1 /* Gimple range GORI functions.
2 Copyright (C) 2017-2022 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "gimple-pretty-print.h"
30 #include "gimple-range.h"
32 // Return TRUE if GS is a logical && or || expression.
35 is_gimple_logical_p (const gimple
*gs
)
37 // Look for boolean and/or condition.
38 if (is_gimple_assign (gs
))
39 switch (gimple_expr_code (gs
))
47 // Bitwise operations on single bits are logical too.
48 if (types_compatible_p (TREE_TYPE (gimple_assign_rhs1 (gs
)),
59 /* RANGE_DEF_CHAIN is used to determine which SSA names in a block can
60 have range information calculated for them, and what the
61 dependencies on each other are.
63 Information for a basic block is calculated once and stored. It is
64 only calculated the first time a query is made, so if no queries
65 are made, there is little overhead.
67 The def_chain bitmap is indexed by SSA_NAME_VERSION. Bits are set
68 within this bitmap to indicate SSA names that are defined in the
69 SAME block and used to calculate this SSA name.
83 This dump indicates the bits set in the def_chain vector.
84 as well as demonstrates the def_chain bits for the related ssa_names.
86 Checking the chain for _2 indicates that _1 and x_4 are used in
89 Def chains also only include statements which are valid gimple
90 so a def chain will only span statements for which the range
91 engine implements operations for. */
94 // Construct a range_def_chain.
96 range_def_chain::range_def_chain ()
98 bitmap_obstack_initialize (&m_bitmaps
);
99 m_def_chain
.create (0);
100 m_def_chain
.safe_grow_cleared (num_ssa_names
);
104 // Destruct a range_def_chain.
106 range_def_chain::~range_def_chain ()
108 m_def_chain
.release ();
109 bitmap_obstack_release (&m_bitmaps
);
112 // Return true if NAME is in the def chain of DEF. If BB is provided,
113 // only return true if the defining statement of DEF is in BB.
116 range_def_chain::in_chain_p (tree name
, tree def
)
118 gcc_checking_assert (gimple_range_ssa_p (def
));
119 gcc_checking_assert (gimple_range_ssa_p (name
));
121 // Get the defintion chain for DEF.
122 bitmap chain
= get_def_chain (def
);
126 return bitmap_bit_p (chain
, SSA_NAME_VERSION (name
));
129 // Add either IMP or the import list B to the import set of DATA.
132 range_def_chain::set_import (struct rdc
&data
, tree imp
, bitmap b
)
134 // If there are no imports, just return
135 if (imp
== NULL_TREE
&& !b
)
138 data
.m_import
= BITMAP_ALLOC (&m_bitmaps
);
139 if (imp
!= NULL_TREE
)
140 bitmap_set_bit (data
.m_import
, SSA_NAME_VERSION (imp
));
142 bitmap_ior_into (data
.m_import
, b
);
145 // Return the import list for NAME.
148 range_def_chain::get_imports (tree name
)
150 if (!has_def_chain (name
))
151 get_def_chain (name
);
152 bitmap i
= m_def_chain
[SSA_NAME_VERSION (name
)].m_import
;
156 // Return true if IMPORT is an import to NAMEs def chain.
159 range_def_chain::chain_import_p (tree name
, tree import
)
161 bitmap b
= get_imports (name
);
163 return bitmap_bit_p (b
, SSA_NAME_VERSION (import
));
167 // Build def_chains for NAME if it is in BB. Copy the def chain into RESULT.
170 range_def_chain::register_dependency (tree name
, tree dep
, basic_block bb
)
172 if (!gimple_range_ssa_p (dep
))
175 unsigned v
= SSA_NAME_VERSION (name
);
176 if (v
>= m_def_chain
.length ())
177 m_def_chain
.safe_grow_cleared (num_ssa_names
+ 1);
178 struct rdc
&src
= m_def_chain
[v
];
179 gimple
*def_stmt
= SSA_NAME_DEF_STMT (dep
);
180 unsigned dep_v
= SSA_NAME_VERSION (dep
);
183 // Set the direct dependency cache entries.
186 else if (!src
.ssa2
&& src
.ssa1
!= dep
)
189 // Don't calculate imports or export/dep chains if BB is not provided.
190 // This is usually the case for when the temporal cache wants the direct
191 // dependencies of a stmt.
196 src
.bm
= BITMAP_ALLOC (&m_bitmaps
);
198 // Add this operand into the result.
199 bitmap_set_bit (src
.bm
, dep_v
);
201 if (gimple_bb (def_stmt
) == bb
&& !is_a
<gphi
*>(def_stmt
))
203 // Get the def chain for the operand.
204 b
= get_def_chain (dep
);
205 // If there was one, copy it into result. Access def_chain directly
206 // as the get_def_chain request above could reallocate the vector.
208 bitmap_ior_into (m_def_chain
[v
].bm
, b
);
209 // And copy the import list.
210 set_import (m_def_chain
[v
], NULL_TREE
, get_imports (dep
));
213 // Originated outside the block, so it is an import.
214 set_import (src
, dep
, NULL
);
218 range_def_chain::def_chain_in_bitmap_p (tree name
, bitmap b
)
220 bitmap a
= get_def_chain (name
);
222 return bitmap_intersect_p (a
, b
);
227 range_def_chain::add_def_chain_to_bitmap (bitmap b
, tree name
)
229 bitmap r
= get_def_chain (name
);
231 bitmap_ior_into (b
, r
);
235 // Return TRUE if NAME has been processed for a def_chain.
238 range_def_chain::has_def_chain (tree name
)
240 // Ensure there is an entry in the internal vector.
241 unsigned v
= SSA_NAME_VERSION (name
);
242 if (v
>= m_def_chain
.length ())
243 m_def_chain
.safe_grow_cleared (num_ssa_names
+ 1);
244 return (m_def_chain
[v
].ssa1
!= 0);
249 // Calculate the def chain for NAME and all of its dependent
250 // operands. Only using names in the same BB. Return the bitmap of
251 // all names in the m_def_chain. This only works for supported range
255 range_def_chain::get_def_chain (tree name
)
258 unsigned v
= SSA_NAME_VERSION (name
);
260 // If it has already been processed, just return the cached value.
261 if (has_def_chain (name
) && m_def_chain
[v
].bm
)
262 return m_def_chain
[v
].bm
;
264 // No definition chain for default defs.
265 if (SSA_NAME_IS_DEFAULT_DEF (name
))
267 // A Default def is always an import.
268 set_import (m_def_chain
[v
], name
, NULL
);
272 gimple
*stmt
= SSA_NAME_DEF_STMT (name
);
273 unsigned count
= gimple_range_ssa_names (ssa
, 3, stmt
);
276 // Stmts not understood or with no operands are always imports.
277 set_import (m_def_chain
[v
], name
, NULL
);
281 // Terminate the def chains if we see too many cascading stmts.
282 if (m_logical_depth
== param_ranger_logical_depth
)
285 // Increase the depth if we have a pair of ssa-names.
289 for (unsigned x
= 0; x
< count
; x
++)
290 register_dependency (name
, ssa
[x
], gimple_bb (stmt
));
295 return m_def_chain
[v
].bm
;
298 // Dump what we know for basic block BB to file F.
301 range_def_chain::dump (FILE *f
, basic_block bb
, const char *prefix
)
306 // Dump the def chain for each SSA_NAME defined in BB.
307 for (x
= 1; x
< num_ssa_names
; x
++)
309 tree name
= ssa_name (x
);
312 gimple
*stmt
= SSA_NAME_DEF_STMT (name
);
313 if (!stmt
|| (bb
&& gimple_bb (stmt
) != bb
))
315 bitmap chain
= (has_def_chain (name
) ? get_def_chain (name
) : NULL
);
316 if (chain
&& !bitmap_empty_p (chain
))
319 print_generic_expr (f
, name
, TDF_SLIM
);
322 bitmap imports
= get_imports (name
);
323 EXECUTE_IF_SET_IN_BITMAP (chain
, 0, y
, bi
)
325 print_generic_expr (f
, ssa_name (y
), TDF_SLIM
);
326 if (imports
&& bitmap_bit_p (imports
, y
))
336 // -------------------------------------------------------------------
338 /* GORI_MAP is used to accumulate what SSA names in a block can
339 generate range information, and provides tools for the block ranger
340 to enable it to efficiently calculate these ranges.
342 GORI stands for "Generates Outgoing Range Information."
344 It utilizes the range_def_chain class to contruct def_chains.
345 Information for a basic block is calculated once and stored. It is
346 only calculated the first time a query is made. If no queries are
347 made, there is little overhead.
349 one bitmap is maintained for each basic block:
350 m_outgoing : a set bit indicates a range can be generated for a name.
352 Generally speaking, the m_outgoing vector is the union of the
353 entire def_chain of all SSA names used in the last statement of the
354 block which generate ranges. */
357 // Initialize a gori-map structure.
359 gori_map::gori_map ()
361 m_outgoing
.create (0);
362 m_outgoing
.safe_grow_cleared (last_basic_block_for_fn (cfun
));
363 m_incoming
.create (0);
364 m_incoming
.safe_grow_cleared (last_basic_block_for_fn (cfun
));
365 m_maybe_variant
= BITMAP_ALLOC (&m_bitmaps
);
368 // Free any memory the GORI map allocated.
370 gori_map::~gori_map ()
372 m_incoming
.release ();
373 m_outgoing
.release ();
376 // Return the bitmap vector of all export from BB. Calculate if necessary.
379 gori_map::exports (basic_block bb
)
381 if (bb
->index
>= (signed int)m_outgoing
.length () || !m_outgoing
[bb
->index
])
383 return m_outgoing
[bb
->index
];
386 // Return the bitmap vector of all imports to BB. Calculate if necessary.
389 gori_map::imports (basic_block bb
)
391 if (bb
->index
>= (signed int)m_outgoing
.length () || !m_outgoing
[bb
->index
])
393 return m_incoming
[bb
->index
];
396 // Return true if NAME is can have ranges generated for it from basic
400 gori_map::is_export_p (tree name
, basic_block bb
)
402 // If no BB is specified, test if it is exported anywhere in the IL.
404 return bitmap_bit_p (m_maybe_variant
, SSA_NAME_VERSION (name
));
405 return bitmap_bit_p (exports (bb
), SSA_NAME_VERSION (name
));
408 // Set or clear the m_maybe_variant bit to determine if ranges will be tracked
409 // for NAME. A clear bit means they will NOT be tracked.
412 gori_map::set_range_invariant (tree name
, bool invariant
)
415 bitmap_clear_bit (m_maybe_variant
, SSA_NAME_VERSION (name
));
417 bitmap_set_bit (m_maybe_variant
, SSA_NAME_VERSION (name
));
420 // Return true if NAME is an import to block BB.
423 gori_map::is_import_p (tree name
, basic_block bb
)
425 // If no BB is specified, test if it is exported anywhere in the IL.
426 return bitmap_bit_p (imports (bb
), SSA_NAME_VERSION (name
));
429 // If NAME is non-NULL and defined in block BB, calculate the def
430 // chain and add it to m_outgoing.
433 gori_map::maybe_add_gori (tree name
, basic_block bb
)
437 // Check if there is a def chain, regardless of the block.
438 add_def_chain_to_bitmap (m_outgoing
[bb
->index
], name
);
439 // Check for any imports.
440 bitmap imp
= get_imports (name
);
441 // If there were imports, add them so we can recompute
443 bitmap_ior_into (m_incoming
[bb
->index
], imp
);
444 // This name is always an import.
445 if (gimple_bb (SSA_NAME_DEF_STMT (name
)) != bb
)
446 bitmap_set_bit (m_incoming
[bb
->index
], SSA_NAME_VERSION (name
));
448 // Def chain doesn't include itself, and even if there isn't a
449 // def chain, this name should be added to exports.
450 bitmap_set_bit (m_outgoing
[bb
->index
], SSA_NAME_VERSION (name
));
454 // Calculate all the required information for BB.
457 gori_map::calculate_gori (basic_block bb
)
460 if (bb
->index
>= (signed int)m_outgoing
.length ())
462 m_outgoing
.safe_grow_cleared (last_basic_block_for_fn (cfun
));
463 m_incoming
.safe_grow_cleared (last_basic_block_for_fn (cfun
));
465 gcc_checking_assert (m_outgoing
[bb
->index
] == NULL
);
466 m_outgoing
[bb
->index
] = BITMAP_ALLOC (&m_bitmaps
);
467 m_incoming
[bb
->index
] = BITMAP_ALLOC (&m_bitmaps
);
469 if (single_succ_p (bb
))
472 // If this block's last statement may generate range informaiton, go
474 gimple
*stmt
= gimple_outgoing_range_stmt_p (bb
);
477 if (is_a
<gcond
*> (stmt
))
479 gcond
*gc
= as_a
<gcond
*>(stmt
);
480 name
= gimple_range_ssa_p (gimple_cond_lhs (gc
));
481 maybe_add_gori (name
, gimple_bb (stmt
));
483 name
= gimple_range_ssa_p (gimple_cond_rhs (gc
));
484 maybe_add_gori (name
, gimple_bb (stmt
));
488 // Do not process switches if they are too large.
489 if (EDGE_COUNT (bb
->succs
) > (unsigned)param_evrp_switch_limit
)
491 gswitch
*gs
= as_a
<gswitch
*>(stmt
);
492 name
= gimple_range_ssa_p (gimple_switch_index (gs
));
493 maybe_add_gori (name
, gimple_bb (stmt
));
495 // Add this bitmap to the aggregate list of all outgoing names.
496 bitmap_ior_into (m_maybe_variant
, m_outgoing
[bb
->index
]);
499 // Dump the table information for BB to file F.
502 gori_map::dump (FILE *f
, basic_block bb
, bool verbose
)
504 // BB was not processed.
505 if (!m_outgoing
[bb
->index
] || bitmap_empty_p (m_outgoing
[bb
->index
]))
510 bitmap imp
= imports (bb
);
511 if (!bitmap_empty_p (imp
))
514 fprintf (f
, "bb<%u> Imports: ",bb
->index
);
516 fprintf (f
, "Imports: ");
517 FOR_EACH_GORI_IMPORT_NAME (*this, bb
, name
)
519 print_generic_expr (f
, name
, TDF_SLIM
);
526 fprintf (f
, "bb<%u> Exports: ",bb
->index
);
528 fprintf (f
, "Exports: ");
529 // Dump the export vector.
530 FOR_EACH_GORI_EXPORT_NAME (*this, bb
, name
)
532 print_generic_expr (f
, name
, TDF_SLIM
);
537 range_def_chain::dump (f
, bb
, " ");
540 // Dump the entire GORI map structure to file F.
543 gori_map::dump (FILE *f
)
546 FOR_EACH_BB_FN (bb
, cfun
)
556 // -------------------------------------------------------------------
558 // Construct a gori_compute object.
560 gori_compute::gori_compute (int not_executable_flag
)
561 : outgoing (param_evrp_switch_limit
), tracer ("GORI ")
563 m_not_executable_flag
= not_executable_flag
;
564 // Create a boolean_type true and false range.
565 m_bool_zero
= int_range
<2> (boolean_false_node
, boolean_false_node
);
566 m_bool_one
= int_range
<2> (boolean_true_node
, boolean_true_node
);
567 if (dump_file
&& (param_ranger_debug
& RANGER_DEBUG_GORI
))
568 tracer
.enable_trace ();
571 // Given the switch S, return an evaluation in R for NAME when the lhs
572 // evaluates to LHS. Returning false means the name being looked for
573 // was not resolvable.
576 gori_compute::compute_operand_range_switch (vrange
&r
, gswitch
*s
,
578 tree name
, fur_source
&src
)
580 tree op1
= gimple_switch_index (s
);
582 // If name matches, the range is simply the range from the edge.
583 // Empty ranges are viral as they are on a path which isn't
585 if (op1
== name
|| lhs
.undefined_p ())
591 // If op1 is in the defintion chain, pass lhs back.
592 if (gimple_range_ssa_p (op1
) && in_chain_p (name
, op1
))
593 return compute_operand_range (r
, SSA_NAME_DEF_STMT (op1
), lhs
, name
, src
);
599 // Return an evaluation for NAME as it would appear in STMT when the
600 // statement's lhs evaluates to LHS. If successful, return TRUE and
601 // store the evaluation in R, otherwise return FALSE.
604 gori_compute::compute_operand_range (vrange
&r
, gimple
*stmt
,
605 const vrange
&lhs
, tree name
,
606 fur_source
&src
, value_relation
*rel
)
609 value_relation
*vrel_ptr
= rel
;
610 // If the lhs doesn't tell us anything, neither will unwinding further.
611 if (lhs
.varying_p ())
614 // Empty ranges are viral as they are on an unexecutable path.
615 if (lhs
.undefined_p ())
620 if (is_a
<gswitch
*> (stmt
))
621 return compute_operand_range_switch (r
, as_a
<gswitch
*> (stmt
), lhs
, name
,
623 gimple_range_op_handler
handler (stmt
);
627 tree op1
= gimple_range_ssa_p (handler
.operand1 ());
628 tree op2
= gimple_range_ssa_p (handler
.operand2 ());
630 // If there is a relation, use it instead of any passed in. This will allow
631 // multiple relations to be processed in compound logicals.
634 relation_kind k
= handler
.op1_op2_relation (lhs
);
635 if (k
!= VREL_VARYING
)
637 vrel
.set_relation (k
, op1
, op2
);
642 // Handle end of lookup first.
644 return compute_operand1_range (r
, handler
, lhs
, name
, src
, vrel_ptr
);
646 return compute_operand2_range (r
, handler
, lhs
, name
, src
, vrel_ptr
);
648 // NAME is not in this stmt, but one of the names in it ought to be
650 bool op1_in_chain
= op1
&& in_chain_p (name
, op1
);
651 bool op2_in_chain
= op2
&& in_chain_p (name
, op2
);
653 // If neither operand is derived, then this stmt tells us nothing.
654 if (!op1_in_chain
&& !op2_in_chain
)
658 // Process logicals as they have special handling.
659 if (is_gimple_logical_p (stmt
))
662 if ((idx
= tracer
.header ("compute_operand ")))
664 print_generic_expr (dump_file
, name
, TDF_SLIM
);
665 fprintf (dump_file
, " with LHS = ");
666 lhs
.dump (dump_file
);
667 fprintf (dump_file
, " at stmt ");
668 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
671 tree type
= TREE_TYPE (name
);
672 Value_Range
op1_trange (type
), op1_frange (type
);
673 Value_Range
op2_trange (type
), op2_frange (type
);
674 compute_logical_operands (op1_trange
, op1_frange
, handler
,
676 name
, src
, op1
, op1_in_chain
);
677 compute_logical_operands (op2_trange
, op2_frange
, handler
,
679 name
, src
, op2
, op2_in_chain
);
680 res
= logical_combine (r
,
681 gimple_expr_code (stmt
),
683 op1_trange
, op1_frange
, op2_trange
, op2_frange
);
685 tracer
.trailer (idx
, "compute_operand", res
, name
, r
);
687 // Follow the appropriate operands now.
688 else if (op1_in_chain
&& op2_in_chain
)
689 res
= compute_operand1_and_operand2_range (r
, handler
, lhs
, name
, src
,
691 else if (op1_in_chain
)
692 res
= compute_operand1_range (r
, handler
, lhs
, name
, src
, vrel_ptr
);
693 else if (op2_in_chain
)
694 res
= compute_operand2_range (r
, handler
, lhs
, name
, src
, vrel_ptr
);
698 // If neither operand is derived, this statement tells us nothing.
703 // Return TRUE if range R is either a true or false compatible range.
706 range_is_either_true_or_false (const irange
&r
)
708 if (r
.undefined_p ())
711 // This is complicated by the fact that Ada has multi-bit booleans,
712 // so true can be ~[0, 0] (i.e. [1,MAX]).
713 tree type
= r
.type ();
714 gcc_checking_assert (range_compatible_p (type
, boolean_type_node
));
715 return (r
.singleton_p () || !r
.contains_p (build_zero_cst (type
)));
718 // Evaluate a binary logical expression by combining the true and
719 // false ranges for each of the operands based on the result value in
723 gori_compute::logical_combine (vrange
&r
, enum tree_code code
,
725 const vrange
&op1_true
, const vrange
&op1_false
,
726 const vrange
&op2_true
, const vrange
&op2_false
)
728 if (op1_true
.varying_p () && op1_false
.varying_p ()
729 && op2_true
.varying_p () && op2_false
.varying_p ())
733 if ((idx
= tracer
.header ("logical_combine")))
739 fprintf (dump_file
, " || ");
743 fprintf (dump_file
, " && ");
748 fprintf (dump_file
, " with LHS = ");
749 lhs
.dump (dump_file
);
750 fputc ('\n', dump_file
);
752 tracer
.print (idx
, "op1_true = ");
753 op1_true
.dump (dump_file
);
754 fprintf (dump_file
, " op1_false = ");
755 op1_false
.dump (dump_file
);
756 fputc ('\n', dump_file
);
757 tracer
.print (idx
, "op2_true = ");
758 op2_true
.dump (dump_file
);
759 fprintf (dump_file
, " op2_false = ");
760 op2_false
.dump (dump_file
);
761 fputc ('\n', dump_file
);
764 // This is not a simple fold of a logical expression, rather it
765 // determines ranges which flow through the logical expression.
767 // Assuming x_8 is an unsigned char, and relational statements:
770 // consider the logical expression and branch:
774 // To determine the range of x_8 on either edge of the branch, one
775 // must first determine what the range of x_8 is when the boolean
776 // values of b_1 and b_2 are both true and false.
777 // b_1 TRUE x_8 = [0, 19]
778 // b_1 FALSE x_8 = [20, 255]
779 // b_2 TRUE x_8 = [6, 255]
780 // b_2 FALSE x_8 = [0,5].
782 // These ranges are then combined based on the expected outcome of
783 // the branch. The range on the TRUE side of the branch must satisfy
784 // b_1 == true && b_2 == true
786 // In terms of x_8, that means both x_8 == [0, 19] and x_8 = [6, 255]
787 // must be true. The range of x_8 on the true side must be the
788 // intersection of both ranges since both must be true. Thus the
789 // range of x_8 on the true side is [6, 19].
791 // To determine the ranges on the FALSE side, all 3 combinations of
792 // failing ranges must be considered, and combined as any of them
793 // can cause the false result.
795 // If the LHS can be TRUE or FALSE, then evaluate both a TRUE and
796 // FALSE results and combine them. If we fell back to VARYING any
797 // range restrictions that have been discovered up to this point
799 if (!range_is_either_true_or_false (lhs
))
803 if (logical_combine (r1
, code
, m_bool_zero
, op1_true
, op1_false
,
805 && logical_combine (r
, code
, m_bool_one
, op1_true
, op1_false
,
806 op2_true
, op2_false
))
815 tracer
.print (idx
, "logical_combine produced ");
817 fputc ('\n', dump_file
);
823 // A logical AND combines ranges from 2 boolean conditions.
829 // The TRUE side is the intersection of the 2 true ranges.
831 r
.intersect (op2_true
);
835 // The FALSE side is the union of the other 3 cases.
836 Value_Range
ff (op1_false
);
837 ff
.intersect (op2_false
);
838 Value_Range
tf (op1_true
);
839 tf
.intersect (op2_false
);
840 Value_Range
ft (op1_false
);
841 ft
.intersect (op2_true
);
847 // A logical OR combines ranges from 2 boolean conditons.
853 // An OR operation will only take the FALSE path if both
854 // operands are false simlulateously, which means they should
855 // be intersected. !(x || y) == !x && !y
857 r
.intersect (op2_false
);
861 // The TRUE side of an OR operation will be the union of
862 // the other three combinations.
863 Value_Range
tt (op1_true
);
864 tt
.intersect (op2_true
);
865 Value_Range
tf (op1_true
);
866 tf
.intersect (op2_false
);
867 Value_Range
ft (op1_false
);
868 ft
.intersect (op2_true
);
879 tracer
.trailer (idx
, "logical_combine", true, NULL_TREE
, r
);
884 // Given a logical STMT, calculate true and false ranges for each
885 // potential path of NAME, assuming NAME came through the OP chain if
886 // OP_IN_CHAIN is true.
889 gori_compute::compute_logical_operands (vrange
&true_range
, vrange
&false_range
,
890 gimple_range_op_handler
&handler
,
892 tree name
, fur_source
&src
,
893 tree op
, bool op_in_chain
)
895 gimple
*stmt
= handler
.stmt ();
896 gimple
*src_stmt
= gimple_range_ssa_p (op
) ? SSA_NAME_DEF_STMT (op
) : NULL
;
897 if (!op_in_chain
|| !src_stmt
|| chain_import_p (handler
.lhs (), op
))
899 // If op is not in the def chain, or defined in this block,
900 // use its known value on entry to the block.
901 src
.get_operand (true_range
, name
);
902 false_range
= true_range
;
904 if ((idx
= tracer
.header ("logical_operand")))
906 print_generic_expr (dump_file
, op
, TDF_SLIM
);
907 fprintf (dump_file
, " not in computation chain. Queried.\n");
908 tracer
.trailer (idx
, "logical_operand", true, NULL_TREE
, true_range
);
913 enum tree_code code
= gimple_expr_code (stmt
);
914 // Optimize [0 = x | y], since neither operand can ever be non-zero.
915 if ((code
== BIT_IOR_EXPR
|| code
== TRUTH_OR_EXPR
) && lhs
.zero_p ())
917 if (!compute_operand_range (false_range
, src_stmt
, m_bool_zero
, name
,
919 src
.get_operand (false_range
, name
);
920 true_range
= false_range
;
924 // Optimize [1 = x & y], since neither operand can ever be zero.
925 if ((code
== BIT_AND_EXPR
|| code
== TRUTH_AND_EXPR
) && lhs
== m_bool_one
)
927 if (!compute_operand_range (true_range
, src_stmt
, m_bool_one
, name
, src
))
928 src
.get_operand (true_range
, name
);
929 false_range
= true_range
;
933 // Calculate ranges for true and false on both sides, since the false
934 // path is not always a simple inversion of the true side.
935 if (!compute_operand_range (true_range
, src_stmt
, m_bool_one
, name
, src
))
936 src
.get_operand (true_range
, name
);
937 if (!compute_operand_range (false_range
, src_stmt
, m_bool_zero
, name
, src
))
938 src
.get_operand (false_range
, name
);
942 // This routine will try to refine the ranges of OP1 and OP2 given a relation
943 // K between them. In order to perform this refinement, one of the operands
944 // must be in the definition chain of the other. The use is refined using
945 // op1/op2_range on the statement, and the defintion is then recalculated
946 // using the relation.
949 gori_compute::refine_using_relation (tree op1
, vrange
&op1_range
,
950 tree op2
, vrange
&op2_range
,
951 fur_source
&src
, relation_kind k
)
953 gcc_checking_assert (TREE_CODE (op1
) == SSA_NAME
);
954 gcc_checking_assert (TREE_CODE (op2
) == SSA_NAME
);
955 gcc_checking_assert (k
!= VREL_VARYING
&& k
!= VREL_UNDEFINED
);
958 bool op1_def_p
= in_chain_p (op2
, op1
);
960 if (!in_chain_p (op1
, op2
))
963 tree def_op
= op1_def_p
? op1
: op2
;
964 tree use_op
= op1_def_p
? op2
: op1
;
967 k
= relation_swap (k
);
969 // op1_def is true if we want to look up op1, otherwise we want op2.
970 // if neither is the case, we returned in the above check.
972 gimple
*def_stmt
= SSA_NAME_DEF_STMT (def_op
);
973 gimple_range_op_handler
op_handler (def_stmt
);
976 tree def_op1
= op_handler
.operand1 ();
977 tree def_op2
= op_handler
.operand2 ();
978 // if the def isn't binary, the relation will not be useful.
982 // Determine if op2 is directly referenced as an operand.
983 if (def_op1
== use_op
)
985 // def_stmt has op1 in the 1st operand position.
986 Value_Range
other_op (TREE_TYPE (def_op2
));
987 src
.get_operand (other_op
, def_op2
);
989 // Using op1_range as the LHS, and relation REL, evaluate op2.
990 tree type
= TREE_TYPE (def_op1
);
991 Value_Range
new_result (type
);
992 if (!op_handler
.op1_range (new_result
, type
,
993 op1_def_p
? op1_range
: op2_range
,
994 other_op
, relation_trio::lhs_op2 (k
)))
998 change
|= op2_range
.intersect (new_result
);
1000 if (op_handler
.fold_range (new_result
, type
, op2_range
, other_op
))
1002 change
|= op1_range
.intersect (new_result
);
1007 change
|= op1_range
.intersect (new_result
);
1009 if (op_handler
.fold_range (new_result
, type
, op1_range
, other_op
))
1011 change
|= op2_range
.intersect (new_result
);
1015 else if (def_op2
== use_op
)
1017 // def_stmt has op1 in the 1st operand position.
1018 Value_Range
other_op (TREE_TYPE (def_op1
));
1019 src
.get_operand (other_op
, def_op1
);
1021 // Using op1_range as the LHS, and relation REL, evaluate op2.
1022 tree type
= TREE_TYPE (def_op2
);
1023 Value_Range
new_result (type
);
1024 if (!op_handler
.op2_range (new_result
, type
,
1025 op1_def_p
? op1_range
: op2_range
,
1026 other_op
, relation_trio::lhs_op1 (k
)))
1030 change
|= op2_range
.intersect (new_result
);
1032 if (op_handler
.fold_range (new_result
, type
, other_op
, op2_range
))
1034 change
|= op1_range
.intersect (new_result
);
1039 change
|= op1_range
.intersect (new_result
);
1041 if (op_handler
.fold_range (new_result
, type
, other_op
, op1_range
))
1043 change
|= op2_range
.intersect (new_result
);
1050 // Calculate a range for NAME from the operand 1 position of STMT
1051 // assuming the result of the statement is LHS. Return the range in
1052 // R, or false if no range could be calculated.
1055 gori_compute::compute_operand1_range (vrange
&r
,
1056 gimple_range_op_handler
&handler
,
1057 const vrange
&lhs
, tree name
,
1058 fur_source
&src
, value_relation
*rel
)
1060 gimple
*stmt
= handler
.stmt ();
1061 tree op1
= handler
.operand1 ();
1062 tree op2
= handler
.operand2 ();
1063 tree lhs_name
= gimple_get_lhs (stmt
);
1065 Value_Range
op1_range (TREE_TYPE (op1
));
1066 Value_Range
tmp (TREE_TYPE (op1
));
1067 Value_Range
op2_range (op2
? TREE_TYPE (op2
) : TREE_TYPE (op1
));
1069 // Fetch the known range for op1 in this block.
1070 src
.get_operand (op1_range
, op1
);
1072 // Now range-op calcuate and put that result in r.
1075 src
.get_operand (op2_range
, op2
);
1076 relation_kind k
= VREL_VARYING
;
1077 relation_kind op_op
= (op1
== op2
) ? VREL_EQ
: VREL_VARYING
;
1080 if (lhs_name
== rel
->op1 () && op1
== rel
->op2 ())
1082 else if (lhs_name
== rel
->op2 () && op1
== rel
->op1 ())
1083 k
= relation_swap (rel
->kind ());
1084 else if (op1
== rel
->op1 () && op2
== rel
->op2 ())
1086 op_op
= rel
->kind ();
1087 refine_using_relation (op1
, op1_range
, op2
, op2_range
, src
, op_op
);
1089 else if (op1
== rel
->op2 () && op2
== rel
->op1 ())
1091 op_op
= relation_swap (rel
->kind ());
1092 refine_using_relation (op1
, op1_range
, op2
, op2_range
, src
, op_op
);
1095 if (!handler
.calc_op1 (tmp
, lhs
, op2_range
, relation_trio (VREL_VARYING
,
1101 // We pass op1_range to the unary operation. Nomally it's a
1102 // hidden range_for_type parameter, but sometimes having the
1103 // actual range can result in better information.
1104 if (!handler
.calc_op1 (tmp
, lhs
, op1_range
, TRIO_VARYING
))
1109 if ((idx
= tracer
.header ("compute op 1 (")))
1111 print_generic_expr (dump_file
, op1
, TDF_SLIM
);
1112 fprintf (dump_file
, ") at ");
1113 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1114 tracer
.print (idx
, "LHS =");
1115 lhs
.dump (dump_file
);
1116 if (op2
&& TREE_CODE (op2
) == SSA_NAME
)
1118 fprintf (dump_file
, ", ");
1119 print_generic_expr (dump_file
, op2
, TDF_SLIM
);
1120 fprintf (dump_file
, " = ");
1121 op2_range
.dump (dump_file
);
1123 fprintf (dump_file
, "\n");
1124 tracer
.print (idx
, "Computes ");
1125 print_generic_expr (dump_file
, op1
, TDF_SLIM
);
1126 fprintf (dump_file
, " = ");
1127 tmp
.dump (dump_file
);
1128 fprintf (dump_file
, " intersect Known range : ");
1129 op1_range
.dump (dump_file
);
1130 fputc ('\n', dump_file
);
1132 // Intersect the calculated result with the known result and return if done.
1135 tmp
.intersect (op1_range
);
1138 tracer
.trailer (idx
, "produces ", true, name
, r
);
1141 // If the calculation continues, we're using op1_range as the new LHS.
1142 op1_range
.intersect (tmp
);
1145 tracer
.trailer (idx
, "produces ", true, op1
, op1_range
);
1146 gimple
*src_stmt
= SSA_NAME_DEF_STMT (op1
);
1147 gcc_checking_assert (src_stmt
);
1149 // Then feed this range back as the LHS of the defining statement.
1150 return compute_operand_range (r
, src_stmt
, op1_range
, name
, src
, rel
);
1154 // Calculate a range for NAME from the operand 2 position of S
1155 // assuming the result of the statement is LHS. Return the range in
1156 // R, or false if no range could be calculated.
1159 gori_compute::compute_operand2_range (vrange
&r
,
1160 gimple_range_op_handler
&handler
,
1161 const vrange
&lhs
, tree name
,
1162 fur_source
&src
, value_relation
*rel
)
1164 gimple
*stmt
= handler
.stmt ();
1165 tree op1
= handler
.operand1 ();
1166 tree op2
= handler
.operand2 ();
1167 tree lhs_name
= gimple_get_lhs (stmt
);
1169 Value_Range
op1_range (TREE_TYPE (op1
));
1170 Value_Range
op2_range (TREE_TYPE (op2
));
1171 Value_Range
tmp (TREE_TYPE (op2
));
1173 src
.get_operand (op1_range
, op1
);
1174 src
.get_operand (op2_range
, op2
);
1175 relation_kind k
= VREL_VARYING
;
1176 relation_kind op_op
= (op1
== op2
) ? VREL_EQ
: VREL_VARYING
;
1179 if (lhs_name
== rel
->op1 () && op2
== rel
->op2 ())
1181 else if (lhs_name
== rel
->op2 () && op2
== rel
->op1 ())
1182 k
= relation_swap (rel
->kind ());
1183 else if (op1
== rel
->op1 () && op2
== rel
->op2 ())
1185 op_op
= rel
->kind ();
1186 refine_using_relation (op1
, op1_range
, op2
, op2_range
, src
, op_op
);
1188 else if (op1
== rel
->op2 () && op2
== rel
->op1 ())
1190 op_op
= relation_swap (rel
->kind ());
1191 refine_using_relation (op1
, op1_range
, op2
, op2_range
, src
, op_op
);
1195 // Intersect with range for op2 based on lhs and op1.
1196 if (!handler
.calc_op2 (tmp
, lhs
, op1_range
, relation_trio (k
, VREL_VARYING
,
1201 if ((idx
= tracer
.header ("compute op 2 (")))
1203 print_generic_expr (dump_file
, op2
, TDF_SLIM
);
1204 fprintf (dump_file
, ") at ");
1205 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1206 tracer
.print (idx
, "LHS = ");
1207 lhs
.dump (dump_file
);
1208 if (TREE_CODE (op1
) == SSA_NAME
)
1210 fprintf (dump_file
, ", ");
1211 print_generic_expr (dump_file
, op1
, TDF_SLIM
);
1212 fprintf (dump_file
, " = ");
1213 op1_range
.dump (dump_file
);
1215 fprintf (dump_file
, "\n");
1216 tracer
.print (idx
, "Computes ");
1217 print_generic_expr (dump_file
, op2
, TDF_SLIM
);
1218 fprintf (dump_file
, " = ");
1219 tmp
.dump (dump_file
);
1220 fprintf (dump_file
, " intersect Known range : ");
1221 op2_range
.dump (dump_file
);
1222 fputc ('\n', dump_file
);
1224 // Intersect the calculated result with the known result and return if done.
1227 tmp
.intersect (op2_range
);
1230 tracer
.trailer (idx
, " produces ", true, NULL_TREE
, r
);
1233 // If the calculation continues, we're using op2_range as the new LHS.
1234 op2_range
.intersect (tmp
);
1237 tracer
.trailer (idx
, " produces ", true, op2
, op2_range
);
1238 gimple
*src_stmt
= SSA_NAME_DEF_STMT (op2
);
1239 gcc_checking_assert (src_stmt
);
1240 // gcc_checking_assert (!is_import_p (op2, find.bb));
1242 // Then feed this range back as the LHS of the defining statement.
1243 return compute_operand_range (r
, src_stmt
, op2_range
, name
, src
, rel
);
1246 // Calculate a range for NAME from both operand positions of S
1247 // assuming the result of the statement is LHS. Return the range in
1248 // R, or false if no range could be calculated.
1251 gori_compute::compute_operand1_and_operand2_range (vrange
&r
,
1252 gimple_range_op_handler
1257 value_relation
*rel
)
1259 Value_Range
op_range (TREE_TYPE (name
));
1261 // Calculate a good a range for op2. Since op1 == op2, this will
1262 // have already included whatever the actual range of name is.
1263 if (!compute_operand2_range (op_range
, handler
, lhs
, name
, src
, rel
))
1266 // Now get the range thru op1.
1267 if (!compute_operand1_range (r
, handler
, lhs
, name
, src
, rel
))
1270 // Both operands have to be simultaneously true, so perform an intersection.
1271 r
.intersect (op_range
);
1275 // Return TRUE if NAME can be recomputed on any edge exiting BB. If any
1276 // direct dependant is exported, it may also change the computed value of NAME.
1279 gori_compute::may_recompute_p (tree name
, basic_block bb
)
1281 tree dep1
= depend1 (name
);
1282 tree dep2
= depend2 (name
);
1284 // If the first dependency is not set, there is no recompuation.
1288 // Don't recalculate PHIs or statements with side_effects.
1289 gimple
*s
= SSA_NAME_DEF_STMT (name
);
1290 if (is_a
<gphi
*> (s
) || gimple_has_side_effects (s
))
1293 // If edge is specified, check if NAME can be recalculated on that edge.
1295 return ((is_export_p (dep1
, bb
))
1296 || (dep2
&& is_export_p (dep2
, bb
)));
1298 return (is_export_p (dep1
)) || (dep2
&& is_export_p (dep2
));
1301 // Return TRUE if NAME can be recomputed on edge E. If any direct dependant
1302 // is exported on edge E, it may change the computed value of NAME.
1305 gori_compute::may_recompute_p (tree name
, edge e
)
1307 gcc_checking_assert (e
);
1308 return may_recompute_p (name
, e
->src
);
1312 // Return TRUE if a range can be calculated or recomputed for NAME on any
1316 gori_compute::has_edge_range_p (tree name
, basic_block bb
)
1318 // Check if NAME is an export or can be recomputed.
1320 return is_export_p (name
, bb
) || may_recompute_p (name
, bb
);
1322 // If no block is specified, check for anywhere in the IL.
1323 return is_export_p (name
) || may_recompute_p (name
);
1326 // Return TRUE if a range can be calculated or recomputed for NAME on edge E.
1329 gori_compute::has_edge_range_p (tree name
, edge e
)
1331 gcc_checking_assert (e
);
1332 return has_edge_range_p (name
, e
->src
);
1335 // Calculate a range on edge E and return it in R. Try to evaluate a
1336 // range for NAME on this edge. Return FALSE if this is either not a
1337 // control edge or NAME is not defined by this edge.
1340 gori_compute::outgoing_edge_range_p (vrange
&r
, edge e
, tree name
,
1345 if ((e
->flags
& m_not_executable_flag
))
1348 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1349 fprintf (dump_file
, "Outgoing edge %d->%d unexecutable.\n",
1350 e
->src
->index
, e
->dest
->index
);
1354 gcc_checking_assert (gimple_range_ssa_p (name
));
1356 // Determine if there is an outgoing edge.
1357 gimple
*stmt
= outgoing
.edge_range_p (lhs
, e
);
1361 fur_stmt
src (stmt
, &q
);
1362 // If NAME can be calculated on the edge, use that.
1363 if (is_export_p (name
, e
->src
))
1366 if ((idx
= tracer
.header ("outgoing_edge")))
1368 fprintf (dump_file
, " for ");
1369 print_generic_expr (dump_file
, name
, TDF_SLIM
);
1370 fprintf (dump_file
, " on edge %d->%d\n",
1371 e
->src
->index
, e
->dest
->index
);
1373 if ((res
= compute_operand_range (r
, stmt
, lhs
, name
, src
)))
1375 // Sometimes compatible types get interchanged. See PR97360.
1376 // Make sure we are returning the type of the thing we asked for.
1377 if (!r
.undefined_p () && r
.type () != TREE_TYPE (name
))
1379 gcc_checking_assert (range_compatible_p (r
.type (),
1381 range_cast (r
, TREE_TYPE (name
));
1385 tracer
.trailer (idx
, "outgoing_edge", res
, name
, r
);
1388 // If NAME isn't exported, check if it can be recomputed.
1389 else if (may_recompute_p (name
, e
))
1391 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
1393 if ((idx
= tracer
.header ("recomputation")))
1395 fprintf (dump_file
, " attempt on edge %d->%d for ",
1396 e
->src
->index
, e
->dest
->index
);
1397 print_gimple_stmt (dump_file
, def_stmt
, 0, TDF_SLIM
);
1399 // Simply calculate DEF_STMT on edge E using the range query Q.
1400 fold_range (r
, def_stmt
, e
, &q
);
1402 tracer
.trailer (idx
, "recomputation", true, name
, r
);
1408 // Given COND ? OP1 : OP2 with ranges R1 for OP1 and R2 for OP2, Use gori
1409 // to further resolve R1 and R2 if there are any dependencies between
1410 // OP1 and COND or OP2 and COND. All values can are to be calculated using SRC
1411 // as the origination source location for operands..
1412 // Effectively, use COND an the edge condition and solve for OP1 on the true
1413 // edge and OP2 on the false edge.
1416 gori_compute::condexpr_adjust (vrange
&r1
, vrange
&r2
, gimple
*, tree cond
,
1417 tree op1
, tree op2
, fur_source
&src
)
1419 tree ssa1
= gimple_range_ssa_p (op1
);
1420 tree ssa2
= gimple_range_ssa_p (op2
);
1423 if (TREE_CODE (cond
) != SSA_NAME
)
1425 gassign
*cond_def
= dyn_cast
<gassign
*> (SSA_NAME_DEF_STMT (cond
));
1427 || TREE_CODE_CLASS (gimple_assign_rhs_code (cond_def
)) != tcc_comparison
)
1429 tree type
= TREE_TYPE (gimple_assign_rhs1 (cond_def
));
1430 if (!range_compatible_p (type
, TREE_TYPE (gimple_assign_rhs2 (cond_def
))))
1432 range_op_handler
hand (gimple_assign_rhs_code (cond_def
), type
);
1436 tree c1
= gimple_range_ssa_p (gimple_assign_rhs1 (cond_def
));
1437 tree c2
= gimple_range_ssa_p (gimple_assign_rhs2 (cond_def
));
1439 // Only solve if there is one SSA name in the condition.
1440 if ((!c1
&& !c2
) || (c1
&& c2
))
1443 // Pick up the current values of each part of the condition.
1444 tree rhs1
= gimple_assign_rhs1 (cond_def
);
1445 tree rhs2
= gimple_assign_rhs2 (cond_def
);
1446 Value_Range
cl (TREE_TYPE (rhs1
));
1447 Value_Range
cr (TREE_TYPE (rhs2
));
1448 src
.get_operand (cl
, rhs1
);
1449 src
.get_operand (cr
, rhs2
);
1451 tree cond_name
= c1
? c1
: c2
;
1452 gimple
*def_stmt
= SSA_NAME_DEF_STMT (cond_name
);
1454 // Evaluate the value of COND_NAME on the true and false edges, using either
1455 // the op1 or op2 routines based on its location.
1456 Value_Range
cond_true (type
), cond_false (type
);
1459 if (!hand
.op1_range (cond_false
, type
, m_bool_zero
, cr
))
1461 if (!hand
.op1_range (cond_true
, type
, m_bool_one
, cr
))
1463 cond_false
.intersect (cl
);
1464 cond_true
.intersect (cl
);
1468 if (!hand
.op2_range (cond_false
, type
, m_bool_zero
, cl
))
1470 if (!hand
.op2_range (cond_true
, type
, m_bool_one
, cl
))
1472 cond_false
.intersect (cr
);
1473 cond_true
.intersect (cr
);
1477 if ((idx
= tracer
.header ("cond_expr evaluation : ")))
1479 fprintf (dump_file
, " range1 = ");
1480 r1
.dump (dump_file
);
1481 fprintf (dump_file
, ", range2 = ");
1482 r1
.dump (dump_file
);
1483 fprintf (dump_file
, "\n");
1486 // Now solve for SSA1 or SSA2 if they are in the dependency chain.
1487 if (ssa1
&& in_chain_p (ssa1
, cond_name
))
1489 Value_Range
tmp1 (TREE_TYPE (ssa1
));
1490 if (compute_operand_range (tmp1
, def_stmt
, cond_true
, ssa1
, src
))
1491 r1
.intersect (tmp1
);
1493 if (ssa2
&& in_chain_p (ssa2
, cond_name
))
1495 Value_Range
tmp2 (TREE_TYPE (ssa2
));
1496 if (compute_operand_range (tmp2
, def_stmt
, cond_false
, ssa2
, src
))
1497 r2
.intersect (tmp2
);
1501 tracer
.print (idx
, "outgoing: range1 = ");
1502 r1
.dump (dump_file
);
1503 fprintf (dump_file
, ", range2 = ");
1504 r1
.dump (dump_file
);
1505 fprintf (dump_file
, "\n");
1506 tracer
.trailer (idx
, "cond_expr", true, cond_name
, cond_true
);
1511 // Dump what is known to GORI computes to listing file F.
1514 gori_compute::dump (FILE *f
)
1519 // ------------------------------------------------------------------------
1520 // GORI iterator. Although we have bitmap iterators, don't expose that it
1521 // is currently a bitmap. Use an export iterator to hide future changes.
1523 // Construct a basic iterator over an export bitmap.
1525 gori_export_iterator::gori_export_iterator (bitmap b
)
1529 bmp_iter_set_init (&bi
, b
, 1, &y
);
1533 // Move to the next export bitmap spot.
1536 gori_export_iterator::next ()
1538 bmp_iter_next (&bi
, &y
);
1542 // Fetch the name of the next export in the export list. Return NULL if
1543 // iteration is done.
1546 gori_export_iterator::get_name ()
1551 while (bmp_iter_set (&bi
, &y
))
1553 tree t
= ssa_name (y
);