2010-09-06 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / reg-stack.c
blobe692584bb6bbe810f97126bfbd738db59b6e6d14
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl-error.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "recog.h"
167 #include "output.h"
168 #include "basic-block.h"
169 #include "cfglayout.h"
170 #include "reload.h"
171 #include "ggc.h"
172 #include "timevar.h"
173 #include "tree-pass.h"
174 #include "target.h"
175 #include "df.h"
176 #include "vecprim.h"
177 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
179 #ifdef STACK_REGS
181 /* We use this array to cache info about insns, because otherwise we
182 spend too much time in stack_regs_mentioned_p.
184 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
185 the insn uses stack registers, two indicates the insn does not use
186 stack registers. */
187 static VEC(char,heap) *stack_regs_mentioned_data;
189 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
191 int regstack_completed = 0;
193 /* This is the basic stack record. TOP is an index into REG[] such
194 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
196 If TOP is -2, REG[] is not yet initialized. Stack initialization
197 consists of placing each live reg in array `reg' and setting `top'
198 appropriately.
200 REG_SET indicates which registers are live. */
202 typedef struct stack_def
204 int top; /* index to top stack element */
205 HARD_REG_SET reg_set; /* set of live registers */
206 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
207 } *stack;
209 /* This is used to carry information about basic blocks. It is
210 attached to the AUX field of the standard CFG block. */
212 typedef struct block_info_def
214 struct stack_def stack_in; /* Input stack configuration. */
215 struct stack_def stack_out; /* Output stack configuration. */
216 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
217 int done; /* True if block already converted. */
218 int predecessors; /* Number of predecessors that need
219 to be visited. */
220 } *block_info;
222 #define BLOCK_INFO(B) ((block_info) (B)->aux)
224 /* Passed to change_stack to indicate where to emit insns. */
225 enum emit_where
227 EMIT_AFTER,
228 EMIT_BEFORE
231 /* The block we're currently working on. */
232 static basic_block current_block;
234 /* In the current_block, whether we're processing the first register
235 stack or call instruction, i.e. the regstack is currently the
236 same as BLOCK_INFO(current_block)->stack_in. */
237 static bool starting_stack_p;
239 /* This is the register file for all register after conversion. */
240 static rtx
241 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
243 #define FP_MODE_REG(regno,mode) \
244 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
246 /* Used to initialize uninitialized registers. */
247 static rtx not_a_num;
249 /* Forward declarations */
251 static int stack_regs_mentioned_p (const_rtx pat);
252 static void pop_stack (stack, int);
253 static rtx *get_true_reg (rtx *);
255 static int check_asm_stack_operands (rtx);
256 static void get_asm_operands_in_out (rtx, int *, int *);
257 static rtx stack_result (tree);
258 static void replace_reg (rtx *, int);
259 static void remove_regno_note (rtx, enum reg_note, unsigned int);
260 static int get_hard_regnum (stack, rtx);
261 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
262 static void swap_to_top(rtx, stack, rtx, rtx);
263 static bool move_for_stack_reg (rtx, stack, rtx);
264 static bool move_nan_for_stack_reg (rtx, stack, rtx);
265 static int swap_rtx_condition_1 (rtx);
266 static int swap_rtx_condition (rtx);
267 static void compare_for_stack_reg (rtx, stack, rtx);
268 static bool subst_stack_regs_pat (rtx, stack, rtx);
269 static void subst_asm_stack_regs (rtx, stack);
270 static bool subst_stack_regs (rtx, stack);
271 static void change_stack (rtx, stack, stack, enum emit_where);
272 static void print_stack (FILE *, stack);
273 static rtx next_flags_user (rtx);
275 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
277 static int
278 stack_regs_mentioned_p (const_rtx pat)
280 const char *fmt;
281 int i;
283 if (STACK_REG_P (pat))
284 return 1;
286 fmt = GET_RTX_FORMAT (GET_CODE (pat));
287 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
289 if (fmt[i] == 'E')
291 int j;
293 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
294 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
295 return 1;
297 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
298 return 1;
301 return 0;
304 /* Return nonzero if INSN mentions stacked registers, else return zero. */
307 stack_regs_mentioned (const_rtx insn)
309 unsigned int uid, max;
310 int test;
312 if (! INSN_P (insn) || !stack_regs_mentioned_data)
313 return 0;
315 uid = INSN_UID (insn);
316 max = VEC_length (char, stack_regs_mentioned_data);
317 if (uid >= max)
319 /* Allocate some extra size to avoid too many reallocs, but
320 do not grow too quickly. */
321 max = uid + uid / 20 + 1;
322 VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
325 test = VEC_index (char, stack_regs_mentioned_data, uid);
326 if (test == 0)
328 /* This insn has yet to be examined. Do so now. */
329 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
330 VEC_replace (char, stack_regs_mentioned_data, uid, test);
333 return test == 1;
336 static rtx ix86_flags_rtx;
338 static rtx
339 next_flags_user (rtx insn)
341 /* Search forward looking for the first use of this value.
342 Stop at block boundaries. */
344 while (insn != BB_END (current_block))
346 insn = NEXT_INSN (insn);
348 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
349 return insn;
351 if (CALL_P (insn))
352 return NULL_RTX;
354 return NULL_RTX;
357 /* Reorganize the stack into ascending numbers, before this insn. */
359 static void
360 straighten_stack (rtx insn, stack regstack)
362 struct stack_def temp_stack;
363 int top;
365 /* If there is only a single register on the stack, then the stack is
366 already in increasing order and no reorganization is needed.
368 Similarly if the stack is empty. */
369 if (regstack->top <= 0)
370 return;
372 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
374 for (top = temp_stack.top = regstack->top; top >= 0; top--)
375 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
377 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
380 /* Pop a register from the stack. */
382 static void
383 pop_stack (stack regstack, int regno)
385 int top = regstack->top;
387 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
388 regstack->top--;
389 /* If regno was not at the top of stack then adjust stack. */
390 if (regstack->reg [top] != regno)
392 int i;
393 for (i = regstack->top; i >= 0; i--)
394 if (regstack->reg [i] == regno)
396 int j;
397 for (j = i; j < top; j++)
398 regstack->reg [j] = regstack->reg [j + 1];
399 break;
404 /* Return a pointer to the REG expression within PAT. If PAT is not a
405 REG, possible enclosed by a conversion rtx, return the inner part of
406 PAT that stopped the search. */
408 static rtx *
409 get_true_reg (rtx *pat)
411 for (;;)
412 switch (GET_CODE (*pat))
414 case SUBREG:
415 /* Eliminate FP subregister accesses in favor of the
416 actual FP register in use. */
418 rtx subreg;
419 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
421 int regno_off = subreg_regno_offset (REGNO (subreg),
422 GET_MODE (subreg),
423 SUBREG_BYTE (*pat),
424 GET_MODE (*pat));
425 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
426 GET_MODE (subreg));
427 return pat;
430 case FLOAT:
431 case FIX:
432 case FLOAT_EXTEND:
433 pat = & XEXP (*pat, 0);
434 break;
436 case UNSPEC:
437 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
438 pat = & XVECEXP (*pat, 0, 0);
439 return pat;
441 case FLOAT_TRUNCATE:
442 if (!flag_unsafe_math_optimizations)
443 return pat;
444 pat = & XEXP (*pat, 0);
445 break;
447 default:
448 return pat;
452 /* Set if we find any malformed asms in a block. */
453 static bool any_malformed_asm;
455 /* There are many rules that an asm statement for stack-like regs must
456 follow. Those rules are explained at the top of this file: the rule
457 numbers below refer to that explanation. */
459 static int
460 check_asm_stack_operands (rtx insn)
462 int i;
463 int n_clobbers;
464 int malformed_asm = 0;
465 rtx body = PATTERN (insn);
467 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
468 char implicitly_dies[FIRST_PSEUDO_REGISTER];
469 int alt;
471 rtx *clobber_reg = 0;
472 int n_inputs, n_outputs;
474 /* Find out what the constraints require. If no constraint
475 alternative matches, this asm is malformed. */
476 extract_insn (insn);
477 constrain_operands (1);
478 alt = which_alternative;
480 preprocess_constraints ();
482 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
484 if (alt < 0)
486 malformed_asm = 1;
487 /* Avoid further trouble with this insn. */
488 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
489 return 0;
492 /* Strip SUBREGs here to make the following code simpler. */
493 for (i = 0; i < recog_data.n_operands; i++)
494 if (GET_CODE (recog_data.operand[i]) == SUBREG
495 && REG_P (SUBREG_REG (recog_data.operand[i])))
496 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
498 /* Set up CLOBBER_REG. */
500 n_clobbers = 0;
502 if (GET_CODE (body) == PARALLEL)
504 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
506 for (i = 0; i < XVECLEN (body, 0); i++)
507 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
509 rtx clobber = XVECEXP (body, 0, i);
510 rtx reg = XEXP (clobber, 0);
512 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
513 reg = SUBREG_REG (reg);
515 if (STACK_REG_P (reg))
517 clobber_reg[n_clobbers] = reg;
518 n_clobbers++;
523 /* Enforce rule #4: Output operands must specifically indicate which
524 reg an output appears in after an asm. "=f" is not allowed: the
525 operand constraints must select a class with a single reg.
527 Also enforce rule #5: Output operands must start at the top of
528 the reg-stack: output operands may not "skip" a reg. */
530 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
531 for (i = 0; i < n_outputs; i++)
532 if (STACK_REG_P (recog_data.operand[i]))
534 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
536 error_for_asm (insn, "output constraint %d must specify a single register", i);
537 malformed_asm = 1;
539 else
541 int j;
543 for (j = 0; j < n_clobbers; j++)
544 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
546 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
547 i, reg_names [REGNO (clobber_reg[j])]);
548 malformed_asm = 1;
549 break;
551 if (j == n_clobbers)
552 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
557 /* Search for first non-popped reg. */
558 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
559 if (! reg_used_as_output[i])
560 break;
562 /* If there are any other popped regs, that's an error. */
563 for (; i < LAST_STACK_REG + 1; i++)
564 if (reg_used_as_output[i])
565 break;
567 if (i != LAST_STACK_REG + 1)
569 error_for_asm (insn, "output regs must be grouped at top of stack");
570 malformed_asm = 1;
573 /* Enforce rule #2: All implicitly popped input regs must be closer
574 to the top of the reg-stack than any input that is not implicitly
575 popped. */
577 memset (implicitly_dies, 0, sizeof (implicitly_dies));
578 for (i = n_outputs; i < n_outputs + n_inputs; i++)
579 if (STACK_REG_P (recog_data.operand[i]))
581 /* An input reg is implicitly popped if it is tied to an
582 output, or if there is a CLOBBER for it. */
583 int j;
585 for (j = 0; j < n_clobbers; j++)
586 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
587 break;
589 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
590 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
593 /* Search for first non-popped reg. */
594 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
595 if (! implicitly_dies[i])
596 break;
598 /* If there are any other popped regs, that's an error. */
599 for (; i < LAST_STACK_REG + 1; i++)
600 if (implicitly_dies[i])
601 break;
603 if (i != LAST_STACK_REG + 1)
605 error_for_asm (insn,
606 "implicitly popped regs must be grouped at top of stack");
607 malformed_asm = 1;
610 /* Enforce rule #3: If any input operand uses the "f" constraint, all
611 output constraints must use the "&" earlyclobber.
613 ??? Detect this more deterministically by having constrain_asm_operands
614 record any earlyclobber. */
616 for (i = n_outputs; i < n_outputs + n_inputs; i++)
617 if (recog_op_alt[i][alt].matches == -1)
619 int j;
621 for (j = 0; j < n_outputs; j++)
622 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
624 error_for_asm (insn,
625 "output operand %d must use %<&%> constraint", j);
626 malformed_asm = 1;
630 if (malformed_asm)
632 /* Avoid further trouble with this insn. */
633 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
634 any_malformed_asm = true;
635 return 0;
638 return 1;
641 /* Calculate the number of inputs and outputs in BODY, an
642 asm_operands. N_OPERANDS is the total number of operands, and
643 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
644 placed. */
646 static void
647 get_asm_operands_in_out (rtx body, int *pout, int *pin)
649 rtx asmop = extract_asm_operands (body);
651 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
652 *pout = (recog_data.n_operands
653 - ASM_OPERANDS_INPUT_LENGTH (asmop)
654 - ASM_OPERANDS_LABEL_LENGTH (asmop));
657 /* If current function returns its result in an fp stack register,
658 return the REG. Otherwise, return 0. */
660 static rtx
661 stack_result (tree decl)
663 rtx result;
665 /* If the value is supposed to be returned in memory, then clearly
666 it is not returned in a stack register. */
667 if (aggregate_value_p (DECL_RESULT (decl), decl))
668 return 0;
670 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
671 if (result != 0)
672 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
673 decl, true);
675 return result != 0 && STACK_REG_P (result) ? result : 0;
680 * This section deals with stack register substitution, and forms the second
681 * pass over the RTL.
684 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
685 the desired hard REGNO. */
687 static void
688 replace_reg (rtx *reg, int regno)
690 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
691 gcc_assert (STACK_REG_P (*reg));
693 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
694 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
696 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
699 /* Remove a note of type NOTE, which must be found, for register
700 number REGNO from INSN. Remove only one such note. */
702 static void
703 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
705 rtx *note_link, this_rtx;
707 note_link = &REG_NOTES (insn);
708 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
709 if (REG_NOTE_KIND (this_rtx) == note
710 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
712 *note_link = XEXP (this_rtx, 1);
713 return;
715 else
716 note_link = &XEXP (this_rtx, 1);
718 gcc_unreachable ();
721 /* Find the hard register number of virtual register REG in REGSTACK.
722 The hard register number is relative to the top of the stack. -1 is
723 returned if the register is not found. */
725 static int
726 get_hard_regnum (stack regstack, rtx reg)
728 int i;
730 gcc_assert (STACK_REG_P (reg));
732 for (i = regstack->top; i >= 0; i--)
733 if (regstack->reg[i] == REGNO (reg))
734 break;
736 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
739 /* Emit an insn to pop virtual register REG before or after INSN.
740 REGSTACK is the stack state after INSN and is updated to reflect this
741 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
742 is represented as a SET whose destination is the register to be popped
743 and source is the top of stack. A death note for the top of stack
744 cases the movdf pattern to pop. */
746 static rtx
747 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
749 rtx pop_insn, pop_rtx;
750 int hard_regno;
752 /* For complex types take care to pop both halves. These may survive in
753 CLOBBER and USE expressions. */
754 if (COMPLEX_MODE_P (GET_MODE (reg)))
756 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
757 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
759 pop_insn = NULL_RTX;
760 if (get_hard_regnum (regstack, reg1) >= 0)
761 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
762 if (get_hard_regnum (regstack, reg2) >= 0)
763 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
764 gcc_assert (pop_insn);
765 return pop_insn;
768 hard_regno = get_hard_regnum (regstack, reg);
770 gcc_assert (hard_regno >= FIRST_STACK_REG);
772 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
773 FP_MODE_REG (FIRST_STACK_REG, DFmode));
775 if (where == EMIT_AFTER)
776 pop_insn = emit_insn_after (pop_rtx, insn);
777 else
778 pop_insn = emit_insn_before (pop_rtx, insn);
780 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
782 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
783 = regstack->reg[regstack->top];
784 regstack->top -= 1;
785 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
787 return pop_insn;
790 /* Emit an insn before or after INSN to swap virtual register REG with
791 the top of stack. REGSTACK is the stack state before the swap, and
792 is updated to reflect the swap. A swap insn is represented as a
793 PARALLEL of two patterns: each pattern moves one reg to the other.
795 If REG is already at the top of the stack, no insn is emitted. */
797 static void
798 emit_swap_insn (rtx insn, stack regstack, rtx reg)
800 int hard_regno;
801 rtx swap_rtx;
802 int tmp, other_reg; /* swap regno temps */
803 rtx i1; /* the stack-reg insn prior to INSN */
804 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
806 hard_regno = get_hard_regnum (regstack, reg);
808 if (hard_regno == FIRST_STACK_REG)
809 return;
810 if (hard_regno == -1)
812 /* Something failed if the register wasn't on the stack. If we had
813 malformed asms, we zapped the instruction itself, but that didn't
814 produce the same pattern of register sets as before. To prevent
815 further failure, adjust REGSTACK to include REG at TOP. */
816 gcc_assert (any_malformed_asm);
817 regstack->reg[++regstack->top] = REGNO (reg);
818 return;
820 gcc_assert (hard_regno >= FIRST_STACK_REG);
822 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
824 tmp = regstack->reg[other_reg];
825 regstack->reg[other_reg] = regstack->reg[regstack->top];
826 regstack->reg[regstack->top] = tmp;
828 /* Find the previous insn involving stack regs, but don't pass a
829 block boundary. */
830 i1 = NULL;
831 if (current_block && insn != BB_HEAD (current_block))
833 rtx tmp = PREV_INSN (insn);
834 rtx limit = PREV_INSN (BB_HEAD (current_block));
835 while (tmp != limit)
837 if (LABEL_P (tmp)
838 || CALL_P (tmp)
839 || NOTE_INSN_BASIC_BLOCK_P (tmp)
840 || (NONJUMP_INSN_P (tmp)
841 && stack_regs_mentioned (tmp)))
843 i1 = tmp;
844 break;
846 tmp = PREV_INSN (tmp);
850 if (i1 != NULL_RTX
851 && (i1set = single_set (i1)) != NULL_RTX)
853 rtx i1src = *get_true_reg (&SET_SRC (i1set));
854 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
856 /* If the previous register stack push was from the reg we are to
857 swap with, omit the swap. */
859 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
860 && REG_P (i1src)
861 && REGNO (i1src) == (unsigned) hard_regno - 1
862 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
863 return;
865 /* If the previous insn wrote to the reg we are to swap with,
866 omit the swap. */
868 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
869 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
870 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
871 return;
874 /* Avoid emitting the swap if this is the first register stack insn
875 of the current_block. Instead update the current_block's stack_in
876 and let compensate edges take care of this for us. */
877 if (current_block && starting_stack_p)
879 BLOCK_INFO (current_block)->stack_in = *regstack;
880 starting_stack_p = false;
881 return;
884 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
885 FP_MODE_REG (FIRST_STACK_REG, XFmode));
887 if (i1)
888 emit_insn_after (swap_rtx, i1);
889 else if (current_block)
890 emit_insn_before (swap_rtx, BB_HEAD (current_block));
891 else
892 emit_insn_before (swap_rtx, insn);
895 /* Emit an insns before INSN to swap virtual register SRC1 with
896 the top of stack and virtual register SRC2 with second stack
897 slot. REGSTACK is the stack state before the swaps, and
898 is updated to reflect the swaps. A swap insn is represented as a
899 PARALLEL of two patterns: each pattern moves one reg to the other.
901 If SRC1 and/or SRC2 are already at the right place, no swap insn
902 is emitted. */
904 static void
905 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
907 struct stack_def temp_stack;
908 int regno, j, k, temp;
910 temp_stack = *regstack;
912 /* Place operand 1 at the top of stack. */
913 regno = get_hard_regnum (&temp_stack, src1);
914 gcc_assert (regno >= 0);
915 if (regno != FIRST_STACK_REG)
917 k = temp_stack.top - (regno - FIRST_STACK_REG);
918 j = temp_stack.top;
920 temp = temp_stack.reg[k];
921 temp_stack.reg[k] = temp_stack.reg[j];
922 temp_stack.reg[j] = temp;
925 /* Place operand 2 next on the stack. */
926 regno = get_hard_regnum (&temp_stack, src2);
927 gcc_assert (regno >= 0);
928 if (regno != FIRST_STACK_REG + 1)
930 k = temp_stack.top - (regno - FIRST_STACK_REG);
931 j = temp_stack.top - 1;
933 temp = temp_stack.reg[k];
934 temp_stack.reg[k] = temp_stack.reg[j];
935 temp_stack.reg[j] = temp;
938 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
941 /* Handle a move to or from a stack register in PAT, which is in INSN.
942 REGSTACK is the current stack. Return whether a control flow insn
943 was deleted in the process. */
945 static bool
946 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
948 rtx *psrc = get_true_reg (&SET_SRC (pat));
949 rtx *pdest = get_true_reg (&SET_DEST (pat));
950 rtx src, dest;
951 rtx note;
952 bool control_flow_insn_deleted = false;
954 src = *psrc; dest = *pdest;
956 if (STACK_REG_P (src) && STACK_REG_P (dest))
958 /* Write from one stack reg to another. If SRC dies here, then
959 just change the register mapping and delete the insn. */
961 note = find_regno_note (insn, REG_DEAD, REGNO (src));
962 if (note)
964 int i;
966 /* If this is a no-op move, there must not be a REG_DEAD note. */
967 gcc_assert (REGNO (src) != REGNO (dest));
969 for (i = regstack->top; i >= 0; i--)
970 if (regstack->reg[i] == REGNO (src))
971 break;
973 /* The destination must be dead, or life analysis is borked. */
974 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
976 /* If the source is not live, this is yet another case of
977 uninitialized variables. Load up a NaN instead. */
978 if (i < 0)
979 return move_nan_for_stack_reg (insn, regstack, dest);
981 /* It is possible that the dest is unused after this insn.
982 If so, just pop the src. */
984 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
985 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
986 else
988 regstack->reg[i] = REGNO (dest);
989 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
990 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
993 control_flow_insn_deleted |= control_flow_insn_p (insn);
994 delete_insn (insn);
995 return control_flow_insn_deleted;
998 /* The source reg does not die. */
1000 /* If this appears to be a no-op move, delete it, or else it
1001 will confuse the machine description output patterns. But if
1002 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1003 for REG_UNUSED will not work for deleted insns. */
1005 if (REGNO (src) == REGNO (dest))
1007 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1008 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1010 control_flow_insn_deleted |= control_flow_insn_p (insn);
1011 delete_insn (insn);
1012 return control_flow_insn_deleted;
1015 /* The destination ought to be dead. */
1016 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1018 replace_reg (psrc, get_hard_regnum (regstack, src));
1020 regstack->reg[++regstack->top] = REGNO (dest);
1021 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1022 replace_reg (pdest, FIRST_STACK_REG);
1024 else if (STACK_REG_P (src))
1026 /* Save from a stack reg to MEM, or possibly integer reg. Since
1027 only top of stack may be saved, emit an exchange first if
1028 needs be. */
1030 emit_swap_insn (insn, regstack, src);
1032 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1033 if (note)
1035 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1036 regstack->top--;
1037 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1039 else if ((GET_MODE (src) == XFmode)
1040 && regstack->top < REG_STACK_SIZE - 1)
1042 /* A 387 cannot write an XFmode value to a MEM without
1043 clobbering the source reg. The output code can handle
1044 this by reading back the value from the MEM.
1045 But it is more efficient to use a temp register if one is
1046 available. Push the source value here if the register
1047 stack is not full, and then write the value to memory via
1048 a pop. */
1049 rtx push_rtx;
1050 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1052 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1053 emit_insn_before (push_rtx, insn);
1054 add_reg_note (insn, REG_DEAD, top_stack_reg);
1057 replace_reg (psrc, FIRST_STACK_REG);
1059 else
1061 rtx pat = PATTERN (insn);
1063 gcc_assert (STACK_REG_P (dest));
1065 /* Load from MEM, or possibly integer REG or constant, into the
1066 stack regs. The actual target is always the top of the
1067 stack. The stack mapping is changed to reflect that DEST is
1068 now at top of stack. */
1070 /* The destination ought to be dead. However, there is a
1071 special case with i387 UNSPEC_TAN, where destination is live
1072 (an argument to fptan) but inherent load of 1.0 is modelled
1073 as a load from a constant. */
1074 if (GET_CODE (pat) == PARALLEL
1075 && XVECLEN (pat, 0) == 2
1076 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1077 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1078 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1079 emit_swap_insn (insn, regstack, dest);
1080 else
1081 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1083 gcc_assert (regstack->top < REG_STACK_SIZE);
1085 regstack->reg[++regstack->top] = REGNO (dest);
1086 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1087 replace_reg (pdest, FIRST_STACK_REG);
1090 return control_flow_insn_deleted;
1093 /* A helper function which replaces INSN with a pattern that loads up
1094 a NaN into DEST, then invokes move_for_stack_reg. */
1096 static bool
1097 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1099 rtx pat;
1101 dest = FP_MODE_REG (REGNO (dest), SFmode);
1102 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1103 PATTERN (insn) = pat;
1104 INSN_CODE (insn) = -1;
1106 return move_for_stack_reg (insn, regstack, pat);
1109 /* Swap the condition on a branch, if there is one. Return true if we
1110 found a condition to swap. False if the condition was not used as
1111 such. */
1113 static int
1114 swap_rtx_condition_1 (rtx pat)
1116 const char *fmt;
1117 int i, r = 0;
1119 if (COMPARISON_P (pat))
1121 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1122 r = 1;
1124 else
1126 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1127 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1129 if (fmt[i] == 'E')
1131 int j;
1133 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1134 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1136 else if (fmt[i] == 'e')
1137 r |= swap_rtx_condition_1 (XEXP (pat, i));
1141 return r;
1144 static int
1145 swap_rtx_condition (rtx insn)
1147 rtx pat = PATTERN (insn);
1149 /* We're looking for a single set to cc0 or an HImode temporary. */
1151 if (GET_CODE (pat) == SET
1152 && REG_P (SET_DEST (pat))
1153 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1155 insn = next_flags_user (insn);
1156 if (insn == NULL_RTX)
1157 return 0;
1158 pat = PATTERN (insn);
1161 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1162 with the cc value right now. We may be able to search for one
1163 though. */
1165 if (GET_CODE (pat) == SET
1166 && GET_CODE (SET_SRC (pat)) == UNSPEC
1167 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1169 rtx dest = SET_DEST (pat);
1171 /* Search forward looking for the first use of this value.
1172 Stop at block boundaries. */
1173 while (insn != BB_END (current_block))
1175 insn = NEXT_INSN (insn);
1176 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1177 break;
1178 if (CALL_P (insn))
1179 return 0;
1182 /* We haven't found it. */
1183 if (insn == BB_END (current_block))
1184 return 0;
1186 /* So we've found the insn using this value. If it is anything
1187 other than sahf or the value does not die (meaning we'd have
1188 to search further), then we must give up. */
1189 pat = PATTERN (insn);
1190 if (GET_CODE (pat) != SET
1191 || GET_CODE (SET_SRC (pat)) != UNSPEC
1192 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1193 || ! dead_or_set_p (insn, dest))
1194 return 0;
1196 /* Now we are prepared to handle this as a normal cc0 setter. */
1197 insn = next_flags_user (insn);
1198 if (insn == NULL_RTX)
1199 return 0;
1200 pat = PATTERN (insn);
1203 if (swap_rtx_condition_1 (pat))
1205 int fail = 0;
1206 INSN_CODE (insn) = -1;
1207 if (recog_memoized (insn) == -1)
1208 fail = 1;
1209 /* In case the flags don't die here, recurse to try fix
1210 following user too. */
1211 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1213 insn = next_flags_user (insn);
1214 if (!insn || !swap_rtx_condition (insn))
1215 fail = 1;
1217 if (fail)
1219 swap_rtx_condition_1 (pat);
1220 return 0;
1222 return 1;
1224 return 0;
1227 /* Handle a comparison. Special care needs to be taken to avoid
1228 causing comparisons that a 387 cannot do correctly, such as EQ.
1230 Also, a pop insn may need to be emitted. The 387 does have an
1231 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1232 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1233 set up. */
1235 static void
1236 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1238 rtx *src1, *src2;
1239 rtx src1_note, src2_note;
1241 src1 = get_true_reg (&XEXP (pat_src, 0));
1242 src2 = get_true_reg (&XEXP (pat_src, 1));
1244 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1245 registers that die in this insn - move those to stack top first. */
1246 if ((! STACK_REG_P (*src1)
1247 || (STACK_REG_P (*src2)
1248 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1249 && swap_rtx_condition (insn))
1251 rtx temp;
1252 temp = XEXP (pat_src, 0);
1253 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1254 XEXP (pat_src, 1) = temp;
1256 src1 = get_true_reg (&XEXP (pat_src, 0));
1257 src2 = get_true_reg (&XEXP (pat_src, 1));
1259 INSN_CODE (insn) = -1;
1262 /* We will fix any death note later. */
1264 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1266 if (STACK_REG_P (*src2))
1267 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1268 else
1269 src2_note = NULL_RTX;
1271 emit_swap_insn (insn, regstack, *src1);
1273 replace_reg (src1, FIRST_STACK_REG);
1275 if (STACK_REG_P (*src2))
1276 replace_reg (src2, get_hard_regnum (regstack, *src2));
1278 if (src1_note)
1280 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1281 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1284 /* If the second operand dies, handle that. But if the operands are
1285 the same stack register, don't bother, because only one death is
1286 needed, and it was just handled. */
1288 if (src2_note
1289 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1290 && REGNO (*src1) == REGNO (*src2)))
1292 /* As a special case, two regs may die in this insn if src2 is
1293 next to top of stack and the top of stack also dies. Since
1294 we have already popped src1, "next to top of stack" is really
1295 at top (FIRST_STACK_REG) now. */
1297 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1298 && src1_note)
1300 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1301 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1303 else
1305 /* The 386 can only represent death of the first operand in
1306 the case handled above. In all other cases, emit a separate
1307 pop and remove the death note from here. */
1309 /* link_cc0_insns (insn); */
1311 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1313 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1314 EMIT_AFTER);
1319 /* Substitute new registers in LOC, which is part of a debug insn.
1320 REGSTACK is the current register layout. */
1322 static int
1323 subst_stack_regs_in_debug_insn (rtx *loc, void *data)
1325 rtx *tloc = get_true_reg (loc);
1326 stack regstack = (stack)data;
1327 int hard_regno;
1329 if (!STACK_REG_P (*tloc))
1330 return 0;
1332 if (tloc != loc)
1333 return 0;
1335 hard_regno = get_hard_regnum (regstack, *loc);
1336 gcc_assert (hard_regno >= FIRST_STACK_REG);
1338 replace_reg (loc, hard_regno);
1340 return -1;
1343 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1344 is the current register layout. Return whether a control flow insn
1345 was deleted in the process. */
1347 static bool
1348 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1350 rtx *dest, *src;
1351 bool control_flow_insn_deleted = false;
1353 switch (GET_CODE (pat))
1355 case USE:
1356 /* Deaths in USE insns can happen in non optimizing compilation.
1357 Handle them by popping the dying register. */
1358 src = get_true_reg (&XEXP (pat, 0));
1359 if (STACK_REG_P (*src)
1360 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1362 /* USEs are ignored for liveness information so USEs of dead
1363 register might happen. */
1364 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1365 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1366 return control_flow_insn_deleted;
1368 /* Uninitialized USE might happen for functions returning uninitialized
1369 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1370 so it is safe to ignore the use here. This is consistent with behavior
1371 of dataflow analyzer that ignores USE too. (This also imply that
1372 forcibly initializing the register to NaN here would lead to ICE later,
1373 since the REG_DEAD notes are not issued.) */
1374 break;
1376 case VAR_LOCATION:
1377 gcc_unreachable ();
1379 case CLOBBER:
1381 rtx note;
1383 dest = get_true_reg (&XEXP (pat, 0));
1384 if (STACK_REG_P (*dest))
1386 note = find_reg_note (insn, REG_DEAD, *dest);
1388 if (pat != PATTERN (insn))
1390 /* The fix_truncdi_1 pattern wants to be able to
1391 allocate its own scratch register. It does this by
1392 clobbering an fp reg so that it is assured of an
1393 empty reg-stack register. If the register is live,
1394 kill it now. Remove the DEAD/UNUSED note so we
1395 don't try to kill it later too.
1397 In reality the UNUSED note can be absent in some
1398 complicated cases when the register is reused for
1399 partially set variable. */
1401 if (note)
1402 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1403 else
1404 note = find_reg_note (insn, REG_UNUSED, *dest);
1405 if (note)
1406 remove_note (insn, note);
1407 replace_reg (dest, FIRST_STACK_REG + 1);
1409 else
1411 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1412 indicates an uninitialized value. Because reload removed
1413 all other clobbers, this must be due to a function
1414 returning without a value. Load up a NaN. */
1416 if (!note)
1418 rtx t = *dest;
1419 if (COMPLEX_MODE_P (GET_MODE (t)))
1421 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1422 if (get_hard_regnum (regstack, u) == -1)
1424 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1425 rtx insn2 = emit_insn_before (pat2, insn);
1426 control_flow_insn_deleted
1427 |= move_nan_for_stack_reg (insn2, regstack, u);
1430 if (get_hard_regnum (regstack, t) == -1)
1431 control_flow_insn_deleted
1432 |= move_nan_for_stack_reg (insn, regstack, t);
1436 break;
1439 case SET:
1441 rtx *src1 = (rtx *) 0, *src2;
1442 rtx src1_note, src2_note;
1443 rtx pat_src;
1445 dest = get_true_reg (&SET_DEST (pat));
1446 src = get_true_reg (&SET_SRC (pat));
1447 pat_src = SET_SRC (pat);
1449 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1450 if (STACK_REG_P (*src)
1451 || (STACK_REG_P (*dest)
1452 && (REG_P (*src) || MEM_P (*src)
1453 || GET_CODE (*src) == CONST_DOUBLE)))
1455 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1456 break;
1459 switch (GET_CODE (pat_src))
1461 case COMPARE:
1462 compare_for_stack_reg (insn, regstack, pat_src);
1463 break;
1465 case CALL:
1467 int count;
1468 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1469 --count >= 0;)
1471 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1472 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1475 replace_reg (dest, FIRST_STACK_REG);
1476 break;
1478 case REG:
1479 /* This is a `tstM2' case. */
1480 gcc_assert (*dest == cc0_rtx);
1481 src1 = src;
1483 /* Fall through. */
1485 case FLOAT_TRUNCATE:
1486 case SQRT:
1487 case ABS:
1488 case NEG:
1489 /* These insns only operate on the top of the stack. DEST might
1490 be cc0_rtx if we're processing a tstM pattern. Also, it's
1491 possible that the tstM case results in a REG_DEAD note on the
1492 source. */
1494 if (src1 == 0)
1495 src1 = get_true_reg (&XEXP (pat_src, 0));
1497 emit_swap_insn (insn, regstack, *src1);
1499 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1501 if (STACK_REG_P (*dest))
1502 replace_reg (dest, FIRST_STACK_REG);
1504 if (src1_note)
1506 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1507 regstack->top--;
1508 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1511 replace_reg (src1, FIRST_STACK_REG);
1512 break;
1514 case MINUS:
1515 case DIV:
1516 /* On i386, reversed forms of subM3 and divM3 exist for
1517 MODE_FLOAT, so the same code that works for addM3 and mulM3
1518 can be used. */
1519 case MULT:
1520 case PLUS:
1521 /* These insns can accept the top of stack as a destination
1522 from a stack reg or mem, or can use the top of stack as a
1523 source and some other stack register (possibly top of stack)
1524 as a destination. */
1526 src1 = get_true_reg (&XEXP (pat_src, 0));
1527 src2 = get_true_reg (&XEXP (pat_src, 1));
1529 /* We will fix any death note later. */
1531 if (STACK_REG_P (*src1))
1532 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1533 else
1534 src1_note = NULL_RTX;
1535 if (STACK_REG_P (*src2))
1536 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1537 else
1538 src2_note = NULL_RTX;
1540 /* If either operand is not a stack register, then the dest
1541 must be top of stack. */
1543 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1544 emit_swap_insn (insn, regstack, *dest);
1545 else
1547 /* Both operands are REG. If neither operand is already
1548 at the top of stack, choose to make the one that is the
1549 dest the new top of stack. */
1551 int src1_hard_regnum, src2_hard_regnum;
1553 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1554 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1556 /* If the source is not live, this is yet another case of
1557 uninitialized variables. Load up a NaN instead. */
1558 if (src1_hard_regnum == -1)
1560 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1561 rtx insn2 = emit_insn_before (pat2, insn);
1562 control_flow_insn_deleted
1563 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1565 if (src2_hard_regnum == -1)
1567 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1568 rtx insn2 = emit_insn_before (pat2, insn);
1569 control_flow_insn_deleted
1570 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1573 if (src1_hard_regnum != FIRST_STACK_REG
1574 && src2_hard_regnum != FIRST_STACK_REG)
1575 emit_swap_insn (insn, regstack, *dest);
1578 if (STACK_REG_P (*src1))
1579 replace_reg (src1, get_hard_regnum (regstack, *src1));
1580 if (STACK_REG_P (*src2))
1581 replace_reg (src2, get_hard_regnum (regstack, *src2));
1583 if (src1_note)
1585 rtx src1_reg = XEXP (src1_note, 0);
1587 /* If the register that dies is at the top of stack, then
1588 the destination is somewhere else - merely substitute it.
1589 But if the reg that dies is not at top of stack, then
1590 move the top of stack to the dead reg, as though we had
1591 done the insn and then a store-with-pop. */
1593 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1595 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1596 replace_reg (dest, get_hard_regnum (regstack, *dest));
1598 else
1600 int regno = get_hard_regnum (regstack, src1_reg);
1602 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1603 replace_reg (dest, regno);
1605 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1606 = regstack->reg[regstack->top];
1609 CLEAR_HARD_REG_BIT (regstack->reg_set,
1610 REGNO (XEXP (src1_note, 0)));
1611 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1612 regstack->top--;
1614 else if (src2_note)
1616 rtx src2_reg = XEXP (src2_note, 0);
1617 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1619 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1620 replace_reg (dest, get_hard_regnum (regstack, *dest));
1622 else
1624 int regno = get_hard_regnum (regstack, src2_reg);
1626 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1627 replace_reg (dest, regno);
1629 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1630 = regstack->reg[regstack->top];
1633 CLEAR_HARD_REG_BIT (regstack->reg_set,
1634 REGNO (XEXP (src2_note, 0)));
1635 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1636 regstack->top--;
1638 else
1640 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1641 replace_reg (dest, get_hard_regnum (regstack, *dest));
1644 /* Keep operand 1 matching with destination. */
1645 if (COMMUTATIVE_ARITH_P (pat_src)
1646 && REG_P (*src1) && REG_P (*src2)
1647 && REGNO (*src1) != REGNO (*dest))
1649 int tmp = REGNO (*src1);
1650 replace_reg (src1, REGNO (*src2));
1651 replace_reg (src2, tmp);
1653 break;
1655 case UNSPEC:
1656 switch (XINT (pat_src, 1))
1658 case UNSPEC_FIST:
1660 case UNSPEC_FIST_FLOOR:
1661 case UNSPEC_FIST_CEIL:
1663 /* These insns only operate on the top of the stack. */
1665 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1666 emit_swap_insn (insn, regstack, *src1);
1668 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1670 if (STACK_REG_P (*dest))
1671 replace_reg (dest, FIRST_STACK_REG);
1673 if (src1_note)
1675 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1676 regstack->top--;
1677 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1680 replace_reg (src1, FIRST_STACK_REG);
1681 break;
1683 case UNSPEC_FXAM:
1685 /* This insn only operate on the top of the stack. */
1687 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1688 emit_swap_insn (insn, regstack, *src1);
1690 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1692 replace_reg (src1, FIRST_STACK_REG);
1694 if (src1_note)
1696 remove_regno_note (insn, REG_DEAD,
1697 REGNO (XEXP (src1_note, 0)));
1698 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1699 EMIT_AFTER);
1702 break;
1704 case UNSPEC_SIN:
1705 case UNSPEC_COS:
1706 case UNSPEC_FRNDINT:
1707 case UNSPEC_F2XM1:
1709 case UNSPEC_FRNDINT_FLOOR:
1710 case UNSPEC_FRNDINT_CEIL:
1711 case UNSPEC_FRNDINT_TRUNC:
1712 case UNSPEC_FRNDINT_MASK_PM:
1714 /* Above insns operate on the top of the stack. */
1716 case UNSPEC_SINCOS_COS:
1717 case UNSPEC_XTRACT_FRACT:
1719 /* Above insns operate on the top two stack slots,
1720 first part of one input, double output insn. */
1722 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1724 emit_swap_insn (insn, regstack, *src1);
1726 /* Input should never die, it is replaced with output. */
1727 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1728 gcc_assert (!src1_note);
1730 if (STACK_REG_P (*dest))
1731 replace_reg (dest, FIRST_STACK_REG);
1733 replace_reg (src1, FIRST_STACK_REG);
1734 break;
1736 case UNSPEC_SINCOS_SIN:
1737 case UNSPEC_XTRACT_EXP:
1739 /* These insns operate on the top two stack slots,
1740 second part of one input, double output insn. */
1742 regstack->top++;
1743 /* FALLTHRU */
1745 case UNSPEC_TAN:
1747 /* For UNSPEC_TAN, regstack->top is already increased
1748 by inherent load of constant 1.0. */
1750 /* Output value is generated in the second stack slot.
1751 Move current value from second slot to the top. */
1752 regstack->reg[regstack->top]
1753 = regstack->reg[regstack->top - 1];
1755 gcc_assert (STACK_REG_P (*dest));
1757 regstack->reg[regstack->top - 1] = REGNO (*dest);
1758 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1759 replace_reg (dest, FIRST_STACK_REG + 1);
1761 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1763 replace_reg (src1, FIRST_STACK_REG);
1764 break;
1766 case UNSPEC_FPATAN:
1767 case UNSPEC_FYL2X:
1768 case UNSPEC_FYL2XP1:
1769 /* These insns operate on the top two stack slots. */
1771 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1772 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1774 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1775 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1777 swap_to_top (insn, regstack, *src1, *src2);
1779 replace_reg (src1, FIRST_STACK_REG);
1780 replace_reg (src2, FIRST_STACK_REG + 1);
1782 if (src1_note)
1783 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1784 if (src2_note)
1785 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1787 /* Pop both input operands from the stack. */
1788 CLEAR_HARD_REG_BIT (regstack->reg_set,
1789 regstack->reg[regstack->top]);
1790 CLEAR_HARD_REG_BIT (regstack->reg_set,
1791 regstack->reg[regstack->top - 1]);
1792 regstack->top -= 2;
1794 /* Push the result back onto the stack. */
1795 regstack->reg[++regstack->top] = REGNO (*dest);
1796 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1797 replace_reg (dest, FIRST_STACK_REG);
1798 break;
1800 case UNSPEC_FSCALE_FRACT:
1801 case UNSPEC_FPREM_F:
1802 case UNSPEC_FPREM1_F:
1803 /* These insns operate on the top two stack slots,
1804 first part of double input, double output insn. */
1806 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1807 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1809 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1810 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1812 /* Inputs should never die, they are
1813 replaced with outputs. */
1814 gcc_assert (!src1_note);
1815 gcc_assert (!src2_note);
1817 swap_to_top (insn, regstack, *src1, *src2);
1819 /* Push the result back onto stack. Empty stack slot
1820 will be filled in second part of insn. */
1821 if (STACK_REG_P (*dest))
1823 regstack->reg[regstack->top] = REGNO (*dest);
1824 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1825 replace_reg (dest, FIRST_STACK_REG);
1828 replace_reg (src1, FIRST_STACK_REG);
1829 replace_reg (src2, FIRST_STACK_REG + 1);
1830 break;
1832 case UNSPEC_FSCALE_EXP:
1833 case UNSPEC_FPREM_U:
1834 case UNSPEC_FPREM1_U:
1835 /* These insns operate on the top two stack slots,
1836 second part of double input, double output insn. */
1838 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1839 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1841 /* Push the result back onto stack. Fill empty slot from
1842 first part of insn and fix top of stack pointer. */
1843 if (STACK_REG_P (*dest))
1845 regstack->reg[regstack->top - 1] = REGNO (*dest);
1846 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1847 replace_reg (dest, FIRST_STACK_REG + 1);
1850 replace_reg (src1, FIRST_STACK_REG);
1851 replace_reg (src2, FIRST_STACK_REG + 1);
1852 break;
1854 case UNSPEC_C2_FLAG:
1855 /* This insn operates on the top two stack slots,
1856 third part of C2 setting double input insn. */
1858 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1859 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1861 replace_reg (src1, FIRST_STACK_REG);
1862 replace_reg (src2, FIRST_STACK_REG + 1);
1863 break;
1865 case UNSPEC_SAHF:
1866 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1867 The combination matches the PPRO fcomi instruction. */
1869 pat_src = XVECEXP (pat_src, 0, 0);
1870 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1871 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1872 /* Fall through. */
1874 case UNSPEC_FNSTSW:
1875 /* Combined fcomp+fnstsw generated for doing well with
1876 CSE. When optimizing this would have been broken
1877 up before now. */
1879 pat_src = XVECEXP (pat_src, 0, 0);
1880 gcc_assert (GET_CODE (pat_src) == COMPARE);
1882 compare_for_stack_reg (insn, regstack, pat_src);
1883 break;
1885 default:
1886 gcc_unreachable ();
1888 break;
1890 case IF_THEN_ELSE:
1891 /* This insn requires the top of stack to be the destination. */
1893 src1 = get_true_reg (&XEXP (pat_src, 1));
1894 src2 = get_true_reg (&XEXP (pat_src, 2));
1896 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1897 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1899 /* If the comparison operator is an FP comparison operator,
1900 it is handled correctly by compare_for_stack_reg () who
1901 will move the destination to the top of stack. But if the
1902 comparison operator is not an FP comparison operator, we
1903 have to handle it here. */
1904 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1905 && REGNO (*dest) != regstack->reg[regstack->top])
1907 /* In case one of operands is the top of stack and the operands
1908 dies, it is safe to make it the destination operand by
1909 reversing the direction of cmove and avoid fxch. */
1910 if ((REGNO (*src1) == regstack->reg[regstack->top]
1911 && src1_note)
1912 || (REGNO (*src2) == regstack->reg[regstack->top]
1913 && src2_note))
1915 int idx1 = (get_hard_regnum (regstack, *src1)
1916 - FIRST_STACK_REG);
1917 int idx2 = (get_hard_regnum (regstack, *src2)
1918 - FIRST_STACK_REG);
1920 /* Make reg-stack believe that the operands are already
1921 swapped on the stack */
1922 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1923 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1925 /* Reverse condition to compensate the operand swap.
1926 i386 do have comparison always reversible. */
1927 PUT_CODE (XEXP (pat_src, 0),
1928 reversed_comparison_code (XEXP (pat_src, 0), insn));
1930 else
1931 emit_swap_insn (insn, regstack, *dest);
1935 rtx src_note [3];
1936 int i;
1938 src_note[0] = 0;
1939 src_note[1] = src1_note;
1940 src_note[2] = src2_note;
1942 if (STACK_REG_P (*src1))
1943 replace_reg (src1, get_hard_regnum (regstack, *src1));
1944 if (STACK_REG_P (*src2))
1945 replace_reg (src2, get_hard_regnum (regstack, *src2));
1947 for (i = 1; i <= 2; i++)
1948 if (src_note [i])
1950 int regno = REGNO (XEXP (src_note[i], 0));
1952 /* If the register that dies is not at the top of
1953 stack, then move the top of stack to the dead reg.
1954 Top of stack should never die, as it is the
1955 destination. */
1956 gcc_assert (regno != regstack->reg[regstack->top]);
1957 remove_regno_note (insn, REG_DEAD, regno);
1958 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1959 EMIT_AFTER);
1963 /* Make dest the top of stack. Add dest to regstack if
1964 not present. */
1965 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1966 regstack->reg[++regstack->top] = REGNO (*dest);
1967 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1968 replace_reg (dest, FIRST_STACK_REG);
1969 break;
1971 default:
1972 gcc_unreachable ();
1974 break;
1977 default:
1978 break;
1981 return control_flow_insn_deleted;
1984 /* Substitute hard regnums for any stack regs in INSN, which has
1985 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1986 before the insn, and is updated with changes made here.
1988 There are several requirements and assumptions about the use of
1989 stack-like regs in asm statements. These rules are enforced by
1990 record_asm_stack_regs; see comments there for details. Any
1991 asm_operands left in the RTL at this point may be assume to meet the
1992 requirements, since record_asm_stack_regs removes any problem asm. */
1994 static void
1995 subst_asm_stack_regs (rtx insn, stack regstack)
1997 rtx body = PATTERN (insn);
1998 int alt;
2000 rtx *note_reg; /* Array of note contents */
2001 rtx **note_loc; /* Address of REG field of each note */
2002 enum reg_note *note_kind; /* The type of each note */
2004 rtx *clobber_reg = 0;
2005 rtx **clobber_loc = 0;
2007 struct stack_def temp_stack;
2008 int n_notes;
2009 int n_clobbers;
2010 rtx note;
2011 int i;
2012 int n_inputs, n_outputs;
2014 if (! check_asm_stack_operands (insn))
2015 return;
2017 /* Find out what the constraints required. If no constraint
2018 alternative matches, that is a compiler bug: we should have caught
2019 such an insn in check_asm_stack_operands. */
2020 extract_insn (insn);
2021 constrain_operands (1);
2022 alt = which_alternative;
2024 preprocess_constraints ();
2026 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2028 gcc_assert (alt >= 0);
2030 /* Strip SUBREGs here to make the following code simpler. */
2031 for (i = 0; i < recog_data.n_operands; i++)
2032 if (GET_CODE (recog_data.operand[i]) == SUBREG
2033 && REG_P (SUBREG_REG (recog_data.operand[i])))
2035 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2036 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2039 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2041 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2042 i++;
2044 note_reg = XALLOCAVEC (rtx, i);
2045 note_loc = XALLOCAVEC (rtx *, i);
2046 note_kind = XALLOCAVEC (enum reg_note, i);
2048 n_notes = 0;
2049 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2051 rtx reg = XEXP (note, 0);
2052 rtx *loc = & XEXP (note, 0);
2054 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2056 loc = & SUBREG_REG (reg);
2057 reg = SUBREG_REG (reg);
2060 if (STACK_REG_P (reg)
2061 && (REG_NOTE_KIND (note) == REG_DEAD
2062 || REG_NOTE_KIND (note) == REG_UNUSED))
2064 note_reg[n_notes] = reg;
2065 note_loc[n_notes] = loc;
2066 note_kind[n_notes] = REG_NOTE_KIND (note);
2067 n_notes++;
2071 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2073 n_clobbers = 0;
2075 if (GET_CODE (body) == PARALLEL)
2077 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2078 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2080 for (i = 0; i < XVECLEN (body, 0); i++)
2081 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2083 rtx clobber = XVECEXP (body, 0, i);
2084 rtx reg = XEXP (clobber, 0);
2085 rtx *loc = & XEXP (clobber, 0);
2087 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2089 loc = & SUBREG_REG (reg);
2090 reg = SUBREG_REG (reg);
2093 if (STACK_REG_P (reg))
2095 clobber_reg[n_clobbers] = reg;
2096 clobber_loc[n_clobbers] = loc;
2097 n_clobbers++;
2102 temp_stack = *regstack;
2104 /* Put the input regs into the desired place in TEMP_STACK. */
2106 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2107 if (STACK_REG_P (recog_data.operand[i])
2108 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2109 FLOAT_REGS)
2110 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2112 /* If an operand needs to be in a particular reg in
2113 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2114 these constraints are for single register classes, and
2115 reload guaranteed that operand[i] is already in that class,
2116 we can just use REGNO (recog_data.operand[i]) to know which
2117 actual reg this operand needs to be in. */
2119 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2121 gcc_assert (regno >= 0);
2123 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2125 /* recog_data.operand[i] is not in the right place. Find
2126 it and swap it with whatever is already in I's place.
2127 K is where recog_data.operand[i] is now. J is where it
2128 should be. */
2129 int j, k, temp;
2131 k = temp_stack.top - (regno - FIRST_STACK_REG);
2132 j = (temp_stack.top
2133 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2135 temp = temp_stack.reg[k];
2136 temp_stack.reg[k] = temp_stack.reg[j];
2137 temp_stack.reg[j] = temp;
2141 /* Emit insns before INSN to make sure the reg-stack is in the right
2142 order. */
2144 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2146 /* Make the needed input register substitutions. Do death notes and
2147 clobbers too, because these are for inputs, not outputs. */
2149 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2150 if (STACK_REG_P (recog_data.operand[i]))
2152 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2154 gcc_assert (regnum >= 0);
2156 replace_reg (recog_data.operand_loc[i], regnum);
2159 for (i = 0; i < n_notes; i++)
2160 if (note_kind[i] == REG_DEAD)
2162 int regnum = get_hard_regnum (regstack, note_reg[i]);
2164 gcc_assert (regnum >= 0);
2166 replace_reg (note_loc[i], regnum);
2169 for (i = 0; i < n_clobbers; i++)
2171 /* It's OK for a CLOBBER to reference a reg that is not live.
2172 Don't try to replace it in that case. */
2173 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2175 if (regnum >= 0)
2177 /* Sigh - clobbers always have QImode. But replace_reg knows
2178 that these regs can't be MODE_INT and will assert. Just put
2179 the right reg there without calling replace_reg. */
2181 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2185 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2187 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2188 if (STACK_REG_P (recog_data.operand[i]))
2190 /* An input reg is implicitly popped if it is tied to an
2191 output, or if there is a CLOBBER for it. */
2192 int j;
2194 for (j = 0; j < n_clobbers; j++)
2195 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2196 break;
2198 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2200 /* recog_data.operand[i] might not be at the top of stack.
2201 But that's OK, because all we need to do is pop the
2202 right number of regs off of the top of the reg-stack.
2203 record_asm_stack_regs guaranteed that all implicitly
2204 popped regs were grouped at the top of the reg-stack. */
2206 CLEAR_HARD_REG_BIT (regstack->reg_set,
2207 regstack->reg[regstack->top]);
2208 regstack->top--;
2212 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2213 Note that there isn't any need to substitute register numbers.
2214 ??? Explain why this is true. */
2216 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2218 /* See if there is an output for this hard reg. */
2219 int j;
2221 for (j = 0; j < n_outputs; j++)
2222 if (STACK_REG_P (recog_data.operand[j])
2223 && REGNO (recog_data.operand[j]) == (unsigned) i)
2225 regstack->reg[++regstack->top] = i;
2226 SET_HARD_REG_BIT (regstack->reg_set, i);
2227 break;
2231 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2232 input that the asm didn't implicitly pop. If the asm didn't
2233 implicitly pop an input reg, that reg will still be live.
2235 Note that we can't use find_regno_note here: the register numbers
2236 in the death notes have already been substituted. */
2238 for (i = 0; i < n_outputs; i++)
2239 if (STACK_REG_P (recog_data.operand[i]))
2241 int j;
2243 for (j = 0; j < n_notes; j++)
2244 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2245 && note_kind[j] == REG_UNUSED)
2247 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2248 EMIT_AFTER);
2249 break;
2253 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2254 if (STACK_REG_P (recog_data.operand[i]))
2256 int j;
2258 for (j = 0; j < n_notes; j++)
2259 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2260 && note_kind[j] == REG_DEAD
2261 && TEST_HARD_REG_BIT (regstack->reg_set,
2262 REGNO (recog_data.operand[i])))
2264 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2265 EMIT_AFTER);
2266 break;
2271 /* Substitute stack hard reg numbers for stack virtual registers in
2272 INSN. Non-stack register numbers are not changed. REGSTACK is the
2273 current stack content. Insns may be emitted as needed to arrange the
2274 stack for the 387 based on the contents of the insn. Return whether
2275 a control flow insn was deleted in the process. */
2277 static bool
2278 subst_stack_regs (rtx insn, stack regstack)
2280 rtx *note_link, note;
2281 bool control_flow_insn_deleted = false;
2282 int i;
2284 if (CALL_P (insn))
2286 int top = regstack->top;
2288 /* If there are any floating point parameters to be passed in
2289 registers for this call, make sure they are in the right
2290 order. */
2292 if (top >= 0)
2294 straighten_stack (insn, regstack);
2296 /* Now mark the arguments as dead after the call. */
2298 while (regstack->top >= 0)
2300 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2301 regstack->top--;
2306 /* Do the actual substitution if any stack regs are mentioned.
2307 Since we only record whether entire insn mentions stack regs, and
2308 subst_stack_regs_pat only works for patterns that contain stack regs,
2309 we must check each pattern in a parallel here. A call_value_pop could
2310 fail otherwise. */
2312 if (stack_regs_mentioned (insn))
2314 int n_operands = asm_noperands (PATTERN (insn));
2315 if (n_operands >= 0)
2317 /* This insn is an `asm' with operands. Decode the operands,
2318 decide how many are inputs, and do register substitution.
2319 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2321 subst_asm_stack_regs (insn, regstack);
2322 return control_flow_insn_deleted;
2325 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2326 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2328 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2330 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2331 XVECEXP (PATTERN (insn), 0, i)
2332 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2333 control_flow_insn_deleted
2334 |= subst_stack_regs_pat (insn, regstack,
2335 XVECEXP (PATTERN (insn), 0, i));
2338 else
2339 control_flow_insn_deleted
2340 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2343 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2344 REG_UNUSED will already have been dealt with, so just return. */
2346 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2347 return control_flow_insn_deleted;
2349 /* If this a noreturn call, we can't insert pop insns after it.
2350 Instead, reset the stack state to empty. */
2351 if (CALL_P (insn)
2352 && find_reg_note (insn, REG_NORETURN, NULL))
2354 regstack->top = -1;
2355 CLEAR_HARD_REG_SET (regstack->reg_set);
2356 return control_flow_insn_deleted;
2359 /* If there is a REG_UNUSED note on a stack register on this insn,
2360 the indicated reg must be popped. The REG_UNUSED note is removed,
2361 since the form of the newly emitted pop insn references the reg,
2362 making it no longer `unset'. */
2364 note_link = &REG_NOTES (insn);
2365 for (note = *note_link; note; note = XEXP (note, 1))
2366 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2368 *note_link = XEXP (note, 1);
2369 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2371 else
2372 note_link = &XEXP (note, 1);
2374 return control_flow_insn_deleted;
2377 /* Change the organization of the stack so that it fits a new basic
2378 block. Some registers might have to be popped, but there can never be
2379 a register live in the new block that is not now live.
2381 Insert any needed insns before or after INSN, as indicated by
2382 WHERE. OLD is the original stack layout, and NEW is the desired
2383 form. OLD is updated to reflect the code emitted, i.e., it will be
2384 the same as NEW upon return.
2386 This function will not preserve block_end[]. But that information
2387 is no longer needed once this has executed. */
2389 static void
2390 change_stack (rtx insn, stack old, stack new_stack, enum emit_where where)
2392 int reg;
2393 int update_end = 0;
2394 int i;
2396 /* Stack adjustments for the first insn in a block update the
2397 current_block's stack_in instead of inserting insns directly.
2398 compensate_edges will add the necessary code later. */
2399 if (current_block
2400 && starting_stack_p
2401 && where == EMIT_BEFORE)
2403 BLOCK_INFO (current_block)->stack_in = *new_stack;
2404 starting_stack_p = false;
2405 *old = *new_stack;
2406 return;
2409 /* We will be inserting new insns "backwards". If we are to insert
2410 after INSN, find the next insn, and insert before it. */
2412 if (where == EMIT_AFTER)
2414 if (current_block && BB_END (current_block) == insn)
2415 update_end = 1;
2416 insn = NEXT_INSN (insn);
2419 /* Initialize partially dead variables. */
2420 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2421 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2422 && !TEST_HARD_REG_BIT (old->reg_set, i))
2424 old->reg[++old->top] = i;
2425 SET_HARD_REG_BIT (old->reg_set, i);
2426 emit_insn_before (gen_rtx_SET (VOIDmode,
2427 FP_MODE_REG (i, SFmode), not_a_num), insn);
2430 /* Pop any registers that are not needed in the new block. */
2432 /* If the destination block's stack already has a specified layout
2433 and contains two or more registers, use a more intelligent algorithm
2434 to pop registers that minimizes the number number of fxchs below. */
2435 if (new_stack->top > 0)
2437 bool slots[REG_STACK_SIZE];
2438 int pops[REG_STACK_SIZE];
2439 int next, dest, topsrc;
2441 /* First pass to determine the free slots. */
2442 for (reg = 0; reg <= new_stack->top; reg++)
2443 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2445 /* Second pass to allocate preferred slots. */
2446 topsrc = -1;
2447 for (reg = old->top; reg > new_stack->top; reg--)
2448 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2450 dest = -1;
2451 for (next = 0; next <= new_stack->top; next++)
2452 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2454 /* If this is a preference for the new top of stack, record
2455 the fact by remembering it's old->reg in topsrc. */
2456 if (next == new_stack->top)
2457 topsrc = reg;
2458 slots[next] = true;
2459 dest = next;
2460 break;
2462 pops[reg] = dest;
2464 else
2465 pops[reg] = reg;
2467 /* Intentionally, avoid placing the top of stack in it's correct
2468 location, if we still need to permute the stack below and we
2469 can usefully place it somewhere else. This is the case if any
2470 slot is still unallocated, in which case we should place the
2471 top of stack there. */
2472 if (topsrc != -1)
2473 for (reg = 0; reg < new_stack->top; reg++)
2474 if (!slots[reg])
2476 pops[topsrc] = reg;
2477 slots[new_stack->top] = false;
2478 slots[reg] = true;
2479 break;
2482 /* Third pass allocates remaining slots and emits pop insns. */
2483 next = new_stack->top;
2484 for (reg = old->top; reg > new_stack->top; reg--)
2486 dest = pops[reg];
2487 if (dest == -1)
2489 /* Find next free slot. */
2490 while (slots[next])
2491 next--;
2492 dest = next--;
2494 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2495 EMIT_BEFORE);
2498 else
2500 /* The following loop attempts to maximize the number of times we
2501 pop the top of the stack, as this permits the use of the faster
2502 ffreep instruction on platforms that support it. */
2503 int live, next;
2505 live = 0;
2506 for (reg = 0; reg <= old->top; reg++)
2507 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2508 live++;
2510 next = live;
2511 while (old->top >= live)
2512 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2514 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2515 next--;
2516 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2517 EMIT_BEFORE);
2519 else
2520 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2521 EMIT_BEFORE);
2524 if (new_stack->top == -2)
2526 /* If the new block has never been processed, then it can inherit
2527 the old stack order. */
2529 new_stack->top = old->top;
2530 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2532 else
2534 /* This block has been entered before, and we must match the
2535 previously selected stack order. */
2537 /* By now, the only difference should be the order of the stack,
2538 not their depth or liveliness. */
2540 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2541 gcc_assert (old->top == new_stack->top);
2543 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2544 swaps until the stack is correct.
2546 The worst case number of swaps emitted is N + 2, where N is the
2547 depth of the stack. In some cases, the reg at the top of
2548 stack may be correct, but swapped anyway in order to fix
2549 other regs. But since we never swap any other reg away from
2550 its correct slot, this algorithm will converge. */
2552 if (new_stack->top != -1)
2555 /* Swap the reg at top of stack into the position it is
2556 supposed to be in, until the correct top of stack appears. */
2558 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2560 for (reg = new_stack->top; reg >= 0; reg--)
2561 if (new_stack->reg[reg] == old->reg[old->top])
2562 break;
2564 gcc_assert (reg != -1);
2566 emit_swap_insn (insn, old,
2567 FP_MODE_REG (old->reg[reg], DFmode));
2570 /* See if any regs remain incorrect. If so, bring an
2571 incorrect reg to the top of stack, and let the while loop
2572 above fix it. */
2574 for (reg = new_stack->top; reg >= 0; reg--)
2575 if (new_stack->reg[reg] != old->reg[reg])
2577 emit_swap_insn (insn, old,
2578 FP_MODE_REG (old->reg[reg], DFmode));
2579 break;
2581 } while (reg >= 0);
2583 /* At this point there must be no differences. */
2585 for (reg = old->top; reg >= 0; reg--)
2586 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2589 if (update_end)
2590 BB_END (current_block) = PREV_INSN (insn);
2593 /* Print stack configuration. */
2595 static void
2596 print_stack (FILE *file, stack s)
2598 if (! file)
2599 return;
2601 if (s->top == -2)
2602 fprintf (file, "uninitialized\n");
2603 else if (s->top == -1)
2604 fprintf (file, "empty\n");
2605 else
2607 int i;
2608 fputs ("[ ", file);
2609 for (i = 0; i <= s->top; ++i)
2610 fprintf (file, "%d ", s->reg[i]);
2611 fputs ("]\n", file);
2615 /* This function was doing life analysis. We now let the regular live
2616 code do it's job, so we only need to check some extra invariants
2617 that reg-stack expects. Primary among these being that all registers
2618 are initialized before use.
2620 The function returns true when code was emitted to CFG edges and
2621 commit_edge_insertions needs to be called. */
2623 static int
2624 convert_regs_entry (void)
2626 int inserted = 0;
2627 edge e;
2628 edge_iterator ei;
2630 /* Load something into each stack register live at function entry.
2631 Such live registers can be caused by uninitialized variables or
2632 functions not returning values on all paths. In order to keep
2633 the push/pop code happy, and to not scrog the register stack, we
2634 must put something in these registers. Use a QNaN.
2636 Note that we are inserting converted code here. This code is
2637 never seen by the convert_regs pass. */
2639 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2641 basic_block block = e->dest;
2642 block_info bi = BLOCK_INFO (block);
2643 int reg, top = -1;
2645 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2646 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2648 rtx init;
2650 bi->stack_in.reg[++top] = reg;
2652 init = gen_rtx_SET (VOIDmode,
2653 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2654 not_a_num);
2655 insert_insn_on_edge (init, e);
2656 inserted = 1;
2659 bi->stack_in.top = top;
2662 return inserted;
2665 /* Construct the desired stack for function exit. This will either
2666 be `empty', or the function return value at top-of-stack. */
2668 static void
2669 convert_regs_exit (void)
2671 int value_reg_low, value_reg_high;
2672 stack output_stack;
2673 rtx retvalue;
2675 retvalue = stack_result (current_function_decl);
2676 value_reg_low = value_reg_high = -1;
2677 if (retvalue)
2679 value_reg_low = REGNO (retvalue);
2680 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2683 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2684 if (value_reg_low == -1)
2685 output_stack->top = -1;
2686 else
2688 int reg;
2690 output_stack->top = value_reg_high - value_reg_low;
2691 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2693 output_stack->reg[value_reg_high - reg] = reg;
2694 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2699 /* Copy the stack info from the end of edge E's source block to the
2700 start of E's destination block. */
2702 static void
2703 propagate_stack (edge e)
2705 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2706 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2707 int reg;
2709 /* Preserve the order of the original stack, but check whether
2710 any pops are needed. */
2711 dest_stack->top = -1;
2712 for (reg = 0; reg <= src_stack->top; ++reg)
2713 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2714 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2716 /* Push in any partially dead values. */
2717 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2718 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2719 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2720 dest_stack->reg[++dest_stack->top] = reg;
2724 /* Adjust the stack of edge E's source block on exit to match the stack
2725 of it's target block upon input. The stack layouts of both blocks
2726 should have been defined by now. */
2728 static bool
2729 compensate_edge (edge e)
2731 basic_block source = e->src, target = e->dest;
2732 stack target_stack = &BLOCK_INFO (target)->stack_in;
2733 stack source_stack = &BLOCK_INFO (source)->stack_out;
2734 struct stack_def regstack;
2735 int reg;
2737 if (dump_file)
2738 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2740 gcc_assert (target_stack->top != -2);
2742 /* Check whether stacks are identical. */
2743 if (target_stack->top == source_stack->top)
2745 for (reg = target_stack->top; reg >= 0; --reg)
2746 if (target_stack->reg[reg] != source_stack->reg[reg])
2747 break;
2749 if (reg == -1)
2751 if (dump_file)
2752 fprintf (dump_file, "no changes needed\n");
2753 return false;
2757 if (dump_file)
2759 fprintf (dump_file, "correcting stack to ");
2760 print_stack (dump_file, target_stack);
2763 /* Abnormal calls may appear to have values live in st(0), but the
2764 abnormal return path will not have actually loaded the values. */
2765 if (e->flags & EDGE_ABNORMAL_CALL)
2767 /* Assert that the lifetimes are as we expect -- one value
2768 live at st(0) on the end of the source block, and no
2769 values live at the beginning of the destination block.
2770 For complex return values, we may have st(1) live as well. */
2771 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2772 gcc_assert (target_stack->top == -1);
2773 return false;
2776 /* Handle non-call EH edges specially. The normal return path have
2777 values in registers. These will be popped en masse by the unwind
2778 library. */
2779 if (e->flags & EDGE_EH)
2781 gcc_assert (target_stack->top == -1);
2782 return false;
2785 /* We don't support abnormal edges. Global takes care to
2786 avoid any live register across them, so we should never
2787 have to insert instructions on such edges. */
2788 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2790 /* Make a copy of source_stack as change_stack is destructive. */
2791 regstack = *source_stack;
2793 /* It is better to output directly to the end of the block
2794 instead of to the edge, because emit_swap can do minimal
2795 insn scheduling. We can do this when there is only one
2796 edge out, and it is not abnormal. */
2797 if (EDGE_COUNT (source->succs) == 1)
2799 current_block = source;
2800 change_stack (BB_END (source), &regstack, target_stack,
2801 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2803 else
2805 rtx seq, after;
2807 current_block = NULL;
2808 start_sequence ();
2810 /* ??? change_stack needs some point to emit insns after. */
2811 after = emit_note (NOTE_INSN_DELETED);
2813 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2815 seq = get_insns ();
2816 end_sequence ();
2818 insert_insn_on_edge (seq, e);
2819 return true;
2821 return false;
2824 /* Traverse all non-entry edges in the CFG, and emit the necessary
2825 edge compensation code to change the stack from stack_out of the
2826 source block to the stack_in of the destination block. */
2828 static bool
2829 compensate_edges (void)
2831 bool inserted = false;
2832 basic_block bb;
2834 starting_stack_p = false;
2836 FOR_EACH_BB (bb)
2837 if (bb != ENTRY_BLOCK_PTR)
2839 edge e;
2840 edge_iterator ei;
2842 FOR_EACH_EDGE (e, ei, bb->succs)
2843 inserted |= compensate_edge (e);
2845 return inserted;
2848 /* Select the better of two edges E1 and E2 to use to determine the
2849 stack layout for their shared destination basic block. This is
2850 typically the more frequently executed. The edge E1 may be NULL
2851 (in which case E2 is returned), but E2 is always non-NULL. */
2853 static edge
2854 better_edge (edge e1, edge e2)
2856 if (!e1)
2857 return e2;
2859 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2860 return e1;
2861 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2862 return e2;
2864 if (e1->count > e2->count)
2865 return e1;
2866 if (e1->count < e2->count)
2867 return e2;
2869 /* Prefer critical edges to minimize inserting compensation code on
2870 critical edges. */
2872 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2873 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2875 /* Avoid non-deterministic behavior. */
2876 return (e1->src->index < e2->src->index) ? e1 : e2;
2879 /* Convert stack register references in one block. */
2881 static void
2882 convert_regs_1 (basic_block block)
2884 struct stack_def regstack;
2885 block_info bi = BLOCK_INFO (block);
2886 int reg;
2887 rtx insn, next;
2888 bool control_flow_insn_deleted = false;
2889 int debug_insns_with_starting_stack = 0;
2891 any_malformed_asm = false;
2893 /* Choose an initial stack layout, if one hasn't already been chosen. */
2894 if (bi->stack_in.top == -2)
2896 edge e, beste = NULL;
2897 edge_iterator ei;
2899 /* Select the best incoming edge (typically the most frequent) to
2900 use as a template for this basic block. */
2901 FOR_EACH_EDGE (e, ei, block->preds)
2902 if (BLOCK_INFO (e->src)->done)
2903 beste = better_edge (beste, e);
2905 if (beste)
2906 propagate_stack (beste);
2907 else
2909 /* No predecessors. Create an arbitrary input stack. */
2910 bi->stack_in.top = -1;
2911 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2912 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2913 bi->stack_in.reg[++bi->stack_in.top] = reg;
2917 if (dump_file)
2919 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2920 print_stack (dump_file, &bi->stack_in);
2923 /* Process all insns in this block. Keep track of NEXT so that we
2924 don't process insns emitted while substituting in INSN. */
2925 current_block = block;
2926 next = BB_HEAD (block);
2927 regstack = bi->stack_in;
2928 starting_stack_p = true;
2932 insn = next;
2933 next = NEXT_INSN (insn);
2935 /* Ensure we have not missed a block boundary. */
2936 gcc_assert (next);
2937 if (insn == BB_END (block))
2938 next = NULL;
2940 /* Don't bother processing unless there is a stack reg
2941 mentioned or if it's a CALL_INSN. */
2942 if (DEBUG_INSN_P (insn))
2944 if (starting_stack_p)
2945 debug_insns_with_starting_stack++;
2946 else
2948 for_each_rtx (&PATTERN (insn), subst_stack_regs_in_debug_insn,
2949 &regstack);
2951 /* Nothing must ever die at a debug insn. If something
2952 is referenced in it that becomes dead, it should have
2953 died before and the reference in the debug insn
2954 should have been removed so as to avoid changing code
2955 generation. */
2956 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2959 else if (stack_regs_mentioned (insn)
2960 || CALL_P (insn))
2962 if (dump_file)
2964 fprintf (dump_file, " insn %d input stack: ",
2965 INSN_UID (insn));
2966 print_stack (dump_file, &regstack);
2968 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2969 starting_stack_p = false;
2972 while (next);
2974 if (debug_insns_with_starting_stack)
2976 /* Since it's the first non-debug instruction that determines
2977 the stack requirements of the current basic block, we refrain
2978 from updating debug insns before it in the loop above, and
2979 fix them up here. */
2980 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2981 insn = NEXT_INSN (insn))
2983 if (!DEBUG_INSN_P (insn))
2984 continue;
2986 debug_insns_with_starting_stack--;
2987 for_each_rtx (&PATTERN (insn), subst_stack_regs_in_debug_insn,
2988 &bi->stack_in);
2992 if (dump_file)
2994 fprintf (dump_file, "Expected live registers [");
2995 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2996 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2997 fprintf (dump_file, " %d", reg);
2998 fprintf (dump_file, " ]\nOutput stack: ");
2999 print_stack (dump_file, &regstack);
3002 insn = BB_END (block);
3003 if (JUMP_P (insn))
3004 insn = PREV_INSN (insn);
3006 /* If the function is declared to return a value, but it returns one
3007 in only some cases, some registers might come live here. Emit
3008 necessary moves for them. */
3010 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3012 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3013 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3015 rtx set;
3017 if (dump_file)
3018 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3020 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3021 insn = emit_insn_after (set, insn);
3022 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3026 /* Amongst the insns possibly deleted during the substitution process above,
3027 might have been the only trapping insn in the block. We purge the now
3028 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3029 called at the end of convert_regs. The order in which we process the
3030 blocks ensures that we never delete an already processed edge.
3032 Note that, at this point, the CFG may have been damaged by the emission
3033 of instructions after an abnormal call, which moves the basic block end
3034 (and is the reason why we call fixup_abnormal_edges later). So we must
3035 be sure that the trapping insn has been deleted before trying to purge
3036 dead edges, otherwise we risk purging valid edges.
3038 ??? We are normally supposed not to delete trapping insns, so we pretend
3039 that the insns deleted above don't actually trap. It would have been
3040 better to detect this earlier and avoid creating the EH edge in the first
3041 place, still, but we don't have enough information at that time. */
3043 if (control_flow_insn_deleted)
3044 purge_dead_edges (block);
3046 /* Something failed if the stack lives don't match. If we had malformed
3047 asms, we zapped the instruction itself, but that didn't produce the
3048 same pattern of register kills as before. */
3050 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3051 || any_malformed_asm);
3052 bi->stack_out = regstack;
3053 bi->done = true;
3056 /* Convert registers in all blocks reachable from BLOCK. */
3058 static void
3059 convert_regs_2 (basic_block block)
3061 basic_block *stack, *sp;
3063 /* We process the blocks in a top-down manner, in a way such that one block
3064 is only processed after all its predecessors. The number of predecessors
3065 of every block has already been computed. */
3067 stack = XNEWVEC (basic_block, n_basic_blocks);
3068 sp = stack;
3070 *sp++ = block;
3074 edge e;
3075 edge_iterator ei;
3077 block = *--sp;
3079 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3080 some dead EH outgoing edge after the deletion of the trapping
3081 insn inside the block. Since the number of predecessors of
3082 BLOCK's successors was computed based on the initial edge set,
3083 we check the necessity to process some of these successors
3084 before such an edge deletion may happen. However, there is
3085 a pitfall: if BLOCK is the only predecessor of a successor and
3086 the edge between them happens to be deleted, the successor
3087 becomes unreachable and should not be processed. The problem
3088 is that there is no way to preventively detect this case so we
3089 stack the successor in all cases and hand over the task of
3090 fixing up the discrepancy to convert_regs_1. */
3092 FOR_EACH_EDGE (e, ei, block->succs)
3093 if (! (e->flags & EDGE_DFS_BACK))
3095 BLOCK_INFO (e->dest)->predecessors--;
3096 if (!BLOCK_INFO (e->dest)->predecessors)
3097 *sp++ = e->dest;
3100 convert_regs_1 (block);
3102 while (sp != stack);
3104 free (stack);
3107 /* Traverse all basic blocks in a function, converting the register
3108 references in each insn from the "flat" register file that gcc uses,
3109 to the stack-like registers the 387 uses. */
3111 static void
3112 convert_regs (void)
3114 int inserted;
3115 basic_block b;
3116 edge e;
3117 edge_iterator ei;
3119 /* Initialize uninitialized registers on function entry. */
3120 inserted = convert_regs_entry ();
3122 /* Construct the desired stack for function exit. */
3123 convert_regs_exit ();
3124 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3126 /* ??? Future: process inner loops first, and give them arbitrary
3127 initial stacks which emit_swap_insn can modify. This ought to
3128 prevent double fxch that often appears at the head of a loop. */
3130 /* Process all blocks reachable from all entry points. */
3131 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3132 convert_regs_2 (e->dest);
3134 /* ??? Process all unreachable blocks. Though there's no excuse
3135 for keeping these even when not optimizing. */
3136 FOR_EACH_BB (b)
3138 block_info bi = BLOCK_INFO (b);
3140 if (! bi->done)
3141 convert_regs_2 (b);
3144 inserted |= compensate_edges ();
3146 clear_aux_for_blocks ();
3148 fixup_abnormal_edges ();
3149 if (inserted)
3150 commit_edge_insertions ();
3152 if (dump_file)
3153 fputc ('\n', dump_file);
3156 /* Convert register usage from "flat" register file usage to a "stack
3157 register file. FILE is the dump file, if used.
3159 Construct a CFG and run life analysis. Then convert each insn one
3160 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3161 code duplication created when the converter inserts pop insns on
3162 the edges. */
3164 static bool
3165 reg_to_stack (void)
3167 basic_block bb;
3168 int i;
3169 int max_uid;
3171 /* Clean up previous run. */
3172 if (stack_regs_mentioned_data != NULL)
3173 VEC_free (char, heap, stack_regs_mentioned_data);
3175 /* See if there is something to do. Flow analysis is quite
3176 expensive so we might save some compilation time. */
3177 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3178 if (df_regs_ever_live_p (i))
3179 break;
3180 if (i > LAST_STACK_REG)
3181 return false;
3183 df_note_add_problem ();
3184 df_analyze ();
3186 mark_dfs_back_edges ();
3188 /* Set up block info for each basic block. */
3189 alloc_aux_for_blocks (sizeof (struct block_info_def));
3190 FOR_EACH_BB (bb)
3192 block_info bi = BLOCK_INFO (bb);
3193 edge_iterator ei;
3194 edge e;
3195 int reg;
3197 FOR_EACH_EDGE (e, ei, bb->preds)
3198 if (!(e->flags & EDGE_DFS_BACK)
3199 && e->src != ENTRY_BLOCK_PTR)
3200 bi->predecessors++;
3202 /* Set current register status at last instruction `uninitialized'. */
3203 bi->stack_in.top = -2;
3205 /* Copy live_at_end and live_at_start into temporaries. */
3206 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3208 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3209 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3210 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3211 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3215 /* Create the replacement registers up front. */
3216 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3218 enum machine_mode mode;
3219 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3220 mode != VOIDmode;
3221 mode = GET_MODE_WIDER_MODE (mode))
3222 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3223 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3224 mode != VOIDmode;
3225 mode = GET_MODE_WIDER_MODE (mode))
3226 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3229 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3231 /* A QNaN for initializing uninitialized variables.
3233 ??? We can't load from constant memory in PIC mode, because
3234 we're inserting these instructions before the prologue and
3235 the PIC register hasn't been set up. In that case, fall back
3236 on zero, which we can get from `fldz'. */
3238 if ((flag_pic && !TARGET_64BIT)
3239 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3240 not_a_num = CONST0_RTX (SFmode);
3241 else
3243 REAL_VALUE_TYPE r;
3245 real_nan (&r, "", 1, SFmode);
3246 not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3247 not_a_num = force_const_mem (SFmode, not_a_num);
3250 /* Allocate a cache for stack_regs_mentioned. */
3251 max_uid = get_max_uid ();
3252 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3253 memset (VEC_address (char, stack_regs_mentioned_data),
3254 0, sizeof (char) * (max_uid + 1));
3256 convert_regs ();
3258 free_aux_for_blocks ();
3259 return true;
3261 #endif /* STACK_REGS */
3263 static bool
3264 gate_handle_stack_regs (void)
3266 #ifdef STACK_REGS
3267 return 1;
3268 #else
3269 return 0;
3270 #endif
3273 struct rtl_opt_pass pass_stack_regs =
3276 RTL_PASS,
3277 "*stack_regs", /* name */
3278 gate_handle_stack_regs, /* gate */
3279 NULL, /* execute */
3280 NULL, /* sub */
3281 NULL, /* next */
3282 0, /* static_pass_number */
3283 TV_REG_STACK, /* tv_id */
3284 0, /* properties_required */
3285 0, /* properties_provided */
3286 0, /* properties_destroyed */
3287 0, /* todo_flags_start */
3288 0 /* todo_flags_finish */
3292 /* Convert register usage from flat register file usage to a stack
3293 register file. */
3294 static unsigned int
3295 rest_of_handle_stack_regs (void)
3297 #ifdef STACK_REGS
3298 reg_to_stack ();
3299 regstack_completed = 1;
3300 #endif
3301 return 0;
3304 struct rtl_opt_pass pass_stack_regs_run =
3307 RTL_PASS,
3308 "stack", /* name */
3309 NULL, /* gate */
3310 rest_of_handle_stack_regs, /* execute */
3311 NULL, /* sub */
3312 NULL, /* next */
3313 0, /* static_pass_number */
3314 TV_REG_STACK, /* tv_id */
3315 0, /* properties_required */
3316 0, /* properties_provided */
3317 0, /* properties_destroyed */
3318 0, /* todo_flags_start */
3319 TODO_df_finish | TODO_verify_rtl_sharing |
3320 TODO_dump_func |
3321 TODO_ggc_collect /* todo_flags_finish */