1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1999-2005 Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
32 ------------------------------------------------------------------------------
34 with Alloc
; use Alloc
;
35 with Atree
; use Atree
;
36 with Casing
; use Casing
;
37 with Debug
; use Debug
;
38 with Einfo
; use Einfo
;
40 with Namet
; use Namet
;
42 with Output
; use Output
;
43 with Sinfo
; use Sinfo
;
44 with Sinput
; use Sinput
;
45 with Snames
; use Snames
;
46 with Stand
; use Stand
;
47 with Table
; use Table
;
48 with Uname
; use Uname
;
49 with Urealp
; use Urealp
;
51 with Ada
.Unchecked_Conversion
;
53 package body Repinfo
is
56 -- Value for Storage_Unit, we do not want to get this from TTypes, since
57 -- this introduces problematic dependencies in ASIS, and in any case this
58 -- value is assumed to be 8 for the implementation of the DDA.
60 -- This is wrong for AAMP???
62 ---------------------------------------
63 -- Representation of gcc Expressions --
64 ---------------------------------------
66 -- This table is used only if Frontend_Layout_On_Target is False, so that
67 -- gigi lays out dynamic size/offset fields using encoded gcc
70 -- A table internal to this unit is used to hold the values of back
71 -- annotated expressions. This table is written out by -gnatt and read
72 -- back in for ASIS processing.
74 -- Node values are stored as Uint values using the negative of the node
75 -- index in this table. Constants appear as non-negative Uint values.
77 type Exp_Node
is record
79 Op1
: Node_Ref_Or_Val
;
80 Op2
: Node_Ref_Or_Val
;
81 Op3
: Node_Ref_Or_Val
;
84 package Rep_Table
is new Table
.Table
(
85 Table_Component_Type
=> Exp_Node
,
86 Table_Index_Type
=> Nat
,
88 Table_Initial
=> Alloc
.Rep_Table_Initial
,
89 Table_Increment
=> Alloc
.Rep_Table_Increment
,
90 Table_Name
=> "BE_Rep_Table");
92 --------------------------------------------------------------
93 -- Representation of Front-End Dynamic Size/Offset Entities --
94 --------------------------------------------------------------
96 package Dynamic_SO_Entity_Table
is new Table
.Table
(
97 Table_Component_Type
=> Entity_Id
,
98 Table_Index_Type
=> Nat
,
100 Table_Initial
=> Alloc
.Rep_Table_Initial
,
101 Table_Increment
=> Alloc
.Rep_Table_Increment
,
102 Table_Name
=> "FE_Rep_Table");
104 Unit_Casing
: Casing_Type
;
105 -- Identifier casing for current unit
107 Need_Blank_Line
: Boolean;
108 -- Set True if a blank line is needed before outputting any information for
109 -- the current entity. Set True when a new entity is processed, and false
110 -- when the blank line is output.
112 -----------------------
113 -- Local Subprograms --
114 -----------------------
116 function Back_End_Layout
return Boolean;
117 -- Test for layout mode, True = back end, False = front end. This function
118 -- is used rather than checking the configuration parameter because we do
119 -- not want Repinfo to depend on Targparm (for ASIS)
121 procedure Blank_Line
;
122 -- Called before outputting anything for an entity. Ensures that
123 -- a blank line precedes the output for a particular entity.
125 procedure List_Entities
(Ent
: Entity_Id
);
126 -- This procedure lists the entities associated with the entity E, starting
127 -- with the First_Entity and using the Next_Entity link. If a nested
128 -- package is found, entities within the package are recursively processed.
130 procedure List_Name
(Ent
: Entity_Id
);
131 -- List name of entity Ent in appropriate case. The name is listed with
132 -- full qualification up to but not including the compilation unit name.
134 procedure List_Array_Info
(Ent
: Entity_Id
);
135 -- List representation info for array type Ent
137 procedure List_Mechanisms
(Ent
: Entity_Id
);
138 -- List mechanism information for parameters of Ent, which is subprogram,
139 -- subprogram type, or an entry or entry family.
141 procedure List_Object_Info
(Ent
: Entity_Id
);
142 -- List representation info for object Ent
144 procedure List_Record_Info
(Ent
: Entity_Id
);
145 -- List representation info for record type Ent
147 procedure List_Type_Info
(Ent
: Entity_Id
);
148 -- List type info for type Ent
150 function Rep_Not_Constant
(Val
: Node_Ref_Or_Val
) return Boolean;
151 -- Returns True if Val represents a variable value, and False if it
152 -- represents a value that is fixed at compile time.
154 procedure Spaces
(N
: Natural);
155 -- Output given number of spaces
157 procedure Write_Info_Line
(S
: String);
158 -- Routine to write a line to Repinfo output file. This routine is passed
159 -- as a special output procedure to Output.Set_Special_Output. Note that
160 -- Write_Info_Line is called with an EOL character at the end of each line,
161 -- as per the Output spec, but the internal call to the appropriate routine
162 -- in Osint requires that the end of line sequence be stripped off.
164 procedure Write_Mechanism
(M
: Mechanism_Type
);
165 -- Writes symbolic string for mechanism represented by M
167 procedure Write_Val
(Val
: Node_Ref_Or_Val
; Paren
: Boolean := False);
168 -- Given a representation value, write it out. No_Uint values or values
169 -- dependent on discriminants are written as two question marks. If the
170 -- flag Paren is set, then the output is surrounded in parentheses if it is
171 -- other than a simple value.
173 ---------------------
174 -- Back_End_Layout --
175 ---------------------
177 function Back_End_Layout
return Boolean is
179 -- We have back end layout if the back end has made any entries in the
180 -- table of GCC expressions, otherwise we have front end layout.
182 return Rep_Table
.Last
> 0;
189 procedure Blank_Line
is
191 if Need_Blank_Line
then
193 Need_Blank_Line
:= False;
197 ------------------------
198 -- Create_Discrim_Ref --
199 ------------------------
201 function Create_Discrim_Ref
(Discr
: Entity_Id
) return Node_Ref
is
202 N
: constant Uint
:= Discriminant_Number
(Discr
);
205 Rep_Table
.Increment_Last
;
207 Rep_Table
.Table
(T
).Expr
:= Discrim_Val
;
208 Rep_Table
.Table
(T
).Op1
:= N
;
209 Rep_Table
.Table
(T
).Op2
:= No_Uint
;
210 Rep_Table
.Table
(T
).Op3
:= No_Uint
;
211 return UI_From_Int
(-T
);
212 end Create_Discrim_Ref
;
214 ---------------------------
215 -- Create_Dynamic_SO_Ref --
216 ---------------------------
218 function Create_Dynamic_SO_Ref
(E
: Entity_Id
) return Dynamic_SO_Ref
is
221 Dynamic_SO_Entity_Table
.Increment_Last
;
222 T
:= Dynamic_SO_Entity_Table
.Last
;
223 Dynamic_SO_Entity_Table
.Table
(T
) := E
;
224 return UI_From_Int
(-T
);
225 end Create_Dynamic_SO_Ref
;
233 Op1
: Node_Ref_Or_Val
;
234 Op2
: Node_Ref_Or_Val
:= No_Uint
;
235 Op3
: Node_Ref_Or_Val
:= No_Uint
) return Node_Ref
239 Rep_Table
.Increment_Last
;
241 Rep_Table
.Table
(T
).Expr
:= Expr
;
242 Rep_Table
.Table
(T
).Op1
:= Op1
;
243 Rep_Table
.Table
(T
).Op2
:= Op2
;
244 Rep_Table
.Table
(T
).Op3
:= Op3
;
245 return UI_From_Int
(-T
);
248 ---------------------------
249 -- Get_Dynamic_SO_Entity --
250 ---------------------------
252 function Get_Dynamic_SO_Entity
(U
: Dynamic_SO_Ref
) return Entity_Id
is
254 return Dynamic_SO_Entity_Table
.Table
(-UI_To_Int
(U
));
255 end Get_Dynamic_SO_Entity
;
257 -----------------------
258 -- Is_Dynamic_SO_Ref --
259 -----------------------
261 function Is_Dynamic_SO_Ref
(U
: SO_Ref
) return Boolean is
264 end Is_Dynamic_SO_Ref
;
266 ----------------------
267 -- Is_Static_SO_Ref --
268 ----------------------
270 function Is_Static_SO_Ref
(U
: SO_Ref
) return Boolean is
273 end Is_Static_SO_Ref
;
279 procedure lgx
(U
: Node_Ref_Or_Val
) is
281 List_GCC_Expression
(U
);
285 ----------------------
286 -- List_Array_Info --
287 ----------------------
289 procedure List_Array_Info
(Ent
: Entity_Id
) is
291 List_Type_Info
(Ent
);
294 Write_Str
("'Component_Size use ");
295 Write_Val
(Component_Size
(Ent
));
303 procedure List_Entities
(Ent
: Entity_Id
) is
307 function Find_Declaration
(E
: Entity_Id
) return Node_Id
;
308 -- Utility to retrieve declaration node for entity in the
309 -- case of package bodies and subprograms.
311 ----------------------
312 -- Find_Declaration --
313 ----------------------
315 function Find_Declaration
(E
: Entity_Id
) return Node_Id
is
321 and then Nkind
(Decl
) /= N_Package_Body
322 and then Nkind
(Decl
) /= N_Subprogram_Declaration
323 and then Nkind
(Decl
) /= N_Subprogram_Body
325 Decl
:= Parent
(Decl
);
329 end Find_Declaration
;
331 -- Start of processing for List_Entities
334 if Present
(Ent
) then
336 -- If entity is a subprogram and we are listing mechanisms,
337 -- then we need to list mechanisms for this entity.
339 if List_Representation_Info_Mechanisms
340 and then (Is_Subprogram
(Ent
)
341 or else Ekind
(Ent
) = E_Entry
342 or else Ekind
(Ent
) = E_Entry_Family
)
344 Need_Blank_Line
:= True;
345 List_Mechanisms
(Ent
);
348 E
:= First_Entity
(Ent
);
349 while Present
(E
) loop
350 Need_Blank_Line
:= True;
352 -- We list entities that come from source (excluding private or
353 -- incomplete types or deferred constants, where we will list the
354 -- info for the full view). If debug flag A is set, then all
355 -- entities are listed
357 if (Comes_From_Source
(E
)
358 and then not Is_Incomplete_Or_Private_Type
(E
)
359 and then not (Ekind
(E
) = E_Constant
360 and then Present
(Full_View
(E
))))
361 or else Debug_Flag_AA
367 Ekind
(E
) = E_Entry_Family
369 Ekind
(E
) = E_Subprogram_Type
371 if List_Representation_Info_Mechanisms
then
375 elsif Is_Record_Type
(E
) then
376 if List_Representation_Info
>= 1 then
377 List_Record_Info
(E
);
380 elsif Is_Array_Type
(E
) then
381 if List_Representation_Info
>= 1 then
385 elsif Is_Type
(E
) then
386 if List_Representation_Info
>= 2 then
390 elsif Ekind
(E
) = E_Variable
392 Ekind
(E
) = E_Constant
394 Ekind
(E
) = E_Loop_Parameter
398 if List_Representation_Info
>= 2 then
399 List_Object_Info
(E
);
404 -- Recurse into nested package, but not if they are package
405 -- renamings (in particular renamings of the enclosing package,
406 -- as for some Java bindings and for generic instances).
408 if Ekind
(E
) = E_Package
then
409 if No
(Renamed_Object
(E
)) then
413 -- Recurse into bodies
415 elsif Ekind
(E
) = E_Protected_Type
417 Ekind
(E
) = E_Task_Type
419 Ekind
(E
) = E_Subprogram_Body
421 Ekind
(E
) = E_Package_Body
423 Ekind
(E
) = E_Task_Body
425 Ekind
(E
) = E_Protected_Body
429 -- Recurse into blocks
431 elsif Ekind
(E
) = E_Block
then
436 E
:= Next_Entity
(E
);
439 -- For a package body, the entities of the visible subprograms are
440 -- declared in the corresponding spec. Iterate over its entities in
441 -- order to handle properly the subprogram bodies. Skip bodies in
442 -- subunits, which are listed independently.
444 if Ekind
(Ent
) = E_Package_Body
445 and then Present
(Corresponding_Spec
(Find_Declaration
(Ent
)))
447 E
:= First_Entity
(Corresponding_Spec
(Find_Declaration
(Ent
)));
449 while Present
(E
) loop
452 Nkind
(Find_Declaration
(E
)) = N_Subprogram_Declaration
454 Body_E
:= Corresponding_Body
(Find_Declaration
(E
));
458 Nkind
(Parent
(Find_Declaration
(Body_E
))) /= N_Subunit
460 List_Entities
(Body_E
);
470 -------------------------
471 -- List_GCC_Expression --
472 -------------------------
474 procedure List_GCC_Expression
(U
: Node_Ref_Or_Val
) is
476 procedure Print_Expr
(Val
: Node_Ref_Or_Val
);
477 -- Internal recursive procedure to print expression
483 procedure Print_Expr
(Val
: Node_Ref_Or_Val
) is
486 UI_Write
(Val
, Decimal
);
490 Node
: Exp_Node
renames Rep_Table
.Table
(-UI_To_Int
(Val
));
492 procedure Binop
(S
: String);
493 -- Output text for binary operator with S being operator name
499 procedure Binop
(S
: String) is
502 Print_Expr
(Node
.Op1
);
504 Print_Expr
(Node
.Op2
);
508 -- Start of processing for Print_Expr
514 Print_Expr
(Node
.Op1
);
515 Write_Str
(" then ");
516 Print_Expr
(Node
.Op2
);
517 Write_Str
(" else ");
518 Print_Expr
(Node
.Op3
);
530 when Trunc_Div_Expr
=>
533 when Ceil_Div_Expr
=>
536 when Floor_Div_Expr
=>
539 when Trunc_Mod_Expr
=>
542 when Floor_Mod_Expr
=>
545 when Ceil_Mod_Expr
=>
548 when Exact_Div_Expr
=>
553 Print_Expr
(Node
.Op1
);
563 Print_Expr
(Node
.Op1
);
565 when Truth_Andif_Expr
=>
568 when Truth_Orif_Expr
=>
571 when Truth_And_Expr
=>
574 when Truth_Or_Expr
=>
577 when Truth_Xor_Expr
=>
580 when Truth_Not_Expr
=>
582 Print_Expr
(Node
.Op1
);
614 -- Start of processing for List_GCC_Expression
622 end List_GCC_Expression
;
624 ---------------------
625 -- List_Mechanisms --
626 ---------------------
628 procedure List_Mechanisms
(Ent
: Entity_Id
) is
637 Write_Str
("function ");
640 Write_Str
("operator ");
643 Write_Str
("procedure ");
645 when E_Subprogram_Type
=>
648 when E_Entry | E_Entry_Family
=>
649 Write_Str
("entry ");
655 Get_Unqualified_Decoded_Name_String
(Chars
(Ent
));
656 Write_Str
(Name_Buffer
(1 .. Name_Len
));
657 Write_Str
(" declared at ");
658 Write_Location
(Sloc
(Ent
));
661 Write_Str
(" convention : ");
663 case Convention
(Ent
) is
664 when Convention_Ada
=> Write_Line
("Ada");
665 when Convention_Intrinsic
=> Write_Line
("InLineinsic");
666 when Convention_Entry
=> Write_Line
("Entry");
667 when Convention_Protected
=> Write_Line
("Protected");
668 when Convention_Assembler
=> Write_Line
("Assembler");
669 when Convention_C
=> Write_Line
("C");
670 when Convention_COBOL
=> Write_Line
("COBOL");
671 when Convention_CPP
=> Write_Line
("C++");
672 when Convention_Fortran
=> Write_Line
("Fortran");
673 when Convention_Java
=> Write_Line
("Java");
674 when Convention_Stdcall
=> Write_Line
("Stdcall");
675 when Convention_Stubbed
=> Write_Line
("Stubbed");
678 -- Find max length of formal name
681 Form
:= First_Formal
(Ent
);
682 while Present
(Form
) loop
683 Get_Unqualified_Decoded_Name_String
(Chars
(Form
));
685 if Name_Len
> Plen
then
692 -- Output formals and mechanisms
694 Form
:= First_Formal
(Ent
);
695 while Present
(Form
) loop
696 Get_Unqualified_Decoded_Name_String
(Chars
(Form
));
698 while Name_Len
<= Plen
loop
699 Name_Len
:= Name_Len
+ 1;
700 Name_Buffer
(Name_Len
) := ' ';
704 Write_Str
(Name_Buffer
(1 .. Plen
+ 1));
705 Write_Str
(": passed by ");
707 Write_Mechanism
(Mechanism
(Form
));
712 if Etype
(Ent
) /= Standard_Void_Type
then
713 Write_Str
(" returns by ");
714 Write_Mechanism
(Mechanism
(Ent
));
723 procedure List_Name
(Ent
: Entity_Id
) is
725 if not Is_Compilation_Unit
(Scope
(Ent
)) then
726 List_Name
(Scope
(Ent
));
730 Get_Unqualified_Decoded_Name_String
(Chars
(Ent
));
731 Set_Casing
(Unit_Casing
);
732 Write_Str
(Name_Buffer
(1 .. Name_Len
));
735 ---------------------
736 -- List_Object_Info --
737 ---------------------
739 procedure List_Object_Info
(Ent
: Entity_Id
) is
745 Write_Str
("'Size use ");
746 Write_Val
(Esize
(Ent
));
751 Write_Str
("'Alignment use ");
752 Write_Val
(Alignment
(Ent
));
754 end List_Object_Info
;
756 ----------------------
757 -- List_Record_Info --
758 ----------------------
760 procedure List_Record_Info
(Ent
: Entity_Id
) is
765 Max_Name_Length
: Natural;
766 Max_Suni_Length
: Natural;
770 List_Type_Info
(Ent
);
774 Write_Line
(" use record");
776 -- First loop finds out max line length and max starting position
777 -- length, for the purpose of lining things up nicely.
779 Max_Name_Length
:= 0;
780 Max_Suni_Length
:= 0;
782 Comp
:= First_Entity
(Ent
);
783 while Present
(Comp
) loop
784 if Ekind
(Comp
) = E_Component
785 or else Ekind
(Comp
) = E_Discriminant
787 Get_Decoded_Name_String
(Chars
(Comp
));
788 Max_Name_Length
:= Natural'Max (Max_Name_Length
, Name_Len
);
790 Cfbit
:= Component_Bit_Offset
(Comp
);
792 if Rep_Not_Constant
(Cfbit
) then
793 UI_Image_Length
:= 2;
796 -- Complete annotation in case not done
798 Set_Normalized_Position
(Comp
, Cfbit
/ SSU
);
799 Set_Normalized_First_Bit
(Comp
, Cfbit
mod SSU
);
801 Sunit
:= Cfbit
/ SSU
;
805 -- If the record is not packed, then we know that all fields whose
806 -- position is not specified have a starting normalized bit
809 if Unknown_Normalized_First_Bit
(Comp
)
810 and then not Is_Packed
(Ent
)
812 Set_Normalized_First_Bit
(Comp
, Uint_0
);
816 Natural'Max (Max_Suni_Length
, UI_Image_Length
);
819 Comp
:= Next_Entity
(Comp
);
822 -- Second loop does actual output based on those values
824 Comp
:= First_Entity
(Ent
);
825 while Present
(Comp
) loop
826 if Ekind
(Comp
) = E_Component
827 or else Ekind
(Comp
) = E_Discriminant
830 Esiz
: constant Uint
:= Esize
(Comp
);
831 Bofs
: constant Uint
:= Component_Bit_Offset
(Comp
);
832 Npos
: constant Uint
:= Normalized_Position
(Comp
);
833 Fbit
: constant Uint
:= Normalized_First_Bit
(Comp
);
838 Get_Decoded_Name_String
(Chars
(Comp
));
839 Set_Casing
(Unit_Casing
);
840 Write_Str
(Name_Buffer
(1 .. Name_Len
));
842 for J
in 1 .. Max_Name_Length
- Name_Len
loop
848 if Known_Static_Normalized_Position
(Comp
) then
850 Spaces
(Max_Suni_Length
- UI_Image_Length
);
851 Write_Str
(UI_Image_Buffer
(1 .. UI_Image_Length
));
853 elsif Known_Component_Bit_Offset
(Comp
)
854 and then List_Representation_Info
= 3
856 Spaces
(Max_Suni_Length
- 2);
857 Write_Str
("bit offset");
858 Write_Val
(Bofs
, Paren
=> True);
859 Write_Str
(" size in bits = ");
860 Write_Val
(Esiz
, Paren
=> True);
864 elsif Known_Normalized_Position
(Comp
)
865 and then List_Representation_Info
= 3
867 Spaces
(Max_Suni_Length
- 2);
871 -- For the packed case, we don't know the bit positions
872 -- if we don't know the starting position!
874 if Is_Packed
(Ent
) then
875 Write_Line
("?? range ? .. ??;");
878 -- Otherwise we can continue
885 Write_Str
(" range ");
889 -- Allowing Uint_0 here is a kludge, really this should be a
890 -- fine Esize value but currently it means unknown, except that
891 -- we know after gigi has back annotated that a size of zero is
892 -- real, since otherwise gigi back annotates using No_Uint as
893 -- the value to indicate unknown).
895 if (Esize
(Comp
) = Uint_0
or else Known_Static_Esize
(Comp
))
896 and then Known_Static_Normalized_First_Bit
(Comp
)
898 Lbit
:= Fbit
+ Esiz
- 1;
906 -- The test for Esize (Comp) not being Uint_0 here is a kludge.
907 -- Officially a value of zero for Esize means unknown, but here
908 -- we use the fact that we know that gigi annotates Esize with
909 -- No_Uint, not Uint_0. Really everyone should use No_Uint???
911 elsif List_Representation_Info
< 3
912 or else (Esize
(Comp
) /= Uint_0
and then Unknown_Esize
(Comp
))
916 else -- List_Representation >= 3 and Known_Esize (Comp)
918 Write_Val
(Esiz
, Paren
=> True);
920 -- If in front end layout mode, then dynamic size is stored
921 -- in storage units, so renormalize for output
923 if not Back_End_Layout
then
928 -- Add appropriate first bit offset
938 Write_Int
(UI_To_Int
(Fbit
) - 1);
947 Comp
:= Next_Entity
(Comp
);
950 Write_Line
("end record;");
951 end List_Record_Info
;
957 procedure List_Rep_Info
is
961 if List_Representation_Info
/= 0
962 or else List_Representation_Info_Mechanisms
964 for U
in Main_Unit
.. Last_Unit
loop
965 if In_Extended_Main_Source_Unit
(Cunit_Entity
(U
)) then
967 -- Normal case, list to standard output
969 if not List_Representation_Info_To_File
then
970 Unit_Casing
:= Identifier_Casing
(Source_Index
(U
));
972 Write_Str
("Representation information for unit ");
973 Write_Unit_Name
(Unit_Name
(U
));
977 for J
in 1 .. Col
- 1 loop
982 List_Entities
(Cunit_Entity
(U
));
984 -- List representation information to file
987 Creat_Repinfo_File_Access
.all (File_Name
(Source_Index
(U
)));
988 Set_Special_Output
(Write_Info_Line
'Access);
989 List_Entities
(Cunit_Entity
(U
));
990 Set_Special_Output
(null);
991 Close_Repinfo_File_Access
.all;
1000 --------------------
1002 procedure List_Type_Info
(Ent
: Entity_Id
) is
1006 -- Do not list size info for unconstrained arrays, not meaningful
1008 if Is_Array_Type
(Ent
) and then not Is_Constrained
(Ent
) then
1012 -- If Esize and RM_Size are the same and known, list as Size. This
1013 -- is a common case, which we may as well list in simple form.
1015 if Esize
(Ent
) = RM_Size
(Ent
) then
1018 Write_Str
("'Size use ");
1019 Write_Val
(Esize
(Ent
));
1022 -- For now, temporary case, to be removed when gigi properly back
1023 -- annotates RM_Size, if RM_Size is not set, then list Esize as Size.
1024 -- This avoids odd Object_Size output till we fix things???
1026 elsif Unknown_RM_Size
(Ent
) then
1029 Write_Str
("'Size use ");
1030 Write_Val
(Esize
(Ent
));
1033 -- Otherwise list size values separately if they are set
1038 Write_Str
("'Object_Size use ");
1039 Write_Val
(Esize
(Ent
));
1042 -- Note on following check: The RM_Size of a discrete type can
1043 -- legitimately be set to zero, so a special check is needed.
1047 Write_Str
("'Value_Size use ");
1048 Write_Val
(RM_Size
(Ent
));
1055 Write_Str
("'Alignment use ");
1056 Write_Val
(Alignment
(Ent
));
1060 ----------------------
1061 -- Rep_Not_Constant --
1062 ----------------------
1064 function Rep_Not_Constant
(Val
: Node_Ref_Or_Val
) return Boolean is
1066 if Val
= No_Uint
or else Val
< 0 then
1071 end Rep_Not_Constant
;
1078 (Val
: Node_Ref_Or_Val
;
1079 D
: Discrim_List
) return Uint
1081 function B
(Val
: Boolean) return Uint
;
1082 -- Returns Uint_0 for False, Uint_1 for True
1084 function T
(Val
: Node_Ref_Or_Val
) return Boolean;
1085 -- Returns True for 0, False for any non-zero (i.e. True)
1087 function V
(Val
: Node_Ref_Or_Val
) return Uint
;
1088 -- Internal recursive routine to evaluate tree
1090 function W
(Val
: Uint
) return Word
;
1091 -- Convert Val to Word, assuming Val is always in the Int range. This is
1092 -- a helper function for the evaluation of bitwise expressions like
1093 -- Bit_And_Expr, for which there is no direct support in uintp. Uint
1094 -- values out of the Int range are expected to be seen in such
1095 -- expressions only with overflowing byte sizes around, introducing
1096 -- inherent unreliabilties in computations anyway.
1102 function B
(Val
: Boolean) return Uint
is
1115 function T
(Val
: Node_Ref_Or_Val
) return Boolean is
1128 -- We use an unchecked conversion to map Int values to their Word
1129 -- bitwise equivalent, which we could not achieve with a normal type
1130 -- conversion for negative Ints. We want bitwise equivalents because W
1131 -- is used as a helper for bit operators like Bit_And_Expr, and can be
1132 -- called for negative Ints in the context of aligning expressions like
1133 -- X+Align & -Align.
1135 function W
(Val
: Uint
) return Word
is
1136 function To_Word
is new Ada
.Unchecked_Conversion
(Int
, Word
);
1138 return To_Word
(UI_To_Int
(Val
));
1145 function V
(Val
: Node_Ref_Or_Val
) return Uint
is
1154 Node
: Exp_Node
renames Rep_Table
.Table
(-UI_To_Int
(Val
));
1159 if T
(Node
.Op1
) then
1160 return V
(Node
.Op2
);
1162 return V
(Node
.Op3
);
1166 return V
(Node
.Op1
) + V
(Node
.Op2
);
1169 return V
(Node
.Op1
) - V
(Node
.Op2
);
1172 return V
(Node
.Op1
) * V
(Node
.Op2
);
1174 when Trunc_Div_Expr
=>
1175 return V
(Node
.Op1
) / V
(Node
.Op2
);
1177 when Ceil_Div_Expr
=>
1180 (V
(Node
.Op1
) / UR_From_Uint
(V
(Node
.Op2
)));
1182 when Floor_Div_Expr
=>
1185 (V
(Node
.Op1
) / UR_From_Uint
(V
(Node
.Op2
)));
1187 when Trunc_Mod_Expr
=>
1188 return V
(Node
.Op1
) rem V
(Node
.Op2
);
1190 when Floor_Mod_Expr
=>
1191 return V
(Node
.Op1
) mod V
(Node
.Op2
);
1193 when Ceil_Mod_Expr
=>
1196 Q
:= UR_Ceiling
(L
/ UR_From_Uint
(R
));
1199 when Exact_Div_Expr
=>
1200 return V
(Node
.Op1
) / V
(Node
.Op2
);
1203 return -V
(Node
.Op1
);
1206 return UI_Min
(V
(Node
.Op1
), V
(Node
.Op2
));
1209 return UI_Max
(V
(Node
.Op1
), V
(Node
.Op2
));
1212 return UI_Abs
(V
(Node
.Op1
));
1214 when Truth_Andif_Expr
=>
1215 return B
(T
(Node
.Op1
) and then T
(Node
.Op2
));
1217 when Truth_Orif_Expr
=>
1218 return B
(T
(Node
.Op1
) or else T
(Node
.Op2
));
1220 when Truth_And_Expr
=>
1221 return B
(T
(Node
.Op1
) and T
(Node
.Op2
));
1223 when Truth_Or_Expr
=>
1224 return B
(T
(Node
.Op1
) or T
(Node
.Op2
));
1226 when Truth_Xor_Expr
=>
1227 return B
(T
(Node
.Op1
) xor T
(Node
.Op2
));
1229 when Truth_Not_Expr
=>
1230 return B
(not T
(Node
.Op1
));
1232 when Bit_And_Expr
=>
1235 return UI_From_Int
(Int
(W
(L
) and W
(R
)));
1238 return B
(V
(Node
.Op1
) < V
(Node
.Op2
));
1241 return B
(V
(Node
.Op1
) <= V
(Node
.Op2
));
1244 return B
(V
(Node
.Op1
) > V
(Node
.Op2
));
1247 return B
(V
(Node
.Op1
) >= V
(Node
.Op2
));
1250 return B
(V
(Node
.Op1
) = V
(Node
.Op2
));
1253 return B
(V
(Node
.Op1
) /= V
(Node
.Op2
));
1257 Sub
: constant Int
:= UI_To_Int
(Node
.Op1
);
1260 pragma Assert
(Sub
in D
'Range);
1269 -- Start of processing for Rep_Value
1272 if Val
= No_Uint
then
1284 procedure Spaces
(N
: Natural) is
1286 for J
in 1 .. N
loop
1295 procedure Tree_Read
is
1297 Rep_Table
.Tree_Read
;
1304 procedure Tree_Write
is
1306 Rep_Table
.Tree_Write
;
1309 ---------------------
1310 -- Write_Info_Line --
1311 ---------------------
1313 procedure Write_Info_Line
(S
: String) is
1315 Write_Repinfo_Line_Access
.all (S
(S
'First .. S
'Last - 1));
1316 end Write_Info_Line
;
1318 ---------------------
1319 -- Write_Mechanism --
1320 ---------------------
1322 procedure Write_Mechanism
(M
: Mechanism_Type
) is
1326 Write_Str
("default");
1332 Write_Str
("reference");
1335 Write_Str
("descriptor");
1338 Write_Str
("descriptor (UBS)");
1341 Write_Str
("descriptor (UBSB)");
1344 Write_Str
("descriptor (UBA)");
1347 Write_Str
("descriptor (S)");
1350 Write_Str
("descriptor (SB)");
1353 Write_Str
("descriptor (A)");
1356 Write_Str
("descriptor (NCA)");
1359 raise Program_Error
;
1361 end Write_Mechanism
;
1367 procedure Write_Val
(Val
: Node_Ref_Or_Val
; Paren
: Boolean := False) is
1369 if Rep_Not_Constant
(Val
) then
1370 if List_Representation_Info
< 3 or else Val
= No_Uint
then
1374 if Back_End_Layout
then
1379 List_GCC_Expression
(Val
);
1382 List_GCC_Expression
(Val
);
1390 Write_Name_Decoded
(Chars
(Get_Dynamic_SO_Entity
(Val
)));
1393 Write_Name_Decoded
(Chars
(Get_Dynamic_SO_Entity
(Val
)));