in_reg;
1398 else
1399 remove_address_replacements (rld[i].in);
1401 rld[i].in = in;
1402 rld[i].in_reg = in_reg;
1404 if (out != 0)
1406 rld[i].out = out;
1407 rld[i].out_reg = outloc ? *outloc : 0;
1409 if (reg_class_subset_p (class, rld[i].class))
1410 rld[i].class = class;
1411 rld[i].optional &= optional;
1412 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1413 opnum, rld[i].opnum))
1414 rld[i].when_needed = RELOAD_OTHER;
1415 rld[i].opnum = MIN (rld[i].opnum, opnum);
1418 /* If the ostensible rtx being reloaded differs from the rtx found
1419 in the location to substitute, this reload is not safe to combine
1420 because we cannot reliably tell whether it appears in the insn. */
1422 if (in != 0 && in != *inloc)
1423 rld[i].nocombine = 1;
1425 #if 0
1426 /* This was replaced by changes in find_reloads_address_1 and the new
1427 function inc_for_reload, which go with a new meaning of reload_inc. */
1429 /* If this is an IN/OUT reload in an insn that sets the CC,
1430 it must be for an autoincrement. It doesn't work to store
1431 the incremented value after the insn because that would clobber the CC.
1432 So we must do the increment of the value reloaded from,
1433 increment it, store it back, then decrement again. */
1434 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1436 out = 0;
1437 rld[i].out = 0;
1438 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1439 /* If we did not find a nonzero amount-to-increment-by,
1440 that contradicts the belief that IN is being incremented
1441 in an address in this insn. */
1442 gcc_assert (rld[i].inc != 0);
1444 #endif
1446 /* If we will replace IN and OUT with the reload-reg,
1447 record where they are located so that substitution need
1448 not do a tree walk. */
1450 if (replace_reloads)
1452 if (inloc != 0)
1454 struct replacement *r = &replacements[n_replacements++];
1455 r->what = i;
1456 r->subreg_loc = in_subreg_loc;
1457 r->where = inloc;
1458 r->mode = inmode;
1460 if (outloc != 0 && outloc != inloc)
1462 struct replacement *r = &replacements[n_replacements++];
1463 r->what = i;
1464 r->where = outloc;
1465 r->subreg_loc = out_subreg_loc;
1466 r->mode = outmode;
1470 /* If this reload is just being introduced and it has both
1471 an incoming quantity and an outgoing quantity that are
1472 supposed to be made to match, see if either one of the two
1473 can serve as the place to reload into.
1475 If one of them is acceptable, set rld[i].reg_rtx
1476 to that one. */
1478 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1480 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1481 inmode, outmode,
1482 rld[i].class, i,
1483 earlyclobber_operand_p (out));
1485 /* If the outgoing register already contains the same value
1486 as the incoming one, we can dispense with loading it.
1487 The easiest way to tell the caller that is to give a phony
1488 value for the incoming operand (same as outgoing one). */
1489 if (rld[i].reg_rtx == out
1490 && (REG_P (in) || CONSTANT_P (in))
1491 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1492 static_reload_reg_p, i, inmode))
1493 rld[i].in = out;
1496 /* If this is an input reload and the operand contains a register that
1497 dies in this insn and is used nowhere else, see if it is the right class
1498 to be used for this reload. Use it if so. (This occurs most commonly
1499 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1500 this if it is also an output reload that mentions the register unless
1501 the output is a SUBREG that clobbers an entire register.
1503 Note that the operand might be one of the spill regs, if it is a
1504 pseudo reg and we are in a block where spilling has not taken place.
1505 But if there is no spilling in this block, that is OK.
1506 An explicitly used hard reg cannot be a spill reg. */
1508 if (rld[i].reg_rtx == 0 && in != 0)
1510 rtx note;
1511 int regno;
1512 enum machine_mode rel_mode = inmode;
1514 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1515 rel_mode = outmode;
1517 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1518 if (REG_NOTE_KIND (note) == REG_DEAD
1519 && REG_P (XEXP (note, 0))
1520 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1521 && reg_mentioned_p (XEXP (note, 0), in)
1522 && ! refers_to_regno_for_reload_p (regno,
1523 (regno
1524 + hard_regno_nregs[regno]
1525 [rel_mode]),
1526 PATTERN (this_insn), inloc)
1527 /* If this is also an output reload, IN cannot be used as
1528 the reload register if it is set in this insn unless IN
1529 is also OUT. */
1530 && (out == 0 || in == out
1531 || ! hard_reg_set_here_p (regno,
1532 (regno
1533 + hard_regno_nregs[regno]
1534 [rel_mode]),
1535 PATTERN (this_insn)))
1536 /* ??? Why is this code so different from the previous?
1537 Is there any simple coherent way to describe the two together?
1538 What's going on here. */
1539 && (in != out
1540 || (GET_CODE (in) == SUBREG
1541 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1542 / UNITS_PER_WORD)
1543 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1544 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1545 /* Make sure the operand fits in the reg that dies. */
1546 && (GET_MODE_SIZE (rel_mode)
1547 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1548 && HARD_REGNO_MODE_OK (regno, inmode)
1549 && HARD_REGNO_MODE_OK (regno, outmode))
1551 unsigned int offs;
1552 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1553 hard_regno_nregs[regno][outmode]);
1555 for (offs = 0; offs < nregs; offs++)
1556 if (fixed_regs[regno + offs]
1557 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1558 regno + offs))
1559 break;
1561 if (offs == nregs
1562 && (! (refers_to_regno_for_reload_p
1563 (regno, (regno + hard_regno_nregs[regno][inmode]),
1564 in, (rtx *)0))
1565 || can_reload_into (in, regno, inmode)))
1567 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1568 break;
1573 if (out)
1574 output_reloadnum = i;
1576 return i;
1579 /* Record an additional place we must replace a value
1580 for which we have already recorded a reload.
1581 RELOADNUM is the value returned by push_reload
1582 when the reload was recorded.
1583 This is used in insn patterns that use match_dup. */
1585 static void
1586 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1588 if (replace_reloads)
1590 struct replacement *r = &replacements[n_replacements++];
1591 r->what = reloadnum;
1592 r->where = loc;
1593 r->subreg_loc = 0;
1594 r->mode = mode;
1598 /* Duplicate any replacement we have recorded to apply at
1599 location ORIG_LOC to also be performed at DUP_LOC.
1600 This is used in insn patterns that use match_dup. */
1602 static void
1603 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1605 int i, n = n_replacements;
1607 for (i = 0; i < n; i++)
1609 struct replacement *r = &replacements[i];
1610 if (r->where == orig_loc)
1611 push_replacement (dup_loc, r->what, r->mode);
1615 /* Transfer all replacements that used to be in reload FROM to be in
1616 reload TO. */
1618 void
1619 transfer_replacements (int to, int from)
1621 int i;
1623 for (i = 0; i < n_replacements; i++)
1624 if (replacements[i].what == from)
1625 replacements[i].what = to;
1628 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1629 or a subpart of it. If we have any replacements registered for IN_RTX,
1630 cancel the reloads that were supposed to load them.
1631 Return nonzero if we canceled any reloads. */
1633 remove_address_replacements (rtx in_rtx)
1635 int i, j;
1636 char reload_flags[MAX_RELOADS];
1637 int something_changed = 0;
1639 memset (reload_flags, 0, sizeof reload_flags);
1640 for (i = 0, j = 0; i < n_replacements; i++)
1642 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1643 reload_flags[replacements[i].what] |= 1;
1644 else
1646 replacements[j++] = replacements[i];
1647 reload_flags[replacements[i].what] |= 2;
1650 /* Note that the following store must be done before the recursive calls. */
1651 n_replacements = j;
1653 for (i = n_reloads - 1; i >= 0; i--)
1655 if (reload_flags[i] == 1)
1657 deallocate_reload_reg (i);
1658 remove_address_replacements (rld[i].in);
1659 rld[i].in = 0;
1660 something_changed = 1;
1663 return something_changed;
1666 /* If there is only one output reload, and it is not for an earlyclobber
1667 operand, try to combine it with a (logically unrelated) input reload
1668 to reduce the number of reload registers needed.
1670 This is safe if the input reload does not appear in
1671 the value being output-reloaded, because this implies
1672 it is not needed any more once the original insn completes.
1674 If that doesn't work, see we can use any of the registers that
1675 die in this insn as a reload register. We can if it is of the right
1676 class and does not appear in the value being output-reloaded. */
1678 static void
1679 combine_reloads (void)
1681 int i;
1682 int output_reload = -1;
1683 int secondary_out = -1;
1684 rtx note;
1686 /* Find the output reload; return unless there is exactly one
1687 and that one is mandatory. */
1689 for (i = 0; i < n_reloads; i++)
1690 if (rld[i].out != 0)
1692 if (output_reload >= 0)
1693 return;
1694 output_reload = i;
1697 if (output_reload < 0 || rld[output_reload].optional)
1698 return;
1700 /* An input-output reload isn't combinable. */
1702 if (rld[output_reload].in != 0)
1703 return;
1705 /* If this reload is for an earlyclobber operand, we can't do anything. */
1706 if (earlyclobber_operand_p (rld[output_reload].out))
1707 return;
1709 /* If there is a reload for part of the address of this operand, we would
1710 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1711 its life to the point where doing this combine would not lower the
1712 number of spill registers needed. */
1713 for (i = 0; i < n_reloads; i++)
1714 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1715 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1716 && rld[i].opnum == rld[output_reload].opnum)
1717 return;
1719 /* Check each input reload; can we combine it? */
1721 for (i = 0; i < n_reloads; i++)
1722 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1723 /* Life span of this reload must not extend past main insn. */
1724 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1725 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1726 && rld[i].when_needed != RELOAD_OTHER
1727 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1728 == CLASS_MAX_NREGS (rld[output_reload].class,
1729 rld[output_reload].outmode))
1730 && rld[i].inc == 0
1731 && rld[i].reg_rtx == 0
1732 #ifdef SECONDARY_MEMORY_NEEDED
1733 /* Don't combine two reloads with different secondary
1734 memory locations. */
1735 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1736 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1737 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1738 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1739 #endif
1740 && (SMALL_REGISTER_CLASSES
1741 ? (rld[i].class == rld[output_reload].class)
1742 : (reg_class_subset_p (rld[i].class,
1743 rld[output_reload].class)
1744 || reg_class_subset_p (rld[output_reload].class,
1745 rld[i].class)))
1746 && (MATCHES (rld[i].in, rld[output_reload].out)
1747 /* Args reversed because the first arg seems to be
1748 the one that we imagine being modified
1749 while the second is the one that might be affected. */
1750 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1751 rld[i].in)
1752 /* However, if the input is a register that appears inside
1753 the output, then we also can't share.
1754 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1755 If the same reload reg is used for both reg 69 and the
1756 result to be stored in memory, then that result
1757 will clobber the address of the memory ref. */
1758 && ! (REG_P (rld[i].in)
1759 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1760 rld[output_reload].out))))
1761 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1762 rld[i].when_needed != RELOAD_FOR_INPUT)
1763 && (reg_class_size[(int) rld[i].class]
1764 || SMALL_REGISTER_CLASSES)
1765 /* We will allow making things slightly worse by combining an
1766 input and an output, but no worse than that. */
1767 && (rld[i].when_needed == RELOAD_FOR_INPUT
1768 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1770 int j;
1772 /* We have found a reload to combine with! */
1773 rld[i].out = rld[output_reload].out;
1774 rld[i].out_reg = rld[output_reload].out_reg;
1775 rld[i].outmode = rld[output_reload].outmode;
1776 /* Mark the old output reload as inoperative. */
1777 rld[output_reload].out = 0;
1778 /* The combined reload is needed for the entire insn. */
1779 rld[i].when_needed = RELOAD_OTHER;
1780 /* If the output reload had a secondary reload, copy it. */
1781 if (rld[output_reload].secondary_out_reload != -1)
1783 rld[i].secondary_out_reload
1784 = rld[output_reload].secondary_out_reload;
1785 rld[i].secondary_out_icode
1786 = rld[output_reload].secondary_out_icode;
1789 #ifdef SECONDARY_MEMORY_NEEDED
1790 /* Copy any secondary MEM. */
1791 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1792 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1793 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1794 #endif
1795 /* If required, minimize the register class. */
1796 if (reg_class_subset_p (rld[output_reload].class,
1797 rld[i].class))
1798 rld[i].class = rld[output_reload].class;
1800 /* Transfer all replacements from the old reload to the combined. */
1801 for (j = 0; j < n_replacements; j++)
1802 if (replacements[j].what == output_reload)
1803 replacements[j].what = i;
1805 return;
1808 /* If this insn has only one operand that is modified or written (assumed
1809 to be the first), it must be the one corresponding to this reload. It
1810 is safe to use anything that dies in this insn for that output provided
1811 that it does not occur in the output (we already know it isn't an
1812 earlyclobber. If this is an asm insn, give up. */
1814 if (INSN_CODE (this_insn) == -1)
1815 return;
1817 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1818 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1819 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1820 return;
1822 /* See if some hard register that dies in this insn and is not used in
1823 the output is the right class. Only works if the register we pick
1824 up can fully hold our output reload. */
1825 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1826 if (REG_NOTE_KIND (note) == REG_DEAD
1827 && REG_P (XEXP (note, 0))
1828 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1829 rld[output_reload].out)
1830 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1831 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1832 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1833 REGNO (XEXP (note, 0)))
1834 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1835 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1836 /* Ensure that a secondary or tertiary reload for this output
1837 won't want this register. */
1838 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1839 || (! (TEST_HARD_REG_BIT
1840 (reg_class_contents[(int) rld[secondary_out].class],
1841 REGNO (XEXP (note, 0))))
1842 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1843 || ! (TEST_HARD_REG_BIT
1844 (reg_class_contents[(int) rld[secondary_out].class],
1845 REGNO (XEXP (note, 0)))))))
1846 && ! fixed_regs[REGNO (XEXP (note, 0))])
1848 rld[output_reload].reg_rtx
1849 = gen_rtx_REG (rld[output_reload].outmode,
1850 REGNO (XEXP (note, 0)));
1851 return;
1855 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1856 See if one of IN and OUT is a register that may be used;
1857 this is desirable since a spill-register won't be needed.
1858 If so, return the register rtx that proves acceptable.
1860 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1861 CLASS is the register class required for the reload.
1863 If FOR_REAL is >= 0, it is the number of the reload,
1864 and in some cases when it can be discovered that OUT doesn't need
1865 to be computed, clear out rld[FOR_REAL].out.
1867 If FOR_REAL is -1, this should not be done, because this call
1868 is just to see if a register can be found, not to find and install it.
1870 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1871 puts an additional constraint on being able to use IN for OUT since
1872 IN must not appear elsewhere in the insn (it is assumed that IN itself
1873 is safe from the earlyclobber). */
1875 static rtx
1876 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1877 enum machine_mode inmode, enum machine_mode outmode,
1878 enum reg_class class, int for_real, int earlyclobber)
1880 rtx in = real_in;
1881 rtx out = real_out;
1882 int in_offset = 0;
1883 int out_offset = 0;
1884 rtx value = 0;
1886 /* If operands exceed a word, we can't use either of them
1887 unless they have the same size. */
1888 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1889 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1890 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1891 return 0;
1893 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1894 respectively refers to a hard register. */
1896 /* Find the inside of any subregs. */
1897 while (GET_CODE (out) == SUBREG)
1899 if (REG_P (SUBREG_REG (out))
1900 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1901 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1902 GET_MODE (SUBREG_REG (out)),
1903 SUBREG_BYTE (out),
1904 GET_MODE (out));
1905 out = SUBREG_REG (out);
1907 while (GET_CODE (in) == SUBREG)
1909 if (REG_P (SUBREG_REG (in))
1910 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1911 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1912 GET_MODE (SUBREG_REG (in)),
1913 SUBREG_BYTE (in),
1914 GET_MODE (in));
1915 in = SUBREG_REG (in);
1918 /* Narrow down the reg class, the same way push_reload will;
1919 otherwise we might find a dummy now, but push_reload won't. */
1920 class = PREFERRED_RELOAD_CLASS (in, class);
1922 /* See if OUT will do. */
1923 if (REG_P (out)
1924 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1926 unsigned int regno = REGNO (out) + out_offset;
1927 unsigned int nwords = hard_regno_nregs[regno][outmode];
1928 rtx saved_rtx;
1930 /* When we consider whether the insn uses OUT,
1931 ignore references within IN. They don't prevent us
1932 from copying IN into OUT, because those refs would
1933 move into the insn that reloads IN.
1935 However, we only ignore IN in its role as this reload.
1936 If the insn uses IN elsewhere and it contains OUT,
1937 that counts. We can't be sure it's the "same" operand
1938 so it might not go through this reload. */
1939 saved_rtx = *inloc;
1940 *inloc = const0_rtx;
1942 if (regno < FIRST_PSEUDO_REGISTER
1943 && HARD_REGNO_MODE_OK (regno, outmode)
1944 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1945 PATTERN (this_insn), outloc))
1947 unsigned int i;
1949 for (i = 0; i < nwords; i++)
1950 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1951 regno + i))
1952 break;
1954 if (i == nwords)
1956 if (REG_P (real_out))
1957 value = real_out;
1958 else
1959 value = gen_rtx_REG (outmode, regno);
1963 *inloc = saved_rtx;
1966 /* Consider using IN if OUT was not acceptable
1967 or if OUT dies in this insn (like the quotient in a divmod insn).
1968 We can't use IN unless it is dies in this insn,
1969 which means we must know accurately which hard regs are live.
1970 Also, the result can't go in IN if IN is used within OUT,
1971 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1972 if (hard_regs_live_known
1973 && REG_P (in)
1974 && REGNO (in) < FIRST_PSEUDO_REGISTER
1975 && (value == 0
1976 || find_reg_note (this_insn, REG_UNUSED, real_out))
1977 && find_reg_note (this_insn, REG_DEAD, real_in)
1978 && !fixed_regs[REGNO (in)]
1979 && HARD_REGNO_MODE_OK (REGNO (in),
1980 /* The only case where out and real_out might
1981 have different modes is where real_out
1982 is a subreg, and in that case, out
1983 has a real mode. */
1984 (GET_MODE (out) != VOIDmode
1985 ? GET_MODE (out) : outmode)))
1987 unsigned int regno = REGNO (in) + in_offset;
1988 unsigned int nwords = hard_regno_nregs[regno][inmode];
1990 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1991 && ! hard_reg_set_here_p (regno, regno + nwords,
1992 PATTERN (this_insn))
1993 && (! earlyclobber
1994 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1995 PATTERN (this_insn), inloc)))
1997 unsigned int i;
1999 for (i = 0; i < nwords; i++)
2000 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2001 regno + i))
2002 break;
2004 if (i == nwords)
2006 /* If we were going to use OUT as the reload reg
2007 and changed our mind, it means OUT is a dummy that
2008 dies here. So don't bother copying value to it. */
2009 if (for_real >= 0 && value == real_out)
2010 rld[for_real].out = 0;
2011 if (REG_P (real_in))
2012 value = real_in;
2013 else
2014 value = gen_rtx_REG (inmode, regno);
2019 return value;
2022 /* This page contains subroutines used mainly for determining
2023 whether the IN or an OUT of a reload can serve as the
2024 reload register. */
2026 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2029 earlyclobber_operand_p (rtx x)
2031 int i;
2033 for (i = 0; i < n_earlyclobbers; i++)
2034 if (reload_earlyclobbers[i] == x)
2035 return 1;
2037 return 0;
2040 /* Return 1 if expression X alters a hard reg in the range
2041 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2042 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2043 X should be the body of an instruction. */
2045 static int
2046 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2048 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2050 rtx op0 = SET_DEST (x);
2052 while (GET_CODE (op0) == SUBREG)
2053 op0 = SUBREG_REG (op0);
2054 if (REG_P (op0))
2056 unsigned int r = REGNO (op0);
2058 /* See if this reg overlaps range under consideration. */
2059 if (r < end_regno
2060 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2061 return 1;
2064 else if (GET_CODE (x) == PARALLEL)
2066 int i = XVECLEN (x, 0) - 1;
2068 for (; i >= 0; i--)
2069 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2070 return 1;
2073 return 0;
2076 /* Return 1 if ADDR is a valid memory address for mode MODE,
2077 and check that each pseudo reg has the proper kind of
2078 hard reg. */
2081 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2083 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2084 return 0;
2086 win:
2087 return 1;
2090 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2091 if they are the same hard reg, and has special hacks for
2092 autoincrement and autodecrement.
2093 This is specifically intended for find_reloads to use
2094 in determining whether two operands match.
2095 X is the operand whose number is the lower of the two.
2097 The value is 2 if Y contains a pre-increment that matches
2098 a non-incrementing address in X. */
2100 /* ??? To be completely correct, we should arrange to pass
2101 for X the output operand and for Y the input operand.
2102 For now, we assume that the output operand has the lower number
2103 because that is natural in (SET output (... input ...)). */
2106 operands_match_p (rtx x, rtx y)
2108 int i;
2109 RTX_CODE code = GET_CODE (x);
2110 const char *fmt;
2111 int success_2;
2113 if (x == y)
2114 return 1;
2115 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2116 && (REG_P (y) || (GET_CODE (y) == SUBREG
2117 && REG_P (SUBREG_REG (y)))))
2119 int j;
2121 if (code == SUBREG)
2123 i = REGNO (SUBREG_REG (x));
2124 if (i >= FIRST_PSEUDO_REGISTER)
2125 goto slow;
2126 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2127 GET_MODE (SUBREG_REG (x)),
2128 SUBREG_BYTE (x),
2129 GET_MODE (x));
2131 else
2132 i = REGNO (x);
2134 if (GET_CODE (y) == SUBREG)
2136 j = REGNO (SUBREG_REG (y));
2137 if (j >= FIRST_PSEUDO_REGISTER)
2138 goto slow;
2139 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2140 GET_MODE (SUBREG_REG (y)),
2141 SUBREG_BYTE (y),
2142 GET_MODE (y));
2144 else
2145 j = REGNO (y);
2147 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2148 multiple hard register group, so that for example (reg:DI 0) and
2149 (reg:SI 1) will be considered the same register. */
2150 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2151 && i < FIRST_PSEUDO_REGISTER)
2152 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2153 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2154 && j < FIRST_PSEUDO_REGISTER)
2155 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2157 return i == j;
2159 /* If two operands must match, because they are really a single
2160 operand of an assembler insn, then two postincrements are invalid
2161 because the assembler insn would increment only once.
2162 On the other hand, a postincrement matches ordinary indexing
2163 if the postincrement is the output operand. */
2164 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2165 return operands_match_p (XEXP (x, 0), y);
2166 /* Two preincrements are invalid
2167 because the assembler insn would increment only once.
2168 On the other hand, a preincrement matches ordinary indexing
2169 if the preincrement is the input operand.
2170 In this case, return 2, since some callers need to do special
2171 things when this happens. */
2172 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2173 || GET_CODE (y) == PRE_MODIFY)
2174 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2176 slow:
2178 /* Now we have disposed of all the cases
2179 in which different rtx codes can match. */
2180 if (code != GET_CODE (y))
2181 return 0;
2182 if (code == LABEL_REF)
2183 return XEXP (x, 0) == XEXP (y, 0);
2184 if (code == SYMBOL_REF)
2185 return XSTR (x, 0) == XSTR (y, 0);
2187 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2189 if (GET_MODE (x) != GET_MODE (y))
2190 return 0;
2192 /* Compare the elements. If any pair of corresponding elements
2193 fail to match, return 0 for the whole things. */
2195 success_2 = 0;
2196 fmt = GET_RTX_FORMAT (code);
2197 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2199 int val, j;
2200 switch (fmt[i])
2202 case 'w':
2203 if (XWINT (x, i) != XWINT (y, i))
2204 return 0;
2205 break;
2207 case 'i':
2208 if (XINT (x, i) != XINT (y, i))
2209 return 0;
2210 break;
2212 case 'e':
2213 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2214 if (val == 0)
2215 return 0;
2216 /* If any subexpression returns 2,
2217 we should return 2 if we are successful. */
2218 if (val == 2)
2219 success_2 = 1;
2220 break;
2222 case '0':
2223 break;
2225 case 'E':
2226 if (XVECLEN (x, i) != XVECLEN (y, i))
2227 return 0;
2228 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2230 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2231 if (val == 0)
2232 return 0;
2233 if (val == 2)
2234 success_2 = 1;
2236 break;
2238 /* It is believed that rtx's at this level will never
2239 contain anything but integers and other rtx's,
2240 except for within LABEL_REFs and SYMBOL_REFs. */
2241 default:
2242 gcc_unreachable ();
2245 return 1 + success_2;
2248 /* Describe the range of registers or memory referenced by X.
2249 If X is a register, set REG_FLAG and put the first register
2250 number into START and the last plus one into END.
2251 If X is a memory reference, put a base address into BASE
2252 and a range of integer offsets into START and END.
2253 If X is pushing on the stack, we can assume it causes no trouble,
2254 so we set the SAFE field. */
2256 static struct decomposition
2257 decompose (rtx x)
2259 struct decomposition val;
2260 int all_const = 0;
2262 memset (&val, 0, sizeof (val));
2264 switch (GET_CODE (x))
2266 case MEM:
2268 rtx base = NULL_RTX, offset = 0;
2269 rtx addr = XEXP (x, 0);
2271 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2272 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2274 val.base = XEXP (addr, 0);
2275 val.start = -GET_MODE_SIZE (GET_MODE (x));
2276 val.end = GET_MODE_SIZE (GET_MODE (x));
2277 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2278 return val;
2281 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2283 if (GET_CODE (XEXP (addr, 1)) == PLUS
2284 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2285 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2287 val.base = XEXP (addr, 0);
2288 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2289 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2290 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2291 return val;
2295 if (GET_CODE (addr) == CONST)
2297 addr = XEXP (addr, 0);
2298 all_const = 1;
2300 if (GET_CODE (addr) == PLUS)
2302 if (CONSTANT_P (XEXP (addr, 0)))
2304 base = XEXP (addr, 1);
2305 offset = XEXP (addr, 0);
2307 else if (CONSTANT_P (XEXP (addr, 1)))
2309 base = XEXP (addr, 0);
2310 offset = XEXP (addr, 1);
2314 if (offset == 0)
2316 base = addr;
2317 offset = const0_rtx;
2319 if (GET_CODE (offset) == CONST)
2320 offset = XEXP (offset, 0);
2321 if (GET_CODE (offset) == PLUS)
2323 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2325 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2326 offset = XEXP (offset, 0);
2328 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2330 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2331 offset = XEXP (offset, 1);
2333 else
2335 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2336 offset = const0_rtx;
2339 else if (GET_CODE (offset) != CONST_INT)
2341 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2342 offset = const0_rtx;
2345 if (all_const && GET_CODE (base) == PLUS)
2346 base = gen_rtx_CONST (GET_MODE (base), base);
2348 gcc_assert (GET_CODE (offset) == CONST_INT);
2350 val.start = INTVAL (offset);
2351 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2352 val.base = base;
2354 break;
2356 case REG:
2357 val.reg_flag = 1;
2358 val.start = true_regnum (x);
2359 if (val.start < 0)
2361 /* A pseudo with no hard reg. */
2362 val.start = REGNO (x);
2363 val.end = val.start + 1;
2365 else
2366 /* A hard reg. */
2367 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2368 break;
2370 case SUBREG:
2371 if (!REG_P (SUBREG_REG (x)))
2372 /* This could be more precise, but it's good enough. */
2373 return decompose (SUBREG_REG (x));
2374 val.reg_flag = 1;
2375 val.start = true_regnum (x);
2376 if (val.start < 0)
2377 return decompose (SUBREG_REG (x));
2378 else
2379 /* A hard reg. */
2380 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2381 break;
2383 case SCRATCH:
2384 /* This hasn't been assigned yet, so it can't conflict yet. */
2385 val.safe = 1;
2386 break;
2388 default:
2389 gcc_assert (CONSTANT_P (x));
2390 val.safe = 1;
2391 break;
2393 return val;
2396 /* Return 1 if altering Y will not modify the value of X.
2397 Y is also described by YDATA, which should be decompose (Y). */
2399 static int
2400 immune_p (rtx x, rtx y, struct decomposition ydata)
2402 struct decomposition xdata;
2404 if (ydata.reg_flag)
2405 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2406 if (ydata.safe)
2407 return 1;
2409 gcc_assert (MEM_P (y));
2410 /* If Y is memory and X is not, Y can't affect X. */
2411 if (!MEM_P (x))
2412 return 1;
2414 xdata = decompose (x);
2416 if (! rtx_equal_p (xdata.base, ydata.base))
2418 /* If bases are distinct symbolic constants, there is no overlap. */
2419 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2420 return 1;
2421 /* Constants and stack slots never overlap. */
2422 if (CONSTANT_P (xdata.base)
2423 && (ydata.base == frame_pointer_rtx
2424 || ydata.base == hard_frame_pointer_rtx
2425 || ydata.base == stack_pointer_rtx))
2426 return 1;
2427 if (CONSTANT_P (ydata.base)
2428 && (xdata.base == frame_pointer_rtx
2429 || xdata.base == hard_frame_pointer_rtx
2430 || xdata.base == stack_pointer_rtx))
2431 return 1;
2432 /* If either base is variable, we don't know anything. */
2433 return 0;
2436 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2439 /* Similar, but calls decompose. */
2442 safe_from_earlyclobber (rtx op, rtx clobber)
2444 struct decomposition early_data;
2446 early_data = decompose (clobber);
2447 return immune_p (op, clobber, early_data);
2450 /* Main entry point of this file: search the body of INSN
2451 for values that need reloading and record them with push_reload.
2452 REPLACE nonzero means record also where the values occur
2453 so that subst_reloads can be used.
2455 IND_LEVELS says how many levels of indirection are supported by this
2456 machine; a value of zero means that a memory reference is not a valid
2457 memory address.
2459 LIVE_KNOWN says we have valid information about which hard
2460 regs are live at each point in the program; this is true when
2461 we are called from global_alloc but false when stupid register
2462 allocation has been done.
2464 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2465 which is nonnegative if the reg has been commandeered for reloading into.
2466 It is copied into STATIC_RELOAD_REG_P and referenced from there
2467 by various subroutines.
2469 Return TRUE if some operands need to be changed, because of swapping
2470 commutative operands, reg_equiv_address substitution, or whatever. */
2473 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2474 short *reload_reg_p)
2476 int insn_code_number;
2477 int i, j;
2478 int noperands;
2479 /* These start out as the constraints for the insn
2480 and they are chewed up as we consider alternatives. */
2481 char *constraints[MAX_RECOG_OPERANDS];
2482 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2483 a register. */
2484 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2485 char pref_or_nothing[MAX_RECOG_OPERANDS];
2486 /* Nonzero for a MEM operand whose entire address needs a reload.
2487 May be -1 to indicate the entire address may or may not need a reload. */
2488 int address_reloaded[MAX_RECOG_OPERANDS];
2489 /* Nonzero for an address operand that needs to be completely reloaded.
2490 May be -1 to indicate the entire operand may or may not need a reload. */
2491 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2492 /* Value of enum reload_type to use for operand. */
2493 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2494 /* Value of enum reload_type to use within address of operand. */
2495 enum reload_type address_type[MAX_RECOG_OPERANDS];
2496 /* Save the usage of each operand. */
2497 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2498 int no_input_reloads = 0, no_output_reloads = 0;
2499 int n_alternatives;
2500 int this_alternative[MAX_RECOG_OPERANDS];
2501 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2502 char this_alternative_win[MAX_RECOG_OPERANDS];
2503 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2504 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2505 int this_alternative_matches[MAX_RECOG_OPERANDS];
2506 int swapped;
2507 int goal_alternative[MAX_RECOG_OPERANDS];
2508 int this_alternative_number;
2509 int goal_alternative_number = 0;
2510 int operand_reloadnum[MAX_RECOG_OPERANDS];
2511 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2512 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2513 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2514 char goal_alternative_win[MAX_RECOG_OPERANDS];
2515 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2516 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2517 int goal_alternative_swapped;
2518 int best;
2519 int commutative;
2520 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2521 rtx substed_operand[MAX_RECOG_OPERANDS];
2522 rtx body = PATTERN (insn);
2523 rtx set = single_set (insn);
2524 int goal_earlyclobber = 0, this_earlyclobber;
2525 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2526 int retval = 0;
2528 this_insn = insn;
2529 n_reloads = 0;
2530 n_replacements = 0;
2531 n_earlyclobbers = 0;
2532 replace_reloads = replace;
2533 hard_regs_live_known = live_known;
2534 static_reload_reg_p = reload_reg_p;
2536 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2537 neither are insns that SET cc0. Insns that use CC0 are not allowed
2538 to have any input reloads. */
2539 if (JUMP_P (insn) || CALL_P (insn))
2540 no_output_reloads = 1;
2542 #ifdef HAVE_cc0
2543 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2544 no_input_reloads = 1;
2545 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2546 no_output_reloads = 1;
2547 #endif
2549 #ifdef SECONDARY_MEMORY_NEEDED
2550 /* The eliminated forms of any secondary memory locations are per-insn, so
2551 clear them out here. */
2553 if (secondary_memlocs_elim_used)
2555 memset (secondary_memlocs_elim, 0,
2556 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2557 secondary_memlocs_elim_used = 0;
2559 #endif
2561 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2562 is cheap to move between them. If it is not, there may not be an insn
2563 to do the copy, so we may need a reload. */
2564 if (GET_CODE (body) == SET
2565 && REG_P (SET_DEST (body))
2566 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2567 && REG_P (SET_SRC (body))
2568 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2569 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2570 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2571 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2572 return 0;
2574 extract_insn (insn);
2576 noperands = reload_n_operands = recog_data.n_operands;
2577 n_alternatives = recog_data.n_alternatives;
2579 /* Just return "no reloads" if insn has no operands with constraints. */
2580 if (noperands == 0 || n_alternatives == 0)
2581 return 0;
2583 insn_code_number = INSN_CODE (insn);
2584 this_insn_is_asm = insn_code_number < 0;
2586 memcpy (operand_mode, recog_data.operand_mode,
2587 noperands * sizeof (enum machine_mode));
2588 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2590 commutative = -1;
2592 /* If we will need to know, later, whether some pair of operands
2593 are the same, we must compare them now and save the result.
2594 Reloading the base and index registers will clobber them
2595 and afterward they will fail to match. */
2597 for (i = 0; i < noperands; i++)
2599 char *p;
2600 int c;
2602 substed_operand[i] = recog_data.operand[i];
2603 p = constraints[i];
2605 modified[i] = RELOAD_READ;
2607 /* Scan this operand's constraint to see if it is an output operand,
2608 an in-out operand, is commutative, or should match another. */
2610 while ((c = *p))
2612 p += CONSTRAINT_LEN (c, p);
2613 switch (c)
2615 case '=':
2616 modified[i] = RELOAD_WRITE;
2617 break;
2618 case '+':
2619 modified[i] = RELOAD_READ_WRITE;
2620 break;
2621 case '%':
2623 /* The last operand should not be marked commutative. */
2624 gcc_assert (i != noperands - 1);
2626 /* We currently only support one commutative pair of
2627 operands. Some existing asm code currently uses more
2628 than one pair. Previously, that would usually work,
2629 but sometimes it would crash the compiler. We
2630 continue supporting that case as well as we can by
2631 silently ignoring all but the first pair. In the
2632 future we may handle it correctly. */
2633 if (commutative < 0)
2634 commutative = i;
2635 else
2636 gcc_assert (this_insn_is_asm);
2638 break;
2639 /* Use of ISDIGIT is tempting here, but it may get expensive because
2640 of locale support we don't want. */
2641 case '0': case '1': case '2': case '3': case '4':
2642 case '5': case '6': case '7': case '8': case '9':
2644 c = strtoul (p - 1, &p, 10);
2646 operands_match[c][i]
2647 = operands_match_p (recog_data.operand[c],
2648 recog_data.operand[i]);
2650 /* An operand may not match itself. */
2651 gcc_assert (c != i);
2653 /* If C can be commuted with C+1, and C might need to match I,
2654 then C+1 might also need to match I. */
2655 if (commutative >= 0)
2657 if (c == commutative || c == commutative + 1)
2659 int other = c + (c == commutative ? 1 : -1);
2660 operands_match[other][i]
2661 = operands_match_p (recog_data.operand[other],
2662 recog_data.operand[i]);
2664 if (i == commutative || i == commutative + 1)
2666 int other = i + (i == commutative ? 1 : -1);
2667 operands_match[c][other]
2668 = operands_match_p (recog_data.operand[c],
2669 recog_data.operand[other]);
2671 /* Note that C is supposed to be less than I.
2672 No need to consider altering both C and I because in
2673 that case we would alter one into the other. */
2680 /* Examine each operand that is a memory reference or memory address
2681 and reload parts of the addresses into index registers.
2682 Also here any references to pseudo regs that didn't get hard regs
2683 but are equivalent to constants get replaced in the insn itself
2684 with those constants. Nobody will ever see them again.
2686 Finally, set up the preferred classes of each operand. */
2688 for (i = 0; i < noperands; i++)
2690 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2692 address_reloaded[i] = 0;
2693 address_operand_reloaded[i] = 0;
2694 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2695 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2696 : RELOAD_OTHER);
2697 address_type[i]
2698 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2699 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2700 : RELOAD_OTHER);
2702 if (*constraints[i] == 0)
2703 /* Ignore things like match_operator operands. */
2705 else if (constraints[i][0] == 'p'
2706 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2708 address_operand_reloaded[i]
2709 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2710 recog_data.operand[i],
2711 recog_data.operand_loc[i],
2712 i, operand_type[i], ind_levels, insn);
2714 /* If we now have a simple operand where we used to have a
2715 PLUS or MULT, re-recognize and try again. */
2716 if ((OBJECT_P (*recog_data.operand_loc[i])
2717 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2718 && (GET_CODE (recog_data.operand[i]) == MULT
2719 || GET_CODE (recog_data.operand[i]) == PLUS))
2721 INSN_CODE (insn) = -1;
2722 retval = find_reloads (insn, replace, ind_levels, live_known,
2723 reload_reg_p);
2724 return retval;
2727 recog_data.operand[i] = *recog_data.operand_loc[i];
2728 substed_operand[i] = recog_data.operand[i];
2730 /* Address operands are reloaded in their existing mode,
2731 no matter what is specified in the machine description. */
2732 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2734 else if (code == MEM)
2736 address_reloaded[i]
2737 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2738 recog_data.operand_loc[i],
2739 XEXP (recog_data.operand[i], 0),
2740 &XEXP (recog_data.operand[i], 0),
2741 i, address_type[i], ind_levels, insn);
2742 recog_data.operand[i] = *recog_data.operand_loc[i];
2743 substed_operand[i] = recog_data.operand[i];
2745 else if (code == SUBREG)
2747 rtx reg = SUBREG_REG (recog_data.operand[i]);
2748 rtx op
2749 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2750 ind_levels,
2751 set != 0
2752 && &SET_DEST (set) == recog_data.operand_loc[i],
2753 insn,
2754 &address_reloaded[i]);
2756 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2757 that didn't get a hard register, emit a USE with a REG_EQUAL
2758 note in front so that we might inherit a previous, possibly
2759 wider reload. */
2761 if (replace
2762 && MEM_P (op)
2763 && REG_P (reg)
2764 && (GET_MODE_SIZE (GET_MODE (reg))
2765 >= GET_MODE_SIZE (GET_MODE (op))))
2766 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2767 insn),
2768 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2770 substed_operand[i] = recog_data.operand[i] = op;
2772 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2773 /* We can get a PLUS as an "operand" as a result of register
2774 elimination. See eliminate_regs and gen_reload. We handle
2775 a unary operator by reloading the operand. */
2776 substed_operand[i] = recog_data.operand[i]
2777 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2778 ind_levels, 0, insn,
2779 &address_reloaded[i]);
2780 else if (code == REG)
2782 /* This is equivalent to calling find_reloads_toplev.
2783 The code is duplicated for speed.
2784 When we find a pseudo always equivalent to a constant,
2785 we replace it by the constant. We must be sure, however,
2786 that we don't try to replace it in the insn in which it
2787 is being set. */
2788 int regno = REGNO (recog_data.operand[i]);
2789 if (reg_equiv_constant[regno] != 0
2790 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2792 /* Record the existing mode so that the check if constants are
2793 allowed will work when operand_mode isn't specified. */
2795 if (operand_mode[i] == VOIDmode)
2796 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2798 substed_operand[i] = recog_data.operand[i]
2799 = reg_equiv_constant[regno];
2801 if (reg_equiv_memory_loc[regno] != 0
2802 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2803 /* We need not give a valid is_set_dest argument since the case
2804 of a constant equivalence was checked above. */
2805 substed_operand[i] = recog_data.operand[i]
2806 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2807 ind_levels, 0, insn,
2808 &address_reloaded[i]);
2810 /* If the operand is still a register (we didn't replace it with an
2811 equivalent), get the preferred class to reload it into. */
2812 code = GET_CODE (recog_data.operand[i]);
2813 preferred_class[i]
2814 = ((code == REG && REGNO (recog_data.operand[i])
2815 >= FIRST_PSEUDO_REGISTER)
2816 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2817 : NO_REGS);
2818 pref_or_nothing[i]
2819 = (code == REG
2820 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2821 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2824 /* If this is simply a copy from operand 1 to operand 0, merge the
2825 preferred classes for the operands. */
2826 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2827 && recog_data.operand[1] == SET_SRC (set))
2829 preferred_class[0] = preferred_class[1]
2830 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2831 pref_or_nothing[0] |= pref_or_nothing[1];
2832 pref_or_nothing[1] |= pref_or_nothing[0];
2835 /* Now see what we need for pseudo-regs that didn't get hard regs
2836 or got the wrong kind of hard reg. For this, we must consider
2837 all the operands together against the register constraints. */
2839 best = MAX_RECOG_OPERANDS * 2 + 600;
2841 swapped = 0;
2842 goal_alternative_swapped = 0;
2843 try_swapped:
2845 /* The constraints are made of several alternatives.
2846 Each operand's constraint looks like foo,bar,... with commas
2847 separating the alternatives. The first alternatives for all
2848 operands go together, the second alternatives go together, etc.
2850 First loop over alternatives. */
2852 for (this_alternative_number = 0;
2853 this_alternative_number < n_alternatives;
2854 this_alternative_number++)
2856 /* Loop over operands for one constraint alternative. */
2857 /* LOSERS counts those that don't fit this alternative
2858 and would require loading. */
2859 int losers = 0;
2860 /* BAD is set to 1 if it some operand can't fit this alternative
2861 even after reloading. */
2862 int bad = 0;
2863 /* REJECT is a count of how undesirable this alternative says it is
2864 if any reloading is required. If the alternative matches exactly
2865 then REJECT is ignored, but otherwise it gets this much
2866 counted against it in addition to the reloading needed. Each
2867 ? counts three times here since we want the disparaging caused by
2868 a bad register class to only count 1/3 as much. */
2869 int reject = 0;
2871 this_earlyclobber = 0;
2873 for (i = 0; i < noperands; i++)
2875 char *p = constraints[i];
2876 char *end;
2877 int len;
2878 int win = 0;
2879 int did_match = 0;
2880 /* 0 => this operand can be reloaded somehow for this alternative. */
2881 int badop = 1;
2882 /* 0 => this operand can be reloaded if the alternative allows regs. */
2883 int winreg = 0;
2884 int c;
2885 int m;
2886 rtx operand = recog_data.operand[i];
2887 int offset = 0;
2888 /* Nonzero means this is a MEM that must be reloaded into a reg
2889 regardless of what the constraint says. */
2890 int force_reload = 0;
2891 int offmemok = 0;
2892 /* Nonzero if a constant forced into memory would be OK for this
2893 operand. */
2894 int constmemok = 0;
2895 int earlyclobber = 0;
2897 /* If the predicate accepts a unary operator, it means that
2898 we need to reload the operand, but do not do this for
2899 match_operator and friends. */
2900 if (UNARY_P (operand) && *p != 0)
2901 operand = XEXP (operand, 0);
2903 /* If the operand is a SUBREG, extract
2904 the REG or MEM (or maybe even a constant) within.
2905 (Constants can occur as a result of reg_equiv_constant.) */
2907 while (GET_CODE (operand) == SUBREG)
2909 /* Offset only matters when operand is a REG and
2910 it is a hard reg. This is because it is passed
2911 to reg_fits_class_p if it is a REG and all pseudos
2912 return 0 from that function. */
2913 if (REG_P (SUBREG_REG (operand))
2914 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2916 if (!subreg_offset_representable_p
2917 (REGNO (SUBREG_REG (operand)),
2918 GET_MODE (SUBREG_REG (operand)),
2919 SUBREG_BYTE (operand),
2920 GET_MODE (operand)))
2921 force_reload = 1;
2922 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2923 GET_MODE (SUBREG_REG (operand)),
2924 SUBREG_BYTE (operand),
2925 GET_MODE (operand));
2927 operand = SUBREG_REG (operand);
2928 /* Force reload if this is a constant or PLUS or if there may
2929 be a problem accessing OPERAND in the outer mode. */
2930 if (CONSTANT_P (operand)
2931 || GET_CODE (operand) == PLUS
2932 /* We must force a reload of paradoxical SUBREGs
2933 of a MEM because the alignment of the inner value
2934 may not be enough to do the outer reference. On
2935 big-endian machines, it may also reference outside
2936 the object.
2938 On machines that extend byte operations and we have a
2939 SUBREG where both the inner and outer modes are no wider
2940 than a word and the inner mode is narrower, is integral,
2941 and gets extended when loaded from memory, combine.c has
2942 made assumptions about the behavior of the machine in such
2943 register access. If the data is, in fact, in memory we
2944 must always load using the size assumed to be in the
2945 register and let the insn do the different-sized
2946 accesses.
2948 This is doubly true if WORD_REGISTER_OPERATIONS. In
2949 this case eliminate_regs has left non-paradoxical
2950 subregs for push_reload to see. Make sure it does
2951 by forcing the reload.
2953 ??? When is it right at this stage to have a subreg
2954 of a mem that is _not_ to be handled specially? IMO
2955 those should have been reduced to just a mem. */
2956 || ((MEM_P (operand)
2957 || (REG_P (operand)
2958 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2959 #ifndef WORD_REGISTER_OPERATIONS
2960 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2961 < BIGGEST_ALIGNMENT)
2962 && (GET_MODE_SIZE (operand_mode[i])
2963 > GET_MODE_SIZE (GET_MODE (operand))))
2964 || BYTES_BIG_ENDIAN
2965 #ifdef LOAD_EXTEND_OP
2966 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2967 && (GET_MODE_SIZE (GET_MODE (operand))
2968 <= UNITS_PER_WORD)
2969 && (GET_MODE_SIZE (operand_mode[i])
2970 > GET_MODE_SIZE (GET_MODE (operand)))
2971 && INTEGRAL_MODE_P (GET_MODE (operand))
2972 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
2973 #endif
2975 #endif
2978 force_reload = 1;
2981 this_alternative[i] = (int) NO_REGS;
2982 this_alternative_win[i] = 0;
2983 this_alternative_match_win[i] = 0;
2984 this_alternative_offmemok[i] = 0;
2985 this_alternative_earlyclobber[i] = 0;
2986 this_alternative_matches[i] = -1;
2988 /* An empty constraint or empty alternative
2989 allows anything which matched the pattern. */
2990 if (*p == 0 || *p == ',')
2991 win = 1, badop = 0;
2993 /* Scan this alternative's specs for this operand;
2994 set WIN if the operand fits any letter in this alternative.
2995 Otherwise, clear BADOP if this operand could
2996 fit some letter after reloads,
2997 or set WINREG if this operand could fit after reloads
2998 provided the constraint allows some registers. */
3001 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3003 case '\0':
3004 len = 0;
3005 break;
3006 case ',':
3007 c = '\0';
3008 break;
3010 case '=': case '+': case '*':
3011 break;
3013 case '%':
3014 /* We only support one commutative marker, the first
3015 one. We already set commutative above. */
3016 break;
3018 case '?':
3019 reject += 6;
3020 break;
3022 case '!':
3023 reject = 600;
3024 break;
3026 case '#':
3027 /* Ignore rest of this alternative as far as
3028 reloading is concerned. */
3030 p++;
3031 while (*p && *p != ',');
3032 len = 0;
3033 break;
3035 case '0': case '1': case '2': case '3': case '4':
3036 case '5': case '6': case '7': case '8': case '9':
3037 m = strtoul (p, &end, 10);
3038 p = end;
3039 len = 0;
3041 this_alternative_matches[i] = m;
3042 /* We are supposed to match a previous operand.
3043 If we do, we win if that one did.
3044 If we do not, count both of the operands as losers.
3045 (This is too conservative, since most of the time
3046 only a single reload insn will be needed to make
3047 the two operands win. As a result, this alternative
3048 may be rejected when it is actually desirable.) */
3049 if ((swapped && (m != commutative || i != commutative + 1))
3050 /* If we are matching as if two operands were swapped,
3051 also pretend that operands_match had been computed
3052 with swapped.
3053 But if I is the second of those and C is the first,
3054 don't exchange them, because operands_match is valid
3055 only on one side of its diagonal. */
3056 ? (operands_match
3057 [(m == commutative || m == commutative + 1)
3058 ? 2 * commutative + 1 - m : m]
3059 [(i == commutative || i == commutative + 1)
3060 ? 2 * commutative + 1 - i : i])
3061 : operands_match[m][i])
3063 /* If we are matching a non-offsettable address where an
3064 offsettable address was expected, then we must reject
3065 this combination, because we can't reload it. */
3066 if (this_alternative_offmemok[m]
3067 && MEM_P (recog_data.operand[m])
3068 && this_alternative[m] == (int) NO_REGS
3069 && ! this_alternative_win[m])
3070 bad = 1;
3072 did_match = this_alternative_win[m];
3074 else
3076 /* Operands don't match. */
3077 rtx value;
3078 int loc1, loc2;
3079 /* Retroactively mark the operand we had to match
3080 as a loser, if it wasn't already. */
3081 if (this_alternative_win[m])
3082 losers++;
3083 this_alternative_win[m] = 0;
3084 if (this_alternative[m] == (int) NO_REGS)
3085 bad = 1;
3086 /* But count the pair only once in the total badness of
3087 this alternative, if the pair can be a dummy reload.
3088 The pointers in operand_loc are not swapped; swap
3089 them by hand if necessary. */
3090 if (swapped && i == commutative)
3091 loc1 = commutative + 1;
3092 else if (swapped && i == commutative + 1)
3093 loc1 = commutative;
3094 else
3095 loc1 = i;
3096 if (swapped && m == commutative)
3097 loc2 = commutative + 1;
3098 else if (swapped && m == commutative + 1)
3099 loc2 = commutative;
3100 else
3101 loc2 = m;
3102 value
3103 = find_dummy_reload (recog_data.operand[i],
3104 recog_data.operand[m],
3105 recog_data.operand_loc[loc1],
3106 recog_data.operand_loc[loc2],
3107 operand_mode[i], operand_mode[m],
3108 this_alternative[m], -1,
3109 this_alternative_earlyclobber[m]);
3111 if (value != 0)
3112 losers--;
3114 /* This can be fixed with reloads if the operand
3115 we are supposed to match can be fixed with reloads. */
3116 badop = 0;
3117 this_alternative[i] = this_alternative[m];
3119 /* If we have to reload this operand and some previous
3120 operand also had to match the same thing as this
3121 operand, we don't know how to do that. So reject this
3122 alternative. */
3123 if (! did_match || force_reload)
3124 for (j = 0; j < i; j++)
3125 if (this_alternative_matches[j]
3126 == this_alternative_matches[i])
3127 badop = 1;
3128 break;
3130 case 'p':
3131 /* All necessary reloads for an address_operand
3132 were handled in find_reloads_address. */
3133 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3134 win = 1;
3135 badop = 0;
3136 break;
3138 case 'm':
3139 if (force_reload)
3140 break;
3141 if (MEM_P (operand)
3142 || (REG_P (operand)
3143 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3144 && reg_renumber[REGNO (operand)] < 0))
3145 win = 1;
3146 if (CONST_POOL_OK_P (operand))
3147 badop = 0;
3148 constmemok = 1;
3149 break;
3151 case '<':
3152 if (MEM_P (operand)
3153 && ! address_reloaded[i]
3154 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3155 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3156 win = 1;
3157 break;
3159 case '>':
3160 if (MEM_P (operand)
3161 && ! address_reloaded[i]
3162 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3163 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3164 win = 1;
3165 break;
3167 /* Memory operand whose address is not offsettable. */
3168 case 'V':
3169 if (force_reload)
3170 break;
3171 if (MEM_P (operand)
3172 && ! (ind_levels ? offsettable_memref_p (operand)
3173 : offsettable_nonstrict_memref_p (operand))
3174 /* Certain mem addresses will become offsettable
3175 after they themselves are reloaded. This is important;
3176 we don't want our own handling of unoffsettables
3177 to override the handling of reg_equiv_address. */
3178 && !(REG_P (XEXP (operand, 0))
3179 && (ind_levels == 0
3180 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3181 win = 1;
3182 break;
3184 /* Memory operand whose address is offsettable. */
3185 case 'o':
3186 if (force_reload)
3187 break;
3188 if ((MEM_P (operand)
3189 /* If IND_LEVELS, find_reloads_address won't reload a
3190 pseudo that didn't get a hard reg, so we have to
3191 reject that case. */
3192 && ((ind_levels ? offsettable_memref_p (operand)
3193 : offsettable_nonstrict_memref_p (operand))
3194 /* A reloaded address is offsettable because it is now
3195 just a simple register indirect. */
3196 || address_reloaded[i] == 1))
3197 || (REG_P (operand)
3198 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3199 && reg_renumber[REGNO (operand)] < 0
3200 /* If reg_equiv_address is nonzero, we will be
3201 loading it into a register; hence it will be
3202 offsettable, but we cannot say that reg_equiv_mem
3203 is offsettable without checking. */
3204 && ((reg_equiv_mem[REGNO (operand)] != 0
3205 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3206 || (reg_equiv_address[REGNO (operand)] != 0))))
3207 win = 1;
3208 if (CONST_POOL_OK_P (operand)
3209 || MEM_P (operand))
3210 badop = 0;
3211 constmemok = 1;
3212 offmemok = 1;
3213 break;
3215 case '&':
3216 /* Output operand that is stored before the need for the
3217 input operands (and their index registers) is over. */
3218 earlyclobber = 1, this_earlyclobber = 1;
3219 break;
3221 case 'E':
3222 case 'F':
3223 if (GET_CODE (operand) == CONST_DOUBLE
3224 || (GET_CODE (operand) == CONST_VECTOR
3225 && (GET_MODE_CLASS (GET_MODE (operand))
3226 == MODE_VECTOR_FLOAT)))
3227 win = 1;
3228 break;
3230 case 'G':
3231 case 'H':
3232 if (GET_CODE (operand) == CONST_DOUBLE
3233 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3234 win = 1;
3235 break;
3237 case 's':
3238 if (GET_CODE (operand) == CONST_INT
3239 || (GET_CODE (operand) == CONST_DOUBLE
3240 && GET_MODE (operand) == VOIDmode))
3241 break;
3242 case 'i':
3243 if (CONSTANT_P (operand)
3244 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3245 win = 1;
3246 break;
3248 case 'n':
3249 if (GET_CODE (operand) == CONST_INT
3250 || (GET_CODE (operand) == CONST_DOUBLE
3251 && GET_MODE (operand) == VOIDmode))
3252 win = 1;
3253 break;
3255 case 'I':
3256 case 'J':
3257 case 'K':
3258 case 'L':
3259 case 'M':
3260 case 'N':
3261 case 'O':
3262 case 'P':
3263 if (GET_CODE (operand) == CONST_INT
3264 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3265 win = 1;
3266 break;
3268 case 'X':
3269 win = 1;
3270 break;
3272 case 'g':
3273 if (! force_reload
3274 /* A PLUS is never a valid operand, but reload can make
3275 it from a register when eliminating registers. */
3276 && GET_CODE (operand) != PLUS
3277 /* A SCRATCH is not a valid operand. */
3278 && GET_CODE (operand) != SCRATCH
3279 && (! CONSTANT_P (operand)
3280 || ! flag_pic
3281 || LEGITIMATE_PIC_OPERAND_P (operand))
3282 && (GENERAL_REGS == ALL_REGS
3283 || !REG_P (operand)
3284 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3285 && reg_renumber[REGNO (operand)] < 0)))
3286 win = 1;
3287 /* Drop through into 'r' case. */
3289 case 'r':
3290 this_alternative[i]
3291 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3292 goto reg;
3294 default:
3295 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3297 #ifdef EXTRA_CONSTRAINT_STR
3298 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3300 if (force_reload)
3301 break;
3302 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3303 win = 1;
3304 /* If the address was already reloaded,
3305 we win as well. */
3306 else if (MEM_P (operand)
3307 && address_reloaded[i] == 1)
3308 win = 1;
3309 /* Likewise if the address will be reloaded because
3310 reg_equiv_address is nonzero. For reg_equiv_mem
3311 we have to check. */
3312 else if (REG_P (operand)
3313 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3314 && reg_renumber[REGNO (operand)] < 0
3315 && ((reg_equiv_mem[REGNO (operand)] != 0
3316 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3317 || (reg_equiv_address[REGNO (operand)] != 0)))
3318 win = 1;
3320 /* If we didn't already win, we can reload
3321 constants via force_const_mem, and other
3322 MEMs by reloading the address like for 'o'. */
3323 if (CONST_POOL_OK_P (operand)
3324 || MEM_P (operand))
3325 badop = 0;
3326 constmemok = 1;
3327 offmemok = 1;
3328 break;
3330 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3332 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3333 win = 1;
3335 /* If we didn't already win, we can reload
3336 the address into a base register. */
3337 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3338 badop = 0;
3339 break;
3342 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3343 win = 1;
3344 #endif
3345 break;
3348 this_alternative[i]
3349 = (int) (reg_class_subunion
3350 [this_alternative[i]]
3351 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3352 reg:
3353 if (GET_MODE (operand) == BLKmode)
3354 break;
3355 winreg = 1;
3356 if (REG_P (operand)
3357 && reg_fits_class_p (operand, this_alternative[i],
3358 offset, GET_MODE (recog_data.operand[i])))
3359 win = 1;
3360 break;
3362 while ((p += len), c);
3364 constraints[i] = p;
3366 /* If this operand could be handled with a reg,
3367 and some reg is allowed, then this operand can be handled. */
3368 if (winreg && this_alternative[i] != (int) NO_REGS)
3369 badop = 0;
3371 /* Record which operands fit this alternative. */
3372 this_alternative_earlyclobber[i] = earlyclobber;
3373 if (win && ! force_reload)
3374 this_alternative_win[i] = 1;
3375 else if (did_match && ! force_reload)
3376 this_alternative_match_win[i] = 1;
3377 else
3379 int const_to_mem = 0;
3381 this_alternative_offmemok[i] = offmemok;
3382 losers++;
3383 if (badop)
3384 bad = 1;
3385 /* Alternative loses if it has no regs for a reg operand. */
3386 if (REG_P (operand)
3387 && this_alternative[i] == (int) NO_REGS
3388 && this_alternative_matches[i] < 0)
3389 bad = 1;
3391 /* If this is a constant that is reloaded into the desired
3392 class by copying it to memory first, count that as another
3393 reload. This is consistent with other code and is
3394 required to avoid choosing another alternative when
3395 the constant is moved into memory by this function on
3396 an early reload pass. Note that the test here is
3397 precisely the same as in the code below that calls
3398 force_const_mem. */
3399 if (CONST_POOL_OK_P (operand)
3400 && ((PREFERRED_RELOAD_CLASS (operand,
3401 (enum reg_class) this_alternative[i])
3402 == NO_REGS)
3403 || no_input_reloads)
3404 && operand_mode[i] != VOIDmode)
3406 const_to_mem = 1;
3407 if (this_alternative[i] != (int) NO_REGS)
3408 losers++;
3411 /* If we can't reload this value at all, reject this
3412 alternative. Note that we could also lose due to
3413 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3414 here. */
3416 if (! CONSTANT_P (operand)
3417 && (enum reg_class) this_alternative[i] != NO_REGS
3418 && (PREFERRED_RELOAD_CLASS (operand,
3419 (enum reg_class) this_alternative[i])
3420 == NO_REGS))
3421 bad = 1;
3423 /* Alternative loses if it requires a type of reload not
3424 permitted for this insn. We can always reload SCRATCH
3425 and objects with a REG_UNUSED note. */
3426 else if (GET_CODE (operand) != SCRATCH
3427 && modified[i] != RELOAD_READ && no_output_reloads
3428 && ! find_reg_note (insn, REG_UNUSED, operand))
3429 bad = 1;
3430 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3431 && ! const_to_mem)
3432 bad = 1;
3434 /* We prefer to reload pseudos over reloading other things,
3435 since such reloads may be able to be eliminated later.
3436 If we are reloading a SCRATCH, we won't be generating any
3437 insns, just using a register, so it is also preferred.
3438 So bump REJECT in other cases. Don't do this in the
3439 case where we are forcing a constant into memory and
3440 it will then win since we don't want to have a different
3441 alternative match then. */
3442 if (! (REG_P (operand)
3443 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3444 && GET_CODE (operand) != SCRATCH
3445 && ! (const_to_mem && constmemok))
3446 reject += 2;
3448 /* Input reloads can be inherited more often than output
3449 reloads can be removed, so penalize output reloads. */
3450 if (operand_type[i] != RELOAD_FOR_INPUT
3451 && GET_CODE (operand) != SCRATCH)
3452 reject++;
3455 /* If this operand is a pseudo register that didn't get a hard
3456 reg and this alternative accepts some register, see if the
3457 class that we want is a subset of the preferred class for this
3458 register. If not, but it intersects that class, use the
3459 preferred class instead. If it does not intersect the preferred
3460 class, show that usage of this alternative should be discouraged;
3461 it will be discouraged more still if the register is `preferred
3462 or nothing'. We do this because it increases the chance of
3463 reusing our spill register in a later insn and avoiding a pair
3464 of memory stores and loads.
3466 Don't bother with this if this alternative will accept this
3467 operand.
3469 Don't do this for a multiword operand, since it is only a
3470 small win and has the risk of requiring more spill registers,
3471 which could cause a large loss.
3473 Don't do this if the preferred class has only one register
3474 because we might otherwise exhaust the class. */
3476 if (! win && ! did_match
3477 && this_alternative[i] != (int) NO_REGS
3478 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3479 && reg_class_size[(int) preferred_class[i]] > 1)
3481 if (! reg_class_subset_p (this_alternative[i],
3482 preferred_class[i]))
3484 /* Since we don't have a way of forming the intersection,
3485 we just do something special if the preferred class
3486 is a subset of the class we have; that's the most
3487 common case anyway. */
3488 if (reg_class_subset_p (preferred_class[i],
3489 this_alternative[i]))
3490 this_alternative[i] = (int) preferred_class[i];
3491 else
3492 reject += (2 + 2 * pref_or_nothing[i]);
3497 /* Now see if any output operands that are marked "earlyclobber"
3498 in this alternative conflict with any input operands
3499 or any memory addresses. */
3501 for (i = 0; i < noperands; i++)
3502 if (this_alternative_earlyclobber[i]
3503 && (this_alternative_win[i] || this_alternative_match_win[i]))
3505 struct decomposition early_data;
3507 early_data = decompose (recog_data.operand[i]);
3509 gcc_assert (modified[i] != RELOAD_READ);
3511 if (this_alternative[i] == NO_REGS)
3513 this_alternative_earlyclobber[i] = 0;
3514 gcc_assert (this_insn_is_asm);
3515 error_for_asm (this_insn,
3516 "`&' constraint used with no register class");
3519 for (j = 0; j < noperands; j++)
3520 /* Is this an input operand or a memory ref? */
3521 if ((MEM_P (recog_data.operand[j])
3522 || modified[j] != RELOAD_WRITE)
3523 && j != i
3524 /* Ignore things like match_operator operands. */
3525 && *recog_data.constraints[j] != 0
3526 /* Don't count an input operand that is constrained to match
3527 the early clobber operand. */
3528 && ! (this_alternative_matches[j] == i
3529 && rtx_equal_p (recog_data.operand[i],
3530 recog_data.operand[j]))
3531 /* Is it altered by storing the earlyclobber operand? */
3532 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3533 early_data))
3535 /* If the output is in a single-reg class,
3536 it's costly to reload it, so reload the input instead. */
3537 if (reg_class_size[this_alternative[i]] == 1
3538 && (REG_P (recog_data.operand[j])
3539 || GET_CODE (recog_data.operand[j]) == SUBREG))
3541 losers++;
3542 this_alternative_win[j] = 0;
3543 this_alternative_match_win[j] = 0;
3545 else
3546 break;
3548 /* If an earlyclobber operand conflicts with something,
3549 it must be reloaded, so request this and count the cost. */
3550 if (j != noperands)
3552 losers++;
3553 this_alternative_win[i] = 0;
3554 this_alternative_match_win[j] = 0;
3555 for (j = 0; j < noperands; j++)
3556 if (this_alternative_matches[j] == i
3557 && this_alternative_match_win[j])
3559 this_alternative_win[j] = 0;
3560 this_alternative_match_win[j] = 0;
3561 losers++;
3566 /* If one alternative accepts all the operands, no reload required,
3567 choose that alternative; don't consider the remaining ones. */
3568 if (losers == 0)
3570 /* Unswap these so that they are never swapped at `finish'. */
3571 if (commutative >= 0)
3573 recog_data.operand[commutative] = substed_operand[commutative];
3574 recog_data.operand[commutative + 1]
3575 = substed_operand[commutative + 1];
3577 for (i = 0; i < noperands; i++)
3579 goal_alternative_win[i] = this_alternative_win[i];
3580 goal_alternative_match_win[i] = this_alternative_match_win[i];
3581 goal_alternative[i] = this_alternative[i];
3582 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3583 goal_alternative_matches[i] = this_alternative_matches[i];
3584 goal_alternative_earlyclobber[i]
3585 = this_alternative_earlyclobber[i];
3587 goal_alternative_number = this_alternative_number;
3588 goal_alternative_swapped = swapped;
3589 goal_earlyclobber = this_earlyclobber;
3590 goto finish;
3593 /* REJECT, set by the ! and ? constraint characters and when a register
3594 would be reloaded into a non-preferred class, discourages the use of
3595 this alternative for a reload goal. REJECT is incremented by six
3596 for each ? and two for each non-preferred class. */
3597 losers = losers * 6 + reject;
3599 /* If this alternative can be made to work by reloading,
3600 and it needs less reloading than the others checked so far,
3601 record it as the chosen goal for reloading. */
3602 if (! bad && best > losers)
3604 for (i = 0; i < noperands; i++)
3606 goal_alternative[i] = this_alternative[i];
3607 goal_alternative_win[i] = this_alternative_win[i];
3608 goal_alternative_match_win[i] = this_alternative_match_win[i];
3609 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3610 goal_alternative_matches[i] = this_alternative_matches[i];
3611 goal_alternative_earlyclobber[i]
3612 = this_alternative_earlyclobber[i];
3614 goal_alternative_swapped = swapped;
3615 best = losers;
3616 goal_alternative_number = this_alternative_number;
3617 goal_earlyclobber = this_earlyclobber;
3621 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3622 then we need to try each alternative twice,
3623 the second time matching those two operands
3624 as if we had exchanged them.
3625 To do this, really exchange them in operands.
3627 If we have just tried the alternatives the second time,
3628 return operands to normal and drop through. */
3630 if (commutative >= 0)
3632 swapped = !swapped;
3633 if (swapped)
3635 enum reg_class tclass;
3636 int t;
3638 recog_data.operand[commutative] = substed_operand[commutative + 1];
3639 recog_data.operand[commutative + 1] = substed_operand[commutative];
3640 /* Swap the duplicates too. */
3641 for (i = 0; i < recog_data.n_dups; i++)
3642 if (recog_data.dup_num[i] == commutative
3643 || recog_data.dup_num[i] == commutative + 1)
3644 *recog_data.dup_loc[i]
3645 = recog_data.operand[(int) recog_data.dup_num[i]];
3647 tclass = preferred_class[commutative];
3648 preferred_class[commutative] = preferred_class[commutative + 1];
3649 preferred_class[commutative + 1] = tclass;
3651 t = pref_or_nothing[commutative];
3652 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3653 pref_or_nothing[commutative + 1] = t;
3655 memcpy (constraints, recog_data.constraints,
3656 noperands * sizeof (char *));
3657 goto try_swapped;
3659 else
3661 recog_data.operand[commutative] = substed_operand[commutative];
3662 recog_data.operand[commutative + 1]
3663 = substed_operand[commutative + 1];
3664 /* Unswap the duplicates too. */
3665 for (i = 0; i < recog_data.n_dups; i++)
3666 if (recog_data.dup_num[i] == commutative
3667 || recog_data.dup_num[i] == commutative + 1)
3668 *recog_data.dup_loc[i]
3669 = recog_data.operand[(int) recog_data.dup_num[i]];
3673 /* The operands don't meet the constraints.
3674 goal_alternative describes the alternative
3675 that we could reach by reloading the fewest operands.
3676 Reload so as to fit it. */
3678 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3680 /* No alternative works with reloads?? */
3681 if (insn_code_number >= 0)
3682 fatal_insn ("unable to generate reloads for:", insn);
3683 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3684 /* Avoid further trouble with this insn. */
3685 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3686 n_reloads = 0;
3687 return 0;
3690 /* Jump to `finish' from above if all operands are valid already.
3691 In that case, goal_alternative_win is all 1. */
3692 finish:
3694 /* Right now, for any pair of operands I and J that are required to match,
3695 with I < J,
3696 goal_alternative_matches[J] is I.
3697 Set up goal_alternative_matched as the inverse function:
3698 goal_alternative_matched[I] = J. */
3700 for (i = 0; i < noperands; i++)
3701 goal_alternative_matched[i] = -1;
3703 for (i = 0; i < noperands; i++)
3704 if (! goal_alternative_win[i]
3705 && goal_alternative_matches[i] >= 0)
3706 goal_alternative_matched[goal_alternative_matches[i]] = i;
3708 for (i = 0; i < noperands; i++)
3709 goal_alternative_win[i] |= goal_alternative_match_win[i];
3711 /* If the best alternative is with operands 1 and 2 swapped,
3712 consider them swapped before reporting the reloads. Update the
3713 operand numbers of any reloads already pushed. */
3715 if (goal_alternative_swapped)
3717 rtx tem;
3719 tem = substed_operand[commutative];
3720 substed_operand[commutative] = substed_operand[commutative + 1];
3721 substed_operand[commutative + 1] = tem;
3722 tem = recog_data.operand[commutative];
3723 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3724 recog_data.operand[commutative + 1] = tem;
3725 tem = *recog_data.operand_loc[commutative];
3726 *recog_data.operand_loc[commutative]
3727 = *recog_data.operand_loc[commutative + 1];
3728 *recog_data.operand_loc[commutative + 1] = tem;
3730 for (i = 0; i < n_reloads; i++)
3732 if (rld[i].opnum == commutative)
3733 rld[i].opnum = commutative + 1;
3734 else if (rld[i].opnum == commutative + 1)
3735 rld[i].opnum = commutative;
3739 for (i = 0; i < noperands; i++)
3741 operand_reloadnum[i] = -1;
3743 /* If this is an earlyclobber operand, we need to widen the scope.
3744 The reload must remain valid from the start of the insn being
3745 reloaded until after the operand is stored into its destination.
3746 We approximate this with RELOAD_OTHER even though we know that we
3747 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3749 One special case that is worth checking is when we have an
3750 output that is earlyclobber but isn't used past the insn (typically
3751 a SCRATCH). In this case, we only need have the reload live
3752 through the insn itself, but not for any of our input or output
3753 reloads.
3754 But we must not accidentally narrow the scope of an existing
3755 RELOAD_OTHER reload - leave these alone.
3757 In any case, anything needed to address this operand can remain
3758 however they were previously categorized. */
3760 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3761 operand_type[i]
3762 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3763 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3766 /* Any constants that aren't allowed and can't be reloaded
3767 into registers are here changed into memory references. */
3768 for (i = 0; i < noperands; i++)
3769 if (! goal_alternative_win[i]
3770 && CONST_POOL_OK_P (recog_data.operand[i])
3771 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3772 (enum reg_class) goal_alternative[i])
3773 == NO_REGS)
3774 || no_input_reloads)
3775 && operand_mode[i] != VOIDmode)
3777 substed_operand[i] = recog_data.operand[i]
3778 = find_reloads_toplev (force_const_mem (operand_mode[i],
3779 recog_data.operand[i]),
3780 i, address_type[i], ind_levels, 0, insn,
3781 NULL);
3782 if (alternative_allows_memconst (recog_data.constraints[i],
3783 goal_alternative_number))
3784 goal_alternative_win[i] = 1;
3787 /* Record the values of the earlyclobber operands for the caller. */
3788 if (goal_earlyclobber)
3789 for (i = 0; i < noperands; i++)
3790 if (goal_alternative_earlyclobber[i])
3791 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3793 /* Now record reloads for all the operands that need them. */
3794 for (i = 0; i < noperands; i++)
3795 if (! goal_alternative_win[i])
3797 /* Operands that match previous ones have already been handled. */
3798 if (goal_alternative_matches[i] >= 0)
3800 /* Handle an operand with a nonoffsettable address
3801 appearing where an offsettable address will do
3802 by reloading the address into a base register.
3804 ??? We can also do this when the operand is a register and
3805 reg_equiv_mem is not offsettable, but this is a bit tricky,
3806 so we don't bother with it. It may not be worth doing. */
3807 else if (goal_alternative_matched[i] == -1
3808 && goal_alternative_offmemok[i]
3809 && MEM_P (recog_data.operand[i]))
3811 operand_reloadnum[i]
3812 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3813 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3814 MODE_BASE_REG_CLASS (VOIDmode),
3815 GET_MODE (XEXP (recog_data.operand[i], 0)),
3816 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3817 rld[operand_reloadnum[i]].inc
3818 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3820 /* If this operand is an output, we will have made any
3821 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3822 now we are treating part of the operand as an input, so
3823 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3825 if (modified[i] == RELOAD_WRITE)
3827 for (j = 0; j < n_reloads; j++)
3829 if (rld[j].opnum == i)
3831 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3832 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3833 else if (rld[j].when_needed
3834 == RELOAD_FOR_OUTADDR_ADDRESS)
3835 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3840 else if (goal_alternative_matched[i] == -1)
3842 operand_reloadnum[i]
3843 = push_reload ((modified[i] != RELOAD_WRITE
3844 ? recog_data.operand[i] : 0),
3845 (modified[i] != RELOAD_READ
3846 ? recog_data.operand[i] : 0),
3847 (modified[i] != RELOAD_WRITE
3848 ? recog_data.operand_loc[i] : 0),
3849 (modified[i] != RELOAD_READ
3850 ? recog_data.operand_loc[i] : 0),
3851 (enum reg_class) goal_alternative[i],
3852 (modified[i] == RELOAD_WRITE
3853 ? VOIDmode : operand_mode[i]),
3854 (modified[i] == RELOAD_READ
3855 ? VOIDmode : operand_mode[i]),
3856 (insn_code_number < 0 ? 0
3857 : insn_data[insn_code_number].operand[i].strict_low),
3858 0, i, operand_type[i]);
3860 /* In a matching pair of operands, one must be input only
3861 and the other must be output only.
3862 Pass the input operand as IN and the other as OUT. */
3863 else if (modified[i] == RELOAD_READ
3864 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3866 operand_reloadnum[i]
3867 = push_reload (recog_data.operand[i],
3868 recog_data.operand[goal_alternative_matched[i]],
3869 recog_data.operand_loc[i],
3870 recog_data.operand_loc[goal_alternative_matched[i]],
3871 (enum reg_class) goal_alternative[i],
3872 operand_mode[i],
3873 operand_mode[goal_alternative_matched[i]],
3874 0, 0, i, RELOAD_OTHER);
3875 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3877 else if (modified[i] == RELOAD_WRITE
3878 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3880 operand_reloadnum[goal_alternative_matched[i]]
3881 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3882 recog_data.operand[i],
3883 recog_data.operand_loc[goal_alternative_matched[i]],
3884 recog_data.operand_loc[i],
3885 (enum reg_class) goal_alternative[i],
3886 operand_mode[goal_alternative_matched[i]],
3887 operand_mode[i],
3888 0, 0, i, RELOAD_OTHER);
3889 operand_reloadnum[i] = output_reloadnum;
3891 else
3893 gcc_assert (insn_code_number < 0);
3894 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3895 /* Avoid further trouble with this insn. */
3896 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3897 n_reloads = 0;
3898 return 0;
3901 else if (goal_alternative_matched[i] < 0
3902 && goal_alternative_matches[i] < 0
3903 && address_operand_reloaded[i] != 1
3904 && optimize)
3906 /* For each non-matching operand that's a MEM or a pseudo-register
3907 that didn't get a hard register, make an optional reload.
3908 This may get done even if the insn needs no reloads otherwise. */
3910 rtx operand = recog_data.operand[i];
3912 while (GET_CODE (operand) == SUBREG)
3913 operand = SUBREG_REG (operand);
3914 if ((MEM_P (operand)
3915 || (REG_P (operand)
3916 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3917 /* If this is only for an output, the optional reload would not
3918 actually cause us to use a register now, just note that
3919 something is stored here. */
3920 && ((enum reg_class) goal_alternative[i] != NO_REGS
3921 || modified[i] == RELOAD_WRITE)
3922 && ! no_input_reloads
3923 /* An optional output reload might allow to delete INSN later.
3924 We mustn't make in-out reloads on insns that are not permitted
3925 output reloads.
3926 If this is an asm, we can't delete it; we must not even call
3927 push_reload for an optional output reload in this case,
3928 because we can't be sure that the constraint allows a register,
3929 and push_reload verifies the constraints for asms. */
3930 && (modified[i] == RELOAD_READ
3931 || (! no_output_reloads && ! this_insn_is_asm)))
3932 operand_reloadnum[i]
3933 = push_reload ((modified[i] != RELOAD_WRITE
3934 ? recog_data.operand[i] : 0),
3935 (modified[i] != RELOAD_READ
3936 ? recog_data.operand[i] : 0),
3937 (modified[i] != RELOAD_WRITE
3938 ? recog_data.operand_loc[i] : 0),
3939 (modified[i] != RELOAD_READ
3940 ? recog_data.operand_loc[i] : 0),
3941 (enum reg_class) goal_alternative[i],
3942 (modified[i] == RELOAD_WRITE
3943 ? VOIDmode : operand_mode[i]),
3944 (modified[i] == RELOAD_READ
3945 ? VOIDmode : operand_mode[i]),
3946 (insn_code_number < 0 ? 0
3947 : insn_data[insn_code_number].operand[i].strict_low),
3948 1, i, operand_type[i]);
3949 /* If a memory reference remains (either as a MEM or a pseudo that
3950 did not get a hard register), yet we can't make an optional
3951 reload, check if this is actually a pseudo register reference;
3952 we then need to emit a USE and/or a CLOBBER so that reload
3953 inheritance will do the right thing. */
3954 else if (replace
3955 && (MEM_P (operand)
3956 || (REG_P (operand)
3957 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3958 && reg_renumber [REGNO (operand)] < 0)))
3960 operand = *recog_data.operand_loc[i];
3962 while (GET_CODE (operand) == SUBREG)
3963 operand = SUBREG_REG (operand);
3964 if (REG_P (operand))
3966 if (modified[i] != RELOAD_WRITE)
3967 /* We mark the USE with QImode so that we recognize
3968 it as one that can be safely deleted at the end
3969 of reload. */
3970 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3971 insn), QImode);
3972 if (modified[i] != RELOAD_READ)
3973 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3977 else if (goal_alternative_matches[i] >= 0
3978 && goal_alternative_win[goal_alternative_matches[i]]
3979 && modified[i] == RELOAD_READ
3980 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3981 && ! no_input_reloads && ! no_output_reloads
3982 && optimize)
3984 /* Similarly, make an optional reload for a pair of matching
3985 objects that are in MEM or a pseudo that didn't get a hard reg. */
3987 rtx operand = recog_data.operand[i];
3989 while (GET_CODE (operand) == SUBREG)
3990 operand = SUBREG_REG (operand);
3991 if ((MEM_P (operand)
3992 || (REG_P (operand)
3993 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3994 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3995 != NO_REGS))
3996 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3997 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3998 recog_data.operand[i],
3999 recog_data.operand_loc[goal_alternative_matches[i]],
4000 recog_data.operand_loc[i],
4001 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4002 operand_mode[goal_alternative_matches[i]],
4003 operand_mode[i],
4004 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4007 /* Perform whatever substitutions on the operands we are supposed
4008 to make due to commutativity or replacement of registers
4009 with equivalent constants or memory slots. */
4011 for (i = 0; i < noperands; i++)
4013 /* We only do this on the last pass through reload, because it is
4014 possible for some data (like reg_equiv_address) to be changed during
4015 later passes. Moreover, we loose the opportunity to get a useful
4016 reload_{in,out}_reg when we do these replacements. */
4018 if (replace)
4020 rtx substitution = substed_operand[i];
4022 *recog_data.operand_loc[i] = substitution;
4024 /* If we're replacing an operand with a LABEL_REF, we need
4025 to make sure that there's a REG_LABEL note attached to
4026 this instruction. */
4027 if (!JUMP_P (insn)
4028 && GET_CODE (substitution) == LABEL_REF
4029 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4030 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4031 XEXP (substitution, 0),
4032 REG_NOTES (insn));
4034 else
4035 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4038 /* If this insn pattern contains any MATCH_DUP's, make sure that
4039 they will be substituted if the operands they match are substituted.
4040 Also do now any substitutions we already did on the operands.
4042 Don't do this if we aren't making replacements because we might be
4043 propagating things allocated by frame pointer elimination into places
4044 it doesn't expect. */
4046 if (insn_code_number >= 0 && replace)
4047 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4049 int opno = recog_data.dup_num[i];
4050 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4051 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4054 #if 0
4055 /* This loses because reloading of prior insns can invalidate the equivalence
4056 (or at least find_equiv_reg isn't smart enough to find it any more),
4057 causing this insn to need more reload regs than it needed before.
4058 It may be too late to make the reload regs available.
4059 Now this optimization is done safely in choose_reload_regs. */
4061 /* For each reload of a reg into some other class of reg,
4062 search for an existing equivalent reg (same value now) in the right class.
4063 We can use it as long as we don't need to change its contents. */
4064 for (i = 0; i < n_reloads; i++)
4065 if (rld[i].reg_rtx == 0
4066 && rld[i].in != 0
4067 && REG_P (rld[i].in)
4068 && rld[i].out == 0)
4070 rld[i].reg_rtx
4071 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4072 static_reload_reg_p, 0, rld[i].inmode);
4073 /* Prevent generation of insn to load the value
4074 because the one we found already has the value. */
4075 if (rld[i].reg_rtx)
4076 rld[i].in = rld[i].reg_rtx;
4078 #endif
4080 /* Perhaps an output reload can be combined with another
4081 to reduce needs by one. */
4082 if (!goal_earlyclobber)
4083 combine_reloads ();
4085 /* If we have a pair of reloads for parts of an address, they are reloading
4086 the same object, the operands themselves were not reloaded, and they
4087 are for two operands that are supposed to match, merge the reloads and
4088 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4090 for (i = 0; i < n_reloads; i++)
4092 int k;
4094 for (j = i + 1; j < n_reloads; j++)
4095 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4096 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4097 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4098 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4099 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4100 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4101 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4102 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4103 && rtx_equal_p (rld[i].in, rld[j].in)
4104 && (operand_reloadnum[rld[i].opnum] < 0
4105 || rld[operand_reloadnum[rld[i].opnum]].optional)
4106 && (operand_reloadnum[rld[j].opnum] < 0
4107 || rld[operand_reloadnum[rld[j].opnum]].optional)
4108 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4109 || (goal_alternative_matches[rld[j].opnum]
4110 == rld[i].opnum)))
4112 for (k = 0; k < n_replacements; k++)
4113 if (replacements[k].what == j)
4114 replacements[k].what = i;
4116 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4117 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4118 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4119 else
4120 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4121 rld[j].in = 0;
4125 /* Scan all the reloads and update their type.
4126 If a reload is for the address of an operand and we didn't reload
4127 that operand, change the type. Similarly, change the operand number
4128 of a reload when two operands match. If a reload is optional, treat it
4129 as though the operand isn't reloaded.
4131 ??? This latter case is somewhat odd because if we do the optional
4132 reload, it means the object is hanging around. Thus we need only
4133 do the address reload if the optional reload was NOT done.
4135 Change secondary reloads to be the address type of their operand, not
4136 the normal type.
4138 If an operand's reload is now RELOAD_OTHER, change any
4139 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4140 RELOAD_FOR_OTHER_ADDRESS. */
4142 for (i = 0; i < n_reloads; i++)
4144 if (rld[i].secondary_p
4145 && rld[i].when_needed == operand_type[rld[i].opnum])
4146 rld[i].when_needed = address_type[rld[i].opnum];
4148 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4149 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4150 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4151 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4152 && (operand_reloadnum[rld[i].opnum] < 0
4153 || rld[operand_reloadnum[rld[i].opnum]].optional))
4155 /* If we have a secondary reload to go along with this reload,
4156 change its type to RELOAD_FOR_OPADDR_ADDR. */
4158 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4159 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4160 && rld[i].secondary_in_reload != -1)
4162 int secondary_in_reload = rld[i].secondary_in_reload;
4164 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4166 /* If there's a tertiary reload we have to change it also. */
4167 if (secondary_in_reload > 0
4168 && rld[secondary_in_reload].secondary_in_reload != -1)
4169 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4170 = RELOAD_FOR_OPADDR_ADDR;
4173 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4174 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4175 && rld[i].secondary_out_reload != -1)
4177 int secondary_out_reload = rld[i].secondary_out_reload;
4179 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4181 /* If there's a tertiary reload we have to change it also. */
4182 if (secondary_out_reload
4183 && rld[secondary_out_reload].secondary_out_reload != -1)
4184 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4185 = RELOAD_FOR_OPADDR_ADDR;
4188 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4189 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4190 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4191 else
4192 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4195 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4196 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4197 && operand_reloadnum[rld[i].opnum] >= 0
4198 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4199 == RELOAD_OTHER))
4200 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4202 if (goal_alternative_matches[rld[i].opnum] >= 0)
4203 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4206 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4207 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4208 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4210 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4211 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4212 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4213 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4214 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4215 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4216 This is complicated by the fact that a single operand can have more
4217 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4218 choose_reload_regs without affecting code quality, and cases that
4219 actually fail are extremely rare, so it turns out to be better to fix
4220 the problem here by not generating cases that choose_reload_regs will
4221 fail for. */
4222 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4223 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4224 a single operand.
4225 We can reduce the register pressure by exploiting that a
4226 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4227 does not conflict with any of them, if it is only used for the first of
4228 the RELOAD_FOR_X_ADDRESS reloads. */
4230 int first_op_addr_num = -2;
4231 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4232 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4233 int need_change = 0;
4234 /* We use last_op_addr_reload and the contents of the above arrays
4235 first as flags - -2 means no instance encountered, -1 means exactly
4236 one instance encountered.
4237 If more than one instance has been encountered, we store the reload
4238 number of the first reload of the kind in question; reload numbers
4239 are known to be non-negative. */
4240 for (i = 0; i < noperands; i++)
4241 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4242 for (i = n_reloads - 1; i >= 0; i--)
4244 switch (rld[i].when_needed)
4246 case RELOAD_FOR_OPERAND_ADDRESS:
4247 if (++first_op_addr_num >= 0)
4249 first_op_addr_num = i;
4250 need_change = 1;
4252 break;
4253 case RELOAD_FOR_INPUT_ADDRESS:
4254 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4256 first_inpaddr_num[rld[i].opnum] = i;
4257 need_change = 1;
4259 break;
4260 case RELOAD_FOR_OUTPUT_ADDRESS:
4261 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4263 first_outpaddr_num[rld[i].opnum] = i;
4264 need_change = 1;
4266 break;
4267 default:
4268 break;
4272 if (need_change)
4274 for (i = 0; i < n_reloads; i++)
4276 int first_num;
4277 enum reload_type type;
4279 switch (rld[i].when_needed)
4281 case RELOAD_FOR_OPADDR_ADDR:
4282 first_num = first_op_addr_num;
4283 type = RELOAD_FOR_OPERAND_ADDRESS;
4284 break;
4285 case RELOAD_FOR_INPADDR_ADDRESS:
4286 first_num = first_inpaddr_num[rld[i].opnum];
4287 type = RELOAD_FOR_INPUT_ADDRESS;
4288 break;
4289 case RELOAD_FOR_OUTADDR_ADDRESS:
4290 first_num = first_outpaddr_num[rld[i].opnum];
4291 type = RELOAD_FOR_OUTPUT_ADDRESS;
4292 break;
4293 default:
4294 continue;
4296 if (first_num < 0)
4297 continue;
4298 else if (i > first_num)
4299 rld[i].when_needed = type;
4300 else
4302 /* Check if the only TYPE reload that uses reload I is
4303 reload FIRST_NUM. */
4304 for (j = n_reloads - 1; j > first_num; j--)
4306 if (rld[j].when_needed == type
4307 && (rld[i].secondary_p
4308 ? rld[j].secondary_in_reload == i
4309 : reg_mentioned_p (rld[i].in, rld[j].in)))
4311 rld[i].when_needed = type;
4312 break;
4320 /* See if we have any reloads that are now allowed to be merged
4321 because we've changed when the reload is needed to
4322 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4323 check for the most common cases. */
4325 for (i = 0; i < n_reloads; i++)
4326 if (rld[i].in != 0 && rld[i].out == 0
4327 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4328 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4329 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4330 for (j = 0; j < n_reloads; j++)
4331 if (i != j && rld[j].in != 0 && rld[j].out == 0
4332 && rld[j].when_needed == rld[i].when_needed
4333 && MATCHES (rld[i].in, rld[j].in)
4334 && rld[i].class == rld[j].class
4335 && !rld[i].nocombine && !rld[j].nocombine
4336 && rld[i].reg_rtx == rld[j].reg_rtx)
4338 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4339 transfer_replacements (i, j);
4340 rld[j].in = 0;
4343 #ifdef HAVE_cc0
4344 /* If we made any reloads for addresses, see if they violate a
4345 "no input reloads" requirement for this insn. But loads that we
4346 do after the insn (such as for output addresses) are fine. */
4347 if (no_input_reloads)
4348 for (i = 0; i < n_reloads; i++)
4349 gcc_assert (rld[i].in == 0
4350 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4351 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4352 #endif
4354 /* Compute reload_mode and reload_nregs. */
4355 for (i = 0; i < n_reloads; i++)
4357 rld[i].mode
4358 = (rld[i].inmode == VOIDmode
4359 || (GET_MODE_SIZE (rld[i].outmode)
4360 > GET_MODE_SIZE (rld[i].inmode)))
4361 ? rld[i].outmode : rld[i].inmode;
4363 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4366 /* Special case a simple move with an input reload and a
4367 destination of a hard reg, if the hard reg is ok, use it. */
4368 for (i = 0; i < n_reloads; i++)
4369 if (rld[i].when_needed == RELOAD_FOR_INPUT
4370 && GET_CODE (PATTERN (insn)) == SET
4371 && REG_P (SET_DEST (PATTERN (insn)))
4372 && SET_SRC (PATTERN (insn)) == rld[i].in)
4374 rtx dest = SET_DEST (PATTERN (insn));
4375 unsigned int regno = REGNO (dest);
4377 if (regno < FIRST_PSEUDO_REGISTER
4378 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4379 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4381 int nr = hard_regno_nregs[regno][rld[i].mode];
4382 int ok = 1, nri;
4384 for (nri = 1; nri < nr; nri ++)
4385 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4386 ok = 0;
4388 if (ok)
4389 rld[i].reg_rtx = dest;
4393 return retval;
4396 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4397 accepts a memory operand with constant address. */
4399 static int
4400 alternative_allows_memconst (const char *constraint, int altnum)
4402 int c;
4403 /* Skip alternatives before the one requested. */
4404 while (altnum > 0)
4406 while (*constraint++ != ',');
4407 altnum--;
4409 /* Scan the requested alternative for 'm' or 'o'.
4410 If one of them is present, this alternative accepts memory constants. */
4411 for (; (c = *constraint) && c != ',' && c != '#';
4412 constraint += CONSTRAINT_LEN (c, constraint))
4413 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4414 return 1;
4415 return 0;
4418 /* Scan X for memory references and scan the addresses for reloading.
4419 Also checks for references to "constant" regs that we want to eliminate
4420 and replaces them with the values they stand for.
4421 We may alter X destructively if it contains a reference to such.
4422 If X is just a constant reg, we return the equivalent value
4423 instead of X.
4425 IND_LEVELS says how many levels of indirect addressing this machine
4426 supports.
4428 OPNUM and TYPE identify the purpose of the reload.
4430 IS_SET_DEST is true if X is the destination of a SET, which is not
4431 appropriate to be replaced by a constant.
4433 INSN, if nonzero, is the insn in which we do the reload. It is used
4434 to determine if we may generate output reloads, and where to put USEs
4435 for pseudos that we have to replace with stack slots.
4437 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4438 result of find_reloads_address. */
4440 static rtx
4441 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4442 int ind_levels, int is_set_dest, rtx insn,
4443 int *address_reloaded)
4445 RTX_CODE code = GET_CODE (x);
4447 const char *fmt = GET_RTX_FORMAT (code);
4448 int i;
4449 int copied;
4451 if (code == REG)
4453 /* This code is duplicated for speed in find_reloads. */
4454 int regno = REGNO (x);
4455 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4456 x = reg_equiv_constant[regno];
4457 #if 0
4458 /* This creates (subreg (mem...)) which would cause an unnecessary
4459 reload of the mem. */
4460 else if (reg_equiv_mem[regno] != 0)
4461 x = reg_equiv_mem[regno];
4462 #endif
4463 else if (reg_equiv_memory_loc[regno]
4464 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4466 rtx mem = make_memloc (x, regno);
4467 if (reg_equiv_address[regno]
4468 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4470 /* If this is not a toplevel operand, find_reloads doesn't see
4471 this substitution. We have to emit a USE of the pseudo so
4472 that delete_output_reload can see it. */
4473 if (replace_reloads && recog_data.operand[opnum] != x)
4474 /* We mark the USE with QImode so that we recognize it
4475 as one that can be safely deleted at the end of
4476 reload. */
4477 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4478 QImode);
4479 x = mem;
4480 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4481 opnum, type, ind_levels, insn);
4482 if (address_reloaded)
4483 *address_reloaded = i;
4486 return x;
4488 if (code == MEM)
4490 rtx tem = x;
4492 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4493 opnum, type, ind_levels, insn);
4494 if (address_reloaded)
4495 *address_reloaded = i;
4497 return tem;
4500 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4502 /* Check for SUBREG containing a REG that's equivalent to a constant.
4503 If the constant has a known value, truncate it right now.
4504 Similarly if we are extracting a single-word of a multi-word
4505 constant. If the constant is symbolic, allow it to be substituted
4506 normally. push_reload will strip the subreg later. If the
4507 constant is VOIDmode, abort because we will lose the mode of
4508 the register (this should never happen because one of the cases
4509 above should handle it). */
4511 int regno = REGNO (SUBREG_REG (x));
4512 rtx tem;
4514 if (subreg_lowpart_p (x)
4515 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4516 && reg_equiv_constant[regno] != 0
4517 && (tem = gen_lowpart_common (GET_MODE (x),
4518 reg_equiv_constant[regno])) != 0)
4519 return tem;
4521 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4522 && reg_equiv_constant[regno] != 0)
4524 tem =
4525 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4526 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4527 gcc_assert (tem);
4528 return tem;
4531 /* If the subreg contains a reg that will be converted to a mem,
4532 convert the subreg to a narrower memref now.
4533 Otherwise, we would get (subreg (mem ...) ...),
4534 which would force reload of the mem.
4536 We also need to do this if there is an equivalent MEM that is
4537 not offsettable. In that case, alter_subreg would produce an
4538 invalid address on big-endian machines.
4540 For machines that extend byte loads, we must not reload using
4541 a wider mode if we have a paradoxical SUBREG. find_reloads will
4542 force a reload in that case. So we should not do anything here. */
4544 else if (regno >= FIRST_PSEUDO_REGISTER
4545 #ifdef LOAD_EXTEND_OP
4546 && (GET_MODE_SIZE (GET_MODE (x))
4547 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4548 #endif
4549 && (reg_equiv_address[regno] != 0
4550 || (reg_equiv_mem[regno] != 0
4551 && (! strict_memory_address_p (GET_MODE (x),
4552 XEXP (reg_equiv_mem[regno], 0))
4553 || ! offsettable_memref_p (reg_equiv_mem[regno])
4554 || num_not_at_initial_offset))))
4555 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4556 insn);
4559 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4561 if (fmt[i] == 'e')
4563 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4564 ind_levels, is_set_dest, insn,
4565 address_reloaded);
4566 /* If we have replaced a reg with it's equivalent memory loc -
4567 that can still be handled here e.g. if it's in a paradoxical
4568 subreg - we must make the change in a copy, rather than using
4569 a destructive change. This way, find_reloads can still elect
4570 not to do the change. */
4571 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4573 x = shallow_copy_rtx (x);
4574 copied = 1;
4576 XEXP (x, i) = new_part;
4579 return x;
4582 /* Return a mem ref for the memory equivalent of reg REGNO.
4583 This mem ref is not shared with anything. */
4585 static rtx
4586 make_memloc (rtx ad, int regno)
4588 /* We must rerun eliminate_regs, in case the elimination
4589 offsets have changed. */
4590 rtx tem
4591 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4593 /* If TEM might contain a pseudo, we must copy it to avoid
4594 modifying it when we do the substitution for the reload. */
4595 if (rtx_varies_p (tem, 0))
4596 tem = copy_rtx (tem);
4598 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4599 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4601 /* Copy the result if it's still the same as the equivalence, to avoid
4602 modifying it when we do the substitution for the reload. */
4603 if (tem == reg_equiv_memory_loc[regno])
4604 tem = copy_rtx (tem);
4605 return tem;
4608 /* Returns true if AD could be turned into a valid memory reference
4609 to mode MODE by reloading the part pointed to by PART into a
4610 register. */
4612 static int
4613 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4615 int retv;
4616 rtx tem = *part;
4617 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4619 *part = reg;
4620 retv = memory_address_p (mode, ad);
4621 *part = tem;
4623 return retv;
4626 /* Record all reloads needed for handling memory address AD
4627 which appears in *LOC in a memory reference to mode MODE
4628 which itself is found in location *MEMREFLOC.
4629 Note that we take shortcuts assuming that no multi-reg machine mode
4630 occurs as part of an address.
4632 OPNUM and TYPE specify the purpose of this reload.
4634 IND_LEVELS says how many levels of indirect addressing this machine
4635 supports.
4637 INSN, if nonzero, is the insn in which we do the reload. It is used
4638 to determine if we may generate output reloads, and where to put USEs
4639 for pseudos that we have to replace with stack slots.
4641 Value is one if this address is reloaded or replaced as a whole; it is
4642 zero if the top level of this address was not reloaded or replaced, and
4643 it is -1 if it may or may not have been reloaded or replaced.
4645 Note that there is no verification that the address will be valid after
4646 this routine does its work. Instead, we rely on the fact that the address
4647 was valid when reload started. So we need only undo things that reload
4648 could have broken. These are wrong register types, pseudos not allocated
4649 to a hard register, and frame pointer elimination. */
4651 static int
4652 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4653 rtx *loc, int opnum, enum reload_type type,
4654 int ind_levels, rtx insn)
4656 int regno;
4657 int removed_and = 0;
4658 int op_index;
4659 rtx tem;
4661 /* If the address is a register, see if it is a legitimate address and
4662 reload if not. We first handle the cases where we need not reload
4663 or where we must reload in a non-standard way. */
4665 if (REG_P (ad))
4667 regno = REGNO (ad);
4669 /* If the register is equivalent to an invariant expression, substitute
4670 the invariant, and eliminate any eliminable register references. */
4671 tem = reg_equiv_constant[regno];
4672 if (tem != 0
4673 && (tem = eliminate_regs (tem, mode, insn))
4674 && strict_memory_address_p (mode, tem))
4676 *loc = ad = tem;
4677 return 0;
4680 tem = reg_equiv_memory_loc[regno];
4681 if (tem != 0)
4683 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4685 tem = make_memloc (ad, regno);
4686 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4688 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4689 &XEXP (tem, 0), opnum,
4690 ADDR_TYPE (type), ind_levels, insn);
4692 /* We can avoid a reload if the register's equivalent memory
4693 expression is valid as an indirect memory address.
4694 But not all addresses are valid in a mem used as an indirect
4695 address: only reg or reg+constant. */
4697 if (ind_levels > 0
4698 && strict_memory_address_p (mode, tem)
4699 && (REG_P (XEXP (tem, 0))
4700 || (GET_CODE (XEXP (tem, 0)) == PLUS
4701 && REG_P (XEXP (XEXP (tem, 0), 0))
4702 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4704 /* TEM is not the same as what we'll be replacing the
4705 pseudo with after reload, put a USE in front of INSN
4706 in the final reload pass. */
4707 if (replace_reloads
4708 && num_not_at_initial_offset
4709 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4711 *loc = tem;
4712 /* We mark the USE with QImode so that we
4713 recognize it as one that can be safely
4714 deleted at the end of reload. */
4715 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4716 insn), QImode);
4718 /* This doesn't really count as replacing the address
4719 as a whole, since it is still a memory access. */
4721 return 0;
4723 ad = tem;
4727 /* The only remaining case where we can avoid a reload is if this is a
4728 hard register that is valid as a base register and which is not the
4729 subject of a CLOBBER in this insn. */
4731 else if (regno < FIRST_PSEUDO_REGISTER
4732 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4733 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4734 return 0;
4736 /* If we do not have one of the cases above, we must do the reload. */
4737 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4738 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4739 return 1;
4742 if (strict_memory_address_p (mode, ad))
4744 /* The address appears valid, so reloads are not needed.
4745 But the address may contain an eliminable register.
4746 This can happen because a machine with indirect addressing
4747 may consider a pseudo register by itself a valid address even when
4748 it has failed to get a hard reg.
4749 So do a tree-walk to find and eliminate all such regs. */
4751 /* But first quickly dispose of a common case. */
4752 if (GET_CODE (ad) == PLUS
4753 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4754 && REG_P (XEXP (ad, 0))
4755 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4756 return 0;
4758 subst_reg_equivs_changed = 0;
4759 *loc = subst_reg_equivs (ad, insn);
4761 if (! subst_reg_equivs_changed)
4762 return 0;
4764 /* Check result for validity after substitution. */
4765 if (strict_memory_address_p (mode, ad))
4766 return 0;
4769 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4772 if (memrefloc)
4774 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4775 ind_levels, win);
4777 break;
4778 win:
4779 *memrefloc = copy_rtx (*memrefloc);
4780 XEXP (*memrefloc, 0) = ad;
4781 move_replacements (&ad, &XEXP (*memrefloc, 0));
4782 return -1;
4784 while (0);
4785 #endif
4787 /* The address is not valid. We have to figure out why. First see if
4788 we have an outer AND and remove it if so. Then analyze what's inside. */
4790 if (GET_CODE (ad) == AND)
4792 removed_and = 1;
4793 loc = &XEXP (ad, 0);
4794 ad = *loc;
4797 /* One possibility for why the address is invalid is that it is itself
4798 a MEM. This can happen when the frame pointer is being eliminated, a
4799 pseudo is not allocated to a hard register, and the offset between the
4800 frame and stack pointers is not its initial value. In that case the
4801 pseudo will have been replaced by a MEM referring to the
4802 stack pointer. */
4803 if (MEM_P (ad))
4805 /* First ensure that the address in this MEM is valid. Then, unless
4806 indirect addresses are valid, reload the MEM into a register. */
4807 tem = ad;
4808 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4809 opnum, ADDR_TYPE (type),
4810 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4812 /* If tem was changed, then we must create a new memory reference to
4813 hold it and store it back into memrefloc. */
4814 if (tem != ad && memrefloc)
4816 *memrefloc = copy_rtx (*memrefloc);
4817 copy_replacements (tem, XEXP (*memrefloc, 0));
4818 loc = &XEXP (*memrefloc, 0);
4819 if (removed_and)
4820 loc = &XEXP (*loc, 0);
4823 /* Check similar cases as for indirect addresses as above except
4824 that we can allow pseudos and a MEM since they should have been
4825 taken care of above. */
4827 if (ind_levels == 0
4828 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4829 || MEM_P (XEXP (tem, 0))
4830 || ! (REG_P (XEXP (tem, 0))
4831 || (GET_CODE (XEXP (tem, 0)) == PLUS
4832 && REG_P (XEXP (XEXP (tem, 0), 0))
4833 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4835 /* Must use TEM here, not AD, since it is the one that will
4836 have any subexpressions reloaded, if needed. */
4837 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4838 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4839 VOIDmode, 0,
4840 0, opnum, type);
4841 return ! removed_and;
4843 else
4844 return 0;
4847 /* If we have address of a stack slot but it's not valid because the
4848 displacement is too large, compute the sum in a register.
4849 Handle all base registers here, not just fp/ap/sp, because on some
4850 targets (namely SH) we can also get too large displacements from
4851 big-endian corrections. */
4852 else if (GET_CODE (ad) == PLUS
4853 && REG_P (XEXP (ad, 0))
4854 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4855 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4856 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4858 /* Unshare the MEM rtx so we can safely alter it. */
4859 if (memrefloc)
4861 *memrefloc = copy_rtx (*memrefloc);
4862 loc = &XEXP (*memrefloc, 0);
4863 if (removed_and)
4864 loc = &XEXP (*loc, 0);
4867 if (double_reg_address_ok)
4869 /* Unshare the sum as well. */
4870 *loc = ad = copy_rtx (ad);
4872 /* Reload the displacement into an index reg.
4873 We assume the frame pointer or arg pointer is a base reg. */
4874 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4875 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4876 type, ind_levels);
4877 return 0;
4879 else
4881 /* If the sum of two regs is not necessarily valid,
4882 reload the sum into a base reg.
4883 That will at least work. */
4884 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4885 Pmode, opnum, type, ind_levels);
4887 return ! removed_and;
4890 /* If we have an indexed stack slot, there are three possible reasons why
4891 it might be invalid: The index might need to be reloaded, the address
4892 might have been made by frame pointer elimination and hence have a
4893 constant out of range, or both reasons might apply.
4895 We can easily check for an index needing reload, but even if that is the
4896 case, we might also have an invalid constant. To avoid making the
4897 conservative assumption and requiring two reloads, we see if this address
4898 is valid when not interpreted strictly. If it is, the only problem is
4899 that the index needs a reload and find_reloads_address_1 will take care
4900 of it.
4902 Handle all base registers here, not just fp/ap/sp, because on some
4903 targets (namely SPARC) we can also get invalid addresses from preventive
4904 subreg big-endian corrections made by find_reloads_toplev. We
4905 can also get expressions involving LO_SUM (rather than PLUS) from
4906 find_reloads_subreg_address.
4908 If we decide to do something, it must be that `double_reg_address_ok'
4909 is true. We generate a reload of the base register + constant and
4910 rework the sum so that the reload register will be added to the index.
4911 This is safe because we know the address isn't shared.
4913 We check for the base register as both the first and second operand of
4914 the innermost PLUS and/or LO_SUM. */
4916 for (op_index = 0; op_index < 2; ++op_index)
4918 rtx operand;
4920 if (!(GET_CODE (ad) == PLUS
4921 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4922 && (GET_CODE (XEXP (ad, 0)) == PLUS
4923 || GET_CODE (XEXP (ad, 0)) == LO_SUM)))
4924 continue;
4926 operand = XEXP (XEXP (ad, 0), op_index);
4927 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
4928 continue;
4930 if ((REG_MODE_OK_FOR_BASE_P (operand, mode)
4931 || operand == frame_pointer_rtx
4932 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4933 || operand == hard_frame_pointer_rtx
4934 #endif
4935 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4936 || operand == arg_pointer_rtx
4937 #endif
4938 || operand == stack_pointer_rtx)
4939 && ! maybe_memory_address_p (mode, ad,
4940 &XEXP (XEXP (ad, 0), 1 - op_index)))
4942 rtx offset_reg;
4943 rtx addend;
4945 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
4946 addend = XEXP (XEXP (ad, 0), 1 - op_index);
4948 /* Form the adjusted address. */
4949 if (GET_CODE (XEXP (ad, 0)) == PLUS)
4950 ad = gen_rtx_PLUS (GET_MODE (ad),
4951 op_index == 0 ? offset_reg : addend,
4952 op_index == 0 ? addend : offset_reg);
4953 else
4954 ad = gen_rtx_LO_SUM (GET_MODE (ad),
4955 op_index == 0 ? offset_reg : addend,
4956 op_index == 0 ? addend : offset_reg);
4957 *loc = ad;
4959 find_reloads_address_part (XEXP (ad, op_index),
4960 &XEXP (ad, op_index),
4961 MODE_BASE_REG_CLASS (mode),
4962 GET_MODE (ad), opnum, type, ind_levels);
4963 find_reloads_address_1 (mode,
4964 XEXP (ad, 1 - op_index), 1,
4965 &XEXP (ad, 1 - op_index), opnum,
4966 type, 0, insn);
4968 return 0;
4972 /* See if address becomes valid when an eliminable register
4973 in a sum is replaced. */
4975 tem = ad;
4976 if (GET_CODE (ad) == PLUS)
4977 tem = subst_indexed_address (ad);
4978 if (tem != ad && strict_memory_address_p (mode, tem))
4980 /* Ok, we win that way. Replace any additional eliminable
4981 registers. */
4983 subst_reg_equivs_changed = 0;
4984 tem = subst_reg_equivs (tem, insn);
4986 /* Make sure that didn't make the address invalid again. */
4988 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4990 *loc = tem;
4991 return 0;
4995 /* If constants aren't valid addresses, reload the constant address
4996 into a register. */
4997 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4999 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5000 Unshare it so we can safely alter it. */
5001 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5002 && CONSTANT_POOL_ADDRESS_P (ad))
5004 *memrefloc = copy_rtx (*memrefloc);
5005 loc = &XEXP (*memrefloc, 0);
5006 if (removed_and)
5007 loc = &XEXP (*loc, 0);
5010 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5011 Pmode, opnum, type, ind_levels);
5012 return ! removed_and;
5015 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5016 insn);
5019 /* Find all pseudo regs appearing in AD
5020 that are eliminable in favor of equivalent values
5021 and do not have hard regs; replace them by their equivalents.
5022 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5023 front of it for pseudos that we have to replace with stack slots. */
5025 static rtx
5026 subst_reg_equivs (rtx ad, rtx insn)
5028 RTX_CODE code = GET_CODE (ad);
5029 int i;
5030 const char *fmt;
5032 switch (code)
5034 case HIGH:
5035 case CONST_INT:
5036 case CONST:
5037 case CONST_DOUBLE:
5038 case CONST_VECTOR:
5039 case SYMBOL_REF:
5040 case LABEL_REF:
5041 case PC:
5042 case CC0:
5043 return ad;
5045 case REG:
5047 int regno = REGNO (ad);
5049 if (reg_equiv_constant[regno] != 0)
5051 subst_reg_equivs_changed = 1;
5052 return reg_equiv_constant[regno];
5054 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5056 rtx mem = make_memloc (ad, regno);
5057 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5059 subst_reg_equivs_changed = 1;
5060 /* We mark the USE with QImode so that we recognize it
5061 as one that can be safely deleted at the end of
5062 reload. */
5063 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5064 QImode);
5065 return mem;
5069 return ad;
5071 case PLUS:
5072 /* Quickly dispose of a common case. */
5073 if (XEXP (ad, 0) == frame_pointer_rtx
5074 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5075 return ad;
5076 break;
5078 default:
5079 break;
5082 fmt = GET_RTX_FORMAT (code);
5083 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5084 if (fmt[i] == 'e')
5085 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5086 return ad;
5089 /* Compute the sum of X and Y, making canonicalizations assumed in an
5090 address, namely: sum constant integers, surround the sum of two
5091 constants with a CONST, put the constant as the second operand, and
5092 group the constant on the outermost sum.
5094 This routine assumes both inputs are already in canonical form. */
5097 form_sum (rtx x, rtx y)
5099 rtx tem;
5100 enum machine_mode mode = GET_MODE (x);
5102 if (mode == VOIDmode)
5103 mode = GET_MODE (y);
5105 if (mode == VOIDmode)
5106 mode = Pmode;
5108 if (GET_CODE (x) == CONST_INT)
5109 return plus_constant (y, INTVAL (x));
5110 else if (GET_CODE (y) == CONST_INT)
5111 return plus_constant (x, INTVAL (y));
5112 else if (CONSTANT_P (x))
5113 tem = x, x = y, y = tem;
5115 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5116 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5118 /* Note that if the operands of Y are specified in the opposite
5119 order in the recursive calls below, infinite recursion will occur. */
5120 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5121 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5123 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5124 constant will have been placed second. */
5125 if (CONSTANT_P (x) && CONSTANT_P (y))
5127 if (GET_CODE (x) == CONST)
5128 x = XEXP (x, 0);
5129 if (GET_CODE (y) == CONST)
5130 y = XEXP (y, 0);
5132 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5135 return gen_rtx_PLUS (mode, x, y);
5138 /* If ADDR is a sum containing a pseudo register that should be
5139 replaced with a constant (from reg_equiv_constant),
5140 return the result of doing so, and also apply the associative
5141 law so that the result is more likely to be a valid address.
5142 (But it is not guaranteed to be one.)
5144 Note that at most one register is replaced, even if more are
5145 replaceable. Also, we try to put the result into a canonical form
5146 so it is more likely to be a valid address.
5148 In all other cases, return ADDR. */
5150 static rtx
5151 subst_indexed_address (rtx addr)
5153 rtx op0 = 0, op1 = 0, op2 = 0;
5154 rtx tem;
5155 int regno;
5157 if (GET_CODE (addr) == PLUS)
5159 /* Try to find a register to replace. */
5160 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5161 if (REG_P (op0)
5162 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5163 && reg_renumber[regno] < 0
5164 && reg_equiv_constant[regno] != 0)
5165 op0 = reg_equiv_constant[regno];
5166 else if (REG_P (op1)
5167 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5168 && reg_renumber[regno] < 0
5169 && reg_equiv_constant[regno] != 0)
5170 op1 = reg_equiv_constant[regno];
5171 else if (GET_CODE (op0) == PLUS
5172 && (tem = subst_indexed_address (op0)) != op0)
5173 op0 = tem;
5174 else if (GET_CODE (op1) == PLUS
5175 && (tem = subst_indexed_address (op1)) != op1)
5176 op1 = tem;
5177 else
5178 return addr;
5180 /* Pick out up to three things to add. */
5181 if (GET_CODE (op1) == PLUS)
5182 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5183 else if (GET_CODE (op0) == PLUS)
5184 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5186 /* Compute the sum. */
5187 if (op2 != 0)
5188 op1 = form_sum (op1, op2);
5189 if (op1 != 0)
5190 op0 = form_sum (op0, op1);
5192 return op0;
5194 return addr;
5197 /* Update the REG_INC notes for an insn. It updates all REG_INC
5198 notes for the instruction which refer to REGNO the to refer
5199 to the reload number.
5201 INSN is the insn for which any REG_INC notes need updating.
5203 REGNO is the register number which has been reloaded.
5205 RELOADNUM is the reload number. */
5207 static void
5208 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5209 int reloadnum ATTRIBUTE_UNUSED)
5211 #ifdef AUTO_INC_DEC
5212 rtx link;
5214 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5215 if (REG_NOTE_KIND (link) == REG_INC
5216 && (int) REGNO (XEXP (link, 0)) == regno)
5217 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5218 #endif
5221 /* Record the pseudo registers we must reload into hard registers in a
5222 subexpression of a would-be memory address, X referring to a value
5223 in mode MODE. (This function is not called if the address we find
5224 is strictly valid.)
5226 CONTEXT = 1 means we are considering regs as index regs,
5227 = 0 means we are considering them as base regs.
5229 OPNUM and TYPE specify the purpose of any reloads made.
5231 IND_LEVELS says how many levels of indirect addressing are
5232 supported at this point in the address.
5234 INSN, if nonzero, is the insn in which we do the reload. It is used
5235 to determine if we may generate output reloads.
5237 We return nonzero if X, as a whole, is reloaded or replaced. */
5239 /* Note that we take shortcuts assuming that no multi-reg machine mode
5240 occurs as part of an address.
5241 Also, this is not fully machine-customizable; it works for machines
5242 such as VAXen and 68000's and 32000's, but other possible machines
5243 could have addressing modes that this does not handle right. */
5245 static int
5246 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5247 rtx *loc, int opnum, enum reload_type type,
5248 int ind_levels, rtx insn)
5250 RTX_CODE code = GET_CODE (x);
5252 switch (code)
5254 case PLUS:
5256 rtx orig_op0 = XEXP (x, 0);
5257 rtx orig_op1 = XEXP (x, 1);
5258 RTX_CODE code0 = GET_CODE (orig_op0);
5259 RTX_CODE code1 = GET_CODE (orig_op1);
5260 rtx op0 = orig_op0;
5261 rtx op1 = orig_op1;
5263 if (GET_CODE (op0) == SUBREG)
5265 op0 = SUBREG_REG (op0);
5266 code0 = GET_CODE (op0);
5267 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5268 op0 = gen_rtx_REG (word_mode,
5269 (REGNO (op0) +
5270 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5271 GET_MODE (SUBREG_REG (orig_op0)),
5272 SUBREG_BYTE (orig_op0),
5273 GET_MODE (orig_op0))));
5276 if (GET_CODE (op1) == SUBREG)
5278 op1 = SUBREG_REG (op1);
5279 code1 = GET_CODE (op1);
5280 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5281 /* ??? Why is this given op1's mode and above for
5282 ??? op0 SUBREGs we use word_mode? */
5283 op1 = gen_rtx_REG (GET_MODE (op1),
5284 (REGNO (op1) +
5285 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5286 GET_MODE (SUBREG_REG (orig_op1)),
5287 SUBREG_BYTE (orig_op1),
5288 GET_MODE (orig_op1))));
5290 /* Plus in the index register may be created only as a result of
5291 register remateralization for expression like &localvar*4. Reload it.
5292 It may be possible to combine the displacement on the outer level,
5293 but it is probably not worthwhile to do so. */
5294 if (context)
5296 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5297 opnum, ADDR_TYPE (type), ind_levels, insn);
5298 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5299 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5300 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5301 return 1;
5304 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5305 || code0 == ZERO_EXTEND || code1 == MEM)
5307 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5308 type, ind_levels, insn);
5309 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5310 type, ind_levels, insn);
5313 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5314 || code1 == ZERO_EXTEND || code0 == MEM)
5316 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5317 type, ind_levels, insn);
5318 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5319 type, ind_levels, insn);
5322 else if (code0 == CONST_INT || code0 == CONST
5323 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5324 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5325 type, ind_levels, insn);
5327 else if (code1 == CONST_INT || code1 == CONST
5328 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5329 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5330 type, ind_levels, insn);
5332 else if (code0 == REG && code1 == REG)
5334 if (REG_OK_FOR_INDEX_P (op0)
5335 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5336 return 0;
5337 else if (REG_OK_FOR_INDEX_P (op1)
5338 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5339 return 0;
5340 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5341 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5342 type, ind_levels, insn);
5343 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5344 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5345 type, ind_levels, insn);
5346 else if (REG_OK_FOR_INDEX_P (op1))
5347 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5348 type, ind_levels, insn);
5349 else if (REG_OK_FOR_INDEX_P (op0))
5350 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5351 type, ind_levels, insn);
5352 else
5354 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5355 type, ind_levels, insn);
5356 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5357 type, ind_levels, insn);
5361 else if (code0 == REG)
5363 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5364 type, ind_levels, insn);
5365 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5366 type, ind_levels, insn);
5369 else if (code1 == REG)
5371 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5372 type, ind_levels, insn);
5373 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5374 type, ind_levels, insn);
5378 return 0;
5380 case POST_MODIFY:
5381 case PRE_MODIFY:
5383 rtx op0 = XEXP (x, 0);
5384 rtx op1 = XEXP (x, 1);
5385 int regno;
5386 int reloadnum;
5388 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5389 return 0;
5391 /* Currently, we only support {PRE,POST}_MODIFY constructs
5392 where a base register is {inc,dec}remented by the contents
5393 of another register or by a constant value. Thus, these
5394 operands must match. */
5395 gcc_assert (op0 == XEXP (op1, 0));
5397 /* Require index register (or constant). Let's just handle the
5398 register case in the meantime... If the target allows
5399 auto-modify by a constant then we could try replacing a pseudo
5400 register with its equivalent constant where applicable. */
5401 if (REG_P (XEXP (op1, 1)))
5402 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5403 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5404 opnum, type, ind_levels, insn);
5406 gcc_assert (REG_P (XEXP (op1, 0)));
5408 regno = REGNO (XEXP (op1, 0));
5410 /* A register that is incremented cannot be constant! */
5411 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5412 || reg_equiv_constant[regno] == 0);
5414 /* Handle a register that is equivalent to a memory location
5415 which cannot be addressed directly. */
5416 if (reg_equiv_memory_loc[regno] != 0
5417 && (reg_equiv_address[regno] != 0
5418 || num_not_at_initial_offset))
5420 rtx tem = make_memloc (XEXP (x, 0), regno);
5422 if (reg_equiv_address[regno]
5423 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5425 /* First reload the memory location's address.
5426 We can't use ADDR_TYPE (type) here, because we need to
5427 write back the value after reading it, hence we actually
5428 need two registers. */
5429 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5430 &XEXP (tem, 0), opnum,
5431 RELOAD_OTHER,
5432 ind_levels, insn);
5434 /* Then reload the memory location into a base
5435 register. */
5436 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5437 &XEXP (op1, 0),
5438 MODE_BASE_REG_CLASS (mode),
5439 GET_MODE (x), GET_MODE (x), 0,
5440 0, opnum, RELOAD_OTHER);
5442 update_auto_inc_notes (this_insn, regno, reloadnum);
5443 return 0;
5447 if (reg_renumber[regno] >= 0)
5448 regno = reg_renumber[regno];
5450 /* We require a base register here... */
5451 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5453 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5454 &XEXP (op1, 0), &XEXP (x, 0),
5455 MODE_BASE_REG_CLASS (mode),
5456 GET_MODE (x), GET_MODE (x), 0, 0,
5457 opnum, RELOAD_OTHER);
5459 update_auto_inc_notes (this_insn, regno, reloadnum);
5460 return 0;
5463 return 0;
5465 case POST_INC:
5466 case POST_DEC:
5467 case PRE_INC:
5468 case PRE_DEC:
5469 if (REG_P (XEXP (x, 0)))
5471 int regno = REGNO (XEXP (x, 0));
5472 int value = 0;
5473 rtx x_orig = x;
5475 /* A register that is incremented cannot be constant! */
5476 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5477 || reg_equiv_constant[regno] == 0);
5479 /* Handle a register that is equivalent to a memory location
5480 which cannot be addressed directly. */
5481 if (reg_equiv_memory_loc[regno] != 0
5482 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5484 rtx tem = make_memloc (XEXP (x, 0), regno);
5485 if (reg_equiv_address[regno]
5486 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5488 /* First reload the memory location's address.
5489 We can't use ADDR_TYPE (type) here, because we need to
5490 write back the value after reading it, hence we actually
5491 need two registers. */
5492 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5493 &XEXP (tem, 0), opnum, type,
5494 ind_levels, insn);
5495 /* Put this inside a new increment-expression. */
5496 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5497 /* Proceed to reload that, as if it contained a register. */
5501 /* If we have a hard register that is ok as an index,
5502 don't make a reload. If an autoincrement of a nice register
5503 isn't "valid", it must be that no autoincrement is "valid".
5504 If that is true and something made an autoincrement anyway,
5505 this must be a special context where one is allowed.
5506 (For example, a "push" instruction.)
5507 We can't improve this address, so leave it alone. */
5509 /* Otherwise, reload the autoincrement into a suitable hard reg
5510 and record how much to increment by. */
5512 if (reg_renumber[regno] >= 0)
5513 regno = reg_renumber[regno];
5514 if ((regno >= FIRST_PSEUDO_REGISTER
5515 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5516 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5518 int reloadnum;
5520 /* If we can output the register afterwards, do so, this
5521 saves the extra update.
5522 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5523 CALL_INSN - and it does not set CC0.
5524 But don't do this if we cannot directly address the
5525 memory location, since this will make it harder to
5526 reuse address reloads, and increases register pressure.
5527 Also don't do this if we can probably update x directly. */
5528 rtx equiv = (MEM_P (XEXP (x, 0))
5529 ? XEXP (x, 0)
5530 : reg_equiv_mem[regno]);
5531 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5532 if (insn && NONJUMP_INSN_P (insn) && equiv
5533 && memory_operand (equiv, GET_MODE (equiv))
5534 #ifdef HAVE_cc0
5535 && ! sets_cc0_p (PATTERN (insn))
5536 #endif
5537 && ! (icode != CODE_FOR_nothing
5538 && ((*insn_data[icode].operand[0].predicate)
5539 (equiv, Pmode))
5540 && ((*insn_data[icode].operand[1].predicate)
5541 (equiv, Pmode))))
5543 /* We use the original pseudo for loc, so that
5544 emit_reload_insns() knows which pseudo this
5545 reload refers to and updates the pseudo rtx, not
5546 its equivalent memory location, as well as the
5547 corresponding entry in reg_last_reload_reg. */
5548 loc = &XEXP (x_orig, 0);
5549 x = XEXP (x, 0);
5550 reloadnum
5551 = push_reload (x, x, loc, loc,
5552 (context ? INDEX_REG_CLASS :
5553 MODE_BASE_REG_CLASS (mode)),
5554 GET_MODE (x), GET_MODE (x), 0, 0,
5555 opnum, RELOAD_OTHER);
5557 else
5559 reloadnum
5560 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5561 (context ? INDEX_REG_CLASS :
5562 MODE_BASE_REG_CLASS (mode)),
5563 GET_MODE (x), GET_MODE (x), 0, 0,
5564 opnum, type);
5565 rld[reloadnum].inc
5566 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5568 value = 1;
5571 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5572 reloadnum);
5574 return value;
5577 else if (MEM_P (XEXP (x, 0)))
5579 /* This is probably the result of a substitution, by eliminate_regs,
5580 of an equivalent address for a pseudo that was not allocated to a
5581 hard register. Verify that the specified address is valid and
5582 reload it into a register. */
5583 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5584 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5585 rtx link;
5586 int reloadnum;
5588 /* Since we know we are going to reload this item, don't decrement
5589 for the indirection level.
5591 Note that this is actually conservative: it would be slightly
5592 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5593 reload1.c here. */
5594 /* We can't use ADDR_TYPE (type) here, because we need to
5595 write back the value after reading it, hence we actually
5596 need two registers. */
5597 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5598 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5599 opnum, type, ind_levels, insn);
5601 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5602 (context ? INDEX_REG_CLASS :
5603 MODE_BASE_REG_CLASS (mode)),
5604 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5605 rld[reloadnum].inc
5606 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5608 link = FIND_REG_INC_NOTE (this_insn, tem);
5609 if (link != 0)
5610 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5612 return 1;
5614 return 0;
5616 case MEM:
5617 /* This is probably the result of a substitution, by eliminate_regs, of
5618 an equivalent address for a pseudo that was not allocated to a hard
5619 register. Verify that the specified address is valid and reload it
5620 into a register.
5622 Since we know we are going to reload this item, don't decrement for
5623 the indirection level.
5625 Note that this is actually conservative: it would be slightly more
5626 efficient to use the value of SPILL_INDIRECT_LEVELS from
5627 reload1.c here. */
5629 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5630 opnum, ADDR_TYPE (type), ind_levels, insn);
5631 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5632 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5633 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5634 return 1;
5636 case REG:
5638 int regno = REGNO (x);
5640 if (reg_equiv_constant[regno] != 0)
5642 find_reloads_address_part (reg_equiv_constant[regno], loc,
5643 (context ? INDEX_REG_CLASS :
5644 MODE_BASE_REG_CLASS (mode)),
5645 GET_MODE (x), opnum, type, ind_levels);
5646 return 1;
5649 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5650 that feeds this insn. */
5651 if (reg_equiv_mem[regno] != 0)
5653 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5654 (context ? INDEX_REG_CLASS :
5655 MODE_BASE_REG_CLASS (mode)),
5656 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5657 return 1;
5659 #endif
5661 if (reg_equiv_memory_loc[regno]
5662 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5664 rtx tem = make_memloc (x, regno);
5665 if (reg_equiv_address[regno] != 0
5666 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5668 x = tem;
5669 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5670 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5671 ind_levels, insn);
5675 if (reg_renumber[regno] >= 0)
5676 regno = reg_renumber[regno];
5678 if ((regno >= FIRST_PSEUDO_REGISTER
5679 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5680 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5682 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5683 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5684 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5685 return 1;
5688 /* If a register appearing in an address is the subject of a CLOBBER
5689 in this insn, reload it into some other register to be safe.
5690 The CLOBBER is supposed to make the register unavailable
5691 from before this insn to after it. */
5692 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5694 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5695 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5696 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5697 return 1;
5700 return 0;
5702 case SUBREG:
5703 if (REG_P (SUBREG_REG (x)))
5705 /* If this is a SUBREG of a hard register and the resulting register
5706 is of the wrong class, reload the whole SUBREG. This avoids
5707 needless copies if SUBREG_REG is multi-word. */
5708 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5710 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5712 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5713 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5715 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5716 (context ? INDEX_REG_CLASS :
5717 MODE_BASE_REG_CLASS (mode)),
5718 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5719 return 1;
5722 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5723 is larger than the class size, then reload the whole SUBREG. */
5724 else
5726 enum reg_class class = (context ? INDEX_REG_CLASS
5727 : MODE_BASE_REG_CLASS (mode));
5728 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5729 > reg_class_size[class])
5731 x = find_reloads_subreg_address (x, 0, opnum, type,
5732 ind_levels, insn);
5733 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5734 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5735 return 1;
5739 break;
5741 default:
5742 break;
5746 const char *fmt = GET_RTX_FORMAT (code);
5747 int i;
5749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5751 if (fmt[i] == 'e')
5752 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5753 opnum, type, ind_levels, insn);
5757 return 0;
5760 /* X, which is found at *LOC, is a part of an address that needs to be
5761 reloaded into a register of class CLASS. If X is a constant, or if
5762 X is a PLUS that contains a constant, check that the constant is a
5763 legitimate operand and that we are supposed to be able to load
5764 it into the register.
5766 If not, force the constant into memory and reload the MEM instead.
5768 MODE is the mode to use, in case X is an integer constant.
5770 OPNUM and TYPE describe the purpose of any reloads made.
5772 IND_LEVELS says how many levels of indirect addressing this machine
5773 supports. */
5775 static void
5776 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5777 enum machine_mode mode, int opnum,
5778 enum reload_type type, int ind_levels)
5780 if (CONSTANT_P (x)
5781 && (! LEGITIMATE_CONSTANT_P (x)
5782 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5784 rtx tem;
5786 tem = x = force_const_mem (mode, x);
5787 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5788 opnum, type, ind_levels, 0);
5791 else if (GET_CODE (x) == PLUS
5792 && CONSTANT_P (XEXP (x, 1))
5793 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5794 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5796 rtx tem;
5798 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5799 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5800 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5801 opnum, type, ind_levels, 0);
5804 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5805 mode, VOIDmode, 0, 0, opnum, type);
5808 /* X, a subreg of a pseudo, is a part of an address that needs to be
5809 reloaded.
5811 If the pseudo is equivalent to a memory location that cannot be directly
5812 addressed, make the necessary address reloads.
5814 If address reloads have been necessary, or if the address is changed
5815 by register elimination, return the rtx of the memory location;
5816 otherwise, return X.
5818 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5819 memory location.
5821 OPNUM and TYPE identify the purpose of the reload.
5823 IND_LEVELS says how many levels of indirect addressing are
5824 supported at this point in the address.
5826 INSN, if nonzero, is the insn in which we do the reload. It is used
5827 to determine where to put USEs for pseudos that we have to replace with
5828 stack slots. */
5830 static rtx
5831 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5832 enum reload_type type, int ind_levels, rtx insn)
5834 int regno = REGNO (SUBREG_REG (x));
5836 if (reg_equiv_memory_loc[regno])
5838 /* If the address is not directly addressable, or if the address is not
5839 offsettable, then it must be replaced. */
5840 if (! force_replace
5841 && (reg_equiv_address[regno]
5842 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5843 force_replace = 1;
5845 if (force_replace || num_not_at_initial_offset)
5847 rtx tem = make_memloc (SUBREG_REG (x), regno);
5849 /* If the address changes because of register elimination, then
5850 it must be replaced. */
5851 if (force_replace
5852 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5854 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5855 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5856 int offset;
5858 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5859 hold the correct (negative) byte offset. */
5860 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5861 offset = inner_size - outer_size;
5862 else
5863 offset = SUBREG_BYTE (x);
5865 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5866 PUT_MODE (tem, GET_MODE (x));
5868 /* If this was a paradoxical subreg that we replaced, the
5869 resulting memory must be sufficiently aligned to allow
5870 us to widen the mode of the memory. */
5871 if (outer_size > inner_size && STRICT_ALIGNMENT)
5873 rtx base;
5875 base = XEXP (tem, 0);
5876 if (GET_CODE (base) == PLUS)
5878 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5879 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5880 return x;
5881 base = XEXP (base, 0);
5883 if (!REG_P (base)
5884 || (REGNO_POINTER_ALIGN (REGNO (base))
5885 < outer_size * BITS_PER_UNIT))
5886 return x;
5889 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5890 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5891 ind_levels, insn);
5893 /* If this is not a toplevel operand, find_reloads doesn't see
5894 this substitution. We have to emit a USE of the pseudo so
5895 that delete_output_reload can see it. */
5896 if (replace_reloads && recog_data.operand[opnum] != x)
5897 /* We mark the USE with QImode so that we recognize it
5898 as one that can be safely deleted at the end of
5899 reload. */
5900 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5901 SUBREG_REG (x)),
5902 insn), QImode);
5903 x = tem;
5907 return x;
5910 /* Substitute into the current INSN the registers into which we have reloaded
5911 the things that need reloading. The array `replacements'
5912 contains the locations of all pointers that must be changed
5913 and says what to replace them with.
5915 Return the rtx that X translates into; usually X, but modified. */
5917 void
5918 subst_reloads (rtx insn)
5920 int i;
5922 for (i = 0; i < n_replacements; i++)
5924 struct replacement *r = &replacements[i];
5925 rtx reloadreg = rld[r->what].reg_rtx;
5926 if (reloadreg)
5928 #ifdef ENABLE_CHECKING
5929 /* Internal consistency test. Check that we don't modify
5930 anything in the equivalence arrays. Whenever something from
5931 those arrays needs to be reloaded, it must be unshared before
5932 being substituted into; the equivalence must not be modified.
5933 Otherwise, if the equivalence is used after that, it will
5934 have been modified, and the thing substituted (probably a
5935 register) is likely overwritten and not a usable equivalence. */
5936 int check_regno;
5938 for (check_regno = 0; check_regno < max_regno; check_regno++)
5940 #define CHECK_MODF(ARRAY) \
5941 gcc_assert (!ARRAY[check_regno] \
5942 || !loc_mentioned_in_p (r->where, \
5943 ARRAY[check_regno]))
5945 CHECK_MODF (reg_equiv_constant);
5946 CHECK_MODF (reg_equiv_memory_loc);
5947 CHECK_MODF (reg_equiv_address);
5948 CHECK_MODF (reg_equiv_mem);
5949 #undef CHECK_MODF
5951 #endif /* ENABLE_CHECKING */
5953 /* If we're replacing a LABEL_REF with a register, add a
5954 REG_LABEL note to indicate to flow which label this
5955 register refers to. */
5956 if (GET_CODE (*r->where) == LABEL_REF
5957 && JUMP_P (insn))
5958 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5959 XEXP (*r->where, 0),
5960 REG_NOTES (insn));
5962 /* Encapsulate RELOADREG so its machine mode matches what
5963 used to be there. Note that gen_lowpart_common will
5964 do the wrong thing if RELOADREG is multi-word. RELOADREG
5965 will always be a REG here. */
5966 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5967 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
5969 /* If we are putting this into a SUBREG and RELOADREG is a
5970 SUBREG, we would be making nested SUBREGs, so we have to fix
5971 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5973 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5975 if (GET_MODE (*r->subreg_loc)
5976 == GET_MODE (SUBREG_REG (reloadreg)))
5977 *r->subreg_loc = SUBREG_REG (reloadreg);
5978 else
5980 int final_offset =
5981 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5983 /* When working with SUBREGs the rule is that the byte
5984 offset must be a multiple of the SUBREG's mode. */
5985 final_offset = (final_offset /
5986 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5987 final_offset = (final_offset *
5988 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5990 *r->where = SUBREG_REG (reloadreg);
5991 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5994 else
5995 *r->where = reloadreg;
5997 /* If reload got no reg and isn't optional, something's wrong. */
5998 else
5999 gcc_assert (rld[r->what].optional);
6003 /* Make a copy of any replacements being done into X and move those
6004 copies to locations in Y, a copy of X. */
6006 void
6007 copy_replacements (rtx x, rtx y)
6009 /* We can't support X being a SUBREG because we might then need to know its
6010 location if something inside it was replaced. */
6011 gcc_assert (GET_CODE (x) != SUBREG);
6013 copy_replacements_1 (&x, &y, n_replacements);
6016 static void
6017 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6019 int i, j;
6020 rtx x, y;
6021 struct replacement *r;
6022 enum rtx_code code;
6023 const char *fmt;
6025 for (j = 0; j < orig_replacements; j++)
6027 if (replacements[j].subreg_loc == px)
6029 r = &replacements[n_replacements++];
6030 r->where = replacements[j].where;
6031 r->subreg_loc = py;
6032 r->what = replacements[j].what;
6033 r->mode = replacements[j].mode;
6035 else if (replacements[j].where == px)
6037 r = &replacements[n_replacements++];
6038 r->where = py;
6039 r->subreg_loc = 0;
6040 r->what = replacements[j].what;
6041 r->mode = replacements[j].mode;
6045 x = *px;
6046 y = *py;
6047 code = GET_CODE (x);
6048 fmt = GET_RTX_FORMAT (code);
6050 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6052 if (fmt[i] == 'e')
6053 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6054 else if (fmt[i] == 'E')
6055 for (j = XVECLEN (x, i); --j >= 0; )
6056 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6057 orig_replacements);
6061 /* Change any replacements being done to *X to be done to *Y. */
6063 void
6064 move_replacements (rtx *x, rtx *y)
6066 int i;
6068 for (i = 0; i < n_replacements; i++)
6069 if (replacements[i].subreg_loc == x)
6070 replacements[i].subreg_loc = y;
6071 else if (replacements[i].where == x)
6073 replacements[i].where = y;
6074 replacements[i].subreg_loc = 0;
6078 /* If LOC was scheduled to be replaced by something, return the replacement.
6079 Otherwise, return *LOC. */
6082 find_replacement (rtx *loc)
6084 struct replacement *r;
6086 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6088 rtx reloadreg = rld[r->what].reg_rtx;
6090 if (reloadreg && r->where == loc)
6092 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6093 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6095 return reloadreg;
6097 else if (reloadreg && r->subreg_loc == loc)
6099 /* RELOADREG must be either a REG or a SUBREG.
6101 ??? Is it actually still ever a SUBREG? If so, why? */
6103 if (REG_P (reloadreg))
6104 return gen_rtx_REG (GET_MODE (*loc),
6105 (REGNO (reloadreg) +
6106 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6107 GET_MODE (SUBREG_REG (*loc)),
6108 SUBREG_BYTE (*loc),
6109 GET_MODE (*loc))));
6110 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6111 return reloadreg;
6112 else
6114 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6116 /* When working with SUBREGs the rule is that the byte
6117 offset must be a multiple of the SUBREG's mode. */
6118 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6119 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6120 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6121 final_offset);
6126 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6127 what's inside and make a new rtl if so. */
6128 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6129 || GET_CODE (*loc) == MULT)
6131 rtx x = find_replacement (&XEXP (*loc, 0));
6132 rtx y = find_replacement (&XEXP (*loc, 1));
6134 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6135 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6138 return *loc;
6141 /* Return nonzero if register in range [REGNO, ENDREGNO)
6142 appears either explicitly or implicitly in X
6143 other than being stored into (except for earlyclobber operands).
6145 References contained within the substructure at LOC do not count.
6146 LOC may be zero, meaning don't ignore anything.
6148 This is similar to refers_to_regno_p in rtlanal.c except that we
6149 look at equivalences for pseudos that didn't get hard registers. */
6152 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6153 rtx x, rtx *loc)
6155 int i;
6156 unsigned int r;
6157 RTX_CODE code;
6158 const char *fmt;
6160 if (x == 0)
6161 return 0;
6163 repeat:
6164 code = GET_CODE (x);
6166 switch (code)
6168 case REG:
6169 r = REGNO (x);
6171 /* If this is a pseudo, a hard register must not have been allocated.
6172 X must therefore either be a constant or be in memory. */
6173 if (r >= FIRST_PSEUDO_REGISTER)
6175 if (reg_equiv_memory_loc[r])
6176 return refers_to_regno_for_reload_p (regno, endregno,
6177 reg_equiv_memory_loc[r],
6178 (rtx*) 0);
6180 gcc_assert (reg_equiv_constant[r]);
6181 return 0;
6184 return (endregno > r
6185 && regno < r + (r < FIRST_PSEUDO_REGISTER
6186 ? hard_regno_nregs[r][GET_MODE (x)]
6187 : 1));
6189 case SUBREG:
6190 /* If this is a SUBREG of a hard reg, we can see exactly which
6191 registers are being modified. Otherwise, handle normally. */
6192 if (REG_P (SUBREG_REG (x))
6193 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6195 unsigned int inner_regno = subreg_regno (x);
6196 unsigned int inner_endregno
6197 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6198 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6200 return endregno > inner_regno && regno < inner_endregno;
6202 break;
6204 case CLOBBER:
6205 case SET:
6206 if (&SET_DEST (x) != loc
6207 /* Note setting a SUBREG counts as referring to the REG it is in for
6208 a pseudo but not for hard registers since we can
6209 treat each word individually. */
6210 && ((GET_CODE (SET_DEST (x)) == SUBREG
6211 && loc != &SUBREG_REG (SET_DEST (x))
6212 && REG_P (SUBREG_REG (SET_DEST (x)))
6213 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6214 && refers_to_regno_for_reload_p (regno, endregno,
6215 SUBREG_REG (SET_DEST (x)),
6216 loc))
6217 /* If the output is an earlyclobber operand, this is
6218 a conflict. */
6219 || ((!REG_P (SET_DEST (x))
6220 || earlyclobber_operand_p (SET_DEST (x)))
6221 && refers_to_regno_for_reload_p (regno, endregno,
6222 SET_DEST (x), loc))))
6223 return 1;
6225 if (code == CLOBBER || loc == &SET_SRC (x))
6226 return 0;
6227 x = SET_SRC (x);
6228 goto repeat;
6230 default:
6231 break;
6234 /* X does not match, so try its subexpressions. */
6236 fmt = GET_RTX_FORMAT (code);
6237 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6239 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6241 if (i == 0)
6243 x = XEXP (x, 0);
6244 goto repeat;
6246 else
6247 if (refers_to_regno_for_reload_p (regno, endregno,
6248 XEXP (x, i), loc))
6249 return 1;
6251 else if (fmt[i] == 'E')
6253 int j;
6254 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6255 if (loc != &XVECEXP (x, i, j)
6256 && refers_to_regno_for_reload_p (regno, endregno,
6257 XVECEXP (x, i, j), loc))
6258 return 1;
6261 return 0;
6264 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6265 we check if any register number in X conflicts with the relevant register
6266 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6267 contains a MEM (we don't bother checking for memory addresses that can't
6268 conflict because we expect this to be a rare case.
6270 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6271 that we look at equivalences for pseudos that didn't get hard registers. */
6274 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6276 int regno, endregno;
6278 /* Overly conservative. */
6279 if (GET_CODE (x) == STRICT_LOW_PART
6280 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6281 x = XEXP (x, 0);
6283 /* If either argument is a constant, then modifying X can not affect IN. */
6284 if (CONSTANT_P (x) || CONSTANT_P (in))
6285 return 0;
6286 else if (GET_CODE (x) == SUBREG)
6288 regno = REGNO (SUBREG_REG (x));
6289 if (regno < FIRST_PSEUDO_REGISTER)
6290 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6291 GET_MODE (SUBREG_REG (x)),
6292 SUBREG_BYTE (x),
6293 GET_MODE (x));
6295 else if (REG_P (x))
6297 regno = REGNO (x);
6299 /* If this is a pseudo, it must not have been assigned a hard register.
6300 Therefore, it must either be in memory or be a constant. */
6302 if (regno >= FIRST_PSEUDO_REGISTER)
6304 if (reg_equiv_memory_loc[regno])
6305 return refers_to_mem_for_reload_p (in);
6306 gcc_assert (reg_equiv_constant[regno]);
6307 return 0;
6310 else if (MEM_P (x))
6311 return refers_to_mem_for_reload_p (in);
6312 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6313 || GET_CODE (x) == CC0)
6314 return reg_mentioned_p (x, in);
6315 else
6317 gcc_assert (GET_CODE (x) == PLUS);
6319 /* We actually want to know if X is mentioned somewhere inside IN.
6320 We must not say that (plus (sp) (const_int 124)) is in
6321 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6322 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6323 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6324 while (MEM_P (in))
6325 in = XEXP (in, 0);
6326 if (REG_P (in))
6327 return 0;
6328 else if (GET_CODE (in) == PLUS)
6329 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6330 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6331 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6332 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6335 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6336 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6338 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6341 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6342 registers. */
6345 refers_to_mem_for_reload_p (rtx x)
6347 const char *fmt;
6348 int i;
6350 if (MEM_P (x))
6351 return 1;
6353 if (REG_P (x))
6354 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6355 && reg_equiv_memory_loc[REGNO (x)]);
6357 fmt = GET_RTX_FORMAT (GET_CODE (x));
6358 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6359 if (fmt[i] == 'e'
6360 && (MEM_P (XEXP (x, i))
6361 || refers_to_mem_for_reload_p (XEXP (x, i))))
6362 return 1;
6364 return 0;
6367 /* Check the insns before INSN to see if there is a suitable register
6368 containing the same value as GOAL.
6369 If OTHER is -1, look for a register in class CLASS.
6370 Otherwise, just see if register number OTHER shares GOAL's value.
6372 Return an rtx for the register found, or zero if none is found.
6374 If RELOAD_REG_P is (short *)1,
6375 we reject any hard reg that appears in reload_reg_rtx
6376 because such a hard reg is also needed coming into this insn.
6378 If RELOAD_REG_P is any other nonzero value,
6379 it is a vector indexed by hard reg number
6380 and we reject any hard reg whose element in the vector is nonnegative
6381 as well as any that appears in reload_reg_rtx.
6383 If GOAL is zero, then GOALREG is a register number; we look
6384 for an equivalent for that register.
6386 MODE is the machine mode of the value we want an equivalence for.
6387 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6389 This function is used by jump.c as well as in the reload pass.
6391 If GOAL is the sum of the stack pointer and a constant, we treat it
6392 as if it were a constant except that sp is required to be unchanging. */
6395 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6396 short *reload_reg_p, int goalreg, enum machine_mode mode)
6398 rtx p = insn;
6399 rtx goaltry, valtry, value, where;
6400 rtx pat;
6401 int regno = -1;
6402 int valueno;
6403 int goal_mem = 0;
6404 int goal_const = 0;
6405 int goal_mem_addr_varies = 0;
6406 int need_stable_sp = 0;
6407 int nregs;
6408 int valuenregs;
6409 int num = 0;
6411 if (goal == 0)
6412 regno = goalreg;
6413 else if (REG_P (goal))
6414 regno = REGNO (goal);
6415 else if (MEM_P (goal))
6417 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6418 if (MEM_VOLATILE_P (goal))
6419 return 0;
6420 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6421 return 0;
6422 /* An address with side effects must be reexecuted. */
6423 switch (code)
6425 case POST_INC:
6426 case PRE_INC:
6427 case POST_DEC:
6428 case PRE_DEC:
6429 case POST_MODIFY:
6430 case PRE_MODIFY:
6431 return 0;
6432 default:
6433 break;
6435 goal_mem = 1;
6437 else if (CONSTANT_P (goal))
6438 goal_const = 1;
6439 else if (GET_CODE (goal) == PLUS
6440 && XEXP (goal, 0) == stack_pointer_rtx
6441 && CONSTANT_P (XEXP (goal, 1)))
6442 goal_const = need_stable_sp = 1;
6443 else if (GET_CODE (goal) == PLUS
6444 && XEXP (goal, 0) == frame_pointer_rtx
6445 && CONSTANT_P (XEXP (goal, 1)))
6446 goal_const = 1;
6447 else
6448 return 0;
6450 num = 0;
6451 /* Scan insns back from INSN, looking for one that copies
6452 a value into or out of GOAL.
6453 Stop and give up if we reach a label. */
6455 while (1)
6457 p = PREV_INSN (p);
6458 num++;
6459 if (p == 0 || LABEL_P (p)
6460 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6461 return 0;
6463 if (NONJUMP_INSN_P (p)
6464 /* If we don't want spill regs ... */
6465 && (! (reload_reg_p != 0
6466 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6467 /* ... then ignore insns introduced by reload; they aren't
6468 useful and can cause results in reload_as_needed to be
6469 different from what they were when calculating the need for
6470 spills. If we notice an input-reload insn here, we will
6471 reject it below, but it might hide a usable equivalent.
6472 That makes bad code. It may even abort: perhaps no reg was
6473 spilled for this insn because it was assumed we would find
6474 that equivalent. */
6475 || INSN_UID (p) < reload_first_uid))
6477 rtx tem;
6478 pat = single_set (p);
6480 /* First check for something that sets some reg equal to GOAL. */
6481 if (pat != 0
6482 && ((regno >= 0
6483 && true_regnum (SET_SRC (pat)) == regno
6484 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6486 (regno >= 0
6487 && true_regnum (SET_DEST (pat)) == regno
6488 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6490 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6491 /* When looking for stack pointer + const,
6492 make sure we don't use a stack adjust. */
6493 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6494 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6495 || (goal_mem
6496 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6497 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6498 || (goal_mem
6499 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6500 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6501 /* If we are looking for a constant,
6502 and something equivalent to that constant was copied
6503 into a reg, we can use that reg. */
6504 || (goal_const && REG_NOTES (p) != 0
6505 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6506 && ((rtx_equal_p (XEXP (tem, 0), goal)
6507 && (valueno
6508 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6509 || (REG_P (SET_DEST (pat))
6510 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6511 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6512 == MODE_FLOAT)
6513 && GET_CODE (goal) == CONST_INT
6514 && 0 != (goaltry
6515 = operand_subword (XEXP (tem, 0), 0, 0,
6516 VOIDmode))
6517 && rtx_equal_p (goal, goaltry)
6518 && (valtry
6519 = operand_subword (SET_DEST (pat), 0, 0,
6520 VOIDmode))
6521 && (valueno = true_regnum (valtry)) >= 0)))
6522 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6523 NULL_RTX))
6524 && REG_P (SET_DEST (pat))
6525 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6526 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6527 == MODE_FLOAT)
6528 && GET_CODE (goal) == CONST_INT
6529 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6530 VOIDmode))
6531 && rtx_equal_p (goal, goaltry)
6532 && (valtry
6533 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6534 && (valueno = true_regnum (valtry)) >= 0)))
6536 if (other >= 0)
6538 if (valueno != other)
6539 continue;
6541 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6542 continue;
6543 else
6545 int i;
6547 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6548 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6549 valueno + i))
6550 break;
6551 if (i >= 0)
6552 continue;
6554 value = valtry;
6555 where = p;
6556 break;
6561 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6562 (or copying VALUE into GOAL, if GOAL is also a register).
6563 Now verify that VALUE is really valid. */
6565 /* VALUENO is the register number of VALUE; a hard register. */
6567 /* Don't try to re-use something that is killed in this insn. We want
6568 to be able to trust REG_UNUSED notes. */
6569 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6570 return 0;
6572 /* If we propose to get the value from the stack pointer or if GOAL is
6573 a MEM based on the stack pointer, we need a stable SP. */
6574 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6575 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6576 goal)))
6577 need_stable_sp = 1;
6579 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6580 if (GET_MODE (value) != mode)
6581 return 0;
6583 /* Reject VALUE if it was loaded from GOAL
6584 and is also a register that appears in the address of GOAL. */
6586 if (goal_mem && value == SET_DEST (single_set (where))
6587 && refers_to_regno_for_reload_p (valueno,
6588 (valueno
6589 + hard_regno_nregs[valueno][mode]),
6590 goal, (rtx*) 0))
6591 return 0;
6593 /* Reject registers that overlap GOAL. */
6595 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6596 nregs = hard_regno_nregs[regno][mode];
6597 else
6598 nregs = 1;
6599 valuenregs = hard_regno_nregs[valueno][mode];
6601 if (!goal_mem && !goal_const
6602 && regno + nregs > valueno && regno < valueno + valuenregs)
6603 return 0;
6605 /* Reject VALUE if it is one of the regs reserved for reloads.
6606 Reload1 knows how to reuse them anyway, and it would get
6607 confused if we allocated one without its knowledge.
6608 (Now that insns introduced by reload are ignored above,
6609 this case shouldn't happen, but I'm not positive.) */
6611 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6613 int i;
6614 for (i = 0; i < valuenregs; ++i)
6615 if (reload_reg_p[valueno + i] >= 0)
6616 return 0;
6619 /* Reject VALUE if it is a register being used for an input reload
6620 even if it is not one of those reserved. */
6622 if (reload_reg_p != 0)
6624 int i;
6625 for (i = 0; i < n_reloads; i++)
6626 if (rld[i].reg_rtx != 0 && rld[i].in)
6628 int regno1 = REGNO (rld[i].reg_rtx);
6629 int nregs1 = hard_regno_nregs[regno1]
6630 [GET_MODE (rld[i].reg_rtx)];
6631 if (regno1 < valueno + valuenregs
6632 && regno1 + nregs1 > valueno)
6633 return 0;
6637 if (goal_mem)
6638 /* We must treat frame pointer as varying here,
6639 since it can vary--in a nonlocal goto as generated by expand_goto. */
6640 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6642 /* Now verify that the values of GOAL and VALUE remain unaltered
6643 until INSN is reached. */
6645 p = insn;
6646 while (1)
6648 p = PREV_INSN (p);
6649 if (p == where)
6650 return value;
6652 /* Don't trust the conversion past a function call
6653 if either of the two is in a call-clobbered register, or memory. */
6654 if (CALL_P (p))
6656 int i;
6658 if (goal_mem || need_stable_sp)
6659 return 0;
6661 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6662 for (i = 0; i < nregs; ++i)
6663 if (call_used_regs[regno + i])
6664 return 0;
6666 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6667 for (i = 0; i < valuenregs; ++i)
6668 if (call_used_regs[valueno + i])
6669 return 0;
6670 #ifdef NON_SAVING_SETJMP
6671 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6672 return 0;
6673 #endif
6676 if (INSN_P (p))
6678 pat = PATTERN (p);
6680 /* Watch out for unspec_volatile, and volatile asms. */
6681 if (volatile_insn_p (pat))
6682 return 0;
6684 /* If this insn P stores in either GOAL or VALUE, return 0.
6685 If GOAL is a memory ref and this insn writes memory, return 0.
6686 If GOAL is a memory ref and its address is not constant,
6687 and this insn P changes a register used in GOAL, return 0. */
6689 if (GET_CODE (pat) == COND_EXEC)
6690 pat = COND_EXEC_CODE (pat);
6691 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6693 rtx dest = SET_DEST (pat);
6694 while (GET_CODE (dest) == SUBREG
6695 || GET_CODE (dest) == ZERO_EXTRACT
6696 || GET_CODE (dest) == SIGN_EXTRACT
6697 || GET_CODE (dest) == STRICT_LOW_PART)
6698 dest = XEXP (dest, 0);
6699 if (REG_P (dest))
6701 int xregno = REGNO (dest);
6702 int xnregs;
6703 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6704 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6705 else
6706 xnregs = 1;
6707 if (xregno < regno + nregs && xregno + xnregs > regno)
6708 return 0;
6709 if (xregno < valueno + valuenregs
6710 && xregno + xnregs > valueno)
6711 return 0;
6712 if (goal_mem_addr_varies
6713 && reg_overlap_mentioned_for_reload_p (dest, goal))
6714 return 0;
6715 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6716 return 0;
6718 else if (goal_mem && MEM_P (dest)
6719 && ! push_operand (dest, GET_MODE (dest)))
6720 return 0;
6721 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6722 && reg_equiv_memory_loc[regno] != 0)
6723 return 0;
6724 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6725 return 0;
6727 else if (GET_CODE (pat) == PARALLEL)
6729 int i;
6730 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6732 rtx v1 = XVECEXP (pat, 0, i);
6733 if (GET_CODE (v1) == COND_EXEC)
6734 v1 = COND_EXEC_CODE (v1);
6735 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6737 rtx dest = SET_DEST (v1);
6738 while (GET_CODE (dest) == SUBREG
6739 || GET_CODE (dest) == ZERO_EXTRACT
6740 || GET_CODE (dest) == SIGN_EXTRACT
6741 || GET_CODE (dest) == STRICT_LOW_PART)
6742 dest = XEXP (dest, 0);
6743 if (REG_P (dest))
6745 int xregno = REGNO (dest);
6746 int xnregs;
6747 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6748 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6749 else
6750 xnregs = 1;
6751 if (xregno < regno + nregs
6752 && xregno + xnregs > regno)
6753 return 0;
6754 if (xregno < valueno + valuenregs
6755 && xregno + xnregs > valueno)
6756 return 0;
6757 if (goal_mem_addr_varies
6758 && reg_overlap_mentioned_for_reload_p (dest,
6759 goal))
6760 return 0;
6761 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6762 return 0;
6764 else if (goal_mem && MEM_P (dest)
6765 && ! push_operand (dest, GET_MODE (dest)))
6766 return 0;
6767 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6768 && reg_equiv_memory_loc[regno] != 0)
6769 return 0;
6770 else if (need_stable_sp
6771 && push_operand (dest, GET_MODE (dest)))
6772 return 0;
6777 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6779 rtx link;
6781 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6782 link = XEXP (link, 1))
6784 pat = XEXP (link, 0);
6785 if (GET_CODE (pat) == CLOBBER)
6787 rtx dest = SET_DEST (pat);
6789 if (REG_P (dest))
6791 int xregno = REGNO (dest);
6792 int xnregs
6793 = hard_regno_nregs[xregno][GET_MODE (dest)];
6795 if (xregno < regno + nregs
6796 && xregno + xnregs > regno)
6797 return 0;
6798 else if (xregno < valueno + valuenregs
6799 && xregno + xnregs > valueno)
6800 return 0;
6801 else if (goal_mem_addr_varies
6802 && reg_overlap_mentioned_for_reload_p (dest,
6803 goal))
6804 return 0;
6807 else if (goal_mem && MEM_P (dest)
6808 && ! push_operand (dest, GET_MODE (dest)))
6809 return 0;
6810 else if (need_stable_sp
6811 && push_operand (dest, GET_MODE (dest)))
6812 return 0;
6817 #ifdef AUTO_INC_DEC
6818 /* If this insn auto-increments or auto-decrements
6819 either regno or valueno, return 0 now.
6820 If GOAL is a memory ref and its address is not constant,
6821 and this insn P increments a register used in GOAL, return 0. */
6823 rtx link;
6825 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6826 if (REG_NOTE_KIND (link) == REG_INC
6827 && REG_P (XEXP (link, 0)))
6829 int incno = REGNO (XEXP (link, 0));
6830 if (incno < regno + nregs && incno >= regno)
6831 return 0;
6832 if (incno < valueno + valuenregs && incno >= valueno)
6833 return 0;
6834 if (goal_mem_addr_varies
6835 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6836 goal))
6837 return 0;
6840 #endif
6845 /* Find a place where INCED appears in an increment or decrement operator
6846 within X, and return the amount INCED is incremented or decremented by.
6847 The value is always positive. */
6849 static int
6850 find_inc_amount (rtx x, rtx inced)
6852 enum rtx_code code = GET_CODE (x);
6853 const char *fmt;
6854 int i;
6856 if (code == MEM)
6858 rtx addr = XEXP (x, 0);
6859 if ((GET_CODE (addr) == PRE_DEC
6860 || GET_CODE (addr) == POST_DEC
6861 || GET_CODE (addr) == PRE_INC
6862 || GET_CODE (addr) == POST_INC)
6863 && XEXP (addr, 0) == inced)
6864 return GET_MODE_SIZE (GET_MODE (x));
6865 else if ((GET_CODE (addr) == PRE_MODIFY
6866 || GET_CODE (addr) == POST_MODIFY)
6867 && GET_CODE (XEXP (addr, 1)) == PLUS
6868 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6869 && XEXP (addr, 0) == inced
6870 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6872 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6873 return i < 0 ? -i : i;
6877 fmt = GET_RTX_FORMAT (code);
6878 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6880 if (fmt[i] == 'e')
6882 int tem = find_inc_amount (XEXP (x, i), inced);
6883 if (tem != 0)
6884 return tem;
6886 if (fmt[i] == 'E')
6888 int j;
6889 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6891 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6892 if (tem != 0)
6893 return tem;
6898 return 0;
6901 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6902 If SETS is nonzero, also consider SETs. */
6905 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6906 int sets)
6908 unsigned int nregs = hard_regno_nregs[regno][mode];
6909 unsigned int endregno = regno + nregs;
6911 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6912 || (sets && GET_CODE (PATTERN (insn)) == SET))
6913 && REG_P (XEXP (PATTERN (insn), 0)))
6915 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6917 return test >= regno && test < endregno;
6920 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6922 int i = XVECLEN (PATTERN (insn), 0) - 1;
6924 for (; i >= 0; i--)
6926 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6927 if ((GET_CODE (elt) == CLOBBER
6928 || (sets && GET_CODE (PATTERN (insn)) == SET))
6929 && REG_P (XEXP (elt, 0)))
6931 unsigned int test = REGNO (XEXP (elt, 0));
6933 if (test >= regno && test < endregno)
6934 return 1;
6939 return 0;
6942 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6944 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6946 int regno;
6948 if (GET_MODE (reloadreg) == mode)
6949 return reloadreg;
6951 regno = REGNO (reloadreg);
6953 if (WORDS_BIG_ENDIAN)
6954 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
6955 - (int) hard_regno_nregs[regno][mode];
6957 return gen_rtx_REG (mode, regno);
6960 static const char *const reload_when_needed_name[] =
6962 "RELOAD_FOR_INPUT",
6963 "RELOAD_FOR_OUTPUT",
6964 "RELOAD_FOR_INSN",
6965 "RELOAD_FOR_INPUT_ADDRESS",
6966 "RELOAD_FOR_INPADDR_ADDRESS",
6967 "RELOAD_FOR_OUTPUT_ADDRESS",
6968 "RELOAD_FOR_OUTADDR_ADDRESS",
6969 "RELOAD_FOR_OPERAND_ADDRESS",
6970 "RELOAD_FOR_OPADDR_ADDR",
6971 "RELOAD_OTHER",
6972 "RELOAD_FOR_OTHER_ADDRESS"
6975 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6977 /* These functions are used to print the variables set by 'find_reloads' */
6979 void
6980 debug_reload_to_stream (FILE *f)
6982 int r;
6983 const char *prefix;
6985 if (! f)
6986 f = stderr;
6987 for (r = 0; r < n_reloads; r++)
6989 fprintf (f, "Reload %d: ", r);
6991 if (rld[r].in != 0)
6993 fprintf (f, "reload_in (%s) = ",
6994 GET_MODE_NAME (rld[r].inmode));
6995 print_inline_rtx (f, rld[r].in, 24);
6996 fprintf (f, "\n\t");
6999 if (rld[r].out != 0)
7001 fprintf (f, "reload_out (%s) = ",
7002 GET_MODE_NAME (rld[r].outmode));
7003 print_inline_rtx (f, rld[r].out, 24);
7004 fprintf (f, "\n\t");
7007 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7009 fprintf (f, "%s (opnum = %d)",
7010 reload_when_needed_name[(int) rld[r].when_needed],
7011 rld[r].opnum);
7013 if (rld[r].optional)
7014 fprintf (f, ", optional");
7016 if (rld[r].nongroup)
7017 fprintf (f, ", nongroup");
7019 if (rld[r].inc != 0)
7020 fprintf (f, ", inc by %d", rld[r].inc);
7022 if (rld[r].nocombine)
7023 fprintf (f, ", can't combine");
7025 if (rld[r].secondary_p)
7026 fprintf (f, ", secondary_reload_p");
7028 if (rld[r].in_reg != 0)
7030 fprintf (f, "\n\treload_in_reg: ");
7031 print_inline_rtx (f, rld[r].in_reg, 24);
7034 if (rld[r].out_reg != 0)
7036 fprintf (f, "\n\treload_out_reg: ");
7037 print_inline_rtx (f, rld[r].out_reg, 24);
7040 if (rld[r].reg_rtx != 0)
7042 fprintf (f, "\n\treload_reg_rtx: ");
7043 print_inline_rtx (f, rld[r].reg_rtx, 24);
7046 prefix = "\n\t";
7047 if (rld[r].secondary_in_reload != -1)
7049 fprintf (f, "%ssecondary_in_reload = %d",
7050 prefix, rld[r].secondary_in_reload);
7051 prefix = ", ";
7054 if (rld[r].secondary_out_reload != -1)
7055 fprintf (f, "%ssecondary_out_reload = %d\n",
7056 prefix, rld[r].secondary_out_reload);
7058 prefix = "\n\t";
7059 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7061 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7062 insn_data[rld[r].secondary_in_icode].name);
7063 prefix = ", ";
7066 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7067 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7068 insn_data[rld[r].secondary_out_icode].name);
7070 fprintf (f, "\n");
7074 void
7075 debug_reload (void)
7077 debug_reload_to_stream (stderr);