PR tree-optimization/17468
[official-gcc.git] / gcc / gcse.c
blob3e0ede4cfa1f591ee0363fb50654c0ad09f7011e
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
171 #include "timevar.h"
173 /* Propagate flow information through back edges and thus enable PRE's
174 moving loop invariant calculations out of loops.
176 Originally this tended to create worse overall code, but several
177 improvements during the development of PRE seem to have made following
178 back edges generally a win.
180 Note much of the loop invariant code motion done here would normally
181 be done by loop.c, which has more heuristics for when to move invariants
182 out of loops. At some point we might need to move some of those
183 heuristics into gcse.c. */
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
188 We perform the following steps:
190 1) Compute basic block information.
192 2) Compute table of places where registers are set.
194 3) Perform copy/constant propagation.
196 4) Perform global cse using lazy code motion if not optimizing
197 for size, or code hoisting if we are.
199 5) Perform another pass of copy/constant propagation.
201 Two passes of copy/constant propagation are done because the first one
202 enables more GCSE and the second one helps to clean up the copies that
203 GCSE creates. This is needed more for PRE than for Classic because Classic
204 GCSE will try to use an existing register containing the common
205 subexpression rather than create a new one. This is harder to do for PRE
206 because of the code motion (which Classic GCSE doesn't do).
208 Expressions we are interested in GCSE-ing are of the form
209 (set (pseudo-reg) (expression)).
210 Function want_to_gcse_p says what these are.
212 PRE handles moving invariant expressions out of loops (by treating them as
213 partially redundant).
215 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
216 assignment) based GVN (global value numbering). L. T. Simpson's paper
217 (Rice University) on value numbering is a useful reference for this.
219 **********************
221 We used to support multiple passes but there are diminishing returns in
222 doing so. The first pass usually makes 90% of the changes that are doable.
223 A second pass can make a few more changes made possible by the first pass.
224 Experiments show any further passes don't make enough changes to justify
225 the expense.
227 A study of spec92 using an unlimited number of passes:
228 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
229 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
230 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
232 It was found doing copy propagation between each pass enables further
233 substitutions.
235 PRE is quite expensive in complicated functions because the DFA can take
236 a while to converge. Hence we only perform one pass. The parameter
237 max-gcse-passes can be modified if one wants to experiment.
239 **********************
241 The steps for PRE are:
243 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245 2) Perform the data flow analysis for PRE.
247 3) Delete the redundant instructions
249 4) Insert the required copies [if any] that make the partially
250 redundant instructions fully redundant.
252 5) For other reaching expressions, insert an instruction to copy the value
253 to a newly created pseudo that will reach the redundant instruction.
255 The deletion is done first so that when we do insertions we
256 know which pseudo reg to use.
258 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
259 argue it is not. The number of iterations for the algorithm to converge
260 is typically 2-4 so I don't view it as that expensive (relatively speaking).
262 PRE GCSE depends heavily on the second CSE pass to clean up the copies
263 we create. To make an expression reach the place where it's redundant,
264 the result of the expression is copied to a new register, and the redundant
265 expression is deleted by replacing it with this new register. Classic GCSE
266 doesn't have this problem as much as it computes the reaching defs of
267 each register in each block and thus can try to use an existing register.
269 **********************
271 A fair bit of simplicity is created by creating small functions for simple
272 tasks, even when the function is only called in one place. This may
273 measurably slow things down [or may not] by creating more function call
274 overhead than is necessary. The source is laid out so that it's trivial
275 to make the affected functions inline so that one can measure what speed
276 up, if any, can be achieved, and maybe later when things settle things can
277 be rearranged.
279 Help stamp out big monolithic functions! */
281 /* GCSE global vars. */
283 /* -dG dump file. */
284 static FILE *gcse_file;
286 /* Note whether or not we should run jump optimization after gcse. We
287 want to do this for two cases.
289 * If we changed any jumps via cprop.
291 * If we added any labels via edge splitting. */
292 static int run_jump_opt_after_gcse;
294 /* Bitmaps are normally not included in debugging dumps.
295 However it's useful to be able to print them from GDB.
296 We could create special functions for this, but it's simpler to
297 just allow passing stderr to the dump_foo fns. Since stderr can
298 be a macro, we store a copy here. */
299 static FILE *debug_stderr;
301 /* An obstack for our working variables. */
302 static struct obstack gcse_obstack;
304 struct reg_use {rtx reg_rtx; };
306 /* Hash table of expressions. */
308 struct expr
310 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
311 rtx expr;
312 /* Index in the available expression bitmaps. */
313 int bitmap_index;
314 /* Next entry with the same hash. */
315 struct expr *next_same_hash;
316 /* List of anticipatable occurrences in basic blocks in the function.
317 An "anticipatable occurrence" is one that is the first occurrence in the
318 basic block, the operands are not modified in the basic block prior
319 to the occurrence and the output is not used between the start of
320 the block and the occurrence. */
321 struct occr *antic_occr;
322 /* List of available occurrence in basic blocks in the function.
323 An "available occurrence" is one that is the last occurrence in the
324 basic block and the operands are not modified by following statements in
325 the basic block [including this insn]. */
326 struct occr *avail_occr;
327 /* Non-null if the computation is PRE redundant.
328 The value is the newly created pseudo-reg to record a copy of the
329 expression in all the places that reach the redundant copy. */
330 rtx reaching_reg;
333 /* Occurrence of an expression.
334 There is one per basic block. If a pattern appears more than once the
335 last appearance is used [or first for anticipatable expressions]. */
337 struct occr
339 /* Next occurrence of this expression. */
340 struct occr *next;
341 /* The insn that computes the expression. */
342 rtx insn;
343 /* Nonzero if this [anticipatable] occurrence has been deleted. */
344 char deleted_p;
345 /* Nonzero if this [available] occurrence has been copied to
346 reaching_reg. */
347 /* ??? This is mutually exclusive with deleted_p, so they could share
348 the same byte. */
349 char copied_p;
352 /* Expression and copy propagation hash tables.
353 Each hash table is an array of buckets.
354 ??? It is known that if it were an array of entries, structure elements
355 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
356 not clear whether in the final analysis a sufficient amount of memory would
357 be saved as the size of the available expression bitmaps would be larger
358 [one could build a mapping table without holes afterwards though].
359 Someday I'll perform the computation and figure it out. */
361 struct hash_table
363 /* The table itself.
364 This is an array of `expr_hash_table_size' elements. */
365 struct expr **table;
367 /* Size of the hash table, in elements. */
368 unsigned int size;
370 /* Number of hash table elements. */
371 unsigned int n_elems;
373 /* Whether the table is expression of copy propagation one. */
374 int set_p;
377 /* Expression hash table. */
378 static struct hash_table expr_hash_table;
380 /* Copy propagation hash table. */
381 static struct hash_table set_hash_table;
383 /* Mapping of uids to cuids.
384 Only real insns get cuids. */
385 static int *uid_cuid;
387 /* Highest UID in UID_CUID. */
388 static int max_uid;
390 /* Get the cuid of an insn. */
391 #ifdef ENABLE_CHECKING
392 #define INSN_CUID(INSN) \
393 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
394 #else
395 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
396 #endif
398 /* Number of cuids. */
399 static int max_cuid;
401 /* Mapping of cuids to insns. */
402 static rtx *cuid_insn;
404 /* Get insn from cuid. */
405 #define CUID_INSN(CUID) (cuid_insn[CUID])
407 /* Maximum register number in function prior to doing gcse + 1.
408 Registers created during this pass have regno >= max_gcse_regno.
409 This is named with "gcse" to not collide with global of same name. */
410 static unsigned int max_gcse_regno;
412 /* Table of registers that are modified.
414 For each register, each element is a list of places where the pseudo-reg
415 is set.
417 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
418 requires knowledge of which blocks kill which regs [and thus could use
419 a bitmap instead of the lists `reg_set_table' uses].
421 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
422 num-regs) [however perhaps it may be useful to keep the data as is]. One
423 advantage of recording things this way is that `reg_set_table' is fairly
424 sparse with respect to pseudo regs but for hard regs could be fairly dense
425 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
426 up functions like compute_transp since in the case of pseudo-regs we only
427 need to iterate over the number of times a pseudo-reg is set, not over the
428 number of basic blocks [clearly there is a bit of a slow down in the cases
429 where a pseudo is set more than once in a block, however it is believed
430 that the net effect is to speed things up]. This isn't done for hard-regs
431 because recording call-clobbered hard-regs in `reg_set_table' at each
432 function call can consume a fair bit of memory, and iterating over
433 hard-regs stored this way in compute_transp will be more expensive. */
435 typedef struct reg_set
437 /* The next setting of this register. */
438 struct reg_set *next;
439 /* The insn where it was set. */
440 rtx insn;
441 } reg_set;
443 static reg_set **reg_set_table;
445 /* Size of `reg_set_table'.
446 The table starts out at max_gcse_regno + slop, and is enlarged as
447 necessary. */
448 static int reg_set_table_size;
450 /* Amount to grow `reg_set_table' by when it's full. */
451 #define REG_SET_TABLE_SLOP 100
453 /* This is a list of expressions which are MEMs and will be used by load
454 or store motion.
455 Load motion tracks MEMs which aren't killed by
456 anything except itself. (ie, loads and stores to a single location).
457 We can then allow movement of these MEM refs with a little special
458 allowance. (all stores copy the same value to the reaching reg used
459 for the loads). This means all values used to store into memory must have
460 no side effects so we can re-issue the setter value.
461 Store Motion uses this structure as an expression table to track stores
462 which look interesting, and might be moveable towards the exit block. */
464 struct ls_expr
466 struct expr * expr; /* Gcse expression reference for LM. */
467 rtx pattern; /* Pattern of this mem. */
468 rtx pattern_regs; /* List of registers mentioned by the mem. */
469 rtx loads; /* INSN list of loads seen. */
470 rtx stores; /* INSN list of stores seen. */
471 struct ls_expr * next; /* Next in the list. */
472 int invalid; /* Invalid for some reason. */
473 int index; /* If it maps to a bitmap index. */
474 unsigned int hash_index; /* Index when in a hash table. */
475 rtx reaching_reg; /* Register to use when re-writing. */
478 /* Array of implicit set patterns indexed by basic block index. */
479 static rtx *implicit_sets;
481 /* Head of the list of load/store memory refs. */
482 static struct ls_expr * pre_ldst_mems = NULL;
484 /* Bitmap containing one bit for each register in the program.
485 Used when performing GCSE to track which registers have been set since
486 the start of the basic block. */
487 static regset reg_set_bitmap;
489 /* For each block, a bitmap of registers set in the block.
490 This is used by compute_transp.
491 It is computed during hash table computation and not by compute_sets
492 as it includes registers added since the last pass (or between cprop and
493 gcse) and it's currently not easy to realloc sbitmap vectors. */
494 static sbitmap *reg_set_in_block;
496 /* Array, indexed by basic block number for a list of insns which modify
497 memory within that block. */
498 static rtx * modify_mem_list;
499 static bitmap modify_mem_list_set;
501 /* This array parallels modify_mem_list, but is kept canonicalized. */
502 static rtx * canon_modify_mem_list;
503 static bitmap canon_modify_mem_list_set;
505 /* Various variables for statistics gathering. */
507 /* Memory used in a pass.
508 This isn't intended to be absolutely precise. Its intent is only
509 to keep an eye on memory usage. */
510 static int bytes_used;
512 /* GCSE substitutions made. */
513 static int gcse_subst_count;
514 /* Number of copy instructions created. */
515 static int gcse_create_count;
516 /* Number of local constants propagated. */
517 static int local_const_prop_count;
518 /* Number of local copys propagated. */
519 static int local_copy_prop_count;
520 /* Number of global constants propagated. */
521 static int global_const_prop_count;
522 /* Number of global copys propagated. */
523 static int global_copy_prop_count;
525 /* For available exprs */
526 static sbitmap *ae_kill, *ae_gen;
528 /* Objects of this type are passed around by the null-pointer check
529 removal routines. */
530 struct null_pointer_info
532 /* The basic block being processed. */
533 basic_block current_block;
534 /* The first register to be handled in this pass. */
535 unsigned int min_reg;
536 /* One greater than the last register to be handled in this pass. */
537 unsigned int max_reg;
538 sbitmap *nonnull_local;
539 sbitmap *nonnull_killed;
542 static void compute_can_copy (void);
543 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
544 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
545 static void *grealloc (void *, size_t);
546 static void *gcse_alloc (unsigned long);
547 static void alloc_gcse_mem (rtx);
548 static void free_gcse_mem (void);
549 static void alloc_reg_set_mem (int);
550 static void free_reg_set_mem (void);
551 static void record_one_set (int, rtx);
552 static void replace_one_set (int, rtx, rtx);
553 static void record_set_info (rtx, rtx, void *);
554 static void compute_sets (rtx);
555 static void hash_scan_insn (rtx, struct hash_table *, int);
556 static void hash_scan_set (rtx, rtx, struct hash_table *);
557 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
558 static void hash_scan_call (rtx, rtx, struct hash_table *);
559 static int want_to_gcse_p (rtx);
560 static bool can_assign_to_reg_p (rtx);
561 static bool gcse_constant_p (rtx);
562 static int oprs_unchanged_p (rtx, rtx, int);
563 static int oprs_anticipatable_p (rtx, rtx);
564 static int oprs_available_p (rtx, rtx);
565 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
566 struct hash_table *);
567 static void insert_set_in_table (rtx, rtx, struct hash_table *);
568 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
569 static unsigned int hash_set (int, int);
570 static int expr_equiv_p (rtx, rtx);
571 static void record_last_reg_set_info (rtx, int);
572 static void record_last_mem_set_info (rtx);
573 static void record_last_set_info (rtx, rtx, void *);
574 static void compute_hash_table (struct hash_table *);
575 static void alloc_hash_table (int, struct hash_table *, int);
576 static void free_hash_table (struct hash_table *);
577 static void compute_hash_table_work (struct hash_table *);
578 static void dump_hash_table (FILE *, const char *, struct hash_table *);
579 static struct expr *lookup_set (unsigned int, struct hash_table *);
580 static struct expr *next_set (unsigned int, struct expr *);
581 static void reset_opr_set_tables (void);
582 static int oprs_not_set_p (rtx, rtx);
583 static void mark_call (rtx);
584 static void mark_set (rtx, rtx);
585 static void mark_clobber (rtx, rtx);
586 static void mark_oprs_set (rtx);
587 static void alloc_cprop_mem (int, int);
588 static void free_cprop_mem (void);
589 static void compute_transp (rtx, int, sbitmap *, int);
590 static void compute_transpout (void);
591 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
592 struct hash_table *);
593 static void compute_cprop_data (void);
594 static void find_used_regs (rtx *, void *);
595 static int try_replace_reg (rtx, rtx, rtx);
596 static struct expr *find_avail_set (int, rtx);
597 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
598 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
599 static int load_killed_in_block_p (basic_block, int, rtx, int);
600 static void canon_list_insert (rtx, rtx, void *);
601 static int cprop_insn (rtx, int);
602 static int cprop (int);
603 static void find_implicit_sets (void);
604 static int one_cprop_pass (int, int, int);
605 static bool constprop_register (rtx, rtx, rtx, int);
606 static struct expr *find_bypass_set (int, int);
607 static bool reg_killed_on_edge (rtx, edge);
608 static int bypass_block (basic_block, rtx, rtx);
609 static int bypass_conditional_jumps (void);
610 static void alloc_pre_mem (int, int);
611 static void free_pre_mem (void);
612 static void compute_pre_data (void);
613 static int pre_expr_reaches_here_p (basic_block, struct expr *,
614 basic_block);
615 static void insert_insn_end_bb (struct expr *, basic_block, int);
616 static void pre_insert_copy_insn (struct expr *, rtx);
617 static void pre_insert_copies (void);
618 static int pre_delete (void);
619 static int pre_gcse (void);
620 static int one_pre_gcse_pass (int);
621 static void add_label_notes (rtx, rtx);
622 static void alloc_code_hoist_mem (int, int);
623 static void free_code_hoist_mem (void);
624 static void compute_code_hoist_vbeinout (void);
625 static void compute_code_hoist_data (void);
626 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
627 static void hoist_code (void);
628 static int one_code_hoisting_pass (void);
629 static rtx process_insert_insn (struct expr *);
630 static int pre_edge_insert (struct edge_list *, struct expr **);
631 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
632 basic_block, char *);
633 static struct ls_expr * ldst_entry (rtx);
634 static void free_ldst_entry (struct ls_expr *);
635 static void free_ldst_mems (void);
636 static void print_ldst_list (FILE *);
637 static struct ls_expr * find_rtx_in_ldst (rtx);
638 static int enumerate_ldsts (void);
639 static inline struct ls_expr * first_ls_expr (void);
640 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
641 static int simple_mem (rtx);
642 static void invalidate_any_buried_refs (rtx);
643 static void compute_ld_motion_mems (void);
644 static void trim_ld_motion_mems (void);
645 static void update_ld_motion_stores (struct expr *);
646 static void reg_set_info (rtx, rtx, void *);
647 static void reg_clear_last_set (rtx, rtx, void *);
648 static bool store_ops_ok (rtx, int *);
649 static rtx extract_mentioned_regs (rtx);
650 static rtx extract_mentioned_regs_helper (rtx, rtx);
651 static void find_moveable_store (rtx, int *, int *);
652 static int compute_store_table (void);
653 static bool load_kills_store (rtx, rtx, int);
654 static bool find_loads (rtx, rtx, int);
655 static bool store_killed_in_insn (rtx, rtx, rtx, int);
656 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
657 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
658 static void build_store_vectors (void);
659 static void insert_insn_start_bb (rtx, basic_block);
660 static int insert_store (struct ls_expr *, edge);
661 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
662 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
663 static void delete_store (struct ls_expr *, basic_block);
664 static void free_store_memory (void);
665 static void store_motion (void);
666 static void free_insn_expr_list_list (rtx *);
667 static void clear_modify_mem_tables (void);
668 static void free_modify_mem_tables (void);
669 static rtx gcse_emit_move_after (rtx, rtx, rtx);
670 static void local_cprop_find_used_regs (rtx *, void *);
671 static bool do_local_cprop (rtx, rtx, int, rtx*);
672 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
673 static void local_cprop_pass (int);
674 static bool is_too_expensive (const char *);
677 /* Entry point for global common subexpression elimination.
678 F is the first instruction in the function. */
681 gcse_main (rtx f, FILE *file)
683 int changed, pass;
684 /* Bytes used at start of pass. */
685 int initial_bytes_used;
686 /* Maximum number of bytes used by a pass. */
687 int max_pass_bytes;
688 /* Point to release obstack data from for each pass. */
689 char *gcse_obstack_bottom;
691 /* We do not construct an accurate cfg in functions which call
692 setjmp, so just punt to be safe. */
693 if (current_function_calls_setjmp)
694 return 0;
696 /* Assume that we do not need to run jump optimizations after gcse. */
697 run_jump_opt_after_gcse = 0;
699 /* For calling dump_foo fns from gdb. */
700 debug_stderr = stderr;
701 gcse_file = file;
703 /* Identify the basic block information for this function, including
704 successors and predecessors. */
705 max_gcse_regno = max_reg_num ();
707 if (file)
708 dump_flow_info (file);
710 /* Return if there's nothing to do, or it is too expensive. */
711 if (n_basic_blocks <= 1 || is_too_expensive (_("GCSE disabled")))
712 return 0;
714 gcc_obstack_init (&gcse_obstack);
715 bytes_used = 0;
717 /* We need alias. */
718 init_alias_analysis ();
719 /* Record where pseudo-registers are set. This data is kept accurate
720 during each pass. ??? We could also record hard-reg information here
721 [since it's unchanging], however it is currently done during hash table
722 computation.
724 It may be tempting to compute MEM set information here too, but MEM sets
725 will be subject to code motion one day and thus we need to compute
726 information about memory sets when we build the hash tables. */
728 alloc_reg_set_mem (max_gcse_regno);
729 compute_sets (f);
731 pass = 0;
732 initial_bytes_used = bytes_used;
733 max_pass_bytes = 0;
734 gcse_obstack_bottom = gcse_alloc (1);
735 changed = 1;
736 while (changed && pass < MAX_GCSE_PASSES)
738 changed = 0;
739 if (file)
740 fprintf (file, "GCSE pass %d\n\n", pass + 1);
742 /* Initialize bytes_used to the space for the pred/succ lists,
743 and the reg_set_table data. */
744 bytes_used = initial_bytes_used;
746 /* Each pass may create new registers, so recalculate each time. */
747 max_gcse_regno = max_reg_num ();
749 alloc_gcse_mem (f);
751 /* Don't allow constant propagation to modify jumps
752 during this pass. */
753 timevar_push (TV_CPROP1);
754 changed = one_cprop_pass (pass + 1, 0, 0);
755 timevar_pop (TV_CPROP1);
757 if (optimize_size)
758 /* Do nothing. */ ;
759 else
761 timevar_push (TV_PRE);
762 changed |= one_pre_gcse_pass (pass + 1);
763 /* We may have just created new basic blocks. Release and
764 recompute various things which are sized on the number of
765 basic blocks. */
766 if (changed)
768 free_modify_mem_tables ();
769 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
770 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
772 free_reg_set_mem ();
773 alloc_reg_set_mem (max_reg_num ());
774 compute_sets (f);
775 run_jump_opt_after_gcse = 1;
776 timevar_pop (TV_PRE);
779 if (max_pass_bytes < bytes_used)
780 max_pass_bytes = bytes_used;
782 /* Free up memory, then reallocate for code hoisting. We can
783 not re-use the existing allocated memory because the tables
784 will not have info for the insns or registers created by
785 partial redundancy elimination. */
786 free_gcse_mem ();
788 /* It does not make sense to run code hoisting unless we are optimizing
789 for code size -- it rarely makes programs faster, and can make
790 them bigger if we did partial redundancy elimination (when optimizing
791 for space, we don't run the partial redundancy algorithms). */
792 if (optimize_size)
794 timevar_push (TV_HOIST);
795 max_gcse_regno = max_reg_num ();
796 alloc_gcse_mem (f);
797 changed |= one_code_hoisting_pass ();
798 free_gcse_mem ();
800 if (max_pass_bytes < bytes_used)
801 max_pass_bytes = bytes_used;
802 timevar_pop (TV_HOIST);
805 if (file)
807 fprintf (file, "\n");
808 fflush (file);
811 obstack_free (&gcse_obstack, gcse_obstack_bottom);
812 pass++;
815 /* Do one last pass of copy propagation, including cprop into
816 conditional jumps. */
818 max_gcse_regno = max_reg_num ();
819 alloc_gcse_mem (f);
820 /* This time, go ahead and allow cprop to alter jumps. */
821 timevar_push (TV_CPROP2);
822 one_cprop_pass (pass + 1, 1, 0);
823 timevar_pop (TV_CPROP2);
824 free_gcse_mem ();
826 if (file)
828 fprintf (file, "GCSE of %s: %d basic blocks, ",
829 current_function_name (), n_basic_blocks);
830 fprintf (file, "%d pass%s, %d bytes\n\n",
831 pass, pass > 1 ? "es" : "", max_pass_bytes);
834 obstack_free (&gcse_obstack, NULL);
835 free_reg_set_mem ();
837 /* We are finished with alias. */
838 end_alias_analysis ();
839 allocate_reg_info (max_reg_num (), FALSE, FALSE);
841 if (!optimize_size && flag_gcse_sm)
843 timevar_push (TV_LSM);
844 store_motion ();
845 timevar_pop (TV_LSM);
848 /* Record where pseudo-registers are set. */
849 return run_jump_opt_after_gcse;
852 /* Misc. utilities. */
854 /* Nonzero for each mode that supports (set (reg) (reg)).
855 This is trivially true for integer and floating point values.
856 It may or may not be true for condition codes. */
857 static char can_copy[(int) NUM_MACHINE_MODES];
859 /* Compute which modes support reg/reg copy operations. */
861 static void
862 compute_can_copy (void)
864 int i;
865 #ifndef AVOID_CCMODE_COPIES
866 rtx reg, insn;
867 #endif
868 memset (can_copy, 0, NUM_MACHINE_MODES);
870 start_sequence ();
871 for (i = 0; i < NUM_MACHINE_MODES; i++)
872 if (GET_MODE_CLASS (i) == MODE_CC)
874 #ifdef AVOID_CCMODE_COPIES
875 can_copy[i] = 0;
876 #else
877 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
878 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
879 if (recog (PATTERN (insn), insn, NULL) >= 0)
880 can_copy[i] = 1;
881 #endif
883 else
884 can_copy[i] = 1;
886 end_sequence ();
889 /* Returns whether the mode supports reg/reg copy operations. */
891 bool
892 can_copy_p (enum machine_mode mode)
894 static bool can_copy_init_p = false;
896 if (! can_copy_init_p)
898 compute_can_copy ();
899 can_copy_init_p = true;
902 return can_copy[mode] != 0;
905 /* Cover function to xmalloc to record bytes allocated. */
907 static void *
908 gmalloc (size_t size)
910 bytes_used += size;
911 return xmalloc (size);
914 /* Cover function to xcalloc to record bytes allocated. */
916 static void *
917 gcalloc (size_t nelem, size_t elsize)
919 bytes_used += nelem * elsize;
920 return xcalloc (nelem, elsize);
923 /* Cover function to xrealloc.
924 We don't record the additional size since we don't know it.
925 It won't affect memory usage stats much anyway. */
927 static void *
928 grealloc (void *ptr, size_t size)
930 return xrealloc (ptr, size);
933 /* Cover function to obstack_alloc. */
935 static void *
936 gcse_alloc (unsigned long size)
938 bytes_used += size;
939 return obstack_alloc (&gcse_obstack, size);
942 /* Allocate memory for the cuid mapping array,
943 and reg/memory set tracking tables.
945 This is called at the start of each pass. */
947 static void
948 alloc_gcse_mem (rtx f)
950 int i;
951 rtx insn;
953 /* Find the largest UID and create a mapping from UIDs to CUIDs.
954 CUIDs are like UIDs except they increase monotonically, have no gaps,
955 and only apply to real insns. */
957 max_uid = get_max_uid ();
958 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
959 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
961 if (INSN_P (insn))
962 uid_cuid[INSN_UID (insn)] = i++;
963 else
964 uid_cuid[INSN_UID (insn)] = i;
967 /* Create a table mapping cuids to insns. */
969 max_cuid = i;
970 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
971 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
972 if (INSN_P (insn))
973 CUID_INSN (i++) = insn;
975 /* Allocate vars to track sets of regs. */
976 reg_set_bitmap = BITMAP_XMALLOC ();
978 /* Allocate vars to track sets of regs, memory per block. */
979 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
980 /* Allocate array to keep a list of insns which modify memory in each
981 basic block. */
982 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
983 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
984 modify_mem_list_set = BITMAP_XMALLOC ();
985 canon_modify_mem_list_set = BITMAP_XMALLOC ();
988 /* Free memory allocated by alloc_gcse_mem. */
990 static void
991 free_gcse_mem (void)
993 free (uid_cuid);
994 free (cuid_insn);
996 BITMAP_XFREE (reg_set_bitmap);
998 sbitmap_vector_free (reg_set_in_block);
999 free_modify_mem_tables ();
1000 BITMAP_XFREE (modify_mem_list_set);
1001 BITMAP_XFREE (canon_modify_mem_list_set);
1004 /* Compute the local properties of each recorded expression.
1006 Local properties are those that are defined by the block, irrespective of
1007 other blocks.
1009 An expression is transparent in a block if its operands are not modified
1010 in the block.
1012 An expression is computed (locally available) in a block if it is computed
1013 at least once and expression would contain the same value if the
1014 computation was moved to the end of the block.
1016 An expression is locally anticipatable in a block if it is computed at
1017 least once and expression would contain the same value if the computation
1018 was moved to the beginning of the block.
1020 We call this routine for cprop, pre and code hoisting. They all compute
1021 basically the same information and thus can easily share this code.
1023 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1024 properties. If NULL, then it is not necessary to compute or record that
1025 particular property.
1027 TABLE controls which hash table to look at. If it is set hash table,
1028 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1029 ABSALTERED. */
1031 static void
1032 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1033 struct hash_table *table)
1035 unsigned int i;
1037 /* Initialize any bitmaps that were passed in. */
1038 if (transp)
1040 if (table->set_p)
1041 sbitmap_vector_zero (transp, last_basic_block);
1042 else
1043 sbitmap_vector_ones (transp, last_basic_block);
1046 if (comp)
1047 sbitmap_vector_zero (comp, last_basic_block);
1048 if (antloc)
1049 sbitmap_vector_zero (antloc, last_basic_block);
1051 for (i = 0; i < table->size; i++)
1053 struct expr *expr;
1055 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1057 int indx = expr->bitmap_index;
1058 struct occr *occr;
1060 /* The expression is transparent in this block if it is not killed.
1061 We start by assuming all are transparent [none are killed], and
1062 then reset the bits for those that are. */
1063 if (transp)
1064 compute_transp (expr->expr, indx, transp, table->set_p);
1066 /* The occurrences recorded in antic_occr are exactly those that
1067 we want to set to nonzero in ANTLOC. */
1068 if (antloc)
1069 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1071 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1073 /* While we're scanning the table, this is a good place to
1074 initialize this. */
1075 occr->deleted_p = 0;
1078 /* The occurrences recorded in avail_occr are exactly those that
1079 we want to set to nonzero in COMP. */
1080 if (comp)
1081 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1083 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1085 /* While we're scanning the table, this is a good place to
1086 initialize this. */
1087 occr->copied_p = 0;
1090 /* While we're scanning the table, this is a good place to
1091 initialize this. */
1092 expr->reaching_reg = 0;
1097 /* Register set information.
1099 `reg_set_table' records where each register is set or otherwise
1100 modified. */
1102 static struct obstack reg_set_obstack;
1104 static void
1105 alloc_reg_set_mem (int n_regs)
1107 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1108 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1110 gcc_obstack_init (&reg_set_obstack);
1113 static void
1114 free_reg_set_mem (void)
1116 free (reg_set_table);
1117 obstack_free (&reg_set_obstack, NULL);
1120 /* An OLD_INSN that used to set REGNO was replaced by NEW_INSN.
1121 Update the corresponding `reg_set_table' entry accordingly.
1122 We assume that NEW_INSN is not already recorded in reg_set_table[regno]. */
1124 static void
1125 replace_one_set (int regno, rtx old_insn, rtx new_insn)
1127 struct reg_set *reg_info;
1128 if (regno >= reg_set_table_size)
1129 return;
1130 for (reg_info = reg_set_table[regno]; reg_info; reg_info = reg_info->next)
1131 if (reg_info->insn == old_insn)
1133 reg_info->insn = new_insn;
1134 break;
1138 /* Record REGNO in the reg_set table. */
1140 static void
1141 record_one_set (int regno, rtx insn)
1143 /* Allocate a new reg_set element and link it onto the list. */
1144 struct reg_set *new_reg_info;
1146 /* If the table isn't big enough, enlarge it. */
1147 if (regno >= reg_set_table_size)
1149 int new_size = regno + REG_SET_TABLE_SLOP;
1151 reg_set_table = grealloc (reg_set_table,
1152 new_size * sizeof (struct reg_set *));
1153 memset (reg_set_table + reg_set_table_size, 0,
1154 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1155 reg_set_table_size = new_size;
1158 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1159 bytes_used += sizeof (struct reg_set);
1160 new_reg_info->insn = insn;
1161 new_reg_info->next = reg_set_table[regno];
1162 reg_set_table[regno] = new_reg_info;
1165 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1166 an insn. The DATA is really the instruction in which the SET is
1167 occurring. */
1169 static void
1170 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1172 rtx record_set_insn = (rtx) data;
1174 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1175 record_one_set (REGNO (dest), record_set_insn);
1178 /* Scan the function and record each set of each pseudo-register.
1180 This is called once, at the start of the gcse pass. See the comments for
1181 `reg_set_table' for further documentation. */
1183 static void
1184 compute_sets (rtx f)
1186 rtx insn;
1188 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1189 if (INSN_P (insn))
1190 note_stores (PATTERN (insn), record_set_info, insn);
1193 /* Hash table support. */
1195 struct reg_avail_info
1197 basic_block last_bb;
1198 int first_set;
1199 int last_set;
1202 static struct reg_avail_info *reg_avail_info;
1203 static basic_block current_bb;
1206 /* See whether X, the source of a set, is something we want to consider for
1207 GCSE. */
1209 static int
1210 want_to_gcse_p (rtx x)
1212 switch (GET_CODE (x))
1214 case REG:
1215 case SUBREG:
1216 case CONST_INT:
1217 case CONST_DOUBLE:
1218 case CONST_VECTOR:
1219 case CALL:
1220 return 0;
1222 default:
1223 return can_assign_to_reg_p (x);
1227 /* Used internally by can_assign_to_reg_p. */
1229 static GTY(()) rtx test_insn;
1231 /* Return true if we can assign X to a pseudo register. */
1233 static bool
1234 can_assign_to_reg_p (rtx x)
1236 int num_clobbers = 0;
1237 int icode;
1239 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1240 if (general_operand (x, GET_MODE (x)))
1241 return 1;
1242 else if (GET_MODE (x) == VOIDmode)
1243 return 0;
1245 /* Otherwise, check if we can make a valid insn from it. First initialize
1246 our test insn if we haven't already. */
1247 if (test_insn == 0)
1249 test_insn
1250 = make_insn_raw (gen_rtx_SET (VOIDmode,
1251 gen_rtx_REG (word_mode,
1252 FIRST_PSEUDO_REGISTER * 2),
1253 const0_rtx));
1254 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1257 /* Now make an insn like the one we would make when GCSE'ing and see if
1258 valid. */
1259 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1260 SET_SRC (PATTERN (test_insn)) = x;
1261 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1262 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1265 /* Return nonzero if the operands of expression X are unchanged from the
1266 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1267 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1269 static int
1270 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1272 int i, j;
1273 enum rtx_code code;
1274 const char *fmt;
1276 if (x == 0)
1277 return 1;
1279 code = GET_CODE (x);
1280 switch (code)
1282 case REG:
1284 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1286 if (info->last_bb != current_bb)
1287 return 1;
1288 if (avail_p)
1289 return info->last_set < INSN_CUID (insn);
1290 else
1291 return info->first_set >= INSN_CUID (insn);
1294 case MEM:
1295 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1296 x, avail_p))
1297 return 0;
1298 else
1299 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1301 case PRE_DEC:
1302 case PRE_INC:
1303 case POST_DEC:
1304 case POST_INC:
1305 case PRE_MODIFY:
1306 case POST_MODIFY:
1307 return 0;
1309 case PC:
1310 case CC0: /*FIXME*/
1311 case CONST:
1312 case CONST_INT:
1313 case CONST_DOUBLE:
1314 case CONST_VECTOR:
1315 case SYMBOL_REF:
1316 case LABEL_REF:
1317 case ADDR_VEC:
1318 case ADDR_DIFF_VEC:
1319 return 1;
1321 default:
1322 break;
1325 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1327 if (fmt[i] == 'e')
1329 /* If we are about to do the last recursive call needed at this
1330 level, change it into iteration. This function is called enough
1331 to be worth it. */
1332 if (i == 0)
1333 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1335 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1336 return 0;
1338 else if (fmt[i] == 'E')
1339 for (j = 0; j < XVECLEN (x, i); j++)
1340 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1341 return 0;
1344 return 1;
1347 /* Used for communication between mems_conflict_for_gcse_p and
1348 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1349 conflict between two memory references. */
1350 static int gcse_mems_conflict_p;
1352 /* Used for communication between mems_conflict_for_gcse_p and
1353 load_killed_in_block_p. A memory reference for a load instruction,
1354 mems_conflict_for_gcse_p will see if a memory store conflicts with
1355 this memory load. */
1356 static rtx gcse_mem_operand;
1358 /* DEST is the output of an instruction. If it is a memory reference, and
1359 possibly conflicts with the load found in gcse_mem_operand, then set
1360 gcse_mems_conflict_p to a nonzero value. */
1362 static void
1363 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1364 void *data ATTRIBUTE_UNUSED)
1366 while (GET_CODE (dest) == SUBREG
1367 || GET_CODE (dest) == ZERO_EXTRACT
1368 || GET_CODE (dest) == SIGN_EXTRACT
1369 || GET_CODE (dest) == STRICT_LOW_PART)
1370 dest = XEXP (dest, 0);
1372 /* If DEST is not a MEM, then it will not conflict with the load. Note
1373 that function calls are assumed to clobber memory, but are handled
1374 elsewhere. */
1375 if (! MEM_P (dest))
1376 return;
1378 /* If we are setting a MEM in our list of specially recognized MEMs,
1379 don't mark as killed this time. */
1381 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1383 if (!find_rtx_in_ldst (dest))
1384 gcse_mems_conflict_p = 1;
1385 return;
1388 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1389 rtx_addr_varies_p))
1390 gcse_mems_conflict_p = 1;
1393 /* Return nonzero if the expression in X (a memory reference) is killed
1394 in block BB before or after the insn with the CUID in UID_LIMIT.
1395 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1396 before UID_LIMIT.
1398 To check the entire block, set UID_LIMIT to max_uid + 1 and
1399 AVAIL_P to 0. */
1401 static int
1402 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1404 rtx list_entry = modify_mem_list[bb->index];
1405 while (list_entry)
1407 rtx setter;
1408 /* Ignore entries in the list that do not apply. */
1409 if ((avail_p
1410 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1411 || (! avail_p
1412 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1414 list_entry = XEXP (list_entry, 1);
1415 continue;
1418 setter = XEXP (list_entry, 0);
1420 /* If SETTER is a call everything is clobbered. Note that calls
1421 to pure functions are never put on the list, so we need not
1422 worry about them. */
1423 if (CALL_P (setter))
1424 return 1;
1426 /* SETTER must be an INSN of some kind that sets memory. Call
1427 note_stores to examine each hunk of memory that is modified.
1429 The note_stores interface is pretty limited, so we have to
1430 communicate via global variables. Yuk. */
1431 gcse_mem_operand = x;
1432 gcse_mems_conflict_p = 0;
1433 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1434 if (gcse_mems_conflict_p)
1435 return 1;
1436 list_entry = XEXP (list_entry, 1);
1438 return 0;
1441 /* Return nonzero if the operands of expression X are unchanged from
1442 the start of INSN's basic block up to but not including INSN. */
1444 static int
1445 oprs_anticipatable_p (rtx x, rtx insn)
1447 return oprs_unchanged_p (x, insn, 0);
1450 /* Return nonzero if the operands of expression X are unchanged from
1451 INSN to the end of INSN's basic block. */
1453 static int
1454 oprs_available_p (rtx x, rtx insn)
1456 return oprs_unchanged_p (x, insn, 1);
1459 /* Hash expression X.
1461 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1462 indicating if a volatile operand is found or if the expression contains
1463 something we don't want to insert in the table. HASH_TABLE_SIZE is
1464 the current size of the hash table to be probed. */
1466 static unsigned int
1467 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1468 int hash_table_size)
1470 unsigned int hash;
1472 *do_not_record_p = 0;
1474 hash = hash_rtx (x, mode, do_not_record_p,
1475 NULL, /*have_reg_qty=*/false);
1476 return hash % hash_table_size;
1479 /* Hash a set of register REGNO.
1481 Sets are hashed on the register that is set. This simplifies the PRE copy
1482 propagation code.
1484 ??? May need to make things more elaborate. Later, as necessary. */
1486 static unsigned int
1487 hash_set (int regno, int hash_table_size)
1489 unsigned int hash;
1491 hash = regno;
1492 return hash % hash_table_size;
1495 /* Return nonzero if exp1 is equivalent to exp2. */
1497 static int
1498 expr_equiv_p (rtx x, rtx y)
1500 return exp_equiv_p (x, y, 0, true);
1503 /* Insert expression X in INSN in the hash TABLE.
1504 If it is already present, record it as the last occurrence in INSN's
1505 basic block.
1507 MODE is the mode of the value X is being stored into.
1508 It is only used if X is a CONST_INT.
1510 ANTIC_P is nonzero if X is an anticipatable expression.
1511 AVAIL_P is nonzero if X is an available expression. */
1513 static void
1514 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1515 int avail_p, struct hash_table *table)
1517 int found, do_not_record_p;
1518 unsigned int hash;
1519 struct expr *cur_expr, *last_expr = NULL;
1520 struct occr *antic_occr, *avail_occr;
1521 struct occr *last_occr = NULL;
1523 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1525 /* Do not insert expression in table if it contains volatile operands,
1526 or if hash_expr determines the expression is something we don't want
1527 to or can't handle. */
1528 if (do_not_record_p)
1529 return;
1531 cur_expr = table->table[hash];
1532 found = 0;
1534 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1536 /* If the expression isn't found, save a pointer to the end of
1537 the list. */
1538 last_expr = cur_expr;
1539 cur_expr = cur_expr->next_same_hash;
1542 if (! found)
1544 cur_expr = gcse_alloc (sizeof (struct expr));
1545 bytes_used += sizeof (struct expr);
1546 if (table->table[hash] == NULL)
1547 /* This is the first pattern that hashed to this index. */
1548 table->table[hash] = cur_expr;
1549 else
1550 /* Add EXPR to end of this hash chain. */
1551 last_expr->next_same_hash = cur_expr;
1553 /* Set the fields of the expr element. */
1554 cur_expr->expr = x;
1555 cur_expr->bitmap_index = table->n_elems++;
1556 cur_expr->next_same_hash = NULL;
1557 cur_expr->antic_occr = NULL;
1558 cur_expr->avail_occr = NULL;
1561 /* Now record the occurrence(s). */
1562 if (antic_p)
1564 antic_occr = cur_expr->antic_occr;
1566 /* Search for another occurrence in the same basic block. */
1567 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1569 /* If an occurrence isn't found, save a pointer to the end of
1570 the list. */
1571 last_occr = antic_occr;
1572 antic_occr = antic_occr->next;
1575 if (antic_occr)
1576 /* Found another instance of the expression in the same basic block.
1577 Prefer the currently recorded one. We want the first one in the
1578 block and the block is scanned from start to end. */
1579 ; /* nothing to do */
1580 else
1582 /* First occurrence of this expression in this basic block. */
1583 antic_occr = gcse_alloc (sizeof (struct occr));
1584 bytes_used += sizeof (struct occr);
1585 /* First occurrence of this expression in any block? */
1586 if (cur_expr->antic_occr == NULL)
1587 cur_expr->antic_occr = antic_occr;
1588 else
1589 last_occr->next = antic_occr;
1591 antic_occr->insn = insn;
1592 antic_occr->next = NULL;
1593 antic_occr->deleted_p = 0;
1597 if (avail_p)
1599 avail_occr = cur_expr->avail_occr;
1601 /* Search for another occurrence in the same basic block. */
1602 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
1604 /* If an occurrence isn't found, save a pointer to the end of
1605 the list. */
1606 last_occr = avail_occr;
1607 avail_occr = avail_occr->next;
1610 if (avail_occr)
1611 /* Found another instance of the expression in the same basic block.
1612 Prefer this occurrence to the currently recorded one. We want
1613 the last one in the block and the block is scanned from start
1614 to end. */
1615 avail_occr->insn = insn;
1616 else
1618 /* First occurrence of this expression in this basic block. */
1619 avail_occr = gcse_alloc (sizeof (struct occr));
1620 bytes_used += sizeof (struct occr);
1622 /* First occurrence of this expression in any block? */
1623 if (cur_expr->avail_occr == NULL)
1624 cur_expr->avail_occr = avail_occr;
1625 else
1626 last_occr->next = avail_occr;
1628 avail_occr->insn = insn;
1629 avail_occr->next = NULL;
1630 avail_occr->deleted_p = 0;
1635 /* Insert pattern X in INSN in the hash table.
1636 X is a SET of a reg to either another reg or a constant.
1637 If it is already present, record it as the last occurrence in INSN's
1638 basic block. */
1640 static void
1641 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1643 int found;
1644 unsigned int hash;
1645 struct expr *cur_expr, *last_expr = NULL;
1646 struct occr *cur_occr, *last_occr = NULL;
1648 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1650 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1652 cur_expr = table->table[hash];
1653 found = 0;
1655 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1657 /* If the expression isn't found, save a pointer to the end of
1658 the list. */
1659 last_expr = cur_expr;
1660 cur_expr = cur_expr->next_same_hash;
1663 if (! found)
1665 cur_expr = gcse_alloc (sizeof (struct expr));
1666 bytes_used += sizeof (struct expr);
1667 if (table->table[hash] == NULL)
1668 /* This is the first pattern that hashed to this index. */
1669 table->table[hash] = cur_expr;
1670 else
1671 /* Add EXPR to end of this hash chain. */
1672 last_expr->next_same_hash = cur_expr;
1674 /* Set the fields of the expr element.
1675 We must copy X because it can be modified when copy propagation is
1676 performed on its operands. */
1677 cur_expr->expr = copy_rtx (x);
1678 cur_expr->bitmap_index = table->n_elems++;
1679 cur_expr->next_same_hash = NULL;
1680 cur_expr->antic_occr = NULL;
1681 cur_expr->avail_occr = NULL;
1684 /* Now record the occurrence. */
1685 cur_occr = cur_expr->avail_occr;
1687 /* Search for another occurrence in the same basic block. */
1688 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
1690 /* If an occurrence isn't found, save a pointer to the end of
1691 the list. */
1692 last_occr = cur_occr;
1693 cur_occr = cur_occr->next;
1696 if (cur_occr)
1697 /* Found another instance of the expression in the same basic block.
1698 Prefer this occurrence to the currently recorded one. We want the
1699 last one in the block and the block is scanned from start to end. */
1700 cur_occr->insn = insn;
1701 else
1703 /* First occurrence of this expression in this basic block. */
1704 cur_occr = gcse_alloc (sizeof (struct occr));
1705 bytes_used += sizeof (struct occr);
1707 /* First occurrence of this expression in any block? */
1708 if (cur_expr->avail_occr == NULL)
1709 cur_expr->avail_occr = cur_occr;
1710 else
1711 last_occr->next = cur_occr;
1713 cur_occr->insn = insn;
1714 cur_occr->next = NULL;
1715 cur_occr->deleted_p = 0;
1719 /* Determine whether the rtx X should be treated as a constant for
1720 the purposes of GCSE's constant propagation. */
1722 static bool
1723 gcse_constant_p (rtx x)
1725 /* Consider a COMPARE of two integers constant. */
1726 if (GET_CODE (x) == COMPARE
1727 && GET_CODE (XEXP (x, 0)) == CONST_INT
1728 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1729 return true;
1731 /* Consider a COMPARE of the same registers is a constant
1732 if they are not floating point registers. */
1733 if (GET_CODE(x) == COMPARE
1734 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1735 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1736 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1737 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1738 return true;
1740 return CONSTANT_P (x);
1743 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1744 expression one). */
1746 static void
1747 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1749 rtx src = SET_SRC (pat);
1750 rtx dest = SET_DEST (pat);
1751 rtx note;
1753 if (GET_CODE (src) == CALL)
1754 hash_scan_call (src, insn, table);
1756 else if (REG_P (dest))
1758 unsigned int regno = REGNO (dest);
1759 rtx tmp;
1761 /* If this is a single set and we are doing constant propagation,
1762 see if a REG_NOTE shows this equivalent to a constant. */
1763 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
1764 && gcse_constant_p (XEXP (note, 0)))
1765 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1767 /* Only record sets of pseudo-regs in the hash table. */
1768 if (! table->set_p
1769 && regno >= FIRST_PSEUDO_REGISTER
1770 /* Don't GCSE something if we can't do a reg/reg copy. */
1771 && can_copy_p (GET_MODE (dest))
1772 /* GCSE commonly inserts instruction after the insn. We can't
1773 do that easily for EH_REGION notes so disable GCSE on these
1774 for now. */
1775 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1776 /* Is SET_SRC something we want to gcse? */
1777 && want_to_gcse_p (src)
1778 /* Don't CSE a nop. */
1779 && ! set_noop_p (pat)
1780 /* Don't GCSE if it has attached REG_EQUIV note.
1781 At this point this only function parameters should have
1782 REG_EQUIV notes and if the argument slot is used somewhere
1783 explicitly, it means address of parameter has been taken,
1784 so we should not extend the lifetime of the pseudo. */
1785 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1786 || ! MEM_P (XEXP (note, 0))))
1788 /* An expression is not anticipatable if its operands are
1789 modified before this insn or if this is not the only SET in
1790 this insn. */
1791 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1792 /* An expression is not available if its operands are
1793 subsequently modified, including this insn. It's also not
1794 available if this is a branch, because we can't insert
1795 a set after the branch. */
1796 int avail_p = (oprs_available_p (src, insn)
1797 && ! JUMP_P (insn));
1799 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1802 /* Record sets for constant/copy propagation. */
1803 else if (table->set_p
1804 && regno >= FIRST_PSEUDO_REGISTER
1805 && ((REG_P (src)
1806 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1807 && can_copy_p (GET_MODE (dest))
1808 && REGNO (src) != regno)
1809 || gcse_constant_p (src))
1810 /* A copy is not available if its src or dest is subsequently
1811 modified. Here we want to search from INSN+1 on, but
1812 oprs_available_p searches from INSN on. */
1813 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1814 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1815 && oprs_available_p (pat, tmp))))
1816 insert_set_in_table (pat, insn, table);
1818 /* In case of store we want to consider the memory value as available in
1819 the REG stored in that memory. This makes it possible to remove
1820 redundant loads from due to stores to the same location. */
1821 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1823 unsigned int regno = REGNO (src);
1825 /* Do not do this for constant/copy propagation. */
1826 if (! table->set_p
1827 /* Only record sets of pseudo-regs in the hash table. */
1828 && regno >= FIRST_PSEUDO_REGISTER
1829 /* Don't GCSE something if we can't do a reg/reg copy. */
1830 && can_copy_p (GET_MODE (src))
1831 /* GCSE commonly inserts instruction after the insn. We can't
1832 do that easily for EH_REGION notes so disable GCSE on these
1833 for now. */
1834 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1835 /* Is SET_DEST something we want to gcse? */
1836 && want_to_gcse_p (dest)
1837 /* Don't CSE a nop. */
1838 && ! set_noop_p (pat)
1839 /* Don't GCSE if it has attached REG_EQUIV note.
1840 At this point this only function parameters should have
1841 REG_EQUIV notes and if the argument slot is used somewhere
1842 explicitly, it means address of parameter has been taken,
1843 so we should not extend the lifetime of the pseudo. */
1844 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1845 || ! MEM_P (XEXP (note, 0))))
1847 /* Stores are never anticipatable. */
1848 int antic_p = 0;
1849 /* An expression is not available if its operands are
1850 subsequently modified, including this insn. It's also not
1851 available if this is a branch, because we can't insert
1852 a set after the branch. */
1853 int avail_p = oprs_available_p (dest, insn)
1854 && ! JUMP_P (insn);
1856 /* Record the memory expression (DEST) in the hash table. */
1857 insert_expr_in_table (dest, GET_MODE (dest), insn,
1858 antic_p, avail_p, table);
1863 static void
1864 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1865 struct hash_table *table ATTRIBUTE_UNUSED)
1867 /* Currently nothing to do. */
1870 static void
1871 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1872 struct hash_table *table ATTRIBUTE_UNUSED)
1874 /* Currently nothing to do. */
1877 /* Process INSN and add hash table entries as appropriate.
1879 Only available expressions that set a single pseudo-reg are recorded.
1881 Single sets in a PARALLEL could be handled, but it's an extra complication
1882 that isn't dealt with right now. The trick is handling the CLOBBERs that
1883 are also in the PARALLEL. Later.
1885 If SET_P is nonzero, this is for the assignment hash table,
1886 otherwise it is for the expression hash table.
1887 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1888 not record any expressions. */
1890 static void
1891 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1893 rtx pat = PATTERN (insn);
1894 int i;
1896 if (in_libcall_block)
1897 return;
1899 /* Pick out the sets of INSN and for other forms of instructions record
1900 what's been modified. */
1902 if (GET_CODE (pat) == SET)
1903 hash_scan_set (pat, insn, table);
1904 else if (GET_CODE (pat) == PARALLEL)
1905 for (i = 0; i < XVECLEN (pat, 0); i++)
1907 rtx x = XVECEXP (pat, 0, i);
1909 if (GET_CODE (x) == SET)
1910 hash_scan_set (x, insn, table);
1911 else if (GET_CODE (x) == CLOBBER)
1912 hash_scan_clobber (x, insn, table);
1913 else if (GET_CODE (x) == CALL)
1914 hash_scan_call (x, insn, table);
1917 else if (GET_CODE (pat) == CLOBBER)
1918 hash_scan_clobber (pat, insn, table);
1919 else if (GET_CODE (pat) == CALL)
1920 hash_scan_call (pat, insn, table);
1923 static void
1924 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1926 int i;
1927 /* Flattened out table, so it's printed in proper order. */
1928 struct expr **flat_table;
1929 unsigned int *hash_val;
1930 struct expr *expr;
1932 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1933 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1935 for (i = 0; i < (int) table->size; i++)
1936 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1938 flat_table[expr->bitmap_index] = expr;
1939 hash_val[expr->bitmap_index] = i;
1942 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1943 name, table->size, table->n_elems);
1945 for (i = 0; i < (int) table->n_elems; i++)
1946 if (flat_table[i] != 0)
1948 expr = flat_table[i];
1949 fprintf (file, "Index %d (hash value %d)\n ",
1950 expr->bitmap_index, hash_val[i]);
1951 print_rtl (file, expr->expr);
1952 fprintf (file, "\n");
1955 fprintf (file, "\n");
1957 free (flat_table);
1958 free (hash_val);
1961 /* Record register first/last/block set information for REGNO in INSN.
1963 first_set records the first place in the block where the register
1964 is set and is used to compute "anticipatability".
1966 last_set records the last place in the block where the register
1967 is set and is used to compute "availability".
1969 last_bb records the block for which first_set and last_set are
1970 valid, as a quick test to invalidate them.
1972 reg_set_in_block records whether the register is set in the block
1973 and is used to compute "transparency". */
1975 static void
1976 record_last_reg_set_info (rtx insn, int regno)
1978 struct reg_avail_info *info = &reg_avail_info[regno];
1979 int cuid = INSN_CUID (insn);
1981 info->last_set = cuid;
1982 if (info->last_bb != current_bb)
1984 info->last_bb = current_bb;
1985 info->first_set = cuid;
1986 SET_BIT (reg_set_in_block[current_bb->index], regno);
1991 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1992 Note we store a pair of elements in the list, so they have to be
1993 taken off pairwise. */
1995 static void
1996 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1997 void * v_insn)
1999 rtx dest_addr, insn;
2000 int bb;
2002 while (GET_CODE (dest) == SUBREG
2003 || GET_CODE (dest) == ZERO_EXTRACT
2004 || GET_CODE (dest) == SIGN_EXTRACT
2005 || GET_CODE (dest) == STRICT_LOW_PART)
2006 dest = XEXP (dest, 0);
2008 /* If DEST is not a MEM, then it will not conflict with a load. Note
2009 that function calls are assumed to clobber memory, but are handled
2010 elsewhere. */
2012 if (! MEM_P (dest))
2013 return;
2015 dest_addr = get_addr (XEXP (dest, 0));
2016 dest_addr = canon_rtx (dest_addr);
2017 insn = (rtx) v_insn;
2018 bb = BLOCK_NUM (insn);
2020 canon_modify_mem_list[bb] =
2021 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2022 canon_modify_mem_list[bb] =
2023 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2024 bitmap_set_bit (canon_modify_mem_list_set, bb);
2027 /* Record memory modification information for INSN. We do not actually care
2028 about the memory location(s) that are set, or even how they are set (consider
2029 a CALL_INSN). We merely need to record which insns modify memory. */
2031 static void
2032 record_last_mem_set_info (rtx insn)
2034 int bb = BLOCK_NUM (insn);
2036 /* load_killed_in_block_p will handle the case of calls clobbering
2037 everything. */
2038 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2039 bitmap_set_bit (modify_mem_list_set, bb);
2041 if (CALL_P (insn))
2043 /* Note that traversals of this loop (other than for free-ing)
2044 will break after encountering a CALL_INSN. So, there's no
2045 need to insert a pair of items, as canon_list_insert does. */
2046 canon_modify_mem_list[bb] =
2047 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2048 bitmap_set_bit (canon_modify_mem_list_set, bb);
2050 else
2051 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2054 /* Called from compute_hash_table via note_stores to handle one
2055 SET or CLOBBER in an insn. DATA is really the instruction in which
2056 the SET is taking place. */
2058 static void
2059 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
2061 rtx last_set_insn = (rtx) data;
2063 if (GET_CODE (dest) == SUBREG)
2064 dest = SUBREG_REG (dest);
2066 if (REG_P (dest))
2067 record_last_reg_set_info (last_set_insn, REGNO (dest));
2068 else if (MEM_P (dest)
2069 /* Ignore pushes, they clobber nothing. */
2070 && ! push_operand (dest, GET_MODE (dest)))
2071 record_last_mem_set_info (last_set_insn);
2074 /* Top level function to create an expression or assignment hash table.
2076 Expression entries are placed in the hash table if
2077 - they are of the form (set (pseudo-reg) src),
2078 - src is something we want to perform GCSE on,
2079 - none of the operands are subsequently modified in the block
2081 Assignment entries are placed in the hash table if
2082 - they are of the form (set (pseudo-reg) src),
2083 - src is something we want to perform const/copy propagation on,
2084 - none of the operands or target are subsequently modified in the block
2086 Currently src must be a pseudo-reg or a const_int.
2088 TABLE is the table computed. */
2090 static void
2091 compute_hash_table_work (struct hash_table *table)
2093 unsigned int i;
2095 /* While we compute the hash table we also compute a bit array of which
2096 registers are set in which blocks.
2097 ??? This isn't needed during const/copy propagation, but it's cheap to
2098 compute. Later. */
2099 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2101 /* re-Cache any INSN_LIST nodes we have allocated. */
2102 clear_modify_mem_tables ();
2103 /* Some working arrays used to track first and last set in each block. */
2104 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2106 for (i = 0; i < max_gcse_regno; ++i)
2107 reg_avail_info[i].last_bb = NULL;
2109 FOR_EACH_BB (current_bb)
2111 rtx insn;
2112 unsigned int regno;
2113 int in_libcall_block;
2115 /* First pass over the instructions records information used to
2116 determine when registers and memory are first and last set.
2117 ??? hard-reg reg_set_in_block computation
2118 could be moved to compute_sets since they currently don't change. */
2120 for (insn = BB_HEAD (current_bb);
2121 insn && insn != NEXT_INSN (BB_END (current_bb));
2122 insn = NEXT_INSN (insn))
2124 if (! INSN_P (insn))
2125 continue;
2127 if (CALL_P (insn))
2129 bool clobbers_all = false;
2130 #ifdef NON_SAVING_SETJMP
2131 if (NON_SAVING_SETJMP
2132 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2133 clobbers_all = true;
2134 #endif
2136 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2137 if (clobbers_all
2138 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2139 record_last_reg_set_info (insn, regno);
2141 mark_call (insn);
2144 note_stores (PATTERN (insn), record_last_set_info, insn);
2147 /* Insert implicit sets in the hash table. */
2148 if (table->set_p
2149 && implicit_sets[current_bb->index] != NULL_RTX)
2150 hash_scan_set (implicit_sets[current_bb->index],
2151 BB_HEAD (current_bb), table);
2153 /* The next pass builds the hash table. */
2155 for (insn = BB_HEAD (current_bb), in_libcall_block = 0;
2156 insn && insn != NEXT_INSN (BB_END (current_bb));
2157 insn = NEXT_INSN (insn))
2158 if (INSN_P (insn))
2160 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2161 in_libcall_block = 1;
2162 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2163 in_libcall_block = 0;
2164 hash_scan_insn (insn, table, in_libcall_block);
2165 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2166 in_libcall_block = 0;
2170 free (reg_avail_info);
2171 reg_avail_info = NULL;
2174 /* Allocate space for the set/expr hash TABLE.
2175 N_INSNS is the number of instructions in the function.
2176 It is used to determine the number of buckets to use.
2177 SET_P determines whether set or expression table will
2178 be created. */
2180 static void
2181 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2183 int n;
2185 table->size = n_insns / 4;
2186 if (table->size < 11)
2187 table->size = 11;
2189 /* Attempt to maintain efficient use of hash table.
2190 Making it an odd number is simplest for now.
2191 ??? Later take some measurements. */
2192 table->size |= 1;
2193 n = table->size * sizeof (struct expr *);
2194 table->table = gmalloc (n);
2195 table->set_p = set_p;
2198 /* Free things allocated by alloc_hash_table. */
2200 static void
2201 free_hash_table (struct hash_table *table)
2203 free (table->table);
2206 /* Compute the hash TABLE for doing copy/const propagation or
2207 expression hash table. */
2209 static void
2210 compute_hash_table (struct hash_table *table)
2212 /* Initialize count of number of entries in hash table. */
2213 table->n_elems = 0;
2214 memset (table->table, 0, table->size * sizeof (struct expr *));
2216 compute_hash_table_work (table);
2219 /* Expression tracking support. */
2221 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2222 table entry, or NULL if not found. */
2224 static struct expr *
2225 lookup_set (unsigned int regno, struct hash_table *table)
2227 unsigned int hash = hash_set (regno, table->size);
2228 struct expr *expr;
2230 expr = table->table[hash];
2232 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2233 expr = expr->next_same_hash;
2235 return expr;
2238 /* Return the next entry for REGNO in list EXPR. */
2240 static struct expr *
2241 next_set (unsigned int regno, struct expr *expr)
2244 expr = expr->next_same_hash;
2245 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2247 return expr;
2250 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2251 types may be mixed. */
2253 static void
2254 free_insn_expr_list_list (rtx *listp)
2256 rtx list, next;
2258 for (list = *listp; list ; list = next)
2260 next = XEXP (list, 1);
2261 if (GET_CODE (list) == EXPR_LIST)
2262 free_EXPR_LIST_node (list);
2263 else
2264 free_INSN_LIST_node (list);
2267 *listp = NULL;
2270 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2271 static void
2272 clear_modify_mem_tables (void)
2274 int i;
2276 EXECUTE_IF_SET_IN_BITMAP
2277 (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
2278 bitmap_clear (modify_mem_list_set);
2280 EXECUTE_IF_SET_IN_BITMAP
2281 (canon_modify_mem_list_set, 0, i,
2282 free_insn_expr_list_list (canon_modify_mem_list + i));
2283 bitmap_clear (canon_modify_mem_list_set);
2286 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2288 static void
2289 free_modify_mem_tables (void)
2291 clear_modify_mem_tables ();
2292 free (modify_mem_list);
2293 free (canon_modify_mem_list);
2294 modify_mem_list = 0;
2295 canon_modify_mem_list = 0;
2298 /* Reset tables used to keep track of what's still available [since the
2299 start of the block]. */
2301 static void
2302 reset_opr_set_tables (void)
2304 /* Maintain a bitmap of which regs have been set since beginning of
2305 the block. */
2306 CLEAR_REG_SET (reg_set_bitmap);
2308 /* Also keep a record of the last instruction to modify memory.
2309 For now this is very trivial, we only record whether any memory
2310 location has been modified. */
2311 clear_modify_mem_tables ();
2314 /* Return nonzero if the operands of X are not set before INSN in
2315 INSN's basic block. */
2317 static int
2318 oprs_not_set_p (rtx x, rtx insn)
2320 int i, j;
2321 enum rtx_code code;
2322 const char *fmt;
2324 if (x == 0)
2325 return 1;
2327 code = GET_CODE (x);
2328 switch (code)
2330 case PC:
2331 case CC0:
2332 case CONST:
2333 case CONST_INT:
2334 case CONST_DOUBLE:
2335 case CONST_VECTOR:
2336 case SYMBOL_REF:
2337 case LABEL_REF:
2338 case ADDR_VEC:
2339 case ADDR_DIFF_VEC:
2340 return 1;
2342 case MEM:
2343 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2344 INSN_CUID (insn), x, 0))
2345 return 0;
2346 else
2347 return oprs_not_set_p (XEXP (x, 0), insn);
2349 case REG:
2350 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2352 default:
2353 break;
2356 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2358 if (fmt[i] == 'e')
2360 /* If we are about to do the last recursive call
2361 needed at this level, change it into iteration.
2362 This function is called enough to be worth it. */
2363 if (i == 0)
2364 return oprs_not_set_p (XEXP (x, i), insn);
2366 if (! oprs_not_set_p (XEXP (x, i), insn))
2367 return 0;
2369 else if (fmt[i] == 'E')
2370 for (j = 0; j < XVECLEN (x, i); j++)
2371 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2372 return 0;
2375 return 1;
2378 /* Mark things set by a CALL. */
2380 static void
2381 mark_call (rtx insn)
2383 if (! CONST_OR_PURE_CALL_P (insn))
2384 record_last_mem_set_info (insn);
2387 /* Mark things set by a SET. */
2389 static void
2390 mark_set (rtx pat, rtx insn)
2392 rtx dest = SET_DEST (pat);
2394 while (GET_CODE (dest) == SUBREG
2395 || GET_CODE (dest) == ZERO_EXTRACT
2396 || GET_CODE (dest) == SIGN_EXTRACT
2397 || GET_CODE (dest) == STRICT_LOW_PART)
2398 dest = XEXP (dest, 0);
2400 if (REG_P (dest))
2401 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2402 else if (MEM_P (dest))
2403 record_last_mem_set_info (insn);
2405 if (GET_CODE (SET_SRC (pat)) == CALL)
2406 mark_call (insn);
2409 /* Record things set by a CLOBBER. */
2411 static void
2412 mark_clobber (rtx pat, rtx insn)
2414 rtx clob = XEXP (pat, 0);
2416 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2417 clob = XEXP (clob, 0);
2419 if (REG_P (clob))
2420 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2421 else
2422 record_last_mem_set_info (insn);
2425 /* Record things set by INSN.
2426 This data is used by oprs_not_set_p. */
2428 static void
2429 mark_oprs_set (rtx insn)
2431 rtx pat = PATTERN (insn);
2432 int i;
2434 if (GET_CODE (pat) == SET)
2435 mark_set (pat, insn);
2436 else if (GET_CODE (pat) == PARALLEL)
2437 for (i = 0; i < XVECLEN (pat, 0); i++)
2439 rtx x = XVECEXP (pat, 0, i);
2441 if (GET_CODE (x) == SET)
2442 mark_set (x, insn);
2443 else if (GET_CODE (x) == CLOBBER)
2444 mark_clobber (x, insn);
2445 else if (GET_CODE (x) == CALL)
2446 mark_call (insn);
2449 else if (GET_CODE (pat) == CLOBBER)
2450 mark_clobber (pat, insn);
2451 else if (GET_CODE (pat) == CALL)
2452 mark_call (insn);
2456 /* Compute copy/constant propagation working variables. */
2458 /* Local properties of assignments. */
2459 static sbitmap *cprop_pavloc;
2460 static sbitmap *cprop_absaltered;
2462 /* Global properties of assignments (computed from the local properties). */
2463 static sbitmap *cprop_avin;
2464 static sbitmap *cprop_avout;
2466 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2467 basic blocks. N_SETS is the number of sets. */
2469 static void
2470 alloc_cprop_mem (int n_blocks, int n_sets)
2472 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2473 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2475 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2476 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2479 /* Free vars used by copy/const propagation. */
2481 static void
2482 free_cprop_mem (void)
2484 sbitmap_vector_free (cprop_pavloc);
2485 sbitmap_vector_free (cprop_absaltered);
2486 sbitmap_vector_free (cprop_avin);
2487 sbitmap_vector_free (cprop_avout);
2490 /* For each block, compute whether X is transparent. X is either an
2491 expression or an assignment [though we don't care which, for this context
2492 an assignment is treated as an expression]. For each block where an
2493 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2494 bit in BMAP. */
2496 static void
2497 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2499 int i, j;
2500 basic_block bb;
2501 enum rtx_code code;
2502 reg_set *r;
2503 const char *fmt;
2505 /* repeat is used to turn tail-recursion into iteration since GCC
2506 can't do it when there's no return value. */
2507 repeat:
2509 if (x == 0)
2510 return;
2512 code = GET_CODE (x);
2513 switch (code)
2515 case REG:
2516 if (set_p)
2518 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2520 FOR_EACH_BB (bb)
2521 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2522 SET_BIT (bmap[bb->index], indx);
2524 else
2526 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2527 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
2530 else
2532 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2534 FOR_EACH_BB (bb)
2535 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2536 RESET_BIT (bmap[bb->index], indx);
2538 else
2540 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2541 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
2545 return;
2547 case MEM:
2548 FOR_EACH_BB (bb)
2550 rtx list_entry = canon_modify_mem_list[bb->index];
2552 while (list_entry)
2554 rtx dest, dest_addr;
2556 if (CALL_P (XEXP (list_entry, 0)))
2558 if (set_p)
2559 SET_BIT (bmap[bb->index], indx);
2560 else
2561 RESET_BIT (bmap[bb->index], indx);
2562 break;
2564 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2565 Examine each hunk of memory that is modified. */
2567 dest = XEXP (list_entry, 0);
2568 list_entry = XEXP (list_entry, 1);
2569 dest_addr = XEXP (list_entry, 0);
2571 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2572 x, rtx_addr_varies_p))
2574 if (set_p)
2575 SET_BIT (bmap[bb->index], indx);
2576 else
2577 RESET_BIT (bmap[bb->index], indx);
2578 break;
2580 list_entry = XEXP (list_entry, 1);
2584 x = XEXP (x, 0);
2585 goto repeat;
2587 case PC:
2588 case CC0: /*FIXME*/
2589 case CONST:
2590 case CONST_INT:
2591 case CONST_DOUBLE:
2592 case CONST_VECTOR:
2593 case SYMBOL_REF:
2594 case LABEL_REF:
2595 case ADDR_VEC:
2596 case ADDR_DIFF_VEC:
2597 return;
2599 default:
2600 break;
2603 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2605 if (fmt[i] == 'e')
2607 /* If we are about to do the last recursive call
2608 needed at this level, change it into iteration.
2609 This function is called enough to be worth it. */
2610 if (i == 0)
2612 x = XEXP (x, i);
2613 goto repeat;
2616 compute_transp (XEXP (x, i), indx, bmap, set_p);
2618 else if (fmt[i] == 'E')
2619 for (j = 0; j < XVECLEN (x, i); j++)
2620 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2624 /* Top level routine to do the dataflow analysis needed by copy/const
2625 propagation. */
2627 static void
2628 compute_cprop_data (void)
2630 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2631 compute_available (cprop_pavloc, cprop_absaltered,
2632 cprop_avout, cprop_avin);
2635 /* Copy/constant propagation. */
2637 /* Maximum number of register uses in an insn that we handle. */
2638 #define MAX_USES 8
2640 /* Table of uses found in an insn.
2641 Allocated statically to avoid alloc/free complexity and overhead. */
2642 static struct reg_use reg_use_table[MAX_USES];
2644 /* Index into `reg_use_table' while building it. */
2645 static int reg_use_count;
2647 /* Set up a list of register numbers used in INSN. The found uses are stored
2648 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2649 and contains the number of uses in the table upon exit.
2651 ??? If a register appears multiple times we will record it multiple times.
2652 This doesn't hurt anything but it will slow things down. */
2654 static void
2655 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2657 int i, j;
2658 enum rtx_code code;
2659 const char *fmt;
2660 rtx x = *xptr;
2662 /* repeat is used to turn tail-recursion into iteration since GCC
2663 can't do it when there's no return value. */
2664 repeat:
2665 if (x == 0)
2666 return;
2668 code = GET_CODE (x);
2669 if (REG_P (x))
2671 if (reg_use_count == MAX_USES)
2672 return;
2674 reg_use_table[reg_use_count].reg_rtx = x;
2675 reg_use_count++;
2678 /* Recursively scan the operands of this expression. */
2680 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2682 if (fmt[i] == 'e')
2684 /* If we are about to do the last recursive call
2685 needed at this level, change it into iteration.
2686 This function is called enough to be worth it. */
2687 if (i == 0)
2689 x = XEXP (x, 0);
2690 goto repeat;
2693 find_used_regs (&XEXP (x, i), data);
2695 else if (fmt[i] == 'E')
2696 for (j = 0; j < XVECLEN (x, i); j++)
2697 find_used_regs (&XVECEXP (x, i, j), data);
2701 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2702 Returns nonzero is successful. */
2704 static int
2705 try_replace_reg (rtx from, rtx to, rtx insn)
2707 rtx note = find_reg_equal_equiv_note (insn);
2708 rtx src = 0;
2709 int success = 0;
2710 rtx set = single_set (insn);
2712 validate_replace_src_group (from, to, insn);
2713 if (num_changes_pending () && apply_change_group ())
2714 success = 1;
2716 /* Try to simplify SET_SRC if we have substituted a constant. */
2717 if (success && set && CONSTANT_P (to))
2719 src = simplify_rtx (SET_SRC (set));
2721 if (src)
2722 validate_change (insn, &SET_SRC (set), src, 0);
2725 /* If there is already a NOTE, update the expression in it with our
2726 replacement. */
2727 if (note != 0)
2728 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2730 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2732 /* If above failed and this is a single set, try to simplify the source of
2733 the set given our substitution. We could perhaps try this for multiple
2734 SETs, but it probably won't buy us anything. */
2735 src = simplify_replace_rtx (SET_SRC (set), from, to);
2737 if (!rtx_equal_p (src, SET_SRC (set))
2738 && validate_change (insn, &SET_SRC (set), src, 0))
2739 success = 1;
2741 /* If we've failed to do replacement, have a single SET, don't already
2742 have a note, and have no special SET, add a REG_EQUAL note to not
2743 lose information. */
2744 if (!success && note == 0 && set != 0
2745 && GET_CODE (XEXP (set, 0)) != ZERO_EXTRACT
2746 && GET_CODE (XEXP (set, 0)) != SIGN_EXTRACT)
2747 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2750 /* REG_EQUAL may get simplified into register.
2751 We don't allow that. Remove that note. This code ought
2752 not to happen, because previous code ought to synthesize
2753 reg-reg move, but be on the safe side. */
2754 if (note && REG_P (XEXP (note, 0)))
2755 remove_note (insn, note);
2757 return success;
2760 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2761 NULL no such set is found. */
2763 static struct expr *
2764 find_avail_set (int regno, rtx insn)
2766 /* SET1 contains the last set found that can be returned to the caller for
2767 use in a substitution. */
2768 struct expr *set1 = 0;
2770 /* Loops are not possible here. To get a loop we would need two sets
2771 available at the start of the block containing INSN. ie we would
2772 need two sets like this available at the start of the block:
2774 (set (reg X) (reg Y))
2775 (set (reg Y) (reg X))
2777 This can not happen since the set of (reg Y) would have killed the
2778 set of (reg X) making it unavailable at the start of this block. */
2779 while (1)
2781 rtx src;
2782 struct expr *set = lookup_set (regno, &set_hash_table);
2784 /* Find a set that is available at the start of the block
2785 which contains INSN. */
2786 while (set)
2788 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2789 break;
2790 set = next_set (regno, set);
2793 /* If no available set was found we've reached the end of the
2794 (possibly empty) copy chain. */
2795 if (set == 0)
2796 break;
2798 gcc_assert (GET_CODE (set->expr) == SET);
2800 src = SET_SRC (set->expr);
2802 /* We know the set is available.
2803 Now check that SRC is ANTLOC (i.e. none of the source operands
2804 have changed since the start of the block).
2806 If the source operand changed, we may still use it for the next
2807 iteration of this loop, but we may not use it for substitutions. */
2809 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2810 set1 = set;
2812 /* If the source of the set is anything except a register, then
2813 we have reached the end of the copy chain. */
2814 if (! REG_P (src))
2815 break;
2817 /* Follow the copy chain, ie start another iteration of the loop
2818 and see if we have an available copy into SRC. */
2819 regno = REGNO (src);
2822 /* SET1 holds the last set that was available and anticipatable at
2823 INSN. */
2824 return set1;
2827 /* Subroutine of cprop_insn that tries to propagate constants into
2828 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2829 it is the instruction that immediately precedes JUMP, and must be a
2830 single SET of a register. FROM is what we will try to replace,
2831 SRC is the constant we will try to substitute for it. Returns nonzero
2832 if a change was made. */
2834 static int
2835 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2837 rtx new, set_src, note_src;
2838 rtx set = pc_set (jump);
2839 rtx note = find_reg_equal_equiv_note (jump);
2841 if (note)
2843 note_src = XEXP (note, 0);
2844 if (GET_CODE (note_src) == EXPR_LIST)
2845 note_src = NULL_RTX;
2847 else note_src = NULL_RTX;
2849 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2850 set_src = note_src ? note_src : SET_SRC (set);
2852 /* First substitute the SETCC condition into the JUMP instruction,
2853 then substitute that given values into this expanded JUMP. */
2854 if (setcc != NULL_RTX
2855 && !modified_between_p (from, setcc, jump)
2856 && !modified_between_p (src, setcc, jump))
2858 rtx setcc_src;
2859 rtx setcc_set = single_set (setcc);
2860 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2861 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2862 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2863 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2864 setcc_src);
2866 else
2867 setcc = NULL_RTX;
2869 new = simplify_replace_rtx (set_src, from, src);
2871 /* If no simplification can be made, then try the next register. */
2872 if (rtx_equal_p (new, SET_SRC (set)))
2873 return 0;
2875 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2876 if (new == pc_rtx)
2877 delete_insn (jump);
2878 else
2880 /* Ensure the value computed inside the jump insn to be equivalent
2881 to one computed by setcc. */
2882 if (setcc && modified_in_p (new, setcc))
2883 return 0;
2884 if (! validate_change (jump, &SET_SRC (set), new, 0))
2886 /* When (some) constants are not valid in a comparison, and there
2887 are two registers to be replaced by constants before the entire
2888 comparison can be folded into a constant, we need to keep
2889 intermediate information in REG_EQUAL notes. For targets with
2890 separate compare insns, such notes are added by try_replace_reg.
2891 When we have a combined compare-and-branch instruction, however,
2892 we need to attach a note to the branch itself to make this
2893 optimization work. */
2895 if (!rtx_equal_p (new, note_src))
2896 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2897 return 0;
2900 /* Remove REG_EQUAL note after simplification. */
2901 if (note_src)
2902 remove_note (jump, note);
2904 /* If this has turned into an unconditional jump,
2905 then put a barrier after it so that the unreachable
2906 code will be deleted. */
2907 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2908 emit_barrier_after (jump);
2911 #ifdef HAVE_cc0
2912 /* Delete the cc0 setter. */
2913 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2914 delete_insn (setcc);
2915 #endif
2917 run_jump_opt_after_gcse = 1;
2919 global_const_prop_count++;
2920 if (gcse_file != NULL)
2922 fprintf (gcse_file,
2923 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2924 REGNO (from), INSN_UID (jump));
2925 print_rtl (gcse_file, src);
2926 fprintf (gcse_file, "\n");
2928 purge_dead_edges (bb);
2930 return 1;
2933 static bool
2934 constprop_register (rtx insn, rtx from, rtx to, int alter_jumps)
2936 rtx sset;
2938 /* Check for reg or cc0 setting instructions followed by
2939 conditional branch instructions first. */
2940 if (alter_jumps
2941 && (sset = single_set (insn)) != NULL
2942 && NEXT_INSN (insn)
2943 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2945 rtx dest = SET_DEST (sset);
2946 if ((REG_P (dest) || CC0_P (dest))
2947 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2948 return 1;
2951 /* Handle normal insns next. */
2952 if (NONJUMP_INSN_P (insn)
2953 && try_replace_reg (from, to, insn))
2954 return 1;
2956 /* Try to propagate a CONST_INT into a conditional jump.
2957 We're pretty specific about what we will handle in this
2958 code, we can extend this as necessary over time.
2960 Right now the insn in question must look like
2961 (set (pc) (if_then_else ...)) */
2962 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2963 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2964 return 0;
2967 /* Perform constant and copy propagation on INSN.
2968 The result is nonzero if a change was made. */
2970 static int
2971 cprop_insn (rtx insn, int alter_jumps)
2973 struct reg_use *reg_used;
2974 int changed = 0;
2975 rtx note;
2977 if (!INSN_P (insn))
2978 return 0;
2980 reg_use_count = 0;
2981 note_uses (&PATTERN (insn), find_used_regs, NULL);
2983 note = find_reg_equal_equiv_note (insn);
2985 /* We may win even when propagating constants into notes. */
2986 if (note)
2987 find_used_regs (&XEXP (note, 0), NULL);
2989 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2990 reg_used++, reg_use_count--)
2992 unsigned int regno = REGNO (reg_used->reg_rtx);
2993 rtx pat, src;
2994 struct expr *set;
2996 /* Ignore registers created by GCSE.
2997 We do this because ... */
2998 if (regno >= max_gcse_regno)
2999 continue;
3001 /* If the register has already been set in this block, there's
3002 nothing we can do. */
3003 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
3004 continue;
3006 /* Find an assignment that sets reg_used and is available
3007 at the start of the block. */
3008 set = find_avail_set (regno, insn);
3009 if (! set)
3010 continue;
3012 pat = set->expr;
3013 /* ??? We might be able to handle PARALLELs. Later. */
3014 gcc_assert (GET_CODE (pat) == SET);
3016 src = SET_SRC (pat);
3018 /* Constant propagation. */
3019 if (gcse_constant_p (src))
3021 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
3023 changed = 1;
3024 global_const_prop_count++;
3025 if (gcse_file != NULL)
3027 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
3028 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
3029 print_rtl (gcse_file, src);
3030 fprintf (gcse_file, "\n");
3032 if (INSN_DELETED_P (insn))
3033 return 1;
3036 else if (REG_P (src)
3037 && REGNO (src) >= FIRST_PSEUDO_REGISTER
3038 && REGNO (src) != regno)
3040 if (try_replace_reg (reg_used->reg_rtx, src, insn))
3042 changed = 1;
3043 global_copy_prop_count++;
3044 if (gcse_file != NULL)
3046 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
3047 regno, INSN_UID (insn));
3048 fprintf (gcse_file, " with reg %d\n", REGNO (src));
3051 /* The original insn setting reg_used may or may not now be
3052 deletable. We leave the deletion to flow. */
3053 /* FIXME: If it turns out that the insn isn't deletable,
3054 then we may have unnecessarily extended register lifetimes
3055 and made things worse. */
3060 return changed;
3063 /* Like find_used_regs, but avoid recording uses that appear in
3064 input-output contexts such as zero_extract or pre_dec. This
3065 restricts the cases we consider to those for which local cprop
3066 can legitimately make replacements. */
3068 static void
3069 local_cprop_find_used_regs (rtx *xptr, void *data)
3071 rtx x = *xptr;
3073 if (x == 0)
3074 return;
3076 switch (GET_CODE (x))
3078 case ZERO_EXTRACT:
3079 case SIGN_EXTRACT:
3080 case STRICT_LOW_PART:
3081 return;
3083 case PRE_DEC:
3084 case PRE_INC:
3085 case POST_DEC:
3086 case POST_INC:
3087 case PRE_MODIFY:
3088 case POST_MODIFY:
3089 /* Can only legitimately appear this early in the context of
3090 stack pushes for function arguments, but handle all of the
3091 codes nonetheless. */
3092 return;
3094 case SUBREG:
3095 /* Setting a subreg of a register larger than word_mode leaves
3096 the non-written words unchanged. */
3097 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3098 return;
3099 break;
3101 default:
3102 break;
3105 find_used_regs (xptr, data);
3108 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3109 their REG_EQUAL notes need updating. */
3111 static bool
3112 do_local_cprop (rtx x, rtx insn, int alter_jumps, rtx *libcall_sp)
3114 rtx newreg = NULL, newcnst = NULL;
3116 /* Rule out USE instructions and ASM statements as we don't want to
3117 change the hard registers mentioned. */
3118 if (REG_P (x)
3119 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3120 || (GET_CODE (PATTERN (insn)) != USE
3121 && asm_noperands (PATTERN (insn)) < 0)))
3123 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3124 struct elt_loc_list *l;
3126 if (!val)
3127 return false;
3128 for (l = val->locs; l; l = l->next)
3130 rtx this_rtx = l->loc;
3131 rtx note;
3133 if (l->in_libcall)
3134 continue;
3136 if (gcse_constant_p (this_rtx))
3137 newcnst = this_rtx;
3138 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3139 /* Don't copy propagate if it has attached REG_EQUIV note.
3140 At this point this only function parameters should have
3141 REG_EQUIV notes and if the argument slot is used somewhere
3142 explicitly, it means address of parameter has been taken,
3143 so we should not extend the lifetime of the pseudo. */
3144 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3145 || ! MEM_P (XEXP (note, 0))))
3146 newreg = this_rtx;
3148 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3150 /* If we find a case where we can't fix the retval REG_EQUAL notes
3151 match the new register, we either have to abandon this replacement
3152 or fix delete_trivially_dead_insns to preserve the setting insn,
3153 or make it delete the REG_EUAQL note, and fix up all passes that
3154 require the REG_EQUAL note there. */
3155 bool adjusted;
3157 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3158 gcc_assert (adjusted);
3160 if (gcse_file != NULL)
3162 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3163 REGNO (x));
3164 fprintf (gcse_file, "insn %d with constant ",
3165 INSN_UID (insn));
3166 print_rtl (gcse_file, newcnst);
3167 fprintf (gcse_file, "\n");
3169 local_const_prop_count++;
3170 return true;
3172 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3174 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3175 if (gcse_file != NULL)
3177 fprintf (gcse_file,
3178 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3179 REGNO (x), INSN_UID (insn));
3180 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
3182 local_copy_prop_count++;
3183 return true;
3186 return false;
3189 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3190 their REG_EQUAL notes need updating to reflect that OLDREG has been
3191 replaced with NEWVAL in INSN. Return true if all substitutions could
3192 be made. */
3193 static bool
3194 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3196 rtx end;
3198 while ((end = *libcall_sp++))
3200 rtx note = find_reg_equal_equiv_note (end);
3202 if (! note)
3203 continue;
3205 if (REG_P (newval))
3207 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3211 note = find_reg_equal_equiv_note (end);
3212 if (! note)
3213 continue;
3214 if (reg_mentioned_p (newval, XEXP (note, 0)))
3215 return false;
3217 while ((end = *libcall_sp++));
3218 return true;
3221 XEXP (note, 0) = replace_rtx (XEXP (note, 0), oldreg, newval);
3222 insn = end;
3224 return true;
3227 #define MAX_NESTED_LIBCALLS 9
3229 static void
3230 local_cprop_pass (int alter_jumps)
3232 rtx insn;
3233 struct reg_use *reg_used;
3234 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3235 bool changed = false;
3237 cselib_init (false);
3238 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3239 *libcall_sp = 0;
3240 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3242 if (INSN_P (insn))
3244 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3246 if (note)
3248 gcc_assert (libcall_sp != libcall_stack);
3249 *--libcall_sp = XEXP (note, 0);
3251 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3252 if (note)
3253 libcall_sp++;
3254 note = find_reg_equal_equiv_note (insn);
3257 reg_use_count = 0;
3258 note_uses (&PATTERN (insn), local_cprop_find_used_regs, NULL);
3259 if (note)
3260 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3262 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3263 reg_used++, reg_use_count--)
3264 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3265 libcall_sp))
3267 changed = true;
3268 break;
3270 if (INSN_DELETED_P (insn))
3271 break;
3273 while (reg_use_count);
3275 cselib_process_insn (insn);
3277 cselib_finish ();
3278 /* Global analysis may get into infinite loops for unreachable blocks. */
3279 if (changed && alter_jumps)
3281 delete_unreachable_blocks ();
3282 free_reg_set_mem ();
3283 alloc_reg_set_mem (max_reg_num ());
3284 compute_sets (get_insns ());
3288 /* Forward propagate copies. This includes copies and constants. Return
3289 nonzero if a change was made. */
3291 static int
3292 cprop (int alter_jumps)
3294 int changed;
3295 basic_block bb;
3296 rtx insn;
3298 /* Note we start at block 1. */
3299 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3301 if (gcse_file != NULL)
3302 fprintf (gcse_file, "\n");
3303 return 0;
3306 changed = 0;
3307 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3309 /* Reset tables used to keep track of what's still valid [since the
3310 start of the block]. */
3311 reset_opr_set_tables ();
3313 for (insn = BB_HEAD (bb);
3314 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3315 insn = NEXT_INSN (insn))
3316 if (INSN_P (insn))
3318 changed |= cprop_insn (insn, alter_jumps);
3320 /* Keep track of everything modified by this insn. */
3321 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3322 call mark_oprs_set if we turned the insn into a NOTE. */
3323 if (! NOTE_P (insn))
3324 mark_oprs_set (insn);
3328 if (gcse_file != NULL)
3329 fprintf (gcse_file, "\n");
3331 return changed;
3334 /* Similar to get_condition, only the resulting condition must be
3335 valid at JUMP, instead of at EARLIEST.
3337 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3338 settle for the condition variable in the jump instruction being integral.
3339 We prefer to be able to record the value of a user variable, rather than
3340 the value of a temporary used in a condition. This could be solved by
3341 recording the value of *every* register scaned by canonicalize_condition,
3342 but this would require some code reorganization. */
3345 fis_get_condition (rtx jump)
3347 return get_condition (jump, NULL, false, true);
3350 /* Check the comparison COND to see if we can safely form an implicit set from
3351 it. COND is either an EQ or NE comparison. */
3353 static bool
3354 implicit_set_cond_p (rtx cond)
3356 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3357 rtx cst = XEXP (cond, 1);
3359 /* We can't perform this optimization if either operand might be or might
3360 contain a signed zero. */
3361 if (HONOR_SIGNED_ZEROS (mode))
3363 /* It is sufficient to check if CST is or contains a zero. We must
3364 handle float, complex, and vector. If any subpart is a zero, then
3365 the optimization can't be performed. */
3366 /* ??? The complex and vector checks are not implemented yet. We just
3367 always return zero for them. */
3368 if (GET_CODE (cst) == CONST_DOUBLE)
3370 REAL_VALUE_TYPE d;
3371 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3372 if (REAL_VALUES_EQUAL (d, dconst0))
3373 return 0;
3375 else
3376 return 0;
3379 return gcse_constant_p (cst);
3382 /* Find the implicit sets of a function. An "implicit set" is a constraint
3383 on the value of a variable, implied by a conditional jump. For example,
3384 following "if (x == 2)", the then branch may be optimized as though the
3385 conditional performed an "explicit set", in this example, "x = 2". This
3386 function records the set patterns that are implicit at the start of each
3387 basic block. */
3389 static void
3390 find_implicit_sets (void)
3392 basic_block bb, dest;
3393 unsigned int count;
3394 rtx cond, new;
3396 count = 0;
3397 FOR_EACH_BB (bb)
3398 /* Check for more than one successor. */
3399 if (bb->succ && bb->succ->succ_next)
3401 cond = fis_get_condition (BB_END (bb));
3403 if (cond
3404 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3405 && REG_P (XEXP (cond, 0))
3406 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3407 && implicit_set_cond_p (cond))
3409 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3410 : FALLTHRU_EDGE (bb)->dest;
3412 if (dest && ! dest->pred->pred_next
3413 && dest != EXIT_BLOCK_PTR)
3415 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3416 XEXP (cond, 1));
3417 implicit_sets[dest->index] = new;
3418 if (gcse_file)
3420 fprintf(gcse_file, "Implicit set of reg %d in ",
3421 REGNO (XEXP (cond, 0)));
3422 fprintf(gcse_file, "basic block %d\n", dest->index);
3424 count++;
3429 if (gcse_file)
3430 fprintf (gcse_file, "Found %d implicit sets\n", count);
3433 /* Perform one copy/constant propagation pass.
3434 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3435 propagation into conditional jumps. If BYPASS_JUMPS is true,
3436 perform conditional jump bypassing optimizations. */
3438 static int
3439 one_cprop_pass (int pass, int cprop_jumps, int bypass_jumps)
3441 int changed = 0;
3443 global_const_prop_count = local_const_prop_count = 0;
3444 global_copy_prop_count = local_copy_prop_count = 0;
3446 local_cprop_pass (cprop_jumps);
3448 /* Determine implicit sets. */
3449 implicit_sets = xcalloc (last_basic_block, sizeof (rtx));
3450 find_implicit_sets ();
3452 alloc_hash_table (max_cuid, &set_hash_table, 1);
3453 compute_hash_table (&set_hash_table);
3455 /* Free implicit_sets before peak usage. */
3456 free (implicit_sets);
3457 implicit_sets = NULL;
3459 if (gcse_file)
3460 dump_hash_table (gcse_file, "SET", &set_hash_table);
3461 if (set_hash_table.n_elems > 0)
3463 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3464 compute_cprop_data ();
3465 changed = cprop (cprop_jumps);
3466 if (bypass_jumps)
3467 changed |= bypass_conditional_jumps ();
3468 free_cprop_mem ();
3471 free_hash_table (&set_hash_table);
3473 if (gcse_file)
3475 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
3476 current_function_name (), pass, bytes_used);
3477 fprintf (gcse_file, "%d local const props, %d local copy props\n\n",
3478 local_const_prop_count, local_copy_prop_count);
3479 fprintf (gcse_file, "%d global const props, %d global copy props\n\n",
3480 global_const_prop_count, global_copy_prop_count);
3482 /* Global analysis may get into infinite loops for unreachable blocks. */
3483 if (changed && cprop_jumps)
3484 delete_unreachable_blocks ();
3486 return changed;
3489 /* Bypass conditional jumps. */
3491 /* The value of last_basic_block at the beginning of the jump_bypass
3492 pass. The use of redirect_edge_and_branch_force may introduce new
3493 basic blocks, but the data flow analysis is only valid for basic
3494 block indices less than bypass_last_basic_block. */
3496 static int bypass_last_basic_block;
3498 /* Find a set of REGNO to a constant that is available at the end of basic
3499 block BB. Returns NULL if no such set is found. Based heavily upon
3500 find_avail_set. */
3502 static struct expr *
3503 find_bypass_set (int regno, int bb)
3505 struct expr *result = 0;
3507 for (;;)
3509 rtx src;
3510 struct expr *set = lookup_set (regno, &set_hash_table);
3512 while (set)
3514 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3515 break;
3516 set = next_set (regno, set);
3519 if (set == 0)
3520 break;
3522 gcc_assert (GET_CODE (set->expr) == SET);
3524 src = SET_SRC (set->expr);
3525 if (gcse_constant_p (src))
3526 result = set;
3528 if (! REG_P (src))
3529 break;
3531 regno = REGNO (src);
3533 return result;
3537 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3538 any of the instructions inserted on an edge. Jump bypassing places
3539 condition code setters on CFG edges using insert_insn_on_edge. This
3540 function is required to check that our data flow analysis is still
3541 valid prior to commit_edge_insertions. */
3543 static bool
3544 reg_killed_on_edge (rtx reg, edge e)
3546 rtx insn;
3548 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3549 if (INSN_P (insn) && reg_set_p (reg, insn))
3550 return true;
3552 return false;
3555 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3556 basic block BB which has more than one predecessor. If not NULL, SETCC
3557 is the first instruction of BB, which is immediately followed by JUMP_INSN
3558 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3559 Returns nonzero if a change was made.
3561 During the jump bypassing pass, we may place copies of SETCC instructions
3562 on CFG edges. The following routine must be careful to pay attention to
3563 these inserted insns when performing its transformations. */
3565 static int
3566 bypass_block (basic_block bb, rtx setcc, rtx jump)
3568 rtx insn, note;
3569 edge e, enext, edest;
3570 int i, change;
3571 int may_be_loop_header;
3573 insn = (setcc != NULL) ? setcc : jump;
3575 /* Determine set of register uses in INSN. */
3576 reg_use_count = 0;
3577 note_uses (&PATTERN (insn), find_used_regs, NULL);
3578 note = find_reg_equal_equiv_note (insn);
3579 if (note)
3580 find_used_regs (&XEXP (note, 0), NULL);
3582 may_be_loop_header = false;
3583 for (e = bb->pred; e; e = e->pred_next)
3584 if (e->flags & EDGE_DFS_BACK)
3586 may_be_loop_header = true;
3587 break;
3590 change = 0;
3591 for (e = bb->pred; e; e = enext)
3593 enext = e->pred_next;
3594 if (e->flags & EDGE_COMPLEX)
3595 continue;
3597 /* We can't redirect edges from new basic blocks. */
3598 if (e->src->index >= bypass_last_basic_block)
3599 continue;
3601 /* The irreducible loops created by redirecting of edges entering the
3602 loop from outside would decrease effectiveness of some of the following
3603 optimizations, so prevent this. */
3604 if (may_be_loop_header
3605 && !(e->flags & EDGE_DFS_BACK))
3606 continue;
3608 for (i = 0; i < reg_use_count; i++)
3610 struct reg_use *reg_used = &reg_use_table[i];
3611 unsigned int regno = REGNO (reg_used->reg_rtx);
3612 basic_block dest, old_dest;
3613 struct expr *set;
3614 rtx src, new;
3616 if (regno >= max_gcse_regno)
3617 continue;
3619 set = find_bypass_set (regno, e->src->index);
3621 if (! set)
3622 continue;
3624 /* Check the data flow is valid after edge insertions. */
3625 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3626 continue;
3628 src = SET_SRC (pc_set (jump));
3630 if (setcc != NULL)
3631 src = simplify_replace_rtx (src,
3632 SET_DEST (PATTERN (setcc)),
3633 SET_SRC (PATTERN (setcc)));
3635 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3636 SET_SRC (set->expr));
3638 /* Jump bypassing may have already placed instructions on
3639 edges of the CFG. We can't bypass an outgoing edge that
3640 has instructions associated with it, as these insns won't
3641 get executed if the incoming edge is redirected. */
3643 if (new == pc_rtx)
3645 edest = FALLTHRU_EDGE (bb);
3646 dest = edest->insns.r ? NULL : edest->dest;
3648 else if (GET_CODE (new) == LABEL_REF)
3650 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3651 /* Don't bypass edges containing instructions. */
3652 for (edest = bb->succ; edest; edest = edest->succ_next)
3653 if (edest->dest == dest && edest->insns.r)
3655 dest = NULL;
3656 break;
3659 else
3660 dest = NULL;
3662 /* Avoid unification of the edge with other edges from original
3663 branch. We would end up emitting the instruction on "both"
3664 edges. */
3666 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc))))
3668 edge e2;
3669 for (e2 = e->src->succ; e2; e2 = e2->succ_next)
3670 if (e2->dest == dest)
3672 dest = NULL;
3673 break;
3677 old_dest = e->dest;
3678 if (dest != NULL
3679 && dest != old_dest
3680 && dest != EXIT_BLOCK_PTR)
3682 redirect_edge_and_branch_force (e, dest);
3684 /* Copy the register setter to the redirected edge.
3685 Don't copy CC0 setters, as CC0 is dead after jump. */
3686 if (setcc)
3688 rtx pat = PATTERN (setcc);
3689 if (!CC0_P (SET_DEST (pat)))
3690 insert_insn_on_edge (copy_insn (pat), e);
3693 if (gcse_file != NULL)
3695 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d "
3696 "in jump_insn %d equals constant ",
3697 regno, INSN_UID (jump));
3698 print_rtl (gcse_file, SET_SRC (set->expr));
3699 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
3700 e->src->index, old_dest->index, dest->index);
3702 change = 1;
3703 break;
3707 return change;
3710 /* Find basic blocks with more than one predecessor that only contain a
3711 single conditional jump. If the result of the comparison is known at
3712 compile-time from any incoming edge, redirect that edge to the
3713 appropriate target. Returns nonzero if a change was made.
3715 This function is now mis-named, because we also handle indirect jumps. */
3717 static int
3718 bypass_conditional_jumps (void)
3720 basic_block bb;
3721 int changed;
3722 rtx setcc;
3723 rtx insn;
3724 rtx dest;
3726 /* Note we start at block 1. */
3727 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3728 return 0;
3730 bypass_last_basic_block = last_basic_block;
3731 mark_dfs_back_edges ();
3733 changed = 0;
3734 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3735 EXIT_BLOCK_PTR, next_bb)
3737 /* Check for more than one predecessor. */
3738 if (bb->pred && bb->pred->pred_next)
3740 setcc = NULL_RTX;
3741 for (insn = BB_HEAD (bb);
3742 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3743 insn = NEXT_INSN (insn))
3744 if (NONJUMP_INSN_P (insn))
3746 if (setcc)
3747 break;
3748 if (GET_CODE (PATTERN (insn)) != SET)
3749 break;
3751 dest = SET_DEST (PATTERN (insn));
3752 if (REG_P (dest) || CC0_P (dest))
3753 setcc = insn;
3754 else
3755 break;
3757 else if (JUMP_P (insn))
3759 if ((any_condjump_p (insn) || computed_jump_p (insn))
3760 && onlyjump_p (insn))
3761 changed |= bypass_block (bb, setcc, insn);
3762 break;
3764 else if (INSN_P (insn))
3765 break;
3769 /* If we bypassed any register setting insns, we inserted a
3770 copy on the redirected edge. These need to be committed. */
3771 if (changed)
3772 commit_edge_insertions();
3774 return changed;
3777 /* Compute PRE+LCM working variables. */
3779 /* Local properties of expressions. */
3780 /* Nonzero for expressions that are transparent in the block. */
3781 static sbitmap *transp;
3783 /* Nonzero for expressions that are transparent at the end of the block.
3784 This is only zero for expressions killed by abnormal critical edge
3785 created by a calls. */
3786 static sbitmap *transpout;
3788 /* Nonzero for expressions that are computed (available) in the block. */
3789 static sbitmap *comp;
3791 /* Nonzero for expressions that are locally anticipatable in the block. */
3792 static sbitmap *antloc;
3794 /* Nonzero for expressions where this block is an optimal computation
3795 point. */
3796 static sbitmap *pre_optimal;
3798 /* Nonzero for expressions which are redundant in a particular block. */
3799 static sbitmap *pre_redundant;
3801 /* Nonzero for expressions which should be inserted on a specific edge. */
3802 static sbitmap *pre_insert_map;
3804 /* Nonzero for expressions which should be deleted in a specific block. */
3805 static sbitmap *pre_delete_map;
3807 /* Contains the edge_list returned by pre_edge_lcm. */
3808 static struct edge_list *edge_list;
3810 /* Redundant insns. */
3811 static sbitmap pre_redundant_insns;
3813 /* Allocate vars used for PRE analysis. */
3815 static void
3816 alloc_pre_mem (int n_blocks, int n_exprs)
3818 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3819 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3820 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3822 pre_optimal = NULL;
3823 pre_redundant = NULL;
3824 pre_insert_map = NULL;
3825 pre_delete_map = NULL;
3826 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3828 /* pre_insert and pre_delete are allocated later. */
3831 /* Free vars used for PRE analysis. */
3833 static void
3834 free_pre_mem (void)
3836 sbitmap_vector_free (transp);
3837 sbitmap_vector_free (comp);
3839 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3841 if (pre_optimal)
3842 sbitmap_vector_free (pre_optimal);
3843 if (pre_redundant)
3844 sbitmap_vector_free (pre_redundant);
3845 if (pre_insert_map)
3846 sbitmap_vector_free (pre_insert_map);
3847 if (pre_delete_map)
3848 sbitmap_vector_free (pre_delete_map);
3850 transp = comp = NULL;
3851 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3854 /* Top level routine to do the dataflow analysis needed by PRE. */
3856 static void
3857 compute_pre_data (void)
3859 sbitmap trapping_expr;
3860 basic_block bb;
3861 unsigned int ui;
3863 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3864 sbitmap_vector_zero (ae_kill, last_basic_block);
3866 /* Collect expressions which might trap. */
3867 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3868 sbitmap_zero (trapping_expr);
3869 for (ui = 0; ui < expr_hash_table.size; ui++)
3871 struct expr *e;
3872 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3873 if (may_trap_p (e->expr))
3874 SET_BIT (trapping_expr, e->bitmap_index);
3877 /* Compute ae_kill for each basic block using:
3879 ~(TRANSP | COMP)
3882 FOR_EACH_BB (bb)
3884 edge e;
3886 /* If the current block is the destination of an abnormal edge, we
3887 kill all trapping expressions because we won't be able to properly
3888 place the instruction on the edge. So make them neither
3889 anticipatable nor transparent. This is fairly conservative. */
3890 for (e = bb->pred; e ; e = e->pred_next)
3891 if (e->flags & EDGE_ABNORMAL)
3893 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3894 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3895 break;
3898 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3899 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3902 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
3903 ae_kill, &pre_insert_map, &pre_delete_map);
3904 sbitmap_vector_free (antloc);
3905 antloc = NULL;
3906 sbitmap_vector_free (ae_kill);
3907 ae_kill = NULL;
3908 sbitmap_free (trapping_expr);
3911 /* PRE utilities */
3913 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3914 block BB.
3916 VISITED is a pointer to a working buffer for tracking which BB's have
3917 been visited. It is NULL for the top-level call.
3919 We treat reaching expressions that go through blocks containing the same
3920 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3921 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3922 2 as not reaching. The intent is to improve the probability of finding
3923 only one reaching expression and to reduce register lifetimes by picking
3924 the closest such expression. */
3926 static int
3927 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3929 edge pred;
3931 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
3933 basic_block pred_bb = pred->src;
3935 if (pred->src == ENTRY_BLOCK_PTR
3936 /* Has predecessor has already been visited? */
3937 || visited[pred_bb->index])
3938 ;/* Nothing to do. */
3940 /* Does this predecessor generate this expression? */
3941 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3943 /* Is this the occurrence we're looking for?
3944 Note that there's only one generating occurrence per block
3945 so we just need to check the block number. */
3946 if (occr_bb == pred_bb)
3947 return 1;
3949 visited[pred_bb->index] = 1;
3951 /* Ignore this predecessor if it kills the expression. */
3952 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3953 visited[pred_bb->index] = 1;
3955 /* Neither gen nor kill. */
3956 else
3958 visited[pred_bb->index] = 1;
3959 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3960 return 1;
3964 /* All paths have been checked. */
3965 return 0;
3968 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3969 memory allocated for that function is returned. */
3971 static int
3972 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3974 int rval;
3975 char *visited = xcalloc (last_basic_block, 1);
3977 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3979 free (visited);
3980 return rval;
3984 /* Given an expr, generate RTL which we can insert at the end of a BB,
3985 or on an edge. Set the block number of any insns generated to
3986 the value of BB. */
3988 static rtx
3989 process_insert_insn (struct expr *expr)
3991 rtx reg = expr->reaching_reg;
3992 rtx exp = copy_rtx (expr->expr);
3993 rtx pat;
3995 start_sequence ();
3997 /* If the expression is something that's an operand, like a constant,
3998 just copy it to a register. */
3999 if (general_operand (exp, GET_MODE (reg)))
4000 emit_move_insn (reg, exp);
4002 /* Otherwise, make a new insn to compute this expression and make sure the
4003 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4004 expression to make sure we don't have any sharing issues. */
4005 else
4007 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
4009 gcc_assert (!insn_invalid_p (insn));
4013 pat = get_insns ();
4014 end_sequence ();
4016 return pat;
4019 /* Add EXPR to the end of basic block BB.
4021 This is used by both the PRE and code hoisting.
4023 For PRE, we want to verify that the expr is either transparent
4024 or locally anticipatable in the target block. This check makes
4025 no sense for code hoisting. */
4027 static void
4028 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
4030 rtx insn = BB_END (bb);
4031 rtx new_insn;
4032 rtx reg = expr->reaching_reg;
4033 int regno = REGNO (reg);
4034 rtx pat, pat_end;
4036 pat = process_insert_insn (expr);
4037 gcc_assert (pat && INSN_P (pat));
4039 pat_end = pat;
4040 while (NEXT_INSN (pat_end) != NULL_RTX)
4041 pat_end = NEXT_INSN (pat_end);
4043 /* If the last insn is a jump, insert EXPR in front [taking care to
4044 handle cc0, etc. properly]. Similarly we need to care trapping
4045 instructions in presence of non-call exceptions. */
4047 if (JUMP_P (insn)
4048 || (NONJUMP_INSN_P (insn)
4049 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
4051 #ifdef HAVE_cc0
4052 rtx note;
4053 #endif
4054 /* It should always be the case that we can put these instructions
4055 anywhere in the basic block with performing PRE optimizations.
4056 Check this. */
4057 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4058 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4059 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4061 /* If this is a jump table, then we can't insert stuff here. Since
4062 we know the previous real insn must be the tablejump, we insert
4063 the new instruction just before the tablejump. */
4064 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4065 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4066 insn = prev_real_insn (insn);
4068 #ifdef HAVE_cc0
4069 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4070 if cc0 isn't set. */
4071 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4072 if (note)
4073 insn = XEXP (note, 0);
4074 else
4076 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4077 if (maybe_cc0_setter
4078 && INSN_P (maybe_cc0_setter)
4079 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4080 insn = maybe_cc0_setter;
4082 #endif
4083 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4084 new_insn = emit_insn_before (pat, insn);
4087 /* Likewise if the last insn is a call, as will happen in the presence
4088 of exception handling. */
4089 else if (CALL_P (insn)
4090 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
4092 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4093 we search backward and place the instructions before the first
4094 parameter is loaded. Do this for everyone for consistency and a
4095 presumption that we'll get better code elsewhere as well.
4097 It should always be the case that we can put these instructions
4098 anywhere in the basic block with performing PRE optimizations.
4099 Check this. */
4101 gcc_assert (!pre
4102 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4103 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4105 /* Since different machines initialize their parameter registers
4106 in different orders, assume nothing. Collect the set of all
4107 parameter registers. */
4108 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4110 /* If we found all the parameter loads, then we want to insert
4111 before the first parameter load.
4113 If we did not find all the parameter loads, then we might have
4114 stopped on the head of the block, which could be a CODE_LABEL.
4115 If we inserted before the CODE_LABEL, then we would be putting
4116 the insn in the wrong basic block. In that case, put the insn
4117 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4118 while (LABEL_P (insn)
4119 || NOTE_INSN_BASIC_BLOCK_P (insn))
4120 insn = NEXT_INSN (insn);
4122 new_insn = emit_insn_before (pat, insn);
4124 else
4125 new_insn = emit_insn_after (pat, insn);
4127 while (1)
4129 if (INSN_P (pat))
4131 add_label_notes (PATTERN (pat), new_insn);
4132 note_stores (PATTERN (pat), record_set_info, pat);
4134 if (pat == pat_end)
4135 break;
4136 pat = NEXT_INSN (pat);
4139 gcse_create_count++;
4141 if (gcse_file)
4143 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4144 bb->index, INSN_UID (new_insn));
4145 fprintf (gcse_file, "copying expression %d to reg %d\n",
4146 expr->bitmap_index, regno);
4150 /* Insert partially redundant expressions on edges in the CFG to make
4151 the expressions fully redundant. */
4153 static int
4154 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4156 int e, i, j, num_edges, set_size, did_insert = 0;
4157 sbitmap *inserted;
4159 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4160 if it reaches any of the deleted expressions. */
4162 set_size = pre_insert_map[0]->size;
4163 num_edges = NUM_EDGES (edge_list);
4164 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4165 sbitmap_vector_zero (inserted, num_edges);
4167 for (e = 0; e < num_edges; e++)
4169 int indx;
4170 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4172 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4174 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4176 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4177 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4179 struct expr *expr = index_map[j];
4180 struct occr *occr;
4182 /* Now look at each deleted occurrence of this expression. */
4183 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4185 if (! occr->deleted_p)
4186 continue;
4188 /* Insert this expression on this edge if if it would
4189 reach the deleted occurrence in BB. */
4190 if (!TEST_BIT (inserted[e], j))
4192 rtx insn;
4193 edge eg = INDEX_EDGE (edge_list, e);
4195 /* We can't insert anything on an abnormal and
4196 critical edge, so we insert the insn at the end of
4197 the previous block. There are several alternatives
4198 detailed in Morgans book P277 (sec 10.5) for
4199 handling this situation. This one is easiest for
4200 now. */
4202 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
4203 insert_insn_end_bb (index_map[j], bb, 0);
4204 else
4206 insn = process_insert_insn (index_map[j]);
4207 insert_insn_on_edge (insn, eg);
4210 if (gcse_file)
4212 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4213 bb->index,
4214 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4215 fprintf (gcse_file, "copy expression %d\n",
4216 expr->bitmap_index);
4219 update_ld_motion_stores (expr);
4220 SET_BIT (inserted[e], j);
4221 did_insert = 1;
4222 gcse_create_count++;
4229 sbitmap_vector_free (inserted);
4230 return did_insert;
4233 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4234 Given "old_reg <- expr" (INSN), instead of adding after it
4235 reaching_reg <- old_reg
4236 it's better to do the following:
4237 reaching_reg <- expr
4238 old_reg <- reaching_reg
4239 because this way copy propagation can discover additional PRE
4240 opportunities. But if this fails, we try the old way.
4241 When "expr" is a store, i.e.
4242 given "MEM <- old_reg", instead of adding after it
4243 reaching_reg <- old_reg
4244 it's better to add it before as follows:
4245 reaching_reg <- old_reg
4246 MEM <- reaching_reg. */
4248 static void
4249 pre_insert_copy_insn (struct expr *expr, rtx insn)
4251 rtx reg = expr->reaching_reg;
4252 int regno = REGNO (reg);
4253 int indx = expr->bitmap_index;
4254 rtx pat = PATTERN (insn);
4255 rtx set, new_insn;
4256 rtx old_reg;
4257 int i;
4259 /* This block matches the logic in hash_scan_insn. */
4260 switch (GET_CODE (pat))
4262 case SET:
4263 set = pat;
4264 break;
4266 case PARALLEL:
4267 /* Search through the parallel looking for the set whose
4268 source was the expression that we're interested in. */
4269 set = NULL_RTX;
4270 for (i = 0; i < XVECLEN (pat, 0); i++)
4272 rtx x = XVECEXP (pat, 0, i);
4273 if (GET_CODE (x) == SET
4274 && expr_equiv_p (SET_SRC (x), expr->expr))
4276 set = x;
4277 break;
4280 break;
4282 default:
4283 gcc_unreachable ();
4286 if (REG_P (SET_DEST (set)))
4288 old_reg = SET_DEST (set);
4289 /* Check if we can modify the set destination in the original insn. */
4290 if (validate_change (insn, &SET_DEST (set), reg, 0))
4292 new_insn = gen_move_insn (old_reg, reg);
4293 new_insn = emit_insn_after (new_insn, insn);
4295 /* Keep register set table up to date. */
4296 replace_one_set (REGNO (old_reg), insn, new_insn);
4297 record_one_set (regno, insn);
4299 else
4301 new_insn = gen_move_insn (reg, old_reg);
4302 new_insn = emit_insn_after (new_insn, insn);
4304 /* Keep register set table up to date. */
4305 record_one_set (regno, new_insn);
4308 else /* This is possible only in case of a store to memory. */
4310 old_reg = SET_SRC (set);
4311 new_insn = gen_move_insn (reg, old_reg);
4313 /* Check if we can modify the set source in the original insn. */
4314 if (validate_change (insn, &SET_SRC (set), reg, 0))
4315 new_insn = emit_insn_before (new_insn, insn);
4316 else
4317 new_insn = emit_insn_after (new_insn, insn);
4319 /* Keep register set table up to date. */
4320 record_one_set (regno, new_insn);
4323 gcse_create_count++;
4325 if (gcse_file)
4326 fprintf (gcse_file,
4327 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4328 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4329 INSN_UID (insn), regno);
4332 /* Copy available expressions that reach the redundant expression
4333 to `reaching_reg'. */
4335 static void
4336 pre_insert_copies (void)
4338 unsigned int i, added_copy;
4339 struct expr *expr;
4340 struct occr *occr;
4341 struct occr *avail;
4343 /* For each available expression in the table, copy the result to
4344 `reaching_reg' if the expression reaches a deleted one.
4346 ??? The current algorithm is rather brute force.
4347 Need to do some profiling. */
4349 for (i = 0; i < expr_hash_table.size; i++)
4350 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4352 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4353 we don't want to insert a copy here because the expression may not
4354 really be redundant. So only insert an insn if the expression was
4355 deleted. This test also avoids further processing if the
4356 expression wasn't deleted anywhere. */
4357 if (expr->reaching_reg == NULL)
4358 continue;
4360 /* Set when we add a copy for that expression. */
4361 added_copy = 0;
4363 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4365 if (! occr->deleted_p)
4366 continue;
4368 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4370 rtx insn = avail->insn;
4372 /* No need to handle this one if handled already. */
4373 if (avail->copied_p)
4374 continue;
4376 /* Don't handle this one if it's a redundant one. */
4377 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4378 continue;
4380 /* Or if the expression doesn't reach the deleted one. */
4381 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4382 expr,
4383 BLOCK_FOR_INSN (occr->insn)))
4384 continue;
4386 added_copy = 1;
4388 /* Copy the result of avail to reaching_reg. */
4389 pre_insert_copy_insn (expr, insn);
4390 avail->copied_p = 1;
4394 if (added_copy)
4395 update_ld_motion_stores (expr);
4399 /* Emit move from SRC to DEST noting the equivalence with expression computed
4400 in INSN. */
4401 static rtx
4402 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4404 rtx new;
4405 rtx set = single_set (insn), set2;
4406 rtx note;
4407 rtx eqv;
4409 /* This should never fail since we're creating a reg->reg copy
4410 we've verified to be valid. */
4412 new = emit_insn_after (gen_move_insn (dest, src), insn);
4414 /* Note the equivalence for local CSE pass. */
4415 set2 = single_set (new);
4416 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4417 return new;
4418 if ((note = find_reg_equal_equiv_note (insn)))
4419 eqv = XEXP (note, 0);
4420 else
4421 eqv = SET_SRC (set);
4423 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4425 return new;
4428 /* Delete redundant computations.
4429 Deletion is done by changing the insn to copy the `reaching_reg' of
4430 the expression into the result of the SET. It is left to later passes
4431 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4433 Returns nonzero if a change is made. */
4435 static int
4436 pre_delete (void)
4438 unsigned int i;
4439 int changed;
4440 struct expr *expr;
4441 struct occr *occr;
4443 changed = 0;
4444 for (i = 0; i < expr_hash_table.size; i++)
4445 for (expr = expr_hash_table.table[i];
4446 expr != NULL;
4447 expr = expr->next_same_hash)
4449 int indx = expr->bitmap_index;
4451 /* We only need to search antic_occr since we require
4452 ANTLOC != 0. */
4454 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4456 rtx insn = occr->insn;
4457 rtx set;
4458 basic_block bb = BLOCK_FOR_INSN (insn);
4460 /* We only delete insns that have a single_set. */
4461 if (TEST_BIT (pre_delete_map[bb->index], indx)
4462 && (set = single_set (insn)) != 0)
4464 /* Create a pseudo-reg to store the result of reaching
4465 expressions into. Get the mode for the new pseudo from
4466 the mode of the original destination pseudo. */
4467 if (expr->reaching_reg == NULL)
4468 expr->reaching_reg
4469 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4471 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4472 delete_insn (insn);
4473 occr->deleted_p = 1;
4474 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4475 changed = 1;
4476 gcse_subst_count++;
4478 if (gcse_file)
4480 fprintf (gcse_file,
4481 "PRE: redundant insn %d (expression %d) in ",
4482 INSN_UID (insn), indx);
4483 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4484 bb->index, REGNO (expr->reaching_reg));
4490 return changed;
4493 /* Perform GCSE optimizations using PRE.
4494 This is called by one_pre_gcse_pass after all the dataflow analysis
4495 has been done.
4497 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4498 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4499 Compiler Design and Implementation.
4501 ??? A new pseudo reg is created to hold the reaching expression. The nice
4502 thing about the classical approach is that it would try to use an existing
4503 reg. If the register can't be adequately optimized [i.e. we introduce
4504 reload problems], one could add a pass here to propagate the new register
4505 through the block.
4507 ??? We don't handle single sets in PARALLELs because we're [currently] not
4508 able to copy the rest of the parallel when we insert copies to create full
4509 redundancies from partial redundancies. However, there's no reason why we
4510 can't handle PARALLELs in the cases where there are no partial
4511 redundancies. */
4513 static int
4514 pre_gcse (void)
4516 unsigned int i;
4517 int did_insert, changed;
4518 struct expr **index_map;
4519 struct expr *expr;
4521 /* Compute a mapping from expression number (`bitmap_index') to
4522 hash table entry. */
4524 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4525 for (i = 0; i < expr_hash_table.size; i++)
4526 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4527 index_map[expr->bitmap_index] = expr;
4529 /* Reset bitmap used to track which insns are redundant. */
4530 pre_redundant_insns = sbitmap_alloc (max_cuid);
4531 sbitmap_zero (pre_redundant_insns);
4533 /* Delete the redundant insns first so that
4534 - we know what register to use for the new insns and for the other
4535 ones with reaching expressions
4536 - we know which insns are redundant when we go to create copies */
4538 changed = pre_delete ();
4540 did_insert = pre_edge_insert (edge_list, index_map);
4542 /* In other places with reaching expressions, copy the expression to the
4543 specially allocated pseudo-reg that reaches the redundant expr. */
4544 pre_insert_copies ();
4545 if (did_insert)
4547 commit_edge_insertions ();
4548 changed = 1;
4551 free (index_map);
4552 sbitmap_free (pre_redundant_insns);
4553 return changed;
4556 /* Top level routine to perform one PRE GCSE pass.
4558 Return nonzero if a change was made. */
4560 static int
4561 one_pre_gcse_pass (int pass)
4563 int changed = 0;
4565 gcse_subst_count = 0;
4566 gcse_create_count = 0;
4568 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4569 add_noreturn_fake_exit_edges ();
4570 if (flag_gcse_lm)
4571 compute_ld_motion_mems ();
4573 compute_hash_table (&expr_hash_table);
4574 trim_ld_motion_mems ();
4575 if (gcse_file)
4576 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
4578 if (expr_hash_table.n_elems > 0)
4580 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4581 compute_pre_data ();
4582 changed |= pre_gcse ();
4583 free_edge_list (edge_list);
4584 free_pre_mem ();
4587 free_ldst_mems ();
4588 remove_fake_exit_edges ();
4589 free_hash_table (&expr_hash_table);
4591 if (gcse_file)
4593 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4594 current_function_name (), pass, bytes_used);
4595 fprintf (gcse_file, "%d substs, %d insns created\n",
4596 gcse_subst_count, gcse_create_count);
4599 return changed;
4602 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4603 If notes are added to an insn which references a CODE_LABEL, the
4604 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4605 because the following loop optimization pass requires them. */
4607 /* ??? This is very similar to the loop.c add_label_notes function. We
4608 could probably share code here. */
4610 /* ??? If there was a jump optimization pass after gcse and before loop,
4611 then we would not need to do this here, because jump would add the
4612 necessary REG_LABEL notes. */
4614 static void
4615 add_label_notes (rtx x, rtx insn)
4617 enum rtx_code code = GET_CODE (x);
4618 int i, j;
4619 const char *fmt;
4621 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4623 /* This code used to ignore labels that referred to dispatch tables to
4624 avoid flow generating (slightly) worse code.
4626 We no longer ignore such label references (see LABEL_REF handling in
4627 mark_jump_label for additional information). */
4629 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4630 REG_NOTES (insn));
4631 if (LABEL_P (XEXP (x, 0)))
4632 LABEL_NUSES (XEXP (x, 0))++;
4633 return;
4636 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4638 if (fmt[i] == 'e')
4639 add_label_notes (XEXP (x, i), insn);
4640 else if (fmt[i] == 'E')
4641 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4642 add_label_notes (XVECEXP (x, i, j), insn);
4646 /* Compute transparent outgoing information for each block.
4648 An expression is transparent to an edge unless it is killed by
4649 the edge itself. This can only happen with abnormal control flow,
4650 when the edge is traversed through a call. This happens with
4651 non-local labels and exceptions.
4653 This would not be necessary if we split the edge. While this is
4654 normally impossible for abnormal critical edges, with some effort
4655 it should be possible with exception handling, since we still have
4656 control over which handler should be invoked. But due to increased
4657 EH table sizes, this may not be worthwhile. */
4659 static void
4660 compute_transpout (void)
4662 basic_block bb;
4663 unsigned int i;
4664 struct expr *expr;
4666 sbitmap_vector_ones (transpout, last_basic_block);
4668 FOR_EACH_BB (bb)
4670 /* Note that flow inserted a nop a the end of basic blocks that
4671 end in call instructions for reasons other than abnormal
4672 control flow. */
4673 if (! CALL_P (BB_END (bb)))
4674 continue;
4676 for (i = 0; i < expr_hash_table.size; i++)
4677 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4678 if (MEM_P (expr->expr))
4680 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4681 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4682 continue;
4684 /* ??? Optimally, we would use interprocedural alias
4685 analysis to determine if this mem is actually killed
4686 by this call. */
4687 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4692 /* Code Hoisting variables and subroutines. */
4694 /* Very busy expressions. */
4695 static sbitmap *hoist_vbein;
4696 static sbitmap *hoist_vbeout;
4698 /* Hoistable expressions. */
4699 static sbitmap *hoist_exprs;
4701 /* ??? We could compute post dominators and run this algorithm in
4702 reverse to perform tail merging, doing so would probably be
4703 more effective than the tail merging code in jump.c.
4705 It's unclear if tail merging could be run in parallel with
4706 code hoisting. It would be nice. */
4708 /* Allocate vars used for code hoisting analysis. */
4710 static void
4711 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4713 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4714 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4715 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4717 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4718 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4719 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4720 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4723 /* Free vars used for code hoisting analysis. */
4725 static void
4726 free_code_hoist_mem (void)
4728 sbitmap_vector_free (antloc);
4729 sbitmap_vector_free (transp);
4730 sbitmap_vector_free (comp);
4732 sbitmap_vector_free (hoist_vbein);
4733 sbitmap_vector_free (hoist_vbeout);
4734 sbitmap_vector_free (hoist_exprs);
4735 sbitmap_vector_free (transpout);
4737 free_dominance_info (CDI_DOMINATORS);
4740 /* Compute the very busy expressions at entry/exit from each block.
4742 An expression is very busy if all paths from a given point
4743 compute the expression. */
4745 static void
4746 compute_code_hoist_vbeinout (void)
4748 int changed, passes;
4749 basic_block bb;
4751 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4752 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4754 passes = 0;
4755 changed = 1;
4757 while (changed)
4759 changed = 0;
4761 /* We scan the blocks in the reverse order to speed up
4762 the convergence. */
4763 FOR_EACH_BB_REVERSE (bb)
4765 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4766 hoist_vbeout[bb->index], transp[bb->index]);
4767 if (bb->next_bb != EXIT_BLOCK_PTR)
4768 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4771 passes++;
4774 if (gcse_file)
4775 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
4778 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4780 static void
4781 compute_code_hoist_data (void)
4783 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4784 compute_transpout ();
4785 compute_code_hoist_vbeinout ();
4786 calculate_dominance_info (CDI_DOMINATORS);
4787 if (gcse_file)
4788 fprintf (gcse_file, "\n");
4791 /* Determine if the expression identified by EXPR_INDEX would
4792 reach BB unimpared if it was placed at the end of EXPR_BB.
4794 It's unclear exactly what Muchnick meant by "unimpared". It seems
4795 to me that the expression must either be computed or transparent in
4796 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4797 would allow the expression to be hoisted out of loops, even if
4798 the expression wasn't a loop invariant.
4800 Contrast this to reachability for PRE where an expression is
4801 considered reachable if *any* path reaches instead of *all*
4802 paths. */
4804 static int
4805 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4807 edge pred;
4808 int visited_allocated_locally = 0;
4811 if (visited == NULL)
4813 visited_allocated_locally = 1;
4814 visited = xcalloc (last_basic_block, 1);
4817 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
4819 basic_block pred_bb = pred->src;
4821 if (pred->src == ENTRY_BLOCK_PTR)
4822 break;
4823 else if (pred_bb == expr_bb)
4824 continue;
4825 else if (visited[pred_bb->index])
4826 continue;
4828 /* Does this predecessor generate this expression? */
4829 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4830 break;
4831 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4832 break;
4834 /* Not killed. */
4835 else
4837 visited[pred_bb->index] = 1;
4838 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4839 pred_bb, visited))
4840 break;
4843 if (visited_allocated_locally)
4844 free (visited);
4846 return (pred == NULL);
4849 /* Actually perform code hoisting. */
4851 static void
4852 hoist_code (void)
4854 basic_block bb, dominated;
4855 basic_block *domby;
4856 unsigned int domby_len;
4857 unsigned int i,j;
4858 struct expr **index_map;
4859 struct expr *expr;
4861 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4863 /* Compute a mapping from expression number (`bitmap_index') to
4864 hash table entry. */
4866 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4867 for (i = 0; i < expr_hash_table.size; i++)
4868 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4869 index_map[expr->bitmap_index] = expr;
4871 /* Walk over each basic block looking for potentially hoistable
4872 expressions, nothing gets hoisted from the entry block. */
4873 FOR_EACH_BB (bb)
4875 int found = 0;
4876 int insn_inserted_p;
4878 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4879 /* Examine each expression that is very busy at the exit of this
4880 block. These are the potentially hoistable expressions. */
4881 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4883 int hoistable = 0;
4885 if (TEST_BIT (hoist_vbeout[bb->index], i)
4886 && TEST_BIT (transpout[bb->index], i))
4888 /* We've found a potentially hoistable expression, now
4889 we look at every block BB dominates to see if it
4890 computes the expression. */
4891 for (j = 0; j < domby_len; j++)
4893 dominated = domby[j];
4894 /* Ignore self dominance. */
4895 if (bb == dominated)
4896 continue;
4897 /* We've found a dominated block, now see if it computes
4898 the busy expression and whether or not moving that
4899 expression to the "beginning" of that block is safe. */
4900 if (!TEST_BIT (antloc[dominated->index], i))
4901 continue;
4903 /* Note if the expression would reach the dominated block
4904 unimpared if it was placed at the end of BB.
4906 Keep track of how many times this expression is hoistable
4907 from a dominated block into BB. */
4908 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4909 hoistable++;
4912 /* If we found more than one hoistable occurrence of this
4913 expression, then note it in the bitmap of expressions to
4914 hoist. It makes no sense to hoist things which are computed
4915 in only one BB, and doing so tends to pessimize register
4916 allocation. One could increase this value to try harder
4917 to avoid any possible code expansion due to register
4918 allocation issues; however experiments have shown that
4919 the vast majority of hoistable expressions are only movable
4920 from two successors, so raising this threshold is likely
4921 to nullify any benefit we get from code hoisting. */
4922 if (hoistable > 1)
4924 SET_BIT (hoist_exprs[bb->index], i);
4925 found = 1;
4929 /* If we found nothing to hoist, then quit now. */
4930 if (! found)
4932 free (domby);
4933 continue;
4936 /* Loop over all the hoistable expressions. */
4937 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4939 /* We want to insert the expression into BB only once, so
4940 note when we've inserted it. */
4941 insn_inserted_p = 0;
4943 /* These tests should be the same as the tests above. */
4944 if (TEST_BIT (hoist_vbeout[bb->index], i))
4946 /* We've found a potentially hoistable expression, now
4947 we look at every block BB dominates to see if it
4948 computes the expression. */
4949 for (j = 0; j < domby_len; j++)
4951 dominated = domby[j];
4952 /* Ignore self dominance. */
4953 if (bb == dominated)
4954 continue;
4956 /* We've found a dominated block, now see if it computes
4957 the busy expression and whether or not moving that
4958 expression to the "beginning" of that block is safe. */
4959 if (!TEST_BIT (antloc[dominated->index], i))
4960 continue;
4962 /* The expression is computed in the dominated block and
4963 it would be safe to compute it at the start of the
4964 dominated block. Now we have to determine if the
4965 expression would reach the dominated block if it was
4966 placed at the end of BB. */
4967 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4969 struct expr *expr = index_map[i];
4970 struct occr *occr = expr->antic_occr;
4971 rtx insn;
4972 rtx set;
4974 /* Find the right occurrence of this expression. */
4975 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4976 occr = occr->next;
4978 gcc_assert (occr);
4979 insn = occr->insn;
4980 set = single_set (insn);
4981 gcc_assert (set);
4983 /* Create a pseudo-reg to store the result of reaching
4984 expressions into. Get the mode for the new pseudo
4985 from the mode of the original destination pseudo. */
4986 if (expr->reaching_reg == NULL)
4987 expr->reaching_reg
4988 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4990 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4991 delete_insn (insn);
4992 occr->deleted_p = 1;
4993 if (!insn_inserted_p)
4995 insert_insn_end_bb (index_map[i], bb, 0);
4996 insn_inserted_p = 1;
5002 free (domby);
5005 free (index_map);
5008 /* Top level routine to perform one code hoisting (aka unification) pass
5010 Return nonzero if a change was made. */
5012 static int
5013 one_code_hoisting_pass (void)
5015 int changed = 0;
5017 alloc_hash_table (max_cuid, &expr_hash_table, 0);
5018 compute_hash_table (&expr_hash_table);
5019 if (gcse_file)
5020 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
5022 if (expr_hash_table.n_elems > 0)
5024 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
5025 compute_code_hoist_data ();
5026 hoist_code ();
5027 free_code_hoist_mem ();
5030 free_hash_table (&expr_hash_table);
5032 return changed;
5035 /* Here we provide the things required to do store motion towards
5036 the exit. In order for this to be effective, gcse also needed to
5037 be taught how to move a load when it is kill only by a store to itself.
5039 int i;
5040 float a[10];
5042 void foo(float scale)
5044 for (i=0; i<10; i++)
5045 a[i] *= scale;
5048 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5049 the load out since its live around the loop, and stored at the bottom
5050 of the loop.
5052 The 'Load Motion' referred to and implemented in this file is
5053 an enhancement to gcse which when using edge based lcm, recognizes
5054 this situation and allows gcse to move the load out of the loop.
5056 Once gcse has hoisted the load, store motion can then push this
5057 load towards the exit, and we end up with no loads or stores of 'i'
5058 in the loop. */
5060 /* This will search the ldst list for a matching expression. If it
5061 doesn't find one, we create one and initialize it. */
5063 static struct ls_expr *
5064 ldst_entry (rtx x)
5066 int do_not_record_p = 0;
5067 struct ls_expr * ptr;
5068 unsigned int hash;
5070 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5071 NULL, /*have_reg_qty=*/false);
5073 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5074 if (ptr->hash_index == hash && expr_equiv_p (ptr->pattern, x))
5075 return ptr;
5077 ptr = xmalloc (sizeof (struct ls_expr));
5079 ptr->next = pre_ldst_mems;
5080 ptr->expr = NULL;
5081 ptr->pattern = x;
5082 ptr->pattern_regs = NULL_RTX;
5083 ptr->loads = NULL_RTX;
5084 ptr->stores = NULL_RTX;
5085 ptr->reaching_reg = NULL_RTX;
5086 ptr->invalid = 0;
5087 ptr->index = 0;
5088 ptr->hash_index = hash;
5089 pre_ldst_mems = ptr;
5091 return ptr;
5094 /* Free up an individual ldst entry. */
5096 static void
5097 free_ldst_entry (struct ls_expr * ptr)
5099 free_INSN_LIST_list (& ptr->loads);
5100 free_INSN_LIST_list (& ptr->stores);
5102 free (ptr);
5105 /* Free up all memory associated with the ldst list. */
5107 static void
5108 free_ldst_mems (void)
5110 while (pre_ldst_mems)
5112 struct ls_expr * tmp = pre_ldst_mems;
5114 pre_ldst_mems = pre_ldst_mems->next;
5116 free_ldst_entry (tmp);
5119 pre_ldst_mems = NULL;
5122 /* Dump debugging info about the ldst list. */
5124 static void
5125 print_ldst_list (FILE * file)
5127 struct ls_expr * ptr;
5129 fprintf (file, "LDST list: \n");
5131 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5133 fprintf (file, " Pattern (%3d): ", ptr->index);
5135 print_rtl (file, ptr->pattern);
5137 fprintf (file, "\n Loads : ");
5139 if (ptr->loads)
5140 print_rtl (file, ptr->loads);
5141 else
5142 fprintf (file, "(nil)");
5144 fprintf (file, "\n Stores : ");
5146 if (ptr->stores)
5147 print_rtl (file, ptr->stores);
5148 else
5149 fprintf (file, "(nil)");
5151 fprintf (file, "\n\n");
5154 fprintf (file, "\n");
5157 /* Returns 1 if X is in the list of ldst only expressions. */
5159 static struct ls_expr *
5160 find_rtx_in_ldst (rtx x)
5162 struct ls_expr * ptr;
5164 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5165 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
5166 return ptr;
5168 return NULL;
5171 /* Assign each element of the list of mems a monotonically increasing value. */
5173 static int
5174 enumerate_ldsts (void)
5176 struct ls_expr * ptr;
5177 int n = 0;
5179 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5180 ptr->index = n++;
5182 return n;
5185 /* Return first item in the list. */
5187 static inline struct ls_expr *
5188 first_ls_expr (void)
5190 return pre_ldst_mems;
5193 /* Return the next item in the list after the specified one. */
5195 static inline struct ls_expr *
5196 next_ls_expr (struct ls_expr * ptr)
5198 return ptr->next;
5201 /* Load Motion for loads which only kill themselves. */
5203 /* Return true if x is a simple MEM operation, with no registers or
5204 side effects. These are the types of loads we consider for the
5205 ld_motion list, otherwise we let the usual aliasing take care of it. */
5207 static int
5208 simple_mem (rtx x)
5210 if (! MEM_P (x))
5211 return 0;
5213 if (MEM_VOLATILE_P (x))
5214 return 0;
5216 if (GET_MODE (x) == BLKmode)
5217 return 0;
5219 /* If we are handling exceptions, we must be careful with memory references
5220 that may trap. If we are not, the behavior is undefined, so we may just
5221 continue. */
5222 if (flag_non_call_exceptions && may_trap_p (x))
5223 return 0;
5225 if (side_effects_p (x))
5226 return 0;
5228 /* Do not consider function arguments passed on stack. */
5229 if (reg_mentioned_p (stack_pointer_rtx, x))
5230 return 0;
5232 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5233 return 0;
5235 return 1;
5238 /* Make sure there isn't a buried reference in this pattern anywhere.
5239 If there is, invalidate the entry for it since we're not capable
5240 of fixing it up just yet.. We have to be sure we know about ALL
5241 loads since the aliasing code will allow all entries in the
5242 ld_motion list to not-alias itself. If we miss a load, we will get
5243 the wrong value since gcse might common it and we won't know to
5244 fix it up. */
5246 static void
5247 invalidate_any_buried_refs (rtx x)
5249 const char * fmt;
5250 int i, j;
5251 struct ls_expr * ptr;
5253 /* Invalidate it in the list. */
5254 if (MEM_P (x) && simple_mem (x))
5256 ptr = ldst_entry (x);
5257 ptr->invalid = 1;
5260 /* Recursively process the insn. */
5261 fmt = GET_RTX_FORMAT (GET_CODE (x));
5263 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5265 if (fmt[i] == 'e')
5266 invalidate_any_buried_refs (XEXP (x, i));
5267 else if (fmt[i] == 'E')
5268 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5269 invalidate_any_buried_refs (XVECEXP (x, i, j));
5273 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5274 being defined as MEM loads and stores to symbols, with no side effects
5275 and no registers in the expression. For a MEM destination, we also
5276 check that the insn is still valid if we replace the destination with a
5277 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5278 which don't match this criteria, they are invalidated and trimmed out
5279 later. */
5281 static void
5282 compute_ld_motion_mems (void)
5284 struct ls_expr * ptr;
5285 basic_block bb;
5286 rtx insn;
5288 pre_ldst_mems = NULL;
5290 FOR_EACH_BB (bb)
5292 for (insn = BB_HEAD (bb);
5293 insn && insn != NEXT_INSN (BB_END (bb));
5294 insn = NEXT_INSN (insn))
5296 if (INSN_P (insn))
5298 if (GET_CODE (PATTERN (insn)) == SET)
5300 rtx src = SET_SRC (PATTERN (insn));
5301 rtx dest = SET_DEST (PATTERN (insn));
5303 /* Check for a simple LOAD... */
5304 if (MEM_P (src) && simple_mem (src))
5306 ptr = ldst_entry (src);
5307 if (REG_P (dest))
5308 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5309 else
5310 ptr->invalid = 1;
5312 else
5314 /* Make sure there isn't a buried load somewhere. */
5315 invalidate_any_buried_refs (src);
5318 /* Check for stores. Don't worry about aliased ones, they
5319 will block any movement we might do later. We only care
5320 about this exact pattern since those are the only
5321 circumstance that we will ignore the aliasing info. */
5322 if (MEM_P (dest) && simple_mem (dest))
5324 ptr = ldst_entry (dest);
5326 if (! MEM_P (src)
5327 && GET_CODE (src) != ASM_OPERANDS
5328 /* Check for REG manually since want_to_gcse_p
5329 returns 0 for all REGs. */
5330 && can_assign_to_reg_p (src))
5331 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5332 else
5333 ptr->invalid = 1;
5336 else
5337 invalidate_any_buried_refs (PATTERN (insn));
5343 /* Remove any references that have been either invalidated or are not in the
5344 expression list for pre gcse. */
5346 static void
5347 trim_ld_motion_mems (void)
5349 struct ls_expr * * last = & pre_ldst_mems;
5350 struct ls_expr * ptr = pre_ldst_mems;
5352 while (ptr != NULL)
5354 struct expr * expr;
5356 /* Delete if entry has been made invalid. */
5357 if (! ptr->invalid)
5359 /* Delete if we cannot find this mem in the expression list. */
5360 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5362 for (expr = expr_hash_table.table[hash];
5363 expr != NULL;
5364 expr = expr->next_same_hash)
5365 if (expr_equiv_p (expr->expr, ptr->pattern))
5366 break;
5368 else
5369 expr = (struct expr *) 0;
5371 if (expr)
5373 /* Set the expression field if we are keeping it. */
5374 ptr->expr = expr;
5375 last = & ptr->next;
5376 ptr = ptr->next;
5378 else
5380 *last = ptr->next;
5381 free_ldst_entry (ptr);
5382 ptr = * last;
5386 /* Show the world what we've found. */
5387 if (gcse_file && pre_ldst_mems != NULL)
5388 print_ldst_list (gcse_file);
5391 /* This routine will take an expression which we are replacing with
5392 a reaching register, and update any stores that are needed if
5393 that expression is in the ld_motion list. Stores are updated by
5394 copying their SRC to the reaching register, and then storing
5395 the reaching register into the store location. These keeps the
5396 correct value in the reaching register for the loads. */
5398 static void
5399 update_ld_motion_stores (struct expr * expr)
5401 struct ls_expr * mem_ptr;
5403 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5405 /* We can try to find just the REACHED stores, but is shouldn't
5406 matter to set the reaching reg everywhere... some might be
5407 dead and should be eliminated later. */
5409 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5410 where reg is the reaching reg used in the load. We checked in
5411 compute_ld_motion_mems that we can replace (set mem expr) with
5412 (set reg expr) in that insn. */
5413 rtx list = mem_ptr->stores;
5415 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5417 rtx insn = XEXP (list, 0);
5418 rtx pat = PATTERN (insn);
5419 rtx src = SET_SRC (pat);
5420 rtx reg = expr->reaching_reg;
5421 rtx copy, new;
5423 /* If we've already copied it, continue. */
5424 if (expr->reaching_reg == src)
5425 continue;
5427 if (gcse_file)
5429 fprintf (gcse_file, "PRE: store updated with reaching reg ");
5430 print_rtl (gcse_file, expr->reaching_reg);
5431 fprintf (gcse_file, ":\n ");
5432 print_inline_rtx (gcse_file, insn, 8);
5433 fprintf (gcse_file, "\n");
5436 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5437 new = emit_insn_before (copy, insn);
5438 record_one_set (REGNO (reg), new);
5439 SET_SRC (pat) = reg;
5441 /* un-recognize this pattern since it's probably different now. */
5442 INSN_CODE (insn) = -1;
5443 gcse_create_count++;
5448 /* Store motion code. */
5450 #define ANTIC_STORE_LIST(x) ((x)->loads)
5451 #define AVAIL_STORE_LIST(x) ((x)->stores)
5452 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5454 /* This is used to communicate the target bitvector we want to use in the
5455 reg_set_info routine when called via the note_stores mechanism. */
5456 static int * regvec;
5458 /* And current insn, for the same routine. */
5459 static rtx compute_store_table_current_insn;
5461 /* Used in computing the reverse edge graph bit vectors. */
5462 static sbitmap * st_antloc;
5464 /* Global holding the number of store expressions we are dealing with. */
5465 static int num_stores;
5467 /* Checks to set if we need to mark a register set. Called from
5468 note_stores. */
5470 static void
5471 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5472 void *data)
5474 sbitmap bb_reg = data;
5476 if (GET_CODE (dest) == SUBREG)
5477 dest = SUBREG_REG (dest);
5479 if (REG_P (dest))
5481 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5482 if (bb_reg)
5483 SET_BIT (bb_reg, REGNO (dest));
5487 /* Clear any mark that says that this insn sets dest. Called from
5488 note_stores. */
5490 static void
5491 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5492 void *data)
5494 int *dead_vec = data;
5496 if (GET_CODE (dest) == SUBREG)
5497 dest = SUBREG_REG (dest);
5499 if (REG_P (dest) &&
5500 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5501 dead_vec[REGNO (dest)] = 0;
5504 /* Return zero if some of the registers in list X are killed
5505 due to set of registers in bitmap REGS_SET. */
5507 static bool
5508 store_ops_ok (rtx x, int *regs_set)
5510 rtx reg;
5512 for (; x; x = XEXP (x, 1))
5514 reg = XEXP (x, 0);
5515 if (regs_set[REGNO(reg)])
5516 return false;
5519 return true;
5522 /* Returns a list of registers mentioned in X. */
5523 static rtx
5524 extract_mentioned_regs (rtx x)
5526 return extract_mentioned_regs_helper (x, NULL_RTX);
5529 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5530 registers. */
5531 static rtx
5532 extract_mentioned_regs_helper (rtx x, rtx accum)
5534 int i;
5535 enum rtx_code code;
5536 const char * fmt;
5538 /* Repeat is used to turn tail-recursion into iteration. */
5539 repeat:
5541 if (x == 0)
5542 return accum;
5544 code = GET_CODE (x);
5545 switch (code)
5547 case REG:
5548 return alloc_EXPR_LIST (0, x, accum);
5550 case MEM:
5551 x = XEXP (x, 0);
5552 goto repeat;
5554 case PRE_DEC:
5555 case PRE_INC:
5556 case POST_DEC:
5557 case POST_INC:
5558 /* We do not run this function with arguments having side effects. */
5559 gcc_unreachable ();
5561 case PC:
5562 case CC0: /*FIXME*/
5563 case CONST:
5564 case CONST_INT:
5565 case CONST_DOUBLE:
5566 case CONST_VECTOR:
5567 case SYMBOL_REF:
5568 case LABEL_REF:
5569 case ADDR_VEC:
5570 case ADDR_DIFF_VEC:
5571 return accum;
5573 default:
5574 break;
5577 i = GET_RTX_LENGTH (code) - 1;
5578 fmt = GET_RTX_FORMAT (code);
5580 for (; i >= 0; i--)
5582 if (fmt[i] == 'e')
5584 rtx tem = XEXP (x, i);
5586 /* If we are about to do the last recursive call
5587 needed at this level, change it into iteration. */
5588 if (i == 0)
5590 x = tem;
5591 goto repeat;
5594 accum = extract_mentioned_regs_helper (tem, accum);
5596 else if (fmt[i] == 'E')
5598 int j;
5600 for (j = 0; j < XVECLEN (x, i); j++)
5601 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5605 return accum;
5608 /* Determine whether INSN is MEM store pattern that we will consider moving.
5609 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5610 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5611 including) the insn in this basic block. We must be passing through BB from
5612 head to end, as we are using this fact to speed things up.
5614 The results are stored this way:
5616 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5617 -- if the processed expression is not anticipatable, NULL_RTX is added
5618 there instead, so that we can use it as indicator that no further
5619 expression of this type may be anticipatable
5620 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5621 consequently, all of them but this head are dead and may be deleted.
5622 -- if the expression is not available, the insn due to that it fails to be
5623 available is stored in reaching_reg.
5625 The things are complicated a bit by fact that there already may be stores
5626 to the same MEM from other blocks; also caller must take care of the
5627 necessary cleanup of the temporary markers after end of the basic block.
5630 static void
5631 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5633 struct ls_expr * ptr;
5634 rtx dest, set, tmp;
5635 int check_anticipatable, check_available;
5636 basic_block bb = BLOCK_FOR_INSN (insn);
5638 set = single_set (insn);
5639 if (!set)
5640 return;
5642 dest = SET_DEST (set);
5644 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5645 || GET_MODE (dest) == BLKmode)
5646 return;
5648 if (side_effects_p (dest))
5649 return;
5651 /* If we are handling exceptions, we must be careful with memory references
5652 that may trap. If we are not, the behavior is undefined, so we may just
5653 continue. */
5654 if (flag_non_call_exceptions && may_trap_p (dest))
5655 return;
5657 /* Even if the destination cannot trap, the source may. In this case we'd
5658 need to handle updating the REG_EH_REGION note. */
5659 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5660 return;
5662 ptr = ldst_entry (dest);
5663 if (!ptr->pattern_regs)
5664 ptr->pattern_regs = extract_mentioned_regs (dest);
5666 /* Do not check for anticipatability if we either found one anticipatable
5667 store already, or tested for one and found out that it was killed. */
5668 check_anticipatable = 0;
5669 if (!ANTIC_STORE_LIST (ptr))
5670 check_anticipatable = 1;
5671 else
5673 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5674 if (tmp != NULL_RTX
5675 && BLOCK_FOR_INSN (tmp) != bb)
5676 check_anticipatable = 1;
5678 if (check_anticipatable)
5680 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5681 tmp = NULL_RTX;
5682 else
5683 tmp = insn;
5684 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5685 ANTIC_STORE_LIST (ptr));
5688 /* It is not necessary to check whether store is available if we did
5689 it successfully before; if we failed before, do not bother to check
5690 until we reach the insn that caused us to fail. */
5691 check_available = 0;
5692 if (!AVAIL_STORE_LIST (ptr))
5693 check_available = 1;
5694 else
5696 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5697 if (BLOCK_FOR_INSN (tmp) != bb)
5698 check_available = 1;
5700 if (check_available)
5702 /* Check that we have already reached the insn at that the check
5703 failed last time. */
5704 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5706 for (tmp = BB_END (bb);
5707 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5708 tmp = PREV_INSN (tmp))
5709 continue;
5710 if (tmp == insn)
5711 check_available = 0;
5713 else
5714 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5715 bb, regs_set_after,
5716 &LAST_AVAIL_CHECK_FAILURE (ptr));
5718 if (!check_available)
5719 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5722 /* Find available and anticipatable stores. */
5724 static int
5725 compute_store_table (void)
5727 int ret;
5728 basic_block bb;
5729 unsigned regno;
5730 rtx insn, pat, tmp;
5731 int *last_set_in, *already_set;
5732 struct ls_expr * ptr, **prev_next_ptr_ptr;
5734 max_gcse_regno = max_reg_num ();
5736 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5737 max_gcse_regno);
5738 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5739 pre_ldst_mems = 0;
5740 last_set_in = xcalloc (max_gcse_regno, sizeof (int));
5741 already_set = xmalloc (sizeof (int) * max_gcse_regno);
5743 /* Find all the stores we care about. */
5744 FOR_EACH_BB (bb)
5746 /* First compute the registers set in this block. */
5747 regvec = last_set_in;
5749 for (insn = BB_HEAD (bb);
5750 insn != NEXT_INSN (BB_END (bb));
5751 insn = NEXT_INSN (insn))
5753 if (! INSN_P (insn))
5754 continue;
5756 if (CALL_P (insn))
5758 bool clobbers_all = false;
5759 #ifdef NON_SAVING_SETJMP
5760 if (NON_SAVING_SETJMP
5761 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
5762 clobbers_all = true;
5763 #endif
5765 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5766 if (clobbers_all
5767 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5769 last_set_in[regno] = INSN_UID (insn);
5770 SET_BIT (reg_set_in_block[bb->index], regno);
5774 pat = PATTERN (insn);
5775 compute_store_table_current_insn = insn;
5776 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5779 /* Now find the stores. */
5780 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5781 regvec = already_set;
5782 for (insn = BB_HEAD (bb);
5783 insn != NEXT_INSN (BB_END (bb));
5784 insn = NEXT_INSN (insn))
5786 if (! INSN_P (insn))
5787 continue;
5789 if (CALL_P (insn))
5791 bool clobbers_all = false;
5792 #ifdef NON_SAVING_SETJMP
5793 if (NON_SAVING_SETJMP
5794 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
5795 clobbers_all = true;
5796 #endif
5798 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5799 if (clobbers_all
5800 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5801 already_set[regno] = 1;
5804 pat = PATTERN (insn);
5805 note_stores (pat, reg_set_info, NULL);
5807 /* Now that we've marked regs, look for stores. */
5808 find_moveable_store (insn, already_set, last_set_in);
5810 /* Unmark regs that are no longer set. */
5811 compute_store_table_current_insn = insn;
5812 note_stores (pat, reg_clear_last_set, last_set_in);
5813 if (CALL_P (insn))
5815 bool clobbers_all = false;
5816 #ifdef NON_SAVING_SETJMP
5817 if (NON_SAVING_SETJMP
5818 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
5819 clobbers_all = true;
5820 #endif
5822 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5823 if ((clobbers_all
5824 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5825 && last_set_in[regno] == INSN_UID (insn))
5826 last_set_in[regno] = 0;
5830 #ifdef ENABLE_CHECKING
5831 /* last_set_in should now be all-zero. */
5832 for (regno = 0; regno < max_gcse_regno; regno++)
5833 gcc_assert (!last_set_in[regno]);
5834 #endif
5836 /* Clear temporary marks. */
5837 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5839 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5840 if (ANTIC_STORE_LIST (ptr)
5841 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5842 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5846 /* Remove the stores that are not available anywhere, as there will
5847 be no opportunity to optimize them. */
5848 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5849 ptr != NULL;
5850 ptr = *prev_next_ptr_ptr)
5852 if (!AVAIL_STORE_LIST (ptr))
5854 *prev_next_ptr_ptr = ptr->next;
5855 free_ldst_entry (ptr);
5857 else
5858 prev_next_ptr_ptr = &ptr->next;
5861 ret = enumerate_ldsts ();
5863 if (gcse_file)
5865 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
5866 print_ldst_list (gcse_file);
5869 free (last_set_in);
5870 free (already_set);
5871 return ret;
5874 /* Check to see if the load X is aliased with STORE_PATTERN.
5875 AFTER is true if we are checking the case when STORE_PATTERN occurs
5876 after the X. */
5878 static bool
5879 load_kills_store (rtx x, rtx store_pattern, int after)
5881 if (after)
5882 return anti_dependence (x, store_pattern);
5883 else
5884 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5885 rtx_addr_varies_p);
5888 /* Go through the entire insn X, looking for any loads which might alias
5889 STORE_PATTERN. Return true if found.
5890 AFTER is true if we are checking the case when STORE_PATTERN occurs
5891 after the insn X. */
5893 static bool
5894 find_loads (rtx x, rtx store_pattern, int after)
5896 const char * fmt;
5897 int i, j;
5898 int ret = false;
5900 if (!x)
5901 return false;
5903 if (GET_CODE (x) == SET)
5904 x = SET_SRC (x);
5906 if (MEM_P (x))
5908 if (load_kills_store (x, store_pattern, after))
5909 return true;
5912 /* Recursively process the insn. */
5913 fmt = GET_RTX_FORMAT (GET_CODE (x));
5915 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5917 if (fmt[i] == 'e')
5918 ret |= find_loads (XEXP (x, i), store_pattern, after);
5919 else if (fmt[i] == 'E')
5920 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5921 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5923 return ret;
5926 /* Check if INSN kills the store pattern X (is aliased with it).
5927 AFTER is true if we are checking the case when store X occurs
5928 after the insn. Return true if it it does. */
5930 static bool
5931 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5933 rtx reg, base, note;
5935 if (!INSN_P (insn))
5936 return false;
5938 if (CALL_P (insn))
5940 /* A normal or pure call might read from pattern,
5941 but a const call will not. */
5942 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5943 return true;
5945 /* But even a const call reads its parameters. Check whether the
5946 base of some of registers used in mem is stack pointer. */
5947 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5949 base = find_base_term (XEXP (reg, 0));
5950 if (!base
5951 || (GET_CODE (base) == ADDRESS
5952 && GET_MODE (base) == Pmode
5953 && XEXP (base, 0) == stack_pointer_rtx))
5954 return true;
5957 return false;
5960 if (GET_CODE (PATTERN (insn)) == SET)
5962 rtx pat = PATTERN (insn);
5963 rtx dest = SET_DEST (pat);
5965 if (GET_CODE (dest) == SIGN_EXTRACT
5966 || GET_CODE (dest) == ZERO_EXTRACT)
5967 dest = XEXP (dest, 0);
5969 /* Check for memory stores to aliased objects. */
5970 if (MEM_P (dest)
5971 && !expr_equiv_p (dest, x))
5973 if (after)
5975 if (output_dependence (dest, x))
5976 return true;
5978 else
5980 if (output_dependence (x, dest))
5981 return true;
5984 if (find_loads (SET_SRC (pat), x, after))
5985 return true;
5987 else if (find_loads (PATTERN (insn), x, after))
5988 return true;
5990 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5991 location aliased with X, then this insn kills X. */
5992 note = find_reg_equal_equiv_note (insn);
5993 if (! note)
5994 return false;
5995 note = XEXP (note, 0);
5997 /* However, if the note represents a must alias rather than a may
5998 alias relationship, then it does not kill X. */
5999 if (expr_equiv_p (note, x))
6000 return false;
6002 /* See if there are any aliased loads in the note. */
6003 return find_loads (note, x, after);
6006 /* Returns true if the expression X is loaded or clobbered on or after INSN
6007 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
6008 or after the insn. X_REGS is list of registers mentioned in X. If the store
6009 is killed, return the last insn in that it occurs in FAIL_INSN. */
6011 static bool
6012 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
6013 int *regs_set_after, rtx *fail_insn)
6015 rtx last = BB_END (bb), act;
6017 if (!store_ops_ok (x_regs, regs_set_after))
6019 /* We do not know where it will happen. */
6020 if (fail_insn)
6021 *fail_insn = NULL_RTX;
6022 return true;
6025 /* Scan from the end, so that fail_insn is determined correctly. */
6026 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6027 if (store_killed_in_insn (x, x_regs, act, false))
6029 if (fail_insn)
6030 *fail_insn = act;
6031 return true;
6034 return false;
6037 /* Returns true if the expression X is loaded or clobbered on or before INSN
6038 within basic block BB. X_REGS is list of registers mentioned in X.
6039 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6040 static bool
6041 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
6042 int *regs_set_before)
6044 rtx first = BB_HEAD (bb);
6046 if (!store_ops_ok (x_regs, regs_set_before))
6047 return true;
6049 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6050 if (store_killed_in_insn (x, x_regs, insn, true))
6051 return true;
6053 return false;
6056 /* Fill in available, anticipatable, transparent and kill vectors in
6057 STORE_DATA, based on lists of available and anticipatable stores. */
6058 static void
6059 build_store_vectors (void)
6061 basic_block bb;
6062 int *regs_set_in_block;
6063 rtx insn, st;
6064 struct ls_expr * ptr;
6065 unsigned regno;
6067 /* Build the gen_vector. This is any store in the table which is not killed
6068 by aliasing later in its block. */
6069 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6070 sbitmap_vector_zero (ae_gen, last_basic_block);
6072 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6073 sbitmap_vector_zero (st_antloc, last_basic_block);
6075 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6077 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6079 insn = XEXP (st, 0);
6080 bb = BLOCK_FOR_INSN (insn);
6082 /* If we've already seen an available expression in this block,
6083 we can delete this one (It occurs earlier in the block). We'll
6084 copy the SRC expression to an unused register in case there
6085 are any side effects. */
6086 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6088 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6089 if (gcse_file)
6090 fprintf (gcse_file, "Removing redundant store:\n");
6091 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6092 continue;
6094 SET_BIT (ae_gen[bb->index], ptr->index);
6097 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6099 insn = XEXP (st, 0);
6100 bb = BLOCK_FOR_INSN (insn);
6101 SET_BIT (st_antloc[bb->index], ptr->index);
6105 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6106 sbitmap_vector_zero (ae_kill, last_basic_block);
6108 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6109 sbitmap_vector_zero (transp, last_basic_block);
6110 regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
6112 FOR_EACH_BB (bb)
6114 for (regno = 0; regno < max_gcse_regno; regno++)
6115 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6117 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6119 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6120 bb, regs_set_in_block, NULL))
6122 /* It should not be necessary to consider the expression
6123 killed if it is both anticipatable and available. */
6124 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6125 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6126 SET_BIT (ae_kill[bb->index], ptr->index);
6128 else
6129 SET_BIT (transp[bb->index], ptr->index);
6133 free (regs_set_in_block);
6135 if (gcse_file)
6137 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6138 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6139 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6140 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6144 /* Insert an instruction at the beginning of a basic block, and update
6145 the BB_HEAD if needed. */
6147 static void
6148 insert_insn_start_bb (rtx insn, basic_block bb)
6150 /* Insert at start of successor block. */
6151 rtx prev = PREV_INSN (BB_HEAD (bb));
6152 rtx before = BB_HEAD (bb);
6153 while (before != 0)
6155 if (! LABEL_P (before)
6156 && (! NOTE_P (before)
6157 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6158 break;
6159 prev = before;
6160 if (prev == BB_END (bb))
6161 break;
6162 before = NEXT_INSN (before);
6165 insn = emit_insn_after (insn, prev);
6167 if (gcse_file)
6169 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6170 bb->index);
6171 print_inline_rtx (gcse_file, insn, 6);
6172 fprintf (gcse_file, "\n");
6176 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6177 the memory reference, and E is the edge to insert it on. Returns nonzero
6178 if an edge insertion was performed. */
6180 static int
6181 insert_store (struct ls_expr * expr, edge e)
6183 rtx reg, insn;
6184 basic_block bb;
6185 edge tmp;
6187 /* We did all the deleted before this insert, so if we didn't delete a
6188 store, then we haven't set the reaching reg yet either. */
6189 if (expr->reaching_reg == NULL_RTX)
6190 return 0;
6192 if (e->flags & EDGE_FAKE)
6193 return 0;
6195 reg = expr->reaching_reg;
6196 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6198 /* If we are inserting this expression on ALL predecessor edges of a BB,
6199 insert it at the start of the BB, and reset the insert bits on the other
6200 edges so we don't try to insert it on the other edges. */
6201 bb = e->dest;
6202 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6203 if (!(tmp->flags & EDGE_FAKE))
6205 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6207 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6208 if (! TEST_BIT (pre_insert_map[index], expr->index))
6209 break;
6212 /* If tmp is NULL, we found an insertion on every edge, blank the
6213 insertion vector for these edges, and insert at the start of the BB. */
6214 if (!tmp && bb != EXIT_BLOCK_PTR)
6216 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6218 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6219 RESET_BIT (pre_insert_map[index], expr->index);
6221 insert_insn_start_bb (insn, bb);
6222 return 0;
6225 /* We can't insert on this edge, so we'll insert at the head of the
6226 successors block. See Morgan, sec 10.5. */
6227 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
6229 insert_insn_start_bb (insn, bb);
6230 return 0;
6233 insert_insn_on_edge (insn, e);
6235 if (gcse_file)
6237 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6238 e->src->index, e->dest->index);
6239 print_inline_rtx (gcse_file, insn, 6);
6240 fprintf (gcse_file, "\n");
6243 return 1;
6246 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6247 memory location in SMEXPR set in basic block BB.
6249 This could be rather expensive. */
6251 static void
6252 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6254 edge *stack = xmalloc (sizeof (edge) * n_basic_blocks), act;
6255 sbitmap visited = sbitmap_alloc (last_basic_block);
6256 int stack_top = 0;
6257 rtx last, insn, note;
6258 rtx mem = smexpr->pattern;
6260 sbitmap_zero (visited);
6261 act = bb->succ;
6263 while (1)
6265 if (!act)
6267 if (!stack_top)
6269 free (stack);
6270 sbitmap_free (visited);
6271 return;
6273 act = stack[--stack_top];
6275 bb = act->dest;
6277 if (bb == EXIT_BLOCK_PTR
6278 || TEST_BIT (visited, bb->index))
6280 act = act->succ_next;
6281 continue;
6283 SET_BIT (visited, bb->index);
6285 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6287 for (last = ANTIC_STORE_LIST (smexpr);
6288 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6289 last = XEXP (last, 1))
6290 continue;
6291 last = XEXP (last, 0);
6293 else
6294 last = NEXT_INSN (BB_END (bb));
6296 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6297 if (INSN_P (insn))
6299 note = find_reg_equal_equiv_note (insn);
6300 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6301 continue;
6303 if (gcse_file)
6304 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6305 INSN_UID (insn));
6306 remove_note (insn, note);
6308 act = act->succ_next;
6309 if (bb->succ)
6311 if (act)
6312 stack[stack_top++] = act;
6313 act = bb->succ;
6318 /* This routine will replace a store with a SET to a specified register. */
6320 static void
6321 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6323 rtx insn, mem, note, set, ptr, pair;
6325 mem = smexpr->pattern;
6326 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6327 insn = emit_insn_after (insn, del);
6329 if (gcse_file)
6331 fprintf (gcse_file,
6332 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6333 print_inline_rtx (gcse_file, del, 6);
6334 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6335 print_inline_rtx (gcse_file, insn, 6);
6336 fprintf (gcse_file, "\n");
6339 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6340 if (XEXP (ptr, 0) == del)
6342 XEXP (ptr, 0) = insn;
6343 break;
6346 /* Move the notes from the deleted insn to its replacement, and patch
6347 up the LIBCALL notes. */
6348 REG_NOTES (insn) = REG_NOTES (del);
6350 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6351 if (note)
6353 pair = XEXP (note, 0);
6354 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6355 XEXP (note, 0) = insn;
6357 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6358 if (note)
6360 pair = XEXP (note, 0);
6361 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6362 XEXP (note, 0) = insn;
6365 delete_insn (del);
6367 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6368 they are no longer accurate provided that they are reached by this
6369 definition, so drop them. */
6370 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6371 if (INSN_P (insn))
6373 set = single_set (insn);
6374 if (!set)
6375 continue;
6376 if (expr_equiv_p (SET_DEST (set), mem))
6377 return;
6378 note = find_reg_equal_equiv_note (insn);
6379 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6380 continue;
6382 if (gcse_file)
6383 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6384 INSN_UID (insn));
6385 remove_note (insn, note);
6387 remove_reachable_equiv_notes (bb, smexpr);
6391 /* Delete a store, but copy the value that would have been stored into
6392 the reaching_reg for later storing. */
6394 static void
6395 delete_store (struct ls_expr * expr, basic_block bb)
6397 rtx reg, i, del;
6399 if (expr->reaching_reg == NULL_RTX)
6400 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6402 reg = expr->reaching_reg;
6404 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6406 del = XEXP (i, 0);
6407 if (BLOCK_FOR_INSN (del) == bb)
6409 /* We know there is only one since we deleted redundant
6410 ones during the available computation. */
6411 replace_store_insn (reg, del, bb, expr);
6412 break;
6417 /* Free memory used by store motion. */
6419 static void
6420 free_store_memory (void)
6422 free_ldst_mems ();
6424 if (ae_gen)
6425 sbitmap_vector_free (ae_gen);
6426 if (ae_kill)
6427 sbitmap_vector_free (ae_kill);
6428 if (transp)
6429 sbitmap_vector_free (transp);
6430 if (st_antloc)
6431 sbitmap_vector_free (st_antloc);
6432 if (pre_insert_map)
6433 sbitmap_vector_free (pre_insert_map);
6434 if (pre_delete_map)
6435 sbitmap_vector_free (pre_delete_map);
6436 if (reg_set_in_block)
6437 sbitmap_vector_free (reg_set_in_block);
6439 ae_gen = ae_kill = transp = st_antloc = NULL;
6440 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6443 /* Perform store motion. Much like gcse, except we move expressions the
6444 other way by looking at the flowgraph in reverse. */
6446 static void
6447 store_motion (void)
6449 basic_block bb;
6450 int x;
6451 struct ls_expr * ptr;
6452 int update_flow = 0;
6454 if (gcse_file)
6456 fprintf (gcse_file, "before store motion\n");
6457 print_rtl (gcse_file, get_insns ());
6460 init_alias_analysis ();
6462 /* Find all the available and anticipatable stores. */
6463 num_stores = compute_store_table ();
6464 if (num_stores == 0)
6466 sbitmap_vector_free (reg_set_in_block);
6467 end_alias_analysis ();
6468 return;
6471 /* Now compute kill & transp vectors. */
6472 build_store_vectors ();
6473 add_noreturn_fake_exit_edges ();
6474 connect_infinite_loops_to_exit ();
6476 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6477 st_antloc, ae_kill, &pre_insert_map,
6478 &pre_delete_map);
6480 /* Now we want to insert the new stores which are going to be needed. */
6481 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6483 FOR_EACH_BB (bb)
6484 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6485 delete_store (ptr, bb);
6487 for (x = 0; x < NUM_EDGES (edge_list); x++)
6488 if (TEST_BIT (pre_insert_map[x], ptr->index))
6489 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6492 if (update_flow)
6493 commit_edge_insertions ();
6495 free_store_memory ();
6496 free_edge_list (edge_list);
6497 remove_fake_exit_edges ();
6498 end_alias_analysis ();
6502 /* Entry point for jump bypassing optimization pass. */
6505 bypass_jumps (FILE *file)
6507 int changed;
6509 /* We do not construct an accurate cfg in functions which call
6510 setjmp, so just punt to be safe. */
6511 if (current_function_calls_setjmp)
6512 return 0;
6514 /* For calling dump_foo fns from gdb. */
6515 debug_stderr = stderr;
6516 gcse_file = file;
6518 /* Identify the basic block information for this function, including
6519 successors and predecessors. */
6520 max_gcse_regno = max_reg_num ();
6522 if (file)
6523 dump_flow_info (file);
6525 /* Return if there's nothing to do, or it is too expensive. */
6526 if (n_basic_blocks <= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6527 return 0;
6529 gcc_obstack_init (&gcse_obstack);
6530 bytes_used = 0;
6532 /* We need alias. */
6533 init_alias_analysis ();
6535 /* Record where pseudo-registers are set. This data is kept accurate
6536 during each pass. ??? We could also record hard-reg information here
6537 [since it's unchanging], however it is currently done during hash table
6538 computation.
6540 It may be tempting to compute MEM set information here too, but MEM sets
6541 will be subject to code motion one day and thus we need to compute
6542 information about memory sets when we build the hash tables. */
6544 alloc_reg_set_mem (max_gcse_regno);
6545 compute_sets (get_insns ());
6547 max_gcse_regno = max_reg_num ();
6548 alloc_gcse_mem (get_insns ());
6549 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, 1, 1);
6550 free_gcse_mem ();
6552 if (file)
6554 fprintf (file, "BYPASS of %s: %d basic blocks, ",
6555 current_function_name (), n_basic_blocks);
6556 fprintf (file, "%d bytes\n\n", bytes_used);
6559 obstack_free (&gcse_obstack, NULL);
6560 free_reg_set_mem ();
6562 /* We are finished with alias. */
6563 end_alias_analysis ();
6564 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6566 return changed;
6569 /* Return true if the graph is too expensive to optimize. PASS is the
6570 optimization about to be performed. */
6572 static bool
6573 is_too_expensive (const char *pass)
6575 /* Trying to perform global optimizations on flow graphs which have
6576 a high connectivity will take a long time and is unlikely to be
6577 particularly useful.
6579 In normal circumstances a cfg should have about twice as many
6580 edges as blocks. But we do not want to punish small functions
6581 which have a couple switch statements. Rather than simply
6582 threshold the number of blocks, uses something with a more
6583 graceful degradation. */
6584 if (n_edges > 20000 + n_basic_blocks * 4)
6586 if (warn_disabled_optimization)
6587 warning ("%s: %d basic blocks and %d edges/basic block",
6588 pass, n_basic_blocks, n_edges / n_basic_blocks);
6590 return true;
6593 /* If allocating memory for the cprop bitmap would take up too much
6594 storage it's better just to disable the optimization. */
6595 if ((n_basic_blocks
6596 * SBITMAP_SET_SIZE (max_reg_num ())
6597 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6599 if (warn_disabled_optimization)
6600 warning ("%s: %d basic blocks and %d registers",
6601 pass, n_basic_blocks, max_reg_num ());
6603 return true;
6606 return false;
6609 #include "gt-gcse.h"