1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
49 #include "coretypes.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
59 #include "conditions.h"
62 #include "hard-reg-set.h"
69 #include "basic-block.h"
73 #include "cfglayout.h"
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
84 #ifdef DBX_DEBUGGING_INFO
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
111 #define HAVE_READONLY_DATA_SECTION 0
114 /* Bitflags used by final_scan_insn. */
117 #define SEEN_EMITTED 4
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn
;
121 rtx current_output_insn
;
123 /* Line number of last NOTE. */
124 static int last_linenum
;
126 /* Highest line number in current block. */
127 static int high_block_linenum
;
129 /* Likewise for function. */
130 static int high_function_linenum
;
132 /* Filename of last NOTE. */
133 static const char *last_filename
;
135 extern int length_unit_log
; /* This is defined in insn-attrtab.c. */
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands
;
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands
;
145 /* Compare optimization flag. */
147 static rtx last_ignored_compare
= 0;
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
152 static int insn_counter
= 0;
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
164 CC_STATUS cc_prev_status
;
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
176 char regs_ever_live
[FIRST_PSEUDO_REGISTER
];
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
182 char regs_asm_clobbered
[FIRST_PSEUDO_REGISTER
];
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
188 int frame_pointer_needed
;
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
192 static int block_depth
;
194 /* Nonzero if have enabled APP processing of our assembler output. */
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
203 #ifdef ASSEMBLER_DIALECT
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number
;
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate
;
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx
);
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx
);
220 static rtx
walk_alter_subreg (rtx
*);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx
);
223 static tree
get_mem_expr_from_op (rtx
, int *);
224 static void output_asm_operand_names (rtx
*, int *, int);
225 static void output_operand (rtx
, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx
);
230 static int alter_cond (rtx
);
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx
);
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx
, rtx
, int, unsigned);
239 /* Initialize data in final at the beginning of a compilation. */
242 init_final (const char *filename ATTRIBUTE_UNUSED
)
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number
= ASSEMBLER_DIALECT
;
252 /* Default target function prologue and epilogue assembler output.
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
262 /* Default target hook that outputs nothing to a stream. */
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
276 fputs (ASM_APP_ON
, asm_out_file
);
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
289 fputs (ASM_APP_OFF
, asm_out_file
);
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
300 dbr_sequence_length (void)
302 if (final_sequence
!= 0)
303 return XVECLEN (final_sequence
, 0) - 1;
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
315 static int *insn_lengths
;
317 varray_type insn_addresses_
;
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid
;
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address
;
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address
;
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align
;
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
340 struct label_alignment
346 static rtx
*uid_align
;
347 static int *uid_shuid
;
348 static struct label_alignment
*label_align
;
350 /* Indicate that branch shortening hasn't yet been done. */
353 init_insn_lengths (void)
364 insn_lengths_max_uid
= 0;
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED
)
382 #ifdef HAVE_ATTR_length
387 if (insn_lengths_max_uid
> INSN_UID (insn
))
388 return insn_lengths
[INSN_UID (insn
)];
390 switch (GET_CODE (insn
))
398 length
= insn_default_length (insn
);
402 body
= PATTERN (insn
);
403 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
405 /* Alignment is machine-dependent and should be handled by
409 length
= insn_default_length (insn
);
413 body
= PATTERN (insn
);
414 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
417 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
418 length
= asm_insn_count (body
) * insn_default_length (insn
);
419 else if (GET_CODE (body
) == SEQUENCE
)
420 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
421 length
+= get_attr_length (XVECEXP (body
, 0, i
));
423 length
= insn_default_length (insn
);
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn
, length
);
434 #else /* not HAVE_ATTR_length */
436 #endif /* not HAVE_ATTR_length */
439 /* Code to handle alignment inside shorten_branches. */
441 /* Here is an explanation how the algorithm in align_fuzz can give
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
453 Likewise with the next alignment-delimited block following X, which we
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
459 The estimated padding is then OX - IX.
461 OX can be safely estimated as
466 OX = round_up(IX, X) + Y - X
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
481 #define LABEL_ALIGN(LABEL) align_labels_log
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
489 #define LOOP_ALIGN(LABEL) align_loops_log
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
505 #define JUMP_ALIGN(LABEL) align_jumps_log
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
512 #ifndef ADDR_VEC_ALIGN
514 final_addr_vec_align (rtx addr_vec
)
516 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
518 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
519 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
520 return exact_log2 (align
);
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
533 static int min_labelno
, max_labelno
;
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
541 /* For the benefit of port specific code do this also as a function. */
544 label_to_alignment (rtx label
)
546 return LABEL_TO_ALIGNMENT (label
);
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
579 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
581 int uid
= INSN_UID (start
);
583 int known_align
= 1 << known_align_log
;
584 int end_shuid
= INSN_SHUID (end
);
587 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
589 int align_addr
, new_align
;
591 uid
= INSN_UID (align_label
);
592 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
593 if (uid_shuid
[uid
] > end_shuid
)
595 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
596 new_align
= 1 << known_align_log
;
597 if (new_align
< known_align
)
599 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
600 known_align
= new_align
;
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
618 insn_current_reference_address (rtx branch
)
623 if (! INSN_ADDRESSES_SET_P ())
626 seq
= NEXT_INSN (PREV_INSN (branch
));
627 seq_uid
= INSN_UID (seq
);
628 if (!JUMP_P (branch
))
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address
;
635 dest
= JUMP_LABEL (branch
);
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
641 /* Forward branch. */
642 return (insn_last_address
+ insn_lengths
[seq_uid
]
643 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
652 #endif /* HAVE_ATTR_length */
655 compute_alignments (void)
657 int log
, max_skip
, max_log
;
666 max_labelno
= max_label_num ();
667 min_labelno
= get_first_label_num ();
668 label_align
= xcalloc (max_labelno
- min_labelno
+ 1,
669 sizeof (struct label_alignment
));
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize
|| optimize_size
)
677 rtx label
= BB_HEAD (bb
);
678 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
682 || probably_never_executed_bb_p (bb
))
684 max_log
= LABEL_ALIGN (label
);
685 max_skip
= LABEL_ALIGN_MAX_SKIP
;
687 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
689 if (e
->flags
& EDGE_FALLTHRU
)
690 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
692 branch_frequency
+= EDGE_FREQUENCY (e
);
695 /* There are two purposes to align block with no fallthru incoming edge:
696 1) to avoid fetch stalls when branch destination is near cache boundary
697 2) to improve cache efficiency in case the previous block is not executed
698 (so it does not need to be in the cache).
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
702 than the predecessor and the predecessor is likely to not be executed
703 when function is called. */
706 && (branch_frequency
> BB_FREQ_MAX
/ 10
707 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
708 && (bb
->prev_bb
->frequency
709 <= ENTRY_BLOCK_PTR
->frequency
/ 2))))
711 log
= JUMP_ALIGN (label
);
715 max_skip
= JUMP_ALIGN_MAX_SKIP
;
718 /* In case block is frequent and reached mostly by non-fallthru edge,
719 align it. It is most likely a first block of loop. */
721 && maybe_hot_bb_p (bb
)
722 && branch_frequency
+ fallthru_frequency
> BB_FREQ_MAX
/ 10
723 && branch_frequency
> fallthru_frequency
* 2)
725 log
= LOOP_ALIGN (label
);
729 max_skip
= LOOP_ALIGN_MAX_SKIP
;
732 LABEL_TO_ALIGNMENT (label
) = max_log
;
733 LABEL_TO_MAX_SKIP (label
) = max_skip
;
737 /* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
740 /* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
744 shorten_branches itself into a single pass unless we also want to integrate
745 reorg.c, since the branch splitting exposes new instructions with delay
749 shorten_branches (rtx first ATTRIBUTE_UNUSED
)
756 #ifdef HAVE_ATTR_length
757 #define MAX_CODE_ALIGN 16
759 int something_changed
= 1;
760 char *varying_length
;
763 rtx align_tab
[MAX_CODE_ALIGN
];
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid
= get_max_uid ();
770 /* Free uid_shuid before reallocating it. */
773 uid_shuid
= xmalloc (max_uid
* sizeof *uid_shuid
);
775 if (max_labelno
!= max_label_num ())
777 int old
= max_labelno
;
781 max_labelno
= max_label_num ();
783 n_labels
= max_labelno
- min_labelno
+ 1;
784 n_old_labels
= old
- min_labelno
+ 1;
786 label_align
= xrealloc (label_align
,
787 n_labels
* sizeof (struct label_alignment
));
789 /* Range of labels grows monotonically in the function. Abort here
790 means that the initialization of array got lost. */
791 gcc_assert (n_old_labels
<= n_labels
);
793 memset (label_align
+ n_old_labels
, 0,
794 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
797 /* Initialize label_align and set up uid_shuid to be strictly
798 monotonically rising with insn order. */
799 /* We use max_log here to keep track of the maximum alignment we want to
800 impose on the next CODE_LABEL (or the current one if we are processing
801 the CODE_LABEL itself). */
806 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
810 INSN_SHUID (insn
) = i
++;
813 /* reorg might make the first insn of a loop being run once only,
814 and delete the label in front of it. Then we want to apply
815 the loop alignment to the new label created by reorg, which
816 is separated by the former loop start insn from the
817 NOTE_INSN_LOOP_BEG. */
819 else if (LABEL_P (insn
))
823 /* Merge in alignments computed by compute_alignments. */
824 log
= LABEL_TO_ALIGNMENT (insn
);
828 max_skip
= LABEL_TO_MAX_SKIP (insn
);
831 log
= LABEL_ALIGN (insn
);
835 max_skip
= LABEL_ALIGN_MAX_SKIP
;
837 next
= NEXT_INSN (insn
);
838 /* ADDR_VECs only take room if read-only data goes into the text
840 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
841 if (next
&& JUMP_P (next
))
843 rtx nextbody
= PATTERN (next
);
844 if (GET_CODE (nextbody
) == ADDR_VEC
845 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
847 log
= ADDR_VEC_ALIGN (next
);
851 max_skip
= LABEL_ALIGN_MAX_SKIP
;
855 LABEL_TO_ALIGNMENT (insn
) = max_log
;
856 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
860 else if (BARRIER_P (insn
))
864 for (label
= insn
; label
&& ! INSN_P (label
);
865 label
= NEXT_INSN (label
))
868 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
872 max_skip
= LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
;
878 #ifdef HAVE_ATTR_length
880 /* Allocate the rest of the arrays. */
881 insn_lengths
= xmalloc (max_uid
* sizeof (*insn_lengths
));
882 insn_lengths_max_uid
= max_uid
;
883 /* Syntax errors can lead to labels being outside of the main insn stream.
884 Initialize insn_addresses, so that we get reproducible results. */
885 INSN_ADDRESSES_ALLOC (max_uid
);
887 varying_length
= xcalloc (max_uid
, sizeof (char));
889 /* Initialize uid_align. We scan instructions
890 from end to start, and keep in align_tab[n] the last seen insn
891 that does an alignment of at least n+1, i.e. the successor
892 in the alignment chain for an insn that does / has a known
894 uid_align
= xcalloc (max_uid
, sizeof *uid_align
);
896 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
897 align_tab
[i
] = NULL_RTX
;
898 seq
= get_last_insn ();
899 for (; seq
; seq
= PREV_INSN (seq
))
901 int uid
= INSN_UID (seq
);
903 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
904 uid_align
[uid
] = align_tab
[0];
907 /* Found an alignment label. */
908 uid_align
[uid
] = align_tab
[log
];
909 for (i
= log
- 1; i
>= 0; i
--)
913 #ifdef CASE_VECTOR_SHORTEN_MODE
916 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
919 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
920 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
923 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
925 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
926 int len
, i
, min
, max
, insn_shuid
;
928 addr_diff_vec_flags flags
;
931 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
933 pat
= PATTERN (insn
);
934 len
= XVECLEN (pat
, 1);
935 gcc_assert (len
> 0);
936 min_align
= MAX_CODE_ALIGN
;
937 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
939 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
940 int shuid
= INSN_SHUID (lab
);
951 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
952 min_align
= LABEL_TO_ALIGNMENT (lab
);
954 XEXP (pat
, 2) = gen_rtx_LABEL_REF (VOIDmode
, min_lab
);
955 XEXP (pat
, 3) = gen_rtx_LABEL_REF (VOIDmode
, max_lab
);
956 insn_shuid
= INSN_SHUID (insn
);
957 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
958 flags
.min_align
= min_align
;
959 flags
.base_after_vec
= rel
> insn_shuid
;
960 flags
.min_after_vec
= min
> insn_shuid
;
961 flags
.max_after_vec
= max
> insn_shuid
;
962 flags
.min_after_base
= min
> rel
;
963 flags
.max_after_base
= max
> rel
;
964 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
967 #endif /* CASE_VECTOR_SHORTEN_MODE */
969 /* Compute initial lengths, addresses, and varying flags for each insn. */
970 for (insn_current_address
= 0, insn
= first
;
972 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
974 uid
= INSN_UID (insn
);
976 insn_lengths
[uid
] = 0;
980 int log
= LABEL_TO_ALIGNMENT (insn
);
983 int align
= 1 << log
;
984 int new_address
= (insn_current_address
+ align
- 1) & -align
;
985 insn_lengths
[uid
] = new_address
- insn_current_address
;
989 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
991 if (NOTE_P (insn
) || BARRIER_P (insn
)
994 if (INSN_DELETED_P (insn
))
997 body
= PATTERN (insn
);
998 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1000 /* This only takes room if read-only data goes into the text
1002 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
1003 insn_lengths
[uid
] = (XVECLEN (body
,
1004 GET_CODE (body
) == ADDR_DIFF_VEC
)
1005 * GET_MODE_SIZE (GET_MODE (body
)));
1006 /* Alignment is handled by ADDR_VEC_ALIGN. */
1008 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1009 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1010 else if (GET_CODE (body
) == SEQUENCE
)
1013 int const_delay_slots
;
1015 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1017 const_delay_slots
= 0;
1019 /* Inside a delay slot sequence, we do not do any branch shortening
1020 if the shortening could change the number of delay slots
1022 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1024 rtx inner_insn
= XVECEXP (body
, 0, i
);
1025 int inner_uid
= INSN_UID (inner_insn
);
1028 if (GET_CODE (body
) == ASM_INPUT
1029 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1030 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1031 * insn_default_length (inner_insn
));
1033 inner_length
= insn_default_length (inner_insn
);
1035 insn_lengths
[inner_uid
] = inner_length
;
1036 if (const_delay_slots
)
1038 if ((varying_length
[inner_uid
]
1039 = insn_variable_length_p (inner_insn
)) != 0)
1040 varying_length
[uid
] = 1;
1041 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1042 + insn_lengths
[uid
]);
1045 varying_length
[inner_uid
] = 0;
1046 insn_lengths
[uid
] += inner_length
;
1049 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1051 insn_lengths
[uid
] = insn_default_length (insn
);
1052 varying_length
[uid
] = insn_variable_length_p (insn
);
1055 /* If needed, do any adjustment. */
1056 #ifdef ADJUST_INSN_LENGTH
1057 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1058 if (insn_lengths
[uid
] < 0)
1059 fatal_insn ("negative insn length", insn
);
1063 /* Now loop over all the insns finding varying length insns. For each,
1064 get the current insn length. If it has changed, reflect the change.
1065 When nothing changes for a full pass, we are done. */
1067 while (something_changed
)
1069 something_changed
= 0;
1070 insn_current_align
= MAX_CODE_ALIGN
- 1;
1071 for (insn_current_address
= 0, insn
= first
;
1073 insn
= NEXT_INSN (insn
))
1076 #ifdef ADJUST_INSN_LENGTH
1081 uid
= INSN_UID (insn
);
1085 int log
= LABEL_TO_ALIGNMENT (insn
);
1086 if (log
> insn_current_align
)
1088 int align
= 1 << log
;
1089 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1090 insn_lengths
[uid
] = new_address
- insn_current_address
;
1091 insn_current_align
= log
;
1092 insn_current_address
= new_address
;
1095 insn_lengths
[uid
] = 0;
1096 INSN_ADDRESSES (uid
) = insn_current_address
;
1100 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1101 if (length_align
< insn_current_align
)
1102 insn_current_align
= length_align
;
1104 insn_last_address
= INSN_ADDRESSES (uid
);
1105 INSN_ADDRESSES (uid
) = insn_current_address
;
1107 #ifdef CASE_VECTOR_SHORTEN_MODE
1108 if (optimize
&& JUMP_P (insn
)
1109 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1111 rtx body
= PATTERN (insn
);
1112 int old_length
= insn_lengths
[uid
];
1113 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1114 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1115 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1116 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1117 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1118 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1121 addr_diff_vec_flags flags
;
1123 /* Avoid automatic aggregate initialization. */
1124 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1126 /* Try to find a known alignment for rel_lab. */
1127 for (prev
= rel_lab
;
1129 && ! insn_lengths
[INSN_UID (prev
)]
1130 && ! (varying_length
[INSN_UID (prev
)] & 1);
1131 prev
= PREV_INSN (prev
))
1132 if (varying_length
[INSN_UID (prev
)] & 2)
1134 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1138 /* See the comment on addr_diff_vec_flags in rtl.h for the
1139 meaning of the flags values. base: REL_LAB vec: INSN */
1140 /* Anything after INSN has still addresses from the last
1141 pass; adjust these so that they reflect our current
1142 estimate for this pass. */
1143 if (flags
.base_after_vec
)
1144 rel_addr
+= insn_current_address
- insn_last_address
;
1145 if (flags
.min_after_vec
)
1146 min_addr
+= insn_current_address
- insn_last_address
;
1147 if (flags
.max_after_vec
)
1148 max_addr
+= insn_current_address
- insn_last_address
;
1149 /* We want to know the worst case, i.e. lowest possible value
1150 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1151 its offset is positive, and we have to be wary of code shrink;
1152 otherwise, it is negative, and we have to be vary of code
1154 if (flags
.min_after_base
)
1156 /* If INSN is between REL_LAB and MIN_LAB, the size
1157 changes we are about to make can change the alignment
1158 within the observed offset, therefore we have to break
1159 it up into two parts that are independent. */
1160 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1162 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1163 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1166 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1170 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1172 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1173 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1176 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1178 /* Likewise, determine the highest lowest possible value
1179 for the offset of MAX_LAB. */
1180 if (flags
.max_after_base
)
1182 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1184 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1185 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1188 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1192 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1194 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1195 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1198 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1200 PUT_MODE (body
, CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1201 max_addr
- rel_addr
,
1203 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
1206 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1207 insn_current_address
+= insn_lengths
[uid
];
1208 if (insn_lengths
[uid
] != old_length
)
1209 something_changed
= 1;
1214 #endif /* CASE_VECTOR_SHORTEN_MODE */
1216 if (! (varying_length
[uid
]))
1218 if (NONJUMP_INSN_P (insn
)
1219 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1223 body
= PATTERN (insn
);
1224 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1226 rtx inner_insn
= XVECEXP (body
, 0, i
);
1227 int inner_uid
= INSN_UID (inner_insn
);
1229 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1231 insn_current_address
+= insn_lengths
[inner_uid
];
1235 insn_current_address
+= insn_lengths
[uid
];
1240 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1244 body
= PATTERN (insn
);
1246 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1248 rtx inner_insn
= XVECEXP (body
, 0, i
);
1249 int inner_uid
= INSN_UID (inner_insn
);
1252 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1254 /* insn_current_length returns 0 for insns with a
1255 non-varying length. */
1256 if (! varying_length
[inner_uid
])
1257 inner_length
= insn_lengths
[inner_uid
];
1259 inner_length
= insn_current_length (inner_insn
);
1261 if (inner_length
!= insn_lengths
[inner_uid
])
1263 insn_lengths
[inner_uid
] = inner_length
;
1264 something_changed
= 1;
1266 insn_current_address
+= insn_lengths
[inner_uid
];
1267 new_length
+= inner_length
;
1272 new_length
= insn_current_length (insn
);
1273 insn_current_address
+= new_length
;
1276 #ifdef ADJUST_INSN_LENGTH
1277 /* If needed, do any adjustment. */
1278 tmp_length
= new_length
;
1279 ADJUST_INSN_LENGTH (insn
, new_length
);
1280 insn_current_address
+= (new_length
- tmp_length
);
1283 if (new_length
!= insn_lengths
[uid
])
1285 insn_lengths
[uid
] = new_length
;
1286 something_changed
= 1;
1289 /* For a non-optimizing compile, do only a single pass. */
1294 free (varying_length
);
1296 #endif /* HAVE_ATTR_length */
1299 #ifdef HAVE_ATTR_length
1300 /* Given the body of an INSN known to be generated by an ASM statement, return
1301 the number of machine instructions likely to be generated for this insn.
1302 This is used to compute its length. */
1305 asm_insn_count (rtx body
)
1307 const char *template;
1310 if (GET_CODE (body
) == ASM_INPUT
)
1311 template = XSTR (body
, 0);
1313 template = decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
);
1315 for (; *template; template++)
1316 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1323 /* Output assembler code for the start of a function,
1324 and initialize some of the variables in this file
1325 for the new function. The label for the function and associated
1326 assembler pseudo-ops have already been output in `assemble_start_function'.
1328 FIRST is the first insn of the rtl for the function being compiled.
1329 FILE is the file to write assembler code to.
1330 OPTIMIZE is nonzero if we should eliminate redundant
1331 test and compare insns. */
1334 final_start_function (rtx first ATTRIBUTE_UNUSED
, FILE *file
,
1335 int optimize ATTRIBUTE_UNUSED
)
1339 this_is_asm_operands
= 0;
1341 last_filename
= locator_file (prologue_locator
);
1342 last_linenum
= locator_line (prologue_locator
);
1344 high_block_linenum
= high_function_linenum
= last_linenum
;
1346 (*debug_hooks
->begin_prologue
) (last_linenum
, last_filename
);
1348 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1349 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1350 dwarf2out_begin_prologue (0, NULL
);
1353 #ifdef LEAF_REG_REMAP
1354 if (current_function_uses_only_leaf_regs
)
1355 leaf_renumber_regs (first
);
1358 /* The Sun386i and perhaps other machines don't work right
1359 if the profiling code comes after the prologue. */
1360 #ifdef PROFILE_BEFORE_PROLOGUE
1361 if (current_function_profile
)
1362 profile_function (file
);
1363 #endif /* PROFILE_BEFORE_PROLOGUE */
1365 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1366 if (dwarf2out_do_frame ())
1367 dwarf2out_frame_debug (NULL_RTX
);
1370 /* If debugging, assign block numbers to all of the blocks in this
1374 remove_unnecessary_notes ();
1375 reemit_insn_block_notes ();
1376 number_blocks (current_function_decl
);
1377 /* We never actually put out begin/end notes for the top-level
1378 block in the function. But, conceptually, that block is
1380 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1383 /* First output the function prologue: code to set up the stack frame. */
1384 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1386 /* If the machine represents the prologue as RTL, the profiling code must
1387 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1388 #ifdef HAVE_prologue
1389 if (! HAVE_prologue
)
1391 profile_after_prologue (file
);
1395 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1397 #ifndef PROFILE_BEFORE_PROLOGUE
1398 if (current_function_profile
)
1399 profile_function (file
);
1400 #endif /* not PROFILE_BEFORE_PROLOGUE */
1404 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1406 #ifndef NO_PROFILE_COUNTERS
1407 # define NO_PROFILE_COUNTERS 0
1409 #if defined(ASM_OUTPUT_REG_PUSH)
1410 int sval
= current_function_returns_struct
;
1411 rtx svrtx
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
), 1);
1412 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1413 int cxt
= cfun
->static_chain_decl
!= NULL
;
1415 #endif /* ASM_OUTPUT_REG_PUSH */
1417 if (! NO_PROFILE_COUNTERS
)
1419 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1421 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1422 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1423 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1426 function_section (current_function_decl
);
1428 #if defined(ASM_OUTPUT_REG_PUSH)
1429 if (sval
&& svrtx
!= NULL_RTX
&& REG_P (svrtx
))
1430 ASM_OUTPUT_REG_PUSH (file
, REGNO (svrtx
));
1433 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1435 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1437 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1440 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_REGNUM
);
1445 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1447 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1449 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1451 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1454 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_REGNUM
);
1459 #if defined(ASM_OUTPUT_REG_PUSH)
1460 if (sval
&& svrtx
!= NULL_RTX
&& REG_P (svrtx
))
1461 ASM_OUTPUT_REG_POP (file
, REGNO (svrtx
));
1465 /* Output assembler code for the end of a function.
1466 For clarity, args are same as those of `final_start_function'
1467 even though not all of them are needed. */
1470 final_end_function (void)
1474 (*debug_hooks
->end_function
) (high_function_linenum
);
1476 /* Finally, output the function epilogue:
1477 code to restore the stack frame and return to the caller. */
1478 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1480 /* And debug output. */
1481 (*debug_hooks
->end_epilogue
) (last_linenum
, last_filename
);
1483 #if defined (DWARF2_UNWIND_INFO)
1484 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
1485 && dwarf2out_do_frame ())
1486 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1490 /* Output assembler code for some insns: all or part of a function.
1491 For description of args, see `final_start_function', above.
1493 PRESCAN is 1 if we are not really outputting,
1494 just scanning as if we were outputting.
1495 Prescanning deletes and rearranges insns just like ordinary output.
1496 PRESCAN is -2 if we are outputting after having prescanned.
1497 In this case, don't try to delete or rearrange insns
1498 because that has already been done.
1499 Prescanning is done only on certain machines. */
1502 final (rtx first
, FILE *file
, int optimize
, int prescan
)
1508 last_ignored_compare
= 0;
1510 #ifdef SDB_DEBUGGING_INFO
1511 /* When producing SDB debugging info, delete troublesome line number
1512 notes from inlined functions in other files as well as duplicate
1513 line number notes. */
1514 if (write_symbols
== SDB_DEBUG
)
1517 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1518 if (NOTE_P (insn
) && NOTE_LINE_NUMBER (insn
) > 0)
1521 #ifdef USE_MAPPED_LOCATION
1522 && NOTE_SOURCE_LOCATION (insn
) == NOTE_SOURCE_LOCATION (last
)
1524 && NOTE_LINE_NUMBER (insn
) == NOTE_LINE_NUMBER (last
)
1525 && NOTE_SOURCE_FILE (insn
) == NOTE_SOURCE_FILE (last
)
1529 delete_insn (insn
); /* Use delete_note. */
1537 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1539 if (INSN_UID (insn
) > max_uid
) /* Find largest UID. */
1540 max_uid
= INSN_UID (insn
);
1542 /* If CC tracking across branches is enabled, record the insn which
1543 jumps to each branch only reached from one place. */
1544 if (optimize
&& JUMP_P (insn
))
1546 rtx lab
= JUMP_LABEL (insn
);
1547 if (lab
&& LABEL_NUSES (lab
) == 1)
1549 LABEL_REFS (lab
) = insn
;
1559 /* Output the insns. */
1560 for (insn
= NEXT_INSN (first
); insn
;)
1562 #ifdef HAVE_ATTR_length
1563 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
1565 /* This can be triggered by bugs elsewhere in the compiler if
1566 new insns are created after init_insn_lengths is called. */
1567 gcc_assert (NOTE_P (insn
));
1568 insn_current_address
= -1;
1571 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
1572 #endif /* HAVE_ATTR_length */
1574 insn
= final_scan_insn (insn
, file
, optimize
, prescan
, 0, &seen
);
1579 get_insn_template (int code
, rtx insn
)
1581 switch (insn_data
[code
].output_format
)
1583 case INSN_OUTPUT_FORMAT_SINGLE
:
1584 return insn_data
[code
].output
.single
;
1585 case INSN_OUTPUT_FORMAT_MULTI
:
1586 return insn_data
[code
].output
.multi
[which_alternative
];
1587 case INSN_OUTPUT_FORMAT_FUNCTION
:
1589 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
1596 /* Emit the appropriate declaration for an alternate-entry-point
1597 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1598 LABEL_KIND != LABEL_NORMAL.
1600 The case fall-through in this function is intentional. */
1602 output_alternate_entry_point (FILE *file
, rtx insn
)
1604 const char *name
= LABEL_NAME (insn
);
1606 switch (LABEL_KIND (insn
))
1608 case LABEL_WEAK_ENTRY
:
1609 #ifdef ASM_WEAKEN_LABEL
1610 ASM_WEAKEN_LABEL (file
, name
);
1612 case LABEL_GLOBAL_ENTRY
:
1613 targetm
.asm_out
.globalize_label (file
, name
);
1614 case LABEL_STATIC_ENTRY
:
1615 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1616 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
1618 ASM_OUTPUT_LABEL (file
, name
);
1627 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1628 note in the instruction chain (going forward) between the current
1629 instruction, and the next 'executable' instruction. */
1632 scan_ahead_for_unlikely_executed_note (rtx insn
)
1635 int bb_note_count
= 0;
1637 for (temp
= insn
; temp
; temp
= NEXT_INSN (temp
))
1640 && NOTE_LINE_NUMBER (temp
) == NOTE_INSN_UNLIKELY_EXECUTED_CODE
)
1643 && NOTE_LINE_NUMBER (temp
) == NOTE_INSN_BASIC_BLOCK
)
1646 if (bb_note_count
> 1)
1656 /* The final scan for one insn, INSN.
1657 Args are same as in `final', except that INSN
1658 is the insn being scanned.
1659 Value returned is the next insn to be scanned.
1661 NOPEEPHOLES is the flag to disallow peephole processing (currently
1662 used for within delayed branch sequence output).
1664 SEEN is used to track the end of the prologue, for emitting
1665 debug information. We force the emission of a line note after
1666 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1667 at the beginning of the second basic block, whichever comes
1671 final_scan_insn (rtx insn
, FILE *file
, int optimize ATTRIBUTE_UNUSED
,
1672 int prescan
, int nopeepholes ATTRIBUTE_UNUSED
,
1681 /* Ignore deleted insns. These can occur when we split insns (due to a
1682 template of "#") while not optimizing. */
1683 if (INSN_DELETED_P (insn
))
1684 return NEXT_INSN (insn
);
1686 switch (GET_CODE (insn
))
1692 switch (NOTE_LINE_NUMBER (insn
))
1694 case NOTE_INSN_DELETED
:
1695 case NOTE_INSN_LOOP_BEG
:
1696 case NOTE_INSN_LOOP_END
:
1697 case NOTE_INSN_FUNCTION_END
:
1698 case NOTE_INSN_REPEATED_LINE_NUMBER
:
1699 case NOTE_INSN_EXPECTED_VALUE
:
1702 case NOTE_INSN_UNLIKELY_EXECUTED_CODE
:
1704 /* The presence of this note indicates that this basic block
1705 belongs in the "cold" section of the .o file. If we are
1706 not already writing to the cold section we need to change
1709 unlikely_text_section ();
1712 case NOTE_INSN_BASIC_BLOCK
:
1714 /* If we are performing the optimization that partitions
1715 basic blocks into hot & cold sections of the .o file,
1716 then at the start of each new basic block, before
1717 beginning to write code for the basic block, we need to
1718 check to see whether the basic block belongs in the hot
1719 or cold section of the .o file, and change the section we
1720 are writing to appropriately. */
1722 if (flag_reorder_blocks_and_partition
1723 && !scan_ahead_for_unlikely_executed_note (insn
))
1724 function_section (current_function_decl
);
1726 #ifdef TARGET_UNWIND_INFO
1727 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
1731 fprintf (asm_out_file
, "\t%s basic block %d\n",
1732 ASM_COMMENT_START
, NOTE_BASIC_BLOCK (insn
)->index
);
1734 if ((*seen
& (SEEN_EMITTED
| SEEN_BB
)) == SEEN_BB
)
1736 *seen
|= SEEN_EMITTED
;
1737 last_filename
= NULL
;
1744 case NOTE_INSN_EH_REGION_BEG
:
1745 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
1746 NOTE_EH_HANDLER (insn
));
1749 case NOTE_INSN_EH_REGION_END
:
1750 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
1751 NOTE_EH_HANDLER (insn
));
1754 case NOTE_INSN_PROLOGUE_END
:
1755 targetm
.asm_out
.function_end_prologue (file
);
1756 profile_after_prologue (file
);
1758 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1760 *seen
|= SEEN_EMITTED
;
1761 last_filename
= NULL
;
1768 case NOTE_INSN_EPILOGUE_BEG
:
1769 targetm
.asm_out
.function_begin_epilogue (file
);
1772 case NOTE_INSN_FUNCTION_BEG
:
1774 (*debug_hooks
->end_prologue
) (last_linenum
, last_filename
);
1776 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1778 *seen
|= SEEN_EMITTED
;
1779 last_filename
= NULL
;
1786 case NOTE_INSN_BLOCK_BEG
:
1787 if (debug_info_level
== DINFO_LEVEL_NORMAL
1788 || debug_info_level
== DINFO_LEVEL_VERBOSE
1789 || write_symbols
== DWARF2_DEBUG
1790 || write_symbols
== VMS_AND_DWARF2_DEBUG
1791 || write_symbols
== VMS_DEBUG
)
1793 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1797 high_block_linenum
= last_linenum
;
1799 /* Output debugging info about the symbol-block beginning. */
1800 (*debug_hooks
->begin_block
) (last_linenum
, n
);
1802 /* Mark this block as output. */
1803 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
1807 case NOTE_INSN_BLOCK_END
:
1808 if (debug_info_level
== DINFO_LEVEL_NORMAL
1809 || debug_info_level
== DINFO_LEVEL_VERBOSE
1810 || write_symbols
== DWARF2_DEBUG
1811 || write_symbols
== VMS_AND_DWARF2_DEBUG
1812 || write_symbols
== VMS_DEBUG
)
1814 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1818 /* End of a symbol-block. */
1820 gcc_assert (block_depth
>= 0);
1822 (*debug_hooks
->end_block
) (high_block_linenum
, n
);
1826 case NOTE_INSN_DELETED_LABEL
:
1827 /* Emit the label. We may have deleted the CODE_LABEL because
1828 the label could be proved to be unreachable, though still
1829 referenced (in the form of having its address taken. */
1830 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
1833 case NOTE_INSN_VAR_LOCATION
:
1834 (*debug_hooks
->var_location
) (insn
);
1841 gcc_assert (NOTE_LINE_NUMBER (insn
) > 0);
1847 #if defined (DWARF2_UNWIND_INFO)
1848 if (dwarf2out_do_frame ())
1849 dwarf2out_frame_debug (insn
);
1854 /* The target port might emit labels in the output function for
1855 some insn, e.g. sh.c output_branchy_insn. */
1856 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
1858 int align
= LABEL_TO_ALIGNMENT (insn
);
1859 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1860 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
1863 if (align
&& NEXT_INSN (insn
))
1865 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1866 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
1868 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1869 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
1871 ASM_OUTPUT_ALIGN (file
, align
);
1878 /* If this label is reached from only one place, set the condition
1879 codes from the instruction just before the branch. */
1881 /* Disabled because some insns set cc_status in the C output code
1882 and NOTICE_UPDATE_CC alone can set incorrect status. */
1883 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1885 rtx jump
= LABEL_REFS (insn
);
1886 rtx barrier
= prev_nonnote_insn (insn
);
1888 /* If the LABEL_REFS field of this label has been set to point
1889 at a branch, the predecessor of the branch is a regular
1890 insn, and that branch is the only way to reach this label,
1891 set the condition codes based on the branch and its
1893 if (barrier
&& BARRIER_P (barrier
)
1894 && jump
&& JUMP_P (jump
)
1895 && (prev
= prev_nonnote_insn (jump
))
1896 && NONJUMP_INSN_P (prev
))
1898 NOTICE_UPDATE_CC (PATTERN (prev
), prev
);
1899 NOTICE_UPDATE_CC (PATTERN (jump
), jump
);
1906 if (LABEL_NAME (insn
))
1907 (*debug_hooks
->label
) (insn
);
1909 /* If we are doing the optimization that partitions hot & cold
1910 basic blocks into separate sections of the .o file, we need
1911 to ensure the jump table ends up in the correct section... */
1913 if (flag_reorder_blocks_and_partition
1914 && targetm
.have_named_sections
)
1916 rtx tmp_table
, tmp_label
;
1918 && tablejump_p (NEXT_INSN (insn
), &tmp_label
, &tmp_table
))
1920 /* Do nothing; Do NOT change the current section. */
1922 else if (scan_ahead_for_unlikely_executed_note (insn
))
1923 unlikely_text_section ();
1924 else if (in_unlikely_text_section ())
1925 function_section (current_function_decl
);
1930 fputs (ASM_APP_OFF
, file
);
1933 if (NEXT_INSN (insn
) != 0
1934 && JUMP_P (NEXT_INSN (insn
)))
1936 rtx nextbody
= PATTERN (NEXT_INSN (insn
));
1938 /* If this label is followed by a jump-table,
1939 make sure we put the label in the read-only section. Also
1940 possibly write the label and jump table together. */
1942 if (GET_CODE (nextbody
) == ADDR_VEC
1943 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
1945 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1946 /* In this case, the case vector is being moved by the
1947 target, so don't output the label at all. Leave that
1948 to the back end macros. */
1950 if (! JUMP_TABLES_IN_TEXT_SECTION
)
1954 targetm
.asm_out
.function_rodata_section (current_function_decl
);
1956 #ifdef ADDR_VEC_ALIGN
1957 log_align
= ADDR_VEC_ALIGN (NEXT_INSN (insn
));
1959 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
1961 ASM_OUTPUT_ALIGN (file
, log_align
);
1964 function_section (current_function_decl
);
1966 #ifdef ASM_OUTPUT_CASE_LABEL
1967 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
1970 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
1976 if (LABEL_ALT_ENTRY_P (insn
))
1977 output_alternate_entry_point (file
, insn
);
1979 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
1984 rtx body
= PATTERN (insn
);
1985 int insn_code_number
;
1986 const char *template;
1988 /* An INSN, JUMP_INSN or CALL_INSN.
1989 First check for special kinds that recog doesn't recognize. */
1991 if (GET_CODE (body
) == USE
/* These are just declarations. */
1992 || GET_CODE (body
) == CLOBBER
)
1997 /* If there is a REG_CC_SETTER note on this insn, it means that
1998 the setting of the condition code was done in the delay slot
1999 of the insn that branched here. So recover the cc status
2000 from the insn that set it. */
2002 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2005 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2006 cc_prev_status
= cc_status
;
2011 /* Detect insns that are really jump-tables
2012 and output them as such. */
2014 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
2016 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2025 fputs (ASM_APP_OFF
, file
);
2029 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2030 if (GET_CODE (body
) == ADDR_VEC
)
2032 #ifdef ASM_OUTPUT_ADDR_VEC
2033 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2040 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2041 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2047 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2048 for (idx
= 0; idx
< vlen
; idx
++)
2050 if (GET_CODE (body
) == ADDR_VEC
)
2052 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2053 ASM_OUTPUT_ADDR_VEC_ELT
2054 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2061 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2062 ASM_OUTPUT_ADDR_DIFF_ELT
2065 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2066 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2072 #ifdef ASM_OUTPUT_CASE_END
2073 ASM_OUTPUT_CASE_END (file
,
2074 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2079 function_section (current_function_decl
);
2083 /* Output this line note if it is the first or the last line
2085 if (notice_source_line (insn
))
2087 (*debug_hooks
->source_line
) (last_linenum
, last_filename
);
2090 if (GET_CODE (body
) == ASM_INPUT
)
2092 const char *string
= XSTR (body
, 0);
2094 /* There's no telling what that did to the condition codes. */
2103 fputs (ASM_APP_ON
, file
);
2106 fprintf (asm_out_file
, "\t%s\n", string
);
2111 /* Detect `asm' construct with operands. */
2112 if (asm_noperands (body
) >= 0)
2114 unsigned int noperands
= asm_noperands (body
);
2115 rtx
*ops
= alloca (noperands
* sizeof (rtx
));
2118 /* There's no telling what that did to the condition codes. */
2123 /* Get out the operand values. */
2124 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
);
2125 /* Inhibit aborts on what would otherwise be compiler bugs. */
2126 insn_noperands
= noperands
;
2127 this_is_asm_operands
= insn
;
2129 #ifdef FINAL_PRESCAN_INSN
2130 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2133 /* Output the insn using them. */
2138 fputs (ASM_APP_ON
, file
);
2141 output_asm_insn (string
, ops
);
2144 this_is_asm_operands
= 0;
2148 if (prescan
<= 0 && app_on
)
2150 fputs (ASM_APP_OFF
, file
);
2154 if (GET_CODE (body
) == SEQUENCE
)
2156 /* A delayed-branch sequence */
2162 final_sequence
= body
;
2164 /* Record the delay slots' frame information before the branch.
2165 This is needed for delayed calls: see execute_cfa_program(). */
2166 #if defined (DWARF2_UNWIND_INFO)
2167 if (dwarf2out_do_frame ())
2168 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2169 dwarf2out_frame_debug (XVECEXP (body
, 0, i
));
2172 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2173 force the restoration of a comparison that was previously
2174 thought unnecessary. If that happens, cancel this sequence
2175 and cause that insn to be restored. */
2177 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, prescan
, 1, seen
);
2178 if (next
!= XVECEXP (body
, 0, 1))
2184 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2186 rtx insn
= XVECEXP (body
, 0, i
);
2187 rtx next
= NEXT_INSN (insn
);
2188 /* We loop in case any instruction in a delay slot gets
2191 insn
= final_scan_insn (insn
, file
, 0, prescan
, 1, seen
);
2192 while (insn
!= next
);
2194 #ifdef DBR_OUTPUT_SEQEND
2195 DBR_OUTPUT_SEQEND (file
);
2199 /* If the insn requiring the delay slot was a CALL_INSN, the
2200 insns in the delay slot are actually executed before the
2201 called function. Hence we don't preserve any CC-setting
2202 actions in these insns and the CC must be marked as being
2203 clobbered by the function. */
2204 if (CALL_P (XVECEXP (body
, 0, 0)))
2211 /* We have a real machine instruction as rtl. */
2213 body
= PATTERN (insn
);
2216 set
= single_set (insn
);
2218 /* Check for redundant test and compare instructions
2219 (when the condition codes are already set up as desired).
2220 This is done only when optimizing; if not optimizing,
2221 it should be possible for the user to alter a variable
2222 with the debugger in between statements
2223 and the next statement should reexamine the variable
2224 to compute the condition codes. */
2229 && GET_CODE (SET_DEST (set
)) == CC0
2230 && insn
!= last_ignored_compare
)
2232 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2233 SET_SRC (set
) = alter_subreg (&SET_SRC (set
));
2234 else if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2236 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2237 XEXP (SET_SRC (set
), 0)
2238 = alter_subreg (&XEXP (SET_SRC (set
), 0));
2239 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2240 XEXP (SET_SRC (set
), 1)
2241 = alter_subreg (&XEXP (SET_SRC (set
), 1));
2243 if ((cc_status
.value1
!= 0
2244 && rtx_equal_p (SET_SRC (set
), cc_status
.value1
))
2245 || (cc_status
.value2
!= 0
2246 && rtx_equal_p (SET_SRC (set
), cc_status
.value2
)))
2248 /* Don't delete insn if it has an addressing side-effect. */
2249 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2250 /* or if anything in it is volatile. */
2251 && ! volatile_refs_p (PATTERN (insn
)))
2253 /* We don't really delete the insn; just ignore it. */
2254 last_ignored_compare
= insn
;
2263 /* Don't bother outputting obvious no-ops, even without -O.
2264 This optimization is fast and doesn't interfere with debugging.
2265 Don't do this if the insn is in a delay slot, since this
2266 will cause an improper number of delay insns to be written. */
2267 if (final_sequence
== 0
2269 && NONJUMP_INSN_P (insn
) && GET_CODE (body
) == SET
2270 && REG_P (SET_SRC (body
))
2271 && REG_P (SET_DEST (body
))
2272 && REGNO (SET_SRC (body
)) == REGNO (SET_DEST (body
)))
2277 /* If this is a conditional branch, maybe modify it
2278 if the cc's are in a nonstandard state
2279 so that it accomplishes the same thing that it would
2280 do straightforwardly if the cc's were set up normally. */
2282 if (cc_status
.flags
!= 0
2284 && GET_CODE (body
) == SET
2285 && SET_DEST (body
) == pc_rtx
2286 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2287 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2288 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
2289 /* This is done during prescan; it is not done again
2290 in final scan when prescan has been done. */
2293 /* This function may alter the contents of its argument
2294 and clear some of the cc_status.flags bits.
2295 It may also return 1 meaning condition now always true
2296 or -1 meaning condition now always false
2297 or 2 meaning condition nontrivial but altered. */
2298 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2299 /* If condition now has fixed value, replace the IF_THEN_ELSE
2300 with its then-operand or its else-operand. */
2302 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2304 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2306 /* The jump is now either unconditional or a no-op.
2307 If it has become a no-op, don't try to output it.
2308 (It would not be recognized.) */
2309 if (SET_SRC (body
) == pc_rtx
)
2314 else if (GET_CODE (SET_SRC (body
)) == RETURN
)
2315 /* Replace (set (pc) (return)) with (return). */
2316 PATTERN (insn
) = body
= SET_SRC (body
);
2318 /* Rerecognize the instruction if it has changed. */
2320 INSN_CODE (insn
) = -1;
2323 /* Make same adjustments to instructions that examine the
2324 condition codes without jumping and instructions that
2325 handle conditional moves (if this machine has either one). */
2327 if (cc_status
.flags
!= 0
2330 rtx cond_rtx
, then_rtx
, else_rtx
;
2333 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2335 cond_rtx
= XEXP (SET_SRC (set
), 0);
2336 then_rtx
= XEXP (SET_SRC (set
), 1);
2337 else_rtx
= XEXP (SET_SRC (set
), 2);
2341 cond_rtx
= SET_SRC (set
);
2342 then_rtx
= const_true_rtx
;
2343 else_rtx
= const0_rtx
;
2346 switch (GET_CODE (cond_rtx
))
2360 if (XEXP (cond_rtx
, 0) != cc0_rtx
)
2362 result
= alter_cond (cond_rtx
);
2364 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2365 else if (result
== -1)
2366 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2367 else if (result
== 2)
2368 INSN_CODE (insn
) = -1;
2369 if (SET_DEST (set
) == SET_SRC (set
))
2381 #ifdef HAVE_peephole
2382 /* Do machine-specific peephole optimizations if desired. */
2384 if (optimize
&& !flag_no_peephole
&& !nopeepholes
)
2386 rtx next
= peephole (insn
);
2387 /* When peepholing, if there were notes within the peephole,
2388 emit them before the peephole. */
2389 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2391 rtx note
, prev
= PREV_INSN (insn
);
2393 for (note
= NEXT_INSN (insn
); note
!= next
;
2394 note
= NEXT_INSN (note
))
2395 final_scan_insn (note
, file
, optimize
, prescan
, nopeepholes
, seen
);
2397 /* In case this is prescan, put the notes
2398 in proper position for later rescan. */
2399 note
= NEXT_INSN (insn
);
2400 PREV_INSN (note
) = prev
;
2401 NEXT_INSN (prev
) = note
;
2402 NEXT_INSN (PREV_INSN (next
)) = insn
;
2403 PREV_INSN (insn
) = PREV_INSN (next
);
2404 NEXT_INSN (insn
) = next
;
2405 PREV_INSN (next
) = insn
;
2408 /* PEEPHOLE might have changed this. */
2409 body
= PATTERN (insn
);
2413 /* Try to recognize the instruction.
2414 If successful, verify that the operands satisfy the
2415 constraints for the instruction. Crash if they don't,
2416 since `reload' should have changed them so that they do. */
2418 insn_code_number
= recog_memoized (insn
);
2419 cleanup_subreg_operands (insn
);
2421 /* Dump the insn in the assembly for debugging. */
2422 if (flag_dump_rtl_in_asm
)
2424 print_rtx_head
= ASM_COMMENT_START
;
2425 print_rtl_single (asm_out_file
, insn
);
2426 print_rtx_head
= "";
2429 if (! constrain_operands_cached (1))
2430 fatal_insn_not_found (insn
);
2432 /* Some target machines need to prescan each insn before
2435 #ifdef FINAL_PRESCAN_INSN
2436 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2439 #ifdef HAVE_conditional_execution
2440 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2441 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2443 current_insn_predicate
= NULL_RTX
;
2447 cc_prev_status
= cc_status
;
2449 /* Update `cc_status' for this instruction.
2450 The instruction's output routine may change it further.
2451 If the output routine for a jump insn needs to depend
2452 on the cc status, it should look at cc_prev_status. */
2454 NOTICE_UPDATE_CC (body
, insn
);
2457 current_output_insn
= debug_insn
= insn
;
2459 #if defined (DWARF2_UNWIND_INFO)
2460 if (CALL_P (insn
) && dwarf2out_do_frame ())
2461 dwarf2out_frame_debug (insn
);
2464 /* Find the proper template for this insn. */
2465 template = get_insn_template (insn_code_number
, insn
);
2467 /* If the C code returns 0, it means that it is a jump insn
2468 which follows a deleted test insn, and that test insn
2469 needs to be reinserted. */
2474 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2476 /* We have already processed the notes between the setter and
2477 the user. Make sure we don't process them again, this is
2478 particularly important if one of the notes is a block
2479 scope note or an EH note. */
2481 prev
!= last_ignored_compare
;
2482 prev
= PREV_INSN (prev
))
2485 delete_insn (prev
); /* Use delete_note. */
2491 /* If the template is the string "#", it means that this insn must
2493 if (template[0] == '#' && template[1] == '\0')
2495 rtx
new = try_split (body
, insn
, 0);
2497 /* If we didn't split the insn, go away. */
2498 if (new == insn
&& PATTERN (new) == body
)
2499 fatal_insn ("could not split insn", insn
);
2501 #ifdef HAVE_ATTR_length
2502 /* This instruction should have been split in shorten_branches,
2503 to ensure that we would have valid length info for the
2514 #ifdef TARGET_UNWIND_INFO
2515 /* ??? This will put the directives in the wrong place if
2516 get_insn_template outputs assembly directly. However calling it
2517 before get_insn_template breaks if the insns is split. */
2518 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2521 /* Output assembler code from the template. */
2522 output_asm_insn (template, recog_data
.operand
);
2524 /* If necessary, report the effect that the instruction has on
2525 the unwind info. We've already done this for delay slots
2526 and call instructions. */
2527 #if defined (DWARF2_UNWIND_INFO)
2528 if (NONJUMP_INSN_P (insn
)
2529 #if !defined (HAVE_prologue)
2530 && !ACCUMULATE_OUTGOING_ARGS
2532 && final_sequence
== 0
2533 && dwarf2out_do_frame ())
2534 dwarf2out_frame_debug (insn
);
2537 current_output_insn
= debug_insn
= 0;
2540 return NEXT_INSN (insn
);
2543 /* Output debugging info to the assembler file FILE
2544 based on the NOTE-insn INSN, assumed to be a line number. */
2547 notice_source_line (rtx insn
)
2549 const char *filename
= insn_file (insn
);
2550 int linenum
= insn_line (insn
);
2552 if (filename
&& (filename
!= last_filename
|| last_linenum
!= linenum
))
2554 last_filename
= filename
;
2555 last_linenum
= linenum
;
2556 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
2557 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
2563 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2564 directly to the desired hard register. */
2567 cleanup_subreg_operands (rtx insn
)
2570 extract_insn_cached (insn
);
2571 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2573 /* The following test cannot use recog_data.operand when testing
2574 for a SUBREG: the underlying object might have been changed
2575 already if we are inside a match_operator expression that
2576 matches the else clause. Instead we test the underlying
2577 expression directly. */
2578 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2579 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
]);
2580 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
2581 || GET_CODE (recog_data
.operand
[i
]) == MULT
2582 || MEM_P (recog_data
.operand
[i
]))
2583 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
]);
2586 for (i
= 0; i
< recog_data
.n_dups
; i
++)
2588 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
2589 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
]);
2590 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
2591 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
2592 || MEM_P (*recog_data
.dup_loc
[i
]))
2593 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
]);
2597 /* If X is a SUBREG, replace it with a REG or a MEM,
2598 based on the thing it is a subreg of. */
2601 alter_subreg (rtx
*xp
)
2604 rtx y
= SUBREG_REG (x
);
2606 /* simplify_subreg does not remove subreg from volatile references.
2607 We are required to. */
2609 *xp
= adjust_address (y
, GET_MODE (x
), SUBREG_BYTE (x
));
2612 rtx
new = simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
2619 /* Simplify_subreg can't handle some REG cases, but we have to. */
2620 unsigned int regno
= subreg_hard_regno (x
, 1);
2622 gcc_assert (REG_P (y
));
2623 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, SUBREG_BYTE (x
));
2630 /* Do alter_subreg on all the SUBREGs contained in X. */
2633 walk_alter_subreg (rtx
*xp
)
2636 switch (GET_CODE (x
))
2641 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0));
2642 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1));
2647 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0));
2651 return alter_subreg (xp
);
2662 /* Given BODY, the body of a jump instruction, alter the jump condition
2663 as required by the bits that are set in cc_status.flags.
2664 Not all of the bits there can be handled at this level in all cases.
2666 The value is normally 0.
2667 1 means that the condition has become always true.
2668 -1 means that the condition has become always false.
2669 2 means that COND has been altered. */
2672 alter_cond (rtx cond
)
2676 if (cc_status
.flags
& CC_REVERSED
)
2679 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
2682 if (cc_status
.flags
& CC_INVERTED
)
2685 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
2688 if (cc_status
.flags
& CC_NOT_POSITIVE
)
2689 switch (GET_CODE (cond
))
2694 /* Jump becomes unconditional. */
2700 /* Jump becomes no-op. */
2704 PUT_CODE (cond
, EQ
);
2709 PUT_CODE (cond
, NE
);
2717 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
2718 switch (GET_CODE (cond
))
2722 /* Jump becomes unconditional. */
2727 /* Jump becomes no-op. */
2732 PUT_CODE (cond
, EQ
);
2738 PUT_CODE (cond
, NE
);
2746 if (cc_status
.flags
& CC_NO_OVERFLOW
)
2747 switch (GET_CODE (cond
))
2750 /* Jump becomes unconditional. */
2754 PUT_CODE (cond
, EQ
);
2759 PUT_CODE (cond
, NE
);
2764 /* Jump becomes no-op. */
2771 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
2772 switch (GET_CODE (cond
))
2778 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
2783 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
2788 if (cc_status
.flags
& CC_NOT_SIGNED
)
2789 /* The flags are valid if signed condition operators are converted
2791 switch (GET_CODE (cond
))
2794 PUT_CODE (cond
, LEU
);
2799 PUT_CODE (cond
, LTU
);
2804 PUT_CODE (cond
, GTU
);
2809 PUT_CODE (cond
, GEU
);
2821 /* Report inconsistency between the assembler template and the operands.
2822 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2825 output_operand_lossage (const char *msgid
, ...)
2829 const char *pfx_str
;
2832 va_start (ap
, msgid
);
2834 pfx_str
= this_is_asm_operands
? _("invalid `asm': ") : "output_operand: ";
2835 asprintf (&fmt_string
, "%s%s", pfx_str
, _(msgid
));
2836 vasprintf (&new_message
, fmt_string
, ap
);
2838 if (this_is_asm_operands
)
2839 error_for_asm (this_is_asm_operands
, "%s", new_message
);
2841 internal_error ("%s", new_message
);
2848 /* Output of assembler code from a template, and its subroutines. */
2850 /* Annotate the assembly with a comment describing the pattern and
2851 alternative used. */
2854 output_asm_name (void)
2858 int num
= INSN_CODE (debug_insn
);
2859 fprintf (asm_out_file
, "\t%s %d\t%s",
2860 ASM_COMMENT_START
, INSN_UID (debug_insn
),
2861 insn_data
[num
].name
);
2862 if (insn_data
[num
].n_alternatives
> 1)
2863 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
2864 #ifdef HAVE_ATTR_length
2865 fprintf (asm_out_file
, "\t[length = %d]",
2866 get_attr_length (debug_insn
));
2868 /* Clear this so only the first assembler insn
2869 of any rtl insn will get the special comment for -dp. */
2874 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2875 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2876 corresponds to the address of the object and 0 if to the object. */
2879 get_mem_expr_from_op (rtx op
, int *paddressp
)
2887 return REG_EXPR (op
);
2888 else if (!MEM_P (op
))
2891 if (MEM_EXPR (op
) != 0)
2892 return MEM_EXPR (op
);
2894 /* Otherwise we have an address, so indicate it and look at the address. */
2898 /* First check if we have a decl for the address, then look at the right side
2899 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2900 But don't allow the address to itself be indirect. */
2901 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
2903 else if (GET_CODE (op
) == PLUS
2904 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
2907 while (GET_RTX_CLASS (GET_CODE (op
)) == RTX_UNARY
2908 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
2911 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
2912 return inner_addressp
? 0 : expr
;
2915 /* Output operand names for assembler instructions. OPERANDS is the
2916 operand vector, OPORDER is the order to write the operands, and NOPS
2917 is the number of operands to write. */
2920 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
2925 for (i
= 0; i
< nops
; i
++)
2928 rtx op
= operands
[oporder
[i
]];
2929 tree expr
= get_mem_expr_from_op (op
, &addressp
);
2931 fprintf (asm_out_file
, "%c%s",
2932 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
2936 fprintf (asm_out_file
, "%s",
2937 addressp
? "*" : "");
2938 print_mem_expr (asm_out_file
, expr
);
2941 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
2942 && ORIGINAL_REGNO (op
) != REGNO (op
))
2943 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
2947 /* Output text from TEMPLATE to the assembler output file,
2948 obeying %-directions to substitute operands taken from
2949 the vector OPERANDS.
2951 %N (for N a digit) means print operand N in usual manner.
2952 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2953 and print the label name with no punctuation.
2954 %cN means require operand N to be a constant
2955 and print the constant expression with no punctuation.
2956 %aN means expect operand N to be a memory address
2957 (not a memory reference!) and print a reference
2959 %nN means expect operand N to be a constant
2960 and print a constant expression for minus the value
2961 of the operand, with no other punctuation. */
2964 output_asm_insn (const char *template, rtx
*operands
)
2968 #ifdef ASSEMBLER_DIALECT
2971 int oporder
[MAX_RECOG_OPERANDS
];
2972 char opoutput
[MAX_RECOG_OPERANDS
];
2975 /* An insn may return a null string template
2976 in a case where no assembler code is needed. */
2980 memset (opoutput
, 0, sizeof opoutput
);
2982 putc ('\t', asm_out_file
);
2984 #ifdef ASM_OUTPUT_OPCODE
2985 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
2992 if (flag_verbose_asm
)
2993 output_asm_operand_names (operands
, oporder
, ops
);
2994 if (flag_print_asm_name
)
2998 memset (opoutput
, 0, sizeof opoutput
);
3000 putc (c
, asm_out_file
);
3001 #ifdef ASM_OUTPUT_OPCODE
3002 while ((c
= *p
) == '\t')
3004 putc (c
, asm_out_file
);
3007 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3011 #ifdef ASSEMBLER_DIALECT
3017 output_operand_lossage ("nested assembly dialect alternatives");
3021 /* If we want the first dialect, do nothing. Otherwise, skip
3022 DIALECT_NUMBER of strings ending with '|'. */
3023 for (i
= 0; i
< dialect_number
; i
++)
3025 while (*p
&& *p
!= '}' && *p
++ != '|')
3034 output_operand_lossage ("unterminated assembly dialect alternative");
3041 /* Skip to close brace. */
3046 output_operand_lossage ("unterminated assembly dialect alternative");
3050 while (*p
++ != '}');
3054 putc (c
, asm_out_file
);
3059 putc (c
, asm_out_file
);
3065 /* %% outputs a single %. */
3069 putc (c
, asm_out_file
);
3071 /* %= outputs a number which is unique to each insn in the entire
3072 compilation. This is useful for making local labels that are
3073 referred to more than once in a given insn. */
3077 fprintf (asm_out_file
, "%d", insn_counter
);
3079 /* % followed by a letter and some digits
3080 outputs an operand in a special way depending on the letter.
3081 Letters `acln' are implemented directly.
3082 Other letters are passed to `output_operand' so that
3083 the PRINT_OPERAND macro can define them. */
3084 else if (ISALPHA (*p
))
3087 unsigned long opnum
;
3090 opnum
= strtoul (p
, &endptr
, 10);
3093 output_operand_lossage ("operand number missing "
3095 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3096 output_operand_lossage ("operand number out of range");
3097 else if (letter
== 'l')
3098 output_asm_label (operands
[opnum
]);
3099 else if (letter
== 'a')
3100 output_address (operands
[opnum
]);
3101 else if (letter
== 'c')
3103 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3104 output_addr_const (asm_out_file
, operands
[opnum
]);
3106 output_operand (operands
[opnum
], 'c');
3108 else if (letter
== 'n')
3110 if (GET_CODE (operands
[opnum
]) == CONST_INT
)
3111 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3112 - INTVAL (operands
[opnum
]));
3115 putc ('-', asm_out_file
);
3116 output_addr_const (asm_out_file
, operands
[opnum
]);
3120 output_operand (operands
[opnum
], letter
);
3122 if (!opoutput
[opnum
])
3123 oporder
[ops
++] = opnum
;
3124 opoutput
[opnum
] = 1;
3129 /* % followed by a digit outputs an operand the default way. */
3130 else if (ISDIGIT (*p
))
3132 unsigned long opnum
;
3135 opnum
= strtoul (p
, &endptr
, 10);
3136 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3137 output_operand_lossage ("operand number out of range");
3139 output_operand (operands
[opnum
], 0);
3141 if (!opoutput
[opnum
])
3142 oporder
[ops
++] = opnum
;
3143 opoutput
[opnum
] = 1;
3148 /* % followed by punctuation: output something for that
3149 punctuation character alone, with no operand.
3150 The PRINT_OPERAND macro decides what is actually done. */
3151 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3152 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p
))
3153 output_operand (NULL_RTX
, *p
++);
3156 output_operand_lossage ("invalid %%-code");
3160 putc (c
, asm_out_file
);
3163 /* Write out the variable names for operands, if we know them. */
3164 if (flag_verbose_asm
)
3165 output_asm_operand_names (operands
, oporder
, ops
);
3166 if (flag_print_asm_name
)
3169 putc ('\n', asm_out_file
);
3172 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3175 output_asm_label (rtx x
)
3179 if (GET_CODE (x
) == LABEL_REF
)
3183 && NOTE_LINE_NUMBER (x
) == NOTE_INSN_DELETED_LABEL
))
3184 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3186 output_operand_lossage ("`%%l' operand isn't a label");
3188 assemble_name (asm_out_file
, buf
);
3191 /* Print operand X using machine-dependent assembler syntax.
3192 The macro PRINT_OPERAND is defined just to control this function.
3193 CODE is a non-digit that preceded the operand-number in the % spec,
3194 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3195 between the % and the digits.
3196 When CODE is a non-letter, X is 0.
3198 The meanings of the letters are machine-dependent and controlled
3199 by PRINT_OPERAND. */
3202 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3204 if (x
&& GET_CODE (x
) == SUBREG
)
3205 x
= alter_subreg (&x
);
3207 /* If X is a pseudo-register, abort now rather than writing trash to the
3209 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3211 PRINT_OPERAND (asm_out_file
, x
, code
);
3214 /* Print a memory reference operand for address X
3215 using machine-dependent assembler syntax.
3216 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3219 output_address (rtx x
)
3221 walk_alter_subreg (&x
);
3222 PRINT_OPERAND_ADDRESS (asm_out_file
, x
);
3225 /* Print an integer constant expression in assembler syntax.
3226 Addition and subtraction are the only arithmetic
3227 that may appear in these expressions. */
3230 output_addr_const (FILE *file
, rtx x
)
3235 switch (GET_CODE (x
))
3242 if (SYMBOL_REF_DECL (x
))
3243 mark_decl_referenced (SYMBOL_REF_DECL (x
));
3244 #ifdef ASM_OUTPUT_SYMBOL_REF
3245 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3247 assemble_name (file
, XSTR (x
, 0));
3255 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3256 #ifdef ASM_OUTPUT_LABEL_REF
3257 ASM_OUTPUT_LABEL_REF (file
, buf
);
3259 assemble_name (file
, buf
);
3264 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3268 /* This used to output parentheses around the expression,
3269 but that does not work on the 386 (either ATT or BSD assembler). */
3270 output_addr_const (file
, XEXP (x
, 0));
3274 if (GET_MODE (x
) == VOIDmode
)
3276 /* We can use %d if the number is one word and positive. */
3277 if (CONST_DOUBLE_HIGH (x
))
3278 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3279 CONST_DOUBLE_HIGH (x
), CONST_DOUBLE_LOW (x
));
3280 else if (CONST_DOUBLE_LOW (x
) < 0)
3281 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
, CONST_DOUBLE_LOW (x
));
3283 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3286 /* We can't handle floating point constants;
3287 PRINT_OPERAND must handle them. */
3288 output_operand_lossage ("floating constant misused");
3292 /* Some assemblers need integer constants to appear last (eg masm). */
3293 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
3295 output_addr_const (file
, XEXP (x
, 1));
3296 if (INTVAL (XEXP (x
, 0)) >= 0)
3297 fprintf (file
, "+");
3298 output_addr_const (file
, XEXP (x
, 0));
3302 output_addr_const (file
, XEXP (x
, 0));
3303 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
3304 || INTVAL (XEXP (x
, 1)) >= 0)
3305 fprintf (file
, "+");
3306 output_addr_const (file
, XEXP (x
, 1));
3311 /* Avoid outputting things like x-x or x+5-x,
3312 since some assemblers can't handle that. */
3313 x
= simplify_subtraction (x
);
3314 if (GET_CODE (x
) != MINUS
)
3317 output_addr_const (file
, XEXP (x
, 0));
3318 fprintf (file
, "-");
3319 if ((GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0)
3320 || GET_CODE (XEXP (x
, 1)) == PC
3321 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3322 output_addr_const (file
, XEXP (x
, 1));
3325 fputs (targetm
.asm_out
.open_paren
, file
);
3326 output_addr_const (file
, XEXP (x
, 1));
3327 fputs (targetm
.asm_out
.close_paren
, file
);
3334 output_addr_const (file
, XEXP (x
, 0));
3338 #ifdef OUTPUT_ADDR_CONST_EXTRA
3339 OUTPUT_ADDR_CONST_EXTRA (file
, x
, fail
);
3344 output_operand_lossage ("invalid expression as operand");
3348 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3349 %R prints the value of REGISTER_PREFIX.
3350 %L prints the value of LOCAL_LABEL_PREFIX.
3351 %U prints the value of USER_LABEL_PREFIX.
3352 %I prints the value of IMMEDIATE_PREFIX.
3353 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3354 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3356 We handle alternate assembler dialects here, just like output_asm_insn. */
3359 asm_fprintf (FILE *file
, const char *p
, ...)
3365 va_start (argptr
, p
);
3372 #ifdef ASSEMBLER_DIALECT
3377 /* If we want the first dialect, do nothing. Otherwise, skip
3378 DIALECT_NUMBER of strings ending with '|'. */
3379 for (i
= 0; i
< dialect_number
; i
++)
3381 while (*p
&& *p
++ != '|')
3391 /* Skip to close brace. */
3392 while (*p
&& *p
++ != '}')
3403 while (strchr ("-+ #0", c
))
3408 while (ISDIGIT (c
) || c
== '.')
3419 case 'd': case 'i': case 'u':
3420 case 'x': case 'X': case 'o':
3424 fprintf (file
, buf
, va_arg (argptr
, int));
3428 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3429 'o' cases, but we do not check for those cases. It
3430 means that the value is a HOST_WIDE_INT, which may be
3431 either `long' or `long long'. */
3432 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
3433 q
+= strlen (HOST_WIDE_INT_PRINT
);
3436 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
3441 #ifdef HAVE_LONG_LONG
3447 fprintf (file
, buf
, va_arg (argptr
, long long));
3454 fprintf (file
, buf
, va_arg (argptr
, long));
3462 fprintf (file
, buf
, va_arg (argptr
, char *));
3466 #ifdef ASM_OUTPUT_OPCODE
3467 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3472 #ifdef REGISTER_PREFIX
3473 fprintf (file
, "%s", REGISTER_PREFIX
);
3478 #ifdef IMMEDIATE_PREFIX
3479 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
3484 #ifdef LOCAL_LABEL_PREFIX
3485 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
3490 fputs (user_label_prefix
, file
);
3493 #ifdef ASM_FPRINTF_EXTENSIONS
3494 /* Uppercase letters are reserved for general use by asm_fprintf
3495 and so are not available to target specific code. In order to
3496 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3497 they are defined here. As they get turned into real extensions
3498 to asm_fprintf they should be removed from this list. */
3499 case 'A': case 'B': case 'C': case 'D': case 'E':
3500 case 'F': case 'G': case 'H': case 'J': case 'K':
3501 case 'M': case 'N': case 'P': case 'Q': case 'S':
3502 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3505 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
3518 /* Split up a CONST_DOUBLE or integer constant rtx
3519 into two rtx's for single words,
3520 storing in *FIRST the word that comes first in memory in the target
3521 and in *SECOND the other. */
3524 split_double (rtx value
, rtx
*first
, rtx
*second
)
3526 if (GET_CODE (value
) == CONST_INT
)
3528 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
3530 /* In this case the CONST_INT holds both target words.
3531 Extract the bits from it into two word-sized pieces.
3532 Sign extend each half to HOST_WIDE_INT. */
3533 unsigned HOST_WIDE_INT low
, high
;
3534 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
3536 /* Set sign_bit to the most significant bit of a word. */
3538 sign_bit
<<= BITS_PER_WORD
- 1;
3540 /* Set mask so that all bits of the word are set. We could
3541 have used 1 << BITS_PER_WORD instead of basing the
3542 calculation on sign_bit. However, on machines where
3543 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3544 compiler warning, even though the code would never be
3546 mask
= sign_bit
<< 1;
3549 /* Set sign_extend as any remaining bits. */
3550 sign_extend
= ~mask
;
3552 /* Pick the lower word and sign-extend it. */
3553 low
= INTVAL (value
);
3558 /* Pick the higher word, shifted to the least significant
3559 bits, and sign-extend it. */
3560 high
= INTVAL (value
);
3561 high
>>= BITS_PER_WORD
- 1;
3564 if (high
& sign_bit
)
3565 high
|= sign_extend
;
3567 /* Store the words in the target machine order. */
3568 if (WORDS_BIG_ENDIAN
)
3570 *first
= GEN_INT (high
);
3571 *second
= GEN_INT (low
);
3575 *first
= GEN_INT (low
);
3576 *second
= GEN_INT (high
);
3581 /* The rule for using CONST_INT for a wider mode
3582 is that we regard the value as signed.
3583 So sign-extend it. */
3584 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
3585 if (WORDS_BIG_ENDIAN
)
3597 else if (GET_CODE (value
) != CONST_DOUBLE
)
3599 if (WORDS_BIG_ENDIAN
)
3601 *first
= const0_rtx
;
3607 *second
= const0_rtx
;
3610 else if (GET_MODE (value
) == VOIDmode
3611 /* This is the old way we did CONST_DOUBLE integers. */
3612 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
3614 /* In an integer, the words are defined as most and least significant.
3615 So order them by the target's convention. */
3616 if (WORDS_BIG_ENDIAN
)
3618 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3619 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
3623 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
3624 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3631 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
3633 /* Note, this converts the REAL_VALUE_TYPE to the target's
3634 format, splits up the floating point double and outputs
3635 exactly 32 bits of it into each of l[0] and l[1] --
3636 not necessarily BITS_PER_WORD bits. */
3637 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
3639 /* If 32 bits is an entire word for the target, but not for the host,
3640 then sign-extend on the host so that the number will look the same
3641 way on the host that it would on the target. See for instance
3642 simplify_unary_operation. The #if is needed to avoid compiler
3645 #if HOST_BITS_PER_LONG > 32
3646 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
3648 if (l
[0] & ((long) 1 << 31))
3649 l
[0] |= ((long) (-1) << 32);
3650 if (l
[1] & ((long) 1 << 31))
3651 l
[1] |= ((long) (-1) << 32);
3655 *first
= GEN_INT (l
[0]);
3656 *second
= GEN_INT (l
[1]);
3660 /* Return nonzero if this function has no function calls. */
3663 leaf_function_p (void)
3668 if (current_function_profile
|| profile_arc_flag
)
3671 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3674 && ! SIBLING_CALL_P (insn
))
3676 if (NONJUMP_INSN_P (insn
)
3677 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3678 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3679 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3682 for (link
= current_function_epilogue_delay_list
;
3684 link
= XEXP (link
, 1))
3686 insn
= XEXP (link
, 0);
3689 && ! SIBLING_CALL_P (insn
))
3691 if (NONJUMP_INSN_P (insn
)
3692 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3693 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3694 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3701 /* Return 1 if branch is a forward branch.
3702 Uses insn_shuid array, so it works only in the final pass. May be used by
3703 output templates to customary add branch prediction hints.
3706 final_forward_branch_p (rtx insn
)
3708 int insn_id
, label_id
;
3710 gcc_assert (uid_shuid
);
3711 insn_id
= INSN_SHUID (insn
);
3712 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
3713 /* We've hit some insns that does not have id information available. */
3714 gcc_assert (insn_id
&& label_id
);
3715 return insn_id
< label_id
;
3718 /* On some machines, a function with no call insns
3719 can run faster if it doesn't create its own register window.
3720 When output, the leaf function should use only the "output"
3721 registers. Ordinarily, the function would be compiled to use
3722 the "input" registers to find its arguments; it is a candidate
3723 for leaf treatment if it uses only the "input" registers.
3724 Leaf function treatment means renumbering so the function
3725 uses the "output" registers instead. */
3727 #ifdef LEAF_REGISTERS
3729 /* Return 1 if this function uses only the registers that can be
3730 safely renumbered. */
3733 only_leaf_regs_used (void)
3736 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
3738 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3739 if ((regs_ever_live
[i
] || global_regs
[i
])
3740 && ! permitted_reg_in_leaf_functions
[i
])
3743 if (current_function_uses_pic_offset_table
3744 && pic_offset_table_rtx
!= 0
3745 && REG_P (pic_offset_table_rtx
)
3746 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
3752 /* Scan all instructions and renumber all registers into those
3753 available in leaf functions. */
3756 leaf_renumber_regs (rtx first
)
3760 /* Renumber only the actual patterns.
3761 The reg-notes can contain frame pointer refs,
3762 and renumbering them could crash, and should not be needed. */
3763 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3765 leaf_renumber_regs_insn (PATTERN (insn
));
3766 for (insn
= current_function_epilogue_delay_list
;
3768 insn
= XEXP (insn
, 1))
3769 if (INSN_P (XEXP (insn
, 0)))
3770 leaf_renumber_regs_insn (PATTERN (XEXP (insn
, 0)));
3773 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3774 available in leaf functions. */
3777 leaf_renumber_regs_insn (rtx in_rtx
)
3780 const char *format_ptr
;
3785 /* Renumber all input-registers into output-registers.
3786 renumbered_regs would be 1 for an output-register;
3793 /* Don't renumber the same reg twice. */
3797 newreg
= REGNO (in_rtx
);
3798 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3799 to reach here as part of a REG_NOTE. */
3800 if (newreg
>= FIRST_PSEUDO_REGISTER
)
3805 newreg
= LEAF_REG_REMAP (newreg
);
3806 gcc_assert (newreg
>= 0);
3807 regs_ever_live
[REGNO (in_rtx
)] = 0;
3808 regs_ever_live
[newreg
] = 1;
3809 REGNO (in_rtx
) = newreg
;
3813 if (INSN_P (in_rtx
))
3815 /* Inside a SEQUENCE, we find insns.
3816 Renumber just the patterns of these insns,
3817 just as we do for the top-level insns. */
3818 leaf_renumber_regs_insn (PATTERN (in_rtx
));
3822 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
3824 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
3825 switch (*format_ptr
++)
3828 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
3832 if (NULL
!= XVEC (in_rtx
, i
))
3834 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
3835 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
3855 /* When -gused is used, emit debug info for only used symbols. But in
3856 addition to the standard intercepted debug_hooks there are some direct
3857 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3858 Those routines may also be called from a higher level intercepted routine. So
3859 to prevent recording data for an inner call to one of these for an intercept,
3860 we maintain an intercept nesting counter (debug_nesting). We only save the
3861 intercepted arguments if the nesting is 1. */
3862 int debug_nesting
= 0;
3864 static tree
*symbol_queue
;
3865 int symbol_queue_index
= 0;
3866 static int symbol_queue_size
= 0;
3868 /* Generate the symbols for any queued up type symbols we encountered
3869 while generating the type info for some originally used symbol.
3870 This might generate additional entries in the queue. Only when
3871 the nesting depth goes to 0 is this routine called. */
3874 debug_flush_symbol_queue (void)
3878 /* Make sure that additionally queued items are not flushed
3883 for (i
= 0; i
< symbol_queue_index
; ++i
)
3885 /* If we pushed queued symbols then such symbols are must be
3886 output no matter what anyone else says. Specifically,
3887 we need to make sure dbxout_symbol() thinks the symbol was
3888 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3889 which may be set for outside reasons. */
3890 int saved_tree_used
= TREE_USED (symbol_queue
[i
]);
3891 int saved_suppress_debug
= TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]);
3892 TREE_USED (symbol_queue
[i
]) = 1;
3893 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = 0;
3895 #ifdef DBX_DEBUGGING_INFO
3896 dbxout_symbol (symbol_queue
[i
], 0);
3899 TREE_USED (symbol_queue
[i
]) = saved_tree_used
;
3900 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = saved_suppress_debug
;
3903 symbol_queue_index
= 0;
3907 /* Queue a type symbol needed as part of the definition of a decl
3908 symbol. These symbols are generated when debug_flush_symbol_queue()
3912 debug_queue_symbol (tree decl
)
3914 if (symbol_queue_index
>= symbol_queue_size
)
3916 symbol_queue_size
+= 10;
3917 symbol_queue
= xrealloc (symbol_queue
,
3918 symbol_queue_size
* sizeof (tree
));
3921 symbol_queue
[symbol_queue_index
++] = decl
;
3924 /* Free symbol queue. */
3926 debug_free_queue (void)
3930 free (symbol_queue
);
3931 symbol_queue
= NULL
;
3932 symbol_queue_size
= 0;