* Merge with edge-vector-mergepoint-20040918.
[official-gcc.git] / gcc / gcse.c
blobd28559358153dcd910112a7f63d096698f540928
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
171 #include "timevar.h"
173 /* Propagate flow information through back edges and thus enable PRE's
174 moving loop invariant calculations out of loops.
176 Originally this tended to create worse overall code, but several
177 improvements during the development of PRE seem to have made following
178 back edges generally a win.
180 Note much of the loop invariant code motion done here would normally
181 be done by loop.c, which has more heuristics for when to move invariants
182 out of loops. At some point we might need to move some of those
183 heuristics into gcse.c. */
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
188 We perform the following steps:
190 1) Compute basic block information.
192 2) Compute table of places where registers are set.
194 3) Perform copy/constant propagation.
196 4) Perform global cse using lazy code motion if not optimizing
197 for size, or code hoisting if we are.
199 5) Perform another pass of copy/constant propagation.
201 Two passes of copy/constant propagation are done because the first one
202 enables more GCSE and the second one helps to clean up the copies that
203 GCSE creates. This is needed more for PRE than for Classic because Classic
204 GCSE will try to use an existing register containing the common
205 subexpression rather than create a new one. This is harder to do for PRE
206 because of the code motion (which Classic GCSE doesn't do).
208 Expressions we are interested in GCSE-ing are of the form
209 (set (pseudo-reg) (expression)).
210 Function want_to_gcse_p says what these are.
212 PRE handles moving invariant expressions out of loops (by treating them as
213 partially redundant).
215 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
216 assignment) based GVN (global value numbering). L. T. Simpson's paper
217 (Rice University) on value numbering is a useful reference for this.
219 **********************
221 We used to support multiple passes but there are diminishing returns in
222 doing so. The first pass usually makes 90% of the changes that are doable.
223 A second pass can make a few more changes made possible by the first pass.
224 Experiments show any further passes don't make enough changes to justify
225 the expense.
227 A study of spec92 using an unlimited number of passes:
228 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
229 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
230 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
232 It was found doing copy propagation between each pass enables further
233 substitutions.
235 PRE is quite expensive in complicated functions because the DFA can take
236 a while to converge. Hence we only perform one pass. The parameter
237 max-gcse-passes can be modified if one wants to experiment.
239 **********************
241 The steps for PRE are:
243 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245 2) Perform the data flow analysis for PRE.
247 3) Delete the redundant instructions
249 4) Insert the required copies [if any] that make the partially
250 redundant instructions fully redundant.
252 5) For other reaching expressions, insert an instruction to copy the value
253 to a newly created pseudo that will reach the redundant instruction.
255 The deletion is done first so that when we do insertions we
256 know which pseudo reg to use.
258 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
259 argue it is not. The number of iterations for the algorithm to converge
260 is typically 2-4 so I don't view it as that expensive (relatively speaking).
262 PRE GCSE depends heavily on the second CSE pass to clean up the copies
263 we create. To make an expression reach the place where it's redundant,
264 the result of the expression is copied to a new register, and the redundant
265 expression is deleted by replacing it with this new register. Classic GCSE
266 doesn't have this problem as much as it computes the reaching defs of
267 each register in each block and thus can try to use an existing register.
269 **********************
271 A fair bit of simplicity is created by creating small functions for simple
272 tasks, even when the function is only called in one place. This may
273 measurably slow things down [or may not] by creating more function call
274 overhead than is necessary. The source is laid out so that it's trivial
275 to make the affected functions inline so that one can measure what speed
276 up, if any, can be achieved, and maybe later when things settle things can
277 be rearranged.
279 Help stamp out big monolithic functions! */
281 /* GCSE global vars. */
283 /* -dG dump file. */
284 static FILE *gcse_file;
286 /* Note whether or not we should run jump optimization after gcse. We
287 want to do this for two cases.
289 * If we changed any jumps via cprop.
291 * If we added any labels via edge splitting. */
292 static int run_jump_opt_after_gcse;
294 /* Bitmaps are normally not included in debugging dumps.
295 However it's useful to be able to print them from GDB.
296 We could create special functions for this, but it's simpler to
297 just allow passing stderr to the dump_foo fns. Since stderr can
298 be a macro, we store a copy here. */
299 static FILE *debug_stderr;
301 /* An obstack for our working variables. */
302 static struct obstack gcse_obstack;
304 struct reg_use {rtx reg_rtx; };
306 /* Hash table of expressions. */
308 struct expr
310 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
311 rtx expr;
312 /* Index in the available expression bitmaps. */
313 int bitmap_index;
314 /* Next entry with the same hash. */
315 struct expr *next_same_hash;
316 /* List of anticipatable occurrences in basic blocks in the function.
317 An "anticipatable occurrence" is one that is the first occurrence in the
318 basic block, the operands are not modified in the basic block prior
319 to the occurrence and the output is not used between the start of
320 the block and the occurrence. */
321 struct occr *antic_occr;
322 /* List of available occurrence in basic blocks in the function.
323 An "available occurrence" is one that is the last occurrence in the
324 basic block and the operands are not modified by following statements in
325 the basic block [including this insn]. */
326 struct occr *avail_occr;
327 /* Non-null if the computation is PRE redundant.
328 The value is the newly created pseudo-reg to record a copy of the
329 expression in all the places that reach the redundant copy. */
330 rtx reaching_reg;
333 /* Occurrence of an expression.
334 There is one per basic block. If a pattern appears more than once the
335 last appearance is used [or first for anticipatable expressions]. */
337 struct occr
339 /* Next occurrence of this expression. */
340 struct occr *next;
341 /* The insn that computes the expression. */
342 rtx insn;
343 /* Nonzero if this [anticipatable] occurrence has been deleted. */
344 char deleted_p;
345 /* Nonzero if this [available] occurrence has been copied to
346 reaching_reg. */
347 /* ??? This is mutually exclusive with deleted_p, so they could share
348 the same byte. */
349 char copied_p;
352 /* Expression and copy propagation hash tables.
353 Each hash table is an array of buckets.
354 ??? It is known that if it were an array of entries, structure elements
355 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
356 not clear whether in the final analysis a sufficient amount of memory would
357 be saved as the size of the available expression bitmaps would be larger
358 [one could build a mapping table without holes afterwards though].
359 Someday I'll perform the computation and figure it out. */
361 struct hash_table
363 /* The table itself.
364 This is an array of `expr_hash_table_size' elements. */
365 struct expr **table;
367 /* Size of the hash table, in elements. */
368 unsigned int size;
370 /* Number of hash table elements. */
371 unsigned int n_elems;
373 /* Whether the table is expression of copy propagation one. */
374 int set_p;
377 /* Expression hash table. */
378 static struct hash_table expr_hash_table;
380 /* Copy propagation hash table. */
381 static struct hash_table set_hash_table;
383 /* Mapping of uids to cuids.
384 Only real insns get cuids. */
385 static int *uid_cuid;
387 /* Highest UID in UID_CUID. */
388 static int max_uid;
390 /* Get the cuid of an insn. */
391 #ifdef ENABLE_CHECKING
392 #define INSN_CUID(INSN) \
393 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
394 #else
395 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
396 #endif
398 /* Number of cuids. */
399 static int max_cuid;
401 /* Mapping of cuids to insns. */
402 static rtx *cuid_insn;
404 /* Get insn from cuid. */
405 #define CUID_INSN(CUID) (cuid_insn[CUID])
407 /* Maximum register number in function prior to doing gcse + 1.
408 Registers created during this pass have regno >= max_gcse_regno.
409 This is named with "gcse" to not collide with global of same name. */
410 static unsigned int max_gcse_regno;
412 /* Table of registers that are modified.
414 For each register, each element is a list of places where the pseudo-reg
415 is set.
417 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
418 requires knowledge of which blocks kill which regs [and thus could use
419 a bitmap instead of the lists `reg_set_table' uses].
421 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
422 num-regs) [however perhaps it may be useful to keep the data as is]. One
423 advantage of recording things this way is that `reg_set_table' is fairly
424 sparse with respect to pseudo regs but for hard regs could be fairly dense
425 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
426 up functions like compute_transp since in the case of pseudo-regs we only
427 need to iterate over the number of times a pseudo-reg is set, not over the
428 number of basic blocks [clearly there is a bit of a slow down in the cases
429 where a pseudo is set more than once in a block, however it is believed
430 that the net effect is to speed things up]. This isn't done for hard-regs
431 because recording call-clobbered hard-regs in `reg_set_table' at each
432 function call can consume a fair bit of memory, and iterating over
433 hard-regs stored this way in compute_transp will be more expensive. */
435 typedef struct reg_set
437 /* The next setting of this register. */
438 struct reg_set *next;
439 /* The insn where it was set. */
440 rtx insn;
441 } reg_set;
443 static reg_set **reg_set_table;
445 /* Size of `reg_set_table'.
446 The table starts out at max_gcse_regno + slop, and is enlarged as
447 necessary. */
448 static int reg_set_table_size;
450 /* Amount to grow `reg_set_table' by when it's full. */
451 #define REG_SET_TABLE_SLOP 100
453 /* This is a list of expressions which are MEMs and will be used by load
454 or store motion.
455 Load motion tracks MEMs which aren't killed by
456 anything except itself. (ie, loads and stores to a single location).
457 We can then allow movement of these MEM refs with a little special
458 allowance. (all stores copy the same value to the reaching reg used
459 for the loads). This means all values used to store into memory must have
460 no side effects so we can re-issue the setter value.
461 Store Motion uses this structure as an expression table to track stores
462 which look interesting, and might be moveable towards the exit block. */
464 struct ls_expr
466 struct expr * expr; /* Gcse expression reference for LM. */
467 rtx pattern; /* Pattern of this mem. */
468 rtx pattern_regs; /* List of registers mentioned by the mem. */
469 rtx loads; /* INSN list of loads seen. */
470 rtx stores; /* INSN list of stores seen. */
471 struct ls_expr * next; /* Next in the list. */
472 int invalid; /* Invalid for some reason. */
473 int index; /* If it maps to a bitmap index. */
474 unsigned int hash_index; /* Index when in a hash table. */
475 rtx reaching_reg; /* Register to use when re-writing. */
478 /* Array of implicit set patterns indexed by basic block index. */
479 static rtx *implicit_sets;
481 /* Head of the list of load/store memory refs. */
482 static struct ls_expr * pre_ldst_mems = NULL;
484 /* Bitmap containing one bit for each register in the program.
485 Used when performing GCSE to track which registers have been set since
486 the start of the basic block. */
487 static regset reg_set_bitmap;
489 /* For each block, a bitmap of registers set in the block.
490 This is used by compute_transp.
491 It is computed during hash table computation and not by compute_sets
492 as it includes registers added since the last pass (or between cprop and
493 gcse) and it's currently not easy to realloc sbitmap vectors. */
494 static sbitmap *reg_set_in_block;
496 /* Array, indexed by basic block number for a list of insns which modify
497 memory within that block. */
498 static rtx * modify_mem_list;
499 static bitmap modify_mem_list_set;
501 /* This array parallels modify_mem_list, but is kept canonicalized. */
502 static rtx * canon_modify_mem_list;
503 static bitmap canon_modify_mem_list_set;
505 /* Various variables for statistics gathering. */
507 /* Memory used in a pass.
508 This isn't intended to be absolutely precise. Its intent is only
509 to keep an eye on memory usage. */
510 static int bytes_used;
512 /* GCSE substitutions made. */
513 static int gcse_subst_count;
514 /* Number of copy instructions created. */
515 static int gcse_create_count;
516 /* Number of local constants propagated. */
517 static int local_const_prop_count;
518 /* Number of local copys propagated. */
519 static int local_copy_prop_count;
520 /* Number of global constants propagated. */
521 static int global_const_prop_count;
522 /* Number of global copys propagated. */
523 static int global_copy_prop_count;
525 /* For available exprs */
526 static sbitmap *ae_kill, *ae_gen;
528 /* Objects of this type are passed around by the null-pointer check
529 removal routines. */
530 struct null_pointer_info
532 /* The basic block being processed. */
533 basic_block current_block;
534 /* The first register to be handled in this pass. */
535 unsigned int min_reg;
536 /* One greater than the last register to be handled in this pass. */
537 unsigned int max_reg;
538 sbitmap *nonnull_local;
539 sbitmap *nonnull_killed;
542 static void compute_can_copy (void);
543 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
544 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
545 static void *grealloc (void *, size_t);
546 static void *gcse_alloc (unsigned long);
547 static void alloc_gcse_mem (rtx);
548 static void free_gcse_mem (void);
549 static void alloc_reg_set_mem (int);
550 static void free_reg_set_mem (void);
551 static void record_one_set (int, rtx);
552 static void replace_one_set (int, rtx, rtx);
553 static void record_set_info (rtx, rtx, void *);
554 static void compute_sets (rtx);
555 static void hash_scan_insn (rtx, struct hash_table *, int);
556 static void hash_scan_set (rtx, rtx, struct hash_table *);
557 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
558 static void hash_scan_call (rtx, rtx, struct hash_table *);
559 static int want_to_gcse_p (rtx);
560 static bool can_assign_to_reg_p (rtx);
561 static bool gcse_constant_p (rtx);
562 static int oprs_unchanged_p (rtx, rtx, int);
563 static int oprs_anticipatable_p (rtx, rtx);
564 static int oprs_available_p (rtx, rtx);
565 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
566 struct hash_table *);
567 static void insert_set_in_table (rtx, rtx, struct hash_table *);
568 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
569 static unsigned int hash_set (int, int);
570 static int expr_equiv_p (rtx, rtx);
571 static void record_last_reg_set_info (rtx, int);
572 static void record_last_mem_set_info (rtx);
573 static void record_last_set_info (rtx, rtx, void *);
574 static void compute_hash_table (struct hash_table *);
575 static void alloc_hash_table (int, struct hash_table *, int);
576 static void free_hash_table (struct hash_table *);
577 static void compute_hash_table_work (struct hash_table *);
578 static void dump_hash_table (FILE *, const char *, struct hash_table *);
579 static struct expr *lookup_set (unsigned int, struct hash_table *);
580 static struct expr *next_set (unsigned int, struct expr *);
581 static void reset_opr_set_tables (void);
582 static int oprs_not_set_p (rtx, rtx);
583 static void mark_call (rtx);
584 static void mark_set (rtx, rtx);
585 static void mark_clobber (rtx, rtx);
586 static void mark_oprs_set (rtx);
587 static void alloc_cprop_mem (int, int);
588 static void free_cprop_mem (void);
589 static void compute_transp (rtx, int, sbitmap *, int);
590 static void compute_transpout (void);
591 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
592 struct hash_table *);
593 static void compute_cprop_data (void);
594 static void find_used_regs (rtx *, void *);
595 static int try_replace_reg (rtx, rtx, rtx);
596 static struct expr *find_avail_set (int, rtx);
597 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
598 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
599 static int load_killed_in_block_p (basic_block, int, rtx, int);
600 static void canon_list_insert (rtx, rtx, void *);
601 static int cprop_insn (rtx, int);
602 static int cprop (int);
603 static void find_implicit_sets (void);
604 static int one_cprop_pass (int, int, int);
605 static bool constprop_register (rtx, rtx, rtx, int);
606 static struct expr *find_bypass_set (int, int);
607 static bool reg_killed_on_edge (rtx, edge);
608 static int bypass_block (basic_block, rtx, rtx);
609 static int bypass_conditional_jumps (void);
610 static void alloc_pre_mem (int, int);
611 static void free_pre_mem (void);
612 static void compute_pre_data (void);
613 static int pre_expr_reaches_here_p (basic_block, struct expr *,
614 basic_block);
615 static void insert_insn_end_bb (struct expr *, basic_block, int);
616 static void pre_insert_copy_insn (struct expr *, rtx);
617 static void pre_insert_copies (void);
618 static int pre_delete (void);
619 static int pre_gcse (void);
620 static int one_pre_gcse_pass (int);
621 static void add_label_notes (rtx, rtx);
622 static void alloc_code_hoist_mem (int, int);
623 static void free_code_hoist_mem (void);
624 static void compute_code_hoist_vbeinout (void);
625 static void compute_code_hoist_data (void);
626 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
627 static void hoist_code (void);
628 static int one_code_hoisting_pass (void);
629 static rtx process_insert_insn (struct expr *);
630 static int pre_edge_insert (struct edge_list *, struct expr **);
631 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
632 basic_block, char *);
633 static struct ls_expr * ldst_entry (rtx);
634 static void free_ldst_entry (struct ls_expr *);
635 static void free_ldst_mems (void);
636 static void print_ldst_list (FILE *);
637 static struct ls_expr * find_rtx_in_ldst (rtx);
638 static int enumerate_ldsts (void);
639 static inline struct ls_expr * first_ls_expr (void);
640 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
641 static int simple_mem (rtx);
642 static void invalidate_any_buried_refs (rtx);
643 static void compute_ld_motion_mems (void);
644 static void trim_ld_motion_mems (void);
645 static void update_ld_motion_stores (struct expr *);
646 static void reg_set_info (rtx, rtx, void *);
647 static void reg_clear_last_set (rtx, rtx, void *);
648 static bool store_ops_ok (rtx, int *);
649 static rtx extract_mentioned_regs (rtx);
650 static rtx extract_mentioned_regs_helper (rtx, rtx);
651 static void find_moveable_store (rtx, int *, int *);
652 static int compute_store_table (void);
653 static bool load_kills_store (rtx, rtx, int);
654 static bool find_loads (rtx, rtx, int);
655 static bool store_killed_in_insn (rtx, rtx, rtx, int);
656 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
657 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
658 static void build_store_vectors (void);
659 static void insert_insn_start_bb (rtx, basic_block);
660 static int insert_store (struct ls_expr *, edge);
661 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
662 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
663 static void delete_store (struct ls_expr *, basic_block);
664 static void free_store_memory (void);
665 static void store_motion (void);
666 static void free_insn_expr_list_list (rtx *);
667 static void clear_modify_mem_tables (void);
668 static void free_modify_mem_tables (void);
669 static rtx gcse_emit_move_after (rtx, rtx, rtx);
670 static void local_cprop_find_used_regs (rtx *, void *);
671 static bool do_local_cprop (rtx, rtx, int, rtx*);
672 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
673 static void local_cprop_pass (int);
674 static bool is_too_expensive (const char *);
677 /* Entry point for global common subexpression elimination.
678 F is the first instruction in the function. */
681 gcse_main (rtx f, FILE *file)
683 int changed, pass;
684 /* Bytes used at start of pass. */
685 int initial_bytes_used;
686 /* Maximum number of bytes used by a pass. */
687 int max_pass_bytes;
688 /* Point to release obstack data from for each pass. */
689 char *gcse_obstack_bottom;
691 /* We do not construct an accurate cfg in functions which call
692 setjmp, so just punt to be safe. */
693 if (current_function_calls_setjmp)
694 return 0;
696 /* Assume that we do not need to run jump optimizations after gcse. */
697 run_jump_opt_after_gcse = 0;
699 /* For calling dump_foo fns from gdb. */
700 debug_stderr = stderr;
701 gcse_file = file;
703 /* Identify the basic block information for this function, including
704 successors and predecessors. */
705 max_gcse_regno = max_reg_num ();
707 if (file)
708 dump_flow_info (file);
710 /* Return if there's nothing to do, or it is too expensive. */
711 if (n_basic_blocks <= 1 || is_too_expensive (_("GCSE disabled")))
712 return 0;
714 gcc_obstack_init (&gcse_obstack);
715 bytes_used = 0;
717 /* We need alias. */
718 init_alias_analysis ();
719 /* Record where pseudo-registers are set. This data is kept accurate
720 during each pass. ??? We could also record hard-reg information here
721 [since it's unchanging], however it is currently done during hash table
722 computation.
724 It may be tempting to compute MEM set information here too, but MEM sets
725 will be subject to code motion one day and thus we need to compute
726 information about memory sets when we build the hash tables. */
728 alloc_reg_set_mem (max_gcse_regno);
729 compute_sets (f);
731 pass = 0;
732 initial_bytes_used = bytes_used;
733 max_pass_bytes = 0;
734 gcse_obstack_bottom = gcse_alloc (1);
735 changed = 1;
736 while (changed && pass < MAX_GCSE_PASSES)
738 changed = 0;
739 if (file)
740 fprintf (file, "GCSE pass %d\n\n", pass + 1);
742 /* Initialize bytes_used to the space for the pred/succ lists,
743 and the reg_set_table data. */
744 bytes_used = initial_bytes_used;
746 /* Each pass may create new registers, so recalculate each time. */
747 max_gcse_regno = max_reg_num ();
749 alloc_gcse_mem (f);
751 /* Don't allow constant propagation to modify jumps
752 during this pass. */
753 timevar_push (TV_CPROP1);
754 changed = one_cprop_pass (pass + 1, 0, 0);
755 timevar_pop (TV_CPROP1);
757 if (optimize_size)
758 /* Do nothing. */ ;
759 else
761 timevar_push (TV_PRE);
762 changed |= one_pre_gcse_pass (pass + 1);
763 /* We may have just created new basic blocks. Release and
764 recompute various things which are sized on the number of
765 basic blocks. */
766 if (changed)
768 free_modify_mem_tables ();
769 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
770 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
772 free_reg_set_mem ();
773 alloc_reg_set_mem (max_reg_num ());
774 compute_sets (f);
775 run_jump_opt_after_gcse = 1;
776 timevar_pop (TV_PRE);
779 if (max_pass_bytes < bytes_used)
780 max_pass_bytes = bytes_used;
782 /* Free up memory, then reallocate for code hoisting. We can
783 not re-use the existing allocated memory because the tables
784 will not have info for the insns or registers created by
785 partial redundancy elimination. */
786 free_gcse_mem ();
788 /* It does not make sense to run code hoisting unless we are optimizing
789 for code size -- it rarely makes programs faster, and can make
790 them bigger if we did partial redundancy elimination (when optimizing
791 for space, we don't run the partial redundancy algorithms). */
792 if (optimize_size)
794 timevar_push (TV_HOIST);
795 max_gcse_regno = max_reg_num ();
796 alloc_gcse_mem (f);
797 changed |= one_code_hoisting_pass ();
798 free_gcse_mem ();
800 if (max_pass_bytes < bytes_used)
801 max_pass_bytes = bytes_used;
802 timevar_pop (TV_HOIST);
805 if (file)
807 fprintf (file, "\n");
808 fflush (file);
811 obstack_free (&gcse_obstack, gcse_obstack_bottom);
812 pass++;
815 /* Do one last pass of copy propagation, including cprop into
816 conditional jumps. */
818 max_gcse_regno = max_reg_num ();
819 alloc_gcse_mem (f);
820 /* This time, go ahead and allow cprop to alter jumps. */
821 timevar_push (TV_CPROP2);
822 one_cprop_pass (pass + 1, 1, 0);
823 timevar_pop (TV_CPROP2);
824 free_gcse_mem ();
826 if (file)
828 fprintf (file, "GCSE of %s: %d basic blocks, ",
829 current_function_name (), n_basic_blocks);
830 fprintf (file, "%d pass%s, %d bytes\n\n",
831 pass, pass > 1 ? "es" : "", max_pass_bytes);
834 obstack_free (&gcse_obstack, NULL);
835 free_reg_set_mem ();
837 /* We are finished with alias. */
838 end_alias_analysis ();
839 allocate_reg_info (max_reg_num (), FALSE, FALSE);
841 if (!optimize_size && flag_gcse_sm)
843 timevar_push (TV_LSM);
844 store_motion ();
845 timevar_pop (TV_LSM);
848 /* Record where pseudo-registers are set. */
849 return run_jump_opt_after_gcse;
852 /* Misc. utilities. */
854 /* Nonzero for each mode that supports (set (reg) (reg)).
855 This is trivially true for integer and floating point values.
856 It may or may not be true for condition codes. */
857 static char can_copy[(int) NUM_MACHINE_MODES];
859 /* Compute which modes support reg/reg copy operations. */
861 static void
862 compute_can_copy (void)
864 int i;
865 #ifndef AVOID_CCMODE_COPIES
866 rtx reg, insn;
867 #endif
868 memset (can_copy, 0, NUM_MACHINE_MODES);
870 start_sequence ();
871 for (i = 0; i < NUM_MACHINE_MODES; i++)
872 if (GET_MODE_CLASS (i) == MODE_CC)
874 #ifdef AVOID_CCMODE_COPIES
875 can_copy[i] = 0;
876 #else
877 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
878 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
879 if (recog (PATTERN (insn), insn, NULL) >= 0)
880 can_copy[i] = 1;
881 #endif
883 else
884 can_copy[i] = 1;
886 end_sequence ();
889 /* Returns whether the mode supports reg/reg copy operations. */
891 bool
892 can_copy_p (enum machine_mode mode)
894 static bool can_copy_init_p = false;
896 if (! can_copy_init_p)
898 compute_can_copy ();
899 can_copy_init_p = true;
902 return can_copy[mode] != 0;
905 /* Cover function to xmalloc to record bytes allocated. */
907 static void *
908 gmalloc (size_t size)
910 bytes_used += size;
911 return xmalloc (size);
914 /* Cover function to xcalloc to record bytes allocated. */
916 static void *
917 gcalloc (size_t nelem, size_t elsize)
919 bytes_used += nelem * elsize;
920 return xcalloc (nelem, elsize);
923 /* Cover function to xrealloc.
924 We don't record the additional size since we don't know it.
925 It won't affect memory usage stats much anyway. */
927 static void *
928 grealloc (void *ptr, size_t size)
930 return xrealloc (ptr, size);
933 /* Cover function to obstack_alloc. */
935 static void *
936 gcse_alloc (unsigned long size)
938 bytes_used += size;
939 return obstack_alloc (&gcse_obstack, size);
942 /* Allocate memory for the cuid mapping array,
943 and reg/memory set tracking tables.
945 This is called at the start of each pass. */
947 static void
948 alloc_gcse_mem (rtx f)
950 int i;
951 rtx insn;
953 /* Find the largest UID and create a mapping from UIDs to CUIDs.
954 CUIDs are like UIDs except they increase monotonically, have no gaps,
955 and only apply to real insns. */
957 max_uid = get_max_uid ();
958 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
959 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
961 if (INSN_P (insn))
962 uid_cuid[INSN_UID (insn)] = i++;
963 else
964 uid_cuid[INSN_UID (insn)] = i;
967 /* Create a table mapping cuids to insns. */
969 max_cuid = i;
970 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
971 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
972 if (INSN_P (insn))
973 CUID_INSN (i++) = insn;
975 /* Allocate vars to track sets of regs. */
976 reg_set_bitmap = BITMAP_XMALLOC ();
978 /* Allocate vars to track sets of regs, memory per block. */
979 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
980 /* Allocate array to keep a list of insns which modify memory in each
981 basic block. */
982 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
983 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
984 modify_mem_list_set = BITMAP_XMALLOC ();
985 canon_modify_mem_list_set = BITMAP_XMALLOC ();
988 /* Free memory allocated by alloc_gcse_mem. */
990 static void
991 free_gcse_mem (void)
993 free (uid_cuid);
994 free (cuid_insn);
996 BITMAP_XFREE (reg_set_bitmap);
998 sbitmap_vector_free (reg_set_in_block);
999 free_modify_mem_tables ();
1000 BITMAP_XFREE (modify_mem_list_set);
1001 BITMAP_XFREE (canon_modify_mem_list_set);
1004 /* Compute the local properties of each recorded expression.
1006 Local properties are those that are defined by the block, irrespective of
1007 other blocks.
1009 An expression is transparent in a block if its operands are not modified
1010 in the block.
1012 An expression is computed (locally available) in a block if it is computed
1013 at least once and expression would contain the same value if the
1014 computation was moved to the end of the block.
1016 An expression is locally anticipatable in a block if it is computed at
1017 least once and expression would contain the same value if the computation
1018 was moved to the beginning of the block.
1020 We call this routine for cprop, pre and code hoisting. They all compute
1021 basically the same information and thus can easily share this code.
1023 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1024 properties. If NULL, then it is not necessary to compute or record that
1025 particular property.
1027 TABLE controls which hash table to look at. If it is set hash table,
1028 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1029 ABSALTERED. */
1031 static void
1032 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1033 struct hash_table *table)
1035 unsigned int i;
1037 /* Initialize any bitmaps that were passed in. */
1038 if (transp)
1040 if (table->set_p)
1041 sbitmap_vector_zero (transp, last_basic_block);
1042 else
1043 sbitmap_vector_ones (transp, last_basic_block);
1046 if (comp)
1047 sbitmap_vector_zero (comp, last_basic_block);
1048 if (antloc)
1049 sbitmap_vector_zero (antloc, last_basic_block);
1051 for (i = 0; i < table->size; i++)
1053 struct expr *expr;
1055 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1057 int indx = expr->bitmap_index;
1058 struct occr *occr;
1060 /* The expression is transparent in this block if it is not killed.
1061 We start by assuming all are transparent [none are killed], and
1062 then reset the bits for those that are. */
1063 if (transp)
1064 compute_transp (expr->expr, indx, transp, table->set_p);
1066 /* The occurrences recorded in antic_occr are exactly those that
1067 we want to set to nonzero in ANTLOC. */
1068 if (antloc)
1069 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1071 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1073 /* While we're scanning the table, this is a good place to
1074 initialize this. */
1075 occr->deleted_p = 0;
1078 /* The occurrences recorded in avail_occr are exactly those that
1079 we want to set to nonzero in COMP. */
1080 if (comp)
1081 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1083 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1085 /* While we're scanning the table, this is a good place to
1086 initialize this. */
1087 occr->copied_p = 0;
1090 /* While we're scanning the table, this is a good place to
1091 initialize this. */
1092 expr->reaching_reg = 0;
1097 /* Register set information.
1099 `reg_set_table' records where each register is set or otherwise
1100 modified. */
1102 static struct obstack reg_set_obstack;
1104 static void
1105 alloc_reg_set_mem (int n_regs)
1107 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1108 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1110 gcc_obstack_init (&reg_set_obstack);
1113 static void
1114 free_reg_set_mem (void)
1116 free (reg_set_table);
1117 obstack_free (&reg_set_obstack, NULL);
1120 /* An OLD_INSN that used to set REGNO was replaced by NEW_INSN.
1121 Update the corresponding `reg_set_table' entry accordingly.
1122 We assume that NEW_INSN is not already recorded in reg_set_table[regno]. */
1124 static void
1125 replace_one_set (int regno, rtx old_insn, rtx new_insn)
1127 struct reg_set *reg_info;
1128 if (regno >= reg_set_table_size)
1129 return;
1130 for (reg_info = reg_set_table[regno]; reg_info; reg_info = reg_info->next)
1131 if (reg_info->insn == old_insn)
1133 reg_info->insn = new_insn;
1134 break;
1138 /* Record REGNO in the reg_set table. */
1140 static void
1141 record_one_set (int regno, rtx insn)
1143 /* Allocate a new reg_set element and link it onto the list. */
1144 struct reg_set *new_reg_info;
1146 /* If the table isn't big enough, enlarge it. */
1147 if (regno >= reg_set_table_size)
1149 int new_size = regno + REG_SET_TABLE_SLOP;
1151 reg_set_table = grealloc (reg_set_table,
1152 new_size * sizeof (struct reg_set *));
1153 memset (reg_set_table + reg_set_table_size, 0,
1154 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1155 reg_set_table_size = new_size;
1158 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1159 bytes_used += sizeof (struct reg_set);
1160 new_reg_info->insn = insn;
1161 new_reg_info->next = reg_set_table[regno];
1162 reg_set_table[regno] = new_reg_info;
1165 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1166 an insn. The DATA is really the instruction in which the SET is
1167 occurring. */
1169 static void
1170 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1172 rtx record_set_insn = (rtx) data;
1174 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1175 record_one_set (REGNO (dest), record_set_insn);
1178 /* Scan the function and record each set of each pseudo-register.
1180 This is called once, at the start of the gcse pass. See the comments for
1181 `reg_set_table' for further documentation. */
1183 static void
1184 compute_sets (rtx f)
1186 rtx insn;
1188 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1189 if (INSN_P (insn))
1190 note_stores (PATTERN (insn), record_set_info, insn);
1193 /* Hash table support. */
1195 struct reg_avail_info
1197 basic_block last_bb;
1198 int first_set;
1199 int last_set;
1202 static struct reg_avail_info *reg_avail_info;
1203 static basic_block current_bb;
1206 /* See whether X, the source of a set, is something we want to consider for
1207 GCSE. */
1209 static int
1210 want_to_gcse_p (rtx x)
1212 switch (GET_CODE (x))
1214 case REG:
1215 case SUBREG:
1216 case CONST_INT:
1217 case CONST_DOUBLE:
1218 case CONST_VECTOR:
1219 case CALL:
1220 return 0;
1222 default:
1223 return can_assign_to_reg_p (x);
1227 /* Used internally by can_assign_to_reg_p. */
1229 static GTY(()) rtx test_insn;
1231 /* Return true if we can assign X to a pseudo register. */
1233 static bool
1234 can_assign_to_reg_p (rtx x)
1236 int num_clobbers = 0;
1237 int icode;
1239 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1240 if (general_operand (x, GET_MODE (x)))
1241 return 1;
1242 else if (GET_MODE (x) == VOIDmode)
1243 return 0;
1245 /* Otherwise, check if we can make a valid insn from it. First initialize
1246 our test insn if we haven't already. */
1247 if (test_insn == 0)
1249 test_insn
1250 = make_insn_raw (gen_rtx_SET (VOIDmode,
1251 gen_rtx_REG (word_mode,
1252 FIRST_PSEUDO_REGISTER * 2),
1253 const0_rtx));
1254 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1257 /* Now make an insn like the one we would make when GCSE'ing and see if
1258 valid. */
1259 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1260 SET_SRC (PATTERN (test_insn)) = x;
1261 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1262 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1265 /* Return nonzero if the operands of expression X are unchanged from the
1266 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1267 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1269 static int
1270 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1272 int i, j;
1273 enum rtx_code code;
1274 const char *fmt;
1276 if (x == 0)
1277 return 1;
1279 code = GET_CODE (x);
1280 switch (code)
1282 case REG:
1284 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1286 if (info->last_bb != current_bb)
1287 return 1;
1288 if (avail_p)
1289 return info->last_set < INSN_CUID (insn);
1290 else
1291 return info->first_set >= INSN_CUID (insn);
1294 case MEM:
1295 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1296 x, avail_p))
1297 return 0;
1298 else
1299 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1301 case PRE_DEC:
1302 case PRE_INC:
1303 case POST_DEC:
1304 case POST_INC:
1305 case PRE_MODIFY:
1306 case POST_MODIFY:
1307 return 0;
1309 case PC:
1310 case CC0: /*FIXME*/
1311 case CONST:
1312 case CONST_INT:
1313 case CONST_DOUBLE:
1314 case CONST_VECTOR:
1315 case SYMBOL_REF:
1316 case LABEL_REF:
1317 case ADDR_VEC:
1318 case ADDR_DIFF_VEC:
1319 return 1;
1321 default:
1322 break;
1325 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1327 if (fmt[i] == 'e')
1329 /* If we are about to do the last recursive call needed at this
1330 level, change it into iteration. This function is called enough
1331 to be worth it. */
1332 if (i == 0)
1333 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1335 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1336 return 0;
1338 else if (fmt[i] == 'E')
1339 for (j = 0; j < XVECLEN (x, i); j++)
1340 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1341 return 0;
1344 return 1;
1347 /* Used for communication between mems_conflict_for_gcse_p and
1348 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1349 conflict between two memory references. */
1350 static int gcse_mems_conflict_p;
1352 /* Used for communication between mems_conflict_for_gcse_p and
1353 load_killed_in_block_p. A memory reference for a load instruction,
1354 mems_conflict_for_gcse_p will see if a memory store conflicts with
1355 this memory load. */
1356 static rtx gcse_mem_operand;
1358 /* DEST is the output of an instruction. If it is a memory reference, and
1359 possibly conflicts with the load found in gcse_mem_operand, then set
1360 gcse_mems_conflict_p to a nonzero value. */
1362 static void
1363 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1364 void *data ATTRIBUTE_UNUSED)
1366 while (GET_CODE (dest) == SUBREG
1367 || GET_CODE (dest) == ZERO_EXTRACT
1368 || GET_CODE (dest) == SIGN_EXTRACT
1369 || GET_CODE (dest) == STRICT_LOW_PART)
1370 dest = XEXP (dest, 0);
1372 /* If DEST is not a MEM, then it will not conflict with the load. Note
1373 that function calls are assumed to clobber memory, but are handled
1374 elsewhere. */
1375 if (! MEM_P (dest))
1376 return;
1378 /* If we are setting a MEM in our list of specially recognized MEMs,
1379 don't mark as killed this time. */
1381 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1383 if (!find_rtx_in_ldst (dest))
1384 gcse_mems_conflict_p = 1;
1385 return;
1388 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1389 rtx_addr_varies_p))
1390 gcse_mems_conflict_p = 1;
1393 /* Return nonzero if the expression in X (a memory reference) is killed
1394 in block BB before or after the insn with the CUID in UID_LIMIT.
1395 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1396 before UID_LIMIT.
1398 To check the entire block, set UID_LIMIT to max_uid + 1 and
1399 AVAIL_P to 0. */
1401 static int
1402 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1404 rtx list_entry = modify_mem_list[bb->index];
1405 while (list_entry)
1407 rtx setter;
1408 /* Ignore entries in the list that do not apply. */
1409 if ((avail_p
1410 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1411 || (! avail_p
1412 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1414 list_entry = XEXP (list_entry, 1);
1415 continue;
1418 setter = XEXP (list_entry, 0);
1420 /* If SETTER is a call everything is clobbered. Note that calls
1421 to pure functions are never put on the list, so we need not
1422 worry about them. */
1423 if (CALL_P (setter))
1424 return 1;
1426 /* SETTER must be an INSN of some kind that sets memory. Call
1427 note_stores to examine each hunk of memory that is modified.
1429 The note_stores interface is pretty limited, so we have to
1430 communicate via global variables. Yuk. */
1431 gcse_mem_operand = x;
1432 gcse_mems_conflict_p = 0;
1433 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1434 if (gcse_mems_conflict_p)
1435 return 1;
1436 list_entry = XEXP (list_entry, 1);
1438 return 0;
1441 /* Return nonzero if the operands of expression X are unchanged from
1442 the start of INSN's basic block up to but not including INSN. */
1444 static int
1445 oprs_anticipatable_p (rtx x, rtx insn)
1447 return oprs_unchanged_p (x, insn, 0);
1450 /* Return nonzero if the operands of expression X are unchanged from
1451 INSN to the end of INSN's basic block. */
1453 static int
1454 oprs_available_p (rtx x, rtx insn)
1456 return oprs_unchanged_p (x, insn, 1);
1459 /* Hash expression X.
1461 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1462 indicating if a volatile operand is found or if the expression contains
1463 something we don't want to insert in the table. HASH_TABLE_SIZE is
1464 the current size of the hash table to be probed. */
1466 static unsigned int
1467 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1468 int hash_table_size)
1470 unsigned int hash;
1472 *do_not_record_p = 0;
1474 hash = hash_rtx (x, mode, do_not_record_p,
1475 NULL, /*have_reg_qty=*/false);
1476 return hash % hash_table_size;
1479 /* Hash a set of register REGNO.
1481 Sets are hashed on the register that is set. This simplifies the PRE copy
1482 propagation code.
1484 ??? May need to make things more elaborate. Later, as necessary. */
1486 static unsigned int
1487 hash_set (int regno, int hash_table_size)
1489 unsigned int hash;
1491 hash = regno;
1492 return hash % hash_table_size;
1495 /* Return nonzero if exp1 is equivalent to exp2. */
1497 static int
1498 expr_equiv_p (rtx x, rtx y)
1500 return exp_equiv_p (x, y, 0, true);
1503 /* Insert expression X in INSN in the hash TABLE.
1504 If it is already present, record it as the last occurrence in INSN's
1505 basic block.
1507 MODE is the mode of the value X is being stored into.
1508 It is only used if X is a CONST_INT.
1510 ANTIC_P is nonzero if X is an anticipatable expression.
1511 AVAIL_P is nonzero if X is an available expression. */
1513 static void
1514 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1515 int avail_p, struct hash_table *table)
1517 int found, do_not_record_p;
1518 unsigned int hash;
1519 struct expr *cur_expr, *last_expr = NULL;
1520 struct occr *antic_occr, *avail_occr;
1521 struct occr *last_occr = NULL;
1523 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1525 /* Do not insert expression in table if it contains volatile operands,
1526 or if hash_expr determines the expression is something we don't want
1527 to or can't handle. */
1528 if (do_not_record_p)
1529 return;
1531 cur_expr = table->table[hash];
1532 found = 0;
1534 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1536 /* If the expression isn't found, save a pointer to the end of
1537 the list. */
1538 last_expr = cur_expr;
1539 cur_expr = cur_expr->next_same_hash;
1542 if (! found)
1544 cur_expr = gcse_alloc (sizeof (struct expr));
1545 bytes_used += sizeof (struct expr);
1546 if (table->table[hash] == NULL)
1547 /* This is the first pattern that hashed to this index. */
1548 table->table[hash] = cur_expr;
1549 else
1550 /* Add EXPR to end of this hash chain. */
1551 last_expr->next_same_hash = cur_expr;
1553 /* Set the fields of the expr element. */
1554 cur_expr->expr = x;
1555 cur_expr->bitmap_index = table->n_elems++;
1556 cur_expr->next_same_hash = NULL;
1557 cur_expr->antic_occr = NULL;
1558 cur_expr->avail_occr = NULL;
1561 /* Now record the occurrence(s). */
1562 if (antic_p)
1564 antic_occr = cur_expr->antic_occr;
1566 /* Search for another occurrence in the same basic block. */
1567 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1569 /* If an occurrence isn't found, save a pointer to the end of
1570 the list. */
1571 last_occr = antic_occr;
1572 antic_occr = antic_occr->next;
1575 if (antic_occr)
1576 /* Found another instance of the expression in the same basic block.
1577 Prefer the currently recorded one. We want the first one in the
1578 block and the block is scanned from start to end. */
1579 ; /* nothing to do */
1580 else
1582 /* First occurrence of this expression in this basic block. */
1583 antic_occr = gcse_alloc (sizeof (struct occr));
1584 bytes_used += sizeof (struct occr);
1585 /* First occurrence of this expression in any block? */
1586 if (cur_expr->antic_occr == NULL)
1587 cur_expr->antic_occr = antic_occr;
1588 else
1589 last_occr->next = antic_occr;
1591 antic_occr->insn = insn;
1592 antic_occr->next = NULL;
1593 antic_occr->deleted_p = 0;
1597 if (avail_p)
1599 avail_occr = cur_expr->avail_occr;
1601 /* Search for another occurrence in the same basic block. */
1602 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
1604 /* If an occurrence isn't found, save a pointer to the end of
1605 the list. */
1606 last_occr = avail_occr;
1607 avail_occr = avail_occr->next;
1610 if (avail_occr)
1611 /* Found another instance of the expression in the same basic block.
1612 Prefer this occurrence to the currently recorded one. We want
1613 the last one in the block and the block is scanned from start
1614 to end. */
1615 avail_occr->insn = insn;
1616 else
1618 /* First occurrence of this expression in this basic block. */
1619 avail_occr = gcse_alloc (sizeof (struct occr));
1620 bytes_used += sizeof (struct occr);
1622 /* First occurrence of this expression in any block? */
1623 if (cur_expr->avail_occr == NULL)
1624 cur_expr->avail_occr = avail_occr;
1625 else
1626 last_occr->next = avail_occr;
1628 avail_occr->insn = insn;
1629 avail_occr->next = NULL;
1630 avail_occr->deleted_p = 0;
1635 /* Insert pattern X in INSN in the hash table.
1636 X is a SET of a reg to either another reg or a constant.
1637 If it is already present, record it as the last occurrence in INSN's
1638 basic block. */
1640 static void
1641 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1643 int found;
1644 unsigned int hash;
1645 struct expr *cur_expr, *last_expr = NULL;
1646 struct occr *cur_occr, *last_occr = NULL;
1648 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1650 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1652 cur_expr = table->table[hash];
1653 found = 0;
1655 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1657 /* If the expression isn't found, save a pointer to the end of
1658 the list. */
1659 last_expr = cur_expr;
1660 cur_expr = cur_expr->next_same_hash;
1663 if (! found)
1665 cur_expr = gcse_alloc (sizeof (struct expr));
1666 bytes_used += sizeof (struct expr);
1667 if (table->table[hash] == NULL)
1668 /* This is the first pattern that hashed to this index. */
1669 table->table[hash] = cur_expr;
1670 else
1671 /* Add EXPR to end of this hash chain. */
1672 last_expr->next_same_hash = cur_expr;
1674 /* Set the fields of the expr element.
1675 We must copy X because it can be modified when copy propagation is
1676 performed on its operands. */
1677 cur_expr->expr = copy_rtx (x);
1678 cur_expr->bitmap_index = table->n_elems++;
1679 cur_expr->next_same_hash = NULL;
1680 cur_expr->antic_occr = NULL;
1681 cur_expr->avail_occr = NULL;
1684 /* Now record the occurrence. */
1685 cur_occr = cur_expr->avail_occr;
1687 /* Search for another occurrence in the same basic block. */
1688 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
1690 /* If an occurrence isn't found, save a pointer to the end of
1691 the list. */
1692 last_occr = cur_occr;
1693 cur_occr = cur_occr->next;
1696 if (cur_occr)
1697 /* Found another instance of the expression in the same basic block.
1698 Prefer this occurrence to the currently recorded one. We want the
1699 last one in the block and the block is scanned from start to end. */
1700 cur_occr->insn = insn;
1701 else
1703 /* First occurrence of this expression in this basic block. */
1704 cur_occr = gcse_alloc (sizeof (struct occr));
1705 bytes_used += sizeof (struct occr);
1707 /* First occurrence of this expression in any block? */
1708 if (cur_expr->avail_occr == NULL)
1709 cur_expr->avail_occr = cur_occr;
1710 else
1711 last_occr->next = cur_occr;
1713 cur_occr->insn = insn;
1714 cur_occr->next = NULL;
1715 cur_occr->deleted_p = 0;
1719 /* Determine whether the rtx X should be treated as a constant for
1720 the purposes of GCSE's constant propagation. */
1722 static bool
1723 gcse_constant_p (rtx x)
1725 /* Consider a COMPARE of two integers constant. */
1726 if (GET_CODE (x) == COMPARE
1727 && GET_CODE (XEXP (x, 0)) == CONST_INT
1728 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1729 return true;
1731 /* Consider a COMPARE of the same registers is a constant
1732 if they are not floating point registers. */
1733 if (GET_CODE(x) == COMPARE
1734 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1735 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1736 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1737 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1738 return true;
1740 return CONSTANT_P (x);
1743 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1744 expression one). */
1746 static void
1747 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1749 rtx src = SET_SRC (pat);
1750 rtx dest = SET_DEST (pat);
1751 rtx note;
1753 if (GET_CODE (src) == CALL)
1754 hash_scan_call (src, insn, table);
1756 else if (REG_P (dest))
1758 unsigned int regno = REGNO (dest);
1759 rtx tmp;
1761 /* If this is a single set and we are doing constant propagation,
1762 see if a REG_NOTE shows this equivalent to a constant. */
1763 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
1764 && gcse_constant_p (XEXP (note, 0)))
1765 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1767 /* Only record sets of pseudo-regs in the hash table. */
1768 if (! table->set_p
1769 && regno >= FIRST_PSEUDO_REGISTER
1770 /* Don't GCSE something if we can't do a reg/reg copy. */
1771 && can_copy_p (GET_MODE (dest))
1772 /* GCSE commonly inserts instruction after the insn. We can't
1773 do that easily for EH_REGION notes so disable GCSE on these
1774 for now. */
1775 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1776 /* Is SET_SRC something we want to gcse? */
1777 && want_to_gcse_p (src)
1778 /* Don't CSE a nop. */
1779 && ! set_noop_p (pat)
1780 /* Don't GCSE if it has attached REG_EQUIV note.
1781 At this point this only function parameters should have
1782 REG_EQUIV notes and if the argument slot is used somewhere
1783 explicitly, it means address of parameter has been taken,
1784 so we should not extend the lifetime of the pseudo. */
1785 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1786 || ! MEM_P (XEXP (note, 0))))
1788 /* An expression is not anticipatable if its operands are
1789 modified before this insn or if this is not the only SET in
1790 this insn. */
1791 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1792 /* An expression is not available if its operands are
1793 subsequently modified, including this insn. It's also not
1794 available if this is a branch, because we can't insert
1795 a set after the branch. */
1796 int avail_p = (oprs_available_p (src, insn)
1797 && ! JUMP_P (insn));
1799 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1802 /* Record sets for constant/copy propagation. */
1803 else if (table->set_p
1804 && regno >= FIRST_PSEUDO_REGISTER
1805 && ((REG_P (src)
1806 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1807 && can_copy_p (GET_MODE (dest))
1808 && REGNO (src) != regno)
1809 || gcse_constant_p (src))
1810 /* A copy is not available if its src or dest is subsequently
1811 modified. Here we want to search from INSN+1 on, but
1812 oprs_available_p searches from INSN on. */
1813 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1814 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1815 && oprs_available_p (pat, tmp))))
1816 insert_set_in_table (pat, insn, table);
1818 /* In case of store we want to consider the memory value as available in
1819 the REG stored in that memory. This makes it possible to remove
1820 redundant loads from due to stores to the same location. */
1821 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1823 unsigned int regno = REGNO (src);
1825 /* Do not do this for constant/copy propagation. */
1826 if (! table->set_p
1827 /* Only record sets of pseudo-regs in the hash table. */
1828 && regno >= FIRST_PSEUDO_REGISTER
1829 /* Don't GCSE something if we can't do a reg/reg copy. */
1830 && can_copy_p (GET_MODE (src))
1831 /* GCSE commonly inserts instruction after the insn. We can't
1832 do that easily for EH_REGION notes so disable GCSE on these
1833 for now. */
1834 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1835 /* Is SET_DEST something we want to gcse? */
1836 && want_to_gcse_p (dest)
1837 /* Don't CSE a nop. */
1838 && ! set_noop_p (pat)
1839 /* Don't GCSE if it has attached REG_EQUIV note.
1840 At this point this only function parameters should have
1841 REG_EQUIV notes and if the argument slot is used somewhere
1842 explicitly, it means address of parameter has been taken,
1843 so we should not extend the lifetime of the pseudo. */
1844 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1845 || ! MEM_P (XEXP (note, 0))))
1847 /* Stores are never anticipatable. */
1848 int antic_p = 0;
1849 /* An expression is not available if its operands are
1850 subsequently modified, including this insn. It's also not
1851 available if this is a branch, because we can't insert
1852 a set after the branch. */
1853 int avail_p = oprs_available_p (dest, insn)
1854 && ! JUMP_P (insn);
1856 /* Record the memory expression (DEST) in the hash table. */
1857 insert_expr_in_table (dest, GET_MODE (dest), insn,
1858 antic_p, avail_p, table);
1863 static void
1864 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1865 struct hash_table *table ATTRIBUTE_UNUSED)
1867 /* Currently nothing to do. */
1870 static void
1871 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1872 struct hash_table *table ATTRIBUTE_UNUSED)
1874 /* Currently nothing to do. */
1877 /* Process INSN and add hash table entries as appropriate.
1879 Only available expressions that set a single pseudo-reg are recorded.
1881 Single sets in a PARALLEL could be handled, but it's an extra complication
1882 that isn't dealt with right now. The trick is handling the CLOBBERs that
1883 are also in the PARALLEL. Later.
1885 If SET_P is nonzero, this is for the assignment hash table,
1886 otherwise it is for the expression hash table.
1887 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1888 not record any expressions. */
1890 static void
1891 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1893 rtx pat = PATTERN (insn);
1894 int i;
1896 if (in_libcall_block)
1897 return;
1899 /* Pick out the sets of INSN and for other forms of instructions record
1900 what's been modified. */
1902 if (GET_CODE (pat) == SET)
1903 hash_scan_set (pat, insn, table);
1904 else if (GET_CODE (pat) == PARALLEL)
1905 for (i = 0; i < XVECLEN (pat, 0); i++)
1907 rtx x = XVECEXP (pat, 0, i);
1909 if (GET_CODE (x) == SET)
1910 hash_scan_set (x, insn, table);
1911 else if (GET_CODE (x) == CLOBBER)
1912 hash_scan_clobber (x, insn, table);
1913 else if (GET_CODE (x) == CALL)
1914 hash_scan_call (x, insn, table);
1917 else if (GET_CODE (pat) == CLOBBER)
1918 hash_scan_clobber (pat, insn, table);
1919 else if (GET_CODE (pat) == CALL)
1920 hash_scan_call (pat, insn, table);
1923 static void
1924 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1926 int i;
1927 /* Flattened out table, so it's printed in proper order. */
1928 struct expr **flat_table;
1929 unsigned int *hash_val;
1930 struct expr *expr;
1932 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1933 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1935 for (i = 0; i < (int) table->size; i++)
1936 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1938 flat_table[expr->bitmap_index] = expr;
1939 hash_val[expr->bitmap_index] = i;
1942 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1943 name, table->size, table->n_elems);
1945 for (i = 0; i < (int) table->n_elems; i++)
1946 if (flat_table[i] != 0)
1948 expr = flat_table[i];
1949 fprintf (file, "Index %d (hash value %d)\n ",
1950 expr->bitmap_index, hash_val[i]);
1951 print_rtl (file, expr->expr);
1952 fprintf (file, "\n");
1955 fprintf (file, "\n");
1957 free (flat_table);
1958 free (hash_val);
1961 /* Record register first/last/block set information for REGNO in INSN.
1963 first_set records the first place in the block where the register
1964 is set and is used to compute "anticipatability".
1966 last_set records the last place in the block where the register
1967 is set and is used to compute "availability".
1969 last_bb records the block for which first_set and last_set are
1970 valid, as a quick test to invalidate them.
1972 reg_set_in_block records whether the register is set in the block
1973 and is used to compute "transparency". */
1975 static void
1976 record_last_reg_set_info (rtx insn, int regno)
1978 struct reg_avail_info *info = &reg_avail_info[regno];
1979 int cuid = INSN_CUID (insn);
1981 info->last_set = cuid;
1982 if (info->last_bb != current_bb)
1984 info->last_bb = current_bb;
1985 info->first_set = cuid;
1986 SET_BIT (reg_set_in_block[current_bb->index], regno);
1991 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1992 Note we store a pair of elements in the list, so they have to be
1993 taken off pairwise. */
1995 static void
1996 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1997 void * v_insn)
1999 rtx dest_addr, insn;
2000 int bb;
2002 while (GET_CODE (dest) == SUBREG
2003 || GET_CODE (dest) == ZERO_EXTRACT
2004 || GET_CODE (dest) == SIGN_EXTRACT
2005 || GET_CODE (dest) == STRICT_LOW_PART)
2006 dest = XEXP (dest, 0);
2008 /* If DEST is not a MEM, then it will not conflict with a load. Note
2009 that function calls are assumed to clobber memory, but are handled
2010 elsewhere. */
2012 if (! MEM_P (dest))
2013 return;
2015 dest_addr = get_addr (XEXP (dest, 0));
2016 dest_addr = canon_rtx (dest_addr);
2017 insn = (rtx) v_insn;
2018 bb = BLOCK_NUM (insn);
2020 canon_modify_mem_list[bb] =
2021 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2022 canon_modify_mem_list[bb] =
2023 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2024 bitmap_set_bit (canon_modify_mem_list_set, bb);
2027 /* Record memory modification information for INSN. We do not actually care
2028 about the memory location(s) that are set, or even how they are set (consider
2029 a CALL_INSN). We merely need to record which insns modify memory. */
2031 static void
2032 record_last_mem_set_info (rtx insn)
2034 int bb = BLOCK_NUM (insn);
2036 /* load_killed_in_block_p will handle the case of calls clobbering
2037 everything. */
2038 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2039 bitmap_set_bit (modify_mem_list_set, bb);
2041 if (CALL_P (insn))
2043 /* Note that traversals of this loop (other than for free-ing)
2044 will break after encountering a CALL_INSN. So, there's no
2045 need to insert a pair of items, as canon_list_insert does. */
2046 canon_modify_mem_list[bb] =
2047 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2048 bitmap_set_bit (canon_modify_mem_list_set, bb);
2050 else
2051 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2054 /* Called from compute_hash_table via note_stores to handle one
2055 SET or CLOBBER in an insn. DATA is really the instruction in which
2056 the SET is taking place. */
2058 static void
2059 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
2061 rtx last_set_insn = (rtx) data;
2063 if (GET_CODE (dest) == SUBREG)
2064 dest = SUBREG_REG (dest);
2066 if (REG_P (dest))
2067 record_last_reg_set_info (last_set_insn, REGNO (dest));
2068 else if (MEM_P (dest)
2069 /* Ignore pushes, they clobber nothing. */
2070 && ! push_operand (dest, GET_MODE (dest)))
2071 record_last_mem_set_info (last_set_insn);
2074 /* Top level function to create an expression or assignment hash table.
2076 Expression entries are placed in the hash table if
2077 - they are of the form (set (pseudo-reg) src),
2078 - src is something we want to perform GCSE on,
2079 - none of the operands are subsequently modified in the block
2081 Assignment entries are placed in the hash table if
2082 - they are of the form (set (pseudo-reg) src),
2083 - src is something we want to perform const/copy propagation on,
2084 - none of the operands or target are subsequently modified in the block
2086 Currently src must be a pseudo-reg or a const_int.
2088 TABLE is the table computed. */
2090 static void
2091 compute_hash_table_work (struct hash_table *table)
2093 unsigned int i;
2095 /* While we compute the hash table we also compute a bit array of which
2096 registers are set in which blocks.
2097 ??? This isn't needed during const/copy propagation, but it's cheap to
2098 compute. Later. */
2099 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2101 /* re-Cache any INSN_LIST nodes we have allocated. */
2102 clear_modify_mem_tables ();
2103 /* Some working arrays used to track first and last set in each block. */
2104 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2106 for (i = 0; i < max_gcse_regno; ++i)
2107 reg_avail_info[i].last_bb = NULL;
2109 FOR_EACH_BB (current_bb)
2111 rtx insn;
2112 unsigned int regno;
2113 int in_libcall_block;
2115 /* First pass over the instructions records information used to
2116 determine when registers and memory are first and last set.
2117 ??? hard-reg reg_set_in_block computation
2118 could be moved to compute_sets since they currently don't change. */
2120 for (insn = BB_HEAD (current_bb);
2121 insn && insn != NEXT_INSN (BB_END (current_bb));
2122 insn = NEXT_INSN (insn))
2124 if (! INSN_P (insn))
2125 continue;
2127 if (CALL_P (insn))
2129 bool clobbers_all = false;
2130 #ifdef NON_SAVING_SETJMP
2131 if (NON_SAVING_SETJMP
2132 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2133 clobbers_all = true;
2134 #endif
2136 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2137 if (clobbers_all
2138 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2139 record_last_reg_set_info (insn, regno);
2141 mark_call (insn);
2144 note_stores (PATTERN (insn), record_last_set_info, insn);
2147 /* Insert implicit sets in the hash table. */
2148 if (table->set_p
2149 && implicit_sets[current_bb->index] != NULL_RTX)
2150 hash_scan_set (implicit_sets[current_bb->index],
2151 BB_HEAD (current_bb), table);
2153 /* The next pass builds the hash table. */
2155 for (insn = BB_HEAD (current_bb), in_libcall_block = 0;
2156 insn && insn != NEXT_INSN (BB_END (current_bb));
2157 insn = NEXT_INSN (insn))
2158 if (INSN_P (insn))
2160 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2161 in_libcall_block = 1;
2162 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2163 in_libcall_block = 0;
2164 hash_scan_insn (insn, table, in_libcall_block);
2165 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2166 in_libcall_block = 0;
2170 free (reg_avail_info);
2171 reg_avail_info = NULL;
2174 /* Allocate space for the set/expr hash TABLE.
2175 N_INSNS is the number of instructions in the function.
2176 It is used to determine the number of buckets to use.
2177 SET_P determines whether set or expression table will
2178 be created. */
2180 static void
2181 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2183 int n;
2185 table->size = n_insns / 4;
2186 if (table->size < 11)
2187 table->size = 11;
2189 /* Attempt to maintain efficient use of hash table.
2190 Making it an odd number is simplest for now.
2191 ??? Later take some measurements. */
2192 table->size |= 1;
2193 n = table->size * sizeof (struct expr *);
2194 table->table = gmalloc (n);
2195 table->set_p = set_p;
2198 /* Free things allocated by alloc_hash_table. */
2200 static void
2201 free_hash_table (struct hash_table *table)
2203 free (table->table);
2206 /* Compute the hash TABLE for doing copy/const propagation or
2207 expression hash table. */
2209 static void
2210 compute_hash_table (struct hash_table *table)
2212 /* Initialize count of number of entries in hash table. */
2213 table->n_elems = 0;
2214 memset (table->table, 0, table->size * sizeof (struct expr *));
2216 compute_hash_table_work (table);
2219 /* Expression tracking support. */
2221 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2222 table entry, or NULL if not found. */
2224 static struct expr *
2225 lookup_set (unsigned int regno, struct hash_table *table)
2227 unsigned int hash = hash_set (regno, table->size);
2228 struct expr *expr;
2230 expr = table->table[hash];
2232 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2233 expr = expr->next_same_hash;
2235 return expr;
2238 /* Return the next entry for REGNO in list EXPR. */
2240 static struct expr *
2241 next_set (unsigned int regno, struct expr *expr)
2244 expr = expr->next_same_hash;
2245 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2247 return expr;
2250 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2251 types may be mixed. */
2253 static void
2254 free_insn_expr_list_list (rtx *listp)
2256 rtx list, next;
2258 for (list = *listp; list ; list = next)
2260 next = XEXP (list, 1);
2261 if (GET_CODE (list) == EXPR_LIST)
2262 free_EXPR_LIST_node (list);
2263 else
2264 free_INSN_LIST_node (list);
2267 *listp = NULL;
2270 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2271 static void
2272 clear_modify_mem_tables (void)
2274 int i;
2276 EXECUTE_IF_SET_IN_BITMAP
2277 (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
2278 bitmap_clear (modify_mem_list_set);
2280 EXECUTE_IF_SET_IN_BITMAP
2281 (canon_modify_mem_list_set, 0, i,
2282 free_insn_expr_list_list (canon_modify_mem_list + i));
2283 bitmap_clear (canon_modify_mem_list_set);
2286 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2288 static void
2289 free_modify_mem_tables (void)
2291 clear_modify_mem_tables ();
2292 free (modify_mem_list);
2293 free (canon_modify_mem_list);
2294 modify_mem_list = 0;
2295 canon_modify_mem_list = 0;
2298 /* Reset tables used to keep track of what's still available [since the
2299 start of the block]. */
2301 static void
2302 reset_opr_set_tables (void)
2304 /* Maintain a bitmap of which regs have been set since beginning of
2305 the block. */
2306 CLEAR_REG_SET (reg_set_bitmap);
2308 /* Also keep a record of the last instruction to modify memory.
2309 For now this is very trivial, we only record whether any memory
2310 location has been modified. */
2311 clear_modify_mem_tables ();
2314 /* Return nonzero if the operands of X are not set before INSN in
2315 INSN's basic block. */
2317 static int
2318 oprs_not_set_p (rtx x, rtx insn)
2320 int i, j;
2321 enum rtx_code code;
2322 const char *fmt;
2324 if (x == 0)
2325 return 1;
2327 code = GET_CODE (x);
2328 switch (code)
2330 case PC:
2331 case CC0:
2332 case CONST:
2333 case CONST_INT:
2334 case CONST_DOUBLE:
2335 case CONST_VECTOR:
2336 case SYMBOL_REF:
2337 case LABEL_REF:
2338 case ADDR_VEC:
2339 case ADDR_DIFF_VEC:
2340 return 1;
2342 case MEM:
2343 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2344 INSN_CUID (insn), x, 0))
2345 return 0;
2346 else
2347 return oprs_not_set_p (XEXP (x, 0), insn);
2349 case REG:
2350 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2352 default:
2353 break;
2356 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2358 if (fmt[i] == 'e')
2360 /* If we are about to do the last recursive call
2361 needed at this level, change it into iteration.
2362 This function is called enough to be worth it. */
2363 if (i == 0)
2364 return oprs_not_set_p (XEXP (x, i), insn);
2366 if (! oprs_not_set_p (XEXP (x, i), insn))
2367 return 0;
2369 else if (fmt[i] == 'E')
2370 for (j = 0; j < XVECLEN (x, i); j++)
2371 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2372 return 0;
2375 return 1;
2378 /* Mark things set by a CALL. */
2380 static void
2381 mark_call (rtx insn)
2383 if (! CONST_OR_PURE_CALL_P (insn))
2384 record_last_mem_set_info (insn);
2387 /* Mark things set by a SET. */
2389 static void
2390 mark_set (rtx pat, rtx insn)
2392 rtx dest = SET_DEST (pat);
2394 while (GET_CODE (dest) == SUBREG
2395 || GET_CODE (dest) == ZERO_EXTRACT
2396 || GET_CODE (dest) == SIGN_EXTRACT
2397 || GET_CODE (dest) == STRICT_LOW_PART)
2398 dest = XEXP (dest, 0);
2400 if (REG_P (dest))
2401 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2402 else if (MEM_P (dest))
2403 record_last_mem_set_info (insn);
2405 if (GET_CODE (SET_SRC (pat)) == CALL)
2406 mark_call (insn);
2409 /* Record things set by a CLOBBER. */
2411 static void
2412 mark_clobber (rtx pat, rtx insn)
2414 rtx clob = XEXP (pat, 0);
2416 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2417 clob = XEXP (clob, 0);
2419 if (REG_P (clob))
2420 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2421 else
2422 record_last_mem_set_info (insn);
2425 /* Record things set by INSN.
2426 This data is used by oprs_not_set_p. */
2428 static void
2429 mark_oprs_set (rtx insn)
2431 rtx pat = PATTERN (insn);
2432 int i;
2434 if (GET_CODE (pat) == SET)
2435 mark_set (pat, insn);
2436 else if (GET_CODE (pat) == PARALLEL)
2437 for (i = 0; i < XVECLEN (pat, 0); i++)
2439 rtx x = XVECEXP (pat, 0, i);
2441 if (GET_CODE (x) == SET)
2442 mark_set (x, insn);
2443 else if (GET_CODE (x) == CLOBBER)
2444 mark_clobber (x, insn);
2445 else if (GET_CODE (x) == CALL)
2446 mark_call (insn);
2449 else if (GET_CODE (pat) == CLOBBER)
2450 mark_clobber (pat, insn);
2451 else if (GET_CODE (pat) == CALL)
2452 mark_call (insn);
2456 /* Compute copy/constant propagation working variables. */
2458 /* Local properties of assignments. */
2459 static sbitmap *cprop_pavloc;
2460 static sbitmap *cprop_absaltered;
2462 /* Global properties of assignments (computed from the local properties). */
2463 static sbitmap *cprop_avin;
2464 static sbitmap *cprop_avout;
2466 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2467 basic blocks. N_SETS is the number of sets. */
2469 static void
2470 alloc_cprop_mem (int n_blocks, int n_sets)
2472 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2473 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2475 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2476 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2479 /* Free vars used by copy/const propagation. */
2481 static void
2482 free_cprop_mem (void)
2484 sbitmap_vector_free (cprop_pavloc);
2485 sbitmap_vector_free (cprop_absaltered);
2486 sbitmap_vector_free (cprop_avin);
2487 sbitmap_vector_free (cprop_avout);
2490 /* For each block, compute whether X is transparent. X is either an
2491 expression or an assignment [though we don't care which, for this context
2492 an assignment is treated as an expression]. For each block where an
2493 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2494 bit in BMAP. */
2496 static void
2497 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2499 int i, j;
2500 basic_block bb;
2501 enum rtx_code code;
2502 reg_set *r;
2503 const char *fmt;
2505 /* repeat is used to turn tail-recursion into iteration since GCC
2506 can't do it when there's no return value. */
2507 repeat:
2509 if (x == 0)
2510 return;
2512 code = GET_CODE (x);
2513 switch (code)
2515 case REG:
2516 if (set_p)
2518 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2520 FOR_EACH_BB (bb)
2521 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2522 SET_BIT (bmap[bb->index], indx);
2524 else
2526 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2527 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
2530 else
2532 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2534 FOR_EACH_BB (bb)
2535 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2536 RESET_BIT (bmap[bb->index], indx);
2538 else
2540 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2541 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
2545 return;
2547 case MEM:
2548 FOR_EACH_BB (bb)
2550 rtx list_entry = canon_modify_mem_list[bb->index];
2552 while (list_entry)
2554 rtx dest, dest_addr;
2556 if (CALL_P (XEXP (list_entry, 0)))
2558 if (set_p)
2559 SET_BIT (bmap[bb->index], indx);
2560 else
2561 RESET_BIT (bmap[bb->index], indx);
2562 break;
2564 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2565 Examine each hunk of memory that is modified. */
2567 dest = XEXP (list_entry, 0);
2568 list_entry = XEXP (list_entry, 1);
2569 dest_addr = XEXP (list_entry, 0);
2571 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2572 x, rtx_addr_varies_p))
2574 if (set_p)
2575 SET_BIT (bmap[bb->index], indx);
2576 else
2577 RESET_BIT (bmap[bb->index], indx);
2578 break;
2580 list_entry = XEXP (list_entry, 1);
2584 x = XEXP (x, 0);
2585 goto repeat;
2587 case PC:
2588 case CC0: /*FIXME*/
2589 case CONST:
2590 case CONST_INT:
2591 case CONST_DOUBLE:
2592 case CONST_VECTOR:
2593 case SYMBOL_REF:
2594 case LABEL_REF:
2595 case ADDR_VEC:
2596 case ADDR_DIFF_VEC:
2597 return;
2599 default:
2600 break;
2603 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2605 if (fmt[i] == 'e')
2607 /* If we are about to do the last recursive call
2608 needed at this level, change it into iteration.
2609 This function is called enough to be worth it. */
2610 if (i == 0)
2612 x = XEXP (x, i);
2613 goto repeat;
2616 compute_transp (XEXP (x, i), indx, bmap, set_p);
2618 else if (fmt[i] == 'E')
2619 for (j = 0; j < XVECLEN (x, i); j++)
2620 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2624 /* Top level routine to do the dataflow analysis needed by copy/const
2625 propagation. */
2627 static void
2628 compute_cprop_data (void)
2630 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2631 compute_available (cprop_pavloc, cprop_absaltered,
2632 cprop_avout, cprop_avin);
2635 /* Copy/constant propagation. */
2637 /* Maximum number of register uses in an insn that we handle. */
2638 #define MAX_USES 8
2640 /* Table of uses found in an insn.
2641 Allocated statically to avoid alloc/free complexity and overhead. */
2642 static struct reg_use reg_use_table[MAX_USES];
2644 /* Index into `reg_use_table' while building it. */
2645 static int reg_use_count;
2647 /* Set up a list of register numbers used in INSN. The found uses are stored
2648 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2649 and contains the number of uses in the table upon exit.
2651 ??? If a register appears multiple times we will record it multiple times.
2652 This doesn't hurt anything but it will slow things down. */
2654 static void
2655 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2657 int i, j;
2658 enum rtx_code code;
2659 const char *fmt;
2660 rtx x = *xptr;
2662 /* repeat is used to turn tail-recursion into iteration since GCC
2663 can't do it when there's no return value. */
2664 repeat:
2665 if (x == 0)
2666 return;
2668 code = GET_CODE (x);
2669 if (REG_P (x))
2671 if (reg_use_count == MAX_USES)
2672 return;
2674 reg_use_table[reg_use_count].reg_rtx = x;
2675 reg_use_count++;
2678 /* Recursively scan the operands of this expression. */
2680 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2682 if (fmt[i] == 'e')
2684 /* If we are about to do the last recursive call
2685 needed at this level, change it into iteration.
2686 This function is called enough to be worth it. */
2687 if (i == 0)
2689 x = XEXP (x, 0);
2690 goto repeat;
2693 find_used_regs (&XEXP (x, i), data);
2695 else if (fmt[i] == 'E')
2696 for (j = 0; j < XVECLEN (x, i); j++)
2697 find_used_regs (&XVECEXP (x, i, j), data);
2701 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2702 Returns nonzero is successful. */
2704 static int
2705 try_replace_reg (rtx from, rtx to, rtx insn)
2707 rtx note = find_reg_equal_equiv_note (insn);
2708 rtx src = 0;
2709 int success = 0;
2710 rtx set = single_set (insn);
2712 validate_replace_src_group (from, to, insn);
2713 if (num_changes_pending () && apply_change_group ())
2714 success = 1;
2716 /* Try to simplify SET_SRC if we have substituted a constant. */
2717 if (success && set && CONSTANT_P (to))
2719 src = simplify_rtx (SET_SRC (set));
2721 if (src)
2722 validate_change (insn, &SET_SRC (set), src, 0);
2725 /* If there is already a NOTE, update the expression in it with our
2726 replacement. */
2727 if (note != 0)
2728 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2730 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2732 /* If above failed and this is a single set, try to simplify the source of
2733 the set given our substitution. We could perhaps try this for multiple
2734 SETs, but it probably won't buy us anything. */
2735 src = simplify_replace_rtx (SET_SRC (set), from, to);
2737 if (!rtx_equal_p (src, SET_SRC (set))
2738 && validate_change (insn, &SET_SRC (set), src, 0))
2739 success = 1;
2741 /* If we've failed to do replacement, have a single SET, don't already
2742 have a note, and have no special SET, add a REG_EQUAL note to not
2743 lose information. */
2744 if (!success && note == 0 && set != 0
2745 && GET_CODE (XEXP (set, 0)) != ZERO_EXTRACT
2746 && GET_CODE (XEXP (set, 0)) != SIGN_EXTRACT)
2747 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2750 /* REG_EQUAL may get simplified into register.
2751 We don't allow that. Remove that note. This code ought
2752 not to happen, because previous code ought to synthesize
2753 reg-reg move, but be on the safe side. */
2754 if (note && REG_P (XEXP (note, 0)))
2755 remove_note (insn, note);
2757 return success;
2760 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2761 NULL no such set is found. */
2763 static struct expr *
2764 find_avail_set (int regno, rtx insn)
2766 /* SET1 contains the last set found that can be returned to the caller for
2767 use in a substitution. */
2768 struct expr *set1 = 0;
2770 /* Loops are not possible here. To get a loop we would need two sets
2771 available at the start of the block containing INSN. ie we would
2772 need two sets like this available at the start of the block:
2774 (set (reg X) (reg Y))
2775 (set (reg Y) (reg X))
2777 This can not happen since the set of (reg Y) would have killed the
2778 set of (reg X) making it unavailable at the start of this block. */
2779 while (1)
2781 rtx src;
2782 struct expr *set = lookup_set (regno, &set_hash_table);
2784 /* Find a set that is available at the start of the block
2785 which contains INSN. */
2786 while (set)
2788 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2789 break;
2790 set = next_set (regno, set);
2793 /* If no available set was found we've reached the end of the
2794 (possibly empty) copy chain. */
2795 if (set == 0)
2796 break;
2798 gcc_assert (GET_CODE (set->expr) == SET);
2800 src = SET_SRC (set->expr);
2802 /* We know the set is available.
2803 Now check that SRC is ANTLOC (i.e. none of the source operands
2804 have changed since the start of the block).
2806 If the source operand changed, we may still use it for the next
2807 iteration of this loop, but we may not use it for substitutions. */
2809 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2810 set1 = set;
2812 /* If the source of the set is anything except a register, then
2813 we have reached the end of the copy chain. */
2814 if (! REG_P (src))
2815 break;
2817 /* Follow the copy chain, ie start another iteration of the loop
2818 and see if we have an available copy into SRC. */
2819 regno = REGNO (src);
2822 /* SET1 holds the last set that was available and anticipatable at
2823 INSN. */
2824 return set1;
2827 /* Subroutine of cprop_insn that tries to propagate constants into
2828 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2829 it is the instruction that immediately precedes JUMP, and must be a
2830 single SET of a register. FROM is what we will try to replace,
2831 SRC is the constant we will try to substitute for it. Returns nonzero
2832 if a change was made. */
2834 static int
2835 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2837 rtx new, set_src, note_src;
2838 rtx set = pc_set (jump);
2839 rtx note = find_reg_equal_equiv_note (jump);
2841 if (note)
2843 note_src = XEXP (note, 0);
2844 if (GET_CODE (note_src) == EXPR_LIST)
2845 note_src = NULL_RTX;
2847 else note_src = NULL_RTX;
2849 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2850 set_src = note_src ? note_src : SET_SRC (set);
2852 /* First substitute the SETCC condition into the JUMP instruction,
2853 then substitute that given values into this expanded JUMP. */
2854 if (setcc != NULL_RTX
2855 && !modified_between_p (from, setcc, jump)
2856 && !modified_between_p (src, setcc, jump))
2858 rtx setcc_src;
2859 rtx setcc_set = single_set (setcc);
2860 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2861 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2862 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2863 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2864 setcc_src);
2866 else
2867 setcc = NULL_RTX;
2869 new = simplify_replace_rtx (set_src, from, src);
2871 /* If no simplification can be made, then try the next register. */
2872 if (rtx_equal_p (new, SET_SRC (set)))
2873 return 0;
2875 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2876 if (new == pc_rtx)
2877 delete_insn (jump);
2878 else
2880 /* Ensure the value computed inside the jump insn to be equivalent
2881 to one computed by setcc. */
2882 if (setcc && modified_in_p (new, setcc))
2883 return 0;
2884 if (! validate_change (jump, &SET_SRC (set), new, 0))
2886 /* When (some) constants are not valid in a comparison, and there
2887 are two registers to be replaced by constants before the entire
2888 comparison can be folded into a constant, we need to keep
2889 intermediate information in REG_EQUAL notes. For targets with
2890 separate compare insns, such notes are added by try_replace_reg.
2891 When we have a combined compare-and-branch instruction, however,
2892 we need to attach a note to the branch itself to make this
2893 optimization work. */
2895 if (!rtx_equal_p (new, note_src))
2896 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2897 return 0;
2900 /* Remove REG_EQUAL note after simplification. */
2901 if (note_src)
2902 remove_note (jump, note);
2904 /* If this has turned into an unconditional jump,
2905 then put a barrier after it so that the unreachable
2906 code will be deleted. */
2907 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2908 emit_barrier_after (jump);
2911 #ifdef HAVE_cc0
2912 /* Delete the cc0 setter. */
2913 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2914 delete_insn (setcc);
2915 #endif
2917 run_jump_opt_after_gcse = 1;
2919 global_const_prop_count++;
2920 if (gcse_file != NULL)
2922 fprintf (gcse_file,
2923 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2924 REGNO (from), INSN_UID (jump));
2925 print_rtl (gcse_file, src);
2926 fprintf (gcse_file, "\n");
2928 purge_dead_edges (bb);
2930 return 1;
2933 static bool
2934 constprop_register (rtx insn, rtx from, rtx to, int alter_jumps)
2936 rtx sset;
2938 /* Check for reg or cc0 setting instructions followed by
2939 conditional branch instructions first. */
2940 if (alter_jumps
2941 && (sset = single_set (insn)) != NULL
2942 && NEXT_INSN (insn)
2943 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2945 rtx dest = SET_DEST (sset);
2946 if ((REG_P (dest) || CC0_P (dest))
2947 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2948 return 1;
2951 /* Handle normal insns next. */
2952 if (NONJUMP_INSN_P (insn)
2953 && try_replace_reg (from, to, insn))
2954 return 1;
2956 /* Try to propagate a CONST_INT into a conditional jump.
2957 We're pretty specific about what we will handle in this
2958 code, we can extend this as necessary over time.
2960 Right now the insn in question must look like
2961 (set (pc) (if_then_else ...)) */
2962 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2963 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2964 return 0;
2967 /* Perform constant and copy propagation on INSN.
2968 The result is nonzero if a change was made. */
2970 static int
2971 cprop_insn (rtx insn, int alter_jumps)
2973 struct reg_use *reg_used;
2974 int changed = 0;
2975 rtx note;
2977 if (!INSN_P (insn))
2978 return 0;
2980 reg_use_count = 0;
2981 note_uses (&PATTERN (insn), find_used_regs, NULL);
2983 note = find_reg_equal_equiv_note (insn);
2985 /* We may win even when propagating constants into notes. */
2986 if (note)
2987 find_used_regs (&XEXP (note, 0), NULL);
2989 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2990 reg_used++, reg_use_count--)
2992 unsigned int regno = REGNO (reg_used->reg_rtx);
2993 rtx pat, src;
2994 struct expr *set;
2996 /* Ignore registers created by GCSE.
2997 We do this because ... */
2998 if (regno >= max_gcse_regno)
2999 continue;
3001 /* If the register has already been set in this block, there's
3002 nothing we can do. */
3003 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
3004 continue;
3006 /* Find an assignment that sets reg_used and is available
3007 at the start of the block. */
3008 set = find_avail_set (regno, insn);
3009 if (! set)
3010 continue;
3012 pat = set->expr;
3013 /* ??? We might be able to handle PARALLELs. Later. */
3014 gcc_assert (GET_CODE (pat) == SET);
3016 src = SET_SRC (pat);
3018 /* Constant propagation. */
3019 if (gcse_constant_p (src))
3021 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
3023 changed = 1;
3024 global_const_prop_count++;
3025 if (gcse_file != NULL)
3027 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
3028 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
3029 print_rtl (gcse_file, src);
3030 fprintf (gcse_file, "\n");
3032 if (INSN_DELETED_P (insn))
3033 return 1;
3036 else if (REG_P (src)
3037 && REGNO (src) >= FIRST_PSEUDO_REGISTER
3038 && REGNO (src) != regno)
3040 if (try_replace_reg (reg_used->reg_rtx, src, insn))
3042 changed = 1;
3043 global_copy_prop_count++;
3044 if (gcse_file != NULL)
3046 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
3047 regno, INSN_UID (insn));
3048 fprintf (gcse_file, " with reg %d\n", REGNO (src));
3051 /* The original insn setting reg_used may or may not now be
3052 deletable. We leave the deletion to flow. */
3053 /* FIXME: If it turns out that the insn isn't deletable,
3054 then we may have unnecessarily extended register lifetimes
3055 and made things worse. */
3060 return changed;
3063 /* Like find_used_regs, but avoid recording uses that appear in
3064 input-output contexts such as zero_extract or pre_dec. This
3065 restricts the cases we consider to those for which local cprop
3066 can legitimately make replacements. */
3068 static void
3069 local_cprop_find_used_regs (rtx *xptr, void *data)
3071 rtx x = *xptr;
3073 if (x == 0)
3074 return;
3076 switch (GET_CODE (x))
3078 case ZERO_EXTRACT:
3079 case SIGN_EXTRACT:
3080 case STRICT_LOW_PART:
3081 return;
3083 case PRE_DEC:
3084 case PRE_INC:
3085 case POST_DEC:
3086 case POST_INC:
3087 case PRE_MODIFY:
3088 case POST_MODIFY:
3089 /* Can only legitimately appear this early in the context of
3090 stack pushes for function arguments, but handle all of the
3091 codes nonetheless. */
3092 return;
3094 case SUBREG:
3095 /* Setting a subreg of a register larger than word_mode leaves
3096 the non-written words unchanged. */
3097 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3098 return;
3099 break;
3101 default:
3102 break;
3105 find_used_regs (xptr, data);
3108 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3109 their REG_EQUAL notes need updating. */
3111 static bool
3112 do_local_cprop (rtx x, rtx insn, int alter_jumps, rtx *libcall_sp)
3114 rtx newreg = NULL, newcnst = NULL;
3116 /* Rule out USE instructions and ASM statements as we don't want to
3117 change the hard registers mentioned. */
3118 if (REG_P (x)
3119 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3120 || (GET_CODE (PATTERN (insn)) != USE
3121 && asm_noperands (PATTERN (insn)) < 0)))
3123 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3124 struct elt_loc_list *l;
3126 if (!val)
3127 return false;
3128 for (l = val->locs; l; l = l->next)
3130 rtx this_rtx = l->loc;
3131 rtx note;
3133 if (l->in_libcall)
3134 continue;
3136 if (gcse_constant_p (this_rtx))
3137 newcnst = this_rtx;
3138 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3139 /* Don't copy propagate if it has attached REG_EQUIV note.
3140 At this point this only function parameters should have
3141 REG_EQUIV notes and if the argument slot is used somewhere
3142 explicitly, it means address of parameter has been taken,
3143 so we should not extend the lifetime of the pseudo. */
3144 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3145 || ! MEM_P (XEXP (note, 0))))
3146 newreg = this_rtx;
3148 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3150 /* If we find a case where we can't fix the retval REG_EQUAL notes
3151 match the new register, we either have to abandon this replacement
3152 or fix delete_trivially_dead_insns to preserve the setting insn,
3153 or make it delete the REG_EUAQL note, and fix up all passes that
3154 require the REG_EQUAL note there. */
3155 bool adjusted;
3157 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3158 gcc_assert (adjusted);
3160 if (gcse_file != NULL)
3162 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3163 REGNO (x));
3164 fprintf (gcse_file, "insn %d with constant ",
3165 INSN_UID (insn));
3166 print_rtl (gcse_file, newcnst);
3167 fprintf (gcse_file, "\n");
3169 local_const_prop_count++;
3170 return true;
3172 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3174 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3175 if (gcse_file != NULL)
3177 fprintf (gcse_file,
3178 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3179 REGNO (x), INSN_UID (insn));
3180 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
3182 local_copy_prop_count++;
3183 return true;
3186 return false;
3189 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3190 their REG_EQUAL notes need updating to reflect that OLDREG has been
3191 replaced with NEWVAL in INSN. Return true if all substitutions could
3192 be made. */
3193 static bool
3194 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3196 rtx end;
3198 while ((end = *libcall_sp++))
3200 rtx note = find_reg_equal_equiv_note (end);
3202 if (! note)
3203 continue;
3205 if (REG_P (newval))
3207 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3211 note = find_reg_equal_equiv_note (end);
3212 if (! note)
3213 continue;
3214 if (reg_mentioned_p (newval, XEXP (note, 0)))
3215 return false;
3217 while ((end = *libcall_sp++));
3218 return true;
3221 XEXP (note, 0) = replace_rtx (XEXP (note, 0), oldreg, newval);
3222 insn = end;
3224 return true;
3227 #define MAX_NESTED_LIBCALLS 9
3229 static void
3230 local_cprop_pass (int alter_jumps)
3232 rtx insn;
3233 struct reg_use *reg_used;
3234 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3235 bool changed = false;
3237 cselib_init (false);
3238 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3239 *libcall_sp = 0;
3240 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3242 if (INSN_P (insn))
3244 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3246 if (note)
3248 gcc_assert (libcall_sp != libcall_stack);
3249 *--libcall_sp = XEXP (note, 0);
3251 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3252 if (note)
3253 libcall_sp++;
3254 note = find_reg_equal_equiv_note (insn);
3257 reg_use_count = 0;
3258 note_uses (&PATTERN (insn), local_cprop_find_used_regs, NULL);
3259 if (note)
3260 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3262 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3263 reg_used++, reg_use_count--)
3264 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3265 libcall_sp))
3267 changed = true;
3268 break;
3270 if (INSN_DELETED_P (insn))
3271 break;
3273 while (reg_use_count);
3275 cselib_process_insn (insn);
3277 cselib_finish ();
3278 /* Global analysis may get into infinite loops for unreachable blocks. */
3279 if (changed && alter_jumps)
3281 delete_unreachable_blocks ();
3282 free_reg_set_mem ();
3283 alloc_reg_set_mem (max_reg_num ());
3284 compute_sets (get_insns ());
3288 /* Forward propagate copies. This includes copies and constants. Return
3289 nonzero if a change was made. */
3291 static int
3292 cprop (int alter_jumps)
3294 int changed;
3295 basic_block bb;
3296 rtx insn;
3298 /* Note we start at block 1. */
3299 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3301 if (gcse_file != NULL)
3302 fprintf (gcse_file, "\n");
3303 return 0;
3306 changed = 0;
3307 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3309 /* Reset tables used to keep track of what's still valid [since the
3310 start of the block]. */
3311 reset_opr_set_tables ();
3313 for (insn = BB_HEAD (bb);
3314 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3315 insn = NEXT_INSN (insn))
3316 if (INSN_P (insn))
3318 changed |= cprop_insn (insn, alter_jumps);
3320 /* Keep track of everything modified by this insn. */
3321 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3322 call mark_oprs_set if we turned the insn into a NOTE. */
3323 if (! NOTE_P (insn))
3324 mark_oprs_set (insn);
3328 if (gcse_file != NULL)
3329 fprintf (gcse_file, "\n");
3331 return changed;
3334 /* Similar to get_condition, only the resulting condition must be
3335 valid at JUMP, instead of at EARLIEST.
3337 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3338 settle for the condition variable in the jump instruction being integral.
3339 We prefer to be able to record the value of a user variable, rather than
3340 the value of a temporary used in a condition. This could be solved by
3341 recording the value of *every* register scaned by canonicalize_condition,
3342 but this would require some code reorganization. */
3345 fis_get_condition (rtx jump)
3347 return get_condition (jump, NULL, false, true);
3350 /* Check the comparison COND to see if we can safely form an implicit set from
3351 it. COND is either an EQ or NE comparison. */
3353 static bool
3354 implicit_set_cond_p (rtx cond)
3356 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3357 rtx cst = XEXP (cond, 1);
3359 /* We can't perform this optimization if either operand might be or might
3360 contain a signed zero. */
3361 if (HONOR_SIGNED_ZEROS (mode))
3363 /* It is sufficient to check if CST is or contains a zero. We must
3364 handle float, complex, and vector. If any subpart is a zero, then
3365 the optimization can't be performed. */
3366 /* ??? The complex and vector checks are not implemented yet. We just
3367 always return zero for them. */
3368 if (GET_CODE (cst) == CONST_DOUBLE)
3370 REAL_VALUE_TYPE d;
3371 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3372 if (REAL_VALUES_EQUAL (d, dconst0))
3373 return 0;
3375 else
3376 return 0;
3379 return gcse_constant_p (cst);
3382 /* Find the implicit sets of a function. An "implicit set" is a constraint
3383 on the value of a variable, implied by a conditional jump. For example,
3384 following "if (x == 2)", the then branch may be optimized as though the
3385 conditional performed an "explicit set", in this example, "x = 2". This
3386 function records the set patterns that are implicit at the start of each
3387 basic block. */
3389 static void
3390 find_implicit_sets (void)
3392 basic_block bb, dest;
3393 unsigned int count;
3394 rtx cond, new;
3396 count = 0;
3397 FOR_EACH_BB (bb)
3398 /* Check for more than one successor. */
3399 if (EDGE_COUNT (bb->succs) > 1)
3401 cond = fis_get_condition (BB_END (bb));
3403 if (cond
3404 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3405 && REG_P (XEXP (cond, 0))
3406 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3407 && implicit_set_cond_p (cond))
3409 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3410 : FALLTHRU_EDGE (bb)->dest;
3412 if (dest && EDGE_COUNT (dest->preds) == 1
3413 && dest != EXIT_BLOCK_PTR)
3415 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3416 XEXP (cond, 1));
3417 implicit_sets[dest->index] = new;
3418 if (gcse_file)
3420 fprintf(gcse_file, "Implicit set of reg %d in ",
3421 REGNO (XEXP (cond, 0)));
3422 fprintf(gcse_file, "basic block %d\n", dest->index);
3424 count++;
3429 if (gcse_file)
3430 fprintf (gcse_file, "Found %d implicit sets\n", count);
3433 /* Perform one copy/constant propagation pass.
3434 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3435 propagation into conditional jumps. If BYPASS_JUMPS is true,
3436 perform conditional jump bypassing optimizations. */
3438 static int
3439 one_cprop_pass (int pass, int cprop_jumps, int bypass_jumps)
3441 int changed = 0;
3443 global_const_prop_count = local_const_prop_count = 0;
3444 global_copy_prop_count = local_copy_prop_count = 0;
3446 local_cprop_pass (cprop_jumps);
3448 /* Determine implicit sets. */
3449 implicit_sets = xcalloc (last_basic_block, sizeof (rtx));
3450 find_implicit_sets ();
3452 alloc_hash_table (max_cuid, &set_hash_table, 1);
3453 compute_hash_table (&set_hash_table);
3455 /* Free implicit_sets before peak usage. */
3456 free (implicit_sets);
3457 implicit_sets = NULL;
3459 if (gcse_file)
3460 dump_hash_table (gcse_file, "SET", &set_hash_table);
3461 if (set_hash_table.n_elems > 0)
3463 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3464 compute_cprop_data ();
3465 changed = cprop (cprop_jumps);
3466 if (bypass_jumps)
3467 changed |= bypass_conditional_jumps ();
3468 free_cprop_mem ();
3471 free_hash_table (&set_hash_table);
3473 if (gcse_file)
3475 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
3476 current_function_name (), pass, bytes_used);
3477 fprintf (gcse_file, "%d local const props, %d local copy props\n\n",
3478 local_const_prop_count, local_copy_prop_count);
3479 fprintf (gcse_file, "%d global const props, %d global copy props\n\n",
3480 global_const_prop_count, global_copy_prop_count);
3482 /* Global analysis may get into infinite loops for unreachable blocks. */
3483 if (changed && cprop_jumps)
3484 delete_unreachable_blocks ();
3486 return changed;
3489 /* Bypass conditional jumps. */
3491 /* The value of last_basic_block at the beginning of the jump_bypass
3492 pass. The use of redirect_edge_and_branch_force may introduce new
3493 basic blocks, but the data flow analysis is only valid for basic
3494 block indices less than bypass_last_basic_block. */
3496 static int bypass_last_basic_block;
3498 /* Find a set of REGNO to a constant that is available at the end of basic
3499 block BB. Returns NULL if no such set is found. Based heavily upon
3500 find_avail_set. */
3502 static struct expr *
3503 find_bypass_set (int regno, int bb)
3505 struct expr *result = 0;
3507 for (;;)
3509 rtx src;
3510 struct expr *set = lookup_set (regno, &set_hash_table);
3512 while (set)
3514 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3515 break;
3516 set = next_set (regno, set);
3519 if (set == 0)
3520 break;
3522 gcc_assert (GET_CODE (set->expr) == SET);
3524 src = SET_SRC (set->expr);
3525 if (gcse_constant_p (src))
3526 result = set;
3528 if (! REG_P (src))
3529 break;
3531 regno = REGNO (src);
3533 return result;
3537 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3538 any of the instructions inserted on an edge. Jump bypassing places
3539 condition code setters on CFG edges using insert_insn_on_edge. This
3540 function is required to check that our data flow analysis is still
3541 valid prior to commit_edge_insertions. */
3543 static bool
3544 reg_killed_on_edge (rtx reg, edge e)
3546 rtx insn;
3548 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3549 if (INSN_P (insn) && reg_set_p (reg, insn))
3550 return true;
3552 return false;
3555 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3556 basic block BB which has more than one predecessor. If not NULL, SETCC
3557 is the first instruction of BB, which is immediately followed by JUMP_INSN
3558 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3559 Returns nonzero if a change was made.
3561 During the jump bypassing pass, we may place copies of SETCC instructions
3562 on CFG edges. The following routine must be careful to pay attention to
3563 these inserted insns when performing its transformations. */
3565 static int
3566 bypass_block (basic_block bb, rtx setcc, rtx jump)
3568 rtx insn, note;
3569 edge e, edest;
3570 int i, change;
3571 int may_be_loop_header;
3572 unsigned removed_p;
3573 unsigned ix;
3574 edge_iterator ei;
3576 insn = (setcc != NULL) ? setcc : jump;
3578 /* Determine set of register uses in INSN. */
3579 reg_use_count = 0;
3580 note_uses (&PATTERN (insn), find_used_regs, NULL);
3581 note = find_reg_equal_equiv_note (insn);
3582 if (note)
3583 find_used_regs (&XEXP (note, 0), NULL);
3585 may_be_loop_header = false;
3587 FOR_EACH_EDGE (e, ei, bb->preds)
3589 if (e->flags & EDGE_DFS_BACK)
3591 may_be_loop_header = true;
3592 break;
3596 change = 0;
3597 for (ix = 0; VEC_iterate (edge, bb->preds, ix, e); )
3599 removed_p = 0;
3601 if (e->flags & EDGE_COMPLEX)
3603 ix++;
3604 continue;
3607 /* We can't redirect edges from new basic blocks. */
3608 if (e->src->index >= bypass_last_basic_block)
3610 ix++;
3611 continue;
3614 /* The irreducible loops created by redirecting of edges entering the
3615 loop from outside would decrease effectiveness of some of the following
3616 optimizations, so prevent this. */
3617 if (may_be_loop_header
3618 && !(e->flags & EDGE_DFS_BACK))
3620 ix++;
3621 continue;
3624 for (i = 0; i < reg_use_count; i++)
3626 struct reg_use *reg_used = &reg_use_table[i];
3627 unsigned int regno = REGNO (reg_used->reg_rtx);
3628 basic_block dest, old_dest;
3629 struct expr *set;
3630 rtx src, new;
3632 if (regno >= max_gcse_regno)
3633 continue;
3635 set = find_bypass_set (regno, e->src->index);
3637 if (! set)
3638 continue;
3640 /* Check the data flow is valid after edge insertions. */
3641 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3642 continue;
3644 src = SET_SRC (pc_set (jump));
3646 if (setcc != NULL)
3647 src = simplify_replace_rtx (src,
3648 SET_DEST (PATTERN (setcc)),
3649 SET_SRC (PATTERN (setcc)));
3651 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3652 SET_SRC (set->expr));
3654 /* Jump bypassing may have already placed instructions on
3655 edges of the CFG. We can't bypass an outgoing edge that
3656 has instructions associated with it, as these insns won't
3657 get executed if the incoming edge is redirected. */
3659 if (new == pc_rtx)
3661 edest = FALLTHRU_EDGE (bb);
3662 dest = edest->insns.r ? NULL : edest->dest;
3664 else if (GET_CODE (new) == LABEL_REF)
3666 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3667 /* Don't bypass edges containing instructions. */
3668 FOR_EACH_EDGE (edest, ei, bb->succs)
3670 if (edest->dest == dest && edest->insns.r)
3672 dest = NULL;
3673 break;
3677 else
3678 dest = NULL;
3680 /* Avoid unification of the edge with other edges from original
3681 branch. We would end up emitting the instruction on "both"
3682 edges. */
3684 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc))))
3686 edge e2;
3687 FOR_EACH_EDGE (e2, ei, e->src->succs)
3689 if (e2->dest == dest)
3691 dest = NULL;
3692 break;
3697 old_dest = e->dest;
3698 if (dest != NULL
3699 && dest != old_dest
3700 && dest != EXIT_BLOCK_PTR)
3702 redirect_edge_and_branch_force (e, dest);
3704 /* Copy the register setter to the redirected edge.
3705 Don't copy CC0 setters, as CC0 is dead after jump. */
3706 if (setcc)
3708 rtx pat = PATTERN (setcc);
3709 if (!CC0_P (SET_DEST (pat)))
3710 insert_insn_on_edge (copy_insn (pat), e);
3713 if (gcse_file != NULL)
3715 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d "
3716 "in jump_insn %d equals constant ",
3717 regno, INSN_UID (jump));
3718 print_rtl (gcse_file, SET_SRC (set->expr));
3719 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
3720 e->src->index, old_dest->index, dest->index);
3722 change = 1;
3723 removed_p = 1;
3724 break;
3727 if (!removed_p)
3728 ix++;
3730 return change;
3733 /* Find basic blocks with more than one predecessor that only contain a
3734 single conditional jump. If the result of the comparison is known at
3735 compile-time from any incoming edge, redirect that edge to the
3736 appropriate target. Returns nonzero if a change was made.
3738 This function is now mis-named, because we also handle indirect jumps. */
3740 static int
3741 bypass_conditional_jumps (void)
3743 basic_block bb;
3744 int changed;
3745 rtx setcc;
3746 rtx insn;
3747 rtx dest;
3749 /* Note we start at block 1. */
3750 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3751 return 0;
3753 bypass_last_basic_block = last_basic_block;
3754 mark_dfs_back_edges ();
3756 changed = 0;
3757 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3758 EXIT_BLOCK_PTR, next_bb)
3760 /* Check for more than one predecessor. */
3761 if (EDGE_COUNT (bb->preds) > 1)
3763 setcc = NULL_RTX;
3764 for (insn = BB_HEAD (bb);
3765 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3766 insn = NEXT_INSN (insn))
3767 if (NONJUMP_INSN_P (insn))
3769 if (setcc)
3770 break;
3771 if (GET_CODE (PATTERN (insn)) != SET)
3772 break;
3774 dest = SET_DEST (PATTERN (insn));
3775 if (REG_P (dest) || CC0_P (dest))
3776 setcc = insn;
3777 else
3778 break;
3780 else if (JUMP_P (insn))
3782 if ((any_condjump_p (insn) || computed_jump_p (insn))
3783 && onlyjump_p (insn))
3784 changed |= bypass_block (bb, setcc, insn);
3785 break;
3787 else if (INSN_P (insn))
3788 break;
3792 /* If we bypassed any register setting insns, we inserted a
3793 copy on the redirected edge. These need to be committed. */
3794 if (changed)
3795 commit_edge_insertions();
3797 return changed;
3800 /* Compute PRE+LCM working variables. */
3802 /* Local properties of expressions. */
3803 /* Nonzero for expressions that are transparent in the block. */
3804 static sbitmap *transp;
3806 /* Nonzero for expressions that are transparent at the end of the block.
3807 This is only zero for expressions killed by abnormal critical edge
3808 created by a calls. */
3809 static sbitmap *transpout;
3811 /* Nonzero for expressions that are computed (available) in the block. */
3812 static sbitmap *comp;
3814 /* Nonzero for expressions that are locally anticipatable in the block. */
3815 static sbitmap *antloc;
3817 /* Nonzero for expressions where this block is an optimal computation
3818 point. */
3819 static sbitmap *pre_optimal;
3821 /* Nonzero for expressions which are redundant in a particular block. */
3822 static sbitmap *pre_redundant;
3824 /* Nonzero for expressions which should be inserted on a specific edge. */
3825 static sbitmap *pre_insert_map;
3827 /* Nonzero for expressions which should be deleted in a specific block. */
3828 static sbitmap *pre_delete_map;
3830 /* Contains the edge_list returned by pre_edge_lcm. */
3831 static struct edge_list *edge_list;
3833 /* Redundant insns. */
3834 static sbitmap pre_redundant_insns;
3836 /* Allocate vars used for PRE analysis. */
3838 static void
3839 alloc_pre_mem (int n_blocks, int n_exprs)
3841 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3842 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3843 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3845 pre_optimal = NULL;
3846 pre_redundant = NULL;
3847 pre_insert_map = NULL;
3848 pre_delete_map = NULL;
3849 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3851 /* pre_insert and pre_delete are allocated later. */
3854 /* Free vars used for PRE analysis. */
3856 static void
3857 free_pre_mem (void)
3859 sbitmap_vector_free (transp);
3860 sbitmap_vector_free (comp);
3862 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3864 if (pre_optimal)
3865 sbitmap_vector_free (pre_optimal);
3866 if (pre_redundant)
3867 sbitmap_vector_free (pre_redundant);
3868 if (pre_insert_map)
3869 sbitmap_vector_free (pre_insert_map);
3870 if (pre_delete_map)
3871 sbitmap_vector_free (pre_delete_map);
3873 transp = comp = NULL;
3874 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3877 /* Top level routine to do the dataflow analysis needed by PRE. */
3879 static void
3880 compute_pre_data (void)
3882 sbitmap trapping_expr;
3883 basic_block bb;
3884 unsigned int ui;
3886 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3887 sbitmap_vector_zero (ae_kill, last_basic_block);
3889 /* Collect expressions which might trap. */
3890 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3891 sbitmap_zero (trapping_expr);
3892 for (ui = 0; ui < expr_hash_table.size; ui++)
3894 struct expr *e;
3895 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3896 if (may_trap_p (e->expr))
3897 SET_BIT (trapping_expr, e->bitmap_index);
3900 /* Compute ae_kill for each basic block using:
3902 ~(TRANSP | COMP)
3905 FOR_EACH_BB (bb)
3907 edge e;
3908 edge_iterator ei;
3910 /* If the current block is the destination of an abnormal edge, we
3911 kill all trapping expressions because we won't be able to properly
3912 place the instruction on the edge. So make them neither
3913 anticipatable nor transparent. This is fairly conservative. */
3914 FOR_EACH_EDGE (e, ei, bb->preds)
3916 if (e->flags & EDGE_ABNORMAL)
3918 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3919 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3920 break;
3924 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3925 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3928 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
3929 ae_kill, &pre_insert_map, &pre_delete_map);
3930 sbitmap_vector_free (antloc);
3931 antloc = NULL;
3932 sbitmap_vector_free (ae_kill);
3933 ae_kill = NULL;
3934 sbitmap_free (trapping_expr);
3937 /* PRE utilities */
3939 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3940 block BB.
3942 VISITED is a pointer to a working buffer for tracking which BB's have
3943 been visited. It is NULL for the top-level call.
3945 We treat reaching expressions that go through blocks containing the same
3946 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3947 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3948 2 as not reaching. The intent is to improve the probability of finding
3949 only one reaching expression and to reduce register lifetimes by picking
3950 the closest such expression. */
3952 static int
3953 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3955 edge pred;
3956 edge_iterator ei;
3958 FOR_EACH_EDGE (pred, ei, bb->preds)
3960 basic_block pred_bb = pred->src;
3962 if (pred->src == ENTRY_BLOCK_PTR
3963 /* Has predecessor has already been visited? */
3964 || visited[pred_bb->index])
3965 ;/* Nothing to do. */
3967 /* Does this predecessor generate this expression? */
3968 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3970 /* Is this the occurrence we're looking for?
3971 Note that there's only one generating occurrence per block
3972 so we just need to check the block number. */
3973 if (occr_bb == pred_bb)
3974 return 1;
3976 visited[pred_bb->index] = 1;
3978 /* Ignore this predecessor if it kills the expression. */
3979 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3980 visited[pred_bb->index] = 1;
3982 /* Neither gen nor kill. */
3983 else
3985 visited[pred_bb->index] = 1;
3986 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3987 return 1;
3991 /* All paths have been checked. */
3992 return 0;
3995 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3996 memory allocated for that function is returned. */
3998 static int
3999 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
4001 int rval;
4002 char *visited = xcalloc (last_basic_block, 1);
4004 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
4006 free (visited);
4007 return rval;
4011 /* Given an expr, generate RTL which we can insert at the end of a BB,
4012 or on an edge. Set the block number of any insns generated to
4013 the value of BB. */
4015 static rtx
4016 process_insert_insn (struct expr *expr)
4018 rtx reg = expr->reaching_reg;
4019 rtx exp = copy_rtx (expr->expr);
4020 rtx pat;
4022 start_sequence ();
4024 /* If the expression is something that's an operand, like a constant,
4025 just copy it to a register. */
4026 if (general_operand (exp, GET_MODE (reg)))
4027 emit_move_insn (reg, exp);
4029 /* Otherwise, make a new insn to compute this expression and make sure the
4030 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4031 expression to make sure we don't have any sharing issues. */
4032 else
4034 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
4036 if (insn_invalid_p (insn))
4037 gcc_unreachable ();
4041 pat = get_insns ();
4042 end_sequence ();
4044 return pat;
4047 /* Add EXPR to the end of basic block BB.
4049 This is used by both the PRE and code hoisting.
4051 For PRE, we want to verify that the expr is either transparent
4052 or locally anticipatable in the target block. This check makes
4053 no sense for code hoisting. */
4055 static void
4056 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
4058 rtx insn = BB_END (bb);
4059 rtx new_insn;
4060 rtx reg = expr->reaching_reg;
4061 int regno = REGNO (reg);
4062 rtx pat, pat_end;
4064 pat = process_insert_insn (expr);
4065 gcc_assert (pat && INSN_P (pat));
4067 pat_end = pat;
4068 while (NEXT_INSN (pat_end) != NULL_RTX)
4069 pat_end = NEXT_INSN (pat_end);
4071 /* If the last insn is a jump, insert EXPR in front [taking care to
4072 handle cc0, etc. properly]. Similarly we need to care trapping
4073 instructions in presence of non-call exceptions. */
4075 if (JUMP_P (insn)
4076 || (NONJUMP_INSN_P (insn)
4077 && (EDGE_COUNT (bb->succs) > 1
4078 || EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL)))
4080 #ifdef HAVE_cc0
4081 rtx note;
4082 #endif
4083 /* It should always be the case that we can put these instructions
4084 anywhere in the basic block with performing PRE optimizations.
4085 Check this. */
4086 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4087 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4088 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4090 /* If this is a jump table, then we can't insert stuff here. Since
4091 we know the previous real insn must be the tablejump, we insert
4092 the new instruction just before the tablejump. */
4093 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4094 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4095 insn = prev_real_insn (insn);
4097 #ifdef HAVE_cc0
4098 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4099 if cc0 isn't set. */
4100 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4101 if (note)
4102 insn = XEXP (note, 0);
4103 else
4105 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4106 if (maybe_cc0_setter
4107 && INSN_P (maybe_cc0_setter)
4108 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4109 insn = maybe_cc0_setter;
4111 #endif
4112 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4113 new_insn = emit_insn_before (pat, insn);
4116 /* Likewise if the last insn is a call, as will happen in the presence
4117 of exception handling. */
4118 else if (CALL_P (insn)
4119 && (EDGE_COUNT (bb->succs) > 1 || EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL))
4121 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4122 we search backward and place the instructions before the first
4123 parameter is loaded. Do this for everyone for consistency and a
4124 presumption that we'll get better code elsewhere as well.
4126 It should always be the case that we can put these instructions
4127 anywhere in the basic block with performing PRE optimizations.
4128 Check this. */
4130 gcc_assert (!pre
4131 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4132 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4134 /* Since different machines initialize their parameter registers
4135 in different orders, assume nothing. Collect the set of all
4136 parameter registers. */
4137 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4139 /* If we found all the parameter loads, then we want to insert
4140 before the first parameter load.
4142 If we did not find all the parameter loads, then we might have
4143 stopped on the head of the block, which could be a CODE_LABEL.
4144 If we inserted before the CODE_LABEL, then we would be putting
4145 the insn in the wrong basic block. In that case, put the insn
4146 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4147 while (LABEL_P (insn)
4148 || NOTE_INSN_BASIC_BLOCK_P (insn))
4149 insn = NEXT_INSN (insn);
4151 new_insn = emit_insn_before (pat, insn);
4153 else
4154 new_insn = emit_insn_after (pat, insn);
4156 while (1)
4158 if (INSN_P (pat))
4160 add_label_notes (PATTERN (pat), new_insn);
4161 note_stores (PATTERN (pat), record_set_info, pat);
4163 if (pat == pat_end)
4164 break;
4165 pat = NEXT_INSN (pat);
4168 gcse_create_count++;
4170 if (gcse_file)
4172 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4173 bb->index, INSN_UID (new_insn));
4174 fprintf (gcse_file, "copying expression %d to reg %d\n",
4175 expr->bitmap_index, regno);
4179 /* Insert partially redundant expressions on edges in the CFG to make
4180 the expressions fully redundant. */
4182 static int
4183 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4185 int e, i, j, num_edges, set_size, did_insert = 0;
4186 sbitmap *inserted;
4188 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4189 if it reaches any of the deleted expressions. */
4191 set_size = pre_insert_map[0]->size;
4192 num_edges = NUM_EDGES (edge_list);
4193 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4194 sbitmap_vector_zero (inserted, num_edges);
4196 for (e = 0; e < num_edges; e++)
4198 int indx;
4199 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4201 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4203 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4205 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4206 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4208 struct expr *expr = index_map[j];
4209 struct occr *occr;
4211 /* Now look at each deleted occurrence of this expression. */
4212 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4214 if (! occr->deleted_p)
4215 continue;
4217 /* Insert this expression on this edge if if it would
4218 reach the deleted occurrence in BB. */
4219 if (!TEST_BIT (inserted[e], j))
4221 rtx insn;
4222 edge eg = INDEX_EDGE (edge_list, e);
4224 /* We can't insert anything on an abnormal and
4225 critical edge, so we insert the insn at the end of
4226 the previous block. There are several alternatives
4227 detailed in Morgans book P277 (sec 10.5) for
4228 handling this situation. This one is easiest for
4229 now. */
4231 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
4232 insert_insn_end_bb (index_map[j], bb, 0);
4233 else
4235 insn = process_insert_insn (index_map[j]);
4236 insert_insn_on_edge (insn, eg);
4239 if (gcse_file)
4241 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4242 bb->index,
4243 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4244 fprintf (gcse_file, "copy expression %d\n",
4245 expr->bitmap_index);
4248 update_ld_motion_stores (expr);
4249 SET_BIT (inserted[e], j);
4250 did_insert = 1;
4251 gcse_create_count++;
4258 sbitmap_vector_free (inserted);
4259 return did_insert;
4262 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4263 Given "old_reg <- expr" (INSN), instead of adding after it
4264 reaching_reg <- old_reg
4265 it's better to do the following:
4266 reaching_reg <- expr
4267 old_reg <- reaching_reg
4268 because this way copy propagation can discover additional PRE
4269 opportunities. But if this fails, we try the old way.
4270 When "expr" is a store, i.e.
4271 given "MEM <- old_reg", instead of adding after it
4272 reaching_reg <- old_reg
4273 it's better to add it before as follows:
4274 reaching_reg <- old_reg
4275 MEM <- reaching_reg. */
4277 static void
4278 pre_insert_copy_insn (struct expr *expr, rtx insn)
4280 rtx reg = expr->reaching_reg;
4281 int regno = REGNO (reg);
4282 int indx = expr->bitmap_index;
4283 rtx pat = PATTERN (insn);
4284 rtx set, new_insn;
4285 rtx old_reg;
4286 int i;
4288 /* This block matches the logic in hash_scan_insn. */
4289 switch (GET_CODE (pat))
4291 case SET:
4292 set = pat;
4293 break;
4295 case PARALLEL:
4296 /* Search through the parallel looking for the set whose
4297 source was the expression that we're interested in. */
4298 set = NULL_RTX;
4299 for (i = 0; i < XVECLEN (pat, 0); i++)
4301 rtx x = XVECEXP (pat, 0, i);
4302 if (GET_CODE (x) == SET
4303 && expr_equiv_p (SET_SRC (x), expr->expr))
4305 set = x;
4306 break;
4309 break;
4311 default:
4312 gcc_unreachable ();
4315 if (REG_P (SET_DEST (set)))
4317 old_reg = SET_DEST (set);
4318 /* Check if we can modify the set destination in the original insn. */
4319 if (validate_change (insn, &SET_DEST (set), reg, 0))
4321 new_insn = gen_move_insn (old_reg, reg);
4322 new_insn = emit_insn_after (new_insn, insn);
4324 /* Keep register set table up to date. */
4325 replace_one_set (REGNO (old_reg), insn, new_insn);
4326 record_one_set (regno, insn);
4328 else
4330 new_insn = gen_move_insn (reg, old_reg);
4331 new_insn = emit_insn_after (new_insn, insn);
4333 /* Keep register set table up to date. */
4334 record_one_set (regno, new_insn);
4337 else /* This is possible only in case of a store to memory. */
4339 old_reg = SET_SRC (set);
4340 new_insn = gen_move_insn (reg, old_reg);
4342 /* Check if we can modify the set source in the original insn. */
4343 if (validate_change (insn, &SET_SRC (set), reg, 0))
4344 new_insn = emit_insn_before (new_insn, insn);
4345 else
4346 new_insn = emit_insn_after (new_insn, insn);
4348 /* Keep register set table up to date. */
4349 record_one_set (regno, new_insn);
4352 gcse_create_count++;
4354 if (gcse_file)
4355 fprintf (gcse_file,
4356 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4357 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4358 INSN_UID (insn), regno);
4361 /* Copy available expressions that reach the redundant expression
4362 to `reaching_reg'. */
4364 static void
4365 pre_insert_copies (void)
4367 unsigned int i, added_copy;
4368 struct expr *expr;
4369 struct occr *occr;
4370 struct occr *avail;
4372 /* For each available expression in the table, copy the result to
4373 `reaching_reg' if the expression reaches a deleted one.
4375 ??? The current algorithm is rather brute force.
4376 Need to do some profiling. */
4378 for (i = 0; i < expr_hash_table.size; i++)
4379 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4381 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4382 we don't want to insert a copy here because the expression may not
4383 really be redundant. So only insert an insn if the expression was
4384 deleted. This test also avoids further processing if the
4385 expression wasn't deleted anywhere. */
4386 if (expr->reaching_reg == NULL)
4387 continue;
4389 /* Set when we add a copy for that expression. */
4390 added_copy = 0;
4392 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4394 if (! occr->deleted_p)
4395 continue;
4397 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4399 rtx insn = avail->insn;
4401 /* No need to handle this one if handled already. */
4402 if (avail->copied_p)
4403 continue;
4405 /* Don't handle this one if it's a redundant one. */
4406 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4407 continue;
4409 /* Or if the expression doesn't reach the deleted one. */
4410 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4411 expr,
4412 BLOCK_FOR_INSN (occr->insn)))
4413 continue;
4415 added_copy = 1;
4417 /* Copy the result of avail to reaching_reg. */
4418 pre_insert_copy_insn (expr, insn);
4419 avail->copied_p = 1;
4423 if (added_copy)
4424 update_ld_motion_stores (expr);
4428 /* Emit move from SRC to DEST noting the equivalence with expression computed
4429 in INSN. */
4430 static rtx
4431 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4433 rtx new;
4434 rtx set = single_set (insn), set2;
4435 rtx note;
4436 rtx eqv;
4438 /* This should never fail since we're creating a reg->reg copy
4439 we've verified to be valid. */
4441 new = emit_insn_after (gen_move_insn (dest, src), insn);
4443 /* Note the equivalence for local CSE pass. */
4444 set2 = single_set (new);
4445 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4446 return new;
4447 if ((note = find_reg_equal_equiv_note (insn)))
4448 eqv = XEXP (note, 0);
4449 else
4450 eqv = SET_SRC (set);
4452 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4454 return new;
4457 /* Delete redundant computations.
4458 Deletion is done by changing the insn to copy the `reaching_reg' of
4459 the expression into the result of the SET. It is left to later passes
4460 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4462 Returns nonzero if a change is made. */
4464 static int
4465 pre_delete (void)
4467 unsigned int i;
4468 int changed;
4469 struct expr *expr;
4470 struct occr *occr;
4472 changed = 0;
4473 for (i = 0; i < expr_hash_table.size; i++)
4474 for (expr = expr_hash_table.table[i];
4475 expr != NULL;
4476 expr = expr->next_same_hash)
4478 int indx = expr->bitmap_index;
4480 /* We only need to search antic_occr since we require
4481 ANTLOC != 0. */
4483 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4485 rtx insn = occr->insn;
4486 rtx set;
4487 basic_block bb = BLOCK_FOR_INSN (insn);
4489 /* We only delete insns that have a single_set. */
4490 if (TEST_BIT (pre_delete_map[bb->index], indx)
4491 && (set = single_set (insn)) != 0)
4493 /* Create a pseudo-reg to store the result of reaching
4494 expressions into. Get the mode for the new pseudo from
4495 the mode of the original destination pseudo. */
4496 if (expr->reaching_reg == NULL)
4497 expr->reaching_reg
4498 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4500 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4501 delete_insn (insn);
4502 occr->deleted_p = 1;
4503 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4504 changed = 1;
4505 gcse_subst_count++;
4507 if (gcse_file)
4509 fprintf (gcse_file,
4510 "PRE: redundant insn %d (expression %d) in ",
4511 INSN_UID (insn), indx);
4512 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4513 bb->index, REGNO (expr->reaching_reg));
4519 return changed;
4522 /* Perform GCSE optimizations using PRE.
4523 This is called by one_pre_gcse_pass after all the dataflow analysis
4524 has been done.
4526 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4527 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4528 Compiler Design and Implementation.
4530 ??? A new pseudo reg is created to hold the reaching expression. The nice
4531 thing about the classical approach is that it would try to use an existing
4532 reg. If the register can't be adequately optimized [i.e. we introduce
4533 reload problems], one could add a pass here to propagate the new register
4534 through the block.
4536 ??? We don't handle single sets in PARALLELs because we're [currently] not
4537 able to copy the rest of the parallel when we insert copies to create full
4538 redundancies from partial redundancies. However, there's no reason why we
4539 can't handle PARALLELs in the cases where there are no partial
4540 redundancies. */
4542 static int
4543 pre_gcse (void)
4545 unsigned int i;
4546 int did_insert, changed;
4547 struct expr **index_map;
4548 struct expr *expr;
4550 /* Compute a mapping from expression number (`bitmap_index') to
4551 hash table entry. */
4553 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4554 for (i = 0; i < expr_hash_table.size; i++)
4555 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4556 index_map[expr->bitmap_index] = expr;
4558 /* Reset bitmap used to track which insns are redundant. */
4559 pre_redundant_insns = sbitmap_alloc (max_cuid);
4560 sbitmap_zero (pre_redundant_insns);
4562 /* Delete the redundant insns first so that
4563 - we know what register to use for the new insns and for the other
4564 ones with reaching expressions
4565 - we know which insns are redundant when we go to create copies */
4567 changed = pre_delete ();
4569 did_insert = pre_edge_insert (edge_list, index_map);
4571 /* In other places with reaching expressions, copy the expression to the
4572 specially allocated pseudo-reg that reaches the redundant expr. */
4573 pre_insert_copies ();
4574 if (did_insert)
4576 commit_edge_insertions ();
4577 changed = 1;
4580 free (index_map);
4581 sbitmap_free (pre_redundant_insns);
4582 return changed;
4585 /* Top level routine to perform one PRE GCSE pass.
4587 Return nonzero if a change was made. */
4589 static int
4590 one_pre_gcse_pass (int pass)
4592 int changed = 0;
4594 gcse_subst_count = 0;
4595 gcse_create_count = 0;
4597 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4598 add_noreturn_fake_exit_edges ();
4599 if (flag_gcse_lm)
4600 compute_ld_motion_mems ();
4602 compute_hash_table (&expr_hash_table);
4603 trim_ld_motion_mems ();
4604 if (gcse_file)
4605 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
4607 if (expr_hash_table.n_elems > 0)
4609 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4610 compute_pre_data ();
4611 changed |= pre_gcse ();
4612 free_edge_list (edge_list);
4613 free_pre_mem ();
4616 free_ldst_mems ();
4617 remove_fake_exit_edges ();
4618 free_hash_table (&expr_hash_table);
4620 if (gcse_file)
4622 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4623 current_function_name (), pass, bytes_used);
4624 fprintf (gcse_file, "%d substs, %d insns created\n",
4625 gcse_subst_count, gcse_create_count);
4628 return changed;
4631 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4632 If notes are added to an insn which references a CODE_LABEL, the
4633 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4634 because the following loop optimization pass requires them. */
4636 /* ??? This is very similar to the loop.c add_label_notes function. We
4637 could probably share code here. */
4639 /* ??? If there was a jump optimization pass after gcse and before loop,
4640 then we would not need to do this here, because jump would add the
4641 necessary REG_LABEL notes. */
4643 static void
4644 add_label_notes (rtx x, rtx insn)
4646 enum rtx_code code = GET_CODE (x);
4647 int i, j;
4648 const char *fmt;
4650 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4652 /* This code used to ignore labels that referred to dispatch tables to
4653 avoid flow generating (slightly) worse code.
4655 We no longer ignore such label references (see LABEL_REF handling in
4656 mark_jump_label for additional information). */
4658 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4659 REG_NOTES (insn));
4660 if (LABEL_P (XEXP (x, 0)))
4661 LABEL_NUSES (XEXP (x, 0))++;
4662 return;
4665 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4667 if (fmt[i] == 'e')
4668 add_label_notes (XEXP (x, i), insn);
4669 else if (fmt[i] == 'E')
4670 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4671 add_label_notes (XVECEXP (x, i, j), insn);
4675 /* Compute transparent outgoing information for each block.
4677 An expression is transparent to an edge unless it is killed by
4678 the edge itself. This can only happen with abnormal control flow,
4679 when the edge is traversed through a call. This happens with
4680 non-local labels and exceptions.
4682 This would not be necessary if we split the edge. While this is
4683 normally impossible for abnormal critical edges, with some effort
4684 it should be possible with exception handling, since we still have
4685 control over which handler should be invoked. But due to increased
4686 EH table sizes, this may not be worthwhile. */
4688 static void
4689 compute_transpout (void)
4691 basic_block bb;
4692 unsigned int i;
4693 struct expr *expr;
4695 sbitmap_vector_ones (transpout, last_basic_block);
4697 FOR_EACH_BB (bb)
4699 /* Note that flow inserted a nop a the end of basic blocks that
4700 end in call instructions for reasons other than abnormal
4701 control flow. */
4702 if (! CALL_P (BB_END (bb)))
4703 continue;
4705 for (i = 0; i < expr_hash_table.size; i++)
4706 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4707 if (MEM_P (expr->expr))
4709 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4710 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4711 continue;
4713 /* ??? Optimally, we would use interprocedural alias
4714 analysis to determine if this mem is actually killed
4715 by this call. */
4716 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4721 /* Code Hoisting variables and subroutines. */
4723 /* Very busy expressions. */
4724 static sbitmap *hoist_vbein;
4725 static sbitmap *hoist_vbeout;
4727 /* Hoistable expressions. */
4728 static sbitmap *hoist_exprs;
4730 /* ??? We could compute post dominators and run this algorithm in
4731 reverse to perform tail merging, doing so would probably be
4732 more effective than the tail merging code in jump.c.
4734 It's unclear if tail merging could be run in parallel with
4735 code hoisting. It would be nice. */
4737 /* Allocate vars used for code hoisting analysis. */
4739 static void
4740 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4742 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4743 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4744 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4746 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4747 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4748 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4749 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4752 /* Free vars used for code hoisting analysis. */
4754 static void
4755 free_code_hoist_mem (void)
4757 sbitmap_vector_free (antloc);
4758 sbitmap_vector_free (transp);
4759 sbitmap_vector_free (comp);
4761 sbitmap_vector_free (hoist_vbein);
4762 sbitmap_vector_free (hoist_vbeout);
4763 sbitmap_vector_free (hoist_exprs);
4764 sbitmap_vector_free (transpout);
4766 free_dominance_info (CDI_DOMINATORS);
4769 /* Compute the very busy expressions at entry/exit from each block.
4771 An expression is very busy if all paths from a given point
4772 compute the expression. */
4774 static void
4775 compute_code_hoist_vbeinout (void)
4777 int changed, passes;
4778 basic_block bb;
4780 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4781 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4783 passes = 0;
4784 changed = 1;
4786 while (changed)
4788 changed = 0;
4790 /* We scan the blocks in the reverse order to speed up
4791 the convergence. */
4792 FOR_EACH_BB_REVERSE (bb)
4794 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4795 hoist_vbeout[bb->index], transp[bb->index]);
4796 if (bb->next_bb != EXIT_BLOCK_PTR)
4797 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4800 passes++;
4803 if (gcse_file)
4804 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
4807 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4809 static void
4810 compute_code_hoist_data (void)
4812 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4813 compute_transpout ();
4814 compute_code_hoist_vbeinout ();
4815 calculate_dominance_info (CDI_DOMINATORS);
4816 if (gcse_file)
4817 fprintf (gcse_file, "\n");
4820 /* Determine if the expression identified by EXPR_INDEX would
4821 reach BB unimpared if it was placed at the end of EXPR_BB.
4823 It's unclear exactly what Muchnick meant by "unimpared". It seems
4824 to me that the expression must either be computed or transparent in
4825 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4826 would allow the expression to be hoisted out of loops, even if
4827 the expression wasn't a loop invariant.
4829 Contrast this to reachability for PRE where an expression is
4830 considered reachable if *any* path reaches instead of *all*
4831 paths. */
4833 static int
4834 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4836 edge pred;
4837 edge_iterator ei;
4838 int visited_allocated_locally = 0;
4840 if (visited == NULL)
4842 visited_allocated_locally = 1;
4843 visited = xcalloc (last_basic_block, 1);
4846 FOR_EACH_EDGE (pred, ei, bb->preds)
4848 basic_block pred_bb = pred->src;
4850 if (pred->src == ENTRY_BLOCK_PTR)
4851 break;
4852 else if (pred_bb == expr_bb)
4853 continue;
4854 else if (visited[pred_bb->index])
4855 continue;
4857 /* Does this predecessor generate this expression? */
4858 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4859 break;
4860 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4861 break;
4863 /* Not killed. */
4864 else
4866 visited[pred_bb->index] = 1;
4867 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4868 pred_bb, visited))
4869 break;
4872 if (visited_allocated_locally)
4873 free (visited);
4875 return (pred == NULL);
4878 /* Actually perform code hoisting. */
4880 static void
4881 hoist_code (void)
4883 basic_block bb, dominated;
4884 basic_block *domby;
4885 unsigned int domby_len;
4886 unsigned int i,j;
4887 struct expr **index_map;
4888 struct expr *expr;
4890 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4892 /* Compute a mapping from expression number (`bitmap_index') to
4893 hash table entry. */
4895 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4896 for (i = 0; i < expr_hash_table.size; i++)
4897 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4898 index_map[expr->bitmap_index] = expr;
4900 /* Walk over each basic block looking for potentially hoistable
4901 expressions, nothing gets hoisted from the entry block. */
4902 FOR_EACH_BB (bb)
4904 int found = 0;
4905 int insn_inserted_p;
4907 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4908 /* Examine each expression that is very busy at the exit of this
4909 block. These are the potentially hoistable expressions. */
4910 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4912 int hoistable = 0;
4914 if (TEST_BIT (hoist_vbeout[bb->index], i)
4915 && TEST_BIT (transpout[bb->index], i))
4917 /* We've found a potentially hoistable expression, now
4918 we look at every block BB dominates to see if it
4919 computes the expression. */
4920 for (j = 0; j < domby_len; j++)
4922 dominated = domby[j];
4923 /* Ignore self dominance. */
4924 if (bb == dominated)
4925 continue;
4926 /* We've found a dominated block, now see if it computes
4927 the busy expression and whether or not moving that
4928 expression to the "beginning" of that block is safe. */
4929 if (!TEST_BIT (antloc[dominated->index], i))
4930 continue;
4932 /* Note if the expression would reach the dominated block
4933 unimpared if it was placed at the end of BB.
4935 Keep track of how many times this expression is hoistable
4936 from a dominated block into BB. */
4937 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4938 hoistable++;
4941 /* If we found more than one hoistable occurrence of this
4942 expression, then note it in the bitmap of expressions to
4943 hoist. It makes no sense to hoist things which are computed
4944 in only one BB, and doing so tends to pessimize register
4945 allocation. One could increase this value to try harder
4946 to avoid any possible code expansion due to register
4947 allocation issues; however experiments have shown that
4948 the vast majority of hoistable expressions are only movable
4949 from two successors, so raising this threshold is likely
4950 to nullify any benefit we get from code hoisting. */
4951 if (hoistable > 1)
4953 SET_BIT (hoist_exprs[bb->index], i);
4954 found = 1;
4958 /* If we found nothing to hoist, then quit now. */
4959 if (! found)
4961 free (domby);
4962 continue;
4965 /* Loop over all the hoistable expressions. */
4966 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4968 /* We want to insert the expression into BB only once, so
4969 note when we've inserted it. */
4970 insn_inserted_p = 0;
4972 /* These tests should be the same as the tests above. */
4973 if (TEST_BIT (hoist_vbeout[bb->index], i))
4975 /* We've found a potentially hoistable expression, now
4976 we look at every block BB dominates to see if it
4977 computes the expression. */
4978 for (j = 0; j < domby_len; j++)
4980 dominated = domby[j];
4981 /* Ignore self dominance. */
4982 if (bb == dominated)
4983 continue;
4985 /* We've found a dominated block, now see if it computes
4986 the busy expression and whether or not moving that
4987 expression to the "beginning" of that block is safe. */
4988 if (!TEST_BIT (antloc[dominated->index], i))
4989 continue;
4991 /* The expression is computed in the dominated block and
4992 it would be safe to compute it at the start of the
4993 dominated block. Now we have to determine if the
4994 expression would reach the dominated block if it was
4995 placed at the end of BB. */
4996 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4998 struct expr *expr = index_map[i];
4999 struct occr *occr = expr->antic_occr;
5000 rtx insn;
5001 rtx set;
5003 /* Find the right occurrence of this expression. */
5004 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
5005 occr = occr->next;
5007 gcc_assert (occr);
5008 insn = occr->insn;
5009 set = single_set (insn);
5010 gcc_assert (set);
5012 /* Create a pseudo-reg to store the result of reaching
5013 expressions into. Get the mode for the new pseudo
5014 from the mode of the original destination pseudo. */
5015 if (expr->reaching_reg == NULL)
5016 expr->reaching_reg
5017 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5019 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
5020 delete_insn (insn);
5021 occr->deleted_p = 1;
5022 if (!insn_inserted_p)
5024 insert_insn_end_bb (index_map[i], bb, 0);
5025 insn_inserted_p = 1;
5031 free (domby);
5034 free (index_map);
5037 /* Top level routine to perform one code hoisting (aka unification) pass
5039 Return nonzero if a change was made. */
5041 static int
5042 one_code_hoisting_pass (void)
5044 int changed = 0;
5046 alloc_hash_table (max_cuid, &expr_hash_table, 0);
5047 compute_hash_table (&expr_hash_table);
5048 if (gcse_file)
5049 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
5051 if (expr_hash_table.n_elems > 0)
5053 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
5054 compute_code_hoist_data ();
5055 hoist_code ();
5056 free_code_hoist_mem ();
5059 free_hash_table (&expr_hash_table);
5061 return changed;
5064 /* Here we provide the things required to do store motion towards
5065 the exit. In order for this to be effective, gcse also needed to
5066 be taught how to move a load when it is kill only by a store to itself.
5068 int i;
5069 float a[10];
5071 void foo(float scale)
5073 for (i=0; i<10; i++)
5074 a[i] *= scale;
5077 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5078 the load out since its live around the loop, and stored at the bottom
5079 of the loop.
5081 The 'Load Motion' referred to and implemented in this file is
5082 an enhancement to gcse which when using edge based lcm, recognizes
5083 this situation and allows gcse to move the load out of the loop.
5085 Once gcse has hoisted the load, store motion can then push this
5086 load towards the exit, and we end up with no loads or stores of 'i'
5087 in the loop. */
5089 /* This will search the ldst list for a matching expression. If it
5090 doesn't find one, we create one and initialize it. */
5092 static struct ls_expr *
5093 ldst_entry (rtx x)
5095 int do_not_record_p = 0;
5096 struct ls_expr * ptr;
5097 unsigned int hash;
5099 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5100 NULL, /*have_reg_qty=*/false);
5102 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5103 if (ptr->hash_index == hash && expr_equiv_p (ptr->pattern, x))
5104 return ptr;
5106 ptr = xmalloc (sizeof (struct ls_expr));
5108 ptr->next = pre_ldst_mems;
5109 ptr->expr = NULL;
5110 ptr->pattern = x;
5111 ptr->pattern_regs = NULL_RTX;
5112 ptr->loads = NULL_RTX;
5113 ptr->stores = NULL_RTX;
5114 ptr->reaching_reg = NULL_RTX;
5115 ptr->invalid = 0;
5116 ptr->index = 0;
5117 ptr->hash_index = hash;
5118 pre_ldst_mems = ptr;
5120 return ptr;
5123 /* Free up an individual ldst entry. */
5125 static void
5126 free_ldst_entry (struct ls_expr * ptr)
5128 free_INSN_LIST_list (& ptr->loads);
5129 free_INSN_LIST_list (& ptr->stores);
5131 free (ptr);
5134 /* Free up all memory associated with the ldst list. */
5136 static void
5137 free_ldst_mems (void)
5139 while (pre_ldst_mems)
5141 struct ls_expr * tmp = pre_ldst_mems;
5143 pre_ldst_mems = pre_ldst_mems->next;
5145 free_ldst_entry (tmp);
5148 pre_ldst_mems = NULL;
5151 /* Dump debugging info about the ldst list. */
5153 static void
5154 print_ldst_list (FILE * file)
5156 struct ls_expr * ptr;
5158 fprintf (file, "LDST list: \n");
5160 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5162 fprintf (file, " Pattern (%3d): ", ptr->index);
5164 print_rtl (file, ptr->pattern);
5166 fprintf (file, "\n Loads : ");
5168 if (ptr->loads)
5169 print_rtl (file, ptr->loads);
5170 else
5171 fprintf (file, "(nil)");
5173 fprintf (file, "\n Stores : ");
5175 if (ptr->stores)
5176 print_rtl (file, ptr->stores);
5177 else
5178 fprintf (file, "(nil)");
5180 fprintf (file, "\n\n");
5183 fprintf (file, "\n");
5186 /* Returns 1 if X is in the list of ldst only expressions. */
5188 static struct ls_expr *
5189 find_rtx_in_ldst (rtx x)
5191 struct ls_expr * ptr;
5193 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5194 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
5195 return ptr;
5197 return NULL;
5200 /* Assign each element of the list of mems a monotonically increasing value. */
5202 static int
5203 enumerate_ldsts (void)
5205 struct ls_expr * ptr;
5206 int n = 0;
5208 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5209 ptr->index = n++;
5211 return n;
5214 /* Return first item in the list. */
5216 static inline struct ls_expr *
5217 first_ls_expr (void)
5219 return pre_ldst_mems;
5222 /* Return the next item in the list after the specified one. */
5224 static inline struct ls_expr *
5225 next_ls_expr (struct ls_expr * ptr)
5227 return ptr->next;
5230 /* Load Motion for loads which only kill themselves. */
5232 /* Return true if x is a simple MEM operation, with no registers or
5233 side effects. These are the types of loads we consider for the
5234 ld_motion list, otherwise we let the usual aliasing take care of it. */
5236 static int
5237 simple_mem (rtx x)
5239 if (! MEM_P (x))
5240 return 0;
5242 if (MEM_VOLATILE_P (x))
5243 return 0;
5245 if (GET_MODE (x) == BLKmode)
5246 return 0;
5248 /* If we are handling exceptions, we must be careful with memory references
5249 that may trap. If we are not, the behavior is undefined, so we may just
5250 continue. */
5251 if (flag_non_call_exceptions && may_trap_p (x))
5252 return 0;
5254 if (side_effects_p (x))
5255 return 0;
5257 /* Do not consider function arguments passed on stack. */
5258 if (reg_mentioned_p (stack_pointer_rtx, x))
5259 return 0;
5261 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5262 return 0;
5264 return 1;
5267 /* Make sure there isn't a buried reference in this pattern anywhere.
5268 If there is, invalidate the entry for it since we're not capable
5269 of fixing it up just yet.. We have to be sure we know about ALL
5270 loads since the aliasing code will allow all entries in the
5271 ld_motion list to not-alias itself. If we miss a load, we will get
5272 the wrong value since gcse might common it and we won't know to
5273 fix it up. */
5275 static void
5276 invalidate_any_buried_refs (rtx x)
5278 const char * fmt;
5279 int i, j;
5280 struct ls_expr * ptr;
5282 /* Invalidate it in the list. */
5283 if (MEM_P (x) && simple_mem (x))
5285 ptr = ldst_entry (x);
5286 ptr->invalid = 1;
5289 /* Recursively process the insn. */
5290 fmt = GET_RTX_FORMAT (GET_CODE (x));
5292 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5294 if (fmt[i] == 'e')
5295 invalidate_any_buried_refs (XEXP (x, i));
5296 else if (fmt[i] == 'E')
5297 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5298 invalidate_any_buried_refs (XVECEXP (x, i, j));
5302 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5303 being defined as MEM loads and stores to symbols, with no side effects
5304 and no registers in the expression. For a MEM destination, we also
5305 check that the insn is still valid if we replace the destination with a
5306 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5307 which don't match this criteria, they are invalidated and trimmed out
5308 later. */
5310 static void
5311 compute_ld_motion_mems (void)
5313 struct ls_expr * ptr;
5314 basic_block bb;
5315 rtx insn;
5317 pre_ldst_mems = NULL;
5319 FOR_EACH_BB (bb)
5321 for (insn = BB_HEAD (bb);
5322 insn && insn != NEXT_INSN (BB_END (bb));
5323 insn = NEXT_INSN (insn))
5325 if (INSN_P (insn))
5327 if (GET_CODE (PATTERN (insn)) == SET)
5329 rtx src = SET_SRC (PATTERN (insn));
5330 rtx dest = SET_DEST (PATTERN (insn));
5332 /* Check for a simple LOAD... */
5333 if (MEM_P (src) && simple_mem (src))
5335 ptr = ldst_entry (src);
5336 if (REG_P (dest))
5337 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5338 else
5339 ptr->invalid = 1;
5341 else
5343 /* Make sure there isn't a buried load somewhere. */
5344 invalidate_any_buried_refs (src);
5347 /* Check for stores. Don't worry about aliased ones, they
5348 will block any movement we might do later. We only care
5349 about this exact pattern since those are the only
5350 circumstance that we will ignore the aliasing info. */
5351 if (MEM_P (dest) && simple_mem (dest))
5353 ptr = ldst_entry (dest);
5355 if (! MEM_P (src)
5356 && GET_CODE (src) != ASM_OPERANDS
5357 /* Check for REG manually since want_to_gcse_p
5358 returns 0 for all REGs. */
5359 && can_assign_to_reg_p (src))
5360 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5361 else
5362 ptr->invalid = 1;
5365 else
5366 invalidate_any_buried_refs (PATTERN (insn));
5372 /* Remove any references that have been either invalidated or are not in the
5373 expression list for pre gcse. */
5375 static void
5376 trim_ld_motion_mems (void)
5378 struct ls_expr * * last = & pre_ldst_mems;
5379 struct ls_expr * ptr = pre_ldst_mems;
5381 while (ptr != NULL)
5383 struct expr * expr;
5385 /* Delete if entry has been made invalid. */
5386 if (! ptr->invalid)
5388 /* Delete if we cannot find this mem in the expression list. */
5389 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5391 for (expr = expr_hash_table.table[hash];
5392 expr != NULL;
5393 expr = expr->next_same_hash)
5394 if (expr_equiv_p (expr->expr, ptr->pattern))
5395 break;
5397 else
5398 expr = (struct expr *) 0;
5400 if (expr)
5402 /* Set the expression field if we are keeping it. */
5403 ptr->expr = expr;
5404 last = & ptr->next;
5405 ptr = ptr->next;
5407 else
5409 *last = ptr->next;
5410 free_ldst_entry (ptr);
5411 ptr = * last;
5415 /* Show the world what we've found. */
5416 if (gcse_file && pre_ldst_mems != NULL)
5417 print_ldst_list (gcse_file);
5420 /* This routine will take an expression which we are replacing with
5421 a reaching register, and update any stores that are needed if
5422 that expression is in the ld_motion list. Stores are updated by
5423 copying their SRC to the reaching register, and then storing
5424 the reaching register into the store location. These keeps the
5425 correct value in the reaching register for the loads. */
5427 static void
5428 update_ld_motion_stores (struct expr * expr)
5430 struct ls_expr * mem_ptr;
5432 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5434 /* We can try to find just the REACHED stores, but is shouldn't
5435 matter to set the reaching reg everywhere... some might be
5436 dead and should be eliminated later. */
5438 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5439 where reg is the reaching reg used in the load. We checked in
5440 compute_ld_motion_mems that we can replace (set mem expr) with
5441 (set reg expr) in that insn. */
5442 rtx list = mem_ptr->stores;
5444 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5446 rtx insn = XEXP (list, 0);
5447 rtx pat = PATTERN (insn);
5448 rtx src = SET_SRC (pat);
5449 rtx reg = expr->reaching_reg;
5450 rtx copy, new;
5452 /* If we've already copied it, continue. */
5453 if (expr->reaching_reg == src)
5454 continue;
5456 if (gcse_file)
5458 fprintf (gcse_file, "PRE: store updated with reaching reg ");
5459 print_rtl (gcse_file, expr->reaching_reg);
5460 fprintf (gcse_file, ":\n ");
5461 print_inline_rtx (gcse_file, insn, 8);
5462 fprintf (gcse_file, "\n");
5465 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5466 new = emit_insn_before (copy, insn);
5467 record_one_set (REGNO (reg), new);
5468 SET_SRC (pat) = reg;
5470 /* un-recognize this pattern since it's probably different now. */
5471 INSN_CODE (insn) = -1;
5472 gcse_create_count++;
5477 /* Store motion code. */
5479 #define ANTIC_STORE_LIST(x) ((x)->loads)
5480 #define AVAIL_STORE_LIST(x) ((x)->stores)
5481 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5483 /* This is used to communicate the target bitvector we want to use in the
5484 reg_set_info routine when called via the note_stores mechanism. */
5485 static int * regvec;
5487 /* And current insn, for the same routine. */
5488 static rtx compute_store_table_current_insn;
5490 /* Used in computing the reverse edge graph bit vectors. */
5491 static sbitmap * st_antloc;
5493 /* Global holding the number of store expressions we are dealing with. */
5494 static int num_stores;
5496 /* Checks to set if we need to mark a register set. Called from
5497 note_stores. */
5499 static void
5500 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5501 void *data)
5503 sbitmap bb_reg = data;
5505 if (GET_CODE (dest) == SUBREG)
5506 dest = SUBREG_REG (dest);
5508 if (REG_P (dest))
5510 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5511 if (bb_reg)
5512 SET_BIT (bb_reg, REGNO (dest));
5516 /* Clear any mark that says that this insn sets dest. Called from
5517 note_stores. */
5519 static void
5520 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5521 void *data)
5523 int *dead_vec = data;
5525 if (GET_CODE (dest) == SUBREG)
5526 dest = SUBREG_REG (dest);
5528 if (REG_P (dest) &&
5529 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5530 dead_vec[REGNO (dest)] = 0;
5533 /* Return zero if some of the registers in list X are killed
5534 due to set of registers in bitmap REGS_SET. */
5536 static bool
5537 store_ops_ok (rtx x, int *regs_set)
5539 rtx reg;
5541 for (; x; x = XEXP (x, 1))
5543 reg = XEXP (x, 0);
5544 if (regs_set[REGNO(reg)])
5545 return false;
5548 return true;
5551 /* Returns a list of registers mentioned in X. */
5552 static rtx
5553 extract_mentioned_regs (rtx x)
5555 return extract_mentioned_regs_helper (x, NULL_RTX);
5558 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5559 registers. */
5560 static rtx
5561 extract_mentioned_regs_helper (rtx x, rtx accum)
5563 int i;
5564 enum rtx_code code;
5565 const char * fmt;
5567 /* Repeat is used to turn tail-recursion into iteration. */
5568 repeat:
5570 if (x == 0)
5571 return accum;
5573 code = GET_CODE (x);
5574 switch (code)
5576 case REG:
5577 return alloc_EXPR_LIST (0, x, accum);
5579 case MEM:
5580 x = XEXP (x, 0);
5581 goto repeat;
5583 case PRE_DEC:
5584 case PRE_INC:
5585 case POST_DEC:
5586 case POST_INC:
5587 /* We do not run this function with arguments having side effects. */
5588 gcc_unreachable ();
5590 case PC:
5591 case CC0: /*FIXME*/
5592 case CONST:
5593 case CONST_INT:
5594 case CONST_DOUBLE:
5595 case CONST_VECTOR:
5596 case SYMBOL_REF:
5597 case LABEL_REF:
5598 case ADDR_VEC:
5599 case ADDR_DIFF_VEC:
5600 return accum;
5602 default:
5603 break;
5606 i = GET_RTX_LENGTH (code) - 1;
5607 fmt = GET_RTX_FORMAT (code);
5609 for (; i >= 0; i--)
5611 if (fmt[i] == 'e')
5613 rtx tem = XEXP (x, i);
5615 /* If we are about to do the last recursive call
5616 needed at this level, change it into iteration. */
5617 if (i == 0)
5619 x = tem;
5620 goto repeat;
5623 accum = extract_mentioned_regs_helper (tem, accum);
5625 else if (fmt[i] == 'E')
5627 int j;
5629 for (j = 0; j < XVECLEN (x, i); j++)
5630 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5634 return accum;
5637 /* Determine whether INSN is MEM store pattern that we will consider moving.
5638 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5639 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5640 including) the insn in this basic block. We must be passing through BB from
5641 head to end, as we are using this fact to speed things up.
5643 The results are stored this way:
5645 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5646 -- if the processed expression is not anticipatable, NULL_RTX is added
5647 there instead, so that we can use it as indicator that no further
5648 expression of this type may be anticipatable
5649 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5650 consequently, all of them but this head are dead and may be deleted.
5651 -- if the expression is not available, the insn due to that it fails to be
5652 available is stored in reaching_reg.
5654 The things are complicated a bit by fact that there already may be stores
5655 to the same MEM from other blocks; also caller must take care of the
5656 necessary cleanup of the temporary markers after end of the basic block.
5659 static void
5660 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5662 struct ls_expr * ptr;
5663 rtx dest, set, tmp;
5664 int check_anticipatable, check_available;
5665 basic_block bb = BLOCK_FOR_INSN (insn);
5667 set = single_set (insn);
5668 if (!set)
5669 return;
5671 dest = SET_DEST (set);
5673 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5674 || GET_MODE (dest) == BLKmode)
5675 return;
5677 if (side_effects_p (dest))
5678 return;
5680 /* If we are handling exceptions, we must be careful with memory references
5681 that may trap. If we are not, the behavior is undefined, so we may just
5682 continue. */
5683 if (flag_non_call_exceptions && may_trap_p (dest))
5684 return;
5686 /* Even if the destination cannot trap, the source may. In this case we'd
5687 need to handle updating the REG_EH_REGION note. */
5688 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5689 return;
5691 ptr = ldst_entry (dest);
5692 if (!ptr->pattern_regs)
5693 ptr->pattern_regs = extract_mentioned_regs (dest);
5695 /* Do not check for anticipatability if we either found one anticipatable
5696 store already, or tested for one and found out that it was killed. */
5697 check_anticipatable = 0;
5698 if (!ANTIC_STORE_LIST (ptr))
5699 check_anticipatable = 1;
5700 else
5702 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5703 if (tmp != NULL_RTX
5704 && BLOCK_FOR_INSN (tmp) != bb)
5705 check_anticipatable = 1;
5707 if (check_anticipatable)
5709 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5710 tmp = NULL_RTX;
5711 else
5712 tmp = insn;
5713 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5714 ANTIC_STORE_LIST (ptr));
5717 /* It is not necessary to check whether store is available if we did
5718 it successfully before; if we failed before, do not bother to check
5719 until we reach the insn that caused us to fail. */
5720 check_available = 0;
5721 if (!AVAIL_STORE_LIST (ptr))
5722 check_available = 1;
5723 else
5725 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5726 if (BLOCK_FOR_INSN (tmp) != bb)
5727 check_available = 1;
5729 if (check_available)
5731 /* Check that we have already reached the insn at that the check
5732 failed last time. */
5733 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5735 for (tmp = BB_END (bb);
5736 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5737 tmp = PREV_INSN (tmp))
5738 continue;
5739 if (tmp == insn)
5740 check_available = 0;
5742 else
5743 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5744 bb, regs_set_after,
5745 &LAST_AVAIL_CHECK_FAILURE (ptr));
5747 if (!check_available)
5748 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5751 /* Find available and anticipatable stores. */
5753 static int
5754 compute_store_table (void)
5756 int ret;
5757 basic_block bb;
5758 unsigned regno;
5759 rtx insn, pat, tmp;
5760 int *last_set_in, *already_set;
5761 struct ls_expr * ptr, **prev_next_ptr_ptr;
5763 max_gcse_regno = max_reg_num ();
5765 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5766 max_gcse_regno);
5767 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5768 pre_ldst_mems = 0;
5769 last_set_in = xcalloc (max_gcse_regno, sizeof (int));
5770 already_set = xmalloc (sizeof (int) * max_gcse_regno);
5772 /* Find all the stores we care about. */
5773 FOR_EACH_BB (bb)
5775 /* First compute the registers set in this block. */
5776 regvec = last_set_in;
5778 for (insn = BB_HEAD (bb);
5779 insn != NEXT_INSN (BB_END (bb));
5780 insn = NEXT_INSN (insn))
5782 if (! INSN_P (insn))
5783 continue;
5785 if (CALL_P (insn))
5787 bool clobbers_all = false;
5788 #ifdef NON_SAVING_SETJMP
5789 if (NON_SAVING_SETJMP
5790 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
5791 clobbers_all = true;
5792 #endif
5794 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5795 if (clobbers_all
5796 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5798 last_set_in[regno] = INSN_UID (insn);
5799 SET_BIT (reg_set_in_block[bb->index], regno);
5803 pat = PATTERN (insn);
5804 compute_store_table_current_insn = insn;
5805 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5808 /* Now find the stores. */
5809 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5810 regvec = already_set;
5811 for (insn = BB_HEAD (bb);
5812 insn != NEXT_INSN (BB_END (bb));
5813 insn = NEXT_INSN (insn))
5815 if (! INSN_P (insn))
5816 continue;
5818 if (CALL_P (insn))
5820 bool clobbers_all = false;
5821 #ifdef NON_SAVING_SETJMP
5822 if (NON_SAVING_SETJMP
5823 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
5824 clobbers_all = true;
5825 #endif
5827 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5828 if (clobbers_all
5829 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5830 already_set[regno] = 1;
5833 pat = PATTERN (insn);
5834 note_stores (pat, reg_set_info, NULL);
5836 /* Now that we've marked regs, look for stores. */
5837 find_moveable_store (insn, already_set, last_set_in);
5839 /* Unmark regs that are no longer set. */
5840 compute_store_table_current_insn = insn;
5841 note_stores (pat, reg_clear_last_set, last_set_in);
5842 if (CALL_P (insn))
5844 bool clobbers_all = false;
5845 #ifdef NON_SAVING_SETJMP
5846 if (NON_SAVING_SETJMP
5847 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
5848 clobbers_all = true;
5849 #endif
5851 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5852 if ((clobbers_all
5853 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5854 && last_set_in[regno] == INSN_UID (insn))
5855 last_set_in[regno] = 0;
5859 #ifdef ENABLE_CHECKING
5860 /* last_set_in should now be all-zero. */
5861 for (regno = 0; regno < max_gcse_regno; regno++)
5862 gcc_assert (!last_set_in[regno]);
5863 #endif
5865 /* Clear temporary marks. */
5866 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5868 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5869 if (ANTIC_STORE_LIST (ptr)
5870 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5871 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5875 /* Remove the stores that are not available anywhere, as there will
5876 be no opportunity to optimize them. */
5877 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5878 ptr != NULL;
5879 ptr = *prev_next_ptr_ptr)
5881 if (!AVAIL_STORE_LIST (ptr))
5883 *prev_next_ptr_ptr = ptr->next;
5884 free_ldst_entry (ptr);
5886 else
5887 prev_next_ptr_ptr = &ptr->next;
5890 ret = enumerate_ldsts ();
5892 if (gcse_file)
5894 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
5895 print_ldst_list (gcse_file);
5898 free (last_set_in);
5899 free (already_set);
5900 return ret;
5903 /* Check to see if the load X is aliased with STORE_PATTERN.
5904 AFTER is true if we are checking the case when STORE_PATTERN occurs
5905 after the X. */
5907 static bool
5908 load_kills_store (rtx x, rtx store_pattern, int after)
5910 if (after)
5911 return anti_dependence (x, store_pattern);
5912 else
5913 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5914 rtx_addr_varies_p);
5917 /* Go through the entire insn X, looking for any loads which might alias
5918 STORE_PATTERN. Return true if found.
5919 AFTER is true if we are checking the case when STORE_PATTERN occurs
5920 after the insn X. */
5922 static bool
5923 find_loads (rtx x, rtx store_pattern, int after)
5925 const char * fmt;
5926 int i, j;
5927 int ret = false;
5929 if (!x)
5930 return false;
5932 if (GET_CODE (x) == SET)
5933 x = SET_SRC (x);
5935 if (MEM_P (x))
5937 if (load_kills_store (x, store_pattern, after))
5938 return true;
5941 /* Recursively process the insn. */
5942 fmt = GET_RTX_FORMAT (GET_CODE (x));
5944 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5946 if (fmt[i] == 'e')
5947 ret |= find_loads (XEXP (x, i), store_pattern, after);
5948 else if (fmt[i] == 'E')
5949 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5950 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5952 return ret;
5955 /* Check if INSN kills the store pattern X (is aliased with it).
5956 AFTER is true if we are checking the case when store X occurs
5957 after the insn. Return true if it it does. */
5959 static bool
5960 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5962 rtx reg, base, note;
5964 if (!INSN_P (insn))
5965 return false;
5967 if (CALL_P (insn))
5969 /* A normal or pure call might read from pattern,
5970 but a const call will not. */
5971 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5972 return true;
5974 /* But even a const call reads its parameters. Check whether the
5975 base of some of registers used in mem is stack pointer. */
5976 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5978 base = find_base_term (XEXP (reg, 0));
5979 if (!base
5980 || (GET_CODE (base) == ADDRESS
5981 && GET_MODE (base) == Pmode
5982 && XEXP (base, 0) == stack_pointer_rtx))
5983 return true;
5986 return false;
5989 if (GET_CODE (PATTERN (insn)) == SET)
5991 rtx pat = PATTERN (insn);
5992 rtx dest = SET_DEST (pat);
5994 if (GET_CODE (dest) == SIGN_EXTRACT
5995 || GET_CODE (dest) == ZERO_EXTRACT)
5996 dest = XEXP (dest, 0);
5998 /* Check for memory stores to aliased objects. */
5999 if (MEM_P (dest)
6000 && !expr_equiv_p (dest, x))
6002 if (after)
6004 if (output_dependence (dest, x))
6005 return true;
6007 else
6009 if (output_dependence (x, dest))
6010 return true;
6013 if (find_loads (SET_SRC (pat), x, after))
6014 return true;
6016 else if (find_loads (PATTERN (insn), x, after))
6017 return true;
6019 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
6020 location aliased with X, then this insn kills X. */
6021 note = find_reg_equal_equiv_note (insn);
6022 if (! note)
6023 return false;
6024 note = XEXP (note, 0);
6026 /* However, if the note represents a must alias rather than a may
6027 alias relationship, then it does not kill X. */
6028 if (expr_equiv_p (note, x))
6029 return false;
6031 /* See if there are any aliased loads in the note. */
6032 return find_loads (note, x, after);
6035 /* Returns true if the expression X is loaded or clobbered on or after INSN
6036 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
6037 or after the insn. X_REGS is list of registers mentioned in X. If the store
6038 is killed, return the last insn in that it occurs in FAIL_INSN. */
6040 static bool
6041 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
6042 int *regs_set_after, rtx *fail_insn)
6044 rtx last = BB_END (bb), act;
6046 if (!store_ops_ok (x_regs, regs_set_after))
6048 /* We do not know where it will happen. */
6049 if (fail_insn)
6050 *fail_insn = NULL_RTX;
6051 return true;
6054 /* Scan from the end, so that fail_insn is determined correctly. */
6055 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6056 if (store_killed_in_insn (x, x_regs, act, false))
6058 if (fail_insn)
6059 *fail_insn = act;
6060 return true;
6063 return false;
6066 /* Returns true if the expression X is loaded or clobbered on or before INSN
6067 within basic block BB. X_REGS is list of registers mentioned in X.
6068 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6069 static bool
6070 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
6071 int *regs_set_before)
6073 rtx first = BB_HEAD (bb);
6075 if (!store_ops_ok (x_regs, regs_set_before))
6076 return true;
6078 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6079 if (store_killed_in_insn (x, x_regs, insn, true))
6080 return true;
6082 return false;
6085 /* Fill in available, anticipatable, transparent and kill vectors in
6086 STORE_DATA, based on lists of available and anticipatable stores. */
6087 static void
6088 build_store_vectors (void)
6090 basic_block bb;
6091 int *regs_set_in_block;
6092 rtx insn, st;
6093 struct ls_expr * ptr;
6094 unsigned regno;
6096 /* Build the gen_vector. This is any store in the table which is not killed
6097 by aliasing later in its block. */
6098 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6099 sbitmap_vector_zero (ae_gen, last_basic_block);
6101 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6102 sbitmap_vector_zero (st_antloc, last_basic_block);
6104 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6106 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6108 insn = XEXP (st, 0);
6109 bb = BLOCK_FOR_INSN (insn);
6111 /* If we've already seen an available expression in this block,
6112 we can delete this one (It occurs earlier in the block). We'll
6113 copy the SRC expression to an unused register in case there
6114 are any side effects. */
6115 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6117 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6118 if (gcse_file)
6119 fprintf (gcse_file, "Removing redundant store:\n");
6120 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6121 continue;
6123 SET_BIT (ae_gen[bb->index], ptr->index);
6126 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6128 insn = XEXP (st, 0);
6129 bb = BLOCK_FOR_INSN (insn);
6130 SET_BIT (st_antloc[bb->index], ptr->index);
6134 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6135 sbitmap_vector_zero (ae_kill, last_basic_block);
6137 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6138 sbitmap_vector_zero (transp, last_basic_block);
6139 regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
6141 FOR_EACH_BB (bb)
6143 for (regno = 0; regno < max_gcse_regno; regno++)
6144 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6146 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6148 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6149 bb, regs_set_in_block, NULL))
6151 /* It should not be necessary to consider the expression
6152 killed if it is both anticipatable and available. */
6153 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6154 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6155 SET_BIT (ae_kill[bb->index], ptr->index);
6157 else
6158 SET_BIT (transp[bb->index], ptr->index);
6162 free (regs_set_in_block);
6164 if (gcse_file)
6166 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6167 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6168 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6169 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6173 /* Insert an instruction at the beginning of a basic block, and update
6174 the BB_HEAD if needed. */
6176 static void
6177 insert_insn_start_bb (rtx insn, basic_block bb)
6179 /* Insert at start of successor block. */
6180 rtx prev = PREV_INSN (BB_HEAD (bb));
6181 rtx before = BB_HEAD (bb);
6182 while (before != 0)
6184 if (! LABEL_P (before)
6185 && (! NOTE_P (before)
6186 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6187 break;
6188 prev = before;
6189 if (prev == BB_END (bb))
6190 break;
6191 before = NEXT_INSN (before);
6194 insn = emit_insn_after (insn, prev);
6196 if (gcse_file)
6198 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6199 bb->index);
6200 print_inline_rtx (gcse_file, insn, 6);
6201 fprintf (gcse_file, "\n");
6205 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6206 the memory reference, and E is the edge to insert it on. Returns nonzero
6207 if an edge insertion was performed. */
6209 static int
6210 insert_store (struct ls_expr * expr, edge e)
6212 rtx reg, insn;
6213 basic_block bb;
6214 edge tmp;
6215 edge_iterator ei;
6217 /* We did all the deleted before this insert, so if we didn't delete a
6218 store, then we haven't set the reaching reg yet either. */
6219 if (expr->reaching_reg == NULL_RTX)
6220 return 0;
6222 if (e->flags & EDGE_FAKE)
6223 return 0;
6225 reg = expr->reaching_reg;
6226 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6228 /* If we are inserting this expression on ALL predecessor edges of a BB,
6229 insert it at the start of the BB, and reset the insert bits on the other
6230 edges so we don't try to insert it on the other edges. */
6231 bb = e->dest;
6232 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6234 if (!(tmp->flags & EDGE_FAKE))
6236 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6237 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6238 if (! TEST_BIT (pre_insert_map[index], expr->index))
6239 break;
6243 /* If tmp is NULL, we found an insertion on every edge, blank the
6244 insertion vector for these edges, and insert at the start of the BB. */
6245 if (!tmp && bb != EXIT_BLOCK_PTR)
6247 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6249 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6250 RESET_BIT (pre_insert_map[index], expr->index);
6252 insert_insn_start_bb (insn, bb);
6253 return 0;
6256 /* We can't insert on this edge, so we'll insert at the head of the
6257 successors block. See Morgan, sec 10.5. */
6258 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
6260 insert_insn_start_bb (insn, bb);
6261 return 0;
6264 insert_insn_on_edge (insn, e);
6266 if (gcse_file)
6268 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6269 e->src->index, e->dest->index);
6270 print_inline_rtx (gcse_file, insn, 6);
6271 fprintf (gcse_file, "\n");
6274 return 1;
6277 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6278 memory location in SMEXPR set in basic block BB.
6280 This could be rather expensive. */
6282 static void
6283 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6285 edge_iterator *stack, ei;
6286 int sp;
6287 edge act;
6288 sbitmap visited = sbitmap_alloc (last_basic_block);
6289 rtx last, insn, note;
6290 rtx mem = smexpr->pattern;
6292 stack = xmalloc (sizeof (edge_iterator) * n_basic_blocks);
6293 sp = 0;
6294 ei = ei_start (bb->succs);
6296 sbitmap_zero (visited);
6298 act = (EDGE_COUNT (ei.container) > 0 ? EDGE_I (ei.container, 0) : NULL);
6299 while (1)
6301 if (!act)
6303 if (!sp)
6305 free (stack);
6306 sbitmap_free (visited);
6307 return;
6309 act = ei_edge (stack[--sp]);
6311 bb = act->dest;
6313 if (bb == EXIT_BLOCK_PTR
6314 || TEST_BIT (visited, bb->index))
6316 if (!ei_end_p (ei))
6317 ei_next (&ei);
6318 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6319 continue;
6321 SET_BIT (visited, bb->index);
6323 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6325 for (last = ANTIC_STORE_LIST (smexpr);
6326 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6327 last = XEXP (last, 1))
6328 continue;
6329 last = XEXP (last, 0);
6331 else
6332 last = NEXT_INSN (BB_END (bb));
6334 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6335 if (INSN_P (insn))
6337 note = find_reg_equal_equiv_note (insn);
6338 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6339 continue;
6341 if (gcse_file)
6342 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6343 INSN_UID (insn));
6344 remove_note (insn, note);
6347 if (!ei_end_p (ei))
6348 ei_next (&ei);
6349 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6351 if (EDGE_COUNT (bb->succs) > 0)
6353 if (act)
6354 stack[sp++] = ei;
6355 ei = ei_start (bb->succs);
6356 act = (EDGE_COUNT (ei.container) > 0 ? EDGE_I (ei.container, 0) : NULL);
6361 /* This routine will replace a store with a SET to a specified register. */
6363 static void
6364 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6366 rtx insn, mem, note, set, ptr, pair;
6368 mem = smexpr->pattern;
6369 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6370 insn = emit_insn_after (insn, del);
6372 if (gcse_file)
6374 fprintf (gcse_file,
6375 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6376 print_inline_rtx (gcse_file, del, 6);
6377 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6378 print_inline_rtx (gcse_file, insn, 6);
6379 fprintf (gcse_file, "\n");
6382 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6383 if (XEXP (ptr, 0) == del)
6385 XEXP (ptr, 0) = insn;
6386 break;
6389 /* Move the notes from the deleted insn to its replacement, and patch
6390 up the LIBCALL notes. */
6391 REG_NOTES (insn) = REG_NOTES (del);
6393 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6394 if (note)
6396 pair = XEXP (note, 0);
6397 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6398 XEXP (note, 0) = insn;
6400 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6401 if (note)
6403 pair = XEXP (note, 0);
6404 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6405 XEXP (note, 0) = insn;
6408 delete_insn (del);
6410 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6411 they are no longer accurate provided that they are reached by this
6412 definition, so drop them. */
6413 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6414 if (INSN_P (insn))
6416 set = single_set (insn);
6417 if (!set)
6418 continue;
6419 if (expr_equiv_p (SET_DEST (set), mem))
6420 return;
6421 note = find_reg_equal_equiv_note (insn);
6422 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6423 continue;
6425 if (gcse_file)
6426 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6427 INSN_UID (insn));
6428 remove_note (insn, note);
6430 remove_reachable_equiv_notes (bb, smexpr);
6434 /* Delete a store, but copy the value that would have been stored into
6435 the reaching_reg for later storing. */
6437 static void
6438 delete_store (struct ls_expr * expr, basic_block bb)
6440 rtx reg, i, del;
6442 if (expr->reaching_reg == NULL_RTX)
6443 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6445 reg = expr->reaching_reg;
6447 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6449 del = XEXP (i, 0);
6450 if (BLOCK_FOR_INSN (del) == bb)
6452 /* We know there is only one since we deleted redundant
6453 ones during the available computation. */
6454 replace_store_insn (reg, del, bb, expr);
6455 break;
6460 /* Free memory used by store motion. */
6462 static void
6463 free_store_memory (void)
6465 free_ldst_mems ();
6467 if (ae_gen)
6468 sbitmap_vector_free (ae_gen);
6469 if (ae_kill)
6470 sbitmap_vector_free (ae_kill);
6471 if (transp)
6472 sbitmap_vector_free (transp);
6473 if (st_antloc)
6474 sbitmap_vector_free (st_antloc);
6475 if (pre_insert_map)
6476 sbitmap_vector_free (pre_insert_map);
6477 if (pre_delete_map)
6478 sbitmap_vector_free (pre_delete_map);
6479 if (reg_set_in_block)
6480 sbitmap_vector_free (reg_set_in_block);
6482 ae_gen = ae_kill = transp = st_antloc = NULL;
6483 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6486 /* Perform store motion. Much like gcse, except we move expressions the
6487 other way by looking at the flowgraph in reverse. */
6489 static void
6490 store_motion (void)
6492 basic_block bb;
6493 int x;
6494 struct ls_expr * ptr;
6495 int update_flow = 0;
6497 if (gcse_file)
6499 fprintf (gcse_file, "before store motion\n");
6500 print_rtl (gcse_file, get_insns ());
6503 init_alias_analysis ();
6505 /* Find all the available and anticipatable stores. */
6506 num_stores = compute_store_table ();
6507 if (num_stores == 0)
6509 sbitmap_vector_free (reg_set_in_block);
6510 end_alias_analysis ();
6511 return;
6514 /* Now compute kill & transp vectors. */
6515 build_store_vectors ();
6516 add_noreturn_fake_exit_edges ();
6517 connect_infinite_loops_to_exit ();
6519 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6520 st_antloc, ae_kill, &pre_insert_map,
6521 &pre_delete_map);
6523 /* Now we want to insert the new stores which are going to be needed. */
6524 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6526 FOR_EACH_BB (bb)
6527 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6528 delete_store (ptr, bb);
6530 for (x = 0; x < NUM_EDGES (edge_list); x++)
6531 if (TEST_BIT (pre_insert_map[x], ptr->index))
6532 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6535 if (update_flow)
6536 commit_edge_insertions ();
6538 free_store_memory ();
6539 free_edge_list (edge_list);
6540 remove_fake_exit_edges ();
6541 end_alias_analysis ();
6545 /* Entry point for jump bypassing optimization pass. */
6548 bypass_jumps (FILE *file)
6550 int changed;
6552 /* We do not construct an accurate cfg in functions which call
6553 setjmp, so just punt to be safe. */
6554 if (current_function_calls_setjmp)
6555 return 0;
6557 /* For calling dump_foo fns from gdb. */
6558 debug_stderr = stderr;
6559 gcse_file = file;
6561 /* Identify the basic block information for this function, including
6562 successors and predecessors. */
6563 max_gcse_regno = max_reg_num ();
6565 if (file)
6566 dump_flow_info (file);
6568 /* Return if there's nothing to do, or it is too expensive. */
6569 if (n_basic_blocks <= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6570 return 0;
6572 gcc_obstack_init (&gcse_obstack);
6573 bytes_used = 0;
6575 /* We need alias. */
6576 init_alias_analysis ();
6578 /* Record where pseudo-registers are set. This data is kept accurate
6579 during each pass. ??? We could also record hard-reg information here
6580 [since it's unchanging], however it is currently done during hash table
6581 computation.
6583 It may be tempting to compute MEM set information here too, but MEM sets
6584 will be subject to code motion one day and thus we need to compute
6585 information about memory sets when we build the hash tables. */
6587 alloc_reg_set_mem (max_gcse_regno);
6588 compute_sets (get_insns ());
6590 max_gcse_regno = max_reg_num ();
6591 alloc_gcse_mem (get_insns ());
6592 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, 1, 1);
6593 free_gcse_mem ();
6595 if (file)
6597 fprintf (file, "BYPASS of %s: %d basic blocks, ",
6598 current_function_name (), n_basic_blocks);
6599 fprintf (file, "%d bytes\n\n", bytes_used);
6602 obstack_free (&gcse_obstack, NULL);
6603 free_reg_set_mem ();
6605 /* We are finished with alias. */
6606 end_alias_analysis ();
6607 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6609 return changed;
6612 /* Return true if the graph is too expensive to optimize. PASS is the
6613 optimization about to be performed. */
6615 static bool
6616 is_too_expensive (const char *pass)
6618 /* Trying to perform global optimizations on flow graphs which have
6619 a high connectivity will take a long time and is unlikely to be
6620 particularly useful.
6622 In normal circumstances a cfg should have about twice as many
6623 edges as blocks. But we do not want to punish small functions
6624 which have a couple switch statements. Rather than simply
6625 threshold the number of blocks, uses something with a more
6626 graceful degradation. */
6627 if (n_edges > 20000 + n_basic_blocks * 4)
6629 if (warn_disabled_optimization)
6630 warning ("%s: %d basic blocks and %d edges/basic block",
6631 pass, n_basic_blocks, n_edges / n_basic_blocks);
6633 return true;
6636 /* If allocating memory for the cprop bitmap would take up too much
6637 storage it's better just to disable the optimization. */
6638 if ((n_basic_blocks
6639 * SBITMAP_SET_SIZE (max_reg_num ())
6640 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6642 if (warn_disabled_optimization)
6643 warning ("%s: %d basic blocks and %d registers",
6644 pass, n_basic_blocks, max_reg_num ());
6646 return true;
6649 return false;
6652 #include "gt-gcse.h"