* Merge with edge-vector-mergepoint-20040918.
[official-gcc.git] / gcc / cfg.c
blobd2a65e047f9ff13016557a0fa7c34343ecb08e9e
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "hard-reg-set.h"
55 #include "basic-block.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "alloc-pool.h"
65 #include "timevar.h"
66 #include "ggc.h"
68 /* The obstack on which the flow graph components are allocated. */
70 struct obstack flow_obstack;
71 static char *flow_firstobj;
73 /* Number of basic blocks in the current function. */
75 int n_basic_blocks;
77 /* First free basic block number. */
79 int last_basic_block;
81 /* Number of edges in the current function. */
83 int n_edges;
85 /* The basic block array. */
87 varray_type basic_block_info;
89 /* The special entry and exit blocks. */
90 basic_block ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR;
92 /* Memory alloc pool for bb member rbi. */
93 alloc_pool rbi_pool;
95 void debug_flow_info (void);
96 static void free_edge (edge);
98 /* Indicate the presence of the profile. */
99 enum profile_status profile_status;
101 /* Called once at initialization time. */
103 void
104 init_flow (void)
106 static int initialized;
108 n_edges = 0;
110 if (!initialized)
112 gcc_obstack_init (&flow_obstack);
113 flow_firstobj = obstack_alloc (&flow_obstack, 0);
114 initialized = 1;
116 else
118 obstack_free (&flow_obstack, flow_firstobj);
119 flow_firstobj = obstack_alloc (&flow_obstack, 0);
122 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (*ENTRY_BLOCK_PTR));
123 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
124 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (*EXIT_BLOCK_PTR));
125 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
126 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
127 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
130 /* Helper function for remove_edge and clear_edges. Frees edge structure
131 without actually unlinking it from the pred/succ lists. */
133 static void
134 free_edge (edge e ATTRIBUTE_UNUSED)
136 n_edges--;
137 ggc_free (e);
140 /* Free the memory associated with the edge structures. */
142 void
143 clear_edges (void)
145 basic_block bb;
146 edge e;
147 edge_iterator ei;
149 FOR_EACH_BB (bb)
151 FOR_EACH_EDGE (e, ei, bb->succs)
152 free_edge (e);
153 VEC_truncate (edge, bb->succs, 0);
154 VEC_truncate (edge, bb->preds, 0);
157 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
158 free_edge (e);
159 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
160 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
162 gcc_assert (!n_edges);
165 /* Allocate memory for basic_block. */
167 basic_block
168 alloc_block (void)
170 basic_block bb;
171 bb = ggc_alloc_cleared (sizeof (*bb));
172 return bb;
175 /* Create memory pool for rbi_pool. */
177 void
178 alloc_rbi_pool (void)
180 rbi_pool = create_alloc_pool ("rbi pool",
181 sizeof (struct reorder_block_def),
182 n_basic_blocks + 2);
185 /* Free rbi_pool. */
187 void
188 free_rbi_pool (void)
190 free_alloc_pool (rbi_pool);
193 /* Initialize rbi (the structure containing data used by basic block
194 duplication and reordering) for the given basic block. */
196 void
197 initialize_bb_rbi (basic_block bb)
199 gcc_assert (!bb->rbi);
200 bb->rbi = pool_alloc (rbi_pool);
201 memset (bb->rbi, 0, sizeof (struct reorder_block_def));
204 /* Link block B to chain after AFTER. */
205 void
206 link_block (basic_block b, basic_block after)
208 b->next_bb = after->next_bb;
209 b->prev_bb = after;
210 after->next_bb = b;
211 b->next_bb->prev_bb = b;
214 /* Unlink block B from chain. */
215 void
216 unlink_block (basic_block b)
218 b->next_bb->prev_bb = b->prev_bb;
219 b->prev_bb->next_bb = b->next_bb;
220 b->prev_bb = NULL;
221 b->next_bb = NULL;
224 /* Sequentially order blocks and compact the arrays. */
225 void
226 compact_blocks (void)
228 int i;
229 basic_block bb;
231 i = 0;
232 FOR_EACH_BB (bb)
234 BASIC_BLOCK (i) = bb;
235 bb->index = i;
236 i++;
239 gcc_assert (i == n_basic_blocks);
241 for (; i < last_basic_block; i++)
242 BASIC_BLOCK (i) = NULL;
244 last_basic_block = n_basic_blocks;
247 /* Remove block B from the basic block array. */
249 void
250 expunge_block (basic_block b)
252 unlink_block (b);
253 BASIC_BLOCK (b->index) = NULL;
254 n_basic_blocks--;
255 /* We should be able to ggc_free here, but we are not.
256 The dead SSA_NAMES are left pointing to dead statements that are pointing
257 to dead basic blocks making garbage collector to die.
258 We should be able to release all dead SSA_NAMES and at the same time we should
259 clear out BB pointer of dead statements consistently. */
262 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
263 created edge. Use this only if you are sure that this edge can't
264 possibly already exist. */
266 edge
267 unchecked_make_edge (basic_block src, basic_block dst, int flags)
269 edge e;
270 e = ggc_alloc_cleared (sizeof (*e));
271 n_edges++;
273 VEC_safe_push (edge, src->succs, e);
274 VEC_safe_push (edge, dst->preds, e);
276 e->src = src;
277 e->dest = dst;
278 e->flags = flags;
280 return e;
283 /* Create an edge connecting SRC and DST with FLAGS optionally using
284 edge cache CACHE. Return the new edge, NULL if already exist. */
286 edge
287 cached_make_edge (sbitmap *edge_cache, basic_block src, basic_block dst, int flags)
289 int use_edge_cache;
290 edge e;
291 edge_iterator ei;
293 /* Don't bother with edge cache for ENTRY or EXIT, if there aren't that
294 many edges to them, or we didn't allocate memory for it. */
295 use_edge_cache = (edge_cache
296 && src != ENTRY_BLOCK_PTR && dst != EXIT_BLOCK_PTR);
298 /* Make sure we don't add duplicate edges. */
299 switch (use_edge_cache)
301 default:
302 /* Quick test for non-existence of the edge. */
303 if (! TEST_BIT (edge_cache[src->index], dst->index))
304 break;
306 /* The edge exists; early exit if no work to do. */
307 if (flags == 0)
308 return NULL;
310 /* Fall through. */
311 case 0:
312 FOR_EACH_EDGE (e, ei, src->succs)
314 if (e->dest == dst)
316 e->flags |= flags;
317 return NULL;
320 break;
323 e = unchecked_make_edge (src, dst, flags);
325 if (use_edge_cache)
326 SET_BIT (edge_cache[src->index], dst->index);
328 return e;
331 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
332 created edge or NULL if already exist. */
334 edge
335 make_edge (basic_block src, basic_block dest, int flags)
337 return cached_make_edge (NULL, src, dest, flags);
340 /* Create an edge connecting SRC to DEST and set probability by knowing
341 that it is the single edge leaving SRC. */
343 edge
344 make_single_succ_edge (basic_block src, basic_block dest, int flags)
346 edge e = make_edge (src, dest, flags);
348 e->probability = REG_BR_PROB_BASE;
349 e->count = src->count;
350 return e;
353 /* This function will remove an edge from the flow graph. */
355 void
356 remove_edge (edge e)
358 edge tmp;
359 basic_block src, dest;
360 bool found = false;
361 unsigned ix;
363 src = e->src;
364 dest = e->dest;
366 for (ix = 0; VEC_iterate (edge, src->succs, ix, tmp); )
368 if (tmp == e)
370 VEC_unordered_remove (edge, src->succs, ix);
371 found = true;
372 break;
374 else
375 ix++;
378 gcc_assert (found);
380 if (!found)
381 abort ();
383 found = false;
384 for (ix = 0; VEC_iterate (edge, dest->preds, ix, tmp); )
386 if (tmp == e)
388 VEC_unordered_remove (edge, dest->preds, ix);
389 found = true;
390 break;
392 else
393 ix++;
396 gcc_assert (found);
398 free_edge (e);
401 /* Redirect an edge's successor from one block to another. */
403 void
404 redirect_edge_succ (edge e, basic_block new_succ)
406 edge tmp;
407 unsigned ix;
408 bool found = false;
410 /* Disconnect the edge from the old successor block. */
411 for (ix = 0; VEC_iterate (edge, e->dest->preds, ix, tmp); )
413 if (tmp == e)
415 VEC_unordered_remove (edge, e->dest->preds, ix);
416 found = true;
417 break;
419 else
420 ix++;
423 if (!found)
424 abort ();
426 /* Reconnect the edge to the new successor block. */
427 VEC_safe_push (edge, new_succ->preds, e);
428 e->dest = new_succ;
431 /* Like previous but avoid possible duplicate edge. */
433 edge
434 redirect_edge_succ_nodup (edge e, basic_block new_succ)
436 edge s;
437 edge_iterator ei;
439 /* Check whether the edge is already present. */
440 FOR_EACH_EDGE (s, ei, e->src->succs)
442 if (s->dest == new_succ && s != e)
443 break;
446 if (s)
448 s->flags |= e->flags;
449 s->probability += e->probability;
450 if (s->probability > REG_BR_PROB_BASE)
451 s->probability = REG_BR_PROB_BASE;
452 s->count += e->count;
453 remove_edge (e);
454 e = s;
456 else
457 redirect_edge_succ (e, new_succ);
459 return e;
462 /* Redirect an edge's predecessor from one block to another. */
464 void
465 redirect_edge_pred (edge e, basic_block new_pred)
467 edge tmp;
468 bool found = false;
469 unsigned ix;
471 /* Disconnect the edge from the old predecessor block. */
472 for (ix = 0; VEC_iterate (edge, e->src->succs, ix, tmp); )
474 if (tmp == e)
476 VEC_unordered_remove (edge, e->src->succs, ix);
477 found = true;
478 break;
480 else
481 ix++;
484 if (!found)
485 abort ();
487 /* Reconnect the edge to the new predecessor block. */
488 VEC_safe_push (edge, new_pred->succs, e);
489 e->src = new_pred;
492 /* Clear all basic block flags, with the exception of partitioning. */
493 void
494 clear_bb_flags (void)
496 basic_block bb;
498 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
499 bb->flags = BB_PARTITION (bb);
502 /* Check the consistency of profile information. We can't do that
503 in verify_flow_info, as the counts may get invalid for incompletely
504 solved graphs, later eliminating of conditionals or roundoff errors.
505 It is still practical to have them reported for debugging of simple
506 testcases. */
507 void
508 check_bb_profile (basic_block bb, FILE * file)
510 edge e;
511 int sum = 0;
512 gcov_type lsum;
513 edge_iterator ei;
515 if (profile_status == PROFILE_ABSENT)
516 return;
518 if (bb != EXIT_BLOCK_PTR)
520 FOR_EACH_EDGE (e, ei, bb->succs)
521 sum += e->probability;
522 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
523 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
524 sum * 100.0 / REG_BR_PROB_BASE);
525 lsum = 0;
526 FOR_EACH_EDGE (e, ei, bb->succs)
527 lsum += e->count;
528 if (EDGE_COUNT (bb->succs)
529 && (lsum - bb->count > 100 || lsum - bb->count < -100))
530 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
531 (int) lsum, (int) bb->count);
533 if (bb != ENTRY_BLOCK_PTR)
535 sum = 0;
536 FOR_EACH_EDGE (e, ei, bb->preds)
537 sum += EDGE_FREQUENCY (e);
538 if (abs (sum - bb->frequency) > 100)
539 fprintf (file,
540 "Invalid sum of incoming frequencies %i, should be %i\n",
541 sum, bb->frequency);
542 lsum = 0;
543 FOR_EACH_EDGE (e, ei, bb->preds)
544 lsum += e->count;
545 if (lsum - bb->count > 100 || lsum - bb->count < -100)
546 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
547 (int) lsum, (int) bb->count);
551 void
552 dump_flow_info (FILE *file)
554 int i;
555 basic_block bb;
556 static const char * const reg_class_names[] = REG_CLASS_NAMES;
558 if (reg_n_info)
560 int max_regno = max_reg_num ();
561 fprintf (file, "%d registers.\n", max_regno);
562 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
563 if (REG_N_REFS (i))
565 enum reg_class class, altclass;
567 fprintf (file, "\nRegister %d used %d times across %d insns",
568 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
569 if (REG_BASIC_BLOCK (i) >= 0)
570 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
571 if (REG_N_SETS (i))
572 fprintf (file, "; set %d time%s", REG_N_SETS (i),
573 (REG_N_SETS (i) == 1) ? "" : "s");
574 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
575 fprintf (file, "; user var");
576 if (REG_N_DEATHS (i) != 1)
577 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
578 if (REG_N_CALLS_CROSSED (i) == 1)
579 fprintf (file, "; crosses 1 call");
580 else if (REG_N_CALLS_CROSSED (i))
581 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
582 if (regno_reg_rtx[i] != NULL
583 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
584 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
586 class = reg_preferred_class (i);
587 altclass = reg_alternate_class (i);
588 if (class != GENERAL_REGS || altclass != ALL_REGS)
590 if (altclass == ALL_REGS || class == ALL_REGS)
591 fprintf (file, "; pref %s", reg_class_names[(int) class]);
592 else if (altclass == NO_REGS)
593 fprintf (file, "; %s or none", reg_class_names[(int) class]);
594 else
595 fprintf (file, "; pref %s, else %s",
596 reg_class_names[(int) class],
597 reg_class_names[(int) altclass]);
600 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
601 fprintf (file, "; pointer");
602 fprintf (file, ".\n");
606 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
607 FOR_EACH_BB (bb)
609 edge e;
610 edge_iterator ei;
612 fprintf (file, "\nBasic block %d ", bb->index);
613 fprintf (file, "prev %d, next %d, ",
614 bb->prev_bb->index, bb->next_bb->index);
615 fprintf (file, "loop_depth %d, count ", bb->loop_depth);
616 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
617 fprintf (file, ", freq %i", bb->frequency);
618 if (maybe_hot_bb_p (bb))
619 fprintf (file, ", maybe hot");
620 if (probably_never_executed_bb_p (bb))
621 fprintf (file, ", probably never executed");
622 fprintf (file, ".\n");
624 fprintf (file, "Predecessors: ");
625 FOR_EACH_EDGE (e, ei, bb->preds)
626 dump_edge_info (file, e, 0);
628 fprintf (file, "\nSuccessors: ");
629 FOR_EACH_EDGE (e, ei, bb->succs)
630 dump_edge_info (file, e, 1);
632 fprintf (file, "\nRegisters live at start:");
633 dump_regset (bb->global_live_at_start, file);
635 fprintf (file, "\nRegisters live at end:");
636 dump_regset (bb->global_live_at_end, file);
638 putc ('\n', file);
640 if (bb->global_live_at_start)
642 fprintf (file, "\nRegisters live at start:");
643 dump_regset (bb->global_live_at_start, file);
646 if (bb->global_live_at_end)
648 fprintf (file, "\nRegisters live at end:");
649 dump_regset (bb->global_live_at_end, file);
652 putc ('\n', file);
653 check_bb_profile (bb, file);
656 putc ('\n', file);
659 void
660 debug_flow_info (void)
662 dump_flow_info (stderr);
665 void
666 dump_edge_info (FILE *file, edge e, int do_succ)
668 basic_block side = (do_succ ? e->dest : e->src);
670 if (side == ENTRY_BLOCK_PTR)
671 fputs (" ENTRY", file);
672 else if (side == EXIT_BLOCK_PTR)
673 fputs (" EXIT", file);
674 else
675 fprintf (file, " %d", side->index);
677 if (e->probability)
678 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
680 if (e->count)
682 fprintf (file, " count:");
683 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
686 if (e->flags)
688 static const char * const bitnames[] = {
689 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
690 "can_fallthru", "irreducible", "sibcall", "loop_exit",
691 "true", "false", "exec"
693 int comma = 0;
694 int i, flags = e->flags;
696 fputs (" (", file);
697 for (i = 0; flags; i++)
698 if (flags & (1 << i))
700 flags &= ~(1 << i);
702 if (comma)
703 fputc (',', file);
704 if (i < (int) ARRAY_SIZE (bitnames))
705 fputs (bitnames[i], file);
706 else
707 fprintf (file, "%d", i);
708 comma = 1;
711 fputc (')', file);
715 /* Simple routines to easily allocate AUX fields of basic blocks. */
717 static struct obstack block_aux_obstack;
718 static void *first_block_aux_obj = 0;
719 static struct obstack edge_aux_obstack;
720 static void *first_edge_aux_obj = 0;
722 /* Allocate a memory block of SIZE as BB->aux. The obstack must
723 be first initialized by alloc_aux_for_blocks. */
725 inline void
726 alloc_aux_for_block (basic_block bb, int size)
728 /* Verify that aux field is clear. */
729 gcc_assert (!bb->aux && first_block_aux_obj);
730 bb->aux = obstack_alloc (&block_aux_obstack, size);
731 memset (bb->aux, 0, size);
734 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
735 alloc_aux_for_block for each basic block. */
737 void
738 alloc_aux_for_blocks (int size)
740 static int initialized;
742 if (!initialized)
744 gcc_obstack_init (&block_aux_obstack);
745 initialized = 1;
747 else
748 /* Check whether AUX data are still allocated. */
749 gcc_assert (!first_block_aux_obj);
751 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
752 if (size)
754 basic_block bb;
756 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
757 alloc_aux_for_block (bb, size);
761 /* Clear AUX pointers of all blocks. */
763 void
764 clear_aux_for_blocks (void)
766 basic_block bb;
768 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
769 bb->aux = NULL;
772 /* Free data allocated in block_aux_obstack and clear AUX pointers
773 of all blocks. */
775 void
776 free_aux_for_blocks (void)
778 gcc_assert (first_block_aux_obj);
779 obstack_free (&block_aux_obstack, first_block_aux_obj);
780 first_block_aux_obj = NULL;
782 clear_aux_for_blocks ();
785 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
786 be first initialized by alloc_aux_for_edges. */
788 inline void
789 alloc_aux_for_edge (edge e, int size)
791 /* Verify that aux field is clear. */
792 gcc_assert (!e->aux && first_edge_aux_obj);
793 e->aux = obstack_alloc (&edge_aux_obstack, size);
794 memset (e->aux, 0, size);
797 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
798 alloc_aux_for_edge for each basic edge. */
800 void
801 alloc_aux_for_edges (int size)
803 static int initialized;
805 if (!initialized)
807 gcc_obstack_init (&edge_aux_obstack);
808 initialized = 1;
810 else
811 /* Check whether AUX data are still allocated. */
812 gcc_assert (!first_edge_aux_obj);
814 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
815 if (size)
817 basic_block bb;
819 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
821 edge e;
822 edge_iterator ei;
824 FOR_EACH_EDGE (e, ei, bb->succs)
825 alloc_aux_for_edge (e, size);
830 /* Clear AUX pointers of all edges. */
832 void
833 clear_aux_for_edges (void)
835 basic_block bb;
836 edge e;
838 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
840 edge_iterator ei;
841 FOR_EACH_EDGE (e, ei, bb->succs)
842 e->aux = NULL;
846 /* Free data allocated in edge_aux_obstack and clear AUX pointers
847 of all edges. */
849 void
850 free_aux_for_edges (void)
852 gcc_assert (first_edge_aux_obj);
853 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
854 first_edge_aux_obj = NULL;
856 clear_aux_for_edges ();
859 void
860 debug_bb (basic_block bb)
862 dump_bb (bb, stderr, 0);
865 basic_block
866 debug_bb_n (int n)
868 basic_block bb = BASIC_BLOCK (n);
869 dump_bb (bb, stderr, 0);
870 return bb;
873 /* Dumps cfg related information about basic block BB to FILE. */
875 static void
876 dump_cfg_bb_info (FILE *file, basic_block bb)
878 unsigned i;
879 edge_iterator ei;
880 bool first = true;
881 static const char * const bb_bitnames[] =
883 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
885 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
886 edge e;
888 fprintf (file, "Basic block %d", bb->index);
889 for (i = 0; i < n_bitnames; i++)
890 if (bb->flags & (1 << i))
892 if (first)
893 fprintf (file, " (");
894 else
895 fprintf (file, ", ");
896 first = false;
897 fprintf (file, bb_bitnames[i]);
899 if (!first)
900 fprintf (file, ")");
901 fprintf (file, "\n");
903 fprintf (file, "Predecessors: ");
904 FOR_EACH_EDGE (e, ei, bb->preds)
905 dump_edge_info (file, e, 0);
907 fprintf (file, "\nSuccessors: ");
908 FOR_EACH_EDGE (e, ei, bb->succs)
909 dump_edge_info (file, e, 1);
910 fprintf (file, "\n\n");
913 /* Dumps a brief description of cfg to FILE. */
915 void
916 brief_dump_cfg (FILE *file)
918 basic_block bb;
920 FOR_EACH_BB (bb)
922 dump_cfg_bb_info (file, bb);