2011-05-23 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / tree-cfg.c
blobf6b171024bd6d86ed5cd4697d083f2c31646ed9e
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t *edge_to_cases;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs;
78 /* CFG statistics. */
79 struct cfg_stats_d
81 long num_merged_labels;
84 static struct cfg_stats_d cfg_stats;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
92 location_t locus;
93 int discriminator;
95 static htab_t discriminator_per_locus;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
163 void
164 init_empty_tree_cfg (void)
166 init_empty_tree_cfg_for_function (cfun);
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
176 static void
177 build_gimple_cfg (gimple_seq seq)
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
184 init_empty_tree_cfg ();
186 found_computed_goto = 0;
187 make_blocks (seq);
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
220 /* Debugging dumps. */
222 /* Write the flowgraph to a VCG file. */
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
234 static unsigned int
235 execute_build_cfg (void)
237 gimple_seq body = gimple_body (current_function_decl);
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
246 return 0;
249 struct gimple_opt_pass pass_build_cfg =
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg
265 | TODO_dump_func /* todo_flags_finish */
270 /* Return true if T is a computed goto. */
272 static bool
273 computed_goto_p (gimple t)
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
285 static void
286 factor_computed_gotos (void)
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
298 FOR_EACH_BB (bb)
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
303 if (gsi_end_p (gsi))
304 continue;
306 last = gsi_stmt (gsi);
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
316 gimple assignment;
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
356 /* Build a flowgraph for the sequence of stmts SEQ. */
358 static void
359 make_blocks (gimple_seq seq)
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
367 while (!gsi_end_p (i))
369 gimple prev_stmt;
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
416 start_new_block = true;
419 gsi_next (&i);
420 first_stmt_of_seq = false;
425 /* Create and return a new empty basic block after bb AFTER. */
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
430 basic_block bb;
432 gcc_assert (!e);
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
457 n_basic_blocks++;
458 last_basic_block++;
460 return bb;
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
470 void
471 fold_cond_expr_cond (void)
473 basic_block bb;
475 FOR_EACH_BB (bb)
477 gimple stmt = last_stmt (bb);
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
493 else
494 zerop = onep = false;
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
507 /* Join all the blocks in the flowgraph. */
509 static void
510 make_edges (void)
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
522 gimple last = last_stmt (bb);
523 bool fallthru;
525 if (last)
527 enum gimple_code code = gimple_code (last);
528 switch (code)
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
645 basic_block switch_bb = single_succ (cur_region->entry);
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
663 break;
665 default:
666 gcc_unreachable ();
668 break;
670 default:
671 gcc_assert (!stmt_ends_bb_p (last));
672 fallthru = true;
675 else
676 fallthru = true;
678 if (fallthru)
680 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
681 if (last)
682 assign_discriminator (gimple_location (last), bb->next_bb);
686 if (root_omp_region)
687 free_omp_regions ();
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
696 static unsigned int
697 locus_map_hash (const void *item)
699 return ((const struct locus_discrim_map *) item)->locus;
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
705 static int
706 locus_map_eq (const void *va, const void *vb)
708 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
709 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
710 return a->locus == b->locus;
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
716 profiling. */
718 static int
719 next_discriminator_for_locus (location_t locus)
721 struct locus_discrim_map item;
722 struct locus_discrim_map **slot;
724 item.locus = locus;
725 item.discriminator = 0;
726 slot = (struct locus_discrim_map **)
727 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
728 (hashval_t) locus, INSERT);
729 gcc_assert (slot);
730 if (*slot == HTAB_EMPTY_ENTRY)
732 *slot = XNEW (struct locus_discrim_map);
733 gcc_assert (*slot);
734 (*slot)->locus = locus;
735 (*slot)->discriminator = 0;
737 (*slot)->discriminator++;
738 return (*slot)->discriminator;
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
743 static bool
744 same_line_p (location_t locus1, location_t locus2)
746 expanded_location from, to;
748 if (locus1 == locus2)
749 return true;
751 from = expand_location (locus1);
752 to = expand_location (locus2);
754 if (from.line != to.line)
755 return false;
756 if (from.file == to.file)
757 return true;
758 return (from.file != NULL
759 && to.file != NULL
760 && filename_cmp (from.file, to.file) == 0);
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
766 static void
767 assign_discriminator (location_t locus, basic_block bb)
769 gimple first_in_to_bb, last_in_to_bb;
771 if (locus == 0 || bb->discriminator != 0)
772 return;
774 first_in_to_bb = first_non_label_stmt (bb);
775 last_in_to_bb = last_stmt (bb);
776 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
777 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
778 bb->discriminator = next_discriminator_for_locus (locus);
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
783 static void
784 make_cond_expr_edges (basic_block bb)
786 gimple entry = last_stmt (bb);
787 gimple then_stmt, else_stmt;
788 basic_block then_bb, else_bb;
789 tree then_label, else_label;
790 edge e;
791 location_t entry_locus;
793 gcc_assert (entry);
794 gcc_assert (gimple_code (entry) == GIMPLE_COND);
796 entry_locus = gimple_location (entry);
798 /* Entry basic blocks for each component. */
799 then_label = gimple_cond_true_label (entry);
800 else_label = gimple_cond_false_label (entry);
801 then_bb = label_to_block (then_label);
802 else_bb = label_to_block (else_label);
803 then_stmt = first_stmt (then_bb);
804 else_stmt = first_stmt (else_bb);
806 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
807 assign_discriminator (entry_locus, then_bb);
808 e->goto_locus = gimple_location (then_stmt);
809 if (e->goto_locus)
810 e->goto_block = gimple_block (then_stmt);
811 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
812 if (e)
814 assign_discriminator (entry_locus, else_bb);
815 e->goto_locus = gimple_location (else_stmt);
816 if (e->goto_locus)
817 e->goto_block = gimple_block (else_stmt);
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry, NULL_TREE);
822 gimple_cond_set_false_label (entry, NULL_TREE);
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
831 element. */
833 static bool
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
835 void *data ATTRIBUTE_UNUSED)
837 tree t, next;
839 for (t = (tree) *value; t; t = next)
841 next = CASE_CHAIN (t);
842 CASE_CHAIN (t) = NULL;
845 *value = NULL;
846 return true;
849 /* Start recording information mapping edges to case labels. */
851 void
852 start_recording_case_labels (void)
854 gcc_assert (edge_to_cases == NULL);
855 edge_to_cases = pointer_map_create ();
856 touched_switch_bbs = BITMAP_ALLOC (NULL);
859 /* Return nonzero if we are recording information for case labels. */
861 static bool
862 recording_case_labels_p (void)
864 return (edge_to_cases != NULL);
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
869 void
870 end_recording_case_labels (void)
872 bitmap_iterator bi;
873 unsigned i;
874 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
875 pointer_map_destroy (edge_to_cases);
876 edge_to_cases = NULL;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
879 basic_block bb = BASIC_BLOCK (i);
880 if (bb)
882 gimple stmt = last_stmt (bb);
883 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
884 group_case_labels_stmt (stmt);
887 BITMAP_FREE (touched_switch_bbs);
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
893 Otherwise return NULL. */
895 static tree
896 get_cases_for_edge (edge e, gimple t)
898 void **slot;
899 size_t i, n;
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
904 return NULL;
906 slot = pointer_map_contains (edge_to_cases, e);
907 if (slot)
908 return (tree) *slot;
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
914 n = gimple_switch_num_labels (t);
915 for (i = 0; i < n; i++)
917 tree elt = gimple_switch_label (t, i);
918 tree lab = CASE_LABEL (elt);
919 basic_block label_bb = label_to_block (lab);
920 edge this_edge = find_edge (e->src, label_bb);
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
923 a new chain. */
924 slot = pointer_map_insert (edge_to_cases, this_edge);
925 CASE_CHAIN (elt) = (tree) *slot;
926 *slot = elt;
929 return (tree) *pointer_map_contains (edge_to_cases, e);
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
934 static void
935 make_gimple_switch_edges (basic_block bb)
937 gimple entry = last_stmt (bb);
938 location_t entry_locus;
939 size_t i, n;
941 entry_locus = gimple_location (entry);
943 n = gimple_switch_num_labels (entry);
945 for (i = 0; i < n; ++i)
947 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
948 basic_block label_bb = label_to_block (lab);
949 make_edge (bb, label_bb, 0);
950 assign_discriminator (entry_locus, label_bb);
955 /* Return the basic block holding label DEST. */
957 basic_block
958 label_to_block_fn (struct function *ifun, tree dest)
960 int uid = LABEL_DECL_UID (dest);
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid < 0)
967 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
968 gimple stmt;
970 stmt = gimple_build_label (dest);
971 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
972 uid = LABEL_DECL_UID (dest);
974 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
975 <= (unsigned int) uid)
976 return NULL;
977 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
983 void
984 make_abnormal_goto_edges (basic_block bb, bool for_call)
986 basic_block target_bb;
987 gimple_stmt_iterator gsi;
989 FOR_EACH_BB (target_bb)
990 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
992 gimple label_stmt = gsi_stmt (gsi);
993 tree target;
995 if (gimple_code (label_stmt) != GIMPLE_LABEL)
996 break;
998 target = gimple_label_label (label_stmt);
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target) && !for_call)
1003 || (DECL_NONLOCAL (target) && for_call))
1005 make_edge (bb, target_bb, EDGE_ABNORMAL);
1006 break;
1011 /* Create edges for a goto statement at block BB. */
1013 static void
1014 make_goto_expr_edges (basic_block bb)
1016 gimple_stmt_iterator last = gsi_last_bb (bb);
1017 gimple goto_t = gsi_stmt (last);
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t))
1022 tree dest = gimple_goto_dest (goto_t);
1023 basic_block label_bb = label_to_block (dest);
1024 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1025 e->goto_locus = gimple_location (goto_t);
1026 assign_discriminator (e->goto_locus, label_bb);
1027 if (e->goto_locus)
1028 e->goto_block = gimple_block (goto_t);
1029 gsi_remove (&last, true);
1030 return;
1033 /* A computed GOTO creates abnormal edges. */
1034 make_abnormal_goto_edges (bb, false);
1037 /* Create edges for an asm statement with labels at block BB. */
1039 static void
1040 make_gimple_asm_edges (basic_block bb)
1042 gimple stmt = last_stmt (bb);
1043 location_t stmt_loc = gimple_location (stmt);
1044 int i, n = gimple_asm_nlabels (stmt);
1046 for (i = 0; i < n; ++i)
1048 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1049 basic_block label_bb = label_to_block (label);
1050 make_edge (bb, label_bb, 0);
1051 assign_discriminator (stmt_loc, label_bb);
1055 /*---------------------------------------------------------------------------
1056 Flowgraph analysis
1057 ---------------------------------------------------------------------------*/
1059 /* Cleanup useless labels in basic blocks. This is something we wish
1060 to do early because it allows us to group case labels before creating
1061 the edges for the CFG, and it speeds up block statement iterators in
1062 all passes later on.
1063 We rerun this pass after CFG is created, to get rid of the labels that
1064 are no longer referenced. After then we do not run it any more, since
1065 (almost) no new labels should be created. */
1067 /* A map from basic block index to the leading label of that block. */
1068 static struct label_record
1070 /* The label. */
1071 tree label;
1073 /* True if the label is referenced from somewhere. */
1074 bool used;
1075 } *label_for_bb;
1077 /* Given LABEL return the first label in the same basic block. */
1079 static tree
1080 main_block_label (tree label)
1082 basic_block bb = label_to_block (label);
1083 tree main_label = label_for_bb[bb->index].label;
1085 /* label_to_block possibly inserted undefined label into the chain. */
1086 if (!main_label)
1088 label_for_bb[bb->index].label = label;
1089 main_label = label;
1092 label_for_bb[bb->index].used = true;
1093 return main_label;
1096 /* Clean up redundant labels within the exception tree. */
1098 static void
1099 cleanup_dead_labels_eh (void)
1101 eh_landing_pad lp;
1102 eh_region r;
1103 tree lab;
1104 int i;
1106 if (cfun->eh == NULL)
1107 return;
1109 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1110 if (lp && lp->post_landing_pad)
1112 lab = main_block_label (lp->post_landing_pad);
1113 if (lab != lp->post_landing_pad)
1115 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1116 EH_LANDING_PAD_NR (lab) = lp->index;
1120 FOR_ALL_EH_REGION (r)
1121 switch (r->type)
1123 case ERT_CLEANUP:
1124 case ERT_MUST_NOT_THROW:
1125 break;
1127 case ERT_TRY:
1129 eh_catch c;
1130 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1132 lab = c->label;
1133 if (lab)
1134 c->label = main_block_label (lab);
1137 break;
1139 case ERT_ALLOWED_EXCEPTIONS:
1140 lab = r->u.allowed.label;
1141 if (lab)
1142 r->u.allowed.label = main_block_label (lab);
1143 break;
1148 /* Cleanup redundant labels. This is a three-step process:
1149 1) Find the leading label for each block.
1150 2) Redirect all references to labels to the leading labels.
1151 3) Cleanup all useless labels. */
1153 void
1154 cleanup_dead_labels (void)
1156 basic_block bb;
1157 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1159 /* Find a suitable label for each block. We use the first user-defined
1160 label if there is one, or otherwise just the first label we see. */
1161 FOR_EACH_BB (bb)
1163 gimple_stmt_iterator i;
1165 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1167 tree label;
1168 gimple stmt = gsi_stmt (i);
1170 if (gimple_code (stmt) != GIMPLE_LABEL)
1171 break;
1173 label = gimple_label_label (stmt);
1175 /* If we have not yet seen a label for the current block,
1176 remember this one and see if there are more labels. */
1177 if (!label_for_bb[bb->index].label)
1179 label_for_bb[bb->index].label = label;
1180 continue;
1183 /* If we did see a label for the current block already, but it
1184 is an artificially created label, replace it if the current
1185 label is a user defined label. */
1186 if (!DECL_ARTIFICIAL (label)
1187 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1189 label_for_bb[bb->index].label = label;
1190 break;
1195 /* Now redirect all jumps/branches to the selected label.
1196 First do so for each block ending in a control statement. */
1197 FOR_EACH_BB (bb)
1199 gimple stmt = last_stmt (bb);
1200 if (!stmt)
1201 continue;
1203 switch (gimple_code (stmt))
1205 case GIMPLE_COND:
1207 tree true_label = gimple_cond_true_label (stmt);
1208 tree false_label = gimple_cond_false_label (stmt);
1210 if (true_label)
1211 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1212 if (false_label)
1213 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1214 break;
1217 case GIMPLE_SWITCH:
1219 size_t i, n = gimple_switch_num_labels (stmt);
1221 /* Replace all destination labels. */
1222 for (i = 0; i < n; ++i)
1224 tree case_label = gimple_switch_label (stmt, i);
1225 tree label = main_block_label (CASE_LABEL (case_label));
1226 CASE_LABEL (case_label) = label;
1228 break;
1231 case GIMPLE_ASM:
1233 int i, n = gimple_asm_nlabels (stmt);
1235 for (i = 0; i < n; ++i)
1237 tree cons = gimple_asm_label_op (stmt, i);
1238 tree label = main_block_label (TREE_VALUE (cons));
1239 TREE_VALUE (cons) = label;
1241 break;
1244 /* We have to handle gotos until they're removed, and we don't
1245 remove them until after we've created the CFG edges. */
1246 case GIMPLE_GOTO:
1247 if (!computed_goto_p (stmt))
1249 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1250 gimple_goto_set_dest (stmt, new_dest);
1252 break;
1254 default:
1255 break;
1259 /* Do the same for the exception region tree labels. */
1260 cleanup_dead_labels_eh ();
1262 /* Finally, purge dead labels. All user-defined labels and labels that
1263 can be the target of non-local gotos and labels which have their
1264 address taken are preserved. */
1265 FOR_EACH_BB (bb)
1267 gimple_stmt_iterator i;
1268 tree label_for_this_bb = label_for_bb[bb->index].label;
1270 if (!label_for_this_bb)
1271 continue;
1273 /* If the main label of the block is unused, we may still remove it. */
1274 if (!label_for_bb[bb->index].used)
1275 label_for_this_bb = NULL;
1277 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1279 tree label;
1280 gimple stmt = gsi_stmt (i);
1282 if (gimple_code (stmt) != GIMPLE_LABEL)
1283 break;
1285 label = gimple_label_label (stmt);
1287 if (label == label_for_this_bb
1288 || !DECL_ARTIFICIAL (label)
1289 || DECL_NONLOCAL (label)
1290 || FORCED_LABEL (label))
1291 gsi_next (&i);
1292 else
1293 gsi_remove (&i, true);
1297 free (label_for_bb);
1300 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1301 the ones jumping to the same label.
1302 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1304 static void
1305 group_case_labels_stmt (gimple stmt)
1307 int old_size = gimple_switch_num_labels (stmt);
1308 int i, j, new_size = old_size;
1309 tree default_case = NULL_TREE;
1310 tree default_label = NULL_TREE;
1311 bool has_default;
1313 /* The default label is always the first case in a switch
1314 statement after gimplification if it was not optimized
1315 away */
1316 if (!CASE_LOW (gimple_switch_default_label (stmt))
1317 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1319 default_case = gimple_switch_default_label (stmt);
1320 default_label = CASE_LABEL (default_case);
1321 has_default = true;
1323 else
1324 has_default = false;
1326 /* Look for possible opportunities to merge cases. */
1327 if (has_default)
1328 i = 1;
1329 else
1330 i = 0;
1331 while (i < old_size)
1333 tree base_case, base_label, base_high;
1334 base_case = gimple_switch_label (stmt, i);
1336 gcc_assert (base_case);
1337 base_label = CASE_LABEL (base_case);
1339 /* Discard cases that have the same destination as the
1340 default case. */
1341 if (base_label == default_label)
1343 gimple_switch_set_label (stmt, i, NULL_TREE);
1344 i++;
1345 new_size--;
1346 continue;
1349 base_high = CASE_HIGH (base_case)
1350 ? CASE_HIGH (base_case)
1351 : CASE_LOW (base_case);
1352 i++;
1354 /* Try to merge case labels. Break out when we reach the end
1355 of the label vector or when we cannot merge the next case
1356 label with the current one. */
1357 while (i < old_size)
1359 tree merge_case = gimple_switch_label (stmt, i);
1360 tree merge_label = CASE_LABEL (merge_case);
1361 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1362 double_int_one);
1364 /* Merge the cases if they jump to the same place,
1365 and their ranges are consecutive. */
1366 if (merge_label == base_label
1367 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1368 bhp1))
1370 base_high = CASE_HIGH (merge_case) ?
1371 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1372 CASE_HIGH (base_case) = base_high;
1373 gimple_switch_set_label (stmt, i, NULL_TREE);
1374 new_size--;
1375 i++;
1377 else
1378 break;
1382 /* Compress the case labels in the label vector, and adjust the
1383 length of the vector. */
1384 for (i = 0, j = 0; i < new_size; i++)
1386 while (! gimple_switch_label (stmt, j))
1387 j++;
1388 gimple_switch_set_label (stmt, i,
1389 gimple_switch_label (stmt, j++));
1392 gcc_assert (new_size <= old_size);
1393 gimple_switch_set_num_labels (stmt, new_size);
1396 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1397 and scan the sorted vector of cases. Combine the ones jumping to the
1398 same label. */
1400 void
1401 group_case_labels (void)
1403 basic_block bb;
1405 FOR_EACH_BB (bb)
1407 gimple stmt = last_stmt (bb);
1408 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1409 group_case_labels_stmt (stmt);
1413 /* Checks whether we can merge block B into block A. */
1415 static bool
1416 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1418 gimple stmt;
1419 gimple_stmt_iterator gsi;
1420 gimple_seq phis;
1422 if (!single_succ_p (a))
1423 return false;
1425 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1426 return false;
1428 if (single_succ (a) != b)
1429 return false;
1431 if (!single_pred_p (b))
1432 return false;
1434 if (b == EXIT_BLOCK_PTR)
1435 return false;
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt = last_stmt (a);
1440 if (stmt && stmt_ends_bb_p (stmt))
1441 return false;
1443 /* Do not allow a block with only a non-local label to be merged. */
1444 if (stmt
1445 && gimple_code (stmt) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt)))
1447 return false;
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1452 tree lab;
1453 stmt = gsi_stmt (gsi);
1454 if (gimple_code (stmt) != GIMPLE_LABEL)
1455 break;
1456 lab = gimple_label_label (stmt);
1458 /* Do not remove user labels. */
1459 if (!DECL_ARTIFICIAL (lab))
1460 return false;
1463 /* Protect the loop latches. */
1464 if (current_loops && b->loop_father->latch == b)
1465 return false;
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 phis = phi_nodes (b);
1471 if (!gimple_seq_empty_p (phis)
1472 && name_mappings_registered_p ())
1473 return false;
1475 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 if (!optimize
1477 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1479 location_t goto_locus = single_succ_edge (a)->goto_locus;
1480 gimple_stmt_iterator prev, next;
1481 prev = gsi_last_nondebug_bb (a);
1482 next = gsi_after_labels (b);
1483 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1484 gsi_next_nondebug (&next);
1485 if ((gsi_end_p (prev)
1486 || gimple_location (gsi_stmt (prev)) != goto_locus)
1487 && (gsi_end_p (next)
1488 || gimple_location (gsi_stmt (next)) != goto_locus))
1489 return false;
1492 return true;
1495 /* Return true if the var whose chain of uses starts at PTR has no
1496 nondebug uses. */
1497 bool
1498 has_zero_uses_1 (const ssa_use_operand_t *head)
1500 const ssa_use_operand_t *ptr;
1502 for (ptr = head->next; ptr != head; ptr = ptr->next)
1503 if (!is_gimple_debug (USE_STMT (ptr)))
1504 return false;
1506 return true;
1509 /* Return true if the var whose chain of uses starts at PTR has a
1510 single nondebug use. Set USE_P and STMT to that single nondebug
1511 use, if so, or to NULL otherwise. */
1512 bool
1513 single_imm_use_1 (const ssa_use_operand_t *head,
1514 use_operand_p *use_p, gimple *stmt)
1516 ssa_use_operand_t *ptr, *single_use = 0;
1518 for (ptr = head->next; ptr != head; ptr = ptr->next)
1519 if (!is_gimple_debug (USE_STMT (ptr)))
1521 if (single_use)
1523 single_use = NULL;
1524 break;
1526 single_use = ptr;
1529 if (use_p)
1530 *use_p = single_use;
1532 if (stmt)
1533 *stmt = single_use ? single_use->loc.stmt : NULL;
1535 return !!single_use;
1538 /* Replaces all uses of NAME by VAL. */
1540 void
1541 replace_uses_by (tree name, tree val)
1543 imm_use_iterator imm_iter;
1544 use_operand_p use;
1545 gimple stmt;
1546 edge e;
1548 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1550 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1552 replace_exp (use, val);
1554 if (gimple_code (stmt) == GIMPLE_PHI)
1556 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1557 if (e->flags & EDGE_ABNORMAL)
1559 /* This can only occur for virtual operands, since
1560 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1561 would prevent replacement. */
1562 gcc_assert (!is_gimple_reg (name));
1563 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1568 if (gimple_code (stmt) != GIMPLE_PHI)
1570 size_t i;
1572 fold_stmt_inplace (stmt);
1573 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1574 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1576 /* FIXME. This should go in update_stmt. */
1577 for (i = 0; i < gimple_num_ops (stmt); i++)
1579 tree op = gimple_op (stmt, i);
1580 /* Operands may be empty here. For example, the labels
1581 of a GIMPLE_COND are nulled out following the creation
1582 of the corresponding CFG edges. */
1583 if (op && TREE_CODE (op) == ADDR_EXPR)
1584 recompute_tree_invariant_for_addr_expr (op);
1587 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1588 update_stmt (stmt);
1592 gcc_assert (has_zero_uses (name));
1594 /* Also update the trees stored in loop structures. */
1595 if (current_loops)
1597 struct loop *loop;
1598 loop_iterator li;
1600 FOR_EACH_LOOP (li, loop, 0)
1602 substitute_in_loop_info (loop, name, val);
1607 /* Merge block B into block A. */
1609 static void
1610 gimple_merge_blocks (basic_block a, basic_block b)
1612 gimple_stmt_iterator last, gsi, psi;
1613 gimple_seq phis = phi_nodes (b);
1615 if (dump_file)
1616 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1618 /* Remove all single-valued PHI nodes from block B of the form
1619 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1620 gsi = gsi_last_bb (a);
1621 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1623 gimple phi = gsi_stmt (psi);
1624 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1625 gimple copy;
1626 bool may_replace_uses = !is_gimple_reg (def)
1627 || may_propagate_copy (def, use);
1629 /* In case we maintain loop closed ssa form, do not propagate arguments
1630 of loop exit phi nodes. */
1631 if (current_loops
1632 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1633 && is_gimple_reg (def)
1634 && TREE_CODE (use) == SSA_NAME
1635 && a->loop_father != b->loop_father)
1636 may_replace_uses = false;
1638 if (!may_replace_uses)
1640 gcc_assert (is_gimple_reg (def));
1642 /* Note that just emitting the copies is fine -- there is no problem
1643 with ordering of phi nodes. This is because A is the single
1644 predecessor of B, therefore results of the phi nodes cannot
1645 appear as arguments of the phi nodes. */
1646 copy = gimple_build_assign (def, use);
1647 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1648 remove_phi_node (&psi, false);
1650 else
1652 /* If we deal with a PHI for virtual operands, we can simply
1653 propagate these without fussing with folding or updating
1654 the stmt. */
1655 if (!is_gimple_reg (def))
1657 imm_use_iterator iter;
1658 use_operand_p use_p;
1659 gimple stmt;
1661 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1662 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1663 SET_USE (use_p, use);
1665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1666 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1668 else
1669 replace_uses_by (def, use);
1671 remove_phi_node (&psi, true);
1675 /* Ensure that B follows A. */
1676 move_block_after (b, a);
1678 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1679 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1681 /* Remove labels from B and set gimple_bb to A for other statements. */
1682 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1684 gimple stmt = gsi_stmt (gsi);
1685 if (gimple_code (stmt) == GIMPLE_LABEL)
1687 tree label = gimple_label_label (stmt);
1688 int lp_nr;
1690 gsi_remove (&gsi, false);
1692 /* Now that we can thread computed gotos, we might have
1693 a situation where we have a forced label in block B
1694 However, the label at the start of block B might still be
1695 used in other ways (think about the runtime checking for
1696 Fortran assigned gotos). So we can not just delete the
1697 label. Instead we move the label to the start of block A. */
1698 if (FORCED_LABEL (label))
1700 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1701 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1704 lp_nr = EH_LANDING_PAD_NR (label);
1705 if (lp_nr)
1707 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1708 lp->post_landing_pad = NULL;
1711 else
1713 gimple_set_bb (stmt, a);
1714 gsi_next (&gsi);
1718 /* Merge the sequences. */
1719 last = gsi_last_bb (a);
1720 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1721 set_bb_seq (b, NULL);
1723 if (cfgcleanup_altered_bbs)
1724 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1728 /* Return the one of two successors of BB that is not reachable by a
1729 complex edge, if there is one. Else, return BB. We use
1730 this in optimizations that use post-dominators for their heuristics,
1731 to catch the cases in C++ where function calls are involved. */
1733 basic_block
1734 single_noncomplex_succ (basic_block bb)
1736 edge e0, e1;
1737 if (EDGE_COUNT (bb->succs) != 2)
1738 return bb;
1740 e0 = EDGE_SUCC (bb, 0);
1741 e1 = EDGE_SUCC (bb, 1);
1742 if (e0->flags & EDGE_COMPLEX)
1743 return e1->dest;
1744 if (e1->flags & EDGE_COMPLEX)
1745 return e0->dest;
1747 return bb;
1750 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1752 void
1753 notice_special_calls (gimple call)
1755 int flags = gimple_call_flags (call);
1757 if (flags & ECF_MAY_BE_ALLOCA)
1758 cfun->calls_alloca = true;
1759 if (flags & ECF_RETURNS_TWICE)
1760 cfun->calls_setjmp = true;
1764 /* Clear flags set by notice_special_calls. Used by dead code removal
1765 to update the flags. */
1767 void
1768 clear_special_calls (void)
1770 cfun->calls_alloca = false;
1771 cfun->calls_setjmp = false;
1774 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1776 static void
1777 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1779 /* Since this block is no longer reachable, we can just delete all
1780 of its PHI nodes. */
1781 remove_phi_nodes (bb);
1783 /* Remove edges to BB's successors. */
1784 while (EDGE_COUNT (bb->succs) > 0)
1785 remove_edge (EDGE_SUCC (bb, 0));
1789 /* Remove statements of basic block BB. */
1791 static void
1792 remove_bb (basic_block bb)
1794 gimple_stmt_iterator i;
1796 if (dump_file)
1798 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1799 if (dump_flags & TDF_DETAILS)
1801 dump_bb (bb, dump_file, 0);
1802 fprintf (dump_file, "\n");
1806 if (current_loops)
1808 struct loop *loop = bb->loop_father;
1810 /* If a loop gets removed, clean up the information associated
1811 with it. */
1812 if (loop->latch == bb
1813 || loop->header == bb)
1814 free_numbers_of_iterations_estimates_loop (loop);
1817 /* Remove all the instructions in the block. */
1818 if (bb_seq (bb) != NULL)
1820 /* Walk backwards so as to get a chance to substitute all
1821 released DEFs into debug stmts. See
1822 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 details. */
1824 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1826 gimple stmt = gsi_stmt (i);
1827 if (gimple_code (stmt) == GIMPLE_LABEL
1828 && (FORCED_LABEL (gimple_label_label (stmt))
1829 || DECL_NONLOCAL (gimple_label_label (stmt))))
1831 basic_block new_bb;
1832 gimple_stmt_iterator new_gsi;
1834 /* A non-reachable non-local label may still be referenced.
1835 But it no longer needs to carry the extra semantics of
1836 non-locality. */
1837 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1839 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1840 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1843 new_bb = bb->prev_bb;
1844 new_gsi = gsi_start_bb (new_bb);
1845 gsi_remove (&i, false);
1846 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1848 else
1850 /* Release SSA definitions if we are in SSA. Note that we
1851 may be called when not in SSA. For example,
1852 final_cleanup calls this function via
1853 cleanup_tree_cfg. */
1854 if (gimple_in_ssa_p (cfun))
1855 release_defs (stmt);
1857 gsi_remove (&i, true);
1860 if (gsi_end_p (i))
1861 i = gsi_last_bb (bb);
1862 else
1863 gsi_prev (&i);
1867 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1868 bb->il.gimple = NULL;
1872 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1873 predicate VAL, return the edge that will be taken out of the block.
1874 If VAL does not match a unique edge, NULL is returned. */
1876 edge
1877 find_taken_edge (basic_block bb, tree val)
1879 gimple stmt;
1881 stmt = last_stmt (bb);
1883 gcc_assert (stmt);
1884 gcc_assert (is_ctrl_stmt (stmt));
1886 if (val == NULL)
1887 return NULL;
1889 if (!is_gimple_min_invariant (val))
1890 return NULL;
1892 if (gimple_code (stmt) == GIMPLE_COND)
1893 return find_taken_edge_cond_expr (bb, val);
1895 if (gimple_code (stmt) == GIMPLE_SWITCH)
1896 return find_taken_edge_switch_expr (bb, val);
1898 if (computed_goto_p (stmt))
1900 /* Only optimize if the argument is a label, if the argument is
1901 not a label then we can not construct a proper CFG.
1903 It may be the case that we only need to allow the LABEL_REF to
1904 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1905 appear inside a LABEL_EXPR just to be safe. */
1906 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1907 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1908 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1909 return NULL;
1912 gcc_unreachable ();
1915 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1916 statement, determine which of the outgoing edges will be taken out of the
1917 block. Return NULL if either edge may be taken. */
1919 static edge
1920 find_taken_edge_computed_goto (basic_block bb, tree val)
1922 basic_block dest;
1923 edge e = NULL;
1925 dest = label_to_block (val);
1926 if (dest)
1928 e = find_edge (bb, dest);
1929 gcc_assert (e != NULL);
1932 return e;
1935 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1936 statement, determine which of the two edges will be taken out of the
1937 block. Return NULL if either edge may be taken. */
1939 static edge
1940 find_taken_edge_cond_expr (basic_block bb, tree val)
1942 edge true_edge, false_edge;
1944 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1946 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1947 return (integer_zerop (val) ? false_edge : true_edge);
1950 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1951 statement, determine which edge will be taken out of the block. Return
1952 NULL if any edge may be taken. */
1954 static edge
1955 find_taken_edge_switch_expr (basic_block bb, tree val)
1957 basic_block dest_bb;
1958 edge e;
1959 gimple switch_stmt;
1960 tree taken_case;
1962 switch_stmt = last_stmt (bb);
1963 taken_case = find_case_label_for_value (switch_stmt, val);
1964 dest_bb = label_to_block (CASE_LABEL (taken_case));
1966 e = find_edge (bb, dest_bb);
1967 gcc_assert (e);
1968 return e;
1972 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1973 We can make optimal use here of the fact that the case labels are
1974 sorted: We can do a binary search for a case matching VAL. */
1976 static tree
1977 find_case_label_for_value (gimple switch_stmt, tree val)
1979 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1980 tree default_case = gimple_switch_default_label (switch_stmt);
1982 for (low = 0, high = n; high - low > 1; )
1984 size_t i = (high + low) / 2;
1985 tree t = gimple_switch_label (switch_stmt, i);
1986 int cmp;
1988 /* Cache the result of comparing CASE_LOW and val. */
1989 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1991 if (cmp > 0)
1992 high = i;
1993 else
1994 low = i;
1996 if (CASE_HIGH (t) == NULL)
1998 /* A singe-valued case label. */
1999 if (cmp == 0)
2000 return t;
2002 else
2004 /* A case range. We can only handle integer ranges. */
2005 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2006 return t;
2010 return default_case;
2014 /* Dump a basic block on stderr. */
2016 void
2017 gimple_debug_bb (basic_block bb)
2019 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2023 /* Dump basic block with index N on stderr. */
2025 basic_block
2026 gimple_debug_bb_n (int n)
2028 gimple_debug_bb (BASIC_BLOCK (n));
2029 return BASIC_BLOCK (n);
2033 /* Dump the CFG on stderr.
2035 FLAGS are the same used by the tree dumping functions
2036 (see TDF_* in tree-pass.h). */
2038 void
2039 gimple_debug_cfg (int flags)
2041 gimple_dump_cfg (stderr, flags);
2045 /* Dump the program showing basic block boundaries on the given FILE.
2047 FLAGS are the same used by the tree dumping functions (see TDF_* in
2048 tree.h). */
2050 void
2051 gimple_dump_cfg (FILE *file, int flags)
2053 if (flags & TDF_DETAILS)
2055 const char *funcname
2056 = lang_hooks.decl_printable_name (current_function_decl, 2);
2058 fputc ('\n', file);
2059 fprintf (file, ";; Function %s\n\n", funcname);
2060 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2061 n_basic_blocks, n_edges, last_basic_block);
2063 brief_dump_cfg (file);
2064 fprintf (file, "\n");
2067 if (flags & TDF_STATS)
2068 dump_cfg_stats (file);
2070 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2074 /* Dump CFG statistics on FILE. */
2076 void
2077 dump_cfg_stats (FILE *file)
2079 static long max_num_merged_labels = 0;
2080 unsigned long size, total = 0;
2081 long num_edges;
2082 basic_block bb;
2083 const char * const fmt_str = "%-30s%-13s%12s\n";
2084 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2085 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2086 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2087 const char *funcname
2088 = lang_hooks.decl_printable_name (current_function_decl, 2);
2091 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2093 fprintf (file, "---------------------------------------------------------\n");
2094 fprintf (file, fmt_str, "", " Number of ", "Memory");
2095 fprintf (file, fmt_str, "", " instances ", "used ");
2096 fprintf (file, "---------------------------------------------------------\n");
2098 size = n_basic_blocks * sizeof (struct basic_block_def);
2099 total += size;
2100 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2101 SCALE (size), LABEL (size));
2103 num_edges = 0;
2104 FOR_EACH_BB (bb)
2105 num_edges += EDGE_COUNT (bb->succs);
2106 size = num_edges * sizeof (struct edge_def);
2107 total += size;
2108 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2110 fprintf (file, "---------------------------------------------------------\n");
2111 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2112 LABEL (total));
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, "\n");
2116 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2117 max_num_merged_labels = cfg_stats.num_merged_labels;
2119 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2120 cfg_stats.num_merged_labels, max_num_merged_labels);
2122 fprintf (file, "\n");
2126 /* Dump CFG statistics on stderr. Keep extern so that it's always
2127 linked in the final executable. */
2129 DEBUG_FUNCTION void
2130 debug_cfg_stats (void)
2132 dump_cfg_stats (stderr);
2136 /* Dump the flowgraph to a .vcg FILE. */
2138 static void
2139 gimple_cfg2vcg (FILE *file)
2141 edge e;
2142 edge_iterator ei;
2143 basic_block bb;
2144 const char *funcname
2145 = lang_hooks.decl_printable_name (current_function_decl, 2);
2147 /* Write the file header. */
2148 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2149 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2150 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2152 /* Write blocks and edges. */
2153 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2155 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2156 e->dest->index);
2158 if (e->flags & EDGE_FAKE)
2159 fprintf (file, " linestyle: dotted priority: 10");
2160 else
2161 fprintf (file, " linestyle: solid priority: 100");
2163 fprintf (file, " }\n");
2165 fputc ('\n', file);
2167 FOR_EACH_BB (bb)
2169 enum gimple_code head_code, end_code;
2170 const char *head_name, *end_name;
2171 int head_line = 0;
2172 int end_line = 0;
2173 gimple first = first_stmt (bb);
2174 gimple last = last_stmt (bb);
2176 if (first)
2178 head_code = gimple_code (first);
2179 head_name = gimple_code_name[head_code];
2180 head_line = get_lineno (first);
2182 else
2183 head_name = "no-statement";
2185 if (last)
2187 end_code = gimple_code (last);
2188 end_name = gimple_code_name[end_code];
2189 end_line = get_lineno (last);
2191 else
2192 end_name = "no-statement";
2194 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2195 bb->index, bb->index, head_name, head_line, end_name,
2196 end_line);
2198 FOR_EACH_EDGE (e, ei, bb->succs)
2200 if (e->dest == EXIT_BLOCK_PTR)
2201 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2202 else
2203 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2205 if (e->flags & EDGE_FAKE)
2206 fprintf (file, " priority: 10 linestyle: dotted");
2207 else
2208 fprintf (file, " priority: 100 linestyle: solid");
2210 fprintf (file, " }\n");
2213 if (bb->next_bb != EXIT_BLOCK_PTR)
2214 fputc ('\n', file);
2217 fputs ("}\n\n", file);
2222 /*---------------------------------------------------------------------------
2223 Miscellaneous helpers
2224 ---------------------------------------------------------------------------*/
2226 /* Return true if T represents a stmt that always transfers control. */
2228 bool
2229 is_ctrl_stmt (gimple t)
2231 switch (gimple_code (t))
2233 case GIMPLE_COND:
2234 case GIMPLE_SWITCH:
2235 case GIMPLE_GOTO:
2236 case GIMPLE_RETURN:
2237 case GIMPLE_RESX:
2238 return true;
2239 default:
2240 return false;
2245 /* Return true if T is a statement that may alter the flow of control
2246 (e.g., a call to a non-returning function). */
2248 bool
2249 is_ctrl_altering_stmt (gimple t)
2251 gcc_assert (t);
2253 switch (gimple_code (t))
2255 case GIMPLE_CALL:
2257 int flags = gimple_call_flags (t);
2259 /* A non-pure/const call alters flow control if the current
2260 function has nonlocal labels. */
2261 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2262 && cfun->has_nonlocal_label)
2263 return true;
2265 /* A call also alters control flow if it does not return. */
2266 if (flags & ECF_NORETURN)
2267 return true;
2269 /* BUILT_IN_RETURN call is same as return statement. */
2270 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2271 return true;
2273 break;
2275 case GIMPLE_EH_DISPATCH:
2276 /* EH_DISPATCH branches to the individual catch handlers at
2277 this level of a try or allowed-exceptions region. It can
2278 fallthru to the next statement as well. */
2279 return true;
2281 case GIMPLE_ASM:
2282 if (gimple_asm_nlabels (t) > 0)
2283 return true;
2284 break;
2286 CASE_GIMPLE_OMP:
2287 /* OpenMP directives alter control flow. */
2288 return true;
2290 default:
2291 break;
2294 /* If a statement can throw, it alters control flow. */
2295 return stmt_can_throw_internal (t);
2299 /* Return true if T is a simple local goto. */
2301 bool
2302 simple_goto_p (gimple t)
2304 return (gimple_code (t) == GIMPLE_GOTO
2305 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2309 /* Return true if T can make an abnormal transfer of control flow.
2310 Transfers of control flow associated with EH are excluded. */
2312 bool
2313 stmt_can_make_abnormal_goto (gimple t)
2315 if (computed_goto_p (t))
2316 return true;
2317 if (is_gimple_call (t))
2318 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2319 && !(gimple_call_flags (t) & ECF_LEAF));
2320 return false;
2324 /* Return true if STMT should start a new basic block. PREV_STMT is
2325 the statement preceding STMT. It is used when STMT is a label or a
2326 case label. Labels should only start a new basic block if their
2327 previous statement wasn't a label. Otherwise, sequence of labels
2328 would generate unnecessary basic blocks that only contain a single
2329 label. */
2331 static inline bool
2332 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2334 if (stmt == NULL)
2335 return false;
2337 /* Labels start a new basic block only if the preceding statement
2338 wasn't a label of the same type. This prevents the creation of
2339 consecutive blocks that have nothing but a single label. */
2340 if (gimple_code (stmt) == GIMPLE_LABEL)
2342 /* Nonlocal and computed GOTO targets always start a new block. */
2343 if (DECL_NONLOCAL (gimple_label_label (stmt))
2344 || FORCED_LABEL (gimple_label_label (stmt)))
2345 return true;
2347 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2349 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2350 return true;
2352 cfg_stats.num_merged_labels++;
2353 return false;
2355 else
2356 return true;
2359 return false;
2363 /* Return true if T should end a basic block. */
2365 bool
2366 stmt_ends_bb_p (gimple t)
2368 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2371 /* Remove block annotations and other data structures. */
2373 void
2374 delete_tree_cfg_annotations (void)
2376 label_to_block_map = NULL;
2380 /* Return the first statement in basic block BB. */
2382 gimple
2383 first_stmt (basic_block bb)
2385 gimple_stmt_iterator i = gsi_start_bb (bb);
2386 gimple stmt = NULL;
2388 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2390 gsi_next (&i);
2391 stmt = NULL;
2393 return stmt;
2396 /* Return the first non-label statement in basic block BB. */
2398 static gimple
2399 first_non_label_stmt (basic_block bb)
2401 gimple_stmt_iterator i = gsi_start_bb (bb);
2402 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2403 gsi_next (&i);
2404 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2407 /* Return the last statement in basic block BB. */
2409 gimple
2410 last_stmt (basic_block bb)
2412 gimple_stmt_iterator i = gsi_last_bb (bb);
2413 gimple stmt = NULL;
2415 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2417 gsi_prev (&i);
2418 stmt = NULL;
2420 return stmt;
2423 /* Return the last statement of an otherwise empty block. Return NULL
2424 if the block is totally empty, or if it contains more than one
2425 statement. */
2427 gimple
2428 last_and_only_stmt (basic_block bb)
2430 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2431 gimple last, prev;
2433 if (gsi_end_p (i))
2434 return NULL;
2436 last = gsi_stmt (i);
2437 gsi_prev_nondebug (&i);
2438 if (gsi_end_p (i))
2439 return last;
2441 /* Empty statements should no longer appear in the instruction stream.
2442 Everything that might have appeared before should be deleted by
2443 remove_useless_stmts, and the optimizers should just gsi_remove
2444 instead of smashing with build_empty_stmt.
2446 Thus the only thing that should appear here in a block containing
2447 one executable statement is a label. */
2448 prev = gsi_stmt (i);
2449 if (gimple_code (prev) == GIMPLE_LABEL)
2450 return last;
2451 else
2452 return NULL;
2455 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2457 static void
2458 reinstall_phi_args (edge new_edge, edge old_edge)
2460 edge_var_map_vector v;
2461 edge_var_map *vm;
2462 int i;
2463 gimple_stmt_iterator phis;
2465 v = redirect_edge_var_map_vector (old_edge);
2466 if (!v)
2467 return;
2469 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2470 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2471 i++, gsi_next (&phis))
2473 gimple phi = gsi_stmt (phis);
2474 tree result = redirect_edge_var_map_result (vm);
2475 tree arg = redirect_edge_var_map_def (vm);
2477 gcc_assert (result == gimple_phi_result (phi));
2479 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2482 redirect_edge_var_map_clear (old_edge);
2485 /* Returns the basic block after which the new basic block created
2486 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2487 near its "logical" location. This is of most help to humans looking
2488 at debugging dumps. */
2490 static basic_block
2491 split_edge_bb_loc (edge edge_in)
2493 basic_block dest = edge_in->dest;
2494 basic_block dest_prev = dest->prev_bb;
2496 if (dest_prev)
2498 edge e = find_edge (dest_prev, dest);
2499 if (e && !(e->flags & EDGE_COMPLEX))
2500 return edge_in->src;
2502 return dest_prev;
2505 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2506 Abort on abnormal edges. */
2508 static basic_block
2509 gimple_split_edge (edge edge_in)
2511 basic_block new_bb, after_bb, dest;
2512 edge new_edge, e;
2514 /* Abnormal edges cannot be split. */
2515 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2517 dest = edge_in->dest;
2519 after_bb = split_edge_bb_loc (edge_in);
2521 new_bb = create_empty_bb (after_bb);
2522 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2523 new_bb->count = edge_in->count;
2524 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2525 new_edge->probability = REG_BR_PROB_BASE;
2526 new_edge->count = edge_in->count;
2528 e = redirect_edge_and_branch (edge_in, new_bb);
2529 gcc_assert (e == edge_in);
2530 reinstall_phi_args (new_edge, e);
2532 return new_bb;
2536 /* Verify properties of the address expression T with base object BASE. */
2538 static tree
2539 verify_address (tree t, tree base)
2541 bool old_constant;
2542 bool old_side_effects;
2543 bool new_constant;
2544 bool new_side_effects;
2546 old_constant = TREE_CONSTANT (t);
2547 old_side_effects = TREE_SIDE_EFFECTS (t);
2549 recompute_tree_invariant_for_addr_expr (t);
2550 new_side_effects = TREE_SIDE_EFFECTS (t);
2551 new_constant = TREE_CONSTANT (t);
2553 if (old_constant != new_constant)
2555 error ("constant not recomputed when ADDR_EXPR changed");
2556 return t;
2558 if (old_side_effects != new_side_effects)
2560 error ("side effects not recomputed when ADDR_EXPR changed");
2561 return t;
2564 if (!(TREE_CODE (base) == VAR_DECL
2565 || TREE_CODE (base) == PARM_DECL
2566 || TREE_CODE (base) == RESULT_DECL))
2567 return NULL_TREE;
2569 if (DECL_GIMPLE_REG_P (base))
2571 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2572 return base;
2575 return NULL_TREE;
2578 /* Callback for walk_tree, check that all elements with address taken are
2579 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2580 inside a PHI node. */
2582 static tree
2583 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2585 tree t = *tp, x;
2587 if (TYPE_P (t))
2588 *walk_subtrees = 0;
2590 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2591 #define CHECK_OP(N, MSG) \
2592 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2593 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2595 switch (TREE_CODE (t))
2597 case SSA_NAME:
2598 if (SSA_NAME_IN_FREE_LIST (t))
2600 error ("SSA name in freelist but still referenced");
2601 return *tp;
2603 break;
2605 case INDIRECT_REF:
2606 error ("INDIRECT_REF in gimple IL");
2607 return t;
2609 case MEM_REF:
2610 x = TREE_OPERAND (t, 0);
2611 if (!POINTER_TYPE_P (TREE_TYPE (x))
2612 || !is_gimple_mem_ref_addr (x))
2614 error ("invalid first operand of MEM_REF");
2615 return x;
2617 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2618 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2620 error ("invalid offset operand of MEM_REF");
2621 return TREE_OPERAND (t, 1);
2623 if (TREE_CODE (x) == ADDR_EXPR
2624 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2625 return x;
2626 *walk_subtrees = 0;
2627 break;
2629 case ASSERT_EXPR:
2630 x = fold (ASSERT_EXPR_COND (t));
2631 if (x == boolean_false_node)
2633 error ("ASSERT_EXPR with an always-false condition");
2634 return *tp;
2636 break;
2638 case MODIFY_EXPR:
2639 error ("MODIFY_EXPR not expected while having tuples");
2640 return *tp;
2642 case ADDR_EXPR:
2644 tree tem;
2646 gcc_assert (is_gimple_address (t));
2648 /* Skip any references (they will be checked when we recurse down the
2649 tree) and ensure that any variable used as a prefix is marked
2650 addressable. */
2651 for (x = TREE_OPERAND (t, 0);
2652 handled_component_p (x);
2653 x = TREE_OPERAND (x, 0))
2656 if ((tem = verify_address (t, x)))
2657 return tem;
2659 if (!(TREE_CODE (x) == VAR_DECL
2660 || TREE_CODE (x) == PARM_DECL
2661 || TREE_CODE (x) == RESULT_DECL))
2662 return NULL;
2664 if (!TREE_ADDRESSABLE (x))
2666 error ("address taken, but ADDRESSABLE bit not set");
2667 return x;
2670 break;
2673 case COND_EXPR:
2674 x = COND_EXPR_COND (t);
2675 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2677 error ("non-integral used in condition");
2678 return x;
2680 if (!is_gimple_condexpr (x))
2682 error ("invalid conditional operand");
2683 return x;
2685 break;
2687 case NON_LVALUE_EXPR:
2688 gcc_unreachable ();
2690 CASE_CONVERT:
2691 case FIX_TRUNC_EXPR:
2692 case FLOAT_EXPR:
2693 case NEGATE_EXPR:
2694 case ABS_EXPR:
2695 case BIT_NOT_EXPR:
2696 case TRUTH_NOT_EXPR:
2697 CHECK_OP (0, "invalid operand to unary operator");
2698 break;
2700 case REALPART_EXPR:
2701 case IMAGPART_EXPR:
2702 case COMPONENT_REF:
2703 case ARRAY_REF:
2704 case ARRAY_RANGE_REF:
2705 case BIT_FIELD_REF:
2706 case VIEW_CONVERT_EXPR:
2707 /* We have a nest of references. Verify that each of the operands
2708 that determine where to reference is either a constant or a variable,
2709 verify that the base is valid, and then show we've already checked
2710 the subtrees. */
2711 while (handled_component_p (t))
2713 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2714 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2715 else if (TREE_CODE (t) == ARRAY_REF
2716 || TREE_CODE (t) == ARRAY_RANGE_REF)
2718 CHECK_OP (1, "invalid array index");
2719 if (TREE_OPERAND (t, 2))
2720 CHECK_OP (2, "invalid array lower bound");
2721 if (TREE_OPERAND (t, 3))
2722 CHECK_OP (3, "invalid array stride");
2724 else if (TREE_CODE (t) == BIT_FIELD_REF)
2726 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2727 || !host_integerp (TREE_OPERAND (t, 2), 1))
2729 error ("invalid position or size operand to BIT_FIELD_REF");
2730 return t;
2732 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2733 && (TYPE_PRECISION (TREE_TYPE (t))
2734 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2736 error ("integral result type precision does not match "
2737 "field size of BIT_FIELD_REF");
2738 return t;
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2741 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2742 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2744 error ("mode precision of non-integral result does not "
2745 "match field size of BIT_FIELD_REF");
2746 return t;
2750 t = TREE_OPERAND (t, 0);
2753 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2755 error ("invalid reference prefix");
2756 return t;
2758 *walk_subtrees = 0;
2759 break;
2760 case PLUS_EXPR:
2761 case MINUS_EXPR:
2762 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2763 POINTER_PLUS_EXPR. */
2764 if (POINTER_TYPE_P (TREE_TYPE (t)))
2766 error ("invalid operand to plus/minus, type is a pointer");
2767 return t;
2769 CHECK_OP (0, "invalid operand to binary operator");
2770 CHECK_OP (1, "invalid operand to binary operator");
2771 break;
2773 case POINTER_PLUS_EXPR:
2774 /* Check to make sure the first operand is a pointer or reference type. */
2775 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2777 error ("invalid operand to pointer plus, first operand is not a pointer");
2778 return t;
2780 /* Check to make sure the second operand is an integer with type of
2781 sizetype. */
2782 if (!useless_type_conversion_p (sizetype,
2783 TREE_TYPE (TREE_OPERAND (t, 1))))
2785 error ("invalid operand to pointer plus, second operand is not an "
2786 "integer with type of sizetype");
2787 return t;
2789 /* FALLTHROUGH */
2790 case LT_EXPR:
2791 case LE_EXPR:
2792 case GT_EXPR:
2793 case GE_EXPR:
2794 case EQ_EXPR:
2795 case NE_EXPR:
2796 case UNORDERED_EXPR:
2797 case ORDERED_EXPR:
2798 case UNLT_EXPR:
2799 case UNLE_EXPR:
2800 case UNGT_EXPR:
2801 case UNGE_EXPR:
2802 case UNEQ_EXPR:
2803 case LTGT_EXPR:
2804 case MULT_EXPR:
2805 case TRUNC_DIV_EXPR:
2806 case CEIL_DIV_EXPR:
2807 case FLOOR_DIV_EXPR:
2808 case ROUND_DIV_EXPR:
2809 case TRUNC_MOD_EXPR:
2810 case CEIL_MOD_EXPR:
2811 case FLOOR_MOD_EXPR:
2812 case ROUND_MOD_EXPR:
2813 case RDIV_EXPR:
2814 case EXACT_DIV_EXPR:
2815 case MIN_EXPR:
2816 case MAX_EXPR:
2817 case LSHIFT_EXPR:
2818 case RSHIFT_EXPR:
2819 case LROTATE_EXPR:
2820 case RROTATE_EXPR:
2821 case BIT_IOR_EXPR:
2822 case BIT_XOR_EXPR:
2823 case BIT_AND_EXPR:
2824 CHECK_OP (0, "invalid operand to binary operator");
2825 CHECK_OP (1, "invalid operand to binary operator");
2826 break;
2828 case CONSTRUCTOR:
2829 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2830 *walk_subtrees = 0;
2831 break;
2833 case CASE_LABEL_EXPR:
2834 if (CASE_CHAIN (t))
2836 error ("invalid CASE_CHAIN");
2837 return t;
2839 break;
2841 default:
2842 break;
2844 return NULL;
2846 #undef CHECK_OP
2850 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2851 Returns true if there is an error, otherwise false. */
2853 static bool
2854 verify_types_in_gimple_min_lval (tree expr)
2856 tree op;
2858 if (is_gimple_id (expr))
2859 return false;
2861 if (TREE_CODE (expr) != TARGET_MEM_REF
2862 && TREE_CODE (expr) != MEM_REF)
2864 error ("invalid expression for min lvalue");
2865 return true;
2868 /* TARGET_MEM_REFs are strange beasts. */
2869 if (TREE_CODE (expr) == TARGET_MEM_REF)
2870 return false;
2872 op = TREE_OPERAND (expr, 0);
2873 if (!is_gimple_val (op))
2875 error ("invalid operand in indirect reference");
2876 debug_generic_stmt (op);
2877 return true;
2879 /* Memory references now generally can involve a value conversion. */
2881 return false;
2884 /* Verify if EXPR is a valid GIMPLE reference expression. If
2885 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2886 if there is an error, otherwise false. */
2888 static bool
2889 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2891 while (handled_component_p (expr))
2893 tree op = TREE_OPERAND (expr, 0);
2895 if (TREE_CODE (expr) == ARRAY_REF
2896 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2898 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2899 || (TREE_OPERAND (expr, 2)
2900 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2901 || (TREE_OPERAND (expr, 3)
2902 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2904 error ("invalid operands to array reference");
2905 debug_generic_stmt (expr);
2906 return true;
2910 /* Verify if the reference array element types are compatible. */
2911 if (TREE_CODE (expr) == ARRAY_REF
2912 && !useless_type_conversion_p (TREE_TYPE (expr),
2913 TREE_TYPE (TREE_TYPE (op))))
2915 error ("type mismatch in array reference");
2916 debug_generic_stmt (TREE_TYPE (expr));
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2918 return true;
2920 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2921 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2922 TREE_TYPE (TREE_TYPE (op))))
2924 error ("type mismatch in array range reference");
2925 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2926 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2927 return true;
2930 if ((TREE_CODE (expr) == REALPART_EXPR
2931 || TREE_CODE (expr) == IMAGPART_EXPR)
2932 && !useless_type_conversion_p (TREE_TYPE (expr),
2933 TREE_TYPE (TREE_TYPE (op))))
2935 error ("type mismatch in real/imagpart reference");
2936 debug_generic_stmt (TREE_TYPE (expr));
2937 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2938 return true;
2941 if (TREE_CODE (expr) == COMPONENT_REF
2942 && !useless_type_conversion_p (TREE_TYPE (expr),
2943 TREE_TYPE (TREE_OPERAND (expr, 1))))
2945 error ("type mismatch in component reference");
2946 debug_generic_stmt (TREE_TYPE (expr));
2947 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2948 return true;
2951 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2953 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2954 that their operand is not an SSA name or an invariant when
2955 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2956 bug). Otherwise there is nothing to verify, gross mismatches at
2957 most invoke undefined behavior. */
2958 if (require_lvalue
2959 && (TREE_CODE (op) == SSA_NAME
2960 || is_gimple_min_invariant (op)))
2962 error ("conversion of an SSA_NAME on the left hand side");
2963 debug_generic_stmt (expr);
2964 return true;
2966 else if (TREE_CODE (op) == SSA_NAME
2967 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2969 error ("conversion of register to a different size");
2970 debug_generic_stmt (expr);
2971 return true;
2973 else if (!handled_component_p (op))
2974 return false;
2977 expr = op;
2980 if (TREE_CODE (expr) == MEM_REF)
2982 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2984 error ("invalid address operand in MEM_REF");
2985 debug_generic_stmt (expr);
2986 return true;
2988 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2989 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2991 error ("invalid offset operand in MEM_REF");
2992 debug_generic_stmt (expr);
2993 return true;
2996 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2998 if (!TMR_BASE (expr)
2999 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3001 error ("invalid address operand in TARGET_MEM_REF");
3002 return true;
3004 if (!TMR_OFFSET (expr)
3005 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3006 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3008 error ("invalid offset operand in TARGET_MEM_REF");
3009 debug_generic_stmt (expr);
3010 return true;
3014 return ((require_lvalue || !is_gimple_min_invariant (expr))
3015 && verify_types_in_gimple_min_lval (expr));
3018 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3019 list of pointer-to types that is trivially convertible to DEST. */
3021 static bool
3022 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3024 tree src;
3026 if (!TYPE_POINTER_TO (src_obj))
3027 return true;
3029 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3030 if (useless_type_conversion_p (dest, src))
3031 return true;
3033 return false;
3036 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3037 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3039 static bool
3040 valid_fixed_convert_types_p (tree type1, tree type2)
3042 return (FIXED_POINT_TYPE_P (type1)
3043 && (INTEGRAL_TYPE_P (type2)
3044 || SCALAR_FLOAT_TYPE_P (type2)
3045 || FIXED_POINT_TYPE_P (type2)));
3048 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3049 is a problem, otherwise false. */
3051 static bool
3052 verify_gimple_call (gimple stmt)
3054 tree fn = gimple_call_fn (stmt);
3055 tree fntype, fndecl;
3056 unsigned i;
3058 if (gimple_call_internal_p (stmt))
3060 if (fn)
3062 error ("gimple call has two targets");
3063 debug_generic_stmt (fn);
3064 return true;
3067 else
3069 if (!fn)
3071 error ("gimple call has no target");
3072 return true;
3076 if (fn && !is_gimple_call_addr (fn))
3078 error ("invalid function in gimple call");
3079 debug_generic_stmt (fn);
3080 return true;
3083 if (fn
3084 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3085 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3086 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3088 error ("non-function in gimple call");
3089 return true;
3092 fndecl = gimple_call_fndecl (stmt);
3093 if (fndecl
3094 && TREE_CODE (fndecl) == FUNCTION_DECL
3095 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3096 && !DECL_PURE_P (fndecl)
3097 && !TREE_READONLY (fndecl))
3099 error ("invalid pure const state for function");
3100 return true;
3103 if (gimple_call_lhs (stmt)
3104 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3105 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3107 error ("invalid LHS in gimple call");
3108 return true;
3111 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3113 error ("LHS in noreturn call");
3114 return true;
3117 fntype = gimple_call_fntype (stmt);
3118 if (fntype
3119 && gimple_call_lhs (stmt)
3120 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3121 TREE_TYPE (fntype))
3122 /* ??? At least C++ misses conversions at assignments from
3123 void * call results.
3124 ??? Java is completely off. Especially with functions
3125 returning java.lang.Object.
3126 For now simply allow arbitrary pointer type conversions. */
3127 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3128 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3130 error ("invalid conversion in gimple call");
3131 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3132 debug_generic_stmt (TREE_TYPE (fntype));
3133 return true;
3136 if (gimple_call_chain (stmt)
3137 && !is_gimple_val (gimple_call_chain (stmt)))
3139 error ("invalid static chain in gimple call");
3140 debug_generic_stmt (gimple_call_chain (stmt));
3141 return true;
3144 /* If there is a static chain argument, this should not be an indirect
3145 call, and the decl should have DECL_STATIC_CHAIN set. */
3146 if (gimple_call_chain (stmt))
3148 if (!gimple_call_fndecl (stmt))
3150 error ("static chain in indirect gimple call");
3151 return true;
3153 fn = TREE_OPERAND (fn, 0);
3155 if (!DECL_STATIC_CHAIN (fn))
3157 error ("static chain with function that doesn%'t use one");
3158 return true;
3162 /* ??? The C frontend passes unpromoted arguments in case it
3163 didn't see a function declaration before the call. So for now
3164 leave the call arguments mostly unverified. Once we gimplify
3165 unit-at-a-time we have a chance to fix this. */
3167 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3169 tree arg = gimple_call_arg (stmt, i);
3170 if ((is_gimple_reg_type (TREE_TYPE (arg))
3171 && !is_gimple_val (arg))
3172 || (!is_gimple_reg_type (TREE_TYPE (arg))
3173 && !is_gimple_lvalue (arg)))
3175 error ("invalid argument to gimple call");
3176 debug_generic_expr (arg);
3177 return true;
3181 return false;
3184 /* Verifies the gimple comparison with the result type TYPE and
3185 the operands OP0 and OP1. */
3187 static bool
3188 verify_gimple_comparison (tree type, tree op0, tree op1)
3190 tree op0_type = TREE_TYPE (op0);
3191 tree op1_type = TREE_TYPE (op1);
3193 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3195 error ("invalid operands in gimple comparison");
3196 return true;
3199 /* For comparisons we do not have the operations type as the
3200 effective type the comparison is carried out in. Instead
3201 we require that either the first operand is trivially
3202 convertible into the second, or the other way around.
3203 The resulting type of a comparison may be any integral type.
3204 Because we special-case pointers to void we allow
3205 comparisons of pointers with the same mode as well. */
3206 if ((!useless_type_conversion_p (op0_type, op1_type)
3207 && !useless_type_conversion_p (op1_type, op0_type)
3208 && (!POINTER_TYPE_P (op0_type)
3209 || !POINTER_TYPE_P (op1_type)
3210 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3211 || !INTEGRAL_TYPE_P (type))
3213 error ("type mismatch in comparison expression");
3214 debug_generic_expr (type);
3215 debug_generic_expr (op0_type);
3216 debug_generic_expr (op1_type);
3217 return true;
3220 return false;
3223 /* Verify a gimple assignment statement STMT with an unary rhs.
3224 Returns true if anything is wrong. */
3226 static bool
3227 verify_gimple_assign_unary (gimple stmt)
3229 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3230 tree lhs = gimple_assign_lhs (stmt);
3231 tree lhs_type = TREE_TYPE (lhs);
3232 tree rhs1 = gimple_assign_rhs1 (stmt);
3233 tree rhs1_type = TREE_TYPE (rhs1);
3235 if (!is_gimple_reg (lhs))
3237 error ("non-register as LHS of unary operation");
3238 return true;
3241 if (!is_gimple_val (rhs1))
3243 error ("invalid operand in unary operation");
3244 return true;
3247 /* First handle conversions. */
3248 switch (rhs_code)
3250 CASE_CONVERT:
3252 /* Allow conversions between integral types and pointers only if
3253 there is no sign or zero extension involved.
3254 For targets were the precision of sizetype doesn't match that
3255 of pointers we need to allow arbitrary conversions from and
3256 to sizetype. */
3257 if ((POINTER_TYPE_P (lhs_type)
3258 && INTEGRAL_TYPE_P (rhs1_type)
3259 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3260 || rhs1_type == sizetype))
3261 || (POINTER_TYPE_P (rhs1_type)
3262 && INTEGRAL_TYPE_P (lhs_type)
3263 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3264 || lhs_type == sizetype)))
3265 return false;
3267 /* Allow conversion from integer to offset type and vice versa. */
3268 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3269 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3270 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3271 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3272 return false;
3274 /* Otherwise assert we are converting between types of the
3275 same kind. */
3276 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3278 error ("invalid types in nop conversion");
3279 debug_generic_expr (lhs_type);
3280 debug_generic_expr (rhs1_type);
3281 return true;
3284 return false;
3287 case ADDR_SPACE_CONVERT_EXPR:
3289 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3290 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3291 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3293 error ("invalid types in address space conversion");
3294 debug_generic_expr (lhs_type);
3295 debug_generic_expr (rhs1_type);
3296 return true;
3299 return false;
3302 case FIXED_CONVERT_EXPR:
3304 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3305 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3307 error ("invalid types in fixed-point conversion");
3308 debug_generic_expr (lhs_type);
3309 debug_generic_expr (rhs1_type);
3310 return true;
3313 return false;
3316 case FLOAT_EXPR:
3318 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3320 error ("invalid types in conversion to floating point");
3321 debug_generic_expr (lhs_type);
3322 debug_generic_expr (rhs1_type);
3323 return true;
3326 return false;
3329 case FIX_TRUNC_EXPR:
3331 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3333 error ("invalid types in conversion to integer");
3334 debug_generic_expr (lhs_type);
3335 debug_generic_expr (rhs1_type);
3336 return true;
3339 return false;
3342 case VEC_UNPACK_HI_EXPR:
3343 case VEC_UNPACK_LO_EXPR:
3344 case REDUC_MAX_EXPR:
3345 case REDUC_MIN_EXPR:
3346 case REDUC_PLUS_EXPR:
3347 case VEC_UNPACK_FLOAT_HI_EXPR:
3348 case VEC_UNPACK_FLOAT_LO_EXPR:
3349 /* FIXME. */
3350 return false;
3352 case TRUTH_NOT_EXPR:
3353 /* We require two-valued operand types. */
3354 if (!(TREE_CODE (rhs1_type) == BOOLEAN_TYPE
3355 || (INTEGRAL_TYPE_P (rhs1_type)
3356 && TYPE_PRECISION (rhs1_type) == 1)))
3358 error ("invalid types in truth not");
3359 debug_generic_expr (lhs_type);
3360 debug_generic_expr (rhs1_type);
3361 return true;
3363 break;
3365 case NEGATE_EXPR:
3366 case ABS_EXPR:
3367 case BIT_NOT_EXPR:
3368 case PAREN_EXPR:
3369 case NON_LVALUE_EXPR:
3370 case CONJ_EXPR:
3371 break;
3373 default:
3374 gcc_unreachable ();
3377 /* For the remaining codes assert there is no conversion involved. */
3378 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3380 error ("non-trivial conversion in unary operation");
3381 debug_generic_expr (lhs_type);
3382 debug_generic_expr (rhs1_type);
3383 return true;
3386 return false;
3389 /* Verify a gimple assignment statement STMT with a binary rhs.
3390 Returns true if anything is wrong. */
3392 static bool
3393 verify_gimple_assign_binary (gimple stmt)
3395 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3396 tree lhs = gimple_assign_lhs (stmt);
3397 tree lhs_type = TREE_TYPE (lhs);
3398 tree rhs1 = gimple_assign_rhs1 (stmt);
3399 tree rhs1_type = TREE_TYPE (rhs1);
3400 tree rhs2 = gimple_assign_rhs2 (stmt);
3401 tree rhs2_type = TREE_TYPE (rhs2);
3403 if (!is_gimple_reg (lhs))
3405 error ("non-register as LHS of binary operation");
3406 return true;
3409 if (!is_gimple_val (rhs1)
3410 || !is_gimple_val (rhs2))
3412 error ("invalid operands in binary operation");
3413 return true;
3416 /* First handle operations that involve different types. */
3417 switch (rhs_code)
3419 case COMPLEX_EXPR:
3421 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3422 || !(INTEGRAL_TYPE_P (rhs1_type)
3423 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3424 || !(INTEGRAL_TYPE_P (rhs2_type)
3425 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3427 error ("type mismatch in complex expression");
3428 debug_generic_expr (lhs_type);
3429 debug_generic_expr (rhs1_type);
3430 debug_generic_expr (rhs2_type);
3431 return true;
3434 return false;
3437 case LSHIFT_EXPR:
3438 case RSHIFT_EXPR:
3439 case LROTATE_EXPR:
3440 case RROTATE_EXPR:
3442 /* Shifts and rotates are ok on integral types, fixed point
3443 types and integer vector types. */
3444 if ((!INTEGRAL_TYPE_P (rhs1_type)
3445 && !FIXED_POINT_TYPE_P (rhs1_type)
3446 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3447 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3448 || (!INTEGRAL_TYPE_P (rhs2_type)
3449 /* Vector shifts of vectors are also ok. */
3450 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3451 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3452 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3453 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3454 || !useless_type_conversion_p (lhs_type, rhs1_type))
3456 error ("type mismatch in shift expression");
3457 debug_generic_expr (lhs_type);
3458 debug_generic_expr (rhs1_type);
3459 debug_generic_expr (rhs2_type);
3460 return true;
3463 return false;
3466 case VEC_LSHIFT_EXPR:
3467 case VEC_RSHIFT_EXPR:
3469 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3470 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3471 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3472 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3473 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3474 || (!INTEGRAL_TYPE_P (rhs2_type)
3475 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3476 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3477 || !useless_type_conversion_p (lhs_type, rhs1_type))
3479 error ("type mismatch in vector shift expression");
3480 debug_generic_expr (lhs_type);
3481 debug_generic_expr (rhs1_type);
3482 debug_generic_expr (rhs2_type);
3483 return true;
3485 /* For shifting a vector of non-integral components we
3486 only allow shifting by a constant multiple of the element size. */
3487 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3488 && (TREE_CODE (rhs2) != INTEGER_CST
3489 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3490 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3492 error ("non-element sized vector shift of floating point vector");
3493 return true;
3496 return false;
3499 case PLUS_EXPR:
3500 case MINUS_EXPR:
3502 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3503 ??? This just makes the checker happy and may not be what is
3504 intended. */
3505 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3506 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3508 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3509 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3511 error ("invalid non-vector operands to vector valued plus");
3512 return true;
3514 lhs_type = TREE_TYPE (lhs_type);
3515 rhs1_type = TREE_TYPE (rhs1_type);
3516 rhs2_type = TREE_TYPE (rhs2_type);
3517 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3518 the pointer to 2nd place. */
3519 if (POINTER_TYPE_P (rhs2_type))
3521 tree tem = rhs1_type;
3522 rhs1_type = rhs2_type;
3523 rhs2_type = tem;
3525 goto do_pointer_plus_expr_check;
3527 if (POINTER_TYPE_P (lhs_type)
3528 || POINTER_TYPE_P (rhs1_type)
3529 || POINTER_TYPE_P (rhs2_type))
3531 error ("invalid (pointer) operands to plus/minus");
3532 return true;
3535 /* Continue with generic binary expression handling. */
3536 break;
3539 case POINTER_PLUS_EXPR:
3541 do_pointer_plus_expr_check:
3542 if (!POINTER_TYPE_P (rhs1_type)
3543 || !useless_type_conversion_p (lhs_type, rhs1_type)
3544 || !useless_type_conversion_p (sizetype, rhs2_type))
3546 error ("type mismatch in pointer plus expression");
3547 debug_generic_stmt (lhs_type);
3548 debug_generic_stmt (rhs1_type);
3549 debug_generic_stmt (rhs2_type);
3550 return true;
3553 return false;
3556 case TRUTH_ANDIF_EXPR:
3557 case TRUTH_ORIF_EXPR:
3558 case TRUTH_AND_EXPR:
3559 case TRUTH_OR_EXPR:
3560 case TRUTH_XOR_EXPR:
3562 gcc_unreachable ();
3564 case LT_EXPR:
3565 case LE_EXPR:
3566 case GT_EXPR:
3567 case GE_EXPR:
3568 case EQ_EXPR:
3569 case NE_EXPR:
3570 case UNORDERED_EXPR:
3571 case ORDERED_EXPR:
3572 case UNLT_EXPR:
3573 case UNLE_EXPR:
3574 case UNGT_EXPR:
3575 case UNGE_EXPR:
3576 case UNEQ_EXPR:
3577 case LTGT_EXPR:
3578 /* Comparisons are also binary, but the result type is not
3579 connected to the operand types. */
3580 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3582 case WIDEN_MULT_EXPR:
3583 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3584 return true;
3585 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3586 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3588 case WIDEN_SUM_EXPR:
3589 case VEC_WIDEN_MULT_HI_EXPR:
3590 case VEC_WIDEN_MULT_LO_EXPR:
3591 case VEC_PACK_TRUNC_EXPR:
3592 case VEC_PACK_SAT_EXPR:
3593 case VEC_PACK_FIX_TRUNC_EXPR:
3594 case VEC_EXTRACT_EVEN_EXPR:
3595 case VEC_EXTRACT_ODD_EXPR:
3596 case VEC_INTERLEAVE_HIGH_EXPR:
3597 case VEC_INTERLEAVE_LOW_EXPR:
3598 /* FIXME. */
3599 return false;
3601 case MULT_EXPR:
3602 case TRUNC_DIV_EXPR:
3603 case CEIL_DIV_EXPR:
3604 case FLOOR_DIV_EXPR:
3605 case ROUND_DIV_EXPR:
3606 case TRUNC_MOD_EXPR:
3607 case CEIL_MOD_EXPR:
3608 case FLOOR_MOD_EXPR:
3609 case ROUND_MOD_EXPR:
3610 case RDIV_EXPR:
3611 case EXACT_DIV_EXPR:
3612 case MIN_EXPR:
3613 case MAX_EXPR:
3614 case BIT_IOR_EXPR:
3615 case BIT_XOR_EXPR:
3616 case BIT_AND_EXPR:
3617 /* Continue with generic binary expression handling. */
3618 break;
3620 default:
3621 gcc_unreachable ();
3624 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3625 || !useless_type_conversion_p (lhs_type, rhs2_type))
3627 error ("type mismatch in binary expression");
3628 debug_generic_stmt (lhs_type);
3629 debug_generic_stmt (rhs1_type);
3630 debug_generic_stmt (rhs2_type);
3631 return true;
3634 return false;
3637 /* Verify a gimple assignment statement STMT with a ternary rhs.
3638 Returns true if anything is wrong. */
3640 static bool
3641 verify_gimple_assign_ternary (gimple stmt)
3643 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3644 tree lhs = gimple_assign_lhs (stmt);
3645 tree lhs_type = TREE_TYPE (lhs);
3646 tree rhs1 = gimple_assign_rhs1 (stmt);
3647 tree rhs1_type = TREE_TYPE (rhs1);
3648 tree rhs2 = gimple_assign_rhs2 (stmt);
3649 tree rhs2_type = TREE_TYPE (rhs2);
3650 tree rhs3 = gimple_assign_rhs3 (stmt);
3651 tree rhs3_type = TREE_TYPE (rhs3);
3653 if (!is_gimple_reg (lhs))
3655 error ("non-register as LHS of ternary operation");
3656 return true;
3659 if (!is_gimple_val (rhs1)
3660 || !is_gimple_val (rhs2)
3661 || !is_gimple_val (rhs3))
3663 error ("invalid operands in ternary operation");
3664 return true;
3667 /* First handle operations that involve different types. */
3668 switch (rhs_code)
3670 case WIDEN_MULT_PLUS_EXPR:
3671 case WIDEN_MULT_MINUS_EXPR:
3672 if ((!INTEGRAL_TYPE_P (rhs1_type)
3673 && !FIXED_POINT_TYPE_P (rhs1_type))
3674 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3675 || !useless_type_conversion_p (lhs_type, rhs3_type)
3676 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3677 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3679 error ("type mismatch in widening multiply-accumulate expression");
3680 debug_generic_expr (lhs_type);
3681 debug_generic_expr (rhs1_type);
3682 debug_generic_expr (rhs2_type);
3683 debug_generic_expr (rhs3_type);
3684 return true;
3686 break;
3688 case FMA_EXPR:
3689 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3690 || !useless_type_conversion_p (lhs_type, rhs2_type)
3691 || !useless_type_conversion_p (lhs_type, rhs3_type))
3693 error ("type mismatch in fused multiply-add expression");
3694 debug_generic_expr (lhs_type);
3695 debug_generic_expr (rhs1_type);
3696 debug_generic_expr (rhs2_type);
3697 debug_generic_expr (rhs3_type);
3698 return true;
3700 break;
3702 case DOT_PROD_EXPR:
3703 case REALIGN_LOAD_EXPR:
3704 /* FIXME. */
3705 return false;
3707 default:
3708 gcc_unreachable ();
3710 return false;
3713 /* Verify a gimple assignment statement STMT with a single rhs.
3714 Returns true if anything is wrong. */
3716 static bool
3717 verify_gimple_assign_single (gimple stmt)
3719 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3720 tree lhs = gimple_assign_lhs (stmt);
3721 tree lhs_type = TREE_TYPE (lhs);
3722 tree rhs1 = gimple_assign_rhs1 (stmt);
3723 tree rhs1_type = TREE_TYPE (rhs1);
3724 bool res = false;
3726 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3728 error ("non-trivial conversion at assignment");
3729 debug_generic_expr (lhs_type);
3730 debug_generic_expr (rhs1_type);
3731 return true;
3734 if (handled_component_p (lhs))
3735 res |= verify_types_in_gimple_reference (lhs, true);
3737 /* Special codes we cannot handle via their class. */
3738 switch (rhs_code)
3740 case ADDR_EXPR:
3742 tree op = TREE_OPERAND (rhs1, 0);
3743 if (!is_gimple_addressable (op))
3745 error ("invalid operand in unary expression");
3746 return true;
3749 /* Technically there is no longer a need for matching types, but
3750 gimple hygiene asks for this check. In LTO we can end up
3751 combining incompatible units and thus end up with addresses
3752 of globals that change their type to a common one. */
3753 if (!in_lto_p
3754 && !types_compatible_p (TREE_TYPE (op),
3755 TREE_TYPE (TREE_TYPE (rhs1)))
3756 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3757 TREE_TYPE (op)))
3759 error ("type mismatch in address expression");
3760 debug_generic_stmt (TREE_TYPE (rhs1));
3761 debug_generic_stmt (TREE_TYPE (op));
3762 return true;
3765 return verify_types_in_gimple_reference (op, true);
3768 /* tcc_reference */
3769 case INDIRECT_REF:
3770 error ("INDIRECT_REF in gimple IL");
3771 return true;
3773 case COMPONENT_REF:
3774 case BIT_FIELD_REF:
3775 case ARRAY_REF:
3776 case ARRAY_RANGE_REF:
3777 case VIEW_CONVERT_EXPR:
3778 case REALPART_EXPR:
3779 case IMAGPART_EXPR:
3780 case TARGET_MEM_REF:
3781 case MEM_REF:
3782 if (!is_gimple_reg (lhs)
3783 && is_gimple_reg_type (TREE_TYPE (lhs)))
3785 error ("invalid rhs for gimple memory store");
3786 debug_generic_stmt (lhs);
3787 debug_generic_stmt (rhs1);
3788 return true;
3790 return res || verify_types_in_gimple_reference (rhs1, false);
3792 /* tcc_constant */
3793 case SSA_NAME:
3794 case INTEGER_CST:
3795 case REAL_CST:
3796 case FIXED_CST:
3797 case COMPLEX_CST:
3798 case VECTOR_CST:
3799 case STRING_CST:
3800 return res;
3802 /* tcc_declaration */
3803 case CONST_DECL:
3804 return res;
3805 case VAR_DECL:
3806 case PARM_DECL:
3807 if (!is_gimple_reg (lhs)
3808 && !is_gimple_reg (rhs1)
3809 && is_gimple_reg_type (TREE_TYPE (lhs)))
3811 error ("invalid rhs for gimple memory store");
3812 debug_generic_stmt (lhs);
3813 debug_generic_stmt (rhs1);
3814 return true;
3816 return res;
3818 case COND_EXPR:
3819 if (!is_gimple_reg (lhs)
3820 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3821 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3822 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3823 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3824 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3825 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3827 error ("invalid COND_EXPR in gimple assignment");
3828 debug_generic_stmt (rhs1);
3829 return true;
3831 return res;
3833 case CONSTRUCTOR:
3834 case OBJ_TYPE_REF:
3835 case ASSERT_EXPR:
3836 case WITH_SIZE_EXPR:
3837 case VEC_COND_EXPR:
3838 /* FIXME. */
3839 return res;
3841 default:;
3844 return res;
3847 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3848 is a problem, otherwise false. */
3850 static bool
3851 verify_gimple_assign (gimple stmt)
3853 switch (gimple_assign_rhs_class (stmt))
3855 case GIMPLE_SINGLE_RHS:
3856 return verify_gimple_assign_single (stmt);
3858 case GIMPLE_UNARY_RHS:
3859 return verify_gimple_assign_unary (stmt);
3861 case GIMPLE_BINARY_RHS:
3862 return verify_gimple_assign_binary (stmt);
3864 case GIMPLE_TERNARY_RHS:
3865 return verify_gimple_assign_ternary (stmt);
3867 default:
3868 gcc_unreachable ();
3872 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3873 is a problem, otherwise false. */
3875 static bool
3876 verify_gimple_return (gimple stmt)
3878 tree op = gimple_return_retval (stmt);
3879 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3881 /* We cannot test for present return values as we do not fix up missing
3882 return values from the original source. */
3883 if (op == NULL)
3884 return false;
3886 if (!is_gimple_val (op)
3887 && TREE_CODE (op) != RESULT_DECL)
3889 error ("invalid operand in return statement");
3890 debug_generic_stmt (op);
3891 return true;
3894 if ((TREE_CODE (op) == RESULT_DECL
3895 && DECL_BY_REFERENCE (op))
3896 || (TREE_CODE (op) == SSA_NAME
3897 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3898 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3899 op = TREE_TYPE (op);
3901 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3903 error ("invalid conversion in return statement");
3904 debug_generic_stmt (restype);
3905 debug_generic_stmt (TREE_TYPE (op));
3906 return true;
3909 return false;
3913 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3914 is a problem, otherwise false. */
3916 static bool
3917 verify_gimple_goto (gimple stmt)
3919 tree dest = gimple_goto_dest (stmt);
3921 /* ??? We have two canonical forms of direct goto destinations, a
3922 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3923 if (TREE_CODE (dest) != LABEL_DECL
3924 && (!is_gimple_val (dest)
3925 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3927 error ("goto destination is neither a label nor a pointer");
3928 return true;
3931 return false;
3934 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3935 is a problem, otherwise false. */
3937 static bool
3938 verify_gimple_switch (gimple stmt)
3940 if (!is_gimple_val (gimple_switch_index (stmt)))
3942 error ("invalid operand to switch statement");
3943 debug_generic_stmt (gimple_switch_index (stmt));
3944 return true;
3947 return false;
3951 /* Verify a gimple debug statement STMT.
3952 Returns true if anything is wrong. */
3954 static bool
3955 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3957 /* There isn't much that could be wrong in a gimple debug stmt. A
3958 gimple debug bind stmt, for example, maps a tree, that's usually
3959 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3960 component or member of an aggregate type, to another tree, that
3961 can be an arbitrary expression. These stmts expand into debug
3962 insns, and are converted to debug notes by var-tracking.c. */
3963 return false;
3966 /* Verify a gimple label statement STMT.
3967 Returns true if anything is wrong. */
3969 static bool
3970 verify_gimple_label (gimple stmt)
3972 tree decl = gimple_label_label (stmt);
3973 int uid;
3974 bool err = false;
3976 if (TREE_CODE (decl) != LABEL_DECL)
3977 return true;
3979 uid = LABEL_DECL_UID (decl);
3980 if (cfun->cfg
3981 && (uid == -1
3982 || VEC_index (basic_block,
3983 label_to_block_map, uid) != gimple_bb (stmt)))
3985 error ("incorrect entry in label_to_block_map");
3986 err |= true;
3989 uid = EH_LANDING_PAD_NR (decl);
3990 if (uid)
3992 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
3993 if (decl != lp->post_landing_pad)
3995 error ("incorrect setting of landing pad number");
3996 err |= true;
4000 return err;
4003 /* Verify the GIMPLE statement STMT. Returns true if there is an
4004 error, otherwise false. */
4006 static bool
4007 verify_gimple_stmt (gimple stmt)
4009 switch (gimple_code (stmt))
4011 case GIMPLE_ASSIGN:
4012 return verify_gimple_assign (stmt);
4014 case GIMPLE_LABEL:
4015 return verify_gimple_label (stmt);
4017 case GIMPLE_CALL:
4018 return verify_gimple_call (stmt);
4020 case GIMPLE_COND:
4021 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4023 error ("invalid comparison code in gimple cond");
4024 return true;
4026 if (!(!gimple_cond_true_label (stmt)
4027 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4028 || !(!gimple_cond_false_label (stmt)
4029 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4031 error ("invalid labels in gimple cond");
4032 return true;
4035 return verify_gimple_comparison (boolean_type_node,
4036 gimple_cond_lhs (stmt),
4037 gimple_cond_rhs (stmt));
4039 case GIMPLE_GOTO:
4040 return verify_gimple_goto (stmt);
4042 case GIMPLE_SWITCH:
4043 return verify_gimple_switch (stmt);
4045 case GIMPLE_RETURN:
4046 return verify_gimple_return (stmt);
4048 case GIMPLE_ASM:
4049 return false;
4051 /* Tuples that do not have tree operands. */
4052 case GIMPLE_NOP:
4053 case GIMPLE_PREDICT:
4054 case GIMPLE_RESX:
4055 case GIMPLE_EH_DISPATCH:
4056 case GIMPLE_EH_MUST_NOT_THROW:
4057 return false;
4059 CASE_GIMPLE_OMP:
4060 /* OpenMP directives are validated by the FE and never operated
4061 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4062 non-gimple expressions when the main index variable has had
4063 its address taken. This does not affect the loop itself
4064 because the header of an GIMPLE_OMP_FOR is merely used to determine
4065 how to setup the parallel iteration. */
4066 return false;
4068 case GIMPLE_DEBUG:
4069 return verify_gimple_debug (stmt);
4071 default:
4072 gcc_unreachable ();
4076 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4077 and false otherwise. */
4079 static bool
4080 verify_gimple_phi (gimple phi)
4082 bool err = false;
4083 unsigned i;
4084 tree phi_result = gimple_phi_result (phi);
4085 bool virtual_p;
4087 if (!phi_result)
4089 error ("invalid PHI result");
4090 return true;
4093 virtual_p = !is_gimple_reg (phi_result);
4094 if (TREE_CODE (phi_result) != SSA_NAME
4095 || (virtual_p
4096 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4098 error ("invalid PHI result");
4099 err = true;
4102 for (i = 0; i < gimple_phi_num_args (phi); i++)
4104 tree t = gimple_phi_arg_def (phi, i);
4106 if (!t)
4108 error ("missing PHI def");
4109 err |= true;
4110 continue;
4112 /* Addressable variables do have SSA_NAMEs but they
4113 are not considered gimple values. */
4114 else if ((TREE_CODE (t) == SSA_NAME
4115 && virtual_p != !is_gimple_reg (t))
4116 || (virtual_p
4117 && (TREE_CODE (t) != SSA_NAME
4118 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4119 || (!virtual_p
4120 && !is_gimple_val (t)))
4122 error ("invalid PHI argument");
4123 debug_generic_expr (t);
4124 err |= true;
4126 #ifdef ENABLE_TYPES_CHECKING
4127 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4129 error ("incompatible types in PHI argument %u", i);
4130 debug_generic_stmt (TREE_TYPE (phi_result));
4131 debug_generic_stmt (TREE_TYPE (t));
4132 err |= true;
4134 #endif
4137 return err;
4140 /* Verify the GIMPLE statements inside the sequence STMTS. */
4142 static bool
4143 verify_gimple_in_seq_2 (gimple_seq stmts)
4145 gimple_stmt_iterator ittr;
4146 bool err = false;
4148 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4150 gimple stmt = gsi_stmt (ittr);
4152 switch (gimple_code (stmt))
4154 case GIMPLE_BIND:
4155 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4156 break;
4158 case GIMPLE_TRY:
4159 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4160 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4161 break;
4163 case GIMPLE_EH_FILTER:
4164 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4165 break;
4167 case GIMPLE_CATCH:
4168 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4169 break;
4171 default:
4173 bool err2 = verify_gimple_stmt (stmt);
4174 if (err2)
4175 debug_gimple_stmt (stmt);
4176 err |= err2;
4181 return err;
4185 /* Verify the GIMPLE statements inside the statement list STMTS. */
4187 DEBUG_FUNCTION void
4188 verify_gimple_in_seq (gimple_seq stmts)
4190 timevar_push (TV_TREE_STMT_VERIFY);
4191 if (verify_gimple_in_seq_2 (stmts))
4192 internal_error ("verify_gimple failed");
4193 timevar_pop (TV_TREE_STMT_VERIFY);
4196 /* Return true when the T can be shared. */
4198 bool
4199 tree_node_can_be_shared (tree t)
4201 if (IS_TYPE_OR_DECL_P (t)
4202 || is_gimple_min_invariant (t)
4203 || TREE_CODE (t) == SSA_NAME
4204 || t == error_mark_node
4205 || TREE_CODE (t) == IDENTIFIER_NODE)
4206 return true;
4208 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4209 return true;
4211 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4212 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4213 || TREE_CODE (t) == COMPONENT_REF
4214 || TREE_CODE (t) == REALPART_EXPR
4215 || TREE_CODE (t) == IMAGPART_EXPR)
4216 t = TREE_OPERAND (t, 0);
4218 if (DECL_P (t))
4219 return true;
4221 return false;
4224 /* Called via walk_gimple_stmt. Verify tree sharing. */
4226 static tree
4227 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4229 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4230 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4232 if (tree_node_can_be_shared (*tp))
4234 *walk_subtrees = false;
4235 return NULL;
4238 if (pointer_set_insert (visited, *tp))
4239 return *tp;
4241 return NULL;
4244 static bool eh_error_found;
4245 static int
4246 verify_eh_throw_stmt_node (void **slot, void *data)
4248 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4249 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4251 if (!pointer_set_contains (visited, node->stmt))
4253 error ("dead STMT in EH table");
4254 debug_gimple_stmt (node->stmt);
4255 eh_error_found = true;
4257 return 1;
4260 /* Verify the GIMPLE statements in the CFG of FN. */
4262 DEBUG_FUNCTION void
4263 verify_gimple_in_cfg (struct function *fn)
4265 basic_block bb;
4266 bool err = false;
4267 struct pointer_set_t *visited, *visited_stmts;
4269 timevar_push (TV_TREE_STMT_VERIFY);
4270 visited = pointer_set_create ();
4271 visited_stmts = pointer_set_create ();
4273 FOR_EACH_BB_FN (bb, fn)
4275 gimple_stmt_iterator gsi;
4277 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4279 gimple phi = gsi_stmt (gsi);
4280 bool err2 = false;
4281 unsigned i;
4283 pointer_set_insert (visited_stmts, phi);
4285 if (gimple_bb (phi) != bb)
4287 error ("gimple_bb (phi) is set to a wrong basic block");
4288 err2 = true;
4291 err2 |= verify_gimple_phi (phi);
4293 for (i = 0; i < gimple_phi_num_args (phi); i++)
4295 tree arg = gimple_phi_arg_def (phi, i);
4296 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4297 if (addr)
4299 error ("incorrect sharing of tree nodes");
4300 debug_generic_expr (addr);
4301 err2 |= true;
4305 if (err2)
4306 debug_gimple_stmt (phi);
4307 err |= err2;
4310 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4312 gimple stmt = gsi_stmt (gsi);
4313 bool err2 = false;
4314 struct walk_stmt_info wi;
4315 tree addr;
4316 int lp_nr;
4318 pointer_set_insert (visited_stmts, stmt);
4320 if (gimple_bb (stmt) != bb)
4322 error ("gimple_bb (stmt) is set to a wrong basic block");
4323 err2 = true;
4326 err2 |= verify_gimple_stmt (stmt);
4328 memset (&wi, 0, sizeof (wi));
4329 wi.info = (void *) visited;
4330 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4331 if (addr)
4333 error ("incorrect sharing of tree nodes");
4334 debug_generic_expr (addr);
4335 err2 |= true;
4338 /* ??? Instead of not checking these stmts at all the walker
4339 should know its context via wi. */
4340 if (!is_gimple_debug (stmt)
4341 && !is_gimple_omp (stmt))
4343 memset (&wi, 0, sizeof (wi));
4344 addr = walk_gimple_op (stmt, verify_expr, &wi);
4345 if (addr)
4347 debug_generic_expr (addr);
4348 inform (gimple_location (stmt), "in statement");
4349 err2 |= true;
4353 /* If the statement is marked as part of an EH region, then it is
4354 expected that the statement could throw. Verify that when we
4355 have optimizations that simplify statements such that we prove
4356 that they cannot throw, that we update other data structures
4357 to match. */
4358 lp_nr = lookup_stmt_eh_lp (stmt);
4359 if (lp_nr != 0)
4361 if (!stmt_could_throw_p (stmt))
4363 error ("statement marked for throw, but doesn%'t");
4364 err2 |= true;
4366 else if (lp_nr > 0
4367 && !gsi_one_before_end_p (gsi)
4368 && stmt_can_throw_internal (stmt))
4370 error ("statement marked for throw in middle of block");
4371 err2 |= true;
4375 if (err2)
4376 debug_gimple_stmt (stmt);
4377 err |= err2;
4381 eh_error_found = false;
4382 if (get_eh_throw_stmt_table (cfun))
4383 htab_traverse (get_eh_throw_stmt_table (cfun),
4384 verify_eh_throw_stmt_node,
4385 visited_stmts);
4387 if (err || eh_error_found)
4388 internal_error ("verify_gimple failed");
4390 pointer_set_destroy (visited);
4391 pointer_set_destroy (visited_stmts);
4392 verify_histograms ();
4393 timevar_pop (TV_TREE_STMT_VERIFY);
4397 /* Verifies that the flow information is OK. */
4399 static int
4400 gimple_verify_flow_info (void)
4402 int err = 0;
4403 basic_block bb;
4404 gimple_stmt_iterator gsi;
4405 gimple stmt;
4406 edge e;
4407 edge_iterator ei;
4409 if (ENTRY_BLOCK_PTR->il.gimple)
4411 error ("ENTRY_BLOCK has IL associated with it");
4412 err = 1;
4415 if (EXIT_BLOCK_PTR->il.gimple)
4417 error ("EXIT_BLOCK has IL associated with it");
4418 err = 1;
4421 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4422 if (e->flags & EDGE_FALLTHRU)
4424 error ("fallthru to exit from bb %d", e->src->index);
4425 err = 1;
4428 FOR_EACH_BB (bb)
4430 bool found_ctrl_stmt = false;
4432 stmt = NULL;
4434 /* Skip labels on the start of basic block. */
4435 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4437 tree label;
4438 gimple prev_stmt = stmt;
4440 stmt = gsi_stmt (gsi);
4442 if (gimple_code (stmt) != GIMPLE_LABEL)
4443 break;
4445 label = gimple_label_label (stmt);
4446 if (prev_stmt && DECL_NONLOCAL (label))
4448 error ("nonlocal label ");
4449 print_generic_expr (stderr, label, 0);
4450 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4451 bb->index);
4452 err = 1;
4455 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4457 error ("EH landing pad label ");
4458 print_generic_expr (stderr, label, 0);
4459 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4460 bb->index);
4461 err = 1;
4464 if (label_to_block (label) != bb)
4466 error ("label ");
4467 print_generic_expr (stderr, label, 0);
4468 fprintf (stderr, " to block does not match in bb %d",
4469 bb->index);
4470 err = 1;
4473 if (decl_function_context (label) != current_function_decl)
4475 error ("label ");
4476 print_generic_expr (stderr, label, 0);
4477 fprintf (stderr, " has incorrect context in bb %d",
4478 bb->index);
4479 err = 1;
4483 /* Verify that body of basic block BB is free of control flow. */
4484 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4486 gimple stmt = gsi_stmt (gsi);
4488 if (found_ctrl_stmt)
4490 error ("control flow in the middle of basic block %d",
4491 bb->index);
4492 err = 1;
4495 if (stmt_ends_bb_p (stmt))
4496 found_ctrl_stmt = true;
4498 if (gimple_code (stmt) == GIMPLE_LABEL)
4500 error ("label ");
4501 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4502 fprintf (stderr, " in the middle of basic block %d", bb->index);
4503 err = 1;
4507 gsi = gsi_last_bb (bb);
4508 if (gsi_end_p (gsi))
4509 continue;
4511 stmt = gsi_stmt (gsi);
4513 if (gimple_code (stmt) == GIMPLE_LABEL)
4514 continue;
4516 err |= verify_eh_edges (stmt);
4518 if (is_ctrl_stmt (stmt))
4520 FOR_EACH_EDGE (e, ei, bb->succs)
4521 if (e->flags & EDGE_FALLTHRU)
4523 error ("fallthru edge after a control statement in bb %d",
4524 bb->index);
4525 err = 1;
4529 if (gimple_code (stmt) != GIMPLE_COND)
4531 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4532 after anything else but if statement. */
4533 FOR_EACH_EDGE (e, ei, bb->succs)
4534 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4536 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4537 bb->index);
4538 err = 1;
4542 switch (gimple_code (stmt))
4544 case GIMPLE_COND:
4546 edge true_edge;
4547 edge false_edge;
4549 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4551 if (!true_edge
4552 || !false_edge
4553 || !(true_edge->flags & EDGE_TRUE_VALUE)
4554 || !(false_edge->flags & EDGE_FALSE_VALUE)
4555 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4556 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4557 || EDGE_COUNT (bb->succs) >= 3)
4559 error ("wrong outgoing edge flags at end of bb %d",
4560 bb->index);
4561 err = 1;
4564 break;
4566 case GIMPLE_GOTO:
4567 if (simple_goto_p (stmt))
4569 error ("explicit goto at end of bb %d", bb->index);
4570 err = 1;
4572 else
4574 /* FIXME. We should double check that the labels in the
4575 destination blocks have their address taken. */
4576 FOR_EACH_EDGE (e, ei, bb->succs)
4577 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4578 | EDGE_FALSE_VALUE))
4579 || !(e->flags & EDGE_ABNORMAL))
4581 error ("wrong outgoing edge flags at end of bb %d",
4582 bb->index);
4583 err = 1;
4586 break;
4588 case GIMPLE_CALL:
4589 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4590 break;
4591 /* ... fallthru ... */
4592 case GIMPLE_RETURN:
4593 if (!single_succ_p (bb)
4594 || (single_succ_edge (bb)->flags
4595 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4596 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4598 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4599 err = 1;
4601 if (single_succ (bb) != EXIT_BLOCK_PTR)
4603 error ("return edge does not point to exit in bb %d",
4604 bb->index);
4605 err = 1;
4607 break;
4609 case GIMPLE_SWITCH:
4611 tree prev;
4612 edge e;
4613 size_t i, n;
4615 n = gimple_switch_num_labels (stmt);
4617 /* Mark all the destination basic blocks. */
4618 for (i = 0; i < n; ++i)
4620 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4621 basic_block label_bb = label_to_block (lab);
4622 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4623 label_bb->aux = (void *)1;
4626 /* Verify that the case labels are sorted. */
4627 prev = gimple_switch_label (stmt, 0);
4628 for (i = 1; i < n; ++i)
4630 tree c = gimple_switch_label (stmt, i);
4631 if (!CASE_LOW (c))
4633 error ("found default case not at the start of "
4634 "case vector");
4635 err = 1;
4636 continue;
4638 if (CASE_LOW (prev)
4639 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4641 error ("case labels not sorted: ");
4642 print_generic_expr (stderr, prev, 0);
4643 fprintf (stderr," is greater than ");
4644 print_generic_expr (stderr, c, 0);
4645 fprintf (stderr," but comes before it.\n");
4646 err = 1;
4648 prev = c;
4650 /* VRP will remove the default case if it can prove it will
4651 never be executed. So do not verify there always exists
4652 a default case here. */
4654 FOR_EACH_EDGE (e, ei, bb->succs)
4656 if (!e->dest->aux)
4658 error ("extra outgoing edge %d->%d",
4659 bb->index, e->dest->index);
4660 err = 1;
4663 e->dest->aux = (void *)2;
4664 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4665 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4667 error ("wrong outgoing edge flags at end of bb %d",
4668 bb->index);
4669 err = 1;
4673 /* Check that we have all of them. */
4674 for (i = 0; i < n; ++i)
4676 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4677 basic_block label_bb = label_to_block (lab);
4679 if (label_bb->aux != (void *)2)
4681 error ("missing edge %i->%i", bb->index, label_bb->index);
4682 err = 1;
4686 FOR_EACH_EDGE (e, ei, bb->succs)
4687 e->dest->aux = (void *)0;
4689 break;
4691 case GIMPLE_EH_DISPATCH:
4692 err |= verify_eh_dispatch_edge (stmt);
4693 break;
4695 default:
4696 break;
4700 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4701 verify_dominators (CDI_DOMINATORS);
4703 return err;
4707 /* Updates phi nodes after creating a forwarder block joined
4708 by edge FALLTHRU. */
4710 static void
4711 gimple_make_forwarder_block (edge fallthru)
4713 edge e;
4714 edge_iterator ei;
4715 basic_block dummy, bb;
4716 tree var;
4717 gimple_stmt_iterator gsi;
4719 dummy = fallthru->src;
4720 bb = fallthru->dest;
4722 if (single_pred_p (bb))
4723 return;
4725 /* If we redirected a branch we must create new PHI nodes at the
4726 start of BB. */
4727 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4729 gimple phi, new_phi;
4731 phi = gsi_stmt (gsi);
4732 var = gimple_phi_result (phi);
4733 new_phi = create_phi_node (var, bb);
4734 SSA_NAME_DEF_STMT (var) = new_phi;
4735 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4736 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4737 UNKNOWN_LOCATION);
4740 /* Add the arguments we have stored on edges. */
4741 FOR_EACH_EDGE (e, ei, bb->preds)
4743 if (e == fallthru)
4744 continue;
4746 flush_pending_stmts (e);
4751 /* Return a non-special label in the head of basic block BLOCK.
4752 Create one if it doesn't exist. */
4754 tree
4755 gimple_block_label (basic_block bb)
4757 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4758 bool first = true;
4759 tree label;
4760 gimple stmt;
4762 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4764 stmt = gsi_stmt (i);
4765 if (gimple_code (stmt) != GIMPLE_LABEL)
4766 break;
4767 label = gimple_label_label (stmt);
4768 if (!DECL_NONLOCAL (label))
4770 if (!first)
4771 gsi_move_before (&i, &s);
4772 return label;
4776 label = create_artificial_label (UNKNOWN_LOCATION);
4777 stmt = gimple_build_label (label);
4778 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4779 return label;
4783 /* Attempt to perform edge redirection by replacing a possibly complex
4784 jump instruction by a goto or by removing the jump completely.
4785 This can apply only if all edges now point to the same block. The
4786 parameters and return values are equivalent to
4787 redirect_edge_and_branch. */
4789 static edge
4790 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4792 basic_block src = e->src;
4793 gimple_stmt_iterator i;
4794 gimple stmt;
4796 /* We can replace or remove a complex jump only when we have exactly
4797 two edges. */
4798 if (EDGE_COUNT (src->succs) != 2
4799 /* Verify that all targets will be TARGET. Specifically, the
4800 edge that is not E must also go to TARGET. */
4801 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4802 return NULL;
4804 i = gsi_last_bb (src);
4805 if (gsi_end_p (i))
4806 return NULL;
4808 stmt = gsi_stmt (i);
4810 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4812 gsi_remove (&i, true);
4813 e = ssa_redirect_edge (e, target);
4814 e->flags = EDGE_FALLTHRU;
4815 return e;
4818 return NULL;
4822 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4823 edge representing the redirected branch. */
4825 static edge
4826 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4828 basic_block bb = e->src;
4829 gimple_stmt_iterator gsi;
4830 edge ret;
4831 gimple stmt;
4833 if (e->flags & EDGE_ABNORMAL)
4834 return NULL;
4836 if (e->dest == dest)
4837 return NULL;
4839 if (e->flags & EDGE_EH)
4840 return redirect_eh_edge (e, dest);
4842 if (e->src != ENTRY_BLOCK_PTR)
4844 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4845 if (ret)
4846 return ret;
4849 gsi = gsi_last_bb (bb);
4850 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4852 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4854 case GIMPLE_COND:
4855 /* For COND_EXPR, we only need to redirect the edge. */
4856 break;
4858 case GIMPLE_GOTO:
4859 /* No non-abnormal edges should lead from a non-simple goto, and
4860 simple ones should be represented implicitly. */
4861 gcc_unreachable ();
4863 case GIMPLE_SWITCH:
4865 tree label = gimple_block_label (dest);
4866 tree cases = get_cases_for_edge (e, stmt);
4868 /* If we have a list of cases associated with E, then use it
4869 as it's a lot faster than walking the entire case vector. */
4870 if (cases)
4872 edge e2 = find_edge (e->src, dest);
4873 tree last, first;
4875 first = cases;
4876 while (cases)
4878 last = cases;
4879 CASE_LABEL (cases) = label;
4880 cases = CASE_CHAIN (cases);
4883 /* If there was already an edge in the CFG, then we need
4884 to move all the cases associated with E to E2. */
4885 if (e2)
4887 tree cases2 = get_cases_for_edge (e2, stmt);
4889 CASE_CHAIN (last) = CASE_CHAIN (cases2);
4890 CASE_CHAIN (cases2) = first;
4892 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4894 else
4896 size_t i, n = gimple_switch_num_labels (stmt);
4898 for (i = 0; i < n; i++)
4900 tree elt = gimple_switch_label (stmt, i);
4901 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4902 CASE_LABEL (elt) = label;
4906 break;
4908 case GIMPLE_ASM:
4910 int i, n = gimple_asm_nlabels (stmt);
4911 tree label = NULL;
4913 for (i = 0; i < n; ++i)
4915 tree cons = gimple_asm_label_op (stmt, i);
4916 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4918 if (!label)
4919 label = gimple_block_label (dest);
4920 TREE_VALUE (cons) = label;
4924 /* If we didn't find any label matching the former edge in the
4925 asm labels, we must be redirecting the fallthrough
4926 edge. */
4927 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4929 break;
4931 case GIMPLE_RETURN:
4932 gsi_remove (&gsi, true);
4933 e->flags |= EDGE_FALLTHRU;
4934 break;
4936 case GIMPLE_OMP_RETURN:
4937 case GIMPLE_OMP_CONTINUE:
4938 case GIMPLE_OMP_SECTIONS_SWITCH:
4939 case GIMPLE_OMP_FOR:
4940 /* The edges from OMP constructs can be simply redirected. */
4941 break;
4943 case GIMPLE_EH_DISPATCH:
4944 if (!(e->flags & EDGE_FALLTHRU))
4945 redirect_eh_dispatch_edge (stmt, e, dest);
4946 break;
4948 default:
4949 /* Otherwise it must be a fallthru edge, and we don't need to
4950 do anything besides redirecting it. */
4951 gcc_assert (e->flags & EDGE_FALLTHRU);
4952 break;
4955 /* Update/insert PHI nodes as necessary. */
4957 /* Now update the edges in the CFG. */
4958 e = ssa_redirect_edge (e, dest);
4960 return e;
4963 /* Returns true if it is possible to remove edge E by redirecting
4964 it to the destination of the other edge from E->src. */
4966 static bool
4967 gimple_can_remove_branch_p (const_edge e)
4969 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4970 return false;
4972 return true;
4975 /* Simple wrapper, as we can always redirect fallthru edges. */
4977 static basic_block
4978 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4980 e = gimple_redirect_edge_and_branch (e, dest);
4981 gcc_assert (e);
4983 return NULL;
4987 /* Splits basic block BB after statement STMT (but at least after the
4988 labels). If STMT is NULL, BB is split just after the labels. */
4990 static basic_block
4991 gimple_split_block (basic_block bb, void *stmt)
4993 gimple_stmt_iterator gsi;
4994 gimple_stmt_iterator gsi_tgt;
4995 gimple act;
4996 gimple_seq list;
4997 basic_block new_bb;
4998 edge e;
4999 edge_iterator ei;
5001 new_bb = create_empty_bb (bb);
5003 /* Redirect the outgoing edges. */
5004 new_bb->succs = bb->succs;
5005 bb->succs = NULL;
5006 FOR_EACH_EDGE (e, ei, new_bb->succs)
5007 e->src = new_bb;
5009 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5010 stmt = NULL;
5012 /* Move everything from GSI to the new basic block. */
5013 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5015 act = gsi_stmt (gsi);
5016 if (gimple_code (act) == GIMPLE_LABEL)
5017 continue;
5019 if (!stmt)
5020 break;
5022 if (stmt == act)
5024 gsi_next (&gsi);
5025 break;
5029 if (gsi_end_p (gsi))
5030 return new_bb;
5032 /* Split the statement list - avoid re-creating new containers as this
5033 brings ugly quadratic memory consumption in the inliner.
5034 (We are still quadratic since we need to update stmt BB pointers,
5035 sadly.) */
5036 list = gsi_split_seq_before (&gsi);
5037 set_bb_seq (new_bb, list);
5038 for (gsi_tgt = gsi_start (list);
5039 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5040 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5042 return new_bb;
5046 /* Moves basic block BB after block AFTER. */
5048 static bool
5049 gimple_move_block_after (basic_block bb, basic_block after)
5051 if (bb->prev_bb == after)
5052 return true;
5054 unlink_block (bb);
5055 link_block (bb, after);
5057 return true;
5061 /* Return true if basic_block can be duplicated. */
5063 static bool
5064 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5066 return true;
5069 /* Create a duplicate of the basic block BB. NOTE: This does not
5070 preserve SSA form. */
5072 static basic_block
5073 gimple_duplicate_bb (basic_block bb)
5075 basic_block new_bb;
5076 gimple_stmt_iterator gsi, gsi_tgt;
5077 gimple_seq phis = phi_nodes (bb);
5078 gimple phi, stmt, copy;
5080 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5082 /* Copy the PHI nodes. We ignore PHI node arguments here because
5083 the incoming edges have not been setup yet. */
5084 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5086 phi = gsi_stmt (gsi);
5087 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5088 create_new_def_for (gimple_phi_result (copy), copy,
5089 gimple_phi_result_ptr (copy));
5092 gsi_tgt = gsi_start_bb (new_bb);
5093 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5095 def_operand_p def_p;
5096 ssa_op_iter op_iter;
5098 stmt = gsi_stmt (gsi);
5099 if (gimple_code (stmt) == GIMPLE_LABEL)
5100 continue;
5102 /* Create a new copy of STMT and duplicate STMT's virtual
5103 operands. */
5104 copy = gimple_copy (stmt);
5105 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5107 maybe_duplicate_eh_stmt (copy, stmt);
5108 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5110 /* Create new names for all the definitions created by COPY and
5111 add replacement mappings for each new name. */
5112 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5113 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5116 return new_bb;
5119 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5121 static void
5122 add_phi_args_after_copy_edge (edge e_copy)
5124 basic_block bb, bb_copy = e_copy->src, dest;
5125 edge e;
5126 edge_iterator ei;
5127 gimple phi, phi_copy;
5128 tree def;
5129 gimple_stmt_iterator psi, psi_copy;
5131 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5132 return;
5134 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5136 if (e_copy->dest->flags & BB_DUPLICATED)
5137 dest = get_bb_original (e_copy->dest);
5138 else
5139 dest = e_copy->dest;
5141 e = find_edge (bb, dest);
5142 if (!e)
5144 /* During loop unrolling the target of the latch edge is copied.
5145 In this case we are not looking for edge to dest, but to
5146 duplicated block whose original was dest. */
5147 FOR_EACH_EDGE (e, ei, bb->succs)
5149 if ((e->dest->flags & BB_DUPLICATED)
5150 && get_bb_original (e->dest) == dest)
5151 break;
5154 gcc_assert (e != NULL);
5157 for (psi = gsi_start_phis (e->dest),
5158 psi_copy = gsi_start_phis (e_copy->dest);
5159 !gsi_end_p (psi);
5160 gsi_next (&psi), gsi_next (&psi_copy))
5162 phi = gsi_stmt (psi);
5163 phi_copy = gsi_stmt (psi_copy);
5164 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5165 add_phi_arg (phi_copy, def, e_copy,
5166 gimple_phi_arg_location_from_edge (phi, e));
5171 /* Basic block BB_COPY was created by code duplication. Add phi node
5172 arguments for edges going out of BB_COPY. The blocks that were
5173 duplicated have BB_DUPLICATED set. */
5175 void
5176 add_phi_args_after_copy_bb (basic_block bb_copy)
5178 edge e_copy;
5179 edge_iterator ei;
5181 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5183 add_phi_args_after_copy_edge (e_copy);
5187 /* Blocks in REGION_COPY array of length N_REGION were created by
5188 duplication of basic blocks. Add phi node arguments for edges
5189 going from these blocks. If E_COPY is not NULL, also add
5190 phi node arguments for its destination.*/
5192 void
5193 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5194 edge e_copy)
5196 unsigned i;
5198 for (i = 0; i < n_region; i++)
5199 region_copy[i]->flags |= BB_DUPLICATED;
5201 for (i = 0; i < n_region; i++)
5202 add_phi_args_after_copy_bb (region_copy[i]);
5203 if (e_copy)
5204 add_phi_args_after_copy_edge (e_copy);
5206 for (i = 0; i < n_region; i++)
5207 region_copy[i]->flags &= ~BB_DUPLICATED;
5210 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5211 important exit edge EXIT. By important we mean that no SSA name defined
5212 inside region is live over the other exit edges of the region. All entry
5213 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5214 to the duplicate of the region. SSA form, dominance and loop information
5215 is updated. The new basic blocks are stored to REGION_COPY in the same
5216 order as they had in REGION, provided that REGION_COPY is not NULL.
5217 The function returns false if it is unable to copy the region,
5218 true otherwise. */
5220 bool
5221 gimple_duplicate_sese_region (edge entry, edge exit,
5222 basic_block *region, unsigned n_region,
5223 basic_block *region_copy)
5225 unsigned i;
5226 bool free_region_copy = false, copying_header = false;
5227 struct loop *loop = entry->dest->loop_father;
5228 edge exit_copy;
5229 VEC (basic_block, heap) *doms;
5230 edge redirected;
5231 int total_freq = 0, entry_freq = 0;
5232 gcov_type total_count = 0, entry_count = 0;
5234 if (!can_copy_bbs_p (region, n_region))
5235 return false;
5237 /* Some sanity checking. Note that we do not check for all possible
5238 missuses of the functions. I.e. if you ask to copy something weird,
5239 it will work, but the state of structures probably will not be
5240 correct. */
5241 for (i = 0; i < n_region; i++)
5243 /* We do not handle subloops, i.e. all the blocks must belong to the
5244 same loop. */
5245 if (region[i]->loop_father != loop)
5246 return false;
5248 if (region[i] != entry->dest
5249 && region[i] == loop->header)
5250 return false;
5253 set_loop_copy (loop, loop);
5255 /* In case the function is used for loop header copying (which is the primary
5256 use), ensure that EXIT and its copy will be new latch and entry edges. */
5257 if (loop->header == entry->dest)
5259 copying_header = true;
5260 set_loop_copy (loop, loop_outer (loop));
5262 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5263 return false;
5265 for (i = 0; i < n_region; i++)
5266 if (region[i] != exit->src
5267 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5268 return false;
5271 if (!region_copy)
5273 region_copy = XNEWVEC (basic_block, n_region);
5274 free_region_copy = true;
5277 gcc_assert (!need_ssa_update_p (cfun));
5279 /* Record blocks outside the region that are dominated by something
5280 inside. */
5281 doms = NULL;
5282 initialize_original_copy_tables ();
5284 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5286 if (entry->dest->count)
5288 total_count = entry->dest->count;
5289 entry_count = entry->count;
5290 /* Fix up corner cases, to avoid division by zero or creation of negative
5291 frequencies. */
5292 if (entry_count > total_count)
5293 entry_count = total_count;
5295 else
5297 total_freq = entry->dest->frequency;
5298 entry_freq = EDGE_FREQUENCY (entry);
5299 /* Fix up corner cases, to avoid division by zero or creation of negative
5300 frequencies. */
5301 if (total_freq == 0)
5302 total_freq = 1;
5303 else if (entry_freq > total_freq)
5304 entry_freq = total_freq;
5307 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5308 split_edge_bb_loc (entry));
5309 if (total_count)
5311 scale_bbs_frequencies_gcov_type (region, n_region,
5312 total_count - entry_count,
5313 total_count);
5314 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5315 total_count);
5317 else
5319 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5320 total_freq);
5321 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5324 if (copying_header)
5326 loop->header = exit->dest;
5327 loop->latch = exit->src;
5330 /* Redirect the entry and add the phi node arguments. */
5331 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5332 gcc_assert (redirected != NULL);
5333 flush_pending_stmts (entry);
5335 /* Concerning updating of dominators: We must recount dominators
5336 for entry block and its copy. Anything that is outside of the
5337 region, but was dominated by something inside needs recounting as
5338 well. */
5339 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5340 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5341 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5342 VEC_free (basic_block, heap, doms);
5344 /* Add the other PHI node arguments. */
5345 add_phi_args_after_copy (region_copy, n_region, NULL);
5347 /* Update the SSA web. */
5348 update_ssa (TODO_update_ssa);
5350 if (free_region_copy)
5351 free (region_copy);
5353 free_original_copy_tables ();
5354 return true;
5357 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5358 are stored to REGION_COPY in the same order in that they appear
5359 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5360 the region, EXIT an exit from it. The condition guarding EXIT
5361 is moved to ENTRY. Returns true if duplication succeeds, false
5362 otherwise.
5364 For example,
5366 some_code;
5367 if (cond)
5369 else
5372 is transformed to
5374 if (cond)
5376 some_code;
5379 else
5381 some_code;
5386 bool
5387 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5388 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5389 basic_block *region_copy ATTRIBUTE_UNUSED)
5391 unsigned i;
5392 bool free_region_copy = false;
5393 struct loop *loop = exit->dest->loop_father;
5394 struct loop *orig_loop = entry->dest->loop_father;
5395 basic_block switch_bb, entry_bb, nentry_bb;
5396 VEC (basic_block, heap) *doms;
5397 int total_freq = 0, exit_freq = 0;
5398 gcov_type total_count = 0, exit_count = 0;
5399 edge exits[2], nexits[2], e;
5400 gimple_stmt_iterator gsi,gsi1;
5401 gimple cond_stmt;
5402 edge sorig, snew;
5403 basic_block exit_bb;
5404 basic_block iters_bb;
5405 tree new_rhs;
5406 gimple_stmt_iterator psi;
5407 gimple phi;
5408 tree def;
5410 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5411 exits[0] = exit;
5412 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5414 if (!can_copy_bbs_p (region, n_region))
5415 return false;
5417 initialize_original_copy_tables ();
5418 set_loop_copy (orig_loop, loop);
5419 duplicate_subloops (orig_loop, loop);
5421 if (!region_copy)
5423 region_copy = XNEWVEC (basic_block, n_region);
5424 free_region_copy = true;
5427 gcc_assert (!need_ssa_update_p (cfun));
5429 /* Record blocks outside the region that are dominated by something
5430 inside. */
5431 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5433 if (exit->src->count)
5435 total_count = exit->src->count;
5436 exit_count = exit->count;
5437 /* Fix up corner cases, to avoid division by zero or creation of negative
5438 frequencies. */
5439 if (exit_count > total_count)
5440 exit_count = total_count;
5442 else
5444 total_freq = exit->src->frequency;
5445 exit_freq = EDGE_FREQUENCY (exit);
5446 /* Fix up corner cases, to avoid division by zero or creation of negative
5447 frequencies. */
5448 if (total_freq == 0)
5449 total_freq = 1;
5450 if (exit_freq > total_freq)
5451 exit_freq = total_freq;
5454 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5455 split_edge_bb_loc (exit));
5456 if (total_count)
5458 scale_bbs_frequencies_gcov_type (region, n_region,
5459 total_count - exit_count,
5460 total_count);
5461 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5462 total_count);
5464 else
5466 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5467 total_freq);
5468 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5471 /* Create the switch block, and put the exit condition to it. */
5472 entry_bb = entry->dest;
5473 nentry_bb = get_bb_copy (entry_bb);
5474 if (!last_stmt (entry->src)
5475 || !stmt_ends_bb_p (last_stmt (entry->src)))
5476 switch_bb = entry->src;
5477 else
5478 switch_bb = split_edge (entry);
5479 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5481 gsi = gsi_last_bb (switch_bb);
5482 cond_stmt = last_stmt (exit->src);
5483 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5484 cond_stmt = gimple_copy (cond_stmt);
5486 /* If the block consisting of the exit condition has the latch as
5487 successor, then the body of the loop is executed before
5488 the exit condition is tested. In such case, moving the
5489 condition to the entry, causes that the loop will iterate
5490 one less iteration (which is the wanted outcome, since we
5491 peel out the last iteration). If the body is executed after
5492 the condition, moving the condition to the entry requires
5493 decrementing one iteration. */
5494 if (exits[1]->dest == orig_loop->latch)
5495 new_rhs = gimple_cond_rhs (cond_stmt);
5496 else
5498 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5499 gimple_cond_rhs (cond_stmt),
5500 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5502 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5504 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5505 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5506 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5507 break;
5509 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5510 NULL_TREE,false,GSI_CONTINUE_LINKING);
5513 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5514 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5515 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5517 sorig = single_succ_edge (switch_bb);
5518 sorig->flags = exits[1]->flags;
5519 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5521 /* Register the new edge from SWITCH_BB in loop exit lists. */
5522 rescan_loop_exit (snew, true, false);
5524 /* Add the PHI node arguments. */
5525 add_phi_args_after_copy (region_copy, n_region, snew);
5527 /* Get rid of now superfluous conditions and associated edges (and phi node
5528 arguments). */
5529 exit_bb = exit->dest;
5531 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5532 PENDING_STMT (e) = NULL;
5534 /* The latch of ORIG_LOOP was copied, and so was the backedge
5535 to the original header. We redirect this backedge to EXIT_BB. */
5536 for (i = 0; i < n_region; i++)
5537 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5539 gcc_assert (single_succ_edge (region_copy[i]));
5540 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5541 PENDING_STMT (e) = NULL;
5542 for (psi = gsi_start_phis (exit_bb);
5543 !gsi_end_p (psi);
5544 gsi_next (&psi))
5546 phi = gsi_stmt (psi);
5547 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5548 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5551 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5552 PENDING_STMT (e) = NULL;
5554 /* Anything that is outside of the region, but was dominated by something
5555 inside needs to update dominance info. */
5556 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5557 VEC_free (basic_block, heap, doms);
5558 /* Update the SSA web. */
5559 update_ssa (TODO_update_ssa);
5561 if (free_region_copy)
5562 free (region_copy);
5564 free_original_copy_tables ();
5565 return true;
5568 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5569 adding blocks when the dominator traversal reaches EXIT. This
5570 function silently assumes that ENTRY strictly dominates EXIT. */
5572 void
5573 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5574 VEC(basic_block,heap) **bbs_p)
5576 basic_block son;
5578 for (son = first_dom_son (CDI_DOMINATORS, entry);
5579 son;
5580 son = next_dom_son (CDI_DOMINATORS, son))
5582 VEC_safe_push (basic_block, heap, *bbs_p, son);
5583 if (son != exit)
5584 gather_blocks_in_sese_region (son, exit, bbs_p);
5588 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5589 The duplicates are recorded in VARS_MAP. */
5591 static void
5592 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5593 tree to_context)
5595 tree t = *tp, new_t;
5596 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5597 void **loc;
5599 if (DECL_CONTEXT (t) == to_context)
5600 return;
5602 loc = pointer_map_contains (vars_map, t);
5604 if (!loc)
5606 loc = pointer_map_insert (vars_map, t);
5608 if (SSA_VAR_P (t))
5610 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5611 add_local_decl (f, new_t);
5613 else
5615 gcc_assert (TREE_CODE (t) == CONST_DECL);
5616 new_t = copy_node (t);
5618 DECL_CONTEXT (new_t) = to_context;
5620 *loc = new_t;
5622 else
5623 new_t = (tree) *loc;
5625 *tp = new_t;
5629 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5630 VARS_MAP maps old ssa names and var_decls to the new ones. */
5632 static tree
5633 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5634 tree to_context)
5636 void **loc;
5637 tree new_name, decl = SSA_NAME_VAR (name);
5639 gcc_assert (is_gimple_reg (name));
5641 loc = pointer_map_contains (vars_map, name);
5643 if (!loc)
5645 replace_by_duplicate_decl (&decl, vars_map, to_context);
5647 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5648 if (gimple_in_ssa_p (cfun))
5649 add_referenced_var (decl);
5651 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5652 if (SSA_NAME_IS_DEFAULT_DEF (name))
5653 set_default_def (decl, new_name);
5654 pop_cfun ();
5656 loc = pointer_map_insert (vars_map, name);
5657 *loc = new_name;
5659 else
5660 new_name = (tree) *loc;
5662 return new_name;
5665 struct move_stmt_d
5667 tree orig_block;
5668 tree new_block;
5669 tree from_context;
5670 tree to_context;
5671 struct pointer_map_t *vars_map;
5672 htab_t new_label_map;
5673 struct pointer_map_t *eh_map;
5674 bool remap_decls_p;
5677 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5678 contained in *TP if it has been ORIG_BLOCK previously and change the
5679 DECL_CONTEXT of every local variable referenced in *TP. */
5681 static tree
5682 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5684 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5685 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5686 tree t = *tp;
5688 if (EXPR_P (t))
5689 /* We should never have TREE_BLOCK set on non-statements. */
5690 gcc_assert (!TREE_BLOCK (t));
5692 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5694 if (TREE_CODE (t) == SSA_NAME)
5695 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5696 else if (TREE_CODE (t) == LABEL_DECL)
5698 if (p->new_label_map)
5700 struct tree_map in, *out;
5701 in.base.from = t;
5702 out = (struct tree_map *)
5703 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5704 if (out)
5705 *tp = t = out->to;
5708 DECL_CONTEXT (t) = p->to_context;
5710 else if (p->remap_decls_p)
5712 /* Replace T with its duplicate. T should no longer appear in the
5713 parent function, so this looks wasteful; however, it may appear
5714 in referenced_vars, and more importantly, as virtual operands of
5715 statements, and in alias lists of other variables. It would be
5716 quite difficult to expunge it from all those places. ??? It might
5717 suffice to do this for addressable variables. */
5718 if ((TREE_CODE (t) == VAR_DECL
5719 && !is_global_var (t))
5720 || TREE_CODE (t) == CONST_DECL)
5721 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5723 if (SSA_VAR_P (t)
5724 && gimple_in_ssa_p (cfun))
5726 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5727 add_referenced_var (*tp);
5728 pop_cfun ();
5731 *walk_subtrees = 0;
5733 else if (TYPE_P (t))
5734 *walk_subtrees = 0;
5736 return NULL_TREE;
5739 /* Helper for move_stmt_r. Given an EH region number for the source
5740 function, map that to the duplicate EH regio number in the dest. */
5742 static int
5743 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5745 eh_region old_r, new_r;
5746 void **slot;
5748 old_r = get_eh_region_from_number (old_nr);
5749 slot = pointer_map_contains (p->eh_map, old_r);
5750 new_r = (eh_region) *slot;
5752 return new_r->index;
5755 /* Similar, but operate on INTEGER_CSTs. */
5757 static tree
5758 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5760 int old_nr, new_nr;
5762 old_nr = tree_low_cst (old_t_nr, 0);
5763 new_nr = move_stmt_eh_region_nr (old_nr, p);
5765 return build_int_cst (integer_type_node, new_nr);
5768 /* Like move_stmt_op, but for gimple statements.
5770 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5771 contained in the current statement in *GSI_P and change the
5772 DECL_CONTEXT of every local variable referenced in the current
5773 statement. */
5775 static tree
5776 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5777 struct walk_stmt_info *wi)
5779 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5780 gimple stmt = gsi_stmt (*gsi_p);
5781 tree block = gimple_block (stmt);
5783 if (p->orig_block == NULL_TREE
5784 || block == p->orig_block
5785 || block == NULL_TREE)
5786 gimple_set_block (stmt, p->new_block);
5787 #ifdef ENABLE_CHECKING
5788 else if (block != p->new_block)
5790 while (block && block != p->orig_block)
5791 block = BLOCK_SUPERCONTEXT (block);
5792 gcc_assert (block);
5794 #endif
5796 switch (gimple_code (stmt))
5798 case GIMPLE_CALL:
5799 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5801 tree r, fndecl = gimple_call_fndecl (stmt);
5802 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5803 switch (DECL_FUNCTION_CODE (fndecl))
5805 case BUILT_IN_EH_COPY_VALUES:
5806 r = gimple_call_arg (stmt, 1);
5807 r = move_stmt_eh_region_tree_nr (r, p);
5808 gimple_call_set_arg (stmt, 1, r);
5809 /* FALLTHRU */
5811 case BUILT_IN_EH_POINTER:
5812 case BUILT_IN_EH_FILTER:
5813 r = gimple_call_arg (stmt, 0);
5814 r = move_stmt_eh_region_tree_nr (r, p);
5815 gimple_call_set_arg (stmt, 0, r);
5816 break;
5818 default:
5819 break;
5822 break;
5824 case GIMPLE_RESX:
5826 int r = gimple_resx_region (stmt);
5827 r = move_stmt_eh_region_nr (r, p);
5828 gimple_resx_set_region (stmt, r);
5830 break;
5832 case GIMPLE_EH_DISPATCH:
5834 int r = gimple_eh_dispatch_region (stmt);
5835 r = move_stmt_eh_region_nr (r, p);
5836 gimple_eh_dispatch_set_region (stmt, r);
5838 break;
5840 case GIMPLE_OMP_RETURN:
5841 case GIMPLE_OMP_CONTINUE:
5842 break;
5843 default:
5844 if (is_gimple_omp (stmt))
5846 /* Do not remap variables inside OMP directives. Variables
5847 referenced in clauses and directive header belong to the
5848 parent function and should not be moved into the child
5849 function. */
5850 bool save_remap_decls_p = p->remap_decls_p;
5851 p->remap_decls_p = false;
5852 *handled_ops_p = true;
5854 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5855 move_stmt_op, wi);
5857 p->remap_decls_p = save_remap_decls_p;
5859 break;
5862 return NULL_TREE;
5865 /* Move basic block BB from function CFUN to function DEST_FN. The
5866 block is moved out of the original linked list and placed after
5867 block AFTER in the new list. Also, the block is removed from the
5868 original array of blocks and placed in DEST_FN's array of blocks.
5869 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5870 updated to reflect the moved edges.
5872 The local variables are remapped to new instances, VARS_MAP is used
5873 to record the mapping. */
5875 static void
5876 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5877 basic_block after, bool update_edge_count_p,
5878 struct move_stmt_d *d)
5880 struct control_flow_graph *cfg;
5881 edge_iterator ei;
5882 edge e;
5883 gimple_stmt_iterator si;
5884 unsigned old_len, new_len;
5886 /* Remove BB from dominance structures. */
5887 delete_from_dominance_info (CDI_DOMINATORS, bb);
5888 if (current_loops)
5889 remove_bb_from_loops (bb);
5891 /* Link BB to the new linked list. */
5892 move_block_after (bb, after);
5894 /* Update the edge count in the corresponding flowgraphs. */
5895 if (update_edge_count_p)
5896 FOR_EACH_EDGE (e, ei, bb->succs)
5898 cfun->cfg->x_n_edges--;
5899 dest_cfun->cfg->x_n_edges++;
5902 /* Remove BB from the original basic block array. */
5903 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5904 cfun->cfg->x_n_basic_blocks--;
5906 /* Grow DEST_CFUN's basic block array if needed. */
5907 cfg = dest_cfun->cfg;
5908 cfg->x_n_basic_blocks++;
5909 if (bb->index >= cfg->x_last_basic_block)
5910 cfg->x_last_basic_block = bb->index + 1;
5912 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5913 if ((unsigned) cfg->x_last_basic_block >= old_len)
5915 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5916 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5917 new_len);
5920 VEC_replace (basic_block, cfg->x_basic_block_info,
5921 bb->index, bb);
5923 /* Remap the variables in phi nodes. */
5924 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5926 gimple phi = gsi_stmt (si);
5927 use_operand_p use;
5928 tree op = PHI_RESULT (phi);
5929 ssa_op_iter oi;
5931 if (!is_gimple_reg (op))
5933 /* Remove the phi nodes for virtual operands (alias analysis will be
5934 run for the new function, anyway). */
5935 remove_phi_node (&si, true);
5936 continue;
5939 SET_PHI_RESULT (phi,
5940 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5941 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5943 op = USE_FROM_PTR (use);
5944 if (TREE_CODE (op) == SSA_NAME)
5945 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5948 gsi_next (&si);
5951 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5953 gimple stmt = gsi_stmt (si);
5954 struct walk_stmt_info wi;
5956 memset (&wi, 0, sizeof (wi));
5957 wi.info = d;
5958 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5960 if (gimple_code (stmt) == GIMPLE_LABEL)
5962 tree label = gimple_label_label (stmt);
5963 int uid = LABEL_DECL_UID (label);
5965 gcc_assert (uid > -1);
5967 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5968 if (old_len <= (unsigned) uid)
5970 new_len = 3 * uid / 2 + 1;
5971 VEC_safe_grow_cleared (basic_block, gc,
5972 cfg->x_label_to_block_map, new_len);
5975 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5976 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5978 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5980 if (uid >= dest_cfun->cfg->last_label_uid)
5981 dest_cfun->cfg->last_label_uid = uid + 1;
5984 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5985 remove_stmt_from_eh_lp_fn (cfun, stmt);
5987 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5988 gimple_remove_stmt_histograms (cfun, stmt);
5990 /* We cannot leave any operands allocated from the operand caches of
5991 the current function. */
5992 free_stmt_operands (stmt);
5993 push_cfun (dest_cfun);
5994 update_stmt (stmt);
5995 pop_cfun ();
5998 FOR_EACH_EDGE (e, ei, bb->succs)
5999 if (e->goto_locus)
6001 tree block = e->goto_block;
6002 if (d->orig_block == NULL_TREE
6003 || block == d->orig_block)
6004 e->goto_block = d->new_block;
6005 #ifdef ENABLE_CHECKING
6006 else if (block != d->new_block)
6008 while (block && block != d->orig_block)
6009 block = BLOCK_SUPERCONTEXT (block);
6010 gcc_assert (block);
6012 #endif
6016 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6017 the outermost EH region. Use REGION as the incoming base EH region. */
6019 static eh_region
6020 find_outermost_region_in_block (struct function *src_cfun,
6021 basic_block bb, eh_region region)
6023 gimple_stmt_iterator si;
6025 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6027 gimple stmt = gsi_stmt (si);
6028 eh_region stmt_region;
6029 int lp_nr;
6031 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6032 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6033 if (stmt_region)
6035 if (region == NULL)
6036 region = stmt_region;
6037 else if (stmt_region != region)
6039 region = eh_region_outermost (src_cfun, stmt_region, region);
6040 gcc_assert (region != NULL);
6045 return region;
6048 static tree
6049 new_label_mapper (tree decl, void *data)
6051 htab_t hash = (htab_t) data;
6052 struct tree_map *m;
6053 void **slot;
6055 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6057 m = XNEW (struct tree_map);
6058 m->hash = DECL_UID (decl);
6059 m->base.from = decl;
6060 m->to = create_artificial_label (UNKNOWN_LOCATION);
6061 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6062 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6063 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6065 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6066 gcc_assert (*slot == NULL);
6068 *slot = m;
6070 return m->to;
6073 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6074 subblocks. */
6076 static void
6077 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6078 tree to_context)
6080 tree *tp, t;
6082 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6084 t = *tp;
6085 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6086 continue;
6087 replace_by_duplicate_decl (&t, vars_map, to_context);
6088 if (t != *tp)
6090 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6092 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6093 DECL_HAS_VALUE_EXPR_P (t) = 1;
6095 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6096 *tp = t;
6100 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6101 replace_block_vars_by_duplicates (block, vars_map, to_context);
6104 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6105 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6106 single basic block in the original CFG and the new basic block is
6107 returned. DEST_CFUN must not have a CFG yet.
6109 Note that the region need not be a pure SESE region. Blocks inside
6110 the region may contain calls to abort/exit. The only restriction
6111 is that ENTRY_BB should be the only entry point and it must
6112 dominate EXIT_BB.
6114 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6115 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6116 to the new function.
6118 All local variables referenced in the region are assumed to be in
6119 the corresponding BLOCK_VARS and unexpanded variable lists
6120 associated with DEST_CFUN. */
6122 basic_block
6123 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6124 basic_block exit_bb, tree orig_block)
6126 VEC(basic_block,heap) *bbs, *dom_bbs;
6127 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6128 basic_block after, bb, *entry_pred, *exit_succ, abb;
6129 struct function *saved_cfun = cfun;
6130 int *entry_flag, *exit_flag;
6131 unsigned *entry_prob, *exit_prob;
6132 unsigned i, num_entry_edges, num_exit_edges;
6133 edge e;
6134 edge_iterator ei;
6135 htab_t new_label_map;
6136 struct pointer_map_t *vars_map, *eh_map;
6137 struct loop *loop = entry_bb->loop_father;
6138 struct move_stmt_d d;
6140 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6141 region. */
6142 gcc_assert (entry_bb != exit_bb
6143 && (!exit_bb
6144 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6146 /* Collect all the blocks in the region. Manually add ENTRY_BB
6147 because it won't be added by dfs_enumerate_from. */
6148 bbs = NULL;
6149 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6150 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6152 /* The blocks that used to be dominated by something in BBS will now be
6153 dominated by the new block. */
6154 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6155 VEC_address (basic_block, bbs),
6156 VEC_length (basic_block, bbs));
6158 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6159 the predecessor edges to ENTRY_BB and the successor edges to
6160 EXIT_BB so that we can re-attach them to the new basic block that
6161 will replace the region. */
6162 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6163 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6164 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6165 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6166 i = 0;
6167 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6169 entry_prob[i] = e->probability;
6170 entry_flag[i] = e->flags;
6171 entry_pred[i++] = e->src;
6172 remove_edge (e);
6175 if (exit_bb)
6177 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6178 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6179 sizeof (basic_block));
6180 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6181 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6182 i = 0;
6183 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6185 exit_prob[i] = e->probability;
6186 exit_flag[i] = e->flags;
6187 exit_succ[i++] = e->dest;
6188 remove_edge (e);
6191 else
6193 num_exit_edges = 0;
6194 exit_succ = NULL;
6195 exit_flag = NULL;
6196 exit_prob = NULL;
6199 /* Switch context to the child function to initialize DEST_FN's CFG. */
6200 gcc_assert (dest_cfun->cfg == NULL);
6201 push_cfun (dest_cfun);
6203 init_empty_tree_cfg ();
6205 /* Initialize EH information for the new function. */
6206 eh_map = NULL;
6207 new_label_map = NULL;
6208 if (saved_cfun->eh)
6210 eh_region region = NULL;
6212 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6213 region = find_outermost_region_in_block (saved_cfun, bb, region);
6215 init_eh_for_function ();
6216 if (region != NULL)
6218 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6219 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6220 new_label_mapper, new_label_map);
6224 pop_cfun ();
6226 /* Move blocks from BBS into DEST_CFUN. */
6227 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6228 after = dest_cfun->cfg->x_entry_block_ptr;
6229 vars_map = pointer_map_create ();
6231 memset (&d, 0, sizeof (d));
6232 d.orig_block = orig_block;
6233 d.new_block = DECL_INITIAL (dest_cfun->decl);
6234 d.from_context = cfun->decl;
6235 d.to_context = dest_cfun->decl;
6236 d.vars_map = vars_map;
6237 d.new_label_map = new_label_map;
6238 d.eh_map = eh_map;
6239 d.remap_decls_p = true;
6241 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6243 /* No need to update edge counts on the last block. It has
6244 already been updated earlier when we detached the region from
6245 the original CFG. */
6246 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6247 after = bb;
6250 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6251 if (orig_block)
6253 tree block;
6254 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6255 == NULL_TREE);
6256 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6257 = BLOCK_SUBBLOCKS (orig_block);
6258 for (block = BLOCK_SUBBLOCKS (orig_block);
6259 block; block = BLOCK_CHAIN (block))
6260 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6261 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6264 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6265 vars_map, dest_cfun->decl);
6267 if (new_label_map)
6268 htab_delete (new_label_map);
6269 if (eh_map)
6270 pointer_map_destroy (eh_map);
6271 pointer_map_destroy (vars_map);
6273 /* Rewire the entry and exit blocks. The successor to the entry
6274 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6275 the child function. Similarly, the predecessor of DEST_FN's
6276 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6277 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6278 various CFG manipulation function get to the right CFG.
6280 FIXME, this is silly. The CFG ought to become a parameter to
6281 these helpers. */
6282 push_cfun (dest_cfun);
6283 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6284 if (exit_bb)
6285 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6286 pop_cfun ();
6288 /* Back in the original function, the SESE region has disappeared,
6289 create a new basic block in its place. */
6290 bb = create_empty_bb (entry_pred[0]);
6291 if (current_loops)
6292 add_bb_to_loop (bb, loop);
6293 for (i = 0; i < num_entry_edges; i++)
6295 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6296 e->probability = entry_prob[i];
6299 for (i = 0; i < num_exit_edges; i++)
6301 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6302 e->probability = exit_prob[i];
6305 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6306 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6307 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6308 VEC_free (basic_block, heap, dom_bbs);
6310 if (exit_bb)
6312 free (exit_prob);
6313 free (exit_flag);
6314 free (exit_succ);
6316 free (entry_prob);
6317 free (entry_flag);
6318 free (entry_pred);
6319 VEC_free (basic_block, heap, bbs);
6321 return bb;
6325 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6328 void
6329 dump_function_to_file (tree fn, FILE *file, int flags)
6331 tree arg, var;
6332 struct function *dsf;
6333 bool ignore_topmost_bind = false, any_var = false;
6334 basic_block bb;
6335 tree chain;
6337 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6339 arg = DECL_ARGUMENTS (fn);
6340 while (arg)
6342 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6343 fprintf (file, " ");
6344 print_generic_expr (file, arg, dump_flags);
6345 if (flags & TDF_VERBOSE)
6346 print_node (file, "", arg, 4);
6347 if (DECL_CHAIN (arg))
6348 fprintf (file, ", ");
6349 arg = DECL_CHAIN (arg);
6351 fprintf (file, ")\n");
6353 if (flags & TDF_VERBOSE)
6354 print_node (file, "", fn, 2);
6356 dsf = DECL_STRUCT_FUNCTION (fn);
6357 if (dsf && (flags & TDF_EH))
6358 dump_eh_tree (file, dsf);
6360 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6362 dump_node (fn, TDF_SLIM | flags, file);
6363 return;
6366 /* Switch CFUN to point to FN. */
6367 push_cfun (DECL_STRUCT_FUNCTION (fn));
6369 /* When GIMPLE is lowered, the variables are no longer available in
6370 BIND_EXPRs, so display them separately. */
6371 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6373 unsigned ix;
6374 ignore_topmost_bind = true;
6376 fprintf (file, "{\n");
6377 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6379 print_generic_decl (file, var, flags);
6380 if (flags & TDF_VERBOSE)
6381 print_node (file, "", var, 4);
6382 fprintf (file, "\n");
6384 any_var = true;
6388 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6390 /* If the CFG has been built, emit a CFG-based dump. */
6391 check_bb_profile (ENTRY_BLOCK_PTR, file);
6392 if (!ignore_topmost_bind)
6393 fprintf (file, "{\n");
6395 if (any_var && n_basic_blocks)
6396 fprintf (file, "\n");
6398 FOR_EACH_BB (bb)
6399 gimple_dump_bb (bb, file, 2, flags);
6401 fprintf (file, "}\n");
6402 check_bb_profile (EXIT_BLOCK_PTR, file);
6404 else if (DECL_SAVED_TREE (fn) == NULL)
6406 /* The function is now in GIMPLE form but the CFG has not been
6407 built yet. Emit the single sequence of GIMPLE statements
6408 that make up its body. */
6409 gimple_seq body = gimple_body (fn);
6411 if (gimple_seq_first_stmt (body)
6412 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6413 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6414 print_gimple_seq (file, body, 0, flags);
6415 else
6417 if (!ignore_topmost_bind)
6418 fprintf (file, "{\n");
6420 if (any_var)
6421 fprintf (file, "\n");
6423 print_gimple_seq (file, body, 2, flags);
6424 fprintf (file, "}\n");
6427 else
6429 int indent;
6431 /* Make a tree based dump. */
6432 chain = DECL_SAVED_TREE (fn);
6434 if (chain && TREE_CODE (chain) == BIND_EXPR)
6436 if (ignore_topmost_bind)
6438 chain = BIND_EXPR_BODY (chain);
6439 indent = 2;
6441 else
6442 indent = 0;
6444 else
6446 if (!ignore_topmost_bind)
6447 fprintf (file, "{\n");
6448 indent = 2;
6451 if (any_var)
6452 fprintf (file, "\n");
6454 print_generic_stmt_indented (file, chain, flags, indent);
6455 if (ignore_topmost_bind)
6456 fprintf (file, "}\n");
6459 if (flags & TDF_ENUMERATE_LOCALS)
6460 dump_enumerated_decls (file, flags);
6461 fprintf (file, "\n\n");
6463 /* Restore CFUN. */
6464 pop_cfun ();
6468 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6470 DEBUG_FUNCTION void
6471 debug_function (tree fn, int flags)
6473 dump_function_to_file (fn, stderr, flags);
6477 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6479 static void
6480 print_pred_bbs (FILE *file, basic_block bb)
6482 edge e;
6483 edge_iterator ei;
6485 FOR_EACH_EDGE (e, ei, bb->preds)
6486 fprintf (file, "bb_%d ", e->src->index);
6490 /* Print on FILE the indexes for the successors of basic_block BB. */
6492 static void
6493 print_succ_bbs (FILE *file, basic_block bb)
6495 edge e;
6496 edge_iterator ei;
6498 FOR_EACH_EDGE (e, ei, bb->succs)
6499 fprintf (file, "bb_%d ", e->dest->index);
6502 /* Print to FILE the basic block BB following the VERBOSITY level. */
6504 void
6505 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6507 char *s_indent = (char *) alloca ((size_t) indent + 1);
6508 memset ((void *) s_indent, ' ', (size_t) indent);
6509 s_indent[indent] = '\0';
6511 /* Print basic_block's header. */
6512 if (verbosity >= 2)
6514 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6515 print_pred_bbs (file, bb);
6516 fprintf (file, "}, succs = {");
6517 print_succ_bbs (file, bb);
6518 fprintf (file, "})\n");
6521 /* Print basic_block's body. */
6522 if (verbosity >= 3)
6524 fprintf (file, "%s {\n", s_indent);
6525 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6526 fprintf (file, "%s }\n", s_indent);
6530 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6532 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6533 VERBOSITY level this outputs the contents of the loop, or just its
6534 structure. */
6536 static void
6537 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6539 char *s_indent;
6540 basic_block bb;
6542 if (loop == NULL)
6543 return;
6545 s_indent = (char *) alloca ((size_t) indent + 1);
6546 memset ((void *) s_indent, ' ', (size_t) indent);
6547 s_indent[indent] = '\0';
6549 /* Print loop's header. */
6550 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6551 loop->num, loop->header->index, loop->latch->index);
6552 fprintf (file, ", niter = ");
6553 print_generic_expr (file, loop->nb_iterations, 0);
6555 if (loop->any_upper_bound)
6557 fprintf (file, ", upper_bound = ");
6558 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6561 if (loop->any_estimate)
6563 fprintf (file, ", estimate = ");
6564 dump_double_int (file, loop->nb_iterations_estimate, true);
6566 fprintf (file, ")\n");
6568 /* Print loop's body. */
6569 if (verbosity >= 1)
6571 fprintf (file, "%s{\n", s_indent);
6572 FOR_EACH_BB (bb)
6573 if (bb->loop_father == loop)
6574 print_loops_bb (file, bb, indent, verbosity);
6576 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6577 fprintf (file, "%s}\n", s_indent);
6581 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6582 spaces. Following VERBOSITY level this outputs the contents of the
6583 loop, or just its structure. */
6585 static void
6586 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6588 if (loop == NULL)
6589 return;
6591 print_loop (file, loop, indent, verbosity);
6592 print_loop_and_siblings (file, loop->next, indent, verbosity);
6595 /* Follow a CFG edge from the entry point of the program, and on entry
6596 of a loop, pretty print the loop structure on FILE. */
6598 void
6599 print_loops (FILE *file, int verbosity)
6601 basic_block bb;
6603 bb = ENTRY_BLOCK_PTR;
6604 if (bb && bb->loop_father)
6605 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6609 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6611 DEBUG_FUNCTION void
6612 debug_loops (int verbosity)
6614 print_loops (stderr, verbosity);
6617 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6619 DEBUG_FUNCTION void
6620 debug_loop (struct loop *loop, int verbosity)
6622 print_loop (stderr, loop, 0, verbosity);
6625 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6626 level. */
6628 DEBUG_FUNCTION void
6629 debug_loop_num (unsigned num, int verbosity)
6631 debug_loop (get_loop (num), verbosity);
6634 /* Return true if BB ends with a call, possibly followed by some
6635 instructions that must stay with the call. Return false,
6636 otherwise. */
6638 static bool
6639 gimple_block_ends_with_call_p (basic_block bb)
6641 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6642 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6646 /* Return true if BB ends with a conditional branch. Return false,
6647 otherwise. */
6649 static bool
6650 gimple_block_ends_with_condjump_p (const_basic_block bb)
6652 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6653 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6657 /* Return true if we need to add fake edge to exit at statement T.
6658 Helper function for gimple_flow_call_edges_add. */
6660 static bool
6661 need_fake_edge_p (gimple t)
6663 tree fndecl = NULL_TREE;
6664 int call_flags = 0;
6666 /* NORETURN and LONGJMP calls already have an edge to exit.
6667 CONST and PURE calls do not need one.
6668 We don't currently check for CONST and PURE here, although
6669 it would be a good idea, because those attributes are
6670 figured out from the RTL in mark_constant_function, and
6671 the counter incrementation code from -fprofile-arcs
6672 leads to different results from -fbranch-probabilities. */
6673 if (is_gimple_call (t))
6675 fndecl = gimple_call_fndecl (t);
6676 call_flags = gimple_call_flags (t);
6679 if (is_gimple_call (t)
6680 && fndecl
6681 && DECL_BUILT_IN (fndecl)
6682 && (call_flags & ECF_NOTHROW)
6683 && !(call_flags & ECF_RETURNS_TWICE)
6684 /* fork() doesn't really return twice, but the effect of
6685 wrapping it in __gcov_fork() which calls __gcov_flush()
6686 and clears the counters before forking has the same
6687 effect as returning twice. Force a fake edge. */
6688 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6689 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6690 return false;
6692 if (is_gimple_call (t)
6693 && !(call_flags & ECF_NORETURN))
6694 return true;
6696 if (gimple_code (t) == GIMPLE_ASM
6697 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6698 return true;
6700 return false;
6704 /* Add fake edges to the function exit for any non constant and non
6705 noreturn calls, volatile inline assembly in the bitmap of blocks
6706 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6707 the number of blocks that were split.
6709 The goal is to expose cases in which entering a basic block does
6710 not imply that all subsequent instructions must be executed. */
6712 static int
6713 gimple_flow_call_edges_add (sbitmap blocks)
6715 int i;
6716 int blocks_split = 0;
6717 int last_bb = last_basic_block;
6718 bool check_last_block = false;
6720 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6721 return 0;
6723 if (! blocks)
6724 check_last_block = true;
6725 else
6726 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6728 /* In the last basic block, before epilogue generation, there will be
6729 a fallthru edge to EXIT. Special care is required if the last insn
6730 of the last basic block is a call because make_edge folds duplicate
6731 edges, which would result in the fallthru edge also being marked
6732 fake, which would result in the fallthru edge being removed by
6733 remove_fake_edges, which would result in an invalid CFG.
6735 Moreover, we can't elide the outgoing fake edge, since the block
6736 profiler needs to take this into account in order to solve the minimal
6737 spanning tree in the case that the call doesn't return.
6739 Handle this by adding a dummy instruction in a new last basic block. */
6740 if (check_last_block)
6742 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6743 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6744 gimple t = NULL;
6746 if (!gsi_end_p (gsi))
6747 t = gsi_stmt (gsi);
6749 if (t && need_fake_edge_p (t))
6751 edge e;
6753 e = find_edge (bb, EXIT_BLOCK_PTR);
6754 if (e)
6756 gsi_insert_on_edge (e, gimple_build_nop ());
6757 gsi_commit_edge_inserts ();
6762 /* Now add fake edges to the function exit for any non constant
6763 calls since there is no way that we can determine if they will
6764 return or not... */
6765 for (i = 0; i < last_bb; i++)
6767 basic_block bb = BASIC_BLOCK (i);
6768 gimple_stmt_iterator gsi;
6769 gimple stmt, last_stmt;
6771 if (!bb)
6772 continue;
6774 if (blocks && !TEST_BIT (blocks, i))
6775 continue;
6777 gsi = gsi_last_nondebug_bb (bb);
6778 if (!gsi_end_p (gsi))
6780 last_stmt = gsi_stmt (gsi);
6783 stmt = gsi_stmt (gsi);
6784 if (need_fake_edge_p (stmt))
6786 edge e;
6788 /* The handling above of the final block before the
6789 epilogue should be enough to verify that there is
6790 no edge to the exit block in CFG already.
6791 Calling make_edge in such case would cause us to
6792 mark that edge as fake and remove it later. */
6793 #ifdef ENABLE_CHECKING
6794 if (stmt == last_stmt)
6796 e = find_edge (bb, EXIT_BLOCK_PTR);
6797 gcc_assert (e == NULL);
6799 #endif
6801 /* Note that the following may create a new basic block
6802 and renumber the existing basic blocks. */
6803 if (stmt != last_stmt)
6805 e = split_block (bb, stmt);
6806 if (e)
6807 blocks_split++;
6809 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6811 gsi_prev (&gsi);
6813 while (!gsi_end_p (gsi));
6817 if (blocks_split)
6818 verify_flow_info ();
6820 return blocks_split;
6823 /* Removes edge E and all the blocks dominated by it, and updates dominance
6824 information. The IL in E->src needs to be updated separately.
6825 If dominance info is not available, only the edge E is removed.*/
6827 void
6828 remove_edge_and_dominated_blocks (edge e)
6830 VEC (basic_block, heap) *bbs_to_remove = NULL;
6831 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6832 bitmap df, df_idom;
6833 edge f;
6834 edge_iterator ei;
6835 bool none_removed = false;
6836 unsigned i;
6837 basic_block bb, dbb;
6838 bitmap_iterator bi;
6840 if (!dom_info_available_p (CDI_DOMINATORS))
6842 remove_edge (e);
6843 return;
6846 /* No updating is needed for edges to exit. */
6847 if (e->dest == EXIT_BLOCK_PTR)
6849 if (cfgcleanup_altered_bbs)
6850 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6851 remove_edge (e);
6852 return;
6855 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6856 that is not dominated by E->dest, then this set is empty. Otherwise,
6857 all the basic blocks dominated by E->dest are removed.
6859 Also, to DF_IDOM we store the immediate dominators of the blocks in
6860 the dominance frontier of E (i.e., of the successors of the
6861 removed blocks, if there are any, and of E->dest otherwise). */
6862 FOR_EACH_EDGE (f, ei, e->dest->preds)
6864 if (f == e)
6865 continue;
6867 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6869 none_removed = true;
6870 break;
6874 df = BITMAP_ALLOC (NULL);
6875 df_idom = BITMAP_ALLOC (NULL);
6877 if (none_removed)
6878 bitmap_set_bit (df_idom,
6879 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6880 else
6882 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6883 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6885 FOR_EACH_EDGE (f, ei, bb->succs)
6887 if (f->dest != EXIT_BLOCK_PTR)
6888 bitmap_set_bit (df, f->dest->index);
6891 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6892 bitmap_clear_bit (df, bb->index);
6894 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6896 bb = BASIC_BLOCK (i);
6897 bitmap_set_bit (df_idom,
6898 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6902 if (cfgcleanup_altered_bbs)
6904 /* Record the set of the altered basic blocks. */
6905 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6906 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6909 /* Remove E and the cancelled blocks. */
6910 if (none_removed)
6911 remove_edge (e);
6912 else
6914 /* Walk backwards so as to get a chance to substitute all
6915 released DEFs into debug stmts. See
6916 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6917 details. */
6918 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6919 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6922 /* Update the dominance information. The immediate dominator may change only
6923 for blocks whose immediate dominator belongs to DF_IDOM:
6925 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6926 removal. Let Z the arbitrary block such that idom(Z) = Y and
6927 Z dominates X after the removal. Before removal, there exists a path P
6928 from Y to X that avoids Z. Let F be the last edge on P that is
6929 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6930 dominates W, and because of P, Z does not dominate W), and W belongs to
6931 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6932 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6934 bb = BASIC_BLOCK (i);
6935 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6936 dbb;
6937 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6938 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6941 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6943 BITMAP_FREE (df);
6944 BITMAP_FREE (df_idom);
6945 VEC_free (basic_block, heap, bbs_to_remove);
6946 VEC_free (basic_block, heap, bbs_to_fix_dom);
6949 /* Purge dead EH edges from basic block BB. */
6951 bool
6952 gimple_purge_dead_eh_edges (basic_block bb)
6954 bool changed = false;
6955 edge e;
6956 edge_iterator ei;
6957 gimple stmt = last_stmt (bb);
6959 if (stmt && stmt_can_throw_internal (stmt))
6960 return false;
6962 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6964 if (e->flags & EDGE_EH)
6966 remove_edge_and_dominated_blocks (e);
6967 changed = true;
6969 else
6970 ei_next (&ei);
6973 return changed;
6976 /* Purge dead EH edges from basic block listed in BLOCKS. */
6978 bool
6979 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6981 bool changed = false;
6982 unsigned i;
6983 bitmap_iterator bi;
6985 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6987 basic_block bb = BASIC_BLOCK (i);
6989 /* Earlier gimple_purge_dead_eh_edges could have removed
6990 this basic block already. */
6991 gcc_assert (bb || changed);
6992 if (bb != NULL)
6993 changed |= gimple_purge_dead_eh_edges (bb);
6996 return changed;
6999 /* Purge dead abnormal call edges from basic block BB. */
7001 bool
7002 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7004 bool changed = false;
7005 edge e;
7006 edge_iterator ei;
7007 gimple stmt = last_stmt (bb);
7009 if (!cfun->has_nonlocal_label)
7010 return false;
7012 if (stmt && stmt_can_make_abnormal_goto (stmt))
7013 return false;
7015 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7017 if (e->flags & EDGE_ABNORMAL)
7019 remove_edge_and_dominated_blocks (e);
7020 changed = true;
7022 else
7023 ei_next (&ei);
7026 return changed;
7029 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7031 bool
7032 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7034 bool changed = false;
7035 unsigned i;
7036 bitmap_iterator bi;
7038 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7040 basic_block bb = BASIC_BLOCK (i);
7042 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7043 this basic block already. */
7044 gcc_assert (bb || changed);
7045 if (bb != NULL)
7046 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7049 return changed;
7052 /* This function is called whenever a new edge is created or
7053 redirected. */
7055 static void
7056 gimple_execute_on_growing_pred (edge e)
7058 basic_block bb = e->dest;
7060 if (!gimple_seq_empty_p (phi_nodes (bb)))
7061 reserve_phi_args_for_new_edge (bb);
7064 /* This function is called immediately before edge E is removed from
7065 the edge vector E->dest->preds. */
7067 static void
7068 gimple_execute_on_shrinking_pred (edge e)
7070 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7071 remove_phi_args (e);
7074 /*---------------------------------------------------------------------------
7075 Helper functions for Loop versioning
7076 ---------------------------------------------------------------------------*/
7078 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7079 of 'first'. Both of them are dominated by 'new_head' basic block. When
7080 'new_head' was created by 'second's incoming edge it received phi arguments
7081 on the edge by split_edge(). Later, additional edge 'e' was created to
7082 connect 'new_head' and 'first'. Now this routine adds phi args on this
7083 additional edge 'e' that new_head to second edge received as part of edge
7084 splitting. */
7086 static void
7087 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7088 basic_block new_head, edge e)
7090 gimple phi1, phi2;
7091 gimple_stmt_iterator psi1, psi2;
7092 tree def;
7093 edge e2 = find_edge (new_head, second);
7095 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7096 edge, we should always have an edge from NEW_HEAD to SECOND. */
7097 gcc_assert (e2 != NULL);
7099 /* Browse all 'second' basic block phi nodes and add phi args to
7100 edge 'e' for 'first' head. PHI args are always in correct order. */
7102 for (psi2 = gsi_start_phis (second),
7103 psi1 = gsi_start_phis (first);
7104 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7105 gsi_next (&psi2), gsi_next (&psi1))
7107 phi1 = gsi_stmt (psi1);
7108 phi2 = gsi_stmt (psi2);
7109 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7110 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7115 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7116 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7117 the destination of the ELSE part. */
7119 static void
7120 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7121 basic_block second_head ATTRIBUTE_UNUSED,
7122 basic_block cond_bb, void *cond_e)
7124 gimple_stmt_iterator gsi;
7125 gimple new_cond_expr;
7126 tree cond_expr = (tree) cond_e;
7127 edge e0;
7129 /* Build new conditional expr */
7130 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7131 NULL_TREE, NULL_TREE);
7133 /* Add new cond in cond_bb. */
7134 gsi = gsi_last_bb (cond_bb);
7135 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7137 /* Adjust edges appropriately to connect new head with first head
7138 as well as second head. */
7139 e0 = single_succ_edge (cond_bb);
7140 e0->flags &= ~EDGE_FALLTHRU;
7141 e0->flags |= EDGE_FALSE_VALUE;
7144 struct cfg_hooks gimple_cfg_hooks = {
7145 "gimple",
7146 gimple_verify_flow_info,
7147 gimple_dump_bb, /* dump_bb */
7148 create_bb, /* create_basic_block */
7149 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7150 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7151 gimple_can_remove_branch_p, /* can_remove_branch_p */
7152 remove_bb, /* delete_basic_block */
7153 gimple_split_block, /* split_block */
7154 gimple_move_block_after, /* move_block_after */
7155 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7156 gimple_merge_blocks, /* merge_blocks */
7157 gimple_predict_edge, /* predict_edge */
7158 gimple_predicted_by_p, /* predicted_by_p */
7159 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7160 gimple_duplicate_bb, /* duplicate_block */
7161 gimple_split_edge, /* split_edge */
7162 gimple_make_forwarder_block, /* make_forward_block */
7163 NULL, /* tidy_fallthru_edge */
7164 NULL, /* force_nonfallthru */
7165 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7166 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7167 gimple_flow_call_edges_add, /* flow_call_edges_add */
7168 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7169 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7170 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7171 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7172 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7173 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7174 flush_pending_stmts /* flush_pending_stmts */
7178 /* Split all critical edges. */
7180 static unsigned int
7181 split_critical_edges (void)
7183 basic_block bb;
7184 edge e;
7185 edge_iterator ei;
7187 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7188 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7189 mappings around the calls to split_edge. */
7190 start_recording_case_labels ();
7191 FOR_ALL_BB (bb)
7193 FOR_EACH_EDGE (e, ei, bb->succs)
7195 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7196 split_edge (e);
7197 /* PRE inserts statements to edges and expects that
7198 since split_critical_edges was done beforehand, committing edge
7199 insertions will not split more edges. In addition to critical
7200 edges we must split edges that have multiple successors and
7201 end by control flow statements, such as RESX.
7202 Go ahead and split them too. This matches the logic in
7203 gimple_find_edge_insert_loc. */
7204 else if ((!single_pred_p (e->dest)
7205 || !gimple_seq_empty_p (phi_nodes (e->dest))
7206 || e->dest == EXIT_BLOCK_PTR)
7207 && e->src != ENTRY_BLOCK_PTR
7208 && !(e->flags & EDGE_ABNORMAL))
7210 gimple_stmt_iterator gsi;
7212 gsi = gsi_last_bb (e->src);
7213 if (!gsi_end_p (gsi)
7214 && stmt_ends_bb_p (gsi_stmt (gsi))
7215 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7216 && !gimple_call_builtin_p (gsi_stmt (gsi),
7217 BUILT_IN_RETURN)))
7218 split_edge (e);
7222 end_recording_case_labels ();
7223 return 0;
7226 struct gimple_opt_pass pass_split_crit_edges =
7229 GIMPLE_PASS,
7230 "crited", /* name */
7231 NULL, /* gate */
7232 split_critical_edges, /* execute */
7233 NULL, /* sub */
7234 NULL, /* next */
7235 0, /* static_pass_number */
7236 TV_TREE_SPLIT_EDGES, /* tv_id */
7237 PROP_cfg, /* properties required */
7238 PROP_no_crit_edges, /* properties_provided */
7239 0, /* properties_destroyed */
7240 0, /* todo_flags_start */
7241 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7246 /* Build a ternary operation and gimplify it. Emit code before GSI.
7247 Return the gimple_val holding the result. */
7249 tree
7250 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7251 tree type, tree a, tree b, tree c)
7253 tree ret;
7254 location_t loc = gimple_location (gsi_stmt (*gsi));
7256 ret = fold_build3_loc (loc, code, type, a, b, c);
7257 STRIP_NOPS (ret);
7259 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7260 GSI_SAME_STMT);
7263 /* Build a binary operation and gimplify it. Emit code before GSI.
7264 Return the gimple_val holding the result. */
7266 tree
7267 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7268 tree type, tree a, tree b)
7270 tree ret;
7272 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7273 STRIP_NOPS (ret);
7275 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7276 GSI_SAME_STMT);
7279 /* Build a unary operation and gimplify it. Emit code before GSI.
7280 Return the gimple_val holding the result. */
7282 tree
7283 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7284 tree a)
7286 tree ret;
7288 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7289 STRIP_NOPS (ret);
7291 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7292 GSI_SAME_STMT);
7297 /* Emit return warnings. */
7299 static unsigned int
7300 execute_warn_function_return (void)
7302 source_location location;
7303 gimple last;
7304 edge e;
7305 edge_iterator ei;
7307 /* If we have a path to EXIT, then we do return. */
7308 if (TREE_THIS_VOLATILE (cfun->decl)
7309 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7311 location = UNKNOWN_LOCATION;
7312 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7314 last = last_stmt (e->src);
7315 if ((gimple_code (last) == GIMPLE_RETURN
7316 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7317 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7318 break;
7320 if (location == UNKNOWN_LOCATION)
7321 location = cfun->function_end_locus;
7322 warning_at (location, 0, "%<noreturn%> function does return");
7325 /* If we see "return;" in some basic block, then we do reach the end
7326 without returning a value. */
7327 else if (warn_return_type
7328 && !TREE_NO_WARNING (cfun->decl)
7329 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7330 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7332 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7334 gimple last = last_stmt (e->src);
7335 if (gimple_code (last) == GIMPLE_RETURN
7336 && gimple_return_retval (last) == NULL
7337 && !gimple_no_warning_p (last))
7339 location = gimple_location (last);
7340 if (location == UNKNOWN_LOCATION)
7341 location = cfun->function_end_locus;
7342 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7343 TREE_NO_WARNING (cfun->decl) = 1;
7344 break;
7348 return 0;
7352 /* Given a basic block B which ends with a conditional and has
7353 precisely two successors, determine which of the edges is taken if
7354 the conditional is true and which is taken if the conditional is
7355 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7357 void
7358 extract_true_false_edges_from_block (basic_block b,
7359 edge *true_edge,
7360 edge *false_edge)
7362 edge e = EDGE_SUCC (b, 0);
7364 if (e->flags & EDGE_TRUE_VALUE)
7366 *true_edge = e;
7367 *false_edge = EDGE_SUCC (b, 1);
7369 else
7371 *false_edge = e;
7372 *true_edge = EDGE_SUCC (b, 1);
7376 struct gimple_opt_pass pass_warn_function_return =
7379 GIMPLE_PASS,
7380 "*warn_function_return", /* name */
7381 NULL, /* gate */
7382 execute_warn_function_return, /* execute */
7383 NULL, /* sub */
7384 NULL, /* next */
7385 0, /* static_pass_number */
7386 TV_NONE, /* tv_id */
7387 PROP_cfg, /* properties_required */
7388 0, /* properties_provided */
7389 0, /* properties_destroyed */
7390 0, /* todo_flags_start */
7391 0 /* todo_flags_finish */
7395 /* Emit noreturn warnings. */
7397 static unsigned int
7398 execute_warn_function_noreturn (void)
7400 if (!TREE_THIS_VOLATILE (current_function_decl)
7401 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7402 warn_function_noreturn (current_function_decl);
7403 return 0;
7406 static bool
7407 gate_warn_function_noreturn (void)
7409 return warn_suggest_attribute_noreturn;
7412 struct gimple_opt_pass pass_warn_function_noreturn =
7415 GIMPLE_PASS,
7416 "*warn_function_noreturn", /* name */
7417 gate_warn_function_noreturn, /* gate */
7418 execute_warn_function_noreturn, /* execute */
7419 NULL, /* sub */
7420 NULL, /* next */
7421 0, /* static_pass_number */
7422 TV_NONE, /* tv_id */
7423 PROP_cfg, /* properties_required */
7424 0, /* properties_provided */
7425 0, /* properties_destroyed */
7426 0, /* todo_flags_start */
7427 0 /* todo_flags_finish */
7432 /* Walk a gimplified function and warn for functions whose return value is
7433 ignored and attribute((warn_unused_result)) is set. This is done before
7434 inlining, so we don't have to worry about that. */
7436 static void
7437 do_warn_unused_result (gimple_seq seq)
7439 tree fdecl, ftype;
7440 gimple_stmt_iterator i;
7442 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7444 gimple g = gsi_stmt (i);
7446 switch (gimple_code (g))
7448 case GIMPLE_BIND:
7449 do_warn_unused_result (gimple_bind_body (g));
7450 break;
7451 case GIMPLE_TRY:
7452 do_warn_unused_result (gimple_try_eval (g));
7453 do_warn_unused_result (gimple_try_cleanup (g));
7454 break;
7455 case GIMPLE_CATCH:
7456 do_warn_unused_result (gimple_catch_handler (g));
7457 break;
7458 case GIMPLE_EH_FILTER:
7459 do_warn_unused_result (gimple_eh_filter_failure (g));
7460 break;
7462 case GIMPLE_CALL:
7463 if (gimple_call_lhs (g))
7464 break;
7465 if (gimple_call_internal_p (g))
7466 break;
7468 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7469 LHS. All calls whose value is ignored should be
7470 represented like this. Look for the attribute. */
7471 fdecl = gimple_call_fndecl (g);
7472 ftype = gimple_call_fntype (g);
7474 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7476 location_t loc = gimple_location (g);
7478 if (fdecl)
7479 warning_at (loc, OPT_Wunused_result,
7480 "ignoring return value of %qD, "
7481 "declared with attribute warn_unused_result",
7482 fdecl);
7483 else
7484 warning_at (loc, OPT_Wunused_result,
7485 "ignoring return value of function "
7486 "declared with attribute warn_unused_result");
7488 break;
7490 default:
7491 /* Not a container, not a call, or a call whose value is used. */
7492 break;
7497 static unsigned int
7498 run_warn_unused_result (void)
7500 do_warn_unused_result (gimple_body (current_function_decl));
7501 return 0;
7504 static bool
7505 gate_warn_unused_result (void)
7507 return flag_warn_unused_result;
7510 struct gimple_opt_pass pass_warn_unused_result =
7513 GIMPLE_PASS,
7514 "*warn_unused_result", /* name */
7515 gate_warn_unused_result, /* gate */
7516 run_warn_unused_result, /* execute */
7517 NULL, /* sub */
7518 NULL, /* next */
7519 0, /* static_pass_number */
7520 TV_NONE, /* tv_id */
7521 PROP_gimple_any, /* properties_required */
7522 0, /* properties_provided */
7523 0, /* properties_destroyed */
7524 0, /* todo_flags_start */
7525 0, /* todo_flags_finish */