1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2017 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
38 o some heuristics to choose insn alternative to improve the
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
47 There is special code for preventing all LRA and this pass cycling
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
90 ... r <- s (new insn -- restore)
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
111 #include "coretypes.h"
118 #include "memmodel.h"
126 #include "addresses.h"
129 #include "rtl-error.h"
133 #include "print-rtl.h"
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
138 static int bb_reload_num
;
140 /* The current insn being processed and corresponding its single set
141 (NULL otherwise), its data (basic block, the insn data, the insn
142 static data, and the mode of each operand). */
143 static rtx_insn
*curr_insn
;
144 static rtx curr_insn_set
;
145 static basic_block curr_bb
;
146 static lra_insn_recog_data_t curr_id
;
147 static struct lra_static_insn_data
*curr_static_id
;
148 static machine_mode curr_operand_mode
[MAX_RECOG_OPERANDS
];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150 (e.g. constant) and whose subreg is given operand of the current
151 insn. VOIDmode in all other cases. */
152 static machine_mode original_subreg_reg_mode
[MAX_RECOG_OPERANDS
];
156 /* Start numbers for new registers and insns at the current constraints
158 static int new_regno_start
;
159 static int new_insn_uid_start
;
161 /* If LOC is nonnull, strip any outer subreg from it. */
163 strip_subreg (rtx
*loc
)
165 return loc
&& GET_CODE (*loc
) == SUBREG
? &SUBREG_REG (*loc
) : loc
;
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169 register, use a hard register from its allocno class. */
171 get_try_hard_regno (int regno
)
174 enum reg_class rclass
;
176 if ((hard_regno
= regno
) >= FIRST_PSEUDO_REGISTER
)
177 hard_regno
= lra_get_regno_hard_regno (regno
);
180 rclass
= lra_get_allocno_class (regno
);
181 if (rclass
== NO_REGS
)
183 return ira_class_hard_regs
[rclass
][0];
186 /* Return the hard regno of X after removing its subreg. If X is not
187 a register or a subreg of a register, return -1. If X is a pseudo,
188 use its assignment. If FINAL_P return the final hard regno which will
189 be after elimination. */
191 get_hard_regno (rtx x
, bool final_p
)
198 reg
= SUBREG_REG (x
);
201 if (! HARD_REGISTER_NUM_P (hard_regno
= REGNO (reg
)))
202 hard_regno
= lra_get_regno_hard_regno (hard_regno
);
206 hard_regno
= lra_get_elimination_hard_regno (hard_regno
);
208 hard_regno
+= subreg_regno_offset (hard_regno
, GET_MODE (reg
),
209 SUBREG_BYTE (x
), GET_MODE (x
));
213 /* If REGNO is a hard register or has been allocated a hard register,
214 return the class of that register. If REGNO is a reload pseudo
215 created by the current constraints pass, return its allocno class.
216 Return NO_REGS otherwise. */
217 static enum reg_class
218 get_reg_class (int regno
)
222 if (! HARD_REGISTER_NUM_P (hard_regno
= regno
))
223 hard_regno
= lra_get_regno_hard_regno (regno
);
226 hard_regno
= lra_get_elimination_hard_regno (hard_regno
);
227 return REGNO_REG_CLASS (hard_regno
);
229 if (regno
>= new_regno_start
)
230 return lra_get_allocno_class (regno
);
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235 CL. Use elimination first if REG is a hard register. If REG is a
236 reload pseudo created by this constraints pass, assume that it will
237 be allocated a hard register from its allocno class, but allow that
238 class to be narrowed to CL if it is currently a superset of CL.
240 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241 REGNO (reg), or NO_REGS if no change in its class was needed. */
243 in_class_p (rtx reg
, enum reg_class cl
, enum reg_class
*new_class
)
245 enum reg_class rclass
, common_class
;
246 machine_mode reg_mode
;
247 int class_size
, hard_regno
, nregs
, i
, j
;
248 int regno
= REGNO (reg
);
250 if (new_class
!= NULL
)
251 *new_class
= NO_REGS
;
252 if (regno
< FIRST_PSEUDO_REGISTER
)
255 rtx
*final_loc
= &final_reg
;
257 lra_eliminate_reg_if_possible (final_loc
);
258 return TEST_HARD_REG_BIT (reg_class_contents
[cl
], REGNO (*final_loc
));
260 reg_mode
= GET_MODE (reg
);
261 rclass
= get_reg_class (regno
);
262 if (regno
< new_regno_start
263 /* Do not allow the constraints for reload instructions to
264 influence the classes of new pseudos. These reloads are
265 typically moves that have many alternatives, and restricting
266 reload pseudos for one alternative may lead to situations
267 where other reload pseudos are no longer allocatable. */
268 || (INSN_UID (curr_insn
) >= new_insn_uid_start
269 && curr_insn_set
!= NULL
270 && ((OBJECT_P (SET_SRC (curr_insn_set
))
271 && ! CONSTANT_P (SET_SRC (curr_insn_set
)))
272 || (GET_CODE (SET_SRC (curr_insn_set
)) == SUBREG
273 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set
)))
274 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set
)))))))
275 /* When we don't know what class will be used finally for reload
276 pseudos, we use ALL_REGS. */
277 return ((regno
>= new_regno_start
&& rclass
== ALL_REGS
)
278 || (rclass
!= NO_REGS
&& ira_class_subset_p
[rclass
][cl
]
279 && ! hard_reg_set_subset_p (reg_class_contents
[cl
],
280 lra_no_alloc_regs
)));
283 common_class
= ira_reg_class_subset
[rclass
][cl
];
284 if (new_class
!= NULL
)
285 *new_class
= common_class
;
286 if (hard_reg_set_subset_p (reg_class_contents
[common_class
],
289 /* Check that there are enough allocatable regs. */
290 class_size
= ira_class_hard_regs_num
[common_class
];
291 for (i
= 0; i
< class_size
; i
++)
293 hard_regno
= ira_class_hard_regs
[common_class
][i
];
294 nregs
= hard_regno_nregs
[hard_regno
][reg_mode
];
297 for (j
= 0; j
< nregs
; j
++)
298 if (TEST_HARD_REG_BIT (lra_no_alloc_regs
, hard_regno
+ j
)
299 || ! TEST_HARD_REG_BIT (reg_class_contents
[common_class
],
309 /* Return true if REGNO satisfies a memory constraint. */
313 return get_reg_class (regno
) == NO_REGS
;
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317 space AS, and check that each pseudo has the proper kind of hard
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED
,
321 rtx addr
, addr_space_t as
)
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324 lra_assert (ADDR_SPACE_GENERIC_P (as
));
325 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
331 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
);
336 /* Temporarily eliminates registers in an address (for the lifetime of
338 class address_eliminator
{
340 address_eliminator (struct address_info
*ad
);
341 ~address_eliminator ();
344 struct address_info
*m_ad
;
352 address_eliminator::address_eliminator (struct address_info
*ad
)
354 m_base_loc (strip_subreg (ad
->base_term
)),
355 m_base_reg (NULL_RTX
),
356 m_index_loc (strip_subreg (ad
->index_term
)),
357 m_index_reg (NULL_RTX
)
359 if (m_base_loc
!= NULL
)
361 m_base_reg
= *m_base_loc
;
362 lra_eliminate_reg_if_possible (m_base_loc
);
363 if (m_ad
->base_term2
!= NULL
)
364 *m_ad
->base_term2
= *m_ad
->base_term
;
366 if (m_index_loc
!= NULL
)
368 m_index_reg
= *m_index_loc
;
369 lra_eliminate_reg_if_possible (m_index_loc
);
373 address_eliminator::~address_eliminator ()
375 if (m_base_loc
&& *m_base_loc
!= m_base_reg
)
377 *m_base_loc
= m_base_reg
;
378 if (m_ad
->base_term2
!= NULL
)
379 *m_ad
->base_term2
= *m_ad
->base_term
;
381 if (m_index_loc
&& *m_index_loc
!= m_index_reg
)
382 *m_index_loc
= m_index_reg
;
385 /* Return true if the eliminated form of AD is a legitimate target address. */
387 valid_address_p (struct address_info
*ad
)
389 address_eliminator
eliminator (ad
);
390 return valid_address_p (ad
->mode
, *ad
->outer
, ad
->as
);
393 /* Return true if the eliminated form of memory reference OP satisfies
394 extra (special) memory constraint CONSTRAINT. */
396 satisfies_memory_constraint_p (rtx op
, enum constraint_num constraint
)
398 struct address_info ad
;
400 decompose_mem_address (&ad
, op
);
401 address_eliminator
eliminator (&ad
);
402 return constraint_satisfied_p (op
, constraint
);
405 /* Return true if the eliminated form of address AD satisfies extra
406 address constraint CONSTRAINT. */
408 satisfies_address_constraint_p (struct address_info
*ad
,
409 enum constraint_num constraint
)
411 address_eliminator
eliminator (ad
);
412 return constraint_satisfied_p (*ad
->outer
, constraint
);
415 /* Return true if the eliminated form of address OP satisfies extra
416 address constraint CONSTRAINT. */
418 satisfies_address_constraint_p (rtx op
, enum constraint_num constraint
)
420 struct address_info ad
;
422 decompose_lea_address (&ad
, &op
);
423 return satisfies_address_constraint_p (&ad
, constraint
);
426 /* Initiate equivalences for LRA. As we keep original equivalences
427 before any elimination, we need to make copies otherwise any change
428 in insns might change the equivalences. */
430 lra_init_equiv (void)
432 ira_expand_reg_equiv ();
433 for (int i
= FIRST_PSEUDO_REGISTER
; i
< max_reg_num (); i
++)
437 if ((res
= ira_reg_equiv
[i
].memory
) != NULL_RTX
)
438 ira_reg_equiv
[i
].memory
= copy_rtx (res
);
439 if ((res
= ira_reg_equiv
[i
].invariant
) != NULL_RTX
)
440 ira_reg_equiv
[i
].invariant
= copy_rtx (res
);
444 static rtx
loc_equivalence_callback (rtx
, const_rtx
, void *);
446 /* Update equivalence for REGNO. We need to this as the equivalence
447 might contain other pseudos which are changed by their
450 update_equiv (int regno
)
454 if ((x
= ira_reg_equiv
[regno
].memory
) != NULL_RTX
)
455 ira_reg_equiv
[regno
].memory
456 = simplify_replace_fn_rtx (x
, NULL_RTX
, loc_equivalence_callback
,
458 if ((x
= ira_reg_equiv
[regno
].invariant
) != NULL_RTX
)
459 ira_reg_equiv
[regno
].invariant
460 = simplify_replace_fn_rtx (x
, NULL_RTX
, loc_equivalence_callback
,
464 /* If we have decided to substitute X with another value, return that
465 value, otherwise return X. */
472 if (! REG_P (x
) || (regno
= REGNO (x
)) < FIRST_PSEUDO_REGISTER
473 || ! ira_reg_equiv
[regno
].defined_p
474 || ! ira_reg_equiv
[regno
].profitable_p
475 || lra_get_regno_hard_regno (regno
) >= 0)
477 if ((res
= ira_reg_equiv
[regno
].memory
) != NULL_RTX
)
479 if (targetm
.cannot_substitute_mem_equiv_p (res
))
483 if ((res
= ira_reg_equiv
[regno
].constant
) != NULL_RTX
)
485 if ((res
= ira_reg_equiv
[regno
].invariant
) != NULL_RTX
)
490 /* If we have decided to substitute X with the equivalent value,
491 return that value after elimination for INSN, otherwise return
494 get_equiv_with_elimination (rtx x
, rtx_insn
*insn
)
496 rtx res
= get_equiv (x
);
498 if (x
== res
|| CONSTANT_P (res
))
500 return lra_eliminate_regs_1 (insn
, res
, GET_MODE (res
),
501 false, false, 0, true);
504 /* Set up curr_operand_mode. */
506 init_curr_operand_mode (void)
508 int nop
= curr_static_id
->n_operands
;
509 for (int i
= 0; i
< nop
; i
++)
511 machine_mode mode
= GET_MODE (*curr_id
->operand_loc
[i
]);
512 if (mode
== VOIDmode
)
514 /* The .md mode for address operands is the mode of the
515 addressed value rather than the mode of the address itself. */
516 if (curr_id
->icode
>= 0 && curr_static_id
->operand
[i
].is_address
)
519 mode
= curr_static_id
->operand
[i
].mode
;
521 curr_operand_mode
[i
] = mode
;
527 /* The page contains code to reuse input reloads. */
529 /* Structure describes input reload of the current insns. */
532 /* True for input reload of matched operands. */
534 /* Reloaded value. */
536 /* Reload pseudo used. */
540 /* The number of elements in the following array. */
541 static int curr_insn_input_reloads_num
;
542 /* Array containing info about input reloads. It is used to find the
543 same input reload and reuse the reload pseudo in this case. */
544 static struct input_reload curr_insn_input_reloads
[LRA_MAX_INSN_RELOADS
];
546 /* Initiate data concerning reuse of input reloads for the current
549 init_curr_insn_input_reloads (void)
551 curr_insn_input_reloads_num
= 0;
554 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
555 created input reload pseudo (only if TYPE is not OP_OUT). Don't
556 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
557 wrapped up in SUBREG. The result pseudo is returned through
558 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
559 reused the already created input reload pseudo. Use TITLE to
560 describe new registers for debug purposes. */
562 get_reload_reg (enum op_type type
, machine_mode mode
, rtx original
,
563 enum reg_class rclass
, bool in_subreg_p
,
564 const char *title
, rtx
*result_reg
)
567 enum reg_class new_class
;
568 bool unique_p
= false;
573 = lra_create_new_reg_with_unique_value (mode
, original
, rclass
, title
);
576 /* Prevent reuse value of expression with side effects,
577 e.g. volatile memory. */
578 if (! side_effects_p (original
))
579 for (i
= 0; i
< curr_insn_input_reloads_num
; i
++)
581 if (! curr_insn_input_reloads
[i
].match_p
582 && rtx_equal_p (curr_insn_input_reloads
[i
].input
, original
)
583 && in_class_p (curr_insn_input_reloads
[i
].reg
, rclass
, &new_class
))
585 rtx reg
= curr_insn_input_reloads
[i
].reg
;
587 /* If input is equal to original and both are VOIDmode,
588 GET_MODE (reg) might be still different from mode.
589 Ensure we don't return *result_reg with wrong mode. */
590 if (GET_MODE (reg
) != mode
)
594 if (GET_MODE_SIZE (GET_MODE (reg
)) < GET_MODE_SIZE (mode
))
596 reg
= lowpart_subreg (mode
, reg
, GET_MODE (reg
));
597 if (reg
== NULL_RTX
|| GET_CODE (reg
) != SUBREG
)
601 if (lra_dump_file
!= NULL
)
603 fprintf (lra_dump_file
, " Reuse r%d for reload ", regno
);
604 dump_value_slim (lra_dump_file
, original
, 1);
606 if (new_class
!= lra_get_allocno_class (regno
))
607 lra_change_class (regno
, new_class
, ", change to", false);
608 if (lra_dump_file
!= NULL
)
609 fprintf (lra_dump_file
, "\n");
612 /* If we have an input reload with a different mode, make sure it
613 will get a different hard reg. */
614 else if (REG_P (original
)
615 && REG_P (curr_insn_input_reloads
[i
].input
)
616 && REGNO (original
) == REGNO (curr_insn_input_reloads
[i
].input
)
617 && (GET_MODE (original
)
618 != GET_MODE (curr_insn_input_reloads
[i
].input
)))
621 *result_reg
= (unique_p
622 ? lra_create_new_reg_with_unique_value
623 : lra_create_new_reg
) (mode
, original
, rclass
, title
);
624 lra_assert (curr_insn_input_reloads_num
< LRA_MAX_INSN_RELOADS
);
625 curr_insn_input_reloads
[curr_insn_input_reloads_num
].input
= original
;
626 curr_insn_input_reloads
[curr_insn_input_reloads_num
].match_p
= false;
627 curr_insn_input_reloads
[curr_insn_input_reloads_num
++].reg
= *result_reg
;
633 /* The page contains code to extract memory address parts. */
635 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos. */
637 ok_for_index_p_nonstrict (rtx reg
)
639 unsigned regno
= REGNO (reg
);
641 return regno
>= FIRST_PSEUDO_REGISTER
|| REGNO_OK_FOR_INDEX_P (regno
);
644 /* A version of regno_ok_for_base_p for use here, when all pseudos
645 should count as OK. Arguments as for regno_ok_for_base_p. */
647 ok_for_base_p_nonstrict (rtx reg
, machine_mode mode
, addr_space_t as
,
648 enum rtx_code outer_code
, enum rtx_code index_code
)
650 unsigned regno
= REGNO (reg
);
652 if (regno
>= FIRST_PSEUDO_REGISTER
)
654 return ok_for_base_p_1 (regno
, mode
, as
, outer_code
, index_code
);
659 /* The page contains major code to choose the current insn alternative
660 and generate reloads for it. */
662 /* Return the offset from REGNO of the least significant register
665 This function is used to tell whether two registers satisfy
666 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
668 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
669 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
671 lra_constraint_offset (int regno
, machine_mode mode
)
673 lra_assert (regno
< FIRST_PSEUDO_REGISTER
);
674 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (mode
) > UNITS_PER_WORD
675 && SCALAR_INT_MODE_P (mode
))
676 return hard_regno_nregs
[regno
][mode
] - 1;
680 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
681 if they are the same hard reg, and has special hacks for
682 auto-increment and auto-decrement. This is specifically intended for
683 process_alt_operands to use in determining whether two operands
684 match. X is the operand whose number is the lower of the two.
686 It is supposed that X is the output operand and Y is the input
687 operand. Y_HARD_REGNO is the final hard regno of register Y or
688 register in subreg Y as we know it now. Otherwise, it is a
691 operands_match_p (rtx x
, rtx y
, int y_hard_regno
)
694 RTX_CODE code
= GET_CODE (x
);
699 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
700 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
&& REG_P (SUBREG_REG (y
)))))
704 i
= get_hard_regno (x
, false);
708 if ((j
= y_hard_regno
) < 0)
711 i
+= lra_constraint_offset (i
, GET_MODE (x
));
712 j
+= lra_constraint_offset (j
, GET_MODE (y
));
717 /* If two operands must match, because they are really a single
718 operand of an assembler insn, then two post-increments are invalid
719 because the assembler insn would increment only once. On the
720 other hand, a post-increment matches ordinary indexing if the
721 post-increment is the output operand. */
722 if (code
== POST_DEC
|| code
== POST_INC
|| code
== POST_MODIFY
)
723 return operands_match_p (XEXP (x
, 0), y
, y_hard_regno
);
725 /* Two pre-increments are invalid because the assembler insn would
726 increment only once. On the other hand, a pre-increment matches
727 ordinary indexing if the pre-increment is the input operand. */
728 if (GET_CODE (y
) == PRE_DEC
|| GET_CODE (y
) == PRE_INC
729 || GET_CODE (y
) == PRE_MODIFY
)
730 return operands_match_p (x
, XEXP (y
, 0), -1);
734 if (code
== REG
&& REG_P (y
))
735 return REGNO (x
) == REGNO (y
);
737 if (code
== REG
&& GET_CODE (y
) == SUBREG
&& REG_P (SUBREG_REG (y
))
738 && x
== SUBREG_REG (y
))
740 if (GET_CODE (y
) == REG
&& code
== SUBREG
&& REG_P (SUBREG_REG (x
))
741 && SUBREG_REG (x
) == y
)
744 /* Now we have disposed of all the cases in which different rtx
746 if (code
!= GET_CODE (y
))
749 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
750 if (GET_MODE (x
) != GET_MODE (y
))
759 return label_ref_label (x
) == label_ref_label (y
);
761 return XSTR (x
, 0) == XSTR (y
, 0);
767 /* Compare the elements. If any pair of corresponding elements fail
768 to match, return false for the whole things. */
770 fmt
= GET_RTX_FORMAT (code
);
771 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
777 if (XWINT (x
, i
) != XWINT (y
, i
))
782 if (XINT (x
, i
) != XINT (y
, i
))
787 val
= operands_match_p (XEXP (x
, i
), XEXP (y
, i
), -1);
796 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
798 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; --j
)
800 val
= operands_match_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
), -1);
806 /* It is believed that rtx's at this level will never
807 contain anything but integers and other rtx's, except for
808 within LABEL_REFs and SYMBOL_REFs. */
816 /* True if X is a constant that can be forced into the constant pool.
817 MODE is the mode of the operand, or VOIDmode if not known. */
818 #define CONST_POOL_OK_P(MODE, X) \
819 ((MODE) != VOIDmode \
821 && GET_CODE (X) != HIGH \
822 && !targetm.cannot_force_const_mem (MODE, X))
824 /* True if C is a non-empty register class that has too few registers
825 to be safely used as a reload target class. */
826 #define SMALL_REGISTER_CLASS_P(C) \
827 (ira_class_hard_regs_num [(C)] == 1 \
828 || (ira_class_hard_regs_num [(C)] >= 1 \
829 && targetm.class_likely_spilled_p (C)))
831 /* If REG is a reload pseudo, try to make its class satisfying CL. */
833 narrow_reload_pseudo_class (rtx reg
, enum reg_class cl
)
835 enum reg_class rclass
;
837 /* Do not make more accurate class from reloads generated. They are
838 mostly moves with a lot of constraints. Making more accurate
839 class may results in very narrow class and impossibility of find
840 registers for several reloads of one insn. */
841 if (INSN_UID (curr_insn
) >= new_insn_uid_start
)
843 if (GET_CODE (reg
) == SUBREG
)
844 reg
= SUBREG_REG (reg
);
845 if (! REG_P (reg
) || (int) REGNO (reg
) < new_regno_start
)
847 if (in_class_p (reg
, cl
, &rclass
) && rclass
!= cl
)
848 lra_change_class (REGNO (reg
), rclass
, " Change to", true);
851 /* Searches X for any reference to a reg with the same value as REGNO,
852 returning the rtx of the reference found if any. Otherwise,
855 regno_val_use_in (unsigned int regno
, rtx x
)
861 if (REG_P (x
) && lra_reg_info
[REGNO (x
)].val
== lra_reg_info
[regno
].val
)
864 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
865 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
869 if ((tem
= regno_val_use_in (regno
, XEXP (x
, i
))))
872 else if (fmt
[i
] == 'E')
873 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
874 if ((tem
= regno_val_use_in (regno
, XVECEXP (x
, i
, j
))))
881 /* Return true if all current insn non-output operands except INS (it
882 has a negaitve end marker) do not use pseudos with the same value
885 check_conflict_input_operands (int regno
, signed char *ins
)
888 int n_operands
= curr_static_id
->n_operands
;
890 for (int nop
= 0; nop
< n_operands
; nop
++)
891 if (! curr_static_id
->operand
[nop
].is_operator
892 && curr_static_id
->operand
[nop
].type
!= OP_OUT
)
894 for (int i
= 0; (in
= ins
[i
]) >= 0; i
++)
898 && regno_val_use_in (regno
, *curr_id
->operand_loc
[nop
]) != NULL_RTX
)
904 /* Generate reloads for matching OUT and INS (array of input operand
905 numbers with end marker -1) with reg class GOAL_CLASS, considering
906 output operands OUTS (similar array to INS) needing to be in different
907 registers. Add input and output reloads correspondingly to the lists
908 *BEFORE and *AFTER. OUT might be negative. In this case we generate
909 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
910 that the output operand is early clobbered for chosen alternative. */
912 match_reload (signed char out
, signed char *ins
, signed char *outs
,
913 enum reg_class goal_class
, rtx_insn
**before
,
914 rtx_insn
**after
, bool early_clobber_p
)
918 rtx new_in_reg
, new_out_reg
, reg
;
919 machine_mode inmode
, outmode
;
920 rtx in_rtx
= *curr_id
->operand_loc
[ins
[0]];
921 rtx out_rtx
= out
< 0 ? in_rtx
: *curr_id
->operand_loc
[out
];
923 inmode
= curr_operand_mode
[ins
[0]];
924 outmode
= out
< 0 ? inmode
: curr_operand_mode
[out
];
925 push_to_sequence (*before
);
926 if (inmode
!= outmode
)
928 if (GET_MODE_SIZE (inmode
) > GET_MODE_SIZE (outmode
))
931 = lra_create_new_reg_with_unique_value (inmode
, in_rtx
,
933 if (SCALAR_INT_MODE_P (inmode
))
934 new_out_reg
= gen_lowpart_SUBREG (outmode
, reg
);
936 new_out_reg
= gen_rtx_SUBREG (outmode
, reg
, 0);
937 LRA_SUBREG_P (new_out_reg
) = 1;
938 /* If the input reg is dying here, we can use the same hard
939 register for REG and IN_RTX. We do it only for original
940 pseudos as reload pseudos can die although original
941 pseudos still live where reload pseudos dies. */
942 if (REG_P (in_rtx
) && (int) REGNO (in_rtx
) < lra_new_regno_start
943 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (in_rtx
))
945 || check_conflict_input_operands(REGNO (in_rtx
), ins
)))
946 lra_assign_reg_val (REGNO (in_rtx
), REGNO (reg
));
951 = lra_create_new_reg_with_unique_value (outmode
, out_rtx
,
953 if (SCALAR_INT_MODE_P (outmode
))
954 new_in_reg
= gen_lowpart_SUBREG (inmode
, reg
);
956 new_in_reg
= gen_rtx_SUBREG (inmode
, reg
, 0);
957 /* NEW_IN_REG is non-paradoxical subreg. We don't want
958 NEW_OUT_REG living above. We add clobber clause for
959 this. This is just a temporary clobber. We can remove
960 it at the end of LRA work. */
961 rtx_insn
*clobber
= emit_clobber (new_out_reg
);
962 LRA_TEMP_CLOBBER_P (PATTERN (clobber
)) = 1;
963 LRA_SUBREG_P (new_in_reg
) = 1;
964 if (GET_CODE (in_rtx
) == SUBREG
)
966 rtx subreg_reg
= SUBREG_REG (in_rtx
);
968 /* If SUBREG_REG is dying here and sub-registers IN_RTX
969 and NEW_IN_REG are similar, we can use the same hard
970 register for REG and SUBREG_REG. */
971 if (REG_P (subreg_reg
)
972 && (int) REGNO (subreg_reg
) < lra_new_regno_start
973 && GET_MODE (subreg_reg
) == outmode
974 && SUBREG_BYTE (in_rtx
) == SUBREG_BYTE (new_in_reg
)
975 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (subreg_reg
))
976 && (! early_clobber_p
977 || check_conflict_input_operands (REGNO (subreg_reg
),
979 lra_assign_reg_val (REGNO (subreg_reg
), REGNO (reg
));
985 /* Pseudos have values -- see comments for lra_reg_info.
986 Different pseudos with the same value do not conflict even if
987 they live in the same place. When we create a pseudo we
988 assign value of original pseudo (if any) from which we
989 created the new pseudo. If we create the pseudo from the
990 input pseudo, the new pseudo will have no conflict with the
991 input pseudo which is wrong when the input pseudo lives after
992 the insn and as the new pseudo value is changed by the insn
993 output. Therefore we create the new pseudo from the output
994 except the case when we have single matched dying input
997 We cannot reuse the current output register because we might
998 have a situation like "a <- a op b", where the constraints
999 force the second input operand ("b") to match the output
1000 operand ("a"). "b" must then be copied into a new register
1001 so that it doesn't clobber the current value of "a".
1003 We can not use the same value if the output pseudo is
1004 early clobbered or the input pseudo is mentioned in the
1005 output, e.g. as an address part in memory, because
1006 output reload will actually extend the pseudo liveness.
1007 We don't care about eliminable hard regs here as we are
1008 interesting only in pseudos. */
1010 /* Matching input's register value is the same as one of the other
1011 output operand. Output operands in a parallel insn must be in
1012 different registers. */
1013 out_conflict
= false;
1016 for (i
= 0; outs
[i
] >= 0; i
++)
1018 rtx other_out_rtx
= *curr_id
->operand_loc
[outs
[i
]];
1019 if (REG_P (other_out_rtx
)
1020 && (regno_val_use_in (REGNO (in_rtx
), other_out_rtx
)
1023 out_conflict
= true;
1029 new_in_reg
= new_out_reg
1030 = (! early_clobber_p
&& ins
[1] < 0 && REG_P (in_rtx
)
1031 && (int) REGNO (in_rtx
) < lra_new_regno_start
1032 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (in_rtx
))
1033 && (! early_clobber_p
1034 || check_conflict_input_operands (REGNO (in_rtx
), ins
))
1036 || regno_val_use_in (REGNO (in_rtx
), out_rtx
) == NULL_RTX
)
1038 ? lra_create_new_reg (inmode
, in_rtx
, goal_class
, "")
1039 : lra_create_new_reg_with_unique_value (outmode
, out_rtx
,
1042 /* In operand can be got from transformations before processing insn
1043 constraints. One example of such transformations is subreg
1044 reloading (see function simplify_operand_subreg). The new
1045 pseudos created by the transformations might have inaccurate
1046 class (ALL_REGS) and we should make their classes more
1048 narrow_reload_pseudo_class (in_rtx
, goal_class
);
1049 lra_emit_move (copy_rtx (new_in_reg
), in_rtx
);
1050 *before
= get_insns ();
1052 /* Add the new pseudo to consider values of subsequent input reload
1054 lra_assert (curr_insn_input_reloads_num
< LRA_MAX_INSN_RELOADS
);
1055 curr_insn_input_reloads
[curr_insn_input_reloads_num
].input
= in_rtx
;
1056 curr_insn_input_reloads
[curr_insn_input_reloads_num
].match_p
= true;
1057 curr_insn_input_reloads
[curr_insn_input_reloads_num
++].reg
= new_in_reg
;
1058 for (i
= 0; (in
= ins
[i
]) >= 0; i
++)
1061 (GET_MODE (*curr_id
->operand_loc
[in
]) == VOIDmode
1062 || GET_MODE (new_in_reg
) == GET_MODE (*curr_id
->operand_loc
[in
]));
1063 *curr_id
->operand_loc
[in
] = new_in_reg
;
1065 lra_update_dups (curr_id
, ins
);
1068 /* See a comment for the input operand above. */
1069 narrow_reload_pseudo_class (out_rtx
, goal_class
);
1070 if (find_reg_note (curr_insn
, REG_UNUSED
, out_rtx
) == NULL_RTX
)
1073 lra_emit_move (out_rtx
, copy_rtx (new_out_reg
));
1075 *after
= get_insns ();
1078 *curr_id
->operand_loc
[out
] = new_out_reg
;
1079 lra_update_dup (curr_id
, out
);
1082 /* Return register class which is union of all reg classes in insn
1083 constraint alternative string starting with P. */
1084 static enum reg_class
1085 reg_class_from_constraints (const char *p
)
1088 enum reg_class op_class
= NO_REGS
;
1091 switch ((c
= *p
, len
= CONSTRAINT_LEN (c
, p
)), c
)
1098 op_class
= reg_class_subunion
[op_class
][GENERAL_REGS
];
1102 enum constraint_num cn
= lookup_constraint (p
);
1103 enum reg_class cl
= reg_class_for_constraint (cn
);
1106 if (insn_extra_address_constraint (cn
))
1108 = (reg_class_subunion
1109 [op_class
][base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
1110 ADDRESS
, SCRATCH
)]);
1114 op_class
= reg_class_subunion
[op_class
][cl
];
1117 while ((p
+= len
), c
);
1121 /* If OP is a register, return the class of the register as per
1122 get_reg_class, otherwise return NO_REGS. */
1123 static inline enum reg_class
1124 get_op_class (rtx op
)
1126 return REG_P (op
) ? get_reg_class (REGNO (op
)) : NO_REGS
;
1129 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1130 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1131 SUBREG for VAL to make them equal. */
1133 emit_spill_move (bool to_p
, rtx mem_pseudo
, rtx val
)
1135 if (GET_MODE (mem_pseudo
) != GET_MODE (val
))
1137 /* Usually size of mem_pseudo is greater than val size but in
1138 rare cases it can be less as it can be defined by target
1139 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1142 val
= gen_lowpart_SUBREG (GET_MODE (mem_pseudo
),
1143 GET_CODE (val
) == SUBREG
1144 ? SUBREG_REG (val
) : val
);
1145 LRA_SUBREG_P (val
) = 1;
1149 mem_pseudo
= gen_lowpart_SUBREG (GET_MODE (val
), mem_pseudo
);
1150 LRA_SUBREG_P (mem_pseudo
) = 1;
1153 return to_p
? gen_move_insn (mem_pseudo
, val
)
1154 : gen_move_insn (val
, mem_pseudo
);
1157 /* Process a special case insn (register move), return true if we
1158 don't need to process it anymore. INSN should be a single set
1159 insn. Set up that RTL was changed through CHANGE_P and macro
1160 SECONDARY_MEMORY_NEEDED says to use secondary memory through
1163 check_and_process_move (bool *change_p
, bool *sec_mem_p ATTRIBUTE_UNUSED
)
1166 rtx dest
, src
, dreg
, sreg
, new_reg
, scratch_reg
;
1168 enum reg_class dclass
, sclass
, secondary_class
;
1169 secondary_reload_info sri
;
1171 lra_assert (curr_insn_set
!= NULL_RTX
);
1172 dreg
= dest
= SET_DEST (curr_insn_set
);
1173 sreg
= src
= SET_SRC (curr_insn_set
);
1174 if (GET_CODE (dest
) == SUBREG
)
1175 dreg
= SUBREG_REG (dest
);
1176 if (GET_CODE (src
) == SUBREG
)
1177 sreg
= SUBREG_REG (src
);
1178 if (! (REG_P (dreg
) || MEM_P (dreg
)) || ! (REG_P (sreg
) || MEM_P (sreg
)))
1180 sclass
= dclass
= NO_REGS
;
1182 dclass
= get_reg_class (REGNO (dreg
));
1183 gcc_assert (dclass
< LIM_REG_CLASSES
);
1184 if (dclass
== ALL_REGS
)
1185 /* ALL_REGS is used for new pseudos created by transformations
1186 like reload of SUBREG_REG (see function
1187 simplify_operand_subreg). We don't know their class yet. We
1188 should figure out the class from processing the insn
1189 constraints not in this fast path function. Even if ALL_REGS
1190 were a right class for the pseudo, secondary_... hooks usually
1191 are not define for ALL_REGS. */
1194 sclass
= get_reg_class (REGNO (sreg
));
1195 gcc_assert (sclass
< LIM_REG_CLASSES
);
1196 if (sclass
== ALL_REGS
)
1197 /* See comments above. */
1199 if (sclass
== NO_REGS
&& dclass
== NO_REGS
)
1201 #ifdef SECONDARY_MEMORY_NEEDED
1202 if (SECONDARY_MEMORY_NEEDED (sclass
, dclass
, GET_MODE (src
))
1203 #ifdef SECONDARY_MEMORY_NEEDED_MODE
1204 && ((sclass
!= NO_REGS
&& dclass
!= NO_REGS
)
1205 || GET_MODE (src
) != SECONDARY_MEMORY_NEEDED_MODE (GET_MODE (src
)))
1213 if (! REG_P (dreg
) || ! REG_P (sreg
))
1215 sri
.prev_sri
= NULL
;
1216 sri
.icode
= CODE_FOR_nothing
;
1218 secondary_class
= NO_REGS
;
1219 /* Set up hard register for a reload pseudo for hook
1220 secondary_reload because some targets just ignore unassigned
1221 pseudos in the hook. */
1222 if (dclass
!= NO_REGS
&& lra_get_regno_hard_regno (REGNO (dreg
)) < 0)
1224 dregno
= REGNO (dreg
);
1225 reg_renumber
[dregno
] = ira_class_hard_regs
[dclass
][0];
1229 if (sclass
!= NO_REGS
&& lra_get_regno_hard_regno (REGNO (sreg
)) < 0)
1231 sregno
= REGNO (sreg
);
1232 reg_renumber
[sregno
] = ira_class_hard_regs
[sclass
][0];
1236 if (sclass
!= NO_REGS
)
1238 = (enum reg_class
) targetm
.secondary_reload (false, dest
,
1239 (reg_class_t
) sclass
,
1240 GET_MODE (src
), &sri
);
1241 if (sclass
== NO_REGS
1242 || ((secondary_class
!= NO_REGS
|| sri
.icode
!= CODE_FOR_nothing
)
1243 && dclass
!= NO_REGS
))
1245 enum reg_class old_sclass
= secondary_class
;
1246 secondary_reload_info old_sri
= sri
;
1248 sri
.prev_sri
= NULL
;
1249 sri
.icode
= CODE_FOR_nothing
;
1252 = (enum reg_class
) targetm
.secondary_reload (true, src
,
1253 (reg_class_t
) dclass
,
1254 GET_MODE (src
), &sri
);
1255 /* Check the target hook consistency. */
1257 ((secondary_class
== NO_REGS
&& sri
.icode
== CODE_FOR_nothing
)
1258 || (old_sclass
== NO_REGS
&& old_sri
.icode
== CODE_FOR_nothing
)
1259 || (secondary_class
== old_sclass
&& sri
.icode
== old_sri
.icode
));
1262 reg_renumber
[sregno
] = -1;
1264 reg_renumber
[dregno
] = -1;
1265 if (secondary_class
== NO_REGS
&& sri
.icode
== CODE_FOR_nothing
)
1269 if (secondary_class
!= NO_REGS
)
1270 new_reg
= lra_create_new_reg_with_unique_value (GET_MODE (src
), NULL_RTX
,
1274 if (sri
.icode
== CODE_FOR_nothing
)
1275 lra_emit_move (new_reg
, src
);
1278 enum reg_class scratch_class
;
1280 scratch_class
= (reg_class_from_constraints
1281 (insn_data
[sri
.icode
].operand
[2].constraint
));
1282 scratch_reg
= (lra_create_new_reg_with_unique_value
1283 (insn_data
[sri
.icode
].operand
[2].mode
, NULL_RTX
,
1284 scratch_class
, "scratch"));
1285 emit_insn (GEN_FCN (sri
.icode
) (new_reg
!= NULL_RTX
? new_reg
: dest
,
1288 before
= get_insns ();
1290 lra_process_new_insns (curr_insn
, before
, NULL
, "Inserting the move");
1291 if (new_reg
!= NULL_RTX
)
1292 SET_SRC (curr_insn_set
) = new_reg
;
1295 if (lra_dump_file
!= NULL
)
1297 fprintf (lra_dump_file
, "Deleting move %u\n", INSN_UID (curr_insn
));
1298 dump_insn_slim (lra_dump_file
, curr_insn
);
1300 lra_set_insn_deleted (curr_insn
);
1306 /* The following data describe the result of process_alt_operands.
1307 The data are used in curr_insn_transform to generate reloads. */
1309 /* The chosen reg classes which should be used for the corresponding
1311 static enum reg_class goal_alt
[MAX_RECOG_OPERANDS
];
1312 /* True if the operand should be the same as another operand and that
1313 other operand does not need a reload. */
1314 static bool goal_alt_match_win
[MAX_RECOG_OPERANDS
];
1315 /* True if the operand does not need a reload. */
1316 static bool goal_alt_win
[MAX_RECOG_OPERANDS
];
1317 /* True if the operand can be offsetable memory. */
1318 static bool goal_alt_offmemok
[MAX_RECOG_OPERANDS
];
1319 /* The number of an operand to which given operand can be matched to. */
1320 static int goal_alt_matches
[MAX_RECOG_OPERANDS
];
1321 /* The number of elements in the following array. */
1322 static int goal_alt_dont_inherit_ops_num
;
1323 /* Numbers of operands whose reload pseudos should not be inherited. */
1324 static int goal_alt_dont_inherit_ops
[MAX_RECOG_OPERANDS
];
1325 /* True if the insn commutative operands should be swapped. */
1326 static bool goal_alt_swapped
;
1327 /* The chosen insn alternative. */
1328 static int goal_alt_number
;
1330 /* True if the corresponding operand is the result of an equivalence
1332 static bool equiv_substition_p
[MAX_RECOG_OPERANDS
];
1334 /* The following five variables are used to choose the best insn
1335 alternative. They reflect final characteristics of the best
1338 /* Number of necessary reloads and overall cost reflecting the
1339 previous value and other unpleasantness of the best alternative. */
1340 static int best_losers
, best_overall
;
1341 /* Overall number hard registers used for reloads. For example, on
1342 some targets we need 2 general registers to reload DFmode and only
1343 one floating point register. */
1344 static int best_reload_nregs
;
1345 /* Overall number reflecting distances of previous reloading the same
1346 value. The distances are counted from the current BB start. It is
1347 used to improve inheritance chances. */
1348 static int best_reload_sum
;
1350 /* True if the current insn should have no correspondingly input or
1352 static bool no_input_reloads_p
, no_output_reloads_p
;
1354 /* True if we swapped the commutative operands in the current
1356 static int curr_swapped
;
1358 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1359 register of class CL. Add any input reloads to list BEFORE. AFTER
1360 is nonnull if *LOC is an automodified value; handle that case by
1361 adding the required output reloads to list AFTER. Return true if
1362 the RTL was changed.
1364 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1365 register. Return false if the address register is correct. */
1367 process_addr_reg (rtx
*loc
, bool check_only_p
, rtx_insn
**before
, rtx_insn
**after
,
1371 enum reg_class rclass
, new_class
;
1375 bool subreg_p
, before_p
= false;
1377 subreg_p
= GET_CODE (*loc
) == SUBREG
;
1380 reg
= SUBREG_REG (*loc
);
1381 mode
= GET_MODE (reg
);
1383 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1384 between two registers with different classes, but there normally will
1385 be "mov" which transfers element of vector register into the general
1386 register, and this normally will be a subreg which should be reloaded
1387 as a whole. This is particularly likely to be triggered when
1388 -fno-split-wide-types specified. */
1390 || in_class_p (reg
, cl
, &new_class
)
1391 || GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (ptr_mode
))
1392 loc
= &SUBREG_REG (*loc
);
1396 mode
= GET_MODE (reg
);
1401 /* Always reload memory in an address even if the target supports
1403 new_reg
= lra_create_new_reg_with_unique_value (mode
, reg
, cl
, "address");
1408 regno
= REGNO (reg
);
1409 rclass
= get_reg_class (regno
);
1411 && (*loc
= get_equiv_with_elimination (reg
, curr_insn
)) != reg
)
1413 if (lra_dump_file
!= NULL
)
1415 fprintf (lra_dump_file
,
1416 "Changing pseudo %d in address of insn %u on equiv ",
1417 REGNO (reg
), INSN_UID (curr_insn
));
1418 dump_value_slim (lra_dump_file
, *loc
, 1);
1419 fprintf (lra_dump_file
, "\n");
1421 *loc
= copy_rtx (*loc
);
1423 if (*loc
!= reg
|| ! in_class_p (reg
, cl
, &new_class
))
1428 if (get_reload_reg (after
== NULL
? OP_IN
: OP_INOUT
,
1429 mode
, reg
, cl
, subreg_p
, "address", &new_reg
))
1432 else if (new_class
!= NO_REGS
&& rclass
!= new_class
)
1436 lra_change_class (regno
, new_class
, " Change to", true);
1444 push_to_sequence (*before
);
1445 lra_emit_move (new_reg
, reg
);
1446 *before
= get_insns ();
1453 lra_emit_move (before_p
? copy_rtx (reg
) : reg
, new_reg
);
1455 *after
= get_insns ();
1461 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1462 the insn to be inserted before curr insn. AFTER returns the
1463 the insn to be inserted after curr insn. ORIGREG and NEWREG
1464 are the original reg and new reg for reload. */
1466 insert_move_for_subreg (rtx_insn
**before
, rtx_insn
**after
, rtx origreg
,
1471 push_to_sequence (*before
);
1472 lra_emit_move (newreg
, origreg
);
1473 *before
= get_insns ();
1479 lra_emit_move (origreg
, newreg
);
1481 *after
= get_insns ();
1486 static int valid_address_p (machine_mode mode
, rtx addr
, addr_space_t as
);
1487 static bool process_address (int, bool, rtx_insn
**, rtx_insn
**);
1489 /* Make reloads for subreg in operand NOP with internal subreg mode
1490 REG_MODE, add new reloads for further processing. Return true if
1491 any change was done. */
1493 simplify_operand_subreg (int nop
, machine_mode reg_mode
)
1496 rtx_insn
*before
, *after
;
1497 machine_mode mode
, innermode
;
1499 rtx operand
= *curr_id
->operand_loc
[nop
];
1500 enum reg_class regclass
;
1503 before
= after
= NULL
;
1505 if (GET_CODE (operand
) != SUBREG
)
1508 mode
= GET_MODE (operand
);
1509 reg
= SUBREG_REG (operand
);
1510 innermode
= GET_MODE (reg
);
1511 type
= curr_static_id
->operand
[nop
].type
;
1514 const bool addr_was_valid
1515 = valid_address_p (innermode
, XEXP (reg
, 0), MEM_ADDR_SPACE (reg
));
1516 alter_subreg (curr_id
->operand_loc
[nop
], false);
1517 rtx subst
= *curr_id
->operand_loc
[nop
];
1518 lra_assert (MEM_P (subst
));
1521 || valid_address_p (GET_MODE (subst
), XEXP (subst
, 0),
1522 MEM_ADDR_SPACE (subst
))
1523 || ((get_constraint_type (lookup_constraint
1524 (curr_static_id
->operand
[nop
].constraint
))
1525 != CT_SPECIAL_MEMORY
)
1526 /* We still can reload address and if the address is
1527 valid, we can remove subreg without reloading its
1529 && valid_address_p (GET_MODE (subst
),
1531 [ira_class_hard_regs
1532 [base_reg_class (GET_MODE (subst
),
1533 MEM_ADDR_SPACE (subst
),
1534 ADDRESS
, SCRATCH
)][0]],
1535 MEM_ADDR_SPACE (subst
))))
1537 /* If we change the address for a paradoxical subreg of memory, the
1538 new address might violate the necessary alignment or the access
1539 might be slow; take this into consideration. We need not worry
1540 about accesses beyond allocated memory for paradoxical memory
1541 subregs as we don't substitute such equiv memory (see processing
1542 equivalences in function lra_constraints) and because for spilled
1543 pseudos we allocate stack memory enough for the biggest
1544 corresponding paradoxical subreg.
1546 However, do not blindly simplify a (subreg (mem ...)) for
1547 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1548 data into a register when the inner is narrower than outer or
1549 missing important data from memory when the inner is wider than
1550 outer. This rule only applies to modes that are no wider than
1552 if (!(GET_MODE_PRECISION (mode
) != GET_MODE_PRECISION (innermode
)
1553 && GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
1554 && GET_MODE_SIZE (innermode
) <= UNITS_PER_WORD
1555 && WORD_REGISTER_OPERATIONS
)
1556 && (!(MEM_ALIGN (subst
) < GET_MODE_ALIGNMENT (mode
)
1557 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (subst
)))
1558 || (MEM_ALIGN (reg
) < GET_MODE_ALIGNMENT (innermode
)
1559 && SLOW_UNALIGNED_ACCESS (innermode
, MEM_ALIGN (reg
)))))
1562 *curr_id
->operand_loc
[nop
] = operand
;
1564 /* But if the address was not valid, we cannot reload the MEM without
1565 reloading the address first. */
1566 if (!addr_was_valid
)
1567 process_address (nop
, false, &before
, &after
);
1569 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1570 enum reg_class rclass
1571 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1572 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, innermode
,
1573 reg
, rclass
, TRUE
, "slow mem", &new_reg
))
1575 bool insert_before
, insert_after
;
1576 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1578 insert_before
= (type
!= OP_OUT
1579 || GET_MODE_SIZE (innermode
)
1580 > GET_MODE_SIZE (mode
));
1581 insert_after
= type
!= OP_IN
;
1582 insert_move_for_subreg (insert_before
? &before
: NULL
,
1583 insert_after
? &after
: NULL
,
1586 SUBREG_REG (operand
) = new_reg
;
1588 /* Convert to MODE. */
1591 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1592 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, mode
, reg
,
1593 rclass
, TRUE
, "slow mem", &new_reg
))
1595 bool insert_before
, insert_after
;
1596 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1598 insert_before
= type
!= OP_OUT
;
1599 insert_after
= type
!= OP_IN
;
1600 insert_move_for_subreg (insert_before
? &before
: NULL
,
1601 insert_after
? &after
: NULL
,
1604 *curr_id
->operand_loc
[nop
] = new_reg
;
1605 lra_process_new_insns (curr_insn
, before
, after
,
1606 "Inserting slow mem reload");
1610 /* If the address was valid and became invalid, prefer to reload
1611 the memory. Typical case is when the index scale should
1612 correspond the memory. */
1613 *curr_id
->operand_loc
[nop
] = operand
;
1614 /* Do not return false here as the MEM_P (reg) will be processed
1615 later in this function. */
1617 else if (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1619 alter_subreg (curr_id
->operand_loc
[nop
], false);
1622 else if (CONSTANT_P (reg
))
1624 /* Try to simplify subreg of constant. It is usually result of
1625 equivalence substitution. */
1626 if (innermode
== VOIDmode
1627 && (innermode
= original_subreg_reg_mode
[nop
]) == VOIDmode
)
1628 innermode
= curr_static_id
->operand
[nop
].mode
;
1629 if ((new_reg
= simplify_subreg (mode
, reg
, innermode
,
1630 SUBREG_BYTE (operand
))) != NULL_RTX
)
1632 *curr_id
->operand_loc
[nop
] = new_reg
;
1636 /* Put constant into memory when we have mixed modes. It generates
1637 a better code in most cases as it does not need a secondary
1638 reload memory. It also prevents LRA looping when LRA is using
1639 secondary reload memory again and again. */
1640 if (CONSTANT_P (reg
) && CONST_POOL_OK_P (reg_mode
, reg
)
1641 && SCALAR_INT_MODE_P (reg_mode
) != SCALAR_INT_MODE_P (mode
))
1643 SUBREG_REG (operand
) = force_const_mem (reg_mode
, reg
);
1644 alter_subreg (curr_id
->operand_loc
[nop
], false);
1647 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1648 if there may be a problem accessing OPERAND in the outer
1651 && REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1652 && (hard_regno
= lra_get_regno_hard_regno (REGNO (reg
))) >= 0
1653 /* Don't reload paradoxical subregs because we could be looping
1654 having repeatedly final regno out of hard regs range. */
1655 && (hard_regno_nregs
[hard_regno
][innermode
]
1656 >= hard_regno_nregs
[hard_regno
][mode
])
1657 && simplify_subreg_regno (hard_regno
, innermode
,
1658 SUBREG_BYTE (operand
), mode
) < 0
1659 /* Don't reload subreg for matching reload. It is actually
1660 valid subreg in LRA. */
1661 && ! LRA_SUBREG_P (operand
))
1662 || CONSTANT_P (reg
) || GET_CODE (reg
) == PLUS
|| MEM_P (reg
))
1664 enum reg_class rclass
;
1667 /* There is a big probability that we will get the same class
1668 for the new pseudo and we will get the same insn which
1669 means infinite looping. So spill the new pseudo. */
1672 /* The class will be defined later in curr_insn_transform. */
1674 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1676 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, reg_mode
, reg
,
1677 rclass
, TRUE
, "subreg reg", &new_reg
))
1679 bool insert_before
, insert_after
;
1680 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1682 insert_before
= (type
!= OP_OUT
1683 || GET_MODE_SIZE (innermode
) > GET_MODE_SIZE (mode
));
1684 insert_after
= (type
!= OP_IN
);
1685 insert_move_for_subreg (insert_before
? &before
: NULL
,
1686 insert_after
? &after
: NULL
,
1689 SUBREG_REG (operand
) = new_reg
;
1690 lra_process_new_insns (curr_insn
, before
, after
,
1691 "Inserting subreg reload");
1694 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1695 IRA allocates hardreg to the inner pseudo reg according to its mode
1696 instead of the outermode, so the size of the hardreg may not be enough
1697 to contain the outermode operand, in that case we may need to insert
1698 reload for the reg. For the following two types of paradoxical subreg,
1699 we need to insert reload:
1700 1. If the op_type is OP_IN, and the hardreg could not be paired with
1701 other hardreg to contain the outermode operand
1702 (checked by in_hard_reg_set_p), we need to insert the reload.
1703 2. If the op_type is OP_OUT or OP_INOUT.
1705 Here is a paradoxical subreg example showing how the reload is generated:
1707 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1708 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1710 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1711 here, if reg107 is assigned to hardreg R15, because R15 is the last
1712 hardreg, compiler cannot find another hardreg to pair with R15 to
1713 contain TImode data. So we insert a TImode reload reg180 for it.
1714 After reload is inserted:
1716 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1717 (reg:DI 107 [ __comp ])) -1
1718 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1719 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1721 Two reload hard registers will be allocated to reg180 to save TImode data
1723 else if (REG_P (reg
)
1724 && REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1725 && (hard_regno
= lra_get_regno_hard_regno (REGNO (reg
))) >= 0
1726 && (hard_regno_nregs
[hard_regno
][innermode
]
1727 < hard_regno_nregs
[hard_regno
][mode
])
1728 && (regclass
= lra_get_allocno_class (REGNO (reg
)))
1730 || !in_hard_reg_set_p (reg_class_contents
[regclass
],
1733 /* The class will be defined later in curr_insn_transform. */
1734 enum reg_class rclass
1735 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1737 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, mode
, reg
,
1738 rclass
, TRUE
, "paradoxical subreg", &new_reg
))
1741 bool insert_before
, insert_after
;
1743 PUT_MODE (new_reg
, mode
);
1744 subreg
= gen_lowpart_SUBREG (innermode
, new_reg
);
1745 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1747 insert_before
= (type
!= OP_OUT
);
1748 insert_after
= (type
!= OP_IN
);
1749 insert_move_for_subreg (insert_before
? &before
: NULL
,
1750 insert_after
? &after
: NULL
,
1753 SUBREG_REG (operand
) = new_reg
;
1754 lra_process_new_insns (curr_insn
, before
, after
,
1755 "Inserting paradoxical subreg reload");
1761 /* Return TRUE if X refers for a hard register from SET. */
1763 uses_hard_regs_p (rtx x
, HARD_REG_SET set
)
1765 int i
, j
, x_hard_regno
;
1772 code
= GET_CODE (x
);
1773 mode
= GET_MODE (x
);
1777 code
= GET_CODE (x
);
1778 if (GET_MODE_SIZE (GET_MODE (x
)) > GET_MODE_SIZE (mode
))
1779 mode
= GET_MODE (x
);
1784 x_hard_regno
= get_hard_regno (x
, true);
1785 return (x_hard_regno
>= 0
1786 && overlaps_hard_reg_set_p (set
, mode
, x_hard_regno
));
1790 struct address_info ad
;
1792 decompose_mem_address (&ad
, x
);
1793 if (ad
.base_term
!= NULL
&& uses_hard_regs_p (*ad
.base_term
, set
))
1795 if (ad
.index_term
!= NULL
&& uses_hard_regs_p (*ad
.index_term
, set
))
1798 fmt
= GET_RTX_FORMAT (code
);
1799 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1803 if (uses_hard_regs_p (XEXP (x
, i
), set
))
1806 else if (fmt
[i
] == 'E')
1808 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1809 if (uses_hard_regs_p (XVECEXP (x
, i
, j
), set
))
1816 /* Return true if OP is a spilled pseudo. */
1818 spilled_pseudo_p (rtx op
)
1821 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
&& in_mem_p (REGNO (op
)));
1824 /* Return true if X is a general constant. */
1826 general_constant_p (rtx x
)
1828 return CONSTANT_P (x
) && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (x
));
1832 reg_in_class_p (rtx reg
, enum reg_class cl
)
1835 return get_reg_class (REGNO (reg
)) == NO_REGS
;
1836 return in_class_p (reg
, cl
, NULL
);
1839 /* Return true if SET of RCLASS contains no hard regs which can be
1842 prohibited_class_reg_set_mode_p (enum reg_class rclass
,
1844 enum machine_mode mode
)
1848 lra_assert (hard_reg_set_subset_p (reg_class_contents
[rclass
], set
));
1849 COPY_HARD_REG_SET (temp
, set
);
1850 AND_COMPL_HARD_REG_SET (temp
, lra_no_alloc_regs
);
1851 return (hard_reg_set_subset_p
1852 (temp
, ira_prohibited_class_mode_regs
[rclass
][mode
]));
1855 /* Major function to choose the current insn alternative and what
1856 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1857 negative we should consider only this alternative. Return false if
1858 we can not choose the alternative or find how to reload the
1861 process_alt_operands (int only_alternative
)
1864 int nop
, overall
, nalt
;
1865 int n_alternatives
= curr_static_id
->n_alternatives
;
1866 int n_operands
= curr_static_id
->n_operands
;
1867 /* LOSERS counts the operands that don't fit this alternative and
1868 would require loading. */
1871 /* REJECT is a count of how undesirable this alternative says it is
1872 if any reloading is required. If the alternative matches exactly
1873 then REJECT is ignored, but otherwise it gets this much counted
1874 against it in addition to the reloading needed. */
1876 /* This is defined by '!' or '?' alternative constraint and added to
1877 reject. But in some cases it can be ignored. */
1880 /* The number of elements in the following array. */
1881 int early_clobbered_regs_num
;
1882 /* Numbers of operands which are early clobber registers. */
1883 int early_clobbered_nops
[MAX_RECOG_OPERANDS
];
1884 enum reg_class curr_alt
[MAX_RECOG_OPERANDS
];
1885 HARD_REG_SET curr_alt_set
[MAX_RECOG_OPERANDS
];
1886 bool curr_alt_match_win
[MAX_RECOG_OPERANDS
];
1887 bool curr_alt_win
[MAX_RECOG_OPERANDS
];
1888 bool curr_alt_offmemok
[MAX_RECOG_OPERANDS
];
1889 int curr_alt_matches
[MAX_RECOG_OPERANDS
];
1890 /* The number of elements in the following array. */
1891 int curr_alt_dont_inherit_ops_num
;
1892 /* Numbers of operands whose reload pseudos should not be inherited. */
1893 int curr_alt_dont_inherit_ops
[MAX_RECOG_OPERANDS
];
1895 /* The register when the operand is a subreg of register, otherwise the
1897 rtx no_subreg_reg_operand
[MAX_RECOG_OPERANDS
];
1898 /* The register if the operand is a register or subreg of register,
1900 rtx operand_reg
[MAX_RECOG_OPERANDS
];
1901 int hard_regno
[MAX_RECOG_OPERANDS
];
1902 machine_mode biggest_mode
[MAX_RECOG_OPERANDS
];
1903 int reload_nregs
, reload_sum
;
1907 /* Calculate some data common for all alternatives to speed up the
1909 for (nop
= 0; nop
< n_operands
; nop
++)
1913 op
= no_subreg_reg_operand
[nop
] = *curr_id
->operand_loc
[nop
];
1914 /* The real hard regno of the operand after the allocation. */
1915 hard_regno
[nop
] = get_hard_regno (op
, true);
1917 operand_reg
[nop
] = reg
= op
;
1918 biggest_mode
[nop
] = GET_MODE (op
);
1919 if (GET_CODE (op
) == SUBREG
)
1921 operand_reg
[nop
] = reg
= SUBREG_REG (op
);
1922 if (GET_MODE_SIZE (biggest_mode
[nop
])
1923 < GET_MODE_SIZE (GET_MODE (reg
)))
1924 biggest_mode
[nop
] = GET_MODE (reg
);
1927 operand_reg
[nop
] = NULL_RTX
;
1928 else if (REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1929 || ((int) REGNO (reg
)
1930 == lra_get_elimination_hard_regno (REGNO (reg
))))
1931 no_subreg_reg_operand
[nop
] = reg
;
1933 operand_reg
[nop
] = no_subreg_reg_operand
[nop
]
1934 /* Just use natural mode for elimination result. It should
1935 be enough for extra constraints hooks. */
1936 = regno_reg_rtx
[hard_regno
[nop
]];
1939 /* The constraints are made of several alternatives. Each operand's
1940 constraint looks like foo,bar,... with commas separating the
1941 alternatives. The first alternatives for all operands go
1942 together, the second alternatives go together, etc.
1944 First loop over alternatives. */
1945 alternative_mask preferred
= curr_id
->preferred_alternatives
;
1946 if (only_alternative
>= 0)
1947 preferred
&= ALTERNATIVE_BIT (only_alternative
);
1949 for (nalt
= 0; nalt
< n_alternatives
; nalt
++)
1951 /* Loop over operands for one constraint alternative. */
1952 if (!TEST_BIT (preferred
, nalt
))
1955 overall
= losers
= addr_losers
= 0;
1956 static_reject
= reject
= reload_nregs
= reload_sum
= 0;
1957 for (nop
= 0; nop
< n_operands
; nop
++)
1959 int inc
= (curr_static_id
1960 ->operand_alternative
[nalt
* n_operands
+ nop
].reject
);
1961 if (lra_dump_file
!= NULL
&& inc
!= 0)
1962 fprintf (lra_dump_file
,
1963 " Staticly defined alt reject+=%d\n", inc
);
1964 static_reject
+= inc
;
1966 reject
+= static_reject
;
1967 early_clobbered_regs_num
= 0;
1969 for (nop
= 0; nop
< n_operands
; nop
++)
1973 int len
, c
, m
, i
, opalt_num
, this_alternative_matches
;
1974 bool win
, did_match
, offmemok
, early_clobber_p
;
1975 /* false => this operand can be reloaded somehow for this
1978 /* true => this operand can be reloaded if the alternative
1981 /* True if a constant forced into memory would be OK for
1984 enum reg_class this_alternative
, this_costly_alternative
;
1985 HARD_REG_SET this_alternative_set
, this_costly_alternative_set
;
1986 bool this_alternative_match_win
, this_alternative_win
;
1987 bool this_alternative_offmemok
;
1990 enum constraint_num cn
;
1992 opalt_num
= nalt
* n_operands
+ nop
;
1993 if (curr_static_id
->operand_alternative
[opalt_num
].anything_ok
)
1995 /* Fast track for no constraints at all. */
1996 curr_alt
[nop
] = NO_REGS
;
1997 CLEAR_HARD_REG_SET (curr_alt_set
[nop
]);
1998 curr_alt_win
[nop
] = true;
1999 curr_alt_match_win
[nop
] = false;
2000 curr_alt_offmemok
[nop
] = false;
2001 curr_alt_matches
[nop
] = -1;
2005 op
= no_subreg_reg_operand
[nop
];
2006 mode
= curr_operand_mode
[nop
];
2008 win
= did_match
= winreg
= offmemok
= constmemok
= false;
2011 early_clobber_p
= false;
2012 p
= curr_static_id
->operand_alternative
[opalt_num
].constraint
;
2014 this_costly_alternative
= this_alternative
= NO_REGS
;
2015 /* We update set of possible hard regs besides its class
2016 because reg class might be inaccurate. For example,
2017 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2018 is translated in HI_REGS because classes are merged by
2019 pairs and there is no accurate intermediate class. */
2020 CLEAR_HARD_REG_SET (this_alternative_set
);
2021 CLEAR_HARD_REG_SET (this_costly_alternative_set
);
2022 this_alternative_win
= false;
2023 this_alternative_match_win
= false;
2024 this_alternative_offmemok
= false;
2025 this_alternative_matches
= -1;
2027 /* An empty constraint should be excluded by the fast
2029 lra_assert (*p
!= 0 && *p
!= ',');
2032 /* Scan this alternative's specs for this operand; set WIN
2033 if the operand fits any letter in this alternative.
2034 Otherwise, clear BADOP if this operand could fit some
2035 letter after reloads, or set WINREG if this operand could
2036 fit after reloads provided the constraint allows some
2041 switch ((c
= *p
, len
= CONSTRAINT_LEN (c
, p
)), c
)
2051 early_clobber_p
= true;
2055 op_reject
+= LRA_MAX_REJECT
;
2058 op_reject
+= LRA_LOSER_COST_FACTOR
;
2062 /* Ignore rest of this alternative. */
2066 case '0': case '1': case '2': case '3': case '4':
2067 case '5': case '6': case '7': case '8': case '9':
2072 m
= strtoul (p
, &end
, 10);
2075 lra_assert (nop
> m
);
2077 this_alternative_matches
= m
;
2078 m_hregno
= get_hard_regno (*curr_id
->operand_loc
[m
], false);
2079 /* We are supposed to match a previous operand.
2080 If we do, we win if that one did. If we do
2081 not, count both of the operands as losers.
2082 (This is too conservative, since most of the
2083 time only a single reload insn will be needed
2084 to make the two operands win. As a result,
2085 this alternative may be rejected when it is
2086 actually desirable.) */
2088 if (operands_match_p (*curr_id
->operand_loc
[nop
],
2089 *curr_id
->operand_loc
[m
], m_hregno
))
2091 /* We should reject matching of an early
2092 clobber operand if the matching operand is
2093 not dying in the insn. */
2094 if (! curr_static_id
->operand
[m
].early_clobber
2095 || operand_reg
[nop
] == NULL_RTX
2096 || (find_regno_note (curr_insn
, REG_DEAD
,
2098 || REGNO (op
) == REGNO (operand_reg
[m
])))
2103 /* If we are matching a non-offsettable
2104 address where an offsettable address was
2105 expected, then we must reject this
2106 combination, because we can't reload
2108 if (curr_alt_offmemok
[m
]
2109 && MEM_P (*curr_id
->operand_loc
[m
])
2110 && curr_alt
[m
] == NO_REGS
&& ! curr_alt_win
[m
])
2115 /* Operands don't match. Both operands must
2116 allow a reload register, otherwise we
2117 cannot make them match. */
2118 if (curr_alt
[m
] == NO_REGS
)
2120 /* Retroactively mark the operand we had to
2121 match as a loser, if it wasn't already and
2122 it wasn't matched to a register constraint
2123 (e.g it might be matched by memory). */
2125 && (operand_reg
[m
] == NULL_RTX
2126 || hard_regno
[m
] < 0))
2130 += (ira_reg_class_max_nregs
[curr_alt
[m
]]
2131 [GET_MODE (*curr_id
->operand_loc
[m
])]);
2134 /* Prefer matching earlyclobber alternative as
2135 it results in less hard regs required for
2136 the insn than a non-matching earlyclobber
2138 if (curr_static_id
->operand
[m
].early_clobber
)
2140 if (lra_dump_file
!= NULL
)
2143 " %d Matching earlyclobber alt:"
2148 /* Otherwise we prefer no matching
2149 alternatives because it gives more freedom
2151 else if (operand_reg
[nop
] == NULL_RTX
2152 || (find_regno_note (curr_insn
, REG_DEAD
,
2153 REGNO (operand_reg
[nop
]))
2156 if (lra_dump_file
!= NULL
)
2159 " %d Matching alt: reject+=2\n",
2164 /* If we have to reload this operand and some
2165 previous operand also had to match the same
2166 thing as this operand, we don't know how to do
2168 if (!match_p
|| !curr_alt_win
[m
])
2170 for (i
= 0; i
< nop
; i
++)
2171 if (curr_alt_matches
[i
] == m
)
2179 /* This can be fixed with reloads if the operand
2180 we are supposed to match can be fixed with
2183 this_alternative
= curr_alt
[m
];
2184 COPY_HARD_REG_SET (this_alternative_set
, curr_alt_set
[m
]);
2185 winreg
= this_alternative
!= NO_REGS
;
2191 || general_constant_p (op
)
2192 || spilled_pseudo_p (op
))
2198 cn
= lookup_constraint (p
);
2199 switch (get_constraint_type (cn
))
2202 cl
= reg_class_for_constraint (cn
);
2208 if (CONST_INT_P (op
)
2209 && insn_const_int_ok_for_constraint (INTVAL (op
), cn
))
2215 && satisfies_memory_constraint_p (op
, cn
))
2217 else if (spilled_pseudo_p (op
))
2220 /* If we didn't already win, we can reload constants
2221 via force_const_mem or put the pseudo value into
2222 memory, or make other memory by reloading the
2223 address like for 'o'. */
2224 if (CONST_POOL_OK_P (mode
, op
)
2225 || MEM_P (op
) || REG_P (op
)
2226 /* We can restore the equiv insn by a
2228 || equiv_substition_p
[nop
])
2235 /* If we didn't already win, we can reload the address
2236 into a base register. */
2237 if (satisfies_address_constraint_p (op
, cn
))
2239 cl
= base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2245 if (constraint_satisfied_p (op
, cn
))
2249 case CT_SPECIAL_MEMORY
:
2251 && satisfies_memory_constraint_p (op
, cn
))
2253 else if (spilled_pseudo_p (op
))
2260 this_alternative
= reg_class_subunion
[this_alternative
][cl
];
2261 IOR_HARD_REG_SET (this_alternative_set
,
2262 reg_class_contents
[cl
]);
2265 this_costly_alternative
2266 = reg_class_subunion
[this_costly_alternative
][cl
];
2267 IOR_HARD_REG_SET (this_costly_alternative_set
,
2268 reg_class_contents
[cl
]);
2270 if (mode
== BLKmode
)
2275 if (hard_regno
[nop
] >= 0
2276 && in_hard_reg_set_p (this_alternative_set
,
2277 mode
, hard_regno
[nop
]))
2279 else if (hard_regno
[nop
] < 0
2280 && in_class_p (op
, this_alternative
, NULL
))
2285 if (c
!= ' ' && c
!= '\t')
2286 costly_p
= c
== '*';
2288 while ((p
+= len
), c
);
2290 scratch_p
= (operand_reg
[nop
] != NULL_RTX
2291 && lra_former_scratch_p (REGNO (operand_reg
[nop
])));
2292 /* Record which operands fit this alternative. */
2295 this_alternative_win
= true;
2296 if (operand_reg
[nop
] != NULL_RTX
)
2298 if (hard_regno
[nop
] >= 0)
2300 if (in_hard_reg_set_p (this_costly_alternative_set
,
2301 mode
, hard_regno
[nop
]))
2303 if (lra_dump_file
!= NULL
)
2304 fprintf (lra_dump_file
,
2305 " %d Costly set: reject++\n",
2312 /* Prefer won reg to spilled pseudo under other
2313 equal conditions for possibe inheritance. */
2316 if (lra_dump_file
!= NULL
)
2319 " %d Non pseudo reload: reject++\n",
2323 if (in_class_p (operand_reg
[nop
],
2324 this_costly_alternative
, NULL
))
2326 if (lra_dump_file
!= NULL
)
2329 " %d Non pseudo costly reload:"
2335 /* We simulate the behavior of old reload here.
2336 Although scratches need hard registers and it
2337 might result in spilling other pseudos, no reload
2338 insns are generated for the scratches. So it
2339 might cost something but probably less than old
2340 reload pass believes. */
2343 if (lra_dump_file
!= NULL
)
2344 fprintf (lra_dump_file
,
2345 " %d Scratch win: reject+=2\n",
2352 this_alternative_match_win
= true;
2355 int const_to_mem
= 0;
2358 reject
+= op_reject
;
2359 /* Never do output reload of stack pointer. It makes
2360 impossible to do elimination when SP is changed in
2362 if (op
== stack_pointer_rtx
&& ! frame_pointer_needed
2363 && curr_static_id
->operand
[nop
].type
!= OP_IN
)
2366 /* If this alternative asks for a specific reg class, see if there
2367 is at least one allocatable register in that class. */
2369 = (this_alternative
== NO_REGS
2370 || (hard_reg_set_subset_p
2371 (reg_class_contents
[this_alternative
],
2372 lra_no_alloc_regs
)));
2374 /* For asms, verify that the class for this alternative is possible
2375 for the mode that is specified. */
2376 if (!no_regs_p
&& INSN_CODE (curr_insn
) < 0)
2379 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2380 if (HARD_REGNO_MODE_OK (i
, mode
)
2381 && in_hard_reg_set_p (reg_class_contents
[this_alternative
],
2384 if (i
== FIRST_PSEUDO_REGISTER
)
2388 /* If this operand accepts a register, and if the
2389 register class has at least one allocatable register,
2390 then this operand can be reloaded. */
2391 if (winreg
&& !no_regs_p
)
2396 if (lra_dump_file
!= NULL
)
2397 fprintf (lra_dump_file
,
2398 " alt=%d: Bad operand -- refuse\n",
2403 if (this_alternative
!= NO_REGS
)
2405 HARD_REG_SET available_regs
;
2407 COPY_HARD_REG_SET (available_regs
,
2408 reg_class_contents
[this_alternative
]);
2409 AND_COMPL_HARD_REG_SET
2411 ira_prohibited_class_mode_regs
[this_alternative
][mode
]);
2412 AND_COMPL_HARD_REG_SET (available_regs
, lra_no_alloc_regs
);
2413 if (hard_reg_set_empty_p (available_regs
))
2415 /* There are no hard regs holding a value of given
2419 this_alternative
= NO_REGS
;
2420 if (lra_dump_file
!= NULL
)
2421 fprintf (lra_dump_file
,
2422 " %d Using memory because of"
2423 " a bad mode: reject+=2\n",
2429 if (lra_dump_file
!= NULL
)
2430 fprintf (lra_dump_file
,
2431 " alt=%d: Wrong mode -- refuse\n",
2438 /* If not assigned pseudo has a class which a subset of
2439 required reg class, it is a less costly alternative
2440 as the pseudo still can get a hard reg of necessary
2442 if (! no_regs_p
&& REG_P (op
) && hard_regno
[nop
] < 0
2443 && (cl
= get_reg_class (REGNO (op
))) != NO_REGS
2444 && ira_class_subset_p
[this_alternative
][cl
])
2446 if (lra_dump_file
!= NULL
)
2449 " %d Super set class reg: reject-=3\n", nop
);
2453 this_alternative_offmemok
= offmemok
;
2454 if (this_costly_alternative
!= NO_REGS
)
2456 if (lra_dump_file
!= NULL
)
2457 fprintf (lra_dump_file
,
2458 " %d Costly loser: reject++\n", nop
);
2461 /* If the operand is dying, has a matching constraint,
2462 and satisfies constraints of the matched operand
2463 which failed to satisfy the own constraints, most probably
2464 the reload for this operand will be gone. */
2465 if (this_alternative_matches
>= 0
2466 && !curr_alt_win
[this_alternative_matches
]
2468 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (op
))
2469 && (hard_regno
[nop
] >= 0
2470 ? in_hard_reg_set_p (this_alternative_set
,
2471 mode
, hard_regno
[nop
])
2472 : in_class_p (op
, this_alternative
, NULL
)))
2474 if (lra_dump_file
!= NULL
)
2477 " %d Dying matched operand reload: reject++\n",
2483 /* Strict_low_part requires to reload the register
2484 not the sub-register. In this case we should
2485 check that a final reload hard reg can hold the
2487 if (curr_static_id
->operand
[nop
].strict_low
2489 && hard_regno
[nop
] < 0
2490 && GET_CODE (*curr_id
->operand_loc
[nop
]) == SUBREG
2491 && ira_class_hard_regs_num
[this_alternative
] > 0
2492 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2493 [this_alternative
][0],
2495 (*curr_id
->operand_loc
[nop
])))
2497 if (lra_dump_file
!= NULL
)
2500 " alt=%d: Strict low subreg reload -- refuse\n",
2506 if (operand_reg
[nop
] != NULL_RTX
2507 /* Output operands and matched input operands are
2508 not inherited. The following conditions do not
2509 exactly describe the previous statement but they
2510 are pretty close. */
2511 && curr_static_id
->operand
[nop
].type
!= OP_OUT
2512 && (this_alternative_matches
< 0
2513 || curr_static_id
->operand
[nop
].type
!= OP_IN
))
2515 int last_reload
= (lra_reg_info
[ORIGINAL_REGNO
2519 /* The value of reload_sum has sense only if we
2520 process insns in their order. It happens only on
2521 the first constraints sub-pass when we do most of
2523 if (lra_constraint_iter
== 1 && last_reload
> bb_reload_num
)
2524 reload_sum
+= last_reload
- bb_reload_num
;
2526 /* If this is a constant that is reloaded into the
2527 desired class by copying it to memory first, count
2528 that as another reload. This is consistent with
2529 other code and is required to avoid choosing another
2530 alternative when the constant is moved into memory.
2531 Note that the test here is precisely the same as in
2532 the code below that calls force_const_mem. */
2533 if (CONST_POOL_OK_P (mode
, op
)
2534 && ((targetm
.preferred_reload_class
2535 (op
, this_alternative
) == NO_REGS
)
2536 || no_input_reloads_p
))
2543 /* Alternative loses if it requires a type of reload not
2544 permitted for this insn. We can always reload
2545 objects with a REG_UNUSED note. */
2546 if ((curr_static_id
->operand
[nop
].type
!= OP_IN
2547 && no_output_reloads_p
2548 && ! find_reg_note (curr_insn
, REG_UNUSED
, op
))
2549 || (curr_static_id
->operand
[nop
].type
!= OP_OUT
2550 && no_input_reloads_p
&& ! const_to_mem
)
2551 || (this_alternative_matches
>= 0
2552 && (no_input_reloads_p
2553 || (no_output_reloads_p
2554 && (curr_static_id
->operand
2555 [this_alternative_matches
].type
!= OP_IN
)
2556 && ! find_reg_note (curr_insn
, REG_UNUSED
,
2557 no_subreg_reg_operand
2558 [this_alternative_matches
])))))
2560 if (lra_dump_file
!= NULL
)
2563 " alt=%d: No input/otput reload -- refuse\n",
2568 /* Alternative loses if it required class pseudo can not
2569 hold value of required mode. Such insns can be
2570 described by insn definitions with mode iterators. */
2571 if (GET_MODE (*curr_id
->operand_loc
[nop
]) != VOIDmode
2572 && ! hard_reg_set_empty_p (this_alternative_set
)
2573 /* It is common practice for constraints to use a
2574 class which does not have actually enough regs to
2575 hold the value (e.g. x86 AREG for mode requiring
2576 more one general reg). Therefore we have 2
2577 conditions to check that the reload pseudo can
2578 not hold the mode value. */
2579 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2580 [this_alternative
][0],
2581 GET_MODE (*curr_id
->operand_loc
[nop
]))
2582 /* The above condition is not enough as the first
2583 reg in ira_class_hard_regs can be not aligned for
2584 multi-words mode values. */
2585 && (prohibited_class_reg_set_mode_p
2586 (this_alternative
, this_alternative_set
,
2587 GET_MODE (*curr_id
->operand_loc
[nop
]))))
2589 if (lra_dump_file
!= NULL
)
2590 fprintf (lra_dump_file
,
2591 " alt=%d: reload pseudo for op %d "
2592 " can not hold the mode value -- refuse\n",
2597 /* Check strong discouragement of reload of non-constant
2598 into class THIS_ALTERNATIVE. */
2599 if (! CONSTANT_P (op
) && ! no_regs_p
2600 && (targetm
.preferred_reload_class
2601 (op
, this_alternative
) == NO_REGS
2602 || (curr_static_id
->operand
[nop
].type
== OP_OUT
2603 && (targetm
.preferred_output_reload_class
2604 (op
, this_alternative
) == NO_REGS
))))
2606 if (lra_dump_file
!= NULL
)
2607 fprintf (lra_dump_file
,
2608 " %d Non-prefered reload: reject+=%d\n",
2609 nop
, LRA_MAX_REJECT
);
2610 reject
+= LRA_MAX_REJECT
;
2613 if (! (MEM_P (op
) && offmemok
)
2614 && ! (const_to_mem
&& constmemok
))
2616 /* We prefer to reload pseudos over reloading other
2617 things, since such reloads may be able to be
2618 eliminated later. So bump REJECT in other cases.
2619 Don't do this in the case where we are forcing a
2620 constant into memory and it will then win since
2621 we don't want to have a different alternative
2623 if (! (REG_P (op
) && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2625 if (lra_dump_file
!= NULL
)
2628 " %d Non-pseudo reload: reject+=2\n",
2635 += ira_reg_class_max_nregs
[this_alternative
][mode
];
2637 if (SMALL_REGISTER_CLASS_P (this_alternative
))
2639 if (lra_dump_file
!= NULL
)
2642 " %d Small class reload: reject+=%d\n",
2643 nop
, LRA_LOSER_COST_FACTOR
/ 2);
2644 reject
+= LRA_LOSER_COST_FACTOR
/ 2;
2648 /* We are trying to spill pseudo into memory. It is
2649 usually more costly than moving to a hard register
2650 although it might takes the same number of
2653 Non-pseudo spill may happen also. Suppose a target allows both
2654 register and memory in the operand constraint alternatives,
2655 then it's typical that an eliminable register has a substition
2656 of "base + offset" which can either be reloaded by a simple
2657 "new_reg <= base + offset" which will match the register
2658 constraint, or a similar reg addition followed by further spill
2659 to and reload from memory which will match the memory
2660 constraint, but this memory spill will be much more costly
2663 Code below increases the reject for both pseudo and non-pseudo
2666 && !(MEM_P (op
) && offmemok
)
2667 && !(REG_P (op
) && hard_regno
[nop
] < 0))
2669 if (lra_dump_file
!= NULL
)
2672 " %d Spill %spseudo into memory: reject+=3\n",
2673 nop
, REG_P (op
) ? "" : "Non-");
2675 if (VECTOR_MODE_P (mode
))
2677 /* Spilling vectors into memory is usually more
2678 costly as they contain big values. */
2679 if (lra_dump_file
!= NULL
)
2682 " %d Spill vector pseudo: reject+=2\n",
2688 #ifdef SECONDARY_MEMORY_NEEDED
2689 /* If reload requires moving value through secondary
2690 memory, it will need one more insn at least. */
2691 if (this_alternative
!= NO_REGS
2692 && REG_P (op
) && (cl
= get_reg_class (REGNO (op
))) != NO_REGS
2693 && ((curr_static_id
->operand
[nop
].type
!= OP_OUT
2694 && SECONDARY_MEMORY_NEEDED (cl
, this_alternative
,
2696 || (curr_static_id
->operand
[nop
].type
!= OP_IN
2697 && SECONDARY_MEMORY_NEEDED (this_alternative
, cl
,
2701 /* Input reloads can be inherited more often than output
2702 reloads can be removed, so penalize output
2704 if (!REG_P (op
) || curr_static_id
->operand
[nop
].type
!= OP_IN
)
2706 if (lra_dump_file
!= NULL
)
2709 " %d Non input pseudo reload: reject++\n",
2714 if (MEM_P (op
) && offmemok
)
2716 else if (curr_static_id
->operand
[nop
].type
== OP_INOUT
)
2718 if (lra_dump_file
!= NULL
)
2721 " %d Input/Output reload: reject+=%d\n",
2722 nop
, LRA_LOSER_COST_FACTOR
);
2723 reject
+= LRA_LOSER_COST_FACTOR
;
2727 if (early_clobber_p
&& ! scratch_p
)
2729 if (lra_dump_file
!= NULL
)
2730 fprintf (lra_dump_file
,
2731 " %d Early clobber: reject++\n", nop
);
2734 /* ??? We check early clobbers after processing all operands
2735 (see loop below) and there we update the costs more.
2736 Should we update the cost (may be approximately) here
2737 because of early clobber register reloads or it is a rare
2738 or non-important thing to be worth to do it. */
2739 overall
= (losers
* LRA_LOSER_COST_FACTOR
+ reject
2740 - (addr_losers
== losers
? static_reject
: 0));
2741 if ((best_losers
== 0 || losers
!= 0) && best_overall
< overall
)
2743 if (lra_dump_file
!= NULL
)
2744 fprintf (lra_dump_file
,
2745 " alt=%d,overall=%d,losers=%d -- refuse\n",
2746 nalt
, overall
, losers
);
2750 curr_alt
[nop
] = this_alternative
;
2751 COPY_HARD_REG_SET (curr_alt_set
[nop
], this_alternative_set
);
2752 curr_alt_win
[nop
] = this_alternative_win
;
2753 curr_alt_match_win
[nop
] = this_alternative_match_win
;
2754 curr_alt_offmemok
[nop
] = this_alternative_offmemok
;
2755 curr_alt_matches
[nop
] = this_alternative_matches
;
2757 if (this_alternative_matches
>= 0
2758 && !did_match
&& !this_alternative_win
)
2759 curr_alt_win
[this_alternative_matches
] = false;
2761 if (early_clobber_p
&& operand_reg
[nop
] != NULL_RTX
)
2762 early_clobbered_nops
[early_clobbered_regs_num
++] = nop
;
2765 if (curr_insn_set
!= NULL_RTX
&& n_operands
== 2
2766 /* Prevent processing non-move insns. */
2767 && (GET_CODE (SET_SRC (curr_insn_set
)) == SUBREG
2768 || SET_SRC (curr_insn_set
) == no_subreg_reg_operand
[1])
2769 && ((! curr_alt_win
[0] && ! curr_alt_win
[1]
2770 && REG_P (no_subreg_reg_operand
[0])
2771 && REG_P (no_subreg_reg_operand
[1])
2772 && (reg_in_class_p (no_subreg_reg_operand
[0], curr_alt
[1])
2773 || reg_in_class_p (no_subreg_reg_operand
[1], curr_alt
[0])))
2774 || (! curr_alt_win
[0] && curr_alt_win
[1]
2775 && REG_P (no_subreg_reg_operand
[1])
2776 /* Check that we reload memory not the memory
2778 && ! (curr_alt_offmemok
[0]
2779 && MEM_P (no_subreg_reg_operand
[0]))
2780 && reg_in_class_p (no_subreg_reg_operand
[1], curr_alt
[0]))
2781 || (curr_alt_win
[0] && ! curr_alt_win
[1]
2782 && REG_P (no_subreg_reg_operand
[0])
2783 /* Check that we reload memory not the memory
2785 && ! (curr_alt_offmemok
[1]
2786 && MEM_P (no_subreg_reg_operand
[1]))
2787 && reg_in_class_p (no_subreg_reg_operand
[0], curr_alt
[1])
2788 && (! CONST_POOL_OK_P (curr_operand_mode
[1],
2789 no_subreg_reg_operand
[1])
2790 || (targetm
.preferred_reload_class
2791 (no_subreg_reg_operand
[1],
2792 (enum reg_class
) curr_alt
[1]) != NO_REGS
))
2793 /* If it is a result of recent elimination in move
2794 insn we can transform it into an add still by
2795 using this alternative. */
2796 && GET_CODE (no_subreg_reg_operand
[1]) != PLUS
)))
2798 /* We have a move insn and a new reload insn will be similar
2799 to the current insn. We should avoid such situation as
2800 it results in LRA cycling. */
2801 if (lra_dump_file
!= NULL
)
2802 fprintf (lra_dump_file
,
2803 " Cycle danger: overall += LRA_MAX_REJECT\n");
2804 overall
+= LRA_MAX_REJECT
;
2807 curr_alt_dont_inherit_ops_num
= 0;
2808 for (nop
= 0; nop
< early_clobbered_regs_num
; nop
++)
2810 int i
, j
, clobbered_hard_regno
, first_conflict_j
, last_conflict_j
;
2811 HARD_REG_SET temp_set
;
2813 i
= early_clobbered_nops
[nop
];
2814 if ((! curr_alt_win
[i
] && ! curr_alt_match_win
[i
])
2815 || hard_regno
[i
] < 0)
2817 lra_assert (operand_reg
[i
] != NULL_RTX
);
2818 clobbered_hard_regno
= hard_regno
[i
];
2819 CLEAR_HARD_REG_SET (temp_set
);
2820 add_to_hard_reg_set (&temp_set
, biggest_mode
[i
], clobbered_hard_regno
);
2821 first_conflict_j
= last_conflict_j
= -1;
2822 for (j
= 0; j
< n_operands
; j
++)
2824 /* We don't want process insides of match_operator and
2825 match_parallel because otherwise we would process
2826 their operands once again generating a wrong
2828 || curr_static_id
->operand
[j
].is_operator
)
2830 else if ((curr_alt_matches
[j
] == i
&& curr_alt_match_win
[j
])
2831 || (curr_alt_matches
[i
] == j
&& curr_alt_match_win
[i
]))
2833 /* If we don't reload j-th operand, check conflicts. */
2834 else if ((curr_alt_win
[j
] || curr_alt_match_win
[j
])
2835 && uses_hard_regs_p (*curr_id
->operand_loc
[j
], temp_set
))
2837 if (first_conflict_j
< 0)
2838 first_conflict_j
= j
;
2839 last_conflict_j
= j
;
2841 if (last_conflict_j
< 0)
2843 /* If earlyclobber operand conflicts with another
2844 non-matching operand which is actually the same register
2845 as the earlyclobber operand, it is better to reload the
2846 another operand as an operand matching the earlyclobber
2847 operand can be also the same. */
2848 if (first_conflict_j
== last_conflict_j
2849 && operand_reg
[last_conflict_j
] != NULL_RTX
2850 && ! curr_alt_match_win
[last_conflict_j
]
2851 && REGNO (operand_reg
[i
]) == REGNO (operand_reg
[last_conflict_j
]))
2853 curr_alt_win
[last_conflict_j
] = false;
2854 curr_alt_dont_inherit_ops
[curr_alt_dont_inherit_ops_num
++]
2857 /* Early clobber was already reflected in REJECT. */
2858 lra_assert (reject
> 0);
2859 if (lra_dump_file
!= NULL
)
2862 " %d Conflict early clobber reload: reject--\n",
2865 overall
+= LRA_LOSER_COST_FACTOR
- 1;
2869 /* We need to reload early clobbered register and the
2870 matched registers. */
2871 for (j
= 0; j
< n_operands
; j
++)
2872 if (curr_alt_matches
[j
] == i
)
2874 curr_alt_match_win
[j
] = false;
2876 overall
+= LRA_LOSER_COST_FACTOR
;
2878 if (! curr_alt_match_win
[i
])
2879 curr_alt_dont_inherit_ops
[curr_alt_dont_inherit_ops_num
++] = i
;
2882 /* Remember pseudos used for match reloads are never
2884 lra_assert (curr_alt_matches
[i
] >= 0);
2885 curr_alt_win
[curr_alt_matches
[i
]] = false;
2887 curr_alt_win
[i
] = curr_alt_match_win
[i
] = false;
2889 /* Early clobber was already reflected in REJECT. */
2890 lra_assert (reject
> 0);
2891 if (lra_dump_file
!= NULL
)
2894 " %d Matched conflict early clobber reloads: "
2898 overall
+= LRA_LOSER_COST_FACTOR
- 1;
2901 if (lra_dump_file
!= NULL
)
2902 fprintf (lra_dump_file
, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2903 nalt
, overall
, losers
, reload_nregs
);
2905 /* If this alternative can be made to work by reloading, and it
2906 needs less reloading than the others checked so far, record
2907 it as the chosen goal for reloading. */
2908 if ((best_losers
!= 0 && losers
== 0)
2909 || (((best_losers
== 0 && losers
== 0)
2910 || (best_losers
!= 0 && losers
!= 0))
2911 && (best_overall
> overall
2912 || (best_overall
== overall
2913 /* If the cost of the reloads is the same,
2914 prefer alternative which requires minimal
2915 number of reload regs. */
2916 && (reload_nregs
< best_reload_nregs
2917 || (reload_nregs
== best_reload_nregs
2918 && (best_reload_sum
< reload_sum
2919 || (best_reload_sum
== reload_sum
2920 && nalt
< goal_alt_number
))))))))
2922 for (nop
= 0; nop
< n_operands
; nop
++)
2924 goal_alt_win
[nop
] = curr_alt_win
[nop
];
2925 goal_alt_match_win
[nop
] = curr_alt_match_win
[nop
];
2926 goal_alt_matches
[nop
] = curr_alt_matches
[nop
];
2927 goal_alt
[nop
] = curr_alt
[nop
];
2928 goal_alt_offmemok
[nop
] = curr_alt_offmemok
[nop
];
2930 goal_alt_dont_inherit_ops_num
= curr_alt_dont_inherit_ops_num
;
2931 for (nop
= 0; nop
< curr_alt_dont_inherit_ops_num
; nop
++)
2932 goal_alt_dont_inherit_ops
[nop
] = curr_alt_dont_inherit_ops
[nop
];
2933 goal_alt_swapped
= curr_swapped
;
2934 best_overall
= overall
;
2935 best_losers
= losers
;
2936 best_reload_nregs
= reload_nregs
;
2937 best_reload_sum
= reload_sum
;
2938 goal_alt_number
= nalt
;
2941 /* Everything is satisfied. Do not process alternatives
2950 /* Make reload base reg from address AD. */
2952 base_to_reg (struct address_info
*ad
)
2956 rtx new_inner
= NULL_RTX
;
2957 rtx new_reg
= NULL_RTX
;
2959 rtx_insn
*last_insn
= get_last_insn();
2961 lra_assert (ad
->disp
== ad
->disp_term
);
2962 cl
= base_reg_class (ad
->mode
, ad
->as
, ad
->base_outer_code
,
2963 get_index_code (ad
));
2964 new_reg
= lra_create_new_reg (GET_MODE (*ad
->base
), NULL_RTX
,
2966 new_inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
), new_reg
,
2967 ad
->disp_term
== NULL
2970 if (!valid_address_p (ad
->mode
, new_inner
, ad
->as
))
2972 insn
= emit_insn (gen_rtx_SET (new_reg
, *ad
->base
));
2973 code
= recog_memoized (insn
);
2976 delete_insns_since (last_insn
);
2983 /* Make reload base reg + disp from address AD. Return the new pseudo. */
2985 base_plus_disp_to_reg (struct address_info
*ad
)
2990 lra_assert (ad
->base
== ad
->base_term
&& ad
->disp
== ad
->disp_term
);
2991 cl
= base_reg_class (ad
->mode
, ad
->as
, ad
->base_outer_code
,
2992 get_index_code (ad
));
2993 new_reg
= lra_create_new_reg (GET_MODE (*ad
->base_term
), NULL_RTX
,
2995 lra_emit_add (new_reg
, *ad
->base_term
, *ad
->disp_term
);
2999 /* Make reload of index part of address AD. Return the new
3002 index_part_to_reg (struct address_info
*ad
)
3006 new_reg
= lra_create_new_reg (GET_MODE (*ad
->index
), NULL_RTX
,
3007 INDEX_REG_CLASS
, "index term");
3008 expand_mult (GET_MODE (*ad
->index
), *ad
->index_term
,
3009 GEN_INT (get_index_scale (ad
)), new_reg
, 1);
3013 /* Return true if we can add a displacement to address AD, even if that
3014 makes the address invalid. The fix-up code requires any new address
3015 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3017 can_add_disp_p (struct address_info
*ad
)
3019 return (!ad
->autoinc_p
3020 && ad
->segment
== NULL
3021 && ad
->base
== ad
->base_term
3022 && ad
->disp
== ad
->disp_term
);
3025 /* Make equiv substitution in address AD. Return true if a substitution
3028 equiv_address_substitution (struct address_info
*ad
)
3030 rtx base_reg
, new_base_reg
, index_reg
, new_index_reg
, *base_term
, *index_term
;
3031 HOST_WIDE_INT disp
, scale
;
3034 base_term
= strip_subreg (ad
->base_term
);
3035 if (base_term
== NULL
)
3036 base_reg
= new_base_reg
= NULL_RTX
;
3039 base_reg
= *base_term
;
3040 new_base_reg
= get_equiv_with_elimination (base_reg
, curr_insn
);
3042 index_term
= strip_subreg (ad
->index_term
);
3043 if (index_term
== NULL
)
3044 index_reg
= new_index_reg
= NULL_RTX
;
3047 index_reg
= *index_term
;
3048 new_index_reg
= get_equiv_with_elimination (index_reg
, curr_insn
);
3050 if (base_reg
== new_base_reg
&& index_reg
== new_index_reg
)
3054 if (lra_dump_file
!= NULL
)
3056 fprintf (lra_dump_file
, "Changing address in insn %d ",
3057 INSN_UID (curr_insn
));
3058 dump_value_slim (lra_dump_file
, *ad
->outer
, 1);
3060 if (base_reg
!= new_base_reg
)
3062 if (REG_P (new_base_reg
))
3064 *base_term
= new_base_reg
;
3067 else if (GET_CODE (new_base_reg
) == PLUS
3068 && REG_P (XEXP (new_base_reg
, 0))
3069 && CONST_INT_P (XEXP (new_base_reg
, 1))
3070 && can_add_disp_p (ad
))
3072 disp
+= INTVAL (XEXP (new_base_reg
, 1));
3073 *base_term
= XEXP (new_base_reg
, 0);
3076 if (ad
->base_term2
!= NULL
)
3077 *ad
->base_term2
= *ad
->base_term
;
3079 if (index_reg
!= new_index_reg
)
3081 if (REG_P (new_index_reg
))
3083 *index_term
= new_index_reg
;
3086 else if (GET_CODE (new_index_reg
) == PLUS
3087 && REG_P (XEXP (new_index_reg
, 0))
3088 && CONST_INT_P (XEXP (new_index_reg
, 1))
3089 && can_add_disp_p (ad
)
3090 && (scale
= get_index_scale (ad
)))
3092 disp
+= INTVAL (XEXP (new_index_reg
, 1)) * scale
;
3093 *index_term
= XEXP (new_index_reg
, 0);
3099 if (ad
->disp
!= NULL
)
3100 *ad
->disp
= plus_constant (GET_MODE (*ad
->inner
), *ad
->disp
, disp
);
3103 *ad
->inner
= plus_constant (GET_MODE (*ad
->inner
), *ad
->inner
, disp
);
3104 update_address (ad
);
3108 if (lra_dump_file
!= NULL
)
3111 fprintf (lra_dump_file
, " -- no change\n");
3114 fprintf (lra_dump_file
, " on equiv ");
3115 dump_value_slim (lra_dump_file
, *ad
->outer
, 1);
3116 fprintf (lra_dump_file
, "\n");
3122 /* Major function to make reloads for an address in operand NOP or
3123 check its correctness (If CHECK_ONLY_P is true). The supported
3126 1) an address that existed before LRA started, at which point it
3127 must have been valid. These addresses are subject to elimination
3128 and may have become invalid due to the elimination offset being out
3131 2) an address created by forcing a constant to memory
3132 (force_const_to_mem). The initial form of these addresses might
3133 not be valid, and it is this function's job to make them valid.
3135 3) a frame address formed from a register and a (possibly zero)
3136 constant offset. As above, these addresses might not be valid and
3137 this function must make them so.
3139 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3140 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3141 address. Return true for any RTL change.
3143 The function is a helper function which does not produce all
3144 transformations (when CHECK_ONLY_P is false) which can be
3145 necessary. It does just basic steps. To do all necessary
3146 transformations use function process_address. */
3148 process_address_1 (int nop
, bool check_only_p
,
3149 rtx_insn
**before
, rtx_insn
**after
)
3151 struct address_info ad
;
3153 HOST_WIDE_INT scale
;
3154 rtx op
= *curr_id
->operand_loc
[nop
];
3155 const char *constraint
= curr_static_id
->operand
[nop
].constraint
;
3156 enum constraint_num cn
= lookup_constraint (constraint
);
3157 bool change_p
= false;
3160 && GET_MODE (op
) == BLKmode
3161 && GET_CODE (XEXP (op
, 0)) == SCRATCH
)
3164 if (insn_extra_address_constraint (cn
))
3165 decompose_lea_address (&ad
, curr_id
->operand_loc
[nop
]);
3166 /* Do not attempt to decompose arbitrary addresses generated by combine
3167 for asm operands with loose constraints, e.g 'X'. */
3169 && !(get_constraint_type (cn
) == CT_FIXED_FORM
3170 && constraint_satisfied_p (op
, cn
)))
3171 decompose_mem_address (&ad
, op
);
3172 else if (GET_CODE (op
) == SUBREG
3173 && MEM_P (SUBREG_REG (op
)))
3174 decompose_mem_address (&ad
, SUBREG_REG (op
));
3177 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3178 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3179 when INDEX_REG_CLASS is a single register class. */
3180 if (ad
.base_term
!= NULL
3181 && ad
.index_term
!= NULL
3182 && ira_class_hard_regs_num
[INDEX_REG_CLASS
] == 1
3183 && REG_P (*ad
.base_term
)
3184 && REG_P (*ad
.index_term
)
3185 && in_class_p (*ad
.base_term
, INDEX_REG_CLASS
, NULL
)
3186 && ! in_class_p (*ad
.index_term
, INDEX_REG_CLASS
, NULL
))
3188 std::swap (ad
.base
, ad
.index
);
3189 std::swap (ad
.base_term
, ad
.index_term
);
3192 change_p
= equiv_address_substitution (&ad
);
3193 if (ad
.base_term
!= NULL
3194 && (process_addr_reg
3195 (ad
.base_term
, check_only_p
, before
,
3197 && !(REG_P (*ad
.base_term
)
3198 && find_regno_note (curr_insn
, REG_DEAD
,
3199 REGNO (*ad
.base_term
)) != NULL_RTX
)
3201 base_reg_class (ad
.mode
, ad
.as
, ad
.base_outer_code
,
3202 get_index_code (&ad
)))))
3205 if (ad
.base_term2
!= NULL
)
3206 *ad
.base_term2
= *ad
.base_term
;
3208 if (ad
.index_term
!= NULL
3209 && process_addr_reg (ad
.index_term
, check_only_p
,
3210 before
, NULL
, INDEX_REG_CLASS
))
3213 /* Target hooks sometimes don't treat extra-constraint addresses as
3214 legitimate address_operands, so handle them specially. */
3215 if (insn_extra_address_constraint (cn
)
3216 && satisfies_address_constraint_p (&ad
, cn
))
3222 /* There are three cases where the shape of *AD.INNER may now be invalid:
3224 1) the original address was valid, but either elimination or
3225 equiv_address_substitution was applied and that made
3226 the address invalid.
3228 2) the address is an invalid symbolic address created by
3231 3) the address is a frame address with an invalid offset.
3233 4) the address is a frame address with an invalid base.
3235 All these cases involve a non-autoinc address, so there is no
3236 point revalidating other types. */
3237 if (ad
.autoinc_p
|| valid_address_p (&ad
))
3240 /* Any index existed before LRA started, so we can assume that the
3241 presence and shape of the index is valid. */
3242 push_to_sequence (*before
);
3243 lra_assert (ad
.disp
== ad
.disp_term
);
3244 if (ad
.base
== NULL
)
3246 if (ad
.index
== NULL
)
3249 rtx_insn
*last
= get_last_insn ();
3251 enum reg_class cl
= base_reg_class (ad
.mode
, ad
.as
,
3253 rtx addr
= *ad
.inner
;
3255 new_reg
= lra_create_new_reg (Pmode
, NULL_RTX
, cl
, "addr");
3258 /* addr => lo_sum (new_base, addr), case (2) above. */
3259 insn
= emit_insn (gen_rtx_SET
3261 gen_rtx_HIGH (Pmode
, copy_rtx (addr
))));
3262 code
= recog_memoized (insn
);
3265 *ad
.inner
= gen_rtx_LO_SUM (Pmode
, new_reg
, addr
);
3266 if (! valid_address_p (ad
.mode
, *ad
.outer
, ad
.as
))
3268 /* Try to put lo_sum into register. */
3269 insn
= emit_insn (gen_rtx_SET
3271 gen_rtx_LO_SUM (Pmode
, new_reg
, addr
)));
3272 code
= recog_memoized (insn
);
3275 *ad
.inner
= new_reg
;
3276 if (! valid_address_p (ad
.mode
, *ad
.outer
, ad
.as
))
3286 delete_insns_since (last
);
3291 /* addr => new_base, case (2) above. */
3292 lra_emit_move (new_reg
, addr
);
3294 for (insn
= last
== NULL_RTX
? get_insns () : NEXT_INSN (last
);
3296 insn
= NEXT_INSN (insn
))
3297 if (recog_memoized (insn
) < 0)
3299 if (insn
!= NULL_RTX
)
3301 /* Do nothing if we cannot generate right insns.
3302 This is analogous to reload pass behavior. */
3303 delete_insns_since (last
);
3307 *ad
.inner
= new_reg
;
3312 /* index * scale + disp => new base + index * scale,
3314 enum reg_class cl
= base_reg_class (ad
.mode
, ad
.as
, PLUS
,
3315 GET_CODE (*ad
.index
));
3317 lra_assert (INDEX_REG_CLASS
!= NO_REGS
);
3318 new_reg
= lra_create_new_reg (Pmode
, NULL_RTX
, cl
, "disp");
3319 lra_emit_move (new_reg
, *ad
.disp
);
3320 *ad
.inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
),
3321 new_reg
, *ad
.index
);
3324 else if (ad
.index
== NULL
)
3329 rtx_insn
*insns
, *last_insn
;
3330 /* Try to reload base into register only if the base is invalid
3331 for the address but with valid offset, case (4) above. */
3333 new_reg
= base_to_reg (&ad
);
3335 /* base + disp => new base, cases (1) and (3) above. */
3336 /* Another option would be to reload the displacement into an
3337 index register. However, postreload has code to optimize
3338 address reloads that have the same base and different
3339 displacements, so reloading into an index register would
3340 not necessarily be a win. */
3341 if (new_reg
== NULL_RTX
)
3342 new_reg
= base_plus_disp_to_reg (&ad
);
3343 insns
= get_insns ();
3344 last_insn
= get_last_insn ();
3345 /* If we generated at least two insns, try last insn source as
3346 an address. If we succeed, we generate one less insn. */
3347 if (last_insn
!= insns
&& (set
= single_set (last_insn
)) != NULL_RTX
3348 && GET_CODE (SET_SRC (set
)) == PLUS
3349 && REG_P (XEXP (SET_SRC (set
), 0))
3350 && CONSTANT_P (XEXP (SET_SRC (set
), 1)))
3352 *ad
.inner
= SET_SRC (set
);
3353 if (valid_address_p (ad
.mode
, *ad
.outer
, ad
.as
))
3355 *ad
.base_term
= XEXP (SET_SRC (set
), 0);
3356 *ad
.disp_term
= XEXP (SET_SRC (set
), 1);
3357 cl
= base_reg_class (ad
.mode
, ad
.as
, ad
.base_outer_code
,
3358 get_index_code (&ad
));
3359 regno
= REGNO (*ad
.base_term
);
3360 if (regno
>= FIRST_PSEUDO_REGISTER
3361 && cl
!= lra_get_allocno_class (regno
))
3362 lra_change_class (regno
, cl
, " Change to", true);
3363 new_reg
= SET_SRC (set
);
3364 delete_insns_since (PREV_INSN (last_insn
));
3367 /* Try if target can split displacement into legitimite new disp
3368 and offset. If it's the case, we replace the last insn with
3369 insns for base + offset => new_reg and set new_reg + new disp
3371 last_insn
= get_last_insn ();
3372 if ((set
= single_set (last_insn
)) != NULL_RTX
3373 && GET_CODE (SET_SRC (set
)) == PLUS
3374 && REG_P (XEXP (SET_SRC (set
), 0))
3375 && REGNO (XEXP (SET_SRC (set
), 0)) < FIRST_PSEUDO_REGISTER
3376 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3378 rtx addend
, disp
= XEXP (SET_SRC (set
), 1);
3379 if (targetm
.legitimize_address_displacement (&disp
, &addend
,
3382 rtx_insn
*new_insns
;
3384 lra_emit_add (new_reg
, XEXP (SET_SRC (set
), 0), addend
);
3385 new_insns
= get_insns ();
3387 new_reg
= gen_rtx_PLUS (Pmode
, new_reg
, disp
);
3388 delete_insns_since (PREV_INSN (last_insn
));
3389 add_insn (new_insns
);
3390 insns
= get_insns ();
3395 *ad
.inner
= new_reg
;
3397 else if (ad
.disp_term
!= NULL
)
3399 /* base + scale * index + disp => new base + scale * index,
3401 new_reg
= base_plus_disp_to_reg (&ad
);
3402 *ad
.inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
),
3403 new_reg
, *ad
.index
);
3405 else if ((scale
= get_index_scale (&ad
)) == 1)
3407 /* The last transformation to one reg will be made in
3408 curr_insn_transform function. */
3412 else if (scale
!= 0)
3414 /* base + scale * index => base + new_reg,
3416 Index part of address may become invalid. For example, we
3417 changed pseudo on the equivalent memory and a subreg of the
3418 pseudo onto the memory of different mode for which the scale is
3420 new_reg
= index_part_to_reg (&ad
);
3421 *ad
.inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
),
3422 *ad
.base_term
, new_reg
);
3426 enum reg_class cl
= base_reg_class (ad
.mode
, ad
.as
,
3428 rtx addr
= *ad
.inner
;
3430 new_reg
= lra_create_new_reg (Pmode
, NULL_RTX
, cl
, "addr");
3431 /* addr => new_base. */
3432 lra_emit_move (new_reg
, addr
);
3433 *ad
.inner
= new_reg
;
3435 *before
= get_insns ();
3440 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3441 Use process_address_1 as a helper function. Return true for any
3444 If CHECK_ONLY_P is true, just check address correctness. Return
3445 false if the address correct. */
3447 process_address (int nop
, bool check_only_p
,
3448 rtx_insn
**before
, rtx_insn
**after
)
3452 while (process_address_1 (nop
, check_only_p
, before
, after
))
3461 /* Emit insns to reload VALUE into a new register. VALUE is an
3462 auto-increment or auto-decrement RTX whose operand is a register or
3463 memory location; so reloading involves incrementing that location.
3464 IN is either identical to VALUE, or some cheaper place to reload
3465 value being incremented/decremented from.
3467 INC_AMOUNT is the number to increment or decrement by (always
3468 positive and ignored for POST_MODIFY/PRE_MODIFY).
3470 Return pseudo containing the result. */
3472 emit_inc (enum reg_class new_rclass
, rtx in
, rtx value
, int inc_amount
)
3474 /* REG or MEM to be copied and incremented. */
3475 rtx incloc
= XEXP (value
, 0);
3476 /* Nonzero if increment after copying. */
3477 int post
= (GET_CODE (value
) == POST_DEC
|| GET_CODE (value
) == POST_INC
3478 || GET_CODE (value
) == POST_MODIFY
);
3483 rtx real_in
= in
== value
? incloc
: in
;
3487 if (GET_CODE (value
) == PRE_MODIFY
|| GET_CODE (value
) == POST_MODIFY
)
3489 lra_assert (GET_CODE (XEXP (value
, 1)) == PLUS
3490 || GET_CODE (XEXP (value
, 1)) == MINUS
);
3491 lra_assert (rtx_equal_p (XEXP (XEXP (value
, 1), 0), XEXP (value
, 0)));
3492 plus_p
= GET_CODE (XEXP (value
, 1)) == PLUS
;
3493 inc
= XEXP (XEXP (value
, 1), 1);
3497 if (GET_CODE (value
) == PRE_DEC
|| GET_CODE (value
) == POST_DEC
)
3498 inc_amount
= -inc_amount
;
3500 inc
= GEN_INT (inc_amount
);
3503 if (! post
&& REG_P (incloc
))
3506 result
= lra_create_new_reg (GET_MODE (value
), value
, new_rclass
,
3509 if (real_in
!= result
)
3511 /* First copy the location to the result register. */
3512 lra_assert (REG_P (result
));
3513 emit_insn (gen_move_insn (result
, real_in
));
3516 /* We suppose that there are insns to add/sub with the constant
3517 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3518 old reload worked with this assumption. If the assumption
3519 becomes wrong, we should use approach in function
3520 base_plus_disp_to_reg. */
3523 /* See if we can directly increment INCLOC. */
3524 last
= get_last_insn ();
3525 add_insn
= emit_insn (plus_p
3526 ? gen_add2_insn (incloc
, inc
)
3527 : gen_sub2_insn (incloc
, inc
));
3529 code
= recog_memoized (add_insn
);
3532 if (! post
&& result
!= incloc
)
3533 emit_insn (gen_move_insn (result
, incloc
));
3536 delete_insns_since (last
);
3539 /* If couldn't do the increment directly, must increment in RESULT.
3540 The way we do this depends on whether this is pre- or
3541 post-increment. For pre-increment, copy INCLOC to the reload
3542 register, increment it there, then save back. */
3545 if (real_in
!= result
)
3546 emit_insn (gen_move_insn (result
, real_in
));
3548 emit_insn (gen_add2_insn (result
, inc
));
3550 emit_insn (gen_sub2_insn (result
, inc
));
3551 if (result
!= incloc
)
3552 emit_insn (gen_move_insn (incloc
, result
));
3558 Because this might be a jump insn or a compare, and because
3559 RESULT may not be available after the insn in an input
3560 reload, we must do the incrementing before the insn being
3563 We have already copied IN to RESULT. Increment the copy in
3564 RESULT, save that back, then decrement RESULT so it has
3565 the original value. */
3567 emit_insn (gen_add2_insn (result
, inc
));
3569 emit_insn (gen_sub2_insn (result
, inc
));
3570 emit_insn (gen_move_insn (incloc
, result
));
3571 /* Restore non-modified value for the result. We prefer this
3572 way because it does not require an additional hard
3576 if (CONST_INT_P (inc
))
3577 emit_insn (gen_add2_insn (result
,
3578 gen_int_mode (-INTVAL (inc
),
3579 GET_MODE (result
))));
3581 emit_insn (gen_sub2_insn (result
, inc
));
3584 emit_insn (gen_add2_insn (result
, inc
));
3589 /* Return true if the current move insn does not need processing as we
3590 already know that it satisfies its constraints. */
3592 simple_move_p (void)
3595 enum reg_class dclass
, sclass
;
3597 lra_assert (curr_insn_set
!= NULL_RTX
);
3598 dest
= SET_DEST (curr_insn_set
);
3599 src
= SET_SRC (curr_insn_set
);
3601 /* If the instruction has multiple sets we need to process it even if it
3602 is single_set. This can happen if one or more of the SETs are dead.
3604 if (multiple_sets (curr_insn
))
3607 return ((dclass
= get_op_class (dest
)) != NO_REGS
3608 && (sclass
= get_op_class (src
)) != NO_REGS
3609 /* The backend guarantees that register moves of cost 2
3610 never need reloads. */
3611 && targetm
.register_move_cost (GET_MODE (src
), sclass
, dclass
) == 2);
3614 /* Swap operands NOP and NOP + 1. */
3616 swap_operands (int nop
)
3618 std::swap (curr_operand_mode
[nop
], curr_operand_mode
[nop
+ 1]);
3619 std::swap (original_subreg_reg_mode
[nop
], original_subreg_reg_mode
[nop
+ 1]);
3620 std::swap (*curr_id
->operand_loc
[nop
], *curr_id
->operand_loc
[nop
+ 1]);
3621 std::swap (equiv_substition_p
[nop
], equiv_substition_p
[nop
+ 1]);
3622 /* Swap the duplicates too. */
3623 lra_update_dup (curr_id
, nop
);
3624 lra_update_dup (curr_id
, nop
+ 1);
3627 /* Main entry point of the constraint code: search the body of the
3628 current insn to choose the best alternative. It is mimicking insn
3629 alternative cost calculation model of former reload pass. That is
3630 because machine descriptions were written to use this model. This
3631 model can be changed in future. Make commutative operand exchange
3634 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3635 constraints. Return true if any change happened during function
3638 If CHECK_ONLY_P is true then don't do any transformation. Just
3639 check that the insn satisfies all constraints. If the insn does
3640 not satisfy any constraint, return true. */
3642 curr_insn_transform (bool check_only_p
)
3649 signed char goal_alt_matched
[MAX_RECOG_OPERANDS
][MAX_RECOG_OPERANDS
];
3650 signed char match_inputs
[MAX_RECOG_OPERANDS
+ 1];
3651 signed char outputs
[MAX_RECOG_OPERANDS
+ 1];
3652 rtx_insn
*before
, *after
;
3654 /* Flag that the insn has been changed through a transformation. */
3657 #ifdef SECONDARY_MEMORY_NEEDED
3660 int max_regno_before
;
3661 int reused_alternative_num
;
3663 curr_insn_set
= single_set (curr_insn
);
3664 if (curr_insn_set
!= NULL_RTX
&& simple_move_p ())
3667 no_input_reloads_p
= no_output_reloads_p
= false;
3668 goal_alt_number
= -1;
3669 change_p
= sec_mem_p
= false;
3670 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3671 reloads; neither are insns that SET cc0. Insns that use CC0 are
3672 not allowed to have any input reloads. */
3673 if (JUMP_P (curr_insn
) || CALL_P (curr_insn
))
3674 no_output_reloads_p
= true;
3676 if (HAVE_cc0
&& reg_referenced_p (cc0_rtx
, PATTERN (curr_insn
)))
3677 no_input_reloads_p
= true;
3678 if (HAVE_cc0
&& reg_set_p (cc0_rtx
, PATTERN (curr_insn
)))
3679 no_output_reloads_p
= true;
3681 n_operands
= curr_static_id
->n_operands
;
3682 n_alternatives
= curr_static_id
->n_alternatives
;
3684 /* Just return "no reloads" if insn has no operands with
3686 if (n_operands
== 0 || n_alternatives
== 0)
3689 max_regno_before
= max_reg_num ();
3691 for (i
= 0; i
< n_operands
; i
++)
3693 goal_alt_matched
[i
][0] = -1;
3694 goal_alt_matches
[i
] = -1;
3697 commutative
= curr_static_id
->commutative
;
3699 /* Now see what we need for pseudos that didn't get hard regs or got
3700 the wrong kind of hard reg. For this, we must consider all the
3701 operands together against the register constraints. */
3703 best_losers
= best_overall
= INT_MAX
;
3704 best_reload_sum
= 0;
3706 curr_swapped
= false;
3707 goal_alt_swapped
= false;
3710 /* Make equivalence substitution and memory subreg elimination
3711 before address processing because an address legitimacy can
3712 depend on memory mode. */
3713 for (i
= 0; i
< n_operands
; i
++)
3716 bool op_change_p
= false;
3718 if (curr_static_id
->operand
[i
].is_operator
)
3721 old
= op
= *curr_id
->operand_loc
[i
];
3722 if (GET_CODE (old
) == SUBREG
)
3723 old
= SUBREG_REG (old
);
3724 subst
= get_equiv_with_elimination (old
, curr_insn
);
3725 original_subreg_reg_mode
[i
] = VOIDmode
;
3726 equiv_substition_p
[i
] = false;
3729 equiv_substition_p
[i
] = true;
3730 subst
= copy_rtx (subst
);
3731 lra_assert (REG_P (old
));
3732 if (GET_CODE (op
) != SUBREG
)
3733 *curr_id
->operand_loc
[i
] = subst
;
3736 SUBREG_REG (op
) = subst
;
3737 if (GET_MODE (subst
) == VOIDmode
)
3738 original_subreg_reg_mode
[i
] = GET_MODE (old
);
3740 if (lra_dump_file
!= NULL
)
3742 fprintf (lra_dump_file
,
3743 "Changing pseudo %d in operand %i of insn %u on equiv ",
3744 REGNO (old
), i
, INSN_UID (curr_insn
));
3745 dump_value_slim (lra_dump_file
, subst
, 1);
3746 fprintf (lra_dump_file
, "\n");
3748 op_change_p
= change_p
= true;
3750 if (simplify_operand_subreg (i
, GET_MODE (old
)) || op_change_p
)
3753 lra_update_dup (curr_id
, i
);
3757 /* Reload address registers and displacements. We do it before
3758 finding an alternative because of memory constraints. */
3759 before
= after
= NULL
;
3760 for (i
= 0; i
< n_operands
; i
++)
3761 if (! curr_static_id
->operand
[i
].is_operator
3762 && process_address (i
, check_only_p
, &before
, &after
))
3767 lra_update_dup (curr_id
, i
);
3771 /* If we've changed the instruction then any alternative that
3772 we chose previously may no longer be valid. */
3773 lra_set_used_insn_alternative (curr_insn
, -1);
3775 if (! check_only_p
&& curr_insn_set
!= NULL_RTX
3776 && check_and_process_move (&change_p
, &sec_mem_p
))
3781 reused_alternative_num
= check_only_p
? -1 : curr_id
->used_insn_alternative
;
3782 if (lra_dump_file
!= NULL
&& reused_alternative_num
>= 0)
3783 fprintf (lra_dump_file
, "Reusing alternative %d for insn #%u\n",
3784 reused_alternative_num
, INSN_UID (curr_insn
));
3786 if (process_alt_operands (reused_alternative_num
))
3790 return ! alt_p
|| best_losers
!= 0;
3792 /* If insn is commutative (it's safe to exchange a certain pair of
3793 operands) then we need to try each alternative twice, the second
3794 time matching those two operands as if we had exchanged them. To
3795 do this, really exchange them in operands.
3797 If we have just tried the alternatives the second time, return
3798 operands to normal and drop through. */
3800 if (reused_alternative_num
< 0 && commutative
>= 0)
3802 curr_swapped
= !curr_swapped
;
3805 swap_operands (commutative
);
3809 swap_operands (commutative
);
3812 if (! alt_p
&& ! sec_mem_p
)
3814 /* No alternative works with reloads?? */
3815 if (INSN_CODE (curr_insn
) >= 0)
3816 fatal_insn ("unable to generate reloads for:", curr_insn
);
3817 error_for_asm (curr_insn
,
3818 "inconsistent operand constraints in an %<asm%>");
3819 /* Avoid further trouble with this insn. Don't generate use
3820 pattern here as we could use the insn SP offset. */
3821 lra_set_insn_deleted (curr_insn
);
3825 /* If the best alternative is with operands 1 and 2 swapped, swap
3826 them. Update the operand numbers of any reloads already
3829 if (goal_alt_swapped
)
3831 if (lra_dump_file
!= NULL
)
3832 fprintf (lra_dump_file
, " Commutative operand exchange in insn %u\n",
3833 INSN_UID (curr_insn
));
3835 /* Swap the duplicates too. */
3836 swap_operands (commutative
);
3840 #ifdef SECONDARY_MEMORY_NEEDED
3841 /* Some target macros SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3842 too conservatively. So we use the secondary memory only if there
3843 is no any alternative without reloads. */
3844 use_sec_mem_p
= false;
3846 use_sec_mem_p
= true;
3849 for (i
= 0; i
< n_operands
; i
++)
3850 if (! goal_alt_win
[i
] && ! goal_alt_match_win
[i
])
3852 use_sec_mem_p
= i
< n_operands
;
3857 int in
= -1, out
= -1;
3858 rtx new_reg
, src
, dest
, rld
;
3859 machine_mode sec_mode
, rld_mode
;
3861 lra_assert (curr_insn_set
!= NULL_RTX
&& sec_mem_p
);
3862 dest
= SET_DEST (curr_insn_set
);
3863 src
= SET_SRC (curr_insn_set
);
3864 for (i
= 0; i
< n_operands
; i
++)
3865 if (*curr_id
->operand_loc
[i
] == dest
)
3867 else if (*curr_id
->operand_loc
[i
] == src
)
3869 for (i
= 0; i
< curr_static_id
->n_dups
; i
++)
3870 if (out
< 0 && *curr_id
->dup_loc
[i
] == dest
)
3871 out
= curr_static_id
->dup_num
[i
];
3872 else if (in
< 0 && *curr_id
->dup_loc
[i
] == src
)
3873 in
= curr_static_id
->dup_num
[i
];
3874 lra_assert (out
>= 0 && in
>= 0
3875 && curr_static_id
->operand
[out
].type
== OP_OUT
3876 && curr_static_id
->operand
[in
].type
== OP_IN
);
3877 rld
= (GET_MODE_SIZE (GET_MODE (dest
)) <= GET_MODE_SIZE (GET_MODE (src
))
3879 rld_mode
= GET_MODE (rld
);
3880 #ifdef SECONDARY_MEMORY_NEEDED_MODE
3881 sec_mode
= SECONDARY_MEMORY_NEEDED_MODE (rld_mode
);
3883 sec_mode
= rld_mode
;
3885 new_reg
= lra_create_new_reg (sec_mode
, NULL_RTX
,
3886 NO_REGS
, "secondary");
3887 /* If the mode is changed, it should be wider. */
3888 lra_assert (GET_MODE_SIZE (sec_mode
) >= GET_MODE_SIZE (rld_mode
));
3889 if (sec_mode
!= rld_mode
)
3891 /* If the target says specifically to use another mode for
3892 secondary memory moves we can not reuse the original
3894 after
= emit_spill_move (false, new_reg
, dest
);
3895 lra_process_new_insns (curr_insn
, NULL
, after
,
3896 "Inserting the sec. move");
3897 /* We may have non null BEFORE here (e.g. after address
3899 push_to_sequence (before
);
3900 before
= emit_spill_move (true, new_reg
, src
);
3902 before
= get_insns ();
3904 lra_process_new_insns (curr_insn
, before
, NULL
, "Changing on");
3905 lra_set_insn_deleted (curr_insn
);
3907 else if (dest
== rld
)
3909 *curr_id
->operand_loc
[out
] = new_reg
;
3910 lra_update_dup (curr_id
, out
);
3911 after
= emit_spill_move (false, new_reg
, dest
);
3912 lra_process_new_insns (curr_insn
, NULL
, after
,
3913 "Inserting the sec. move");
3917 *curr_id
->operand_loc
[in
] = new_reg
;
3918 lra_update_dup (curr_id
, in
);
3919 /* See comments above. */
3920 push_to_sequence (before
);
3921 before
= emit_spill_move (true, new_reg
, src
);
3923 before
= get_insns ();
3925 lra_process_new_insns (curr_insn
, before
, NULL
,
3926 "Inserting the sec. move");
3928 lra_update_insn_regno_info (curr_insn
);
3933 lra_assert (goal_alt_number
>= 0);
3934 lra_set_used_insn_alternative (curr_insn
, goal_alt_number
);
3936 if (lra_dump_file
!= NULL
)
3940 fprintf (lra_dump_file
, " Choosing alt %d in insn %u:",
3941 goal_alt_number
, INSN_UID (curr_insn
));
3942 for (i
= 0; i
< n_operands
; i
++)
3944 p
= (curr_static_id
->operand_alternative
3945 [goal_alt_number
* n_operands
+ i
].constraint
);
3948 fprintf (lra_dump_file
, " (%d) ", i
);
3949 for (; *p
!= '\0' && *p
!= ',' && *p
!= '#'; p
++)
3950 fputc (*p
, lra_dump_file
);
3952 if (INSN_CODE (curr_insn
) >= 0
3953 && (p
= get_insn_name (INSN_CODE (curr_insn
))) != NULL
)
3954 fprintf (lra_dump_file
, " {%s}", p
);
3955 if (curr_id
->sp_offset
!= 0)
3956 fprintf (lra_dump_file
, " (sp_off=%" HOST_WIDE_INT_PRINT
"d)",
3957 curr_id
->sp_offset
);
3958 fprintf (lra_dump_file
, "\n");
3961 /* Right now, for any pair of operands I and J that are required to
3962 match, with J < I, goal_alt_matches[I] is J. Add I to
3963 goal_alt_matched[J]. */
3965 for (i
= 0; i
< n_operands
; i
++)
3966 if ((j
= goal_alt_matches
[i
]) >= 0)
3968 for (k
= 0; goal_alt_matched
[j
][k
] >= 0; k
++)
3970 /* We allow matching one output operand and several input
3973 || (curr_static_id
->operand
[j
].type
== OP_OUT
3974 && curr_static_id
->operand
[i
].type
== OP_IN
3975 && (curr_static_id
->operand
3976 [goal_alt_matched
[j
][0]].type
== OP_IN
)));
3977 goal_alt_matched
[j
][k
] = i
;
3978 goal_alt_matched
[j
][k
+ 1] = -1;
3981 for (i
= 0; i
< n_operands
; i
++)
3982 goal_alt_win
[i
] |= goal_alt_match_win
[i
];
3984 /* Any constants that aren't allowed and can't be reloaded into
3985 registers are here changed into memory references. */
3986 for (i
= 0; i
< n_operands
; i
++)
3987 if (goal_alt_win
[i
])
3990 enum reg_class new_class
;
3991 rtx reg
= *curr_id
->operand_loc
[i
];
3993 if (GET_CODE (reg
) == SUBREG
)
3994 reg
= SUBREG_REG (reg
);
3996 if (REG_P (reg
) && (regno
= REGNO (reg
)) >= FIRST_PSEUDO_REGISTER
)
3998 bool ok_p
= in_class_p (reg
, goal_alt
[i
], &new_class
);
4000 if (new_class
!= NO_REGS
&& get_reg_class (regno
) != new_class
)
4003 lra_change_class (regno
, new_class
, " Change to", true);
4009 const char *constraint
;
4011 rtx op
= *curr_id
->operand_loc
[i
];
4012 rtx subreg
= NULL_RTX
;
4013 machine_mode mode
= curr_operand_mode
[i
];
4015 if (GET_CODE (op
) == SUBREG
)
4018 op
= SUBREG_REG (op
);
4019 mode
= GET_MODE (op
);
4022 if (CONST_POOL_OK_P (mode
, op
)
4023 && ((targetm
.preferred_reload_class
4024 (op
, (enum reg_class
) goal_alt
[i
]) == NO_REGS
)
4025 || no_input_reloads_p
))
4027 rtx tem
= force_const_mem (mode
, op
);
4030 if (subreg
!= NULL_RTX
)
4031 tem
= gen_rtx_SUBREG (mode
, tem
, SUBREG_BYTE (subreg
));
4033 *curr_id
->operand_loc
[i
] = tem
;
4034 lra_update_dup (curr_id
, i
);
4035 process_address (i
, false, &before
, &after
);
4037 /* If the alternative accepts constant pool refs directly
4038 there will be no reload needed at all. */
4039 if (subreg
!= NULL_RTX
)
4041 /* Skip alternatives before the one requested. */
4042 constraint
= (curr_static_id
->operand_alternative
4043 [goal_alt_number
* n_operands
+ i
].constraint
);
4045 (c
= *constraint
) && c
!= ',' && c
!= '#';
4046 constraint
+= CONSTRAINT_LEN (c
, constraint
))
4048 enum constraint_num cn
= lookup_constraint (constraint
);
4049 if ((insn_extra_memory_constraint (cn
)
4050 || insn_extra_special_memory_constraint (cn
))
4051 && satisfies_memory_constraint_p (tem
, cn
))
4054 if (c
== '\0' || c
== ',' || c
== '#')
4057 goal_alt_win
[i
] = true;
4063 for (i
= 0; i
< n_operands
; i
++)
4066 bool optional_p
= false;
4068 rtx op
= *curr_id
->operand_loc
[i
];
4070 if (goal_alt_win
[i
])
4072 if (goal_alt
[i
] == NO_REGS
4074 /* When we assign NO_REGS it means that we will not
4075 assign a hard register to the scratch pseudo by
4076 assigment pass and the scratch pseudo will be
4077 spilled. Spilled scratch pseudos are transformed
4078 back to scratches at the LRA end. */
4079 && lra_former_scratch_operand_p (curr_insn
, i
)
4080 && lra_former_scratch_p (REGNO (op
)))
4082 int regno
= REGNO (op
);
4083 lra_change_class (regno
, NO_REGS
, " Change to", true);
4084 if (lra_get_regno_hard_regno (regno
) >= 0)
4085 /* We don't have to mark all insn affected by the
4086 spilled pseudo as there is only one such insn, the
4088 reg_renumber
[regno
] = -1;
4089 lra_assert (bitmap_single_bit_set_p
4090 (&lra_reg_info
[REGNO (op
)].insn_bitmap
));
4092 /* We can do an optional reload. If the pseudo got a hard
4093 reg, we might improve the code through inheritance. If
4094 it does not get a hard register we coalesce memory/memory
4095 moves later. Ignore move insns to avoid cycling. */
4097 && lra_undo_inheritance_iter
< LRA_MAX_INHERITANCE_PASSES
4098 && goal_alt
[i
] != NO_REGS
&& REG_P (op
)
4099 && (regno
= REGNO (op
)) >= FIRST_PSEUDO_REGISTER
4100 && regno
< new_regno_start
4101 && ! lra_former_scratch_p (regno
)
4102 && reg_renumber
[regno
] < 0
4103 /* Check that the optional reload pseudo will be able to
4104 hold given mode value. */
4105 && ! (prohibited_class_reg_set_mode_p
4106 (goal_alt
[i
], reg_class_contents
[goal_alt
[i
]],
4107 PSEUDO_REGNO_MODE (regno
)))
4108 && (curr_insn_set
== NULL_RTX
4109 || !((REG_P (SET_SRC (curr_insn_set
))
4110 || MEM_P (SET_SRC (curr_insn_set
))
4111 || GET_CODE (SET_SRC (curr_insn_set
)) == SUBREG
)
4112 && (REG_P (SET_DEST (curr_insn_set
))
4113 || MEM_P (SET_DEST (curr_insn_set
))
4114 || GET_CODE (SET_DEST (curr_insn_set
)) == SUBREG
))))
4120 /* Operands that match previous ones have already been handled. */
4121 if (goal_alt_matches
[i
] >= 0)
4124 /* We should not have an operand with a non-offsettable address
4125 appearing where an offsettable address will do. It also may
4126 be a case when the address should be special in other words
4127 not a general one (e.g. it needs no index reg). */
4128 if (goal_alt_matched
[i
][0] == -1 && goal_alt_offmemok
[i
] && MEM_P (op
))
4130 enum reg_class rclass
;
4131 rtx
*loc
= &XEXP (op
, 0);
4132 enum rtx_code code
= GET_CODE (*loc
);
4134 push_to_sequence (before
);
4135 rclass
= base_reg_class (GET_MODE (op
), MEM_ADDR_SPACE (op
),
4137 if (GET_RTX_CLASS (code
) == RTX_AUTOINC
)
4138 new_reg
= emit_inc (rclass
, *loc
, *loc
,
4139 /* This value does not matter for MODIFY. */
4140 GET_MODE_SIZE (GET_MODE (op
)));
4141 else if (get_reload_reg (OP_IN
, Pmode
, *loc
, rclass
, FALSE
,
4142 "offsetable address", &new_reg
))
4143 lra_emit_move (new_reg
, *loc
);
4144 before
= get_insns ();
4147 lra_update_dup (curr_id
, i
);
4149 else if (goal_alt_matched
[i
][0] == -1)
4153 int hard_regno
, byte
;
4154 enum op_type type
= curr_static_id
->operand
[i
].type
;
4156 loc
= curr_id
->operand_loc
[i
];
4157 mode
= curr_operand_mode
[i
];
4158 if (GET_CODE (*loc
) == SUBREG
)
4160 reg
= SUBREG_REG (*loc
);
4161 byte
= SUBREG_BYTE (*loc
);
4163 /* Strict_low_part requires reload the register not
4164 the sub-register. */
4165 && (curr_static_id
->operand
[i
].strict_low
4166 || (GET_MODE_SIZE (mode
)
4167 <= GET_MODE_SIZE (GET_MODE (reg
))
4169 = get_try_hard_regno (REGNO (reg
))) >= 0
4170 && (simplify_subreg_regno
4172 GET_MODE (reg
), byte
, mode
) < 0)
4173 && (goal_alt
[i
] == NO_REGS
4174 || (simplify_subreg_regno
4175 (ira_class_hard_regs
[goal_alt
[i
]][0],
4176 GET_MODE (reg
), byte
, mode
) >= 0)))))
4178 /* An OP_INOUT is required when reloading a subreg of a
4179 mode wider than a word to ensure that data beyond the
4180 word being reloaded is preserved. Also automatically
4181 ensure that strict_low_part reloads are made into
4182 OP_INOUT which should already be true from the backend
4185 && (curr_static_id
->operand
[i
].strict_low
4186 || (GET_MODE_SIZE (GET_MODE (reg
)) > UNITS_PER_WORD
4187 && (GET_MODE_SIZE (mode
)
4188 < GET_MODE_SIZE (GET_MODE (reg
))))))
4190 loc
= &SUBREG_REG (*loc
);
4191 mode
= GET_MODE (*loc
);
4195 if (get_reload_reg (type
, mode
, old
, goal_alt
[i
],
4196 loc
!= curr_id
->operand_loc
[i
], "", &new_reg
)
4199 push_to_sequence (before
);
4200 lra_emit_move (new_reg
, old
);
4201 before
= get_insns ();
4206 && find_reg_note (curr_insn
, REG_UNUSED
, old
) == NULL_RTX
)
4209 lra_emit_move (type
== OP_INOUT
? copy_rtx (old
) : old
, new_reg
);
4211 after
= get_insns ();
4215 for (j
= 0; j
< goal_alt_dont_inherit_ops_num
; j
++)
4216 if (goal_alt_dont_inherit_ops
[j
] == i
)
4218 lra_set_regno_unique_value (REGNO (new_reg
));
4221 lra_update_dup (curr_id
, i
);
4223 else if (curr_static_id
->operand
[i
].type
== OP_IN
4224 && (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4227 /* generate reloads for input and matched outputs. */
4228 match_inputs
[0] = i
;
4229 match_inputs
[1] = -1;
4230 match_reload (goal_alt_matched
[i
][0], match_inputs
, outputs
,
4231 goal_alt
[i
], &before
, &after
,
4232 curr_static_id
->operand_alternative
4233 [goal_alt_number
* n_operands
+ goal_alt_matched
[i
][0]]
4236 else if (curr_static_id
->operand
[i
].type
== OP_OUT
4237 && (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4239 /* Generate reloads for output and matched inputs. */
4240 match_reload (i
, goal_alt_matched
[i
], outputs
, goal_alt
[i
], &before
,
4241 &after
, curr_static_id
->operand_alternative
4242 [goal_alt_number
* n_operands
+ i
].earlyclobber
);
4243 else if (curr_static_id
->operand
[i
].type
== OP_IN
4244 && (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4247 /* Generate reloads for matched inputs. */
4248 match_inputs
[0] = i
;
4249 for (j
= 0; (k
= goal_alt_matched
[i
][j
]) >= 0; j
++)
4250 match_inputs
[j
+ 1] = k
;
4251 match_inputs
[j
+ 1] = -1;
4252 match_reload (-1, match_inputs
, outputs
, goal_alt
[i
], &before
,
4256 /* We must generate code in any case when function
4257 process_alt_operands decides that it is possible. */
4260 /* Memorise processed outputs so that output remaining to be processed
4261 can avoid using the same register value (see match_reload). */
4262 if (curr_static_id
->operand
[i
].type
== OP_OUT
)
4264 outputs
[n_outputs
++] = i
;
4265 outputs
[n_outputs
] = -1;
4272 lra_assert (REG_P (reg
));
4273 regno
= REGNO (reg
);
4274 op
= *curr_id
->operand_loc
[i
]; /* Substitution. */
4275 if (GET_CODE (op
) == SUBREG
)
4276 op
= SUBREG_REG (op
);
4277 gcc_assert (REG_P (op
) && (int) REGNO (op
) >= new_regno_start
);
4278 bitmap_set_bit (&lra_optional_reload_pseudos
, REGNO (op
));
4279 lra_reg_info
[REGNO (op
)].restore_rtx
= reg
;
4280 if (lra_dump_file
!= NULL
)
4281 fprintf (lra_dump_file
,
4282 " Making reload reg %d for reg %d optional\n",
4286 if (before
!= NULL_RTX
|| after
!= NULL_RTX
4287 || max_regno_before
!= max_reg_num ())
4291 lra_update_operator_dups (curr_id
);
4292 /* Something changes -- process the insn. */
4293 lra_update_insn_regno_info (curr_insn
);
4295 lra_process_new_insns (curr_insn
, before
, after
, "Inserting insn reload");
4299 /* Return true if INSN satisfies all constraints. In other words, no
4300 reload insns are needed. */
4302 lra_constrain_insn (rtx_insn
*insn
)
4304 int saved_new_regno_start
= new_regno_start
;
4305 int saved_new_insn_uid_start
= new_insn_uid_start
;
4309 curr_id
= lra_get_insn_recog_data (curr_insn
);
4310 curr_static_id
= curr_id
->insn_static_data
;
4311 new_insn_uid_start
= get_max_uid ();
4312 new_regno_start
= max_reg_num ();
4313 change_p
= curr_insn_transform (true);
4314 new_regno_start
= saved_new_regno_start
;
4315 new_insn_uid_start
= saved_new_insn_uid_start
;
4319 /* Return true if X is in LIST. */
4321 in_list_p (rtx x
, rtx list
)
4323 for (; list
!= NULL_RTX
; list
= XEXP (list
, 1))
4324 if (XEXP (list
, 0) == x
)
4329 /* Return true if X contains an allocatable hard register (if
4330 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4332 contains_reg_p (rtx x
, bool hard_reg_p
, bool spilled_p
)
4338 code
= GET_CODE (x
);
4341 int regno
= REGNO (x
);
4342 HARD_REG_SET alloc_regs
;
4346 if (regno
>= FIRST_PSEUDO_REGISTER
)
4347 regno
= lra_get_regno_hard_regno (regno
);
4350 COMPL_HARD_REG_SET (alloc_regs
, lra_no_alloc_regs
);
4351 return overlaps_hard_reg_set_p (alloc_regs
, GET_MODE (x
), regno
);
4355 if (regno
< FIRST_PSEUDO_REGISTER
)
4359 return lra_get_regno_hard_regno (regno
) < 0;
4362 fmt
= GET_RTX_FORMAT (code
);
4363 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4367 if (contains_reg_p (XEXP (x
, i
), hard_reg_p
, spilled_p
))
4370 else if (fmt
[i
] == 'E')
4372 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4373 if (contains_reg_p (XVECEXP (x
, i
, j
), hard_reg_p
, spilled_p
))
4380 /* Process all regs in location *LOC and change them on equivalent
4381 substitution. Return true if any change was done. */
4383 loc_equivalence_change_p (rtx
*loc
)
4385 rtx subst
, reg
, x
= *loc
;
4386 bool result
= false;
4387 enum rtx_code code
= GET_CODE (x
);
4393 reg
= SUBREG_REG (x
);
4394 if ((subst
= get_equiv_with_elimination (reg
, curr_insn
)) != reg
4395 && GET_MODE (subst
) == VOIDmode
)
4397 /* We cannot reload debug location. Simplify subreg here
4398 while we know the inner mode. */
4399 *loc
= simplify_gen_subreg (GET_MODE (x
), subst
,
4400 GET_MODE (reg
), SUBREG_BYTE (x
));
4404 if (code
== REG
&& (subst
= get_equiv_with_elimination (x
, curr_insn
)) != x
)
4410 /* Scan all the operand sub-expressions. */
4411 fmt
= GET_RTX_FORMAT (code
);
4412 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4415 result
= loc_equivalence_change_p (&XEXP (x
, i
)) || result
;
4416 else if (fmt
[i
] == 'E')
4417 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4419 = loc_equivalence_change_p (&XVECEXP (x
, i
, j
)) || result
;
4424 /* Similar to loc_equivalence_change_p, but for use as
4425 simplify_replace_fn_rtx callback. DATA is insn for which the
4426 elimination is done. If it null we don't do the elimination. */
4428 loc_equivalence_callback (rtx loc
, const_rtx
, void *data
)
4433 rtx subst
= (data
== NULL
4434 ? get_equiv (loc
) : get_equiv_with_elimination (loc
, (rtx_insn
*) data
));
4441 /* Maximum number of generated reload insns per an insn. It is for
4442 preventing this pass cycling in a bug case. */
4443 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4445 /* The current iteration number of this LRA pass. */
4446 int lra_constraint_iter
;
4448 /* True if we substituted equiv which needs checking register
4449 allocation correctness because the equivalent value contains
4450 allocatable hard registers or when we restore multi-register
4452 bool lra_risky_transformations_p
;
4454 /* Return true if REGNO is referenced in more than one block. */
4456 multi_block_pseudo_p (int regno
)
4458 basic_block bb
= NULL
;
4462 if (regno
< FIRST_PSEUDO_REGISTER
)
4465 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info
[regno
].insn_bitmap
, 0, uid
, bi
)
4467 bb
= BLOCK_FOR_INSN (lra_insn_recog_data
[uid
]->insn
);
4468 else if (BLOCK_FOR_INSN (lra_insn_recog_data
[uid
]->insn
) != bb
)
4473 /* Return true if LIST contains a deleted insn. */
4475 contains_deleted_insn_p (rtx_insn_list
*list
)
4477 for (; list
!= NULL_RTX
; list
= list
->next ())
4478 if (NOTE_P (list
->insn ())
4479 && NOTE_KIND (list
->insn ()) == NOTE_INSN_DELETED
)
4484 /* Return true if X contains a pseudo dying in INSN. */
4486 dead_pseudo_p (rtx x
, rtx_insn
*insn
)
4493 return (insn
!= NULL_RTX
4494 && find_regno_note (insn
, REG_DEAD
, REGNO (x
)) != NULL_RTX
);
4495 code
= GET_CODE (x
);
4496 fmt
= GET_RTX_FORMAT (code
);
4497 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4501 if (dead_pseudo_p (XEXP (x
, i
), insn
))
4504 else if (fmt
[i
] == 'E')
4506 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4507 if (dead_pseudo_p (XVECEXP (x
, i
, j
), insn
))
4514 /* Return true if INSN contains a dying pseudo in INSN right hand
4517 insn_rhs_dead_pseudo_p (rtx_insn
*insn
)
4519 rtx set
= single_set (insn
);
4521 gcc_assert (set
!= NULL
);
4522 return dead_pseudo_p (SET_SRC (set
), insn
);
4525 /* Return true if any init insn of REGNO contains a dying pseudo in
4526 insn right hand side. */
4528 init_insn_rhs_dead_pseudo_p (int regno
)
4530 rtx_insn_list
*insns
= ira_reg_equiv
[regno
].init_insns
;
4534 for (; insns
!= NULL_RTX
; insns
= insns
->next ())
4535 if (insn_rhs_dead_pseudo_p (insns
->insn ()))
4540 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4541 reverse only if we have one init insn with given REGNO as a
4544 reverse_equiv_p (int regno
)
4546 rtx_insn_list
*insns
= ira_reg_equiv
[regno
].init_insns
;
4551 if (! INSN_P (insns
->insn ())
4552 || insns
->next () != NULL
)
4554 if ((set
= single_set (insns
->insn ())) == NULL_RTX
)
4556 return REG_P (SET_SRC (set
)) && (int) REGNO (SET_SRC (set
)) == regno
;
4559 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4560 call this function only for non-reverse equivalence. */
4562 contains_reloaded_insn_p (int regno
)
4565 rtx_insn_list
*list
= ira_reg_equiv
[regno
].init_insns
;
4567 for (; list
!= NULL
; list
= list
->next ())
4568 if ((set
= single_set (list
->insn ())) == NULL_RTX
4569 || ! REG_P (SET_DEST (set
))
4570 || (int) REGNO (SET_DEST (set
)) != regno
)
4575 /* Entry function of LRA constraint pass. Return true if the
4576 constraint pass did change the code. */
4578 lra_constraints (bool first_p
)
4581 int i
, hard_regno
, new_insns_num
;
4582 unsigned int min_len
, new_min_len
, uid
;
4583 rtx set
, x
, reg
, dest_reg
;
4584 basic_block last_bb
;
4585 bitmap_head equiv_insn_bitmap
;
4588 lra_constraint_iter
++;
4589 if (lra_dump_file
!= NULL
)
4590 fprintf (lra_dump_file
, "\n********** Local #%d: **********\n\n",
4591 lra_constraint_iter
);
4593 if (pic_offset_table_rtx
4594 && REGNO (pic_offset_table_rtx
) >= FIRST_PSEUDO_REGISTER
)
4595 lra_risky_transformations_p
= true;
4597 /* On the first iteration we should check IRA assignment
4598 correctness. In rare cases, the assignments can be wrong as
4599 early clobbers operands are ignored in IRA. */
4600 lra_risky_transformations_p
= first_p
;
4601 new_insn_uid_start
= get_max_uid ();
4602 new_regno_start
= first_p
? lra_constraint_new_regno_start
: max_reg_num ();
4603 /* Mark used hard regs for target stack size calulations. */
4604 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4605 if (lra_reg_info
[i
].nrefs
!= 0
4606 && (hard_regno
= lra_get_regno_hard_regno (i
)) >= 0)
4610 nregs
= hard_regno_nregs
[hard_regno
][lra_reg_info
[i
].biggest_mode
];
4611 for (j
= 0; j
< nregs
; j
++)
4612 df_set_regs_ever_live (hard_regno
+ j
, true);
4614 /* Do elimination before the equivalence processing as we can spill
4615 some pseudos during elimination. */
4616 lra_eliminate (false, first_p
);
4617 bitmap_initialize (&equiv_insn_bitmap
, ®_obstack
);
4618 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4619 if (lra_reg_info
[i
].nrefs
!= 0)
4621 ira_reg_equiv
[i
].profitable_p
= true;
4622 reg
= regno_reg_rtx
[i
];
4623 if (lra_get_regno_hard_regno (i
) < 0 && (x
= get_equiv (reg
)) != reg
)
4625 bool pseudo_p
= contains_reg_p (x
, false, false);
4627 /* After RTL transformation, we can not guarantee that
4628 pseudo in the substitution was not reloaded which might
4629 make equivalence invalid. For example, in reverse
4636 the memory address register was reloaded before the 2nd
4638 if ((! first_p
&& pseudo_p
)
4639 /* We don't use DF for compilation speed sake. So it
4640 is problematic to update live info when we use an
4641 equivalence containing pseudos in more than one
4643 || (pseudo_p
&& multi_block_pseudo_p (i
))
4644 /* If an init insn was deleted for some reason, cancel
4645 the equiv. We could update the equiv insns after
4646 transformations including an equiv insn deletion
4647 but it is not worthy as such cases are extremely
4649 || contains_deleted_insn_p (ira_reg_equiv
[i
].init_insns
)
4650 /* If it is not a reverse equivalence, we check that a
4651 pseudo in rhs of the init insn is not dying in the
4652 insn. Otherwise, the live info at the beginning of
4653 the corresponding BB might be wrong after we
4654 removed the insn. When the equiv can be a
4655 constant, the right hand side of the init insn can
4657 || (! reverse_equiv_p (i
)
4658 && (init_insn_rhs_dead_pseudo_p (i
)
4659 /* If we reloaded the pseudo in an equivalence
4660 init insn, we can not remove the equiv init
4661 insns and the init insns might write into
4662 const memory in this case. */
4663 || contains_reloaded_insn_p (i
)))
4664 /* Prevent access beyond equivalent memory for
4665 paradoxical subregs. */
4667 && (GET_MODE_SIZE (lra_reg_info
[i
].biggest_mode
)
4668 > GET_MODE_SIZE (GET_MODE (x
))))
4669 || (pic_offset_table_rtx
4670 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i
), x
)
4671 && (targetm
.preferred_reload_class
4672 (x
, lra_get_allocno_class (i
)) == NO_REGS
))
4673 || contains_symbol_ref_p (x
))))
4674 ira_reg_equiv
[i
].defined_p
= false;
4675 if (contains_reg_p (x
, false, true))
4676 ira_reg_equiv
[i
].profitable_p
= false;
4677 if (get_equiv (reg
) != reg
)
4678 bitmap_ior_into (&equiv_insn_bitmap
, &lra_reg_info
[i
].insn_bitmap
);
4681 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4683 /* We should add all insns containing pseudos which should be
4684 substituted by their equivalences. */
4685 EXECUTE_IF_SET_IN_BITMAP (&equiv_insn_bitmap
, 0, uid
, bi
)
4686 lra_push_insn_by_uid (uid
);
4687 min_len
= lra_insn_stack_length ();
4691 while ((new_min_len
= lra_insn_stack_length ()) != 0)
4693 curr_insn
= lra_pop_insn ();
4695 curr_bb
= BLOCK_FOR_INSN (curr_insn
);
4696 if (curr_bb
!= last_bb
)
4699 bb_reload_num
= lra_curr_reload_num
;
4701 if (min_len
> new_min_len
)
4703 min_len
= new_min_len
;
4706 if (new_insns_num
> MAX_RELOAD_INSNS_NUMBER
)
4708 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4709 MAX_RELOAD_INSNS_NUMBER
);
4711 if (DEBUG_INSN_P (curr_insn
))
4713 /* We need to check equivalence in debug insn and change
4714 pseudo to the equivalent value if necessary. */
4715 curr_id
= lra_get_insn_recog_data (curr_insn
);
4716 if (bitmap_bit_p (&equiv_insn_bitmap
, INSN_UID (curr_insn
)))
4718 rtx old
= *curr_id
->operand_loc
[0];
4719 *curr_id
->operand_loc
[0]
4720 = simplify_replace_fn_rtx (old
, NULL_RTX
,
4721 loc_equivalence_callback
, curr_insn
);
4722 if (old
!= *curr_id
->operand_loc
[0])
4724 lra_update_insn_regno_info (curr_insn
);
4729 else if (INSN_P (curr_insn
))
4731 if ((set
= single_set (curr_insn
)) != NULL_RTX
)
4733 dest_reg
= SET_DEST (set
);
4734 /* The equivalence pseudo could be set up as SUBREG in a
4735 case when it is a call restore insn in a mode
4736 different from the pseudo mode. */
4737 if (GET_CODE (dest_reg
) == SUBREG
)
4738 dest_reg
= SUBREG_REG (dest_reg
);
4739 if ((REG_P (dest_reg
)
4740 && (x
= get_equiv (dest_reg
)) != dest_reg
4741 /* Remove insns which set up a pseudo whose value
4742 can not be changed. Such insns might be not in
4743 init_insns because we don't update equiv data
4744 during insn transformations.
4746 As an example, let suppose that a pseudo got
4747 hard register and on the 1st pass was not
4748 changed to equivalent constant. We generate an
4749 additional insn setting up the pseudo because of
4750 secondary memory movement. Then the pseudo is
4751 spilled and we use the equiv constant. In this
4752 case we should remove the additional insn and
4753 this insn is not init_insns list. */
4754 && (! MEM_P (x
) || MEM_READONLY_P (x
)
4755 /* Check that this is actually an insn setting
4756 up the equivalence. */
4757 || in_list_p (curr_insn
,
4759 [REGNO (dest_reg
)].init_insns
)))
4760 || (((x
= get_equiv (SET_SRC (set
))) != SET_SRC (set
))
4761 && in_list_p (curr_insn
,
4763 [REGNO (SET_SRC (set
))].init_insns
)))
4765 /* This is equiv init insn of pseudo which did not get a
4766 hard register -- remove the insn. */
4767 if (lra_dump_file
!= NULL
)
4769 fprintf (lra_dump_file
,
4770 " Removing equiv init insn %i (freq=%d)\n",
4771 INSN_UID (curr_insn
),
4772 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn
)));
4773 dump_insn_slim (lra_dump_file
, curr_insn
);
4775 if (contains_reg_p (x
, true, false))
4776 lra_risky_transformations_p
= true;
4777 lra_set_insn_deleted (curr_insn
);
4781 curr_id
= lra_get_insn_recog_data (curr_insn
);
4782 curr_static_id
= curr_id
->insn_static_data
;
4783 init_curr_insn_input_reloads ();
4784 init_curr_operand_mode ();
4785 if (curr_insn_transform (false))
4787 /* Check non-transformed insns too for equiv change as USE
4788 or CLOBBER don't need reloads but can contain pseudos
4789 being changed on their equivalences. */
4790 else if (bitmap_bit_p (&equiv_insn_bitmap
, INSN_UID (curr_insn
))
4791 && loc_equivalence_change_p (&PATTERN (curr_insn
)))
4793 lra_update_insn_regno_info (curr_insn
);
4798 bitmap_clear (&equiv_insn_bitmap
);
4799 /* If we used a new hard regno, changed_p should be true because the
4800 hard reg is assigned to a new pseudo. */
4801 if (flag_checking
&& !changed_p
)
4803 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4804 if (lra_reg_info
[i
].nrefs
!= 0
4805 && (hard_regno
= lra_get_regno_hard_regno (i
)) >= 0)
4807 int j
, nregs
= hard_regno_nregs
[hard_regno
][PSEUDO_REGNO_MODE (i
)];
4809 for (j
= 0; j
< nregs
; j
++)
4810 lra_assert (df_regs_ever_live_p (hard_regno
+ j
));
4816 static void initiate_invariants (void);
4817 static void finish_invariants (void);
4819 /* Initiate the LRA constraint pass. It is done once per
4822 lra_constraints_init (void)
4824 initiate_invariants ();
4827 /* Finalize the LRA constraint pass. It is done once per
4830 lra_constraints_finish (void)
4832 finish_invariants ();
4837 /* Structure describes invariants for ineheritance. */
4838 struct lra_invariant
4840 /* The order number of the invariant. */
4842 /* The invariant RTX. */
4844 /* The origin insn of the invariant. */
4848 typedef lra_invariant invariant_t
;
4849 typedef invariant_t
*invariant_ptr_t
;
4850 typedef const invariant_t
*const_invariant_ptr_t
;
4852 /* Pointer to the inheritance invariants. */
4853 static vec
<invariant_ptr_t
> invariants
;
4855 /* Allocation pool for the invariants. */
4856 static object_allocator
<lra_invariant
> *invariants_pool
;
4858 /* Hash table for the invariants. */
4859 static htab_t invariant_table
;
4861 /* Hash function for INVARIANT. */
4863 invariant_hash (const void *invariant
)
4865 rtx inv
= ((const_invariant_ptr_t
) invariant
)->invariant_rtx
;
4866 return lra_rtx_hash (inv
);
4869 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
4871 invariant_eq_p (const void *invariant1
, const void *invariant2
)
4873 rtx inv1
= ((const_invariant_ptr_t
) invariant1
)->invariant_rtx
;
4874 rtx inv2
= ((const_invariant_ptr_t
) invariant2
)->invariant_rtx
;
4876 return rtx_equal_p (inv1
, inv2
);
4879 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
4880 invariant which is in the table. */
4881 static invariant_ptr_t
4882 insert_invariant (rtx invariant_rtx
)
4885 invariant_t invariant
;
4886 invariant_ptr_t invariant_ptr
;
4888 invariant
.invariant_rtx
= invariant_rtx
;
4889 entry_ptr
= htab_find_slot (invariant_table
, &invariant
, INSERT
);
4890 if (*entry_ptr
== NULL
)
4892 invariant_ptr
= invariants_pool
->allocate ();
4893 invariant_ptr
->invariant_rtx
= invariant_rtx
;
4894 invariant_ptr
->insn
= NULL
;
4895 invariants
.safe_push (invariant_ptr
);
4896 *entry_ptr
= (void *) invariant_ptr
;
4898 return (invariant_ptr_t
) *entry_ptr
;
4901 /* Initiate the invariant table. */
4903 initiate_invariants (void)
4905 invariants
.create (100);
4907 = new object_allocator
<lra_invariant
> ("Inheritance invariants");
4908 invariant_table
= htab_create (100, invariant_hash
, invariant_eq_p
, NULL
);
4911 /* Finish the invariant table. */
4913 finish_invariants (void)
4915 htab_delete (invariant_table
);
4916 delete invariants_pool
;
4917 invariants
.release ();
4920 /* Make the invariant table empty. */
4922 clear_invariants (void)
4924 htab_empty (invariant_table
);
4925 invariants_pool
->release ();
4926 invariants
.truncate (0);
4931 /* This page contains code to do inheritance/split
4934 /* Number of reloads passed so far in current EBB. */
4935 static int reloads_num
;
4937 /* Number of calls passed so far in current EBB. */
4938 static int calls_num
;
4940 /* Current reload pseudo check for validity of elements in
4942 static int curr_usage_insns_check
;
4944 /* Info about last usage of registers in EBB to do inheritance/split
4945 transformation. Inheritance transformation is done from a spilled
4946 pseudo and split transformations from a hard register or a pseudo
4947 assigned to a hard register. */
4950 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
4951 value INSNS is valid. The insns is chain of optional debug insns
4952 and a finishing non-debug insn using the corresponding reg. The
4953 value is also used to mark the registers which are set up in the
4954 current insn. The negated insn uid is used for this. */
4956 /* Value of global reloads_num at the last insn in INSNS. */
4958 /* Value of global reloads_nums at the last insn in INSNS. */
4960 /* It can be true only for splitting. And it means that the restore
4961 insn should be put after insn given by the following member. */
4963 /* Next insns in the current EBB which use the original reg and the
4964 original reg value is not changed between the current insn and
4965 the next insns. In order words, e.g. for inheritance, if we need
4966 to use the original reg value again in the next insns we can try
4967 to use the value in a hard register from a reload insn of the
4972 /* Map: regno -> corresponding pseudo usage insns. */
4973 static struct usage_insns
*usage_insns
;
4976 setup_next_usage_insn (int regno
, rtx insn
, int reloads_num
, bool after_p
)
4978 usage_insns
[regno
].check
= curr_usage_insns_check
;
4979 usage_insns
[regno
].insns
= insn
;
4980 usage_insns
[regno
].reloads_num
= reloads_num
;
4981 usage_insns
[regno
].calls_num
= calls_num
;
4982 usage_insns
[regno
].after_p
= after_p
;
4985 /* The function is used to form list REGNO usages which consists of
4986 optional debug insns finished by a non-debug insn using REGNO.
4987 RELOADS_NUM is current number of reload insns processed so far. */
4989 add_next_usage_insn (int regno
, rtx_insn
*insn
, int reloads_num
)
4991 rtx next_usage_insns
;
4993 if (usage_insns
[regno
].check
== curr_usage_insns_check
4994 && (next_usage_insns
= usage_insns
[regno
].insns
) != NULL_RTX
4995 && DEBUG_INSN_P (insn
))
4997 /* Check that we did not add the debug insn yet. */
4998 if (next_usage_insns
!= insn
4999 && (GET_CODE (next_usage_insns
) != INSN_LIST
5000 || XEXP (next_usage_insns
, 0) != insn
))
5001 usage_insns
[regno
].insns
= gen_rtx_INSN_LIST (VOIDmode
, insn
,
5004 else if (NONDEBUG_INSN_P (insn
))
5005 setup_next_usage_insn (regno
, insn
, reloads_num
, false);
5007 usage_insns
[regno
].check
= 0;
5010 /* Return first non-debug insn in list USAGE_INSNS. */
5012 skip_usage_debug_insns (rtx usage_insns
)
5016 /* Skip debug insns. */
5017 for (insn
= usage_insns
;
5018 insn
!= NULL_RTX
&& GET_CODE (insn
) == INSN_LIST
;
5019 insn
= XEXP (insn
, 1))
5021 return safe_as_a
<rtx_insn
*> (insn
);
5024 /* Return true if we need secondary memory moves for insn in
5025 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5028 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED
,
5029 rtx usage_insns ATTRIBUTE_UNUSED
)
5031 #ifndef SECONDARY_MEMORY_NEEDED
5038 if (inher_cl
== ALL_REGS
5039 || (insn
= skip_usage_debug_insns (usage_insns
)) == NULL_RTX
)
5041 lra_assert (INSN_P (insn
));
5042 if ((set
= single_set (insn
)) == NULL_RTX
|| ! REG_P (SET_DEST (set
)))
5044 dest
= SET_DEST (set
);
5047 lra_assert (inher_cl
!= NO_REGS
);
5048 cl
= get_reg_class (REGNO (dest
));
5049 return (cl
!= NO_REGS
&& cl
!= ALL_REGS
5050 && SECONDARY_MEMORY_NEEDED (inher_cl
, cl
, GET_MODE (dest
)));
5054 /* Registers involved in inheritance/split in the current EBB
5055 (inheritance/split pseudos and original registers). */
5056 static bitmap_head check_only_regs
;
5058 /* Reload pseudos can not be involded in invariant inheritance in the
5060 static bitmap_head invalid_invariant_regs
;
5062 /* Do inheritance transformations for insn INSN, which defines (if
5063 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5064 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5065 form as the "insns" field of usage_insns. Return true if we
5066 succeed in such transformation.
5068 The transformations look like:
5071 ... p <- i (new insn)
5073 <- ... p ... <- ... i ...
5075 ... i <- p (new insn)
5076 <- ... p ... <- ... i ...
5078 <- ... p ... <- ... i ...
5079 where p is a spilled original pseudo and i is a new inheritance pseudo.
5082 The inheritance pseudo has the smallest class of two classes CL and
5083 class of ORIGINAL REGNO. */
5085 inherit_reload_reg (bool def_p
, int original_regno
,
5086 enum reg_class cl
, rtx_insn
*insn
, rtx next_usage_insns
)
5088 if (optimize_function_for_size_p (cfun
))
5091 enum reg_class rclass
= lra_get_allocno_class (original_regno
);
5092 rtx original_reg
= regno_reg_rtx
[original_regno
];
5093 rtx new_reg
, usage_insn
;
5094 rtx_insn
*new_insns
;
5096 lra_assert (! usage_insns
[original_regno
].after_p
);
5097 if (lra_dump_file
!= NULL
)
5098 fprintf (lra_dump_file
,
5099 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5100 if (! ira_reg_classes_intersect_p
[cl
][rclass
])
5102 if (lra_dump_file
!= NULL
)
5104 fprintf (lra_dump_file
,
5105 " Rejecting inheritance for %d "
5106 "because of disjoint classes %s and %s\n",
5107 original_regno
, reg_class_names
[cl
],
5108 reg_class_names
[rclass
]);
5109 fprintf (lra_dump_file
,
5110 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5114 if ((ira_class_subset_p
[cl
][rclass
] && cl
!= rclass
)
5115 /* We don't use a subset of two classes because it can be
5116 NO_REGS. This transformation is still profitable in most
5117 cases even if the classes are not intersected as register
5118 move is probably cheaper than a memory load. */
5119 || ira_class_hard_regs_num
[cl
] < ira_class_hard_regs_num
[rclass
])
5121 if (lra_dump_file
!= NULL
)
5122 fprintf (lra_dump_file
, " Use smallest class of %s and %s\n",
5123 reg_class_names
[cl
], reg_class_names
[rclass
]);
5127 if (check_secondary_memory_needed_p (rclass
, next_usage_insns
))
5129 /* Reject inheritance resulting in secondary memory moves.
5130 Otherwise, there is a danger in LRA cycling. Also such
5131 transformation will be unprofitable. */
5132 if (lra_dump_file
!= NULL
)
5134 rtx_insn
*insn
= skip_usage_debug_insns (next_usage_insns
);
5135 rtx set
= single_set (insn
);
5137 lra_assert (set
!= NULL_RTX
);
5139 rtx dest
= SET_DEST (set
);
5141 lra_assert (REG_P (dest
));
5142 fprintf (lra_dump_file
,
5143 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5144 "as secondary mem is needed\n",
5145 REGNO (dest
), reg_class_names
[get_reg_class (REGNO (dest
))],
5146 original_regno
, reg_class_names
[rclass
]);
5147 fprintf (lra_dump_file
,
5148 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5152 new_reg
= lra_create_new_reg (GET_MODE (original_reg
), original_reg
,
5153 rclass
, "inheritance");
5156 lra_emit_move (original_reg
, new_reg
);
5158 lra_emit_move (new_reg
, original_reg
);
5159 new_insns
= get_insns ();
5161 if (NEXT_INSN (new_insns
) != NULL_RTX
)
5163 if (lra_dump_file
!= NULL
)
5165 fprintf (lra_dump_file
,
5166 " Rejecting inheritance %d->%d "
5167 "as it results in 2 or more insns:\n",
5168 original_regno
, REGNO (new_reg
));
5169 dump_rtl_slim (lra_dump_file
, new_insns
, NULL
, -1, 0);
5170 fprintf (lra_dump_file
,
5171 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5175 lra_substitute_pseudo_within_insn (insn
, original_regno
, new_reg
, false);
5176 lra_update_insn_regno_info (insn
);
5178 /* We now have a new usage insn for original regno. */
5179 setup_next_usage_insn (original_regno
, new_insns
, reloads_num
, false);
5180 if (lra_dump_file
!= NULL
)
5181 fprintf (lra_dump_file
, " Original reg change %d->%d (bb%d):\n",
5182 original_regno
, REGNO (new_reg
), BLOCK_FOR_INSN (insn
)->index
);
5183 lra_reg_info
[REGNO (new_reg
)].restore_rtx
= regno_reg_rtx
[original_regno
];
5184 bitmap_set_bit (&check_only_regs
, REGNO (new_reg
));
5185 bitmap_set_bit (&check_only_regs
, original_regno
);
5186 bitmap_set_bit (&lra_inheritance_pseudos
, REGNO (new_reg
));
5188 lra_process_new_insns (insn
, NULL
, new_insns
,
5189 "Add original<-inheritance");
5191 lra_process_new_insns (insn
, new_insns
, NULL
,
5192 "Add inheritance<-original");
5193 while (next_usage_insns
!= NULL_RTX
)
5195 if (GET_CODE (next_usage_insns
) != INSN_LIST
)
5197 usage_insn
= next_usage_insns
;
5198 lra_assert (NONDEBUG_INSN_P (usage_insn
));
5199 next_usage_insns
= NULL
;
5203 usage_insn
= XEXP (next_usage_insns
, 0);
5204 lra_assert (DEBUG_INSN_P (usage_insn
));
5205 next_usage_insns
= XEXP (next_usage_insns
, 1);
5207 lra_substitute_pseudo (&usage_insn
, original_regno
, new_reg
, false);
5208 lra_update_insn_regno_info (as_a
<rtx_insn
*> (usage_insn
));
5209 if (lra_dump_file
!= NULL
)
5211 fprintf (lra_dump_file
,
5212 " Inheritance reuse change %d->%d (bb%d):\n",
5213 original_regno
, REGNO (new_reg
),
5214 BLOCK_FOR_INSN (usage_insn
)->index
);
5215 dump_insn_slim (lra_dump_file
, as_a
<rtx_insn
*> (usage_insn
));
5218 if (lra_dump_file
!= NULL
)
5219 fprintf (lra_dump_file
,
5220 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5224 /* Return true if we need a caller save/restore for pseudo REGNO which
5225 was assigned to a hard register. */
5227 need_for_call_save_p (int regno
)
5229 lra_assert (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] >= 0);
5230 return (usage_insns
[regno
].calls_num
< calls_num
5231 && (overlaps_hard_reg_set_p
5233 ! hard_reg_set_empty_p (lra_reg_info
[regno
].actual_call_used_reg_set
))
5234 ? lra_reg_info
[regno
].actual_call_used_reg_set
5235 : call_used_reg_set
,
5236 PSEUDO_REGNO_MODE (regno
), reg_renumber
[regno
])
5237 || HARD_REGNO_CALL_PART_CLOBBERED (reg_renumber
[regno
],
5238 PSEUDO_REGNO_MODE (regno
))));
5241 /* Global registers occurring in the current EBB. */
5242 static bitmap_head ebb_global_regs
;
5244 /* Return true if we need a split for hard register REGNO or pseudo
5245 REGNO which was assigned to a hard register.
5246 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5247 used for reloads since the EBB end. It is an approximation of the
5248 used hard registers in the split range. The exact value would
5249 require expensive calculations. If we were aggressive with
5250 splitting because of the approximation, the split pseudo will save
5251 the same hard register assignment and will be removed in the undo
5252 pass. We still need the approximation because too aggressive
5253 splitting would result in too inaccurate cost calculation in the
5254 assignment pass because of too many generated moves which will be
5255 probably removed in the undo pass. */
5257 need_for_split_p (HARD_REG_SET potential_reload_hard_regs
, int regno
)
5259 int hard_regno
= regno
< FIRST_PSEUDO_REGISTER
? regno
: reg_renumber
[regno
];
5261 lra_assert (hard_regno
>= 0);
5262 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs
, hard_regno
)
5263 /* Don't split eliminable hard registers, otherwise we can
5264 split hard registers like hard frame pointer, which
5265 lives on BB start/end according to DF-infrastructure,
5266 when there is a pseudo assigned to the register and
5267 living in the same BB. */
5268 && (regno
>= FIRST_PSEUDO_REGISTER
5269 || ! TEST_HARD_REG_BIT (eliminable_regset
, hard_regno
))
5270 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs
, hard_regno
)
5271 /* Don't split call clobbered hard regs living through
5272 calls, otherwise we might have a check problem in the
5273 assign sub-pass as in the most cases (exception is a
5274 situation when lra_risky_transformations_p value is
5275 true) the assign pass assumes that all pseudos living
5276 through calls are assigned to call saved hard regs. */
5277 && (regno
>= FIRST_PSEUDO_REGISTER
5278 || ! TEST_HARD_REG_BIT (call_used_reg_set
, regno
)
5279 || usage_insns
[regno
].calls_num
== calls_num
)
5280 /* We need at least 2 reloads to make pseudo splitting
5281 profitable. We should provide hard regno splitting in
5282 any case to solve 1st insn scheduling problem when
5283 moving hard register definition up might result in
5284 impossibility to find hard register for reload pseudo of
5285 small register class. */
5286 && (usage_insns
[regno
].reloads_num
5287 + (regno
< FIRST_PSEUDO_REGISTER
? 0 : 3) < reloads_num
)
5288 && (regno
< FIRST_PSEUDO_REGISTER
5289 /* For short living pseudos, spilling + inheritance can
5290 be considered a substitution for splitting.
5291 Therefore we do not splitting for local pseudos. It
5292 decreases also aggressiveness of splitting. The
5293 minimal number of references is chosen taking into
5294 account that for 2 references splitting has no sense
5295 as we can just spill the pseudo. */
5296 || (regno
>= FIRST_PSEUDO_REGISTER
5297 && lra_reg_info
[regno
].nrefs
> 3
5298 && bitmap_bit_p (&ebb_global_regs
, regno
))))
5299 || (regno
>= FIRST_PSEUDO_REGISTER
&& need_for_call_save_p (regno
)));
5302 /* Return class for the split pseudo created from original pseudo with
5303 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5304 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5305 results in no secondary memory movements. */
5306 static enum reg_class
5307 choose_split_class (enum reg_class allocno_class
,
5308 int hard_regno ATTRIBUTE_UNUSED
,
5309 machine_mode mode ATTRIBUTE_UNUSED
)
5311 #ifndef SECONDARY_MEMORY_NEEDED
5312 return allocno_class
;
5315 enum reg_class cl
, best_cl
= NO_REGS
;
5316 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5317 = REGNO_REG_CLASS (hard_regno
);
5319 if (! SECONDARY_MEMORY_NEEDED (allocno_class
, allocno_class
, mode
)
5320 && TEST_HARD_REG_BIT (reg_class_contents
[allocno_class
], hard_regno
))
5321 return allocno_class
;
5323 (cl
= reg_class_subclasses
[allocno_class
][i
]) != LIM_REG_CLASSES
;
5325 if (! SECONDARY_MEMORY_NEEDED (cl
, hard_reg_class
, mode
)
5326 && ! SECONDARY_MEMORY_NEEDED (hard_reg_class
, cl
, mode
)
5327 && TEST_HARD_REG_BIT (reg_class_contents
[cl
], hard_regno
)
5328 && (best_cl
== NO_REGS
5329 || ira_class_hard_regs_num
[best_cl
] < ira_class_hard_regs_num
[cl
]))
5335 /* Do split transformations for insn INSN, which defines or uses
5336 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
5337 the EBB next uses ORIGINAL_REGNO; it has the same form as the
5338 "insns" field of usage_insns.
5340 The transformations look like:
5343 ... s <- p (new insn -- save)
5345 ... p <- s (new insn -- restore)
5346 <- ... p ... <- ... p ...
5348 <- ... p ... <- ... p ...
5349 ... s <- p (new insn -- save)
5351 ... p <- s (new insn -- restore)
5352 <- ... p ... <- ... p ...
5354 where p is an original pseudo got a hard register or a hard
5355 register and s is a new split pseudo. The save is put before INSN
5356 if BEFORE_P is true. Return true if we succeed in such
5359 split_reg (bool before_p
, int original_regno
, rtx_insn
*insn
,
5360 rtx next_usage_insns
)
5362 enum reg_class rclass
;
5364 int hard_regno
, nregs
;
5365 rtx new_reg
, usage_insn
;
5366 rtx_insn
*restore
, *save
;
5371 if (original_regno
< FIRST_PSEUDO_REGISTER
)
5373 rclass
= ira_allocno_class_translate
[REGNO_REG_CLASS (original_regno
)];
5374 hard_regno
= original_regno
;
5375 call_save_p
= false;
5377 mode
= lra_reg_info
[hard_regno
].biggest_mode
;
5378 machine_mode reg_rtx_mode
= GET_MODE (regno_reg_rtx
[hard_regno
]);
5379 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5380 as part of a multi-word register. In that case, or if the biggest
5381 mode was larger than a register, just use the reg_rtx. Otherwise,
5382 limit the size to that of the biggest access in the function. */
5383 if (mode
== VOIDmode
5384 || GET_MODE_SIZE (mode
) > GET_MODE_SIZE (reg_rtx_mode
))
5386 original_reg
= regno_reg_rtx
[hard_regno
];
5387 mode
= reg_rtx_mode
;
5390 original_reg
= gen_rtx_REG (mode
, hard_regno
);
5394 mode
= PSEUDO_REGNO_MODE (original_regno
);
5395 hard_regno
= reg_renumber
[original_regno
];
5396 nregs
= hard_regno_nregs
[hard_regno
][mode
];
5397 rclass
= lra_get_allocno_class (original_regno
);
5398 original_reg
= regno_reg_rtx
[original_regno
];
5399 call_save_p
= need_for_call_save_p (original_regno
);
5401 lra_assert (hard_regno
>= 0);
5402 if (lra_dump_file
!= NULL
)
5403 fprintf (lra_dump_file
,
5404 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5408 mode
= HARD_REGNO_CALLER_SAVE_MODE (hard_regno
,
5409 hard_regno_nregs
[hard_regno
][mode
],
5411 new_reg
= lra_create_new_reg (mode
, NULL_RTX
, NO_REGS
, "save");
5415 rclass
= choose_split_class (rclass
, hard_regno
, mode
);
5416 if (rclass
== NO_REGS
)
5418 if (lra_dump_file
!= NULL
)
5420 fprintf (lra_dump_file
,
5421 " Rejecting split of %d(%s): "
5422 "no good reg class for %d(%s)\n",
5424 reg_class_names
[lra_get_allocno_class (original_regno
)],
5426 reg_class_names
[REGNO_REG_CLASS (hard_regno
)]);
5429 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5433 /* Split_if_necessary can split hard registers used as part of a
5434 multi-register mode but splits each register individually. The
5435 mode used for each independent register may not be supported
5436 so reject the split. Splitting the wider mode should theoretically
5437 be possible but is not implemented. */
5438 if (! HARD_REGNO_MODE_OK (hard_regno
, mode
))
5440 if (lra_dump_file
!= NULL
)
5442 fprintf (lra_dump_file
,
5443 " Rejecting split of %d(%s): unsuitable mode %s\n",
5445 reg_class_names
[lra_get_allocno_class (original_regno
)],
5446 GET_MODE_NAME (mode
));
5449 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5453 new_reg
= lra_create_new_reg (mode
, original_reg
, rclass
, "split");
5454 reg_renumber
[REGNO (new_reg
)] = hard_regno
;
5456 save
= emit_spill_move (true, new_reg
, original_reg
);
5457 if (NEXT_INSN (save
) != NULL_RTX
&& !call_save_p
)
5459 if (lra_dump_file
!= NULL
)
5463 " Rejecting split %d->%d resulting in > 2 save insns:\n",
5464 original_regno
, REGNO (new_reg
));
5465 dump_rtl_slim (lra_dump_file
, save
, NULL
, -1, 0);
5466 fprintf (lra_dump_file
,
5467 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5471 restore
= emit_spill_move (false, new_reg
, original_reg
);
5472 if (NEXT_INSN (restore
) != NULL_RTX
&& !call_save_p
)
5474 if (lra_dump_file
!= NULL
)
5476 fprintf (lra_dump_file
,
5477 " Rejecting split %d->%d "
5478 "resulting in > 2 restore insns:\n",
5479 original_regno
, REGNO (new_reg
));
5480 dump_rtl_slim (lra_dump_file
, restore
, NULL
, -1, 0);
5481 fprintf (lra_dump_file
,
5482 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5486 after_p
= usage_insns
[original_regno
].after_p
;
5487 lra_reg_info
[REGNO (new_reg
)].restore_rtx
= regno_reg_rtx
[original_regno
];
5488 bitmap_set_bit (&check_only_regs
, REGNO (new_reg
));
5489 bitmap_set_bit (&check_only_regs
, original_regno
);
5490 bitmap_set_bit (&lra_split_regs
, REGNO (new_reg
));
5493 if (GET_CODE (next_usage_insns
) != INSN_LIST
)
5495 usage_insn
= next_usage_insns
;
5498 usage_insn
= XEXP (next_usage_insns
, 0);
5499 lra_assert (DEBUG_INSN_P (usage_insn
));
5500 next_usage_insns
= XEXP (next_usage_insns
, 1);
5501 lra_substitute_pseudo (&usage_insn
, original_regno
, new_reg
, false);
5502 lra_update_insn_regno_info (as_a
<rtx_insn
*> (usage_insn
));
5503 if (lra_dump_file
!= NULL
)
5505 fprintf (lra_dump_file
, " Split reuse change %d->%d:\n",
5506 original_regno
, REGNO (new_reg
));
5507 dump_insn_slim (lra_dump_file
, as_a
<rtx_insn
*> (usage_insn
));
5510 lra_assert (NOTE_P (usage_insn
) || NONDEBUG_INSN_P (usage_insn
));
5511 lra_assert (usage_insn
!= insn
|| (after_p
&& before_p
));
5512 lra_process_new_insns (as_a
<rtx_insn
*> (usage_insn
),
5513 after_p
? NULL
: restore
,
5514 after_p
? restore
: NULL
,
5516 ? "Add reg<-save" : "Add reg<-split");
5517 lra_process_new_insns (insn
, before_p
? save
: NULL
,
5518 before_p
? NULL
: save
,
5520 ? "Add save<-reg" : "Add split<-reg");
5522 /* If we are trying to split multi-register. We should check
5523 conflicts on the next assignment sub-pass. IRA can allocate on
5524 sub-register levels, LRA do this on pseudos level right now and
5525 this discrepancy may create allocation conflicts after
5527 lra_risky_transformations_p
= true;
5528 if (lra_dump_file
!= NULL
)
5529 fprintf (lra_dump_file
,
5530 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5534 /* Recognize that we need a split transformation for insn INSN, which
5535 defines or uses REGNO in its insn biggest MODE (we use it only if
5536 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5537 hard registers which might be used for reloads since the EBB end.
5538 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5539 uid before starting INSN processing. Return true if we succeed in
5540 such transformation. */
5542 split_if_necessary (int regno
, machine_mode mode
,
5543 HARD_REG_SET potential_reload_hard_regs
,
5544 bool before_p
, rtx_insn
*insn
, int max_uid
)
5548 rtx next_usage_insns
;
5550 if (regno
< FIRST_PSEUDO_REGISTER
)
5551 nregs
= hard_regno_nregs
[regno
][mode
];
5552 for (i
= 0; i
< nregs
; i
++)
5553 if (usage_insns
[regno
+ i
].check
== curr_usage_insns_check
5554 && (next_usage_insns
= usage_insns
[regno
+ i
].insns
) != NULL_RTX
5555 /* To avoid processing the register twice or more. */
5556 && ((GET_CODE (next_usage_insns
) != INSN_LIST
5557 && INSN_UID (next_usage_insns
) < max_uid
)
5558 || (GET_CODE (next_usage_insns
) == INSN_LIST
5559 && (INSN_UID (XEXP (next_usage_insns
, 0)) < max_uid
)))
5560 && need_for_split_p (potential_reload_hard_regs
, regno
+ i
)
5561 && split_reg (before_p
, regno
+ i
, insn
, next_usage_insns
))
5566 /* Return TRUE if rtx X is considered as an invariant for
5569 invariant_p (const_rtx x
)
5576 code
= GET_CODE (x
);
5577 mode
= GET_MODE (x
);
5581 code
= GET_CODE (x
);
5582 if (GET_MODE_SIZE (GET_MODE (x
)) > GET_MODE_SIZE (mode
))
5583 mode
= GET_MODE (x
);
5591 int i
, nregs
, regno
= REGNO (x
);
5593 if (regno
>= FIRST_PSEUDO_REGISTER
|| regno
== STACK_POINTER_REGNUM
5594 || TEST_HARD_REG_BIT (eliminable_regset
, regno
)
5595 || GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
)
5597 nregs
= hard_regno_nregs
[regno
][mode
];
5598 for (i
= 0; i
< nregs
; i
++)
5599 if (! fixed_regs
[regno
+ i
]
5600 /* A hard register may be clobbered in the current insn
5601 but we can ignore this case because if the hard
5602 register is used it should be set somewhere after the
5604 || bitmap_bit_p (&invalid_invariant_regs
, regno
+ i
))
5607 fmt
= GET_RTX_FORMAT (code
);
5608 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5612 if (! invariant_p (XEXP (x
, i
)))
5615 else if (fmt
[i
] == 'E')
5617 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5618 if (! invariant_p (XVECEXP (x
, i
, j
)))
5625 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
5626 inheritance transformation (using dest_reg instead invariant in a
5627 subsequent insn). */
5629 process_invariant_for_inheritance (rtx dst_reg
, rtx invariant_rtx
)
5631 invariant_ptr_t invariant_ptr
;
5632 rtx_insn
*insn
, *new_insns
;
5633 rtx insn_set
, insn_reg
, new_reg
;
5635 bool succ_p
= false;
5636 int dst_regno
= REGNO (dst_reg
);
5637 enum machine_mode dst_mode
= GET_MODE (dst_reg
);
5638 enum reg_class cl
= lra_get_allocno_class (dst_regno
), insn_reg_cl
;
5640 invariant_ptr
= insert_invariant (invariant_rtx
);
5641 if ((insn
= invariant_ptr
->insn
) != NULL_RTX
)
5643 /* We have a subsequent insn using the invariant. */
5644 insn_set
= single_set (insn
);
5645 lra_assert (insn_set
!= NULL
);
5646 insn_reg
= SET_DEST (insn_set
);
5647 lra_assert (REG_P (insn_reg
));
5648 insn_regno
= REGNO (insn_reg
);
5649 insn_reg_cl
= lra_get_allocno_class (insn_regno
);
5651 if (dst_mode
== GET_MODE (insn_reg
)
5652 /* We should consider only result move reg insns which are
5654 && targetm
.register_move_cost (dst_mode
, cl
, insn_reg_cl
) == 2
5655 && targetm
.register_move_cost (dst_mode
, cl
, cl
) == 2)
5657 if (lra_dump_file
!= NULL
)
5658 fprintf (lra_dump_file
,
5659 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5660 new_reg
= lra_create_new_reg (dst_mode
, dst_reg
,
5661 cl
, "invariant inheritance");
5662 bitmap_set_bit (&lra_inheritance_pseudos
, REGNO (new_reg
));
5663 bitmap_set_bit (&check_only_regs
, REGNO (new_reg
));
5664 lra_reg_info
[REGNO (new_reg
)].restore_rtx
= PATTERN (insn
);
5666 lra_emit_move (new_reg
, dst_reg
);
5667 new_insns
= get_insns ();
5669 lra_process_new_insns (curr_insn
, NULL
, new_insns
,
5670 "Add invariant inheritance<-original");
5672 lra_emit_move (SET_DEST (insn_set
), new_reg
);
5673 new_insns
= get_insns ();
5675 lra_process_new_insns (insn
, NULL
, new_insns
,
5676 "Changing reload<-inheritance");
5677 lra_set_insn_deleted (insn
);
5679 if (lra_dump_file
!= NULL
)
5681 fprintf (lra_dump_file
,
5682 " Invariant inheritance reuse change %d (bb%d):\n",
5683 REGNO (new_reg
), BLOCK_FOR_INSN (insn
)->index
);
5684 dump_insn_slim (lra_dump_file
, insn
);
5685 fprintf (lra_dump_file
,
5686 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
5690 invariant_ptr
->insn
= curr_insn
;
5694 /* Check only registers living at the current program point in the
5696 static bitmap_head live_regs
;
5698 /* Update live info in EBB given by its HEAD and TAIL insns after
5699 inheritance/split transformation. The function removes dead moves
5702 update_ebb_live_info (rtx_insn
*head
, rtx_insn
*tail
)
5707 rtx_insn
*prev_insn
;
5710 basic_block last_bb
, prev_bb
, curr_bb
;
5712 struct lra_insn_reg
*reg
;
5716 last_bb
= BLOCK_FOR_INSN (tail
);
5718 for (curr_insn
= tail
;
5719 curr_insn
!= PREV_INSN (head
);
5720 curr_insn
= prev_insn
)
5722 prev_insn
= PREV_INSN (curr_insn
);
5723 /* We need to process empty blocks too. They contain
5724 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
5725 if (NOTE_P (curr_insn
) && NOTE_KIND (curr_insn
) != NOTE_INSN_BASIC_BLOCK
)
5727 curr_bb
= BLOCK_FOR_INSN (curr_insn
);
5728 if (curr_bb
!= prev_bb
)
5730 if (prev_bb
!= NULL
)
5732 /* Update df_get_live_in (prev_bb): */
5733 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs
, 0, j
, bi
)
5734 if (bitmap_bit_p (&live_regs
, j
))
5735 bitmap_set_bit (df_get_live_in (prev_bb
), j
);
5737 bitmap_clear_bit (df_get_live_in (prev_bb
), j
);
5739 if (curr_bb
!= last_bb
)
5741 /* Update df_get_live_out (curr_bb): */
5742 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs
, 0, j
, bi
)
5744 live_p
= bitmap_bit_p (&live_regs
, j
);
5746 FOR_EACH_EDGE (e
, ei
, curr_bb
->succs
)
5747 if (bitmap_bit_p (df_get_live_in (e
->dest
), j
))
5753 bitmap_set_bit (df_get_live_out (curr_bb
), j
);
5755 bitmap_clear_bit (df_get_live_out (curr_bb
), j
);
5759 bitmap_and (&live_regs
, &check_only_regs
, df_get_live_out (curr_bb
));
5761 if (! NONDEBUG_INSN_P (curr_insn
))
5763 curr_id
= lra_get_insn_recog_data (curr_insn
);
5764 curr_static_id
= curr_id
->insn_static_data
;
5766 if ((set
= single_set (curr_insn
)) != NULL_RTX
5767 && REG_P (SET_DEST (set
))
5768 && (regno
= REGNO (SET_DEST (set
))) >= FIRST_PSEUDO_REGISTER
5769 && SET_DEST (set
) != pic_offset_table_rtx
5770 && bitmap_bit_p (&check_only_regs
, regno
)
5771 && ! bitmap_bit_p (&live_regs
, regno
))
5773 /* See which defined values die here. */
5774 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
5775 if (reg
->type
== OP_OUT
&& ! reg
->subreg_p
)
5776 bitmap_clear_bit (&live_regs
, reg
->regno
);
5777 for (reg
= curr_static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
5778 if (reg
->type
== OP_OUT
&& ! reg
->subreg_p
)
5779 bitmap_clear_bit (&live_regs
, reg
->regno
);
5780 if (curr_id
->arg_hard_regs
!= NULL
)
5781 /* Make clobbered argument hard registers die. */
5782 for (i
= 0; (regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
5783 if (regno
>= FIRST_PSEUDO_REGISTER
)
5784 bitmap_clear_bit (&live_regs
, regno
- FIRST_PSEUDO_REGISTER
);
5785 /* Mark each used value as live. */
5786 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
5787 if (reg
->type
!= OP_OUT
5788 && bitmap_bit_p (&check_only_regs
, reg
->regno
))
5789 bitmap_set_bit (&live_regs
, reg
->regno
);
5790 for (reg
= curr_static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
5791 if (reg
->type
!= OP_OUT
5792 && bitmap_bit_p (&check_only_regs
, reg
->regno
))
5793 bitmap_set_bit (&live_regs
, reg
->regno
);
5794 if (curr_id
->arg_hard_regs
!= NULL
)
5795 /* Make used argument hard registers live. */
5796 for (i
= 0; (regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
5797 if (regno
< FIRST_PSEUDO_REGISTER
5798 && bitmap_bit_p (&check_only_regs
, regno
))
5799 bitmap_set_bit (&live_regs
, regno
);
5800 /* It is quite important to remove dead move insns because it
5801 means removing dead store. We don't need to process them for
5805 if (lra_dump_file
!= NULL
)
5807 fprintf (lra_dump_file
, " Removing dead insn:\n ");
5808 dump_insn_slim (lra_dump_file
, curr_insn
);
5810 lra_set_insn_deleted (curr_insn
);
5815 /* The structure describes info to do an inheritance for the current
5816 insn. We need to collect such info first before doing the
5817 transformations because the transformations change the insn
5818 internal representation. */
5821 /* Original regno. */
5823 /* Subsequent insns which can inherit original reg value. */
5827 /* Array containing all info for doing inheritance from the current
5829 static struct to_inherit to_inherit
[LRA_MAX_INSN_RELOADS
];
5831 /* Number elements in the previous array. */
5832 static int to_inherit_num
;
5834 /* Add inheritance info REGNO and INSNS. Their meaning is described in
5835 structure to_inherit. */
5837 add_to_inherit (int regno
, rtx insns
)
5841 for (i
= 0; i
< to_inherit_num
; i
++)
5842 if (to_inherit
[i
].regno
== regno
)
5844 lra_assert (to_inherit_num
< LRA_MAX_INSN_RELOADS
);
5845 to_inherit
[to_inherit_num
].regno
= regno
;
5846 to_inherit
[to_inherit_num
++].insns
= insns
;
5849 /* Return the last non-debug insn in basic block BB, or the block begin
5852 get_last_insertion_point (basic_block bb
)
5856 FOR_BB_INSNS_REVERSE (bb
, insn
)
5857 if (NONDEBUG_INSN_P (insn
) || NOTE_INSN_BASIC_BLOCK_P (insn
))
5862 /* Set up RES by registers living on edges FROM except the edge (FROM,
5863 TO) or by registers set up in a jump insn in BB FROM. */
5865 get_live_on_other_edges (basic_block from
, basic_block to
, bitmap res
)
5868 struct lra_insn_reg
*reg
;
5872 lra_assert (to
!= NULL
);
5874 FOR_EACH_EDGE (e
, ei
, from
->succs
)
5876 bitmap_ior_into (res
, df_get_live_in (e
->dest
));
5877 last
= get_last_insertion_point (from
);
5878 if (! JUMP_P (last
))
5880 curr_id
= lra_get_insn_recog_data (last
);
5881 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
5882 if (reg
->type
!= OP_IN
)
5883 bitmap_set_bit (res
, reg
->regno
);
5886 /* Used as a temporary results of some bitmap calculations. */
5887 static bitmap_head temp_bitmap
;
5889 /* We split for reloads of small class of hard regs. The following
5890 defines how many hard regs the class should have to be qualified as
5891 small. The code is mostly oriented to x86/x86-64 architecture
5892 where some insns need to use only specific register or pair of
5893 registers and these register can live in RTL explicitly, e.g. for
5894 parameter passing. */
5895 static const int max_small_class_regs_num
= 2;
5897 /* Do inheritance/split transformations in EBB starting with HEAD and
5898 finishing on TAIL. We process EBB insns in the reverse order.
5899 Return true if we did any inheritance/split transformation in the
5902 We should avoid excessive splitting which results in worse code
5903 because of inaccurate cost calculations for spilling new split
5904 pseudos in such case. To achieve this we do splitting only if
5905 register pressure is high in given basic block and there are reload
5906 pseudos requiring hard registers. We could do more register
5907 pressure calculations at any given program point to avoid necessary
5908 splitting even more but it is to expensive and the current approach
5909 works well enough. */
5911 inherit_in_ebb (rtx_insn
*head
, rtx_insn
*tail
)
5913 int i
, src_regno
, dst_regno
, nregs
;
5914 bool change_p
, succ_p
, update_reloads_num_p
;
5915 rtx_insn
*prev_insn
, *last_insn
;
5916 rtx next_usage_insns
, curr_set
;
5918 struct lra_insn_reg
*reg
;
5919 basic_block last_processed_bb
, curr_bb
= NULL
;
5920 HARD_REG_SET potential_reload_hard_regs
, live_hard_regs
;
5924 bool head_p
, after_p
;
5927 curr_usage_insns_check
++;
5928 clear_invariants ();
5929 reloads_num
= calls_num
= 0;
5930 bitmap_clear (&check_only_regs
);
5931 bitmap_clear (&invalid_invariant_regs
);
5932 last_processed_bb
= NULL
;
5933 CLEAR_HARD_REG_SET (potential_reload_hard_regs
);
5934 COPY_HARD_REG_SET (live_hard_regs
, eliminable_regset
);
5935 IOR_HARD_REG_SET (live_hard_regs
, lra_no_alloc_regs
);
5936 /* We don't process new insns generated in the loop. */
5937 for (curr_insn
= tail
; curr_insn
!= PREV_INSN (head
); curr_insn
= prev_insn
)
5939 prev_insn
= PREV_INSN (curr_insn
);
5940 if (BLOCK_FOR_INSN (curr_insn
) != NULL
)
5941 curr_bb
= BLOCK_FOR_INSN (curr_insn
);
5942 if (last_processed_bb
!= curr_bb
)
5944 /* We are at the end of BB. Add qualified living
5945 pseudos for potential splitting. */
5946 to_process
= df_get_live_out (curr_bb
);
5947 if (last_processed_bb
!= NULL
)
5949 /* We are somewhere in the middle of EBB. */
5950 get_live_on_other_edges (curr_bb
, last_processed_bb
,
5952 to_process
= &temp_bitmap
;
5954 last_processed_bb
= curr_bb
;
5955 last_insn
= get_last_insertion_point (curr_bb
);
5956 after_p
= (! JUMP_P (last_insn
)
5957 && (! CALL_P (last_insn
)
5958 || (find_reg_note (last_insn
,
5959 REG_NORETURN
, NULL_RTX
) == NULL_RTX
5960 && ! SIBLING_CALL_P (last_insn
))));
5961 CLEAR_HARD_REG_SET (potential_reload_hard_regs
);
5962 EXECUTE_IF_SET_IN_BITMAP (to_process
, 0, j
, bi
)
5964 if ((int) j
>= lra_constraint_new_regno_start
)
5966 if (j
< FIRST_PSEUDO_REGISTER
|| reg_renumber
[j
] >= 0)
5968 if (j
< FIRST_PSEUDO_REGISTER
)
5969 SET_HARD_REG_BIT (live_hard_regs
, j
);
5971 add_to_hard_reg_set (&live_hard_regs
,
5972 PSEUDO_REGNO_MODE (j
),
5974 setup_next_usage_insn (j
, last_insn
, reloads_num
, after_p
);
5978 src_regno
= dst_regno
= -1;
5979 curr_set
= single_set (curr_insn
);
5980 if (curr_set
!= NULL_RTX
&& REG_P (SET_DEST (curr_set
)))
5981 dst_regno
= REGNO (SET_DEST (curr_set
));
5982 if (curr_set
!= NULL_RTX
&& REG_P (SET_SRC (curr_set
)))
5983 src_regno
= REGNO (SET_SRC (curr_set
));
5984 update_reloads_num_p
= true;
5985 if (src_regno
< lra_constraint_new_regno_start
5986 && src_regno
>= FIRST_PSEUDO_REGISTER
5987 && reg_renumber
[src_regno
] < 0
5988 && dst_regno
>= lra_constraint_new_regno_start
5989 && (cl
= lra_get_allocno_class (dst_regno
)) != NO_REGS
)
5991 /* 'reload_pseudo <- original_pseudo'. */
5992 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
5994 update_reloads_num_p
= false;
5996 if (usage_insns
[src_regno
].check
== curr_usage_insns_check
5997 && (next_usage_insns
= usage_insns
[src_regno
].insns
) != NULL_RTX
)
5998 succ_p
= inherit_reload_reg (false, src_regno
, cl
,
5999 curr_insn
, next_usage_insns
);
6003 setup_next_usage_insn (src_regno
, curr_insn
, reloads_num
, false);
6004 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
6005 IOR_HARD_REG_SET (potential_reload_hard_regs
,
6006 reg_class_contents
[cl
]);
6008 else if (src_regno
< 0
6009 && dst_regno
>= lra_constraint_new_regno_start
6010 && invariant_p (SET_SRC (curr_set
))
6011 && (cl
= lra_get_allocno_class (dst_regno
)) != NO_REGS
6012 && ! bitmap_bit_p (&invalid_invariant_regs
, dst_regno
)
6013 && ! bitmap_bit_p (&invalid_invariant_regs
,
6014 ORIGINAL_REGNO(regno_reg_rtx
[dst_regno
])))
6016 /* 'reload_pseudo <- invariant'. */
6017 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
6019 update_reloads_num_p
= false;
6020 if (process_invariant_for_inheritance (SET_DEST (curr_set
), SET_SRC (curr_set
)))
6022 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
6023 IOR_HARD_REG_SET (potential_reload_hard_regs
,
6024 reg_class_contents
[cl
]);
6026 else if (src_regno
>= lra_constraint_new_regno_start
6027 && dst_regno
< lra_constraint_new_regno_start
6028 && dst_regno
>= FIRST_PSEUDO_REGISTER
6029 && reg_renumber
[dst_regno
] < 0
6030 && (cl
= lra_get_allocno_class (src_regno
)) != NO_REGS
6031 && usage_insns
[dst_regno
].check
== curr_usage_insns_check
6032 && (next_usage_insns
6033 = usage_insns
[dst_regno
].insns
) != NULL_RTX
)
6035 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
6037 update_reloads_num_p
= false;
6038 /* 'original_pseudo <- reload_pseudo'. */
6039 if (! JUMP_P (curr_insn
)
6040 && inherit_reload_reg (true, dst_regno
, cl
,
6041 curr_insn
, next_usage_insns
))
6044 usage_insns
[dst_regno
].check
= 0;
6045 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
6046 IOR_HARD_REG_SET (potential_reload_hard_regs
,
6047 reg_class_contents
[cl
]);
6049 else if (INSN_P (curr_insn
))
6052 int max_uid
= get_max_uid ();
6054 curr_id
= lra_get_insn_recog_data (curr_insn
);
6055 curr_static_id
= curr_id
->insn_static_data
;
6057 /* Process insn definitions. */
6058 for (iter
= 0; iter
< 2; iter
++)
6059 for (reg
= iter
== 0 ? curr_id
->regs
: curr_static_id
->hard_regs
;
6062 if (reg
->type
!= OP_IN
6063 && (dst_regno
= reg
->regno
) < lra_constraint_new_regno_start
)
6065 if (dst_regno
>= FIRST_PSEUDO_REGISTER
&& reg
->type
== OP_OUT
6066 && reg_renumber
[dst_regno
] < 0 && ! reg
->subreg_p
6067 && usage_insns
[dst_regno
].check
== curr_usage_insns_check
6068 && (next_usage_insns
6069 = usage_insns
[dst_regno
].insns
) != NULL_RTX
)
6071 struct lra_insn_reg
*r
;
6073 for (r
= curr_id
->regs
; r
!= NULL
; r
= r
->next
)
6074 if (r
->type
!= OP_OUT
&& r
->regno
== dst_regno
)
6076 /* Don't do inheritance if the pseudo is also
6077 used in the insn. */
6079 /* We can not do inheritance right now
6080 because the current insn reg info (chain
6081 regs) can change after that. */
6082 add_to_inherit (dst_regno
, next_usage_insns
);
6084 /* We can not process one reg twice here because of
6085 usage_insns invalidation. */
6086 if ((dst_regno
< FIRST_PSEUDO_REGISTER
6087 || reg_renumber
[dst_regno
] >= 0)
6088 && ! reg
->subreg_p
&& reg
->type
!= OP_IN
)
6092 if (split_if_necessary (dst_regno
, reg
->biggest_mode
,
6093 potential_reload_hard_regs
,
6094 false, curr_insn
, max_uid
))
6096 CLEAR_HARD_REG_SET (s
);
6097 if (dst_regno
< FIRST_PSEUDO_REGISTER
)
6098 add_to_hard_reg_set (&s
, reg
->biggest_mode
, dst_regno
);
6100 add_to_hard_reg_set (&s
, PSEUDO_REGNO_MODE (dst_regno
),
6101 reg_renumber
[dst_regno
]);
6102 AND_COMPL_HARD_REG_SET (live_hard_regs
, s
);
6104 /* We should invalidate potential inheritance or
6105 splitting for the current insn usages to the next
6106 usage insns (see code below) as the output pseudo
6108 if ((dst_regno
>= FIRST_PSEUDO_REGISTER
6109 && reg_renumber
[dst_regno
] < 0)
6110 || (reg
->type
== OP_OUT
&& ! reg
->subreg_p
6111 && (dst_regno
< FIRST_PSEUDO_REGISTER
6112 || reg_renumber
[dst_regno
] >= 0)))
6114 /* Invalidate and mark definitions. */
6115 if (dst_regno
>= FIRST_PSEUDO_REGISTER
)
6116 usage_insns
[dst_regno
].check
= -(int) INSN_UID (curr_insn
);
6119 nregs
= hard_regno_nregs
[dst_regno
][reg
->biggest_mode
];
6120 for (i
= 0; i
< nregs
; i
++)
6121 usage_insns
[dst_regno
+ i
].check
6122 = -(int) INSN_UID (curr_insn
);
6126 /* Process clobbered call regs. */
6127 if (curr_id
->arg_hard_regs
!= NULL
)
6128 for (i
= 0; (dst_regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
6129 if (dst_regno
>= FIRST_PSEUDO_REGISTER
)
6130 usage_insns
[dst_regno
- FIRST_PSEUDO_REGISTER
].check
6131 = -(int) INSN_UID (curr_insn
);
6132 if (! JUMP_P (curr_insn
))
6133 for (i
= 0; i
< to_inherit_num
; i
++)
6134 if (inherit_reload_reg (true, to_inherit
[i
].regno
,
6135 ALL_REGS
, curr_insn
,
6136 to_inherit
[i
].insns
))
6138 if (CALL_P (curr_insn
))
6140 rtx cheap
, pat
, dest
;
6142 int regno
, hard_regno
;
6145 if ((cheap
= find_reg_note (curr_insn
,
6146 REG_RETURNED
, NULL_RTX
)) != NULL_RTX
6147 && ((cheap
= XEXP (cheap
, 0)), true)
6148 && (regno
= REGNO (cheap
)) >= FIRST_PSEUDO_REGISTER
6149 && (hard_regno
= reg_renumber
[regno
]) >= 0
6150 /* If there are pending saves/restores, the
6151 optimization is not worth. */
6152 && usage_insns
[regno
].calls_num
== calls_num
- 1
6153 && TEST_HARD_REG_BIT (call_used_reg_set
, hard_regno
))
6155 /* Restore the pseudo from the call result as
6156 REG_RETURNED note says that the pseudo value is
6157 in the call result and the pseudo is an argument
6159 pat
= PATTERN (curr_insn
);
6160 if (GET_CODE (pat
) == PARALLEL
)
6161 pat
= XVECEXP (pat
, 0, 0);
6162 dest
= SET_DEST (pat
);
6163 /* For multiple return values dest is PARALLEL.
6164 Currently we handle only single return value case. */
6168 emit_move_insn (cheap
, copy_rtx (dest
));
6169 restore
= get_insns ();
6171 lra_process_new_insns (curr_insn
, NULL
, restore
,
6172 "Inserting call parameter restore");
6173 /* We don't need to save/restore of the pseudo from
6175 usage_insns
[regno
].calls_num
= calls_num
;
6176 bitmap_set_bit (&check_only_regs
, regno
);
6181 /* Process insn usages. */
6182 for (iter
= 0; iter
< 2; iter
++)
6183 for (reg
= iter
== 0 ? curr_id
->regs
: curr_static_id
->hard_regs
;
6186 if ((reg
->type
!= OP_OUT
6187 || (reg
->type
== OP_OUT
&& reg
->subreg_p
))
6188 && (src_regno
= reg
->regno
) < lra_constraint_new_regno_start
)
6190 if (src_regno
>= FIRST_PSEUDO_REGISTER
6191 && reg_renumber
[src_regno
] < 0 && reg
->type
== OP_IN
)
6193 if (usage_insns
[src_regno
].check
== curr_usage_insns_check
6194 && (next_usage_insns
6195 = usage_insns
[src_regno
].insns
) != NULL_RTX
6196 && NONDEBUG_INSN_P (curr_insn
))
6197 add_to_inherit (src_regno
, next_usage_insns
);
6198 else if (usage_insns
[src_regno
].check
6199 != -(int) INSN_UID (curr_insn
))
6200 /* Add usages but only if the reg is not set up
6201 in the same insn. */
6202 add_next_usage_insn (src_regno
, curr_insn
, reloads_num
);
6204 else if (src_regno
< FIRST_PSEUDO_REGISTER
6205 || reg_renumber
[src_regno
] >= 0)
6208 rtx_insn
*use_insn
= curr_insn
;
6210 before_p
= (JUMP_P (curr_insn
)
6211 || (CALL_P (curr_insn
) && reg
->type
== OP_IN
));
6212 if (NONDEBUG_INSN_P (curr_insn
)
6213 && (! JUMP_P (curr_insn
) || reg
->type
== OP_IN
)
6214 && split_if_necessary (src_regno
, reg
->biggest_mode
,
6215 potential_reload_hard_regs
,
6216 before_p
, curr_insn
, max_uid
))
6219 lra_risky_transformations_p
= true;
6222 usage_insns
[src_regno
].check
= 0;
6224 use_insn
= PREV_INSN (curr_insn
);
6226 if (NONDEBUG_INSN_P (curr_insn
))
6228 if (src_regno
< FIRST_PSEUDO_REGISTER
)
6229 add_to_hard_reg_set (&live_hard_regs
,
6230 reg
->biggest_mode
, src_regno
);
6232 add_to_hard_reg_set (&live_hard_regs
,
6233 PSEUDO_REGNO_MODE (src_regno
),
6234 reg_renumber
[src_regno
]);
6236 add_next_usage_insn (src_regno
, use_insn
, reloads_num
);
6239 /* Process used call regs. */
6240 if (curr_id
->arg_hard_regs
!= NULL
)
6241 for (i
= 0; (src_regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
6242 if (src_regno
< FIRST_PSEUDO_REGISTER
)
6244 SET_HARD_REG_BIT (live_hard_regs
, src_regno
);
6245 add_next_usage_insn (src_regno
, curr_insn
, reloads_num
);
6247 for (i
= 0; i
< to_inherit_num
; i
++)
6249 src_regno
= to_inherit
[i
].regno
;
6250 if (inherit_reload_reg (false, src_regno
, ALL_REGS
,
6251 curr_insn
, to_inherit
[i
].insns
))
6254 setup_next_usage_insn (src_regno
, curr_insn
, reloads_num
, false);
6257 if (update_reloads_num_p
6258 && NONDEBUG_INSN_P (curr_insn
) && curr_set
!= NULL_RTX
)
6261 if ((REG_P (SET_DEST (curr_set
))
6262 && (regno
= REGNO (SET_DEST (curr_set
))) >= lra_constraint_new_regno_start
6263 && reg_renumber
[regno
] < 0
6264 && (cl
= lra_get_allocno_class (regno
)) != NO_REGS
)
6265 || (REG_P (SET_SRC (curr_set
))
6266 && (regno
= REGNO (SET_SRC (curr_set
))) >= lra_constraint_new_regno_start
6267 && reg_renumber
[regno
] < 0
6268 && (cl
= lra_get_allocno_class (regno
)) != NO_REGS
))
6270 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
6272 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
6273 IOR_HARD_REG_SET (potential_reload_hard_regs
,
6274 reg_class_contents
[cl
]);
6277 if (NONDEBUG_INSN_P (curr_insn
))
6281 /* Invalidate invariants with changed regs. */
6282 curr_id
= lra_get_insn_recog_data (curr_insn
);
6283 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
6284 if (reg
->type
!= OP_IN
)
6286 bitmap_set_bit (&invalid_invariant_regs
, reg
->regno
);
6287 bitmap_set_bit (&invalid_invariant_regs
,
6288 ORIGINAL_REGNO (regno_reg_rtx
[reg
->regno
]));
6290 curr_static_id
= curr_id
->insn_static_data
;
6291 for (reg
= curr_static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
6292 if (reg
->type
!= OP_IN
)
6293 bitmap_set_bit (&invalid_invariant_regs
, reg
->regno
);
6294 if (curr_id
->arg_hard_regs
!= NULL
)
6295 for (i
= 0; (regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
6296 if (regno
>= FIRST_PSEUDO_REGISTER
)
6297 bitmap_set_bit (&invalid_invariant_regs
,
6298 regno
- FIRST_PSEUDO_REGISTER
);
6300 /* We reached the start of the current basic block. */
6301 if (prev_insn
== NULL_RTX
|| prev_insn
== PREV_INSN (head
)
6302 || BLOCK_FOR_INSN (prev_insn
) != curr_bb
)
6304 /* We reached the beginning of the current block -- do
6305 rest of spliting in the current BB. */
6306 to_process
= df_get_live_in (curr_bb
);
6307 if (BLOCK_FOR_INSN (head
) != curr_bb
)
6309 /* We are somewhere in the middle of EBB. */
6310 get_live_on_other_edges (EDGE_PRED (curr_bb
, 0)->src
,
6311 curr_bb
, &temp_bitmap
);
6312 to_process
= &temp_bitmap
;
6315 EXECUTE_IF_SET_IN_BITMAP (to_process
, 0, j
, bi
)
6317 if ((int) j
>= lra_constraint_new_regno_start
)
6319 if (((int) j
< FIRST_PSEUDO_REGISTER
|| reg_renumber
[j
] >= 0)
6320 && usage_insns
[j
].check
== curr_usage_insns_check
6321 && (next_usage_insns
= usage_insns
[j
].insns
) != NULL_RTX
)
6323 if (need_for_split_p (potential_reload_hard_regs
, j
))
6325 if (lra_dump_file
!= NULL
&& head_p
)
6327 fprintf (lra_dump_file
,
6328 " ----------------------------------\n");
6331 if (split_reg (false, j
, bb_note (curr_bb
),
6335 usage_insns
[j
].check
= 0;
6343 /* This value affects EBB forming. If probability of edge from EBB to
6344 a BB is not greater than the following value, we don't add the BB
6346 #define EBB_PROBABILITY_CUTOFF \
6347 ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6349 /* Current number of inheritance/split iteration. */
6350 int lra_inheritance_iter
;
6352 /* Entry function for inheritance/split pass. */
6354 lra_inheritance (void)
6357 basic_block bb
, start_bb
;
6360 lra_inheritance_iter
++;
6361 if (lra_inheritance_iter
> LRA_MAX_INHERITANCE_PASSES
)
6363 timevar_push (TV_LRA_INHERITANCE
);
6364 if (lra_dump_file
!= NULL
)
6365 fprintf (lra_dump_file
, "\n********** Inheritance #%d: **********\n\n",
6366 lra_inheritance_iter
);
6367 curr_usage_insns_check
= 0;
6368 usage_insns
= XNEWVEC (struct usage_insns
, lra_constraint_new_regno_start
);
6369 for (i
= 0; i
< lra_constraint_new_regno_start
; i
++)
6370 usage_insns
[i
].check
= 0;
6371 bitmap_initialize (&check_only_regs
, ®_obstack
);
6372 bitmap_initialize (&invalid_invariant_regs
, ®_obstack
);
6373 bitmap_initialize (&live_regs
, ®_obstack
);
6374 bitmap_initialize (&temp_bitmap
, ®_obstack
);
6375 bitmap_initialize (&ebb_global_regs
, ®_obstack
);
6376 FOR_EACH_BB_FN (bb
, cfun
)
6379 if (lra_dump_file
!= NULL
)
6380 fprintf (lra_dump_file
, "EBB");
6381 /* Form a EBB starting with BB. */
6382 bitmap_clear (&ebb_global_regs
);
6383 bitmap_ior_into (&ebb_global_regs
, df_get_live_in (bb
));
6386 if (lra_dump_file
!= NULL
)
6387 fprintf (lra_dump_file
, " %d", bb
->index
);
6388 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
6389 || LABEL_P (BB_HEAD (bb
->next_bb
)))
6391 e
= find_fallthru_edge (bb
->succs
);
6394 if (e
->probability
< EBB_PROBABILITY_CUTOFF
)
6398 bitmap_ior_into (&ebb_global_regs
, df_get_live_out (bb
));
6399 if (lra_dump_file
!= NULL
)
6400 fprintf (lra_dump_file
, "\n");
6401 if (inherit_in_ebb (BB_HEAD (start_bb
), BB_END (bb
)))
6402 /* Remember that the EBB head and tail can change in
6404 update_ebb_live_info (BB_HEAD (start_bb
), BB_END (bb
));
6406 bitmap_clear (&ebb_global_regs
);
6407 bitmap_clear (&temp_bitmap
);
6408 bitmap_clear (&live_regs
);
6409 bitmap_clear (&invalid_invariant_regs
);
6410 bitmap_clear (&check_only_regs
);
6413 timevar_pop (TV_LRA_INHERITANCE
);
6418 /* This page contains code to undo failed inheritance/split
6421 /* Current number of iteration undoing inheritance/split. */
6422 int lra_undo_inheritance_iter
;
6424 /* Fix BB live info LIVE after removing pseudos created on pass doing
6425 inheritance/split which are REMOVED_PSEUDOS. */
6427 fix_bb_live_info (bitmap live
, bitmap removed_pseudos
)
6432 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos
, 0, regno
, bi
)
6433 if (bitmap_clear_bit (live
, regno
)
6434 && REG_P (lra_reg_info
[regno
].restore_rtx
))
6435 bitmap_set_bit (live
, REGNO (lra_reg_info
[regno
].restore_rtx
));
6438 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6443 if (GET_CODE (reg
) == SUBREG
)
6444 reg
= SUBREG_REG (reg
);
6450 /* Delete a move INSN with destination reg DREGNO and a previous
6451 clobber insn with the same regno. The inheritance/split code can
6452 generate moves with preceding clobber and when we delete such moves
6453 we should delete the clobber insn too to keep the correct life
6456 delete_move_and_clobber (rtx_insn
*insn
, int dregno
)
6458 rtx_insn
*prev_insn
= PREV_INSN (insn
);
6460 lra_set_insn_deleted (insn
);
6461 lra_assert (dregno
>= 0);
6462 if (prev_insn
!= NULL
&& NONDEBUG_INSN_P (prev_insn
)
6463 && GET_CODE (PATTERN (prev_insn
)) == CLOBBER
6464 && dregno
== get_regno (XEXP (PATTERN (prev_insn
), 0)))
6465 lra_set_insn_deleted (prev_insn
);
6468 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6469 return true if we did any change. The undo transformations for
6470 inheritance looks like
6474 p <- i, i <- p, and i <- i3
6475 where p is original pseudo from which inheritance pseudo i was
6476 created, i and i3 are removed inheritance pseudos, i2 is another
6477 not removed inheritance pseudo. All split pseudos or other
6478 occurrences of removed inheritance pseudos are changed on the
6479 corresponding original pseudos.
6481 The function also schedules insns changed and created during
6482 inheritance/split pass for processing by the subsequent constraint
6485 remove_inheritance_pseudos (bitmap remove_pseudos
)
6488 int regno
, sregno
, prev_sregno
, dregno
;
6491 rtx_insn
*prev_insn
;
6492 bool change_p
, done_p
;
6494 change_p
= ! bitmap_empty_p (remove_pseudos
);
6495 /* We can not finish the function right away if CHANGE_P is true
6496 because we need to marks insns affected by previous
6497 inheritance/split pass for processing by the subsequent
6499 FOR_EACH_BB_FN (bb
, cfun
)
6501 fix_bb_live_info (df_get_live_in (bb
), remove_pseudos
);
6502 fix_bb_live_info (df_get_live_out (bb
), remove_pseudos
);
6503 FOR_BB_INSNS_REVERSE (bb
, curr_insn
)
6505 if (! INSN_P (curr_insn
))
6508 sregno
= dregno
= -1;
6509 if (change_p
&& NONDEBUG_INSN_P (curr_insn
)
6510 && (set
= single_set (curr_insn
)) != NULL_RTX
)
6512 dregno
= get_regno (SET_DEST (set
));
6513 sregno
= get_regno (SET_SRC (set
));
6516 if (sregno
>= 0 && dregno
>= 0)
6518 if (bitmap_bit_p (remove_pseudos
, dregno
)
6519 && ! REG_P (lra_reg_info
[dregno
].restore_rtx
))
6521 /* invariant inheritance pseudo <- original pseudo */
6522 if (lra_dump_file
!= NULL
)
6524 fprintf (lra_dump_file
, " Removing invariant inheritance:\n");
6525 dump_insn_slim (lra_dump_file
, curr_insn
);
6526 fprintf (lra_dump_file
, "\n");
6528 delete_move_and_clobber (curr_insn
, dregno
);
6531 else if (bitmap_bit_p (remove_pseudos
, sregno
)
6532 && ! REG_P (lra_reg_info
[sregno
].restore_rtx
))
6534 /* reload pseudo <- invariant inheritance pseudo */
6536 /* We can not just change the source. It might be
6537 an insn different from the move. */
6538 emit_insn (lra_reg_info
[sregno
].restore_rtx
);
6539 rtx_insn
*new_insns
= get_insns ();
6541 lra_assert (single_set (new_insns
) != NULL
6542 && SET_DEST (set
) == SET_DEST (single_set (new_insns
)));
6543 lra_process_new_insns (curr_insn
, NULL
, new_insns
,
6544 "Changing reload<-invariant inheritance");
6545 delete_move_and_clobber (curr_insn
, dregno
);
6548 else if ((bitmap_bit_p (remove_pseudos
, sregno
)
6549 && (get_regno (lra_reg_info
[sregno
].restore_rtx
) == dregno
6550 || (bitmap_bit_p (remove_pseudos
, dregno
)
6551 && get_regno (lra_reg_info
[sregno
].restore_rtx
) >= 0
6552 && (get_regno (lra_reg_info
[sregno
].restore_rtx
)
6553 == get_regno (lra_reg_info
[dregno
].restore_rtx
)))))
6554 || (bitmap_bit_p (remove_pseudos
, dregno
)
6555 && get_regno (lra_reg_info
[dregno
].restore_rtx
) == sregno
))
6556 /* One of the following cases:
6557 original <- removed inheritance pseudo
6558 removed inherit pseudo <- another removed inherit pseudo
6559 removed inherit pseudo <- original pseudo
6561 removed_split_pseudo <- original_reg
6562 original_reg <- removed_split_pseudo */
6564 if (lra_dump_file
!= NULL
)
6566 fprintf (lra_dump_file
, " Removing %s:\n",
6567 bitmap_bit_p (&lra_split_regs
, sregno
)
6568 || bitmap_bit_p (&lra_split_regs
, dregno
)
6569 ? "split" : "inheritance");
6570 dump_insn_slim (lra_dump_file
, curr_insn
);
6572 delete_move_and_clobber (curr_insn
, dregno
);
6575 else if (bitmap_bit_p (remove_pseudos
, sregno
)
6576 && bitmap_bit_p (&lra_inheritance_pseudos
, sregno
))
6578 /* Search the following pattern:
6579 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6580 original_pseudo <- inherit_or_split_pseudo1
6581 where the 2nd insn is the current insn and
6582 inherit_or_split_pseudo2 is not removed. If it is found,
6583 change the current insn onto:
6584 original_pseudo <- inherit_or_split_pseudo2. */
6585 for (prev_insn
= PREV_INSN (curr_insn
);
6586 prev_insn
!= NULL_RTX
&& ! NONDEBUG_INSN_P (prev_insn
);
6587 prev_insn
= PREV_INSN (prev_insn
))
6589 if (prev_insn
!= NULL_RTX
&& BLOCK_FOR_INSN (prev_insn
) == bb
6590 && (prev_set
= single_set (prev_insn
)) != NULL_RTX
6591 /* There should be no subregs in insn we are
6592 searching because only the original reg might
6593 be in subreg when we changed the mode of
6594 load/store for splitting. */
6595 && REG_P (SET_DEST (prev_set
))
6596 && REG_P (SET_SRC (prev_set
))
6597 && (int) REGNO (SET_DEST (prev_set
)) == sregno
6598 && ((prev_sregno
= REGNO (SET_SRC (prev_set
)))
6599 >= FIRST_PSEUDO_REGISTER
)
6600 && (lra_reg_info
[prev_sregno
].restore_rtx
== NULL_RTX
6602 /* As we consider chain of inheritance or
6603 splitting described in above comment we should
6604 check that sregno and prev_sregno were
6605 inheritance/split pseudos created from the
6606 same original regno. */
6607 (get_regno (lra_reg_info
[sregno
].restore_rtx
) >= 0
6608 && (get_regno (lra_reg_info
[sregno
].restore_rtx
)
6609 == get_regno (lra_reg_info
[prev_sregno
].restore_rtx
))))
6610 && ! bitmap_bit_p (remove_pseudos
, prev_sregno
))
6612 lra_assert (GET_MODE (SET_SRC (prev_set
))
6613 == GET_MODE (regno_reg_rtx
[sregno
]));
6614 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
6615 SUBREG_REG (SET_SRC (set
)) = SET_SRC (prev_set
);
6617 SET_SRC (set
) = SET_SRC (prev_set
);
6618 /* As we are finishing with processing the insn
6619 here, check the destination too as it might
6620 inheritance pseudo for another pseudo. */
6621 if (bitmap_bit_p (remove_pseudos
, dregno
)
6622 && bitmap_bit_p (&lra_inheritance_pseudos
, dregno
)
6624 = lra_reg_info
[dregno
].restore_rtx
) != NULL_RTX
)
6626 if (GET_CODE (SET_DEST (set
)) == SUBREG
)
6627 SUBREG_REG (SET_DEST (set
)) = restore_rtx
;
6629 SET_DEST (set
) = restore_rtx
;
6631 lra_push_insn_and_update_insn_regno_info (curr_insn
);
6632 lra_set_used_insn_alternative_by_uid
6633 (INSN_UID (curr_insn
), -1);
6635 if (lra_dump_file
!= NULL
)
6637 fprintf (lra_dump_file
, " Change reload insn:\n");
6638 dump_insn_slim (lra_dump_file
, curr_insn
);
6645 struct lra_insn_reg
*reg
;
6646 bool restored_regs_p
= false;
6647 bool kept_regs_p
= false;
6649 curr_id
= lra_get_insn_recog_data (curr_insn
);
6650 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
6653 restore_rtx
= lra_reg_info
[regno
].restore_rtx
;
6654 if (restore_rtx
!= NULL_RTX
)
6656 if (change_p
&& bitmap_bit_p (remove_pseudos
, regno
))
6658 lra_substitute_pseudo_within_insn
6659 (curr_insn
, regno
, restore_rtx
, false);
6660 restored_regs_p
= true;
6666 if (NONDEBUG_INSN_P (curr_insn
) && kept_regs_p
)
6668 /* The instruction has changed since the previous
6669 constraints pass. */
6670 lra_push_insn_and_update_insn_regno_info (curr_insn
);
6671 lra_set_used_insn_alternative_by_uid
6672 (INSN_UID (curr_insn
), -1);
6674 else if (restored_regs_p
)
6675 /* The instruction has been restored to the form that
6676 it had during the previous constraints pass. */
6677 lra_update_insn_regno_info (curr_insn
);
6678 if (restored_regs_p
&& lra_dump_file
!= NULL
)
6680 fprintf (lra_dump_file
, " Insn after restoring regs:\n");
6681 dump_insn_slim (lra_dump_file
, curr_insn
);
6689 /* If optional reload pseudos failed to get a hard register or was not
6690 inherited, it is better to remove optional reloads. We do this
6691 transformation after undoing inheritance to figure out necessity to
6692 remove optional reloads easier. Return true if we do any
6695 undo_optional_reloads (void)
6697 bool change_p
, keep_p
;
6698 unsigned int regno
, uid
;
6699 bitmap_iterator bi
, bi2
;
6702 bitmap_head removed_optional_reload_pseudos
, insn_bitmap
;
6704 bitmap_initialize (&removed_optional_reload_pseudos
, ®_obstack
);
6705 bitmap_copy (&removed_optional_reload_pseudos
, &lra_optional_reload_pseudos
);
6706 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos
, 0, regno
, bi
)
6709 /* Keep optional reloads from previous subpasses. */
6710 if (lra_reg_info
[regno
].restore_rtx
== NULL_RTX
6711 /* If the original pseudo changed its allocation, just
6712 removing the optional pseudo is dangerous as the original
6713 pseudo will have longer live range. */
6714 || reg_renumber
[REGNO (lra_reg_info
[regno
].restore_rtx
)] >= 0)
6716 else if (reg_renumber
[regno
] >= 0)
6717 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info
[regno
].insn_bitmap
, 0, uid
, bi2
)
6719 insn
= lra_insn_recog_data
[uid
]->insn
;
6720 if ((set
= single_set (insn
)) == NULL_RTX
)
6722 src
= SET_SRC (set
);
6723 dest
= SET_DEST (set
);
6724 if (! REG_P (src
) || ! REG_P (dest
))
6726 if (REGNO (dest
) == regno
6727 /* Ignore insn for optional reloads itself. */
6728 && REGNO (lra_reg_info
[regno
].restore_rtx
) != REGNO (src
)
6729 /* Check only inheritance on last inheritance pass. */
6730 && (int) REGNO (src
) >= new_regno_start
6731 /* Check that the optional reload was inherited. */
6732 && bitmap_bit_p (&lra_inheritance_pseudos
, REGNO (src
)))
6740 bitmap_clear_bit (&removed_optional_reload_pseudos
, regno
);
6741 if (lra_dump_file
!= NULL
)
6742 fprintf (lra_dump_file
, "Keep optional reload reg %d\n", regno
);
6745 change_p
= ! bitmap_empty_p (&removed_optional_reload_pseudos
);
6746 bitmap_initialize (&insn_bitmap
, ®_obstack
);
6747 EXECUTE_IF_SET_IN_BITMAP (&removed_optional_reload_pseudos
, 0, regno
, bi
)
6749 if (lra_dump_file
!= NULL
)
6750 fprintf (lra_dump_file
, "Remove optional reload reg %d\n", regno
);
6751 bitmap_copy (&insn_bitmap
, &lra_reg_info
[regno
].insn_bitmap
);
6752 EXECUTE_IF_SET_IN_BITMAP (&insn_bitmap
, 0, uid
, bi2
)
6754 insn
= lra_insn_recog_data
[uid
]->insn
;
6755 if ((set
= single_set (insn
)) != NULL_RTX
)
6757 src
= SET_SRC (set
);
6758 dest
= SET_DEST (set
);
6759 if (REG_P (src
) && REG_P (dest
)
6760 && ((REGNO (src
) == regno
6761 && (REGNO (lra_reg_info
[regno
].restore_rtx
)
6763 || (REGNO (dest
) == regno
6764 && (REGNO (lra_reg_info
[regno
].restore_rtx
)
6767 if (lra_dump_file
!= NULL
)
6769 fprintf (lra_dump_file
, " Deleting move %u\n",
6771 dump_insn_slim (lra_dump_file
, insn
);
6773 delete_move_and_clobber (insn
, REGNO (dest
));
6776 /* We should not worry about generation memory-memory
6777 moves here as if the corresponding inheritance did
6778 not work (inheritance pseudo did not get a hard reg),
6779 we remove the inheritance pseudo and the optional
6782 lra_substitute_pseudo_within_insn
6783 (insn
, regno
, lra_reg_info
[regno
].restore_rtx
, false);
6784 lra_update_insn_regno_info (insn
);
6785 if (lra_dump_file
!= NULL
)
6787 fprintf (lra_dump_file
,
6788 " Restoring original insn:\n");
6789 dump_insn_slim (lra_dump_file
, insn
);
6793 /* Clear restore_regnos. */
6794 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos
, 0, regno
, bi
)
6795 lra_reg_info
[regno
].restore_rtx
= NULL_RTX
;
6796 bitmap_clear (&insn_bitmap
);
6797 bitmap_clear (&removed_optional_reload_pseudos
);
6801 /* Entry function for undoing inheritance/split transformation. Return true
6802 if we did any RTL change in this pass. */
6804 lra_undo_inheritance (void)
6808 int n_all_inherit
, n_inherit
, n_all_split
, n_split
;
6810 bitmap_head remove_pseudos
;
6814 lra_undo_inheritance_iter
++;
6815 if (lra_undo_inheritance_iter
> LRA_MAX_INHERITANCE_PASSES
)
6817 if (lra_dump_file
!= NULL
)
6818 fprintf (lra_dump_file
,
6819 "\n********** Undoing inheritance #%d: **********\n\n",
6820 lra_undo_inheritance_iter
);
6821 bitmap_initialize (&remove_pseudos
, ®_obstack
);
6822 n_inherit
= n_all_inherit
= 0;
6823 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos
, 0, regno
, bi
)
6824 if (lra_reg_info
[regno
].restore_rtx
!= NULL_RTX
)
6827 if (reg_renumber
[regno
] < 0
6828 /* If the original pseudo changed its allocation, just
6829 removing inheritance is dangerous as for changing
6830 allocation we used shorter live-ranges. */
6831 && (! REG_P (lra_reg_info
[regno
].restore_rtx
)
6832 || reg_renumber
[REGNO (lra_reg_info
[regno
].restore_rtx
)] < 0))
6833 bitmap_set_bit (&remove_pseudos
, regno
);
6837 if (lra_dump_file
!= NULL
&& n_all_inherit
!= 0)
6838 fprintf (lra_dump_file
, "Inherit %d out of %d (%.2f%%)\n",
6839 n_inherit
, n_all_inherit
,
6840 (double) n_inherit
/ n_all_inherit
* 100);
6841 n_split
= n_all_split
= 0;
6842 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs
, 0, regno
, bi
)
6843 if ((restore_rtx
= lra_reg_info
[regno
].restore_rtx
) != NULL_RTX
)
6845 int restore_regno
= REGNO (restore_rtx
);
6848 hard_regno
= (restore_regno
>= FIRST_PSEUDO_REGISTER
6849 ? reg_renumber
[restore_regno
] : restore_regno
);
6850 if (hard_regno
< 0 || reg_renumber
[regno
] == hard_regno
)
6851 bitmap_set_bit (&remove_pseudos
, regno
);
6855 if (lra_dump_file
!= NULL
)
6856 fprintf (lra_dump_file
, " Keep split r%d (orig=r%d)\n",
6857 regno
, restore_regno
);
6860 if (lra_dump_file
!= NULL
&& n_all_split
!= 0)
6861 fprintf (lra_dump_file
, "Split %d out of %d (%.2f%%)\n",
6862 n_split
, n_all_split
,
6863 (double) n_split
/ n_all_split
* 100);
6864 change_p
= remove_inheritance_pseudos (&remove_pseudos
);
6865 bitmap_clear (&remove_pseudos
);
6866 /* Clear restore_regnos. */
6867 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos
, 0, regno
, bi
)
6868 lra_reg_info
[regno
].restore_rtx
= NULL_RTX
;
6869 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs
, 0, regno
, bi
)
6870 lra_reg_info
[regno
].restore_rtx
= NULL_RTX
;
6871 change_p
= undo_optional_reloads () || change_p
;