gcc/
[official-gcc.git] / gcc / emit-rtl.c
blob9abe56ed7a733e35041ff84e9c877dd078a65074
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "varasm.h"
42 #include "basic-block.h"
43 #include "tree-eh.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "stringpool.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "bitmap.h"
55 #include "debug.h"
56 #include "langhooks.h"
57 #include "df.h"
58 #include "params.h"
59 #include "target.h"
60 #include "builtins.h"
62 struct target_rtl default_target_rtl;
63 #if SWITCHABLE_TARGET
64 struct target_rtl *this_target_rtl = &default_target_rtl;
65 #endif
67 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
69 /* Commonly used modes. */
71 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
72 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
73 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
74 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76 /* Datastructures maintained for currently processed function in RTL form. */
78 struct rtl_data x_rtl;
80 /* Indexed by pseudo register number, gives the rtx for that pseudo.
81 Allocated in parallel with regno_pointer_align.
82 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
83 with length attribute nested in top level structures. */
85 rtx * regno_reg_rtx;
87 /* This is *not* reset after each function. It gives each CODE_LABEL
88 in the entire compilation a unique label number. */
90 static GTY(()) int label_num = 1;
92 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
94 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
95 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99 rtx const_true_rtx;
101 REAL_VALUE_TYPE dconst0;
102 REAL_VALUE_TYPE dconst1;
103 REAL_VALUE_TYPE dconst2;
104 REAL_VALUE_TYPE dconstm1;
105 REAL_VALUE_TYPE dconsthalf;
107 /* Record fixed-point constant 0 and 1. */
108 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
109 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111 /* We make one copy of (const_int C) where C is in
112 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
113 to save space during the compilation and simplify comparisons of
114 integers. */
116 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118 /* Standard pieces of rtx, to be substituted directly into things. */
119 rtx pc_rtx;
120 rtx ret_rtx;
121 rtx simple_return_rtx;
122 rtx cc0_rtx;
124 /* A hash table storing CONST_INTs whose absolute value is greater
125 than MAX_SAVED_CONST_INT. */
127 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
128 htab_t const_int_htab;
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t const_wide_int_htab;
133 /* A hash table storing register attribute structures. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
135 htab_t reg_attrs_htab;
137 /* A hash table storing all CONST_DOUBLEs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_double_htab;
141 /* A hash table storing all CONST_FIXEDs. */
142 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
143 htab_t const_fixed_htab;
145 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
146 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
147 #define first_label_num (crtl->emit.x_first_label_num)
149 static void set_used_decls (tree);
150 static void mark_label_nuses (rtx);
151 static hashval_t const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 #if TARGET_SUPPORTS_WIDE_INT
154 static hashval_t const_wide_int_htab_hash (const void *);
155 static int const_wide_int_htab_eq (const void *, const void *);
156 static rtx lookup_const_wide_int (rtx);
157 #endif
158 static hashval_t const_double_htab_hash (const void *);
159 static int const_double_htab_eq (const void *, const void *);
160 static rtx lookup_const_double (rtx);
161 static hashval_t const_fixed_htab_hash (const void *);
162 static int const_fixed_htab_eq (const void *, const void *);
163 static rtx lookup_const_fixed (rtx);
164 static hashval_t reg_attrs_htab_hash (const void *);
165 static int reg_attrs_htab_eq (const void *, const void *);
166 static reg_attrs *get_reg_attrs (tree, int);
167 static rtx gen_const_vector (enum machine_mode, int);
168 static void copy_rtx_if_shared_1 (rtx *orig);
170 /* Probability of the conditional branch currently proceeded by try_split.
171 Set to -1 otherwise. */
172 int split_branch_probability = -1;
174 /* Returns a hash code for X (which is a really a CONST_INT). */
176 static hashval_t
177 const_int_htab_hash (const void *x)
179 return (hashval_t) INTVAL ((const_rtx) x);
182 /* Returns nonzero if the value represented by X (which is really a
183 CONST_INT) is the same as that given by Y (which is really a
184 HOST_WIDE_INT *). */
186 static int
187 const_int_htab_eq (const void *x, const void *y)
189 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
192 #if TARGET_SUPPORTS_WIDE_INT
193 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
195 static hashval_t
196 const_wide_int_htab_hash (const void *x)
198 int i;
199 HOST_WIDE_INT hash = 0;
200 const_rtx xr = (const_rtx) x;
202 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
203 hash += CONST_WIDE_INT_ELT (xr, i);
205 return (hashval_t) hash;
208 /* Returns nonzero if the value represented by X (which is really a
209 CONST_WIDE_INT) is the same as that given by Y (which is really a
210 CONST_WIDE_INT). */
212 static int
213 const_wide_int_htab_eq (const void *x, const void *y)
215 int i;
216 const_rtx xr = (const_rtx) x;
217 const_rtx yr = (const_rtx) y;
218 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
219 return 0;
221 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
222 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
223 return 0;
225 return 1;
227 #endif
229 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
230 static hashval_t
231 const_double_htab_hash (const void *x)
233 const_rtx const value = (const_rtx) x;
234 hashval_t h;
236 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
237 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
238 else
240 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
241 /* MODE is used in the comparison, so it should be in the hash. */
242 h ^= GET_MODE (value);
244 return h;
247 /* Returns nonzero if the value represented by X (really a ...)
248 is the same as that represented by Y (really a ...) */
249 static int
250 const_double_htab_eq (const void *x, const void *y)
252 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
254 if (GET_MODE (a) != GET_MODE (b))
255 return 0;
256 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
257 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
258 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
259 else
260 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
261 CONST_DOUBLE_REAL_VALUE (b));
264 /* Returns a hash code for X (which is really a CONST_FIXED). */
266 static hashval_t
267 const_fixed_htab_hash (const void *x)
269 const_rtx const value = (const_rtx) x;
270 hashval_t h;
272 h = fixed_hash (CONST_FIXED_VALUE (value));
273 /* MODE is used in the comparison, so it should be in the hash. */
274 h ^= GET_MODE (value);
275 return h;
278 /* Returns nonzero if the value represented by X (really a ...)
279 is the same as that represented by Y (really a ...). */
281 static int
282 const_fixed_htab_eq (const void *x, const void *y)
284 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
286 if (GET_MODE (a) != GET_MODE (b))
287 return 0;
288 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
291 /* Return true if the given memory attributes are equal. */
293 bool
294 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
296 if (p == q)
297 return true;
298 if (!p || !q)
299 return false;
300 return (p->alias == q->alias
301 && p->offset_known_p == q->offset_known_p
302 && (!p->offset_known_p || p->offset == q->offset)
303 && p->size_known_p == q->size_known_p
304 && (!p->size_known_p || p->size == q->size)
305 && p->align == q->align
306 && p->addrspace == q->addrspace
307 && (p->expr == q->expr
308 || (p->expr != NULL_TREE && q->expr != NULL_TREE
309 && operand_equal_p (p->expr, q->expr, 0))));
312 /* Set MEM's memory attributes so that they are the same as ATTRS. */
314 static void
315 set_mem_attrs (rtx mem, mem_attrs *attrs)
317 /* If everything is the default, we can just clear the attributes. */
318 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
320 MEM_ATTRS (mem) = 0;
321 return;
324 if (!MEM_ATTRS (mem)
325 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
327 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
328 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
332 /* Returns a hash code for X (which is a really a reg_attrs *). */
334 static hashval_t
335 reg_attrs_htab_hash (const void *x)
337 const reg_attrs *const p = (const reg_attrs *) x;
339 return ((p->offset * 1000) ^ (intptr_t) p->decl);
342 /* Returns nonzero if the value represented by X (which is really a
343 reg_attrs *) is the same as that given by Y (which is also really a
344 reg_attrs *). */
346 static int
347 reg_attrs_htab_eq (const void *x, const void *y)
349 const reg_attrs *const p = (const reg_attrs *) x;
350 const reg_attrs *const q = (const reg_attrs *) y;
352 return (p->decl == q->decl && p->offset == q->offset);
354 /* Allocate a new reg_attrs structure and insert it into the hash table if
355 one identical to it is not already in the table. We are doing this for
356 MEM of mode MODE. */
358 static reg_attrs *
359 get_reg_attrs (tree decl, int offset)
361 reg_attrs attrs;
362 void **slot;
364 /* If everything is the default, we can just return zero. */
365 if (decl == 0 && offset == 0)
366 return 0;
368 attrs.decl = decl;
369 attrs.offset = offset;
371 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
372 if (*slot == 0)
374 *slot = ggc_alloc<reg_attrs> ();
375 memcpy (*slot, &attrs, sizeof (reg_attrs));
378 return (reg_attrs *) *slot;
382 #if !HAVE_blockage
383 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
384 and to block register equivalences to be seen across this insn. */
387 gen_blockage (void)
389 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
390 MEM_VOLATILE_P (x) = true;
391 return x;
393 #endif
396 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
397 don't attempt to share with the various global pieces of rtl (such as
398 frame_pointer_rtx). */
401 gen_raw_REG (enum machine_mode mode, int regno)
403 rtx x = gen_rtx_raw_REG (mode, regno);
404 ORIGINAL_REGNO (x) = regno;
405 return x;
408 /* There are some RTL codes that require special attention; the generation
409 functions do the raw handling. If you add to this list, modify
410 special_rtx in gengenrtl.c as well. */
412 rtx_expr_list *
413 gen_rtx_EXPR_LIST (enum machine_mode mode, rtx expr, rtx expr_list)
415 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
416 expr_list));
419 rtx_insn_list *
420 gen_rtx_INSN_LIST (enum machine_mode mode, rtx insn, rtx insn_list)
422 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
423 insn_list));
427 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
429 void **slot;
431 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
432 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
434 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
435 if (const_true_rtx && arg == STORE_FLAG_VALUE)
436 return const_true_rtx;
437 #endif
439 /* Look up the CONST_INT in the hash table. */
440 slot = htab_find_slot_with_hash (const_int_htab, &arg,
441 (hashval_t) arg, INSERT);
442 if (*slot == 0)
443 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
445 return (rtx) *slot;
449 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
451 return GEN_INT (trunc_int_for_mode (c, mode));
454 /* CONST_DOUBLEs might be created from pairs of integers, or from
455 REAL_VALUE_TYPEs. Also, their length is known only at run time,
456 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
458 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
459 hash table. If so, return its counterpart; otherwise add it
460 to the hash table and return it. */
461 static rtx
462 lookup_const_double (rtx real)
464 void **slot = htab_find_slot (const_double_htab, real, INSERT);
465 if (*slot == 0)
466 *slot = real;
468 return (rtx) *slot;
471 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
472 VALUE in mode MODE. */
474 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
476 rtx real = rtx_alloc (CONST_DOUBLE);
477 PUT_MODE (real, mode);
479 real->u.rv = value;
481 return lookup_const_double (real);
484 /* Determine whether FIXED, a CONST_FIXED, already exists in the
485 hash table. If so, return its counterpart; otherwise add it
486 to the hash table and return it. */
488 static rtx
489 lookup_const_fixed (rtx fixed)
491 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
492 if (*slot == 0)
493 *slot = fixed;
495 return (rtx) *slot;
498 /* Return a CONST_FIXED rtx for a fixed-point value specified by
499 VALUE in mode MODE. */
502 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
504 rtx fixed = rtx_alloc (CONST_FIXED);
505 PUT_MODE (fixed, mode);
507 fixed->u.fv = value;
509 return lookup_const_fixed (fixed);
512 #if TARGET_SUPPORTS_WIDE_INT == 0
513 /* Constructs double_int from rtx CST. */
515 double_int
516 rtx_to_double_int (const_rtx cst)
518 double_int r;
520 if (CONST_INT_P (cst))
521 r = double_int::from_shwi (INTVAL (cst));
522 else if (CONST_DOUBLE_AS_INT_P (cst))
524 r.low = CONST_DOUBLE_LOW (cst);
525 r.high = CONST_DOUBLE_HIGH (cst);
527 else
528 gcc_unreachable ();
530 return r;
532 #endif
534 #if TARGET_SUPPORTS_WIDE_INT
535 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
536 If so, return its counterpart; otherwise add it to the hash table and
537 return it. */
539 static rtx
540 lookup_const_wide_int (rtx wint)
542 void **slot = htab_find_slot (const_wide_int_htab, wint, INSERT);
543 if (*slot == 0)
544 *slot = wint;
546 return (rtx) *slot;
548 #endif
550 /* Return an rtx constant for V, given that the constant has mode MODE.
551 The returned rtx will be a CONST_INT if V fits, otherwise it will be
552 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
553 (if TARGET_SUPPORTS_WIDE_INT). */
556 immed_wide_int_const (const wide_int_ref &v, enum machine_mode mode)
558 unsigned int len = v.get_len ();
559 unsigned int prec = GET_MODE_PRECISION (mode);
561 /* Allow truncation but not extension since we do not know if the
562 number is signed or unsigned. */
563 gcc_assert (prec <= v.get_precision ());
565 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
566 return gen_int_mode (v.elt (0), mode);
568 #if TARGET_SUPPORTS_WIDE_INT
570 unsigned int i;
571 rtx value;
572 unsigned int blocks_needed
573 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
575 if (len > blocks_needed)
576 len = blocks_needed;
578 value = const_wide_int_alloc (len);
580 /* It is so tempting to just put the mode in here. Must control
581 myself ... */
582 PUT_MODE (value, VOIDmode);
583 CWI_PUT_NUM_ELEM (value, len);
585 for (i = 0; i < len; i++)
586 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
588 return lookup_const_wide_int (value);
590 #else
591 return immed_double_const (v.elt (0), v.elt (1), mode);
592 #endif
595 #if TARGET_SUPPORTS_WIDE_INT == 0
596 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
597 of ints: I0 is the low-order word and I1 is the high-order word.
598 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
599 implied upper bits are copies of the high bit of i1. The value
600 itself is neither signed nor unsigned. Do not use this routine for
601 non-integer modes; convert to REAL_VALUE_TYPE and use
602 CONST_DOUBLE_FROM_REAL_VALUE. */
605 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
607 rtx value;
608 unsigned int i;
610 /* There are the following cases (note that there are no modes with
611 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
613 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
614 gen_int_mode.
615 2) If the value of the integer fits into HOST_WIDE_INT anyway
616 (i.e., i1 consists only from copies of the sign bit, and sign
617 of i0 and i1 are the same), then we return a CONST_INT for i0.
618 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
619 if (mode != VOIDmode)
621 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
622 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
623 /* We can get a 0 for an error mark. */
624 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
625 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
627 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
628 return gen_int_mode (i0, mode);
631 /* If this integer fits in one word, return a CONST_INT. */
632 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
633 return GEN_INT (i0);
635 /* We use VOIDmode for integers. */
636 value = rtx_alloc (CONST_DOUBLE);
637 PUT_MODE (value, VOIDmode);
639 CONST_DOUBLE_LOW (value) = i0;
640 CONST_DOUBLE_HIGH (value) = i1;
642 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
643 XWINT (value, i) = 0;
645 return lookup_const_double (value);
647 #endif
650 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
652 /* In case the MD file explicitly references the frame pointer, have
653 all such references point to the same frame pointer. This is
654 used during frame pointer elimination to distinguish the explicit
655 references to these registers from pseudos that happened to be
656 assigned to them.
658 If we have eliminated the frame pointer or arg pointer, we will
659 be using it as a normal register, for example as a spill
660 register. In such cases, we might be accessing it in a mode that
661 is not Pmode and therefore cannot use the pre-allocated rtx.
663 Also don't do this when we are making new REGs in reload, since
664 we don't want to get confused with the real pointers. */
666 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
668 if (regno == FRAME_POINTER_REGNUM
669 && (!reload_completed || frame_pointer_needed))
670 return frame_pointer_rtx;
671 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
672 if (regno == HARD_FRAME_POINTER_REGNUM
673 && (!reload_completed || frame_pointer_needed))
674 return hard_frame_pointer_rtx;
675 #endif
676 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
677 if (regno == ARG_POINTER_REGNUM)
678 return arg_pointer_rtx;
679 #endif
680 #ifdef RETURN_ADDRESS_POINTER_REGNUM
681 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
682 return return_address_pointer_rtx;
683 #endif
684 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
685 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
686 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
687 return pic_offset_table_rtx;
688 if (regno == STACK_POINTER_REGNUM)
689 return stack_pointer_rtx;
692 #if 0
693 /* If the per-function register table has been set up, try to re-use
694 an existing entry in that table to avoid useless generation of RTL.
696 This code is disabled for now until we can fix the various backends
697 which depend on having non-shared hard registers in some cases. Long
698 term we want to re-enable this code as it can significantly cut down
699 on the amount of useless RTL that gets generated.
701 We'll also need to fix some code that runs after reload that wants to
702 set ORIGINAL_REGNO. */
704 if (cfun
705 && cfun->emit
706 && regno_reg_rtx
707 && regno < FIRST_PSEUDO_REGISTER
708 && reg_raw_mode[regno] == mode)
709 return regno_reg_rtx[regno];
710 #endif
712 return gen_raw_REG (mode, regno);
716 gen_rtx_MEM (enum machine_mode mode, rtx addr)
718 rtx rt = gen_rtx_raw_MEM (mode, addr);
720 /* This field is not cleared by the mere allocation of the rtx, so
721 we clear it here. */
722 MEM_ATTRS (rt) = 0;
724 return rt;
727 /* Generate a memory referring to non-trapping constant memory. */
730 gen_const_mem (enum machine_mode mode, rtx addr)
732 rtx mem = gen_rtx_MEM (mode, addr);
733 MEM_READONLY_P (mem) = 1;
734 MEM_NOTRAP_P (mem) = 1;
735 return mem;
738 /* Generate a MEM referring to fixed portions of the frame, e.g., register
739 save areas. */
742 gen_frame_mem (enum machine_mode mode, rtx addr)
744 rtx mem = gen_rtx_MEM (mode, addr);
745 MEM_NOTRAP_P (mem) = 1;
746 set_mem_alias_set (mem, get_frame_alias_set ());
747 return mem;
750 /* Generate a MEM referring to a temporary use of the stack, not part
751 of the fixed stack frame. For example, something which is pushed
752 by a target splitter. */
754 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
756 rtx mem = gen_rtx_MEM (mode, addr);
757 MEM_NOTRAP_P (mem) = 1;
758 if (!cfun->calls_alloca)
759 set_mem_alias_set (mem, get_frame_alias_set ());
760 return mem;
763 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
764 this construct would be valid, and false otherwise. */
766 bool
767 validate_subreg (enum machine_mode omode, enum machine_mode imode,
768 const_rtx reg, unsigned int offset)
770 unsigned int isize = GET_MODE_SIZE (imode);
771 unsigned int osize = GET_MODE_SIZE (omode);
773 /* All subregs must be aligned. */
774 if (offset % osize != 0)
775 return false;
777 /* The subreg offset cannot be outside the inner object. */
778 if (offset >= isize)
779 return false;
781 /* ??? This should not be here. Temporarily continue to allow word_mode
782 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
783 Generally, backends are doing something sketchy but it'll take time to
784 fix them all. */
785 if (omode == word_mode)
787 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
788 is the culprit here, and not the backends. */
789 else if (osize >= UNITS_PER_WORD && isize >= osize)
791 /* Allow component subregs of complex and vector. Though given the below
792 extraction rules, it's not always clear what that means. */
793 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
794 && GET_MODE_INNER (imode) == omode)
796 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
797 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
798 represent this. It's questionable if this ought to be represented at
799 all -- why can't this all be hidden in post-reload splitters that make
800 arbitrarily mode changes to the registers themselves. */
801 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
803 /* Subregs involving floating point modes are not allowed to
804 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
805 (subreg:SI (reg:DF) 0) isn't. */
806 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
808 if (! (isize == osize
809 /* LRA can use subreg to store a floating point value in
810 an integer mode. Although the floating point and the
811 integer modes need the same number of hard registers,
812 the size of floating point mode can be less than the
813 integer mode. LRA also uses subregs for a register
814 should be used in different mode in on insn. */
815 || lra_in_progress))
816 return false;
819 /* Paradoxical subregs must have offset zero. */
820 if (osize > isize)
821 return offset == 0;
823 /* This is a normal subreg. Verify that the offset is representable. */
825 /* For hard registers, we already have most of these rules collected in
826 subreg_offset_representable_p. */
827 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
829 unsigned int regno = REGNO (reg);
831 #ifdef CANNOT_CHANGE_MODE_CLASS
832 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
833 && GET_MODE_INNER (imode) == omode)
835 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
836 return false;
837 #endif
839 return subreg_offset_representable_p (regno, imode, offset, omode);
842 /* For pseudo registers, we want most of the same checks. Namely:
843 If the register no larger than a word, the subreg must be lowpart.
844 If the register is larger than a word, the subreg must be the lowpart
845 of a subword. A subreg does *not* perform arbitrary bit extraction.
846 Given that we've already checked mode/offset alignment, we only have
847 to check subword subregs here. */
848 if (osize < UNITS_PER_WORD
849 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
851 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
852 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
853 if (offset % UNITS_PER_WORD != low_off)
854 return false;
856 return true;
860 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
862 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
863 return gen_rtx_raw_SUBREG (mode, reg, offset);
866 /* Generate a SUBREG representing the least-significant part of REG if MODE
867 is smaller than mode of REG, otherwise paradoxical SUBREG. */
870 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
872 enum machine_mode inmode;
874 inmode = GET_MODE (reg);
875 if (inmode == VOIDmode)
876 inmode = mode;
877 return gen_rtx_SUBREG (mode, reg,
878 subreg_lowpart_offset (mode, inmode));
882 gen_rtx_VAR_LOCATION (enum machine_mode mode, tree decl, rtx loc,
883 enum var_init_status status)
885 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
886 PAT_VAR_LOCATION_STATUS (x) = status;
887 return x;
891 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
893 rtvec
894 gen_rtvec (int n, ...)
896 int i;
897 rtvec rt_val;
898 va_list p;
900 va_start (p, n);
902 /* Don't allocate an empty rtvec... */
903 if (n == 0)
905 va_end (p);
906 return NULL_RTVEC;
909 rt_val = rtvec_alloc (n);
911 for (i = 0; i < n; i++)
912 rt_val->elem[i] = va_arg (p, rtx);
914 va_end (p);
915 return rt_val;
918 rtvec
919 gen_rtvec_v (int n, rtx *argp)
921 int i;
922 rtvec rt_val;
924 /* Don't allocate an empty rtvec... */
925 if (n == 0)
926 return NULL_RTVEC;
928 rt_val = rtvec_alloc (n);
930 for (i = 0; i < n; i++)
931 rt_val->elem[i] = *argp++;
933 return rt_val;
936 /* Return the number of bytes between the start of an OUTER_MODE
937 in-memory value and the start of an INNER_MODE in-memory value,
938 given that the former is a lowpart of the latter. It may be a
939 paradoxical lowpart, in which case the offset will be negative
940 on big-endian targets. */
943 byte_lowpart_offset (enum machine_mode outer_mode,
944 enum machine_mode inner_mode)
946 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
947 return subreg_lowpart_offset (outer_mode, inner_mode);
948 else
949 return -subreg_lowpart_offset (inner_mode, outer_mode);
952 /* Generate a REG rtx for a new pseudo register of mode MODE.
953 This pseudo is assigned the next sequential register number. */
956 gen_reg_rtx (enum machine_mode mode)
958 rtx val;
959 unsigned int align = GET_MODE_ALIGNMENT (mode);
961 gcc_assert (can_create_pseudo_p ());
963 /* If a virtual register with bigger mode alignment is generated,
964 increase stack alignment estimation because it might be spilled
965 to stack later. */
966 if (SUPPORTS_STACK_ALIGNMENT
967 && crtl->stack_alignment_estimated < align
968 && !crtl->stack_realign_processed)
970 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
971 if (crtl->stack_alignment_estimated < min_align)
972 crtl->stack_alignment_estimated = min_align;
975 if (generating_concat_p
976 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
977 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
979 /* For complex modes, don't make a single pseudo.
980 Instead, make a CONCAT of two pseudos.
981 This allows noncontiguous allocation of the real and imaginary parts,
982 which makes much better code. Besides, allocating DCmode
983 pseudos overstrains reload on some machines like the 386. */
984 rtx realpart, imagpart;
985 enum machine_mode partmode = GET_MODE_INNER (mode);
987 realpart = gen_reg_rtx (partmode);
988 imagpart = gen_reg_rtx (partmode);
989 return gen_rtx_CONCAT (mode, realpart, imagpart);
992 /* Do not call gen_reg_rtx with uninitialized crtl. */
993 gcc_assert (crtl->emit.regno_pointer_align_length);
995 /* Make sure regno_pointer_align, and regno_reg_rtx are large
996 enough to have an element for this pseudo reg number. */
998 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1000 int old_size = crtl->emit.regno_pointer_align_length;
1001 char *tmp;
1002 rtx *new1;
1004 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1005 memset (tmp + old_size, 0, old_size);
1006 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1008 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1009 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1010 regno_reg_rtx = new1;
1012 crtl->emit.regno_pointer_align_length = old_size * 2;
1015 val = gen_raw_REG (mode, reg_rtx_no);
1016 regno_reg_rtx[reg_rtx_no++] = val;
1017 return val;
1020 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1022 bool
1023 reg_is_parm_p (rtx reg)
1025 tree decl;
1027 gcc_assert (REG_P (reg));
1028 decl = REG_EXPR (reg);
1029 return (decl && TREE_CODE (decl) == PARM_DECL);
1032 /* Update NEW with the same attributes as REG, but with OFFSET added
1033 to the REG_OFFSET. */
1035 static void
1036 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1038 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1039 REG_OFFSET (reg) + offset);
1042 /* Generate a register with same attributes as REG, but with OFFSET
1043 added to the REG_OFFSET. */
1046 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
1047 int offset)
1049 rtx new_rtx = gen_rtx_REG (mode, regno);
1051 update_reg_offset (new_rtx, reg, offset);
1052 return new_rtx;
1055 /* Generate a new pseudo-register with the same attributes as REG, but
1056 with OFFSET added to the REG_OFFSET. */
1059 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
1061 rtx new_rtx = gen_reg_rtx (mode);
1063 update_reg_offset (new_rtx, reg, offset);
1064 return new_rtx;
1067 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1068 new register is a (possibly paradoxical) lowpart of the old one. */
1070 void
1071 adjust_reg_mode (rtx reg, enum machine_mode mode)
1073 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1074 PUT_MODE (reg, mode);
1077 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1078 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1080 void
1081 set_reg_attrs_from_value (rtx reg, rtx x)
1083 int offset;
1084 bool can_be_reg_pointer = true;
1086 /* Don't call mark_reg_pointer for incompatible pointer sign
1087 extension. */
1088 while (GET_CODE (x) == SIGN_EXTEND
1089 || GET_CODE (x) == ZERO_EXTEND
1090 || GET_CODE (x) == TRUNCATE
1091 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1093 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1094 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1095 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1096 can_be_reg_pointer = false;
1097 #endif
1098 x = XEXP (x, 0);
1101 /* Hard registers can be reused for multiple purposes within the same
1102 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1103 on them is wrong. */
1104 if (HARD_REGISTER_P (reg))
1105 return;
1107 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1108 if (MEM_P (x))
1110 if (MEM_OFFSET_KNOWN_P (x))
1111 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1112 MEM_OFFSET (x) + offset);
1113 if (can_be_reg_pointer && MEM_POINTER (x))
1114 mark_reg_pointer (reg, 0);
1116 else if (REG_P (x))
1118 if (REG_ATTRS (x))
1119 update_reg_offset (reg, x, offset);
1120 if (can_be_reg_pointer && REG_POINTER (x))
1121 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1125 /* Generate a REG rtx for a new pseudo register, copying the mode
1126 and attributes from X. */
1129 gen_reg_rtx_and_attrs (rtx x)
1131 rtx reg = gen_reg_rtx (GET_MODE (x));
1132 set_reg_attrs_from_value (reg, x);
1133 return reg;
1136 /* Set the register attributes for registers contained in PARM_RTX.
1137 Use needed values from memory attributes of MEM. */
1139 void
1140 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1142 if (REG_P (parm_rtx))
1143 set_reg_attrs_from_value (parm_rtx, mem);
1144 else if (GET_CODE (parm_rtx) == PARALLEL)
1146 /* Check for a NULL entry in the first slot, used to indicate that the
1147 parameter goes both on the stack and in registers. */
1148 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1149 for (; i < XVECLEN (parm_rtx, 0); i++)
1151 rtx x = XVECEXP (parm_rtx, 0, i);
1152 if (REG_P (XEXP (x, 0)))
1153 REG_ATTRS (XEXP (x, 0))
1154 = get_reg_attrs (MEM_EXPR (mem),
1155 INTVAL (XEXP (x, 1)));
1160 /* Set the REG_ATTRS for registers in value X, given that X represents
1161 decl T. */
1163 void
1164 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1166 if (GET_CODE (x) == SUBREG)
1168 gcc_assert (subreg_lowpart_p (x));
1169 x = SUBREG_REG (x);
1171 if (REG_P (x))
1172 REG_ATTRS (x)
1173 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1174 DECL_MODE (t)));
1175 if (GET_CODE (x) == CONCAT)
1177 if (REG_P (XEXP (x, 0)))
1178 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1179 if (REG_P (XEXP (x, 1)))
1180 REG_ATTRS (XEXP (x, 1))
1181 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1183 if (GET_CODE (x) == PARALLEL)
1185 int i, start;
1187 /* Check for a NULL entry, used to indicate that the parameter goes
1188 both on the stack and in registers. */
1189 if (XEXP (XVECEXP (x, 0, 0), 0))
1190 start = 0;
1191 else
1192 start = 1;
1194 for (i = start; i < XVECLEN (x, 0); i++)
1196 rtx y = XVECEXP (x, 0, i);
1197 if (REG_P (XEXP (y, 0)))
1198 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1203 /* Assign the RTX X to declaration T. */
1205 void
1206 set_decl_rtl (tree t, rtx x)
1208 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1209 if (x)
1210 set_reg_attrs_for_decl_rtl (t, x);
1213 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1214 if the ABI requires the parameter to be passed by reference. */
1216 void
1217 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1219 DECL_INCOMING_RTL (t) = x;
1220 if (x && !by_reference_p)
1221 set_reg_attrs_for_decl_rtl (t, x);
1224 /* Identify REG (which may be a CONCAT) as a user register. */
1226 void
1227 mark_user_reg (rtx reg)
1229 if (GET_CODE (reg) == CONCAT)
1231 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1232 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1234 else
1236 gcc_assert (REG_P (reg));
1237 REG_USERVAR_P (reg) = 1;
1241 /* Identify REG as a probable pointer register and show its alignment
1242 as ALIGN, if nonzero. */
1244 void
1245 mark_reg_pointer (rtx reg, int align)
1247 if (! REG_POINTER (reg))
1249 REG_POINTER (reg) = 1;
1251 if (align)
1252 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1254 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1255 /* We can no-longer be sure just how aligned this pointer is. */
1256 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1259 /* Return 1 plus largest pseudo reg number used in the current function. */
1262 max_reg_num (void)
1264 return reg_rtx_no;
1267 /* Return 1 + the largest label number used so far in the current function. */
1270 max_label_num (void)
1272 return label_num;
1275 /* Return first label number used in this function (if any were used). */
1278 get_first_label_num (void)
1280 return first_label_num;
1283 /* If the rtx for label was created during the expansion of a nested
1284 function, then first_label_num won't include this label number.
1285 Fix this now so that array indices work later. */
1287 void
1288 maybe_set_first_label_num (rtx x)
1290 if (CODE_LABEL_NUMBER (x) < first_label_num)
1291 first_label_num = CODE_LABEL_NUMBER (x);
1294 /* Return a value representing some low-order bits of X, where the number
1295 of low-order bits is given by MODE. Note that no conversion is done
1296 between floating-point and fixed-point values, rather, the bit
1297 representation is returned.
1299 This function handles the cases in common between gen_lowpart, below,
1300 and two variants in cse.c and combine.c. These are the cases that can
1301 be safely handled at all points in the compilation.
1303 If this is not a case we can handle, return 0. */
1306 gen_lowpart_common (enum machine_mode mode, rtx x)
1308 int msize = GET_MODE_SIZE (mode);
1309 int xsize;
1310 int offset = 0;
1311 enum machine_mode innermode;
1313 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1314 so we have to make one up. Yuk. */
1315 innermode = GET_MODE (x);
1316 if (CONST_INT_P (x)
1317 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1318 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1319 else if (innermode == VOIDmode)
1320 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1322 xsize = GET_MODE_SIZE (innermode);
1324 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1326 if (innermode == mode)
1327 return x;
1329 /* MODE must occupy no more words than the mode of X. */
1330 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1331 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1332 return 0;
1334 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1335 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1336 return 0;
1338 offset = subreg_lowpart_offset (mode, innermode);
1340 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1341 && (GET_MODE_CLASS (mode) == MODE_INT
1342 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1344 /* If we are getting the low-order part of something that has been
1345 sign- or zero-extended, we can either just use the object being
1346 extended or make a narrower extension. If we want an even smaller
1347 piece than the size of the object being extended, call ourselves
1348 recursively.
1350 This case is used mostly by combine and cse. */
1352 if (GET_MODE (XEXP (x, 0)) == mode)
1353 return XEXP (x, 0);
1354 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1355 return gen_lowpart_common (mode, XEXP (x, 0));
1356 else if (msize < xsize)
1357 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1359 else if (GET_CODE (x) == SUBREG || REG_P (x)
1360 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1361 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1362 return simplify_gen_subreg (mode, x, innermode, offset);
1364 /* Otherwise, we can't do this. */
1365 return 0;
1369 gen_highpart (enum machine_mode mode, rtx x)
1371 unsigned int msize = GET_MODE_SIZE (mode);
1372 rtx result;
1374 /* This case loses if X is a subreg. To catch bugs early,
1375 complain if an invalid MODE is used even in other cases. */
1376 gcc_assert (msize <= UNITS_PER_WORD
1377 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1379 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1380 subreg_highpart_offset (mode, GET_MODE (x)));
1381 gcc_assert (result);
1383 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1384 the target if we have a MEM. gen_highpart must return a valid operand,
1385 emitting code if necessary to do so. */
1386 if (MEM_P (result))
1388 result = validize_mem (result);
1389 gcc_assert (result);
1392 return result;
1395 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1396 be VOIDmode constant. */
1398 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1400 if (GET_MODE (exp) != VOIDmode)
1402 gcc_assert (GET_MODE (exp) == innermode);
1403 return gen_highpart (outermode, exp);
1405 return simplify_gen_subreg (outermode, exp, innermode,
1406 subreg_highpart_offset (outermode, innermode));
1409 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1411 unsigned int
1412 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1414 unsigned int offset = 0;
1415 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1417 if (difference > 0)
1419 if (WORDS_BIG_ENDIAN)
1420 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1421 if (BYTES_BIG_ENDIAN)
1422 offset += difference % UNITS_PER_WORD;
1425 return offset;
1428 /* Return offset in bytes to get OUTERMODE high part
1429 of the value in mode INNERMODE stored in memory in target format. */
1430 unsigned int
1431 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1433 unsigned int offset = 0;
1434 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1436 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1438 if (difference > 0)
1440 if (! WORDS_BIG_ENDIAN)
1441 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1442 if (! BYTES_BIG_ENDIAN)
1443 offset += difference % UNITS_PER_WORD;
1446 return offset;
1449 /* Return 1 iff X, assumed to be a SUBREG,
1450 refers to the least significant part of its containing reg.
1451 If X is not a SUBREG, always return 1 (it is its own low part!). */
1454 subreg_lowpart_p (const_rtx x)
1456 if (GET_CODE (x) != SUBREG)
1457 return 1;
1458 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1459 return 0;
1461 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1462 == SUBREG_BYTE (x));
1465 /* Return true if X is a paradoxical subreg, false otherwise. */
1466 bool
1467 paradoxical_subreg_p (const_rtx x)
1469 if (GET_CODE (x) != SUBREG)
1470 return false;
1471 return (GET_MODE_PRECISION (GET_MODE (x))
1472 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1475 /* Return subword OFFSET of operand OP.
1476 The word number, OFFSET, is interpreted as the word number starting
1477 at the low-order address. OFFSET 0 is the low-order word if not
1478 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1480 If we cannot extract the required word, we return zero. Otherwise,
1481 an rtx corresponding to the requested word will be returned.
1483 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1484 reload has completed, a valid address will always be returned. After
1485 reload, if a valid address cannot be returned, we return zero.
1487 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1488 it is the responsibility of the caller.
1490 MODE is the mode of OP in case it is a CONST_INT.
1492 ??? This is still rather broken for some cases. The problem for the
1493 moment is that all callers of this thing provide no 'goal mode' to
1494 tell us to work with. This exists because all callers were written
1495 in a word based SUBREG world.
1496 Now use of this function can be deprecated by simplify_subreg in most
1497 cases.
1501 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1503 if (mode == VOIDmode)
1504 mode = GET_MODE (op);
1506 gcc_assert (mode != VOIDmode);
1508 /* If OP is narrower than a word, fail. */
1509 if (mode != BLKmode
1510 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1511 return 0;
1513 /* If we want a word outside OP, return zero. */
1514 if (mode != BLKmode
1515 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1516 return const0_rtx;
1518 /* Form a new MEM at the requested address. */
1519 if (MEM_P (op))
1521 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1523 if (! validate_address)
1524 return new_rtx;
1526 else if (reload_completed)
1528 if (! strict_memory_address_addr_space_p (word_mode,
1529 XEXP (new_rtx, 0),
1530 MEM_ADDR_SPACE (op)))
1531 return 0;
1533 else
1534 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1537 /* Rest can be handled by simplify_subreg. */
1538 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1541 /* Similar to `operand_subword', but never return 0. If we can't
1542 extract the required subword, put OP into a register and try again.
1543 The second attempt must succeed. We always validate the address in
1544 this case.
1546 MODE is the mode of OP, in case it is CONST_INT. */
1549 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1551 rtx result = operand_subword (op, offset, 1, mode);
1553 if (result)
1554 return result;
1556 if (mode != BLKmode && mode != VOIDmode)
1558 /* If this is a register which can not be accessed by words, copy it
1559 to a pseudo register. */
1560 if (REG_P (op))
1561 op = copy_to_reg (op);
1562 else
1563 op = force_reg (mode, op);
1566 result = operand_subword (op, offset, 1, mode);
1567 gcc_assert (result);
1569 return result;
1572 /* Returns 1 if both MEM_EXPR can be considered equal
1573 and 0 otherwise. */
1576 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1578 if (expr1 == expr2)
1579 return 1;
1581 if (! expr1 || ! expr2)
1582 return 0;
1584 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1585 return 0;
1587 return operand_equal_p (expr1, expr2, 0);
1590 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1591 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1592 -1 if not known. */
1595 get_mem_align_offset (rtx mem, unsigned int align)
1597 tree expr;
1598 unsigned HOST_WIDE_INT offset;
1600 /* This function can't use
1601 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1602 || (MAX (MEM_ALIGN (mem),
1603 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1604 < align))
1605 return -1;
1606 else
1607 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1608 for two reasons:
1609 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1610 for <variable>. get_inner_reference doesn't handle it and
1611 even if it did, the alignment in that case needs to be determined
1612 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1613 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1614 isn't sufficiently aligned, the object it is in might be. */
1615 gcc_assert (MEM_P (mem));
1616 expr = MEM_EXPR (mem);
1617 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1618 return -1;
1620 offset = MEM_OFFSET (mem);
1621 if (DECL_P (expr))
1623 if (DECL_ALIGN (expr) < align)
1624 return -1;
1626 else if (INDIRECT_REF_P (expr))
1628 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1629 return -1;
1631 else if (TREE_CODE (expr) == COMPONENT_REF)
1633 while (1)
1635 tree inner = TREE_OPERAND (expr, 0);
1636 tree field = TREE_OPERAND (expr, 1);
1637 tree byte_offset = component_ref_field_offset (expr);
1638 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1640 if (!byte_offset
1641 || !tree_fits_uhwi_p (byte_offset)
1642 || !tree_fits_uhwi_p (bit_offset))
1643 return -1;
1645 offset += tree_to_uhwi (byte_offset);
1646 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1648 if (inner == NULL_TREE)
1650 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1651 < (unsigned int) align)
1652 return -1;
1653 break;
1655 else if (DECL_P (inner))
1657 if (DECL_ALIGN (inner) < align)
1658 return -1;
1659 break;
1661 else if (TREE_CODE (inner) != COMPONENT_REF)
1662 return -1;
1663 expr = inner;
1666 else
1667 return -1;
1669 return offset & ((align / BITS_PER_UNIT) - 1);
1672 /* Given REF (a MEM) and T, either the type of X or the expression
1673 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1674 if we are making a new object of this type. BITPOS is nonzero if
1675 there is an offset outstanding on T that will be applied later. */
1677 void
1678 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1679 HOST_WIDE_INT bitpos)
1681 HOST_WIDE_INT apply_bitpos = 0;
1682 tree type;
1683 struct mem_attrs attrs, *defattrs, *refattrs;
1684 addr_space_t as;
1686 /* It can happen that type_for_mode was given a mode for which there
1687 is no language-level type. In which case it returns NULL, which
1688 we can see here. */
1689 if (t == NULL_TREE)
1690 return;
1692 type = TYPE_P (t) ? t : TREE_TYPE (t);
1693 if (type == error_mark_node)
1694 return;
1696 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1697 wrong answer, as it assumes that DECL_RTL already has the right alias
1698 info. Callers should not set DECL_RTL until after the call to
1699 set_mem_attributes. */
1700 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1702 memset (&attrs, 0, sizeof (attrs));
1704 /* Get the alias set from the expression or type (perhaps using a
1705 front-end routine) and use it. */
1706 attrs.alias = get_alias_set (t);
1708 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1709 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1711 /* Default values from pre-existing memory attributes if present. */
1712 refattrs = MEM_ATTRS (ref);
1713 if (refattrs)
1715 /* ??? Can this ever happen? Calling this routine on a MEM that
1716 already carries memory attributes should probably be invalid. */
1717 attrs.expr = refattrs->expr;
1718 attrs.offset_known_p = refattrs->offset_known_p;
1719 attrs.offset = refattrs->offset;
1720 attrs.size_known_p = refattrs->size_known_p;
1721 attrs.size = refattrs->size;
1722 attrs.align = refattrs->align;
1725 /* Otherwise, default values from the mode of the MEM reference. */
1726 else
1728 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1729 gcc_assert (!defattrs->expr);
1730 gcc_assert (!defattrs->offset_known_p);
1732 /* Respect mode size. */
1733 attrs.size_known_p = defattrs->size_known_p;
1734 attrs.size = defattrs->size;
1735 /* ??? Is this really necessary? We probably should always get
1736 the size from the type below. */
1738 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1739 if T is an object, always compute the object alignment below. */
1740 if (TYPE_P (t))
1741 attrs.align = defattrs->align;
1742 else
1743 attrs.align = BITS_PER_UNIT;
1744 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1745 e.g. if the type carries an alignment attribute. Should we be
1746 able to simply always use TYPE_ALIGN? */
1749 /* We can set the alignment from the type if we are making an object,
1750 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1751 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1752 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1754 /* If the size is known, we can set that. */
1755 tree new_size = TYPE_SIZE_UNIT (type);
1757 /* The address-space is that of the type. */
1758 as = TYPE_ADDR_SPACE (type);
1760 /* If T is not a type, we may be able to deduce some more information about
1761 the expression. */
1762 if (! TYPE_P (t))
1764 tree base;
1766 if (TREE_THIS_VOLATILE (t))
1767 MEM_VOLATILE_P (ref) = 1;
1769 /* Now remove any conversions: they don't change what the underlying
1770 object is. Likewise for SAVE_EXPR. */
1771 while (CONVERT_EXPR_P (t)
1772 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1773 || TREE_CODE (t) == SAVE_EXPR)
1774 t = TREE_OPERAND (t, 0);
1776 /* Note whether this expression can trap. */
1777 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1779 base = get_base_address (t);
1780 if (base)
1782 if (DECL_P (base)
1783 && TREE_READONLY (base)
1784 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1785 && !TREE_THIS_VOLATILE (base))
1786 MEM_READONLY_P (ref) = 1;
1788 /* Mark static const strings readonly as well. */
1789 if (TREE_CODE (base) == STRING_CST
1790 && TREE_READONLY (base)
1791 && TREE_STATIC (base))
1792 MEM_READONLY_P (ref) = 1;
1794 /* Address-space information is on the base object. */
1795 if (TREE_CODE (base) == MEM_REF
1796 || TREE_CODE (base) == TARGET_MEM_REF)
1797 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1798 0))));
1799 else
1800 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1803 /* If this expression uses it's parent's alias set, mark it such
1804 that we won't change it. */
1805 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1806 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1808 /* If this is a decl, set the attributes of the MEM from it. */
1809 if (DECL_P (t))
1811 attrs.expr = t;
1812 attrs.offset_known_p = true;
1813 attrs.offset = 0;
1814 apply_bitpos = bitpos;
1815 new_size = DECL_SIZE_UNIT (t);
1818 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1819 else if (CONSTANT_CLASS_P (t))
1822 /* If this is a field reference, record it. */
1823 else if (TREE_CODE (t) == COMPONENT_REF)
1825 attrs.expr = t;
1826 attrs.offset_known_p = true;
1827 attrs.offset = 0;
1828 apply_bitpos = bitpos;
1829 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1830 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1833 /* If this is an array reference, look for an outer field reference. */
1834 else if (TREE_CODE (t) == ARRAY_REF)
1836 tree off_tree = size_zero_node;
1837 /* We can't modify t, because we use it at the end of the
1838 function. */
1839 tree t2 = t;
1843 tree index = TREE_OPERAND (t2, 1);
1844 tree low_bound = array_ref_low_bound (t2);
1845 tree unit_size = array_ref_element_size (t2);
1847 /* We assume all arrays have sizes that are a multiple of a byte.
1848 First subtract the lower bound, if any, in the type of the
1849 index, then convert to sizetype and multiply by the size of
1850 the array element. */
1851 if (! integer_zerop (low_bound))
1852 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1853 index, low_bound);
1855 off_tree = size_binop (PLUS_EXPR,
1856 size_binop (MULT_EXPR,
1857 fold_convert (sizetype,
1858 index),
1859 unit_size),
1860 off_tree);
1861 t2 = TREE_OPERAND (t2, 0);
1863 while (TREE_CODE (t2) == ARRAY_REF);
1865 if (DECL_P (t2)
1866 || TREE_CODE (t2) == COMPONENT_REF)
1868 attrs.expr = t2;
1869 attrs.offset_known_p = false;
1870 if (tree_fits_uhwi_p (off_tree))
1872 attrs.offset_known_p = true;
1873 attrs.offset = tree_to_uhwi (off_tree);
1874 apply_bitpos = bitpos;
1877 /* Else do not record a MEM_EXPR. */
1880 /* If this is an indirect reference, record it. */
1881 else if (TREE_CODE (t) == MEM_REF
1882 || TREE_CODE (t) == TARGET_MEM_REF)
1884 attrs.expr = t;
1885 attrs.offset_known_p = true;
1886 attrs.offset = 0;
1887 apply_bitpos = bitpos;
1890 /* Compute the alignment. */
1891 unsigned int obj_align;
1892 unsigned HOST_WIDE_INT obj_bitpos;
1893 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1894 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1895 if (obj_bitpos != 0)
1896 obj_align = (obj_bitpos & -obj_bitpos);
1897 attrs.align = MAX (attrs.align, obj_align);
1900 if (tree_fits_uhwi_p (new_size))
1902 attrs.size_known_p = true;
1903 attrs.size = tree_to_uhwi (new_size);
1906 /* If we modified OFFSET based on T, then subtract the outstanding
1907 bit position offset. Similarly, increase the size of the accessed
1908 object to contain the negative offset. */
1909 if (apply_bitpos)
1911 gcc_assert (attrs.offset_known_p);
1912 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1913 if (attrs.size_known_p)
1914 attrs.size += apply_bitpos / BITS_PER_UNIT;
1917 /* Now set the attributes we computed above. */
1918 attrs.addrspace = as;
1919 set_mem_attrs (ref, &attrs);
1922 void
1923 set_mem_attributes (rtx ref, tree t, int objectp)
1925 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1928 /* Set the alias set of MEM to SET. */
1930 void
1931 set_mem_alias_set (rtx mem, alias_set_type set)
1933 struct mem_attrs attrs;
1935 /* If the new and old alias sets don't conflict, something is wrong. */
1936 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1937 attrs = *get_mem_attrs (mem);
1938 attrs.alias = set;
1939 set_mem_attrs (mem, &attrs);
1942 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1944 void
1945 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1947 struct mem_attrs attrs;
1949 attrs = *get_mem_attrs (mem);
1950 attrs.addrspace = addrspace;
1951 set_mem_attrs (mem, &attrs);
1954 /* Set the alignment of MEM to ALIGN bits. */
1956 void
1957 set_mem_align (rtx mem, unsigned int align)
1959 struct mem_attrs attrs;
1961 attrs = *get_mem_attrs (mem);
1962 attrs.align = align;
1963 set_mem_attrs (mem, &attrs);
1966 /* Set the expr for MEM to EXPR. */
1968 void
1969 set_mem_expr (rtx mem, tree expr)
1971 struct mem_attrs attrs;
1973 attrs = *get_mem_attrs (mem);
1974 attrs.expr = expr;
1975 set_mem_attrs (mem, &attrs);
1978 /* Set the offset of MEM to OFFSET. */
1980 void
1981 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1983 struct mem_attrs attrs;
1985 attrs = *get_mem_attrs (mem);
1986 attrs.offset_known_p = true;
1987 attrs.offset = offset;
1988 set_mem_attrs (mem, &attrs);
1991 /* Clear the offset of MEM. */
1993 void
1994 clear_mem_offset (rtx mem)
1996 struct mem_attrs attrs;
1998 attrs = *get_mem_attrs (mem);
1999 attrs.offset_known_p = false;
2000 set_mem_attrs (mem, &attrs);
2003 /* Set the size of MEM to SIZE. */
2005 void
2006 set_mem_size (rtx mem, HOST_WIDE_INT size)
2008 struct mem_attrs attrs;
2010 attrs = *get_mem_attrs (mem);
2011 attrs.size_known_p = true;
2012 attrs.size = size;
2013 set_mem_attrs (mem, &attrs);
2016 /* Clear the size of MEM. */
2018 void
2019 clear_mem_size (rtx mem)
2021 struct mem_attrs attrs;
2023 attrs = *get_mem_attrs (mem);
2024 attrs.size_known_p = false;
2025 set_mem_attrs (mem, &attrs);
2028 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2029 and its address changed to ADDR. (VOIDmode means don't change the mode.
2030 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2031 returned memory location is required to be valid. INPLACE is true if any
2032 changes can be made directly to MEMREF or false if MEMREF must be treated
2033 as immutable.
2035 The memory attributes are not changed. */
2037 static rtx
2038 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate,
2039 bool inplace)
2041 addr_space_t as;
2042 rtx new_rtx;
2044 gcc_assert (MEM_P (memref));
2045 as = MEM_ADDR_SPACE (memref);
2046 if (mode == VOIDmode)
2047 mode = GET_MODE (memref);
2048 if (addr == 0)
2049 addr = XEXP (memref, 0);
2050 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2051 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2052 return memref;
2054 /* Don't validate address for LRA. LRA can make the address valid
2055 by itself in most efficient way. */
2056 if (validate && !lra_in_progress)
2058 if (reload_in_progress || reload_completed)
2059 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2060 else
2061 addr = memory_address_addr_space (mode, addr, as);
2064 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2065 return memref;
2067 if (inplace)
2069 XEXP (memref, 0) = addr;
2070 return memref;
2073 new_rtx = gen_rtx_MEM (mode, addr);
2074 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2075 return new_rtx;
2078 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2079 way we are changing MEMREF, so we only preserve the alias set. */
2082 change_address (rtx memref, enum machine_mode mode, rtx addr)
2084 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2085 enum machine_mode mmode = GET_MODE (new_rtx);
2086 struct mem_attrs attrs, *defattrs;
2088 attrs = *get_mem_attrs (memref);
2089 defattrs = mode_mem_attrs[(int) mmode];
2090 attrs.expr = NULL_TREE;
2091 attrs.offset_known_p = false;
2092 attrs.size_known_p = defattrs->size_known_p;
2093 attrs.size = defattrs->size;
2094 attrs.align = defattrs->align;
2096 /* If there are no changes, just return the original memory reference. */
2097 if (new_rtx == memref)
2099 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2100 return new_rtx;
2102 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2103 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2106 set_mem_attrs (new_rtx, &attrs);
2107 return new_rtx;
2110 /* Return a memory reference like MEMREF, but with its mode changed
2111 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2112 nonzero, the memory address is forced to be valid.
2113 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2114 and the caller is responsible for adjusting MEMREF base register.
2115 If ADJUST_OBJECT is zero, the underlying object associated with the
2116 memory reference is left unchanged and the caller is responsible for
2117 dealing with it. Otherwise, if the new memory reference is outside
2118 the underlying object, even partially, then the object is dropped.
2119 SIZE, if nonzero, is the size of an access in cases where MODE
2120 has no inherent size. */
2123 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2124 int validate, int adjust_address, int adjust_object,
2125 HOST_WIDE_INT size)
2127 rtx addr = XEXP (memref, 0);
2128 rtx new_rtx;
2129 enum machine_mode address_mode;
2130 int pbits;
2131 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2132 unsigned HOST_WIDE_INT max_align;
2133 #ifdef POINTERS_EXTEND_UNSIGNED
2134 enum machine_mode pointer_mode
2135 = targetm.addr_space.pointer_mode (attrs.addrspace);
2136 #endif
2138 /* VOIDmode means no mode change for change_address_1. */
2139 if (mode == VOIDmode)
2140 mode = GET_MODE (memref);
2142 /* Take the size of non-BLKmode accesses from the mode. */
2143 defattrs = mode_mem_attrs[(int) mode];
2144 if (defattrs->size_known_p)
2145 size = defattrs->size;
2147 /* If there are no changes, just return the original memory reference. */
2148 if (mode == GET_MODE (memref) && !offset
2149 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2150 && (!validate || memory_address_addr_space_p (mode, addr,
2151 attrs.addrspace)))
2152 return memref;
2154 /* ??? Prefer to create garbage instead of creating shared rtl.
2155 This may happen even if offset is nonzero -- consider
2156 (plus (plus reg reg) const_int) -- so do this always. */
2157 addr = copy_rtx (addr);
2159 /* Convert a possibly large offset to a signed value within the
2160 range of the target address space. */
2161 address_mode = get_address_mode (memref);
2162 pbits = GET_MODE_BITSIZE (address_mode);
2163 if (HOST_BITS_PER_WIDE_INT > pbits)
2165 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2166 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2167 >> shift);
2170 if (adjust_address)
2172 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2173 object, we can merge it into the LO_SUM. */
2174 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2175 && offset >= 0
2176 && (unsigned HOST_WIDE_INT) offset
2177 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2178 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2179 plus_constant (address_mode,
2180 XEXP (addr, 1), offset));
2181 #ifdef POINTERS_EXTEND_UNSIGNED
2182 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2183 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2184 the fact that pointers are not allowed to overflow. */
2185 else if (POINTERS_EXTEND_UNSIGNED > 0
2186 && GET_CODE (addr) == ZERO_EXTEND
2187 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2188 && trunc_int_for_mode (offset, pointer_mode) == offset)
2189 addr = gen_rtx_ZERO_EXTEND (address_mode,
2190 plus_constant (pointer_mode,
2191 XEXP (addr, 0), offset));
2192 #endif
2193 else
2194 addr = plus_constant (address_mode, addr, offset);
2197 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2199 /* If the address is a REG, change_address_1 rightfully returns memref,
2200 but this would destroy memref's MEM_ATTRS. */
2201 if (new_rtx == memref && offset != 0)
2202 new_rtx = copy_rtx (new_rtx);
2204 /* Conservatively drop the object if we don't know where we start from. */
2205 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2207 attrs.expr = NULL_TREE;
2208 attrs.alias = 0;
2211 /* Compute the new values of the memory attributes due to this adjustment.
2212 We add the offsets and update the alignment. */
2213 if (attrs.offset_known_p)
2215 attrs.offset += offset;
2217 /* Drop the object if the new left end is not within its bounds. */
2218 if (adjust_object && attrs.offset < 0)
2220 attrs.expr = NULL_TREE;
2221 attrs.alias = 0;
2225 /* Compute the new alignment by taking the MIN of the alignment and the
2226 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2227 if zero. */
2228 if (offset != 0)
2230 max_align = (offset & -offset) * BITS_PER_UNIT;
2231 attrs.align = MIN (attrs.align, max_align);
2234 if (size)
2236 /* Drop the object if the new right end is not within its bounds. */
2237 if (adjust_object && (offset + size) > attrs.size)
2239 attrs.expr = NULL_TREE;
2240 attrs.alias = 0;
2242 attrs.size_known_p = true;
2243 attrs.size = size;
2245 else if (attrs.size_known_p)
2247 gcc_assert (!adjust_object);
2248 attrs.size -= offset;
2249 /* ??? The store_by_pieces machinery generates negative sizes,
2250 so don't assert for that here. */
2253 set_mem_attrs (new_rtx, &attrs);
2255 return new_rtx;
2258 /* Return a memory reference like MEMREF, but with its mode changed
2259 to MODE and its address changed to ADDR, which is assumed to be
2260 MEMREF offset by OFFSET bytes. If VALIDATE is
2261 nonzero, the memory address is forced to be valid. */
2264 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2265 HOST_WIDE_INT offset, int validate)
2267 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2268 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2271 /* Return a memory reference like MEMREF, but whose address is changed by
2272 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2273 known to be in OFFSET (possibly 1). */
2276 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2278 rtx new_rtx, addr = XEXP (memref, 0);
2279 enum machine_mode address_mode;
2280 struct mem_attrs attrs, *defattrs;
2282 attrs = *get_mem_attrs (memref);
2283 address_mode = get_address_mode (memref);
2284 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2286 /* At this point we don't know _why_ the address is invalid. It
2287 could have secondary memory references, multiplies or anything.
2289 However, if we did go and rearrange things, we can wind up not
2290 being able to recognize the magic around pic_offset_table_rtx.
2291 This stuff is fragile, and is yet another example of why it is
2292 bad to expose PIC machinery too early. */
2293 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2294 attrs.addrspace)
2295 && GET_CODE (addr) == PLUS
2296 && XEXP (addr, 0) == pic_offset_table_rtx)
2298 addr = force_reg (GET_MODE (addr), addr);
2299 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2302 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2303 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2305 /* If there are no changes, just return the original memory reference. */
2306 if (new_rtx == memref)
2307 return new_rtx;
2309 /* Update the alignment to reflect the offset. Reset the offset, which
2310 we don't know. */
2311 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2312 attrs.offset_known_p = false;
2313 attrs.size_known_p = defattrs->size_known_p;
2314 attrs.size = defattrs->size;
2315 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2316 set_mem_attrs (new_rtx, &attrs);
2317 return new_rtx;
2320 /* Return a memory reference like MEMREF, but with its address changed to
2321 ADDR. The caller is asserting that the actual piece of memory pointed
2322 to is the same, just the form of the address is being changed, such as
2323 by putting something into a register. INPLACE is true if any changes
2324 can be made directly to MEMREF or false if MEMREF must be treated as
2325 immutable. */
2328 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2330 /* change_address_1 copies the memory attribute structure without change
2331 and that's exactly what we want here. */
2332 update_temp_slot_address (XEXP (memref, 0), addr);
2333 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2336 /* Likewise, but the reference is not required to be valid. */
2339 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2341 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2344 /* Return a memory reference like MEMREF, but with its mode widened to
2345 MODE and offset by OFFSET. This would be used by targets that e.g.
2346 cannot issue QImode memory operations and have to use SImode memory
2347 operations plus masking logic. */
2350 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2352 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2353 struct mem_attrs attrs;
2354 unsigned int size = GET_MODE_SIZE (mode);
2356 /* If there are no changes, just return the original memory reference. */
2357 if (new_rtx == memref)
2358 return new_rtx;
2360 attrs = *get_mem_attrs (new_rtx);
2362 /* If we don't know what offset we were at within the expression, then
2363 we can't know if we've overstepped the bounds. */
2364 if (! attrs.offset_known_p)
2365 attrs.expr = NULL_TREE;
2367 while (attrs.expr)
2369 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2371 tree field = TREE_OPERAND (attrs.expr, 1);
2372 tree offset = component_ref_field_offset (attrs.expr);
2374 if (! DECL_SIZE_UNIT (field))
2376 attrs.expr = NULL_TREE;
2377 break;
2380 /* Is the field at least as large as the access? If so, ok,
2381 otherwise strip back to the containing structure. */
2382 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2383 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2384 && attrs.offset >= 0)
2385 break;
2387 if (! tree_fits_uhwi_p (offset))
2389 attrs.expr = NULL_TREE;
2390 break;
2393 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2394 attrs.offset += tree_to_uhwi (offset);
2395 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2396 / BITS_PER_UNIT);
2398 /* Similarly for the decl. */
2399 else if (DECL_P (attrs.expr)
2400 && DECL_SIZE_UNIT (attrs.expr)
2401 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2402 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2403 && (! attrs.offset_known_p || attrs.offset >= 0))
2404 break;
2405 else
2407 /* The widened memory access overflows the expression, which means
2408 that it could alias another expression. Zap it. */
2409 attrs.expr = NULL_TREE;
2410 break;
2414 if (! attrs.expr)
2415 attrs.offset_known_p = false;
2417 /* The widened memory may alias other stuff, so zap the alias set. */
2418 /* ??? Maybe use get_alias_set on any remaining expression. */
2419 attrs.alias = 0;
2420 attrs.size_known_p = true;
2421 attrs.size = size;
2422 set_mem_attrs (new_rtx, &attrs);
2423 return new_rtx;
2426 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2427 static GTY(()) tree spill_slot_decl;
2429 tree
2430 get_spill_slot_decl (bool force_build_p)
2432 tree d = spill_slot_decl;
2433 rtx rd;
2434 struct mem_attrs attrs;
2436 if (d || !force_build_p)
2437 return d;
2439 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2440 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2441 DECL_ARTIFICIAL (d) = 1;
2442 DECL_IGNORED_P (d) = 1;
2443 TREE_USED (d) = 1;
2444 spill_slot_decl = d;
2446 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2447 MEM_NOTRAP_P (rd) = 1;
2448 attrs = *mode_mem_attrs[(int) BLKmode];
2449 attrs.alias = new_alias_set ();
2450 attrs.expr = d;
2451 set_mem_attrs (rd, &attrs);
2452 SET_DECL_RTL (d, rd);
2454 return d;
2457 /* Given MEM, a result from assign_stack_local, fill in the memory
2458 attributes as appropriate for a register allocator spill slot.
2459 These slots are not aliasable by other memory. We arrange for
2460 them all to use a single MEM_EXPR, so that the aliasing code can
2461 work properly in the case of shared spill slots. */
2463 void
2464 set_mem_attrs_for_spill (rtx mem)
2466 struct mem_attrs attrs;
2467 rtx addr;
2469 attrs = *get_mem_attrs (mem);
2470 attrs.expr = get_spill_slot_decl (true);
2471 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2472 attrs.addrspace = ADDR_SPACE_GENERIC;
2474 /* We expect the incoming memory to be of the form:
2475 (mem:MODE (plus (reg sfp) (const_int offset)))
2476 with perhaps the plus missing for offset = 0. */
2477 addr = XEXP (mem, 0);
2478 attrs.offset_known_p = true;
2479 attrs.offset = 0;
2480 if (GET_CODE (addr) == PLUS
2481 && CONST_INT_P (XEXP (addr, 1)))
2482 attrs.offset = INTVAL (XEXP (addr, 1));
2484 set_mem_attrs (mem, &attrs);
2485 MEM_NOTRAP_P (mem) = 1;
2488 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2490 rtx_code_label *
2491 gen_label_rtx (void)
2493 return as_a <rtx_code_label *> (
2494 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2495 NULL, label_num++, NULL));
2498 /* For procedure integration. */
2500 /* Install new pointers to the first and last insns in the chain.
2501 Also, set cur_insn_uid to one higher than the last in use.
2502 Used for an inline-procedure after copying the insn chain. */
2504 void
2505 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2507 rtx_insn *insn;
2509 set_first_insn (first);
2510 set_last_insn (last);
2511 cur_insn_uid = 0;
2513 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2515 int debug_count = 0;
2517 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2518 cur_debug_insn_uid = 0;
2520 for (insn = first; insn; insn = NEXT_INSN (insn))
2521 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2522 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2523 else
2525 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2526 if (DEBUG_INSN_P (insn))
2527 debug_count++;
2530 if (debug_count)
2531 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2532 else
2533 cur_debug_insn_uid++;
2535 else
2536 for (insn = first; insn; insn = NEXT_INSN (insn))
2537 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2539 cur_insn_uid++;
2542 /* Go through all the RTL insn bodies and copy any invalid shared
2543 structure. This routine should only be called once. */
2545 static void
2546 unshare_all_rtl_1 (rtx_insn *insn)
2548 /* Unshare just about everything else. */
2549 unshare_all_rtl_in_chain (insn);
2551 /* Make sure the addresses of stack slots found outside the insn chain
2552 (such as, in DECL_RTL of a variable) are not shared
2553 with the insn chain.
2555 This special care is necessary when the stack slot MEM does not
2556 actually appear in the insn chain. If it does appear, its address
2557 is unshared from all else at that point. */
2558 stack_slot_list = safe_as_a <rtx_expr_list *> (
2559 copy_rtx_if_shared (stack_slot_list));
2562 /* Go through all the RTL insn bodies and copy any invalid shared
2563 structure, again. This is a fairly expensive thing to do so it
2564 should be done sparingly. */
2566 void
2567 unshare_all_rtl_again (rtx_insn *insn)
2569 rtx_insn *p;
2570 tree decl;
2572 for (p = insn; p; p = NEXT_INSN (p))
2573 if (INSN_P (p))
2575 reset_used_flags (PATTERN (p));
2576 reset_used_flags (REG_NOTES (p));
2577 if (CALL_P (p))
2578 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2581 /* Make sure that virtual stack slots are not shared. */
2582 set_used_decls (DECL_INITIAL (cfun->decl));
2584 /* Make sure that virtual parameters are not shared. */
2585 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2586 set_used_flags (DECL_RTL (decl));
2588 reset_used_flags (stack_slot_list);
2590 unshare_all_rtl_1 (insn);
2593 unsigned int
2594 unshare_all_rtl (void)
2596 unshare_all_rtl_1 (get_insns ());
2597 return 0;
2601 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2602 Recursively does the same for subexpressions. */
2604 static void
2605 verify_rtx_sharing (rtx orig, rtx insn)
2607 rtx x = orig;
2608 int i;
2609 enum rtx_code code;
2610 const char *format_ptr;
2612 if (x == 0)
2613 return;
2615 code = GET_CODE (x);
2617 /* These types may be freely shared. */
2619 switch (code)
2621 case REG:
2622 case DEBUG_EXPR:
2623 case VALUE:
2624 CASE_CONST_ANY:
2625 case SYMBOL_REF:
2626 case LABEL_REF:
2627 case CODE_LABEL:
2628 case PC:
2629 case CC0:
2630 case RETURN:
2631 case SIMPLE_RETURN:
2632 case SCRATCH:
2633 /* SCRATCH must be shared because they represent distinct values. */
2634 return;
2635 case CLOBBER:
2636 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2637 clobbers or clobbers of hard registers that originated as pseudos.
2638 This is needed to allow safe register renaming. */
2639 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2640 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2641 return;
2642 break;
2644 case CONST:
2645 if (shared_const_p (orig))
2646 return;
2647 break;
2649 case MEM:
2650 /* A MEM is allowed to be shared if its address is constant. */
2651 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2652 || reload_completed || reload_in_progress)
2653 return;
2655 break;
2657 default:
2658 break;
2661 /* This rtx may not be shared. If it has already been seen,
2662 replace it with a copy of itself. */
2663 #ifdef ENABLE_CHECKING
2664 if (RTX_FLAG (x, used))
2666 error ("invalid rtl sharing found in the insn");
2667 debug_rtx (insn);
2668 error ("shared rtx");
2669 debug_rtx (x);
2670 internal_error ("internal consistency failure");
2672 #endif
2673 gcc_assert (!RTX_FLAG (x, used));
2675 RTX_FLAG (x, used) = 1;
2677 /* Now scan the subexpressions recursively. */
2679 format_ptr = GET_RTX_FORMAT (code);
2681 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2683 switch (*format_ptr++)
2685 case 'e':
2686 verify_rtx_sharing (XEXP (x, i), insn);
2687 break;
2689 case 'E':
2690 if (XVEC (x, i) != NULL)
2692 int j;
2693 int len = XVECLEN (x, i);
2695 for (j = 0; j < len; j++)
2697 /* We allow sharing of ASM_OPERANDS inside single
2698 instruction. */
2699 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2700 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2701 == ASM_OPERANDS))
2702 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2703 else
2704 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2707 break;
2710 return;
2713 /* Reset used-flags for INSN. */
2715 static void
2716 reset_insn_used_flags (rtx insn)
2718 gcc_assert (INSN_P (insn));
2719 reset_used_flags (PATTERN (insn));
2720 reset_used_flags (REG_NOTES (insn));
2721 if (CALL_P (insn))
2722 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2725 /* Go through all the RTL insn bodies and clear all the USED bits. */
2727 static void
2728 reset_all_used_flags (void)
2730 rtx p;
2732 for (p = get_insns (); p; p = NEXT_INSN (p))
2733 if (INSN_P (p))
2735 rtx pat = PATTERN (p);
2736 if (GET_CODE (pat) != SEQUENCE)
2737 reset_insn_used_flags (p);
2738 else
2740 gcc_assert (REG_NOTES (p) == NULL);
2741 for (int i = 0; i < XVECLEN (pat, 0); i++)
2743 rtx insn = XVECEXP (pat, 0, i);
2744 if (INSN_P (insn))
2745 reset_insn_used_flags (insn);
2751 /* Verify sharing in INSN. */
2753 static void
2754 verify_insn_sharing (rtx insn)
2756 gcc_assert (INSN_P (insn));
2757 reset_used_flags (PATTERN (insn));
2758 reset_used_flags (REG_NOTES (insn));
2759 if (CALL_P (insn))
2760 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2763 /* Go through all the RTL insn bodies and check that there is no unexpected
2764 sharing in between the subexpressions. */
2766 DEBUG_FUNCTION void
2767 verify_rtl_sharing (void)
2769 rtx p;
2771 timevar_push (TV_VERIFY_RTL_SHARING);
2773 reset_all_used_flags ();
2775 for (p = get_insns (); p; p = NEXT_INSN (p))
2776 if (INSN_P (p))
2778 rtx pat = PATTERN (p);
2779 if (GET_CODE (pat) != SEQUENCE)
2780 verify_insn_sharing (p);
2781 else
2782 for (int i = 0; i < XVECLEN (pat, 0); i++)
2784 rtx insn = XVECEXP (pat, 0, i);
2785 if (INSN_P (insn))
2786 verify_insn_sharing (insn);
2790 reset_all_used_flags ();
2792 timevar_pop (TV_VERIFY_RTL_SHARING);
2795 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2796 Assumes the mark bits are cleared at entry. */
2798 void
2799 unshare_all_rtl_in_chain (rtx insn)
2801 for (; insn; insn = NEXT_INSN (insn))
2802 if (INSN_P (insn))
2804 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2805 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2806 if (CALL_P (insn))
2807 CALL_INSN_FUNCTION_USAGE (insn)
2808 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2812 /* Go through all virtual stack slots of a function and mark them as
2813 shared. We never replace the DECL_RTLs themselves with a copy,
2814 but expressions mentioned into a DECL_RTL cannot be shared with
2815 expressions in the instruction stream.
2817 Note that reload may convert pseudo registers into memories in-place.
2818 Pseudo registers are always shared, but MEMs never are. Thus if we
2819 reset the used flags on MEMs in the instruction stream, we must set
2820 them again on MEMs that appear in DECL_RTLs. */
2822 static void
2823 set_used_decls (tree blk)
2825 tree t;
2827 /* Mark decls. */
2828 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2829 if (DECL_RTL_SET_P (t))
2830 set_used_flags (DECL_RTL (t));
2832 /* Now process sub-blocks. */
2833 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2834 set_used_decls (t);
2837 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2838 Recursively does the same for subexpressions. Uses
2839 copy_rtx_if_shared_1 to reduce stack space. */
2842 copy_rtx_if_shared (rtx orig)
2844 copy_rtx_if_shared_1 (&orig);
2845 return orig;
2848 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2849 use. Recursively does the same for subexpressions. */
2851 static void
2852 copy_rtx_if_shared_1 (rtx *orig1)
2854 rtx x;
2855 int i;
2856 enum rtx_code code;
2857 rtx *last_ptr;
2858 const char *format_ptr;
2859 int copied = 0;
2860 int length;
2862 /* Repeat is used to turn tail-recursion into iteration. */
2863 repeat:
2864 x = *orig1;
2866 if (x == 0)
2867 return;
2869 code = GET_CODE (x);
2871 /* These types may be freely shared. */
2873 switch (code)
2875 case REG:
2876 case DEBUG_EXPR:
2877 case VALUE:
2878 CASE_CONST_ANY:
2879 case SYMBOL_REF:
2880 case LABEL_REF:
2881 case CODE_LABEL:
2882 case PC:
2883 case CC0:
2884 case RETURN:
2885 case SIMPLE_RETURN:
2886 case SCRATCH:
2887 /* SCRATCH must be shared because they represent distinct values. */
2888 return;
2889 case CLOBBER:
2890 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2891 clobbers or clobbers of hard registers that originated as pseudos.
2892 This is needed to allow safe register renaming. */
2893 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2894 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2895 return;
2896 break;
2898 case CONST:
2899 if (shared_const_p (x))
2900 return;
2901 break;
2903 case DEBUG_INSN:
2904 case INSN:
2905 case JUMP_INSN:
2906 case CALL_INSN:
2907 case NOTE:
2908 case BARRIER:
2909 /* The chain of insns is not being copied. */
2910 return;
2912 default:
2913 break;
2916 /* This rtx may not be shared. If it has already been seen,
2917 replace it with a copy of itself. */
2919 if (RTX_FLAG (x, used))
2921 x = shallow_copy_rtx (x);
2922 copied = 1;
2924 RTX_FLAG (x, used) = 1;
2926 /* Now scan the subexpressions recursively.
2927 We can store any replaced subexpressions directly into X
2928 since we know X is not shared! Any vectors in X
2929 must be copied if X was copied. */
2931 format_ptr = GET_RTX_FORMAT (code);
2932 length = GET_RTX_LENGTH (code);
2933 last_ptr = NULL;
2935 for (i = 0; i < length; i++)
2937 switch (*format_ptr++)
2939 case 'e':
2940 if (last_ptr)
2941 copy_rtx_if_shared_1 (last_ptr);
2942 last_ptr = &XEXP (x, i);
2943 break;
2945 case 'E':
2946 if (XVEC (x, i) != NULL)
2948 int j;
2949 int len = XVECLEN (x, i);
2951 /* Copy the vector iff I copied the rtx and the length
2952 is nonzero. */
2953 if (copied && len > 0)
2954 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2956 /* Call recursively on all inside the vector. */
2957 for (j = 0; j < len; j++)
2959 if (last_ptr)
2960 copy_rtx_if_shared_1 (last_ptr);
2961 last_ptr = &XVECEXP (x, i, j);
2964 break;
2967 *orig1 = x;
2968 if (last_ptr)
2970 orig1 = last_ptr;
2971 goto repeat;
2973 return;
2976 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2978 static void
2979 mark_used_flags (rtx x, int flag)
2981 int i, j;
2982 enum rtx_code code;
2983 const char *format_ptr;
2984 int length;
2986 /* Repeat is used to turn tail-recursion into iteration. */
2987 repeat:
2988 if (x == 0)
2989 return;
2991 code = GET_CODE (x);
2993 /* These types may be freely shared so we needn't do any resetting
2994 for them. */
2996 switch (code)
2998 case REG:
2999 case DEBUG_EXPR:
3000 case VALUE:
3001 CASE_CONST_ANY:
3002 case SYMBOL_REF:
3003 case CODE_LABEL:
3004 case PC:
3005 case CC0:
3006 case RETURN:
3007 case SIMPLE_RETURN:
3008 return;
3010 case DEBUG_INSN:
3011 case INSN:
3012 case JUMP_INSN:
3013 case CALL_INSN:
3014 case NOTE:
3015 case LABEL_REF:
3016 case BARRIER:
3017 /* The chain of insns is not being copied. */
3018 return;
3020 default:
3021 break;
3024 RTX_FLAG (x, used) = flag;
3026 format_ptr = GET_RTX_FORMAT (code);
3027 length = GET_RTX_LENGTH (code);
3029 for (i = 0; i < length; i++)
3031 switch (*format_ptr++)
3033 case 'e':
3034 if (i == length-1)
3036 x = XEXP (x, i);
3037 goto repeat;
3039 mark_used_flags (XEXP (x, i), flag);
3040 break;
3042 case 'E':
3043 for (j = 0; j < XVECLEN (x, i); j++)
3044 mark_used_flags (XVECEXP (x, i, j), flag);
3045 break;
3050 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3051 to look for shared sub-parts. */
3053 void
3054 reset_used_flags (rtx x)
3056 mark_used_flags (x, 0);
3059 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3060 to look for shared sub-parts. */
3062 void
3063 set_used_flags (rtx x)
3065 mark_used_flags (x, 1);
3068 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3069 Return X or the rtx for the pseudo reg the value of X was copied into.
3070 OTHER must be valid as a SET_DEST. */
3073 make_safe_from (rtx x, rtx other)
3075 while (1)
3076 switch (GET_CODE (other))
3078 case SUBREG:
3079 other = SUBREG_REG (other);
3080 break;
3081 case STRICT_LOW_PART:
3082 case SIGN_EXTEND:
3083 case ZERO_EXTEND:
3084 other = XEXP (other, 0);
3085 break;
3086 default:
3087 goto done;
3089 done:
3090 if ((MEM_P (other)
3091 && ! CONSTANT_P (x)
3092 && !REG_P (x)
3093 && GET_CODE (x) != SUBREG)
3094 || (REG_P (other)
3095 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3096 || reg_mentioned_p (other, x))))
3098 rtx temp = gen_reg_rtx (GET_MODE (x));
3099 emit_move_insn (temp, x);
3100 return temp;
3102 return x;
3105 /* Emission of insns (adding them to the doubly-linked list). */
3107 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3109 rtx_insn *
3110 get_last_insn_anywhere (void)
3112 struct sequence_stack *stack;
3113 if (get_last_insn ())
3114 return get_last_insn ();
3115 for (stack = seq_stack; stack; stack = stack->next)
3116 if (stack->last != 0)
3117 return stack->last;
3118 return 0;
3121 /* Return the first nonnote insn emitted in current sequence or current
3122 function. This routine looks inside SEQUENCEs. */
3125 get_first_nonnote_insn (void)
3127 rtx insn = get_insns ();
3129 if (insn)
3131 if (NOTE_P (insn))
3132 for (insn = next_insn (insn);
3133 insn && NOTE_P (insn);
3134 insn = next_insn (insn))
3135 continue;
3136 else
3138 if (NONJUMP_INSN_P (insn)
3139 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3140 insn = XVECEXP (PATTERN (insn), 0, 0);
3144 return insn;
3147 /* Return the last nonnote insn emitted in current sequence or current
3148 function. This routine looks inside SEQUENCEs. */
3151 get_last_nonnote_insn (void)
3153 rtx insn = get_last_insn ();
3155 if (insn)
3157 if (NOTE_P (insn))
3158 for (insn = previous_insn (insn);
3159 insn && NOTE_P (insn);
3160 insn = previous_insn (insn))
3161 continue;
3162 else
3164 if (NONJUMP_INSN_P (insn)
3165 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3166 insn = XVECEXP (PATTERN (insn), 0,
3167 XVECLEN (PATTERN (insn), 0) - 1);
3171 return insn;
3174 /* Return the number of actual (non-debug) insns emitted in this
3175 function. */
3178 get_max_insn_count (void)
3180 int n = cur_insn_uid;
3182 /* The table size must be stable across -g, to avoid codegen
3183 differences due to debug insns, and not be affected by
3184 -fmin-insn-uid, to avoid excessive table size and to simplify
3185 debugging of -fcompare-debug failures. */
3186 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3187 n -= cur_debug_insn_uid;
3188 else
3189 n -= MIN_NONDEBUG_INSN_UID;
3191 return n;
3195 /* Return the next insn. If it is a SEQUENCE, return the first insn
3196 of the sequence. */
3198 rtx_insn *
3199 next_insn (rtx insn)
3201 if (insn)
3203 insn = NEXT_INSN (insn);
3204 if (insn && NONJUMP_INSN_P (insn)
3205 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3206 insn = XVECEXP (PATTERN (insn), 0, 0);
3209 return safe_as_a <rtx_insn *> (insn);
3212 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3213 of the sequence. */
3215 rtx_insn *
3216 previous_insn (rtx insn)
3218 if (insn)
3220 insn = PREV_INSN (insn);
3221 if (insn && NONJUMP_INSN_P (insn)
3222 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3223 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3226 return safe_as_a <rtx_insn *> (insn);
3229 /* Return the next insn after INSN that is not a NOTE. This routine does not
3230 look inside SEQUENCEs. */
3232 rtx_insn *
3233 next_nonnote_insn (rtx insn)
3235 while (insn)
3237 insn = NEXT_INSN (insn);
3238 if (insn == 0 || !NOTE_P (insn))
3239 break;
3242 return safe_as_a <rtx_insn *> (insn);
3245 /* Return the next insn after INSN that is not a NOTE, but stop the
3246 search before we enter another basic block. This routine does not
3247 look inside SEQUENCEs. */
3249 rtx_insn *
3250 next_nonnote_insn_bb (rtx insn)
3252 while (insn)
3254 insn = NEXT_INSN (insn);
3255 if (insn == 0 || !NOTE_P (insn))
3256 break;
3257 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3258 return NULL;
3261 return safe_as_a <rtx_insn *> (insn);
3264 /* Return the previous insn before INSN that is not a NOTE. This routine does
3265 not look inside SEQUENCEs. */
3267 rtx_insn *
3268 prev_nonnote_insn (rtx insn)
3270 while (insn)
3272 insn = PREV_INSN (insn);
3273 if (insn == 0 || !NOTE_P (insn))
3274 break;
3277 return safe_as_a <rtx_insn *> (insn);
3280 /* Return the previous insn before INSN that is not a NOTE, but stop
3281 the search before we enter another basic block. This routine does
3282 not look inside SEQUENCEs. */
3284 rtx_insn *
3285 prev_nonnote_insn_bb (rtx insn)
3287 while (insn)
3289 insn = PREV_INSN (insn);
3290 if (insn == 0 || !NOTE_P (insn))
3291 break;
3292 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3293 return NULL;
3296 return safe_as_a <rtx_insn *> (insn);
3299 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3300 routine does not look inside SEQUENCEs. */
3302 rtx_insn *
3303 next_nondebug_insn (rtx insn)
3305 while (insn)
3307 insn = NEXT_INSN (insn);
3308 if (insn == 0 || !DEBUG_INSN_P (insn))
3309 break;
3312 return safe_as_a <rtx_insn *> (insn);
3315 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3316 This routine does not look inside SEQUENCEs. */
3318 rtx_insn *
3319 prev_nondebug_insn (rtx insn)
3321 while (insn)
3323 insn = PREV_INSN (insn);
3324 if (insn == 0 || !DEBUG_INSN_P (insn))
3325 break;
3328 return safe_as_a <rtx_insn *> (insn);
3331 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3332 This routine does not look inside SEQUENCEs. */
3334 rtx_insn *
3335 next_nonnote_nondebug_insn (rtx insn)
3337 while (insn)
3339 insn = NEXT_INSN (insn);
3340 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3341 break;
3344 return safe_as_a <rtx_insn *> (insn);
3347 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3348 This routine does not look inside SEQUENCEs. */
3350 rtx_insn *
3351 prev_nonnote_nondebug_insn (rtx insn)
3353 while (insn)
3355 insn = PREV_INSN (insn);
3356 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3357 break;
3360 return safe_as_a <rtx_insn *> (insn);
3363 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3364 or 0, if there is none. This routine does not look inside
3365 SEQUENCEs. */
3367 rtx_insn *
3368 next_real_insn (rtx insn)
3370 while (insn)
3372 insn = NEXT_INSN (insn);
3373 if (insn == 0 || INSN_P (insn))
3374 break;
3377 return safe_as_a <rtx_insn *> (insn);
3380 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3381 or 0, if there is none. This routine does not look inside
3382 SEQUENCEs. */
3384 rtx_insn *
3385 prev_real_insn (rtx insn)
3387 while (insn)
3389 insn = PREV_INSN (insn);
3390 if (insn == 0 || INSN_P (insn))
3391 break;
3394 return safe_as_a <rtx_insn *> (insn);
3397 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3398 This routine does not look inside SEQUENCEs. */
3400 rtx_call_insn *
3401 last_call_insn (void)
3403 rtx_insn *insn;
3405 for (insn = get_last_insn ();
3406 insn && !CALL_P (insn);
3407 insn = PREV_INSN (insn))
3410 return safe_as_a <rtx_call_insn *> (insn);
3413 /* Find the next insn after INSN that really does something. This routine
3414 does not look inside SEQUENCEs. After reload this also skips over
3415 standalone USE and CLOBBER insn. */
3418 active_insn_p (const_rtx insn)
3420 return (CALL_P (insn) || JUMP_P (insn)
3421 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3422 || (NONJUMP_INSN_P (insn)
3423 && (! reload_completed
3424 || (GET_CODE (PATTERN (insn)) != USE
3425 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3428 rtx_insn *
3429 next_active_insn (rtx insn)
3431 while (insn)
3433 insn = NEXT_INSN (insn);
3434 if (insn == 0 || active_insn_p (insn))
3435 break;
3438 return safe_as_a <rtx_insn *> (insn);
3441 /* Find the last insn before INSN that really does something. This routine
3442 does not look inside SEQUENCEs. After reload this also skips over
3443 standalone USE and CLOBBER insn. */
3445 rtx_insn *
3446 prev_active_insn (rtx insn)
3448 while (insn)
3450 insn = PREV_INSN (insn);
3451 if (insn == 0 || active_insn_p (insn))
3452 break;
3455 return safe_as_a <rtx_insn *> (insn);
3458 #ifdef HAVE_cc0
3459 /* Return the next insn that uses CC0 after INSN, which is assumed to
3460 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3461 applied to the result of this function should yield INSN).
3463 Normally, this is simply the next insn. However, if a REG_CC_USER note
3464 is present, it contains the insn that uses CC0.
3466 Return 0 if we can't find the insn. */
3468 rtx_insn *
3469 next_cc0_user (rtx insn)
3471 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3473 if (note)
3474 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3476 insn = next_nonnote_insn (insn);
3477 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3478 insn = XVECEXP (PATTERN (insn), 0, 0);
3480 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3481 return safe_as_a <rtx_insn *> (insn);
3483 return 0;
3486 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3487 note, it is the previous insn. */
3489 rtx_insn *
3490 prev_cc0_setter (rtx insn)
3492 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3494 if (note)
3495 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3497 insn = prev_nonnote_insn (insn);
3498 gcc_assert (sets_cc0_p (PATTERN (insn)));
3500 return safe_as_a <rtx_insn *> (insn);
3502 #endif
3504 #ifdef AUTO_INC_DEC
3505 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3507 static int
3508 find_auto_inc (rtx *xp, void *data)
3510 rtx x = *xp;
3511 rtx reg = (rtx) data;
3513 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3514 return 0;
3516 switch (GET_CODE (x))
3518 case PRE_DEC:
3519 case PRE_INC:
3520 case POST_DEC:
3521 case POST_INC:
3522 case PRE_MODIFY:
3523 case POST_MODIFY:
3524 if (rtx_equal_p (reg, XEXP (x, 0)))
3525 return 1;
3526 break;
3528 default:
3529 gcc_unreachable ();
3531 return -1;
3533 #endif
3535 /* Increment the label uses for all labels present in rtx. */
3537 static void
3538 mark_label_nuses (rtx x)
3540 enum rtx_code code;
3541 int i, j;
3542 const char *fmt;
3544 code = GET_CODE (x);
3545 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3546 LABEL_NUSES (XEXP (x, 0))++;
3548 fmt = GET_RTX_FORMAT (code);
3549 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3551 if (fmt[i] == 'e')
3552 mark_label_nuses (XEXP (x, i));
3553 else if (fmt[i] == 'E')
3554 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3555 mark_label_nuses (XVECEXP (x, i, j));
3560 /* Try splitting insns that can be split for better scheduling.
3561 PAT is the pattern which might split.
3562 TRIAL is the insn providing PAT.
3563 LAST is nonzero if we should return the last insn of the sequence produced.
3565 If this routine succeeds in splitting, it returns the first or last
3566 replacement insn depending on the value of LAST. Otherwise, it
3567 returns TRIAL. If the insn to be returned can be split, it will be. */
3569 rtx_insn *
3570 try_split (rtx pat, rtx trial, int last)
3572 rtx_insn *before = PREV_INSN (trial);
3573 rtx_insn *after = NEXT_INSN (trial);
3574 int has_barrier = 0;
3575 rtx note, seq, tem;
3576 int probability;
3577 rtx insn_last, insn;
3578 int njumps = 0;
3579 rtx call_insn = NULL_RTX;
3581 /* We're not good at redistributing frame information. */
3582 if (RTX_FRAME_RELATED_P (trial))
3583 return as_a <rtx_insn *> (trial);
3585 if (any_condjump_p (trial)
3586 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3587 split_branch_probability = XINT (note, 0);
3588 probability = split_branch_probability;
3590 seq = split_insns (pat, trial);
3592 split_branch_probability = -1;
3594 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3595 We may need to handle this specially. */
3596 if (after && BARRIER_P (after))
3598 has_barrier = 1;
3599 after = NEXT_INSN (after);
3602 if (!seq)
3603 return as_a <rtx_insn *> (trial);
3605 /* Avoid infinite loop if any insn of the result matches
3606 the original pattern. */
3607 insn_last = seq;
3608 while (1)
3610 if (INSN_P (insn_last)
3611 && rtx_equal_p (PATTERN (insn_last), pat))
3612 return as_a <rtx_insn *> (trial);
3613 if (!NEXT_INSN (insn_last))
3614 break;
3615 insn_last = NEXT_INSN (insn_last);
3618 /* We will be adding the new sequence to the function. The splitters
3619 may have introduced invalid RTL sharing, so unshare the sequence now. */
3620 unshare_all_rtl_in_chain (seq);
3622 /* Mark labels and copy flags. */
3623 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3625 if (JUMP_P (insn))
3627 if (JUMP_P (trial))
3628 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3629 mark_jump_label (PATTERN (insn), insn, 0);
3630 njumps++;
3631 if (probability != -1
3632 && any_condjump_p (insn)
3633 && !find_reg_note (insn, REG_BR_PROB, 0))
3635 /* We can preserve the REG_BR_PROB notes only if exactly
3636 one jump is created, otherwise the machine description
3637 is responsible for this step using
3638 split_branch_probability variable. */
3639 gcc_assert (njumps == 1);
3640 add_int_reg_note (insn, REG_BR_PROB, probability);
3645 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3646 in SEQ and copy any additional information across. */
3647 if (CALL_P (trial))
3649 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3650 if (CALL_P (insn))
3652 rtx next, *p;
3654 gcc_assert (call_insn == NULL_RTX);
3655 call_insn = insn;
3657 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3658 target may have explicitly specified. */
3659 p = &CALL_INSN_FUNCTION_USAGE (insn);
3660 while (*p)
3661 p = &XEXP (*p, 1);
3662 *p = CALL_INSN_FUNCTION_USAGE (trial);
3664 /* If the old call was a sibling call, the new one must
3665 be too. */
3666 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3668 /* If the new call is the last instruction in the sequence,
3669 it will effectively replace the old call in-situ. Otherwise
3670 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3671 so that it comes immediately after the new call. */
3672 if (NEXT_INSN (insn))
3673 for (next = NEXT_INSN (trial);
3674 next && NOTE_P (next);
3675 next = NEXT_INSN (next))
3676 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3678 remove_insn (next);
3679 add_insn_after (next, insn, NULL);
3680 break;
3685 /* Copy notes, particularly those related to the CFG. */
3686 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3688 switch (REG_NOTE_KIND (note))
3690 case REG_EH_REGION:
3691 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3692 break;
3694 case REG_NORETURN:
3695 case REG_SETJMP:
3696 case REG_TM:
3697 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3699 if (CALL_P (insn))
3700 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3702 break;
3704 case REG_NON_LOCAL_GOTO:
3705 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3707 if (JUMP_P (insn))
3708 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3710 break;
3712 #ifdef AUTO_INC_DEC
3713 case REG_INC:
3714 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3716 rtx reg = XEXP (note, 0);
3717 if (!FIND_REG_INC_NOTE (insn, reg)
3718 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3719 add_reg_note (insn, REG_INC, reg);
3721 break;
3722 #endif
3724 case REG_ARGS_SIZE:
3725 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3726 break;
3728 case REG_CALL_DECL:
3729 gcc_assert (call_insn != NULL_RTX);
3730 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3731 break;
3733 default:
3734 break;
3738 /* If there are LABELS inside the split insns increment the
3739 usage count so we don't delete the label. */
3740 if (INSN_P (trial))
3742 insn = insn_last;
3743 while (insn != NULL_RTX)
3745 /* JUMP_P insns have already been "marked" above. */
3746 if (NONJUMP_INSN_P (insn))
3747 mark_label_nuses (PATTERN (insn));
3749 insn = PREV_INSN (insn);
3753 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3755 delete_insn (trial);
3756 if (has_barrier)
3757 emit_barrier_after (tem);
3759 /* Recursively call try_split for each new insn created; by the
3760 time control returns here that insn will be fully split, so
3761 set LAST and continue from the insn after the one returned.
3762 We can't use next_active_insn here since AFTER may be a note.
3763 Ignore deleted insns, which can be occur if not optimizing. */
3764 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3765 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3766 tem = try_split (PATTERN (tem), tem, 1);
3768 /* Return either the first or the last insn, depending on which was
3769 requested. */
3770 return last
3771 ? (after ? PREV_INSN (after) : get_last_insn ())
3772 : NEXT_INSN (before);
3775 /* Make and return an INSN rtx, initializing all its slots.
3776 Store PATTERN in the pattern slots. */
3778 rtx_insn *
3779 make_insn_raw (rtx pattern)
3781 rtx_insn *insn;
3783 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3785 INSN_UID (insn) = cur_insn_uid++;
3786 PATTERN (insn) = pattern;
3787 INSN_CODE (insn) = -1;
3788 REG_NOTES (insn) = NULL;
3789 INSN_LOCATION (insn) = curr_insn_location ();
3790 BLOCK_FOR_INSN (insn) = NULL;
3792 #ifdef ENABLE_RTL_CHECKING
3793 if (insn
3794 && INSN_P (insn)
3795 && (returnjump_p (insn)
3796 || (GET_CODE (insn) == SET
3797 && SET_DEST (insn) == pc_rtx)))
3799 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3800 debug_rtx (insn);
3802 #endif
3804 return insn;
3807 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3809 static rtx_insn *
3810 make_debug_insn_raw (rtx pattern)
3812 rtx_debug_insn *insn;
3814 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3815 INSN_UID (insn) = cur_debug_insn_uid++;
3816 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3817 INSN_UID (insn) = cur_insn_uid++;
3819 PATTERN (insn) = pattern;
3820 INSN_CODE (insn) = -1;
3821 REG_NOTES (insn) = NULL;
3822 INSN_LOCATION (insn) = curr_insn_location ();
3823 BLOCK_FOR_INSN (insn) = NULL;
3825 return insn;
3828 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3830 static rtx_insn *
3831 make_jump_insn_raw (rtx pattern)
3833 rtx_jump_insn *insn;
3835 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3836 INSN_UID (insn) = cur_insn_uid++;
3838 PATTERN (insn) = pattern;
3839 INSN_CODE (insn) = -1;
3840 REG_NOTES (insn) = NULL;
3841 JUMP_LABEL (insn) = NULL;
3842 INSN_LOCATION (insn) = curr_insn_location ();
3843 BLOCK_FOR_INSN (insn) = NULL;
3845 return insn;
3848 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3850 static rtx_insn *
3851 make_call_insn_raw (rtx pattern)
3853 rtx_call_insn *insn;
3855 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3856 INSN_UID (insn) = cur_insn_uid++;
3858 PATTERN (insn) = pattern;
3859 INSN_CODE (insn) = -1;
3860 REG_NOTES (insn) = NULL;
3861 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3862 INSN_LOCATION (insn) = curr_insn_location ();
3863 BLOCK_FOR_INSN (insn) = NULL;
3865 return insn;
3868 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3870 static rtx_note *
3871 make_note_raw (enum insn_note subtype)
3873 /* Some notes are never created this way at all. These notes are
3874 only created by patching out insns. */
3875 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3876 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3878 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3879 INSN_UID (note) = cur_insn_uid++;
3880 NOTE_KIND (note) = subtype;
3881 BLOCK_FOR_INSN (note) = NULL;
3882 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3883 return note;
3886 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3887 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3888 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3890 static inline void
3891 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3893 SET_PREV_INSN (insn) = prev;
3894 SET_NEXT_INSN (insn) = next;
3895 if (prev != NULL)
3897 SET_NEXT_INSN (prev) = insn;
3898 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3900 rtx sequence = PATTERN (prev);
3901 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3904 if (next != NULL)
3906 SET_PREV_INSN (next) = insn;
3907 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3908 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3911 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3913 rtx sequence = PATTERN (insn);
3914 SET_PREV_INSN (XVECEXP (sequence, 0, 0)) = prev;
3915 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3919 /* Add INSN to the end of the doubly-linked list.
3920 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3922 void
3923 add_insn (rtx_insn *insn)
3925 rtx_insn *prev = get_last_insn ();
3926 link_insn_into_chain (insn, prev, NULL);
3927 if (NULL == get_insns ())
3928 set_first_insn (insn);
3929 set_last_insn (insn);
3932 /* Add INSN into the doubly-linked list after insn AFTER. */
3934 static void
3935 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
3937 rtx_insn *next = NEXT_INSN (after);
3939 gcc_assert (!optimize || !INSN_DELETED_P (after));
3941 link_insn_into_chain (insn, after, next);
3943 if (next == NULL)
3945 if (get_last_insn () == after)
3946 set_last_insn (insn);
3947 else
3949 struct sequence_stack *stack = seq_stack;
3950 /* Scan all pending sequences too. */
3951 for (; stack; stack = stack->next)
3952 if (after == stack->last)
3954 stack->last = insn;
3955 break;
3961 /* Add INSN into the doubly-linked list before insn BEFORE. */
3963 static void
3964 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
3966 rtx_insn *prev = PREV_INSN (before);
3968 gcc_assert (!optimize || !INSN_DELETED_P (before));
3970 link_insn_into_chain (insn, prev, before);
3972 if (prev == NULL)
3974 if (get_insns () == before)
3975 set_first_insn (insn);
3976 else
3978 struct sequence_stack *stack = seq_stack;
3979 /* Scan all pending sequences too. */
3980 for (; stack; stack = stack->next)
3981 if (before == stack->first)
3983 stack->first = insn;
3984 break;
3987 gcc_assert (stack);
3992 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3993 If BB is NULL, an attempt is made to infer the bb from before.
3995 This and the next function should be the only functions called
3996 to insert an insn once delay slots have been filled since only
3997 they know how to update a SEQUENCE. */
3999 void
4000 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4002 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4003 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4004 add_insn_after_nobb (insn, after);
4005 if (!BARRIER_P (after)
4006 && !BARRIER_P (insn)
4007 && (bb = BLOCK_FOR_INSN (after)))
4009 set_block_for_insn (insn, bb);
4010 if (INSN_P (insn))
4011 df_insn_rescan (insn);
4012 /* Should not happen as first in the BB is always
4013 either NOTE or LABEL. */
4014 if (BB_END (bb) == after
4015 /* Avoid clobbering of structure when creating new BB. */
4016 && !BARRIER_P (insn)
4017 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4018 BB_END (bb) = insn;
4022 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4023 If BB is NULL, an attempt is made to infer the bb from before.
4025 This and the previous function should be the only functions called
4026 to insert an insn once delay slots have been filled since only
4027 they know how to update a SEQUENCE. */
4029 void
4030 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4032 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4033 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4034 add_insn_before_nobb (insn, before);
4036 if (!bb
4037 && !BARRIER_P (before)
4038 && !BARRIER_P (insn))
4039 bb = BLOCK_FOR_INSN (before);
4041 if (bb)
4043 set_block_for_insn (insn, bb);
4044 if (INSN_P (insn))
4045 df_insn_rescan (insn);
4046 /* Should not happen as first in the BB is always either NOTE or
4047 LABEL. */
4048 gcc_assert (BB_HEAD (bb) != insn
4049 /* Avoid clobbering of structure when creating new BB. */
4050 || BARRIER_P (insn)
4051 || NOTE_INSN_BASIC_BLOCK_P (insn));
4055 /* Replace insn with an deleted instruction note. */
4057 void
4058 set_insn_deleted (rtx insn)
4060 if (INSN_P (insn))
4061 df_insn_delete (as_a <rtx_insn *> (insn));
4062 PUT_CODE (insn, NOTE);
4063 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4067 /* Unlink INSN from the insn chain.
4069 This function knows how to handle sequences.
4071 This function does not invalidate data flow information associated with
4072 INSN (i.e. does not call df_insn_delete). That makes this function
4073 usable for only disconnecting an insn from the chain, and re-emit it
4074 elsewhere later.
4076 To later insert INSN elsewhere in the insn chain via add_insn and
4077 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4078 the caller. Nullifying them here breaks many insn chain walks.
4080 To really delete an insn and related DF information, use delete_insn. */
4082 void
4083 remove_insn (rtx insn)
4085 rtx_insn *next = NEXT_INSN (insn);
4086 rtx_insn *prev = PREV_INSN (insn);
4087 basic_block bb;
4089 if (prev)
4091 SET_NEXT_INSN (prev) = next;
4092 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4094 rtx sequence = PATTERN (prev);
4095 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
4098 else if (get_insns () == insn)
4100 if (next)
4101 SET_PREV_INSN (next) = NULL;
4102 set_first_insn (next);
4104 else
4106 struct sequence_stack *stack = seq_stack;
4107 /* Scan all pending sequences too. */
4108 for (; stack; stack = stack->next)
4109 if (insn == stack->first)
4111 stack->first = next;
4112 break;
4115 gcc_assert (stack);
4118 if (next)
4120 SET_PREV_INSN (next) = prev;
4121 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4122 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
4124 else if (get_last_insn () == insn)
4125 set_last_insn (prev);
4126 else
4128 struct sequence_stack *stack = seq_stack;
4129 /* Scan all pending sequences too. */
4130 for (; stack; stack = stack->next)
4131 if (insn == stack->last)
4133 stack->last = prev;
4134 break;
4137 gcc_assert (stack);
4140 /* Fix up basic block boundaries, if necessary. */
4141 if (!BARRIER_P (insn)
4142 && (bb = BLOCK_FOR_INSN (insn)))
4144 if (BB_HEAD (bb) == insn)
4146 /* Never ever delete the basic block note without deleting whole
4147 basic block. */
4148 gcc_assert (!NOTE_P (insn));
4149 BB_HEAD (bb) = next;
4151 if (BB_END (bb) == insn)
4152 BB_END (bb) = prev;
4156 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4158 void
4159 add_function_usage_to (rtx call_insn, rtx call_fusage)
4161 gcc_assert (call_insn && CALL_P (call_insn));
4163 /* Put the register usage information on the CALL. If there is already
4164 some usage information, put ours at the end. */
4165 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4167 rtx link;
4169 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4170 link = XEXP (link, 1))
4173 XEXP (link, 1) = call_fusage;
4175 else
4176 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4179 /* Delete all insns made since FROM.
4180 FROM becomes the new last instruction. */
4182 void
4183 delete_insns_since (rtx_insn *from)
4185 if (from == 0)
4186 set_first_insn (0);
4187 else
4188 SET_NEXT_INSN (from) = 0;
4189 set_last_insn (from);
4192 /* This function is deprecated, please use sequences instead.
4194 Move a consecutive bunch of insns to a different place in the chain.
4195 The insns to be moved are those between FROM and TO.
4196 They are moved to a new position after the insn AFTER.
4197 AFTER must not be FROM or TO or any insn in between.
4199 This function does not know about SEQUENCEs and hence should not be
4200 called after delay-slot filling has been done. */
4202 void
4203 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4205 #ifdef ENABLE_CHECKING
4206 rtx_insn *x;
4207 for (x = from; x != to; x = NEXT_INSN (x))
4208 gcc_assert (after != x);
4209 gcc_assert (after != to);
4210 #endif
4212 /* Splice this bunch out of where it is now. */
4213 if (PREV_INSN (from))
4214 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4215 if (NEXT_INSN (to))
4216 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4217 if (get_last_insn () == to)
4218 set_last_insn (PREV_INSN (from));
4219 if (get_insns () == from)
4220 set_first_insn (NEXT_INSN (to));
4222 /* Make the new neighbors point to it and it to them. */
4223 if (NEXT_INSN (after))
4224 SET_PREV_INSN (NEXT_INSN (after)) = to;
4226 SET_NEXT_INSN (to) = NEXT_INSN (after);
4227 SET_PREV_INSN (from) = after;
4228 SET_NEXT_INSN (after) = from;
4229 if (after == get_last_insn ())
4230 set_last_insn (to);
4233 /* Same as function above, but take care to update BB boundaries. */
4234 void
4235 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4237 rtx_insn *prev = PREV_INSN (from);
4238 basic_block bb, bb2;
4240 reorder_insns_nobb (from, to, after);
4242 if (!BARRIER_P (after)
4243 && (bb = BLOCK_FOR_INSN (after)))
4245 rtx_insn *x;
4246 df_set_bb_dirty (bb);
4248 if (!BARRIER_P (from)
4249 && (bb2 = BLOCK_FOR_INSN (from)))
4251 if (BB_END (bb2) == to)
4252 BB_END (bb2) = prev;
4253 df_set_bb_dirty (bb2);
4256 if (BB_END (bb) == after)
4257 BB_END (bb) = to;
4259 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4260 if (!BARRIER_P (x))
4261 df_insn_change_bb (x, bb);
4266 /* Emit insn(s) of given code and pattern
4267 at a specified place within the doubly-linked list.
4269 All of the emit_foo global entry points accept an object
4270 X which is either an insn list or a PATTERN of a single
4271 instruction.
4273 There are thus a few canonical ways to generate code and
4274 emit it at a specific place in the instruction stream. For
4275 example, consider the instruction named SPOT and the fact that
4276 we would like to emit some instructions before SPOT. We might
4277 do it like this:
4279 start_sequence ();
4280 ... emit the new instructions ...
4281 insns_head = get_insns ();
4282 end_sequence ();
4284 emit_insn_before (insns_head, SPOT);
4286 It used to be common to generate SEQUENCE rtl instead, but that
4287 is a relic of the past which no longer occurs. The reason is that
4288 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4289 generated would almost certainly die right after it was created. */
4291 static rtx_insn *
4292 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4293 rtx_insn *(*make_raw) (rtx))
4295 rtx_insn *insn;
4297 gcc_assert (before);
4299 if (x == NULL_RTX)
4300 return safe_as_a <rtx_insn *> (last);
4302 switch (GET_CODE (x))
4304 case DEBUG_INSN:
4305 case INSN:
4306 case JUMP_INSN:
4307 case CALL_INSN:
4308 case CODE_LABEL:
4309 case BARRIER:
4310 case NOTE:
4311 insn = as_a <rtx_insn *> (x);
4312 while (insn)
4314 rtx_insn *next = NEXT_INSN (insn);
4315 add_insn_before (insn, before, bb);
4316 last = insn;
4317 insn = next;
4319 break;
4321 #ifdef ENABLE_RTL_CHECKING
4322 case SEQUENCE:
4323 gcc_unreachable ();
4324 break;
4325 #endif
4327 default:
4328 last = (*make_raw) (x);
4329 add_insn_before (last, before, bb);
4330 break;
4333 return safe_as_a <rtx_insn *> (last);
4336 /* Make X be output before the instruction BEFORE. */
4338 rtx_insn *
4339 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4341 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4344 /* Make an instruction with body X and code JUMP_INSN
4345 and output it before the instruction BEFORE. */
4347 rtx_insn *
4348 emit_jump_insn_before_noloc (rtx x, rtx before)
4350 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4351 make_jump_insn_raw);
4354 /* Make an instruction with body X and code CALL_INSN
4355 and output it before the instruction BEFORE. */
4357 rtx_insn *
4358 emit_call_insn_before_noloc (rtx x, rtx before)
4360 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4361 make_call_insn_raw);
4364 /* Make an instruction with body X and code DEBUG_INSN
4365 and output it before the instruction BEFORE. */
4367 rtx_insn *
4368 emit_debug_insn_before_noloc (rtx x, rtx before)
4370 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4371 make_debug_insn_raw);
4374 /* Make an insn of code BARRIER
4375 and output it before the insn BEFORE. */
4377 rtx_barrier *
4378 emit_barrier_before (rtx before)
4380 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4382 INSN_UID (insn) = cur_insn_uid++;
4384 add_insn_before (insn, before, NULL);
4385 return insn;
4388 /* Emit the label LABEL before the insn BEFORE. */
4390 rtx_insn *
4391 emit_label_before (rtx label, rtx before)
4393 gcc_checking_assert (INSN_UID (label) == 0);
4394 INSN_UID (label) = cur_insn_uid++;
4395 add_insn_before (label, before, NULL);
4396 return as_a <rtx_insn *> (label);
4399 /* Helper for emit_insn_after, handles lists of instructions
4400 efficiently. */
4402 static rtx
4403 emit_insn_after_1 (rtx_insn *first, rtx after, basic_block bb)
4405 rtx_insn *last;
4406 rtx_insn *after_after;
4407 if (!bb && !BARRIER_P (after))
4408 bb = BLOCK_FOR_INSN (after);
4410 if (bb)
4412 df_set_bb_dirty (bb);
4413 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4414 if (!BARRIER_P (last))
4416 set_block_for_insn (last, bb);
4417 df_insn_rescan (last);
4419 if (!BARRIER_P (last))
4421 set_block_for_insn (last, bb);
4422 df_insn_rescan (last);
4424 if (BB_END (bb) == after)
4425 BB_END (bb) = last;
4427 else
4428 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4429 continue;
4431 after_after = NEXT_INSN (after);
4433 SET_NEXT_INSN (after) = first;
4434 SET_PREV_INSN (first) = after;
4435 SET_NEXT_INSN (last) = after_after;
4436 if (after_after)
4437 SET_PREV_INSN (after_after) = last;
4439 if (after == get_last_insn ())
4440 set_last_insn (last);
4442 return last;
4445 static rtx_insn *
4446 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4447 rtx_insn *(*make_raw)(rtx))
4449 rtx last = after;
4451 gcc_assert (after);
4453 if (x == NULL_RTX)
4454 return safe_as_a <rtx_insn *> (last);
4456 switch (GET_CODE (x))
4458 case DEBUG_INSN:
4459 case INSN:
4460 case JUMP_INSN:
4461 case CALL_INSN:
4462 case CODE_LABEL:
4463 case BARRIER:
4464 case NOTE:
4465 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4466 break;
4468 #ifdef ENABLE_RTL_CHECKING
4469 case SEQUENCE:
4470 gcc_unreachable ();
4471 break;
4472 #endif
4474 default:
4475 last = (*make_raw) (x);
4476 add_insn_after (last, after, bb);
4477 break;
4480 return safe_as_a <rtx_insn *> (last);
4483 /* Make X be output after the insn AFTER and set the BB of insn. If
4484 BB is NULL, an attempt is made to infer the BB from AFTER. */
4486 rtx_insn *
4487 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4489 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4493 /* Make an insn of code JUMP_INSN with body X
4494 and output it after the insn AFTER. */
4496 rtx_insn *
4497 emit_jump_insn_after_noloc (rtx x, rtx after)
4499 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4502 /* Make an instruction with body X and code CALL_INSN
4503 and output it after the instruction AFTER. */
4505 rtx_insn *
4506 emit_call_insn_after_noloc (rtx x, rtx after)
4508 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4511 /* Make an instruction with body X and code CALL_INSN
4512 and output it after the instruction AFTER. */
4514 rtx_insn *
4515 emit_debug_insn_after_noloc (rtx x, rtx after)
4517 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4520 /* Make an insn of code BARRIER
4521 and output it after the insn AFTER. */
4523 rtx_barrier *
4524 emit_barrier_after (rtx after)
4526 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4528 INSN_UID (insn) = cur_insn_uid++;
4530 add_insn_after (insn, after, NULL);
4531 return insn;
4534 /* Emit the label LABEL after the insn AFTER. */
4536 rtx_insn *
4537 emit_label_after (rtx label, rtx after)
4539 gcc_checking_assert (INSN_UID (label) == 0);
4540 INSN_UID (label) = cur_insn_uid++;
4541 add_insn_after (label, after, NULL);
4542 return as_a <rtx_insn *> (label);
4545 /* Notes require a bit of special handling: Some notes need to have their
4546 BLOCK_FOR_INSN set, others should never have it set, and some should
4547 have it set or clear depending on the context. */
4549 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4550 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4551 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4553 static bool
4554 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4556 switch (subtype)
4558 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4559 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4560 return true;
4562 /* Notes for var tracking and EH region markers can appear between or
4563 inside basic blocks. If the caller is emitting on the basic block
4564 boundary, do not set BLOCK_FOR_INSN on the new note. */
4565 case NOTE_INSN_VAR_LOCATION:
4566 case NOTE_INSN_CALL_ARG_LOCATION:
4567 case NOTE_INSN_EH_REGION_BEG:
4568 case NOTE_INSN_EH_REGION_END:
4569 return on_bb_boundary_p;
4571 /* Otherwise, BLOCK_FOR_INSN must be set. */
4572 default:
4573 return false;
4577 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4579 rtx_note *
4580 emit_note_after (enum insn_note subtype, rtx uncast_after)
4582 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4583 rtx_note *note = make_note_raw (subtype);
4584 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4585 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4587 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4588 add_insn_after_nobb (note, after);
4589 else
4590 add_insn_after (note, after, bb);
4591 return note;
4594 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4596 rtx_note *
4597 emit_note_before (enum insn_note subtype, rtx uncast_before)
4599 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4600 rtx_note *note = make_note_raw (subtype);
4601 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4602 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4604 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4605 add_insn_before_nobb (note, before);
4606 else
4607 add_insn_before (note, before, bb);
4608 return note;
4611 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4612 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4614 static rtx_insn *
4615 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4616 rtx_insn *(*make_raw) (rtx))
4618 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4620 if (pattern == NULL_RTX || !loc)
4621 return safe_as_a <rtx_insn *> (last);
4623 after = NEXT_INSN (after);
4624 while (1)
4626 if (active_insn_p (after) && !INSN_LOCATION (after))
4627 INSN_LOCATION (after) = loc;
4628 if (after == last)
4629 break;
4630 after = NEXT_INSN (after);
4632 return safe_as_a <rtx_insn *> (last);
4635 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4636 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4637 any DEBUG_INSNs. */
4639 static rtx_insn *
4640 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4641 rtx_insn *(*make_raw) (rtx))
4643 rtx prev = after;
4645 if (skip_debug_insns)
4646 while (DEBUG_INSN_P (prev))
4647 prev = PREV_INSN (prev);
4649 if (INSN_P (prev))
4650 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4651 make_raw);
4652 else
4653 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4656 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4657 rtx_insn *
4658 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4660 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4663 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4664 rtx_insn *
4665 emit_insn_after (rtx pattern, rtx after)
4667 return emit_pattern_after (pattern, after, true, make_insn_raw);
4670 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4671 rtx_insn *
4672 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4674 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4677 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4678 rtx_insn *
4679 emit_jump_insn_after (rtx pattern, rtx after)
4681 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4684 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4685 rtx_insn *
4686 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4688 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4691 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4692 rtx_insn *
4693 emit_call_insn_after (rtx pattern, rtx after)
4695 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4698 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4699 rtx_insn *
4700 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4702 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4705 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4706 rtx_insn *
4707 emit_debug_insn_after (rtx pattern, rtx after)
4709 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4712 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4713 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4714 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4715 CALL_INSN, etc. */
4717 static rtx_insn *
4718 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4719 rtx_insn *(*make_raw) (rtx))
4721 rtx first = PREV_INSN (before);
4722 rtx last = emit_pattern_before_noloc (pattern, before,
4723 insnp ? before : NULL_RTX,
4724 NULL, make_raw);
4726 if (pattern == NULL_RTX || !loc)
4727 return safe_as_a <rtx_insn *> (last);
4729 if (!first)
4730 first = get_insns ();
4731 else
4732 first = NEXT_INSN (first);
4733 while (1)
4735 if (active_insn_p (first) && !INSN_LOCATION (first))
4736 INSN_LOCATION (first) = loc;
4737 if (first == last)
4738 break;
4739 first = NEXT_INSN (first);
4741 return safe_as_a <rtx_insn *> (last);
4744 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4745 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4746 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4747 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4749 static rtx_insn *
4750 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4751 bool insnp, rtx_insn *(*make_raw) (rtx))
4753 rtx next = before;
4755 if (skip_debug_insns)
4756 while (DEBUG_INSN_P (next))
4757 next = PREV_INSN (next);
4759 if (INSN_P (next))
4760 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4761 insnp, make_raw);
4762 else
4763 return emit_pattern_before_noloc (pattern, before,
4764 insnp ? before : NULL_RTX,
4765 NULL, make_raw);
4768 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4769 rtx_insn *
4770 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4772 return emit_pattern_before_setloc (pattern, before, loc, true,
4773 make_insn_raw);
4776 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4777 rtx_insn *
4778 emit_insn_before (rtx pattern, rtx before)
4780 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4783 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4784 rtx_insn *
4785 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4787 return emit_pattern_before_setloc (pattern, before, loc, false,
4788 make_jump_insn_raw);
4791 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4792 rtx_insn *
4793 emit_jump_insn_before (rtx pattern, rtx before)
4795 return emit_pattern_before (pattern, before, true, false,
4796 make_jump_insn_raw);
4799 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4800 rtx_insn *
4801 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4803 return emit_pattern_before_setloc (pattern, before, loc, false,
4804 make_call_insn_raw);
4807 /* Like emit_call_insn_before_noloc,
4808 but set insn_location according to BEFORE. */
4809 rtx_insn *
4810 emit_call_insn_before (rtx pattern, rtx before)
4812 return emit_pattern_before (pattern, before, true, false,
4813 make_call_insn_raw);
4816 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4817 rtx_insn *
4818 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4820 return emit_pattern_before_setloc (pattern, before, loc, false,
4821 make_debug_insn_raw);
4824 /* Like emit_debug_insn_before_noloc,
4825 but set insn_location according to BEFORE. */
4826 rtx_insn *
4827 emit_debug_insn_before (rtx pattern, rtx before)
4829 return emit_pattern_before (pattern, before, false, false,
4830 make_debug_insn_raw);
4833 /* Take X and emit it at the end of the doubly-linked
4834 INSN list.
4836 Returns the last insn emitted. */
4838 rtx_insn *
4839 emit_insn (rtx x)
4841 rtx_insn *last = get_last_insn ();
4842 rtx_insn *insn;
4844 if (x == NULL_RTX)
4845 return last;
4847 switch (GET_CODE (x))
4849 case DEBUG_INSN:
4850 case INSN:
4851 case JUMP_INSN:
4852 case CALL_INSN:
4853 case CODE_LABEL:
4854 case BARRIER:
4855 case NOTE:
4856 insn = as_a <rtx_insn *> (x);
4857 while (insn)
4859 rtx_insn *next = NEXT_INSN (insn);
4860 add_insn (insn);
4861 last = insn;
4862 insn = next;
4864 break;
4866 #ifdef ENABLE_RTL_CHECKING
4867 case JUMP_TABLE_DATA:
4868 case SEQUENCE:
4869 gcc_unreachable ();
4870 break;
4871 #endif
4873 default:
4874 last = make_insn_raw (x);
4875 add_insn (last);
4876 break;
4879 return last;
4882 /* Make an insn of code DEBUG_INSN with pattern X
4883 and add it to the end of the doubly-linked list. */
4885 rtx_insn *
4886 emit_debug_insn (rtx x)
4888 rtx_insn *last = get_last_insn ();
4889 rtx_insn *insn;
4891 if (x == NULL_RTX)
4892 return last;
4894 switch (GET_CODE (x))
4896 case DEBUG_INSN:
4897 case INSN:
4898 case JUMP_INSN:
4899 case CALL_INSN:
4900 case CODE_LABEL:
4901 case BARRIER:
4902 case NOTE:
4903 insn = as_a <rtx_insn *> (x);
4904 while (insn)
4906 rtx_insn *next = NEXT_INSN (insn);
4907 add_insn (insn);
4908 last = insn;
4909 insn = next;
4911 break;
4913 #ifdef ENABLE_RTL_CHECKING
4914 case JUMP_TABLE_DATA:
4915 case SEQUENCE:
4916 gcc_unreachable ();
4917 break;
4918 #endif
4920 default:
4921 last = make_debug_insn_raw (x);
4922 add_insn (last);
4923 break;
4926 return last;
4929 /* Make an insn of code JUMP_INSN with pattern X
4930 and add it to the end of the doubly-linked list. */
4932 rtx_insn *
4933 emit_jump_insn (rtx x)
4935 rtx_insn *last = NULL;
4936 rtx_insn *insn;
4938 switch (GET_CODE (x))
4940 case DEBUG_INSN:
4941 case INSN:
4942 case JUMP_INSN:
4943 case CALL_INSN:
4944 case CODE_LABEL:
4945 case BARRIER:
4946 case NOTE:
4947 insn = as_a <rtx_insn *> (x);
4948 while (insn)
4950 rtx_insn *next = NEXT_INSN (insn);
4951 add_insn (insn);
4952 last = insn;
4953 insn = next;
4955 break;
4957 #ifdef ENABLE_RTL_CHECKING
4958 case JUMP_TABLE_DATA:
4959 case SEQUENCE:
4960 gcc_unreachable ();
4961 break;
4962 #endif
4964 default:
4965 last = make_jump_insn_raw (x);
4966 add_insn (last);
4967 break;
4970 return last;
4973 /* Make an insn of code CALL_INSN with pattern X
4974 and add it to the end of the doubly-linked list. */
4976 rtx_insn *
4977 emit_call_insn (rtx x)
4979 rtx_insn *insn;
4981 switch (GET_CODE (x))
4983 case DEBUG_INSN:
4984 case INSN:
4985 case JUMP_INSN:
4986 case CALL_INSN:
4987 case CODE_LABEL:
4988 case BARRIER:
4989 case NOTE:
4990 insn = emit_insn (x);
4991 break;
4993 #ifdef ENABLE_RTL_CHECKING
4994 case SEQUENCE:
4995 case JUMP_TABLE_DATA:
4996 gcc_unreachable ();
4997 break;
4998 #endif
5000 default:
5001 insn = make_call_insn_raw (x);
5002 add_insn (insn);
5003 break;
5006 return insn;
5009 /* Add the label LABEL to the end of the doubly-linked list. */
5011 rtx_insn *
5012 emit_label (rtx label)
5014 gcc_checking_assert (INSN_UID (label) == 0);
5015 INSN_UID (label) = cur_insn_uid++;
5016 add_insn (as_a <rtx_insn *> (label));
5017 return as_a <rtx_insn *> (label);
5020 /* Make an insn of code JUMP_TABLE_DATA
5021 and add it to the end of the doubly-linked list. */
5023 rtx_jump_table_data *
5024 emit_jump_table_data (rtx table)
5026 rtx_jump_table_data *jump_table_data =
5027 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5028 INSN_UID (jump_table_data) = cur_insn_uid++;
5029 PATTERN (jump_table_data) = table;
5030 BLOCK_FOR_INSN (jump_table_data) = NULL;
5031 add_insn (jump_table_data);
5032 return jump_table_data;
5035 /* Make an insn of code BARRIER
5036 and add it to the end of the doubly-linked list. */
5038 rtx_barrier *
5039 emit_barrier (void)
5041 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5042 INSN_UID (barrier) = cur_insn_uid++;
5043 add_insn (barrier);
5044 return barrier;
5047 /* Emit a copy of note ORIG. */
5049 rtx_note *
5050 emit_note_copy (rtx_note *orig)
5052 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5053 rtx_note *note = make_note_raw (kind);
5054 NOTE_DATA (note) = NOTE_DATA (orig);
5055 add_insn (note);
5056 return note;
5059 /* Make an insn of code NOTE or type NOTE_NO
5060 and add it to the end of the doubly-linked list. */
5062 rtx_note *
5063 emit_note (enum insn_note kind)
5065 rtx_note *note = make_note_raw (kind);
5066 add_insn (note);
5067 return note;
5070 /* Emit a clobber of lvalue X. */
5072 rtx_insn *
5073 emit_clobber (rtx x)
5075 /* CONCATs should not appear in the insn stream. */
5076 if (GET_CODE (x) == CONCAT)
5078 emit_clobber (XEXP (x, 0));
5079 return emit_clobber (XEXP (x, 1));
5081 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5084 /* Return a sequence of insns to clobber lvalue X. */
5086 rtx_insn *
5087 gen_clobber (rtx x)
5089 rtx_insn *seq;
5091 start_sequence ();
5092 emit_clobber (x);
5093 seq = get_insns ();
5094 end_sequence ();
5095 return seq;
5098 /* Emit a use of rvalue X. */
5100 rtx_insn *
5101 emit_use (rtx x)
5103 /* CONCATs should not appear in the insn stream. */
5104 if (GET_CODE (x) == CONCAT)
5106 emit_use (XEXP (x, 0));
5107 return emit_use (XEXP (x, 1));
5109 return emit_insn (gen_rtx_USE (VOIDmode, x));
5112 /* Return a sequence of insns to use rvalue X. */
5114 rtx_insn *
5115 gen_use (rtx x)
5117 rtx_insn *seq;
5119 start_sequence ();
5120 emit_use (x);
5121 seq = get_insns ();
5122 end_sequence ();
5123 return seq;
5126 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5127 Return the set in INSN that such notes describe, or NULL if the notes
5128 have no meaning for INSN. */
5131 set_for_reg_notes (rtx insn)
5133 rtx pat, reg;
5135 if (!INSN_P (insn))
5136 return NULL_RTX;
5138 pat = PATTERN (insn);
5139 if (GET_CODE (pat) == PARALLEL)
5141 /* We do not use single_set because that ignores SETs of unused
5142 registers. REG_EQUAL and REG_EQUIV notes really do require the
5143 PARALLEL to have a single SET. */
5144 if (multiple_sets (insn))
5145 return NULL_RTX;
5146 pat = XVECEXP (pat, 0, 0);
5149 if (GET_CODE (pat) != SET)
5150 return NULL_RTX;
5152 reg = SET_DEST (pat);
5154 /* Notes apply to the contents of a STRICT_LOW_PART. */
5155 if (GET_CODE (reg) == STRICT_LOW_PART)
5156 reg = XEXP (reg, 0);
5158 /* Check that we have a register. */
5159 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5160 return NULL_RTX;
5162 return pat;
5165 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5166 note of this type already exists, remove it first. */
5169 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5171 rtx note = find_reg_note (insn, kind, NULL_RTX);
5173 switch (kind)
5175 case REG_EQUAL:
5176 case REG_EQUIV:
5177 if (!set_for_reg_notes (insn))
5178 return NULL_RTX;
5180 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5181 It serves no useful purpose and breaks eliminate_regs. */
5182 if (GET_CODE (datum) == ASM_OPERANDS)
5183 return NULL_RTX;
5185 /* Notes with side effects are dangerous. Even if the side-effect
5186 initially mirrors one in PATTERN (INSN), later optimizations
5187 might alter the way that the final register value is calculated
5188 and so move or alter the side-effect in some way. The note would
5189 then no longer be a valid substitution for SET_SRC. */
5190 if (side_effects_p (datum))
5191 return NULL_RTX;
5192 break;
5194 default:
5195 break;
5198 if (note)
5199 XEXP (note, 0) = datum;
5200 else
5202 add_reg_note (insn, kind, datum);
5203 note = REG_NOTES (insn);
5206 switch (kind)
5208 case REG_EQUAL:
5209 case REG_EQUIV:
5210 df_notes_rescan (as_a <rtx_insn *> (insn));
5211 break;
5212 default:
5213 break;
5216 return note;
5219 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5221 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5223 rtx set = set_for_reg_notes (insn);
5225 if (set && SET_DEST (set) == dst)
5226 return set_unique_reg_note (insn, kind, datum);
5227 return NULL_RTX;
5230 /* Return an indication of which type of insn should have X as a body.
5231 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5233 static enum rtx_code
5234 classify_insn (rtx x)
5236 if (LABEL_P (x))
5237 return CODE_LABEL;
5238 if (GET_CODE (x) == CALL)
5239 return CALL_INSN;
5240 if (ANY_RETURN_P (x))
5241 return JUMP_INSN;
5242 if (GET_CODE (x) == SET)
5244 if (SET_DEST (x) == pc_rtx)
5245 return JUMP_INSN;
5246 else if (GET_CODE (SET_SRC (x)) == CALL)
5247 return CALL_INSN;
5248 else
5249 return INSN;
5251 if (GET_CODE (x) == PARALLEL)
5253 int j;
5254 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5255 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5256 return CALL_INSN;
5257 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5258 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5259 return JUMP_INSN;
5260 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5261 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5262 return CALL_INSN;
5264 return INSN;
5267 /* Emit the rtl pattern X as an appropriate kind of insn.
5268 If X is a label, it is simply added into the insn chain. */
5270 rtx_insn *
5271 emit (rtx x)
5273 enum rtx_code code = classify_insn (x);
5275 switch (code)
5277 case CODE_LABEL:
5278 return emit_label (x);
5279 case INSN:
5280 return emit_insn (x);
5281 case JUMP_INSN:
5283 rtx_insn *insn = emit_jump_insn (x);
5284 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5285 return emit_barrier ();
5286 return insn;
5288 case CALL_INSN:
5289 return emit_call_insn (x);
5290 case DEBUG_INSN:
5291 return emit_debug_insn (x);
5292 default:
5293 gcc_unreachable ();
5297 /* Space for free sequence stack entries. */
5298 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5300 /* Begin emitting insns to a sequence. If this sequence will contain
5301 something that might cause the compiler to pop arguments to function
5302 calls (because those pops have previously been deferred; see
5303 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5304 before calling this function. That will ensure that the deferred
5305 pops are not accidentally emitted in the middle of this sequence. */
5307 void
5308 start_sequence (void)
5310 struct sequence_stack *tem;
5312 if (free_sequence_stack != NULL)
5314 tem = free_sequence_stack;
5315 free_sequence_stack = tem->next;
5317 else
5318 tem = ggc_alloc<sequence_stack> ();
5320 tem->next = seq_stack;
5321 tem->first = get_insns ();
5322 tem->last = get_last_insn ();
5324 seq_stack = tem;
5326 set_first_insn (0);
5327 set_last_insn (0);
5330 /* Set up the insn chain starting with FIRST as the current sequence,
5331 saving the previously current one. See the documentation for
5332 start_sequence for more information about how to use this function. */
5334 void
5335 push_to_sequence (rtx_insn *first)
5337 rtx_insn *last;
5339 start_sequence ();
5341 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5344 set_first_insn (first);
5345 set_last_insn (last);
5348 /* Like push_to_sequence, but take the last insn as an argument to avoid
5349 looping through the list. */
5351 void
5352 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5354 start_sequence ();
5356 set_first_insn (first);
5357 set_last_insn (last);
5360 /* Set up the outer-level insn chain
5361 as the current sequence, saving the previously current one. */
5363 void
5364 push_topmost_sequence (void)
5366 struct sequence_stack *stack, *top = NULL;
5368 start_sequence ();
5370 for (stack = seq_stack; stack; stack = stack->next)
5371 top = stack;
5373 set_first_insn (top->first);
5374 set_last_insn (top->last);
5377 /* After emitting to the outer-level insn chain, update the outer-level
5378 insn chain, and restore the previous saved state. */
5380 void
5381 pop_topmost_sequence (void)
5383 struct sequence_stack *stack, *top = NULL;
5385 for (stack = seq_stack; stack; stack = stack->next)
5386 top = stack;
5388 top->first = get_insns ();
5389 top->last = get_last_insn ();
5391 end_sequence ();
5394 /* After emitting to a sequence, restore previous saved state.
5396 To get the contents of the sequence just made, you must call
5397 `get_insns' *before* calling here.
5399 If the compiler might have deferred popping arguments while
5400 generating this sequence, and this sequence will not be immediately
5401 inserted into the instruction stream, use do_pending_stack_adjust
5402 before calling get_insns. That will ensure that the deferred
5403 pops are inserted into this sequence, and not into some random
5404 location in the instruction stream. See INHIBIT_DEFER_POP for more
5405 information about deferred popping of arguments. */
5407 void
5408 end_sequence (void)
5410 struct sequence_stack *tem = seq_stack;
5412 set_first_insn (tem->first);
5413 set_last_insn (tem->last);
5414 seq_stack = tem->next;
5416 memset (tem, 0, sizeof (*tem));
5417 tem->next = free_sequence_stack;
5418 free_sequence_stack = tem;
5421 /* Return 1 if currently emitting into a sequence. */
5424 in_sequence_p (void)
5426 return seq_stack != 0;
5429 /* Put the various virtual registers into REGNO_REG_RTX. */
5431 static void
5432 init_virtual_regs (void)
5434 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5435 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5436 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5437 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5438 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5439 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5440 = virtual_preferred_stack_boundary_rtx;
5444 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5445 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5446 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5447 static int copy_insn_n_scratches;
5449 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5450 copied an ASM_OPERANDS.
5451 In that case, it is the original input-operand vector. */
5452 static rtvec orig_asm_operands_vector;
5454 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5455 copied an ASM_OPERANDS.
5456 In that case, it is the copied input-operand vector. */
5457 static rtvec copy_asm_operands_vector;
5459 /* Likewise for the constraints vector. */
5460 static rtvec orig_asm_constraints_vector;
5461 static rtvec copy_asm_constraints_vector;
5463 /* Recursively create a new copy of an rtx for copy_insn.
5464 This function differs from copy_rtx in that it handles SCRATCHes and
5465 ASM_OPERANDs properly.
5466 Normally, this function is not used directly; use copy_insn as front end.
5467 However, you could first copy an insn pattern with copy_insn and then use
5468 this function afterwards to properly copy any REG_NOTEs containing
5469 SCRATCHes. */
5472 copy_insn_1 (rtx orig)
5474 rtx copy;
5475 int i, j;
5476 RTX_CODE code;
5477 const char *format_ptr;
5479 if (orig == NULL)
5480 return NULL;
5482 code = GET_CODE (orig);
5484 switch (code)
5486 case REG:
5487 case DEBUG_EXPR:
5488 CASE_CONST_ANY:
5489 case SYMBOL_REF:
5490 case CODE_LABEL:
5491 case PC:
5492 case CC0:
5493 case RETURN:
5494 case SIMPLE_RETURN:
5495 return orig;
5496 case CLOBBER:
5497 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5498 clobbers or clobbers of hard registers that originated as pseudos.
5499 This is needed to allow safe register renaming. */
5500 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5501 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5502 return orig;
5503 break;
5505 case SCRATCH:
5506 for (i = 0; i < copy_insn_n_scratches; i++)
5507 if (copy_insn_scratch_in[i] == orig)
5508 return copy_insn_scratch_out[i];
5509 break;
5511 case CONST:
5512 if (shared_const_p (orig))
5513 return orig;
5514 break;
5516 /* A MEM with a constant address is not sharable. The problem is that
5517 the constant address may need to be reloaded. If the mem is shared,
5518 then reloading one copy of this mem will cause all copies to appear
5519 to have been reloaded. */
5521 default:
5522 break;
5525 /* Copy the various flags, fields, and other information. We assume
5526 that all fields need copying, and then clear the fields that should
5527 not be copied. That is the sensible default behavior, and forces
5528 us to explicitly document why we are *not* copying a flag. */
5529 copy = shallow_copy_rtx (orig);
5531 /* We do not copy the USED flag, which is used as a mark bit during
5532 walks over the RTL. */
5533 RTX_FLAG (copy, used) = 0;
5535 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5536 if (INSN_P (orig))
5538 RTX_FLAG (copy, jump) = 0;
5539 RTX_FLAG (copy, call) = 0;
5540 RTX_FLAG (copy, frame_related) = 0;
5543 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5545 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5546 switch (*format_ptr++)
5548 case 'e':
5549 if (XEXP (orig, i) != NULL)
5550 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5551 break;
5553 case 'E':
5554 case 'V':
5555 if (XVEC (orig, i) == orig_asm_constraints_vector)
5556 XVEC (copy, i) = copy_asm_constraints_vector;
5557 else if (XVEC (orig, i) == orig_asm_operands_vector)
5558 XVEC (copy, i) = copy_asm_operands_vector;
5559 else if (XVEC (orig, i) != NULL)
5561 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5562 for (j = 0; j < XVECLEN (copy, i); j++)
5563 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5565 break;
5567 case 't':
5568 case 'w':
5569 case 'i':
5570 case 's':
5571 case 'S':
5572 case 'u':
5573 case '0':
5574 /* These are left unchanged. */
5575 break;
5577 default:
5578 gcc_unreachable ();
5581 if (code == SCRATCH)
5583 i = copy_insn_n_scratches++;
5584 gcc_assert (i < MAX_RECOG_OPERANDS);
5585 copy_insn_scratch_in[i] = orig;
5586 copy_insn_scratch_out[i] = copy;
5588 else if (code == ASM_OPERANDS)
5590 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5591 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5592 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5593 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5596 return copy;
5599 /* Create a new copy of an rtx.
5600 This function differs from copy_rtx in that it handles SCRATCHes and
5601 ASM_OPERANDs properly.
5602 INSN doesn't really have to be a full INSN; it could be just the
5603 pattern. */
5605 copy_insn (rtx insn)
5607 copy_insn_n_scratches = 0;
5608 orig_asm_operands_vector = 0;
5609 orig_asm_constraints_vector = 0;
5610 copy_asm_operands_vector = 0;
5611 copy_asm_constraints_vector = 0;
5612 return copy_insn_1 (insn);
5615 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5616 on that assumption that INSN itself remains in its original place. */
5619 copy_delay_slot_insn (rtx insn)
5621 /* Copy INSN with its rtx_code, all its notes, location etc. */
5622 insn = copy_rtx (insn);
5623 INSN_UID (insn) = cur_insn_uid++;
5624 return insn;
5627 /* Initialize data structures and variables in this file
5628 before generating rtl for each function. */
5630 void
5631 init_emit (void)
5633 set_first_insn (NULL);
5634 set_last_insn (NULL);
5635 if (MIN_NONDEBUG_INSN_UID)
5636 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5637 else
5638 cur_insn_uid = 1;
5639 cur_debug_insn_uid = 1;
5640 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5641 first_label_num = label_num;
5642 seq_stack = NULL;
5644 /* Init the tables that describe all the pseudo regs. */
5646 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5648 crtl->emit.regno_pointer_align
5649 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5651 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5653 /* Put copies of all the hard registers into regno_reg_rtx. */
5654 memcpy (regno_reg_rtx,
5655 initial_regno_reg_rtx,
5656 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5658 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5659 init_virtual_regs ();
5661 /* Indicate that the virtual registers and stack locations are
5662 all pointers. */
5663 REG_POINTER (stack_pointer_rtx) = 1;
5664 REG_POINTER (frame_pointer_rtx) = 1;
5665 REG_POINTER (hard_frame_pointer_rtx) = 1;
5666 REG_POINTER (arg_pointer_rtx) = 1;
5668 REG_POINTER (virtual_incoming_args_rtx) = 1;
5669 REG_POINTER (virtual_stack_vars_rtx) = 1;
5670 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5671 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5672 REG_POINTER (virtual_cfa_rtx) = 1;
5674 #ifdef STACK_BOUNDARY
5675 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5676 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5677 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5678 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5680 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5681 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5682 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5683 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5684 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5685 #endif
5687 #ifdef INIT_EXPANDERS
5688 INIT_EXPANDERS;
5689 #endif
5692 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5694 static rtx
5695 gen_const_vector (enum machine_mode mode, int constant)
5697 rtx tem;
5698 rtvec v;
5699 int units, i;
5700 enum machine_mode inner;
5702 units = GET_MODE_NUNITS (mode);
5703 inner = GET_MODE_INNER (mode);
5705 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5707 v = rtvec_alloc (units);
5709 /* We need to call this function after we set the scalar const_tiny_rtx
5710 entries. */
5711 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5713 for (i = 0; i < units; ++i)
5714 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5716 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5717 return tem;
5720 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5721 all elements are zero, and the one vector when all elements are one. */
5723 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5725 enum machine_mode inner = GET_MODE_INNER (mode);
5726 int nunits = GET_MODE_NUNITS (mode);
5727 rtx x;
5728 int i;
5730 /* Check to see if all of the elements have the same value. */
5731 x = RTVEC_ELT (v, nunits - 1);
5732 for (i = nunits - 2; i >= 0; i--)
5733 if (RTVEC_ELT (v, i) != x)
5734 break;
5736 /* If the values are all the same, check to see if we can use one of the
5737 standard constant vectors. */
5738 if (i == -1)
5740 if (x == CONST0_RTX (inner))
5741 return CONST0_RTX (mode);
5742 else if (x == CONST1_RTX (inner))
5743 return CONST1_RTX (mode);
5744 else if (x == CONSTM1_RTX (inner))
5745 return CONSTM1_RTX (mode);
5748 return gen_rtx_raw_CONST_VECTOR (mode, v);
5751 /* Initialise global register information required by all functions. */
5753 void
5754 init_emit_regs (void)
5756 int i;
5757 enum machine_mode mode;
5758 mem_attrs *attrs;
5760 /* Reset register attributes */
5761 htab_empty (reg_attrs_htab);
5763 /* We need reg_raw_mode, so initialize the modes now. */
5764 init_reg_modes_target ();
5766 /* Assign register numbers to the globally defined register rtx. */
5767 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5768 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5769 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5770 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5771 virtual_incoming_args_rtx =
5772 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5773 virtual_stack_vars_rtx =
5774 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5775 virtual_stack_dynamic_rtx =
5776 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5777 virtual_outgoing_args_rtx =
5778 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5779 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5780 virtual_preferred_stack_boundary_rtx =
5781 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5783 /* Initialize RTL for commonly used hard registers. These are
5784 copied into regno_reg_rtx as we begin to compile each function. */
5785 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5786 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5788 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5789 return_address_pointer_rtx
5790 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5791 #endif
5793 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5794 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5795 else
5796 pic_offset_table_rtx = NULL_RTX;
5798 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5800 mode = (enum machine_mode) i;
5801 attrs = ggc_cleared_alloc<mem_attrs> ();
5802 attrs->align = BITS_PER_UNIT;
5803 attrs->addrspace = ADDR_SPACE_GENERIC;
5804 if (mode != BLKmode)
5806 attrs->size_known_p = true;
5807 attrs->size = GET_MODE_SIZE (mode);
5808 if (STRICT_ALIGNMENT)
5809 attrs->align = GET_MODE_ALIGNMENT (mode);
5811 mode_mem_attrs[i] = attrs;
5815 /* Initialize global machine_mode variables. */
5817 void
5818 init_derived_machine_modes (void)
5820 byte_mode = VOIDmode;
5821 word_mode = VOIDmode;
5823 for (enum machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5824 mode != VOIDmode;
5825 mode = GET_MODE_WIDER_MODE (mode))
5827 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5828 && byte_mode == VOIDmode)
5829 byte_mode = mode;
5831 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5832 && word_mode == VOIDmode)
5833 word_mode = mode;
5836 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5839 /* Create some permanent unique rtl objects shared between all functions. */
5841 void
5842 init_emit_once (void)
5844 int i;
5845 enum machine_mode mode;
5846 enum machine_mode double_mode;
5848 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5849 CONST_FIXED, and memory attribute hash tables. */
5850 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5851 const_int_htab_eq, NULL);
5853 #if TARGET_SUPPORTS_WIDE_INT
5854 const_wide_int_htab = htab_create_ggc (37, const_wide_int_htab_hash,
5855 const_wide_int_htab_eq, NULL);
5856 #endif
5857 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5858 const_double_htab_eq, NULL);
5860 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5861 const_fixed_htab_eq, NULL);
5863 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5864 reg_attrs_htab_eq, NULL);
5866 #ifdef INIT_EXPANDERS
5867 /* This is to initialize {init|mark|free}_machine_status before the first
5868 call to push_function_context_to. This is needed by the Chill front
5869 end which calls push_function_context_to before the first call to
5870 init_function_start. */
5871 INIT_EXPANDERS;
5872 #endif
5874 /* Create the unique rtx's for certain rtx codes and operand values. */
5876 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5877 tries to use these variables. */
5878 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5879 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5880 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5882 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5883 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5884 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5885 else
5886 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5888 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5890 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5891 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5892 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5894 dconstm1 = dconst1;
5895 dconstm1.sign = 1;
5897 dconsthalf = dconst1;
5898 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5900 for (i = 0; i < 3; i++)
5902 const REAL_VALUE_TYPE *const r =
5903 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5905 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5906 mode != VOIDmode;
5907 mode = GET_MODE_WIDER_MODE (mode))
5908 const_tiny_rtx[i][(int) mode] =
5909 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5911 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5912 mode != VOIDmode;
5913 mode = GET_MODE_WIDER_MODE (mode))
5914 const_tiny_rtx[i][(int) mode] =
5915 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5917 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5919 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5920 mode != VOIDmode;
5921 mode = GET_MODE_WIDER_MODE (mode))
5922 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5924 for (mode = MIN_MODE_PARTIAL_INT;
5925 mode <= MAX_MODE_PARTIAL_INT;
5926 mode = (enum machine_mode)((int)(mode) + 1))
5927 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5930 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5932 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5933 mode != VOIDmode;
5934 mode = GET_MODE_WIDER_MODE (mode))
5935 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5937 for (mode = MIN_MODE_PARTIAL_INT;
5938 mode <= MAX_MODE_PARTIAL_INT;
5939 mode = (enum machine_mode)((int)(mode) + 1))
5940 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5942 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5943 mode != VOIDmode;
5944 mode = GET_MODE_WIDER_MODE (mode))
5946 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5947 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5950 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5951 mode != VOIDmode;
5952 mode = GET_MODE_WIDER_MODE (mode))
5954 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5955 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5958 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5959 mode != VOIDmode;
5960 mode = GET_MODE_WIDER_MODE (mode))
5962 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5963 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5964 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5967 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5968 mode != VOIDmode;
5969 mode = GET_MODE_WIDER_MODE (mode))
5971 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5972 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5975 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5976 mode != VOIDmode;
5977 mode = GET_MODE_WIDER_MODE (mode))
5979 FCONST0 (mode).data.high = 0;
5980 FCONST0 (mode).data.low = 0;
5981 FCONST0 (mode).mode = mode;
5982 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5983 FCONST0 (mode), mode);
5986 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5987 mode != VOIDmode;
5988 mode = GET_MODE_WIDER_MODE (mode))
5990 FCONST0 (mode).data.high = 0;
5991 FCONST0 (mode).data.low = 0;
5992 FCONST0 (mode).mode = mode;
5993 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5994 FCONST0 (mode), mode);
5997 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5998 mode != VOIDmode;
5999 mode = GET_MODE_WIDER_MODE (mode))
6001 FCONST0 (mode).data.high = 0;
6002 FCONST0 (mode).data.low = 0;
6003 FCONST0 (mode).mode = mode;
6004 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6005 FCONST0 (mode), mode);
6007 /* We store the value 1. */
6008 FCONST1 (mode).data.high = 0;
6009 FCONST1 (mode).data.low = 0;
6010 FCONST1 (mode).mode = mode;
6011 FCONST1 (mode).data
6012 = double_int_one.lshift (GET_MODE_FBIT (mode),
6013 HOST_BITS_PER_DOUBLE_INT,
6014 SIGNED_FIXED_POINT_MODE_P (mode));
6015 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6016 FCONST1 (mode), mode);
6019 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6020 mode != VOIDmode;
6021 mode = GET_MODE_WIDER_MODE (mode))
6023 FCONST0 (mode).data.high = 0;
6024 FCONST0 (mode).data.low = 0;
6025 FCONST0 (mode).mode = mode;
6026 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6027 FCONST0 (mode), mode);
6029 /* We store the value 1. */
6030 FCONST1 (mode).data.high = 0;
6031 FCONST1 (mode).data.low = 0;
6032 FCONST1 (mode).mode = mode;
6033 FCONST1 (mode).data
6034 = double_int_one.lshift (GET_MODE_FBIT (mode),
6035 HOST_BITS_PER_DOUBLE_INT,
6036 SIGNED_FIXED_POINT_MODE_P (mode));
6037 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6038 FCONST1 (mode), mode);
6041 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6042 mode != VOIDmode;
6043 mode = GET_MODE_WIDER_MODE (mode))
6045 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6048 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6049 mode != VOIDmode;
6050 mode = GET_MODE_WIDER_MODE (mode))
6052 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6055 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6056 mode != VOIDmode;
6057 mode = GET_MODE_WIDER_MODE (mode))
6059 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6060 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6063 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6064 mode != VOIDmode;
6065 mode = GET_MODE_WIDER_MODE (mode))
6067 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6068 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6071 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6072 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
6073 const_tiny_rtx[0][i] = const0_rtx;
6075 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6076 if (STORE_FLAG_VALUE == 1)
6077 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6079 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6080 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6081 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6082 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6085 /* Produce exact duplicate of insn INSN after AFTER.
6086 Care updating of libcall regions if present. */
6088 rtx_insn *
6089 emit_copy_of_insn_after (rtx insn, rtx after)
6091 rtx_insn *new_rtx;
6092 rtx link;
6094 switch (GET_CODE (insn))
6096 case INSN:
6097 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6098 break;
6100 case JUMP_INSN:
6101 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6102 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6103 break;
6105 case DEBUG_INSN:
6106 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6107 break;
6109 case CALL_INSN:
6110 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6111 if (CALL_INSN_FUNCTION_USAGE (insn))
6112 CALL_INSN_FUNCTION_USAGE (new_rtx)
6113 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6114 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6115 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6116 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6117 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6118 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6119 break;
6121 default:
6122 gcc_unreachable ();
6125 /* Update LABEL_NUSES. */
6126 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6128 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6130 /* If the old insn is frame related, then so is the new one. This is
6131 primarily needed for IA-64 unwind info which marks epilogue insns,
6132 which may be duplicated by the basic block reordering code. */
6133 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6135 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6136 will make them. REG_LABEL_TARGETs are created there too, but are
6137 supposed to be sticky, so we copy them. */
6138 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6139 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6141 if (GET_CODE (link) == EXPR_LIST)
6142 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6143 copy_insn_1 (XEXP (link, 0)));
6144 else
6145 add_shallow_copy_of_reg_note (new_rtx, link);
6148 INSN_CODE (new_rtx) = INSN_CODE (insn);
6149 return new_rtx;
6152 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6154 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6156 if (hard_reg_clobbers[mode][regno])
6157 return hard_reg_clobbers[mode][regno];
6158 else
6159 return (hard_reg_clobbers[mode][regno] =
6160 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6163 location_t prologue_location;
6164 location_t epilogue_location;
6166 /* Hold current location information and last location information, so the
6167 datastructures are built lazily only when some instructions in given
6168 place are needed. */
6169 static location_t curr_location;
6171 /* Allocate insn location datastructure. */
6172 void
6173 insn_locations_init (void)
6175 prologue_location = epilogue_location = 0;
6176 curr_location = UNKNOWN_LOCATION;
6179 /* At the end of emit stage, clear current location. */
6180 void
6181 insn_locations_finalize (void)
6183 epilogue_location = curr_location;
6184 curr_location = UNKNOWN_LOCATION;
6187 /* Set current location. */
6188 void
6189 set_curr_insn_location (location_t location)
6191 curr_location = location;
6194 /* Get current location. */
6195 location_t
6196 curr_insn_location (void)
6198 return curr_location;
6201 /* Return lexical scope block insn belongs to. */
6202 tree
6203 insn_scope (const_rtx insn)
6205 return LOCATION_BLOCK (INSN_LOCATION (insn));
6208 /* Return line number of the statement that produced this insn. */
6210 insn_line (const_rtx insn)
6212 return LOCATION_LINE (INSN_LOCATION (insn));
6215 /* Return source file of the statement that produced this insn. */
6216 const char *
6217 insn_file (const_rtx insn)
6219 return LOCATION_FILE (INSN_LOCATION (insn));
6222 /* Return expanded location of the statement that produced this insn. */
6223 expanded_location
6224 insn_location (const_rtx insn)
6226 return expand_location (INSN_LOCATION (insn));
6229 /* Return true if memory model MODEL requires a pre-operation (release-style)
6230 barrier or a post-operation (acquire-style) barrier. While not universal,
6231 this function matches behavior of several targets. */
6233 bool
6234 need_atomic_barrier_p (enum memmodel model, bool pre)
6236 switch (model & MEMMODEL_MASK)
6238 case MEMMODEL_RELAXED:
6239 case MEMMODEL_CONSUME:
6240 return false;
6241 case MEMMODEL_RELEASE:
6242 return pre;
6243 case MEMMODEL_ACQUIRE:
6244 return !pre;
6245 case MEMMODEL_ACQ_REL:
6246 case MEMMODEL_SEQ_CST:
6247 return true;
6248 default:
6249 gcc_unreachable ();
6253 #include "gt-emit-rtl.h"