Merge branch 'master' into python
[official-gcc.git] / gcc / tree-ssa-math-opts.c
blobf89910b82e544cc4ae75153df93495a8be07ad45
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Currently, the only mini-pass in this file tries to CSE reciprocal
22 operations. These are common in sequences such as this one:
24 modulus = sqrt(x*x + y*y + z*z);
25 x = x / modulus;
26 y = y / modulus;
27 z = z / modulus;
29 that can be optimized to
31 modulus = sqrt(x*x + y*y + z*z);
32 rmodulus = 1.0 / modulus;
33 x = x * rmodulus;
34 y = y * rmodulus;
35 z = z * rmodulus;
37 We do this for loop invariant divisors, and with this pass whenever
38 we notice that a division has the same divisor multiple times.
40 Of course, like in PRE, we don't insert a division if a dominator
41 already has one. However, this cannot be done as an extension of
42 PRE for several reasons.
44 First of all, with some experiments it was found out that the
45 transformation is not always useful if there are only two divisions
46 hy the same divisor. This is probably because modern processors
47 can pipeline the divisions; on older, in-order processors it should
48 still be effective to optimize two divisions by the same number.
49 We make this a param, and it shall be called N in the remainder of
50 this comment.
52 Second, if trapping math is active, we have less freedom on where
53 to insert divisions: we can only do so in basic blocks that already
54 contain one. (If divisions don't trap, instead, we can insert
55 divisions elsewhere, which will be in blocks that are common dominators
56 of those that have the division).
58 We really don't want to compute the reciprocal unless a division will
59 be found. To do this, we won't insert the division in a basic block
60 that has less than N divisions *post-dominating* it.
62 The algorithm constructs a subset of the dominator tree, holding the
63 blocks containing the divisions and the common dominators to them,
64 and walk it twice. The first walk is in post-order, and it annotates
65 each block with the number of divisions that post-dominate it: this
66 gives information on where divisions can be inserted profitably.
67 The second walk is in pre-order, and it inserts divisions as explained
68 above, and replaces divisions by multiplications.
70 In the best case, the cost of the pass is O(n_statements). In the
71 worst-case, the cost is due to creating the dominator tree subset,
72 with a cost of O(n_basic_blocks ^ 2); however this can only happen
73 for n_statements / n_basic_blocks statements. So, the amortized cost
74 of creating the dominator tree subset is O(n_basic_blocks) and the
75 worst-case cost of the pass is O(n_statements * n_basic_blocks).
77 More practically, the cost will be small because there are few
78 divisions, and they tend to be in the same basic block, so insert_bb
79 is called very few times.
81 If we did this using domwalk.c, an efficient implementation would have
82 to work on all the variables in a single pass, because we could not
83 work on just a subset of the dominator tree, as we do now, and the
84 cost would also be something like O(n_statements * n_basic_blocks).
85 The data structures would be more complex in order to work on all the
86 variables in a single pass. */
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "flags.h"
93 #include "tree.h"
94 #include "tree-flow.h"
95 #include "timevar.h"
96 #include "tree-pass.h"
97 #include "alloc-pool.h"
98 #include "basic-block.h"
99 #include "target.h"
100 #include "diagnostic.h"
101 #include "gimple-pretty-print.h"
103 /* FIXME: RTL headers have to be included here for optabs. */
104 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
105 #include "expr.h" /* Because optabs.h wants sepops. */
106 #include "optabs.h"
108 /* This structure represents one basic block that either computes a
109 division, or is a common dominator for basic block that compute a
110 division. */
111 struct occurrence {
112 /* The basic block represented by this structure. */
113 basic_block bb;
115 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
116 inserted in BB. */
117 tree recip_def;
119 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
120 was inserted in BB. */
121 gimple recip_def_stmt;
123 /* Pointer to a list of "struct occurrence"s for blocks dominated
124 by BB. */
125 struct occurrence *children;
127 /* Pointer to the next "struct occurrence"s in the list of blocks
128 sharing a common dominator. */
129 struct occurrence *next;
131 /* The number of divisions that are in BB before compute_merit. The
132 number of divisions that are in BB or post-dominate it after
133 compute_merit. */
134 int num_divisions;
136 /* True if the basic block has a division, false if it is a common
137 dominator for basic blocks that do. If it is false and trapping
138 math is active, BB is not a candidate for inserting a reciprocal. */
139 bool bb_has_division;
143 /* The instance of "struct occurrence" representing the highest
144 interesting block in the dominator tree. */
145 static struct occurrence *occ_head;
147 /* Allocation pool for getting instances of "struct occurrence". */
148 static alloc_pool occ_pool;
152 /* Allocate and return a new struct occurrence for basic block BB, and
153 whose children list is headed by CHILDREN. */
154 static struct occurrence *
155 occ_new (basic_block bb, struct occurrence *children)
157 struct occurrence *occ;
159 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
160 memset (occ, 0, sizeof (struct occurrence));
162 occ->bb = bb;
163 occ->children = children;
164 return occ;
168 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
169 list of "struct occurrence"s, one per basic block, having IDOM as
170 their common dominator.
172 We try to insert NEW_OCC as deep as possible in the tree, and we also
173 insert any other block that is a common dominator for BB and one
174 block already in the tree. */
176 static void
177 insert_bb (struct occurrence *new_occ, basic_block idom,
178 struct occurrence **p_head)
180 struct occurrence *occ, **p_occ;
182 for (p_occ = p_head; (occ = *p_occ) != NULL; )
184 basic_block bb = new_occ->bb, occ_bb = occ->bb;
185 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
186 if (dom == bb)
188 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
189 from its list. */
190 *p_occ = occ->next;
191 occ->next = new_occ->children;
192 new_occ->children = occ;
194 /* Try the next block (it may as well be dominated by BB). */
197 else if (dom == occ_bb)
199 /* OCC_BB dominates BB. Tail recurse to look deeper. */
200 insert_bb (new_occ, dom, &occ->children);
201 return;
204 else if (dom != idom)
206 gcc_assert (!dom->aux);
208 /* There is a dominator between IDOM and BB, add it and make
209 two children out of NEW_OCC and OCC. First, remove OCC from
210 its list. */
211 *p_occ = occ->next;
212 new_occ->next = occ;
213 occ->next = NULL;
215 /* None of the previous blocks has DOM as a dominator: if we tail
216 recursed, we would reexamine them uselessly. Just switch BB with
217 DOM, and go on looking for blocks dominated by DOM. */
218 new_occ = occ_new (dom, new_occ);
221 else
223 /* Nothing special, go on with the next element. */
224 p_occ = &occ->next;
228 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
229 new_occ->next = *p_head;
230 *p_head = new_occ;
233 /* Register that we found a division in BB. */
235 static inline void
236 register_division_in (basic_block bb)
238 struct occurrence *occ;
240 occ = (struct occurrence *) bb->aux;
241 if (!occ)
243 occ = occ_new (bb, NULL);
244 insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
247 occ->bb_has_division = true;
248 occ->num_divisions++;
252 /* Compute the number of divisions that postdominate each block in OCC and
253 its children. */
255 static void
256 compute_merit (struct occurrence *occ)
258 struct occurrence *occ_child;
259 basic_block dom = occ->bb;
261 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
263 basic_block bb;
264 if (occ_child->children)
265 compute_merit (occ_child);
267 if (flag_exceptions)
268 bb = single_noncomplex_succ (dom);
269 else
270 bb = dom;
272 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
273 occ->num_divisions += occ_child->num_divisions;
278 /* Return whether USE_STMT is a floating-point division by DEF. */
279 static inline bool
280 is_division_by (gimple use_stmt, tree def)
282 return is_gimple_assign (use_stmt)
283 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
284 && gimple_assign_rhs2 (use_stmt) == def
285 /* Do not recognize x / x as valid division, as we are getting
286 confused later by replacing all immediate uses x in such
287 a stmt. */
288 && gimple_assign_rhs1 (use_stmt) != def;
291 /* Walk the subset of the dominator tree rooted at OCC, setting the
292 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
293 the given basic block. The field may be left NULL, of course,
294 if it is not possible or profitable to do the optimization.
296 DEF_BSI is an iterator pointing at the statement defining DEF.
297 If RECIP_DEF is set, a dominator already has a computation that can
298 be used. */
300 static void
301 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
302 tree def, tree recip_def, int threshold)
304 tree type;
305 gimple new_stmt;
306 gimple_stmt_iterator gsi;
307 struct occurrence *occ_child;
309 if (!recip_def
310 && (occ->bb_has_division || !flag_trapping_math)
311 && occ->num_divisions >= threshold)
313 /* Make a variable with the replacement and substitute it. */
314 type = TREE_TYPE (def);
315 recip_def = make_rename_temp (type, "reciptmp");
316 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
317 build_one_cst (type), def);
319 if (occ->bb_has_division)
321 /* Case 1: insert before an existing division. */
322 gsi = gsi_after_labels (occ->bb);
323 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
324 gsi_next (&gsi);
326 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
328 else if (def_gsi && occ->bb == def_gsi->bb)
330 /* Case 2: insert right after the definition. Note that this will
331 never happen if the definition statement can throw, because in
332 that case the sole successor of the statement's basic block will
333 dominate all the uses as well. */
334 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
336 else
338 /* Case 3: insert in a basic block not containing defs/uses. */
339 gsi = gsi_after_labels (occ->bb);
340 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
343 occ->recip_def_stmt = new_stmt;
346 occ->recip_def = recip_def;
347 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
348 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
352 /* Replace the division at USE_P with a multiplication by the reciprocal, if
353 possible. */
355 static inline void
356 replace_reciprocal (use_operand_p use_p)
358 gimple use_stmt = USE_STMT (use_p);
359 basic_block bb = gimple_bb (use_stmt);
360 struct occurrence *occ = (struct occurrence *) bb->aux;
362 if (optimize_bb_for_speed_p (bb)
363 && occ->recip_def && use_stmt != occ->recip_def_stmt)
365 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
366 SET_USE (use_p, occ->recip_def);
367 fold_stmt_inplace (use_stmt);
368 update_stmt (use_stmt);
373 /* Free OCC and return one more "struct occurrence" to be freed. */
375 static struct occurrence *
376 free_bb (struct occurrence *occ)
378 struct occurrence *child, *next;
380 /* First get the two pointers hanging off OCC. */
381 next = occ->next;
382 child = occ->children;
383 occ->bb->aux = NULL;
384 pool_free (occ_pool, occ);
386 /* Now ensure that we don't recurse unless it is necessary. */
387 if (!child)
388 return next;
389 else
391 while (next)
392 next = free_bb (next);
394 return child;
399 /* Look for floating-point divisions among DEF's uses, and try to
400 replace them by multiplications with the reciprocal. Add
401 as many statements computing the reciprocal as needed.
403 DEF must be a GIMPLE register of a floating-point type. */
405 static void
406 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
408 use_operand_p use_p;
409 imm_use_iterator use_iter;
410 struct occurrence *occ;
411 int count = 0, threshold;
413 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
415 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
417 gimple use_stmt = USE_STMT (use_p);
418 if (is_division_by (use_stmt, def))
420 register_division_in (gimple_bb (use_stmt));
421 count++;
425 /* Do the expensive part only if we can hope to optimize something. */
426 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
427 if (count >= threshold)
429 gimple use_stmt;
430 for (occ = occ_head; occ; occ = occ->next)
432 compute_merit (occ);
433 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
436 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
438 if (is_division_by (use_stmt, def))
440 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
441 replace_reciprocal (use_p);
446 for (occ = occ_head; occ; )
447 occ = free_bb (occ);
449 occ_head = NULL;
452 static bool
453 gate_cse_reciprocals (void)
455 return optimize && flag_reciprocal_math;
458 /* Go through all the floating-point SSA_NAMEs, and call
459 execute_cse_reciprocals_1 on each of them. */
460 static unsigned int
461 execute_cse_reciprocals (void)
463 basic_block bb;
464 tree arg;
466 occ_pool = create_alloc_pool ("dominators for recip",
467 sizeof (struct occurrence),
468 n_basic_blocks / 3 + 1);
470 calculate_dominance_info (CDI_DOMINATORS);
471 calculate_dominance_info (CDI_POST_DOMINATORS);
473 #ifdef ENABLE_CHECKING
474 FOR_EACH_BB (bb)
475 gcc_assert (!bb->aux);
476 #endif
478 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = TREE_CHAIN (arg))
479 if (gimple_default_def (cfun, arg)
480 && FLOAT_TYPE_P (TREE_TYPE (arg))
481 && is_gimple_reg (arg))
482 execute_cse_reciprocals_1 (NULL, gimple_default_def (cfun, arg));
484 FOR_EACH_BB (bb)
486 gimple_stmt_iterator gsi;
487 gimple phi;
488 tree def;
490 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
492 phi = gsi_stmt (gsi);
493 def = PHI_RESULT (phi);
494 if (FLOAT_TYPE_P (TREE_TYPE (def))
495 && is_gimple_reg (def))
496 execute_cse_reciprocals_1 (NULL, def);
499 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
501 gimple stmt = gsi_stmt (gsi);
503 if (gimple_has_lhs (stmt)
504 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
505 && FLOAT_TYPE_P (TREE_TYPE (def))
506 && TREE_CODE (def) == SSA_NAME)
507 execute_cse_reciprocals_1 (&gsi, def);
510 if (optimize_bb_for_size_p (bb))
511 continue;
513 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
514 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
516 gimple stmt = gsi_stmt (gsi);
517 tree fndecl;
519 if (is_gimple_assign (stmt)
520 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
522 tree arg1 = gimple_assign_rhs2 (stmt);
523 gimple stmt1;
525 if (TREE_CODE (arg1) != SSA_NAME)
526 continue;
528 stmt1 = SSA_NAME_DEF_STMT (arg1);
530 if (is_gimple_call (stmt1)
531 && gimple_call_lhs (stmt1)
532 && (fndecl = gimple_call_fndecl (stmt1))
533 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
534 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
536 enum built_in_function code;
537 bool md_code, fail;
538 imm_use_iterator ui;
539 use_operand_p use_p;
541 code = DECL_FUNCTION_CODE (fndecl);
542 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
544 fndecl = targetm.builtin_reciprocal (code, md_code, false);
545 if (!fndecl)
546 continue;
548 /* Check that all uses of the SSA name are divisions,
549 otherwise replacing the defining statement will do
550 the wrong thing. */
551 fail = false;
552 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
554 gimple stmt2 = USE_STMT (use_p);
555 if (is_gimple_debug (stmt2))
556 continue;
557 if (!is_gimple_assign (stmt2)
558 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
559 || gimple_assign_rhs1 (stmt2) == arg1
560 || gimple_assign_rhs2 (stmt2) != arg1)
562 fail = true;
563 break;
566 if (fail)
567 continue;
569 gimple_replace_lhs (stmt1, arg1);
570 gimple_call_set_fndecl (stmt1, fndecl);
571 update_stmt (stmt1);
573 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
575 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
576 fold_stmt_inplace (stmt);
577 update_stmt (stmt);
584 free_dominance_info (CDI_DOMINATORS);
585 free_dominance_info (CDI_POST_DOMINATORS);
586 free_alloc_pool (occ_pool);
587 return 0;
590 struct gimple_opt_pass pass_cse_reciprocals =
593 GIMPLE_PASS,
594 "recip", /* name */
595 gate_cse_reciprocals, /* gate */
596 execute_cse_reciprocals, /* execute */
597 NULL, /* sub */
598 NULL, /* next */
599 0, /* static_pass_number */
600 TV_NONE, /* tv_id */
601 PROP_ssa, /* properties_required */
602 0, /* properties_provided */
603 0, /* properties_destroyed */
604 0, /* todo_flags_start */
605 TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
606 | TODO_verify_stmts /* todo_flags_finish */
610 /* Records an occurrence at statement USE_STMT in the vector of trees
611 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
612 is not yet initialized. Returns true if the occurrence was pushed on
613 the vector. Adjusts *TOP_BB to be the basic block dominating all
614 statements in the vector. */
616 static bool
617 maybe_record_sincos (VEC(gimple, heap) **stmts,
618 basic_block *top_bb, gimple use_stmt)
620 basic_block use_bb = gimple_bb (use_stmt);
621 if (*top_bb
622 && (*top_bb == use_bb
623 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
624 VEC_safe_push (gimple, heap, *stmts, use_stmt);
625 else if (!*top_bb
626 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
628 VEC_safe_push (gimple, heap, *stmts, use_stmt);
629 *top_bb = use_bb;
631 else
632 return false;
634 return true;
637 /* Look for sin, cos and cexpi calls with the same argument NAME and
638 create a single call to cexpi CSEing the result in this case.
639 We first walk over all immediate uses of the argument collecting
640 statements that we can CSE in a vector and in a second pass replace
641 the statement rhs with a REALPART or IMAGPART expression on the
642 result of the cexpi call we insert before the use statement that
643 dominates all other candidates. */
645 static void
646 execute_cse_sincos_1 (tree name)
648 gimple_stmt_iterator gsi;
649 imm_use_iterator use_iter;
650 tree fndecl, res, type;
651 gimple def_stmt, use_stmt, stmt;
652 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
653 VEC(gimple, heap) *stmts = NULL;
654 basic_block top_bb = NULL;
655 int i;
657 type = TREE_TYPE (name);
658 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
660 if (gimple_code (use_stmt) != GIMPLE_CALL
661 || !gimple_call_lhs (use_stmt)
662 || !(fndecl = gimple_call_fndecl (use_stmt))
663 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
664 continue;
666 switch (DECL_FUNCTION_CODE (fndecl))
668 CASE_FLT_FN (BUILT_IN_COS):
669 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
670 break;
672 CASE_FLT_FN (BUILT_IN_SIN):
673 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
674 break;
676 CASE_FLT_FN (BUILT_IN_CEXPI):
677 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
678 break;
680 default:;
684 if (seen_cos + seen_sin + seen_cexpi <= 1)
686 VEC_free(gimple, heap, stmts);
687 return;
690 /* Simply insert cexpi at the beginning of top_bb but not earlier than
691 the name def statement. */
692 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
693 if (!fndecl)
694 return;
695 res = make_rename_temp (TREE_TYPE (TREE_TYPE (fndecl)), "sincostmp");
696 stmt = gimple_build_call (fndecl, 1, name);
697 gimple_call_set_lhs (stmt, res);
699 def_stmt = SSA_NAME_DEF_STMT (name);
700 if (!SSA_NAME_IS_DEFAULT_DEF (name)
701 && gimple_code (def_stmt) != GIMPLE_PHI
702 && gimple_bb (def_stmt) == top_bb)
704 gsi = gsi_for_stmt (def_stmt);
705 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
707 else
709 gsi = gsi_after_labels (top_bb);
710 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
712 update_stmt (stmt);
714 /* And adjust the recorded old call sites. */
715 for (i = 0; VEC_iterate(gimple, stmts, i, use_stmt); ++i)
717 tree rhs = NULL;
718 fndecl = gimple_call_fndecl (use_stmt);
720 switch (DECL_FUNCTION_CODE (fndecl))
722 CASE_FLT_FN (BUILT_IN_COS):
723 rhs = fold_build1 (REALPART_EXPR, type, res);
724 break;
726 CASE_FLT_FN (BUILT_IN_SIN):
727 rhs = fold_build1 (IMAGPART_EXPR, type, res);
728 break;
730 CASE_FLT_FN (BUILT_IN_CEXPI):
731 rhs = res;
732 break;
734 default:;
735 gcc_unreachable ();
738 /* Replace call with a copy. */
739 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
741 gsi = gsi_for_stmt (use_stmt);
742 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
743 gsi_remove (&gsi, true);
746 VEC_free(gimple, heap, stmts);
749 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
750 on the SSA_NAME argument of each of them. */
752 static unsigned int
753 execute_cse_sincos (void)
755 basic_block bb;
757 calculate_dominance_info (CDI_DOMINATORS);
759 FOR_EACH_BB (bb)
761 gimple_stmt_iterator gsi;
763 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
765 gimple stmt = gsi_stmt (gsi);
766 tree fndecl;
768 if (is_gimple_call (stmt)
769 && gimple_call_lhs (stmt)
770 && (fndecl = gimple_call_fndecl (stmt))
771 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
773 tree arg;
775 switch (DECL_FUNCTION_CODE (fndecl))
777 CASE_FLT_FN (BUILT_IN_COS):
778 CASE_FLT_FN (BUILT_IN_SIN):
779 CASE_FLT_FN (BUILT_IN_CEXPI):
780 arg = gimple_call_arg (stmt, 0);
781 if (TREE_CODE (arg) == SSA_NAME)
782 execute_cse_sincos_1 (arg);
783 break;
785 default:;
791 free_dominance_info (CDI_DOMINATORS);
792 return 0;
795 static bool
796 gate_cse_sincos (void)
798 /* Make sure we have either sincos or cexp. */
799 return (TARGET_HAS_SINCOS
800 || TARGET_C99_FUNCTIONS)
801 && optimize;
804 struct gimple_opt_pass pass_cse_sincos =
807 GIMPLE_PASS,
808 "sincos", /* name */
809 gate_cse_sincos, /* gate */
810 execute_cse_sincos, /* execute */
811 NULL, /* sub */
812 NULL, /* next */
813 0, /* static_pass_number */
814 TV_NONE, /* tv_id */
815 PROP_ssa, /* properties_required */
816 0, /* properties_provided */
817 0, /* properties_destroyed */
818 0, /* todo_flags_start */
819 TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
820 | TODO_verify_stmts /* todo_flags_finish */
824 /* A symbolic number is used to detect byte permutation and selection
825 patterns. Therefore the field N contains an artificial number
826 consisting of byte size markers:
828 0 - byte has the value 0
829 1..size - byte contains the content of the byte
830 number indexed with that value minus one */
832 struct symbolic_number {
833 unsigned HOST_WIDEST_INT n;
834 int size;
837 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
838 number N. Return false if the requested operation is not permitted
839 on a symbolic number. */
841 static inline bool
842 do_shift_rotate (enum tree_code code,
843 struct symbolic_number *n,
844 int count)
846 if (count % 8 != 0)
847 return false;
849 /* Zero out the extra bits of N in order to avoid them being shifted
850 into the significant bits. */
851 if (n->size < (int)sizeof (HOST_WIDEST_INT))
852 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
854 switch (code)
856 case LSHIFT_EXPR:
857 n->n <<= count;
858 break;
859 case RSHIFT_EXPR:
860 n->n >>= count;
861 break;
862 case LROTATE_EXPR:
863 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
864 break;
865 case RROTATE_EXPR:
866 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
867 break;
868 default:
869 return false;
871 return true;
874 /* Perform sanity checking for the symbolic number N and the gimple
875 statement STMT. */
877 static inline bool
878 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
880 tree lhs_type;
882 lhs_type = gimple_expr_type (stmt);
884 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
885 return false;
887 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
888 return false;
890 return true;
893 /* find_bswap_1 invokes itself recursively with N and tries to perform
894 the operation given by the rhs of STMT on the result. If the
895 operation could successfully be executed the function returns the
896 tree expression of the source operand and NULL otherwise. */
898 static tree
899 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
901 enum tree_code code;
902 tree rhs1, rhs2 = NULL;
903 gimple rhs1_stmt, rhs2_stmt;
904 tree source_expr1;
905 enum gimple_rhs_class rhs_class;
907 if (!limit || !is_gimple_assign (stmt))
908 return NULL_TREE;
910 rhs1 = gimple_assign_rhs1 (stmt);
912 if (TREE_CODE (rhs1) != SSA_NAME)
913 return NULL_TREE;
915 code = gimple_assign_rhs_code (stmt);
916 rhs_class = gimple_assign_rhs_class (stmt);
917 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
919 if (rhs_class == GIMPLE_BINARY_RHS)
920 rhs2 = gimple_assign_rhs2 (stmt);
922 /* Handle unary rhs and binary rhs with integer constants as second
923 operand. */
925 if (rhs_class == GIMPLE_UNARY_RHS
926 || (rhs_class == GIMPLE_BINARY_RHS
927 && TREE_CODE (rhs2) == INTEGER_CST))
929 if (code != BIT_AND_EXPR
930 && code != LSHIFT_EXPR
931 && code != RSHIFT_EXPR
932 && code != LROTATE_EXPR
933 && code != RROTATE_EXPR
934 && code != NOP_EXPR
935 && code != CONVERT_EXPR)
936 return NULL_TREE;
938 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
940 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
941 to initialize the symbolic number. */
942 if (!source_expr1)
944 /* Set up the symbolic number N by setting each byte to a
945 value between 1 and the byte size of rhs1. The highest
946 order byte is set to n->size and the lowest order
947 byte to 1. */
948 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
949 if (n->size % BITS_PER_UNIT != 0)
950 return NULL_TREE;
951 n->size /= BITS_PER_UNIT;
952 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
953 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
955 if (n->size < (int)sizeof (HOST_WIDEST_INT))
956 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
957 (n->size * BITS_PER_UNIT)) - 1;
959 source_expr1 = rhs1;
962 switch (code)
964 case BIT_AND_EXPR:
966 int i;
967 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
968 unsigned HOST_WIDEST_INT tmp = val;
970 /* Only constants masking full bytes are allowed. */
971 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
972 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
973 return NULL_TREE;
975 n->n &= val;
977 break;
978 case LSHIFT_EXPR:
979 case RSHIFT_EXPR:
980 case LROTATE_EXPR:
981 case RROTATE_EXPR:
982 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
983 return NULL_TREE;
984 break;
985 CASE_CONVERT:
987 int type_size;
989 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
990 if (type_size % BITS_PER_UNIT != 0)
991 return NULL_TREE;
993 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
995 /* If STMT casts to a smaller type mask out the bits not
996 belonging to the target type. */
997 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
999 n->size = type_size / BITS_PER_UNIT;
1001 break;
1002 default:
1003 return NULL_TREE;
1005 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1008 /* Handle binary rhs. */
1010 if (rhs_class == GIMPLE_BINARY_RHS)
1012 struct symbolic_number n1, n2;
1013 tree source_expr2;
1015 if (code != BIT_IOR_EXPR)
1016 return NULL_TREE;
1018 if (TREE_CODE (rhs2) != SSA_NAME)
1019 return NULL_TREE;
1021 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1023 switch (code)
1025 case BIT_IOR_EXPR:
1026 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1028 if (!source_expr1)
1029 return NULL_TREE;
1031 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1033 if (source_expr1 != source_expr2
1034 || n1.size != n2.size)
1035 return NULL_TREE;
1037 n->size = n1.size;
1038 n->n = n1.n | n2.n;
1040 if (!verify_symbolic_number_p (n, stmt))
1041 return NULL_TREE;
1043 break;
1044 default:
1045 return NULL_TREE;
1047 return source_expr1;
1049 return NULL_TREE;
1052 /* Check if STMT completes a bswap implementation consisting of ORs,
1053 SHIFTs and ANDs. Return the source tree expression on which the
1054 byte swap is performed and NULL if no bswap was found. */
1056 static tree
1057 find_bswap (gimple stmt)
1059 /* The number which the find_bswap result should match in order to
1060 have a full byte swap. The number is shifted to the left according
1061 to the size of the symbolic number before using it. */
1062 unsigned HOST_WIDEST_INT cmp =
1063 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1064 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1066 struct symbolic_number n;
1067 tree source_expr;
1069 /* The last parameter determines the depth search limit. It usually
1070 correlates directly to the number of bytes to be touched. We
1071 increase that number by one here in order to also cover signed ->
1072 unsigned conversions of the src operand as can be seen in
1073 libgcc. */
1074 source_expr = find_bswap_1 (stmt, &n,
1075 TREE_INT_CST_LOW (
1076 TYPE_SIZE_UNIT (gimple_expr_type (stmt))) + 1);
1078 if (!source_expr)
1079 return NULL_TREE;
1081 /* Zero out the extra bits of N and CMP. */
1082 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1084 unsigned HOST_WIDEST_INT mask =
1085 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1087 n.n &= mask;
1088 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1091 /* A complete byte swap should make the symbolic number to start
1092 with the largest digit in the highest order byte. */
1093 if (cmp != n.n)
1094 return NULL_TREE;
1096 return source_expr;
1099 /* Find manual byte swap implementations and turn them into a bswap
1100 builtin invokation. */
1102 static unsigned int
1103 execute_optimize_bswap (void)
1105 basic_block bb;
1106 bool bswap32_p, bswap64_p;
1107 bool changed = false;
1108 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1110 if (BITS_PER_UNIT != 8)
1111 return 0;
1113 if (sizeof (HOST_WIDEST_INT) < 8)
1114 return 0;
1116 bswap32_p = (built_in_decls[BUILT_IN_BSWAP32]
1117 && optab_handler (bswap_optab, SImode)->insn_code !=
1118 CODE_FOR_nothing);
1119 bswap64_p = (built_in_decls[BUILT_IN_BSWAP64]
1120 && (optab_handler (bswap_optab, DImode)->insn_code !=
1121 CODE_FOR_nothing
1122 || (bswap32_p && word_mode == SImode)));
1124 if (!bswap32_p && !bswap64_p)
1125 return 0;
1127 /* Determine the argument type of the builtins. The code later on
1128 assumes that the return and argument type are the same. */
1129 if (bswap32_p)
1131 tree fndecl = built_in_decls[BUILT_IN_BSWAP32];
1132 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1135 if (bswap64_p)
1137 tree fndecl = built_in_decls[BUILT_IN_BSWAP64];
1138 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1141 FOR_EACH_BB (bb)
1143 gimple_stmt_iterator gsi;
1145 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1147 gimple stmt = gsi_stmt (gsi);
1148 tree bswap_src, bswap_type;
1149 tree bswap_tmp;
1150 tree fndecl = NULL_TREE;
1151 int type_size;
1152 gimple call;
1154 if (!is_gimple_assign (stmt)
1155 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1156 continue;
1158 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1160 switch (type_size)
1162 case 32:
1163 if (bswap32_p)
1165 fndecl = built_in_decls[BUILT_IN_BSWAP32];
1166 bswap_type = bswap32_type;
1168 break;
1169 case 64:
1170 if (bswap64_p)
1172 fndecl = built_in_decls[BUILT_IN_BSWAP64];
1173 bswap_type = bswap64_type;
1175 break;
1176 default:
1177 continue;
1180 if (!fndecl)
1181 continue;
1183 bswap_src = find_bswap (stmt);
1185 if (!bswap_src)
1186 continue;
1188 changed = true;
1190 bswap_tmp = bswap_src;
1192 /* Convert the src expression if necessary. */
1193 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1195 gimple convert_stmt;
1197 bswap_tmp = create_tmp_var (bswap_type, "bswapsrc");
1198 add_referenced_var (bswap_tmp);
1199 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1201 convert_stmt = gimple_build_assign_with_ops (
1202 CONVERT_EXPR, bswap_tmp, bswap_src, NULL);
1203 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1206 call = gimple_build_call (fndecl, 1, bswap_tmp);
1208 bswap_tmp = gimple_assign_lhs (stmt);
1210 /* Convert the result if necessary. */
1211 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1213 gimple convert_stmt;
1215 bswap_tmp = create_tmp_var (bswap_type, "bswapdst");
1216 add_referenced_var (bswap_tmp);
1217 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1218 convert_stmt = gimple_build_assign_with_ops (
1219 CONVERT_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
1220 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1223 gimple_call_set_lhs (call, bswap_tmp);
1225 if (dump_file)
1227 fprintf (dump_file, "%d bit bswap implementation found at: ",
1228 (int)type_size);
1229 print_gimple_stmt (dump_file, stmt, 0, 0);
1232 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
1233 gsi_remove (&gsi, true);
1237 return (changed ? TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
1238 | TODO_verify_stmts : 0);
1241 static bool
1242 gate_optimize_bswap (void)
1244 return flag_expensive_optimizations && optimize;
1247 struct gimple_opt_pass pass_optimize_bswap =
1250 GIMPLE_PASS,
1251 "bswap", /* name */
1252 gate_optimize_bswap, /* gate */
1253 execute_optimize_bswap, /* execute */
1254 NULL, /* sub */
1255 NULL, /* next */
1256 0, /* static_pass_number */
1257 TV_NONE, /* tv_id */
1258 PROP_ssa, /* properties_required */
1259 0, /* properties_provided */
1260 0, /* properties_destroyed */
1261 0, /* todo_flags_start */
1262 0 /* todo_flags_finish */
1266 /* Find integer multiplications where the operands are extended from
1267 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
1268 where appropriate. */
1270 static unsigned int
1271 execute_optimize_widening_mul (void)
1273 bool changed = false;
1274 basic_block bb;
1276 FOR_EACH_BB (bb)
1278 gimple_stmt_iterator gsi;
1280 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1282 gimple stmt = gsi_stmt (gsi);
1283 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
1284 tree type, type1 = NULL, type2 = NULL;
1285 tree rhs1, rhs2, rhs1_convop = NULL, rhs2_convop = NULL;
1286 enum tree_code rhs1_code, rhs2_code;
1288 if (!is_gimple_assign (stmt)
1289 || gimple_assign_rhs_code (stmt) != MULT_EXPR)
1290 continue;
1292 type = TREE_TYPE (gimple_assign_lhs (stmt));
1294 if (TREE_CODE (type) != INTEGER_TYPE)
1295 continue;
1297 rhs1 = gimple_assign_rhs1 (stmt);
1298 rhs2 = gimple_assign_rhs2 (stmt);
1300 if (TREE_CODE (rhs1) == SSA_NAME)
1302 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1303 if (!is_gimple_assign (rhs1_stmt))
1304 continue;
1305 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
1306 if (!CONVERT_EXPR_CODE_P (rhs1_code))
1307 continue;
1308 rhs1_convop = gimple_assign_rhs1 (rhs1_stmt);
1309 type1 = TREE_TYPE (rhs1_convop);
1310 if (TYPE_PRECISION (type1) * 2 != TYPE_PRECISION (type))
1311 continue;
1313 else if (TREE_CODE (rhs1) != INTEGER_CST)
1314 continue;
1316 if (TREE_CODE (rhs2) == SSA_NAME)
1318 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1319 if (!is_gimple_assign (rhs2_stmt))
1320 continue;
1321 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
1322 if (!CONVERT_EXPR_CODE_P (rhs2_code))
1323 continue;
1324 rhs2_convop = gimple_assign_rhs1 (rhs2_stmt);
1325 type2 = TREE_TYPE (rhs2_convop);
1326 if (TYPE_PRECISION (type2) * 2 != TYPE_PRECISION (type))
1327 continue;
1329 else if (TREE_CODE (rhs2) != INTEGER_CST)
1330 continue;
1332 if (rhs1_stmt == NULL && rhs2_stmt == NULL)
1333 continue;
1335 /* Verify that the machine can perform a widening multiply in this
1336 mode/signedness combination, otherwise this transformation is
1337 likely to pessimize code. */
1338 if ((rhs1_stmt == NULL || TYPE_UNSIGNED (type1))
1339 && (rhs2_stmt == NULL || TYPE_UNSIGNED (type2))
1340 && (optab_handler (umul_widen_optab, TYPE_MODE (type))
1341 ->insn_code == CODE_FOR_nothing))
1342 continue;
1343 else if ((rhs1_stmt == NULL || !TYPE_UNSIGNED (type1))
1344 && (rhs2_stmt == NULL || !TYPE_UNSIGNED (type2))
1345 && (optab_handler (smul_widen_optab, TYPE_MODE (type))
1346 ->insn_code == CODE_FOR_nothing))
1347 continue;
1348 else if (rhs1_stmt != NULL && rhs2_stmt != 0
1349 && (TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2))
1350 && (optab_handler (usmul_widen_optab, TYPE_MODE (type))
1351 ->insn_code == CODE_FOR_nothing))
1352 continue;
1354 if ((rhs1_stmt == NULL && !int_fits_type_p (rhs1, type2))
1355 || (rhs2_stmt == NULL && !int_fits_type_p (rhs2, type1)))
1356 continue;
1358 if (rhs1_stmt == NULL)
1359 gimple_assign_set_rhs1 (stmt, fold_convert (type2, rhs1));
1360 else
1361 gimple_assign_set_rhs1 (stmt, rhs1_convop);
1362 if (rhs2_stmt == NULL)
1363 gimple_assign_set_rhs2 (stmt, fold_convert (type1, rhs2));
1364 else
1365 gimple_assign_set_rhs2 (stmt, rhs2_convop);
1366 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
1367 update_stmt (stmt);
1368 changed = true;
1371 return (changed ? TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
1372 | TODO_verify_stmts : 0);
1375 static bool
1376 gate_optimize_widening_mul (void)
1378 return flag_expensive_optimizations && optimize;
1381 struct gimple_opt_pass pass_optimize_widening_mul =
1384 GIMPLE_PASS,
1385 "widening_mul", /* name */
1386 gate_optimize_widening_mul, /* gate */
1387 execute_optimize_widening_mul, /* execute */
1388 NULL, /* sub */
1389 NULL, /* next */
1390 0, /* static_pass_number */
1391 TV_NONE, /* tv_id */
1392 PROP_ssa, /* properties_required */
1393 0, /* properties_provided */
1394 0, /* properties_destroyed */
1395 0, /* todo_flags_start */
1396 0 /* todo_flags_finish */