2011-05-23 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / gimple.c
blob4c7fbfc8235efb65d431f90e2b5ede7699bd4051
1 /* Gimple IR support functions.
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "value-prof.h"
35 #include "flags.h"
36 #include "alias.h"
37 #include "demangle.h"
38 #include "langhooks.h"
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
45 htab_t gimple_types;
46 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
47 htab_t gimple_canonical_types;
48 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
49 htab_t type_hash_cache;
50 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
51 htab_t canonical_type_hash_cache;
53 /* All the tuples have their operand vector (if present) at the very bottom
54 of the structure. Therefore, the offset required to find the
55 operands vector the size of the structure minus the size of the 1
56 element tree array at the end (see gimple_ops). */
57 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
58 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
59 EXPORTED_CONST size_t gimple_ops_offset_[] = {
60 #include "gsstruct.def"
62 #undef DEFGSSTRUCT
64 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
65 static const size_t gsstruct_code_size[] = {
66 #include "gsstruct.def"
68 #undef DEFGSSTRUCT
70 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
71 const char *const gimple_code_name[] = {
72 #include "gimple.def"
74 #undef DEFGSCODE
76 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
77 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
78 #include "gimple.def"
80 #undef DEFGSCODE
82 #ifdef GATHER_STATISTICS
83 /* Gimple stats. */
85 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
86 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
88 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
89 static const char * const gimple_alloc_kind_names[] = {
90 "assignments",
91 "phi nodes",
92 "conditionals",
93 "sequences",
94 "everything else"
97 #endif /* GATHER_STATISTICS */
99 /* A cache of gimple_seq objects. Sequences are created and destroyed
100 fairly often during gimplification. */
101 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
103 /* Private API manipulation functions shared only with some
104 other files. */
105 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
106 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
108 /* Gimple tuple constructors.
109 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
110 be passed a NULL to start with an empty sequence. */
112 /* Set the code for statement G to CODE. */
114 static inline void
115 gimple_set_code (gimple g, enum gimple_code code)
117 g->gsbase.code = code;
120 /* Return the number of bytes needed to hold a GIMPLE statement with
121 code CODE. */
123 static inline size_t
124 gimple_size (enum gimple_code code)
126 return gsstruct_code_size[gss_for_code (code)];
129 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
130 operands. */
132 gimple
133 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
135 size_t size;
136 gimple stmt;
138 size = gimple_size (code);
139 if (num_ops > 0)
140 size += sizeof (tree) * (num_ops - 1);
142 #ifdef GATHER_STATISTICS
144 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
145 gimple_alloc_counts[(int) kind]++;
146 gimple_alloc_sizes[(int) kind] += size;
148 #endif
150 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
151 gimple_set_code (stmt, code);
152 gimple_set_num_ops (stmt, num_ops);
154 /* Do not call gimple_set_modified here as it has other side
155 effects and this tuple is still not completely built. */
156 stmt->gsbase.modified = 1;
158 return stmt;
161 /* Set SUBCODE to be the code of the expression computed by statement G. */
163 static inline void
164 gimple_set_subcode (gimple g, unsigned subcode)
166 /* We only have 16 bits for the RHS code. Assert that we are not
167 overflowing it. */
168 gcc_assert (subcode < (1 << 16));
169 g->gsbase.subcode = subcode;
174 /* Build a tuple with operands. CODE is the statement to build (which
175 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
176 for the new tuple. NUM_OPS is the number of operands to allocate. */
178 #define gimple_build_with_ops(c, s, n) \
179 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
181 static gimple
182 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
183 unsigned num_ops MEM_STAT_DECL)
185 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
186 gimple_set_subcode (s, subcode);
188 return s;
192 /* Build a GIMPLE_RETURN statement returning RETVAL. */
194 gimple
195 gimple_build_return (tree retval)
197 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
198 if (retval)
199 gimple_return_set_retval (s, retval);
200 return s;
203 /* Reset alias information on call S. */
205 void
206 gimple_call_reset_alias_info (gimple s)
208 if (gimple_call_flags (s) & ECF_CONST)
209 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
210 else
211 pt_solution_reset (gimple_call_use_set (s));
212 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
213 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
214 else
215 pt_solution_reset (gimple_call_clobber_set (s));
218 /* Helper for gimple_build_call, gimple_build_call_vec and
219 gimple_build_call_from_tree. Build the basic components of a
220 GIMPLE_CALL statement to function FN with NARGS arguments. */
222 static inline gimple
223 gimple_build_call_1 (tree fn, unsigned nargs)
225 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
226 if (TREE_CODE (fn) == FUNCTION_DECL)
227 fn = build_fold_addr_expr (fn);
228 gimple_set_op (s, 1, fn);
229 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
230 gimple_call_reset_alias_info (s);
231 return s;
235 /* Build a GIMPLE_CALL statement to function FN with the arguments
236 specified in vector ARGS. */
238 gimple
239 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
241 unsigned i;
242 unsigned nargs = VEC_length (tree, args);
243 gimple call = gimple_build_call_1 (fn, nargs);
245 for (i = 0; i < nargs; i++)
246 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
248 return call;
252 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
253 arguments. The ... are the arguments. */
255 gimple
256 gimple_build_call (tree fn, unsigned nargs, ...)
258 va_list ap;
259 gimple call;
260 unsigned i;
262 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
264 call = gimple_build_call_1 (fn, nargs);
266 va_start (ap, nargs);
267 for (i = 0; i < nargs; i++)
268 gimple_call_set_arg (call, i, va_arg (ap, tree));
269 va_end (ap);
271 return call;
275 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
276 Build the basic components of a GIMPLE_CALL statement to internal
277 function FN with NARGS arguments. */
279 static inline gimple
280 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
282 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
283 s->gsbase.subcode |= GF_CALL_INTERNAL;
284 gimple_call_set_internal_fn (s, fn);
285 gimple_call_reset_alias_info (s);
286 return s;
290 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
291 the number of arguments. The ... are the arguments. */
293 gimple
294 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
296 va_list ap;
297 gimple call;
298 unsigned i;
300 call = gimple_build_call_internal_1 (fn, nargs);
301 va_start (ap, nargs);
302 for (i = 0; i < nargs; i++)
303 gimple_call_set_arg (call, i, va_arg (ap, tree));
304 va_end (ap);
306 return call;
310 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
311 specified in vector ARGS. */
313 gimple
314 gimple_build_call_internal_vec (enum internal_fn fn, VEC(tree, heap) *args)
316 unsigned i, nargs;
317 gimple call;
319 nargs = VEC_length (tree, args);
320 call = gimple_build_call_internal_1 (fn, nargs);
321 for (i = 0; i < nargs; i++)
322 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
324 return call;
328 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
329 assumed to be in GIMPLE form already. Minimal checking is done of
330 this fact. */
332 gimple
333 gimple_build_call_from_tree (tree t)
335 unsigned i, nargs;
336 gimple call;
337 tree fndecl = get_callee_fndecl (t);
339 gcc_assert (TREE_CODE (t) == CALL_EXPR);
341 nargs = call_expr_nargs (t);
342 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
344 for (i = 0; i < nargs; i++)
345 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
347 gimple_set_block (call, TREE_BLOCK (t));
349 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
350 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
351 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
352 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
353 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
354 if (fndecl
355 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
356 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA)
357 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
358 else
359 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
360 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
361 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
362 gimple_set_no_warning (call, TREE_NO_WARNING (t));
364 return call;
368 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
369 *OP1_P, *OP2_P and *OP3_P respectively. */
371 void
372 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
373 tree *op2_p, tree *op3_p)
375 enum gimple_rhs_class grhs_class;
377 *subcode_p = TREE_CODE (expr);
378 grhs_class = get_gimple_rhs_class (*subcode_p);
380 if (grhs_class == GIMPLE_TERNARY_RHS)
382 *op1_p = TREE_OPERAND (expr, 0);
383 *op2_p = TREE_OPERAND (expr, 1);
384 *op3_p = TREE_OPERAND (expr, 2);
386 else if (grhs_class == GIMPLE_BINARY_RHS)
388 *op1_p = TREE_OPERAND (expr, 0);
389 *op2_p = TREE_OPERAND (expr, 1);
390 *op3_p = NULL_TREE;
392 else if (grhs_class == GIMPLE_UNARY_RHS)
394 *op1_p = TREE_OPERAND (expr, 0);
395 *op2_p = NULL_TREE;
396 *op3_p = NULL_TREE;
398 else if (grhs_class == GIMPLE_SINGLE_RHS)
400 *op1_p = expr;
401 *op2_p = NULL_TREE;
402 *op3_p = NULL_TREE;
404 else
405 gcc_unreachable ();
409 /* Build a GIMPLE_ASSIGN statement.
411 LHS of the assignment.
412 RHS of the assignment which can be unary or binary. */
414 gimple
415 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
417 enum tree_code subcode;
418 tree op1, op2, op3;
420 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
421 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
422 PASS_MEM_STAT);
426 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
427 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
428 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
430 gimple
431 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
432 tree op2, tree op3 MEM_STAT_DECL)
434 unsigned num_ops;
435 gimple p;
437 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
438 code). */
439 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
441 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
442 PASS_MEM_STAT);
443 gimple_assign_set_lhs (p, lhs);
444 gimple_assign_set_rhs1 (p, op1);
445 if (op2)
447 gcc_assert (num_ops > 2);
448 gimple_assign_set_rhs2 (p, op2);
451 if (op3)
453 gcc_assert (num_ops > 3);
454 gimple_assign_set_rhs3 (p, op3);
457 return p;
461 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
463 DST/SRC are the destination and source respectively. You can pass
464 ungimplified trees in DST or SRC, in which case they will be
465 converted to a gimple operand if necessary.
467 This function returns the newly created GIMPLE_ASSIGN tuple. */
469 gimple
470 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
472 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
473 gimplify_and_add (t, seq_p);
474 ggc_free (t);
475 return gimple_seq_last_stmt (*seq_p);
479 /* Build a GIMPLE_COND statement.
481 PRED is the condition used to compare LHS and the RHS.
482 T_LABEL is the label to jump to if the condition is true.
483 F_LABEL is the label to jump to otherwise. */
485 gimple
486 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
487 tree t_label, tree f_label)
489 gimple p;
491 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
492 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
493 gimple_cond_set_lhs (p, lhs);
494 gimple_cond_set_rhs (p, rhs);
495 gimple_cond_set_true_label (p, t_label);
496 gimple_cond_set_false_label (p, f_label);
497 return p;
501 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
503 void
504 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
505 tree *lhs_p, tree *rhs_p)
507 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
508 || TREE_CODE (cond) == TRUTH_NOT_EXPR
509 || is_gimple_min_invariant (cond)
510 || SSA_VAR_P (cond));
512 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
514 /* Canonicalize conditionals of the form 'if (!VAL)'. */
515 if (*code_p == TRUTH_NOT_EXPR)
517 *code_p = EQ_EXPR;
518 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
519 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
521 /* Canonicalize conditionals of the form 'if (VAL)' */
522 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
524 *code_p = NE_EXPR;
525 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
526 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
531 /* Build a GIMPLE_COND statement from the conditional expression tree
532 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
534 gimple
535 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
537 enum tree_code code;
538 tree lhs, rhs;
540 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
541 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
544 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
545 boolean expression tree COND. */
547 void
548 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
550 enum tree_code code;
551 tree lhs, rhs;
553 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
554 gimple_cond_set_condition (stmt, code, lhs, rhs);
557 /* Build a GIMPLE_LABEL statement for LABEL. */
559 gimple
560 gimple_build_label (tree label)
562 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
563 gimple_label_set_label (p, label);
564 return p;
567 /* Build a GIMPLE_GOTO statement to label DEST. */
569 gimple
570 gimple_build_goto (tree dest)
572 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
573 gimple_goto_set_dest (p, dest);
574 return p;
578 /* Build a GIMPLE_NOP statement. */
580 gimple
581 gimple_build_nop (void)
583 return gimple_alloc (GIMPLE_NOP, 0);
587 /* Build a GIMPLE_BIND statement.
588 VARS are the variables in BODY.
589 BLOCK is the containing block. */
591 gimple
592 gimple_build_bind (tree vars, gimple_seq body, tree block)
594 gimple p = gimple_alloc (GIMPLE_BIND, 0);
595 gimple_bind_set_vars (p, vars);
596 if (body)
597 gimple_bind_set_body (p, body);
598 if (block)
599 gimple_bind_set_block (p, block);
600 return p;
603 /* Helper function to set the simple fields of a asm stmt.
605 STRING is a pointer to a string that is the asm blocks assembly code.
606 NINPUT is the number of register inputs.
607 NOUTPUT is the number of register outputs.
608 NCLOBBERS is the number of clobbered registers.
611 static inline gimple
612 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
613 unsigned nclobbers, unsigned nlabels)
615 gimple p;
616 int size = strlen (string);
618 /* ASMs with labels cannot have outputs. This should have been
619 enforced by the front end. */
620 gcc_assert (nlabels == 0 || noutputs == 0);
622 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
623 ninputs + noutputs + nclobbers + nlabels);
625 p->gimple_asm.ni = ninputs;
626 p->gimple_asm.no = noutputs;
627 p->gimple_asm.nc = nclobbers;
628 p->gimple_asm.nl = nlabels;
629 p->gimple_asm.string = ggc_alloc_string (string, size);
631 #ifdef GATHER_STATISTICS
632 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
633 #endif
635 return p;
638 /* Build a GIMPLE_ASM statement.
640 STRING is the assembly code.
641 NINPUT is the number of register inputs.
642 NOUTPUT is the number of register outputs.
643 NCLOBBERS is the number of clobbered registers.
644 INPUTS is a vector of the input register parameters.
645 OUTPUTS is a vector of the output register parameters.
646 CLOBBERS is a vector of the clobbered register parameters.
647 LABELS is a vector of destination labels. */
649 gimple
650 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
651 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
652 VEC(tree,gc)* labels)
654 gimple p;
655 unsigned i;
657 p = gimple_build_asm_1 (string,
658 VEC_length (tree, inputs),
659 VEC_length (tree, outputs),
660 VEC_length (tree, clobbers),
661 VEC_length (tree, labels));
663 for (i = 0; i < VEC_length (tree, inputs); i++)
664 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
666 for (i = 0; i < VEC_length (tree, outputs); i++)
667 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
669 for (i = 0; i < VEC_length (tree, clobbers); i++)
670 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
672 for (i = 0; i < VEC_length (tree, labels); i++)
673 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
675 return p;
678 /* Build a GIMPLE_CATCH statement.
680 TYPES are the catch types.
681 HANDLER is the exception handler. */
683 gimple
684 gimple_build_catch (tree types, gimple_seq handler)
686 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
687 gimple_catch_set_types (p, types);
688 if (handler)
689 gimple_catch_set_handler (p, handler);
691 return p;
694 /* Build a GIMPLE_EH_FILTER statement.
696 TYPES are the filter's types.
697 FAILURE is the filter's failure action. */
699 gimple
700 gimple_build_eh_filter (tree types, gimple_seq failure)
702 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
703 gimple_eh_filter_set_types (p, types);
704 if (failure)
705 gimple_eh_filter_set_failure (p, failure);
707 return p;
710 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
712 gimple
713 gimple_build_eh_must_not_throw (tree decl)
715 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
717 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
718 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
719 gimple_eh_must_not_throw_set_fndecl (p, decl);
721 return p;
724 /* Build a GIMPLE_TRY statement.
726 EVAL is the expression to evaluate.
727 CLEANUP is the cleanup expression.
728 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
729 whether this is a try/catch or a try/finally respectively. */
731 gimple
732 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
733 enum gimple_try_flags kind)
735 gimple p;
737 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
738 p = gimple_alloc (GIMPLE_TRY, 0);
739 gimple_set_subcode (p, kind);
740 if (eval)
741 gimple_try_set_eval (p, eval);
742 if (cleanup)
743 gimple_try_set_cleanup (p, cleanup);
745 return p;
748 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
750 CLEANUP is the cleanup expression. */
752 gimple
753 gimple_build_wce (gimple_seq cleanup)
755 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
756 if (cleanup)
757 gimple_wce_set_cleanup (p, cleanup);
759 return p;
763 /* Build a GIMPLE_RESX statement. */
765 gimple
766 gimple_build_resx (int region)
768 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
769 p->gimple_eh_ctrl.region = region;
770 return p;
774 /* The helper for constructing a gimple switch statement.
775 INDEX is the switch's index.
776 NLABELS is the number of labels in the switch excluding the default.
777 DEFAULT_LABEL is the default label for the switch statement. */
779 gimple
780 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
782 /* nlabels + 1 default label + 1 index. */
783 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
784 1 + (default_label != NULL) + nlabels);
785 gimple_switch_set_index (p, index);
786 if (default_label)
787 gimple_switch_set_default_label (p, default_label);
788 return p;
792 /* Build a GIMPLE_SWITCH statement.
794 INDEX is the switch's index.
795 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
796 ... are the labels excluding the default. */
798 gimple
799 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
801 va_list al;
802 unsigned i, offset;
803 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
805 /* Store the rest of the labels. */
806 va_start (al, default_label);
807 offset = (default_label != NULL);
808 for (i = 0; i < nlabels; i++)
809 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
810 va_end (al);
812 return p;
816 /* Build a GIMPLE_SWITCH statement.
818 INDEX is the switch's index.
819 DEFAULT_LABEL is the default label
820 ARGS is a vector of labels excluding the default. */
822 gimple
823 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
825 unsigned i, offset, nlabels = VEC_length (tree, args);
826 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
828 /* Copy the labels from the vector to the switch statement. */
829 offset = (default_label != NULL);
830 for (i = 0; i < nlabels; i++)
831 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
833 return p;
836 /* Build a GIMPLE_EH_DISPATCH statement. */
838 gimple
839 gimple_build_eh_dispatch (int region)
841 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
842 p->gimple_eh_ctrl.region = region;
843 return p;
846 /* Build a new GIMPLE_DEBUG_BIND statement.
848 VAR is bound to VALUE; block and location are taken from STMT. */
850 gimple
851 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
853 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
854 (unsigned)GIMPLE_DEBUG_BIND, 2
855 PASS_MEM_STAT);
857 gimple_debug_bind_set_var (p, var);
858 gimple_debug_bind_set_value (p, value);
859 if (stmt)
861 gimple_set_block (p, gimple_block (stmt));
862 gimple_set_location (p, gimple_location (stmt));
865 return p;
869 /* Build a GIMPLE_OMP_CRITICAL statement.
871 BODY is the sequence of statements for which only one thread can execute.
872 NAME is optional identifier for this critical block. */
874 gimple
875 gimple_build_omp_critical (gimple_seq body, tree name)
877 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
878 gimple_omp_critical_set_name (p, name);
879 if (body)
880 gimple_omp_set_body (p, body);
882 return p;
885 /* Build a GIMPLE_OMP_FOR statement.
887 BODY is sequence of statements inside the for loop.
888 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
889 lastprivate, reductions, ordered, schedule, and nowait.
890 COLLAPSE is the collapse count.
891 PRE_BODY is the sequence of statements that are loop invariant. */
893 gimple
894 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
895 gimple_seq pre_body)
897 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
898 if (body)
899 gimple_omp_set_body (p, body);
900 gimple_omp_for_set_clauses (p, clauses);
901 p->gimple_omp_for.collapse = collapse;
902 p->gimple_omp_for.iter
903 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
904 if (pre_body)
905 gimple_omp_for_set_pre_body (p, pre_body);
907 return p;
911 /* Build a GIMPLE_OMP_PARALLEL statement.
913 BODY is sequence of statements which are executed in parallel.
914 CLAUSES, are the OMP parallel construct's clauses.
915 CHILD_FN is the function created for the parallel threads to execute.
916 DATA_ARG are the shared data argument(s). */
918 gimple
919 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
920 tree data_arg)
922 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
923 if (body)
924 gimple_omp_set_body (p, body);
925 gimple_omp_parallel_set_clauses (p, clauses);
926 gimple_omp_parallel_set_child_fn (p, child_fn);
927 gimple_omp_parallel_set_data_arg (p, data_arg);
929 return p;
933 /* Build a GIMPLE_OMP_TASK statement.
935 BODY is sequence of statements which are executed by the explicit task.
936 CLAUSES, are the OMP parallel construct's clauses.
937 CHILD_FN is the function created for the parallel threads to execute.
938 DATA_ARG are the shared data argument(s).
939 COPY_FN is the optional function for firstprivate initialization.
940 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
942 gimple
943 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
944 tree data_arg, tree copy_fn, tree arg_size,
945 tree arg_align)
947 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
948 if (body)
949 gimple_omp_set_body (p, body);
950 gimple_omp_task_set_clauses (p, clauses);
951 gimple_omp_task_set_child_fn (p, child_fn);
952 gimple_omp_task_set_data_arg (p, data_arg);
953 gimple_omp_task_set_copy_fn (p, copy_fn);
954 gimple_omp_task_set_arg_size (p, arg_size);
955 gimple_omp_task_set_arg_align (p, arg_align);
957 return p;
961 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
963 BODY is the sequence of statements in the section. */
965 gimple
966 gimple_build_omp_section (gimple_seq body)
968 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
969 if (body)
970 gimple_omp_set_body (p, body);
972 return p;
976 /* Build a GIMPLE_OMP_MASTER statement.
978 BODY is the sequence of statements to be executed by just the master. */
980 gimple
981 gimple_build_omp_master (gimple_seq body)
983 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
984 if (body)
985 gimple_omp_set_body (p, body);
987 return p;
991 /* Build a GIMPLE_OMP_CONTINUE statement.
993 CONTROL_DEF is the definition of the control variable.
994 CONTROL_USE is the use of the control variable. */
996 gimple
997 gimple_build_omp_continue (tree control_def, tree control_use)
999 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
1000 gimple_omp_continue_set_control_def (p, control_def);
1001 gimple_omp_continue_set_control_use (p, control_use);
1002 return p;
1005 /* Build a GIMPLE_OMP_ORDERED statement.
1007 BODY is the sequence of statements inside a loop that will executed in
1008 sequence. */
1010 gimple
1011 gimple_build_omp_ordered (gimple_seq body)
1013 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1014 if (body)
1015 gimple_omp_set_body (p, body);
1017 return p;
1021 /* Build a GIMPLE_OMP_RETURN statement.
1022 WAIT_P is true if this is a non-waiting return. */
1024 gimple
1025 gimple_build_omp_return (bool wait_p)
1027 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1028 if (wait_p)
1029 gimple_omp_return_set_nowait (p);
1031 return p;
1035 /* Build a GIMPLE_OMP_SECTIONS statement.
1037 BODY is a sequence of section statements.
1038 CLAUSES are any of the OMP sections contsruct's clauses: private,
1039 firstprivate, lastprivate, reduction, and nowait. */
1041 gimple
1042 gimple_build_omp_sections (gimple_seq body, tree clauses)
1044 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1045 if (body)
1046 gimple_omp_set_body (p, body);
1047 gimple_omp_sections_set_clauses (p, clauses);
1049 return p;
1053 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1055 gimple
1056 gimple_build_omp_sections_switch (void)
1058 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1062 /* Build a GIMPLE_OMP_SINGLE statement.
1064 BODY is the sequence of statements that will be executed once.
1065 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1066 copyprivate, nowait. */
1068 gimple
1069 gimple_build_omp_single (gimple_seq body, tree clauses)
1071 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1072 if (body)
1073 gimple_omp_set_body (p, body);
1074 gimple_omp_single_set_clauses (p, clauses);
1076 return p;
1080 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1082 gimple
1083 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1085 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1086 gimple_omp_atomic_load_set_lhs (p, lhs);
1087 gimple_omp_atomic_load_set_rhs (p, rhs);
1088 return p;
1091 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1093 VAL is the value we are storing. */
1095 gimple
1096 gimple_build_omp_atomic_store (tree val)
1098 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1099 gimple_omp_atomic_store_set_val (p, val);
1100 return p;
1103 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1104 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1106 gimple
1107 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1109 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1110 /* Ensure all the predictors fit into the lower bits of the subcode. */
1111 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1112 gimple_predict_set_predictor (p, predictor);
1113 gimple_predict_set_outcome (p, outcome);
1114 return p;
1117 #if defined ENABLE_GIMPLE_CHECKING
1118 /* Complain of a gimple type mismatch and die. */
1120 void
1121 gimple_check_failed (const_gimple gs, const char *file, int line,
1122 const char *function, enum gimple_code code,
1123 enum tree_code subcode)
1125 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1126 gimple_code_name[code],
1127 tree_code_name[subcode],
1128 gimple_code_name[gimple_code (gs)],
1129 gs->gsbase.subcode > 0
1130 ? tree_code_name[gs->gsbase.subcode]
1131 : "",
1132 function, trim_filename (file), line);
1134 #endif /* ENABLE_GIMPLE_CHECKING */
1137 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1138 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1139 instead. */
1141 gimple_seq
1142 gimple_seq_alloc (void)
1144 gimple_seq seq = gimple_seq_cache;
1145 if (seq)
1147 gimple_seq_cache = gimple_seq_cache->next_free;
1148 gcc_assert (gimple_seq_cache != seq);
1149 memset (seq, 0, sizeof (*seq));
1151 else
1153 seq = ggc_alloc_cleared_gimple_seq_d ();
1154 #ifdef GATHER_STATISTICS
1155 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1156 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1157 #endif
1160 return seq;
1163 /* Return SEQ to the free pool of GIMPLE sequences. */
1165 void
1166 gimple_seq_free (gimple_seq seq)
1168 if (seq == NULL)
1169 return;
1171 gcc_assert (gimple_seq_first (seq) == NULL);
1172 gcc_assert (gimple_seq_last (seq) == NULL);
1174 /* If this triggers, it's a sign that the same list is being freed
1175 twice. */
1176 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1178 /* Add SEQ to the pool of free sequences. */
1179 seq->next_free = gimple_seq_cache;
1180 gimple_seq_cache = seq;
1184 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1185 *SEQ_P is NULL, a new sequence is allocated. */
1187 void
1188 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1190 gimple_stmt_iterator si;
1192 if (gs == NULL)
1193 return;
1195 if (*seq_p == NULL)
1196 *seq_p = gimple_seq_alloc ();
1198 si = gsi_last (*seq_p);
1199 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1203 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1204 NULL, a new sequence is allocated. */
1206 void
1207 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1209 gimple_stmt_iterator si;
1211 if (src == NULL)
1212 return;
1214 if (*dst_p == NULL)
1215 *dst_p = gimple_seq_alloc ();
1217 si = gsi_last (*dst_p);
1218 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1222 /* Helper function of empty_body_p. Return true if STMT is an empty
1223 statement. */
1225 static bool
1226 empty_stmt_p (gimple stmt)
1228 if (gimple_code (stmt) == GIMPLE_NOP)
1229 return true;
1230 if (gimple_code (stmt) == GIMPLE_BIND)
1231 return empty_body_p (gimple_bind_body (stmt));
1232 return false;
1236 /* Return true if BODY contains nothing but empty statements. */
1238 bool
1239 empty_body_p (gimple_seq body)
1241 gimple_stmt_iterator i;
1243 if (gimple_seq_empty_p (body))
1244 return true;
1245 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1246 if (!empty_stmt_p (gsi_stmt (i))
1247 && !is_gimple_debug (gsi_stmt (i)))
1248 return false;
1250 return true;
1254 /* Perform a deep copy of sequence SRC and return the result. */
1256 gimple_seq
1257 gimple_seq_copy (gimple_seq src)
1259 gimple_stmt_iterator gsi;
1260 gimple_seq new_seq = gimple_seq_alloc ();
1261 gimple stmt;
1263 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1265 stmt = gimple_copy (gsi_stmt (gsi));
1266 gimple_seq_add_stmt (&new_seq, stmt);
1269 return new_seq;
1273 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1274 on each one. WI is as in walk_gimple_stmt.
1276 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1277 value is stored in WI->CALLBACK_RESULT and the statement that
1278 produced the value is returned.
1280 Otherwise, all the statements are walked and NULL returned. */
1282 gimple
1283 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1284 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1286 gimple_stmt_iterator gsi;
1288 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1290 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1291 if (ret)
1293 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1294 to hold it. */
1295 gcc_assert (wi);
1296 wi->callback_result = ret;
1297 return gsi_stmt (gsi);
1301 if (wi)
1302 wi->callback_result = NULL_TREE;
1304 return NULL;
1308 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1310 static tree
1311 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1312 struct walk_stmt_info *wi)
1314 tree ret, op;
1315 unsigned noutputs;
1316 const char **oconstraints;
1317 unsigned i, n;
1318 const char *constraint;
1319 bool allows_mem, allows_reg, is_inout;
1321 noutputs = gimple_asm_noutputs (stmt);
1322 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1324 if (wi)
1325 wi->is_lhs = true;
1327 for (i = 0; i < noutputs; i++)
1329 op = gimple_asm_output_op (stmt, i);
1330 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1331 oconstraints[i] = constraint;
1332 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1333 &is_inout);
1334 if (wi)
1335 wi->val_only = (allows_reg || !allows_mem);
1336 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1337 if (ret)
1338 return ret;
1341 n = gimple_asm_ninputs (stmt);
1342 for (i = 0; i < n; i++)
1344 op = gimple_asm_input_op (stmt, i);
1345 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1346 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1347 oconstraints, &allows_mem, &allows_reg);
1348 if (wi)
1350 wi->val_only = (allows_reg || !allows_mem);
1351 /* Although input "m" is not really a LHS, we need a lvalue. */
1352 wi->is_lhs = !wi->val_only;
1354 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1355 if (ret)
1356 return ret;
1359 if (wi)
1361 wi->is_lhs = false;
1362 wi->val_only = true;
1365 n = gimple_asm_nlabels (stmt);
1366 for (i = 0; i < n; i++)
1368 op = gimple_asm_label_op (stmt, i);
1369 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1370 if (ret)
1371 return ret;
1374 return NULL_TREE;
1378 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1379 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1381 CALLBACK_OP is called on each operand of STMT via walk_tree.
1382 Additional parameters to walk_tree must be stored in WI. For each operand
1383 OP, walk_tree is called as:
1385 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1387 If CALLBACK_OP returns non-NULL for an operand, the remaining
1388 operands are not scanned.
1390 The return value is that returned by the last call to walk_tree, or
1391 NULL_TREE if no CALLBACK_OP is specified. */
1393 tree
1394 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1395 struct walk_stmt_info *wi)
1397 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1398 unsigned i;
1399 tree ret = NULL_TREE;
1401 switch (gimple_code (stmt))
1403 case GIMPLE_ASSIGN:
1404 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1405 is a register variable, we may use a COMPONENT_REF on the RHS. */
1406 if (wi)
1408 tree lhs = gimple_assign_lhs (stmt);
1409 wi->val_only
1410 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1411 || !gimple_assign_single_p (stmt);
1414 for (i = 1; i < gimple_num_ops (stmt); i++)
1416 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1417 pset);
1418 if (ret)
1419 return ret;
1422 /* Walk the LHS. If the RHS is appropriate for a memory, we
1423 may use a COMPONENT_REF on the LHS. */
1424 if (wi)
1426 /* If the RHS has more than 1 operand, it is not appropriate
1427 for the memory. */
1428 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1429 || !gimple_assign_single_p (stmt);
1430 wi->is_lhs = true;
1433 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1434 if (ret)
1435 return ret;
1437 if (wi)
1439 wi->val_only = true;
1440 wi->is_lhs = false;
1442 break;
1444 case GIMPLE_CALL:
1445 if (wi)
1447 wi->is_lhs = false;
1448 wi->val_only = true;
1451 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1452 if (ret)
1453 return ret;
1455 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1456 if (ret)
1457 return ret;
1459 for (i = 0; i < gimple_call_num_args (stmt); i++)
1461 if (wi)
1462 wi->val_only
1463 = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i)));
1464 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1465 pset);
1466 if (ret)
1467 return ret;
1470 if (gimple_call_lhs (stmt))
1472 if (wi)
1474 wi->is_lhs = true;
1475 wi->val_only
1476 = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt)));
1479 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1480 if (ret)
1481 return ret;
1484 if (wi)
1486 wi->is_lhs = false;
1487 wi->val_only = true;
1489 break;
1491 case GIMPLE_CATCH:
1492 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1493 pset);
1494 if (ret)
1495 return ret;
1496 break;
1498 case GIMPLE_EH_FILTER:
1499 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1500 pset);
1501 if (ret)
1502 return ret;
1503 break;
1505 case GIMPLE_ASM:
1506 ret = walk_gimple_asm (stmt, callback_op, wi);
1507 if (ret)
1508 return ret;
1509 break;
1511 case GIMPLE_OMP_CONTINUE:
1512 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1513 callback_op, wi, pset);
1514 if (ret)
1515 return ret;
1517 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1518 callback_op, wi, pset);
1519 if (ret)
1520 return ret;
1521 break;
1523 case GIMPLE_OMP_CRITICAL:
1524 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1525 pset);
1526 if (ret)
1527 return ret;
1528 break;
1530 case GIMPLE_OMP_FOR:
1531 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1532 pset);
1533 if (ret)
1534 return ret;
1535 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1537 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1538 wi, pset);
1539 if (ret)
1540 return ret;
1541 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1542 wi, pset);
1543 if (ret)
1544 return ret;
1545 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1546 wi, pset);
1547 if (ret)
1548 return ret;
1549 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1550 wi, pset);
1552 if (ret)
1553 return ret;
1554 break;
1556 case GIMPLE_OMP_PARALLEL:
1557 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1558 wi, pset);
1559 if (ret)
1560 return ret;
1561 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1562 wi, pset);
1563 if (ret)
1564 return ret;
1565 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1566 wi, pset);
1567 if (ret)
1568 return ret;
1569 break;
1571 case GIMPLE_OMP_TASK:
1572 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1573 wi, pset);
1574 if (ret)
1575 return ret;
1576 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1577 wi, pset);
1578 if (ret)
1579 return ret;
1580 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1581 wi, pset);
1582 if (ret)
1583 return ret;
1584 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1585 wi, pset);
1586 if (ret)
1587 return ret;
1588 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1589 wi, pset);
1590 if (ret)
1591 return ret;
1592 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1593 wi, pset);
1594 if (ret)
1595 return ret;
1596 break;
1598 case GIMPLE_OMP_SECTIONS:
1599 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1600 wi, pset);
1601 if (ret)
1602 return ret;
1604 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1605 wi, pset);
1606 if (ret)
1607 return ret;
1609 break;
1611 case GIMPLE_OMP_SINGLE:
1612 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1613 pset);
1614 if (ret)
1615 return ret;
1616 break;
1618 case GIMPLE_OMP_ATOMIC_LOAD:
1619 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1620 pset);
1621 if (ret)
1622 return ret;
1624 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1625 pset);
1626 if (ret)
1627 return ret;
1628 break;
1630 case GIMPLE_OMP_ATOMIC_STORE:
1631 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1632 wi, pset);
1633 if (ret)
1634 return ret;
1635 break;
1637 /* Tuples that do not have operands. */
1638 case GIMPLE_NOP:
1639 case GIMPLE_RESX:
1640 case GIMPLE_OMP_RETURN:
1641 case GIMPLE_PREDICT:
1642 break;
1644 default:
1646 enum gimple_statement_structure_enum gss;
1647 gss = gimple_statement_structure (stmt);
1648 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1649 for (i = 0; i < gimple_num_ops (stmt); i++)
1651 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1652 if (ret)
1653 return ret;
1656 break;
1659 return NULL_TREE;
1663 /* Walk the current statement in GSI (optionally using traversal state
1664 stored in WI). If WI is NULL, no state is kept during traversal.
1665 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1666 that it has handled all the operands of the statement, its return
1667 value is returned. Otherwise, the return value from CALLBACK_STMT
1668 is discarded and its operands are scanned.
1670 If CALLBACK_STMT is NULL or it didn't handle the operands,
1671 CALLBACK_OP is called on each operand of the statement via
1672 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1673 operand, the remaining operands are not scanned. In this case, the
1674 return value from CALLBACK_OP is returned.
1676 In any other case, NULL_TREE is returned. */
1678 tree
1679 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1680 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1682 gimple ret;
1683 tree tree_ret;
1684 gimple stmt = gsi_stmt (*gsi);
1686 if (wi)
1687 wi->gsi = *gsi;
1689 if (wi && wi->want_locations && gimple_has_location (stmt))
1690 input_location = gimple_location (stmt);
1692 ret = NULL;
1694 /* Invoke the statement callback. Return if the callback handled
1695 all of STMT operands by itself. */
1696 if (callback_stmt)
1698 bool handled_ops = false;
1699 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1700 if (handled_ops)
1701 return tree_ret;
1703 /* If CALLBACK_STMT did not handle operands, it should not have
1704 a value to return. */
1705 gcc_assert (tree_ret == NULL);
1707 /* Re-read stmt in case the callback changed it. */
1708 stmt = gsi_stmt (*gsi);
1711 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1712 if (callback_op)
1714 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1715 if (tree_ret)
1716 return tree_ret;
1719 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1720 switch (gimple_code (stmt))
1722 case GIMPLE_BIND:
1723 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1724 callback_op, wi);
1725 if (ret)
1726 return wi->callback_result;
1727 break;
1729 case GIMPLE_CATCH:
1730 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1731 callback_op, wi);
1732 if (ret)
1733 return wi->callback_result;
1734 break;
1736 case GIMPLE_EH_FILTER:
1737 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1738 callback_op, wi);
1739 if (ret)
1740 return wi->callback_result;
1741 break;
1743 case GIMPLE_TRY:
1744 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1745 wi);
1746 if (ret)
1747 return wi->callback_result;
1749 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1750 callback_op, wi);
1751 if (ret)
1752 return wi->callback_result;
1753 break;
1755 case GIMPLE_OMP_FOR:
1756 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1757 callback_op, wi);
1758 if (ret)
1759 return wi->callback_result;
1761 /* FALL THROUGH. */
1762 case GIMPLE_OMP_CRITICAL:
1763 case GIMPLE_OMP_MASTER:
1764 case GIMPLE_OMP_ORDERED:
1765 case GIMPLE_OMP_SECTION:
1766 case GIMPLE_OMP_PARALLEL:
1767 case GIMPLE_OMP_TASK:
1768 case GIMPLE_OMP_SECTIONS:
1769 case GIMPLE_OMP_SINGLE:
1770 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1771 wi);
1772 if (ret)
1773 return wi->callback_result;
1774 break;
1776 case GIMPLE_WITH_CLEANUP_EXPR:
1777 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1778 callback_op, wi);
1779 if (ret)
1780 return wi->callback_result;
1781 break;
1783 default:
1784 gcc_assert (!gimple_has_substatements (stmt));
1785 break;
1788 return NULL;
1792 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1794 void
1795 gimple_set_body (tree fndecl, gimple_seq seq)
1797 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1798 if (fn == NULL)
1800 /* If FNDECL still does not have a function structure associated
1801 with it, then it does not make sense for it to receive a
1802 GIMPLE body. */
1803 gcc_assert (seq == NULL);
1805 else
1806 fn->gimple_body = seq;
1810 /* Return the body of GIMPLE statements for function FN. After the
1811 CFG pass, the function body doesn't exist anymore because it has
1812 been split up into basic blocks. In this case, it returns
1813 NULL. */
1815 gimple_seq
1816 gimple_body (tree fndecl)
1818 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1819 return fn ? fn->gimple_body : NULL;
1822 /* Return true when FNDECL has Gimple body either in unlowered
1823 or CFG form. */
1824 bool
1825 gimple_has_body_p (tree fndecl)
1827 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1828 return (gimple_body (fndecl) || (fn && fn->cfg));
1831 /* Return true if calls C1 and C2 are known to go to the same function. */
1833 bool
1834 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1836 if (gimple_call_internal_p (c1))
1837 return (gimple_call_internal_p (c2)
1838 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1839 else
1840 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1841 || (gimple_call_fndecl (c1)
1842 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1845 /* Detect flags from a GIMPLE_CALL. This is just like
1846 call_expr_flags, but for gimple tuples. */
1849 gimple_call_flags (const_gimple stmt)
1851 int flags;
1852 tree decl = gimple_call_fndecl (stmt);
1854 if (decl)
1855 flags = flags_from_decl_or_type (decl);
1856 else if (gimple_call_internal_p (stmt))
1857 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1858 else
1859 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1861 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1862 flags |= ECF_NOTHROW;
1864 return flags;
1867 /* Return the "fn spec" string for call STMT. */
1869 static tree
1870 gimple_call_fnspec (const_gimple stmt)
1872 tree type, attr;
1874 type = gimple_call_fntype (stmt);
1875 if (!type)
1876 return NULL_TREE;
1878 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1879 if (!attr)
1880 return NULL_TREE;
1882 return TREE_VALUE (TREE_VALUE (attr));
1885 /* Detects argument flags for argument number ARG on call STMT. */
1888 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1890 tree attr = gimple_call_fnspec (stmt);
1892 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1893 return 0;
1895 switch (TREE_STRING_POINTER (attr)[1 + arg])
1897 case 'x':
1898 case 'X':
1899 return EAF_UNUSED;
1901 case 'R':
1902 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1904 case 'r':
1905 return EAF_NOCLOBBER | EAF_NOESCAPE;
1907 case 'W':
1908 return EAF_DIRECT | EAF_NOESCAPE;
1910 case 'w':
1911 return EAF_NOESCAPE;
1913 case '.':
1914 default:
1915 return 0;
1919 /* Detects return flags for the call STMT. */
1922 gimple_call_return_flags (const_gimple stmt)
1924 tree attr;
1926 if (gimple_call_flags (stmt) & ECF_MALLOC)
1927 return ERF_NOALIAS;
1929 attr = gimple_call_fnspec (stmt);
1930 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1931 return 0;
1933 switch (TREE_STRING_POINTER (attr)[0])
1935 case '1':
1936 case '2':
1937 case '3':
1938 case '4':
1939 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1941 case 'm':
1942 return ERF_NOALIAS;
1944 case '.':
1945 default:
1946 return 0;
1951 /* Return true if GS is a copy assignment. */
1953 bool
1954 gimple_assign_copy_p (gimple gs)
1956 return (gimple_assign_single_p (gs)
1957 && is_gimple_val (gimple_op (gs, 1)));
1961 /* Return true if GS is a SSA_NAME copy assignment. */
1963 bool
1964 gimple_assign_ssa_name_copy_p (gimple gs)
1966 return (gimple_assign_single_p (gs)
1967 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1968 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1972 /* Return true if GS is an assignment with a unary RHS, but the
1973 operator has no effect on the assigned value. The logic is adapted
1974 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1975 instances in which STRIP_NOPS was previously applied to the RHS of
1976 an assignment.
1978 NOTE: In the use cases that led to the creation of this function
1979 and of gimple_assign_single_p, it is typical to test for either
1980 condition and to proceed in the same manner. In each case, the
1981 assigned value is represented by the single RHS operand of the
1982 assignment. I suspect there may be cases where gimple_assign_copy_p,
1983 gimple_assign_single_p, or equivalent logic is used where a similar
1984 treatment of unary NOPs is appropriate. */
1986 bool
1987 gimple_assign_unary_nop_p (gimple gs)
1989 return (is_gimple_assign (gs)
1990 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1991 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1992 && gimple_assign_rhs1 (gs) != error_mark_node
1993 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1994 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1997 /* Set BB to be the basic block holding G. */
1999 void
2000 gimple_set_bb (gimple stmt, basic_block bb)
2002 stmt->gsbase.bb = bb;
2004 /* If the statement is a label, add the label to block-to-labels map
2005 so that we can speed up edge creation for GIMPLE_GOTOs. */
2006 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
2008 tree t;
2009 int uid;
2011 t = gimple_label_label (stmt);
2012 uid = LABEL_DECL_UID (t);
2013 if (uid == -1)
2015 unsigned old_len = VEC_length (basic_block, label_to_block_map);
2016 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
2017 if (old_len <= (unsigned) uid)
2019 unsigned new_len = 3 * uid / 2 + 1;
2021 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
2022 new_len);
2026 VEC_replace (basic_block, label_to_block_map, uid, bb);
2031 /* Modify the RHS of the assignment pointed-to by GSI using the
2032 operands in the expression tree EXPR.
2034 NOTE: The statement pointed-to by GSI may be reallocated if it
2035 did not have enough operand slots.
2037 This function is useful to convert an existing tree expression into
2038 the flat representation used for the RHS of a GIMPLE assignment.
2039 It will reallocate memory as needed to expand or shrink the number
2040 of operand slots needed to represent EXPR.
2042 NOTE: If you find yourself building a tree and then calling this
2043 function, you are most certainly doing it the slow way. It is much
2044 better to build a new assignment or to use the function
2045 gimple_assign_set_rhs_with_ops, which does not require an
2046 expression tree to be built. */
2048 void
2049 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
2051 enum tree_code subcode;
2052 tree op1, op2, op3;
2054 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
2055 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
2059 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
2060 operands OP1, OP2 and OP3.
2062 NOTE: The statement pointed-to by GSI may be reallocated if it
2063 did not have enough operand slots. */
2065 void
2066 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2067 tree op1, tree op2, tree op3)
2069 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2070 gimple stmt = gsi_stmt (*gsi);
2072 /* If the new CODE needs more operands, allocate a new statement. */
2073 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2075 tree lhs = gimple_assign_lhs (stmt);
2076 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2077 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2078 gsi_replace (gsi, new_stmt, true);
2079 stmt = new_stmt;
2081 /* The LHS needs to be reset as this also changes the SSA name
2082 on the LHS. */
2083 gimple_assign_set_lhs (stmt, lhs);
2086 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2087 gimple_set_subcode (stmt, code);
2088 gimple_assign_set_rhs1 (stmt, op1);
2089 if (new_rhs_ops > 1)
2090 gimple_assign_set_rhs2 (stmt, op2);
2091 if (new_rhs_ops > 2)
2092 gimple_assign_set_rhs3 (stmt, op3);
2096 /* Return the LHS of a statement that performs an assignment,
2097 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2098 for a call to a function that returns no value, or for a
2099 statement other than an assignment or a call. */
2101 tree
2102 gimple_get_lhs (const_gimple stmt)
2104 enum gimple_code code = gimple_code (stmt);
2106 if (code == GIMPLE_ASSIGN)
2107 return gimple_assign_lhs (stmt);
2108 else if (code == GIMPLE_CALL)
2109 return gimple_call_lhs (stmt);
2110 else
2111 return NULL_TREE;
2115 /* Set the LHS of a statement that performs an assignment,
2116 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2118 void
2119 gimple_set_lhs (gimple stmt, tree lhs)
2121 enum gimple_code code = gimple_code (stmt);
2123 if (code == GIMPLE_ASSIGN)
2124 gimple_assign_set_lhs (stmt, lhs);
2125 else if (code == GIMPLE_CALL)
2126 gimple_call_set_lhs (stmt, lhs);
2127 else
2128 gcc_unreachable();
2131 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2132 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2133 expression with a different value.
2135 This will update any annotations (say debug bind stmts) referring
2136 to the original LHS, so that they use the RHS instead. This is
2137 done even if NLHS and LHS are the same, for it is understood that
2138 the RHS will be modified afterwards, and NLHS will not be assigned
2139 an equivalent value.
2141 Adjusting any non-annotation uses of the LHS, if needed, is a
2142 responsibility of the caller.
2144 The effect of this call should be pretty much the same as that of
2145 inserting a copy of STMT before STMT, and then removing the
2146 original stmt, at which time gsi_remove() would have update
2147 annotations, but using this function saves all the inserting,
2148 copying and removing. */
2150 void
2151 gimple_replace_lhs (gimple stmt, tree nlhs)
2153 if (MAY_HAVE_DEBUG_STMTS)
2155 tree lhs = gimple_get_lhs (stmt);
2157 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2159 insert_debug_temp_for_var_def (NULL, lhs);
2162 gimple_set_lhs (stmt, nlhs);
2165 /* Return a deep copy of statement STMT. All the operands from STMT
2166 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2167 and VUSE operand arrays are set to empty in the new copy. */
2169 gimple
2170 gimple_copy (gimple stmt)
2172 enum gimple_code code = gimple_code (stmt);
2173 unsigned num_ops = gimple_num_ops (stmt);
2174 gimple copy = gimple_alloc (code, num_ops);
2175 unsigned i;
2177 /* Shallow copy all the fields from STMT. */
2178 memcpy (copy, stmt, gimple_size (code));
2180 /* If STMT has sub-statements, deep-copy them as well. */
2181 if (gimple_has_substatements (stmt))
2183 gimple_seq new_seq;
2184 tree t;
2186 switch (gimple_code (stmt))
2188 case GIMPLE_BIND:
2189 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2190 gimple_bind_set_body (copy, new_seq);
2191 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2192 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2193 break;
2195 case GIMPLE_CATCH:
2196 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2197 gimple_catch_set_handler (copy, new_seq);
2198 t = unshare_expr (gimple_catch_types (stmt));
2199 gimple_catch_set_types (copy, t);
2200 break;
2202 case GIMPLE_EH_FILTER:
2203 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2204 gimple_eh_filter_set_failure (copy, new_seq);
2205 t = unshare_expr (gimple_eh_filter_types (stmt));
2206 gimple_eh_filter_set_types (copy, t);
2207 break;
2209 case GIMPLE_TRY:
2210 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2211 gimple_try_set_eval (copy, new_seq);
2212 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2213 gimple_try_set_cleanup (copy, new_seq);
2214 break;
2216 case GIMPLE_OMP_FOR:
2217 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2218 gimple_omp_for_set_pre_body (copy, new_seq);
2219 t = unshare_expr (gimple_omp_for_clauses (stmt));
2220 gimple_omp_for_set_clauses (copy, t);
2221 copy->gimple_omp_for.iter
2222 = ggc_alloc_vec_gimple_omp_for_iter
2223 (gimple_omp_for_collapse (stmt));
2224 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2226 gimple_omp_for_set_cond (copy, i,
2227 gimple_omp_for_cond (stmt, i));
2228 gimple_omp_for_set_index (copy, i,
2229 gimple_omp_for_index (stmt, i));
2230 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2231 gimple_omp_for_set_initial (copy, i, t);
2232 t = unshare_expr (gimple_omp_for_final (stmt, i));
2233 gimple_omp_for_set_final (copy, i, t);
2234 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2235 gimple_omp_for_set_incr (copy, i, t);
2237 goto copy_omp_body;
2239 case GIMPLE_OMP_PARALLEL:
2240 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2241 gimple_omp_parallel_set_clauses (copy, t);
2242 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2243 gimple_omp_parallel_set_child_fn (copy, t);
2244 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2245 gimple_omp_parallel_set_data_arg (copy, t);
2246 goto copy_omp_body;
2248 case GIMPLE_OMP_TASK:
2249 t = unshare_expr (gimple_omp_task_clauses (stmt));
2250 gimple_omp_task_set_clauses (copy, t);
2251 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2252 gimple_omp_task_set_child_fn (copy, t);
2253 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2254 gimple_omp_task_set_data_arg (copy, t);
2255 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2256 gimple_omp_task_set_copy_fn (copy, t);
2257 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2258 gimple_omp_task_set_arg_size (copy, t);
2259 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2260 gimple_omp_task_set_arg_align (copy, t);
2261 goto copy_omp_body;
2263 case GIMPLE_OMP_CRITICAL:
2264 t = unshare_expr (gimple_omp_critical_name (stmt));
2265 gimple_omp_critical_set_name (copy, t);
2266 goto copy_omp_body;
2268 case GIMPLE_OMP_SECTIONS:
2269 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2270 gimple_omp_sections_set_clauses (copy, t);
2271 t = unshare_expr (gimple_omp_sections_control (stmt));
2272 gimple_omp_sections_set_control (copy, t);
2273 /* FALLTHRU */
2275 case GIMPLE_OMP_SINGLE:
2276 case GIMPLE_OMP_SECTION:
2277 case GIMPLE_OMP_MASTER:
2278 case GIMPLE_OMP_ORDERED:
2279 copy_omp_body:
2280 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2281 gimple_omp_set_body (copy, new_seq);
2282 break;
2284 case GIMPLE_WITH_CLEANUP_EXPR:
2285 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2286 gimple_wce_set_cleanup (copy, new_seq);
2287 break;
2289 default:
2290 gcc_unreachable ();
2294 /* Make copy of operands. */
2295 if (num_ops > 0)
2297 for (i = 0; i < num_ops; i++)
2298 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2300 /* Clear out SSA operand vectors on COPY. */
2301 if (gimple_has_ops (stmt))
2303 gimple_set_def_ops (copy, NULL);
2304 gimple_set_use_ops (copy, NULL);
2307 if (gimple_has_mem_ops (stmt))
2309 gimple_set_vdef (copy, gimple_vdef (stmt));
2310 gimple_set_vuse (copy, gimple_vuse (stmt));
2313 /* SSA operands need to be updated. */
2314 gimple_set_modified (copy, true);
2317 return copy;
2321 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2322 a MODIFIED field. */
2324 void
2325 gimple_set_modified (gimple s, bool modifiedp)
2327 if (gimple_has_ops (s))
2328 s->gsbase.modified = (unsigned) modifiedp;
2332 /* Return true if statement S has side-effects. We consider a
2333 statement to have side effects if:
2335 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2336 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2338 bool
2339 gimple_has_side_effects (const_gimple s)
2341 unsigned i;
2343 if (is_gimple_debug (s))
2344 return false;
2346 /* We don't have to scan the arguments to check for
2347 volatile arguments, though, at present, we still
2348 do a scan to check for TREE_SIDE_EFFECTS. */
2349 if (gimple_has_volatile_ops (s))
2350 return true;
2352 if (gimple_code (s) == GIMPLE_ASM
2353 && gimple_asm_volatile_p (s))
2354 return true;
2356 if (is_gimple_call (s))
2358 unsigned nargs = gimple_call_num_args (s);
2359 tree fn;
2361 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2362 return true;
2363 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2364 /* An infinite loop is considered a side effect. */
2365 return true;
2367 if (gimple_call_lhs (s)
2368 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2370 gcc_checking_assert (gimple_has_volatile_ops (s));
2371 return true;
2374 fn = gimple_call_fn (s);
2375 if (fn && TREE_SIDE_EFFECTS (fn))
2376 return true;
2378 for (i = 0; i < nargs; i++)
2379 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2381 gcc_checking_assert (gimple_has_volatile_ops (s));
2382 return true;
2385 return false;
2387 else
2389 for (i = 0; i < gimple_num_ops (s); i++)
2391 tree op = gimple_op (s, i);
2392 if (op && TREE_SIDE_EFFECTS (op))
2394 gcc_checking_assert (gimple_has_volatile_ops (s));
2395 return true;
2400 return false;
2403 /* Return true if the RHS of statement S has side effects.
2404 We may use it to determine if it is admissable to replace
2405 an assignment or call with a copy of a previously-computed
2406 value. In such cases, side-effects due to the LHS are
2407 preserved. */
2409 bool
2410 gimple_rhs_has_side_effects (const_gimple s)
2412 unsigned i;
2414 if (is_gimple_call (s))
2416 unsigned nargs = gimple_call_num_args (s);
2417 tree fn;
2419 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2420 return true;
2422 /* We cannot use gimple_has_volatile_ops here,
2423 because we must ignore a volatile LHS. */
2424 fn = gimple_call_fn (s);
2425 if (fn && (TREE_SIDE_EFFECTS (fn) || TREE_THIS_VOLATILE (fn)))
2427 gcc_assert (gimple_has_volatile_ops (s));
2428 return true;
2431 for (i = 0; i < nargs; i++)
2432 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2433 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2434 return true;
2436 return false;
2438 else if (is_gimple_assign (s))
2440 /* Skip the first operand, the LHS. */
2441 for (i = 1; i < gimple_num_ops (s); i++)
2442 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2443 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2445 gcc_assert (gimple_has_volatile_ops (s));
2446 return true;
2449 else if (is_gimple_debug (s))
2450 return false;
2451 else
2453 /* For statements without an LHS, examine all arguments. */
2454 for (i = 0; i < gimple_num_ops (s); i++)
2455 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2456 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2458 gcc_assert (gimple_has_volatile_ops (s));
2459 return true;
2463 return false;
2466 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2467 Return true if S can trap. When INCLUDE_MEM is true, check whether
2468 the memory operations could trap. When INCLUDE_STORES is true and
2469 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2471 bool
2472 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2474 tree t, div = NULL_TREE;
2475 enum tree_code op;
2477 if (include_mem)
2479 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2481 for (i = start; i < gimple_num_ops (s); i++)
2482 if (tree_could_trap_p (gimple_op (s, i)))
2483 return true;
2486 switch (gimple_code (s))
2488 case GIMPLE_ASM:
2489 return gimple_asm_volatile_p (s);
2491 case GIMPLE_CALL:
2492 t = gimple_call_fndecl (s);
2493 /* Assume that calls to weak functions may trap. */
2494 if (!t || !DECL_P (t) || DECL_WEAK (t))
2495 return true;
2496 return false;
2498 case GIMPLE_ASSIGN:
2499 t = gimple_expr_type (s);
2500 op = gimple_assign_rhs_code (s);
2501 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2502 div = gimple_assign_rhs2 (s);
2503 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2504 (INTEGRAL_TYPE_P (t)
2505 && TYPE_OVERFLOW_TRAPS (t)),
2506 div));
2508 default:
2509 break;
2512 return false;
2515 /* Return true if statement S can trap. */
2517 bool
2518 gimple_could_trap_p (gimple s)
2520 return gimple_could_trap_p_1 (s, true, true);
2523 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2525 bool
2526 gimple_assign_rhs_could_trap_p (gimple s)
2528 gcc_assert (is_gimple_assign (s));
2529 return gimple_could_trap_p_1 (s, true, false);
2533 /* Print debugging information for gimple stmts generated. */
2535 void
2536 dump_gimple_statistics (void)
2538 #ifdef GATHER_STATISTICS
2539 int i, total_tuples = 0, total_bytes = 0;
2541 fprintf (stderr, "\nGIMPLE statements\n");
2542 fprintf (stderr, "Kind Stmts Bytes\n");
2543 fprintf (stderr, "---------------------------------------\n");
2544 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2546 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2547 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2548 total_tuples += gimple_alloc_counts[i];
2549 total_bytes += gimple_alloc_sizes[i];
2551 fprintf (stderr, "---------------------------------------\n");
2552 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2553 fprintf (stderr, "---------------------------------------\n");
2554 #else
2555 fprintf (stderr, "No gimple statistics\n");
2556 #endif
2560 /* Return the number of operands needed on the RHS of a GIMPLE
2561 assignment for an expression with tree code CODE. */
2563 unsigned
2564 get_gimple_rhs_num_ops (enum tree_code code)
2566 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2568 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2569 return 1;
2570 else if (rhs_class == GIMPLE_BINARY_RHS)
2571 return 2;
2572 else if (rhs_class == GIMPLE_TERNARY_RHS)
2573 return 3;
2574 else
2575 gcc_unreachable ();
2578 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2579 (unsigned char) \
2580 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2581 : ((TYPE) == tcc_binary \
2582 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2583 : ((TYPE) == tcc_constant \
2584 || (TYPE) == tcc_declaration \
2585 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2586 : ((SYM) == TRUTH_AND_EXPR \
2587 || (SYM) == TRUTH_OR_EXPR \
2588 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2589 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2590 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2591 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2592 || (SYM) == DOT_PROD_EXPR \
2593 || (SYM) == REALIGN_LOAD_EXPR \
2594 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2595 : ((SYM) == COND_EXPR \
2596 || (SYM) == CONSTRUCTOR \
2597 || (SYM) == OBJ_TYPE_REF \
2598 || (SYM) == ASSERT_EXPR \
2599 || (SYM) == ADDR_EXPR \
2600 || (SYM) == WITH_SIZE_EXPR \
2601 || (SYM) == SSA_NAME \
2602 || (SYM) == VEC_COND_EXPR) ? GIMPLE_SINGLE_RHS \
2603 : GIMPLE_INVALID_RHS),
2604 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2606 const unsigned char gimple_rhs_class_table[] = {
2607 #include "all-tree.def"
2610 #undef DEFTREECODE
2611 #undef END_OF_BASE_TREE_CODES
2613 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2615 /* Validation of GIMPLE expressions. */
2617 /* Returns true iff T is a valid RHS for an assignment to a renamed
2618 user -- or front-end generated artificial -- variable. */
2620 bool
2621 is_gimple_reg_rhs (tree t)
2623 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2626 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2627 LHS, or for a call argument. */
2629 bool
2630 is_gimple_mem_rhs (tree t)
2632 /* If we're dealing with a renamable type, either source or dest must be
2633 a renamed variable. */
2634 if (is_gimple_reg_type (TREE_TYPE (t)))
2635 return is_gimple_val (t);
2636 else
2637 return is_gimple_val (t) || is_gimple_lvalue (t);
2640 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2642 bool
2643 is_gimple_lvalue (tree t)
2645 return (is_gimple_addressable (t)
2646 || TREE_CODE (t) == WITH_SIZE_EXPR
2647 /* These are complex lvalues, but don't have addresses, so they
2648 go here. */
2649 || TREE_CODE (t) == BIT_FIELD_REF);
2652 /* Return true if T is a GIMPLE condition. */
2654 bool
2655 is_gimple_condexpr (tree t)
2657 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2658 && !tree_could_throw_p (t)
2659 && is_gimple_val (TREE_OPERAND (t, 0))
2660 && is_gimple_val (TREE_OPERAND (t, 1))));
2663 /* Return true if T is something whose address can be taken. */
2665 bool
2666 is_gimple_addressable (tree t)
2668 return (is_gimple_id (t) || handled_component_p (t)
2669 || TREE_CODE (t) == MEM_REF);
2672 /* Return true if T is a valid gimple constant. */
2674 bool
2675 is_gimple_constant (const_tree t)
2677 switch (TREE_CODE (t))
2679 case INTEGER_CST:
2680 case REAL_CST:
2681 case FIXED_CST:
2682 case STRING_CST:
2683 case COMPLEX_CST:
2684 case VECTOR_CST:
2685 return true;
2687 /* Vector constant constructors are gimple invariant. */
2688 case CONSTRUCTOR:
2689 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2690 return TREE_CONSTANT (t);
2691 else
2692 return false;
2694 default:
2695 return false;
2699 /* Return true if T is a gimple address. */
2701 bool
2702 is_gimple_address (const_tree t)
2704 tree op;
2706 if (TREE_CODE (t) != ADDR_EXPR)
2707 return false;
2709 op = TREE_OPERAND (t, 0);
2710 while (handled_component_p (op))
2712 if ((TREE_CODE (op) == ARRAY_REF
2713 || TREE_CODE (op) == ARRAY_RANGE_REF)
2714 && !is_gimple_val (TREE_OPERAND (op, 1)))
2715 return false;
2717 op = TREE_OPERAND (op, 0);
2720 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2721 return true;
2723 switch (TREE_CODE (op))
2725 case PARM_DECL:
2726 case RESULT_DECL:
2727 case LABEL_DECL:
2728 case FUNCTION_DECL:
2729 case VAR_DECL:
2730 case CONST_DECL:
2731 return true;
2733 default:
2734 return false;
2738 /* Strip out all handled components that produce invariant
2739 offsets. */
2741 static const_tree
2742 strip_invariant_refs (const_tree op)
2744 while (handled_component_p (op))
2746 switch (TREE_CODE (op))
2748 case ARRAY_REF:
2749 case ARRAY_RANGE_REF:
2750 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2751 || TREE_OPERAND (op, 2) != NULL_TREE
2752 || TREE_OPERAND (op, 3) != NULL_TREE)
2753 return NULL;
2754 break;
2756 case COMPONENT_REF:
2757 if (TREE_OPERAND (op, 2) != NULL_TREE)
2758 return NULL;
2759 break;
2761 default:;
2763 op = TREE_OPERAND (op, 0);
2766 return op;
2769 /* Return true if T is a gimple invariant address. */
2771 bool
2772 is_gimple_invariant_address (const_tree t)
2774 const_tree op;
2776 if (TREE_CODE (t) != ADDR_EXPR)
2777 return false;
2779 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2780 if (!op)
2781 return false;
2783 if (TREE_CODE (op) == MEM_REF)
2785 const_tree op0 = TREE_OPERAND (op, 0);
2786 return (TREE_CODE (op0) == ADDR_EXPR
2787 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2788 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2791 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2794 /* Return true if T is a gimple invariant address at IPA level
2795 (so addresses of variables on stack are not allowed). */
2797 bool
2798 is_gimple_ip_invariant_address (const_tree t)
2800 const_tree op;
2802 if (TREE_CODE (t) != ADDR_EXPR)
2803 return false;
2805 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2807 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2810 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2811 form of function invariant. */
2813 bool
2814 is_gimple_min_invariant (const_tree t)
2816 if (TREE_CODE (t) == ADDR_EXPR)
2817 return is_gimple_invariant_address (t);
2819 return is_gimple_constant (t);
2822 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2823 form of gimple minimal invariant. */
2825 bool
2826 is_gimple_ip_invariant (const_tree t)
2828 if (TREE_CODE (t) == ADDR_EXPR)
2829 return is_gimple_ip_invariant_address (t);
2831 return is_gimple_constant (t);
2834 /* Return true if T looks like a valid GIMPLE statement. */
2836 bool
2837 is_gimple_stmt (tree t)
2839 const enum tree_code code = TREE_CODE (t);
2841 switch (code)
2843 case NOP_EXPR:
2844 /* The only valid NOP_EXPR is the empty statement. */
2845 return IS_EMPTY_STMT (t);
2847 case BIND_EXPR:
2848 case COND_EXPR:
2849 /* These are only valid if they're void. */
2850 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2852 case SWITCH_EXPR:
2853 case GOTO_EXPR:
2854 case RETURN_EXPR:
2855 case LABEL_EXPR:
2856 case CASE_LABEL_EXPR:
2857 case TRY_CATCH_EXPR:
2858 case TRY_FINALLY_EXPR:
2859 case EH_FILTER_EXPR:
2860 case CATCH_EXPR:
2861 case ASM_EXPR:
2862 case STATEMENT_LIST:
2863 case OMP_PARALLEL:
2864 case OMP_FOR:
2865 case OMP_SECTIONS:
2866 case OMP_SECTION:
2867 case OMP_SINGLE:
2868 case OMP_MASTER:
2869 case OMP_ORDERED:
2870 case OMP_CRITICAL:
2871 case OMP_TASK:
2872 /* These are always void. */
2873 return true;
2875 case CALL_EXPR:
2876 case MODIFY_EXPR:
2877 case PREDICT_EXPR:
2878 /* These are valid regardless of their type. */
2879 return true;
2881 default:
2882 return false;
2886 /* Return true if T is a variable. */
2888 bool
2889 is_gimple_variable (tree t)
2891 return (TREE_CODE (t) == VAR_DECL
2892 || TREE_CODE (t) == PARM_DECL
2893 || TREE_CODE (t) == RESULT_DECL
2894 || TREE_CODE (t) == SSA_NAME);
2897 /* Return true if T is a GIMPLE identifier (something with an address). */
2899 bool
2900 is_gimple_id (tree t)
2902 return (is_gimple_variable (t)
2903 || TREE_CODE (t) == FUNCTION_DECL
2904 || TREE_CODE (t) == LABEL_DECL
2905 || TREE_CODE (t) == CONST_DECL
2906 /* Allow string constants, since they are addressable. */
2907 || TREE_CODE (t) == STRING_CST);
2910 /* Return true if TYPE is a suitable type for a scalar register variable. */
2912 bool
2913 is_gimple_reg_type (tree type)
2915 return !AGGREGATE_TYPE_P (type);
2918 /* Return true if T is a non-aggregate register variable. */
2920 bool
2921 is_gimple_reg (tree t)
2923 if (TREE_CODE (t) == SSA_NAME)
2924 t = SSA_NAME_VAR (t);
2926 if (!is_gimple_variable (t))
2927 return false;
2929 if (!is_gimple_reg_type (TREE_TYPE (t)))
2930 return false;
2932 /* A volatile decl is not acceptable because we can't reuse it as
2933 needed. We need to copy it into a temp first. */
2934 if (TREE_THIS_VOLATILE (t))
2935 return false;
2937 /* We define "registers" as things that can be renamed as needed,
2938 which with our infrastructure does not apply to memory. */
2939 if (needs_to_live_in_memory (t))
2940 return false;
2942 /* Hard register variables are an interesting case. For those that
2943 are call-clobbered, we don't know where all the calls are, since
2944 we don't (want to) take into account which operations will turn
2945 into libcalls at the rtl level. For those that are call-saved,
2946 we don't currently model the fact that calls may in fact change
2947 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2948 level, and so miss variable changes that might imply. All around,
2949 it seems safest to not do too much optimization with these at the
2950 tree level at all. We'll have to rely on the rtl optimizers to
2951 clean this up, as there we've got all the appropriate bits exposed. */
2952 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2953 return false;
2955 /* Complex and vector values must have been put into SSA-like form.
2956 That is, no assignments to the individual components. */
2957 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2958 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2959 return DECL_GIMPLE_REG_P (t);
2961 return true;
2965 /* Return true if T is a GIMPLE variable whose address is not needed. */
2967 bool
2968 is_gimple_non_addressable (tree t)
2970 if (TREE_CODE (t) == SSA_NAME)
2971 t = SSA_NAME_VAR (t);
2973 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2976 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2978 bool
2979 is_gimple_val (tree t)
2981 /* Make loads from volatiles and memory vars explicit. */
2982 if (is_gimple_variable (t)
2983 && is_gimple_reg_type (TREE_TYPE (t))
2984 && !is_gimple_reg (t))
2985 return false;
2987 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2990 /* Similarly, but accept hard registers as inputs to asm statements. */
2992 bool
2993 is_gimple_asm_val (tree t)
2995 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2996 return true;
2998 return is_gimple_val (t);
3001 /* Return true if T is a GIMPLE minimal lvalue. */
3003 bool
3004 is_gimple_min_lval (tree t)
3006 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
3007 return false;
3008 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
3011 /* Return true if T is a valid function operand of a CALL_EXPR. */
3013 bool
3014 is_gimple_call_addr (tree t)
3016 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
3019 /* Return true if T is a valid address operand of a MEM_REF. */
3021 bool
3022 is_gimple_mem_ref_addr (tree t)
3024 return (is_gimple_reg (t)
3025 || TREE_CODE (t) == INTEGER_CST
3026 || (TREE_CODE (t) == ADDR_EXPR
3027 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
3028 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
3031 /* If T makes a function call, return the corresponding CALL_EXPR operand.
3032 Otherwise, return NULL_TREE. */
3034 tree
3035 get_call_expr_in (tree t)
3037 if (TREE_CODE (t) == MODIFY_EXPR)
3038 t = TREE_OPERAND (t, 1);
3039 if (TREE_CODE (t) == WITH_SIZE_EXPR)
3040 t = TREE_OPERAND (t, 0);
3041 if (TREE_CODE (t) == CALL_EXPR)
3042 return t;
3043 return NULL_TREE;
3047 /* Given a memory reference expression T, return its base address.
3048 The base address of a memory reference expression is the main
3049 object being referenced. For instance, the base address for
3050 'array[i].fld[j]' is 'array'. You can think of this as stripping
3051 away the offset part from a memory address.
3053 This function calls handled_component_p to strip away all the inner
3054 parts of the memory reference until it reaches the base object. */
3056 tree
3057 get_base_address (tree t)
3059 while (handled_component_p (t))
3060 t = TREE_OPERAND (t, 0);
3062 if ((TREE_CODE (t) == MEM_REF
3063 || TREE_CODE (t) == TARGET_MEM_REF)
3064 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3065 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
3067 if (TREE_CODE (t) == SSA_NAME
3068 || DECL_P (t)
3069 || TREE_CODE (t) == STRING_CST
3070 || TREE_CODE (t) == CONSTRUCTOR
3071 || INDIRECT_REF_P (t)
3072 || TREE_CODE (t) == MEM_REF
3073 || TREE_CODE (t) == TARGET_MEM_REF)
3074 return t;
3075 else
3076 return NULL_TREE;
3079 void
3080 recalculate_side_effects (tree t)
3082 enum tree_code code = TREE_CODE (t);
3083 int len = TREE_OPERAND_LENGTH (t);
3084 int i;
3086 switch (TREE_CODE_CLASS (code))
3088 case tcc_expression:
3089 switch (code)
3091 case INIT_EXPR:
3092 case MODIFY_EXPR:
3093 case VA_ARG_EXPR:
3094 case PREDECREMENT_EXPR:
3095 case PREINCREMENT_EXPR:
3096 case POSTDECREMENT_EXPR:
3097 case POSTINCREMENT_EXPR:
3098 /* All of these have side-effects, no matter what their
3099 operands are. */
3100 return;
3102 default:
3103 break;
3105 /* Fall through. */
3107 case tcc_comparison: /* a comparison expression */
3108 case tcc_unary: /* a unary arithmetic expression */
3109 case tcc_binary: /* a binary arithmetic expression */
3110 case tcc_reference: /* a reference */
3111 case tcc_vl_exp: /* a function call */
3112 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3113 for (i = 0; i < len; ++i)
3115 tree op = TREE_OPERAND (t, i);
3116 if (op && TREE_SIDE_EFFECTS (op))
3117 TREE_SIDE_EFFECTS (t) = 1;
3119 break;
3121 case tcc_constant:
3122 /* No side-effects. */
3123 return;
3125 default:
3126 gcc_unreachable ();
3130 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3131 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3132 we failed to create one. */
3134 tree
3135 canonicalize_cond_expr_cond (tree t)
3137 /* Strip conversions around boolean operations. */
3138 if (CONVERT_EXPR_P (t)
3139 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3140 t = TREE_OPERAND (t, 0);
3142 /* For (bool)x use x != 0. */
3143 if (CONVERT_EXPR_P (t)
3144 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3146 tree top0 = TREE_OPERAND (t, 0);
3147 t = build2 (NE_EXPR, TREE_TYPE (t),
3148 top0, build_int_cst (TREE_TYPE (top0), 0));
3150 /* For !x use x == 0. */
3151 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3153 tree top0 = TREE_OPERAND (t, 0);
3154 t = build2 (EQ_EXPR, TREE_TYPE (t),
3155 top0, build_int_cst (TREE_TYPE (top0), 0));
3157 /* For cmp ? 1 : 0 use cmp. */
3158 else if (TREE_CODE (t) == COND_EXPR
3159 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3160 && integer_onep (TREE_OPERAND (t, 1))
3161 && integer_zerop (TREE_OPERAND (t, 2)))
3163 tree top0 = TREE_OPERAND (t, 0);
3164 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3165 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3168 if (is_gimple_condexpr (t))
3169 return t;
3171 return NULL_TREE;
3174 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3175 the positions marked by the set ARGS_TO_SKIP. */
3177 gimple
3178 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3180 int i;
3181 int nargs = gimple_call_num_args (stmt);
3182 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3183 gimple new_stmt;
3185 for (i = 0; i < nargs; i++)
3186 if (!bitmap_bit_p (args_to_skip, i))
3187 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3189 if (gimple_call_internal_p (stmt))
3190 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
3191 vargs);
3192 else
3193 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
3194 VEC_free (tree, heap, vargs);
3195 if (gimple_call_lhs (stmt))
3196 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3198 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3199 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3201 gimple_set_block (new_stmt, gimple_block (stmt));
3202 if (gimple_has_location (stmt))
3203 gimple_set_location (new_stmt, gimple_location (stmt));
3204 gimple_call_copy_flags (new_stmt, stmt);
3205 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3207 gimple_set_modified (new_stmt, true);
3209 return new_stmt;
3213 enum gtc_mode { GTC_MERGE = 0, GTC_DIAG = 1 };
3215 static hashval_t gimple_type_hash (const void *);
3217 /* Structure used to maintain a cache of some type pairs compared by
3218 gimple_types_compatible_p when comparing aggregate types. There are
3219 three possible values for SAME_P:
3221 -2: The pair (T1, T2) has just been inserted in the table.
3222 0: T1 and T2 are different types.
3223 1: T1 and T2 are the same type.
3225 The two elements in the SAME_P array are indexed by the comparison
3226 mode gtc_mode. */
3228 struct type_pair_d
3230 unsigned int uid1;
3231 unsigned int uid2;
3232 signed char same_p[2];
3234 typedef struct type_pair_d *type_pair_t;
3235 DEF_VEC_P(type_pair_t);
3236 DEF_VEC_ALLOC_P(type_pair_t,heap);
3238 #define GIMPLE_TYPE_PAIR_SIZE 16381
3239 struct type_pair_d *type_pair_cache;
3242 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3243 entry if none existed. */
3245 static inline type_pair_t
3246 lookup_type_pair (tree t1, tree t2)
3248 unsigned int index;
3249 unsigned int uid1, uid2;
3251 if (type_pair_cache == NULL)
3252 type_pair_cache = XCNEWVEC (struct type_pair_d, GIMPLE_TYPE_PAIR_SIZE);
3254 if (TYPE_UID (t1) < TYPE_UID (t2))
3256 uid1 = TYPE_UID (t1);
3257 uid2 = TYPE_UID (t2);
3259 else
3261 uid1 = TYPE_UID (t2);
3262 uid2 = TYPE_UID (t1);
3264 gcc_checking_assert (uid1 != uid2);
3266 /* iterative_hash_hashval_t imply an function calls.
3267 We know that UIDS are in limited range. */
3268 index = ((((unsigned HOST_WIDE_INT)uid1 << HOST_BITS_PER_WIDE_INT / 2) + uid2)
3269 % GIMPLE_TYPE_PAIR_SIZE);
3270 if (type_pair_cache [index].uid1 == uid1
3271 && type_pair_cache [index].uid2 == uid2)
3272 return &type_pair_cache[index];
3274 type_pair_cache [index].uid1 = uid1;
3275 type_pair_cache [index].uid2 = uid2;
3276 type_pair_cache [index].same_p[0] = -2;
3277 type_pair_cache [index].same_p[1] = -2;
3279 return &type_pair_cache[index];
3282 /* Per pointer state for the SCC finding. The on_sccstack flag
3283 is not strictly required, it is true when there is no hash value
3284 recorded for the type and false otherwise. But querying that
3285 is slower. */
3287 struct sccs
3289 unsigned int dfsnum;
3290 unsigned int low;
3291 bool on_sccstack;
3292 union {
3293 hashval_t hash;
3294 signed char same_p;
3295 } u;
3298 static unsigned int next_dfs_num;
3299 static unsigned int gtc_next_dfs_num;
3302 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3304 typedef struct GTY(()) gimple_type_leader_entry_s {
3305 tree type;
3306 tree leader;
3307 } gimple_type_leader_entry;
3309 #define GIMPLE_TYPE_LEADER_SIZE 16381
3310 static GTY((deletable, length("GIMPLE_TYPE_LEADER_SIZE")))
3311 gimple_type_leader_entry *gimple_type_leader;
3313 /* Lookup an existing leader for T and return it or NULL_TREE, if
3314 there is none in the cache. */
3316 static inline tree
3317 gimple_lookup_type_leader (tree t)
3319 gimple_type_leader_entry *leader;
3321 if (!gimple_type_leader)
3322 return NULL_TREE;
3324 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
3325 if (leader->type != t)
3326 return NULL_TREE;
3328 return leader->leader;
3331 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3332 true then if any type has no name return false, otherwise return
3333 true if both types have no names. */
3335 static bool
3336 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3338 tree name1 = TYPE_NAME (t1);
3339 tree name2 = TYPE_NAME (t2);
3341 /* Consider anonymous types all unique for completion. */
3342 if (for_completion_p
3343 && (!name1 || !name2))
3344 return false;
3346 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3348 name1 = DECL_NAME (name1);
3349 if (for_completion_p
3350 && !name1)
3351 return false;
3353 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3355 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3357 name2 = DECL_NAME (name2);
3358 if (for_completion_p
3359 && !name2)
3360 return false;
3362 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3364 /* Identifiers can be compared with pointer equality rather
3365 than a string comparison. */
3366 if (name1 == name2)
3367 return true;
3369 return false;
3372 /* Return true if the field decls F1 and F2 are at the same offset.
3374 This is intended to be used on GIMPLE types only. */
3376 bool
3377 gimple_compare_field_offset (tree f1, tree f2)
3379 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3381 tree offset1 = DECL_FIELD_OFFSET (f1);
3382 tree offset2 = DECL_FIELD_OFFSET (f2);
3383 return ((offset1 == offset2
3384 /* Once gimplification is done, self-referential offsets are
3385 instantiated as operand #2 of the COMPONENT_REF built for
3386 each access and reset. Therefore, they are not relevant
3387 anymore and fields are interchangeable provided that they
3388 represent the same access. */
3389 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3390 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3391 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3392 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3393 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3394 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3395 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3396 || operand_equal_p (offset1, offset2, 0))
3397 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3398 DECL_FIELD_BIT_OFFSET (f2)));
3401 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3402 should be, so handle differing ones specially by decomposing
3403 the offset into a byte and bit offset manually. */
3404 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3405 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3407 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3408 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3409 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3410 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3411 + bit_offset1 / BITS_PER_UNIT);
3412 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3413 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3414 + bit_offset2 / BITS_PER_UNIT);
3415 if (byte_offset1 != byte_offset2)
3416 return false;
3417 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3420 return false;
3423 /* If the type T1 and the type T2 are a complete and an incomplete
3424 variant of the same type return true. */
3426 static bool
3427 gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2)
3429 /* If one pointer points to an incomplete type variant of
3430 the other pointed-to type they are the same. */
3431 if (TREE_CODE (t1) == TREE_CODE (t2)
3432 && RECORD_OR_UNION_TYPE_P (t1)
3433 && (!COMPLETE_TYPE_P (t1)
3434 || !COMPLETE_TYPE_P (t2))
3435 && TYPE_QUALS (t1) == TYPE_QUALS (t2)
3436 && compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3437 TYPE_MAIN_VARIANT (t2), true))
3438 return true;
3439 return false;
3442 static bool
3443 gimple_types_compatible_p_1 (tree, tree, type_pair_t,
3444 VEC(type_pair_t, heap) **,
3445 struct pointer_map_t *, struct obstack *);
3447 /* DFS visit the edge from the callers type pair with state *STATE to
3448 the pair T1, T2 while operating in FOR_MERGING_P mode.
3449 Update the merging status if it is not part of the SCC containing the
3450 callers pair and return it.
3451 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3453 static bool
3454 gtc_visit (tree t1, tree t2,
3455 struct sccs *state,
3456 VEC(type_pair_t, heap) **sccstack,
3457 struct pointer_map_t *sccstate,
3458 struct obstack *sccstate_obstack)
3460 struct sccs *cstate = NULL;
3461 type_pair_t p;
3462 void **slot;
3463 tree leader1, leader2;
3465 /* Check first for the obvious case of pointer identity. */
3466 if (t1 == t2)
3467 return true;
3469 /* Check that we have two types to compare. */
3470 if (t1 == NULL_TREE || t2 == NULL_TREE)
3471 return false;
3473 /* Can't be the same type if the types don't have the same code. */
3474 if (TREE_CODE (t1) != TREE_CODE (t2))
3475 return false;
3477 /* Can't be the same type if they have different CV qualifiers. */
3478 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3479 return false;
3481 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
3482 return false;
3484 /* Void types and nullptr types are always the same. */
3485 if (TREE_CODE (t1) == VOID_TYPE
3486 || TREE_CODE (t1) == NULLPTR_TYPE)
3487 return true;
3489 /* Can't be the same type if they have different alignment or mode. */
3490 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3491 || TYPE_MODE (t1) != TYPE_MODE (t2))
3492 return false;
3494 /* Do some simple checks before doing three hashtable queries. */
3495 if (INTEGRAL_TYPE_P (t1)
3496 || SCALAR_FLOAT_TYPE_P (t1)
3497 || FIXED_POINT_TYPE_P (t1)
3498 || TREE_CODE (t1) == VECTOR_TYPE
3499 || TREE_CODE (t1) == COMPLEX_TYPE
3500 || TREE_CODE (t1) == OFFSET_TYPE
3501 || POINTER_TYPE_P (t1))
3503 /* Can't be the same type if they have different sign or precision. */
3504 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3505 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3506 return false;
3508 if (TREE_CODE (t1) == INTEGER_TYPE
3509 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3510 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3511 return false;
3513 /* That's all we need to check for float and fixed-point types. */
3514 if (SCALAR_FLOAT_TYPE_P (t1)
3515 || FIXED_POINT_TYPE_P (t1))
3516 return true;
3518 /* For other types fall thru to more complex checks. */
3521 /* If the types have been previously registered and found equal
3522 they still are. */
3523 leader1 = gimple_lookup_type_leader (t1);
3524 leader2 = gimple_lookup_type_leader (t2);
3525 if (leader1 == t2
3526 || t1 == leader2
3527 || (leader1 && leader1 == leader2))
3528 return true;
3530 /* If the hash values of t1 and t2 are different the types can't
3531 possibly be the same. This helps keeping the type-pair hashtable
3532 small, only tracking comparisons for hash collisions. */
3533 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3534 return false;
3536 /* Allocate a new cache entry for this comparison. */
3537 p = lookup_type_pair (t1, t2);
3538 if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
3540 /* We have already decided whether T1 and T2 are the
3541 same, return the cached result. */
3542 return p->same_p[GTC_MERGE] == 1;
3545 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3546 cstate = (struct sccs *)*slot;
3547 /* Not yet visited. DFS recurse. */
3548 if (!cstate)
3550 gimple_types_compatible_p_1 (t1, t2, p,
3551 sccstack, sccstate, sccstate_obstack);
3552 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3553 state->low = MIN (state->low, cstate->low);
3555 /* If the type is still on the SCC stack adjust the parents low. */
3556 if (cstate->dfsnum < state->dfsnum
3557 && cstate->on_sccstack)
3558 state->low = MIN (cstate->dfsnum, state->low);
3560 /* Return the current lattice value. We start with an equality
3561 assumption so types part of a SCC will be optimistically
3562 treated equal unless proven otherwise. */
3563 return cstate->u.same_p;
3566 /* Worker for gimple_types_compatible.
3567 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3569 static bool
3570 gimple_types_compatible_p_1 (tree t1, tree t2, type_pair_t p,
3571 VEC(type_pair_t, heap) **sccstack,
3572 struct pointer_map_t *sccstate,
3573 struct obstack *sccstate_obstack)
3575 struct sccs *state;
3577 gcc_assert (p->same_p[GTC_MERGE] == -2);
3579 state = XOBNEW (sccstate_obstack, struct sccs);
3580 *pointer_map_insert (sccstate, p) = state;
3582 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3583 state->dfsnum = gtc_next_dfs_num++;
3584 state->low = state->dfsnum;
3585 state->on_sccstack = true;
3586 /* Start with an equality assumption. As we DFS recurse into child
3587 SCCs this assumption may get revisited. */
3588 state->u.same_p = 1;
3590 /* If their attributes are not the same they can't be the same type. */
3591 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3592 goto different_types;
3594 /* Do type-specific comparisons. */
3595 switch (TREE_CODE (t1))
3597 case VECTOR_TYPE:
3598 case COMPLEX_TYPE:
3599 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3600 state, sccstack, sccstate, sccstate_obstack))
3601 goto different_types;
3602 goto same_types;
3604 case ARRAY_TYPE:
3605 /* Array types are the same if the element types are the same and
3606 the number of elements are the same. */
3607 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3608 state, sccstack, sccstate, sccstate_obstack)
3609 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3610 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3611 goto different_types;
3612 else
3614 tree i1 = TYPE_DOMAIN (t1);
3615 tree i2 = TYPE_DOMAIN (t2);
3617 /* For an incomplete external array, the type domain can be
3618 NULL_TREE. Check this condition also. */
3619 if (i1 == NULL_TREE && i2 == NULL_TREE)
3620 goto same_types;
3621 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3622 goto different_types;
3623 /* If for a complete array type the possibly gimplified sizes
3624 are different the types are different. */
3625 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3626 || (TYPE_SIZE (i1)
3627 && TYPE_SIZE (i2)
3628 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3629 goto different_types;
3630 else
3632 tree min1 = TYPE_MIN_VALUE (i1);
3633 tree min2 = TYPE_MIN_VALUE (i2);
3634 tree max1 = TYPE_MAX_VALUE (i1);
3635 tree max2 = TYPE_MAX_VALUE (i2);
3637 /* The minimum/maximum values have to be the same. */
3638 if ((min1 == min2
3639 || (min1 && min2
3640 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3641 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3642 || operand_equal_p (min1, min2, 0))))
3643 && (max1 == max2
3644 || (max1 && max2
3645 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3646 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3647 || operand_equal_p (max1, max2, 0)))))
3648 goto same_types;
3649 else
3650 goto different_types;
3654 case METHOD_TYPE:
3655 /* Method types should belong to the same class. */
3656 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3657 state, sccstack, sccstate, sccstate_obstack))
3658 goto different_types;
3660 /* Fallthru */
3662 case FUNCTION_TYPE:
3663 /* Function types are the same if the return type and arguments types
3664 are the same. */
3665 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3666 state, sccstack, sccstate, sccstate_obstack))
3667 goto different_types;
3669 if (!comp_type_attributes (t1, t2))
3670 goto different_types;
3672 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3673 goto same_types;
3674 else
3676 tree parms1, parms2;
3678 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3679 parms1 && parms2;
3680 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3682 if (!gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2),
3683 state, sccstack, sccstate, sccstate_obstack))
3684 goto different_types;
3687 if (parms1 || parms2)
3688 goto different_types;
3690 goto same_types;
3693 case OFFSET_TYPE:
3695 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3696 state, sccstack, sccstate, sccstate_obstack)
3697 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3698 TYPE_OFFSET_BASETYPE (t2),
3699 state, sccstack, sccstate, sccstate_obstack))
3700 goto different_types;
3702 goto same_types;
3705 case POINTER_TYPE:
3706 case REFERENCE_TYPE:
3708 /* If the two pointers have different ref-all attributes,
3709 they can't be the same type. */
3710 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3711 goto different_types;
3713 /* Otherwise, pointer and reference types are the same if the
3714 pointed-to types are the same. */
3715 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3716 state, sccstack, sccstate, sccstate_obstack))
3717 goto same_types;
3719 goto different_types;
3722 case INTEGER_TYPE:
3723 case BOOLEAN_TYPE:
3725 tree min1 = TYPE_MIN_VALUE (t1);
3726 tree max1 = TYPE_MAX_VALUE (t1);
3727 tree min2 = TYPE_MIN_VALUE (t2);
3728 tree max2 = TYPE_MAX_VALUE (t2);
3729 bool min_equal_p = false;
3730 bool max_equal_p = false;
3732 /* If either type has a minimum value, the other type must
3733 have the same. */
3734 if (min1 == NULL_TREE && min2 == NULL_TREE)
3735 min_equal_p = true;
3736 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3737 min_equal_p = true;
3739 /* Likewise, if either type has a maximum value, the other
3740 type must have the same. */
3741 if (max1 == NULL_TREE && max2 == NULL_TREE)
3742 max_equal_p = true;
3743 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3744 max_equal_p = true;
3746 if (!min_equal_p || !max_equal_p)
3747 goto different_types;
3749 goto same_types;
3752 case ENUMERAL_TYPE:
3754 /* FIXME lto, we cannot check bounds on enumeral types because
3755 different front ends will produce different values.
3756 In C, enumeral types are integers, while in C++ each element
3757 will have its own symbolic value. We should decide how enums
3758 are to be represented in GIMPLE and have each front end lower
3759 to that. */
3760 tree v1, v2;
3762 /* For enumeral types, all the values must be the same. */
3763 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3764 goto same_types;
3766 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3767 v1 && v2;
3768 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3770 tree c1 = TREE_VALUE (v1);
3771 tree c2 = TREE_VALUE (v2);
3773 if (TREE_CODE (c1) == CONST_DECL)
3774 c1 = DECL_INITIAL (c1);
3776 if (TREE_CODE (c2) == CONST_DECL)
3777 c2 = DECL_INITIAL (c2);
3779 if (tree_int_cst_equal (c1, c2) != 1)
3780 goto different_types;
3782 if (TREE_PURPOSE (v1) != TREE_PURPOSE (v2))
3783 goto different_types;
3786 /* If one enumeration has more values than the other, they
3787 are not the same. */
3788 if (v1 || v2)
3789 goto different_types;
3791 goto same_types;
3794 case RECORD_TYPE:
3795 case UNION_TYPE:
3796 case QUAL_UNION_TYPE:
3798 tree f1, f2;
3800 /* The struct tags shall compare equal. */
3801 if (!compare_type_names_p (t1, t2, false))
3802 goto different_types;
3804 /* For aggregate types, all the fields must be the same. */
3805 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3806 f1 && f2;
3807 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3809 /* The fields must have the same name, offset and type. */
3810 if (DECL_NAME (f1) != DECL_NAME (f2)
3811 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3812 || !gimple_compare_field_offset (f1, f2)
3813 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2),
3814 state, sccstack, sccstate, sccstate_obstack))
3815 goto different_types;
3818 /* If one aggregate has more fields than the other, they
3819 are not the same. */
3820 if (f1 || f2)
3821 goto different_types;
3823 goto same_types;
3826 default:
3827 gcc_unreachable ();
3830 /* Common exit path for types that are not compatible. */
3831 different_types:
3832 state->u.same_p = 0;
3833 goto pop;
3835 /* Common exit path for types that are compatible. */
3836 same_types:
3837 gcc_assert (state->u.same_p == 1);
3839 pop:
3840 if (state->low == state->dfsnum)
3842 type_pair_t x;
3844 /* Pop off the SCC and set its cache values to the final
3845 comparison result. */
3848 struct sccs *cstate;
3849 x = VEC_pop (type_pair_t, *sccstack);
3850 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3851 cstate->on_sccstack = false;
3852 x->same_p[GTC_MERGE] = state->u.same_p;
3854 while (x != p);
3857 return state->u.same_p;
3860 /* Return true iff T1 and T2 are structurally identical. When
3861 FOR_MERGING_P is true the an incomplete type and a complete type
3862 are considered different, otherwise they are considered compatible. */
3864 static bool
3865 gimple_types_compatible_p (tree t1, tree t2)
3867 VEC(type_pair_t, heap) *sccstack = NULL;
3868 struct pointer_map_t *sccstate;
3869 struct obstack sccstate_obstack;
3870 type_pair_t p = NULL;
3871 bool res;
3872 tree leader1, leader2;
3874 /* Before starting to set up the SCC machinery handle simple cases. */
3876 /* Check first for the obvious case of pointer identity. */
3877 if (t1 == t2)
3878 return true;
3880 /* Check that we have two types to compare. */
3881 if (t1 == NULL_TREE || t2 == NULL_TREE)
3882 return false;
3884 /* Can't be the same type if the types don't have the same code. */
3885 if (TREE_CODE (t1) != TREE_CODE (t2))
3886 return false;
3888 /* Can't be the same type if they have different CV qualifiers. */
3889 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3890 return false;
3892 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
3893 return false;
3895 /* Void types and nullptr types are always the same. */
3896 if (TREE_CODE (t1) == VOID_TYPE
3897 || TREE_CODE (t1) == NULLPTR_TYPE)
3898 return true;
3900 /* Can't be the same type if they have different alignment or mode. */
3901 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3902 || TYPE_MODE (t1) != TYPE_MODE (t2))
3903 return false;
3905 /* Do some simple checks before doing three hashtable queries. */
3906 if (INTEGRAL_TYPE_P (t1)
3907 || SCALAR_FLOAT_TYPE_P (t1)
3908 || FIXED_POINT_TYPE_P (t1)
3909 || TREE_CODE (t1) == VECTOR_TYPE
3910 || TREE_CODE (t1) == COMPLEX_TYPE
3911 || TREE_CODE (t1) == OFFSET_TYPE
3912 || POINTER_TYPE_P (t1))
3914 /* Can't be the same type if they have different sign or precision. */
3915 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3916 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3917 return false;
3919 if (TREE_CODE (t1) == INTEGER_TYPE
3920 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3921 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3922 return false;
3924 /* That's all we need to check for float and fixed-point types. */
3925 if (SCALAR_FLOAT_TYPE_P (t1)
3926 || FIXED_POINT_TYPE_P (t1))
3927 return true;
3929 /* For other types fall thru to more complex checks. */
3932 /* If the types have been previously registered and found equal
3933 they still are. */
3934 leader1 = gimple_lookup_type_leader (t1);
3935 leader2 = gimple_lookup_type_leader (t2);
3936 if (leader1 == t2
3937 || t1 == leader2
3938 || (leader1 && leader1 == leader2))
3939 return true;
3941 /* If the hash values of t1 and t2 are different the types can't
3942 possibly be the same. This helps keeping the type-pair hashtable
3943 small, only tracking comparisons for hash collisions. */
3944 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3945 return false;
3947 /* If we've visited this type pair before (in the case of aggregates
3948 with self-referential types), and we made a decision, return it. */
3949 p = lookup_type_pair (t1, t2);
3950 if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
3952 /* We have already decided whether T1 and T2 are the
3953 same, return the cached result. */
3954 return p->same_p[GTC_MERGE] == 1;
3957 /* Now set up the SCC machinery for the comparison. */
3958 gtc_next_dfs_num = 1;
3959 sccstate = pointer_map_create ();
3960 gcc_obstack_init (&sccstate_obstack);
3961 res = gimple_types_compatible_p_1 (t1, t2, p,
3962 &sccstack, sccstate, &sccstate_obstack);
3963 VEC_free (type_pair_t, heap, sccstack);
3964 pointer_map_destroy (sccstate);
3965 obstack_free (&sccstate_obstack, NULL);
3967 return res;
3971 static hashval_t
3972 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3973 struct pointer_map_t *, struct obstack *);
3975 /* DFS visit the edge from the callers type with state *STATE to T.
3976 Update the callers type hash V with the hash for T if it is not part
3977 of the SCC containing the callers type and return it.
3978 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3980 static hashval_t
3981 visit (tree t, struct sccs *state, hashval_t v,
3982 VEC (tree, heap) **sccstack,
3983 struct pointer_map_t *sccstate,
3984 struct obstack *sccstate_obstack)
3986 struct sccs *cstate = NULL;
3987 struct tree_int_map m;
3988 void **slot;
3990 /* If there is a hash value recorded for this type then it can't
3991 possibly be part of our parent SCC. Simply mix in its hash. */
3992 m.base.from = t;
3993 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
3994 && *slot)
3995 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
3997 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3998 cstate = (struct sccs *)*slot;
3999 if (!cstate)
4001 hashval_t tem;
4002 /* Not yet visited. DFS recurse. */
4003 tem = iterative_hash_gimple_type (t, v,
4004 sccstack, sccstate, sccstate_obstack);
4005 if (!cstate)
4006 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
4007 state->low = MIN (state->low, cstate->low);
4008 /* If the type is no longer on the SCC stack and thus is not part
4009 of the parents SCC mix in its hash value. Otherwise we will
4010 ignore the type for hashing purposes and return the unaltered
4011 hash value. */
4012 if (!cstate->on_sccstack)
4013 return tem;
4015 if (cstate->dfsnum < state->dfsnum
4016 && cstate->on_sccstack)
4017 state->low = MIN (cstate->dfsnum, state->low);
4019 /* We are part of our parents SCC, skip this type during hashing
4020 and return the unaltered hash value. */
4021 return v;
4024 /* Hash NAME with the previous hash value V and return it. */
4026 static hashval_t
4027 iterative_hash_name (tree name, hashval_t v)
4029 if (!name)
4030 return v;
4031 if (TREE_CODE (name) == TYPE_DECL)
4032 name = DECL_NAME (name);
4033 if (!name)
4034 return v;
4035 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
4036 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
4039 /* A type, hashvalue pair for sorting SCC members. */
4041 struct type_hash_pair {
4042 tree type;
4043 hashval_t hash;
4046 /* Compare two type, hashvalue pairs. */
4048 static int
4049 type_hash_pair_compare (const void *p1_, const void *p2_)
4051 const struct type_hash_pair *p1 = (const struct type_hash_pair *) p1_;
4052 const struct type_hash_pair *p2 = (const struct type_hash_pair *) p2_;
4053 if (p1->hash < p2->hash)
4054 return -1;
4055 else if (p1->hash > p2->hash)
4056 return 1;
4057 return 0;
4060 /* Returning a hash value for gimple type TYPE combined with VAL.
4061 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4063 To hash a type we end up hashing in types that are reachable.
4064 Through pointers we can end up with cycles which messes up the
4065 required property that we need to compute the same hash value
4066 for structurally equivalent types. To avoid this we have to
4067 hash all types in a cycle (the SCC) in a commutative way. The
4068 easiest way is to not mix in the hashes of the SCC members at
4069 all. To make this work we have to delay setting the hash
4070 values of the SCC until it is complete. */
4072 static hashval_t
4073 iterative_hash_gimple_type (tree type, hashval_t val,
4074 VEC(tree, heap) **sccstack,
4075 struct pointer_map_t *sccstate,
4076 struct obstack *sccstate_obstack)
4078 hashval_t v;
4079 void **slot;
4080 struct sccs *state;
4082 /* Not visited during this DFS walk. */
4083 gcc_checking_assert (!pointer_map_contains (sccstate, type));
4084 state = XOBNEW (sccstate_obstack, struct sccs);
4085 *pointer_map_insert (sccstate, type) = state;
4087 VEC_safe_push (tree, heap, *sccstack, type);
4088 state->dfsnum = next_dfs_num++;
4089 state->low = state->dfsnum;
4090 state->on_sccstack = true;
4092 /* Combine a few common features of types so that types are grouped into
4093 smaller sets; when searching for existing matching types to merge,
4094 only existing types having the same features as the new type will be
4095 checked. */
4096 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4097 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4098 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4100 /* Do not hash the types size as this will cause differences in
4101 hash values for the complete vs. the incomplete type variant. */
4103 /* Incorporate common features of numerical types. */
4104 if (INTEGRAL_TYPE_P (type)
4105 || SCALAR_FLOAT_TYPE_P (type)
4106 || FIXED_POINT_TYPE_P (type))
4108 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4109 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4110 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4113 /* For pointer and reference types, fold in information about the type
4114 pointed to. */
4115 if (POINTER_TYPE_P (type))
4116 v = visit (TREE_TYPE (type), state, v,
4117 sccstack, sccstate, sccstate_obstack);
4119 /* For integer types hash the types min/max values and the string flag. */
4120 if (TREE_CODE (type) == INTEGER_TYPE)
4122 /* OMP lowering can introduce error_mark_node in place of
4123 random local decls in types. */
4124 if (TYPE_MIN_VALUE (type) != error_mark_node)
4125 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4126 if (TYPE_MAX_VALUE (type) != error_mark_node)
4127 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4128 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4131 /* For array types hash their domain and the string flag. */
4132 if (TREE_CODE (type) == ARRAY_TYPE
4133 && TYPE_DOMAIN (type))
4135 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4136 v = visit (TYPE_DOMAIN (type), state, v,
4137 sccstack, sccstate, sccstate_obstack);
4140 /* Recurse for aggregates with a single element type. */
4141 if (TREE_CODE (type) == ARRAY_TYPE
4142 || TREE_CODE (type) == COMPLEX_TYPE
4143 || TREE_CODE (type) == VECTOR_TYPE)
4144 v = visit (TREE_TYPE (type), state, v,
4145 sccstack, sccstate, sccstate_obstack);
4147 /* Incorporate function return and argument types. */
4148 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4150 unsigned na;
4151 tree p;
4153 /* For method types also incorporate their parent class. */
4154 if (TREE_CODE (type) == METHOD_TYPE)
4155 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4156 sccstack, sccstate, sccstate_obstack);
4158 /* Check result and argument types. */
4159 v = visit (TREE_TYPE (type), state, v,
4160 sccstack, sccstate, sccstate_obstack);
4161 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4163 v = visit (TREE_VALUE (p), state, v,
4164 sccstack, sccstate, sccstate_obstack);
4165 na++;
4168 v = iterative_hash_hashval_t (na, v);
4171 if (TREE_CODE (type) == RECORD_TYPE
4172 || TREE_CODE (type) == UNION_TYPE
4173 || TREE_CODE (type) == QUAL_UNION_TYPE)
4175 unsigned nf;
4176 tree f;
4178 v = iterative_hash_name (TYPE_NAME (type), v);
4180 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4182 v = iterative_hash_name (DECL_NAME (f), v);
4183 v = visit (TREE_TYPE (f), state, v,
4184 sccstack, sccstate, sccstate_obstack);
4185 nf++;
4188 v = iterative_hash_hashval_t (nf, v);
4191 /* Record hash for us. */
4192 state->u.hash = v;
4194 /* See if we found an SCC. */
4195 if (state->low == state->dfsnum)
4197 tree x;
4198 struct tree_int_map *m;
4200 /* Pop off the SCC and set its hash values. */
4201 x = VEC_pop (tree, *sccstack);
4202 /* Optimize SCC size one. */
4203 if (x == type)
4205 state->on_sccstack = false;
4206 m = ggc_alloc_cleared_tree_int_map ();
4207 m->base.from = x;
4208 m->to = v;
4209 slot = htab_find_slot (type_hash_cache, m, INSERT);
4210 gcc_assert (!*slot);
4211 *slot = (void *) m;
4213 else
4215 struct sccs *cstate;
4216 unsigned first, i, size, j;
4217 struct type_hash_pair *pairs;
4218 /* Pop off the SCC and build an array of type, hash pairs. */
4219 first = VEC_length (tree, *sccstack) - 1;
4220 while (VEC_index (tree, *sccstack, first) != type)
4221 --first;
4222 size = VEC_length (tree, *sccstack) - first + 1;
4223 pairs = XALLOCAVEC (struct type_hash_pair, size);
4224 i = 0;
4225 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4226 cstate->on_sccstack = false;
4227 pairs[i].type = x;
4228 pairs[i].hash = cstate->u.hash;
4231 x = VEC_pop (tree, *sccstack);
4232 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4233 cstate->on_sccstack = false;
4234 ++i;
4235 pairs[i].type = x;
4236 pairs[i].hash = cstate->u.hash;
4238 while (x != type);
4239 gcc_assert (i + 1 == size);
4240 /* Sort the arrays of type, hash pairs so that when we mix in
4241 all members of the SCC the hash value becomes independent on
4242 the order we visited the SCC. Disregard hashes equal to
4243 the hash of the type we mix into because we cannot guarantee
4244 a stable sort for those across different TUs. */
4245 qsort (pairs, size, sizeof (struct type_hash_pair),
4246 type_hash_pair_compare);
4247 for (i = 0; i < size; ++i)
4249 hashval_t hash;
4250 m = ggc_alloc_cleared_tree_int_map ();
4251 m->base.from = pairs[i].type;
4252 hash = pairs[i].hash;
4253 /* Skip same hashes. */
4254 for (j = i + 1; j < size && pairs[j].hash == pairs[i].hash; ++j)
4256 for (; j < size; ++j)
4257 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
4258 for (j = 0; pairs[j].hash != pairs[i].hash; ++j)
4259 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
4260 m->to = hash;
4261 if (pairs[i].type == type)
4262 v = hash;
4263 slot = htab_find_slot (type_hash_cache, m, INSERT);
4264 gcc_assert (!*slot);
4265 *slot = (void *) m;
4270 return iterative_hash_hashval_t (v, val);
4274 /* Returns a hash value for P (assumed to be a type). The hash value
4275 is computed using some distinguishing features of the type. Note
4276 that we cannot use pointer hashing here as we may be dealing with
4277 two distinct instances of the same type.
4279 This function should produce the same hash value for two compatible
4280 types according to gimple_types_compatible_p. */
4282 static hashval_t
4283 gimple_type_hash (const void *p)
4285 const_tree t = (const_tree) p;
4286 VEC(tree, heap) *sccstack = NULL;
4287 struct pointer_map_t *sccstate;
4288 struct obstack sccstate_obstack;
4289 hashval_t val;
4290 void **slot;
4291 struct tree_int_map m;
4293 if (type_hash_cache == NULL)
4294 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4295 tree_int_map_eq, NULL);
4297 m.base.from = CONST_CAST_TREE (t);
4298 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
4299 && *slot)
4300 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
4302 /* Perform a DFS walk and pre-hash all reachable types. */
4303 next_dfs_num = 1;
4304 sccstate = pointer_map_create ();
4305 gcc_obstack_init (&sccstate_obstack);
4306 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4307 &sccstack, sccstate, &sccstate_obstack);
4308 VEC_free (tree, heap, sccstack);
4309 pointer_map_destroy (sccstate);
4310 obstack_free (&sccstate_obstack, NULL);
4312 return val;
4315 /* Returning a hash value for gimple type TYPE combined with VAL.
4317 The hash value returned is equal for types considered compatible
4318 by gimple_canonical_types_compatible_p. */
4320 static hashval_t
4321 iterative_hash_canonical_type (tree type, hashval_t val)
4323 hashval_t v;
4324 void **slot;
4325 struct tree_int_map *mp, m;
4327 m.base.from = type;
4328 if ((slot = htab_find_slot (canonical_type_hash_cache, &m, INSERT))
4329 && *slot)
4330 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, val);
4332 /* Combine a few common features of types so that types are grouped into
4333 smaller sets; when searching for existing matching types to merge,
4334 only existing types having the same features as the new type will be
4335 checked. */
4336 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4337 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4338 v = iterative_hash_hashval_t (TYPE_ALIGN (type), v);
4339 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4341 /* Incorporate common features of numerical types. */
4342 if (INTEGRAL_TYPE_P (type)
4343 || SCALAR_FLOAT_TYPE_P (type)
4344 || FIXED_POINT_TYPE_P (type)
4345 || TREE_CODE (type) == VECTOR_TYPE
4346 || TREE_CODE (type) == COMPLEX_TYPE
4347 || TREE_CODE (type) == OFFSET_TYPE
4348 || POINTER_TYPE_P (type))
4350 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4351 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4354 /* For pointer and reference types, fold in information about the type
4355 pointed to but do not recurse to the pointed-to type. */
4356 if (POINTER_TYPE_P (type))
4358 v = iterative_hash_hashval_t (TYPE_REF_CAN_ALIAS_ALL (type), v);
4359 v = iterative_hash_hashval_t (TYPE_ADDR_SPACE (TREE_TYPE (type)), v);
4360 v = iterative_hash_hashval_t (TYPE_RESTRICT (type), v);
4361 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4364 /* For integer types hash the types min/max values and the string flag. */
4365 if (TREE_CODE (type) == INTEGER_TYPE)
4367 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4368 v = iterative_hash_hashval_t (TYPE_IS_SIZETYPE (type), v);
4371 /* For array types hash their domain and the string flag. */
4372 if (TREE_CODE (type) == ARRAY_TYPE
4373 && TYPE_DOMAIN (type))
4375 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4376 v = iterative_hash_canonical_type (TYPE_DOMAIN (type), v);
4379 /* Recurse for aggregates with a single element type. */
4380 if (TREE_CODE (type) == ARRAY_TYPE
4381 || TREE_CODE (type) == COMPLEX_TYPE
4382 || TREE_CODE (type) == VECTOR_TYPE)
4383 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
4385 /* Incorporate function return and argument types. */
4386 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4388 unsigned na;
4389 tree p;
4391 /* For method types also incorporate their parent class. */
4392 if (TREE_CODE (type) == METHOD_TYPE)
4393 v = iterative_hash_canonical_type (TYPE_METHOD_BASETYPE (type), v);
4395 /* For result types allow mismatch in completeness. */
4396 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4398 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4399 v = iterative_hash_name
4400 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4402 else
4403 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
4405 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4407 /* For argument types allow mismatch in completeness. */
4408 if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p)))
4410 v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v);
4411 v = iterative_hash_name
4412 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v);
4414 else
4415 v = iterative_hash_canonical_type (TREE_VALUE (p), v);
4416 na++;
4419 v = iterative_hash_hashval_t (na, v);
4422 if (TREE_CODE (type) == RECORD_TYPE
4423 || TREE_CODE (type) == UNION_TYPE
4424 || TREE_CODE (type) == QUAL_UNION_TYPE)
4426 unsigned nf;
4427 tree f;
4429 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4431 v = iterative_hash_canonical_type (TREE_TYPE (f), v);
4432 nf++;
4435 v = iterative_hash_hashval_t (nf, v);
4438 /* Cache the just computed hash value. */
4439 mp = ggc_alloc_cleared_tree_int_map ();
4440 mp->base.from = type;
4441 mp->to = v;
4442 *slot = (void *) mp;
4444 return iterative_hash_hashval_t (v, val);
4447 static hashval_t
4448 gimple_canonical_type_hash (const void *p)
4450 if (canonical_type_hash_cache == NULL)
4451 canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4452 tree_int_map_eq, NULL);
4454 return iterative_hash_canonical_type (CONST_CAST_TREE ((const_tree) p), 0);
4458 /* Returns nonzero if P1 and P2 are equal. */
4460 static int
4461 gimple_type_eq (const void *p1, const void *p2)
4463 const_tree t1 = (const_tree) p1;
4464 const_tree t2 = (const_tree) p2;
4465 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4466 CONST_CAST_TREE (t2));
4470 /* Worker for gimple_register_type.
4471 Register type T in the global type table gimple_types.
4472 When REGISTERING_MV is false first recurse for the main variant of T. */
4474 static tree
4475 gimple_register_type_1 (tree t, bool registering_mv)
4477 void **slot;
4478 gimple_type_leader_entry *leader;
4480 /* If we registered this type before return the cached result. */
4481 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
4482 if (leader->type == t)
4483 return leader->leader;
4485 /* Always register the main variant first. This is important so we
4486 pick up the non-typedef variants as canonical, otherwise we'll end
4487 up taking typedef ids for structure tags during comparison.
4488 It also makes sure that main variants will be merged to main variants.
4489 As we are operating on a possibly partially fixed up type graph
4490 do not bother to recurse more than once, otherwise we may end up
4491 walking in circles.
4492 If we are registering a main variant it will either remain its
4493 own main variant or it will be merged to something else in which
4494 case we do not care for the main variant leader. */
4495 if (!registering_mv
4496 && TYPE_MAIN_VARIANT (t) != t)
4497 gimple_register_type_1 (TYPE_MAIN_VARIANT (t), true);
4499 /* See if we already have an equivalent type registered. */
4500 slot = htab_find_slot (gimple_types, t, INSERT);
4501 if (*slot
4502 && *(tree *)slot != t)
4504 tree new_type = (tree) *((tree *) slot);
4505 leader->type = t;
4506 leader->leader = new_type;
4507 return new_type;
4510 /* If not, insert it to the cache and the hash. */
4511 leader->type = t;
4512 leader->leader = t;
4513 *slot = (void *) t;
4514 return t;
4517 /* Register type T in the global type table gimple_types.
4518 If another type T', compatible with T, already existed in
4519 gimple_types then return T', otherwise return T. This is used by
4520 LTO to merge identical types read from different TUs. */
4522 tree
4523 gimple_register_type (tree t)
4525 gcc_assert (TYPE_P (t));
4527 if (!gimple_type_leader)
4528 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4529 (GIMPLE_TYPE_LEADER_SIZE);
4531 if (gimple_types == NULL)
4532 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4534 return gimple_register_type_1 (t, false);
4537 /* The TYPE_CANONICAL merging machinery. It should closely resemble
4538 the middle-end types_compatible_p function. It needs to avoid
4539 claiming types are different for types that should be treated
4540 the same with respect to TBAA. Canonical types are also used
4541 for IL consistency checks via the useless_type_conversion_p
4542 predicate which does not handle all type kinds itself but falls
4543 back to pointer-comparison of TYPE_CANONICAL for aggregates
4544 for example. */
4546 /* Return true iff T1 and T2 are structurally identical for what
4547 TBAA is concerned. */
4549 static bool
4550 gimple_canonical_types_compatible_p (tree t1, tree t2)
4552 /* Before starting to set up the SCC machinery handle simple cases. */
4554 /* Check first for the obvious case of pointer identity. */
4555 if (t1 == t2)
4556 return true;
4558 /* Check that we have two types to compare. */
4559 if (t1 == NULL_TREE || t2 == NULL_TREE)
4560 return false;
4562 /* If the types have been previously registered and found equal
4563 they still are. */
4564 if (TYPE_CANONICAL (t1)
4565 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
4566 return true;
4568 /* Can't be the same type if the types don't have the same code. */
4569 if (TREE_CODE (t1) != TREE_CODE (t2))
4570 return false;
4572 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
4573 return false;
4575 /* Qualifiers do not matter for canonical type comparison purposes. */
4577 /* Void types and nullptr types are always the same. */
4578 if (TREE_CODE (t1) == VOID_TYPE
4579 || TREE_CODE (t1) == NULLPTR_TYPE)
4580 return true;
4582 /* Can't be the same type if they have different alignment, or mode. */
4583 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
4584 || TYPE_MODE (t1) != TYPE_MODE (t2))
4585 return false;
4587 /* Non-aggregate types can be handled cheaply. */
4588 if (INTEGRAL_TYPE_P (t1)
4589 || SCALAR_FLOAT_TYPE_P (t1)
4590 || FIXED_POINT_TYPE_P (t1)
4591 || TREE_CODE (t1) == VECTOR_TYPE
4592 || TREE_CODE (t1) == COMPLEX_TYPE
4593 || TREE_CODE (t1) == OFFSET_TYPE
4594 || POINTER_TYPE_P (t1))
4596 /* Can't be the same type if they have different sign or precision. */
4597 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
4598 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
4599 return false;
4601 if (TREE_CODE (t1) == INTEGER_TYPE
4602 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
4603 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
4604 return false;
4606 /* For canonical type comparisons we do not want to build SCCs
4607 so we cannot compare pointed-to types. But we can, for now,
4608 require the same pointed-to type kind and match what
4609 useless_type_conversion_p would do. */
4610 if (POINTER_TYPE_P (t1))
4612 /* If the two pointers have different ref-all attributes,
4613 they can't be the same type. */
4614 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
4615 return false;
4617 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
4618 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
4619 return false;
4621 if (TYPE_RESTRICT (t1) != TYPE_RESTRICT (t2))
4622 return false;
4624 if (TREE_CODE (TREE_TYPE (t1)) != TREE_CODE (TREE_TYPE (t2)))
4625 return false;
4628 /* Tail-recurse to components. */
4629 if (TREE_CODE (t1) == VECTOR_TYPE
4630 || TREE_CODE (t1) == COMPLEX_TYPE)
4631 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
4632 TREE_TYPE (t2));
4634 return true;
4637 /* If their attributes are not the same they can't be the same type. */
4638 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
4639 return false;
4641 /* Do type-specific comparisons. */
4642 switch (TREE_CODE (t1))
4644 case ARRAY_TYPE:
4645 /* Array types are the same if the element types are the same and
4646 the number of elements are the same. */
4647 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
4648 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
4649 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
4650 return false;
4651 else
4653 tree i1 = TYPE_DOMAIN (t1);
4654 tree i2 = TYPE_DOMAIN (t2);
4656 /* For an incomplete external array, the type domain can be
4657 NULL_TREE. Check this condition also. */
4658 if (i1 == NULL_TREE && i2 == NULL_TREE)
4659 return true;
4660 else if (i1 == NULL_TREE || i2 == NULL_TREE)
4661 return false;
4662 /* If for a complete array type the possibly gimplified sizes
4663 are different the types are different. */
4664 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
4665 || (TYPE_SIZE (i1)
4666 && TYPE_SIZE (i2)
4667 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
4668 return false;
4669 else
4671 tree min1 = TYPE_MIN_VALUE (i1);
4672 tree min2 = TYPE_MIN_VALUE (i2);
4673 tree max1 = TYPE_MAX_VALUE (i1);
4674 tree max2 = TYPE_MAX_VALUE (i2);
4676 /* The minimum/maximum values have to be the same. */
4677 if ((min1 == min2
4678 || (min1 && min2
4679 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
4680 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
4681 || operand_equal_p (min1, min2, 0))))
4682 && (max1 == max2
4683 || (max1 && max2
4684 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
4685 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
4686 || operand_equal_p (max1, max2, 0)))))
4687 return true;
4688 else
4689 return false;
4693 case METHOD_TYPE:
4694 /* Method types should belong to the same class. */
4695 if (!gimple_canonical_types_compatible_p
4696 (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2)))
4697 return false;
4699 /* Fallthru */
4701 case FUNCTION_TYPE:
4702 /* Function types are the same if the return type and arguments types
4703 are the same. */
4704 if (!gimple_compatible_complete_and_incomplete_subtype_p
4705 (TREE_TYPE (t1), TREE_TYPE (t2))
4706 && !gimple_canonical_types_compatible_p
4707 (TREE_TYPE (t1), TREE_TYPE (t2)))
4708 return false;
4710 if (!comp_type_attributes (t1, t2))
4711 return false;
4713 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
4714 return true;
4715 else
4717 tree parms1, parms2;
4719 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
4720 parms1 && parms2;
4721 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
4723 if (!gimple_compatible_complete_and_incomplete_subtype_p
4724 (TREE_VALUE (parms1), TREE_VALUE (parms2))
4725 && !gimple_canonical_types_compatible_p
4726 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
4727 return false;
4730 if (parms1 || parms2)
4731 return false;
4733 return true;
4736 case RECORD_TYPE:
4737 case UNION_TYPE:
4738 case QUAL_UNION_TYPE:
4740 tree f1, f2;
4742 /* For aggregate types, all the fields must be the same. */
4743 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
4744 f1 && f2;
4745 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
4747 /* The fields must have the same name, offset and type. */
4748 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
4749 || !gimple_compare_field_offset (f1, f2)
4750 || !gimple_canonical_types_compatible_p
4751 (TREE_TYPE (f1), TREE_TYPE (f2)))
4752 return false;
4755 /* If one aggregate has more fields than the other, they
4756 are not the same. */
4757 if (f1 || f2)
4758 return false;
4760 return true;
4763 default:
4764 gcc_unreachable ();
4769 /* Returns nonzero if P1 and P2 are equal. */
4771 static int
4772 gimple_canonical_type_eq (const void *p1, const void *p2)
4774 const_tree t1 = (const_tree) p1;
4775 const_tree t2 = (const_tree) p2;
4776 return gimple_canonical_types_compatible_p (CONST_CAST_TREE (t1),
4777 CONST_CAST_TREE (t2));
4780 /* Register type T in the global type table gimple_types.
4781 If another type T', compatible with T, already existed in
4782 gimple_types then return T', otherwise return T. This is used by
4783 LTO to merge identical types read from different TUs. */
4785 tree
4786 gimple_register_canonical_type (tree t)
4788 void **slot;
4789 tree orig_t = t;
4791 gcc_assert (TYPE_P (t));
4793 if (TYPE_CANONICAL (t))
4794 return TYPE_CANONICAL (t);
4796 /* Use the leader of our main variant for determining our canonical
4797 type. The main variant leader is a type that will always
4798 prevail. */
4799 t = gimple_register_type (TYPE_MAIN_VARIANT (t));
4801 if (TYPE_CANONICAL (t))
4802 return TYPE_CANONICAL (t);
4804 /* For pointer and reference types do as the middle-end does - the
4805 canonical type is a pointer to the canonical pointed-to type. */
4806 if (TREE_CODE (t) == POINTER_TYPE)
4808 TYPE_CANONICAL (t)
4809 = build_pointer_type_for_mode
4810 (gimple_register_canonical_type (TREE_TYPE (t)),
4811 TYPE_MODE (t), TYPE_REF_CAN_ALIAS_ALL (t));
4812 return TYPE_CANONICAL (t);
4814 else if (TREE_CODE (t) == REFERENCE_TYPE)
4816 TYPE_CANONICAL (t)
4817 = build_reference_type_for_mode
4818 (gimple_register_canonical_type (TREE_TYPE (t)),
4819 TYPE_MODE (t), TYPE_REF_CAN_ALIAS_ALL (t));
4820 return TYPE_CANONICAL (t);
4823 if (gimple_canonical_types == NULL)
4824 gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash,
4825 gimple_canonical_type_eq, 0);
4827 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
4828 if (*slot
4829 && *(tree *)slot != t)
4831 tree new_type = (tree) *((tree *) slot);
4833 TYPE_CANONICAL (t) = new_type;
4834 t = new_type;
4836 else
4838 TYPE_CANONICAL (t) = t;
4839 *slot = (void *) t;
4842 /* Also cache the canonical type in the non-leaders. */
4843 TYPE_CANONICAL (orig_t) = t;
4845 return t;
4849 /* Show statistics on references to the global type table gimple_types. */
4851 void
4852 print_gimple_types_stats (void)
4854 if (gimple_types)
4855 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4856 "%ld searches, %ld collisions (ratio: %f)\n",
4857 (long) htab_size (gimple_types),
4858 (long) htab_elements (gimple_types),
4859 (long) gimple_types->searches,
4860 (long) gimple_types->collisions,
4861 htab_collisions (gimple_types));
4862 else
4863 fprintf (stderr, "GIMPLE type table is empty\n");
4864 if (type_hash_cache)
4865 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4866 "%ld searches, %ld collisions (ratio: %f)\n",
4867 (long) htab_size (type_hash_cache),
4868 (long) htab_elements (type_hash_cache),
4869 (long) type_hash_cache->searches,
4870 (long) type_hash_cache->collisions,
4871 htab_collisions (type_hash_cache));
4872 else
4873 fprintf (stderr, "GIMPLE type hash table is empty\n");
4874 if (gimple_canonical_types)
4875 fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
4876 "%ld searches, %ld collisions (ratio: %f)\n",
4877 (long) htab_size (gimple_canonical_types),
4878 (long) htab_elements (gimple_canonical_types),
4879 (long) gimple_canonical_types->searches,
4880 (long) gimple_canonical_types->collisions,
4881 htab_collisions (gimple_canonical_types));
4882 else
4883 fprintf (stderr, "GIMPLE canonical type table is empty\n");
4884 if (canonical_type_hash_cache)
4885 fprintf (stderr, "GIMPLE canonical type hash table: size %ld, %ld elements, "
4886 "%ld searches, %ld collisions (ratio: %f)\n",
4887 (long) htab_size (canonical_type_hash_cache),
4888 (long) htab_elements (canonical_type_hash_cache),
4889 (long) canonical_type_hash_cache->searches,
4890 (long) canonical_type_hash_cache->collisions,
4891 htab_collisions (canonical_type_hash_cache));
4892 else
4893 fprintf (stderr, "GIMPLE canonical type hash table is empty\n");
4896 /* Free the gimple type hashtables used for LTO type merging. */
4898 void
4899 free_gimple_type_tables (void)
4901 /* Last chance to print stats for the tables. */
4902 if (flag_lto_report)
4903 print_gimple_types_stats ();
4905 if (gimple_types)
4907 htab_delete (gimple_types);
4908 gimple_types = NULL;
4910 if (gimple_canonical_types)
4912 htab_delete (gimple_canonical_types);
4913 gimple_canonical_types = NULL;
4915 if (type_hash_cache)
4917 htab_delete (type_hash_cache);
4918 type_hash_cache = NULL;
4920 if (canonical_type_hash_cache)
4922 htab_delete (canonical_type_hash_cache);
4923 canonical_type_hash_cache = NULL;
4925 if (type_pair_cache)
4927 free (type_pair_cache);
4928 type_pair_cache = NULL;
4930 gimple_type_leader = NULL;
4934 /* Return a type the same as TYPE except unsigned or
4935 signed according to UNSIGNEDP. */
4937 static tree
4938 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4940 tree type1;
4942 type1 = TYPE_MAIN_VARIANT (type);
4943 if (type1 == signed_char_type_node
4944 || type1 == char_type_node
4945 || type1 == unsigned_char_type_node)
4946 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4947 if (type1 == integer_type_node || type1 == unsigned_type_node)
4948 return unsignedp ? unsigned_type_node : integer_type_node;
4949 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4950 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4951 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4952 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4953 if (type1 == long_long_integer_type_node
4954 || type1 == long_long_unsigned_type_node)
4955 return unsignedp
4956 ? long_long_unsigned_type_node
4957 : long_long_integer_type_node;
4958 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4959 return unsignedp
4960 ? int128_unsigned_type_node
4961 : int128_integer_type_node;
4962 #if HOST_BITS_PER_WIDE_INT >= 64
4963 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4964 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4965 #endif
4966 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4967 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4968 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4969 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4970 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4971 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4972 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4973 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4975 #define GIMPLE_FIXED_TYPES(NAME) \
4976 if (type1 == short_ ## NAME ## _type_node \
4977 || type1 == unsigned_short_ ## NAME ## _type_node) \
4978 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4979 : short_ ## NAME ## _type_node; \
4980 if (type1 == NAME ## _type_node \
4981 || type1 == unsigned_ ## NAME ## _type_node) \
4982 return unsignedp ? unsigned_ ## NAME ## _type_node \
4983 : NAME ## _type_node; \
4984 if (type1 == long_ ## NAME ## _type_node \
4985 || type1 == unsigned_long_ ## NAME ## _type_node) \
4986 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4987 : long_ ## NAME ## _type_node; \
4988 if (type1 == long_long_ ## NAME ## _type_node \
4989 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4990 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4991 : long_long_ ## NAME ## _type_node;
4993 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4994 if (type1 == NAME ## _type_node \
4995 || type1 == u ## NAME ## _type_node) \
4996 return unsignedp ? u ## NAME ## _type_node \
4997 : NAME ## _type_node;
4999 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
5000 if (type1 == sat_ ## short_ ## NAME ## _type_node \
5001 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
5002 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
5003 : sat_ ## short_ ## NAME ## _type_node; \
5004 if (type1 == sat_ ## NAME ## _type_node \
5005 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
5006 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
5007 : sat_ ## NAME ## _type_node; \
5008 if (type1 == sat_ ## long_ ## NAME ## _type_node \
5009 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
5010 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
5011 : sat_ ## long_ ## NAME ## _type_node; \
5012 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
5013 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
5014 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
5015 : sat_ ## long_long_ ## NAME ## _type_node;
5017 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
5018 if (type1 == sat_ ## NAME ## _type_node \
5019 || type1 == sat_ ## u ## NAME ## _type_node) \
5020 return unsignedp ? sat_ ## u ## NAME ## _type_node \
5021 : sat_ ## NAME ## _type_node;
5023 GIMPLE_FIXED_TYPES (fract);
5024 GIMPLE_FIXED_TYPES_SAT (fract);
5025 GIMPLE_FIXED_TYPES (accum);
5026 GIMPLE_FIXED_TYPES_SAT (accum);
5028 GIMPLE_FIXED_MODE_TYPES (qq);
5029 GIMPLE_FIXED_MODE_TYPES (hq);
5030 GIMPLE_FIXED_MODE_TYPES (sq);
5031 GIMPLE_FIXED_MODE_TYPES (dq);
5032 GIMPLE_FIXED_MODE_TYPES (tq);
5033 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
5034 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
5035 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
5036 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
5037 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
5038 GIMPLE_FIXED_MODE_TYPES (ha);
5039 GIMPLE_FIXED_MODE_TYPES (sa);
5040 GIMPLE_FIXED_MODE_TYPES (da);
5041 GIMPLE_FIXED_MODE_TYPES (ta);
5042 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
5043 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
5044 GIMPLE_FIXED_MODE_TYPES_SAT (da);
5045 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
5047 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
5048 the precision; they have precision set to match their range, but
5049 may use a wider mode to match an ABI. If we change modes, we may
5050 wind up with bad conversions. For INTEGER_TYPEs in C, must check
5051 the precision as well, so as to yield correct results for
5052 bit-field types. C++ does not have these separate bit-field
5053 types, and producing a signed or unsigned variant of an
5054 ENUMERAL_TYPE may cause other problems as well. */
5055 if (!INTEGRAL_TYPE_P (type)
5056 || TYPE_UNSIGNED (type) == unsignedp)
5057 return type;
5059 #define TYPE_OK(node) \
5060 (TYPE_MODE (type) == TYPE_MODE (node) \
5061 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
5062 if (TYPE_OK (signed_char_type_node))
5063 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5064 if (TYPE_OK (integer_type_node))
5065 return unsignedp ? unsigned_type_node : integer_type_node;
5066 if (TYPE_OK (short_integer_type_node))
5067 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5068 if (TYPE_OK (long_integer_type_node))
5069 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5070 if (TYPE_OK (long_long_integer_type_node))
5071 return (unsignedp
5072 ? long_long_unsigned_type_node
5073 : long_long_integer_type_node);
5074 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
5075 return (unsignedp
5076 ? int128_unsigned_type_node
5077 : int128_integer_type_node);
5079 #if HOST_BITS_PER_WIDE_INT >= 64
5080 if (TYPE_OK (intTI_type_node))
5081 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
5082 #endif
5083 if (TYPE_OK (intDI_type_node))
5084 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
5085 if (TYPE_OK (intSI_type_node))
5086 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
5087 if (TYPE_OK (intHI_type_node))
5088 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
5089 if (TYPE_OK (intQI_type_node))
5090 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
5092 #undef GIMPLE_FIXED_TYPES
5093 #undef GIMPLE_FIXED_MODE_TYPES
5094 #undef GIMPLE_FIXED_TYPES_SAT
5095 #undef GIMPLE_FIXED_MODE_TYPES_SAT
5096 #undef TYPE_OK
5098 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
5102 /* Return an unsigned type the same as TYPE in other respects. */
5104 tree
5105 gimple_unsigned_type (tree type)
5107 return gimple_signed_or_unsigned_type (true, type);
5111 /* Return a signed type the same as TYPE in other respects. */
5113 tree
5114 gimple_signed_type (tree type)
5116 return gimple_signed_or_unsigned_type (false, type);
5120 /* Return the typed-based alias set for T, which may be an expression
5121 or a type. Return -1 if we don't do anything special. */
5123 alias_set_type
5124 gimple_get_alias_set (tree t)
5126 tree u;
5128 /* Permit type-punning when accessing a union, provided the access
5129 is directly through the union. For example, this code does not
5130 permit taking the address of a union member and then storing
5131 through it. Even the type-punning allowed here is a GCC
5132 extension, albeit a common and useful one; the C standard says
5133 that such accesses have implementation-defined behavior. */
5134 for (u = t;
5135 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
5136 u = TREE_OPERAND (u, 0))
5137 if (TREE_CODE (u) == COMPONENT_REF
5138 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
5139 return 0;
5141 /* That's all the expressions we handle specially. */
5142 if (!TYPE_P (t))
5143 return -1;
5145 /* For convenience, follow the C standard when dealing with
5146 character types. Any object may be accessed via an lvalue that
5147 has character type. */
5148 if (t == char_type_node
5149 || t == signed_char_type_node
5150 || t == unsigned_char_type_node)
5151 return 0;
5153 /* Allow aliasing between signed and unsigned variants of the same
5154 type. We treat the signed variant as canonical. */
5155 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
5157 tree t1 = gimple_signed_type (t);
5159 /* t1 == t can happen for boolean nodes which are always unsigned. */
5160 if (t1 != t)
5161 return get_alias_set (t1);
5164 return -1;
5168 /* Data structure used to count the number of dereferences to PTR
5169 inside an expression. */
5170 struct count_ptr_d
5172 tree ptr;
5173 unsigned num_stores;
5174 unsigned num_loads;
5177 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
5178 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
5180 static tree
5181 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
5183 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
5184 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
5186 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
5187 pointer 'ptr' is *not* dereferenced, it is simply used to compute
5188 the address of 'fld' as 'ptr + offsetof(fld)'. */
5189 if (TREE_CODE (*tp) == ADDR_EXPR)
5191 *walk_subtrees = 0;
5192 return NULL_TREE;
5195 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
5197 if (wi_p->is_lhs)
5198 count_p->num_stores++;
5199 else
5200 count_p->num_loads++;
5203 return NULL_TREE;
5206 /* Count the number of direct and indirect uses for pointer PTR in
5207 statement STMT. The number of direct uses is stored in
5208 *NUM_USES_P. Indirect references are counted separately depending
5209 on whether they are store or load operations. The counts are
5210 stored in *NUM_STORES_P and *NUM_LOADS_P. */
5212 void
5213 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
5214 unsigned *num_loads_p, unsigned *num_stores_p)
5216 ssa_op_iter i;
5217 tree use;
5219 *num_uses_p = 0;
5220 *num_loads_p = 0;
5221 *num_stores_p = 0;
5223 /* Find out the total number of uses of PTR in STMT. */
5224 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5225 if (use == ptr)
5226 (*num_uses_p)++;
5228 /* Now count the number of indirect references to PTR. This is
5229 truly awful, but we don't have much choice. There are no parent
5230 pointers inside INDIRECT_REFs, so an expression like
5231 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
5232 find all the indirect and direct uses of x_1 inside. The only
5233 shortcut we can take is the fact that GIMPLE only allows
5234 INDIRECT_REFs inside the expressions below. */
5235 if (is_gimple_assign (stmt)
5236 || gimple_code (stmt) == GIMPLE_RETURN
5237 || gimple_code (stmt) == GIMPLE_ASM
5238 || is_gimple_call (stmt))
5240 struct walk_stmt_info wi;
5241 struct count_ptr_d count;
5243 count.ptr = ptr;
5244 count.num_stores = 0;
5245 count.num_loads = 0;
5247 memset (&wi, 0, sizeof (wi));
5248 wi.info = &count;
5249 walk_gimple_op (stmt, count_ptr_derefs, &wi);
5251 *num_stores_p = count.num_stores;
5252 *num_loads_p = count.num_loads;
5255 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
5258 /* From a tree operand OP return the base of a load or store operation
5259 or NULL_TREE if OP is not a load or a store. */
5261 static tree
5262 get_base_loadstore (tree op)
5264 while (handled_component_p (op))
5265 op = TREE_OPERAND (op, 0);
5266 if (DECL_P (op)
5267 || INDIRECT_REF_P (op)
5268 || TREE_CODE (op) == MEM_REF
5269 || TREE_CODE (op) == TARGET_MEM_REF)
5270 return op;
5271 return NULL_TREE;
5274 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
5275 VISIT_ADDR if non-NULL on loads, store and address-taken operands
5276 passing the STMT, the base of the operand and DATA to it. The base
5277 will be either a decl, an indirect reference (including TARGET_MEM_REF)
5278 or the argument of an address expression.
5279 Returns the results of these callbacks or'ed. */
5281 bool
5282 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
5283 bool (*visit_load)(gimple, tree, void *),
5284 bool (*visit_store)(gimple, tree, void *),
5285 bool (*visit_addr)(gimple, tree, void *))
5287 bool ret = false;
5288 unsigned i;
5289 if (gimple_assign_single_p (stmt))
5291 tree lhs, rhs;
5292 if (visit_store)
5294 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
5295 if (lhs)
5296 ret |= visit_store (stmt, lhs, data);
5298 rhs = gimple_assign_rhs1 (stmt);
5299 while (handled_component_p (rhs))
5300 rhs = TREE_OPERAND (rhs, 0);
5301 if (visit_addr)
5303 if (TREE_CODE (rhs) == ADDR_EXPR)
5304 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5305 else if (TREE_CODE (rhs) == TARGET_MEM_REF
5306 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
5307 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
5308 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
5309 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
5310 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
5311 0), data);
5312 lhs = gimple_assign_lhs (stmt);
5313 if (TREE_CODE (lhs) == TARGET_MEM_REF
5314 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
5315 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
5317 if (visit_load)
5319 rhs = get_base_loadstore (rhs);
5320 if (rhs)
5321 ret |= visit_load (stmt, rhs, data);
5324 else if (visit_addr
5325 && (is_gimple_assign (stmt)
5326 || gimple_code (stmt) == GIMPLE_COND))
5328 for (i = 0; i < gimple_num_ops (stmt); ++i)
5329 if (gimple_op (stmt, i)
5330 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
5331 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
5333 else if (is_gimple_call (stmt))
5335 if (visit_store)
5337 tree lhs = gimple_call_lhs (stmt);
5338 if (lhs)
5340 lhs = get_base_loadstore (lhs);
5341 if (lhs)
5342 ret |= visit_store (stmt, lhs, data);
5345 if (visit_load || visit_addr)
5346 for (i = 0; i < gimple_call_num_args (stmt); ++i)
5348 tree rhs = gimple_call_arg (stmt, i);
5349 if (visit_addr
5350 && TREE_CODE (rhs) == ADDR_EXPR)
5351 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5352 else if (visit_load)
5354 rhs = get_base_loadstore (rhs);
5355 if (rhs)
5356 ret |= visit_load (stmt, rhs, data);
5359 if (visit_addr
5360 && gimple_call_chain (stmt)
5361 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
5362 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
5363 data);
5364 if (visit_addr
5365 && gimple_call_return_slot_opt_p (stmt)
5366 && gimple_call_lhs (stmt) != NULL_TREE
5367 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
5368 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
5370 else if (gimple_code (stmt) == GIMPLE_ASM)
5372 unsigned noutputs;
5373 const char *constraint;
5374 const char **oconstraints;
5375 bool allows_mem, allows_reg, is_inout;
5376 noutputs = gimple_asm_noutputs (stmt);
5377 oconstraints = XALLOCAVEC (const char *, noutputs);
5378 if (visit_store || visit_addr)
5379 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
5381 tree link = gimple_asm_output_op (stmt, i);
5382 tree op = get_base_loadstore (TREE_VALUE (link));
5383 if (op && visit_store)
5384 ret |= visit_store (stmt, op, data);
5385 if (visit_addr)
5387 constraint = TREE_STRING_POINTER
5388 (TREE_VALUE (TREE_PURPOSE (link)));
5389 oconstraints[i] = constraint;
5390 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
5391 &allows_reg, &is_inout);
5392 if (op && !allows_reg && allows_mem)
5393 ret |= visit_addr (stmt, op, data);
5396 if (visit_load || visit_addr)
5397 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
5399 tree link = gimple_asm_input_op (stmt, i);
5400 tree op = TREE_VALUE (link);
5401 if (visit_addr
5402 && TREE_CODE (op) == ADDR_EXPR)
5403 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5404 else if (visit_load || visit_addr)
5406 op = get_base_loadstore (op);
5407 if (op)
5409 if (visit_load)
5410 ret |= visit_load (stmt, op, data);
5411 if (visit_addr)
5413 constraint = TREE_STRING_POINTER
5414 (TREE_VALUE (TREE_PURPOSE (link)));
5415 parse_input_constraint (&constraint, 0, 0, noutputs,
5416 0, oconstraints,
5417 &allows_mem, &allows_reg);
5418 if (!allows_reg && allows_mem)
5419 ret |= visit_addr (stmt, op, data);
5425 else if (gimple_code (stmt) == GIMPLE_RETURN)
5427 tree op = gimple_return_retval (stmt);
5428 if (op)
5430 if (visit_addr
5431 && TREE_CODE (op) == ADDR_EXPR)
5432 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5433 else if (visit_load)
5435 op = get_base_loadstore (op);
5436 if (op)
5437 ret |= visit_load (stmt, op, data);
5441 else if (visit_addr
5442 && gimple_code (stmt) == GIMPLE_PHI)
5444 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
5446 tree op = PHI_ARG_DEF (stmt, i);
5447 if (TREE_CODE (op) == ADDR_EXPR)
5448 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5452 return ret;
5455 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5456 should make a faster clone for this case. */
5458 bool
5459 walk_stmt_load_store_ops (gimple stmt, void *data,
5460 bool (*visit_load)(gimple, tree, void *),
5461 bool (*visit_store)(gimple, tree, void *))
5463 return walk_stmt_load_store_addr_ops (stmt, data,
5464 visit_load, visit_store, NULL);
5467 /* Helper for gimple_ior_addresses_taken_1. */
5469 static bool
5470 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
5471 tree addr, void *data)
5473 bitmap addresses_taken = (bitmap)data;
5474 addr = get_base_address (addr);
5475 if (addr
5476 && DECL_P (addr))
5478 bitmap_set_bit (addresses_taken, DECL_UID (addr));
5479 return true;
5481 return false;
5484 /* Set the bit for the uid of all decls that have their address taken
5485 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5486 were any in this stmt. */
5488 bool
5489 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
5491 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
5492 gimple_ior_addresses_taken_1);
5496 /* Return a printable name for symbol DECL. */
5498 const char *
5499 gimple_decl_printable_name (tree decl, int verbosity)
5501 if (!DECL_NAME (decl))
5502 return NULL;
5504 if (DECL_ASSEMBLER_NAME_SET_P (decl))
5506 const char *str, *mangled_str;
5507 int dmgl_opts = DMGL_NO_OPTS;
5509 if (verbosity >= 2)
5511 dmgl_opts = DMGL_VERBOSE
5512 | DMGL_ANSI
5513 | DMGL_GNU_V3
5514 | DMGL_RET_POSTFIX;
5515 if (TREE_CODE (decl) == FUNCTION_DECL)
5516 dmgl_opts |= DMGL_PARAMS;
5519 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5520 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5521 return (str) ? str : mangled_str;
5524 return IDENTIFIER_POINTER (DECL_NAME (decl));
5527 /* Return true when STMT is builtins call to CODE. */
5529 bool
5530 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5532 tree fndecl;
5533 return (is_gimple_call (stmt)
5534 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5535 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5536 && DECL_FUNCTION_CODE (fndecl) == code);
5539 /* Return true if STMT clobbers memory. STMT is required to be a
5540 GIMPLE_ASM. */
5542 bool
5543 gimple_asm_clobbers_memory_p (const_gimple stmt)
5545 unsigned i;
5547 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
5549 tree op = gimple_asm_clobber_op (stmt, i);
5550 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
5551 return true;
5554 return false;
5556 #include "gt-gimple.h"