Merge branch 'master' into python
[official-gcc.git] / gcc / ira.c
blob10be6da40543b6bb343e131739728a33778f2e56
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
32 Major IRA notions are:
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
41 o *Cover class* is a register class belonging to a set of
42 non-intersecting register classes containing all of the
43 hard-registers available for register allocation. The set of
44 all cover classes for a target is defined in the corresponding
45 machine-description file according some criteria. Such notion
46 is needed because Chaitin-Briggs algorithm works on
47 non-intersected register classes.
49 o *Allocno* represents the live range of a pseudo-register in a
50 region. Besides the obvious attributes like the corresponding
51 pseudo-register number, cover class, conflicting allocnos and
52 conflicting hard-registers, there are a few allocno attributes
53 which are important for understanding the allocation algorithm:
55 - *Live ranges*. This is a list of ranges of *program
56 points* where the allocno lives. Program points represent
57 places where a pseudo can be born or become dead (there are
58 approximately two times more program points than the insns)
59 and they are represented by integers starting with 0. The
60 live ranges are used to find conflicts between allocnos of
61 different cover classes. They also play very important role
62 for the transformation of the IRA internal representation of
63 several regions into a one region representation. The later is
64 used during the reload pass work because each allocno
65 represents all of the corresponding pseudo-registers.
67 - *Hard-register costs*. This is a vector of size equal to the
68 number of available hard-registers of the allocno's cover
69 class. The cost of a callee-clobbered hard-register for an
70 allocno is increased by the cost of save/restore code around
71 the calls through the given allocno's life. If the allocno
72 is a move instruction operand and another operand is a
73 hard-register of the allocno's cover class, the cost of the
74 hard-register is decreased by the move cost.
76 When an allocno is assigned, the hard-register with minimal
77 full cost is used. Initially, a hard-register's full cost is
78 the corresponding value from the hard-register's cost vector.
79 If the allocno is connected by a *copy* (see below) to
80 another allocno which has just received a hard-register, the
81 cost of the hard-register is decreased. Before choosing a
82 hard-register for an allocno, the allocno's current costs of
83 the hard-registers are modified by the conflict hard-register
84 costs of all of the conflicting allocnos which are not
85 assigned yet.
87 - *Conflict hard-register costs*. This is a vector of the same
88 size as the hard-register costs vector. To permit an
89 unassigned allocno to get a better hard-register, IRA uses
90 this vector to calculate the final full cost of the
91 available hard-registers. Conflict hard-register costs of an
92 unassigned allocno are also changed with a change of the
93 hard-register cost of the allocno when a copy involving the
94 allocno is processed as described above. This is done to
95 show other unassigned allocnos that a given allocno prefers
96 some hard-registers in order to remove the move instruction
97 corresponding to the copy.
99 o *Cap*. If a pseudo-register does not live in a region but
100 lives in a nested region, IRA creates a special allocno called
101 a cap in the outer region. A region cap is also created for a
102 subregion cap.
104 o *Copy*. Allocnos can be connected by copies. Copies are used
105 to modify hard-register costs for allocnos during coloring.
106 Such modifications reflects a preference to use the same
107 hard-register for the allocnos connected by copies. Usually
108 copies are created for move insns (in this case it results in
109 register coalescing). But IRA also creates copies for operands
110 of an insn which should be assigned to the same hard-register
111 due to constraints in the machine description (it usually
112 results in removing a move generated in reload to satisfy
113 the constraints) and copies referring to the allocno which is
114 the output operand of an instruction and the allocno which is
115 an input operand dying in the instruction (creation of such
116 copies results in less register shuffling). IRA *does not*
117 create copies between the same register allocnos from different
118 regions because we use another technique for propagating
119 hard-register preference on the borders of regions.
121 Allocnos (including caps) for the upper region in the region tree
122 *accumulate* information important for coloring from allocnos with
123 the same pseudo-register from nested regions. This includes
124 hard-register and memory costs, conflicts with hard-registers,
125 allocno conflicts, allocno copies and more. *Thus, attributes for
126 allocnos in a region have the same values as if the region had no
127 subregions*. It means that attributes for allocnos in the
128 outermost region corresponding to the function have the same values
129 as though the allocation used only one region which is the entire
130 function. It also means that we can look at IRA work as if the
131 first IRA did allocation for all function then it improved the
132 allocation for loops then their subloops and so on.
134 IRA major passes are:
136 o Building IRA internal representation which consists of the
137 following subpasses:
139 * First, IRA builds regions and creates allocnos (file
140 ira-build.c) and initializes most of their attributes.
142 * Then IRA finds a cover class for each allocno and calculates
143 its initial (non-accumulated) cost of memory and each
144 hard-register of its cover class (file ira-cost.c).
146 * IRA creates live ranges of each allocno, calulates register
147 pressure for each cover class in each region, sets up
148 conflict hard registers for each allocno and info about calls
149 the allocno lives through (file ira-lives.c).
151 * IRA removes low register pressure loops from the regions
152 mostly to speed IRA up (file ira-build.c).
154 * IRA propagates accumulated allocno info from lower region
155 allocnos to corresponding upper region allocnos (file
156 ira-build.c).
158 * IRA creates all caps (file ira-build.c).
160 * Having live-ranges of allocnos and their cover classes, IRA
161 creates conflicting allocnos of the same cover class for each
162 allocno. Conflicting allocnos are stored as a bit vector or
163 array of pointers to the conflicting allocnos whatever is
164 more profitable (file ira-conflicts.c). At this point IRA
165 creates allocno copies.
167 o Coloring. Now IRA has all necessary info to start graph coloring
168 process. It is done in each region on top-down traverse of the
169 region tree (file ira-color.c). There are following subpasses:
171 * Optional aggressive coalescing of allocnos in the region.
173 * Putting allocnos onto the coloring stack. IRA uses Briggs
174 optimistic coloring which is a major improvement over
175 Chaitin's coloring. Therefore IRA does not spill allocnos at
176 this point. There is some freedom in the order of putting
177 allocnos on the stack which can affect the final result of
178 the allocation. IRA uses some heuristics to improve the order.
180 * Popping the allocnos from the stack and assigning them hard
181 registers. If IRA can not assign a hard register to an
182 allocno and the allocno is coalesced, IRA undoes the
183 coalescing and puts the uncoalesced allocnos onto the stack in
184 the hope that some such allocnos will get a hard register
185 separately. If IRA fails to assign hard register or memory
186 is more profitable for it, IRA spills the allocno. IRA
187 assigns the allocno the hard-register with minimal full
188 allocation cost which reflects the cost of usage of the
189 hard-register for the allocno and cost of usage of the
190 hard-register for allocnos conflicting with given allocno.
192 * After allono assigning in the region, IRA modifies the hard
193 register and memory costs for the corresponding allocnos in
194 the subregions to reflect the cost of possible loads, stores,
195 or moves on the border of the region and its subregions.
196 When default regional allocation algorithm is used
197 (-fira-algorithm=mixed), IRA just propagates the assignment
198 for allocnos if the register pressure in the region for the
199 corresponding cover class is less than number of available
200 hard registers for given cover class.
202 o Spill/restore code moving. When IRA performs an allocation
203 by traversing regions in top-down order, it does not know what
204 happens below in the region tree. Therefore, sometimes IRA
205 misses opportunities to perform a better allocation. A simple
206 optimization tries to improve allocation in a region having
207 subregions and containing in another region. If the
208 corresponding allocnos in the subregion are spilled, it spills
209 the region allocno if it is profitable. The optimization
210 implements a simple iterative algorithm performing profitable
211 transformations while they are still possible. It is fast in
212 practice, so there is no real need for a better time complexity
213 algorithm.
215 o Code change. After coloring, two allocnos representing the same
216 pseudo-register outside and inside a region respectively may be
217 assigned to different locations (hard-registers or memory). In
218 this case IRA creates and uses a new pseudo-register inside the
219 region and adds code to move allocno values on the region's
220 borders. This is done during top-down traversal of the regions
221 (file ira-emit.c). In some complicated cases IRA can create a
222 new allocno to move allocno values (e.g. when a swap of values
223 stored in two hard-registers is needed). At this stage, the
224 new allocno is marked as spilled. IRA still creates the
225 pseudo-register and the moves on the region borders even when
226 both allocnos were assigned to the same hard-register. If the
227 reload pass spills a pseudo-register for some reason, the
228 effect will be smaller because another allocno will still be in
229 the hard-register. In most cases, this is better then spilling
230 both allocnos. If reload does not change the allocation
231 for the two pseudo-registers, the trivial move will be removed
232 by post-reload optimizations. IRA does not generate moves for
233 allocnos assigned to the same hard register when the default
234 regional allocation algorithm is used and the register pressure
235 in the region for the corresponding allocno cover class is less
236 than number of available hard registers for given cover class.
237 IRA also does some optimizations to remove redundant stores and
238 to reduce code duplication on the region borders.
240 o Flattening internal representation. After changing code, IRA
241 transforms its internal representation for several regions into
242 one region representation (file ira-build.c). This process is
243 called IR flattening. Such process is more complicated than IR
244 rebuilding would be, but is much faster.
246 o After IR flattening, IRA tries to assign hard registers to all
247 spilled allocnos. This is impelemented by a simple and fast
248 priority coloring algorithm (see function
249 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
250 created during the code change pass can be assigned to hard
251 registers.
253 o At the end IRA calls the reload pass. The reload pass
254 communicates with IRA through several functions in file
255 ira-color.c to improve its decisions in
257 * sharing stack slots for the spilled pseudos based on IRA info
258 about pseudo-register conflicts.
260 * reassigning hard-registers to all spilled pseudos at the end
261 of each reload iteration.
263 * choosing a better hard-register to spill based on IRA info
264 about pseudo-register live ranges and the register pressure
265 in places where the pseudo-register lives.
267 IRA uses a lot of data representing the target processors. These
268 data are initilized in file ira.c.
270 If function has no loops (or the loops are ignored when
271 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
272 coloring (only instead of separate pass of coalescing, we use hard
273 register preferencing). In such case, IRA works much faster
274 because many things are not made (like IR flattening, the
275 spill/restore optimization, and the code change).
277 Literature is worth to read for better understanding the code:
279 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
280 Graph Coloring Register Allocation.
282 o David Callahan, Brian Koblenz. Register allocation via
283 hierarchical graph coloring.
285 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
286 Coloring Register Allocation: A Study of the Chaitin-Briggs and
287 Callahan-Koblenz Algorithms.
289 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
290 Register Allocation Based on Graph Fusion.
292 o Vladimir Makarov. The Integrated Register Allocator for GCC.
294 o Vladimir Makarov. The top-down register allocator for irregular
295 register file architectures.
300 #include "config.h"
301 #include "system.h"
302 #include "coretypes.h"
303 #include "tm.h"
304 #include "regs.h"
305 #include "rtl.h"
306 #include "tm_p.h"
307 #include "target.h"
308 #include "flags.h"
309 #include "obstack.h"
310 #include "bitmap.h"
311 #include "hard-reg-set.h"
312 #include "basic-block.h"
313 #include "df.h"
314 #include "expr.h"
315 #include "recog.h"
316 #include "params.h"
317 #include "timevar.h"
318 #include "tree-pass.h"
319 #include "output.h"
320 #include "except.h"
321 #include "reload.h"
322 #include "toplev.h"
323 #include "integrate.h"
324 #include "ggc.h"
325 #include "ira-int.h"
328 /* A modified value of flag `-fira-verbose' used internally. */
329 int internal_flag_ira_verbose;
331 /* Dump file of the allocator if it is not NULL. */
332 FILE *ira_dump_file;
334 /* Pools for allocnos, copies, allocno live ranges. */
335 alloc_pool allocno_pool, copy_pool, allocno_live_range_pool;
337 /* The number of elements in the following array. */
338 int ira_spilled_reg_stack_slots_num;
340 /* The following array contains info about spilled pseudo-registers
341 stack slots used in current function so far. */
342 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
344 /* Correspondingly overall cost of the allocation, cost of the
345 allocnos assigned to hard-registers, cost of the allocnos assigned
346 to memory, cost of loads, stores and register move insns generated
347 for pseudo-register live range splitting (see ira-emit.c). */
348 int ira_overall_cost;
349 int ira_reg_cost, ira_mem_cost;
350 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
351 int ira_move_loops_num, ira_additional_jumps_num;
353 /* All registers that can be eliminated. */
355 HARD_REG_SET eliminable_regset;
357 /* Map: hard regs X modes -> set of hard registers for storing value
358 of given mode starting with given hard register. */
359 HARD_REG_SET ira_reg_mode_hard_regset[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
361 /* The following two variables are array analogs of the macros
362 MEMORY_MOVE_COST and REGISTER_MOVE_COST. */
363 short int ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
364 move_table *ira_register_move_cost[MAX_MACHINE_MODE];
366 /* Similar to may_move_in_cost but it is calculated in IRA instead of
367 regclass. Another difference is that we take only available hard
368 registers into account to figure out that one register class is a
369 subset of the another one. */
370 move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
372 /* Similar to may_move_out_cost but it is calculated in IRA instead of
373 regclass. Another difference is that we take only available hard
374 registers into account to figure out that one register class is a
375 subset of the another one. */
376 move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
378 /* Register class subset relation: TRUE if the first class is a subset
379 of the second one considering only hard registers available for the
380 allocation. */
381 int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
383 /* Temporary hard reg set used for a different calculation. */
384 static HARD_REG_SET temp_hard_regset;
388 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
389 static void
390 setup_reg_mode_hard_regset (void)
392 int i, m, hard_regno;
394 for (m = 0; m < NUM_MACHINE_MODES; m++)
395 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
397 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
398 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
399 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
400 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
401 hard_regno + i);
407 /* Hard registers that can not be used for the register allocator for
408 all functions of the current compilation unit. */
409 static HARD_REG_SET no_unit_alloc_regs;
411 /* Array of the number of hard registers of given class which are
412 available for allocation. The order is defined by the
413 allocation order. */
414 short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
416 /* Array of the number of hard registers of given class which are
417 available for allocation. The order is defined by the
418 the hard register numbers. */
419 short ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
421 /* The number of elements of the above array for given register
422 class. */
423 int ira_class_hard_regs_num[N_REG_CLASSES];
425 /* Index (in ira_class_hard_regs) for given register class and hard
426 register (in general case a hard register can belong to several
427 register classes). The index is negative for hard registers
428 unavailable for the allocation. */
429 short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
431 /* The function sets up the three arrays declared above. */
432 static void
433 setup_class_hard_regs (void)
435 int cl, i, hard_regno, n;
436 HARD_REG_SET processed_hard_reg_set;
438 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
439 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
441 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
442 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
443 CLEAR_HARD_REG_SET (processed_hard_reg_set);
444 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
446 ira_non_ordered_class_hard_regs[cl][0] = -1;
447 ira_class_hard_reg_index[cl][0] = -1;
449 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
451 #ifdef REG_ALLOC_ORDER
452 hard_regno = reg_alloc_order[i];
453 #else
454 hard_regno = i;
455 #endif
456 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
457 continue;
458 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
459 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
460 ira_class_hard_reg_index[cl][hard_regno] = -1;
461 else
463 ira_class_hard_reg_index[cl][hard_regno] = n;
464 ira_class_hard_regs[cl][n++] = hard_regno;
467 ira_class_hard_regs_num[cl] = n;
468 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
469 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
470 ira_non_ordered_class_hard_regs[cl][n++] = i;
471 ira_assert (ira_class_hard_regs_num[cl] == n);
475 /* Number of given class hard registers available for the register
476 allocation for given classes. */
477 int ira_available_class_regs[N_REG_CLASSES];
479 /* Set up IRA_AVAILABLE_CLASS_REGS. */
480 static void
481 setup_available_class_regs (void)
483 int i, j;
485 memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
486 for (i = 0; i < N_REG_CLASSES; i++)
488 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
489 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
490 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
491 if (TEST_HARD_REG_BIT (temp_hard_regset, j))
492 ira_available_class_regs[i]++;
496 /* Set up global variables defining info about hard registers for the
497 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
498 that we can use the hard frame pointer for the allocation. */
499 static void
500 setup_alloc_regs (bool use_hard_frame_p)
502 #ifdef ADJUST_REG_ALLOC_ORDER
503 ADJUST_REG_ALLOC_ORDER;
504 #endif
505 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
506 if (! use_hard_frame_p)
507 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
508 setup_class_hard_regs ();
509 setup_available_class_regs ();
514 /* Set up IRA_MEMORY_MOVE_COST, IRA_REGISTER_MOVE_COST. */
515 static void
516 setup_class_subset_and_memory_move_costs (void)
518 int cl, cl2, mode;
519 HARD_REG_SET temp_hard_regset2;
521 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
522 ira_memory_move_cost[mode][NO_REGS][0]
523 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
524 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
526 if (cl != (int) NO_REGS)
527 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
529 ira_memory_move_cost[mode][cl][0] =
530 MEMORY_MOVE_COST ((enum machine_mode) mode,
531 (enum reg_class) cl, 0);
532 ira_memory_move_cost[mode][cl][1] =
533 MEMORY_MOVE_COST ((enum machine_mode) mode,
534 (enum reg_class) cl, 1);
535 /* Costs for NO_REGS are used in cost calculation on the
536 1st pass when the preferred register classes are not
537 known yet. In this case we take the best scenario. */
538 if (ira_memory_move_cost[mode][NO_REGS][0]
539 > ira_memory_move_cost[mode][cl][0])
540 ira_memory_move_cost[mode][NO_REGS][0]
541 = ira_memory_move_cost[mode][cl][0];
542 if (ira_memory_move_cost[mode][NO_REGS][1]
543 > ira_memory_move_cost[mode][cl][1])
544 ira_memory_move_cost[mode][NO_REGS][1]
545 = ira_memory_move_cost[mode][cl][1];
547 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
549 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
550 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
551 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
552 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
553 ira_class_subset_p[cl][cl2]
554 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
561 /* Define the following macro if allocation through malloc if
562 preferable. */
563 #define IRA_NO_OBSTACK
565 #ifndef IRA_NO_OBSTACK
566 /* Obstack used for storing all dynamic data (except bitmaps) of the
567 IRA. */
568 static struct obstack ira_obstack;
569 #endif
571 /* Obstack used for storing all bitmaps of the IRA. */
572 static struct bitmap_obstack ira_bitmap_obstack;
574 /* Allocate memory of size LEN for IRA data. */
575 void *
576 ira_allocate (size_t len)
578 void *res;
580 #ifndef IRA_NO_OBSTACK
581 res = obstack_alloc (&ira_obstack, len);
582 #else
583 res = xmalloc (len);
584 #endif
585 return res;
588 /* Reallocate memory PTR of size LEN for IRA data. */
589 void *
590 ira_reallocate (void *ptr, size_t len)
592 void *res;
594 #ifndef IRA_NO_OBSTACK
595 res = obstack_alloc (&ira_obstack, len);
596 #else
597 res = xrealloc (ptr, len);
598 #endif
599 return res;
602 /* Free memory ADDR allocated for IRA data. */
603 void
604 ira_free (void *addr ATTRIBUTE_UNUSED)
606 #ifndef IRA_NO_OBSTACK
607 /* do nothing */
608 #else
609 free (addr);
610 #endif
614 /* Allocate and returns bitmap for IRA. */
615 bitmap
616 ira_allocate_bitmap (void)
618 return BITMAP_ALLOC (&ira_bitmap_obstack);
621 /* Free bitmap B allocated for IRA. */
622 void
623 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
625 /* do nothing */
630 /* Output information about allocation of all allocnos (except for
631 caps) into file F. */
632 void
633 ira_print_disposition (FILE *f)
635 int i, n, max_regno;
636 ira_allocno_t a;
637 basic_block bb;
639 fprintf (f, "Disposition:");
640 max_regno = max_reg_num ();
641 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
642 for (a = ira_regno_allocno_map[i];
643 a != NULL;
644 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
646 if (n % 4 == 0)
647 fprintf (f, "\n");
648 n++;
649 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
650 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
651 fprintf (f, "b%-3d", bb->index);
652 else
653 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
654 if (ALLOCNO_HARD_REGNO (a) >= 0)
655 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
656 else
657 fprintf (f, " mem");
659 fprintf (f, "\n");
662 /* Outputs information about allocation of all allocnos into
663 stderr. */
664 void
665 ira_debug_disposition (void)
667 ira_print_disposition (stderr);
672 /* For each reg class, table listing all the classes contained in it
673 (excluding the class itself. Non-allocatable registers are
674 excluded from the consideration). */
675 static enum reg_class alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
677 /* Initialize the table of subclasses of each reg class. */
678 static void
679 setup_reg_subclasses (void)
681 int i, j;
682 HARD_REG_SET temp_hard_regset2;
684 for (i = 0; i < N_REG_CLASSES; i++)
685 for (j = 0; j < N_REG_CLASSES; j++)
686 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
688 for (i = 0; i < N_REG_CLASSES; i++)
690 if (i == (int) NO_REGS)
691 continue;
693 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
694 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
695 if (hard_reg_set_empty_p (temp_hard_regset))
696 continue;
697 for (j = 0; j < N_REG_CLASSES; j++)
698 if (i != j)
700 enum reg_class *p;
702 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
703 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
704 if (! hard_reg_set_subset_p (temp_hard_regset,
705 temp_hard_regset2))
706 continue;
707 p = &alloc_reg_class_subclasses[j][0];
708 while (*p != LIM_REG_CLASSES) p++;
709 *p = (enum reg_class) i;
716 /* Number of cover classes. Cover classes is non-intersected register
717 classes containing all hard-registers available for the
718 allocation. */
719 int ira_reg_class_cover_size;
721 /* The array containing cover classes (see also comments for macro
722 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
723 used for this. */
724 enum reg_class ira_reg_class_cover[N_REG_CLASSES];
726 /* The number of elements in the subsequent array. */
727 int ira_important_classes_num;
729 /* The array containing non-empty classes (including non-empty cover
730 classes) which are subclasses of cover classes. Such classes is
731 important for calculation of the hard register usage costs. */
732 enum reg_class ira_important_classes[N_REG_CLASSES];
734 /* The array containing indexes of important classes in the previous
735 array. The array elements are defined only for important
736 classes. */
737 int ira_important_class_nums[N_REG_CLASSES];
739 /* Set the four global variables defined above. */
740 static void
741 setup_cover_and_important_classes (void)
743 int i, j, n, cl;
744 bool set_p;
745 const enum reg_class *cover_classes;
746 HARD_REG_SET temp_hard_regset2;
747 static enum reg_class classes[LIM_REG_CLASSES + 1];
749 if (targetm.ira_cover_classes == NULL)
750 cover_classes = NULL;
751 else
752 cover_classes = targetm.ira_cover_classes ();
753 if (cover_classes == NULL)
754 ira_assert (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY);
755 else
757 for (i = 0; (cl = cover_classes[i]) != LIM_REG_CLASSES; i++)
758 classes[i] = (enum reg_class) cl;
759 classes[i] = LIM_REG_CLASSES;
762 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
764 n = 0;
765 for (i = 0; i <= LIM_REG_CLASSES; i++)
767 if (i == NO_REGS)
768 continue;
769 #ifdef CONSTRAINT_NUM_DEFINED_P
770 for (j = 0; j < CONSTRAINT__LIMIT; j++)
771 if ((int) REG_CLASS_FOR_CONSTRAINT ((enum constraint_num) j) == i)
772 break;
773 if (j < CONSTRAINT__LIMIT)
775 classes[n++] = (enum reg_class) i;
776 continue;
778 #endif
779 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
780 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
781 for (j = 0; j < LIM_REG_CLASSES; j++)
783 if (i == j)
784 continue;
785 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
786 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
787 no_unit_alloc_regs);
788 if (hard_reg_set_equal_p (temp_hard_regset,
789 temp_hard_regset2))
790 break;
792 if (j >= i)
793 classes[n++] = (enum reg_class) i;
795 classes[n] = LIM_REG_CLASSES;
798 ira_reg_class_cover_size = 0;
799 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
801 for (j = 0; j < i; j++)
802 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY
803 && reg_classes_intersect_p ((enum reg_class) cl, classes[j]))
804 gcc_unreachable ();
805 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
806 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
807 if (! hard_reg_set_empty_p (temp_hard_regset))
808 ira_reg_class_cover[ira_reg_class_cover_size++] = (enum reg_class) cl;
810 ira_important_classes_num = 0;
811 for (cl = 0; cl < N_REG_CLASSES; cl++)
813 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
814 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
815 if (! hard_reg_set_empty_p (temp_hard_regset))
817 set_p = false;
818 for (j = 0; j < ira_reg_class_cover_size; j++)
820 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
821 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
822 COPY_HARD_REG_SET (temp_hard_regset2,
823 reg_class_contents[ira_reg_class_cover[j]]);
824 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
825 if ((enum reg_class) cl == ira_reg_class_cover[j]
826 || hard_reg_set_equal_p (temp_hard_regset,
827 temp_hard_regset2))
828 break;
829 else if (hard_reg_set_subset_p (temp_hard_regset,
830 temp_hard_regset2))
831 set_p = true;
833 if (set_p && j >= ira_reg_class_cover_size)
834 ira_important_classes[ira_important_classes_num++]
835 = (enum reg_class) cl;
838 for (j = 0; j < ira_reg_class_cover_size; j++)
839 ira_important_classes[ira_important_classes_num++]
840 = ira_reg_class_cover[j];
843 /* Map of all register classes to corresponding cover class containing
844 the given class. If given class is not a subset of a cover class,
845 we translate it into the cheapest cover class. */
846 enum reg_class ira_class_translate[N_REG_CLASSES];
848 /* Set up array IRA_CLASS_TRANSLATE. */
849 static void
850 setup_class_translate (void)
852 int cl, mode;
853 enum reg_class cover_class, best_class, *cl_ptr;
854 int i, cost, min_cost, best_cost;
856 for (cl = 0; cl < N_REG_CLASSES; cl++)
857 ira_class_translate[cl] = NO_REGS;
859 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
860 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
862 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
863 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
864 for (i = 0; i < ira_reg_class_cover_size; i++)
866 HARD_REG_SET temp_hard_regset2;
868 cover_class = ira_reg_class_cover[i];
869 COPY_HARD_REG_SET (temp_hard_regset2,
870 reg_class_contents[cover_class]);
871 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
872 if (hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2))
873 ira_class_translate[cl] = cover_class;
876 for (i = 0; i < ira_reg_class_cover_size; i++)
878 cover_class = ira_reg_class_cover[i];
879 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY)
880 for (cl_ptr = &alloc_reg_class_subclasses[cover_class][0];
881 (cl = *cl_ptr) != LIM_REG_CLASSES;
882 cl_ptr++)
884 if (ira_class_translate[cl] == NO_REGS)
885 ira_class_translate[cl] = cover_class;
886 #ifdef ENABLE_IRA_CHECKING
887 else
889 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
890 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
891 if (! hard_reg_set_empty_p (temp_hard_regset))
892 gcc_unreachable ();
894 #endif
896 ira_class_translate[cover_class] = cover_class;
898 /* For classes which are not fully covered by a cover class (in
899 other words covered by more one cover class), use the cheapest
900 cover class. */
901 for (cl = 0; cl < N_REG_CLASSES; cl++)
903 if (cl == NO_REGS || ira_class_translate[cl] != NO_REGS)
904 continue;
905 best_class = NO_REGS;
906 best_cost = INT_MAX;
907 for (i = 0; i < ira_reg_class_cover_size; i++)
909 cover_class = ira_reg_class_cover[i];
910 COPY_HARD_REG_SET (temp_hard_regset,
911 reg_class_contents[cover_class]);
912 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
913 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
914 if (! hard_reg_set_empty_p (temp_hard_regset))
916 min_cost = INT_MAX;
917 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
919 cost = (ira_memory_move_cost[mode][cl][0]
920 + ira_memory_move_cost[mode][cl][1]);
921 if (min_cost > cost)
922 min_cost = cost;
924 if (best_class == NO_REGS || best_cost > min_cost)
926 best_class = cover_class;
927 best_cost = min_cost;
931 ira_class_translate[cl] = best_class;
935 /* Order numbers of cover classes in original target cover class
936 array, -1 for non-cover classes. */
937 static int cover_class_order[N_REG_CLASSES];
939 /* The function used to sort the important classes. */
940 static int
941 comp_reg_classes_func (const void *v1p, const void *v2p)
943 enum reg_class cl1 = *(const enum reg_class *) v1p;
944 enum reg_class cl2 = *(const enum reg_class *) v2p;
945 int diff;
947 cl1 = ira_class_translate[cl1];
948 cl2 = ira_class_translate[cl2];
949 if (cl1 != NO_REGS && cl2 != NO_REGS
950 && (diff = cover_class_order[cl1] - cover_class_order[cl2]) != 0)
951 return diff;
952 return (int) cl1 - (int) cl2;
955 /* Reorder important classes according to the order of their cover
956 classes. Set up array ira_important_class_nums too. */
957 static void
958 reorder_important_classes (void)
960 int i;
962 for (i = 0; i < N_REG_CLASSES; i++)
963 cover_class_order[i] = -1;
964 for (i = 0; i < ira_reg_class_cover_size; i++)
965 cover_class_order[ira_reg_class_cover[i]] = i;
966 qsort (ira_important_classes, ira_important_classes_num,
967 sizeof (enum reg_class), comp_reg_classes_func);
968 for (i = 0; i < ira_important_classes_num; i++)
969 ira_important_class_nums[ira_important_classes[i]] = i;
972 /* The biggest important reg_class inside of intersection of the two
973 reg_classes (that is calculated taking only hard registers
974 available for allocation into account). If the both reg_classes
975 contain no hard registers available for allocation, the value is
976 calculated by taking all hard-registers including fixed ones into
977 account. */
978 enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
980 /* True if the two classes (that is calculated taking only hard
981 registers available for allocation into account) are
982 intersected. */
983 bool ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
985 /* Important classes with end marker LIM_REG_CLASSES which are
986 supersets with given important class (the first index). That
987 includes given class itself. This is calculated taking only hard
988 registers available for allocation into account. */
989 enum reg_class ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
991 /* The biggest important reg_class inside of union of the two
992 reg_classes (that is calculated taking only hard registers
993 available for allocation into account). If the both reg_classes
994 contain no hard registers available for allocation, the value is
995 calculated by taking all hard-registers including fixed ones into
996 account. In other words, the value is the corresponding
997 reg_class_subunion value. */
998 enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
1000 /* Set up the above reg class relations. */
1001 static void
1002 setup_reg_class_relations (void)
1004 int i, cl1, cl2, cl3;
1005 HARD_REG_SET intersection_set, union_set, temp_set2;
1006 bool important_class_p[N_REG_CLASSES];
1008 memset (important_class_p, 0, sizeof (important_class_p));
1009 for (i = 0; i < ira_important_classes_num; i++)
1010 important_class_p[ira_important_classes[i]] = true;
1011 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1013 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1014 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1016 ira_reg_classes_intersect_p[cl1][cl2] = false;
1017 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1018 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1019 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1020 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1021 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1022 if (hard_reg_set_empty_p (temp_hard_regset)
1023 && hard_reg_set_empty_p (temp_set2))
1025 for (i = 0;; i++)
1027 cl3 = reg_class_subclasses[cl1][i];
1028 if (cl3 == LIM_REG_CLASSES)
1029 break;
1030 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1031 (enum reg_class) cl3))
1032 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1034 ira_reg_class_union[cl1][cl2] = reg_class_subunion[cl1][cl2];
1035 continue;
1037 ira_reg_classes_intersect_p[cl1][cl2]
1038 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1039 if (important_class_p[cl1] && important_class_p[cl2]
1040 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1042 enum reg_class *p;
1044 p = &ira_reg_class_super_classes[cl1][0];
1045 while (*p != LIM_REG_CLASSES)
1046 p++;
1047 *p++ = (enum reg_class) cl2;
1048 *p = LIM_REG_CLASSES;
1050 ira_reg_class_union[cl1][cl2] = NO_REGS;
1051 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1052 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1053 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1054 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1055 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1056 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1057 for (i = 0; i < ira_important_classes_num; i++)
1059 cl3 = ira_important_classes[i];
1060 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1061 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1062 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1064 COPY_HARD_REG_SET
1065 (temp_set2,
1066 reg_class_contents[(int)
1067 ira_reg_class_intersect[cl1][cl2]]);
1068 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1069 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1070 /* Ignore unavailable hard registers and prefer
1071 smallest class for debugging purposes. */
1072 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1073 && hard_reg_set_subset_p
1074 (reg_class_contents[cl3],
1075 reg_class_contents
1076 [(int) ira_reg_class_intersect[cl1][cl2]])))
1077 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1079 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
1081 COPY_HARD_REG_SET
1082 (temp_set2,
1083 reg_class_contents[(int) ira_reg_class_union[cl1][cl2]]);
1084 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1085 if (ira_reg_class_union[cl1][cl2] == NO_REGS
1086 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1088 && (! hard_reg_set_equal_p (temp_set2,
1089 temp_hard_regset)
1090 /* Ignore unavailable hard registers and
1091 prefer smallest class for debugging
1092 purposes. */
1093 || hard_reg_set_subset_p
1094 (reg_class_contents[cl3],
1095 reg_class_contents
1096 [(int) ira_reg_class_union[cl1][cl2]]))))
1097 ira_reg_class_union[cl1][cl2] = (enum reg_class) cl3;
1104 /* Output all cover classes and the translation map into file F. */
1105 static void
1106 print_class_cover (FILE *f)
1108 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1109 int i;
1111 fprintf (f, "Class cover:\n");
1112 for (i = 0; i < ira_reg_class_cover_size; i++)
1113 fprintf (f, " %s", reg_class_names[ira_reg_class_cover[i]]);
1114 fprintf (f, "\nClass translation:\n");
1115 for (i = 0; i < N_REG_CLASSES; i++)
1116 fprintf (f, " %s -> %s\n", reg_class_names[i],
1117 reg_class_names[ira_class_translate[i]]);
1120 /* Output all cover classes and the translation map into
1121 stderr. */
1122 void
1123 ira_debug_class_cover (void)
1125 print_class_cover (stderr);
1128 /* Set up different arrays concerning class subsets, cover and
1129 important classes. */
1130 static void
1131 find_reg_class_closure (void)
1133 setup_reg_subclasses ();
1134 setup_cover_and_important_classes ();
1135 setup_class_translate ();
1136 reorder_important_classes ();
1137 setup_reg_class_relations ();
1142 /* Map: hard register number -> cover class it belongs to. If the
1143 corresponding class is NO_REGS, the hard register is not available
1144 for allocation. */
1145 enum reg_class ira_hard_regno_cover_class[FIRST_PSEUDO_REGISTER];
1147 /* Set up the array above. */
1148 static void
1149 setup_hard_regno_cover_class (void)
1151 int i, j;
1152 enum reg_class cl;
1154 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1156 ira_hard_regno_cover_class[i] = NO_REGS;
1157 for (j = 0; j < ira_reg_class_cover_size; j++)
1159 cl = ira_reg_class_cover[j];
1160 if (ira_class_hard_reg_index[cl][i] >= 0)
1162 ira_hard_regno_cover_class[i] = cl;
1163 break;
1172 /* Map: register class x machine mode -> number of hard registers of
1173 given class needed to store value of given mode. If the number is
1174 different, the size will be negative. */
1175 int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
1177 /* Maximal value of the previous array elements. */
1178 int ira_max_nregs;
1180 /* Form IRA_REG_CLASS_NREGS map. */
1181 static void
1182 setup_reg_class_nregs (void)
1184 int cl, m;
1186 ira_max_nregs = -1;
1187 for (cl = 0; cl < N_REG_CLASSES; cl++)
1188 for (m = 0; m < MAX_MACHINE_MODE; m++)
1190 ira_reg_class_nregs[cl][m] = CLASS_MAX_NREGS ((enum reg_class) cl,
1191 (enum machine_mode) m);
1192 if (ira_max_nregs < ira_reg_class_nregs[cl][m])
1193 ira_max_nregs = ira_reg_class_nregs[cl][m];
1199 /* Array whose values are hard regset of hard registers available for
1200 the allocation of given register class whose HARD_REGNO_MODE_OK
1201 values for given mode are zero. */
1202 HARD_REG_SET prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
1204 /* Set up PROHIBITED_CLASS_MODE_REGS. */
1205 static void
1206 setup_prohibited_class_mode_regs (void)
1208 int i, j, k, hard_regno;
1209 enum reg_class cl;
1211 for (i = 0; i < ira_reg_class_cover_size; i++)
1213 cl = ira_reg_class_cover[i];
1214 for (j = 0; j < NUM_MACHINE_MODES; j++)
1216 CLEAR_HARD_REG_SET (prohibited_class_mode_regs[cl][j]);
1217 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1219 hard_regno = ira_class_hard_regs[cl][k];
1220 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1221 SET_HARD_REG_BIT (prohibited_class_mode_regs[cl][j],
1222 hard_regno);
1230 /* Allocate and initialize IRA_REGISTER_MOVE_COST,
1231 IRA_MAY_MOVE_IN_COST, and IRA_MAY_MOVE_OUT_COST for MODE if it is
1232 not done yet. */
1233 void
1234 ira_init_register_move_cost (enum machine_mode mode)
1236 int cl1, cl2;
1238 ira_assert (ira_register_move_cost[mode] == NULL
1239 && ira_may_move_in_cost[mode] == NULL
1240 && ira_may_move_out_cost[mode] == NULL);
1241 if (move_cost[mode] == NULL)
1242 init_move_cost (mode);
1243 ira_register_move_cost[mode] = move_cost[mode];
1244 /* Don't use ira_allocate because the tables exist out of scope of a
1245 IRA call. */
1246 ira_may_move_in_cost[mode]
1247 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1248 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1249 sizeof (move_table) * N_REG_CLASSES);
1250 ira_may_move_out_cost[mode]
1251 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1252 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1253 sizeof (move_table) * N_REG_CLASSES);
1254 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1256 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1258 if (ira_class_subset_p[cl1][cl2])
1259 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1260 if (ira_class_subset_p[cl2][cl1])
1261 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1268 /* This is called once during compiler work. It sets up
1269 different arrays whose values don't depend on the compiled
1270 function. */
1271 void
1272 ira_init_once (void)
1274 int mode;
1276 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1278 ira_register_move_cost[mode] = NULL;
1279 ira_may_move_in_cost[mode] = NULL;
1280 ira_may_move_out_cost[mode] = NULL;
1282 ira_init_costs_once ();
1285 /* Free ira_register_move_cost, ira_may_move_in_cost, and
1286 ira_may_move_out_cost for each mode. */
1287 static void
1288 free_register_move_costs (void)
1290 int mode;
1292 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1294 if (ira_may_move_in_cost[mode] != NULL)
1295 free (ira_may_move_in_cost[mode]);
1296 if (ira_may_move_out_cost[mode] != NULL)
1297 free (ira_may_move_out_cost[mode]);
1298 ira_register_move_cost[mode] = NULL;
1299 ira_may_move_in_cost[mode] = NULL;
1300 ira_may_move_out_cost[mode] = NULL;
1304 /* This is called every time when register related information is
1305 changed. */
1306 void
1307 ira_init (void)
1309 free_register_move_costs ();
1310 setup_reg_mode_hard_regset ();
1311 setup_alloc_regs (flag_omit_frame_pointer != 0);
1312 setup_class_subset_and_memory_move_costs ();
1313 find_reg_class_closure ();
1314 setup_hard_regno_cover_class ();
1315 setup_reg_class_nregs ();
1316 setup_prohibited_class_mode_regs ();
1317 ira_init_costs ();
1320 /* Function called once at the end of compiler work. */
1321 void
1322 ira_finish_once (void)
1324 ira_finish_costs_once ();
1325 free_register_move_costs ();
1330 /* Array whose values are hard regset of hard registers for which
1331 move of the hard register in given mode into itself is
1332 prohibited. */
1333 HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
1335 /* Flag of that the above array has been initialized. */
1336 static bool ira_prohibited_mode_move_regs_initialized_p = false;
1338 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1339 static void
1340 setup_prohibited_mode_move_regs (void)
1342 int i, j;
1343 rtx test_reg1, test_reg2, move_pat, move_insn;
1345 if (ira_prohibited_mode_move_regs_initialized_p)
1346 return;
1347 ira_prohibited_mode_move_regs_initialized_p = true;
1348 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1349 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1350 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1351 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, move_pat, -1, 0);
1352 for (i = 0; i < NUM_MACHINE_MODES; i++)
1354 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1355 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1357 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1358 continue;
1359 SET_REGNO (test_reg1, j);
1360 PUT_MODE (test_reg1, (enum machine_mode) i);
1361 SET_REGNO (test_reg2, j);
1362 PUT_MODE (test_reg2, (enum machine_mode) i);
1363 INSN_CODE (move_insn) = -1;
1364 recog_memoized (move_insn);
1365 if (INSN_CODE (move_insn) < 0)
1366 continue;
1367 extract_insn (move_insn);
1368 if (! constrain_operands (1))
1369 continue;
1370 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1377 /* Function specific hard registers that can not be used for the
1378 register allocation. */
1379 HARD_REG_SET ira_no_alloc_regs;
1381 /* Return TRUE if *LOC contains an asm. */
1382 static int
1383 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1385 if ( !*loc)
1386 return FALSE;
1387 if (GET_CODE (*loc) == ASM_OPERANDS)
1388 return TRUE;
1389 return FALSE;
1393 /* Return TRUE if INSN contains an ASM. */
1394 static bool
1395 insn_contains_asm (rtx insn)
1397 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1400 /* Add register clobbers from asm statements. */
1401 static void
1402 compute_regs_asm_clobbered (void)
1404 basic_block bb;
1406 FOR_EACH_BB (bb)
1408 rtx insn;
1409 FOR_BB_INSNS_REVERSE (bb, insn)
1411 df_ref *def_rec;
1413 if (insn_contains_asm (insn))
1414 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1416 df_ref def = *def_rec;
1417 unsigned int dregno = DF_REF_REGNO (def);
1418 if (dregno < FIRST_PSEUDO_REGISTER)
1420 unsigned int i;
1421 enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
1422 unsigned int end = dregno
1423 + hard_regno_nregs[dregno][mode] - 1;
1425 for (i = dregno; i <= end; ++i)
1426 SET_HARD_REG_BIT(crtl->asm_clobbers, i);
1434 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1435 void
1436 ira_setup_eliminable_regset (void)
1438 #ifdef ELIMINABLE_REGS
1439 int i;
1440 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1441 #endif
1442 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1443 sp for alloca. So we can't eliminate the frame pointer in that
1444 case. At some point, we should improve this by emitting the
1445 sp-adjusting insns for this case. */
1446 int need_fp
1447 = (! flag_omit_frame_pointer
1448 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1449 /* We need the frame pointer to catch stack overflow exceptions
1450 if the stack pointer is moving. */
1451 || (flag_stack_check && STACK_CHECK_MOVING_SP)
1452 || crtl->accesses_prior_frames
1453 || crtl->stack_realign_needed
1454 || targetm.frame_pointer_required ());
1456 frame_pointer_needed = need_fp;
1458 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1459 CLEAR_HARD_REG_SET (eliminable_regset);
1461 compute_regs_asm_clobbered ();
1463 /* Build the regset of all eliminable registers and show we can't
1464 use those that we already know won't be eliminated. */
1465 #ifdef ELIMINABLE_REGS
1466 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1468 bool cannot_elim
1469 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
1470 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1472 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
1474 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1476 if (cannot_elim)
1477 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1479 else if (cannot_elim)
1480 error ("%s cannot be used in asm here",
1481 reg_names[eliminables[i].from]);
1482 else
1483 df_set_regs_ever_live (eliminables[i].from, true);
1485 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1486 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1488 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1489 if (need_fp)
1490 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1492 else if (need_fp)
1493 error ("%s cannot be used in asm here",
1494 reg_names[HARD_FRAME_POINTER_REGNUM]);
1495 else
1496 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1497 #endif
1499 #else
1500 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1502 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1503 if (need_fp)
1504 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1506 else if (need_fp)
1507 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1508 else
1509 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1510 #endif
1515 /* The length of the following two arrays. */
1516 int ira_reg_equiv_len;
1518 /* The element value is TRUE if the corresponding regno value is
1519 invariant. */
1520 bool *ira_reg_equiv_invariant_p;
1522 /* The element value is equiv constant of given pseudo-register or
1523 NULL_RTX. */
1524 rtx *ira_reg_equiv_const;
1526 /* Set up the two arrays declared above. */
1527 static void
1528 find_reg_equiv_invariant_const (void)
1530 int i;
1531 bool invariant_p;
1532 rtx list, insn, note, constant, x;
1534 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1536 constant = NULL_RTX;
1537 invariant_p = false;
1538 for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
1540 insn = XEXP (list, 0);
1541 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1543 if (note == NULL_RTX)
1544 continue;
1546 x = XEXP (note, 0);
1548 if (! function_invariant_p (x)
1549 || ! flag_pic
1550 /* A function invariant is often CONSTANT_P but may
1551 include a register. We promise to only pass CONSTANT_P
1552 objects to LEGITIMATE_PIC_OPERAND_P. */
1553 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
1555 /* It can happen that a REG_EQUIV note contains a MEM
1556 that is not a legitimate memory operand. As later
1557 stages of the reload assume that all addresses found
1558 in the reg_equiv_* arrays were originally legitimate,
1559 we ignore such REG_EQUIV notes. */
1560 if (memory_operand (x, VOIDmode))
1561 invariant_p = MEM_READONLY_P (x);
1562 else if (function_invariant_p (x))
1564 if (GET_CODE (x) == PLUS
1565 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1566 invariant_p = true;
1567 else
1568 constant = x;
1572 ira_reg_equiv_invariant_p[i] = invariant_p;
1573 ira_reg_equiv_const[i] = constant;
1579 /* Vector of substitutions of register numbers,
1580 used to map pseudo regs into hardware regs.
1581 This is set up as a result of register allocation.
1582 Element N is the hard reg assigned to pseudo reg N,
1583 or is -1 if no hard reg was assigned.
1584 If N is a hard reg number, element N is N. */
1585 short *reg_renumber;
1587 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1588 the allocation found by IRA. */
1589 static void
1590 setup_reg_renumber (void)
1592 int regno, hard_regno;
1593 ira_allocno_t a;
1594 ira_allocno_iterator ai;
1596 caller_save_needed = 0;
1597 FOR_EACH_ALLOCNO (a, ai)
1599 /* There are no caps at this point. */
1600 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1601 if (! ALLOCNO_ASSIGNED_P (a))
1602 /* It can happen if A is not referenced but partially anticipated
1603 somewhere in a region. */
1604 ALLOCNO_ASSIGNED_P (a) = true;
1605 ira_free_allocno_updated_costs (a);
1606 hard_regno = ALLOCNO_HARD_REGNO (a);
1607 regno = (int) REGNO (ALLOCNO_REG (a));
1608 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1609 if (hard_regno >= 0 && ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1610 && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1611 call_used_reg_set))
1613 ira_assert (!optimize || flag_caller_saves
1614 || regno >= ira_reg_equiv_len
1615 || ira_reg_equiv_const[regno]
1616 || ira_reg_equiv_invariant_p[regno]);
1617 caller_save_needed = 1;
1622 /* Set up allocno assignment flags for further allocation
1623 improvements. */
1624 static void
1625 setup_allocno_assignment_flags (void)
1627 int hard_regno;
1628 ira_allocno_t a;
1629 ira_allocno_iterator ai;
1631 FOR_EACH_ALLOCNO (a, ai)
1633 if (! ALLOCNO_ASSIGNED_P (a))
1634 /* It can happen if A is not referenced but partially anticipated
1635 somewhere in a region. */
1636 ira_free_allocno_updated_costs (a);
1637 hard_regno = ALLOCNO_HARD_REGNO (a);
1638 /* Don't assign hard registers to allocnos which are destination
1639 of removed store at the end of loop. It has no sense to keep
1640 the same value in different hard registers. It is also
1641 impossible to assign hard registers correctly to such
1642 allocnos because the cost info and info about intersected
1643 calls are incorrect for them. */
1644 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1645 || ALLOCNO_MEM_OPTIMIZED_DEST_P (a)
1646 || (ALLOCNO_MEMORY_COST (a)
1647 - ALLOCNO_COVER_CLASS_COST (a)) < 0);
1648 ira_assert (hard_regno < 0
1649 || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1650 reg_class_contents
1651 [ALLOCNO_COVER_CLASS (a)]));
1655 /* Evaluate overall allocation cost and the costs for using hard
1656 registers and memory for allocnos. */
1657 static void
1658 calculate_allocation_cost (void)
1660 int hard_regno, cost;
1661 ira_allocno_t a;
1662 ira_allocno_iterator ai;
1664 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1665 FOR_EACH_ALLOCNO (a, ai)
1667 hard_regno = ALLOCNO_HARD_REGNO (a);
1668 ira_assert (hard_regno < 0
1669 || ! ira_hard_reg_not_in_set_p
1670 (hard_regno, ALLOCNO_MODE (a),
1671 reg_class_contents[ALLOCNO_COVER_CLASS (a)]));
1672 if (hard_regno < 0)
1674 cost = ALLOCNO_MEMORY_COST (a);
1675 ira_mem_cost += cost;
1677 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1679 cost = (ALLOCNO_HARD_REG_COSTS (a)
1680 [ira_class_hard_reg_index
1681 [ALLOCNO_COVER_CLASS (a)][hard_regno]]);
1682 ira_reg_cost += cost;
1684 else
1686 cost = ALLOCNO_COVER_CLASS_COST (a);
1687 ira_reg_cost += cost;
1689 ira_overall_cost += cost;
1692 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1694 fprintf (ira_dump_file,
1695 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
1696 ira_overall_cost, ira_reg_cost, ira_mem_cost,
1697 ira_load_cost, ira_store_cost, ira_shuffle_cost);
1698 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
1699 ira_move_loops_num, ira_additional_jumps_num);
1704 #ifdef ENABLE_IRA_CHECKING
1705 /* Check the correctness of the allocation. We do need this because
1706 of complicated code to transform more one region internal
1707 representation into one region representation. */
1708 static void
1709 check_allocation (void)
1711 ira_allocno_t a, conflict_a;
1712 int hard_regno, conflict_hard_regno, nregs, conflict_nregs;
1713 ira_allocno_conflict_iterator aci;
1714 ira_allocno_iterator ai;
1716 FOR_EACH_ALLOCNO (a, ai)
1718 if (ALLOCNO_CAP_MEMBER (a) != NULL
1719 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
1720 continue;
1721 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
1722 FOR_EACH_ALLOCNO_CONFLICT (a, conflict_a, aci)
1723 if ((conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a)) >= 0)
1725 conflict_nregs
1726 = (hard_regno_nregs
1727 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
1728 if ((conflict_hard_regno <= hard_regno
1729 && hard_regno < conflict_hard_regno + conflict_nregs)
1730 || (hard_regno <= conflict_hard_regno
1731 && conflict_hard_regno < hard_regno + nregs))
1733 fprintf (stderr, "bad allocation for %d and %d\n",
1734 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
1735 gcc_unreachable ();
1740 #endif
1742 /* Fix values of array REG_EQUIV_INIT after live range splitting done
1743 by IRA. */
1744 static void
1745 fix_reg_equiv_init (void)
1747 int max_regno = max_reg_num ();
1748 int i, new_regno;
1749 rtx x, prev, next, insn, set;
1751 if (reg_equiv_init_size < max_regno)
1753 reg_equiv_init
1754 = (rtx *) ggc_realloc (reg_equiv_init, max_regno * sizeof (rtx));
1755 while (reg_equiv_init_size < max_regno)
1756 reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
1757 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1758 for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
1760 next = XEXP (x, 1);
1761 insn = XEXP (x, 0);
1762 set = single_set (insn);
1763 ira_assert (set != NULL_RTX
1764 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
1765 if (REG_P (SET_DEST (set))
1766 && ((int) REGNO (SET_DEST (set)) == i
1767 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
1768 new_regno = REGNO (SET_DEST (set));
1769 else if (REG_P (SET_SRC (set))
1770 && ((int) REGNO (SET_SRC (set)) == i
1771 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
1772 new_regno = REGNO (SET_SRC (set));
1773 else
1774 gcc_unreachable ();
1775 if (new_regno == i)
1776 prev = x;
1777 else
1779 if (prev == NULL_RTX)
1780 reg_equiv_init[i] = next;
1781 else
1782 XEXP (prev, 1) = next;
1783 XEXP (x, 1) = reg_equiv_init[new_regno];
1784 reg_equiv_init[new_regno] = x;
1790 #ifdef ENABLE_IRA_CHECKING
1791 /* Print redundant memory-memory copies. */
1792 static void
1793 print_redundant_copies (void)
1795 int hard_regno;
1796 ira_allocno_t a;
1797 ira_copy_t cp, next_cp;
1798 ira_allocno_iterator ai;
1800 FOR_EACH_ALLOCNO (a, ai)
1802 if (ALLOCNO_CAP_MEMBER (a) != NULL)
1803 /* It is a cap. */
1804 continue;
1805 hard_regno = ALLOCNO_HARD_REGNO (a);
1806 if (hard_regno >= 0)
1807 continue;
1808 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
1809 if (cp->first == a)
1810 next_cp = cp->next_first_allocno_copy;
1811 else
1813 next_cp = cp->next_second_allocno_copy;
1814 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
1815 && cp->insn != NULL_RTX
1816 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
1817 fprintf (ira_dump_file,
1818 " Redundant move from %d(freq %d):%d\n",
1819 INSN_UID (cp->insn), cp->freq, hard_regno);
1823 #endif
1825 /* Setup preferred and alternative classes for new pseudo-registers
1826 created by IRA starting with START. */
1827 static void
1828 setup_preferred_alternate_classes_for_new_pseudos (int start)
1830 int i, old_regno;
1831 int max_regno = max_reg_num ();
1833 for (i = start; i < max_regno; i++)
1835 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
1836 ira_assert (i != old_regno);
1837 setup_reg_classes (i, reg_preferred_class (old_regno),
1838 reg_alternate_class (old_regno),
1839 reg_cover_class (old_regno));
1840 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1841 fprintf (ira_dump_file,
1842 " New r%d: setting preferred %s, alternative %s\n",
1843 i, reg_class_names[reg_preferred_class (old_regno)],
1844 reg_class_names[reg_alternate_class (old_regno)]);
1850 /* Regional allocation can create new pseudo-registers. This function
1851 expands some arrays for pseudo-registers. */
1852 static void
1853 expand_reg_info (int old_size)
1855 int i;
1856 int size = max_reg_num ();
1858 resize_reg_info ();
1859 for (i = old_size; i < size; i++)
1860 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
1863 /* Return TRUE if there is too high register pressure in the function.
1864 It is used to decide when stack slot sharing is worth to do. */
1865 static bool
1866 too_high_register_pressure_p (void)
1868 int i;
1869 enum reg_class cover_class;
1871 for (i = 0; i < ira_reg_class_cover_size; i++)
1873 cover_class = ira_reg_class_cover[i];
1874 if (ira_loop_tree_root->reg_pressure[cover_class] > 10000)
1875 return true;
1877 return false;
1882 /* Indicate that hard register number FROM was eliminated and replaced with
1883 an offset from hard register number TO. The status of hard registers live
1884 at the start of a basic block is updated by replacing a use of FROM with
1885 a use of TO. */
1887 void
1888 mark_elimination (int from, int to)
1890 basic_block bb;
1892 FOR_EACH_BB (bb)
1894 /* We don't use LIVE info in IRA. */
1895 bitmap r = DF_LR_IN (bb);
1897 if (REGNO_REG_SET_P (r, from))
1899 CLEAR_REGNO_REG_SET (r, from);
1900 SET_REGNO_REG_SET (r, to);
1907 struct equivalence
1909 /* Set when a REG_EQUIV note is found or created. Use to
1910 keep track of what memory accesses might be created later,
1911 e.g. by reload. */
1912 rtx replacement;
1913 rtx *src_p;
1914 /* The list of each instruction which initializes this register. */
1915 rtx init_insns;
1916 /* Loop depth is used to recognize equivalences which appear
1917 to be present within the same loop (or in an inner loop). */
1918 int loop_depth;
1919 /* Nonzero if this had a preexisting REG_EQUIV note. */
1920 int is_arg_equivalence;
1921 /* Set when an attempt should be made to replace a register
1922 with the associated src_p entry. */
1923 char replace;
1926 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
1927 structure for that register. */
1928 static struct equivalence *reg_equiv;
1930 /* Used for communication between the following two functions: contains
1931 a MEM that we wish to ensure remains unchanged. */
1932 static rtx equiv_mem;
1934 /* Set nonzero if EQUIV_MEM is modified. */
1935 static int equiv_mem_modified;
1937 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
1938 Called via note_stores. */
1939 static void
1940 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
1941 void *data ATTRIBUTE_UNUSED)
1943 if ((REG_P (dest)
1944 && reg_overlap_mentioned_p (dest, equiv_mem))
1945 || (MEM_P (dest)
1946 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
1947 equiv_mem_modified = 1;
1950 /* Verify that no store between START and the death of REG invalidates
1951 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
1952 by storing into an overlapping memory location, or with a non-const
1953 CALL_INSN.
1955 Return 1 if MEMREF remains valid. */
1956 static int
1957 validate_equiv_mem (rtx start, rtx reg, rtx memref)
1959 rtx insn;
1960 rtx note;
1962 equiv_mem = memref;
1963 equiv_mem_modified = 0;
1965 /* If the memory reference has side effects or is volatile, it isn't a
1966 valid equivalence. */
1967 if (side_effects_p (memref))
1968 return 0;
1970 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
1972 if (! INSN_P (insn))
1973 continue;
1975 if (find_reg_note (insn, REG_DEAD, reg))
1976 return 1;
1978 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
1979 && ! RTL_CONST_OR_PURE_CALL_P (insn))
1980 return 0;
1982 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
1984 /* If a register mentioned in MEMREF is modified via an
1985 auto-increment, we lose the equivalence. Do the same if one
1986 dies; although we could extend the life, it doesn't seem worth
1987 the trouble. */
1989 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1990 if ((REG_NOTE_KIND (note) == REG_INC
1991 || REG_NOTE_KIND (note) == REG_DEAD)
1992 && REG_P (XEXP (note, 0))
1993 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
1994 return 0;
1997 return 0;
2000 /* Returns zero if X is known to be invariant. */
2001 static int
2002 equiv_init_varies_p (rtx x)
2004 RTX_CODE code = GET_CODE (x);
2005 int i;
2006 const char *fmt;
2008 switch (code)
2010 case MEM:
2011 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
2013 case CONST:
2014 case CONST_INT:
2015 case CONST_DOUBLE:
2016 case CONST_FIXED:
2017 case CONST_VECTOR:
2018 case SYMBOL_REF:
2019 case LABEL_REF:
2020 return 0;
2022 case REG:
2023 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
2025 case ASM_OPERANDS:
2026 if (MEM_VOLATILE_P (x))
2027 return 1;
2029 /* Fall through. */
2031 default:
2032 break;
2035 fmt = GET_RTX_FORMAT (code);
2036 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2037 if (fmt[i] == 'e')
2039 if (equiv_init_varies_p (XEXP (x, i)))
2040 return 1;
2042 else if (fmt[i] == 'E')
2044 int j;
2045 for (j = 0; j < XVECLEN (x, i); j++)
2046 if (equiv_init_varies_p (XVECEXP (x, i, j)))
2047 return 1;
2050 return 0;
2053 /* Returns nonzero if X (used to initialize register REGNO) is movable.
2054 X is only movable if the registers it uses have equivalent initializations
2055 which appear to be within the same loop (or in an inner loop) and movable
2056 or if they are not candidates for local_alloc and don't vary. */
2057 static int
2058 equiv_init_movable_p (rtx x, int regno)
2060 int i, j;
2061 const char *fmt;
2062 enum rtx_code code = GET_CODE (x);
2064 switch (code)
2066 case SET:
2067 return equiv_init_movable_p (SET_SRC (x), regno);
2069 case CC0:
2070 case CLOBBER:
2071 return 0;
2073 case PRE_INC:
2074 case PRE_DEC:
2075 case POST_INC:
2076 case POST_DEC:
2077 case PRE_MODIFY:
2078 case POST_MODIFY:
2079 return 0;
2081 case REG:
2082 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2083 && reg_equiv[REGNO (x)].replace)
2084 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));
2086 case UNSPEC_VOLATILE:
2087 return 0;
2089 case ASM_OPERANDS:
2090 if (MEM_VOLATILE_P (x))
2091 return 0;
2093 /* Fall through. */
2095 default:
2096 break;
2099 fmt = GET_RTX_FORMAT (code);
2100 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2101 switch (fmt[i])
2103 case 'e':
2104 if (! equiv_init_movable_p (XEXP (x, i), regno))
2105 return 0;
2106 break;
2107 case 'E':
2108 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2109 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2110 return 0;
2111 break;
2114 return 1;
2117 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
2118 static int
2119 contains_replace_regs (rtx x)
2121 int i, j;
2122 const char *fmt;
2123 enum rtx_code code = GET_CODE (x);
2125 switch (code)
2127 case CONST_INT:
2128 case CONST:
2129 case LABEL_REF:
2130 case SYMBOL_REF:
2131 case CONST_DOUBLE:
2132 case CONST_FIXED:
2133 case CONST_VECTOR:
2134 case PC:
2135 case CC0:
2136 case HIGH:
2137 return 0;
2139 case REG:
2140 return reg_equiv[REGNO (x)].replace;
2142 default:
2143 break;
2146 fmt = GET_RTX_FORMAT (code);
2147 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2148 switch (fmt[i])
2150 case 'e':
2151 if (contains_replace_regs (XEXP (x, i)))
2152 return 1;
2153 break;
2154 case 'E':
2155 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2156 if (contains_replace_regs (XVECEXP (x, i, j)))
2157 return 1;
2158 break;
2161 return 0;
2164 /* TRUE if X references a memory location that would be affected by a store
2165 to MEMREF. */
2166 static int
2167 memref_referenced_p (rtx memref, rtx x)
2169 int i, j;
2170 const char *fmt;
2171 enum rtx_code code = GET_CODE (x);
2173 switch (code)
2175 case CONST_INT:
2176 case CONST:
2177 case LABEL_REF:
2178 case SYMBOL_REF:
2179 case CONST_DOUBLE:
2180 case CONST_FIXED:
2181 case CONST_VECTOR:
2182 case PC:
2183 case CC0:
2184 case HIGH:
2185 case LO_SUM:
2186 return 0;
2188 case REG:
2189 return (reg_equiv[REGNO (x)].replacement
2190 && memref_referenced_p (memref,
2191 reg_equiv[REGNO (x)].replacement));
2193 case MEM:
2194 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
2195 return 1;
2196 break;
2198 case SET:
2199 /* If we are setting a MEM, it doesn't count (its address does), but any
2200 other SET_DEST that has a MEM in it is referencing the MEM. */
2201 if (MEM_P (SET_DEST (x)))
2203 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2204 return 1;
2206 else if (memref_referenced_p (memref, SET_DEST (x)))
2207 return 1;
2209 return memref_referenced_p (memref, SET_SRC (x));
2211 default:
2212 break;
2215 fmt = GET_RTX_FORMAT (code);
2216 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2217 switch (fmt[i])
2219 case 'e':
2220 if (memref_referenced_p (memref, XEXP (x, i)))
2221 return 1;
2222 break;
2223 case 'E':
2224 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2225 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2226 return 1;
2227 break;
2230 return 0;
2233 /* TRUE if some insn in the range (START, END] references a memory location
2234 that would be affected by a store to MEMREF. */
2235 static int
2236 memref_used_between_p (rtx memref, rtx start, rtx end)
2238 rtx insn;
2240 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2241 insn = NEXT_INSN (insn))
2243 if (!NONDEBUG_INSN_P (insn))
2244 continue;
2246 if (memref_referenced_p (memref, PATTERN (insn)))
2247 return 1;
2249 /* Nonconst functions may access memory. */
2250 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2251 return 1;
2254 return 0;
2257 /* Mark REG as having no known equivalence.
2258 Some instructions might have been processed before and furnished
2259 with REG_EQUIV notes for this register; these notes will have to be
2260 removed.
2261 STORE is the piece of RTL that does the non-constant / conflicting
2262 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2263 but needs to be there because this function is called from note_stores. */
2264 static void
2265 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
2267 int regno;
2268 rtx list;
2270 if (!REG_P (reg))
2271 return;
2272 regno = REGNO (reg);
2273 list = reg_equiv[regno].init_insns;
2274 if (list == const0_rtx)
2275 return;
2276 reg_equiv[regno].init_insns = const0_rtx;
2277 reg_equiv[regno].replacement = NULL_RTX;
2278 /* This doesn't matter for equivalences made for argument registers, we
2279 should keep their initialization insns. */
2280 if (reg_equiv[regno].is_arg_equivalence)
2281 return;
2282 reg_equiv_init[regno] = NULL_RTX;
2283 for (; list; list = XEXP (list, 1))
2285 rtx insn = XEXP (list, 0);
2286 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2290 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2291 equivalent replacement. */
2293 static rtx
2294 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
2296 if (REG_P (loc))
2298 bitmap cleared_regs = (bitmap) data;
2299 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
2300 return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
2301 NULL_RTX, adjust_cleared_regs, data);
2303 return NULL_RTX;
2306 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2307 static int recorded_label_ref;
2309 /* Find registers that are equivalent to a single value throughout the
2310 compilation (either because they can be referenced in memory or are set once
2311 from a single constant). Lower their priority for a register.
2313 If such a register is only referenced once, try substituting its value
2314 into the using insn. If it succeeds, we can eliminate the register
2315 completely.
2317 Initialize the REG_EQUIV_INIT array of initializing insns.
2319 Return non-zero if jump label rebuilding should be done. */
2320 static int
2321 update_equiv_regs (void)
2323 rtx insn;
2324 basic_block bb;
2325 int loop_depth;
2326 bitmap cleared_regs;
2328 /* We need to keep track of whether or not we recorded a LABEL_REF so
2329 that we know if the jump optimizer needs to be rerun. */
2330 recorded_label_ref = 0;
2332 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2333 reg_equiv_init = GGC_CNEWVEC (rtx, max_regno);
2334 reg_equiv_init_size = max_regno;
2336 init_alias_analysis ();
2338 /* Scan the insns and find which registers have equivalences. Do this
2339 in a separate scan of the insns because (due to -fcse-follow-jumps)
2340 a register can be set below its use. */
2341 FOR_EACH_BB (bb)
2343 loop_depth = bb->loop_depth;
2345 for (insn = BB_HEAD (bb);
2346 insn != NEXT_INSN (BB_END (bb));
2347 insn = NEXT_INSN (insn))
2349 rtx note;
2350 rtx set;
2351 rtx dest, src;
2352 int regno;
2354 if (! INSN_P (insn))
2355 continue;
2357 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2358 if (REG_NOTE_KIND (note) == REG_INC)
2359 no_equiv (XEXP (note, 0), note, NULL);
2361 set = single_set (insn);
2363 /* If this insn contains more (or less) than a single SET,
2364 only mark all destinations as having no known equivalence. */
2365 if (set == 0)
2367 note_stores (PATTERN (insn), no_equiv, NULL);
2368 continue;
2370 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2372 int i;
2374 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2376 rtx part = XVECEXP (PATTERN (insn), 0, i);
2377 if (part != set)
2378 note_stores (part, no_equiv, NULL);
2382 dest = SET_DEST (set);
2383 src = SET_SRC (set);
2385 /* See if this is setting up the equivalence between an argument
2386 register and its stack slot. */
2387 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2388 if (note)
2390 gcc_assert (REG_P (dest));
2391 regno = REGNO (dest);
2393 /* Note that we don't want to clear reg_equiv_init even if there
2394 are multiple sets of this register. */
2395 reg_equiv[regno].is_arg_equivalence = 1;
2397 /* Record for reload that this is an equivalencing insn. */
2398 if (rtx_equal_p (src, XEXP (note, 0)))
2399 reg_equiv_init[regno]
2400 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2402 /* Continue normally in case this is a candidate for
2403 replacements. */
2406 if (!optimize)
2407 continue;
2409 /* We only handle the case of a pseudo register being set
2410 once, or always to the same value. */
2411 /* ??? The mn10200 port breaks if we add equivalences for
2412 values that need an ADDRESS_REGS register and set them equivalent
2413 to a MEM of a pseudo. The actual problem is in the over-conservative
2414 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2415 calculate_needs, but we traditionally work around this problem
2416 here by rejecting equivalences when the destination is in a register
2417 that's likely spilled. This is fragile, of course, since the
2418 preferred class of a pseudo depends on all instructions that set
2419 or use it. */
2421 if (!REG_P (dest)
2422 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
2423 || reg_equiv[regno].init_insns == const0_rtx
2424 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
2425 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2427 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2428 also set somewhere else to a constant. */
2429 note_stores (set, no_equiv, NULL);
2430 continue;
2433 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2435 /* cse sometimes generates function invariants, but doesn't put a
2436 REG_EQUAL note on the insn. Since this note would be redundant,
2437 there's no point creating it earlier than here. */
2438 if (! note && ! rtx_varies_p (src, 0))
2439 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2441 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2442 since it represents a function call */
2443 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2444 note = NULL_RTX;
2446 if (DF_REG_DEF_COUNT (regno) != 1
2447 && (! note
2448 || rtx_varies_p (XEXP (note, 0), 0)
2449 || (reg_equiv[regno].replacement
2450 && ! rtx_equal_p (XEXP (note, 0),
2451 reg_equiv[regno].replacement))))
2453 no_equiv (dest, set, NULL);
2454 continue;
2456 /* Record this insn as initializing this register. */
2457 reg_equiv[regno].init_insns
2458 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2460 /* If this register is known to be equal to a constant, record that
2461 it is always equivalent to the constant. */
2462 if (DF_REG_DEF_COUNT (regno) == 1
2463 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2465 rtx note_value = XEXP (note, 0);
2466 remove_note (insn, note);
2467 set_unique_reg_note (insn, REG_EQUIV, note_value);
2470 /* If this insn introduces a "constant" register, decrease the priority
2471 of that register. Record this insn if the register is only used once
2472 more and the equivalence value is the same as our source.
2474 The latter condition is checked for two reasons: First, it is an
2475 indication that it may be more efficient to actually emit the insn
2476 as written (if no registers are available, reload will substitute
2477 the equivalence). Secondly, it avoids problems with any registers
2478 dying in this insn whose death notes would be missed.
2480 If we don't have a REG_EQUIV note, see if this insn is loading
2481 a register used only in one basic block from a MEM. If so, and the
2482 MEM remains unchanged for the life of the register, add a REG_EQUIV
2483 note. */
2485 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2487 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2488 && MEM_P (SET_SRC (set))
2489 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2490 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2492 if (note)
2494 int regno = REGNO (dest);
2495 rtx x = XEXP (note, 0);
2497 /* If we haven't done so, record for reload that this is an
2498 equivalencing insn. */
2499 if (!reg_equiv[regno].is_arg_equivalence)
2500 reg_equiv_init[regno]
2501 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2503 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2504 We might end up substituting the LABEL_REF for uses of the
2505 pseudo here or later. That kind of transformation may turn an
2506 indirect jump into a direct jump, in which case we must rerun the
2507 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
2508 if (GET_CODE (x) == LABEL_REF
2509 || (GET_CODE (x) == CONST
2510 && GET_CODE (XEXP (x, 0)) == PLUS
2511 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2512 recorded_label_ref = 1;
2514 reg_equiv[regno].replacement = x;
2515 reg_equiv[regno].src_p = &SET_SRC (set);
2516 reg_equiv[regno].loop_depth = loop_depth;
2518 /* Don't mess with things live during setjmp. */
2519 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2521 /* Note that the statement below does not affect the priority
2522 in local-alloc! */
2523 REG_LIVE_LENGTH (regno) *= 2;
2525 /* If the register is referenced exactly twice, meaning it is
2526 set once and used once, indicate that the reference may be
2527 replaced by the equivalence we computed above. Do this
2528 even if the register is only used in one block so that
2529 dependencies can be handled where the last register is
2530 used in a different block (i.e. HIGH / LO_SUM sequences)
2531 and to reduce the number of registers alive across
2532 calls. */
2534 if (REG_N_REFS (regno) == 2
2535 && (rtx_equal_p (x, src)
2536 || ! equiv_init_varies_p (src))
2537 && NONJUMP_INSN_P (insn)
2538 && equiv_init_movable_p (PATTERN (insn), regno))
2539 reg_equiv[regno].replace = 1;
2545 if (!optimize)
2546 goto out;
2548 /* A second pass, to gather additional equivalences with memory. This needs
2549 to be done after we know which registers we are going to replace. */
2551 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2553 rtx set, src, dest;
2554 unsigned regno;
2556 if (! INSN_P (insn))
2557 continue;
2559 set = single_set (insn);
2560 if (! set)
2561 continue;
2563 dest = SET_DEST (set);
2564 src = SET_SRC (set);
2566 /* If this sets a MEM to the contents of a REG that is only used
2567 in a single basic block, see if the register is always equivalent
2568 to that memory location and if moving the store from INSN to the
2569 insn that set REG is safe. If so, put a REG_EQUIV note on the
2570 initializing insn.
2572 Don't add a REG_EQUIV note if the insn already has one. The existing
2573 REG_EQUIV is likely more useful than the one we are adding.
2575 If one of the regs in the address has reg_equiv[REGNO].replace set,
2576 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
2577 optimization may move the set of this register immediately before
2578 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
2579 the mention in the REG_EQUIV note would be to an uninitialized
2580 pseudo. */
2582 if (MEM_P (dest) && REG_P (src)
2583 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
2584 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2585 && DF_REG_DEF_COUNT (regno) == 1
2586 && reg_equiv[regno].init_insns != 0
2587 && reg_equiv[regno].init_insns != const0_rtx
2588 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
2589 REG_EQUIV, NULL_RTX)
2590 && ! contains_replace_regs (XEXP (dest, 0)))
2592 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
2593 if (validate_equiv_mem (init_insn, src, dest)
2594 && ! memref_used_between_p (dest, init_insn, insn)
2595 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
2596 multiple sets. */
2597 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2599 /* This insn makes the equivalence, not the one initializing
2600 the register. */
2601 reg_equiv_init[regno]
2602 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
2603 df_notes_rescan (init_insn);
2608 cleared_regs = BITMAP_ALLOC (NULL);
2609 /* Now scan all regs killed in an insn to see if any of them are
2610 registers only used that once. If so, see if we can replace the
2611 reference with the equivalent form. If we can, delete the
2612 initializing reference and this register will go away. If we
2613 can't replace the reference, and the initializing reference is
2614 within the same loop (or in an inner loop), then move the register
2615 initialization just before the use, so that they are in the same
2616 basic block. */
2617 FOR_EACH_BB_REVERSE (bb)
2619 loop_depth = bb->loop_depth;
2620 for (insn = BB_END (bb);
2621 insn != PREV_INSN (BB_HEAD (bb));
2622 insn = PREV_INSN (insn))
2624 rtx link;
2626 if (! INSN_P (insn))
2627 continue;
2629 /* Don't substitute into a non-local goto, this confuses CFG. */
2630 if (JUMP_P (insn)
2631 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2632 continue;
2634 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2636 if (REG_NOTE_KIND (link) == REG_DEAD
2637 /* Make sure this insn still refers to the register. */
2638 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
2640 int regno = REGNO (XEXP (link, 0));
2641 rtx equiv_insn;
2643 if (! reg_equiv[regno].replace
2644 || reg_equiv[regno].loop_depth < loop_depth)
2645 continue;
2647 /* reg_equiv[REGNO].replace gets set only when
2648 REG_N_REFS[REGNO] is 2, i.e. the register is set
2649 once and used once. (If it were only set, but not used,
2650 flow would have deleted the setting insns.) Hence
2651 there can only be one insn in reg_equiv[REGNO].init_insns. */
2652 gcc_assert (reg_equiv[regno].init_insns
2653 && !XEXP (reg_equiv[regno].init_insns, 1));
2654 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
2656 /* We may not move instructions that can throw, since
2657 that changes basic block boundaries and we are not
2658 prepared to adjust the CFG to match. */
2659 if (can_throw_internal (equiv_insn))
2660 continue;
2662 if (asm_noperands (PATTERN (equiv_insn)) < 0
2663 && validate_replace_rtx (regno_reg_rtx[regno],
2664 *(reg_equiv[regno].src_p), insn))
2666 rtx equiv_link;
2667 rtx last_link;
2668 rtx note;
2670 /* Find the last note. */
2671 for (last_link = link; XEXP (last_link, 1);
2672 last_link = XEXP (last_link, 1))
2675 /* Append the REG_DEAD notes from equiv_insn. */
2676 equiv_link = REG_NOTES (equiv_insn);
2677 while (equiv_link)
2679 note = equiv_link;
2680 equiv_link = XEXP (equiv_link, 1);
2681 if (REG_NOTE_KIND (note) == REG_DEAD)
2683 remove_note (equiv_insn, note);
2684 XEXP (last_link, 1) = note;
2685 XEXP (note, 1) = NULL_RTX;
2686 last_link = note;
2690 remove_death (regno, insn);
2691 SET_REG_N_REFS (regno, 0);
2692 REG_FREQ (regno) = 0;
2693 delete_insn (equiv_insn);
2695 reg_equiv[regno].init_insns
2696 = XEXP (reg_equiv[regno].init_insns, 1);
2698 reg_equiv_init[regno] = NULL_RTX;
2699 bitmap_set_bit (cleared_regs, regno);
2701 /* Move the initialization of the register to just before
2702 INSN. Update the flow information. */
2703 else if (prev_nondebug_insn (insn) != equiv_insn)
2705 rtx new_insn;
2707 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
2708 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
2709 REG_NOTES (equiv_insn) = 0;
2710 /* Rescan it to process the notes. */
2711 df_insn_rescan (new_insn);
2713 /* Make sure this insn is recognized before
2714 reload begins, otherwise
2715 eliminate_regs_in_insn will die. */
2716 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
2718 delete_insn (equiv_insn);
2720 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
2722 REG_BASIC_BLOCK (regno) = bb->index;
2723 REG_N_CALLS_CROSSED (regno) = 0;
2724 REG_FREQ_CALLS_CROSSED (regno) = 0;
2725 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
2726 REG_LIVE_LENGTH (regno) = 2;
2728 if (insn == BB_HEAD (bb))
2729 BB_HEAD (bb) = PREV_INSN (insn);
2731 reg_equiv_init[regno]
2732 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
2733 bitmap_set_bit (cleared_regs, regno);
2740 if (!bitmap_empty_p (cleared_regs))
2742 FOR_EACH_BB (bb)
2744 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
2745 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
2746 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
2747 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
2750 /* Last pass - adjust debug insns referencing cleared regs. */
2751 if (MAY_HAVE_DEBUG_INSNS)
2752 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2753 if (DEBUG_INSN_P (insn))
2755 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
2756 INSN_VAR_LOCATION_LOC (insn)
2757 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
2758 adjust_cleared_regs,
2759 (void *) cleared_regs);
2760 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
2761 df_insn_rescan (insn);
2765 BITMAP_FREE (cleared_regs);
2767 out:
2768 /* Clean up. */
2770 end_alias_analysis ();
2771 free (reg_equiv);
2772 return recorded_label_ref;
2777 /* Print chain C to FILE. */
2778 static void
2779 print_insn_chain (FILE *file, struct insn_chain *c)
2781 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
2782 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
2783 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
2787 /* Print all reload_insn_chains to FILE. */
2788 static void
2789 print_insn_chains (FILE *file)
2791 struct insn_chain *c;
2792 for (c = reload_insn_chain; c ; c = c->next)
2793 print_insn_chain (file, c);
2796 /* Return true if pseudo REGNO should be added to set live_throughout
2797 or dead_or_set of the insn chains for reload consideration. */
2798 static bool
2799 pseudo_for_reload_consideration_p (int regno)
2801 /* Consider spilled pseudos too for IRA because they still have a
2802 chance to get hard-registers in the reload when IRA is used. */
2803 return (reg_renumber[regno] >= 0
2804 || (ira_conflicts_p && flag_ira_share_spill_slots));
2807 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
2808 REG to the number of nregs, and INIT_VALUE to get the
2809 initialization. ALLOCNUM need not be the regno of REG. */
2810 static void
2811 init_live_subregs (bool init_value, sbitmap *live_subregs,
2812 int *live_subregs_used, int allocnum, rtx reg)
2814 unsigned int regno = REGNO (SUBREG_REG (reg));
2815 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
2817 gcc_assert (size > 0);
2819 /* Been there, done that. */
2820 if (live_subregs_used[allocnum])
2821 return;
2823 /* Create a new one with zeros. */
2824 if (live_subregs[allocnum] == NULL)
2825 live_subregs[allocnum] = sbitmap_alloc (size);
2827 /* If the entire reg was live before blasting into subregs, we need
2828 to init all of the subregs to ones else init to 0. */
2829 if (init_value)
2830 sbitmap_ones (live_subregs[allocnum]);
2831 else
2832 sbitmap_zero (live_subregs[allocnum]);
2834 /* Set the number of bits that we really want. */
2835 live_subregs_used[allocnum] = size;
2838 /* Walk the insns of the current function and build reload_insn_chain,
2839 and record register life information. */
2840 static void
2841 build_insn_chain (void)
2843 unsigned int i;
2844 struct insn_chain **p = &reload_insn_chain;
2845 basic_block bb;
2846 struct insn_chain *c = NULL;
2847 struct insn_chain *next = NULL;
2848 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
2849 bitmap elim_regset = BITMAP_ALLOC (NULL);
2850 /* live_subregs is a vector used to keep accurate information about
2851 which hardregs are live in multiword pseudos. live_subregs and
2852 live_subregs_used are indexed by pseudo number. The live_subreg
2853 entry for a particular pseudo is only used if the corresponding
2854 element is non zero in live_subregs_used. The value in
2855 live_subregs_used is number of bytes that the pseudo can
2856 occupy. */
2857 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
2858 int *live_subregs_used = XNEWVEC (int, max_regno);
2860 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2861 if (TEST_HARD_REG_BIT (eliminable_regset, i))
2862 bitmap_set_bit (elim_regset, i);
2863 FOR_EACH_BB_REVERSE (bb)
2865 bitmap_iterator bi;
2866 rtx insn;
2868 CLEAR_REG_SET (live_relevant_regs);
2869 memset (live_subregs_used, 0, max_regno * sizeof (int));
2871 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
2873 if (i >= FIRST_PSEUDO_REGISTER)
2874 break;
2875 bitmap_set_bit (live_relevant_regs, i);
2878 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
2879 FIRST_PSEUDO_REGISTER, i, bi)
2881 if (pseudo_for_reload_consideration_p (i))
2882 bitmap_set_bit (live_relevant_regs, i);
2885 FOR_BB_INSNS_REVERSE (bb, insn)
2887 if (!NOTE_P (insn) && !BARRIER_P (insn))
2889 unsigned int uid = INSN_UID (insn);
2890 df_ref *def_rec;
2891 df_ref *use_rec;
2893 c = new_insn_chain ();
2894 c->next = next;
2895 next = c;
2896 *p = c;
2897 p = &c->prev;
2899 c->insn = insn;
2900 c->block = bb->index;
2902 if (INSN_P (insn))
2903 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
2905 df_ref def = *def_rec;
2906 unsigned int regno = DF_REF_REGNO (def);
2908 /* Ignore may clobbers because these are generated
2909 from calls. However, every other kind of def is
2910 added to dead_or_set. */
2911 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2913 if (regno < FIRST_PSEUDO_REGISTER)
2915 if (!fixed_regs[regno])
2916 bitmap_set_bit (&c->dead_or_set, regno);
2918 else if (pseudo_for_reload_consideration_p (regno))
2919 bitmap_set_bit (&c->dead_or_set, regno);
2922 if ((regno < FIRST_PSEUDO_REGISTER
2923 || reg_renumber[regno] >= 0
2924 || ira_conflicts_p)
2925 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
2927 rtx reg = DF_REF_REG (def);
2929 /* We can model subregs, but not if they are
2930 wrapped in ZERO_EXTRACTS. */
2931 if (GET_CODE (reg) == SUBREG
2932 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
2934 unsigned int start = SUBREG_BYTE (reg);
2935 unsigned int last = start
2936 + GET_MODE_SIZE (GET_MODE (reg));
2938 init_live_subregs
2939 (bitmap_bit_p (live_relevant_regs, regno),
2940 live_subregs, live_subregs_used, regno, reg);
2942 if (!DF_REF_FLAGS_IS_SET
2943 (def, DF_REF_STRICT_LOW_PART))
2945 /* Expand the range to cover entire words.
2946 Bytes added here are "don't care". */
2947 start
2948 = start / UNITS_PER_WORD * UNITS_PER_WORD;
2949 last = ((last + UNITS_PER_WORD - 1)
2950 / UNITS_PER_WORD * UNITS_PER_WORD);
2953 /* Ignore the paradoxical bits. */
2954 if ((int)last > live_subregs_used[regno])
2955 last = live_subregs_used[regno];
2957 while (start < last)
2959 RESET_BIT (live_subregs[regno], start);
2960 start++;
2963 if (sbitmap_empty_p (live_subregs[regno]))
2965 live_subregs_used[regno] = 0;
2966 bitmap_clear_bit (live_relevant_regs, regno);
2968 else
2969 /* Set live_relevant_regs here because
2970 that bit has to be true to get us to
2971 look at the live_subregs fields. */
2972 bitmap_set_bit (live_relevant_regs, regno);
2974 else
2976 /* DF_REF_PARTIAL is generated for
2977 subregs, STRICT_LOW_PART, and
2978 ZERO_EXTRACT. We handle the subreg
2979 case above so here we have to keep from
2980 modeling the def as a killing def. */
2981 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
2983 bitmap_clear_bit (live_relevant_regs, regno);
2984 live_subregs_used[regno] = 0;
2990 bitmap_and_compl_into (live_relevant_regs, elim_regset);
2991 bitmap_copy (&c->live_throughout, live_relevant_regs);
2993 if (INSN_P (insn))
2994 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
2996 df_ref use = *use_rec;
2997 unsigned int regno = DF_REF_REGNO (use);
2998 rtx reg = DF_REF_REG (use);
3000 /* DF_REF_READ_WRITE on a use means that this use
3001 is fabricated from a def that is a partial set
3002 to a multiword reg. Here, we only model the
3003 subreg case that is not wrapped in ZERO_EXTRACT
3004 precisely so we do not need to look at the
3005 fabricated use. */
3006 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
3007 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
3008 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
3009 continue;
3011 /* Add the last use of each var to dead_or_set. */
3012 if (!bitmap_bit_p (live_relevant_regs, regno))
3014 if (regno < FIRST_PSEUDO_REGISTER)
3016 if (!fixed_regs[regno])
3017 bitmap_set_bit (&c->dead_or_set, regno);
3019 else if (pseudo_for_reload_consideration_p (regno))
3020 bitmap_set_bit (&c->dead_or_set, regno);
3023 if (regno < FIRST_PSEUDO_REGISTER
3024 || pseudo_for_reload_consideration_p (regno))
3026 if (GET_CODE (reg) == SUBREG
3027 && !DF_REF_FLAGS_IS_SET (use,
3028 DF_REF_SIGN_EXTRACT
3029 | DF_REF_ZERO_EXTRACT))
3031 unsigned int start = SUBREG_BYTE (reg);
3032 unsigned int last = start
3033 + GET_MODE_SIZE (GET_MODE (reg));
3035 init_live_subregs
3036 (bitmap_bit_p (live_relevant_regs, regno),
3037 live_subregs, live_subregs_used, regno, reg);
3039 /* Ignore the paradoxical bits. */
3040 if ((int)last > live_subregs_used[regno])
3041 last = live_subregs_used[regno];
3043 while (start < last)
3045 SET_BIT (live_subregs[regno], start);
3046 start++;
3049 else
3050 /* Resetting the live_subregs_used is
3051 effectively saying do not use the subregs
3052 because we are reading the whole
3053 pseudo. */
3054 live_subregs_used[regno] = 0;
3055 bitmap_set_bit (live_relevant_regs, regno);
3061 /* FIXME!! The following code is a disaster. Reload needs to see the
3062 labels and jump tables that are just hanging out in between
3063 the basic blocks. See pr33676. */
3064 insn = BB_HEAD (bb);
3066 /* Skip over the barriers and cruft. */
3067 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
3068 || BLOCK_FOR_INSN (insn) == bb))
3069 insn = PREV_INSN (insn);
3071 /* While we add anything except barriers and notes, the focus is
3072 to get the labels and jump tables into the
3073 reload_insn_chain. */
3074 while (insn)
3076 if (!NOTE_P (insn) && !BARRIER_P (insn))
3078 if (BLOCK_FOR_INSN (insn))
3079 break;
3081 c = new_insn_chain ();
3082 c->next = next;
3083 next = c;
3084 *p = c;
3085 p = &c->prev;
3087 /* The block makes no sense here, but it is what the old
3088 code did. */
3089 c->block = bb->index;
3090 c->insn = insn;
3091 bitmap_copy (&c->live_throughout, live_relevant_regs);
3093 insn = PREV_INSN (insn);
3097 for (i = 0; i < (unsigned int) max_regno; i++)
3098 if (live_subregs[i])
3099 free (live_subregs[i]);
3101 reload_insn_chain = c;
3102 *p = NULL;
3104 free (live_subregs);
3105 free (live_subregs_used);
3106 BITMAP_FREE (live_relevant_regs);
3107 BITMAP_FREE (elim_regset);
3109 if (dump_file)
3110 print_insn_chains (dump_file);
3115 /* All natural loops. */
3116 struct loops ira_loops;
3118 /* True if we have allocno conflicts. It is false for non-optimized
3119 mode or when the conflict table is too big. */
3120 bool ira_conflicts_p;
3122 /* This is the main entry of IRA. */
3123 static void
3124 ira (FILE *f)
3126 int overall_cost_before, allocated_reg_info_size;
3127 bool loops_p;
3128 int max_regno_before_ira, ira_max_point_before_emit;
3129 int rebuild_p;
3130 int saved_flag_ira_share_spill_slots;
3131 basic_block bb;
3133 timevar_push (TV_IRA);
3135 if (flag_caller_saves)
3136 init_caller_save ();
3138 if (flag_ira_verbose < 10)
3140 internal_flag_ira_verbose = flag_ira_verbose;
3141 ira_dump_file = f;
3143 else
3145 internal_flag_ira_verbose = flag_ira_verbose - 10;
3146 ira_dump_file = stderr;
3149 ira_conflicts_p = optimize > 0;
3150 setup_prohibited_mode_move_regs ();
3152 df_note_add_problem ();
3154 if (optimize == 1)
3156 df_live_add_problem ();
3157 df_live_set_all_dirty ();
3159 #ifdef ENABLE_CHECKING
3160 df->changeable_flags |= DF_VERIFY_SCHEDULED;
3161 #endif
3162 df_analyze ();
3163 df_clear_flags (DF_NO_INSN_RESCAN);
3164 regstat_init_n_sets_and_refs ();
3165 regstat_compute_ri ();
3167 /* If we are not optimizing, then this is the only place before
3168 register allocation where dataflow is done. And that is needed
3169 to generate these warnings. */
3170 if (warn_clobbered)
3171 generate_setjmp_warnings ();
3173 /* Determine if the current function is a leaf before running IRA
3174 since this can impact optimizations done by the prologue and
3175 epilogue thus changing register elimination offsets. */
3176 current_function_is_leaf = leaf_function_p ();
3178 if (resize_reg_info () && flag_ira_loop_pressure)
3179 ira_set_pseudo_classes (ira_dump_file);
3181 rebuild_p = update_equiv_regs ();
3183 #ifndef IRA_NO_OBSTACK
3184 gcc_obstack_init (&ira_obstack);
3185 #endif
3186 bitmap_obstack_initialize (&ira_bitmap_obstack);
3187 if (optimize)
3189 max_regno = max_reg_num ();
3190 ira_reg_equiv_len = max_regno;
3191 ira_reg_equiv_invariant_p
3192 = (bool *) ira_allocate (max_regno * sizeof (bool));
3193 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
3194 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
3195 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
3196 find_reg_equiv_invariant_const ();
3197 if (rebuild_p)
3199 timevar_push (TV_JUMP);
3200 rebuild_jump_labels (get_insns ());
3201 purge_all_dead_edges ();
3202 timevar_pop (TV_JUMP);
3206 max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
3207 ira_setup_eliminable_regset ();
3209 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
3210 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
3211 ira_move_loops_num = ira_additional_jumps_num = 0;
3213 ira_assert (current_loops == NULL);
3214 flow_loops_find (&ira_loops);
3215 record_loop_exits ();
3216 current_loops = &ira_loops;
3218 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3219 fprintf (ira_dump_file, "Building IRA IR\n");
3220 loops_p = ira_build (optimize
3221 && (flag_ira_region == IRA_REGION_ALL
3222 || flag_ira_region == IRA_REGION_MIXED));
3224 ira_assert (ira_conflicts_p || !loops_p);
3226 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
3227 if (too_high_register_pressure_p ())
3228 /* It is just wasting compiler's time to pack spilled pseudos into
3229 stack slots in this case -- prohibit it. */
3230 flag_ira_share_spill_slots = FALSE;
3232 ira_color ();
3234 ira_max_point_before_emit = ira_max_point;
3236 ira_emit (loops_p);
3238 if (ira_conflicts_p)
3240 max_regno = max_reg_num ();
3242 if (! loops_p)
3243 ira_initiate_assign ();
3244 else
3246 expand_reg_info (allocated_reg_info_size);
3247 setup_preferred_alternate_classes_for_new_pseudos
3248 (allocated_reg_info_size);
3249 allocated_reg_info_size = max_regno;
3251 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3252 fprintf (ira_dump_file, "Flattening IR\n");
3253 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
3254 /* New insns were generated: add notes and recalculate live
3255 info. */
3256 df_analyze ();
3258 flow_loops_find (&ira_loops);
3259 record_loop_exits ();
3260 current_loops = &ira_loops;
3262 setup_allocno_assignment_flags ();
3263 ira_initiate_assign ();
3264 ira_reassign_conflict_allocnos (max_regno);
3268 setup_reg_renumber ();
3270 calculate_allocation_cost ();
3272 #ifdef ENABLE_IRA_CHECKING
3273 if (ira_conflicts_p)
3274 check_allocation ();
3275 #endif
3277 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3278 max_regno = max_reg_num ();
3280 /* And the reg_equiv_memory_loc array. */
3281 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
3282 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
3283 sizeof (rtx) * max_regno);
3284 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
3286 if (max_regno != max_regno_before_ira)
3288 regstat_free_n_sets_and_refs ();
3289 regstat_free_ri ();
3290 regstat_init_n_sets_and_refs ();
3291 regstat_compute_ri ();
3294 allocate_initial_values (reg_equiv_memory_loc);
3296 overall_cost_before = ira_overall_cost;
3297 if (ira_conflicts_p)
3299 fix_reg_equiv_init ();
3301 #ifdef ENABLE_IRA_CHECKING
3302 print_redundant_copies ();
3303 #endif
3305 ira_spilled_reg_stack_slots_num = 0;
3306 ira_spilled_reg_stack_slots
3307 = ((struct ira_spilled_reg_stack_slot *)
3308 ira_allocate (max_regno
3309 * sizeof (struct ira_spilled_reg_stack_slot)));
3310 memset (ira_spilled_reg_stack_slots, 0,
3311 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
3314 timevar_pop (TV_IRA);
3316 timevar_push (TV_RELOAD);
3317 df_set_flags (DF_NO_INSN_RESCAN);
3318 build_insn_chain ();
3320 reload_completed = !reload (get_insns (), ira_conflicts_p);
3322 finish_subregs_of_mode ();
3324 timevar_pop (TV_RELOAD);
3326 timevar_push (TV_IRA);
3328 if (ira_conflicts_p)
3330 ira_free (ira_spilled_reg_stack_slots);
3332 ira_finish_assign ();
3335 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
3336 && overall_cost_before != ira_overall_cost)
3337 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
3338 ira_destroy ();
3340 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
3342 flow_loops_free (&ira_loops);
3343 free_dominance_info (CDI_DOMINATORS);
3344 FOR_ALL_BB (bb)
3345 bb->loop_father = NULL;
3346 current_loops = NULL;
3348 regstat_free_ri ();
3349 regstat_free_n_sets_and_refs ();
3351 if (optimize)
3353 cleanup_cfg (CLEANUP_EXPENSIVE);
3355 ira_free (ira_reg_equiv_invariant_p);
3356 ira_free (ira_reg_equiv_const);
3359 bitmap_obstack_release (&ira_bitmap_obstack);
3360 #ifndef IRA_NO_OBSTACK
3361 obstack_free (&ira_obstack, NULL);
3362 #endif
3364 /* The code after the reload has changed so much that at this point
3365 we might as well just rescan everything. Not that
3366 df_rescan_all_insns is not going to help here because it does not
3367 touch the artificial uses and defs. */
3368 df_finish_pass (true);
3369 if (optimize > 1)
3370 df_live_add_problem ();
3371 df_scan_alloc (NULL);
3372 df_scan_blocks ();
3374 if (optimize)
3375 df_analyze ();
3377 timevar_pop (TV_IRA);
3382 static bool
3383 gate_ira (void)
3385 return true;
3388 /* Run the integrated register allocator. */
3389 static unsigned int
3390 rest_of_handle_ira (void)
3392 ira (dump_file);
3393 return 0;
3396 struct rtl_opt_pass pass_ira =
3399 RTL_PASS,
3400 "ira", /* name */
3401 gate_ira, /* gate */
3402 rest_of_handle_ira, /* execute */
3403 NULL, /* sub */
3404 NULL, /* next */
3405 0, /* static_pass_number */
3406 TV_NONE, /* tv_id */
3407 0, /* properties_required */
3408 0, /* properties_provided */
3409 0, /* properties_destroyed */
3410 0, /* todo_flags_start */
3411 TODO_dump_func |
3412 TODO_ggc_collect /* todo_flags_finish */