2015-01-07 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch3.adb
blobbe69b412d13528b1ad8d9251d62fc2890da975da
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch10; use Sem_Ch10;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Prag; use Sem_Prag;
69 with Sem_Res; use Sem_Res;
70 with Sem_Smem; use Sem_Smem;
71 with Sem_Type; use Sem_Type;
72 with Sem_Util; use Sem_Util;
73 with Sem_Warn; use Sem_Warn;
74 with Stand; use Stand;
75 with Sinfo; use Sinfo;
76 with Sinput; use Sinput;
77 with Snames; use Snames;
78 with Targparm; use Targparm;
79 with Tbuild; use Tbuild;
80 with Ttypes; use Ttypes;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Ch3 is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
91 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
92 -- abstract interface types implemented by a record type or a derived
93 -- record type.
95 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
96 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
97 -- if they appeared at the end of the declarative region. The pragmas to be
98 -- considered are:
99 -- Async_Readers
100 -- Async_Writers
101 -- Effective_Reads
102 -- Effective_Writes
103 -- Part_Of
105 procedure Build_Derived_Type
106 (N : Node_Id;
107 Parent_Type : Entity_Id;
108 Derived_Type : Entity_Id;
109 Is_Completion : Boolean;
110 Derive_Subps : Boolean := True);
111 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
112 -- the N_Full_Type_Declaration node containing the derived type definition.
113 -- Parent_Type is the entity for the parent type in the derived type
114 -- definition and Derived_Type the actual derived type. Is_Completion must
115 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
116 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
117 -- completion of a private type declaration. If Is_Completion is set to
118 -- True, N is the completion of a private type declaration and Derived_Type
119 -- is different from the defining identifier inside N (i.e. Derived_Type /=
120 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
121 -- subprograms should be derived. The only case where this parameter is
122 -- False is when Build_Derived_Type is recursively called to process an
123 -- implicit derived full type for a type derived from a private type (in
124 -- that case the subprograms must only be derived for the private view of
125 -- the type).
127 -- ??? These flags need a bit of re-examination and re-documentation:
128 -- ??? are they both necessary (both seem related to the recursion)?
130 procedure Build_Derived_Access_Type
131 (N : Node_Id;
132 Parent_Type : Entity_Id;
133 Derived_Type : Entity_Id);
134 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
135 -- create an implicit base if the parent type is constrained or if the
136 -- subtype indication has a constraint.
138 procedure Build_Derived_Array_Type
139 (N : Node_Id;
140 Parent_Type : Entity_Id;
141 Derived_Type : Entity_Id);
142 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
143 -- create an implicit base if the parent type is constrained or if the
144 -- subtype indication has a constraint.
146 procedure Build_Derived_Concurrent_Type
147 (N : Node_Id;
148 Parent_Type : Entity_Id;
149 Derived_Type : Entity_Id);
150 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
151 -- protected type, inherit entries and protected subprograms, check
152 -- legality of discriminant constraints if any.
154 procedure Build_Derived_Enumeration_Type
155 (N : Node_Id;
156 Parent_Type : Entity_Id;
157 Derived_Type : Entity_Id);
158 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
159 -- type, we must create a new list of literals. Types derived from
160 -- Character and [Wide_]Wide_Character are special-cased.
162 procedure Build_Derived_Numeric_Type
163 (N : Node_Id;
164 Parent_Type : Entity_Id;
165 Derived_Type : Entity_Id);
166 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
167 -- an anonymous base type, and propagate constraint to subtype if needed.
169 procedure Build_Derived_Private_Type
170 (N : Node_Id;
171 Parent_Type : Entity_Id;
172 Derived_Type : Entity_Id;
173 Is_Completion : Boolean;
174 Derive_Subps : Boolean := True);
175 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
176 -- because the parent may or may not have a completion, and the derivation
177 -- may itself be a completion.
179 procedure Build_Derived_Record_Type
180 (N : Node_Id;
181 Parent_Type : Entity_Id;
182 Derived_Type : Entity_Id;
183 Derive_Subps : Boolean := True);
184 -- Subsidiary procedure used for tagged and untagged record types
185 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
186 -- All parameters are as in Build_Derived_Type except that N, in
187 -- addition to being an N_Full_Type_Declaration node, can also be an
188 -- N_Private_Extension_Declaration node. See the definition of this routine
189 -- for much more info. Derive_Subps indicates whether subprograms should be
190 -- derived from the parent type. The only case where Derive_Subps is False
191 -- is for an implicit derived full type for a type derived from a private
192 -- type (see Build_Derived_Type).
194 procedure Build_Discriminal (Discrim : Entity_Id);
195 -- Create the discriminal corresponding to discriminant Discrim, that is
196 -- the parameter corresponding to Discrim to be used in initialization
197 -- procedures for the type where Discrim is a discriminant. Discriminals
198 -- are not used during semantic analysis, and are not fully defined
199 -- entities until expansion. Thus they are not given a scope until
200 -- initialization procedures are built.
202 function Build_Discriminant_Constraints
203 (T : Entity_Id;
204 Def : Node_Id;
205 Derived_Def : Boolean := False) return Elist_Id;
206 -- Validate discriminant constraints and return the list of the constraints
207 -- in order of discriminant declarations, where T is the discriminated
208 -- unconstrained type. Def is the N_Subtype_Indication node where the
209 -- discriminants constraints for T are specified. Derived_Def is True
210 -- when building the discriminant constraints in a derived type definition
211 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
212 -- type and Def is the constraint "(xxx)" on T and this routine sets the
213 -- Corresponding_Discriminant field of the discriminants in the derived
214 -- type D to point to the corresponding discriminants in the parent type T.
216 procedure Build_Discriminated_Subtype
217 (T : Entity_Id;
218 Def_Id : Entity_Id;
219 Elist : Elist_Id;
220 Related_Nod : Node_Id;
221 For_Access : Boolean := False);
222 -- Subsidiary procedure to Constrain_Discriminated_Type and to
223 -- Process_Incomplete_Dependents. Given
225 -- T (a possibly discriminated base type)
226 -- Def_Id (a very partially built subtype for T),
228 -- the call completes Def_Id to be the appropriate E_*_Subtype.
230 -- The Elist is the list of discriminant constraints if any (it is set
231 -- to No_Elist if T is not a discriminated type, and to an empty list if
232 -- T has discriminants but there are no discriminant constraints). The
233 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
234 -- The For_Access says whether or not this subtype is really constraining
235 -- an access type. That is its sole purpose is the designated type of an
236 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
237 -- is built to avoid freezing T when the access subtype is frozen.
239 function Build_Scalar_Bound
240 (Bound : Node_Id;
241 Par_T : Entity_Id;
242 Der_T : Entity_Id) return Node_Id;
243 -- The bounds of a derived scalar type are conversions of the bounds of
244 -- the parent type. Optimize the representation if the bounds are literals.
245 -- Needs a more complete spec--what are the parameters exactly, and what
246 -- exactly is the returned value, and how is Bound affected???
248 procedure Build_Underlying_Full_View
249 (N : Node_Id;
250 Typ : Entity_Id;
251 Par : Entity_Id);
252 -- If the completion of a private type is itself derived from a private
253 -- type, or if the full view of a private subtype is itself private, the
254 -- back-end has no way to compute the actual size of this type. We build
255 -- an internal subtype declaration of the proper parent type to convey
256 -- this information. This extra mechanism is needed because a full
257 -- view cannot itself have a full view (it would get clobbered during
258 -- view exchanges).
260 procedure Check_Access_Discriminant_Requires_Limited
261 (D : Node_Id;
262 Loc : Node_Id);
263 -- Check the restriction that the type to which an access discriminant
264 -- belongs must be a concurrent type or a descendant of a type with
265 -- the reserved word 'limited' in its declaration.
267 procedure Check_Anonymous_Access_Components
268 (Typ_Decl : Node_Id;
269 Typ : Entity_Id;
270 Prev : Entity_Id;
271 Comp_List : Node_Id);
272 -- Ada 2005 AI-382: an access component in a record definition can refer to
273 -- the enclosing record, in which case it denotes the type itself, and not
274 -- the current instance of the type. We create an anonymous access type for
275 -- the component, and flag it as an access to a component, so accessibility
276 -- checks are properly performed on it. The declaration of the access type
277 -- is placed ahead of that of the record to prevent order-of-elaboration
278 -- circularity issues in Gigi. We create an incomplete type for the record
279 -- declaration, which is the designated type of the anonymous access.
281 procedure Check_Delta_Expression (E : Node_Id);
282 -- Check that the expression represented by E is suitable for use as a
283 -- delta expression, i.e. it is of real type and is static.
285 procedure Check_Digits_Expression (E : Node_Id);
286 -- Check that the expression represented by E is suitable for use as a
287 -- digits expression, i.e. it is of integer type, positive and static.
289 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
290 -- Validate the initialization of an object declaration. T is the required
291 -- type, and Exp is the initialization expression.
293 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
294 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
296 procedure Check_Or_Process_Discriminants
297 (N : Node_Id;
298 T : Entity_Id;
299 Prev : Entity_Id := Empty);
300 -- If N is the full declaration of the completion T of an incomplete or
301 -- private type, check its discriminants (which are already known to be
302 -- conformant with those of the partial view, see Find_Type_Name),
303 -- otherwise process them. Prev is the entity of the partial declaration,
304 -- if any.
306 procedure Check_Real_Bound (Bound : Node_Id);
307 -- Check given bound for being of real type and static. If not, post an
308 -- appropriate message, and rewrite the bound with the real literal zero.
310 procedure Constant_Redeclaration
311 (Id : Entity_Id;
312 N : Node_Id;
313 T : out Entity_Id);
314 -- Various checks on legality of full declaration of deferred constant.
315 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
316 -- node. The caller has not yet set any attributes of this entity.
318 function Contain_Interface
319 (Iface : Entity_Id;
320 Ifaces : Elist_Id) return Boolean;
321 -- Ada 2005: Determine whether Iface is present in the list Ifaces
323 procedure Convert_Scalar_Bounds
324 (N : Node_Id;
325 Parent_Type : Entity_Id;
326 Derived_Type : Entity_Id;
327 Loc : Source_Ptr);
328 -- For derived scalar types, convert the bounds in the type definition to
329 -- the derived type, and complete their analysis. Given a constraint of the
330 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
331 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
332 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
333 -- subtype are conversions of those bounds to the derived_type, so that
334 -- their typing is consistent.
336 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
337 -- Copies attributes from array base type T2 to array base type T1. Copies
338 -- only attributes that apply to base types, but not subtypes.
340 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
341 -- Copies attributes from array subtype T2 to array subtype T1. Copies
342 -- attributes that apply to both subtypes and base types.
344 procedure Create_Constrained_Components
345 (Subt : Entity_Id;
346 Decl_Node : Node_Id;
347 Typ : Entity_Id;
348 Constraints : Elist_Id);
349 -- Build the list of entities for a constrained discriminated record
350 -- subtype. If a component depends on a discriminant, replace its subtype
351 -- using the discriminant values in the discriminant constraint. Subt
352 -- is the defining identifier for the subtype whose list of constrained
353 -- entities we will create. Decl_Node is the type declaration node where
354 -- we will attach all the itypes created. Typ is the base discriminated
355 -- type for the subtype Subt. Constraints is the list of discriminant
356 -- constraints for Typ.
358 function Constrain_Component_Type
359 (Comp : Entity_Id;
360 Constrained_Typ : Entity_Id;
361 Related_Node : Node_Id;
362 Typ : Entity_Id;
363 Constraints : Elist_Id) return Entity_Id;
364 -- Given a discriminated base type Typ, a list of discriminant constraints,
365 -- Constraints, for Typ and a component Comp of Typ, create and return the
366 -- type corresponding to Etype (Comp) where all discriminant references
367 -- are replaced with the corresponding constraint. If Etype (Comp) contains
368 -- no discriminant references then it is returned as-is. Constrained_Typ
369 -- is the final constrained subtype to which the constrained component
370 -- belongs. Related_Node is the node where we attach all created itypes.
372 procedure Constrain_Access
373 (Def_Id : in out Entity_Id;
374 S : Node_Id;
375 Related_Nod : Node_Id);
376 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
377 -- an anonymous type created for a subtype indication. In that case it is
378 -- created in the procedure and attached to Related_Nod.
380 procedure Constrain_Array
381 (Def_Id : in out Entity_Id;
382 SI : Node_Id;
383 Related_Nod : Node_Id;
384 Related_Id : Entity_Id;
385 Suffix : Character);
386 -- Apply a list of index constraints to an unconstrained array type. The
387 -- first parameter is the entity for the resulting subtype. A value of
388 -- Empty for Def_Id indicates that an implicit type must be created, but
389 -- creation is delayed (and must be done by this procedure) because other
390 -- subsidiary implicit types must be created first (which is why Def_Id
391 -- is an in/out parameter). The second parameter is a subtype indication
392 -- node for the constrained array to be created (e.g. something of the
393 -- form string (1 .. 10)). Related_Nod gives the place where this type
394 -- has to be inserted in the tree. The Related_Id and Suffix parameters
395 -- are used to build the associated Implicit type name.
397 procedure Constrain_Concurrent
398 (Def_Id : in out Entity_Id;
399 SI : Node_Id;
400 Related_Nod : Node_Id;
401 Related_Id : Entity_Id;
402 Suffix : Character);
403 -- Apply list of discriminant constraints to an unconstrained concurrent
404 -- type.
406 -- SI is the N_Subtype_Indication node containing the constraint and
407 -- the unconstrained type to constrain.
409 -- Def_Id is the entity for the resulting constrained subtype. A value
410 -- of Empty for Def_Id indicates that an implicit type must be created,
411 -- but creation is delayed (and must be done by this procedure) because
412 -- other subsidiary implicit types must be created first (which is why
413 -- Def_Id is an in/out parameter).
415 -- Related_Nod gives the place where this type has to be inserted
416 -- in the tree.
418 -- The last two arguments are used to create its external name if needed.
420 function Constrain_Corresponding_Record
421 (Prot_Subt : Entity_Id;
422 Corr_Rec : Entity_Id;
423 Related_Nod : Node_Id) return Entity_Id;
424 -- When constraining a protected type or task type with discriminants,
425 -- constrain the corresponding record with the same discriminant values.
427 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
428 -- Constrain a decimal fixed point type with a digits constraint and/or a
429 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
431 procedure Constrain_Discriminated_Type
432 (Def_Id : Entity_Id;
433 S : Node_Id;
434 Related_Nod : Node_Id;
435 For_Access : Boolean := False);
436 -- Process discriminant constraints of composite type. Verify that values
437 -- have been provided for all discriminants, that the original type is
438 -- unconstrained, and that the types of the supplied expressions match
439 -- the discriminant types. The first three parameters are like in routine
440 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
441 -- of For_Access.
443 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
444 -- Constrain an enumeration type with a range constraint. This is identical
445 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
447 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
448 -- Constrain a floating point type with either a digits constraint
449 -- and/or a range constraint, building a E_Floating_Point_Subtype.
451 procedure Constrain_Index
452 (Index : Node_Id;
453 S : Node_Id;
454 Related_Nod : Node_Id;
455 Related_Id : Entity_Id;
456 Suffix : Character;
457 Suffix_Index : Nat);
458 -- Process an index constraint S in a constrained array declaration. The
459 -- constraint can be a subtype name, or a range with or without an explicit
460 -- subtype mark. The index is the corresponding index of the unconstrained
461 -- array. The Related_Id and Suffix parameters are used to build the
462 -- associated Implicit type name.
464 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
465 -- Build subtype of a signed or modular integer type
467 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
468 -- Constrain an ordinary fixed point type with a range constraint, and
469 -- build an E_Ordinary_Fixed_Point_Subtype entity.
471 procedure Copy_And_Swap (Priv, Full : Entity_Id);
472 -- Copy the Priv entity into the entity of its full declaration then swap
473 -- the two entities in such a manner that the former private type is now
474 -- seen as a full type.
476 procedure Decimal_Fixed_Point_Type_Declaration
477 (T : Entity_Id;
478 Def : Node_Id);
479 -- Create a new decimal fixed point type, and apply the constraint to
480 -- obtain a subtype of this new type.
482 procedure Complete_Private_Subtype
483 (Priv : Entity_Id;
484 Full : Entity_Id;
485 Full_Base : Entity_Id;
486 Related_Nod : Node_Id);
487 -- Complete the implicit full view of a private subtype by setting the
488 -- appropriate semantic fields. If the full view of the parent is a record
489 -- type, build constrained components of subtype.
491 procedure Derive_Progenitor_Subprograms
492 (Parent_Type : Entity_Id;
493 Tagged_Type : Entity_Id);
494 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
495 -- operations of progenitors of Tagged_Type, and replace the subsidiary
496 -- subtypes with Tagged_Type, to build the specs of the inherited interface
497 -- primitives. The derived primitives are aliased to those of the
498 -- interface. This routine takes care also of transferring to the full view
499 -- subprograms associated with the partial view of Tagged_Type that cover
500 -- interface primitives.
502 procedure Derived_Standard_Character
503 (N : Node_Id;
504 Parent_Type : Entity_Id;
505 Derived_Type : Entity_Id);
506 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
507 -- derivations from types Standard.Character and Standard.Wide_Character.
509 procedure Derived_Type_Declaration
510 (T : Entity_Id;
511 N : Node_Id;
512 Is_Completion : Boolean);
513 -- Process a derived type declaration. Build_Derived_Type is invoked
514 -- to process the actual derived type definition. Parameters N and
515 -- Is_Completion have the same meaning as in Build_Derived_Type.
516 -- T is the N_Defining_Identifier for the entity defined in the
517 -- N_Full_Type_Declaration node N, that is T is the derived type.
519 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
520 -- Insert each literal in symbol table, as an overloadable identifier. Each
521 -- enumeration type is mapped into a sequence of integers, and each literal
522 -- is defined as a constant with integer value. If any of the literals are
523 -- character literals, the type is a character type, which means that
524 -- strings are legal aggregates for arrays of components of the type.
526 function Expand_To_Stored_Constraint
527 (Typ : Entity_Id;
528 Constraint : Elist_Id) return Elist_Id;
529 -- Given a constraint (i.e. a list of expressions) on the discriminants of
530 -- Typ, expand it into a constraint on the stored discriminants and return
531 -- the new list of expressions constraining the stored discriminants.
533 function Find_Type_Of_Object
534 (Obj_Def : Node_Id;
535 Related_Nod : Node_Id) return Entity_Id;
536 -- Get type entity for object referenced by Obj_Def, attaching the implicit
537 -- types generated to Related_Nod.
539 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
540 -- Create a new float and apply the constraint to obtain subtype of it
542 function Has_Range_Constraint (N : Node_Id) return Boolean;
543 -- Given an N_Subtype_Indication node N, return True if a range constraint
544 -- is present, either directly, or as part of a digits or delta constraint.
545 -- In addition, a digits constraint in the decimal case returns True, since
546 -- it establishes a default range if no explicit range is present.
548 function Inherit_Components
549 (N : Node_Id;
550 Parent_Base : Entity_Id;
551 Derived_Base : Entity_Id;
552 Is_Tagged : Boolean;
553 Inherit_Discr : Boolean;
554 Discs : Elist_Id) return Elist_Id;
555 -- Called from Build_Derived_Record_Type to inherit the components of
556 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
557 -- For more information on derived types and component inheritance please
558 -- consult the comment above the body of Build_Derived_Record_Type.
560 -- N is the original derived type declaration
562 -- Is_Tagged is set if we are dealing with tagged types
564 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
565 -- Parent_Base, otherwise no discriminants are inherited.
567 -- Discs gives the list of constraints that apply to Parent_Base in the
568 -- derived type declaration. If Discs is set to No_Elist, then we have
569 -- the following situation:
571 -- type Parent (D1..Dn : ..) is [tagged] record ...;
572 -- type Derived is new Parent [with ...];
574 -- which gets treated as
576 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
578 -- For untagged types the returned value is an association list. The list
579 -- starts from the association (Parent_Base => Derived_Base), and then it
580 -- contains a sequence of the associations of the form
582 -- (Old_Component => New_Component),
584 -- where Old_Component is the Entity_Id of a component in Parent_Base and
585 -- New_Component is the Entity_Id of the corresponding component in
586 -- Derived_Base. For untagged records, this association list is needed when
587 -- copying the record declaration for the derived base. In the tagged case
588 -- the value returned is irrelevant.
590 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
591 -- Propagate static and dynamic predicate flags from a parent to the
592 -- subtype in a subtype declaration with and without constraints.
594 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
595 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
596 -- Determine whether subprogram Subp is a procedure subject to pragma
597 -- Extensions_Visible with value False and has at least one controlling
598 -- parameter of mode OUT.
600 function Is_Valid_Constraint_Kind
601 (T_Kind : Type_Kind;
602 Constraint_Kind : Node_Kind) return Boolean;
603 -- Returns True if it is legal to apply the given kind of constraint to the
604 -- given kind of type (index constraint to an array type, for example).
606 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
607 -- Create new modular type. Verify that modulus is in bounds
609 procedure New_Concatenation_Op (Typ : Entity_Id);
610 -- Create an abbreviated declaration for an operator in order to
611 -- materialize concatenation on array types.
613 procedure Ordinary_Fixed_Point_Type_Declaration
614 (T : Entity_Id;
615 Def : Node_Id);
616 -- Create a new ordinary fixed point type, and apply the constraint to
617 -- obtain subtype of it.
619 procedure Prepare_Private_Subtype_Completion
620 (Id : Entity_Id;
621 Related_Nod : Node_Id);
622 -- Id is a subtype of some private type. Creates the full declaration
623 -- associated with Id whenever possible, i.e. when the full declaration
624 -- of the base type is already known. Records each subtype into
625 -- Private_Dependents of the base type.
627 procedure Process_Incomplete_Dependents
628 (N : Node_Id;
629 Full_T : Entity_Id;
630 Inc_T : Entity_Id);
631 -- Process all entities that depend on an incomplete type. There include
632 -- subtypes, subprogram types that mention the incomplete type in their
633 -- profiles, and subprogram with access parameters that designate the
634 -- incomplete type.
636 -- Inc_T is the defining identifier of an incomplete type declaration, its
637 -- Ekind is E_Incomplete_Type.
639 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
641 -- Full_T is N's defining identifier.
643 -- Subtypes of incomplete types with discriminants are completed when the
644 -- parent type is. This is simpler than private subtypes, because they can
645 -- only appear in the same scope, and there is no need to exchange views.
646 -- Similarly, access_to_subprogram types may have a parameter or a return
647 -- type that is an incomplete type, and that must be replaced with the
648 -- full type.
650 -- If the full type is tagged, subprogram with access parameters that
651 -- designated the incomplete may be primitive operations of the full type,
652 -- and have to be processed accordingly.
654 procedure Process_Real_Range_Specification (Def : Node_Id);
655 -- Given the type definition for a real type, this procedure processes and
656 -- checks the real range specification of this type definition if one is
657 -- present. If errors are found, error messages are posted, and the
658 -- Real_Range_Specification of Def is reset to Empty.
660 procedure Propagate_Default_Init_Cond_Attributes
661 (From_Typ : Entity_Id;
662 To_Typ : Entity_Id;
663 Parent_To_Derivation : Boolean := False;
664 Private_To_Full_View : Boolean := False);
665 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
666 -- all attributes related to pragma Default_Initial_Condition from From_Typ
667 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
668 -- the creation of a derived type. Flag Private_To_Full_View should be set
669 -- when processing both views of a private type.
671 procedure Record_Type_Declaration
672 (T : Entity_Id;
673 N : Node_Id;
674 Prev : Entity_Id);
675 -- Process a record type declaration (for both untagged and tagged
676 -- records). Parameters T and N are exactly like in procedure
677 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
678 -- for this routine. If this is the completion of an incomplete type
679 -- declaration, Prev is the entity of the incomplete declaration, used for
680 -- cross-referencing. Otherwise Prev = T.
682 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
683 -- This routine is used to process the actual record type definition (both
684 -- for untagged and tagged records). Def is a record type definition node.
685 -- This procedure analyzes the components in this record type definition.
686 -- Prev_T is the entity for the enclosing record type. It is provided so
687 -- that its Has_Task flag can be set if any of the component have Has_Task
688 -- set. If the declaration is the completion of an incomplete type
689 -- declaration, Prev_T is the original incomplete type, whose full view is
690 -- the record type.
692 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
693 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
694 -- build a copy of the declaration tree of the parent, and we create
695 -- independently the list of components for the derived type. Semantic
696 -- information uses the component entities, but record representation
697 -- clauses are validated on the declaration tree. This procedure replaces
698 -- discriminants and components in the declaration with those that have
699 -- been created by Inherit_Components.
701 procedure Set_Fixed_Range
702 (E : Entity_Id;
703 Loc : Source_Ptr;
704 Lo : Ureal;
705 Hi : Ureal);
706 -- Build a range node with the given bounds and set it as the Scalar_Range
707 -- of the given fixed-point type entity. Loc is the source location used
708 -- for the constructed range. See body for further details.
710 procedure Set_Scalar_Range_For_Subtype
711 (Def_Id : Entity_Id;
712 R : Node_Id;
713 Subt : Entity_Id);
714 -- This routine is used to set the scalar range field for a subtype given
715 -- Def_Id, the entity for the subtype, and R, the range expression for the
716 -- scalar range. Subt provides the parent subtype to be used to analyze,
717 -- resolve, and check the given range.
719 procedure Set_Default_SSO (T : Entity_Id);
720 -- T is the entity for an array or record being declared. This procedure
721 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
722 -- to the setting of Opt.Default_SSO.
724 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
725 -- Create a new signed integer entity, and apply the constraint to obtain
726 -- the required first named subtype of this type.
728 procedure Set_Stored_Constraint_From_Discriminant_Constraint
729 (E : Entity_Id);
730 -- E is some record type. This routine computes E's Stored_Constraint
731 -- from its Discriminant_Constraint.
733 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
734 -- Check that an entity in a list of progenitors is an interface,
735 -- emit error otherwise.
737 -----------------------
738 -- Access_Definition --
739 -----------------------
741 function Access_Definition
742 (Related_Nod : Node_Id;
743 N : Node_Id) return Entity_Id
745 Anon_Type : Entity_Id;
746 Anon_Scope : Entity_Id;
747 Desig_Type : Entity_Id;
748 Enclosing_Prot_Type : Entity_Id := Empty;
750 begin
751 Check_SPARK_05_Restriction ("access type is not allowed", N);
753 if Is_Entry (Current_Scope)
754 and then Is_Task_Type (Etype (Scope (Current_Scope)))
755 then
756 Error_Msg_N ("task entries cannot have access parameters", N);
757 return Empty;
758 end if;
760 -- Ada 2005: For an object declaration the corresponding anonymous
761 -- type is declared in the current scope.
763 -- If the access definition is the return type of another access to
764 -- function, scope is the current one, because it is the one of the
765 -- current type declaration, except for the pathological case below.
767 if Nkind_In (Related_Nod, N_Object_Declaration,
768 N_Access_Function_Definition)
769 then
770 Anon_Scope := Current_Scope;
772 -- A pathological case: function returning access functions that
773 -- return access functions, etc. Each anonymous access type created
774 -- is in the enclosing scope of the outermost function.
776 declare
777 Par : Node_Id;
779 begin
780 Par := Related_Nod;
781 while Nkind_In (Par, N_Access_Function_Definition,
782 N_Access_Definition)
783 loop
784 Par := Parent (Par);
785 end loop;
787 if Nkind (Par) = N_Function_Specification then
788 Anon_Scope := Scope (Defining_Entity (Par));
789 end if;
790 end;
792 -- For the anonymous function result case, retrieve the scope of the
793 -- function specification's associated entity rather than using the
794 -- current scope. The current scope will be the function itself if the
795 -- formal part is currently being analyzed, but will be the parent scope
796 -- in the case of a parameterless function, and we always want to use
797 -- the function's parent scope. Finally, if the function is a child
798 -- unit, we must traverse the tree to retrieve the proper entity.
800 elsif Nkind (Related_Nod) = N_Function_Specification
801 and then Nkind (Parent (N)) /= N_Parameter_Specification
802 then
803 -- If the current scope is a protected type, the anonymous access
804 -- is associated with one of the protected operations, and must
805 -- be available in the scope that encloses the protected declaration.
806 -- Otherwise the type is in the scope enclosing the subprogram.
808 -- If the function has formals, The return type of a subprogram
809 -- declaration is analyzed in the scope of the subprogram (see
810 -- Process_Formals) and thus the protected type, if present, is
811 -- the scope of the current function scope.
813 if Ekind (Current_Scope) = E_Protected_Type then
814 Enclosing_Prot_Type := Current_Scope;
816 elsif Ekind (Current_Scope) = E_Function
817 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
818 then
819 Enclosing_Prot_Type := Scope (Current_Scope);
820 end if;
822 if Present (Enclosing_Prot_Type) then
823 Anon_Scope := Scope (Enclosing_Prot_Type);
825 else
826 Anon_Scope := Scope (Defining_Entity (Related_Nod));
827 end if;
829 -- For an access type definition, if the current scope is a child
830 -- unit it is the scope of the type.
832 elsif Is_Compilation_Unit (Current_Scope) then
833 Anon_Scope := Current_Scope;
835 -- For access formals, access components, and access discriminants, the
836 -- scope is that of the enclosing declaration,
838 else
839 Anon_Scope := Scope (Current_Scope);
840 end if;
842 Anon_Type :=
843 Create_Itype
844 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
846 if All_Present (N)
847 and then Ada_Version >= Ada_2005
848 then
849 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
850 end if;
852 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
853 -- the corresponding semantic routine
855 if Present (Access_To_Subprogram_Definition (N)) then
857 -- Compiler runtime units are compiled in Ada 2005 mode when building
858 -- the runtime library but must also be compilable in Ada 95 mode
859 -- (when bootstrapping the compiler).
861 Check_Compiler_Unit ("anonymous access to subprogram", N);
863 Access_Subprogram_Declaration
864 (T_Name => Anon_Type,
865 T_Def => Access_To_Subprogram_Definition (N));
867 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
868 Set_Ekind
869 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
870 else
871 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
872 end if;
874 Set_Can_Use_Internal_Rep
875 (Anon_Type, not Always_Compatible_Rep_On_Target);
877 -- If the anonymous access is associated with a protected operation,
878 -- create a reference to it after the enclosing protected definition
879 -- because the itype will be used in the subsequent bodies.
881 if Ekind (Current_Scope) = E_Protected_Type then
882 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
883 end if;
885 return Anon_Type;
886 end if;
888 Find_Type (Subtype_Mark (N));
889 Desig_Type := Entity (Subtype_Mark (N));
891 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
892 Set_Etype (Anon_Type, Anon_Type);
894 -- Make sure the anonymous access type has size and alignment fields
895 -- set, as required by gigi. This is necessary in the case of the
896 -- Task_Body_Procedure.
898 if not Has_Private_Component (Desig_Type) then
899 Layout_Type (Anon_Type);
900 end if;
902 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
903 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
904 -- the null value is allowed. In Ada 95 the null value is never allowed.
906 if Ada_Version >= Ada_2005 then
907 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
908 else
909 Set_Can_Never_Be_Null (Anon_Type, True);
910 end if;
912 -- The anonymous access type is as public as the discriminated type or
913 -- subprogram that defines it. It is imported (for back-end purposes)
914 -- if the designated type is.
916 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
918 -- Ada 2005 (AI-231): Propagate the access-constant attribute
920 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
922 -- The context is either a subprogram declaration, object declaration,
923 -- or an access discriminant, in a private or a full type declaration.
924 -- In the case of a subprogram, if the designated type is incomplete,
925 -- the operation will be a primitive operation of the full type, to be
926 -- updated subsequently. If the type is imported through a limited_with
927 -- clause, the subprogram is not a primitive operation of the type
928 -- (which is declared elsewhere in some other scope).
930 if Ekind (Desig_Type) = E_Incomplete_Type
931 and then not From_Limited_With (Desig_Type)
932 and then Is_Overloadable (Current_Scope)
933 then
934 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
935 Set_Has_Delayed_Freeze (Current_Scope);
936 end if;
938 -- Ada 2005: If the designated type is an interface that may contain
939 -- tasks, create a Master entity for the declaration. This must be done
940 -- before expansion of the full declaration, because the declaration may
941 -- include an expression that is an allocator, whose expansion needs the
942 -- proper Master for the created tasks.
944 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
945 then
946 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
947 then
948 Build_Class_Wide_Master (Anon_Type);
950 -- Similarly, if the type is an anonymous access that designates
951 -- tasks, create a master entity for it in the current context.
953 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
954 then
955 Build_Master_Entity (Defining_Identifier (Related_Nod));
956 Build_Master_Renaming (Anon_Type);
957 end if;
958 end if;
960 -- For a private component of a protected type, it is imperative that
961 -- the back-end elaborate the type immediately after the protected
962 -- declaration, because this type will be used in the declarations
963 -- created for the component within each protected body, so we must
964 -- create an itype reference for it now.
966 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
967 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
969 -- Similarly, if the access definition is the return result of a
970 -- function, create an itype reference for it because it will be used
971 -- within the function body. For a regular function that is not a
972 -- compilation unit, insert reference after the declaration. For a
973 -- protected operation, insert it after the enclosing protected type
974 -- declaration. In either case, do not create a reference for a type
975 -- obtained through a limited_with clause, because this would introduce
976 -- semantic dependencies.
978 -- Similarly, do not create a reference if the designated type is a
979 -- generic formal, because no use of it will reach the backend.
981 elsif Nkind (Related_Nod) = N_Function_Specification
982 and then not From_Limited_With (Desig_Type)
983 and then not Is_Generic_Type (Desig_Type)
984 then
985 if Present (Enclosing_Prot_Type) then
986 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
988 elsif Is_List_Member (Parent (Related_Nod))
989 and then Nkind (Parent (N)) /= N_Parameter_Specification
990 then
991 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
992 end if;
994 -- Finally, create an itype reference for an object declaration of an
995 -- anonymous access type. This is strictly necessary only for deferred
996 -- constants, but in any case will avoid out-of-scope problems in the
997 -- back-end.
999 elsif Nkind (Related_Nod) = N_Object_Declaration then
1000 Build_Itype_Reference (Anon_Type, Related_Nod);
1001 end if;
1003 return Anon_Type;
1004 end Access_Definition;
1006 -----------------------------------
1007 -- Access_Subprogram_Declaration --
1008 -----------------------------------
1010 procedure Access_Subprogram_Declaration
1011 (T_Name : Entity_Id;
1012 T_Def : Node_Id)
1014 procedure Check_For_Premature_Usage (Def : Node_Id);
1015 -- Check that type T_Name is not used, directly or recursively, as a
1016 -- parameter or a return type in Def. Def is either a subtype, an
1017 -- access_definition, or an access_to_subprogram_definition.
1019 -------------------------------
1020 -- Check_For_Premature_Usage --
1021 -------------------------------
1023 procedure Check_For_Premature_Usage (Def : Node_Id) is
1024 Param : Node_Id;
1026 begin
1027 -- Check for a subtype mark
1029 if Nkind (Def) in N_Has_Etype then
1030 if Etype (Def) = T_Name then
1031 Error_Msg_N
1032 ("type& cannot be used before end of its declaration", Def);
1033 end if;
1035 -- If this is not a subtype, then this is an access_definition
1037 elsif Nkind (Def) = N_Access_Definition then
1038 if Present (Access_To_Subprogram_Definition (Def)) then
1039 Check_For_Premature_Usage
1040 (Access_To_Subprogram_Definition (Def));
1041 else
1042 Check_For_Premature_Usage (Subtype_Mark (Def));
1043 end if;
1045 -- The only cases left are N_Access_Function_Definition and
1046 -- N_Access_Procedure_Definition.
1048 else
1049 if Present (Parameter_Specifications (Def)) then
1050 Param := First (Parameter_Specifications (Def));
1051 while Present (Param) loop
1052 Check_For_Premature_Usage (Parameter_Type (Param));
1053 Param := Next (Param);
1054 end loop;
1055 end if;
1057 if Nkind (Def) = N_Access_Function_Definition then
1058 Check_For_Premature_Usage (Result_Definition (Def));
1059 end if;
1060 end if;
1061 end Check_For_Premature_Usage;
1063 -- Local variables
1065 Formals : constant List_Id := Parameter_Specifications (T_Def);
1066 Formal : Entity_Id;
1067 D_Ityp : Node_Id;
1068 Desig_Type : constant Entity_Id :=
1069 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1071 -- Start of processing for Access_Subprogram_Declaration
1073 begin
1074 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1076 -- Associate the Itype node with the inner full-type declaration or
1077 -- subprogram spec or entry body. This is required to handle nested
1078 -- anonymous declarations. For example:
1080 -- procedure P
1081 -- (X : access procedure
1082 -- (Y : access procedure
1083 -- (Z : access T)))
1085 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1086 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1087 N_Private_Type_Declaration,
1088 N_Private_Extension_Declaration,
1089 N_Procedure_Specification,
1090 N_Function_Specification,
1091 N_Entry_Body)
1093 or else
1094 Nkind_In (D_Ityp, N_Object_Declaration,
1095 N_Object_Renaming_Declaration,
1096 N_Formal_Object_Declaration,
1097 N_Formal_Type_Declaration,
1098 N_Task_Type_Declaration,
1099 N_Protected_Type_Declaration))
1100 loop
1101 D_Ityp := Parent (D_Ityp);
1102 pragma Assert (D_Ityp /= Empty);
1103 end loop;
1105 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1107 if Nkind_In (D_Ityp, N_Procedure_Specification,
1108 N_Function_Specification)
1109 then
1110 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1112 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1113 N_Object_Declaration,
1114 N_Object_Renaming_Declaration,
1115 N_Formal_Type_Declaration)
1116 then
1117 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1118 end if;
1120 if Nkind (T_Def) = N_Access_Function_Definition then
1121 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1122 declare
1123 Acc : constant Node_Id := Result_Definition (T_Def);
1125 begin
1126 if Present (Access_To_Subprogram_Definition (Acc))
1127 and then
1128 Protected_Present (Access_To_Subprogram_Definition (Acc))
1129 then
1130 Set_Etype
1131 (Desig_Type,
1132 Replace_Anonymous_Access_To_Protected_Subprogram
1133 (T_Def));
1135 else
1136 Set_Etype
1137 (Desig_Type,
1138 Access_Definition (T_Def, Result_Definition (T_Def)));
1139 end if;
1140 end;
1142 else
1143 Analyze (Result_Definition (T_Def));
1145 declare
1146 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1148 begin
1149 -- If a null exclusion is imposed on the result type, then
1150 -- create a null-excluding itype (an access subtype) and use
1151 -- it as the function's Etype.
1153 if Is_Access_Type (Typ)
1154 and then Null_Exclusion_In_Return_Present (T_Def)
1155 then
1156 Set_Etype (Desig_Type,
1157 Create_Null_Excluding_Itype
1158 (T => Typ,
1159 Related_Nod => T_Def,
1160 Scope_Id => Current_Scope));
1162 else
1163 if From_Limited_With (Typ) then
1165 -- AI05-151: Incomplete types are allowed in all basic
1166 -- declarations, including access to subprograms.
1168 if Ada_Version >= Ada_2012 then
1169 null;
1171 else
1172 Error_Msg_NE
1173 ("illegal use of incomplete type&",
1174 Result_Definition (T_Def), Typ);
1175 end if;
1177 elsif Ekind (Current_Scope) = E_Package
1178 and then In_Private_Part (Current_Scope)
1179 then
1180 if Ekind (Typ) = E_Incomplete_Type then
1181 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1183 elsif Is_Class_Wide_Type (Typ)
1184 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1185 then
1186 Append_Elmt
1187 (Desig_Type, Private_Dependents (Etype (Typ)));
1188 end if;
1189 end if;
1191 Set_Etype (Desig_Type, Typ);
1192 end if;
1193 end;
1194 end if;
1196 if not (Is_Type (Etype (Desig_Type))) then
1197 Error_Msg_N
1198 ("expect type in function specification",
1199 Result_Definition (T_Def));
1200 end if;
1202 else
1203 Set_Etype (Desig_Type, Standard_Void_Type);
1204 end if;
1206 if Present (Formals) then
1207 Push_Scope (Desig_Type);
1209 -- Some special tests here. These special tests can be removed
1210 -- if and when Itypes always have proper parent pointers to their
1211 -- declarations???
1213 -- Special test 1) Link defining_identifier of formals. Required by
1214 -- First_Formal to provide its functionality.
1216 declare
1217 F : Node_Id;
1219 begin
1220 F := First (Formals);
1222 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1223 -- when it is part of an unconstrained type and subtype expansion
1224 -- is disabled. To avoid back-end problems with shared profiles,
1225 -- use previous subprogram type as the designated type, and then
1226 -- remove scope added above.
1228 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1229 then
1230 Set_Etype (T_Name, T_Name);
1231 Init_Size_Align (T_Name);
1232 Set_Directly_Designated_Type (T_Name,
1233 Scope (Defining_Identifier (F)));
1234 End_Scope;
1235 return;
1236 end if;
1238 while Present (F) loop
1239 if No (Parent (Defining_Identifier (F))) then
1240 Set_Parent (Defining_Identifier (F), F);
1241 end if;
1243 Next (F);
1244 end loop;
1245 end;
1247 Process_Formals (Formals, Parent (T_Def));
1249 -- Special test 2) End_Scope requires that the parent pointer be set
1250 -- to something reasonable, but Itypes don't have parent pointers. So
1251 -- we set it and then unset it ???
1253 Set_Parent (Desig_Type, T_Name);
1254 End_Scope;
1255 Set_Parent (Desig_Type, Empty);
1256 end if;
1258 -- Check for premature usage of the type being defined
1260 Check_For_Premature_Usage (T_Def);
1262 -- The return type and/or any parameter type may be incomplete. Mark the
1263 -- subprogram_type as depending on the incomplete type, so that it can
1264 -- be updated when the full type declaration is seen. This only applies
1265 -- to incomplete types declared in some enclosing scope, not to limited
1266 -- views from other packages.
1268 -- Prior to Ada 2012, access to functions can only have in_parameters.
1270 if Present (Formals) then
1271 Formal := First_Formal (Desig_Type);
1272 while Present (Formal) loop
1273 if Ekind (Formal) /= E_In_Parameter
1274 and then Nkind (T_Def) = N_Access_Function_Definition
1275 and then Ada_Version < Ada_2012
1276 then
1277 Error_Msg_N ("functions can only have IN parameters", Formal);
1278 end if;
1280 if Ekind (Etype (Formal)) = E_Incomplete_Type
1281 and then In_Open_Scopes (Scope (Etype (Formal)))
1282 then
1283 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1284 Set_Has_Delayed_Freeze (Desig_Type);
1285 end if;
1287 Next_Formal (Formal);
1288 end loop;
1289 end if;
1291 -- Check whether an indirect call without actuals may be possible. This
1292 -- is used when resolving calls whose result is then indexed.
1294 May_Need_Actuals (Desig_Type);
1296 -- If the return type is incomplete, this is legal as long as the type
1297 -- is declared in the current scope and will be completed in it (rather
1298 -- than being part of limited view).
1300 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1301 and then not Has_Delayed_Freeze (Desig_Type)
1302 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1303 then
1304 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1305 Set_Has_Delayed_Freeze (Desig_Type);
1306 end if;
1308 Check_Delayed_Subprogram (Desig_Type);
1310 if Protected_Present (T_Def) then
1311 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1312 Set_Convention (Desig_Type, Convention_Protected);
1313 else
1314 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1315 end if;
1317 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1319 Set_Etype (T_Name, T_Name);
1320 Init_Size_Align (T_Name);
1321 Set_Directly_Designated_Type (T_Name, Desig_Type);
1323 Generate_Reference_To_Formals (T_Name);
1325 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1327 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1329 Check_Restriction (No_Access_Subprograms, T_Def);
1330 end Access_Subprogram_Declaration;
1332 ----------------------------
1333 -- Access_Type_Declaration --
1334 ----------------------------
1336 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1337 P : constant Node_Id := Parent (Def);
1338 S : constant Node_Id := Subtype_Indication (Def);
1340 Full_Desig : Entity_Id;
1342 begin
1343 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1345 -- Check for permissible use of incomplete type
1347 if Nkind (S) /= N_Subtype_Indication then
1348 Analyze (S);
1350 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1351 Set_Directly_Designated_Type (T, Entity (S));
1353 -- If the designated type is a limited view, we cannot tell if
1354 -- the full view contains tasks, and there is no way to handle
1355 -- that full view in a client. We create a master entity for the
1356 -- scope, which will be used when a client determines that one
1357 -- is needed.
1359 if From_Limited_With (Entity (S))
1360 and then not Is_Class_Wide_Type (Entity (S))
1361 then
1362 Set_Ekind (T, E_Access_Type);
1363 Build_Master_Entity (T);
1364 Build_Master_Renaming (T);
1365 end if;
1367 else
1368 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1369 end if;
1371 -- If the access definition is of the form: ACCESS NOT NULL ..
1372 -- the subtype indication must be of an access type. Create
1373 -- a null-excluding subtype of it.
1375 if Null_Excluding_Subtype (Def) then
1376 if not Is_Access_Type (Entity (S)) then
1377 Error_Msg_N ("null exclusion must apply to access type", Def);
1379 else
1380 declare
1381 Loc : constant Source_Ptr := Sloc (S);
1382 Decl : Node_Id;
1383 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1385 begin
1386 Decl :=
1387 Make_Subtype_Declaration (Loc,
1388 Defining_Identifier => Nam,
1389 Subtype_Indication =>
1390 New_Occurrence_Of (Entity (S), Loc));
1391 Set_Null_Exclusion_Present (Decl);
1392 Insert_Before (Parent (Def), Decl);
1393 Analyze (Decl);
1394 Set_Entity (S, Nam);
1395 end;
1396 end if;
1397 end if;
1399 else
1400 Set_Directly_Designated_Type (T,
1401 Process_Subtype (S, P, T, 'P'));
1402 end if;
1404 if All_Present (Def) or Constant_Present (Def) then
1405 Set_Ekind (T, E_General_Access_Type);
1406 else
1407 Set_Ekind (T, E_Access_Type);
1408 end if;
1410 Full_Desig := Designated_Type (T);
1412 if Base_Type (Full_Desig) = T then
1413 Error_Msg_N ("access type cannot designate itself", S);
1415 -- In Ada 2005, the type may have a limited view through some unit in
1416 -- its own context, allowing the following circularity that cannot be
1417 -- detected earlier.
1419 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1420 then
1421 Error_Msg_N
1422 ("access type cannot designate its own classwide type", S);
1424 -- Clean up indication of tagged status to prevent cascaded errors
1426 Set_Is_Tagged_Type (T, False);
1427 end if;
1429 Set_Etype (T, T);
1431 -- If the type has appeared already in a with_type clause, it is frozen
1432 -- and the pointer size is already set. Else, initialize.
1434 if not From_Limited_With (T) then
1435 Init_Size_Align (T);
1436 end if;
1438 -- Note that Has_Task is always false, since the access type itself
1439 -- is not a task type. See Einfo for more description on this point.
1440 -- Exactly the same consideration applies to Has_Controlled_Component
1441 -- and to Has_Protected.
1443 Set_Has_Task (T, False);
1444 Set_Has_Controlled_Component (T, False);
1445 Set_Has_Protected (T, False);
1447 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1448 -- problems where an incomplete view of this entity has been previously
1449 -- established by a limited with and an overlaid version of this field
1450 -- (Stored_Constraint) was initialized for the incomplete view.
1452 -- This reset is performed in most cases except where the access type
1453 -- has been created for the purposes of allocating or deallocating a
1454 -- build-in-place object. Such access types have explicitly set pools
1455 -- and finalization masters.
1457 if No (Associated_Storage_Pool (T)) then
1458 Set_Finalization_Master (T, Empty);
1459 end if;
1461 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1462 -- attributes
1464 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1465 Set_Is_Access_Constant (T, Constant_Present (Def));
1466 end Access_Type_Declaration;
1468 ----------------------------------
1469 -- Add_Interface_Tag_Components --
1470 ----------------------------------
1472 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1473 Loc : constant Source_Ptr := Sloc (N);
1474 L : List_Id;
1475 Last_Tag : Node_Id;
1477 procedure Add_Tag (Iface : Entity_Id);
1478 -- Add tag for one of the progenitor interfaces
1480 -------------
1481 -- Add_Tag --
1482 -------------
1484 procedure Add_Tag (Iface : Entity_Id) is
1485 Decl : Node_Id;
1486 Def : Node_Id;
1487 Tag : Entity_Id;
1488 Offset : Entity_Id;
1490 begin
1491 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1493 -- This is a reasonable place to propagate predicates
1495 if Has_Predicates (Iface) then
1496 Set_Has_Predicates (Typ);
1497 end if;
1499 Def :=
1500 Make_Component_Definition (Loc,
1501 Aliased_Present => True,
1502 Subtype_Indication =>
1503 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1505 Tag := Make_Temporary (Loc, 'V');
1507 Decl :=
1508 Make_Component_Declaration (Loc,
1509 Defining_Identifier => Tag,
1510 Component_Definition => Def);
1512 Analyze_Component_Declaration (Decl);
1514 Set_Analyzed (Decl);
1515 Set_Ekind (Tag, E_Component);
1516 Set_Is_Tag (Tag);
1517 Set_Is_Aliased (Tag);
1518 Set_Related_Type (Tag, Iface);
1519 Init_Component_Location (Tag);
1521 pragma Assert (Is_Frozen (Iface));
1523 Set_DT_Entry_Count (Tag,
1524 DT_Entry_Count (First_Entity (Iface)));
1526 if No (Last_Tag) then
1527 Prepend (Decl, L);
1528 else
1529 Insert_After (Last_Tag, Decl);
1530 end if;
1532 Last_Tag := Decl;
1534 -- If the ancestor has discriminants we need to give special support
1535 -- to store the offset_to_top value of the secondary dispatch tables.
1536 -- For this purpose we add a supplementary component just after the
1537 -- field that contains the tag associated with each secondary DT.
1539 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1540 Def :=
1541 Make_Component_Definition (Loc,
1542 Subtype_Indication =>
1543 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1545 Offset := Make_Temporary (Loc, 'V');
1547 Decl :=
1548 Make_Component_Declaration (Loc,
1549 Defining_Identifier => Offset,
1550 Component_Definition => Def);
1552 Analyze_Component_Declaration (Decl);
1554 Set_Analyzed (Decl);
1555 Set_Ekind (Offset, E_Component);
1556 Set_Is_Aliased (Offset);
1557 Set_Related_Type (Offset, Iface);
1558 Init_Component_Location (Offset);
1559 Insert_After (Last_Tag, Decl);
1560 Last_Tag := Decl;
1561 end if;
1562 end Add_Tag;
1564 -- Local variables
1566 Elmt : Elmt_Id;
1567 Ext : Node_Id;
1568 Comp : Node_Id;
1570 -- Start of processing for Add_Interface_Tag_Components
1572 begin
1573 if not RTE_Available (RE_Interface_Tag) then
1574 Error_Msg
1575 ("(Ada 2005) interface types not supported by this run-time!",
1576 Sloc (N));
1577 return;
1578 end if;
1580 if Ekind (Typ) /= E_Record_Type
1581 or else (Is_Concurrent_Record_Type (Typ)
1582 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1583 or else (not Is_Concurrent_Record_Type (Typ)
1584 and then No (Interfaces (Typ))
1585 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1586 then
1587 return;
1588 end if;
1590 -- Find the current last tag
1592 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1593 Ext := Record_Extension_Part (Type_Definition (N));
1594 else
1595 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1596 Ext := Type_Definition (N);
1597 end if;
1599 Last_Tag := Empty;
1601 if not (Present (Component_List (Ext))) then
1602 Set_Null_Present (Ext, False);
1603 L := New_List;
1604 Set_Component_List (Ext,
1605 Make_Component_List (Loc,
1606 Component_Items => L,
1607 Null_Present => False));
1608 else
1609 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1610 L := Component_Items
1611 (Component_List
1612 (Record_Extension_Part
1613 (Type_Definition (N))));
1614 else
1615 L := Component_Items
1616 (Component_List
1617 (Type_Definition (N)));
1618 end if;
1620 -- Find the last tag component
1622 Comp := First (L);
1623 while Present (Comp) loop
1624 if Nkind (Comp) = N_Component_Declaration
1625 and then Is_Tag (Defining_Identifier (Comp))
1626 then
1627 Last_Tag := Comp;
1628 end if;
1630 Next (Comp);
1631 end loop;
1632 end if;
1634 -- At this point L references the list of components and Last_Tag
1635 -- references the current last tag (if any). Now we add the tag
1636 -- corresponding with all the interfaces that are not implemented
1637 -- by the parent.
1639 if Present (Interfaces (Typ)) then
1640 Elmt := First_Elmt (Interfaces (Typ));
1641 while Present (Elmt) loop
1642 Add_Tag (Node (Elmt));
1643 Next_Elmt (Elmt);
1644 end loop;
1645 end if;
1646 end Add_Interface_Tag_Components;
1648 -------------------------------------
1649 -- Add_Internal_Interface_Entities --
1650 -------------------------------------
1652 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1653 Elmt : Elmt_Id;
1654 Iface : Entity_Id;
1655 Iface_Elmt : Elmt_Id;
1656 Iface_Prim : Entity_Id;
1657 Ifaces_List : Elist_Id;
1658 New_Subp : Entity_Id := Empty;
1659 Prim : Entity_Id;
1660 Restore_Scope : Boolean := False;
1662 begin
1663 pragma Assert (Ada_Version >= Ada_2005
1664 and then Is_Record_Type (Tagged_Type)
1665 and then Is_Tagged_Type (Tagged_Type)
1666 and then Has_Interfaces (Tagged_Type)
1667 and then not Is_Interface (Tagged_Type));
1669 -- Ensure that the internal entities are added to the scope of the type
1671 if Scope (Tagged_Type) /= Current_Scope then
1672 Push_Scope (Scope (Tagged_Type));
1673 Restore_Scope := True;
1674 end if;
1676 Collect_Interfaces (Tagged_Type, Ifaces_List);
1678 Iface_Elmt := First_Elmt (Ifaces_List);
1679 while Present (Iface_Elmt) loop
1680 Iface := Node (Iface_Elmt);
1682 -- Originally we excluded here from this processing interfaces that
1683 -- are parents of Tagged_Type because their primitives are located
1684 -- in the primary dispatch table (and hence no auxiliary internal
1685 -- entities are required to handle secondary dispatch tables in such
1686 -- case). However, these auxiliary entities are also required to
1687 -- handle derivations of interfaces in formals of generics (see
1688 -- Derive_Subprograms).
1690 Elmt := First_Elmt (Primitive_Operations (Iface));
1691 while Present (Elmt) loop
1692 Iface_Prim := Node (Elmt);
1694 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1695 Prim :=
1696 Find_Primitive_Covering_Interface
1697 (Tagged_Type => Tagged_Type,
1698 Iface_Prim => Iface_Prim);
1700 if No (Prim) and then Serious_Errors_Detected > 0 then
1701 goto Continue;
1702 end if;
1704 pragma Assert (Present (Prim));
1706 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1707 -- differs from the name of the interface primitive then it is
1708 -- a private primitive inherited from a parent type. In such
1709 -- case, given that Tagged_Type covers the interface, the
1710 -- inherited private primitive becomes visible. For such
1711 -- purpose we add a new entity that renames the inherited
1712 -- private primitive.
1714 if Chars (Prim) /= Chars (Iface_Prim) then
1715 pragma Assert (Has_Suffix (Prim, 'P'));
1716 Derive_Subprogram
1717 (New_Subp => New_Subp,
1718 Parent_Subp => Iface_Prim,
1719 Derived_Type => Tagged_Type,
1720 Parent_Type => Iface);
1721 Set_Alias (New_Subp, Prim);
1722 Set_Is_Abstract_Subprogram
1723 (New_Subp, Is_Abstract_Subprogram (Prim));
1724 end if;
1726 Derive_Subprogram
1727 (New_Subp => New_Subp,
1728 Parent_Subp => Iface_Prim,
1729 Derived_Type => Tagged_Type,
1730 Parent_Type => Iface);
1732 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1733 -- associated with interface types. These entities are
1734 -- only registered in the list of primitives of its
1735 -- corresponding tagged type because they are only used
1736 -- to fill the contents of the secondary dispatch tables.
1737 -- Therefore they are removed from the homonym chains.
1739 Set_Is_Hidden (New_Subp);
1740 Set_Is_Internal (New_Subp);
1741 Set_Alias (New_Subp, Prim);
1742 Set_Is_Abstract_Subprogram
1743 (New_Subp, Is_Abstract_Subprogram (Prim));
1744 Set_Interface_Alias (New_Subp, Iface_Prim);
1746 -- If the returned type is an interface then propagate it to
1747 -- the returned type. Needed by the thunk to generate the code
1748 -- which displaces "this" to reference the corresponding
1749 -- secondary dispatch table in the returned object.
1751 if Is_Interface (Etype (Iface_Prim)) then
1752 Set_Etype (New_Subp, Etype (Iface_Prim));
1753 end if;
1755 -- Internal entities associated with interface types are
1756 -- only registered in the list of primitives of the tagged
1757 -- type. They are only used to fill the contents of the
1758 -- secondary dispatch tables. Therefore they are not needed
1759 -- in the homonym chains.
1761 Remove_Homonym (New_Subp);
1763 -- Hidden entities associated with interfaces must have set
1764 -- the Has_Delay_Freeze attribute to ensure that, in case of
1765 -- locally defined tagged types (or compiling with static
1766 -- dispatch tables generation disabled) the corresponding
1767 -- entry of the secondary dispatch table is filled when
1768 -- such an entity is frozen.
1770 Set_Has_Delayed_Freeze (New_Subp);
1771 end if;
1773 <<Continue>>
1774 Next_Elmt (Elmt);
1775 end loop;
1777 Next_Elmt (Iface_Elmt);
1778 end loop;
1780 if Restore_Scope then
1781 Pop_Scope;
1782 end if;
1783 end Add_Internal_Interface_Entities;
1785 -----------------------------------
1786 -- Analyze_Component_Declaration --
1787 -----------------------------------
1789 procedure Analyze_Component_Declaration (N : Node_Id) is
1790 Id : constant Entity_Id := Defining_Identifier (N);
1791 E : constant Node_Id := Expression (N);
1792 Typ : constant Node_Id :=
1793 Subtype_Indication (Component_Definition (N));
1794 T : Entity_Id;
1795 P : Entity_Id;
1797 function Contains_POC (Constr : Node_Id) return Boolean;
1798 -- Determines whether a constraint uses the discriminant of a record
1799 -- type thus becoming a per-object constraint (POC).
1801 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1802 -- Typ is the type of the current component, check whether this type is
1803 -- a limited type. Used to validate declaration against that of
1804 -- enclosing record.
1806 ------------------
1807 -- Contains_POC --
1808 ------------------
1810 function Contains_POC (Constr : Node_Id) return Boolean is
1811 begin
1812 -- Prevent cascaded errors
1814 if Error_Posted (Constr) then
1815 return False;
1816 end if;
1818 case Nkind (Constr) is
1819 when N_Attribute_Reference =>
1820 return Attribute_Name (Constr) = Name_Access
1821 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1823 when N_Discriminant_Association =>
1824 return Denotes_Discriminant (Expression (Constr));
1826 when N_Identifier =>
1827 return Denotes_Discriminant (Constr);
1829 when N_Index_Or_Discriminant_Constraint =>
1830 declare
1831 IDC : Node_Id;
1833 begin
1834 IDC := First (Constraints (Constr));
1835 while Present (IDC) loop
1837 -- One per-object constraint is sufficient
1839 if Contains_POC (IDC) then
1840 return True;
1841 end if;
1843 Next (IDC);
1844 end loop;
1846 return False;
1847 end;
1849 when N_Range =>
1850 return Denotes_Discriminant (Low_Bound (Constr))
1851 or else
1852 Denotes_Discriminant (High_Bound (Constr));
1854 when N_Range_Constraint =>
1855 return Denotes_Discriminant (Range_Expression (Constr));
1857 when others =>
1858 return False;
1860 end case;
1861 end Contains_POC;
1863 ----------------------
1864 -- Is_Known_Limited --
1865 ----------------------
1867 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1868 P : constant Entity_Id := Etype (Typ);
1869 R : constant Entity_Id := Root_Type (Typ);
1871 begin
1872 if Is_Limited_Record (Typ) then
1873 return True;
1875 -- If the root type is limited (and not a limited interface)
1876 -- so is the current type
1878 elsif Is_Limited_Record (R)
1879 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1880 then
1881 return True;
1883 -- Else the type may have a limited interface progenitor, but a
1884 -- limited record parent.
1886 elsif R /= P and then Is_Limited_Record (P) then
1887 return True;
1889 else
1890 return False;
1891 end if;
1892 end Is_Known_Limited;
1894 -- Start of processing for Analyze_Component_Declaration
1896 begin
1897 Generate_Definition (Id);
1898 Enter_Name (Id);
1900 if Present (Typ) then
1901 T := Find_Type_Of_Object
1902 (Subtype_Indication (Component_Definition (N)), N);
1904 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1905 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1906 end if;
1908 -- Ada 2005 (AI-230): Access Definition case
1910 else
1911 pragma Assert (Present
1912 (Access_Definition (Component_Definition (N))));
1914 T := Access_Definition
1915 (Related_Nod => N,
1916 N => Access_Definition (Component_Definition (N)));
1917 Set_Is_Local_Anonymous_Access (T);
1919 -- Ada 2005 (AI-254)
1921 if Present (Access_To_Subprogram_Definition
1922 (Access_Definition (Component_Definition (N))))
1923 and then Protected_Present (Access_To_Subprogram_Definition
1924 (Access_Definition
1925 (Component_Definition (N))))
1926 then
1927 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1928 end if;
1929 end if;
1931 -- If the subtype is a constrained subtype of the enclosing record,
1932 -- (which must have a partial view) the back-end does not properly
1933 -- handle the recursion. Rewrite the component declaration with an
1934 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1935 -- the tree directly because side effects have already been removed from
1936 -- discriminant constraints.
1938 if Ekind (T) = E_Access_Subtype
1939 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1940 and then Comes_From_Source (T)
1941 and then Nkind (Parent (T)) = N_Subtype_Declaration
1942 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1943 then
1944 Rewrite
1945 (Subtype_Indication (Component_Definition (N)),
1946 New_Copy_Tree (Subtype_Indication (Parent (T))));
1947 T := Find_Type_Of_Object
1948 (Subtype_Indication (Component_Definition (N)), N);
1949 end if;
1951 -- If the component declaration includes a default expression, then we
1952 -- check that the component is not of a limited type (RM 3.7(5)),
1953 -- and do the special preanalysis of the expression (see section on
1954 -- "Handling of Default and Per-Object Expressions" in the spec of
1955 -- package Sem).
1957 if Present (E) then
1958 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1959 Preanalyze_Default_Expression (E, T);
1960 Check_Initialization (T, E);
1962 if Ada_Version >= Ada_2005
1963 and then Ekind (T) = E_Anonymous_Access_Type
1964 and then Etype (E) /= Any_Type
1965 then
1966 -- Check RM 3.9.2(9): "if the expected type for an expression is
1967 -- an anonymous access-to-specific tagged type, then the object
1968 -- designated by the expression shall not be dynamically tagged
1969 -- unless it is a controlling operand in a call on a dispatching
1970 -- operation"
1972 if Is_Tagged_Type (Directly_Designated_Type (T))
1973 and then
1974 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1975 and then
1976 Ekind (Directly_Designated_Type (Etype (E))) =
1977 E_Class_Wide_Type
1978 then
1979 Error_Msg_N
1980 ("access to specific tagged type required (RM 3.9.2(9))", E);
1981 end if;
1983 -- (Ada 2005: AI-230): Accessibility check for anonymous
1984 -- components
1986 if Type_Access_Level (Etype (E)) >
1987 Deepest_Type_Access_Level (T)
1988 then
1989 Error_Msg_N
1990 ("expression has deeper access level than component " &
1991 "(RM 3.10.2 (12.2))", E);
1992 end if;
1994 -- The initialization expression is a reference to an access
1995 -- discriminant. The type of the discriminant is always deeper
1996 -- than any access type.
1998 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1999 and then Is_Entity_Name (E)
2000 and then Ekind (Entity (E)) = E_In_Parameter
2001 and then Present (Discriminal_Link (Entity (E)))
2002 then
2003 Error_Msg_N
2004 ("discriminant has deeper accessibility level than target",
2006 end if;
2007 end if;
2008 end if;
2010 -- The parent type may be a private view with unknown discriminants,
2011 -- and thus unconstrained. Regular components must be constrained.
2013 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
2014 if Is_Class_Wide_Type (T) then
2015 Error_Msg_N
2016 ("class-wide subtype with unknown discriminants" &
2017 " in component declaration",
2018 Subtype_Indication (Component_Definition (N)));
2019 else
2020 Error_Msg_N
2021 ("unconstrained subtype in component declaration",
2022 Subtype_Indication (Component_Definition (N)));
2023 end if;
2025 -- Components cannot be abstract, except for the special case of
2026 -- the _Parent field (case of extending an abstract tagged type)
2028 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2029 Error_Msg_N ("type of a component cannot be abstract", N);
2030 end if;
2032 Set_Etype (Id, T);
2033 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2035 -- The component declaration may have a per-object constraint, set
2036 -- the appropriate flag in the defining identifier of the subtype.
2038 if Present (Subtype_Indication (Component_Definition (N))) then
2039 declare
2040 Sindic : constant Node_Id :=
2041 Subtype_Indication (Component_Definition (N));
2042 begin
2043 if Nkind (Sindic) = N_Subtype_Indication
2044 and then Present (Constraint (Sindic))
2045 and then Contains_POC (Constraint (Sindic))
2046 then
2047 Set_Has_Per_Object_Constraint (Id);
2048 end if;
2049 end;
2050 end if;
2052 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2053 -- out some static checks.
2055 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2056 Null_Exclusion_Static_Checks (N);
2057 end if;
2059 -- If this component is private (or depends on a private type), flag the
2060 -- record type to indicate that some operations are not available.
2062 P := Private_Component (T);
2064 if Present (P) then
2066 -- Check for circular definitions
2068 if P = Any_Type then
2069 Set_Etype (Id, Any_Type);
2071 -- There is a gap in the visibility of operations only if the
2072 -- component type is not defined in the scope of the record type.
2074 elsif Scope (P) = Scope (Current_Scope) then
2075 null;
2077 elsif Is_Limited_Type (P) then
2078 Set_Is_Limited_Composite (Current_Scope);
2080 else
2081 Set_Is_Private_Composite (Current_Scope);
2082 end if;
2083 end if;
2085 if P /= Any_Type
2086 and then Is_Limited_Type (T)
2087 and then Chars (Id) /= Name_uParent
2088 and then Is_Tagged_Type (Current_Scope)
2089 then
2090 if Is_Derived_Type (Current_Scope)
2091 and then not Is_Known_Limited (Current_Scope)
2092 then
2093 Error_Msg_N
2094 ("extension of nonlimited type cannot have limited components",
2097 if Is_Interface (Root_Type (Current_Scope)) then
2098 Error_Msg_N
2099 ("\limitedness is not inherited from limited interface", N);
2100 Error_Msg_N ("\add LIMITED to type indication", N);
2101 end if;
2103 Explain_Limited_Type (T, N);
2104 Set_Etype (Id, Any_Type);
2105 Set_Is_Limited_Composite (Current_Scope, False);
2107 elsif not Is_Derived_Type (Current_Scope)
2108 and then not Is_Limited_Record (Current_Scope)
2109 and then not Is_Concurrent_Type (Current_Scope)
2110 then
2111 Error_Msg_N
2112 ("nonlimited tagged type cannot have limited components", N);
2113 Explain_Limited_Type (T, N);
2114 Set_Etype (Id, Any_Type);
2115 Set_Is_Limited_Composite (Current_Scope, False);
2116 end if;
2117 end if;
2119 Set_Original_Record_Component (Id, Id);
2121 if Has_Aspects (N) then
2122 Analyze_Aspect_Specifications (N, Id);
2123 end if;
2125 Analyze_Dimension (N);
2126 end Analyze_Component_Declaration;
2128 --------------------------
2129 -- Analyze_Declarations --
2130 --------------------------
2132 procedure Analyze_Declarations (L : List_Id) is
2133 Decl : Node_Id;
2135 procedure Adjust_Decl;
2136 -- Adjust Decl not to include implicit label declarations, since these
2137 -- have strange Sloc values that result in elaboration check problems.
2138 -- (They have the sloc of the label as found in the source, and that
2139 -- is ahead of the current declarative part).
2141 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2142 -- Determine whether Body_Decl denotes the body of a late controlled
2143 -- primitive (either Initialize, Adjust or Finalize). If this is the
2144 -- case, add a proper spec if the body lacks one. The spec is inserted
2145 -- before Body_Decl and immedately analyzed.
2147 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2148 -- Spec_Id is the entity of a package that may define abstract states.
2149 -- If the states have visible refinement, remove the visibility of each
2150 -- constituent at the end of the package body declarations.
2152 -----------------
2153 -- Adjust_Decl --
2154 -----------------
2156 procedure Adjust_Decl is
2157 begin
2158 while Present (Prev (Decl))
2159 and then Nkind (Decl) = N_Implicit_Label_Declaration
2160 loop
2161 Prev (Decl);
2162 end loop;
2163 end Adjust_Decl;
2165 --------------------------------------
2166 -- Handle_Late_Controlled_Primitive --
2167 --------------------------------------
2169 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2170 Body_Spec : constant Node_Id := Specification (Body_Decl);
2171 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2172 Loc : constant Source_Ptr := Sloc (Body_Id);
2173 Params : constant List_Id :=
2174 Parameter_Specifications (Body_Spec);
2175 Spec : Node_Id;
2176 Spec_Id : Entity_Id;
2177 Typ : Node_Id;
2179 begin
2180 -- Consider only procedure bodies whose name matches one of the three
2181 -- controlled primitives.
2183 if Nkind (Body_Spec) /= N_Procedure_Specification
2184 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2185 Name_Finalize,
2186 Name_Initialize)
2187 then
2188 return;
2190 -- A controlled primitive must have exactly one formal which is not
2191 -- an anonymous access type.
2193 elsif List_Length (Params) /= 1 then
2194 return;
2195 end if;
2197 Typ := Parameter_Type (First (Params));
2199 if Nkind (Typ) = N_Access_Definition then
2200 return;
2201 end if;
2203 Find_Type (Typ);
2205 -- The type of the formal must be derived from [Limited_]Controlled
2207 if not Is_Controlled (Entity (Typ)) then
2208 return;
2209 end if;
2211 -- Check whether a specification exists for this body. We do not
2212 -- analyze the spec of the body in full, because it will be analyzed
2213 -- again when the body is properly analyzed, and we cannot create
2214 -- duplicate entries in the formals chain. We look for an explicit
2215 -- specification because the body may be an overriding operation and
2216 -- an inherited spec may be present.
2218 Spec_Id := Current_Entity (Body_Id);
2220 while Present (Spec_Id) loop
2221 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2222 and then Scope (Spec_Id) = Current_Scope
2223 and then Present (First_Formal (Spec_Id))
2224 and then No (Next_Formal (First_Formal (Spec_Id)))
2225 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2226 and then Comes_From_Source (Spec_Id)
2227 then
2228 return;
2229 end if;
2231 Spec_Id := Homonym (Spec_Id);
2232 end loop;
2234 -- At this point the body is known to be a late controlled primitive.
2235 -- Generate a matching spec and insert it before the body. Note the
2236 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2237 -- tree in this case.
2239 Spec := Copy_Separate_Tree (Body_Spec);
2241 -- Ensure that the subprogram declaration does not inherit the null
2242 -- indicator from the body as we now have a proper spec/body pair.
2244 Set_Null_Present (Spec, False);
2246 Insert_Before_And_Analyze (Body_Decl,
2247 Make_Subprogram_Declaration (Loc, Specification => Spec));
2248 end Handle_Late_Controlled_Primitive;
2250 --------------------------------
2251 -- Remove_Visible_Refinements --
2252 --------------------------------
2254 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2255 State_Elmt : Elmt_Id;
2256 begin
2257 if Present (Abstract_States (Spec_Id)) then
2258 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2259 while Present (State_Elmt) loop
2260 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2261 Next_Elmt (State_Elmt);
2262 end loop;
2263 end if;
2264 end Remove_Visible_Refinements;
2266 -- Local variables
2268 Context : Node_Id;
2269 Freeze_From : Entity_Id := Empty;
2270 Next_Decl : Node_Id;
2271 Spec_Id : Entity_Id;
2273 Body_Seen : Boolean := False;
2274 -- Flag set when the first body [stub] is encountered
2276 In_Package_Body : Boolean := False;
2277 -- Flag set when the current declaration list belongs to a package body
2279 -- Start of processing for Analyze_Declarations
2281 begin
2282 if Restriction_Check_Required (SPARK_05) then
2283 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2284 end if;
2286 Decl := First (L);
2287 while Present (Decl) loop
2289 -- Package spec cannot contain a package declaration in SPARK
2291 if Nkind (Decl) = N_Package_Declaration
2292 and then Nkind (Parent (L)) = N_Package_Specification
2293 then
2294 Check_SPARK_05_Restriction
2295 ("package specification cannot contain a package declaration",
2296 Decl);
2297 end if;
2299 -- Complete analysis of declaration
2301 Analyze (Decl);
2302 Next_Decl := Next (Decl);
2304 if No (Freeze_From) then
2305 Freeze_From := First_Entity (Current_Scope);
2306 end if;
2308 -- At the end of a declarative part, freeze remaining entities
2309 -- declared in it. The end of the visible declarations of package
2310 -- specification is not the end of a declarative part if private
2311 -- declarations are present. The end of a package declaration is a
2312 -- freezing point only if it a library package. A task definition or
2313 -- protected type definition is not a freeze point either. Finally,
2314 -- we do not freeze entities in generic scopes, because there is no
2315 -- code generated for them and freeze nodes will be generated for
2316 -- the instance.
2318 -- The end of a package instantiation is not a freeze point, but
2319 -- for now we make it one, because the generic body is inserted
2320 -- (currently) immediately after. Generic instantiations will not
2321 -- be a freeze point once delayed freezing of bodies is implemented.
2322 -- (This is needed in any case for early instantiations ???).
2324 if No (Next_Decl) then
2325 if Nkind_In (Parent (L), N_Component_List,
2326 N_Task_Definition,
2327 N_Protected_Definition)
2328 then
2329 null;
2331 elsif Nkind (Parent (L)) /= N_Package_Specification then
2332 if Nkind (Parent (L)) = N_Package_Body then
2333 Freeze_From := First_Entity (Current_Scope);
2334 end if;
2336 -- There may have been several freezing points previously,
2337 -- for example object declarations or subprogram bodies, but
2338 -- at the end of a declarative part we check freezing from
2339 -- the beginning, even though entities may already be frozen,
2340 -- in order to perform visibility checks on delayed aspects.
2342 Adjust_Decl;
2343 Freeze_All (First_Entity (Current_Scope), Decl);
2344 Freeze_From := Last_Entity (Current_Scope);
2346 elsif Scope (Current_Scope) /= Standard_Standard
2347 and then not Is_Child_Unit (Current_Scope)
2348 and then No (Generic_Parent (Parent (L)))
2349 then
2350 null;
2352 elsif L /= Visible_Declarations (Parent (L))
2353 or else No (Private_Declarations (Parent (L)))
2354 or else Is_Empty_List (Private_Declarations (Parent (L)))
2355 then
2356 Adjust_Decl;
2357 Freeze_All (First_Entity (Current_Scope), Decl);
2358 Freeze_From := Last_Entity (Current_Scope);
2359 end if;
2361 -- If next node is a body then freeze all types before the body.
2362 -- An exception occurs for some expander-generated bodies. If these
2363 -- are generated at places where in general language rules would not
2364 -- allow a freeze point, then we assume that the expander has
2365 -- explicitly checked that all required types are properly frozen,
2366 -- and we do not cause general freezing here. This special circuit
2367 -- is used when the encountered body is marked as having already
2368 -- been analyzed.
2370 -- In all other cases (bodies that come from source, and expander
2371 -- generated bodies that have not been analyzed yet), freeze all
2372 -- types now. Note that in the latter case, the expander must take
2373 -- care to attach the bodies at a proper place in the tree so as to
2374 -- not cause unwanted freezing at that point.
2376 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2378 -- When a controlled type is frozen, the expander generates stream
2379 -- and controlled type support routines. If the freeze is caused
2380 -- by the stand alone body of Initialize, Adjust and Finalize, the
2381 -- expander will end up using the wrong version of these routines
2382 -- as the body has not been processed yet. To remedy this, detect
2383 -- a late controlled primitive and create a proper spec for it.
2384 -- This ensures that the primitive will override its inherited
2385 -- counterpart before the freeze takes place.
2387 -- If the declaration we just processed is a body, do not attempt
2388 -- to examine Next_Decl as the late primitive idiom can only apply
2389 -- to the first encountered body.
2391 -- The spec of the late primitive is not generated in ASIS mode to
2392 -- ensure a consistent list of primitives that indicates the true
2393 -- semantic structure of the program (which is not relevant when
2394 -- generating executable code.
2396 -- ??? a cleaner approach may be possible and/or this solution
2397 -- could be extended to general-purpose late primitives, TBD.
2399 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2400 then
2401 Body_Seen := True;
2403 if Nkind (Next_Decl) = N_Subprogram_Body then
2404 Handle_Late_Controlled_Primitive (Next_Decl);
2405 end if;
2406 end if;
2408 Adjust_Decl;
2409 Freeze_All (Freeze_From, Decl);
2410 Freeze_From := Last_Entity (Current_Scope);
2411 end if;
2413 Decl := Next_Decl;
2414 end loop;
2416 -- Analyze the contracts of packages and their bodies
2418 if Present (L) then
2419 Context := Parent (L);
2421 if Nkind (Context) = N_Package_Specification then
2423 -- When a package has private declarations, its contract must be
2424 -- analyzed at the end of the said declarations. This way both the
2425 -- analysis and freeze actions are properly synchronized in case
2426 -- of private type use within the contract.
2428 if L = Private_Declarations (Context) then
2429 Analyze_Package_Contract (Defining_Entity (Context));
2431 -- Build the bodies of the default initial condition procedures
2432 -- for all types subject to pragma Default_Initial_Condition.
2433 -- From a purely Ada stand point, this is a freezing activity,
2434 -- however freezing is not available under GNATprove_Mode. To
2435 -- accomodate both scenarios, the bodies are build at the end
2436 -- of private declaration analysis.
2438 Build_Default_Init_Cond_Procedure_Bodies (L);
2440 -- Otherwise the contract is analyzed at the end of the visible
2441 -- declarations.
2443 elsif L = Visible_Declarations (Context)
2444 and then No (Private_Declarations (Context))
2445 then
2446 Analyze_Package_Contract (Defining_Entity (Context));
2447 end if;
2449 elsif Nkind (Context) = N_Package_Body then
2450 In_Package_Body := True;
2451 Spec_Id := Corresponding_Spec (Context);
2453 Analyze_Package_Body_Contract (Defining_Entity (Context));
2454 end if;
2455 end if;
2457 -- Analyze the contracts of subprogram declarations, subprogram bodies
2458 -- and variables now due to the delayed visibility requirements of their
2459 -- aspects.
2461 Decl := First (L);
2462 while Present (Decl) loop
2463 if Nkind (Decl) = N_Object_Declaration then
2464 Analyze_Object_Contract (Defining_Entity (Decl));
2466 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2467 N_Subprogram_Declaration)
2468 then
2469 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2471 elsif Nkind (Decl) = N_Subprogram_Body then
2472 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2474 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2475 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2476 end if;
2478 Next (Decl);
2479 end loop;
2481 -- State refinements are visible upto the end the of the package body
2482 -- declarations. Hide the refinements from visibility to restore the
2483 -- original state conditions.
2485 if In_Package_Body then
2486 Remove_Visible_Refinements (Spec_Id);
2487 end if;
2488 end Analyze_Declarations;
2490 -----------------------------------
2491 -- Analyze_Full_Type_Declaration --
2492 -----------------------------------
2494 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2495 Def : constant Node_Id := Type_Definition (N);
2496 Def_Id : constant Entity_Id := Defining_Identifier (N);
2497 T : Entity_Id;
2498 Prev : Entity_Id;
2500 Is_Remote : constant Boolean :=
2501 (Is_Remote_Types (Current_Scope)
2502 or else Is_Remote_Call_Interface (Current_Scope))
2503 and then not (In_Private_Part (Current_Scope)
2504 or else In_Package_Body (Current_Scope));
2506 procedure Check_Ops_From_Incomplete_Type;
2507 -- If there is a tagged incomplete partial view of the type, traverse
2508 -- the primitives of the incomplete view and change the type of any
2509 -- controlling formals and result to indicate the full view. The
2510 -- primitives will be added to the full type's primitive operations
2511 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2512 -- is called from Process_Incomplete_Dependents).
2514 ------------------------------------
2515 -- Check_Ops_From_Incomplete_Type --
2516 ------------------------------------
2518 procedure Check_Ops_From_Incomplete_Type is
2519 Elmt : Elmt_Id;
2520 Formal : Entity_Id;
2521 Op : Entity_Id;
2523 begin
2524 if Prev /= T
2525 and then Ekind (Prev) = E_Incomplete_Type
2526 and then Is_Tagged_Type (Prev)
2527 and then Is_Tagged_Type (T)
2528 then
2529 Elmt := First_Elmt (Primitive_Operations (Prev));
2530 while Present (Elmt) loop
2531 Op := Node (Elmt);
2533 Formal := First_Formal (Op);
2534 while Present (Formal) loop
2535 if Etype (Formal) = Prev then
2536 Set_Etype (Formal, T);
2537 end if;
2539 Next_Formal (Formal);
2540 end loop;
2542 if Etype (Op) = Prev then
2543 Set_Etype (Op, T);
2544 end if;
2546 Next_Elmt (Elmt);
2547 end loop;
2548 end if;
2549 end Check_Ops_From_Incomplete_Type;
2551 -- Start of processing for Analyze_Full_Type_Declaration
2553 begin
2554 Prev := Find_Type_Name (N);
2556 -- The type declaration may be subject to pragma Ghost with policy
2557 -- Ignore. Set the mode now to ensure that any nodes generated during
2558 -- analysis and expansion are properly flagged as ignored Ghost.
2560 Set_Ghost_Mode (N, Prev);
2562 -- The full view, if present, now points to the current type. If there
2563 -- is an incomplete partial view, set a link to it, to simplify the
2564 -- retrieval of primitive operations of the type.
2566 -- Ada 2005 (AI-50217): If the type was previously decorated when
2567 -- imported through a LIMITED WITH clause, it appears as incomplete
2568 -- but has no full view.
2570 if Ekind (Prev) = E_Incomplete_Type
2571 and then Present (Full_View (Prev))
2572 then
2573 T := Full_View (Prev);
2574 Set_Incomplete_View (N, Parent (Prev));
2575 else
2576 T := Prev;
2577 end if;
2579 Set_Is_Pure (T, Is_Pure (Current_Scope));
2581 -- We set the flag Is_First_Subtype here. It is needed to set the
2582 -- corresponding flag for the Implicit class-wide-type created
2583 -- during tagged types processing.
2585 Set_Is_First_Subtype (T, True);
2587 -- Only composite types other than array types are allowed to have
2588 -- discriminants.
2590 case Nkind (Def) is
2592 -- For derived types, the rule will be checked once we've figured
2593 -- out the parent type.
2595 when N_Derived_Type_Definition =>
2596 null;
2598 -- For record types, discriminants are allowed, unless we are in
2599 -- SPARK.
2601 when N_Record_Definition =>
2602 if Present (Discriminant_Specifications (N)) then
2603 Check_SPARK_05_Restriction
2604 ("discriminant type is not allowed",
2605 Defining_Identifier
2606 (First (Discriminant_Specifications (N))));
2607 end if;
2609 when others =>
2610 if Present (Discriminant_Specifications (N)) then
2611 Error_Msg_N
2612 ("elementary or array type cannot have discriminants",
2613 Defining_Identifier
2614 (First (Discriminant_Specifications (N))));
2615 end if;
2616 end case;
2618 -- Elaborate the type definition according to kind, and generate
2619 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2620 -- already done (this happens during the reanalysis that follows a call
2621 -- to the high level optimizer).
2623 if not Analyzed (T) then
2624 Set_Analyzed (T);
2626 case Nkind (Def) is
2627 when N_Access_To_Subprogram_Definition =>
2628 Access_Subprogram_Declaration (T, Def);
2630 -- If this is a remote access to subprogram, we must create the
2631 -- equivalent fat pointer type, and related subprograms.
2633 if Is_Remote then
2634 Process_Remote_AST_Declaration (N);
2635 end if;
2637 -- Validate categorization rule against access type declaration
2638 -- usually a violation in Pure unit, Shared_Passive unit.
2640 Validate_Access_Type_Declaration (T, N);
2642 when N_Access_To_Object_Definition =>
2643 Access_Type_Declaration (T, Def);
2645 -- Validate categorization rule against access type declaration
2646 -- usually a violation in Pure unit, Shared_Passive unit.
2648 Validate_Access_Type_Declaration (T, N);
2650 -- If we are in a Remote_Call_Interface package and define a
2651 -- RACW, then calling stubs and specific stream attributes
2652 -- must be added.
2654 if Is_Remote
2655 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2656 then
2657 Add_RACW_Features (Def_Id);
2658 end if;
2660 when N_Array_Type_Definition =>
2661 Array_Type_Declaration (T, Def);
2663 when N_Derived_Type_Definition =>
2664 Derived_Type_Declaration (T, N, T /= Def_Id);
2666 when N_Enumeration_Type_Definition =>
2667 Enumeration_Type_Declaration (T, Def);
2669 when N_Floating_Point_Definition =>
2670 Floating_Point_Type_Declaration (T, Def);
2672 when N_Decimal_Fixed_Point_Definition =>
2673 Decimal_Fixed_Point_Type_Declaration (T, Def);
2675 when N_Ordinary_Fixed_Point_Definition =>
2676 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2678 when N_Signed_Integer_Type_Definition =>
2679 Signed_Integer_Type_Declaration (T, Def);
2681 when N_Modular_Type_Definition =>
2682 Modular_Type_Declaration (T, Def);
2684 when N_Record_Definition =>
2685 Record_Type_Declaration (T, N, Prev);
2687 -- If declaration has a parse error, nothing to elaborate.
2689 when N_Error =>
2690 null;
2692 when others =>
2693 raise Program_Error;
2695 end case;
2696 end if;
2698 if Etype (T) = Any_Type then
2699 return;
2700 end if;
2702 -- Controlled type is not allowed in SPARK
2704 if Is_Visibly_Controlled (T) then
2705 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2706 end if;
2708 -- A type declared within a Ghost region is automatically Ghost
2709 -- (SPARK RM 6.9(2)).
2711 if Comes_From_Source (T) and then Ghost_Mode > None then
2712 Set_Is_Ghost_Entity (T);
2713 end if;
2715 -- Some common processing for all types
2717 Set_Depends_On_Private (T, Has_Private_Component (T));
2718 Check_Ops_From_Incomplete_Type;
2720 -- Both the declared entity, and its anonymous base type if one was
2721 -- created, need freeze nodes allocated.
2723 declare
2724 B : constant Entity_Id := Base_Type (T);
2726 begin
2727 -- In the case where the base type differs from the first subtype, we
2728 -- pre-allocate a freeze node, and set the proper link to the first
2729 -- subtype. Freeze_Entity will use this preallocated freeze node when
2730 -- it freezes the entity.
2732 -- This does not apply if the base type is a generic type, whose
2733 -- declaration is independent of the current derived definition.
2735 if B /= T and then not Is_Generic_Type (B) then
2736 Ensure_Freeze_Node (B);
2737 Set_First_Subtype_Link (Freeze_Node (B), T);
2738 end if;
2740 -- A type that is imported through a limited_with clause cannot
2741 -- generate any code, and thus need not be frozen. However, an access
2742 -- type with an imported designated type needs a finalization list,
2743 -- which may be referenced in some other package that has non-limited
2744 -- visibility on the designated type. Thus we must create the
2745 -- finalization list at the point the access type is frozen, to
2746 -- prevent unsatisfied references at link time.
2748 if not From_Limited_With (T) or else Is_Access_Type (T) then
2749 Set_Has_Delayed_Freeze (T);
2750 end if;
2751 end;
2753 -- Case where T is the full declaration of some private type which has
2754 -- been swapped in Defining_Identifier (N).
2756 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2757 Process_Full_View (N, T, Def_Id);
2759 -- Record the reference. The form of this is a little strange, since
2760 -- the full declaration has been swapped in. So the first parameter
2761 -- here represents the entity to which a reference is made which is
2762 -- the "real" entity, i.e. the one swapped in, and the second
2763 -- parameter provides the reference location.
2765 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2766 -- since we don't want a complaint about the full type being an
2767 -- unwanted reference to the private type
2769 declare
2770 B : constant Boolean := Has_Pragma_Unreferenced (T);
2771 begin
2772 Set_Has_Pragma_Unreferenced (T, False);
2773 Generate_Reference (T, T, 'c');
2774 Set_Has_Pragma_Unreferenced (T, B);
2775 end;
2777 Set_Completion_Referenced (Def_Id);
2779 -- For completion of incomplete type, process incomplete dependents
2780 -- and always mark the full type as referenced (it is the incomplete
2781 -- type that we get for any real reference).
2783 elsif Ekind (Prev) = E_Incomplete_Type then
2784 Process_Incomplete_Dependents (N, T, Prev);
2785 Generate_Reference (Prev, Def_Id, 'c');
2786 Set_Completion_Referenced (Def_Id);
2788 -- If not private type or incomplete type completion, this is a real
2789 -- definition of a new entity, so record it.
2791 else
2792 Generate_Definition (Def_Id);
2793 end if;
2795 if Chars (Scope (Def_Id)) = Name_System
2796 and then Chars (Def_Id) = Name_Address
2797 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2798 then
2799 Set_Is_Descendent_Of_Address (Def_Id);
2800 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2801 Set_Is_Descendent_Of_Address (Prev);
2802 end if;
2804 Set_Optimize_Alignment_Flags (Def_Id);
2805 Check_Eliminated (Def_Id);
2807 -- If the declaration is a completion and aspects are present, apply
2808 -- them to the entity for the type which is currently the partial
2809 -- view, but which is the one that will be frozen.
2811 if Has_Aspects (N) then
2813 -- In most cases the partial view is a private type, and both views
2814 -- appear in different declarative parts. In the unusual case where
2815 -- the partial view is incomplete, perform the analysis on the
2816 -- full view, to prevent freezing anomalies with the corresponding
2817 -- class-wide type, which otherwise might be frozen before the
2818 -- dispatch table is built.
2820 if Prev /= Def_Id
2821 and then Ekind (Prev) /= E_Incomplete_Type
2822 then
2823 Analyze_Aspect_Specifications (N, Prev);
2825 -- Normal case
2827 else
2828 Analyze_Aspect_Specifications (N, Def_Id);
2829 end if;
2830 end if;
2831 end Analyze_Full_Type_Declaration;
2833 ----------------------------------
2834 -- Analyze_Incomplete_Type_Decl --
2835 ----------------------------------
2837 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2838 F : constant Boolean := Is_Pure (Current_Scope);
2839 T : Entity_Id;
2841 begin
2842 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2844 Generate_Definition (Defining_Identifier (N));
2846 -- Process an incomplete declaration. The identifier must not have been
2847 -- declared already in the scope. However, an incomplete declaration may
2848 -- appear in the private part of a package, for a private type that has
2849 -- already been declared.
2851 -- In this case, the discriminants (if any) must match
2853 T := Find_Type_Name (N);
2855 Set_Ekind (T, E_Incomplete_Type);
2856 Init_Size_Align (T);
2857 Set_Is_First_Subtype (T, True);
2858 Set_Etype (T, T);
2860 -- An incomplete type declared within a Ghost region is automatically
2861 -- Ghost (SPARK RM 6.9(2)).
2863 if Ghost_Mode > None then
2864 Set_Is_Ghost_Entity (T);
2865 end if;
2867 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2868 -- incomplete types.
2870 if Tagged_Present (N) then
2871 Set_Is_Tagged_Type (T, True);
2872 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2873 Make_Class_Wide_Type (T);
2874 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2875 end if;
2877 Push_Scope (T);
2879 Set_Stored_Constraint (T, No_Elist);
2881 if Present (Discriminant_Specifications (N)) then
2882 Process_Discriminants (N);
2883 end if;
2885 End_Scope;
2887 -- If the type has discriminants, non-trivial subtypes may be
2888 -- declared before the full view of the type. The full views of those
2889 -- subtypes will be built after the full view of the type.
2891 Set_Private_Dependents (T, New_Elmt_List);
2892 Set_Is_Pure (T, F);
2893 end Analyze_Incomplete_Type_Decl;
2895 -----------------------------------
2896 -- Analyze_Interface_Declaration --
2897 -----------------------------------
2899 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2900 CW : constant Entity_Id := Class_Wide_Type (T);
2902 begin
2903 Set_Is_Tagged_Type (T);
2904 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2906 Set_Is_Limited_Record (T, Limited_Present (Def)
2907 or else Task_Present (Def)
2908 or else Protected_Present (Def)
2909 or else Synchronized_Present (Def));
2911 -- Type is abstract if full declaration carries keyword, or if previous
2912 -- partial view did.
2914 Set_Is_Abstract_Type (T);
2915 Set_Is_Interface (T);
2917 -- Type is a limited interface if it includes the keyword limited, task,
2918 -- protected, or synchronized.
2920 Set_Is_Limited_Interface
2921 (T, Limited_Present (Def)
2922 or else Protected_Present (Def)
2923 or else Synchronized_Present (Def)
2924 or else Task_Present (Def));
2926 Set_Interfaces (T, New_Elmt_List);
2927 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2929 -- Complete the decoration of the class-wide entity if it was already
2930 -- built (i.e. during the creation of the limited view)
2932 if Present (CW) then
2933 Set_Is_Interface (CW);
2934 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2935 end if;
2937 -- Check runtime support for synchronized interfaces
2939 if VM_Target = No_VM
2940 and then (Is_Task_Interface (T)
2941 or else Is_Protected_Interface (T)
2942 or else Is_Synchronized_Interface (T))
2943 and then not RTE_Available (RE_Select_Specific_Data)
2944 then
2945 Error_Msg_CRT ("synchronized interfaces", T);
2946 end if;
2947 end Analyze_Interface_Declaration;
2949 -----------------------------
2950 -- Analyze_Itype_Reference --
2951 -----------------------------
2953 -- Nothing to do. This node is placed in the tree only for the benefit of
2954 -- back end processing, and has no effect on the semantic processing.
2956 procedure Analyze_Itype_Reference (N : Node_Id) is
2957 begin
2958 pragma Assert (Is_Itype (Itype (N)));
2959 null;
2960 end Analyze_Itype_Reference;
2962 --------------------------------
2963 -- Analyze_Number_Declaration --
2964 --------------------------------
2966 procedure Analyze_Number_Declaration (N : Node_Id) is
2967 Id : constant Entity_Id := Defining_Identifier (N);
2968 E : constant Node_Id := Expression (N);
2969 T : Entity_Id;
2970 Index : Interp_Index;
2971 It : Interp;
2973 begin
2974 -- The number declaration may be subject to pragma Ghost with policy
2975 -- Ignore. Set the mode now to ensure that any nodes generated during
2976 -- analysis and expansion are properly flagged as ignored Ghost.
2978 Set_Ghost_Mode (N);
2980 Generate_Definition (Id);
2981 Enter_Name (Id);
2983 -- A number declared within a Ghost region is automatically Ghost
2984 -- (SPARK RM 6.9(2)).
2986 if Ghost_Mode > None then
2987 Set_Is_Ghost_Entity (Id);
2988 end if;
2990 -- This is an optimization of a common case of an integer literal
2992 if Nkind (E) = N_Integer_Literal then
2993 Set_Is_Static_Expression (E, True);
2994 Set_Etype (E, Universal_Integer);
2996 Set_Etype (Id, Universal_Integer);
2997 Set_Ekind (Id, E_Named_Integer);
2998 Set_Is_Frozen (Id, True);
2999 return;
3000 end if;
3002 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3004 -- Process expression, replacing error by integer zero, to avoid
3005 -- cascaded errors or aborts further along in the processing
3007 -- Replace Error by integer zero, which seems least likely to cause
3008 -- cascaded errors.
3010 if E = Error then
3011 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3012 Set_Error_Posted (E);
3013 end if;
3015 Analyze (E);
3017 -- Verify that the expression is static and numeric. If
3018 -- the expression is overloaded, we apply the preference
3019 -- rule that favors root numeric types.
3021 if not Is_Overloaded (E) then
3022 T := Etype (E);
3023 if Has_Dynamic_Predicate_Aspect (T) then
3024 Error_Msg_N
3025 ("subtype has dynamic predicate, "
3026 & "not allowed in number declaration", N);
3027 end if;
3029 else
3030 T := Any_Type;
3032 Get_First_Interp (E, Index, It);
3033 while Present (It.Typ) loop
3034 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3035 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3036 then
3037 if T = Any_Type then
3038 T := It.Typ;
3040 elsif It.Typ = Universal_Real
3041 or else
3042 It.Typ = Universal_Integer
3043 then
3044 -- Choose universal interpretation over any other
3046 T := It.Typ;
3047 exit;
3048 end if;
3049 end if;
3051 Get_Next_Interp (Index, It);
3052 end loop;
3053 end if;
3055 if Is_Integer_Type (T) then
3056 Resolve (E, T);
3057 Set_Etype (Id, Universal_Integer);
3058 Set_Ekind (Id, E_Named_Integer);
3060 elsif Is_Real_Type (T) then
3062 -- Because the real value is converted to universal_real, this is a
3063 -- legal context for a universal fixed expression.
3065 if T = Universal_Fixed then
3066 declare
3067 Loc : constant Source_Ptr := Sloc (N);
3068 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3069 Subtype_Mark =>
3070 New_Occurrence_Of (Universal_Real, Loc),
3071 Expression => Relocate_Node (E));
3073 begin
3074 Rewrite (E, Conv);
3075 Analyze (E);
3076 end;
3078 elsif T = Any_Fixed then
3079 Error_Msg_N ("illegal context for mixed mode operation", E);
3081 -- Expression is of the form : universal_fixed * integer. Try to
3082 -- resolve as universal_real.
3084 T := Universal_Real;
3085 Set_Etype (E, T);
3086 end if;
3088 Resolve (E, T);
3089 Set_Etype (Id, Universal_Real);
3090 Set_Ekind (Id, E_Named_Real);
3092 else
3093 Wrong_Type (E, Any_Numeric);
3094 Resolve (E, T);
3096 Set_Etype (Id, T);
3097 Set_Ekind (Id, E_Constant);
3098 Set_Never_Set_In_Source (Id, True);
3099 Set_Is_True_Constant (Id, True);
3100 return;
3101 end if;
3103 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3104 Set_Etype (E, Etype (Id));
3105 end if;
3107 if not Is_OK_Static_Expression (E) then
3108 Flag_Non_Static_Expr
3109 ("non-static expression used in number declaration!", E);
3110 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3111 Set_Etype (E, Any_Type);
3112 end if;
3113 end Analyze_Number_Declaration;
3115 -----------------------------
3116 -- Analyze_Object_Contract --
3117 -----------------------------
3119 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3120 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3121 AR_Val : Boolean := False;
3122 AW_Val : Boolean := False;
3123 ER_Val : Boolean := False;
3124 EW_Val : Boolean := False;
3125 Prag : Node_Id;
3126 Seen : Boolean := False;
3128 begin
3129 -- The loop parameter in an element iterator over a formal container
3130 -- is declared with an object declaration but no contracts apply.
3132 if Ekind (Obj_Id) = E_Loop_Parameter then
3133 return;
3134 end if;
3136 if Ekind (Obj_Id) = E_Constant then
3138 -- A constant cannot be effectively volatile. This check is only
3139 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3140 -- rule. Do not flag internally-generated constants that map generic
3141 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3143 if SPARK_Mode = On
3144 and then Is_Effectively_Volatile (Obj_Id)
3145 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3146 then
3147 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3148 end if;
3150 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3152 -- The following checks are only relevant when SPARK_Mode is on as
3153 -- they are not standard Ada legality rules. Internally generated
3154 -- temporaries are ignored.
3156 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3157 if Is_Effectively_Volatile (Obj_Id) then
3159 -- The declaration of an effectively volatile object must
3160 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3162 if not Is_Library_Level_Entity (Obj_Id) then
3163 Error_Msg_N
3164 ("volatile variable & must be declared at library level",
3165 Obj_Id);
3167 -- An object of a discriminated type cannot be effectively
3168 -- volatile (SPARK RM C.6(4)).
3170 elsif Has_Discriminants (Obj_Typ) then
3171 Error_Msg_N
3172 ("discriminated object & cannot be volatile", Obj_Id);
3174 -- An object of a tagged type cannot be effectively volatile
3175 -- (SPARK RM C.6(5)).
3177 elsif Is_Tagged_Type (Obj_Typ) then
3178 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3179 end if;
3181 -- The object is not effectively volatile
3183 else
3184 -- A non-effectively volatile object cannot have effectively
3185 -- volatile components (SPARK RM 7.1.3(7)).
3187 if not Is_Effectively_Volatile (Obj_Id)
3188 and then Has_Volatile_Component (Obj_Typ)
3189 then
3190 Error_Msg_N
3191 ("non-volatile object & cannot have volatile components",
3192 Obj_Id);
3193 end if;
3194 end if;
3195 end if;
3197 if Is_Ghost_Entity (Obj_Id) then
3199 -- A Ghost object cannot be effectively volatile (SPARK RM 6.9(8))
3201 if Is_Effectively_Volatile (Obj_Id) then
3202 Error_Msg_N ("ghost variable & cannot be volatile", Obj_Id);
3204 -- A Ghost object cannot be imported or exported (SPARK RM 6.9(8))
3206 elsif Is_Imported (Obj_Id) then
3207 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3209 elsif Is_Exported (Obj_Id) then
3210 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3211 end if;
3212 end if;
3214 -- Analyze all external properties
3216 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3218 if Present (Prag) then
3219 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3220 Seen := True;
3221 end if;
3223 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3225 if Present (Prag) then
3226 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3227 Seen := True;
3228 end if;
3230 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3232 if Present (Prag) then
3233 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3234 Seen := True;
3235 end if;
3237 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3239 if Present (Prag) then
3240 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3241 Seen := True;
3242 end if;
3244 -- Verify the mutual interaction of the various external properties
3246 if Seen then
3247 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3248 end if;
3250 -- Check whether the lack of indicator Part_Of agrees with the
3251 -- placement of the variable with respect to the state space.
3253 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3255 if No (Prag) then
3256 Check_Missing_Part_Of (Obj_Id);
3257 end if;
3258 end if;
3260 -- A ghost object cannot be imported or exported (SPARK RM 6.9(8))
3262 if Is_Ghost_Entity (Obj_Id) then
3263 if Is_Exported (Obj_Id) then
3264 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3266 elsif Is_Imported (Obj_Id) then
3267 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3268 end if;
3269 end if;
3270 end Analyze_Object_Contract;
3272 --------------------------------
3273 -- Analyze_Object_Declaration --
3274 --------------------------------
3276 procedure Analyze_Object_Declaration (N : Node_Id) is
3277 Loc : constant Source_Ptr := Sloc (N);
3278 Id : constant Entity_Id := Defining_Identifier (N);
3279 T : Entity_Id;
3280 Act_T : Entity_Id;
3282 E : Node_Id := Expression (N);
3283 -- E is set to Expression (N) throughout this routine. When
3284 -- Expression (N) is modified, E is changed accordingly.
3286 Prev_Entity : Entity_Id := Empty;
3288 function Count_Tasks (T : Entity_Id) return Uint;
3289 -- This function is called when a non-generic library level object of a
3290 -- task type is declared. Its function is to count the static number of
3291 -- tasks declared within the type (it is only called if Has_Tasks is set
3292 -- for T). As a side effect, if an array of tasks with non-static bounds
3293 -- or a variant record type is encountered, Check_Restrictions is called
3294 -- indicating the count is unknown.
3296 -----------------
3297 -- Count_Tasks --
3298 -----------------
3300 function Count_Tasks (T : Entity_Id) return Uint is
3301 C : Entity_Id;
3302 X : Node_Id;
3303 V : Uint;
3305 begin
3306 if Is_Task_Type (T) then
3307 return Uint_1;
3309 elsif Is_Record_Type (T) then
3310 if Has_Discriminants (T) then
3311 Check_Restriction (Max_Tasks, N);
3312 return Uint_0;
3314 else
3315 V := Uint_0;
3316 C := First_Component (T);
3317 while Present (C) loop
3318 V := V + Count_Tasks (Etype (C));
3319 Next_Component (C);
3320 end loop;
3322 return V;
3323 end if;
3325 elsif Is_Array_Type (T) then
3326 X := First_Index (T);
3327 V := Count_Tasks (Component_Type (T));
3328 while Present (X) loop
3329 C := Etype (X);
3331 if not Is_OK_Static_Subtype (C) then
3332 Check_Restriction (Max_Tasks, N);
3333 return Uint_0;
3334 else
3335 V := V * (UI_Max (Uint_0,
3336 Expr_Value (Type_High_Bound (C)) -
3337 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3338 end if;
3340 Next_Index (X);
3341 end loop;
3343 return V;
3345 else
3346 return Uint_0;
3347 end if;
3348 end Count_Tasks;
3350 -- Start of processing for Analyze_Object_Declaration
3352 begin
3353 -- There are three kinds of implicit types generated by an
3354 -- object declaration:
3356 -- 1. Those generated by the original Object Definition
3358 -- 2. Those generated by the Expression
3360 -- 3. Those used to constrain the Object Definition with the
3361 -- expression constraints when the definition is unconstrained.
3363 -- They must be generated in this order to avoid order of elaboration
3364 -- issues. Thus the first step (after entering the name) is to analyze
3365 -- the object definition.
3367 if Constant_Present (N) then
3368 Prev_Entity := Current_Entity_In_Scope (Id);
3370 if Present (Prev_Entity)
3371 and then
3372 -- If the homograph is an implicit subprogram, it is overridden
3373 -- by the current declaration.
3375 ((Is_Overloadable (Prev_Entity)
3376 and then Is_Inherited_Operation (Prev_Entity))
3378 -- The current object is a discriminal generated for an entry
3379 -- family index. Even though the index is a constant, in this
3380 -- particular context there is no true constant redeclaration.
3381 -- Enter_Name will handle the visibility.
3383 or else
3384 (Is_Discriminal (Id)
3385 and then Ekind (Discriminal_Link (Id)) =
3386 E_Entry_Index_Parameter)
3388 -- The current object is the renaming for a generic declared
3389 -- within the instance.
3391 or else
3392 (Ekind (Prev_Entity) = E_Package
3393 and then Nkind (Parent (Prev_Entity)) =
3394 N_Package_Renaming_Declaration
3395 and then not Comes_From_Source (Prev_Entity)
3396 and then
3397 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3398 then
3399 Prev_Entity := Empty;
3400 end if;
3401 end if;
3403 -- The object declaration may be subject to pragma Ghost with policy
3404 -- Ignore. Set the mode now to ensure that any nodes generated during
3405 -- analysis and expansion are properly flagged as ignored Ghost.
3407 Set_Ghost_Mode (N, Prev_Entity);
3409 if Present (Prev_Entity) then
3410 Constant_Redeclaration (Id, N, T);
3412 Generate_Reference (Prev_Entity, Id, 'c');
3413 Set_Completion_Referenced (Id);
3415 if Error_Posted (N) then
3417 -- Type mismatch or illegal redeclaration, Do not analyze
3418 -- expression to avoid cascaded errors.
3420 T := Find_Type_Of_Object (Object_Definition (N), N);
3421 Set_Etype (Id, T);
3422 Set_Ekind (Id, E_Variable);
3423 goto Leave;
3424 end if;
3426 -- In the normal case, enter identifier at the start to catch premature
3427 -- usage in the initialization expression.
3429 else
3430 Generate_Definition (Id);
3431 Enter_Name (Id);
3433 Mark_Coextensions (N, Object_Definition (N));
3435 T := Find_Type_Of_Object (Object_Definition (N), N);
3437 if Nkind (Object_Definition (N)) = N_Access_Definition
3438 and then Present
3439 (Access_To_Subprogram_Definition (Object_Definition (N)))
3440 and then Protected_Present
3441 (Access_To_Subprogram_Definition (Object_Definition (N)))
3442 then
3443 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3444 end if;
3446 if Error_Posted (Id) then
3447 Set_Etype (Id, T);
3448 Set_Ekind (Id, E_Variable);
3449 goto Leave;
3450 end if;
3451 end if;
3453 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3454 -- out some static checks
3456 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3458 -- In case of aggregates we must also take care of the correct
3459 -- initialization of nested aggregates bug this is done at the
3460 -- point of the analysis of the aggregate (see sem_aggr.adb).
3462 if Present (Expression (N))
3463 and then Nkind (Expression (N)) = N_Aggregate
3464 then
3465 null;
3467 else
3468 declare
3469 Save_Typ : constant Entity_Id := Etype (Id);
3470 begin
3471 Set_Etype (Id, T); -- Temp. decoration for static checks
3472 Null_Exclusion_Static_Checks (N);
3473 Set_Etype (Id, Save_Typ);
3474 end;
3475 end if;
3476 end if;
3478 -- Object is marked pure if it is in a pure scope
3480 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3482 -- If deferred constant, make sure context is appropriate. We detect
3483 -- a deferred constant as a constant declaration with no expression.
3484 -- A deferred constant can appear in a package body if its completion
3485 -- is by means of an interface pragma.
3487 if Constant_Present (N) and then No (E) then
3489 -- A deferred constant may appear in the declarative part of the
3490 -- following constructs:
3492 -- blocks
3493 -- entry bodies
3494 -- extended return statements
3495 -- package specs
3496 -- package bodies
3497 -- subprogram bodies
3498 -- task bodies
3500 -- When declared inside a package spec, a deferred constant must be
3501 -- completed by a full constant declaration or pragma Import. In all
3502 -- other cases, the only proper completion is pragma Import. Extended
3503 -- return statements are flagged as invalid contexts because they do
3504 -- not have a declarative part and so cannot accommodate the pragma.
3506 if Ekind (Current_Scope) = E_Return_Statement then
3507 Error_Msg_N
3508 ("invalid context for deferred constant declaration (RM 7.4)",
3510 Error_Msg_N
3511 ("\declaration requires an initialization expression",
3513 Set_Constant_Present (N, False);
3515 -- In Ada 83, deferred constant must be of private type
3517 elsif not Is_Private_Type (T) then
3518 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3519 Error_Msg_N
3520 ("(Ada 83) deferred constant must be private type", N);
3521 end if;
3522 end if;
3524 -- If not a deferred constant, then the object declaration freezes
3525 -- its type, unless the object is of an anonymous type and has delayed
3526 -- aspects. In that case the type is frozen when the object itself is.
3528 else
3529 Check_Fully_Declared (T, N);
3531 if Has_Delayed_Aspects (Id)
3532 and then Is_Array_Type (T)
3533 and then Is_Itype (T)
3534 then
3535 Set_Has_Delayed_Freeze (T);
3536 else
3537 Freeze_Before (N, T);
3538 end if;
3539 end if;
3541 -- If the object was created by a constrained array definition, then
3542 -- set the link in both the anonymous base type and anonymous subtype
3543 -- that are built to represent the array type to point to the object.
3545 if Nkind (Object_Definition (Declaration_Node (Id))) =
3546 N_Constrained_Array_Definition
3547 then
3548 Set_Related_Array_Object (T, Id);
3549 Set_Related_Array_Object (Base_Type (T), Id);
3550 end if;
3552 -- Special checks for protected objects not at library level
3554 if Is_Protected_Type (T)
3555 and then not Is_Library_Level_Entity (Id)
3556 then
3557 Check_Restriction (No_Local_Protected_Objects, Id);
3559 -- Protected objects with interrupt handlers must be at library level
3561 -- Ada 2005: This test is not needed (and the corresponding clause
3562 -- in the RM is removed) because accessibility checks are sufficient
3563 -- to make handlers not at the library level illegal.
3565 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3566 -- applies to the '95 version of the language as well.
3568 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3569 Error_Msg_N
3570 ("interrupt object can only be declared at library level", Id);
3571 end if;
3572 end if;
3574 -- The actual subtype of the object is the nominal subtype, unless
3575 -- the nominal one is unconstrained and obtained from the expression.
3577 Act_T := T;
3579 -- These checks should be performed before the initialization expression
3580 -- is considered, so that the Object_Definition node is still the same
3581 -- as in source code.
3583 -- In SPARK, the nominal subtype is always given by a subtype mark
3584 -- and must not be unconstrained. (The only exception to this is the
3585 -- acceptance of declarations of constants of type String.)
3587 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
3588 then
3589 Check_SPARK_05_Restriction
3590 ("subtype mark required", Object_Definition (N));
3592 elsif Is_Array_Type (T)
3593 and then not Is_Constrained (T)
3594 and then T /= Standard_String
3595 then
3596 Check_SPARK_05_Restriction
3597 ("subtype mark of constrained type expected",
3598 Object_Definition (N));
3599 end if;
3601 -- There are no aliased objects in SPARK
3603 if Aliased_Present (N) then
3604 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3605 end if;
3607 -- Process initialization expression if present and not in error
3609 if Present (E) and then E /= Error then
3611 -- Generate an error in case of CPP class-wide object initialization.
3612 -- Required because otherwise the expansion of the class-wide
3613 -- assignment would try to use 'size to initialize the object
3614 -- (primitive that is not available in CPP tagged types).
3616 if Is_Class_Wide_Type (Act_T)
3617 and then
3618 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3619 or else
3620 (Present (Full_View (Root_Type (Etype (Act_T))))
3621 and then
3622 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3623 then
3624 Error_Msg_N
3625 ("predefined assignment not available for 'C'P'P tagged types",
3627 end if;
3629 Mark_Coextensions (N, E);
3630 Analyze (E);
3632 -- In case of errors detected in the analysis of the expression,
3633 -- decorate it with the expected type to avoid cascaded errors
3635 if No (Etype (E)) then
3636 Set_Etype (E, T);
3637 end if;
3639 -- If an initialization expression is present, then we set the
3640 -- Is_True_Constant flag. It will be reset if this is a variable
3641 -- and it is indeed modified.
3643 Set_Is_True_Constant (Id, True);
3645 -- If we are analyzing a constant declaration, set its completion
3646 -- flag after analyzing and resolving the expression.
3648 if Constant_Present (N) then
3649 Set_Has_Completion (Id);
3650 end if;
3652 -- Set type and resolve (type may be overridden later on). Note:
3653 -- Ekind (Id) must still be E_Void at this point so that incorrect
3654 -- early usage within E is properly diagnosed.
3656 Set_Etype (Id, T);
3658 -- If the expression is an aggregate we must look ahead to detect
3659 -- the possible presence of an address clause, and defer resolution
3660 -- and expansion of the aggregate to the freeze point of the entity.
3662 if Comes_From_Source (N)
3663 and then Expander_Active
3664 and then Nkind (E) = N_Aggregate
3665 and then Present (Following_Address_Clause (N))
3666 then
3667 Set_Etype (E, T);
3669 else
3670 Resolve (E, T);
3671 end if;
3673 -- No further action needed if E is a call to an inlined function
3674 -- which returns an unconstrained type and it has been expanded into
3675 -- a procedure call. In that case N has been replaced by an object
3676 -- declaration without initializing expression and it has been
3677 -- analyzed (see Expand_Inlined_Call).
3679 if Back_End_Inlining
3680 and then Expander_Active
3681 and then Nkind (E) = N_Function_Call
3682 and then Nkind (Name (E)) in N_Has_Entity
3683 and then Is_Inlined (Entity (Name (E)))
3684 and then not Is_Constrained (Etype (E))
3685 and then Analyzed (N)
3686 and then No (Expression (N))
3687 then
3688 return;
3689 end if;
3691 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3692 -- node (which was marked already-analyzed), we need to set the type
3693 -- to something other than Any_Access in order to keep gigi happy.
3695 if Etype (E) = Any_Access then
3696 Set_Etype (E, T);
3697 end if;
3699 -- If the object is an access to variable, the initialization
3700 -- expression cannot be an access to constant.
3702 if Is_Access_Type (T)
3703 and then not Is_Access_Constant (T)
3704 and then Is_Access_Type (Etype (E))
3705 and then Is_Access_Constant (Etype (E))
3706 then
3707 Error_Msg_N
3708 ("access to variable cannot be initialized with an "
3709 & "access-to-constant expression", E);
3710 end if;
3712 if not Assignment_OK (N) then
3713 Check_Initialization (T, E);
3714 end if;
3716 Check_Unset_Reference (E);
3718 -- If this is a variable, then set current value. If this is a
3719 -- declared constant of a scalar type with a static expression,
3720 -- indicate that it is always valid.
3722 if not Constant_Present (N) then
3723 if Compile_Time_Known_Value (E) then
3724 Set_Current_Value (Id, E);
3725 end if;
3727 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3728 Set_Is_Known_Valid (Id);
3729 end if;
3731 -- Deal with setting of null flags
3733 if Is_Access_Type (T) then
3734 if Known_Non_Null (E) then
3735 Set_Is_Known_Non_Null (Id, True);
3736 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3737 Set_Is_Known_Null (Id, True);
3738 end if;
3739 end if;
3741 -- Check incorrect use of dynamically tagged expressions
3743 if Is_Tagged_Type (T) then
3744 Check_Dynamically_Tagged_Expression
3745 (Expr => E,
3746 Typ => T,
3747 Related_Nod => N);
3748 end if;
3750 Apply_Scalar_Range_Check (E, T);
3751 Apply_Static_Length_Check (E, T);
3753 if Nkind (Original_Node (N)) = N_Object_Declaration
3754 and then Comes_From_Source (Original_Node (N))
3756 -- Only call test if needed
3758 and then Restriction_Check_Required (SPARK_05)
3759 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3760 then
3761 Check_SPARK_05_Restriction
3762 ("initialization expression is not appropriate", E);
3763 end if;
3765 -- A formal parameter of a specific tagged type whose related
3766 -- subprogram is subject to pragma Extensions_Visible with value
3767 -- "False" cannot be implicitly converted to a class-wide type by
3768 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3770 if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then
3771 Error_Msg_N
3772 ("formal parameter with Extensions_Visible False cannot be "
3773 & "implicitly converted to class-wide type", E);
3774 end if;
3775 end if;
3777 -- If the No_Streams restriction is set, check that the type of the
3778 -- object is not, and does not contain, any subtype derived from
3779 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3780 -- Has_Stream just for efficiency reasons. There is no point in
3781 -- spending time on a Has_Stream check if the restriction is not set.
3783 if Restriction_Check_Required (No_Streams) then
3784 if Has_Stream (T) then
3785 Check_Restriction (No_Streams, N);
3786 end if;
3787 end if;
3789 -- Deal with predicate check before we start to do major rewriting. It
3790 -- is OK to initialize and then check the initialized value, since the
3791 -- object goes out of scope if we get a predicate failure. Note that we
3792 -- do this in the analyzer and not the expander because the analyzer
3793 -- does some substantial rewriting in some cases.
3795 -- We need a predicate check if the type has predicates, and if either
3796 -- there is an initializing expression, or for default initialization
3797 -- when we have at least one case of an explicit default initial value
3798 -- and then this is not an internal declaration whose initialization
3799 -- comes later (as for an aggregate expansion).
3801 if not Suppress_Assignment_Checks (N)
3802 and then Present (Predicate_Function (T))
3803 and then not No_Initialization (N)
3804 and then
3805 (Present (E)
3806 or else
3807 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3808 then
3809 -- If the type has a static predicate and the expression is known at
3810 -- compile time, see if the expression satisfies the predicate.
3812 if Present (E) then
3813 Check_Expression_Against_Static_Predicate (E, T);
3814 end if;
3816 Insert_After (N,
3817 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3818 end if;
3820 -- Case of unconstrained type
3822 if Is_Indefinite_Subtype (T) then
3824 -- In SPARK, a declaration of unconstrained type is allowed
3825 -- only for constants of type string.
3827 if Is_String_Type (T) and then not Constant_Present (N) then
3828 Check_SPARK_05_Restriction
3829 ("declaration of object of unconstrained type not allowed", N);
3830 end if;
3832 -- Nothing to do in deferred constant case
3834 if Constant_Present (N) and then No (E) then
3835 null;
3837 -- Case of no initialization present
3839 elsif No (E) then
3840 if No_Initialization (N) then
3841 null;
3843 elsif Is_Class_Wide_Type (T) then
3844 Error_Msg_N
3845 ("initialization required in class-wide declaration ", N);
3847 else
3848 Error_Msg_N
3849 ("unconstrained subtype not allowed (need initialization)",
3850 Object_Definition (N));
3852 if Is_Record_Type (T) and then Has_Discriminants (T) then
3853 Error_Msg_N
3854 ("\provide initial value or explicit discriminant values",
3855 Object_Definition (N));
3857 Error_Msg_NE
3858 ("\or give default discriminant values for type&",
3859 Object_Definition (N), T);
3861 elsif Is_Array_Type (T) then
3862 Error_Msg_N
3863 ("\provide initial value or explicit array bounds",
3864 Object_Definition (N));
3865 end if;
3866 end if;
3868 -- Case of initialization present but in error. Set initial
3869 -- expression as absent (but do not make above complaints)
3871 elsif E = Error then
3872 Set_Expression (N, Empty);
3873 E := Empty;
3875 -- Case of initialization present
3877 else
3878 -- Check restrictions in Ada 83
3880 if not Constant_Present (N) then
3882 -- Unconstrained variables not allowed in Ada 83 mode
3884 if Ada_Version = Ada_83
3885 and then Comes_From_Source (Object_Definition (N))
3886 then
3887 Error_Msg_N
3888 ("(Ada 83) unconstrained variable not allowed",
3889 Object_Definition (N));
3890 end if;
3891 end if;
3893 -- Now we constrain the variable from the initializing expression
3895 -- If the expression is an aggregate, it has been expanded into
3896 -- individual assignments. Retrieve the actual type from the
3897 -- expanded construct.
3899 if Is_Array_Type (T)
3900 and then No_Initialization (N)
3901 and then Nkind (Original_Node (E)) = N_Aggregate
3902 then
3903 Act_T := Etype (E);
3905 -- In case of class-wide interface object declarations we delay
3906 -- the generation of the equivalent record type declarations until
3907 -- its expansion because there are cases in they are not required.
3909 elsif Is_Interface (T) then
3910 null;
3912 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3913 -- we should prevent the generation of another Itype with the
3914 -- same name as the one already generated, or we end up with
3915 -- two identical types in GNATprove.
3917 elsif GNATprove_Mode then
3918 null;
3920 -- If the type is an unchecked union, no subtype can be built from
3921 -- the expression. Rewrite declaration as a renaming, which the
3922 -- back-end can handle properly. This is a rather unusual case,
3923 -- because most unchecked_union declarations have default values
3924 -- for discriminants and are thus not indefinite.
3926 elsif Is_Unchecked_Union (T) then
3927 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
3928 Set_Ekind (Id, E_Constant);
3929 else
3930 Set_Ekind (Id, E_Variable);
3931 end if;
3933 -- An object declared within a Ghost region is automatically
3934 -- Ghost (SPARK RM 6.9(2)).
3936 if Comes_From_Source (Id) and then Ghost_Mode > None then
3937 Set_Is_Ghost_Entity (Id);
3939 -- The Ghost policy in effect at the point of declaration
3940 -- and at the point of completion must match
3941 -- (SPARK RM 6.9(15)).
3943 if Present (Prev_Entity)
3944 and then Is_Ghost_Entity (Prev_Entity)
3945 then
3946 Check_Ghost_Completion (Prev_Entity, Id);
3947 end if;
3948 end if;
3950 Rewrite (N,
3951 Make_Object_Renaming_Declaration (Loc,
3952 Defining_Identifier => Id,
3953 Subtype_Mark => New_Occurrence_Of (T, Loc),
3954 Name => E));
3956 Set_Renamed_Object (Id, E);
3957 Freeze_Before (N, T);
3958 Set_Is_Frozen (Id);
3959 return;
3961 else
3962 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3963 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3964 end if;
3966 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3968 if Aliased_Present (N) then
3969 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3970 end if;
3972 Freeze_Before (N, Act_T);
3973 Freeze_Before (N, T);
3974 end if;
3976 elsif Is_Array_Type (T)
3977 and then No_Initialization (N)
3978 and then Nkind (Original_Node (E)) = N_Aggregate
3979 then
3980 if not Is_Entity_Name (Object_Definition (N)) then
3981 Act_T := Etype (E);
3982 Check_Compile_Time_Size (Act_T);
3984 if Aliased_Present (N) then
3985 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3986 end if;
3987 end if;
3989 -- When the given object definition and the aggregate are specified
3990 -- independently, and their lengths might differ do a length check.
3991 -- This cannot happen if the aggregate is of the form (others =>...)
3993 if not Is_Constrained (T) then
3994 null;
3996 elsif Nkind (E) = N_Raise_Constraint_Error then
3998 -- Aggregate is statically illegal. Place back in declaration
4000 Set_Expression (N, E);
4001 Set_No_Initialization (N, False);
4003 elsif T = Etype (E) then
4004 null;
4006 elsif Nkind (E) = N_Aggregate
4007 and then Present (Component_Associations (E))
4008 and then Present (Choices (First (Component_Associations (E))))
4009 and then Nkind (First
4010 (Choices (First (Component_Associations (E))))) = N_Others_Choice
4011 then
4012 null;
4014 else
4015 Apply_Length_Check (E, T);
4016 end if;
4018 -- If the type is limited unconstrained with defaulted discriminants and
4019 -- there is no expression, then the object is constrained by the
4020 -- defaults, so it is worthwhile building the corresponding subtype.
4022 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4023 and then not Is_Constrained (T)
4024 and then Has_Discriminants (T)
4025 then
4026 if No (E) then
4027 Act_T := Build_Default_Subtype (T, N);
4028 else
4029 -- Ada 2005: A limited object may be initialized by means of an
4030 -- aggregate. If the type has default discriminants it has an
4031 -- unconstrained nominal type, Its actual subtype will be obtained
4032 -- from the aggregate, and not from the default discriminants.
4034 Act_T := Etype (E);
4035 end if;
4037 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4039 elsif Nkind (E) = N_Function_Call
4040 and then Constant_Present (N)
4041 and then Has_Unconstrained_Elements (Etype (E))
4042 then
4043 -- The back-end has problems with constants of a discriminated type
4044 -- with defaults, if the initial value is a function call. We
4045 -- generate an intermediate temporary that will receive a reference
4046 -- to the result of the call. The initialization expression then
4047 -- becomes a dereference of that temporary.
4049 Remove_Side_Effects (E);
4051 -- If this is a constant declaration of an unconstrained type and
4052 -- the initialization is an aggregate, we can use the subtype of the
4053 -- aggregate for the declared entity because it is immutable.
4055 elsif not Is_Constrained (T)
4056 and then Has_Discriminants (T)
4057 and then Constant_Present (N)
4058 and then not Has_Unchecked_Union (T)
4059 and then Nkind (E) = N_Aggregate
4060 then
4061 Act_T := Etype (E);
4062 end if;
4064 -- Check No_Wide_Characters restriction
4066 Check_Wide_Character_Restriction (T, Object_Definition (N));
4068 -- Indicate this is not set in source. Certainly true for constants, and
4069 -- true for variables so far (will be reset for a variable if and when
4070 -- we encounter a modification in the source).
4072 Set_Never_Set_In_Source (Id);
4074 -- Now establish the proper kind and type of the object
4076 if Constant_Present (N) then
4077 Set_Ekind (Id, E_Constant);
4078 Set_Is_True_Constant (Id);
4080 else
4081 Set_Ekind (Id, E_Variable);
4083 -- A variable is set as shared passive if it appears in a shared
4084 -- passive package, and is at the outer level. This is not done for
4085 -- entities generated during expansion, because those are always
4086 -- manipulated locally.
4088 if Is_Shared_Passive (Current_Scope)
4089 and then Is_Library_Level_Entity (Id)
4090 and then Comes_From_Source (Id)
4091 then
4092 Set_Is_Shared_Passive (Id);
4093 Check_Shared_Var (Id, T, N);
4094 end if;
4096 -- Set Has_Initial_Value if initializing expression present. Note
4097 -- that if there is no initializing expression, we leave the state
4098 -- of this flag unchanged (usually it will be False, but notably in
4099 -- the case of exception choice variables, it will already be true).
4101 if Present (E) then
4102 Set_Has_Initial_Value (Id);
4103 end if;
4105 Set_Contract (Id, Make_Contract (Sloc (Id)));
4106 end if;
4108 -- Initialize alignment and size and capture alignment setting
4110 Init_Alignment (Id);
4111 Init_Esize (Id);
4112 Set_Optimize_Alignment_Flags (Id);
4114 -- An object declared within a Ghost region is automatically Ghost
4115 -- (SPARK RM 6.9(2)).
4117 if Comes_From_Source (Id)
4118 and then (Ghost_Mode > None
4119 or else (Present (Prev_Entity)
4120 and then Is_Ghost_Entity (Prev_Entity)))
4121 then
4122 Set_Is_Ghost_Entity (Id);
4124 -- The Ghost policy in effect at the point of declaration and at the
4125 -- point of completion must match (SPARK RM 6.9(16)).
4127 if Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity) then
4128 Check_Ghost_Completion (Prev_Entity, Id);
4129 end if;
4130 end if;
4132 -- Deal with aliased case
4134 if Aliased_Present (N) then
4135 Set_Is_Aliased (Id);
4137 -- If the object is aliased and the type is unconstrained with
4138 -- defaulted discriminants and there is no expression, then the
4139 -- object is constrained by the defaults, so it is worthwhile
4140 -- building the corresponding subtype.
4142 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4143 -- unconstrained, then only establish an actual subtype if the
4144 -- nominal subtype is indefinite. In definite cases the object is
4145 -- unconstrained in Ada 2005.
4147 if No (E)
4148 and then Is_Record_Type (T)
4149 and then not Is_Constrained (T)
4150 and then Has_Discriminants (T)
4151 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
4152 then
4153 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4154 end if;
4155 end if;
4157 -- Now we can set the type of the object
4159 Set_Etype (Id, Act_T);
4161 -- Non-constant object is marked to be treated as volatile if type is
4162 -- volatile and we clear the Current_Value setting that may have been
4163 -- set above. Doing so for constants isn't required and might interfere
4164 -- with possible uses of the object as a static expression in contexts
4165 -- incompatible with volatility (e.g. as a case-statement alternative).
4167 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4168 Set_Treat_As_Volatile (Id);
4169 Set_Current_Value (Id, Empty);
4170 end if;
4172 -- Deal with controlled types
4174 if Has_Controlled_Component (Etype (Id))
4175 or else Is_Controlled (Etype (Id))
4176 then
4177 if not Is_Library_Level_Entity (Id) then
4178 Check_Restriction (No_Nested_Finalization, N);
4179 else
4180 Validate_Controlled_Object (Id);
4181 end if;
4182 end if;
4184 if Has_Task (Etype (Id)) then
4185 Check_Restriction (No_Tasking, N);
4187 -- Deal with counting max tasks
4189 -- Nothing to do if inside a generic
4191 if Inside_A_Generic then
4192 null;
4194 -- If library level entity, then count tasks
4196 elsif Is_Library_Level_Entity (Id) then
4197 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4199 -- If not library level entity, then indicate we don't know max
4200 -- tasks and also check task hierarchy restriction and blocking
4201 -- operation (since starting a task is definitely blocking).
4203 else
4204 Check_Restriction (Max_Tasks, N);
4205 Check_Restriction (No_Task_Hierarchy, N);
4206 Check_Potentially_Blocking_Operation (N);
4207 end if;
4209 -- A rather specialized test. If we see two tasks being declared
4210 -- of the same type in the same object declaration, and the task
4211 -- has an entry with an address clause, we know that program error
4212 -- will be raised at run time since we can't have two tasks with
4213 -- entries at the same address.
4215 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4216 declare
4217 E : Entity_Id;
4219 begin
4220 E := First_Entity (Etype (Id));
4221 while Present (E) loop
4222 if Ekind (E) = E_Entry
4223 and then Present (Get_Attribute_Definition_Clause
4224 (E, Attribute_Address))
4225 then
4226 Error_Msg_Warn := SPARK_Mode /= On;
4227 Error_Msg_N
4228 ("more than one task with same entry address<<", N);
4229 Error_Msg_N ("\Program_Error [<<", N);
4230 Insert_Action (N,
4231 Make_Raise_Program_Error (Loc,
4232 Reason => PE_Duplicated_Entry_Address));
4233 exit;
4234 end if;
4236 Next_Entity (E);
4237 end loop;
4238 end;
4239 end if;
4240 end if;
4242 -- Some simple constant-propagation: if the expression is a constant
4243 -- string initialized with a literal, share the literal. This avoids
4244 -- a run-time copy.
4246 if Present (E)
4247 and then Is_Entity_Name (E)
4248 and then Ekind (Entity (E)) = E_Constant
4249 and then Base_Type (Etype (E)) = Standard_String
4250 then
4251 declare
4252 Val : constant Node_Id := Constant_Value (Entity (E));
4253 begin
4254 if Present (Val) and then Nkind (Val) = N_String_Literal then
4255 Rewrite (E, New_Copy (Val));
4256 end if;
4257 end;
4258 end if;
4260 -- Another optimization: if the nominal subtype is unconstrained and
4261 -- the expression is a function call that returns an unconstrained
4262 -- type, rewrite the declaration as a renaming of the result of the
4263 -- call. The exceptions below are cases where the copy is expected,
4264 -- either by the back end (Aliased case) or by the semantics, as for
4265 -- initializing controlled types or copying tags for classwide types.
4267 if Present (E)
4268 and then Nkind (E) = N_Explicit_Dereference
4269 and then Nkind (Original_Node (E)) = N_Function_Call
4270 and then not Is_Library_Level_Entity (Id)
4271 and then not Is_Constrained (Underlying_Type (T))
4272 and then not Is_Aliased (Id)
4273 and then not Is_Class_Wide_Type (T)
4274 and then not Is_Controlled (T)
4275 and then not Has_Controlled_Component (Base_Type (T))
4276 and then Expander_Active
4277 then
4278 Rewrite (N,
4279 Make_Object_Renaming_Declaration (Loc,
4280 Defining_Identifier => Id,
4281 Access_Definition => Empty,
4282 Subtype_Mark => New_Occurrence_Of
4283 (Base_Type (Etype (Id)), Loc),
4284 Name => E));
4286 Set_Renamed_Object (Id, E);
4288 -- Force generation of debugging information for the constant and for
4289 -- the renamed function call.
4291 Set_Debug_Info_Needed (Id);
4292 Set_Debug_Info_Needed (Entity (Prefix (E)));
4293 end if;
4295 if Present (Prev_Entity)
4296 and then Is_Frozen (Prev_Entity)
4297 and then not Error_Posted (Id)
4298 then
4299 Error_Msg_N ("full constant declaration appears too late", N);
4300 end if;
4302 Check_Eliminated (Id);
4304 -- Deal with setting In_Private_Part flag if in private part
4306 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4307 then
4308 Set_In_Private_Part (Id);
4309 end if;
4311 -- Check for violation of No_Local_Timing_Events
4313 if Restriction_Check_Required (No_Local_Timing_Events)
4314 and then not Is_Library_Level_Entity (Id)
4315 and then Is_RTE (Etype (Id), RE_Timing_Event)
4316 then
4317 Check_Restriction (No_Local_Timing_Events, N);
4318 end if;
4320 <<Leave>>
4321 -- Initialize the refined state of a variable here because this is a
4322 -- common destination for legal and illegal object declarations.
4324 if Ekind (Id) = E_Variable then
4325 Set_Encapsulating_State (Id, Empty);
4326 end if;
4328 if Has_Aspects (N) then
4329 Analyze_Aspect_Specifications (N, Id);
4330 end if;
4332 Analyze_Dimension (N);
4334 -- Verify whether the object declaration introduces an illegal hidden
4335 -- state within a package subject to a null abstract state.
4337 if Ekind (Id) = E_Variable then
4338 Check_No_Hidden_State (Id);
4339 end if;
4340 end Analyze_Object_Declaration;
4342 ---------------------------
4343 -- Analyze_Others_Choice --
4344 ---------------------------
4346 -- Nothing to do for the others choice node itself, the semantic analysis
4347 -- of the others choice will occur as part of the processing of the parent
4349 procedure Analyze_Others_Choice (N : Node_Id) is
4350 pragma Warnings (Off, N);
4351 begin
4352 null;
4353 end Analyze_Others_Choice;
4355 -------------------------------------------
4356 -- Analyze_Private_Extension_Declaration --
4357 -------------------------------------------
4359 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4360 T : constant Entity_Id := Defining_Identifier (N);
4361 Indic : constant Node_Id := Subtype_Indication (N);
4362 Parent_Type : Entity_Id;
4363 Parent_Base : Entity_Id;
4365 begin
4366 -- The private extension declaration may be subject to pragma Ghost with
4367 -- policy Ignore. Set the mode now to ensure that any nodes generated
4368 -- during analysis and expansion are properly flagged as ignored Ghost.
4370 Set_Ghost_Mode (N);
4372 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4374 if Is_Non_Empty_List (Interface_List (N)) then
4375 declare
4376 Intf : Node_Id;
4377 T : Entity_Id;
4379 begin
4380 Intf := First (Interface_List (N));
4381 while Present (Intf) loop
4382 T := Find_Type_Of_Subtype_Indic (Intf);
4384 Diagnose_Interface (Intf, T);
4385 Next (Intf);
4386 end loop;
4387 end;
4388 end if;
4390 Generate_Definition (T);
4392 -- For other than Ada 2012, just enter the name in the current scope
4394 if Ada_Version < Ada_2012 then
4395 Enter_Name (T);
4397 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4398 -- case of private type that completes an incomplete type.
4400 else
4401 declare
4402 Prev : Entity_Id;
4404 begin
4405 Prev := Find_Type_Name (N);
4407 pragma Assert (Prev = T
4408 or else (Ekind (Prev) = E_Incomplete_Type
4409 and then Present (Full_View (Prev))
4410 and then Full_View (Prev) = T));
4411 end;
4412 end if;
4414 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4415 Parent_Base := Base_Type (Parent_Type);
4417 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4418 Set_Ekind (T, Ekind (Parent_Type));
4419 Set_Etype (T, Any_Type);
4420 goto Leave;
4422 elsif not Is_Tagged_Type (Parent_Type) then
4423 Error_Msg_N
4424 ("parent of type extension must be a tagged type ", Indic);
4425 goto Leave;
4427 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4428 Error_Msg_N ("premature derivation of incomplete type", Indic);
4429 goto Leave;
4431 elsif Is_Concurrent_Type (Parent_Type) then
4432 Error_Msg_N
4433 ("parent type of a private extension cannot be "
4434 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4436 Set_Etype (T, Any_Type);
4437 Set_Ekind (T, E_Limited_Private_Type);
4438 Set_Private_Dependents (T, New_Elmt_List);
4439 Set_Error_Posted (T);
4440 goto Leave;
4441 end if;
4443 -- Perhaps the parent type should be changed to the class-wide type's
4444 -- specific type in this case to prevent cascading errors ???
4446 if Is_Class_Wide_Type (Parent_Type) then
4447 Error_Msg_N
4448 ("parent of type extension must not be a class-wide type", Indic);
4449 goto Leave;
4450 end if;
4452 if (not Is_Package_Or_Generic_Package (Current_Scope)
4453 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4454 or else In_Private_Part (Current_Scope)
4456 then
4457 Error_Msg_N ("invalid context for private extension", N);
4458 end if;
4460 -- Set common attributes
4462 Set_Is_Pure (T, Is_Pure (Current_Scope));
4463 Set_Scope (T, Current_Scope);
4464 Set_Ekind (T, E_Record_Type_With_Private);
4465 Init_Size_Align (T);
4466 Set_Default_SSO (T);
4468 Set_Etype (T, Parent_Base);
4469 Set_Has_Task (T, Has_Task (Parent_Base));
4470 Set_Has_Protected (T, Has_Task (Parent_Base));
4472 Set_Convention (T, Convention (Parent_Type));
4473 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4474 Set_Is_First_Subtype (T);
4475 Make_Class_Wide_Type (T);
4477 if Unknown_Discriminants_Present (N) then
4478 Set_Discriminant_Constraint (T, No_Elist);
4479 end if;
4481 Build_Derived_Record_Type (N, Parent_Type, T);
4483 -- Propagate inherited invariant information. The new type has
4484 -- invariants, if the parent type has inheritable invariants,
4485 -- and these invariants can in turn be inherited.
4487 if Has_Inheritable_Invariants (Parent_Type) then
4488 Set_Has_Inheritable_Invariants (T);
4489 Set_Has_Invariants (T);
4490 end if;
4492 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4493 -- synchronized formal derived type.
4495 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4496 Set_Is_Limited_Record (T);
4498 -- Formal derived type case
4500 if Is_Generic_Type (T) then
4502 -- The parent must be a tagged limited type or a synchronized
4503 -- interface.
4505 if (not Is_Tagged_Type (Parent_Type)
4506 or else not Is_Limited_Type (Parent_Type))
4507 and then
4508 (not Is_Interface (Parent_Type)
4509 or else not Is_Synchronized_Interface (Parent_Type))
4510 then
4511 Error_Msg_NE ("parent type of & must be tagged limited " &
4512 "or synchronized", N, T);
4513 end if;
4515 -- The progenitors (if any) must be limited or synchronized
4516 -- interfaces.
4518 if Present (Interfaces (T)) then
4519 declare
4520 Iface : Entity_Id;
4521 Iface_Elmt : Elmt_Id;
4523 begin
4524 Iface_Elmt := First_Elmt (Interfaces (T));
4525 while Present (Iface_Elmt) loop
4526 Iface := Node (Iface_Elmt);
4528 if not Is_Limited_Interface (Iface)
4529 and then not Is_Synchronized_Interface (Iface)
4530 then
4531 Error_Msg_NE ("progenitor & must be limited " &
4532 "or synchronized", N, Iface);
4533 end if;
4535 Next_Elmt (Iface_Elmt);
4536 end loop;
4537 end;
4538 end if;
4540 -- Regular derived extension, the parent must be a limited or
4541 -- synchronized interface.
4543 else
4544 if not Is_Interface (Parent_Type)
4545 or else (not Is_Limited_Interface (Parent_Type)
4546 and then not Is_Synchronized_Interface (Parent_Type))
4547 then
4548 Error_Msg_NE
4549 ("parent type of & must be limited interface", N, T);
4550 end if;
4551 end if;
4553 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4554 -- extension with a synchronized parent must be explicitly declared
4555 -- synchronized, because the full view will be a synchronized type.
4556 -- This must be checked before the check for limited types below,
4557 -- to ensure that types declared limited are not allowed to extend
4558 -- synchronized interfaces.
4560 elsif Is_Interface (Parent_Type)
4561 and then Is_Synchronized_Interface (Parent_Type)
4562 and then not Synchronized_Present (N)
4563 then
4564 Error_Msg_NE
4565 ("private extension of& must be explicitly synchronized",
4566 N, Parent_Type);
4568 elsif Limited_Present (N) then
4569 Set_Is_Limited_Record (T);
4571 if not Is_Limited_Type (Parent_Type)
4572 and then
4573 (not Is_Interface (Parent_Type)
4574 or else not Is_Limited_Interface (Parent_Type))
4575 then
4576 Error_Msg_NE ("parent type& of limited extension must be limited",
4577 N, Parent_Type);
4578 end if;
4579 end if;
4581 <<Leave>>
4582 if Has_Aspects (N) then
4583 Analyze_Aspect_Specifications (N, T);
4584 end if;
4585 end Analyze_Private_Extension_Declaration;
4587 ---------------------------------
4588 -- Analyze_Subtype_Declaration --
4589 ---------------------------------
4591 procedure Analyze_Subtype_Declaration
4592 (N : Node_Id;
4593 Skip : Boolean := False)
4595 Id : constant Entity_Id := Defining_Identifier (N);
4596 T : Entity_Id;
4597 R_Checks : Check_Result;
4599 begin
4600 -- The subtype declaration may be subject to pragma Ghost with policy
4601 -- Ignore. Set the mode now to ensure that any nodes generated during
4602 -- analysis and expansion are properly flagged as ignored Ghost.
4604 Set_Ghost_Mode (N);
4606 Generate_Definition (Id);
4607 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4608 Init_Size_Align (Id);
4610 -- The following guard condition on Enter_Name is to handle cases where
4611 -- the defining identifier has already been entered into the scope but
4612 -- the declaration as a whole needs to be analyzed.
4614 -- This case in particular happens for derived enumeration types. The
4615 -- derived enumeration type is processed as an inserted enumeration type
4616 -- declaration followed by a rewritten subtype declaration. The defining
4617 -- identifier, however, is entered into the name scope very early in the
4618 -- processing of the original type declaration and therefore needs to be
4619 -- avoided here, when the created subtype declaration is analyzed. (See
4620 -- Build_Derived_Types)
4622 -- This also happens when the full view of a private type is derived
4623 -- type with constraints. In this case the entity has been introduced
4624 -- in the private declaration.
4626 -- Finally this happens in some complex cases when validity checks are
4627 -- enabled, where the same subtype declaration may be analyzed twice.
4628 -- This can happen if the subtype is created by the pre-analysis of
4629 -- an attribute tht gives the range of a loop statement, and the loop
4630 -- itself appears within an if_statement that will be rewritten during
4631 -- expansion.
4633 if Skip
4634 or else (Present (Etype (Id))
4635 and then (Is_Private_Type (Etype (Id))
4636 or else Is_Task_Type (Etype (Id))
4637 or else Is_Rewrite_Substitution (N)))
4638 then
4639 null;
4641 elsif Current_Entity (Id) = Id then
4642 null;
4644 else
4645 Enter_Name (Id);
4646 end if;
4648 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4650 -- Class-wide equivalent types of records with unknown discriminants
4651 -- involve the generation of an itype which serves as the private view
4652 -- of a constrained record subtype. In such cases the base type of the
4653 -- current subtype we are processing is the private itype. Use the full
4654 -- of the private itype when decorating various attributes.
4656 if Is_Itype (T)
4657 and then Is_Private_Type (T)
4658 and then Present (Full_View (T))
4659 then
4660 T := Full_View (T);
4661 end if;
4663 -- Inherit common attributes
4665 Set_Is_Volatile (Id, Is_Volatile (T));
4666 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4667 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4668 Set_Convention (Id, Convention (T));
4670 -- If ancestor has predicates then so does the subtype, and in addition
4671 -- we must delay the freeze to properly arrange predicate inheritance.
4673 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4674 -- in which T = ID, so the above tests and assignments do nothing???
4676 if Has_Predicates (T)
4677 or else (Present (Ancestor_Subtype (T))
4678 and then Has_Predicates (Ancestor_Subtype (T)))
4679 then
4680 Set_Has_Predicates (Id);
4681 Set_Has_Delayed_Freeze (Id);
4682 end if;
4684 -- Subtype of Boolean cannot have a constraint in SPARK
4686 if Is_Boolean_Type (T)
4687 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4688 then
4689 Check_SPARK_05_Restriction
4690 ("subtype of Boolean cannot have constraint", N);
4691 end if;
4693 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4694 declare
4695 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4696 One_Cstr : Node_Id;
4697 Low : Node_Id;
4698 High : Node_Id;
4700 begin
4701 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4702 One_Cstr := First (Constraints (Cstr));
4703 while Present (One_Cstr) loop
4705 -- Index or discriminant constraint in SPARK must be a
4706 -- subtype mark.
4708 if not
4709 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4710 then
4711 Check_SPARK_05_Restriction
4712 ("subtype mark required", One_Cstr);
4714 -- String subtype must have a lower bound of 1 in SPARK.
4715 -- Note that we do not need to test for the non-static case
4716 -- here, since that was already taken care of in
4717 -- Process_Range_Expr_In_Decl.
4719 elsif Base_Type (T) = Standard_String then
4720 Get_Index_Bounds (One_Cstr, Low, High);
4722 if Is_OK_Static_Expression (Low)
4723 and then Expr_Value (Low) /= 1
4724 then
4725 Check_SPARK_05_Restriction
4726 ("String subtype must have lower bound of 1", N);
4727 end if;
4728 end if;
4730 Next (One_Cstr);
4731 end loop;
4732 end if;
4733 end;
4734 end if;
4736 -- In the case where there is no constraint given in the subtype
4737 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4738 -- semantic attributes must be established here.
4740 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4741 Set_Etype (Id, Base_Type (T));
4743 -- Subtype of unconstrained array without constraint is not allowed
4744 -- in SPARK.
4746 if Is_Array_Type (T) and then not Is_Constrained (T) then
4747 Check_SPARK_05_Restriction
4748 ("subtype of unconstrained array must have constraint", N);
4749 end if;
4751 case Ekind (T) is
4752 when Array_Kind =>
4753 Set_Ekind (Id, E_Array_Subtype);
4754 Copy_Array_Subtype_Attributes (Id, T);
4756 when Decimal_Fixed_Point_Kind =>
4757 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4758 Set_Digits_Value (Id, Digits_Value (T));
4759 Set_Delta_Value (Id, Delta_Value (T));
4760 Set_Scale_Value (Id, Scale_Value (T));
4761 Set_Small_Value (Id, Small_Value (T));
4762 Set_Scalar_Range (Id, Scalar_Range (T));
4763 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4764 Set_Is_Constrained (Id, Is_Constrained (T));
4765 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4766 Set_RM_Size (Id, RM_Size (T));
4768 when Enumeration_Kind =>
4769 Set_Ekind (Id, E_Enumeration_Subtype);
4770 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4771 Set_Scalar_Range (Id, Scalar_Range (T));
4772 Set_Is_Character_Type (Id, Is_Character_Type (T));
4773 Set_Is_Constrained (Id, Is_Constrained (T));
4774 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4775 Set_RM_Size (Id, RM_Size (T));
4776 Inherit_Predicate_Flags (Id, T);
4778 when Ordinary_Fixed_Point_Kind =>
4779 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4780 Set_Scalar_Range (Id, Scalar_Range (T));
4781 Set_Small_Value (Id, Small_Value (T));
4782 Set_Delta_Value (Id, Delta_Value (T));
4783 Set_Is_Constrained (Id, Is_Constrained (T));
4784 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4785 Set_RM_Size (Id, RM_Size (T));
4787 when Float_Kind =>
4788 Set_Ekind (Id, E_Floating_Point_Subtype);
4789 Set_Scalar_Range (Id, Scalar_Range (T));
4790 Set_Digits_Value (Id, Digits_Value (T));
4791 Set_Is_Constrained (Id, Is_Constrained (T));
4793 when Signed_Integer_Kind =>
4794 Set_Ekind (Id, E_Signed_Integer_Subtype);
4795 Set_Scalar_Range (Id, Scalar_Range (T));
4796 Set_Is_Constrained (Id, Is_Constrained (T));
4797 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4798 Set_RM_Size (Id, RM_Size (T));
4799 Inherit_Predicate_Flags (Id, T);
4801 when Modular_Integer_Kind =>
4802 Set_Ekind (Id, E_Modular_Integer_Subtype);
4803 Set_Scalar_Range (Id, Scalar_Range (T));
4804 Set_Is_Constrained (Id, Is_Constrained (T));
4805 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4806 Set_RM_Size (Id, RM_Size (T));
4807 Inherit_Predicate_Flags (Id, T);
4809 when Class_Wide_Kind =>
4810 Set_Ekind (Id, E_Class_Wide_Subtype);
4811 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4812 Set_Cloned_Subtype (Id, T);
4813 Set_Is_Tagged_Type (Id, True);
4814 Set_Has_Unknown_Discriminants
4815 (Id, True);
4816 Set_No_Tagged_Streams_Pragma
4817 (Id, No_Tagged_Streams_Pragma (T));
4819 if Ekind (T) = E_Class_Wide_Subtype then
4820 Set_Equivalent_Type (Id, Equivalent_Type (T));
4821 end if;
4823 when E_Record_Type | E_Record_Subtype =>
4824 Set_Ekind (Id, E_Record_Subtype);
4826 if Ekind (T) = E_Record_Subtype
4827 and then Present (Cloned_Subtype (T))
4828 then
4829 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4830 else
4831 Set_Cloned_Subtype (Id, T);
4832 end if;
4834 Set_First_Entity (Id, First_Entity (T));
4835 Set_Last_Entity (Id, Last_Entity (T));
4836 Set_Has_Discriminants (Id, Has_Discriminants (T));
4837 Set_Is_Constrained (Id, Is_Constrained (T));
4838 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4839 Set_Has_Implicit_Dereference
4840 (Id, Has_Implicit_Dereference (T));
4841 Set_Has_Unknown_Discriminants
4842 (Id, Has_Unknown_Discriminants (T));
4844 if Has_Discriminants (T) then
4845 Set_Discriminant_Constraint
4846 (Id, Discriminant_Constraint (T));
4847 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4849 elsif Has_Unknown_Discriminants (Id) then
4850 Set_Discriminant_Constraint (Id, No_Elist);
4851 end if;
4853 if Is_Tagged_Type (T) then
4854 Set_Is_Tagged_Type (Id, True);
4855 Set_No_Tagged_Streams_Pragma
4856 (Id, No_Tagged_Streams_Pragma (T));
4857 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4858 Set_Direct_Primitive_Operations
4859 (Id, Direct_Primitive_Operations (T));
4860 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4862 if Is_Interface (T) then
4863 Set_Is_Interface (Id);
4864 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4865 end if;
4866 end if;
4868 when Private_Kind =>
4869 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4870 Set_Has_Discriminants (Id, Has_Discriminants (T));
4871 Set_Is_Constrained (Id, Is_Constrained (T));
4872 Set_First_Entity (Id, First_Entity (T));
4873 Set_Last_Entity (Id, Last_Entity (T));
4874 Set_Private_Dependents (Id, New_Elmt_List);
4875 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4876 Set_Has_Implicit_Dereference
4877 (Id, Has_Implicit_Dereference (T));
4878 Set_Has_Unknown_Discriminants
4879 (Id, Has_Unknown_Discriminants (T));
4880 Set_Known_To_Have_Preelab_Init
4881 (Id, Known_To_Have_Preelab_Init (T));
4883 if Is_Tagged_Type (T) then
4884 Set_Is_Tagged_Type (Id);
4885 Set_No_Tagged_Streams_Pragma (Id,
4886 No_Tagged_Streams_Pragma (T));
4887 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4888 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4889 Set_Direct_Primitive_Operations (Id,
4890 Direct_Primitive_Operations (T));
4891 end if;
4893 -- In general the attributes of the subtype of a private type
4894 -- are the attributes of the partial view of parent. However,
4895 -- the full view may be a discriminated type, and the subtype
4896 -- must share the discriminant constraint to generate correct
4897 -- calls to initialization procedures.
4899 if Has_Discriminants (T) then
4900 Set_Discriminant_Constraint
4901 (Id, Discriminant_Constraint (T));
4902 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4904 elsif Present (Full_View (T))
4905 and then Has_Discriminants (Full_View (T))
4906 then
4907 Set_Discriminant_Constraint
4908 (Id, Discriminant_Constraint (Full_View (T)));
4909 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4911 -- This would seem semantically correct, but apparently
4912 -- generates spurious errors about missing components ???
4914 -- Set_Has_Discriminants (Id);
4915 end if;
4917 Prepare_Private_Subtype_Completion (Id, N);
4919 -- If this is the subtype of a constrained private type with
4920 -- discriminants that has got a full view and we also have
4921 -- built a completion just above, show that the completion
4922 -- is a clone of the full view to the back-end.
4924 if Has_Discriminants (T)
4925 and then not Has_Unknown_Discriminants (T)
4926 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4927 and then Present (Full_View (T))
4928 and then Present (Full_View (Id))
4929 then
4930 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4931 end if;
4933 when Access_Kind =>
4934 Set_Ekind (Id, E_Access_Subtype);
4935 Set_Is_Constrained (Id, Is_Constrained (T));
4936 Set_Is_Access_Constant
4937 (Id, Is_Access_Constant (T));
4938 Set_Directly_Designated_Type
4939 (Id, Designated_Type (T));
4940 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4942 -- A Pure library_item must not contain the declaration of a
4943 -- named access type, except within a subprogram, generic
4944 -- subprogram, task unit, or protected unit, or if it has
4945 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4947 if Comes_From_Source (Id)
4948 and then In_Pure_Unit
4949 and then not In_Subprogram_Task_Protected_Unit
4950 and then not No_Pool_Assigned (Id)
4951 then
4952 Error_Msg_N
4953 ("named access types not allowed in pure unit", N);
4954 end if;
4956 when Concurrent_Kind =>
4957 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4958 Set_Corresponding_Record_Type (Id,
4959 Corresponding_Record_Type (T));
4960 Set_First_Entity (Id, First_Entity (T));
4961 Set_First_Private_Entity (Id, First_Private_Entity (T));
4962 Set_Has_Discriminants (Id, Has_Discriminants (T));
4963 Set_Is_Constrained (Id, Is_Constrained (T));
4964 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4965 Set_Last_Entity (Id, Last_Entity (T));
4967 if Is_Tagged_Type (T) then
4968 Set_No_Tagged_Streams_Pragma
4969 (Id, No_Tagged_Streams_Pragma (T));
4970 end if;
4972 if Has_Discriminants (T) then
4973 Set_Discriminant_Constraint (Id,
4974 Discriminant_Constraint (T));
4975 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4976 end if;
4978 when E_Incomplete_Type =>
4979 if Ada_Version >= Ada_2005 then
4981 -- In Ada 2005 an incomplete type can be explicitly tagged:
4982 -- propagate indication.
4984 Set_Ekind (Id, E_Incomplete_Subtype);
4985 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4986 Set_Private_Dependents (Id, New_Elmt_List);
4988 if Is_Tagged_Type (Id) then
4989 Set_No_Tagged_Streams_Pragma
4990 (Id, No_Tagged_Streams_Pragma (T));
4991 end if;
4993 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4994 -- incomplete type visible through a limited with clause.
4996 if From_Limited_With (T)
4997 and then Present (Non_Limited_View (T))
4998 then
4999 Set_From_Limited_With (Id);
5000 Set_Non_Limited_View (Id, Non_Limited_View (T));
5002 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5003 -- to the private dependents of the original incomplete
5004 -- type for future transformation.
5006 else
5007 Append_Elmt (Id, Private_Dependents (T));
5008 end if;
5010 -- If the subtype name denotes an incomplete type an error
5011 -- was already reported by Process_Subtype.
5013 else
5014 Set_Etype (Id, Any_Type);
5015 end if;
5017 when others =>
5018 raise Program_Error;
5019 end case;
5020 end if;
5022 if Etype (Id) = Any_Type then
5023 goto Leave;
5024 end if;
5026 -- Some common processing on all types
5028 Set_Size_Info (Id, T);
5029 Set_First_Rep_Item (Id, First_Rep_Item (T));
5031 -- If the parent type is a generic actual, so is the subtype. This may
5032 -- happen in a nested instance. Why Comes_From_Source test???
5034 if not Comes_From_Source (N) then
5035 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5036 end if;
5038 T := Etype (Id);
5040 Set_Is_Immediately_Visible (Id, True);
5041 Set_Depends_On_Private (Id, Has_Private_Component (T));
5042 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
5044 if Is_Interface (T) then
5045 Set_Is_Interface (Id);
5046 end if;
5048 if Present (Generic_Parent_Type (N))
5049 and then
5050 (Nkind (Parent (Generic_Parent_Type (N))) /=
5051 N_Formal_Type_Declaration
5052 or else Nkind (Formal_Type_Definition
5053 (Parent (Generic_Parent_Type (N)))) /=
5054 N_Formal_Private_Type_Definition)
5055 then
5056 if Is_Tagged_Type (Id) then
5058 -- If this is a generic actual subtype for a synchronized type,
5059 -- the primitive operations are those of the corresponding record
5060 -- for which there is a separate subtype declaration.
5062 if Is_Concurrent_Type (Id) then
5063 null;
5064 elsif Is_Class_Wide_Type (Id) then
5065 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5066 else
5067 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5068 end if;
5070 elsif Scope (Etype (Id)) /= Standard_Standard then
5071 Derive_Subprograms (Generic_Parent_Type (N), Id);
5072 end if;
5073 end if;
5075 if Is_Private_Type (T) and then Present (Full_View (T)) then
5076 Conditional_Delay (Id, Full_View (T));
5078 -- The subtypes of components or subcomponents of protected types
5079 -- do not need freeze nodes, which would otherwise appear in the
5080 -- wrong scope (before the freeze node for the protected type). The
5081 -- proper subtypes are those of the subcomponents of the corresponding
5082 -- record.
5084 elsif Ekind (Scope (Id)) /= E_Protected_Type
5085 and then Present (Scope (Scope (Id))) -- error defense
5086 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5087 then
5088 Conditional_Delay (Id, T);
5089 end if;
5091 -- Check that Constraint_Error is raised for a scalar subtype indication
5092 -- when the lower or upper bound of a non-null range lies outside the
5093 -- range of the type mark.
5095 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5096 if Is_Scalar_Type (Etype (Id))
5097 and then Scalar_Range (Id) /=
5098 Scalar_Range (Etype (Subtype_Mark
5099 (Subtype_Indication (N))))
5100 then
5101 Apply_Range_Check
5102 (Scalar_Range (Id),
5103 Etype (Subtype_Mark (Subtype_Indication (N))));
5105 -- In the array case, check compatibility for each index
5107 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5108 then
5109 -- This really should be a subprogram that finds the indications
5110 -- to check???
5112 declare
5113 Subt_Index : Node_Id := First_Index (Id);
5114 Target_Index : Node_Id :=
5115 First_Index (Etype
5116 (Subtype_Mark (Subtype_Indication (N))));
5117 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5119 begin
5120 while Present (Subt_Index) loop
5121 if ((Nkind (Subt_Index) = N_Identifier
5122 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5123 or else Nkind (Subt_Index) = N_Subtype_Indication)
5124 and then
5125 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5126 then
5127 declare
5128 Target_Typ : constant Entity_Id :=
5129 Etype (Target_Index);
5130 begin
5131 R_Checks :=
5132 Get_Range_Checks
5133 (Scalar_Range (Etype (Subt_Index)),
5134 Target_Typ,
5135 Etype (Subt_Index),
5136 Defining_Identifier (N));
5138 -- Reset Has_Dynamic_Range_Check on the subtype to
5139 -- prevent elision of the index check due to a dynamic
5140 -- check generated for a preceding index (needed since
5141 -- Insert_Range_Checks tries to avoid generating
5142 -- redundant checks on a given declaration).
5144 Set_Has_Dynamic_Range_Check (N, False);
5146 Insert_Range_Checks
5147 (R_Checks,
5149 Target_Typ,
5150 Sloc (Defining_Identifier (N)));
5152 -- Record whether this index involved a dynamic check
5154 Has_Dyn_Chk :=
5155 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5156 end;
5157 end if;
5159 Next_Index (Subt_Index);
5160 Next_Index (Target_Index);
5161 end loop;
5163 -- Finally, mark whether the subtype involves dynamic checks
5165 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5166 end;
5167 end if;
5168 end if;
5170 -- A type invariant applies to any subtype in its scope, in particular
5171 -- to a generic actual.
5173 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5174 Set_Has_Invariants (Id);
5175 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5176 end if;
5178 -- Make sure that generic actual types are properly frozen. The subtype
5179 -- is marked as a generic actual type when the enclosing instance is
5180 -- analyzed, so here we identify the subtype from the tree structure.
5182 if Expander_Active
5183 and then Is_Generic_Actual_Type (Id)
5184 and then In_Instance
5185 and then not Comes_From_Source (N)
5186 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5187 and then Is_Frozen (T)
5188 then
5189 Freeze_Before (N, Id);
5190 end if;
5192 Set_Optimize_Alignment_Flags (Id);
5193 Check_Eliminated (Id);
5195 <<Leave>>
5196 if Has_Aspects (N) then
5197 Analyze_Aspect_Specifications (N, Id);
5198 end if;
5200 Analyze_Dimension (N);
5201 end Analyze_Subtype_Declaration;
5203 --------------------------------
5204 -- Analyze_Subtype_Indication --
5205 --------------------------------
5207 procedure Analyze_Subtype_Indication (N : Node_Id) is
5208 T : constant Entity_Id := Subtype_Mark (N);
5209 R : constant Node_Id := Range_Expression (Constraint (N));
5211 begin
5212 Analyze (T);
5214 if R /= Error then
5215 Analyze (R);
5216 Set_Etype (N, Etype (R));
5217 Resolve (R, Entity (T));
5218 else
5219 Set_Error_Posted (R);
5220 Set_Error_Posted (T);
5221 end if;
5222 end Analyze_Subtype_Indication;
5224 --------------------------
5225 -- Analyze_Variant_Part --
5226 --------------------------
5228 procedure Analyze_Variant_Part (N : Node_Id) is
5229 Discr_Name : Node_Id;
5230 Discr_Type : Entity_Id;
5232 procedure Process_Variant (A : Node_Id);
5233 -- Analyze declarations for a single variant
5235 package Analyze_Variant_Choices is
5236 new Generic_Analyze_Choices (Process_Variant);
5237 use Analyze_Variant_Choices;
5239 ---------------------
5240 -- Process_Variant --
5241 ---------------------
5243 procedure Process_Variant (A : Node_Id) is
5244 CL : constant Node_Id := Component_List (A);
5245 begin
5246 if not Null_Present (CL) then
5247 Analyze_Declarations (Component_Items (CL));
5249 if Present (Variant_Part (CL)) then
5250 Analyze (Variant_Part (CL));
5251 end if;
5252 end if;
5253 end Process_Variant;
5255 -- Start of processing for Analyze_Variant_Part
5257 begin
5258 Discr_Name := Name (N);
5259 Analyze (Discr_Name);
5261 -- If Discr_Name bad, get out (prevent cascaded errors)
5263 if Etype (Discr_Name) = Any_Type then
5264 return;
5265 end if;
5267 -- Check invalid discriminant in variant part
5269 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5270 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5271 end if;
5273 Discr_Type := Etype (Entity (Discr_Name));
5275 if not Is_Discrete_Type (Discr_Type) then
5276 Error_Msg_N
5277 ("discriminant in a variant part must be of a discrete type",
5278 Name (N));
5279 return;
5280 end if;
5282 -- Now analyze the choices, which also analyzes the declarations that
5283 -- are associated with each choice.
5285 Analyze_Choices (Variants (N), Discr_Type);
5287 -- Note: we used to instantiate and call Check_Choices here to check
5288 -- that the choices covered the discriminant, but it's too early to do
5289 -- that because of statically predicated subtypes, whose analysis may
5290 -- be deferred to their freeze point which may be as late as the freeze
5291 -- point of the containing record. So this call is now to be found in
5292 -- Freeze_Record_Declaration.
5294 end Analyze_Variant_Part;
5296 ----------------------------
5297 -- Array_Type_Declaration --
5298 ----------------------------
5300 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5301 Component_Def : constant Node_Id := Component_Definition (Def);
5302 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5303 Element_Type : Entity_Id;
5304 Implicit_Base : Entity_Id;
5305 Index : Node_Id;
5306 Related_Id : Entity_Id := Empty;
5307 Nb_Index : Nat;
5308 P : constant Node_Id := Parent (Def);
5309 Priv : Entity_Id;
5311 begin
5312 if Nkind (Def) = N_Constrained_Array_Definition then
5313 Index := First (Discrete_Subtype_Definitions (Def));
5314 else
5315 Index := First (Subtype_Marks (Def));
5316 end if;
5318 -- Find proper names for the implicit types which may be public. In case
5319 -- of anonymous arrays we use the name of the first object of that type
5320 -- as prefix.
5322 if No (T) then
5323 Related_Id := Defining_Identifier (P);
5324 else
5325 Related_Id := T;
5326 end if;
5328 Nb_Index := 1;
5329 while Present (Index) loop
5330 Analyze (Index);
5332 -- Test for odd case of trying to index a type by the type itself
5334 if Is_Entity_Name (Index) and then Entity (Index) = T then
5335 Error_Msg_N ("type& cannot be indexed by itself", Index);
5336 Set_Entity (Index, Standard_Boolean);
5337 Set_Etype (Index, Standard_Boolean);
5338 end if;
5340 -- Check SPARK restriction requiring a subtype mark
5342 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5343 Check_SPARK_05_Restriction ("subtype mark required", Index);
5344 end if;
5346 -- Add a subtype declaration for each index of private array type
5347 -- declaration whose etype is also private. For example:
5349 -- package Pkg is
5350 -- type Index is private;
5351 -- private
5352 -- type Table is array (Index) of ...
5353 -- end;
5355 -- This is currently required by the expander for the internally
5356 -- generated equality subprogram of records with variant parts in
5357 -- which the etype of some component is such private type.
5359 if Ekind (Current_Scope) = E_Package
5360 and then In_Private_Part (Current_Scope)
5361 and then Has_Private_Declaration (Etype (Index))
5362 then
5363 declare
5364 Loc : constant Source_Ptr := Sloc (Def);
5365 New_E : Entity_Id;
5366 Decl : Entity_Id;
5368 begin
5369 New_E := Make_Temporary (Loc, 'T');
5370 Set_Is_Internal (New_E);
5372 Decl :=
5373 Make_Subtype_Declaration (Loc,
5374 Defining_Identifier => New_E,
5375 Subtype_Indication =>
5376 New_Occurrence_Of (Etype (Index), Loc));
5378 Insert_Before (Parent (Def), Decl);
5379 Analyze (Decl);
5380 Set_Etype (Index, New_E);
5382 -- If the index is a range the Entity attribute is not
5383 -- available. Example:
5385 -- package Pkg is
5386 -- type T is private;
5387 -- private
5388 -- type T is new Natural;
5389 -- Table : array (T(1) .. T(10)) of Boolean;
5390 -- end Pkg;
5392 if Nkind (Index) /= N_Range then
5393 Set_Entity (Index, New_E);
5394 end if;
5395 end;
5396 end if;
5398 Make_Index (Index, P, Related_Id, Nb_Index);
5400 -- Check error of subtype with predicate for index type
5402 Bad_Predicated_Subtype_Use
5403 ("subtype& has predicate, not allowed as index subtype",
5404 Index, Etype (Index));
5406 -- Move to next index
5408 Next_Index (Index);
5409 Nb_Index := Nb_Index + 1;
5410 end loop;
5412 -- Process subtype indication if one is present
5414 if Present (Component_Typ) then
5415 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5417 Set_Etype (Component_Typ, Element_Type);
5419 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5420 Check_SPARK_05_Restriction
5421 ("subtype mark required", Component_Typ);
5422 end if;
5424 -- Ada 2005 (AI-230): Access Definition case
5426 else pragma Assert (Present (Access_Definition (Component_Def)));
5428 -- Indicate that the anonymous access type is created by the
5429 -- array type declaration.
5431 Element_Type := Access_Definition
5432 (Related_Nod => P,
5433 N => Access_Definition (Component_Def));
5434 Set_Is_Local_Anonymous_Access (Element_Type);
5436 -- Propagate the parent. This field is needed if we have to generate
5437 -- the master_id associated with an anonymous access to task type
5438 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5440 Set_Parent (Element_Type, Parent (T));
5442 -- Ada 2005 (AI-230): In case of components that are anonymous access
5443 -- types the level of accessibility depends on the enclosing type
5444 -- declaration
5446 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5448 -- Ada 2005 (AI-254)
5450 declare
5451 CD : constant Node_Id :=
5452 Access_To_Subprogram_Definition
5453 (Access_Definition (Component_Def));
5454 begin
5455 if Present (CD) and then Protected_Present (CD) then
5456 Element_Type :=
5457 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5458 end if;
5459 end;
5460 end if;
5462 -- Constrained array case
5464 if No (T) then
5465 T := Create_Itype (E_Void, P, Related_Id, 'T');
5466 end if;
5468 if Nkind (Def) = N_Constrained_Array_Definition then
5470 -- Establish Implicit_Base as unconstrained base type
5472 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5474 Set_Etype (Implicit_Base, Implicit_Base);
5475 Set_Scope (Implicit_Base, Current_Scope);
5476 Set_Has_Delayed_Freeze (Implicit_Base);
5477 Set_Default_SSO (Implicit_Base);
5479 -- The constrained array type is a subtype of the unconstrained one
5481 Set_Ekind (T, E_Array_Subtype);
5482 Init_Size_Align (T);
5483 Set_Etype (T, Implicit_Base);
5484 Set_Scope (T, Current_Scope);
5485 Set_Is_Constrained (T);
5486 Set_First_Index (T,
5487 First (Discrete_Subtype_Definitions (Def)));
5488 Set_Has_Delayed_Freeze (T);
5490 -- Complete setup of implicit base type
5492 Set_First_Index (Implicit_Base, First_Index (T));
5493 Set_Component_Type (Implicit_Base, Element_Type);
5494 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5495 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5496 Set_Component_Size (Implicit_Base, Uint_0);
5497 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5498 Set_Has_Controlled_Component (Implicit_Base,
5499 Has_Controlled_Component (Element_Type)
5500 or else Is_Controlled (Element_Type));
5501 Set_Finalize_Storage_Only (Implicit_Base,
5502 Finalize_Storage_Only (Element_Type));
5504 -- Inherit the "ghostness" from the constrained array type
5506 if Is_Ghost_Entity (T) or else Ghost_Mode > None then
5507 Set_Is_Ghost_Entity (Implicit_Base);
5508 end if;
5510 -- Unconstrained array case
5512 else
5513 Set_Ekind (T, E_Array_Type);
5514 Init_Size_Align (T);
5515 Set_Etype (T, T);
5516 Set_Scope (T, Current_Scope);
5517 Set_Component_Size (T, Uint_0);
5518 Set_Is_Constrained (T, False);
5519 Set_First_Index (T, First (Subtype_Marks (Def)));
5520 Set_Has_Delayed_Freeze (T, True);
5521 Set_Has_Task (T, Has_Task (Element_Type));
5522 Set_Has_Protected (T, Has_Protected (Element_Type));
5523 Set_Has_Controlled_Component (T, Has_Controlled_Component
5524 (Element_Type)
5525 or else
5526 Is_Controlled (Element_Type));
5527 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5528 (Element_Type));
5529 Set_Default_SSO (T);
5530 end if;
5532 -- Common attributes for both cases
5534 Set_Component_Type (Base_Type (T), Element_Type);
5535 Set_Packed_Array_Impl_Type (T, Empty);
5537 if Aliased_Present (Component_Definition (Def)) then
5538 Check_SPARK_05_Restriction
5539 ("aliased is not allowed", Component_Definition (Def));
5540 Set_Has_Aliased_Components (Etype (T));
5541 end if;
5543 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5544 -- array type to ensure that objects of this type are initialized.
5546 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5547 Set_Can_Never_Be_Null (T);
5549 if Null_Exclusion_Present (Component_Definition (Def))
5551 -- No need to check itypes because in their case this check was
5552 -- done at their point of creation
5554 and then not Is_Itype (Element_Type)
5555 then
5556 Error_Msg_N
5557 ("`NOT NULL` not allowed (null already excluded)",
5558 Subtype_Indication (Component_Definition (Def)));
5559 end if;
5560 end if;
5562 Priv := Private_Component (Element_Type);
5564 if Present (Priv) then
5566 -- Check for circular definitions
5568 if Priv = Any_Type then
5569 Set_Component_Type (Etype (T), Any_Type);
5571 -- There is a gap in the visibility of operations on the composite
5572 -- type only if the component type is defined in a different scope.
5574 elsif Scope (Priv) = Current_Scope then
5575 null;
5577 elsif Is_Limited_Type (Priv) then
5578 Set_Is_Limited_Composite (Etype (T));
5579 Set_Is_Limited_Composite (T);
5580 else
5581 Set_Is_Private_Composite (Etype (T));
5582 Set_Is_Private_Composite (T);
5583 end if;
5584 end if;
5586 -- A syntax error in the declaration itself may lead to an empty index
5587 -- list, in which case do a minimal patch.
5589 if No (First_Index (T)) then
5590 Error_Msg_N ("missing index definition in array type declaration", T);
5592 declare
5593 Indexes : constant List_Id :=
5594 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5595 begin
5596 Set_Discrete_Subtype_Definitions (Def, Indexes);
5597 Set_First_Index (T, First (Indexes));
5598 return;
5599 end;
5600 end if;
5602 -- Create a concatenation operator for the new type. Internal array
5603 -- types created for packed entities do not need such, they are
5604 -- compatible with the user-defined type.
5606 if Number_Dimensions (T) = 1
5607 and then not Is_Packed_Array_Impl_Type (T)
5608 then
5609 New_Concatenation_Op (T);
5610 end if;
5612 -- In the case of an unconstrained array the parser has already verified
5613 -- that all the indexes are unconstrained but we still need to make sure
5614 -- that the element type is constrained.
5616 if Is_Indefinite_Subtype (Element_Type) then
5617 Error_Msg_N
5618 ("unconstrained element type in array declaration",
5619 Subtype_Indication (Component_Def));
5621 elsif Is_Abstract_Type (Element_Type) then
5622 Error_Msg_N
5623 ("the type of a component cannot be abstract",
5624 Subtype_Indication (Component_Def));
5625 end if;
5627 -- There may be an invariant declared for the component type, but
5628 -- the construction of the component invariant checking procedure
5629 -- takes place during expansion.
5630 end Array_Type_Declaration;
5632 ------------------------------------------------------
5633 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5634 ------------------------------------------------------
5636 function Replace_Anonymous_Access_To_Protected_Subprogram
5637 (N : Node_Id) return Entity_Id
5639 Loc : constant Source_Ptr := Sloc (N);
5641 Curr_Scope : constant Scope_Stack_Entry :=
5642 Scope_Stack.Table (Scope_Stack.Last);
5644 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5646 Acc : Node_Id;
5647 -- Access definition in declaration
5649 Comp : Node_Id;
5650 -- Object definition or formal definition with an access definition
5652 Decl : Node_Id;
5653 -- Declaration of anonymous access to subprogram type
5655 Spec : Node_Id;
5656 -- Original specification in access to subprogram
5658 P : Node_Id;
5660 begin
5661 Set_Is_Internal (Anon);
5663 case Nkind (N) is
5664 when N_Component_Declaration |
5665 N_Unconstrained_Array_Definition |
5666 N_Constrained_Array_Definition =>
5667 Comp := Component_Definition (N);
5668 Acc := Access_Definition (Comp);
5670 when N_Discriminant_Specification =>
5671 Comp := Discriminant_Type (N);
5672 Acc := Comp;
5674 when N_Parameter_Specification =>
5675 Comp := Parameter_Type (N);
5676 Acc := Comp;
5678 when N_Access_Function_Definition =>
5679 Comp := Result_Definition (N);
5680 Acc := Comp;
5682 when N_Object_Declaration =>
5683 Comp := Object_Definition (N);
5684 Acc := Comp;
5686 when N_Function_Specification =>
5687 Comp := Result_Definition (N);
5688 Acc := Comp;
5690 when others =>
5691 raise Program_Error;
5692 end case;
5694 Spec := Access_To_Subprogram_Definition (Acc);
5696 Decl :=
5697 Make_Full_Type_Declaration (Loc,
5698 Defining_Identifier => Anon,
5699 Type_Definition => Copy_Separate_Tree (Spec));
5701 Mark_Rewrite_Insertion (Decl);
5703 -- In ASIS mode, analyze the profile on the original node, because
5704 -- the separate copy does not provide enough links to recover the
5705 -- original tree. Analysis is limited to type annotations, within
5706 -- a temporary scope that serves as an anonymous subprogram to collect
5707 -- otherwise useless temporaries and itypes.
5709 if ASIS_Mode then
5710 declare
5711 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5713 begin
5714 if Nkind (Spec) = N_Access_Function_Definition then
5715 Set_Ekind (Typ, E_Function);
5716 else
5717 Set_Ekind (Typ, E_Procedure);
5718 end if;
5720 Set_Parent (Typ, N);
5721 Set_Scope (Typ, Current_Scope);
5722 Push_Scope (Typ);
5724 Process_Formals (Parameter_Specifications (Spec), Spec);
5726 if Nkind (Spec) = N_Access_Function_Definition then
5727 declare
5728 Def : constant Node_Id := Result_Definition (Spec);
5730 begin
5731 -- The result might itself be an anonymous access type, so
5732 -- have to recurse.
5734 if Nkind (Def) = N_Access_Definition then
5735 if Present (Access_To_Subprogram_Definition (Def)) then
5736 Set_Etype
5737 (Def,
5738 Replace_Anonymous_Access_To_Protected_Subprogram
5739 (Spec));
5740 else
5741 Find_Type (Subtype_Mark (Def));
5742 end if;
5744 else
5745 Find_Type (Def);
5746 end if;
5747 end;
5748 end if;
5750 End_Scope;
5751 end;
5752 end if;
5754 -- Insert the new declaration in the nearest enclosing scope. If the
5755 -- node is a body and N is its return type, the declaration belongs in
5756 -- the enclosing scope.
5758 P := Parent (N);
5760 if Nkind (P) = N_Subprogram_Body
5761 and then Nkind (N) = N_Function_Specification
5762 then
5763 P := Parent (P);
5764 end if;
5766 while Present (P) and then not Has_Declarations (P) loop
5767 P := Parent (P);
5768 end loop;
5770 pragma Assert (Present (P));
5772 if Nkind (P) = N_Package_Specification then
5773 Prepend (Decl, Visible_Declarations (P));
5774 else
5775 Prepend (Decl, Declarations (P));
5776 end if;
5778 -- Replace the anonymous type with an occurrence of the new declaration.
5779 -- In all cases the rewritten node does not have the null-exclusion
5780 -- attribute because (if present) it was already inherited by the
5781 -- anonymous entity (Anon). Thus, in case of components we do not
5782 -- inherit this attribute.
5784 if Nkind (N) = N_Parameter_Specification then
5785 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5786 Set_Etype (Defining_Identifier (N), Anon);
5787 Set_Null_Exclusion_Present (N, False);
5789 elsif Nkind (N) = N_Object_Declaration then
5790 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5791 Set_Etype (Defining_Identifier (N), Anon);
5793 elsif Nkind (N) = N_Access_Function_Definition then
5794 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5796 elsif Nkind (N) = N_Function_Specification then
5797 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5798 Set_Etype (Defining_Unit_Name (N), Anon);
5800 else
5801 Rewrite (Comp,
5802 Make_Component_Definition (Loc,
5803 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5804 end if;
5806 Mark_Rewrite_Insertion (Comp);
5808 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5809 Analyze (Decl);
5811 else
5812 -- Temporarily remove the current scope (record or subprogram) from
5813 -- the stack to add the new declarations to the enclosing scope.
5815 Scope_Stack.Decrement_Last;
5816 Analyze (Decl);
5817 Set_Is_Itype (Anon);
5818 Scope_Stack.Append (Curr_Scope);
5819 end if;
5821 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5822 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5823 return Anon;
5824 end Replace_Anonymous_Access_To_Protected_Subprogram;
5826 -------------------------------
5827 -- Build_Derived_Access_Type --
5828 -------------------------------
5830 procedure Build_Derived_Access_Type
5831 (N : Node_Id;
5832 Parent_Type : Entity_Id;
5833 Derived_Type : Entity_Id)
5835 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5837 Desig_Type : Entity_Id;
5838 Discr : Entity_Id;
5839 Discr_Con_Elist : Elist_Id;
5840 Discr_Con_El : Elmt_Id;
5841 Subt : Entity_Id;
5843 begin
5844 -- Set the designated type so it is available in case this is an access
5845 -- to a self-referential type, e.g. a standard list type with a next
5846 -- pointer. Will be reset after subtype is built.
5848 Set_Directly_Designated_Type
5849 (Derived_Type, Designated_Type (Parent_Type));
5851 Subt := Process_Subtype (S, N);
5853 if Nkind (S) /= N_Subtype_Indication
5854 and then Subt /= Base_Type (Subt)
5855 then
5856 Set_Ekind (Derived_Type, E_Access_Subtype);
5857 end if;
5859 if Ekind (Derived_Type) = E_Access_Subtype then
5860 declare
5861 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5862 Ibase : constant Entity_Id :=
5863 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5864 Svg_Chars : constant Name_Id := Chars (Ibase);
5865 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5867 begin
5868 Copy_Node (Pbase, Ibase);
5870 Set_Chars (Ibase, Svg_Chars);
5871 Set_Next_Entity (Ibase, Svg_Next_E);
5872 Set_Sloc (Ibase, Sloc (Derived_Type));
5873 Set_Scope (Ibase, Scope (Derived_Type));
5874 Set_Freeze_Node (Ibase, Empty);
5875 Set_Is_Frozen (Ibase, False);
5876 Set_Comes_From_Source (Ibase, False);
5877 Set_Is_First_Subtype (Ibase, False);
5879 Set_Etype (Ibase, Pbase);
5880 Set_Etype (Derived_Type, Ibase);
5881 end;
5882 end if;
5884 Set_Directly_Designated_Type
5885 (Derived_Type, Designated_Type (Subt));
5887 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5888 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5889 Set_Size_Info (Derived_Type, Parent_Type);
5890 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5891 Set_Depends_On_Private (Derived_Type,
5892 Has_Private_Component (Derived_Type));
5893 Conditional_Delay (Derived_Type, Subt);
5895 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5896 -- that it is not redundant.
5898 if Null_Exclusion_Present (Type_Definition (N)) then
5899 Set_Can_Never_Be_Null (Derived_Type);
5901 -- What is with the "AND THEN FALSE" here ???
5903 if Can_Never_Be_Null (Parent_Type)
5904 and then False
5905 then
5906 Error_Msg_NE
5907 ("`NOT NULL` not allowed (& already excludes null)",
5908 N, Parent_Type);
5909 end if;
5911 elsif Can_Never_Be_Null (Parent_Type) then
5912 Set_Can_Never_Be_Null (Derived_Type);
5913 end if;
5915 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5916 -- the root type for this information.
5918 -- Apply range checks to discriminants for derived record case
5919 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5921 Desig_Type := Designated_Type (Derived_Type);
5922 if Is_Composite_Type (Desig_Type)
5923 and then (not Is_Array_Type (Desig_Type))
5924 and then Has_Discriminants (Desig_Type)
5925 and then Base_Type (Desig_Type) /= Desig_Type
5926 then
5927 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5928 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5930 Discr := First_Discriminant (Base_Type (Desig_Type));
5931 while Present (Discr_Con_El) loop
5932 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5933 Next_Elmt (Discr_Con_El);
5934 Next_Discriminant (Discr);
5935 end loop;
5936 end if;
5937 end Build_Derived_Access_Type;
5939 ------------------------------
5940 -- Build_Derived_Array_Type --
5941 ------------------------------
5943 procedure Build_Derived_Array_Type
5944 (N : Node_Id;
5945 Parent_Type : Entity_Id;
5946 Derived_Type : Entity_Id)
5948 Loc : constant Source_Ptr := Sloc (N);
5949 Tdef : constant Node_Id := Type_Definition (N);
5950 Indic : constant Node_Id := Subtype_Indication (Tdef);
5951 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5952 Implicit_Base : Entity_Id;
5953 New_Indic : Node_Id;
5955 procedure Make_Implicit_Base;
5956 -- If the parent subtype is constrained, the derived type is a subtype
5957 -- of an implicit base type derived from the parent base.
5959 ------------------------
5960 -- Make_Implicit_Base --
5961 ------------------------
5963 procedure Make_Implicit_Base is
5964 begin
5965 Implicit_Base :=
5966 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5968 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5969 Set_Etype (Implicit_Base, Parent_Base);
5971 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5972 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5974 Set_Has_Delayed_Freeze (Implicit_Base, True);
5976 -- Inherit the "ghostness" from the parent base type
5978 if Is_Ghost_Entity (Parent_Base) or else Ghost_Mode > None then
5979 Set_Is_Ghost_Entity (Implicit_Base);
5980 end if;
5981 end Make_Implicit_Base;
5983 -- Start of processing for Build_Derived_Array_Type
5985 begin
5986 if not Is_Constrained (Parent_Type) then
5987 if Nkind (Indic) /= N_Subtype_Indication then
5988 Set_Ekind (Derived_Type, E_Array_Type);
5990 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5991 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5993 Set_Has_Delayed_Freeze (Derived_Type, True);
5995 else
5996 Make_Implicit_Base;
5997 Set_Etype (Derived_Type, Implicit_Base);
5999 New_Indic :=
6000 Make_Subtype_Declaration (Loc,
6001 Defining_Identifier => Derived_Type,
6002 Subtype_Indication =>
6003 Make_Subtype_Indication (Loc,
6004 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6005 Constraint => Constraint (Indic)));
6007 Rewrite (N, New_Indic);
6008 Analyze (N);
6009 end if;
6011 else
6012 if Nkind (Indic) /= N_Subtype_Indication then
6013 Make_Implicit_Base;
6015 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6016 Set_Etype (Derived_Type, Implicit_Base);
6017 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6019 else
6020 Error_Msg_N ("illegal constraint on constrained type", Indic);
6021 end if;
6022 end if;
6024 -- If parent type is not a derived type itself, and is declared in
6025 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6026 -- the new type's concatenation operator since Derive_Subprograms
6027 -- will not inherit the parent's operator. If the parent type is
6028 -- unconstrained, the operator is of the unconstrained base type.
6030 if Number_Dimensions (Parent_Type) = 1
6031 and then not Is_Limited_Type (Parent_Type)
6032 and then not Is_Derived_Type (Parent_Type)
6033 and then not Is_Package_Or_Generic_Package
6034 (Scope (Base_Type (Parent_Type)))
6035 then
6036 if not Is_Constrained (Parent_Type)
6037 and then Is_Constrained (Derived_Type)
6038 then
6039 New_Concatenation_Op (Implicit_Base);
6040 else
6041 New_Concatenation_Op (Derived_Type);
6042 end if;
6043 end if;
6044 end Build_Derived_Array_Type;
6046 -----------------------------------
6047 -- Build_Derived_Concurrent_Type --
6048 -----------------------------------
6050 procedure Build_Derived_Concurrent_Type
6051 (N : Node_Id;
6052 Parent_Type : Entity_Id;
6053 Derived_Type : Entity_Id)
6055 Loc : constant Source_Ptr := Sloc (N);
6057 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6058 Corr_Decl : Node_Id;
6059 Corr_Decl_Needed : Boolean;
6060 -- If the derived type has fewer discriminants than its parent, the
6061 -- corresponding record is also a derived type, in order to account for
6062 -- the bound discriminants. We create a full type declaration for it in
6063 -- this case.
6065 Constraint_Present : constant Boolean :=
6066 Nkind (Subtype_Indication (Type_Definition (N))) =
6067 N_Subtype_Indication;
6069 D_Constraint : Node_Id;
6070 New_Constraint : Elist_Id;
6071 Old_Disc : Entity_Id;
6072 New_Disc : Entity_Id;
6073 New_N : Node_Id;
6075 begin
6076 Set_Stored_Constraint (Derived_Type, No_Elist);
6077 Corr_Decl_Needed := False;
6078 Old_Disc := Empty;
6080 if Present (Discriminant_Specifications (N))
6081 and then Constraint_Present
6082 then
6083 Old_Disc := First_Discriminant (Parent_Type);
6084 New_Disc := First (Discriminant_Specifications (N));
6085 while Present (New_Disc) and then Present (Old_Disc) loop
6086 Next_Discriminant (Old_Disc);
6087 Next (New_Disc);
6088 end loop;
6089 end if;
6091 if Present (Old_Disc) and then Expander_Active then
6093 -- The new type has fewer discriminants, so we need to create a new
6094 -- corresponding record, which is derived from the corresponding
6095 -- record of the parent, and has a stored constraint that captures
6096 -- the values of the discriminant constraints. The corresponding
6097 -- record is needed only if expander is active and code generation is
6098 -- enabled.
6100 -- The type declaration for the derived corresponding record has the
6101 -- same discriminant part and constraints as the current declaration.
6102 -- Copy the unanalyzed tree to build declaration.
6104 Corr_Decl_Needed := True;
6105 New_N := Copy_Separate_Tree (N);
6107 Corr_Decl :=
6108 Make_Full_Type_Declaration (Loc,
6109 Defining_Identifier => Corr_Record,
6110 Discriminant_Specifications =>
6111 Discriminant_Specifications (New_N),
6112 Type_Definition =>
6113 Make_Derived_Type_Definition (Loc,
6114 Subtype_Indication =>
6115 Make_Subtype_Indication (Loc,
6116 Subtype_Mark =>
6117 New_Occurrence_Of
6118 (Corresponding_Record_Type (Parent_Type), Loc),
6119 Constraint =>
6120 Constraint
6121 (Subtype_Indication (Type_Definition (New_N))))));
6122 end if;
6124 -- Copy Storage_Size and Relative_Deadline variables if task case
6126 if Is_Task_Type (Parent_Type) then
6127 Set_Storage_Size_Variable (Derived_Type,
6128 Storage_Size_Variable (Parent_Type));
6129 Set_Relative_Deadline_Variable (Derived_Type,
6130 Relative_Deadline_Variable (Parent_Type));
6131 end if;
6133 if Present (Discriminant_Specifications (N)) then
6134 Push_Scope (Derived_Type);
6135 Check_Or_Process_Discriminants (N, Derived_Type);
6137 if Constraint_Present then
6138 New_Constraint :=
6139 Expand_To_Stored_Constraint
6140 (Parent_Type,
6141 Build_Discriminant_Constraints
6142 (Parent_Type,
6143 Subtype_Indication (Type_Definition (N)), True));
6144 end if;
6146 End_Scope;
6148 elsif Constraint_Present then
6150 -- Build constrained subtype, copying the constraint, and derive
6151 -- from it to create a derived constrained type.
6153 declare
6154 Loc : constant Source_Ptr := Sloc (N);
6155 Anon : constant Entity_Id :=
6156 Make_Defining_Identifier (Loc,
6157 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6158 Decl : Node_Id;
6160 begin
6161 Decl :=
6162 Make_Subtype_Declaration (Loc,
6163 Defining_Identifier => Anon,
6164 Subtype_Indication =>
6165 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6166 Insert_Before (N, Decl);
6167 Analyze (Decl);
6169 Rewrite (Subtype_Indication (Type_Definition (N)),
6170 New_Occurrence_Of (Anon, Loc));
6171 Set_Analyzed (Derived_Type, False);
6172 Analyze (N);
6173 return;
6174 end;
6175 end if;
6177 -- By default, operations and private data are inherited from parent.
6178 -- However, in the presence of bound discriminants, a new corresponding
6179 -- record will be created, see below.
6181 Set_Has_Discriminants
6182 (Derived_Type, Has_Discriminants (Parent_Type));
6183 Set_Corresponding_Record_Type
6184 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6186 -- Is_Constrained is set according the parent subtype, but is set to
6187 -- False if the derived type is declared with new discriminants.
6189 Set_Is_Constrained
6190 (Derived_Type,
6191 (Is_Constrained (Parent_Type) or else Constraint_Present)
6192 and then not Present (Discriminant_Specifications (N)));
6194 if Constraint_Present then
6195 if not Has_Discriminants (Parent_Type) then
6196 Error_Msg_N ("untagged parent must have discriminants", N);
6198 elsif Present (Discriminant_Specifications (N)) then
6200 -- Verify that new discriminants are used to constrain old ones
6202 D_Constraint :=
6203 First
6204 (Constraints
6205 (Constraint (Subtype_Indication (Type_Definition (N)))));
6207 Old_Disc := First_Discriminant (Parent_Type);
6209 while Present (D_Constraint) loop
6210 if Nkind (D_Constraint) /= N_Discriminant_Association then
6212 -- Positional constraint. If it is a reference to a new
6213 -- discriminant, it constrains the corresponding old one.
6215 if Nkind (D_Constraint) = N_Identifier then
6216 New_Disc := First_Discriminant (Derived_Type);
6217 while Present (New_Disc) loop
6218 exit when Chars (New_Disc) = Chars (D_Constraint);
6219 Next_Discriminant (New_Disc);
6220 end loop;
6222 if Present (New_Disc) then
6223 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6224 end if;
6225 end if;
6227 Next_Discriminant (Old_Disc);
6229 -- if this is a named constraint, search by name for the old
6230 -- discriminants constrained by the new one.
6232 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6234 -- Find new discriminant with that name
6236 New_Disc := First_Discriminant (Derived_Type);
6237 while Present (New_Disc) loop
6238 exit when
6239 Chars (New_Disc) = Chars (Expression (D_Constraint));
6240 Next_Discriminant (New_Disc);
6241 end loop;
6243 if Present (New_Disc) then
6245 -- Verify that new discriminant renames some discriminant
6246 -- of the parent type, and associate the new discriminant
6247 -- with one or more old ones that it renames.
6249 declare
6250 Selector : Node_Id;
6252 begin
6253 Selector := First (Selector_Names (D_Constraint));
6254 while Present (Selector) loop
6255 Old_Disc := First_Discriminant (Parent_Type);
6256 while Present (Old_Disc) loop
6257 exit when Chars (Old_Disc) = Chars (Selector);
6258 Next_Discriminant (Old_Disc);
6259 end loop;
6261 if Present (Old_Disc) then
6262 Set_Corresponding_Discriminant
6263 (New_Disc, Old_Disc);
6264 end if;
6266 Next (Selector);
6267 end loop;
6268 end;
6269 end if;
6270 end if;
6272 Next (D_Constraint);
6273 end loop;
6275 New_Disc := First_Discriminant (Derived_Type);
6276 while Present (New_Disc) loop
6277 if No (Corresponding_Discriminant (New_Disc)) then
6278 Error_Msg_NE
6279 ("new discriminant& must constrain old one", N, New_Disc);
6281 elsif not
6282 Subtypes_Statically_Compatible
6283 (Etype (New_Disc),
6284 Etype (Corresponding_Discriminant (New_Disc)))
6285 then
6286 Error_Msg_NE
6287 ("& not statically compatible with parent discriminant",
6288 N, New_Disc);
6289 end if;
6291 Next_Discriminant (New_Disc);
6292 end loop;
6293 end if;
6295 elsif Present (Discriminant_Specifications (N)) then
6296 Error_Msg_N
6297 ("missing discriminant constraint in untagged derivation", N);
6298 end if;
6300 -- The entity chain of the derived type includes the new discriminants
6301 -- but shares operations with the parent.
6303 if Present (Discriminant_Specifications (N)) then
6304 Old_Disc := First_Discriminant (Parent_Type);
6305 while Present (Old_Disc) loop
6306 if No (Next_Entity (Old_Disc))
6307 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6308 then
6309 Set_Next_Entity
6310 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6311 exit;
6312 end if;
6314 Next_Discriminant (Old_Disc);
6315 end loop;
6317 else
6318 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6319 if Has_Discriminants (Parent_Type) then
6320 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6321 Set_Discriminant_Constraint (
6322 Derived_Type, Discriminant_Constraint (Parent_Type));
6323 end if;
6324 end if;
6326 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6328 Set_Has_Completion (Derived_Type);
6330 if Corr_Decl_Needed then
6331 Set_Stored_Constraint (Derived_Type, New_Constraint);
6332 Insert_After (N, Corr_Decl);
6333 Analyze (Corr_Decl);
6334 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6335 end if;
6336 end Build_Derived_Concurrent_Type;
6338 ------------------------------------
6339 -- Build_Derived_Enumeration_Type --
6340 ------------------------------------
6342 procedure Build_Derived_Enumeration_Type
6343 (N : Node_Id;
6344 Parent_Type : Entity_Id;
6345 Derived_Type : Entity_Id)
6347 Loc : constant Source_Ptr := Sloc (N);
6348 Def : constant Node_Id := Type_Definition (N);
6349 Indic : constant Node_Id := Subtype_Indication (Def);
6350 Implicit_Base : Entity_Id;
6351 Literal : Entity_Id;
6352 New_Lit : Entity_Id;
6353 Literals_List : List_Id;
6354 Type_Decl : Node_Id;
6355 Hi, Lo : Node_Id;
6356 Rang_Expr : Node_Id;
6358 begin
6359 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6360 -- not have explicit literals lists we need to process types derived
6361 -- from them specially. This is handled by Derived_Standard_Character.
6362 -- If the parent type is a generic type, there are no literals either,
6363 -- and we construct the same skeletal representation as for the generic
6364 -- parent type.
6366 if Is_Standard_Character_Type (Parent_Type) then
6367 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6369 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6370 declare
6371 Lo : Node_Id;
6372 Hi : Node_Id;
6374 begin
6375 if Nkind (Indic) /= N_Subtype_Indication then
6376 Lo :=
6377 Make_Attribute_Reference (Loc,
6378 Attribute_Name => Name_First,
6379 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6380 Set_Etype (Lo, Derived_Type);
6382 Hi :=
6383 Make_Attribute_Reference (Loc,
6384 Attribute_Name => Name_Last,
6385 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6386 Set_Etype (Hi, Derived_Type);
6388 Set_Scalar_Range (Derived_Type,
6389 Make_Range (Loc,
6390 Low_Bound => Lo,
6391 High_Bound => Hi));
6392 else
6394 -- Analyze subtype indication and verify compatibility
6395 -- with parent type.
6397 if Base_Type (Process_Subtype (Indic, N)) /=
6398 Base_Type (Parent_Type)
6399 then
6400 Error_Msg_N
6401 ("illegal constraint for formal discrete type", N);
6402 end if;
6403 end if;
6404 end;
6406 else
6407 -- If a constraint is present, analyze the bounds to catch
6408 -- premature usage of the derived literals.
6410 if Nkind (Indic) = N_Subtype_Indication
6411 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6412 then
6413 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6414 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6415 end if;
6417 -- Introduce an implicit base type for the derived type even if there
6418 -- is no constraint attached to it, since this seems closer to the
6419 -- Ada semantics. Build a full type declaration tree for the derived
6420 -- type using the implicit base type as the defining identifier. The
6421 -- build a subtype declaration tree which applies the constraint (if
6422 -- any) have it replace the derived type declaration.
6424 Literal := First_Literal (Parent_Type);
6425 Literals_List := New_List;
6426 while Present (Literal)
6427 and then Ekind (Literal) = E_Enumeration_Literal
6428 loop
6429 -- Literals of the derived type have the same representation as
6430 -- those of the parent type, but this representation can be
6431 -- overridden by an explicit representation clause. Indicate
6432 -- that there is no explicit representation given yet. These
6433 -- derived literals are implicit operations of the new type,
6434 -- and can be overridden by explicit ones.
6436 if Nkind (Literal) = N_Defining_Character_Literal then
6437 New_Lit :=
6438 Make_Defining_Character_Literal (Loc, Chars (Literal));
6439 else
6440 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6441 end if;
6443 Set_Ekind (New_Lit, E_Enumeration_Literal);
6444 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6445 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6446 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6447 Set_Alias (New_Lit, Literal);
6448 Set_Is_Known_Valid (New_Lit, True);
6450 Append (New_Lit, Literals_List);
6451 Next_Literal (Literal);
6452 end loop;
6454 Implicit_Base :=
6455 Make_Defining_Identifier (Sloc (Derived_Type),
6456 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6458 -- Indicate the proper nature of the derived type. This must be done
6459 -- before analysis of the literals, to recognize cases when a literal
6460 -- may be hidden by a previous explicit function definition (cf.
6461 -- c83031a).
6463 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6464 Set_Etype (Derived_Type, Implicit_Base);
6466 Type_Decl :=
6467 Make_Full_Type_Declaration (Loc,
6468 Defining_Identifier => Implicit_Base,
6469 Discriminant_Specifications => No_List,
6470 Type_Definition =>
6471 Make_Enumeration_Type_Definition (Loc, Literals_List));
6473 Mark_Rewrite_Insertion (Type_Decl);
6474 Insert_Before (N, Type_Decl);
6475 Analyze (Type_Decl);
6477 -- After the implicit base is analyzed its Etype needs to be changed
6478 -- to reflect the fact that it is derived from the parent type which
6479 -- was ignored during analysis. We also set the size at this point.
6481 Set_Etype (Implicit_Base, Parent_Type);
6483 Set_Size_Info (Implicit_Base, Parent_Type);
6484 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6485 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6487 -- Copy other flags from parent type
6489 Set_Has_Non_Standard_Rep
6490 (Implicit_Base, Has_Non_Standard_Rep
6491 (Parent_Type));
6492 Set_Has_Pragma_Ordered
6493 (Implicit_Base, Has_Pragma_Ordered
6494 (Parent_Type));
6495 Set_Has_Delayed_Freeze (Implicit_Base);
6497 -- Process the subtype indication including a validation check on the
6498 -- constraint, if any. If a constraint is given, its bounds must be
6499 -- implicitly converted to the new type.
6501 if Nkind (Indic) = N_Subtype_Indication then
6502 declare
6503 R : constant Node_Id :=
6504 Range_Expression (Constraint (Indic));
6506 begin
6507 if Nkind (R) = N_Range then
6508 Hi := Build_Scalar_Bound
6509 (High_Bound (R), Parent_Type, Implicit_Base);
6510 Lo := Build_Scalar_Bound
6511 (Low_Bound (R), Parent_Type, Implicit_Base);
6513 else
6514 -- Constraint is a Range attribute. Replace with explicit
6515 -- mention of the bounds of the prefix, which must be a
6516 -- subtype.
6518 Analyze (Prefix (R));
6519 Hi :=
6520 Convert_To (Implicit_Base,
6521 Make_Attribute_Reference (Loc,
6522 Attribute_Name => Name_Last,
6523 Prefix =>
6524 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6526 Lo :=
6527 Convert_To (Implicit_Base,
6528 Make_Attribute_Reference (Loc,
6529 Attribute_Name => Name_First,
6530 Prefix =>
6531 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6532 end if;
6533 end;
6535 else
6536 Hi :=
6537 Build_Scalar_Bound
6538 (Type_High_Bound (Parent_Type),
6539 Parent_Type, Implicit_Base);
6540 Lo :=
6541 Build_Scalar_Bound
6542 (Type_Low_Bound (Parent_Type),
6543 Parent_Type, Implicit_Base);
6544 end if;
6546 Rang_Expr :=
6547 Make_Range (Loc,
6548 Low_Bound => Lo,
6549 High_Bound => Hi);
6551 -- If we constructed a default range for the case where no range
6552 -- was given, then the expressions in the range must not freeze
6553 -- since they do not correspond to expressions in the source.
6555 if Nkind (Indic) /= N_Subtype_Indication then
6556 Set_Must_Not_Freeze (Lo);
6557 Set_Must_Not_Freeze (Hi);
6558 Set_Must_Not_Freeze (Rang_Expr);
6559 end if;
6561 Rewrite (N,
6562 Make_Subtype_Declaration (Loc,
6563 Defining_Identifier => Derived_Type,
6564 Subtype_Indication =>
6565 Make_Subtype_Indication (Loc,
6566 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6567 Constraint =>
6568 Make_Range_Constraint (Loc,
6569 Range_Expression => Rang_Expr))));
6571 Analyze (N);
6573 -- Propagate the aspects from the original type declaration to the
6574 -- declaration of the implicit base.
6576 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6578 -- Apply a range check. Since this range expression doesn't have an
6579 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6580 -- this right???
6582 if Nkind (Indic) = N_Subtype_Indication then
6583 Apply_Range_Check
6584 (Range_Expression (Constraint (Indic)), Parent_Type,
6585 Source_Typ => Entity (Subtype_Mark (Indic)));
6586 end if;
6587 end if;
6588 end Build_Derived_Enumeration_Type;
6590 --------------------------------
6591 -- Build_Derived_Numeric_Type --
6592 --------------------------------
6594 procedure Build_Derived_Numeric_Type
6595 (N : Node_Id;
6596 Parent_Type : Entity_Id;
6597 Derived_Type : Entity_Id)
6599 Loc : constant Source_Ptr := Sloc (N);
6600 Tdef : constant Node_Id := Type_Definition (N);
6601 Indic : constant Node_Id := Subtype_Indication (Tdef);
6602 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6603 No_Constraint : constant Boolean := Nkind (Indic) /=
6604 N_Subtype_Indication;
6605 Implicit_Base : Entity_Id;
6607 Lo : Node_Id;
6608 Hi : Node_Id;
6610 begin
6611 -- Process the subtype indication including a validation check on
6612 -- the constraint if any.
6614 Discard_Node (Process_Subtype (Indic, N));
6616 -- Introduce an implicit base type for the derived type even if there
6617 -- is no constraint attached to it, since this seems closer to the Ada
6618 -- semantics.
6620 Implicit_Base :=
6621 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6623 Set_Etype (Implicit_Base, Parent_Base);
6624 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6625 Set_Size_Info (Implicit_Base, Parent_Base);
6626 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6627 Set_Parent (Implicit_Base, Parent (Derived_Type));
6628 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6630 -- Set RM Size for discrete type or decimal fixed-point type
6631 -- Ordinary fixed-point is excluded, why???
6633 if Is_Discrete_Type (Parent_Base)
6634 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6635 then
6636 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6637 end if;
6639 Set_Has_Delayed_Freeze (Implicit_Base);
6641 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6642 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6644 Set_Scalar_Range (Implicit_Base,
6645 Make_Range (Loc,
6646 Low_Bound => Lo,
6647 High_Bound => Hi));
6649 if Has_Infinities (Parent_Base) then
6650 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6651 end if;
6653 -- The Derived_Type, which is the entity of the declaration, is a
6654 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6655 -- absence of an explicit constraint.
6657 Set_Etype (Derived_Type, Implicit_Base);
6659 -- If we did not have a constraint, then the Ekind is set from the
6660 -- parent type (otherwise Process_Subtype has set the bounds)
6662 if No_Constraint then
6663 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6664 end if;
6666 -- If we did not have a range constraint, then set the range from the
6667 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6669 if No_Constraint or else not Has_Range_Constraint (Indic) then
6670 Set_Scalar_Range (Derived_Type,
6671 Make_Range (Loc,
6672 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6673 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6674 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6676 if Has_Infinities (Parent_Type) then
6677 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6678 end if;
6680 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6681 end if;
6683 Set_Is_Descendent_Of_Address (Derived_Type,
6684 Is_Descendent_Of_Address (Parent_Type));
6685 Set_Is_Descendent_Of_Address (Implicit_Base,
6686 Is_Descendent_Of_Address (Parent_Type));
6688 -- Set remaining type-specific fields, depending on numeric type
6690 if Is_Modular_Integer_Type (Parent_Type) then
6691 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6693 Set_Non_Binary_Modulus
6694 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6696 Set_Is_Known_Valid
6697 (Implicit_Base, Is_Known_Valid (Parent_Base));
6699 elsif Is_Floating_Point_Type (Parent_Type) then
6701 -- Digits of base type is always copied from the digits value of
6702 -- the parent base type, but the digits of the derived type will
6703 -- already have been set if there was a constraint present.
6705 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6706 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6708 if No_Constraint then
6709 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6710 end if;
6712 elsif Is_Fixed_Point_Type (Parent_Type) then
6714 -- Small of base type and derived type are always copied from the
6715 -- parent base type, since smalls never change. The delta of the
6716 -- base type is also copied from the parent base type. However the
6717 -- delta of the derived type will have been set already if a
6718 -- constraint was present.
6720 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6721 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6722 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6724 if No_Constraint then
6725 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6726 end if;
6728 -- The scale and machine radix in the decimal case are always
6729 -- copied from the parent base type.
6731 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6732 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6733 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6735 Set_Machine_Radix_10
6736 (Derived_Type, Machine_Radix_10 (Parent_Base));
6737 Set_Machine_Radix_10
6738 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6740 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6742 if No_Constraint then
6743 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6745 else
6746 -- the analysis of the subtype_indication sets the
6747 -- digits value of the derived type.
6749 null;
6750 end if;
6751 end if;
6752 end if;
6754 if Is_Integer_Type (Parent_Type) then
6755 Set_Has_Shift_Operator
6756 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6757 end if;
6759 -- The type of the bounds is that of the parent type, and they
6760 -- must be converted to the derived type.
6762 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6764 -- The implicit_base should be frozen when the derived type is frozen,
6765 -- but note that it is used in the conversions of the bounds. For fixed
6766 -- types we delay the determination of the bounds until the proper
6767 -- freezing point. For other numeric types this is rejected by GCC, for
6768 -- reasons that are currently unclear (???), so we choose to freeze the
6769 -- implicit base now. In the case of integers and floating point types
6770 -- this is harmless because subsequent representation clauses cannot
6771 -- affect anything, but it is still baffling that we cannot use the
6772 -- same mechanism for all derived numeric types.
6774 -- There is a further complication: actually some representation
6775 -- clauses can affect the implicit base type. For example, attribute
6776 -- definition clauses for stream-oriented attributes need to set the
6777 -- corresponding TSS entries on the base type, and this normally
6778 -- cannot be done after the base type is frozen, so the circuitry in
6779 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6780 -- and not use Set_TSS in this case.
6782 -- There are also consequences for the case of delayed representation
6783 -- aspects for some cases. For example, a Size aspect is delayed and
6784 -- should not be evaluated to the freeze point. This early freezing
6785 -- means that the size attribute evaluation happens too early???
6787 if Is_Fixed_Point_Type (Parent_Type) then
6788 Conditional_Delay (Implicit_Base, Parent_Type);
6789 else
6790 Freeze_Before (N, Implicit_Base);
6791 end if;
6792 end Build_Derived_Numeric_Type;
6794 --------------------------------
6795 -- Build_Derived_Private_Type --
6796 --------------------------------
6798 procedure Build_Derived_Private_Type
6799 (N : Node_Id;
6800 Parent_Type : Entity_Id;
6801 Derived_Type : Entity_Id;
6802 Is_Completion : Boolean;
6803 Derive_Subps : Boolean := True)
6805 Loc : constant Source_Ptr := Sloc (N);
6806 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6807 Par_Scope : constant Entity_Id := Scope (Par_Base);
6808 Full_N : constant Node_Id := New_Copy_Tree (N);
6809 Full_Der : Entity_Id := New_Copy (Derived_Type);
6810 Full_P : Entity_Id;
6812 procedure Build_Full_Derivation;
6813 -- Build full derivation, i.e. derive from the full view
6815 procedure Copy_And_Build;
6816 -- Copy derived type declaration, replace parent with its full view,
6817 -- and build derivation
6819 ---------------------------
6820 -- Build_Full_Derivation --
6821 ---------------------------
6823 procedure Build_Full_Derivation is
6824 begin
6825 -- If parent scope is not open, install the declarations
6827 if not In_Open_Scopes (Par_Scope) then
6828 Install_Private_Declarations (Par_Scope);
6829 Install_Visible_Declarations (Par_Scope);
6830 Copy_And_Build;
6831 Uninstall_Declarations (Par_Scope);
6833 -- If parent scope is open and in another unit, and parent has a
6834 -- completion, then the derivation is taking place in the visible
6835 -- part of a child unit. In that case retrieve the full view of
6836 -- the parent momentarily.
6838 elsif not In_Same_Source_Unit (N, Parent_Type) then
6839 Full_P := Full_View (Parent_Type);
6840 Exchange_Declarations (Parent_Type);
6841 Copy_And_Build;
6842 Exchange_Declarations (Full_P);
6844 -- Otherwise it is a local derivation
6846 else
6847 Copy_And_Build;
6848 end if;
6849 end Build_Full_Derivation;
6851 --------------------
6852 -- Copy_And_Build --
6853 --------------------
6855 procedure Copy_And_Build is
6856 Full_Parent : Entity_Id := Parent_Type;
6858 begin
6859 -- If the parent is itself derived from another private type,
6860 -- installing the private declarations has not affected its
6861 -- privacy status, so use its own full view explicitly.
6863 if Is_Private_Type (Full_Parent)
6864 and then Present (Full_View (Full_Parent))
6865 then
6866 Full_Parent := Full_View (Full_Parent);
6867 end if;
6869 -- And its underlying full view if necessary
6871 if Is_Private_Type (Full_Parent)
6872 and then Present (Underlying_Full_View (Full_Parent))
6873 then
6874 Full_Parent := Underlying_Full_View (Full_Parent);
6875 end if;
6877 -- For record, access and most enumeration types, derivation from
6878 -- the full view requires a fully-fledged declaration. In the other
6879 -- cases, just use an itype.
6881 if Ekind (Full_Parent) in Record_Kind
6882 or else Ekind (Full_Parent) in Access_Kind
6883 or else
6884 (Ekind (Full_Parent) in Enumeration_Kind
6885 and then not Is_Standard_Character_Type (Full_Parent)
6886 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6887 then
6888 -- Copy and adjust declaration to provide a completion for what
6889 -- is originally a private declaration. Indicate that full view
6890 -- is internally generated.
6892 Set_Comes_From_Source (Full_N, False);
6893 Set_Comes_From_Source (Full_Der, False);
6894 Set_Parent (Full_Der, Full_N);
6895 Set_Defining_Identifier (Full_N, Full_Der);
6897 -- If there are no constraints, adjust the subtype mark
6899 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6900 N_Subtype_Indication
6901 then
6902 Set_Subtype_Indication
6903 (Type_Definition (Full_N),
6904 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6905 end if;
6907 Insert_After (N, Full_N);
6909 -- Build full view of derived type from full view of parent which
6910 -- is now installed. Subprograms have been derived on the partial
6911 -- view, the completion does not derive them anew.
6913 if Ekind (Full_Parent) in Record_Kind then
6915 -- If parent type is tagged, the completion inherits the proper
6916 -- primitive operations.
6918 if Is_Tagged_Type (Parent_Type) then
6919 Build_Derived_Record_Type
6920 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6921 else
6922 Build_Derived_Record_Type
6923 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6924 end if;
6926 else
6927 Build_Derived_Type
6928 (Full_N, Full_Parent, Full_Der,
6929 Is_Completion => False, Derive_Subps => False);
6930 end if;
6932 -- The full declaration has been introduced into the tree and
6933 -- processed in the step above. It should not be analyzed again
6934 -- (when encountered later in the current list of declarations)
6935 -- to prevent spurious name conflicts. The full entity remains
6936 -- invisible.
6938 Set_Analyzed (Full_N);
6940 else
6941 Full_Der :=
6942 Make_Defining_Identifier (Sloc (Derived_Type),
6943 Chars => Chars (Derived_Type));
6944 Set_Is_Itype (Full_Der);
6945 Set_Associated_Node_For_Itype (Full_Der, N);
6946 Set_Parent (Full_Der, N);
6947 Build_Derived_Type
6948 (N, Full_Parent, Full_Der,
6949 Is_Completion => False, Derive_Subps => False);
6950 end if;
6952 Set_Has_Private_Declaration (Full_Der);
6953 Set_Has_Private_Declaration (Derived_Type);
6955 Set_Scope (Full_Der, Scope (Derived_Type));
6956 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
6957 Set_Has_Size_Clause (Full_Der, False);
6958 Set_Has_Alignment_Clause (Full_Der, False);
6959 Set_Has_Delayed_Freeze (Full_Der);
6960 Set_Is_Frozen (Full_Der, False);
6961 Set_Freeze_Node (Full_Der, Empty);
6962 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
6963 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6965 -- The convention on the base type may be set in the private part
6966 -- and not propagated to the subtype until later, so we obtain the
6967 -- convention from the base type of the parent.
6969 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
6970 end Copy_And_Build;
6972 -- Start of processing for Build_Derived_Private_Type
6974 begin
6975 if Is_Tagged_Type (Parent_Type) then
6976 Full_P := Full_View (Parent_Type);
6978 -- A type extension of a type with unknown discriminants is an
6979 -- indefinite type that the back-end cannot handle directly.
6980 -- We treat it as a private type, and build a completion that is
6981 -- derived from the full view of the parent, and hopefully has
6982 -- known discriminants.
6984 -- If the full view of the parent type has an underlying record view,
6985 -- use it to generate the underlying record view of this derived type
6986 -- (required for chains of derivations with unknown discriminants).
6988 -- Minor optimization: we avoid the generation of useless underlying
6989 -- record view entities if the private type declaration has unknown
6990 -- discriminants but its corresponding full view has no
6991 -- discriminants.
6993 if Has_Unknown_Discriminants (Parent_Type)
6994 and then Present (Full_P)
6995 and then (Has_Discriminants (Full_P)
6996 or else Present (Underlying_Record_View (Full_P)))
6997 and then not In_Open_Scopes (Par_Scope)
6998 and then Expander_Active
6999 then
7000 declare
7001 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7002 New_Ext : constant Node_Id :=
7003 Copy_Separate_Tree
7004 (Record_Extension_Part (Type_Definition (N)));
7005 Decl : Node_Id;
7007 begin
7008 Build_Derived_Record_Type
7009 (N, Parent_Type, Derived_Type, Derive_Subps);
7011 -- Build anonymous completion, as a derivation from the full
7012 -- view of the parent. This is not a completion in the usual
7013 -- sense, because the current type is not private.
7015 Decl :=
7016 Make_Full_Type_Declaration (Loc,
7017 Defining_Identifier => Full_Der,
7018 Type_Definition =>
7019 Make_Derived_Type_Definition (Loc,
7020 Subtype_Indication =>
7021 New_Copy_Tree
7022 (Subtype_Indication (Type_Definition (N))),
7023 Record_Extension_Part => New_Ext));
7025 -- If the parent type has an underlying record view, use it
7026 -- here to build the new underlying record view.
7028 if Present (Underlying_Record_View (Full_P)) then
7029 pragma Assert
7030 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7031 = N_Identifier);
7032 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7033 Underlying_Record_View (Full_P));
7034 end if;
7036 Install_Private_Declarations (Par_Scope);
7037 Install_Visible_Declarations (Par_Scope);
7038 Insert_Before (N, Decl);
7040 -- Mark entity as an underlying record view before analysis,
7041 -- to avoid generating the list of its primitive operations
7042 -- (which is not really required for this entity) and thus
7043 -- prevent spurious errors associated with missing overriding
7044 -- of abstract primitives (overridden only for Derived_Type).
7046 Set_Ekind (Full_Der, E_Record_Type);
7047 Set_Is_Underlying_Record_View (Full_Der);
7048 Set_Default_SSO (Full_Der);
7050 Analyze (Decl);
7052 pragma Assert (Has_Discriminants (Full_Der)
7053 and then not Has_Unknown_Discriminants (Full_Der));
7055 Uninstall_Declarations (Par_Scope);
7057 -- Freeze the underlying record view, to prevent generation of
7058 -- useless dispatching information, which is simply shared with
7059 -- the real derived type.
7061 Set_Is_Frozen (Full_Der);
7063 -- If the derived type has access discriminants, create
7064 -- references to their anonymous types now, to prevent
7065 -- back-end problems when their first use is in generated
7066 -- bodies of primitives.
7068 declare
7069 E : Entity_Id;
7071 begin
7072 E := First_Entity (Full_Der);
7074 while Present (E) loop
7075 if Ekind (E) = E_Discriminant
7076 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7077 then
7078 Build_Itype_Reference (Etype (E), Decl);
7079 end if;
7081 Next_Entity (E);
7082 end loop;
7083 end;
7085 -- Set up links between real entity and underlying record view
7087 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7088 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7089 end;
7091 -- If discriminants are known, build derived record
7093 else
7094 Build_Derived_Record_Type
7095 (N, Parent_Type, Derived_Type, Derive_Subps);
7096 end if;
7098 return;
7100 elsif Has_Discriminants (Parent_Type) then
7102 -- Build partial view of derived type from partial view of parent.
7103 -- This must be done before building the full derivation because the
7104 -- second derivation will modify the discriminants of the first and
7105 -- the discriminants are chained with the rest of the components in
7106 -- the full derivation.
7108 Build_Derived_Record_Type
7109 (N, Parent_Type, Derived_Type, Derive_Subps);
7111 -- Build the full derivation if this is not the anonymous derived
7112 -- base type created by Build_Derived_Record_Type in the constrained
7113 -- case (see point 5. of its head comment) since we build it for the
7114 -- derived subtype. And skip it for protected types altogether, as
7115 -- gigi does not use these types directly.
7117 if Present (Full_View (Parent_Type))
7118 and then not Is_Itype (Derived_Type)
7119 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7120 then
7121 declare
7122 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7123 Discr : Entity_Id;
7124 Last_Discr : Entity_Id;
7126 begin
7127 -- If this is not a completion, construct the implicit full
7128 -- view by deriving from the full view of the parent type.
7129 -- But if this is a completion, the derived private type
7130 -- being built is a full view and the full derivation can
7131 -- only be its underlying full view.
7133 Build_Full_Derivation;
7135 if not Is_Completion then
7136 Set_Full_View (Derived_Type, Full_Der);
7137 else
7138 Set_Underlying_Full_View (Derived_Type, Full_Der);
7139 end if;
7141 if not Is_Base_Type (Derived_Type) then
7142 Set_Full_View (Der_Base, Base_Type (Full_Der));
7143 end if;
7145 -- Copy the discriminant list from full view to the partial
7146 -- view (base type and its subtype). Gigi requires that the
7147 -- partial and full views have the same discriminants.
7149 -- Note that since the partial view points to discriminants
7150 -- in the full view, their scope will be that of the full
7151 -- view. This might cause some front end problems and need
7152 -- adjustment???
7154 Discr := First_Discriminant (Base_Type (Full_Der));
7155 Set_First_Entity (Der_Base, Discr);
7157 loop
7158 Last_Discr := Discr;
7159 Next_Discriminant (Discr);
7160 exit when No (Discr);
7161 end loop;
7163 Set_Last_Entity (Der_Base, Last_Discr);
7164 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7165 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7167 Set_Stored_Constraint
7168 (Full_Der, Stored_Constraint (Derived_Type));
7169 end;
7170 end if;
7172 elsif Present (Full_View (Parent_Type))
7173 and then Has_Discriminants (Full_View (Parent_Type))
7174 then
7175 if Has_Unknown_Discriminants (Parent_Type)
7176 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7177 N_Subtype_Indication
7178 then
7179 Error_Msg_N
7180 ("cannot constrain type with unknown discriminants",
7181 Subtype_Indication (Type_Definition (N)));
7182 return;
7183 end if;
7185 -- If this is not a completion, construct the implicit full view by
7186 -- deriving from the full view of the parent type. But if this is a
7187 -- completion, the derived private type being built is a full view
7188 -- and the full derivation can only be its underlying full view.
7190 Build_Full_Derivation;
7192 if not Is_Completion then
7193 Set_Full_View (Derived_Type, Full_Der);
7194 else
7195 Set_Underlying_Full_View (Derived_Type, Full_Der);
7196 end if;
7198 -- In any case, the primitive operations are inherited from the
7199 -- parent type, not from the internal full view.
7201 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7203 if Derive_Subps then
7204 Derive_Subprograms (Parent_Type, Derived_Type);
7205 end if;
7207 Set_Stored_Constraint (Derived_Type, No_Elist);
7208 Set_Is_Constrained
7209 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7211 else
7212 -- Untagged type, No discriminants on either view
7214 if Nkind (Subtype_Indication (Type_Definition (N))) =
7215 N_Subtype_Indication
7216 then
7217 Error_Msg_N
7218 ("illegal constraint on type without discriminants", N);
7219 end if;
7221 if Present (Discriminant_Specifications (N))
7222 and then Present (Full_View (Parent_Type))
7223 and then not Is_Tagged_Type (Full_View (Parent_Type))
7224 then
7225 Error_Msg_N ("cannot add discriminants to untagged type", N);
7226 end if;
7228 Set_Stored_Constraint (Derived_Type, No_Elist);
7229 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7230 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7231 Set_Has_Controlled_Component
7232 (Derived_Type, Has_Controlled_Component
7233 (Parent_Type));
7235 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7237 if not Is_Controlled (Parent_Type) then
7238 Set_Finalize_Storage_Only
7239 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7240 end if;
7242 -- If this is not a completion, construct the implicit full view by
7243 -- deriving from the full view of the parent type.
7245 -- ??? If the parent is untagged private and its completion is
7246 -- tagged, this mechanism will not work because we cannot derive from
7247 -- the tagged full view unless we have an extension.
7249 if Present (Full_View (Parent_Type))
7250 and then not Is_Tagged_Type (Full_View (Parent_Type))
7251 and then not Is_Completion
7252 then
7253 Build_Full_Derivation;
7254 Set_Full_View (Derived_Type, Full_Der);
7255 end if;
7256 end if;
7258 Set_Has_Unknown_Discriminants (Derived_Type,
7259 Has_Unknown_Discriminants (Parent_Type));
7261 if Is_Private_Type (Derived_Type) then
7262 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7263 end if;
7265 -- If the parent base type is in scope, add the derived type to its
7266 -- list of private dependents, because its full view may become
7267 -- visible subsequently (in a nested private part, a body, or in a
7268 -- further child unit).
7270 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7271 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7273 -- Check for unusual case where a type completed by a private
7274 -- derivation occurs within a package nested in a child unit, and
7275 -- the parent is declared in an ancestor.
7277 if Is_Child_Unit (Scope (Current_Scope))
7278 and then Is_Completion
7279 and then In_Private_Part (Current_Scope)
7280 and then Scope (Parent_Type) /= Current_Scope
7282 -- Note that if the parent has a completion in the private part,
7283 -- (which is itself a derivation from some other private type)
7284 -- it is that completion that is visible, there is no full view
7285 -- available, and no special processing is needed.
7287 and then Present (Full_View (Parent_Type))
7288 then
7289 -- In this case, the full view of the parent type will become
7290 -- visible in the body of the enclosing child, and only then will
7291 -- the current type be possibly non-private. Build an underlying
7292 -- full view that will be installed when the enclosing child body
7293 -- is compiled.
7295 if Present (Underlying_Full_View (Derived_Type)) then
7296 Full_Der := Underlying_Full_View (Derived_Type);
7297 else
7298 Build_Full_Derivation;
7299 Set_Underlying_Full_View (Derived_Type, Full_Der);
7300 end if;
7302 -- The full view will be used to swap entities on entry/exit to
7303 -- the body, and must appear in the entity list for the package.
7305 Append_Entity (Full_Der, Scope (Derived_Type));
7306 end if;
7307 end if;
7308 end Build_Derived_Private_Type;
7310 -------------------------------
7311 -- Build_Derived_Record_Type --
7312 -------------------------------
7314 -- 1. INTRODUCTION
7316 -- Ideally we would like to use the same model of type derivation for
7317 -- tagged and untagged record types. Unfortunately this is not quite
7318 -- possible because the semantics of representation clauses is different
7319 -- for tagged and untagged records under inheritance. Consider the
7320 -- following:
7322 -- type R (...) is [tagged] record ... end record;
7323 -- type T (...) is new R (...) [with ...];
7325 -- The representation clauses for T can specify a completely different
7326 -- record layout from R's. Hence the same component can be placed in two
7327 -- very different positions in objects of type T and R. If R and T are
7328 -- tagged types, representation clauses for T can only specify the layout
7329 -- of non inherited components, thus components that are common in R and T
7330 -- have the same position in objects of type R and T.
7332 -- This has two implications. The first is that the entire tree for R's
7333 -- declaration needs to be copied for T in the untagged case, so that T
7334 -- can be viewed as a record type of its own with its own representation
7335 -- clauses. The second implication is the way we handle discriminants.
7336 -- Specifically, in the untagged case we need a way to communicate to Gigi
7337 -- what are the real discriminants in the record, while for the semantics
7338 -- we need to consider those introduced by the user to rename the
7339 -- discriminants in the parent type. This is handled by introducing the
7340 -- notion of stored discriminants. See below for more.
7342 -- Fortunately the way regular components are inherited can be handled in
7343 -- the same way in tagged and untagged types.
7345 -- To complicate things a bit more the private view of a private extension
7346 -- cannot be handled in the same way as the full view (for one thing the
7347 -- semantic rules are somewhat different). We will explain what differs
7348 -- below.
7350 -- 2. DISCRIMINANTS UNDER INHERITANCE
7352 -- The semantic rules governing the discriminants of derived types are
7353 -- quite subtle.
7355 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7356 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7358 -- If parent type has discriminants, then the discriminants that are
7359 -- declared in the derived type are [3.4 (11)]:
7361 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7362 -- there is one;
7364 -- o Otherwise, each discriminant of the parent type (implicitly declared
7365 -- in the same order with the same specifications). In this case, the
7366 -- discriminants are said to be "inherited", or if unknown in the parent
7367 -- are also unknown in the derived type.
7369 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7371 -- o The parent subtype must be constrained;
7373 -- o If the parent type is not a tagged type, then each discriminant of
7374 -- the derived type must be used in the constraint defining a parent
7375 -- subtype. [Implementation note: This ensures that the new discriminant
7376 -- can share storage with an existing discriminant.]
7378 -- For the derived type each discriminant of the parent type is either
7379 -- inherited, constrained to equal some new discriminant of the derived
7380 -- type, or constrained to the value of an expression.
7382 -- When inherited or constrained to equal some new discriminant, the
7383 -- parent discriminant and the discriminant of the derived type are said
7384 -- to "correspond".
7386 -- If a discriminant of the parent type is constrained to a specific value
7387 -- in the derived type definition, then the discriminant is said to be
7388 -- "specified" by that derived type definition.
7390 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7392 -- We have spoken about stored discriminants in point 1 (introduction)
7393 -- above. There are two sort of stored discriminants: implicit and
7394 -- explicit. As long as the derived type inherits the same discriminants as
7395 -- the root record type, stored discriminants are the same as regular
7396 -- discriminants, and are said to be implicit. However, if any discriminant
7397 -- in the root type was renamed in the derived type, then the derived
7398 -- type will contain explicit stored discriminants. Explicit stored
7399 -- discriminants are discriminants in addition to the semantically visible
7400 -- discriminants defined for the derived type. Stored discriminants are
7401 -- used by Gigi to figure out what are the physical discriminants in
7402 -- objects of the derived type (see precise definition in einfo.ads).
7403 -- As an example, consider the following:
7405 -- type R (D1, D2, D3 : Int) is record ... end record;
7406 -- type T1 is new R;
7407 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7408 -- type T3 is new T2;
7409 -- type T4 (Y : Int) is new T3 (Y, 99);
7411 -- The following table summarizes the discriminants and stored
7412 -- discriminants in R and T1 through T4.
7414 -- Type Discrim Stored Discrim Comment
7415 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7416 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7417 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7418 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7419 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7421 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7422 -- find the corresponding discriminant in the parent type, while
7423 -- Original_Record_Component (abbreviated ORC below), the actual physical
7424 -- component that is renamed. Finally the field Is_Completely_Hidden
7425 -- (abbreviated ICH below) is set for all explicit stored discriminants
7426 -- (see einfo.ads for more info). For the above example this gives:
7428 -- Discrim CD ORC ICH
7429 -- ^^^^^^^ ^^ ^^^ ^^^
7430 -- D1 in R empty itself no
7431 -- D2 in R empty itself no
7432 -- D3 in R empty itself no
7434 -- D1 in T1 D1 in R itself no
7435 -- D2 in T1 D2 in R itself no
7436 -- D3 in T1 D3 in R itself no
7438 -- X1 in T2 D3 in T1 D3 in T2 no
7439 -- X2 in T2 D1 in T1 D1 in T2 no
7440 -- D1 in T2 empty itself yes
7441 -- D2 in T2 empty itself yes
7442 -- D3 in T2 empty itself yes
7444 -- X1 in T3 X1 in T2 D3 in T3 no
7445 -- X2 in T3 X2 in T2 D1 in T3 no
7446 -- D1 in T3 empty itself yes
7447 -- D2 in T3 empty itself yes
7448 -- D3 in T3 empty itself yes
7450 -- Y in T4 X1 in T3 D3 in T3 no
7451 -- D1 in T3 empty itself yes
7452 -- D2 in T3 empty itself yes
7453 -- D3 in T3 empty itself yes
7455 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7457 -- Type derivation for tagged types is fairly straightforward. If no
7458 -- discriminants are specified by the derived type, these are inherited
7459 -- from the parent. No explicit stored discriminants are ever necessary.
7460 -- The only manipulation that is done to the tree is that of adding a
7461 -- _parent field with parent type and constrained to the same constraint
7462 -- specified for the parent in the derived type definition. For instance:
7464 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7465 -- type T1 is new R with null record;
7466 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7468 -- are changed into:
7470 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7471 -- _parent : R (D1, D2, D3);
7472 -- end record;
7474 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7475 -- _parent : T1 (X2, 88, X1);
7476 -- end record;
7478 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7479 -- ORC and ICH fields are:
7481 -- Discrim CD ORC ICH
7482 -- ^^^^^^^ ^^ ^^^ ^^^
7483 -- D1 in R empty itself no
7484 -- D2 in R empty itself no
7485 -- D3 in R empty itself no
7487 -- D1 in T1 D1 in R D1 in R no
7488 -- D2 in T1 D2 in R D2 in R no
7489 -- D3 in T1 D3 in R D3 in R no
7491 -- X1 in T2 D3 in T1 D3 in R no
7492 -- X2 in T2 D1 in T1 D1 in R no
7494 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7496 -- Regardless of whether we dealing with a tagged or untagged type
7497 -- we will transform all derived type declarations of the form
7499 -- type T is new R (...) [with ...];
7500 -- or
7501 -- subtype S is R (...);
7502 -- type T is new S [with ...];
7503 -- into
7504 -- type BT is new R [with ...];
7505 -- subtype T is BT (...);
7507 -- That is, the base derived type is constrained only if it has no
7508 -- discriminants. The reason for doing this is that GNAT's semantic model
7509 -- assumes that a base type with discriminants is unconstrained.
7511 -- Note that, strictly speaking, the above transformation is not always
7512 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7514 -- procedure B34011A is
7515 -- type REC (D : integer := 0) is record
7516 -- I : Integer;
7517 -- end record;
7519 -- package P is
7520 -- type T6 is new Rec;
7521 -- function F return T6;
7522 -- end P;
7524 -- use P;
7525 -- package Q6 is
7526 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7527 -- end Q6;
7529 -- The definition of Q6.U is illegal. However transforming Q6.U into
7531 -- type BaseU is new T6;
7532 -- subtype U is BaseU (Q6.F.I)
7534 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7535 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7536 -- the transformation described above.
7538 -- There is another instance where the above transformation is incorrect.
7539 -- Consider:
7541 -- package Pack is
7542 -- type Base (D : Integer) is tagged null record;
7543 -- procedure P (X : Base);
7545 -- type Der is new Base (2) with null record;
7546 -- procedure P (X : Der);
7547 -- end Pack;
7549 -- Then the above transformation turns this into
7551 -- type Der_Base is new Base with null record;
7552 -- -- procedure P (X : Base) is implicitly inherited here
7553 -- -- as procedure P (X : Der_Base).
7555 -- subtype Der is Der_Base (2);
7556 -- procedure P (X : Der);
7557 -- -- The overriding of P (X : Der_Base) is illegal since we
7558 -- -- have a parameter conformance problem.
7560 -- To get around this problem, after having semantically processed Der_Base
7561 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7562 -- Discriminant_Constraint from Der so that when parameter conformance is
7563 -- checked when P is overridden, no semantic errors are flagged.
7565 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7567 -- Regardless of whether we are dealing with a tagged or untagged type
7568 -- we will transform all derived type declarations of the form
7570 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7571 -- type T is new R [with ...];
7572 -- into
7573 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7575 -- The reason for such transformation is that it allows us to implement a
7576 -- very clean form of component inheritance as explained below.
7578 -- Note that this transformation is not achieved by direct tree rewriting
7579 -- and manipulation, but rather by redoing the semantic actions that the
7580 -- above transformation will entail. This is done directly in routine
7581 -- Inherit_Components.
7583 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7585 -- In both tagged and untagged derived types, regular non discriminant
7586 -- components are inherited in the derived type from the parent type. In
7587 -- the absence of discriminants component, inheritance is straightforward
7588 -- as components can simply be copied from the parent.
7590 -- If the parent has discriminants, inheriting components constrained with
7591 -- these discriminants requires caution. Consider the following example:
7593 -- type R (D1, D2 : Positive) is [tagged] record
7594 -- S : String (D1 .. D2);
7595 -- end record;
7597 -- type T1 is new R [with null record];
7598 -- type T2 (X : positive) is new R (1, X) [with null record];
7600 -- As explained in 6. above, T1 is rewritten as
7601 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7602 -- which makes the treatment for T1 and T2 identical.
7604 -- What we want when inheriting S, is that references to D1 and D2 in R are
7605 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7606 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7607 -- with either discriminant references in the derived type or expressions.
7608 -- This replacement is achieved as follows: before inheriting R's
7609 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7610 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7611 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7612 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7613 -- by String (1 .. X).
7615 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7617 -- We explain here the rules governing private type extensions relevant to
7618 -- type derivation. These rules are explained on the following example:
7620 -- type D [(...)] is new A [(...)] with private; <-- partial view
7621 -- type D [(...)] is new P [(...)] with null record; <-- full view
7623 -- Type A is called the ancestor subtype of the private extension.
7624 -- Type P is the parent type of the full view of the private extension. It
7625 -- must be A or a type derived from A.
7627 -- The rules concerning the discriminants of private type extensions are
7628 -- [7.3(10-13)]:
7630 -- o If a private extension inherits known discriminants from the ancestor
7631 -- subtype, then the full view must also inherit its discriminants from
7632 -- the ancestor subtype and the parent subtype of the full view must be
7633 -- constrained if and only if the ancestor subtype is constrained.
7635 -- o If a partial view has unknown discriminants, then the full view may
7636 -- define a definite or an indefinite subtype, with or without
7637 -- discriminants.
7639 -- o If a partial view has neither known nor unknown discriminants, then
7640 -- the full view must define a definite subtype.
7642 -- o If the ancestor subtype of a private extension has constrained
7643 -- discriminants, then the parent subtype of the full view must impose a
7644 -- statically matching constraint on those discriminants.
7646 -- This means that only the following forms of private extensions are
7647 -- allowed:
7649 -- type D is new A with private; <-- partial view
7650 -- type D is new P with null record; <-- full view
7652 -- If A has no discriminants than P has no discriminants, otherwise P must
7653 -- inherit A's discriminants.
7655 -- type D is new A (...) with private; <-- partial view
7656 -- type D is new P (:::) with null record; <-- full view
7658 -- P must inherit A's discriminants and (...) and (:::) must statically
7659 -- match.
7661 -- subtype A is R (...);
7662 -- type D is new A with private; <-- partial view
7663 -- type D is new P with null record; <-- full view
7665 -- P must have inherited R's discriminants and must be derived from A or
7666 -- any of its subtypes.
7668 -- type D (..) is new A with private; <-- partial view
7669 -- type D (..) is new P [(:::)] with null record; <-- full view
7671 -- No specific constraints on P's discriminants or constraint (:::).
7672 -- Note that A can be unconstrained, but the parent subtype P must either
7673 -- be constrained or (:::) must be present.
7675 -- type D (..) is new A [(...)] with private; <-- partial view
7676 -- type D (..) is new P [(:::)] with null record; <-- full view
7678 -- P's constraints on A's discriminants must statically match those
7679 -- imposed by (...).
7681 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7683 -- The full view of a private extension is handled exactly as described
7684 -- above. The model chose for the private view of a private extension is
7685 -- the same for what concerns discriminants (i.e. they receive the same
7686 -- treatment as in the tagged case). However, the private view of the
7687 -- private extension always inherits the components of the parent base,
7688 -- without replacing any discriminant reference. Strictly speaking this is
7689 -- incorrect. However, Gigi never uses this view to generate code so this
7690 -- is a purely semantic issue. In theory, a set of transformations similar
7691 -- to those given in 5. and 6. above could be applied to private views of
7692 -- private extensions to have the same model of component inheritance as
7693 -- for non private extensions. However, this is not done because it would
7694 -- further complicate private type processing. Semantically speaking, this
7695 -- leaves us in an uncomfortable situation. As an example consider:
7697 -- package Pack is
7698 -- type R (D : integer) is tagged record
7699 -- S : String (1 .. D);
7700 -- end record;
7701 -- procedure P (X : R);
7702 -- type T is new R (1) with private;
7703 -- private
7704 -- type T is new R (1) with null record;
7705 -- end;
7707 -- This is transformed into:
7709 -- package Pack is
7710 -- type R (D : integer) is tagged record
7711 -- S : String (1 .. D);
7712 -- end record;
7713 -- procedure P (X : R);
7714 -- type T is new R (1) with private;
7715 -- private
7716 -- type BaseT is new R with null record;
7717 -- subtype T is BaseT (1);
7718 -- end;
7720 -- (strictly speaking the above is incorrect Ada)
7722 -- From the semantic standpoint the private view of private extension T
7723 -- should be flagged as constrained since one can clearly have
7725 -- Obj : T;
7727 -- in a unit withing Pack. However, when deriving subprograms for the
7728 -- private view of private extension T, T must be seen as unconstrained
7729 -- since T has discriminants (this is a constraint of the current
7730 -- subprogram derivation model). Thus, when processing the private view of
7731 -- a private extension such as T, we first mark T as unconstrained, we
7732 -- process it, we perform program derivation and just before returning from
7733 -- Build_Derived_Record_Type we mark T as constrained.
7735 -- ??? Are there are other uncomfortable cases that we will have to
7736 -- deal with.
7738 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7740 -- Types that are derived from a visible record type and have a private
7741 -- extension present other peculiarities. They behave mostly like private
7742 -- types, but if they have primitive operations defined, these will not
7743 -- have the proper signatures for further inheritance, because other
7744 -- primitive operations will use the implicit base that we define for
7745 -- private derivations below. This affect subprogram inheritance (see
7746 -- Derive_Subprograms for details). We also derive the implicit base from
7747 -- the base type of the full view, so that the implicit base is a record
7748 -- type and not another private type, This avoids infinite loops.
7750 procedure Build_Derived_Record_Type
7751 (N : Node_Id;
7752 Parent_Type : Entity_Id;
7753 Derived_Type : Entity_Id;
7754 Derive_Subps : Boolean := True)
7756 Discriminant_Specs : constant Boolean :=
7757 Present (Discriminant_Specifications (N));
7758 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7759 Loc : constant Source_Ptr := Sloc (N);
7760 Private_Extension : constant Boolean :=
7761 Nkind (N) = N_Private_Extension_Declaration;
7762 Assoc_List : Elist_Id;
7763 Constraint_Present : Boolean;
7764 Constrs : Elist_Id;
7765 Discrim : Entity_Id;
7766 Indic : Node_Id;
7767 Inherit_Discrims : Boolean := False;
7768 Last_Discrim : Entity_Id;
7769 New_Base : Entity_Id;
7770 New_Decl : Node_Id;
7771 New_Discrs : Elist_Id;
7772 New_Indic : Node_Id;
7773 Parent_Base : Entity_Id;
7774 Save_Etype : Entity_Id;
7775 Save_Discr_Constr : Elist_Id;
7776 Save_Next_Entity : Entity_Id;
7777 Type_Def : Node_Id;
7779 Discs : Elist_Id := New_Elmt_List;
7780 -- An empty Discs list means that there were no constraints in the
7781 -- subtype indication or that there was an error processing it.
7783 begin
7784 if Ekind (Parent_Type) = E_Record_Type_With_Private
7785 and then Present (Full_View (Parent_Type))
7786 and then Has_Discriminants (Parent_Type)
7787 then
7788 Parent_Base := Base_Type (Full_View (Parent_Type));
7789 else
7790 Parent_Base := Base_Type (Parent_Type);
7791 end if;
7793 -- AI05-0115 : if this is a derivation from a private type in some
7794 -- other scope that may lead to invisible components for the derived
7795 -- type, mark it accordingly.
7797 if Is_Private_Type (Parent_Type) then
7798 if Scope (Parent_Type) = Scope (Derived_Type) then
7799 null;
7801 elsif In_Open_Scopes (Scope (Parent_Type))
7802 and then In_Private_Part (Scope (Parent_Type))
7803 then
7804 null;
7806 else
7807 Set_Has_Private_Ancestor (Derived_Type);
7808 end if;
7810 else
7811 Set_Has_Private_Ancestor
7812 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7813 end if;
7815 -- Before we start the previously documented transformations, here is
7816 -- little fix for size and alignment of tagged types. Normally when we
7817 -- derive type D from type P, we copy the size and alignment of P as the
7818 -- default for D, and in the absence of explicit representation clauses
7819 -- for D, the size and alignment are indeed the same as the parent.
7821 -- But this is wrong for tagged types, since fields may be added, and
7822 -- the default size may need to be larger, and the default alignment may
7823 -- need to be larger.
7825 -- We therefore reset the size and alignment fields in the tagged case.
7826 -- Note that the size and alignment will in any case be at least as
7827 -- large as the parent type (since the derived type has a copy of the
7828 -- parent type in the _parent field)
7830 -- The type is also marked as being tagged here, which is needed when
7831 -- processing components with a self-referential anonymous access type
7832 -- in the call to Check_Anonymous_Access_Components below. Note that
7833 -- this flag is also set later on for completeness.
7835 if Is_Tagged then
7836 Set_Is_Tagged_Type (Derived_Type);
7837 Init_Size_Align (Derived_Type);
7838 end if;
7840 -- STEP 0a: figure out what kind of derived type declaration we have
7842 if Private_Extension then
7843 Type_Def := N;
7844 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7845 Set_Default_SSO (Derived_Type);
7847 else
7848 Type_Def := Type_Definition (N);
7850 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7851 -- Parent_Base can be a private type or private extension. However,
7852 -- for tagged types with an extension the newly added fields are
7853 -- visible and hence the Derived_Type is always an E_Record_Type.
7854 -- (except that the parent may have its own private fields).
7855 -- For untagged types we preserve the Ekind of the Parent_Base.
7857 if Present (Record_Extension_Part (Type_Def)) then
7858 Set_Ekind (Derived_Type, E_Record_Type);
7859 Set_Default_SSO (Derived_Type);
7861 -- Create internal access types for components with anonymous
7862 -- access types.
7864 if Ada_Version >= Ada_2005 then
7865 Check_Anonymous_Access_Components
7866 (N, Derived_Type, Derived_Type,
7867 Component_List (Record_Extension_Part (Type_Def)));
7868 end if;
7870 else
7871 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7872 end if;
7873 end if;
7875 -- Indic can either be an N_Identifier if the subtype indication
7876 -- contains no constraint or an N_Subtype_Indication if the subtype
7877 -- indication has a constraint.
7879 Indic := Subtype_Indication (Type_Def);
7880 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7882 -- Check that the type has visible discriminants. The type may be
7883 -- a private type with unknown discriminants whose full view has
7884 -- discriminants which are invisible.
7886 if Constraint_Present then
7887 if not Has_Discriminants (Parent_Base)
7888 or else
7889 (Has_Unknown_Discriminants (Parent_Base)
7890 and then Is_Private_Type (Parent_Base))
7891 then
7892 Error_Msg_N
7893 ("invalid constraint: type has no discriminant",
7894 Constraint (Indic));
7896 Constraint_Present := False;
7897 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7899 elsif Is_Constrained (Parent_Type) then
7900 Error_Msg_N
7901 ("invalid constraint: parent type is already constrained",
7902 Constraint (Indic));
7904 Constraint_Present := False;
7905 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7906 end if;
7907 end if;
7909 -- STEP 0b: If needed, apply transformation given in point 5. above
7911 if not Private_Extension
7912 and then Has_Discriminants (Parent_Type)
7913 and then not Discriminant_Specs
7914 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7915 then
7916 -- First, we must analyze the constraint (see comment in point 5.)
7917 -- The constraint may come from the subtype indication of the full
7918 -- declaration.
7920 if Constraint_Present then
7921 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7923 -- If there is no explicit constraint, there might be one that is
7924 -- inherited from a constrained parent type. In that case verify that
7925 -- it conforms to the constraint in the partial view. In perverse
7926 -- cases the parent subtypes of the partial and full view can have
7927 -- different constraints.
7929 elsif Present (Stored_Constraint (Parent_Type)) then
7930 New_Discrs := Stored_Constraint (Parent_Type);
7932 else
7933 New_Discrs := No_Elist;
7934 end if;
7936 if Has_Discriminants (Derived_Type)
7937 and then Has_Private_Declaration (Derived_Type)
7938 and then Present (Discriminant_Constraint (Derived_Type))
7939 and then Present (New_Discrs)
7940 then
7941 -- Verify that constraints of the full view statically match
7942 -- those given in the partial view.
7944 declare
7945 C1, C2 : Elmt_Id;
7947 begin
7948 C1 := First_Elmt (New_Discrs);
7949 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7950 while Present (C1) and then Present (C2) loop
7951 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7952 or else
7953 (Is_OK_Static_Expression (Node (C1))
7954 and then Is_OK_Static_Expression (Node (C2))
7955 and then
7956 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7957 then
7958 null;
7960 else
7961 if Constraint_Present then
7962 Error_Msg_N
7963 ("constraint not conformant to previous declaration",
7964 Node (C1));
7965 else
7966 Error_Msg_N
7967 ("constraint of full view is incompatible "
7968 & "with partial view", N);
7969 end if;
7970 end if;
7972 Next_Elmt (C1);
7973 Next_Elmt (C2);
7974 end loop;
7975 end;
7976 end if;
7978 -- Insert and analyze the declaration for the unconstrained base type
7980 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7982 New_Decl :=
7983 Make_Full_Type_Declaration (Loc,
7984 Defining_Identifier => New_Base,
7985 Type_Definition =>
7986 Make_Derived_Type_Definition (Loc,
7987 Abstract_Present => Abstract_Present (Type_Def),
7988 Limited_Present => Limited_Present (Type_Def),
7989 Subtype_Indication =>
7990 New_Occurrence_Of (Parent_Base, Loc),
7991 Record_Extension_Part =>
7992 Relocate_Node (Record_Extension_Part (Type_Def)),
7993 Interface_List => Interface_List (Type_Def)));
7995 Set_Parent (New_Decl, Parent (N));
7996 Mark_Rewrite_Insertion (New_Decl);
7997 Insert_Before (N, New_Decl);
7999 -- In the extension case, make sure ancestor is frozen appropriately
8000 -- (see also non-discriminated case below).
8002 if Present (Record_Extension_Part (Type_Def))
8003 or else Is_Interface (Parent_Base)
8004 then
8005 Freeze_Before (New_Decl, Parent_Type);
8006 end if;
8008 -- Note that this call passes False for the Derive_Subps parameter
8009 -- because subprogram derivation is deferred until after creating
8010 -- the subtype (see below).
8012 Build_Derived_Type
8013 (New_Decl, Parent_Base, New_Base,
8014 Is_Completion => False, Derive_Subps => False);
8016 -- ??? This needs re-examination to determine whether the
8017 -- above call can simply be replaced by a call to Analyze.
8019 Set_Analyzed (New_Decl);
8021 -- Insert and analyze the declaration for the constrained subtype
8023 if Constraint_Present then
8024 New_Indic :=
8025 Make_Subtype_Indication (Loc,
8026 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8027 Constraint => Relocate_Node (Constraint (Indic)));
8029 else
8030 declare
8031 Constr_List : constant List_Id := New_List;
8032 C : Elmt_Id;
8033 Expr : Node_Id;
8035 begin
8036 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8037 while Present (C) loop
8038 Expr := Node (C);
8040 -- It is safe here to call New_Copy_Tree since
8041 -- Force_Evaluation was called on each constraint in
8042 -- Build_Discriminant_Constraints.
8044 Append (New_Copy_Tree (Expr), To => Constr_List);
8046 Next_Elmt (C);
8047 end loop;
8049 New_Indic :=
8050 Make_Subtype_Indication (Loc,
8051 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8052 Constraint =>
8053 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8054 end;
8055 end if;
8057 Rewrite (N,
8058 Make_Subtype_Declaration (Loc,
8059 Defining_Identifier => Derived_Type,
8060 Subtype_Indication => New_Indic));
8062 Analyze (N);
8064 -- Derivation of subprograms must be delayed until the full subtype
8065 -- has been established, to ensure proper overriding of subprograms
8066 -- inherited by full types. If the derivations occurred as part of
8067 -- the call to Build_Derived_Type above, then the check for type
8068 -- conformance would fail because earlier primitive subprograms
8069 -- could still refer to the full type prior the change to the new
8070 -- subtype and hence would not match the new base type created here.
8071 -- Subprograms are not derived, however, when Derive_Subps is False
8072 -- (since otherwise there could be redundant derivations).
8074 if Derive_Subps then
8075 Derive_Subprograms (Parent_Type, Derived_Type);
8076 end if;
8078 -- For tagged types the Discriminant_Constraint of the new base itype
8079 -- is inherited from the first subtype so that no subtype conformance
8080 -- problem arise when the first subtype overrides primitive
8081 -- operations inherited by the implicit base type.
8083 if Is_Tagged then
8084 Set_Discriminant_Constraint
8085 (New_Base, Discriminant_Constraint (Derived_Type));
8086 end if;
8088 return;
8089 end if;
8091 -- If we get here Derived_Type will have no discriminants or it will be
8092 -- a discriminated unconstrained base type.
8094 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8096 if Is_Tagged then
8098 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8099 -- The declaration of a specific descendant of an interface type
8100 -- freezes the interface type (RM 13.14).
8102 if not Private_Extension or else Is_Interface (Parent_Base) then
8103 Freeze_Before (N, Parent_Type);
8104 end if;
8106 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8107 -- cannot be declared at a deeper level than its parent type is
8108 -- removed. The check on derivation within a generic body is also
8109 -- relaxed, but there's a restriction that a derived tagged type
8110 -- cannot be declared in a generic body if it's derived directly
8111 -- or indirectly from a formal type of that generic.
8113 if Ada_Version >= Ada_2005 then
8114 if Present (Enclosing_Generic_Body (Derived_Type)) then
8115 declare
8116 Ancestor_Type : Entity_Id;
8118 begin
8119 -- Check to see if any ancestor of the derived type is a
8120 -- formal type.
8122 Ancestor_Type := Parent_Type;
8123 while not Is_Generic_Type (Ancestor_Type)
8124 and then Etype (Ancestor_Type) /= Ancestor_Type
8125 loop
8126 Ancestor_Type := Etype (Ancestor_Type);
8127 end loop;
8129 -- If the derived type does have a formal type as an
8130 -- ancestor, then it's an error if the derived type is
8131 -- declared within the body of the generic unit that
8132 -- declares the formal type in its generic formal part. It's
8133 -- sufficient to check whether the ancestor type is declared
8134 -- inside the same generic body as the derived type (such as
8135 -- within a nested generic spec), in which case the
8136 -- derivation is legal. If the formal type is declared
8137 -- outside of that generic body, then it's guaranteed that
8138 -- the derived type is declared within the generic body of
8139 -- the generic unit declaring the formal type.
8141 if Is_Generic_Type (Ancestor_Type)
8142 and then Enclosing_Generic_Body (Ancestor_Type) /=
8143 Enclosing_Generic_Body (Derived_Type)
8144 then
8145 Error_Msg_NE
8146 ("parent type of& must not be descendant of formal type"
8147 & " of an enclosing generic body",
8148 Indic, Derived_Type);
8149 end if;
8150 end;
8151 end if;
8153 elsif Type_Access_Level (Derived_Type) /=
8154 Type_Access_Level (Parent_Type)
8155 and then not Is_Generic_Type (Derived_Type)
8156 then
8157 if Is_Controlled (Parent_Type) then
8158 Error_Msg_N
8159 ("controlled type must be declared at the library level",
8160 Indic);
8161 else
8162 Error_Msg_N
8163 ("type extension at deeper accessibility level than parent",
8164 Indic);
8165 end if;
8167 else
8168 declare
8169 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8170 begin
8171 if Present (GB)
8172 and then GB /= Enclosing_Generic_Body (Parent_Base)
8173 then
8174 Error_Msg_NE
8175 ("parent type of& must not be outside generic body"
8176 & " (RM 3.9.1(4))",
8177 Indic, Derived_Type);
8178 end if;
8179 end;
8180 end if;
8181 end if;
8183 -- Ada 2005 (AI-251)
8185 if Ada_Version >= Ada_2005 and then Is_Tagged then
8187 -- "The declaration of a specific descendant of an interface type
8188 -- freezes the interface type" (RM 13.14).
8190 declare
8191 Iface : Node_Id;
8192 begin
8193 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8194 Iface := First (Interface_List (Type_Def));
8195 while Present (Iface) loop
8196 Freeze_Before (N, Etype (Iface));
8197 Next (Iface);
8198 end loop;
8199 end if;
8200 end;
8201 end if;
8203 -- STEP 1b : preliminary cleanup of the full view of private types
8205 -- If the type is already marked as having discriminants, then it's the
8206 -- completion of a private type or private extension and we need to
8207 -- retain the discriminants from the partial view if the current
8208 -- declaration has Discriminant_Specifications so that we can verify
8209 -- conformance. However, we must remove any existing components that
8210 -- were inherited from the parent (and attached in Copy_And_Swap)
8211 -- because the full type inherits all appropriate components anyway, and
8212 -- we do not want the partial view's components interfering.
8214 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8215 Discrim := First_Discriminant (Derived_Type);
8216 loop
8217 Last_Discrim := Discrim;
8218 Next_Discriminant (Discrim);
8219 exit when No (Discrim);
8220 end loop;
8222 Set_Last_Entity (Derived_Type, Last_Discrim);
8224 -- In all other cases wipe out the list of inherited components (even
8225 -- inherited discriminants), it will be properly rebuilt here.
8227 else
8228 Set_First_Entity (Derived_Type, Empty);
8229 Set_Last_Entity (Derived_Type, Empty);
8230 end if;
8232 -- STEP 1c: Initialize some flags for the Derived_Type
8234 -- The following flags must be initialized here so that
8235 -- Process_Discriminants can check that discriminants of tagged types do
8236 -- not have a default initial value and that access discriminants are
8237 -- only specified for limited records. For completeness, these flags are
8238 -- also initialized along with all the other flags below.
8240 -- AI-419: Limitedness is not inherited from an interface parent, so to
8241 -- be limited in that case the type must be explicitly declared as
8242 -- limited. However, task and protected interfaces are always limited.
8244 if Limited_Present (Type_Def) then
8245 Set_Is_Limited_Record (Derived_Type);
8247 elsif Is_Limited_Record (Parent_Type)
8248 or else (Present (Full_View (Parent_Type))
8249 and then Is_Limited_Record (Full_View (Parent_Type)))
8250 then
8251 if not Is_Interface (Parent_Type)
8252 or else Is_Synchronized_Interface (Parent_Type)
8253 or else Is_Protected_Interface (Parent_Type)
8254 or else Is_Task_Interface (Parent_Type)
8255 then
8256 Set_Is_Limited_Record (Derived_Type);
8257 end if;
8258 end if;
8260 -- STEP 2a: process discriminants of derived type if any
8262 Push_Scope (Derived_Type);
8264 if Discriminant_Specs then
8265 Set_Has_Unknown_Discriminants (Derived_Type, False);
8267 -- The following call initializes fields Has_Discriminants and
8268 -- Discriminant_Constraint, unless we are processing the completion
8269 -- of a private type declaration.
8271 Check_Or_Process_Discriminants (N, Derived_Type);
8273 -- For untagged types, the constraint on the Parent_Type must be
8274 -- present and is used to rename the discriminants.
8276 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8277 Error_Msg_N ("untagged parent must have discriminants", Indic);
8279 elsif not Is_Tagged and then not Constraint_Present then
8280 Error_Msg_N
8281 ("discriminant constraint needed for derived untagged records",
8282 Indic);
8284 -- Otherwise the parent subtype must be constrained unless we have a
8285 -- private extension.
8287 elsif not Constraint_Present
8288 and then not Private_Extension
8289 and then not Is_Constrained (Parent_Type)
8290 then
8291 Error_Msg_N
8292 ("unconstrained type not allowed in this context", Indic);
8294 elsif Constraint_Present then
8295 -- The following call sets the field Corresponding_Discriminant
8296 -- for the discriminants in the Derived_Type.
8298 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8300 -- For untagged types all new discriminants must rename
8301 -- discriminants in the parent. For private extensions new
8302 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8304 Discrim := First_Discriminant (Derived_Type);
8305 while Present (Discrim) loop
8306 if not Is_Tagged
8307 and then No (Corresponding_Discriminant (Discrim))
8308 then
8309 Error_Msg_N
8310 ("new discriminants must constrain old ones", Discrim);
8312 elsif Private_Extension
8313 and then Present (Corresponding_Discriminant (Discrim))
8314 then
8315 Error_Msg_N
8316 ("only static constraints allowed for parent"
8317 & " discriminants in the partial view", Indic);
8318 exit;
8319 end if;
8321 -- If a new discriminant is used in the constraint, then its
8322 -- subtype must be statically compatible with the parent
8323 -- discriminant's subtype (3.7(15)).
8325 -- However, if the record contains an array constrained by
8326 -- the discriminant but with some different bound, the compiler
8327 -- attemps to create a smaller range for the discriminant type.
8328 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8329 -- the discriminant type is a scalar type, the check must use
8330 -- the original discriminant type in the parent declaration.
8332 declare
8333 Corr_Disc : constant Entity_Id :=
8334 Corresponding_Discriminant (Discrim);
8335 Disc_Type : constant Entity_Id := Etype (Discrim);
8336 Corr_Type : Entity_Id;
8338 begin
8339 if Present (Corr_Disc) then
8340 if Is_Scalar_Type (Disc_Type) then
8341 Corr_Type :=
8342 Entity (Discriminant_Type (Parent (Corr_Disc)));
8343 else
8344 Corr_Type := Etype (Corr_Disc);
8345 end if;
8347 if not
8348 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8349 then
8350 Error_Msg_N
8351 ("subtype must be compatible "
8352 & "with parent discriminant",
8353 Discrim);
8354 end if;
8355 end if;
8356 end;
8358 Next_Discriminant (Discrim);
8359 end loop;
8361 -- Check whether the constraints of the full view statically
8362 -- match those imposed by the parent subtype [7.3(13)].
8364 if Present (Stored_Constraint (Derived_Type)) then
8365 declare
8366 C1, C2 : Elmt_Id;
8368 begin
8369 C1 := First_Elmt (Discs);
8370 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8371 while Present (C1) and then Present (C2) loop
8372 if not
8373 Fully_Conformant_Expressions (Node (C1), Node (C2))
8374 then
8375 Error_Msg_N
8376 ("not conformant with previous declaration",
8377 Node (C1));
8378 end if;
8380 Next_Elmt (C1);
8381 Next_Elmt (C2);
8382 end loop;
8383 end;
8384 end if;
8385 end if;
8387 -- STEP 2b: No new discriminants, inherit discriminants if any
8389 else
8390 if Private_Extension then
8391 Set_Has_Unknown_Discriminants
8392 (Derived_Type,
8393 Has_Unknown_Discriminants (Parent_Type)
8394 or else Unknown_Discriminants_Present (N));
8396 -- The partial view of the parent may have unknown discriminants,
8397 -- but if the full view has discriminants and the parent type is
8398 -- in scope they must be inherited.
8400 elsif Has_Unknown_Discriminants (Parent_Type)
8401 and then
8402 (not Has_Discriminants (Parent_Type)
8403 or else not In_Open_Scopes (Scope (Parent_Type)))
8404 then
8405 Set_Has_Unknown_Discriminants (Derived_Type);
8406 end if;
8408 if not Has_Unknown_Discriminants (Derived_Type)
8409 and then not Has_Unknown_Discriminants (Parent_Base)
8410 and then Has_Discriminants (Parent_Type)
8411 then
8412 Inherit_Discrims := True;
8413 Set_Has_Discriminants
8414 (Derived_Type, True);
8415 Set_Discriminant_Constraint
8416 (Derived_Type, Discriminant_Constraint (Parent_Base));
8417 end if;
8419 -- The following test is true for private types (remember
8420 -- transformation 5. is not applied to those) and in an error
8421 -- situation.
8423 if Constraint_Present then
8424 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8425 end if;
8427 -- For now mark a new derived type as constrained only if it has no
8428 -- discriminants. At the end of Build_Derived_Record_Type we properly
8429 -- set this flag in the case of private extensions. See comments in
8430 -- point 9. just before body of Build_Derived_Record_Type.
8432 Set_Is_Constrained
8433 (Derived_Type,
8434 not (Inherit_Discrims
8435 or else Has_Unknown_Discriminants (Derived_Type)));
8436 end if;
8438 -- STEP 3: initialize fields of derived type
8440 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8441 Set_Stored_Constraint (Derived_Type, No_Elist);
8443 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8444 -- but cannot be interfaces
8446 if not Private_Extension
8447 and then Ekind (Derived_Type) /= E_Private_Type
8448 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8449 then
8450 if Interface_Present (Type_Def) then
8451 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8452 end if;
8454 Set_Interfaces (Derived_Type, No_Elist);
8455 end if;
8457 -- Fields inherited from the Parent_Type
8459 Set_Has_Specified_Layout
8460 (Derived_Type, Has_Specified_Layout (Parent_Type));
8461 Set_Is_Limited_Composite
8462 (Derived_Type, Is_Limited_Composite (Parent_Type));
8463 Set_Is_Private_Composite
8464 (Derived_Type, Is_Private_Composite (Parent_Type));
8466 if Is_Tagged_Type (Parent_Type) then
8467 Set_No_Tagged_Streams_Pragma
8468 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8469 end if;
8471 -- Fields inherited from the Parent_Base
8473 Set_Has_Controlled_Component
8474 (Derived_Type, Has_Controlled_Component (Parent_Base));
8475 Set_Has_Non_Standard_Rep
8476 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8477 Set_Has_Primitive_Operations
8478 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8480 -- Fields inherited from the Parent_Base in the non-private case
8482 if Ekind (Derived_Type) = E_Record_Type then
8483 Set_Has_Complex_Representation
8484 (Derived_Type, Has_Complex_Representation (Parent_Base));
8485 end if;
8487 -- Fields inherited from the Parent_Base for record types
8489 if Is_Record_Type (Derived_Type) then
8490 declare
8491 Parent_Full : Entity_Id;
8493 begin
8494 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8495 -- Parent_Base can be a private type or private extension. Go
8496 -- to the full view here to get the E_Record_Type specific flags.
8498 if Present (Full_View (Parent_Base)) then
8499 Parent_Full := Full_View (Parent_Base);
8500 else
8501 Parent_Full := Parent_Base;
8502 end if;
8504 Set_OK_To_Reorder_Components
8505 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8506 end;
8507 end if;
8509 -- Set fields for private derived types
8511 if Is_Private_Type (Derived_Type) then
8512 Set_Depends_On_Private (Derived_Type, True);
8513 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8515 -- Inherit fields from non private record types. If this is the
8516 -- completion of a derivation from a private type, the parent itself
8517 -- is private, and the attributes come from its full view, which must
8518 -- be present.
8520 else
8521 if Is_Private_Type (Parent_Base)
8522 and then not Is_Record_Type (Parent_Base)
8523 then
8524 Set_Component_Alignment
8525 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8526 Set_C_Pass_By_Copy
8527 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8528 else
8529 Set_Component_Alignment
8530 (Derived_Type, Component_Alignment (Parent_Base));
8531 Set_C_Pass_By_Copy
8532 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8533 end if;
8534 end if;
8536 -- Set fields for tagged types
8538 if Is_Tagged then
8539 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8541 -- All tagged types defined in Ada.Finalization are controlled
8543 if Chars (Scope (Derived_Type)) = Name_Finalization
8544 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8545 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8546 then
8547 Set_Is_Controlled (Derived_Type);
8548 else
8549 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8550 end if;
8552 -- Minor optimization: there is no need to generate the class-wide
8553 -- entity associated with an underlying record view.
8555 if not Is_Underlying_Record_View (Derived_Type) then
8556 Make_Class_Wide_Type (Derived_Type);
8557 end if;
8559 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8561 if Has_Discriminants (Derived_Type)
8562 and then Constraint_Present
8563 then
8564 Set_Stored_Constraint
8565 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8566 end if;
8568 if Ada_Version >= Ada_2005 then
8569 declare
8570 Ifaces_List : Elist_Id;
8572 begin
8573 -- Checks rules 3.9.4 (13/2 and 14/2)
8575 if Comes_From_Source (Derived_Type)
8576 and then not Is_Private_Type (Derived_Type)
8577 and then Is_Interface (Parent_Type)
8578 and then not Is_Interface (Derived_Type)
8579 then
8580 if Is_Task_Interface (Parent_Type) then
8581 Error_Msg_N
8582 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8583 Derived_Type);
8585 elsif Is_Protected_Interface (Parent_Type) then
8586 Error_Msg_N
8587 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8588 Derived_Type);
8589 end if;
8590 end if;
8592 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8594 Check_Interfaces (N, Type_Def);
8596 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8597 -- not already in the parents.
8599 Collect_Interfaces
8600 (T => Derived_Type,
8601 Ifaces_List => Ifaces_List,
8602 Exclude_Parents => True);
8604 Set_Interfaces (Derived_Type, Ifaces_List);
8606 -- If the derived type is the anonymous type created for
8607 -- a declaration whose parent has a constraint, propagate
8608 -- the interface list to the source type. This must be done
8609 -- prior to the completion of the analysis of the source type
8610 -- because the components in the extension may contain current
8611 -- instances whose legality depends on some ancestor.
8613 if Is_Itype (Derived_Type) then
8614 declare
8615 Def : constant Node_Id :=
8616 Associated_Node_For_Itype (Derived_Type);
8617 begin
8618 if Present (Def)
8619 and then Nkind (Def) = N_Full_Type_Declaration
8620 then
8621 Set_Interfaces
8622 (Defining_Identifier (Def), Ifaces_List);
8623 end if;
8624 end;
8625 end if;
8627 -- A type extension is automatically Ghost when one of its
8628 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8629 -- also inherited when the parent type is Ghost, but this is
8630 -- done in Build_Derived_Type as the mechanism also handles
8631 -- untagged derivations.
8633 if Implements_Ghost_Interface (Derived_Type) then
8634 Set_Is_Ghost_Entity (Derived_Type);
8635 end if;
8636 end;
8637 end if;
8639 else
8640 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8641 Set_Has_Non_Standard_Rep
8642 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8643 end if;
8645 -- STEP 4: Inherit components from the parent base and constrain them.
8646 -- Apply the second transformation described in point 6. above.
8648 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8649 or else not Has_Discriminants (Parent_Type)
8650 or else not Is_Constrained (Parent_Type)
8651 then
8652 Constrs := Discs;
8653 else
8654 Constrs := Discriminant_Constraint (Parent_Type);
8655 end if;
8657 Assoc_List :=
8658 Inherit_Components
8659 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8661 -- STEP 5a: Copy the parent record declaration for untagged types
8663 if not Is_Tagged then
8665 -- Discriminant_Constraint (Derived_Type) has been properly
8666 -- constructed. Save it and temporarily set it to Empty because we
8667 -- do not want the call to New_Copy_Tree below to mess this list.
8669 if Has_Discriminants (Derived_Type) then
8670 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8671 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8672 else
8673 Save_Discr_Constr := No_Elist;
8674 end if;
8676 -- Save the Etype field of Derived_Type. It is correctly set now,
8677 -- but the call to New_Copy tree may remap it to point to itself,
8678 -- which is not what we want. Ditto for the Next_Entity field.
8680 Save_Etype := Etype (Derived_Type);
8681 Save_Next_Entity := Next_Entity (Derived_Type);
8683 -- Assoc_List maps all stored discriminants in the Parent_Base to
8684 -- stored discriminants in the Derived_Type. It is fundamental that
8685 -- no types or itypes with discriminants other than the stored
8686 -- discriminants appear in the entities declared inside
8687 -- Derived_Type, since the back end cannot deal with it.
8689 New_Decl :=
8690 New_Copy_Tree
8691 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8693 -- Restore the fields saved prior to the New_Copy_Tree call
8694 -- and compute the stored constraint.
8696 Set_Etype (Derived_Type, Save_Etype);
8697 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8699 if Has_Discriminants (Derived_Type) then
8700 Set_Discriminant_Constraint
8701 (Derived_Type, Save_Discr_Constr);
8702 Set_Stored_Constraint
8703 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8704 Replace_Components (Derived_Type, New_Decl);
8705 Set_Has_Implicit_Dereference
8706 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8707 end if;
8709 -- Insert the new derived type declaration
8711 Rewrite (N, New_Decl);
8713 -- STEP 5b: Complete the processing for record extensions in generics
8715 -- There is no completion for record extensions declared in the
8716 -- parameter part of a generic, so we need to complete processing for
8717 -- these generic record extensions here. The Record_Type_Definition call
8718 -- will change the Ekind of the components from E_Void to E_Component.
8720 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8721 Record_Type_Definition (Empty, Derived_Type);
8723 -- STEP 5c: Process the record extension for non private tagged types
8725 elsif not Private_Extension then
8726 Expand_Record_Extension (Derived_Type, Type_Def);
8728 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8729 -- derived type to propagate some semantic information. This led
8730 -- to other ASIS failures and has been removed.
8732 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8733 -- implemented interfaces if we are in expansion mode
8735 if Expander_Active
8736 and then Has_Interfaces (Derived_Type)
8737 then
8738 Add_Interface_Tag_Components (N, Derived_Type);
8739 end if;
8741 -- Analyze the record extension
8743 Record_Type_Definition
8744 (Record_Extension_Part (Type_Def), Derived_Type);
8745 end if;
8747 End_Scope;
8749 -- Nothing else to do if there is an error in the derivation.
8750 -- An unusual case: the full view may be derived from a type in an
8751 -- instance, when the partial view was used illegally as an actual
8752 -- in that instance, leading to a circular definition.
8754 if Etype (Derived_Type) = Any_Type
8755 or else Etype (Parent_Type) = Derived_Type
8756 then
8757 return;
8758 end if;
8760 -- Set delayed freeze and then derive subprograms, we need to do
8761 -- this in this order so that derived subprograms inherit the
8762 -- derived freeze if necessary.
8764 Set_Has_Delayed_Freeze (Derived_Type);
8766 if Derive_Subps then
8767 Derive_Subprograms (Parent_Type, Derived_Type);
8768 end if;
8770 -- If we have a private extension which defines a constrained derived
8771 -- type mark as constrained here after we have derived subprograms. See
8772 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8774 if Private_Extension and then Inherit_Discrims then
8775 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8776 Set_Is_Constrained (Derived_Type, True);
8777 Set_Discriminant_Constraint (Derived_Type, Discs);
8779 elsif Is_Constrained (Parent_Type) then
8780 Set_Is_Constrained
8781 (Derived_Type, True);
8782 Set_Discriminant_Constraint
8783 (Derived_Type, Discriminant_Constraint (Parent_Type));
8784 end if;
8785 end if;
8787 -- Update the class-wide type, which shares the now-completed entity
8788 -- list with its specific type. In case of underlying record views,
8789 -- we do not generate the corresponding class wide entity.
8791 if Is_Tagged
8792 and then not Is_Underlying_Record_View (Derived_Type)
8793 then
8794 Set_First_Entity
8795 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8796 Set_Last_Entity
8797 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8798 end if;
8800 Check_Function_Writable_Actuals (N);
8801 end Build_Derived_Record_Type;
8803 ------------------------
8804 -- Build_Derived_Type --
8805 ------------------------
8807 procedure Build_Derived_Type
8808 (N : Node_Id;
8809 Parent_Type : Entity_Id;
8810 Derived_Type : Entity_Id;
8811 Is_Completion : Boolean;
8812 Derive_Subps : Boolean := True)
8814 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8816 begin
8817 -- Set common attributes
8819 Set_Scope (Derived_Type, Current_Scope);
8821 Set_Etype (Derived_Type, Parent_Base);
8822 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8823 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8824 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8826 Set_Size_Info (Derived_Type, Parent_Type);
8827 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8828 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8829 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8830 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
8832 if Is_Tagged_Type (Derived_Type) then
8833 Set_No_Tagged_Streams_Pragma
8834 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8835 end if;
8837 -- If the parent has primitive routines, set the derived type link
8839 if Has_Primitive_Operations (Parent_Type) then
8840 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8841 end if;
8843 -- If the parent type is a private subtype, the convention on the base
8844 -- type may be set in the private part, and not propagated to the
8845 -- subtype until later, so we obtain the convention from the base type.
8847 Set_Convention (Derived_Type, Convention (Parent_Base));
8849 -- Set SSO default for record or array type
8851 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8852 and then Is_Base_Type (Derived_Type)
8853 then
8854 Set_Default_SSO (Derived_Type);
8855 end if;
8857 -- Propagate invariant information. The new type has invariants if
8858 -- they are inherited from the parent type, and these invariants can
8859 -- be further inherited, so both flags are set.
8861 -- We similarly inherit predicates
8863 if Has_Predicates (Parent_Type) then
8864 Set_Has_Predicates (Derived_Type);
8865 end if;
8867 -- The derived type inherits the representation clauses of the parent
8869 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
8871 -- Propagate the attributes related to pragma Default_Initial_Condition
8872 -- from the parent type to the private extension. A derived type always
8873 -- inherits the default initial condition flag from the parent type. If
8874 -- the derived type carries its own Default_Initial_Condition pragma,
8875 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8876 -- mutually exclusive.
8878 Propagate_Default_Init_Cond_Attributes
8879 (From_Typ => Parent_Type,
8880 To_Typ => Derived_Type,
8881 Parent_To_Derivation => True);
8883 -- If the parent type has delayed rep aspects, then mark the derived
8884 -- type as possibly inheriting a delayed rep aspect.
8886 if Has_Delayed_Rep_Aspects (Parent_Type) then
8887 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8888 end if;
8890 -- Propagate the attributes related to pragma Ghost from the parent type
8891 -- to the derived type or type extension (SPARK RM 6.9(9)).
8893 if Is_Ghost_Entity (Parent_Type) then
8894 Set_Is_Ghost_Entity (Derived_Type);
8895 end if;
8897 -- Type dependent processing
8899 case Ekind (Parent_Type) is
8900 when Numeric_Kind =>
8901 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8903 when Array_Kind =>
8904 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8906 when E_Record_Type
8907 | E_Record_Subtype
8908 | Class_Wide_Kind =>
8909 Build_Derived_Record_Type
8910 (N, Parent_Type, Derived_Type, Derive_Subps);
8911 return;
8913 when Enumeration_Kind =>
8914 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8916 when Access_Kind =>
8917 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8919 when Incomplete_Or_Private_Kind =>
8920 Build_Derived_Private_Type
8921 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8923 -- For discriminated types, the derivation includes deriving
8924 -- primitive operations. For others it is done below.
8926 if Is_Tagged_Type (Parent_Type)
8927 or else Has_Discriminants (Parent_Type)
8928 or else (Present (Full_View (Parent_Type))
8929 and then Has_Discriminants (Full_View (Parent_Type)))
8930 then
8931 return;
8932 end if;
8934 when Concurrent_Kind =>
8935 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8937 when others =>
8938 raise Program_Error;
8939 end case;
8941 -- Nothing more to do if some error occurred
8943 if Etype (Derived_Type) = Any_Type then
8944 return;
8945 end if;
8947 -- Set delayed freeze and then derive subprograms, we need to do this
8948 -- in this order so that derived subprograms inherit the derived freeze
8949 -- if necessary.
8951 Set_Has_Delayed_Freeze (Derived_Type);
8953 if Derive_Subps then
8954 Derive_Subprograms (Parent_Type, Derived_Type);
8955 end if;
8957 Set_Has_Primitive_Operations
8958 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8959 end Build_Derived_Type;
8961 -----------------------
8962 -- Build_Discriminal --
8963 -----------------------
8965 procedure Build_Discriminal (Discrim : Entity_Id) is
8966 D_Minal : Entity_Id;
8967 CR_Disc : Entity_Id;
8969 begin
8970 -- A discriminal has the same name as the discriminant
8972 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8974 Set_Ekind (D_Minal, E_In_Parameter);
8975 Set_Mechanism (D_Minal, Default_Mechanism);
8976 Set_Etype (D_Minal, Etype (Discrim));
8977 Set_Scope (D_Minal, Current_Scope);
8979 Set_Discriminal (Discrim, D_Minal);
8980 Set_Discriminal_Link (D_Minal, Discrim);
8982 -- For task types, build at once the discriminants of the corresponding
8983 -- record, which are needed if discriminants are used in entry defaults
8984 -- and in family bounds.
8986 if Is_Concurrent_Type (Current_Scope)
8987 or else
8988 Is_Limited_Type (Current_Scope)
8989 then
8990 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8992 Set_Ekind (CR_Disc, E_In_Parameter);
8993 Set_Mechanism (CR_Disc, Default_Mechanism);
8994 Set_Etype (CR_Disc, Etype (Discrim));
8995 Set_Scope (CR_Disc, Current_Scope);
8996 Set_Discriminal_Link (CR_Disc, Discrim);
8997 Set_CR_Discriminant (Discrim, CR_Disc);
8998 end if;
8999 end Build_Discriminal;
9001 ------------------------------------
9002 -- Build_Discriminant_Constraints --
9003 ------------------------------------
9005 function Build_Discriminant_Constraints
9006 (T : Entity_Id;
9007 Def : Node_Id;
9008 Derived_Def : Boolean := False) return Elist_Id
9010 C : constant Node_Id := Constraint (Def);
9011 Nb_Discr : constant Nat := Number_Discriminants (T);
9013 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9014 -- Saves the expression corresponding to a given discriminant in T
9016 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9017 -- Return the Position number within array Discr_Expr of a discriminant
9018 -- D within the discriminant list of the discriminated type T.
9020 procedure Process_Discriminant_Expression
9021 (Expr : Node_Id;
9022 D : Entity_Id);
9023 -- If this is a discriminant constraint on a partial view, do not
9024 -- generate an overflow check on the discriminant expression. The check
9025 -- will be generated when constraining the full view. Otherwise the
9026 -- backend creates duplicate symbols for the temporaries corresponding
9027 -- to the expressions to be checked, causing spurious assembler errors.
9029 ------------------
9030 -- Pos_Of_Discr --
9031 ------------------
9033 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9034 Disc : Entity_Id;
9036 begin
9037 Disc := First_Discriminant (T);
9038 for J in Discr_Expr'Range loop
9039 if Disc = D then
9040 return J;
9041 end if;
9043 Next_Discriminant (Disc);
9044 end loop;
9046 -- Note: Since this function is called on discriminants that are
9047 -- known to belong to the discriminated type, falling through the
9048 -- loop with no match signals an internal compiler error.
9050 raise Program_Error;
9051 end Pos_Of_Discr;
9053 -------------------------------------
9054 -- Process_Discriminant_Expression --
9055 -------------------------------------
9057 procedure Process_Discriminant_Expression
9058 (Expr : Node_Id;
9059 D : Entity_Id)
9061 BDT : constant Entity_Id := Base_Type (Etype (D));
9063 begin
9064 -- If this is a discriminant constraint on a partial view, do
9065 -- not generate an overflow on the discriminant expression. The
9066 -- check will be generated when constraining the full view.
9068 if Is_Private_Type (T)
9069 and then Present (Full_View (T))
9070 then
9071 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9072 else
9073 Analyze_And_Resolve (Expr, BDT);
9074 end if;
9075 end Process_Discriminant_Expression;
9077 -- Declarations local to Build_Discriminant_Constraints
9079 Discr : Entity_Id;
9080 E : Entity_Id;
9081 Elist : constant Elist_Id := New_Elmt_List;
9083 Constr : Node_Id;
9084 Expr : Node_Id;
9085 Id : Node_Id;
9086 Position : Nat;
9087 Found : Boolean;
9089 Discrim_Present : Boolean := False;
9091 -- Start of processing for Build_Discriminant_Constraints
9093 begin
9094 -- The following loop will process positional associations only.
9095 -- For a positional association, the (single) discriminant is
9096 -- implicitly specified by position, in textual order (RM 3.7.2).
9098 Discr := First_Discriminant (T);
9099 Constr := First (Constraints (C));
9100 for D in Discr_Expr'Range loop
9101 exit when Nkind (Constr) = N_Discriminant_Association;
9103 if No (Constr) then
9104 Error_Msg_N ("too few discriminants given in constraint", C);
9105 return New_Elmt_List;
9107 elsif Nkind (Constr) = N_Range
9108 or else (Nkind (Constr) = N_Attribute_Reference
9109 and then Attribute_Name (Constr) = Name_Range)
9110 then
9111 Error_Msg_N
9112 ("a range is not a valid discriminant constraint", Constr);
9113 Discr_Expr (D) := Error;
9115 else
9116 Process_Discriminant_Expression (Constr, Discr);
9117 Discr_Expr (D) := Constr;
9118 end if;
9120 Next_Discriminant (Discr);
9121 Next (Constr);
9122 end loop;
9124 if No (Discr) and then Present (Constr) then
9125 Error_Msg_N ("too many discriminants given in constraint", Constr);
9126 return New_Elmt_List;
9127 end if;
9129 -- Named associations can be given in any order, but if both positional
9130 -- and named associations are used in the same discriminant constraint,
9131 -- then positional associations must occur first, at their normal
9132 -- position. Hence once a named association is used, the rest of the
9133 -- discriminant constraint must use only named associations.
9135 while Present (Constr) loop
9137 -- Positional association forbidden after a named association
9139 if Nkind (Constr) /= N_Discriminant_Association then
9140 Error_Msg_N ("positional association follows named one", Constr);
9141 return New_Elmt_List;
9143 -- Otherwise it is a named association
9145 else
9146 -- E records the type of the discriminants in the named
9147 -- association. All the discriminants specified in the same name
9148 -- association must have the same type.
9150 E := Empty;
9152 -- Search the list of discriminants in T to see if the simple name
9153 -- given in the constraint matches any of them.
9155 Id := First (Selector_Names (Constr));
9156 while Present (Id) loop
9157 Found := False;
9159 -- If Original_Discriminant is present, we are processing a
9160 -- generic instantiation and this is an instance node. We need
9161 -- to find the name of the corresponding discriminant in the
9162 -- actual record type T and not the name of the discriminant in
9163 -- the generic formal. Example:
9165 -- generic
9166 -- type G (D : int) is private;
9167 -- package P is
9168 -- subtype W is G (D => 1);
9169 -- end package;
9170 -- type Rec (X : int) is record ... end record;
9171 -- package Q is new P (G => Rec);
9173 -- At the point of the instantiation, formal type G is Rec
9174 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9175 -- which really looks like "subtype W is Rec (D => 1);" at
9176 -- the point of instantiation, we want to find the discriminant
9177 -- that corresponds to D in Rec, i.e. X.
9179 if Present (Original_Discriminant (Id))
9180 and then In_Instance
9181 then
9182 Discr := Find_Corresponding_Discriminant (Id, T);
9183 Found := True;
9185 else
9186 Discr := First_Discriminant (T);
9187 while Present (Discr) loop
9188 if Chars (Discr) = Chars (Id) then
9189 Found := True;
9190 exit;
9191 end if;
9193 Next_Discriminant (Discr);
9194 end loop;
9196 if not Found then
9197 Error_Msg_N ("& does not match any discriminant", Id);
9198 return New_Elmt_List;
9200 -- If the parent type is a generic formal, preserve the
9201 -- name of the discriminant for subsequent instances.
9202 -- see comment at the beginning of this if statement.
9204 elsif Is_Generic_Type (Root_Type (T)) then
9205 Set_Original_Discriminant (Id, Discr);
9206 end if;
9207 end if;
9209 Position := Pos_Of_Discr (T, Discr);
9211 if Present (Discr_Expr (Position)) then
9212 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9214 else
9215 -- Each discriminant specified in the same named association
9216 -- must be associated with a separate copy of the
9217 -- corresponding expression.
9219 if Present (Next (Id)) then
9220 Expr := New_Copy_Tree (Expression (Constr));
9221 Set_Parent (Expr, Parent (Expression (Constr)));
9222 else
9223 Expr := Expression (Constr);
9224 end if;
9226 Discr_Expr (Position) := Expr;
9227 Process_Discriminant_Expression (Expr, Discr);
9228 end if;
9230 -- A discriminant association with more than one discriminant
9231 -- name is only allowed if the named discriminants are all of
9232 -- the same type (RM 3.7.1(8)).
9234 if E = Empty then
9235 E := Base_Type (Etype (Discr));
9237 elsif Base_Type (Etype (Discr)) /= E then
9238 Error_Msg_N
9239 ("all discriminants in an association " &
9240 "must have the same type", Id);
9241 end if;
9243 Next (Id);
9244 end loop;
9245 end if;
9247 Next (Constr);
9248 end loop;
9250 -- A discriminant constraint must provide exactly one value for each
9251 -- discriminant of the type (RM 3.7.1(8)).
9253 for J in Discr_Expr'Range loop
9254 if No (Discr_Expr (J)) then
9255 Error_Msg_N ("too few discriminants given in constraint", C);
9256 return New_Elmt_List;
9257 end if;
9258 end loop;
9260 -- Determine if there are discriminant expressions in the constraint
9262 for J in Discr_Expr'Range loop
9263 if Denotes_Discriminant
9264 (Discr_Expr (J), Check_Concurrent => True)
9265 then
9266 Discrim_Present := True;
9267 end if;
9268 end loop;
9270 -- Build an element list consisting of the expressions given in the
9271 -- discriminant constraint and apply the appropriate checks. The list
9272 -- is constructed after resolving any named discriminant associations
9273 -- and therefore the expressions appear in the textual order of the
9274 -- discriminants.
9276 Discr := First_Discriminant (T);
9277 for J in Discr_Expr'Range loop
9278 if Discr_Expr (J) /= Error then
9279 Append_Elmt (Discr_Expr (J), Elist);
9281 -- If any of the discriminant constraints is given by a
9282 -- discriminant and we are in a derived type declaration we
9283 -- have a discriminant renaming. Establish link between new
9284 -- and old discriminant.
9286 if Denotes_Discriminant (Discr_Expr (J)) then
9287 if Derived_Def then
9288 Set_Corresponding_Discriminant
9289 (Entity (Discr_Expr (J)), Discr);
9290 end if;
9292 -- Force the evaluation of non-discriminant expressions.
9293 -- If we have found a discriminant in the constraint 3.4(26)
9294 -- and 3.8(18) demand that no range checks are performed are
9295 -- after evaluation. If the constraint is for a component
9296 -- definition that has a per-object constraint, expressions are
9297 -- evaluated but not checked either. In all other cases perform
9298 -- a range check.
9300 else
9301 if Discrim_Present then
9302 null;
9304 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9305 and then
9306 Has_Per_Object_Constraint
9307 (Defining_Identifier (Parent (Parent (Def))))
9308 then
9309 null;
9311 elsif Is_Access_Type (Etype (Discr)) then
9312 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9314 else
9315 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9316 end if;
9318 Force_Evaluation (Discr_Expr (J));
9319 end if;
9321 -- Check that the designated type of an access discriminant's
9322 -- expression is not a class-wide type unless the discriminant's
9323 -- designated type is also class-wide.
9325 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9326 and then not Is_Class_Wide_Type
9327 (Designated_Type (Etype (Discr)))
9328 and then Etype (Discr_Expr (J)) /= Any_Type
9329 and then Is_Class_Wide_Type
9330 (Designated_Type (Etype (Discr_Expr (J))))
9331 then
9332 Wrong_Type (Discr_Expr (J), Etype (Discr));
9334 elsif Is_Access_Type (Etype (Discr))
9335 and then not Is_Access_Constant (Etype (Discr))
9336 and then Is_Access_Type (Etype (Discr_Expr (J)))
9337 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9338 then
9339 Error_Msg_NE
9340 ("constraint for discriminant& must be access to variable",
9341 Def, Discr);
9342 end if;
9343 end if;
9345 Next_Discriminant (Discr);
9346 end loop;
9348 return Elist;
9349 end Build_Discriminant_Constraints;
9351 ---------------------------------
9352 -- Build_Discriminated_Subtype --
9353 ---------------------------------
9355 procedure Build_Discriminated_Subtype
9356 (T : Entity_Id;
9357 Def_Id : Entity_Id;
9358 Elist : Elist_Id;
9359 Related_Nod : Node_Id;
9360 For_Access : Boolean := False)
9362 Has_Discrs : constant Boolean := Has_Discriminants (T);
9363 Constrained : constant Boolean :=
9364 (Has_Discrs
9365 and then not Is_Empty_Elmt_List (Elist)
9366 and then not Is_Class_Wide_Type (T))
9367 or else Is_Constrained (T);
9369 begin
9370 if Ekind (T) = E_Record_Type then
9371 if For_Access then
9372 Set_Ekind (Def_Id, E_Private_Subtype);
9373 Set_Is_For_Access_Subtype (Def_Id, True);
9374 else
9375 Set_Ekind (Def_Id, E_Record_Subtype);
9376 end if;
9378 -- Inherit preelaboration flag from base, for types for which it
9379 -- may have been set: records, private types, protected types.
9381 Set_Known_To_Have_Preelab_Init
9382 (Def_Id, Known_To_Have_Preelab_Init (T));
9384 elsif Ekind (T) = E_Task_Type then
9385 Set_Ekind (Def_Id, E_Task_Subtype);
9387 elsif Ekind (T) = E_Protected_Type then
9388 Set_Ekind (Def_Id, E_Protected_Subtype);
9389 Set_Known_To_Have_Preelab_Init
9390 (Def_Id, Known_To_Have_Preelab_Init (T));
9392 elsif Is_Private_Type (T) then
9393 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9394 Set_Known_To_Have_Preelab_Init
9395 (Def_Id, Known_To_Have_Preelab_Init (T));
9397 -- Private subtypes may have private dependents
9399 Set_Private_Dependents (Def_Id, New_Elmt_List);
9401 elsif Is_Class_Wide_Type (T) then
9402 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9404 else
9405 -- Incomplete type. Attach subtype to list of dependents, to be
9406 -- completed with full view of parent type, unless is it the
9407 -- designated subtype of a record component within an init_proc.
9408 -- This last case arises for a component of an access type whose
9409 -- designated type is incomplete (e.g. a Taft Amendment type).
9410 -- The designated subtype is within an inner scope, and needs no
9411 -- elaboration, because only the access type is needed in the
9412 -- initialization procedure.
9414 Set_Ekind (Def_Id, Ekind (T));
9416 if For_Access and then Within_Init_Proc then
9417 null;
9418 else
9419 Append_Elmt (Def_Id, Private_Dependents (T));
9420 end if;
9421 end if;
9423 Set_Etype (Def_Id, T);
9424 Init_Size_Align (Def_Id);
9425 Set_Has_Discriminants (Def_Id, Has_Discrs);
9426 Set_Is_Constrained (Def_Id, Constrained);
9428 Set_First_Entity (Def_Id, First_Entity (T));
9429 Set_Last_Entity (Def_Id, Last_Entity (T));
9430 Set_Has_Implicit_Dereference
9431 (Def_Id, Has_Implicit_Dereference (T));
9433 -- If the subtype is the completion of a private declaration, there may
9434 -- have been representation clauses for the partial view, and they must
9435 -- be preserved. Build_Derived_Type chains the inherited clauses with
9436 -- the ones appearing on the extension. If this comes from a subtype
9437 -- declaration, all clauses are inherited.
9439 if No (First_Rep_Item (Def_Id)) then
9440 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9441 end if;
9443 if Is_Tagged_Type (T) then
9444 Set_Is_Tagged_Type (Def_Id);
9445 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9446 Make_Class_Wide_Type (Def_Id);
9447 end if;
9449 Set_Stored_Constraint (Def_Id, No_Elist);
9451 if Has_Discrs then
9452 Set_Discriminant_Constraint (Def_Id, Elist);
9453 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9454 end if;
9456 if Is_Tagged_Type (T) then
9458 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9459 -- concurrent record type (which has the list of primitive
9460 -- operations).
9462 if Ada_Version >= Ada_2005
9463 and then Is_Concurrent_Type (T)
9464 then
9465 Set_Corresponding_Record_Type (Def_Id,
9466 Corresponding_Record_Type (T));
9467 else
9468 Set_Direct_Primitive_Operations (Def_Id,
9469 Direct_Primitive_Operations (T));
9470 end if;
9472 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9473 end if;
9475 -- Subtypes introduced by component declarations do not need to be
9476 -- marked as delayed, and do not get freeze nodes, because the semantics
9477 -- verifies that the parents of the subtypes are frozen before the
9478 -- enclosing record is frozen.
9480 if not Is_Type (Scope (Def_Id)) then
9481 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9483 if Is_Private_Type (T)
9484 and then Present (Full_View (T))
9485 then
9486 Conditional_Delay (Def_Id, Full_View (T));
9487 else
9488 Conditional_Delay (Def_Id, T);
9489 end if;
9490 end if;
9492 if Is_Record_Type (T) then
9493 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9495 if Has_Discrs
9496 and then not Is_Empty_Elmt_List (Elist)
9497 and then not For_Access
9498 then
9499 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9500 elsif not For_Access then
9501 Set_Cloned_Subtype (Def_Id, T);
9502 end if;
9503 end if;
9504 end Build_Discriminated_Subtype;
9506 ---------------------------
9507 -- Build_Itype_Reference --
9508 ---------------------------
9510 procedure Build_Itype_Reference
9511 (Ityp : Entity_Id;
9512 Nod : Node_Id)
9514 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9515 begin
9517 -- Itype references are only created for use by the back-end
9519 if Inside_A_Generic then
9520 return;
9521 else
9522 Set_Itype (IR, Ityp);
9523 Insert_After (Nod, IR);
9524 end if;
9525 end Build_Itype_Reference;
9527 ------------------------
9528 -- Build_Scalar_Bound --
9529 ------------------------
9531 function Build_Scalar_Bound
9532 (Bound : Node_Id;
9533 Par_T : Entity_Id;
9534 Der_T : Entity_Id) return Node_Id
9536 New_Bound : Entity_Id;
9538 begin
9539 -- Note: not clear why this is needed, how can the original bound
9540 -- be unanalyzed at this point? and if it is, what business do we
9541 -- have messing around with it? and why is the base type of the
9542 -- parent type the right type for the resolution. It probably is
9543 -- not. It is OK for the new bound we are creating, but not for
9544 -- the old one??? Still if it never happens, no problem.
9546 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9548 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9549 New_Bound := New_Copy (Bound);
9550 Set_Etype (New_Bound, Der_T);
9551 Set_Analyzed (New_Bound);
9553 elsif Is_Entity_Name (Bound) then
9554 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9556 -- The following is almost certainly wrong. What business do we have
9557 -- relocating a node (Bound) that is presumably still attached to
9558 -- the tree elsewhere???
9560 else
9561 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9562 end if;
9564 Set_Etype (New_Bound, Der_T);
9565 return New_Bound;
9566 end Build_Scalar_Bound;
9568 --------------------------------
9569 -- Build_Underlying_Full_View --
9570 --------------------------------
9572 procedure Build_Underlying_Full_View
9573 (N : Node_Id;
9574 Typ : Entity_Id;
9575 Par : Entity_Id)
9577 Loc : constant Source_Ptr := Sloc (N);
9578 Subt : constant Entity_Id :=
9579 Make_Defining_Identifier
9580 (Loc, New_External_Name (Chars (Typ), 'S'));
9582 Constr : Node_Id;
9583 Indic : Node_Id;
9584 C : Node_Id;
9585 Id : Node_Id;
9587 procedure Set_Discriminant_Name (Id : Node_Id);
9588 -- If the derived type has discriminants, they may rename discriminants
9589 -- of the parent. When building the full view of the parent, we need to
9590 -- recover the names of the original discriminants if the constraint is
9591 -- given by named associations.
9593 ---------------------------
9594 -- Set_Discriminant_Name --
9595 ---------------------------
9597 procedure Set_Discriminant_Name (Id : Node_Id) is
9598 Disc : Entity_Id;
9600 begin
9601 Set_Original_Discriminant (Id, Empty);
9603 if Has_Discriminants (Typ) then
9604 Disc := First_Discriminant (Typ);
9605 while Present (Disc) loop
9606 if Chars (Disc) = Chars (Id)
9607 and then Present (Corresponding_Discriminant (Disc))
9608 then
9609 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9610 end if;
9611 Next_Discriminant (Disc);
9612 end loop;
9613 end if;
9614 end Set_Discriminant_Name;
9616 -- Start of processing for Build_Underlying_Full_View
9618 begin
9619 if Nkind (N) = N_Full_Type_Declaration then
9620 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9622 elsif Nkind (N) = N_Subtype_Declaration then
9623 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9625 elsif Nkind (N) = N_Component_Declaration then
9626 Constr :=
9627 New_Copy_Tree
9628 (Constraint (Subtype_Indication (Component_Definition (N))));
9630 else
9631 raise Program_Error;
9632 end if;
9634 C := First (Constraints (Constr));
9635 while Present (C) loop
9636 if Nkind (C) = N_Discriminant_Association then
9637 Id := First (Selector_Names (C));
9638 while Present (Id) loop
9639 Set_Discriminant_Name (Id);
9640 Next (Id);
9641 end loop;
9642 end if;
9644 Next (C);
9645 end loop;
9647 Indic :=
9648 Make_Subtype_Declaration (Loc,
9649 Defining_Identifier => Subt,
9650 Subtype_Indication =>
9651 Make_Subtype_Indication (Loc,
9652 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9653 Constraint => New_Copy_Tree (Constr)));
9655 -- If this is a component subtype for an outer itype, it is not
9656 -- a list member, so simply set the parent link for analysis: if
9657 -- the enclosing type does not need to be in a declarative list,
9658 -- neither do the components.
9660 if Is_List_Member (N)
9661 and then Nkind (N) /= N_Component_Declaration
9662 then
9663 Insert_Before (N, Indic);
9664 else
9665 Set_Parent (Indic, Parent (N));
9666 end if;
9668 Analyze (Indic);
9669 Set_Underlying_Full_View (Typ, Full_View (Subt));
9670 end Build_Underlying_Full_View;
9672 -------------------------------
9673 -- Check_Abstract_Overriding --
9674 -------------------------------
9676 procedure Check_Abstract_Overriding (T : Entity_Id) is
9677 Alias_Subp : Entity_Id;
9678 Elmt : Elmt_Id;
9679 Op_List : Elist_Id;
9680 Subp : Entity_Id;
9681 Type_Def : Node_Id;
9683 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9684 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9685 -- which has pragma Implemented already set. Check whether Subp's entity
9686 -- kind conforms to the implementation kind of the overridden routine.
9688 procedure Check_Pragma_Implemented
9689 (Subp : Entity_Id;
9690 Iface_Subp : Entity_Id);
9691 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9692 -- Iface_Subp and both entities have pragma Implemented already set on
9693 -- them. Check whether the two implementation kinds are conforming.
9695 procedure Inherit_Pragma_Implemented
9696 (Subp : Entity_Id;
9697 Iface_Subp : Entity_Id);
9698 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9699 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9700 -- Propagate the implementation kind of Iface_Subp to Subp.
9702 ------------------------------
9703 -- Check_Pragma_Implemented --
9704 ------------------------------
9706 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9707 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9708 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9709 Subp_Alias : constant Entity_Id := Alias (Subp);
9710 Contr_Typ : Entity_Id;
9711 Impl_Subp : Entity_Id;
9713 begin
9714 -- Subp must have an alias since it is a hidden entity used to link
9715 -- an interface subprogram to its overriding counterpart.
9717 pragma Assert (Present (Subp_Alias));
9719 -- Handle aliases to synchronized wrappers
9721 Impl_Subp := Subp_Alias;
9723 if Is_Primitive_Wrapper (Impl_Subp) then
9724 Impl_Subp := Wrapped_Entity (Impl_Subp);
9725 end if;
9727 -- Extract the type of the controlling formal
9729 Contr_Typ := Etype (First_Formal (Subp_Alias));
9731 if Is_Concurrent_Record_Type (Contr_Typ) then
9732 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9733 end if;
9735 -- An interface subprogram whose implementation kind is By_Entry must
9736 -- be implemented by an entry.
9738 if Impl_Kind = Name_By_Entry
9739 and then Ekind (Impl_Subp) /= E_Entry
9740 then
9741 Error_Msg_Node_2 := Iface_Alias;
9742 Error_Msg_NE
9743 ("type & must implement abstract subprogram & with an entry",
9744 Subp_Alias, Contr_Typ);
9746 elsif Impl_Kind = Name_By_Protected_Procedure then
9748 -- An interface subprogram whose implementation kind is By_
9749 -- Protected_Procedure cannot be implemented by a primitive
9750 -- procedure of a task type.
9752 if Ekind (Contr_Typ) /= E_Protected_Type then
9753 Error_Msg_Node_2 := Contr_Typ;
9754 Error_Msg_NE
9755 ("interface subprogram & cannot be implemented by a " &
9756 "primitive procedure of task type &", Subp_Alias,
9757 Iface_Alias);
9759 -- An interface subprogram whose implementation kind is By_
9760 -- Protected_Procedure must be implemented by a procedure.
9762 elsif Ekind (Impl_Subp) /= E_Procedure then
9763 Error_Msg_Node_2 := Iface_Alias;
9764 Error_Msg_NE
9765 ("type & must implement abstract subprogram & with a " &
9766 "procedure", Subp_Alias, Contr_Typ);
9768 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9769 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9770 then
9771 Error_Msg_Name_1 := Impl_Kind;
9772 Error_Msg_N
9773 ("overriding operation& must have synchronization%",
9774 Subp_Alias);
9775 end if;
9777 -- If primitive has Optional synchronization, overriding operation
9778 -- must match if it has an explicit synchronization..
9780 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9781 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9782 then
9783 Error_Msg_Name_1 := Impl_Kind;
9784 Error_Msg_N
9785 ("overriding operation& must have syncrhonization%",
9786 Subp_Alias);
9787 end if;
9788 end Check_Pragma_Implemented;
9790 ------------------------------
9791 -- Check_Pragma_Implemented --
9792 ------------------------------
9794 procedure Check_Pragma_Implemented
9795 (Subp : Entity_Id;
9796 Iface_Subp : Entity_Id)
9798 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9799 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9801 begin
9802 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9803 -- and overriding subprogram are different. In general this is an
9804 -- error except when the implementation kind of the overridden
9805 -- subprograms is By_Any or Optional.
9807 if Iface_Kind /= Subp_Kind
9808 and then Iface_Kind /= Name_By_Any
9809 and then Iface_Kind /= Name_Optional
9810 then
9811 if Iface_Kind = Name_By_Entry then
9812 Error_Msg_N
9813 ("incompatible implementation kind, overridden subprogram " &
9814 "is marked By_Entry", Subp);
9815 else
9816 Error_Msg_N
9817 ("incompatible implementation kind, overridden subprogram " &
9818 "is marked By_Protected_Procedure", Subp);
9819 end if;
9820 end if;
9821 end Check_Pragma_Implemented;
9823 --------------------------------
9824 -- Inherit_Pragma_Implemented --
9825 --------------------------------
9827 procedure Inherit_Pragma_Implemented
9828 (Subp : Entity_Id;
9829 Iface_Subp : Entity_Id)
9831 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9832 Loc : constant Source_Ptr := Sloc (Subp);
9833 Impl_Prag : Node_Id;
9835 begin
9836 -- Since the implementation kind is stored as a representation item
9837 -- rather than a flag, create a pragma node.
9839 Impl_Prag :=
9840 Make_Pragma (Loc,
9841 Chars => Name_Implemented,
9842 Pragma_Argument_Associations => New_List (
9843 Make_Pragma_Argument_Association (Loc,
9844 Expression => New_Occurrence_Of (Subp, Loc)),
9846 Make_Pragma_Argument_Association (Loc,
9847 Expression => Make_Identifier (Loc, Iface_Kind))));
9849 -- The pragma doesn't need to be analyzed because it is internally
9850 -- built. It is safe to directly register it as a rep item since we
9851 -- are only interested in the characters of the implementation kind.
9853 Record_Rep_Item (Subp, Impl_Prag);
9854 end Inherit_Pragma_Implemented;
9856 -- Start of processing for Check_Abstract_Overriding
9858 begin
9859 Op_List := Primitive_Operations (T);
9861 -- Loop to check primitive operations
9863 Elmt := First_Elmt (Op_List);
9864 while Present (Elmt) loop
9865 Subp := Node (Elmt);
9866 Alias_Subp := Alias (Subp);
9868 -- Inherited subprograms are identified by the fact that they do not
9869 -- come from source, and the associated source location is the
9870 -- location of the first subtype of the derived type.
9872 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9873 -- subprograms that "require overriding".
9875 -- Special exception, do not complain about failure to override the
9876 -- stream routines _Input and _Output, as well as the primitive
9877 -- operations used in dispatching selects since we always provide
9878 -- automatic overridings for these subprograms.
9880 -- Also ignore this rule for convention CIL since .NET libraries
9881 -- do bizarre things with interfaces???
9883 -- The partial view of T may have been a private extension, for
9884 -- which inherited functions dispatching on result are abstract.
9885 -- If the full view is a null extension, there is no need for
9886 -- overriding in Ada 2005, but wrappers need to be built for them
9887 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9889 if Is_Null_Extension (T)
9890 and then Has_Controlling_Result (Subp)
9891 and then Ada_Version >= Ada_2005
9892 and then Present (Alias_Subp)
9893 and then not Comes_From_Source (Subp)
9894 and then not Is_Abstract_Subprogram (Alias_Subp)
9895 and then not Is_Access_Type (Etype (Subp))
9896 then
9897 null;
9899 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9900 -- processing because this check is done with the aliased
9901 -- entity
9903 elsif Present (Interface_Alias (Subp)) then
9904 null;
9906 elsif (Is_Abstract_Subprogram (Subp)
9907 or else Requires_Overriding (Subp)
9908 or else
9909 (Has_Controlling_Result (Subp)
9910 and then Present (Alias_Subp)
9911 and then not Comes_From_Source (Subp)
9912 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9913 and then not Is_TSS (Subp, TSS_Stream_Input)
9914 and then not Is_TSS (Subp, TSS_Stream_Output)
9915 and then not Is_Abstract_Type (T)
9916 and then Convention (T) /= Convention_CIL
9917 and then not Is_Predefined_Interface_Primitive (Subp)
9919 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9920 -- with abstract interface types because the check will be done
9921 -- with the aliased entity (otherwise we generate a duplicated
9922 -- error message).
9924 and then not Present (Interface_Alias (Subp))
9925 then
9926 if Present (Alias_Subp) then
9928 -- Only perform the check for a derived subprogram when the
9929 -- type has an explicit record extension. This avoids incorrect
9930 -- flagging of abstract subprograms for the case of a type
9931 -- without an extension that is derived from a formal type
9932 -- with a tagged actual (can occur within a private part).
9934 -- Ada 2005 (AI-391): In the case of an inherited function with
9935 -- a controlling result of the type, the rule does not apply if
9936 -- the type is a null extension (unless the parent function
9937 -- itself is abstract, in which case the function must still be
9938 -- be overridden). The expander will generate an overriding
9939 -- wrapper function calling the parent subprogram (see
9940 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9942 Type_Def := Type_Definition (Parent (T));
9944 if Nkind (Type_Def) = N_Derived_Type_Definition
9945 and then Present (Record_Extension_Part (Type_Def))
9946 and then
9947 (Ada_Version < Ada_2005
9948 or else not Is_Null_Extension (T)
9949 or else Ekind (Subp) = E_Procedure
9950 or else not Has_Controlling_Result (Subp)
9951 or else Is_Abstract_Subprogram (Alias_Subp)
9952 or else Requires_Overriding (Subp)
9953 or else Is_Access_Type (Etype (Subp)))
9954 then
9955 -- Avoid reporting error in case of abstract predefined
9956 -- primitive inherited from interface type because the
9957 -- body of internally generated predefined primitives
9958 -- of tagged types are generated later by Freeze_Type
9960 if Is_Interface (Root_Type (T))
9961 and then Is_Abstract_Subprogram (Subp)
9962 and then Is_Predefined_Dispatching_Operation (Subp)
9963 and then not Comes_From_Source (Ultimate_Alias (Subp))
9964 then
9965 null;
9967 -- A null extension is not obliged to override an inherited
9968 -- procedure subject to pragma Extensions_Visible with value
9969 -- False and at least one controlling OUT parameter
9970 -- (SPARK RM 6.1.7(6)).
9972 elsif Is_Null_Extension (T)
9973 and then Is_EVF_Procedure (Subp)
9974 then
9975 null;
9977 else
9978 Error_Msg_NE
9979 ("type must be declared abstract or & overridden",
9980 T, Subp);
9982 -- Traverse the whole chain of aliased subprograms to
9983 -- complete the error notification. This is especially
9984 -- useful for traceability of the chain of entities when
9985 -- the subprogram corresponds with an interface
9986 -- subprogram (which may be defined in another package).
9988 if Present (Alias_Subp) then
9989 declare
9990 E : Entity_Id;
9992 begin
9993 E := Subp;
9994 while Present (Alias (E)) loop
9996 -- Avoid reporting redundant errors on entities
9997 -- inherited from interfaces
9999 if Sloc (E) /= Sloc (T) then
10000 Error_Msg_Sloc := Sloc (E);
10001 Error_Msg_NE
10002 ("\& has been inherited #", T, Subp);
10003 end if;
10005 E := Alias (E);
10006 end loop;
10008 Error_Msg_Sloc := Sloc (E);
10010 -- AI05-0068: report if there is an overriding
10011 -- non-abstract subprogram that is invisible.
10013 if Is_Hidden (E)
10014 and then not Is_Abstract_Subprogram (E)
10015 then
10016 Error_Msg_NE
10017 ("\& subprogram# is not visible",
10018 T, Subp);
10020 -- Clarify the case where a non-null extension must
10021 -- override inherited procedure subject to pragma
10022 -- Extensions_Visible with value False and at least
10023 -- one controlling OUT param.
10025 elsif Is_EVF_Procedure (E) then
10026 Error_Msg_NE
10027 ("\& # is subject to Extensions_Visible False",
10028 T, Subp);
10030 else
10031 Error_Msg_NE
10032 ("\& has been inherited from subprogram #",
10033 T, Subp);
10034 end if;
10035 end;
10036 end if;
10037 end if;
10039 -- Ada 2005 (AI-345): Protected or task type implementing
10040 -- abstract interfaces.
10042 elsif Is_Concurrent_Record_Type (T)
10043 and then Present (Interfaces (T))
10044 then
10045 -- If an inherited subprogram is implemented by a protected
10046 -- procedure or an entry, then the first parameter of the
10047 -- inherited subprogram shall be of mode OUT or IN OUT, or
10048 -- an access-to-variable parameter (RM 9.4(11.9/3))
10050 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
10051 and then Ekind (First_Formal (Subp)) = E_In_Parameter
10052 and then Ekind (Subp) /= E_Function
10053 and then not Is_Predefined_Dispatching_Operation (Subp)
10054 then
10055 Error_Msg_PT (T, Subp);
10057 -- Some other kind of overriding failure
10059 else
10060 Error_Msg_NE
10061 ("interface subprogram & must be overridden",
10062 T, Subp);
10064 -- Examine primitive operations of synchronized type,
10065 -- to find homonyms that have the wrong profile.
10067 declare
10068 Prim : Entity_Id;
10070 begin
10071 Prim :=
10072 First_Entity (Corresponding_Concurrent_Type (T));
10073 while Present (Prim) loop
10074 if Chars (Prim) = Chars (Subp) then
10075 Error_Msg_NE
10076 ("profile is not type conformant with "
10077 & "prefixed view profile of "
10078 & "inherited operation&", Prim, Subp);
10079 end if;
10081 Next_Entity (Prim);
10082 end loop;
10083 end;
10084 end if;
10085 end if;
10087 else
10088 Error_Msg_Node_2 := T;
10089 Error_Msg_N
10090 ("abstract subprogram& not allowed for type&", Subp);
10092 -- Also post unconditional warning on the type (unconditional
10093 -- so that if there are more than one of these cases, we get
10094 -- them all, and not just the first one).
10096 Error_Msg_Node_2 := Subp;
10097 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10098 end if;
10100 -- A subprogram subject to pragma Extensions_Visible with value
10101 -- "True" cannot override a subprogram subject to the same pragma
10102 -- with value "False" (SPARK RM 6.1.7(5)).
10104 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10105 and then Present (Overridden_Operation (Subp))
10106 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10107 Extensions_Visible_False
10108 then
10109 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10110 Error_Msg_N
10111 ("subprogram & with Extensions_Visible True cannot override "
10112 & "subprogram # with Extensions_Visible False", Subp);
10113 end if;
10115 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10117 -- Subp is an expander-generated procedure which maps an interface
10118 -- alias to a protected wrapper. The interface alias is flagged by
10119 -- pragma Implemented. Ensure that Subp is a procedure when the
10120 -- implementation kind is By_Protected_Procedure or an entry when
10121 -- By_Entry.
10123 if Ada_Version >= Ada_2012
10124 and then Is_Hidden (Subp)
10125 and then Present (Interface_Alias (Subp))
10126 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10127 then
10128 Check_Pragma_Implemented (Subp);
10129 end if;
10131 -- Subp is an interface primitive which overrides another interface
10132 -- primitive marked with pragma Implemented.
10134 if Ada_Version >= Ada_2012
10135 and then Present (Overridden_Operation (Subp))
10136 and then Has_Rep_Pragma
10137 (Overridden_Operation (Subp), Name_Implemented)
10138 then
10139 -- If the overriding routine is also marked by Implemented, check
10140 -- that the two implementation kinds are conforming.
10142 if Has_Rep_Pragma (Subp, Name_Implemented) then
10143 Check_Pragma_Implemented
10144 (Subp => Subp,
10145 Iface_Subp => Overridden_Operation (Subp));
10147 -- Otherwise the overriding routine inherits the implementation
10148 -- kind from the overridden subprogram.
10150 else
10151 Inherit_Pragma_Implemented
10152 (Subp => Subp,
10153 Iface_Subp => Overridden_Operation (Subp));
10154 end if;
10155 end if;
10157 -- If the operation is a wrapper for a synchronized primitive, it
10158 -- may be called indirectly through a dispatching select. We assume
10159 -- that it will be referenced elsewhere indirectly, and suppress
10160 -- warnings about an unused entity.
10162 if Is_Primitive_Wrapper (Subp)
10163 and then Present (Wrapped_Entity (Subp))
10164 then
10165 Set_Referenced (Wrapped_Entity (Subp));
10166 end if;
10168 Next_Elmt (Elmt);
10169 end loop;
10170 end Check_Abstract_Overriding;
10172 ------------------------------------------------
10173 -- Check_Access_Discriminant_Requires_Limited --
10174 ------------------------------------------------
10176 procedure Check_Access_Discriminant_Requires_Limited
10177 (D : Node_Id;
10178 Loc : Node_Id)
10180 begin
10181 -- A discriminant_specification for an access discriminant shall appear
10182 -- only in the declaration for a task or protected type, or for a type
10183 -- with the reserved word 'limited' in its definition or in one of its
10184 -- ancestors (RM 3.7(10)).
10186 -- AI-0063: The proper condition is that type must be immutably limited,
10187 -- or else be a partial view.
10189 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10190 if Is_Limited_View (Current_Scope)
10191 or else
10192 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10193 and then Limited_Present (Parent (Current_Scope)))
10194 then
10195 null;
10197 else
10198 Error_Msg_N
10199 ("access discriminants allowed only for limited types", Loc);
10200 end if;
10201 end if;
10202 end Check_Access_Discriminant_Requires_Limited;
10204 -----------------------------------
10205 -- Check_Aliased_Component_Types --
10206 -----------------------------------
10208 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10209 C : Entity_Id;
10211 begin
10212 -- ??? Also need to check components of record extensions, but not
10213 -- components of protected types (which are always limited).
10215 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10216 -- types to be unconstrained. This is safe because it is illegal to
10217 -- create access subtypes to such types with explicit discriminant
10218 -- constraints.
10220 if not Is_Limited_Type (T) then
10221 if Ekind (T) = E_Record_Type then
10222 C := First_Component (T);
10223 while Present (C) loop
10224 if Is_Aliased (C)
10225 and then Has_Discriminants (Etype (C))
10226 and then not Is_Constrained (Etype (C))
10227 and then not In_Instance_Body
10228 and then Ada_Version < Ada_2005
10229 then
10230 Error_Msg_N
10231 ("aliased component must be constrained (RM 3.6(11))",
10233 end if;
10235 Next_Component (C);
10236 end loop;
10238 elsif Ekind (T) = E_Array_Type then
10239 if Has_Aliased_Components (T)
10240 and then Has_Discriminants (Component_Type (T))
10241 and then not Is_Constrained (Component_Type (T))
10242 and then not In_Instance_Body
10243 and then Ada_Version < Ada_2005
10244 then
10245 Error_Msg_N
10246 ("aliased component type must be constrained (RM 3.6(11))",
10248 end if;
10249 end if;
10250 end if;
10251 end Check_Aliased_Component_Types;
10253 ---------------------------------------
10254 -- Check_Anonymous_Access_Components --
10255 ---------------------------------------
10257 procedure Check_Anonymous_Access_Components
10258 (Typ_Decl : Node_Id;
10259 Typ : Entity_Id;
10260 Prev : Entity_Id;
10261 Comp_List : Node_Id)
10263 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10264 Anon_Access : Entity_Id;
10265 Acc_Def : Node_Id;
10266 Comp : Node_Id;
10267 Comp_Def : Node_Id;
10268 Decl : Node_Id;
10269 Type_Def : Node_Id;
10271 procedure Build_Incomplete_Type_Declaration;
10272 -- If the record type contains components that include an access to the
10273 -- current record, then create an incomplete type declaration for the
10274 -- record, to be used as the designated type of the anonymous access.
10275 -- This is done only once, and only if there is no previous partial
10276 -- view of the type.
10278 function Designates_T (Subt : Node_Id) return Boolean;
10279 -- Check whether a node designates the enclosing record type, or 'Class
10280 -- of that type
10282 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10283 -- Check whether an access definition includes a reference to
10284 -- the enclosing record type. The reference can be a subtype mark
10285 -- in the access definition itself, a 'Class attribute reference, or
10286 -- recursively a reference appearing in a parameter specification
10287 -- or result definition of an access_to_subprogram definition.
10289 --------------------------------------
10290 -- Build_Incomplete_Type_Declaration --
10291 --------------------------------------
10293 procedure Build_Incomplete_Type_Declaration is
10294 Decl : Node_Id;
10295 Inc_T : Entity_Id;
10296 H : Entity_Id;
10298 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10299 -- it's "is new ... with record" or else "is tagged record ...".
10301 Is_Tagged : constant Boolean :=
10302 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10303 and then
10304 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10305 or else
10306 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10307 and then Tagged_Present (Type_Definition (Typ_Decl)));
10309 begin
10310 -- If there is a previous partial view, no need to create a new one
10311 -- If the partial view, given by Prev, is incomplete, If Prev is
10312 -- a private declaration, full declaration is flagged accordingly.
10314 if Prev /= Typ then
10315 if Is_Tagged then
10316 Make_Class_Wide_Type (Prev);
10317 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10318 Set_Etype (Class_Wide_Type (Typ), Typ);
10319 end if;
10321 return;
10323 elsif Has_Private_Declaration (Typ) then
10325 -- If we refer to T'Class inside T, and T is the completion of a
10326 -- private type, then make sure the class-wide type exists.
10328 if Is_Tagged then
10329 Make_Class_Wide_Type (Typ);
10330 end if;
10332 return;
10334 -- If there was a previous anonymous access type, the incomplete
10335 -- type declaration will have been created already.
10337 elsif Present (Current_Entity (Typ))
10338 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10339 and then Full_View (Current_Entity (Typ)) = Typ
10340 then
10341 if Is_Tagged
10342 and then Comes_From_Source (Current_Entity (Typ))
10343 and then not Is_Tagged_Type (Current_Entity (Typ))
10344 then
10345 Make_Class_Wide_Type (Typ);
10346 Error_Msg_N
10347 ("incomplete view of tagged type should be declared tagged??",
10348 Parent (Current_Entity (Typ)));
10349 end if;
10350 return;
10352 else
10353 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10354 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10356 -- Type has already been inserted into the current scope. Remove
10357 -- it, and add incomplete declaration for type, so that subsequent
10358 -- anonymous access types can use it. The entity is unchained from
10359 -- the homonym list and from immediate visibility. After analysis,
10360 -- the entity in the incomplete declaration becomes immediately
10361 -- visible in the record declaration that follows.
10363 H := Current_Entity (Typ);
10365 if H = Typ then
10366 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10367 else
10368 while Present (H)
10369 and then Homonym (H) /= Typ
10370 loop
10371 H := Homonym (Typ);
10372 end loop;
10374 Set_Homonym (H, Homonym (Typ));
10375 end if;
10377 Insert_Before (Typ_Decl, Decl);
10378 Analyze (Decl);
10379 Set_Full_View (Inc_T, Typ);
10381 if Is_Tagged then
10383 -- Create a common class-wide type for both views, and set the
10384 -- Etype of the class-wide type to the full view.
10386 Make_Class_Wide_Type (Inc_T);
10387 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10388 Set_Etype (Class_Wide_Type (Typ), Typ);
10389 end if;
10390 end if;
10391 end Build_Incomplete_Type_Declaration;
10393 ------------------
10394 -- Designates_T --
10395 ------------------
10397 function Designates_T (Subt : Node_Id) return Boolean is
10398 Type_Id : constant Name_Id := Chars (Typ);
10400 function Names_T (Nam : Node_Id) return Boolean;
10401 -- The record type has not been introduced in the current scope
10402 -- yet, so we must examine the name of the type itself, either
10403 -- an identifier T, or an expanded name of the form P.T, where
10404 -- P denotes the current scope.
10406 -------------
10407 -- Names_T --
10408 -------------
10410 function Names_T (Nam : Node_Id) return Boolean is
10411 begin
10412 if Nkind (Nam) = N_Identifier then
10413 return Chars (Nam) = Type_Id;
10415 elsif Nkind (Nam) = N_Selected_Component then
10416 if Chars (Selector_Name (Nam)) = Type_Id then
10417 if Nkind (Prefix (Nam)) = N_Identifier then
10418 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10420 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10421 return Chars (Selector_Name (Prefix (Nam))) =
10422 Chars (Current_Scope);
10423 else
10424 return False;
10425 end if;
10427 else
10428 return False;
10429 end if;
10431 else
10432 return False;
10433 end if;
10434 end Names_T;
10436 -- Start of processing for Designates_T
10438 begin
10439 if Nkind (Subt) = N_Identifier then
10440 return Chars (Subt) = Type_Id;
10442 -- Reference can be through an expanded name which has not been
10443 -- analyzed yet, and which designates enclosing scopes.
10445 elsif Nkind (Subt) = N_Selected_Component then
10446 if Names_T (Subt) then
10447 return True;
10449 -- Otherwise it must denote an entity that is already visible.
10450 -- The access definition may name a subtype of the enclosing
10451 -- type, if there is a previous incomplete declaration for it.
10453 else
10454 Find_Selected_Component (Subt);
10455 return
10456 Is_Entity_Name (Subt)
10457 and then Scope (Entity (Subt)) = Current_Scope
10458 and then
10459 (Chars (Base_Type (Entity (Subt))) = Type_Id
10460 or else
10461 (Is_Class_Wide_Type (Entity (Subt))
10462 and then
10463 Chars (Etype (Base_Type (Entity (Subt)))) =
10464 Type_Id));
10465 end if;
10467 -- A reference to the current type may appear as the prefix of
10468 -- a 'Class attribute.
10470 elsif Nkind (Subt) = N_Attribute_Reference
10471 and then Attribute_Name (Subt) = Name_Class
10472 then
10473 return Names_T (Prefix (Subt));
10475 else
10476 return False;
10477 end if;
10478 end Designates_T;
10480 ----------------
10481 -- Mentions_T --
10482 ----------------
10484 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10485 Param_Spec : Node_Id;
10487 Acc_Subprg : constant Node_Id :=
10488 Access_To_Subprogram_Definition (Acc_Def);
10490 begin
10491 if No (Acc_Subprg) then
10492 return Designates_T (Subtype_Mark (Acc_Def));
10493 end if;
10495 -- Component is an access_to_subprogram: examine its formals,
10496 -- and result definition in the case of an access_to_function.
10498 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10499 while Present (Param_Spec) loop
10500 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10501 and then Mentions_T (Parameter_Type (Param_Spec))
10502 then
10503 return True;
10505 elsif Designates_T (Parameter_Type (Param_Spec)) then
10506 return True;
10507 end if;
10509 Next (Param_Spec);
10510 end loop;
10512 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10513 if Nkind (Result_Definition (Acc_Subprg)) =
10514 N_Access_Definition
10515 then
10516 return Mentions_T (Result_Definition (Acc_Subprg));
10517 else
10518 return Designates_T (Result_Definition (Acc_Subprg));
10519 end if;
10520 end if;
10522 return False;
10523 end Mentions_T;
10525 -- Start of processing for Check_Anonymous_Access_Components
10527 begin
10528 if No (Comp_List) then
10529 return;
10530 end if;
10532 Comp := First (Component_Items (Comp_List));
10533 while Present (Comp) loop
10534 if Nkind (Comp) = N_Component_Declaration
10535 and then Present
10536 (Access_Definition (Component_Definition (Comp)))
10537 and then
10538 Mentions_T (Access_Definition (Component_Definition (Comp)))
10539 then
10540 Comp_Def := Component_Definition (Comp);
10541 Acc_Def :=
10542 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10544 Build_Incomplete_Type_Declaration;
10545 Anon_Access := Make_Temporary (Loc, 'S');
10547 -- Create a declaration for the anonymous access type: either
10548 -- an access_to_object or an access_to_subprogram.
10550 if Present (Acc_Def) then
10551 if Nkind (Acc_Def) = N_Access_Function_Definition then
10552 Type_Def :=
10553 Make_Access_Function_Definition (Loc,
10554 Parameter_Specifications =>
10555 Parameter_Specifications (Acc_Def),
10556 Result_Definition => Result_Definition (Acc_Def));
10557 else
10558 Type_Def :=
10559 Make_Access_Procedure_Definition (Loc,
10560 Parameter_Specifications =>
10561 Parameter_Specifications (Acc_Def));
10562 end if;
10564 else
10565 Type_Def :=
10566 Make_Access_To_Object_Definition (Loc,
10567 Subtype_Indication =>
10568 Relocate_Node
10569 (Subtype_Mark (Access_Definition (Comp_Def))));
10571 Set_Constant_Present
10572 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10573 Set_All_Present
10574 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10575 end if;
10577 Set_Null_Exclusion_Present
10578 (Type_Def,
10579 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10581 Decl :=
10582 Make_Full_Type_Declaration (Loc,
10583 Defining_Identifier => Anon_Access,
10584 Type_Definition => Type_Def);
10586 Insert_Before (Typ_Decl, Decl);
10587 Analyze (Decl);
10589 -- If an access to subprogram, create the extra formals
10591 if Present (Acc_Def) then
10592 Create_Extra_Formals (Designated_Type (Anon_Access));
10594 -- If an access to object, preserve entity of designated type,
10595 -- for ASIS use, before rewriting the component definition.
10597 else
10598 declare
10599 Desig : Entity_Id;
10601 begin
10602 Desig := Entity (Subtype_Indication (Type_Def));
10604 -- If the access definition is to the current record,
10605 -- the visible entity at this point is an incomplete
10606 -- type. Retrieve the full view to simplify ASIS queries
10608 if Ekind (Desig) = E_Incomplete_Type then
10609 Desig := Full_View (Desig);
10610 end if;
10612 Set_Entity
10613 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10614 end;
10615 end if;
10617 Rewrite (Comp_Def,
10618 Make_Component_Definition (Loc,
10619 Subtype_Indication =>
10620 New_Occurrence_Of (Anon_Access, Loc)));
10622 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10623 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10624 else
10625 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10626 end if;
10628 Set_Is_Local_Anonymous_Access (Anon_Access);
10629 end if;
10631 Next (Comp);
10632 end loop;
10634 if Present (Variant_Part (Comp_List)) then
10635 declare
10636 V : Node_Id;
10637 begin
10638 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10639 while Present (V) loop
10640 Check_Anonymous_Access_Components
10641 (Typ_Decl, Typ, Prev, Component_List (V));
10642 Next_Non_Pragma (V);
10643 end loop;
10644 end;
10645 end if;
10646 end Check_Anonymous_Access_Components;
10648 ----------------------
10649 -- Check_Completion --
10650 ----------------------
10652 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10653 E : Entity_Id;
10655 procedure Post_Error;
10656 -- Post error message for lack of completion for entity E
10658 ----------------
10659 -- Post_Error --
10660 ----------------
10662 procedure Post_Error is
10664 procedure Missing_Body;
10665 -- Output missing body message
10667 ------------------
10668 -- Missing_Body --
10669 ------------------
10671 procedure Missing_Body is
10672 begin
10673 -- Spec is in same unit, so we can post on spec
10675 if In_Same_Source_Unit (Body_Id, E) then
10676 Error_Msg_N ("missing body for &", E);
10678 -- Spec is in a separate unit, so we have to post on the body
10680 else
10681 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10682 end if;
10683 end Missing_Body;
10685 -- Start of processing for Post_Error
10687 begin
10688 if not Comes_From_Source (E) then
10690 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10692 -- It may be an anonymous protected type created for a
10693 -- single variable. Post error on variable, if present.
10695 declare
10696 Var : Entity_Id;
10698 begin
10699 Var := First_Entity (Current_Scope);
10700 while Present (Var) loop
10701 exit when Etype (Var) = E
10702 and then Comes_From_Source (Var);
10704 Next_Entity (Var);
10705 end loop;
10707 if Present (Var) then
10708 E := Var;
10709 end if;
10710 end;
10711 end if;
10712 end if;
10714 -- If a generated entity has no completion, then either previous
10715 -- semantic errors have disabled the expansion phase, or else we had
10716 -- missing subunits, or else we are compiling without expansion,
10717 -- or else something is very wrong.
10719 if not Comes_From_Source (E) then
10720 pragma Assert
10721 (Serious_Errors_Detected > 0
10722 or else Configurable_Run_Time_Violations > 0
10723 or else Subunits_Missing
10724 or else not Expander_Active);
10725 return;
10727 -- Here for source entity
10729 else
10730 -- Here if no body to post the error message, so we post the error
10731 -- on the declaration that has no completion. This is not really
10732 -- the right place to post it, think about this later ???
10734 if No (Body_Id) then
10735 if Is_Type (E) then
10736 Error_Msg_NE
10737 ("missing full declaration for }", Parent (E), E);
10738 else
10739 Error_Msg_NE ("missing body for &", Parent (E), E);
10740 end if;
10742 -- Package body has no completion for a declaration that appears
10743 -- in the corresponding spec. Post error on the body, with a
10744 -- reference to the non-completed declaration.
10746 else
10747 Error_Msg_Sloc := Sloc (E);
10749 if Is_Type (E) then
10750 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10752 elsif Is_Overloadable (E)
10753 and then Current_Entity_In_Scope (E) /= E
10754 then
10755 -- It may be that the completion is mistyped and appears as
10756 -- a distinct overloading of the entity.
10758 declare
10759 Candidate : constant Entity_Id :=
10760 Current_Entity_In_Scope (E);
10761 Decl : constant Node_Id :=
10762 Unit_Declaration_Node (Candidate);
10764 begin
10765 if Is_Overloadable (Candidate)
10766 and then Ekind (Candidate) = Ekind (E)
10767 and then Nkind (Decl) = N_Subprogram_Body
10768 and then Acts_As_Spec (Decl)
10769 then
10770 Check_Type_Conformant (Candidate, E);
10772 else
10773 Missing_Body;
10774 end if;
10775 end;
10777 else
10778 Missing_Body;
10779 end if;
10780 end if;
10781 end if;
10782 end Post_Error;
10784 -- Local variables
10786 Pack_Id : constant Entity_Id := Current_Scope;
10788 -- Start of processing for Check_Completion
10790 begin
10791 E := First_Entity (Pack_Id);
10792 while Present (E) loop
10793 if Is_Intrinsic_Subprogram (E) then
10794 null;
10796 -- A Ghost entity declared in a non-Ghost package does not force the
10797 -- need for a body (SPARK RM 6.9(11)).
10799 elsif not Is_Ghost_Entity (Pack_Id) and then Is_Ghost_Entity (E) then
10800 null;
10802 -- The following situation requires special handling: a child unit
10803 -- that appears in the context clause of the body of its parent:
10805 -- procedure Parent.Child (...);
10807 -- with Parent.Child;
10808 -- package body Parent is
10810 -- Here Parent.Child appears as a local entity, but should not be
10811 -- flagged as requiring completion, because it is a compilation
10812 -- unit.
10814 -- Ignore missing completion for a subprogram that does not come from
10815 -- source (including the _Call primitive operation of RAS types,
10816 -- which has to have the flag Comes_From_Source for other purposes):
10817 -- we assume that the expander will provide the missing completion.
10818 -- In case of previous errors, other expansion actions that provide
10819 -- bodies for null procedures with not be invoked, so inhibit message
10820 -- in those cases.
10822 -- Note that E_Operator is not in the list that follows, because
10823 -- this kind is reserved for predefined operators, that are
10824 -- intrinsic and do not need completion.
10826 elsif Ekind_In (E, E_Function,
10827 E_Procedure,
10828 E_Generic_Function,
10829 E_Generic_Procedure)
10830 then
10831 if Has_Completion (E) then
10832 null;
10834 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10835 null;
10837 elsif Is_Subprogram (E)
10838 and then (not Comes_From_Source (E)
10839 or else Chars (E) = Name_uCall)
10840 then
10841 null;
10843 elsif
10844 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10845 then
10846 null;
10848 elsif Nkind (Parent (E)) = N_Procedure_Specification
10849 and then Null_Present (Parent (E))
10850 and then Serious_Errors_Detected > 0
10851 then
10852 null;
10854 else
10855 Post_Error;
10856 end if;
10858 elsif Is_Entry (E) then
10859 if not Has_Completion (E) and then
10860 (Ekind (Scope (E)) = E_Protected_Object
10861 or else Ekind (Scope (E)) = E_Protected_Type)
10862 then
10863 Post_Error;
10864 end if;
10866 elsif Is_Package_Or_Generic_Package (E) then
10867 if Unit_Requires_Body (E) then
10868 if not Has_Completion (E)
10869 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10870 N_Compilation_Unit
10871 then
10872 Post_Error;
10873 end if;
10875 elsif not Is_Child_Unit (E) then
10876 May_Need_Implicit_Body (E);
10877 end if;
10879 -- A formal incomplete type (Ada 2012) does not require a completion;
10880 -- other incomplete type declarations do.
10882 elsif Ekind (E) = E_Incomplete_Type
10883 and then No (Underlying_Type (E))
10884 and then not Is_Generic_Type (E)
10885 then
10886 Post_Error;
10888 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10889 and then not Has_Completion (E)
10890 then
10891 Post_Error;
10893 -- A single task declared in the current scope is a constant, verify
10894 -- that the body of its anonymous type is in the same scope. If the
10895 -- task is defined elsewhere, this may be a renaming declaration for
10896 -- which no completion is needed.
10898 elsif Ekind (E) = E_Constant
10899 and then Ekind (Etype (E)) = E_Task_Type
10900 and then not Has_Completion (Etype (E))
10901 and then Scope (Etype (E)) = Current_Scope
10902 then
10903 Post_Error;
10905 elsif Ekind (E) = E_Protected_Object
10906 and then not Has_Completion (Etype (E))
10907 then
10908 Post_Error;
10910 elsif Ekind (E) = E_Record_Type then
10911 if Is_Tagged_Type (E) then
10912 Check_Abstract_Overriding (E);
10913 Check_Conventions (E);
10914 end if;
10916 Check_Aliased_Component_Types (E);
10918 elsif Ekind (E) = E_Array_Type then
10919 Check_Aliased_Component_Types (E);
10921 end if;
10923 Next_Entity (E);
10924 end loop;
10925 end Check_Completion;
10927 ------------------------------------
10928 -- Check_CPP_Type_Has_No_Defaults --
10929 ------------------------------------
10931 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10932 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10933 Clist : Node_Id;
10934 Comp : Node_Id;
10936 begin
10937 -- Obtain the component list
10939 if Nkind (Tdef) = N_Record_Definition then
10940 Clist := Component_List (Tdef);
10941 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10942 Clist := Component_List (Record_Extension_Part (Tdef));
10943 end if;
10945 -- Check all components to ensure no default expressions
10947 if Present (Clist) then
10948 Comp := First (Component_Items (Clist));
10949 while Present (Comp) loop
10950 if Present (Expression (Comp)) then
10951 Error_Msg_N
10952 ("component of imported 'C'P'P type cannot have "
10953 & "default expression", Expression (Comp));
10954 end if;
10956 Next (Comp);
10957 end loop;
10958 end if;
10959 end Check_CPP_Type_Has_No_Defaults;
10961 ----------------------------
10962 -- Check_Delta_Expression --
10963 ----------------------------
10965 procedure Check_Delta_Expression (E : Node_Id) is
10966 begin
10967 if not (Is_Real_Type (Etype (E))) then
10968 Wrong_Type (E, Any_Real);
10970 elsif not Is_OK_Static_Expression (E) then
10971 Flag_Non_Static_Expr
10972 ("non-static expression used for delta value!", E);
10974 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10975 Error_Msg_N ("delta expression must be positive", E);
10977 else
10978 return;
10979 end if;
10981 -- If any of above errors occurred, then replace the incorrect
10982 -- expression by the real 0.1, which should prevent further errors.
10984 Rewrite (E,
10985 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10986 Analyze_And_Resolve (E, Standard_Float);
10987 end Check_Delta_Expression;
10989 -----------------------------
10990 -- Check_Digits_Expression --
10991 -----------------------------
10993 procedure Check_Digits_Expression (E : Node_Id) is
10994 begin
10995 if not (Is_Integer_Type (Etype (E))) then
10996 Wrong_Type (E, Any_Integer);
10998 elsif not Is_OK_Static_Expression (E) then
10999 Flag_Non_Static_Expr
11000 ("non-static expression used for digits value!", E);
11002 elsif Expr_Value (E) <= 0 then
11003 Error_Msg_N ("digits value must be greater than zero", E);
11005 else
11006 return;
11007 end if;
11009 -- If any of above errors occurred, then replace the incorrect
11010 -- expression by the integer 1, which should prevent further errors.
11012 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11013 Analyze_And_Resolve (E, Standard_Integer);
11015 end Check_Digits_Expression;
11017 --------------------------
11018 -- Check_Initialization --
11019 --------------------------
11021 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11022 begin
11023 -- Special processing for limited types
11025 if Is_Limited_Type (T)
11026 and then not In_Instance
11027 and then not In_Inlined_Body
11028 then
11029 if not OK_For_Limited_Init (T, Exp) then
11031 -- In GNAT mode, this is just a warning, to allow it to be evilly
11032 -- turned off. Otherwise it is a real error.
11034 if GNAT_Mode then
11035 Error_Msg_N
11036 ("??cannot initialize entities of limited type!", Exp);
11038 elsif Ada_Version < Ada_2005 then
11040 -- The side effect removal machinery may generate illegal Ada
11041 -- code to avoid the usage of access types and 'reference in
11042 -- SPARK mode. Since this is legal code with respect to theorem
11043 -- proving, do not emit the error.
11045 if GNATprove_Mode
11046 and then Nkind (Exp) = N_Function_Call
11047 and then Nkind (Parent (Exp)) = N_Object_Declaration
11048 and then not Comes_From_Source
11049 (Defining_Identifier (Parent (Exp)))
11050 then
11051 null;
11053 else
11054 Error_Msg_N
11055 ("cannot initialize entities of limited type", Exp);
11056 Explain_Limited_Type (T, Exp);
11057 end if;
11059 else
11060 -- Specialize error message according to kind of illegal
11061 -- initial expression.
11063 if Nkind (Exp) = N_Type_Conversion
11064 and then Nkind (Expression (Exp)) = N_Function_Call
11065 then
11066 Error_Msg_N
11067 ("illegal context for call"
11068 & " to function with limited result", Exp);
11070 else
11071 Error_Msg_N
11072 ("initialization of limited object requires aggregate "
11073 & "or function call", Exp);
11074 end if;
11075 end if;
11076 end if;
11077 end if;
11079 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11080 -- set unless we can be sure that no range check is required.
11082 if (GNATprove_Mode or not Expander_Active)
11083 and then Is_Scalar_Type (T)
11084 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11085 then
11086 Set_Do_Range_Check (Exp);
11087 end if;
11088 end Check_Initialization;
11090 ----------------------
11091 -- Check_Interfaces --
11092 ----------------------
11094 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11095 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11097 Iface : Node_Id;
11098 Iface_Def : Node_Id;
11099 Iface_Typ : Entity_Id;
11100 Parent_Node : Node_Id;
11102 Is_Task : Boolean := False;
11103 -- Set True if parent type or any progenitor is a task interface
11105 Is_Protected : Boolean := False;
11106 -- Set True if parent type or any progenitor is a protected interface
11108 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11109 -- Check that a progenitor is compatible with declaration. If an error
11110 -- message is output, it is posted on Error_Node.
11112 ------------------
11113 -- Check_Ifaces --
11114 ------------------
11116 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11117 Iface_Id : constant Entity_Id :=
11118 Defining_Identifier (Parent (Iface_Def));
11119 Type_Def : Node_Id;
11121 begin
11122 if Nkind (N) = N_Private_Extension_Declaration then
11123 Type_Def := N;
11124 else
11125 Type_Def := Type_Definition (N);
11126 end if;
11128 if Is_Task_Interface (Iface_Id) then
11129 Is_Task := True;
11131 elsif Is_Protected_Interface (Iface_Id) then
11132 Is_Protected := True;
11133 end if;
11135 if Is_Synchronized_Interface (Iface_Id) then
11137 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11138 -- extension derived from a synchronized interface must explicitly
11139 -- be declared synchronized, because the full view will be a
11140 -- synchronized type.
11142 if Nkind (N) = N_Private_Extension_Declaration then
11143 if not Synchronized_Present (N) then
11144 Error_Msg_NE
11145 ("private extension of& must be explicitly synchronized",
11146 N, Iface_Id);
11147 end if;
11149 -- However, by 3.9.4(16/2), a full type that is a record extension
11150 -- is never allowed to derive from a synchronized interface (note
11151 -- that interfaces must be excluded from this check, because those
11152 -- are represented by derived type definitions in some cases).
11154 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11155 and then not Interface_Present (Type_Definition (N))
11156 then
11157 Error_Msg_N ("record extension cannot derive from synchronized "
11158 & "interface", Error_Node);
11159 end if;
11160 end if;
11162 -- Check that the characteristics of the progenitor are compatible
11163 -- with the explicit qualifier in the declaration.
11164 -- The check only applies to qualifiers that come from source.
11165 -- Limited_Present also appears in the declaration of corresponding
11166 -- records, and the check does not apply to them.
11168 if Limited_Present (Type_Def)
11169 and then not
11170 Is_Concurrent_Record_Type (Defining_Identifier (N))
11171 then
11172 if Is_Limited_Interface (Parent_Type)
11173 and then not Is_Limited_Interface (Iface_Id)
11174 then
11175 Error_Msg_NE
11176 ("progenitor & must be limited interface",
11177 Error_Node, Iface_Id);
11179 elsif
11180 (Task_Present (Iface_Def)
11181 or else Protected_Present (Iface_Def)
11182 or else Synchronized_Present (Iface_Def))
11183 and then Nkind (N) /= N_Private_Extension_Declaration
11184 and then not Error_Posted (N)
11185 then
11186 Error_Msg_NE
11187 ("progenitor & must be limited interface",
11188 Error_Node, Iface_Id);
11189 end if;
11191 -- Protected interfaces can only inherit from limited, synchronized
11192 -- or protected interfaces.
11194 elsif Nkind (N) = N_Full_Type_Declaration
11195 and then Protected_Present (Type_Def)
11196 then
11197 if Limited_Present (Iface_Def)
11198 or else Synchronized_Present (Iface_Def)
11199 or else Protected_Present (Iface_Def)
11200 then
11201 null;
11203 elsif Task_Present (Iface_Def) then
11204 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11205 & "from task interface", Error_Node);
11207 else
11208 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11209 & "from non-limited interface", Error_Node);
11210 end if;
11212 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11213 -- limited and synchronized.
11215 elsif Synchronized_Present (Type_Def) then
11216 if Limited_Present (Iface_Def)
11217 or else Synchronized_Present (Iface_Def)
11218 then
11219 null;
11221 elsif Protected_Present (Iface_Def)
11222 and then Nkind (N) /= N_Private_Extension_Declaration
11223 then
11224 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11225 & "from protected interface", Error_Node);
11227 elsif Task_Present (Iface_Def)
11228 and then Nkind (N) /= N_Private_Extension_Declaration
11229 then
11230 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11231 & "from task interface", Error_Node);
11233 elsif not Is_Limited_Interface (Iface_Id) then
11234 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11235 & "from non-limited interface", Error_Node);
11236 end if;
11238 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11239 -- synchronized or task interfaces.
11241 elsif Nkind (N) = N_Full_Type_Declaration
11242 and then Task_Present (Type_Def)
11243 then
11244 if Limited_Present (Iface_Def)
11245 or else Synchronized_Present (Iface_Def)
11246 or else Task_Present (Iface_Def)
11247 then
11248 null;
11250 elsif Protected_Present (Iface_Def) then
11251 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11252 & "protected interface", Error_Node);
11254 else
11255 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11256 & "non-limited interface", Error_Node);
11257 end if;
11258 end if;
11259 end Check_Ifaces;
11261 -- Start of processing for Check_Interfaces
11263 begin
11264 if Is_Interface (Parent_Type) then
11265 if Is_Task_Interface (Parent_Type) then
11266 Is_Task := True;
11268 elsif Is_Protected_Interface (Parent_Type) then
11269 Is_Protected := True;
11270 end if;
11271 end if;
11273 if Nkind (N) = N_Private_Extension_Declaration then
11275 -- Check that progenitors are compatible with declaration
11277 Iface := First (Interface_List (Def));
11278 while Present (Iface) loop
11279 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11281 Parent_Node := Parent (Base_Type (Iface_Typ));
11282 Iface_Def := Type_Definition (Parent_Node);
11284 if not Is_Interface (Iface_Typ) then
11285 Diagnose_Interface (Iface, Iface_Typ);
11286 else
11287 Check_Ifaces (Iface_Def, Iface);
11288 end if;
11290 Next (Iface);
11291 end loop;
11293 if Is_Task and Is_Protected then
11294 Error_Msg_N
11295 ("type cannot derive from task and protected interface", N);
11296 end if;
11298 return;
11299 end if;
11301 -- Full type declaration of derived type.
11302 -- Check compatibility with parent if it is interface type
11304 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11305 and then Is_Interface (Parent_Type)
11306 then
11307 Parent_Node := Parent (Parent_Type);
11309 -- More detailed checks for interface varieties
11311 Check_Ifaces
11312 (Iface_Def => Type_Definition (Parent_Node),
11313 Error_Node => Subtype_Indication (Type_Definition (N)));
11314 end if;
11316 Iface := First (Interface_List (Def));
11317 while Present (Iface) loop
11318 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11320 Parent_Node := Parent (Base_Type (Iface_Typ));
11321 Iface_Def := Type_Definition (Parent_Node);
11323 if not Is_Interface (Iface_Typ) then
11324 Diagnose_Interface (Iface, Iface_Typ);
11326 else
11327 -- "The declaration of a specific descendant of an interface
11328 -- type freezes the interface type" RM 13.14
11330 Freeze_Before (N, Iface_Typ);
11331 Check_Ifaces (Iface_Def, Error_Node => Iface);
11332 end if;
11334 Next (Iface);
11335 end loop;
11337 if Is_Task and Is_Protected then
11338 Error_Msg_N
11339 ("type cannot derive from task and protected interface", N);
11340 end if;
11341 end Check_Interfaces;
11343 ------------------------------------
11344 -- Check_Or_Process_Discriminants --
11345 ------------------------------------
11347 -- If an incomplete or private type declaration was already given for the
11348 -- type, the discriminants may have already been processed if they were
11349 -- present on the incomplete declaration. In this case a full conformance
11350 -- check has been performed in Find_Type_Name, and we then recheck here
11351 -- some properties that can't be checked on the partial view alone.
11352 -- Otherwise we call Process_Discriminants.
11354 procedure Check_Or_Process_Discriminants
11355 (N : Node_Id;
11356 T : Entity_Id;
11357 Prev : Entity_Id := Empty)
11359 begin
11360 if Has_Discriminants (T) then
11362 -- Discriminants are already set on T if they were already present
11363 -- on the partial view. Make them visible to component declarations.
11365 declare
11366 D : Entity_Id;
11367 -- Discriminant on T (full view) referencing expr on partial view
11369 Prev_D : Entity_Id;
11370 -- Entity of corresponding discriminant on partial view
11372 New_D : Node_Id;
11373 -- Discriminant specification for full view, expression is
11374 -- the syntactic copy on full view (which has been checked for
11375 -- conformance with partial view), only used here to post error
11376 -- message.
11378 begin
11379 D := First_Discriminant (T);
11380 New_D := First (Discriminant_Specifications (N));
11381 while Present (D) loop
11382 Prev_D := Current_Entity (D);
11383 Set_Current_Entity (D);
11384 Set_Is_Immediately_Visible (D);
11385 Set_Homonym (D, Prev_D);
11387 -- Handle the case where there is an untagged partial view and
11388 -- the full view is tagged: must disallow discriminants with
11389 -- defaults, unless compiling for Ada 2012, which allows a
11390 -- limited tagged type to have defaulted discriminants (see
11391 -- AI05-0214). However, suppress error here if it was already
11392 -- reported on the default expression of the partial view.
11394 if Is_Tagged_Type (T)
11395 and then Present (Expression (Parent (D)))
11396 and then (not Is_Limited_Type (Current_Scope)
11397 or else Ada_Version < Ada_2012)
11398 and then not Error_Posted (Expression (Parent (D)))
11399 then
11400 if Ada_Version >= Ada_2012 then
11401 Error_Msg_N
11402 ("discriminants of nonlimited tagged type cannot have "
11403 & "defaults",
11404 Expression (New_D));
11405 else
11406 Error_Msg_N
11407 ("discriminants of tagged type cannot have defaults",
11408 Expression (New_D));
11409 end if;
11410 end if;
11412 -- Ada 2005 (AI-230): Access discriminant allowed in
11413 -- non-limited record types.
11415 if Ada_Version < Ada_2005 then
11417 -- This restriction gets applied to the full type here. It
11418 -- has already been applied earlier to the partial view.
11420 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11421 end if;
11423 Next_Discriminant (D);
11424 Next (New_D);
11425 end loop;
11426 end;
11428 elsif Present (Discriminant_Specifications (N)) then
11429 Process_Discriminants (N, Prev);
11430 end if;
11431 end Check_Or_Process_Discriminants;
11433 ----------------------
11434 -- Check_Real_Bound --
11435 ----------------------
11437 procedure Check_Real_Bound (Bound : Node_Id) is
11438 begin
11439 if not Is_Real_Type (Etype (Bound)) then
11440 Error_Msg_N
11441 ("bound in real type definition must be of real type", Bound);
11443 elsif not Is_OK_Static_Expression (Bound) then
11444 Flag_Non_Static_Expr
11445 ("non-static expression used for real type bound!", Bound);
11447 else
11448 return;
11449 end if;
11451 Rewrite
11452 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11453 Analyze (Bound);
11454 Resolve (Bound, Standard_Float);
11455 end Check_Real_Bound;
11457 ------------------------------
11458 -- Complete_Private_Subtype --
11459 ------------------------------
11461 procedure Complete_Private_Subtype
11462 (Priv : Entity_Id;
11463 Full : Entity_Id;
11464 Full_Base : Entity_Id;
11465 Related_Nod : Node_Id)
11467 Save_Next_Entity : Entity_Id;
11468 Save_Homonym : Entity_Id;
11470 begin
11471 -- Set semantic attributes for (implicit) private subtype completion.
11472 -- If the full type has no discriminants, then it is a copy of the
11473 -- full view of the base. Otherwise, it is a subtype of the base with
11474 -- a possible discriminant constraint. Save and restore the original
11475 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11476 -- not corrupt the entity chain.
11478 -- Note that the type of the full view is the same entity as the type
11479 -- of the partial view. In this fashion, the subtype has access to the
11480 -- correct view of the parent.
11482 Save_Next_Entity := Next_Entity (Full);
11483 Save_Homonym := Homonym (Priv);
11485 case Ekind (Full_Base) is
11486 when E_Record_Type |
11487 E_Record_Subtype |
11488 Class_Wide_Kind |
11489 Private_Kind |
11490 Task_Kind |
11491 Protected_Kind =>
11492 Copy_Node (Priv, Full);
11494 Set_Has_Discriminants
11495 (Full, Has_Discriminants (Full_Base));
11496 Set_Has_Unknown_Discriminants
11497 (Full, Has_Unknown_Discriminants (Full_Base));
11498 Set_First_Entity (Full, First_Entity (Full_Base));
11499 Set_Last_Entity (Full, Last_Entity (Full_Base));
11501 -- If the underlying base type is constrained, we know that the
11502 -- full view of the subtype is constrained as well (the converse
11503 -- is not necessarily true).
11505 if Is_Constrained (Full_Base) then
11506 Set_Is_Constrained (Full);
11507 end if;
11509 when others =>
11510 Copy_Node (Full_Base, Full);
11512 Set_Chars (Full, Chars (Priv));
11513 Conditional_Delay (Full, Priv);
11514 Set_Sloc (Full, Sloc (Priv));
11515 end case;
11517 Set_Next_Entity (Full, Save_Next_Entity);
11518 Set_Homonym (Full, Save_Homonym);
11519 Set_Associated_Node_For_Itype (Full, Related_Nod);
11521 -- Set common attributes for all subtypes: kind, convention, etc.
11523 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11524 Set_Convention (Full, Convention (Full_Base));
11526 -- The Etype of the full view is inconsistent. Gigi needs to see the
11527 -- structural full view, which is what the current scheme gives: the
11528 -- Etype of the full view is the etype of the full base. However, if the
11529 -- full base is a derived type, the full view then looks like a subtype
11530 -- of the parent, not a subtype of the full base. If instead we write:
11532 -- Set_Etype (Full, Full_Base);
11534 -- then we get inconsistencies in the front-end (confusion between
11535 -- views). Several outstanding bugs are related to this ???
11537 Set_Is_First_Subtype (Full, False);
11538 Set_Scope (Full, Scope (Priv));
11539 Set_Size_Info (Full, Full_Base);
11540 Set_RM_Size (Full, RM_Size (Full_Base));
11541 Set_Is_Itype (Full);
11543 -- A subtype of a private-type-without-discriminants, whose full-view
11544 -- has discriminants with default expressions, is not constrained.
11546 if not Has_Discriminants (Priv) then
11547 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11549 if Has_Discriminants (Full_Base) then
11550 Set_Discriminant_Constraint
11551 (Full, Discriminant_Constraint (Full_Base));
11553 -- The partial view may have been indefinite, the full view
11554 -- might not be.
11556 Set_Has_Unknown_Discriminants
11557 (Full, Has_Unknown_Discriminants (Full_Base));
11558 end if;
11559 end if;
11561 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11562 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11564 -- Freeze the private subtype entity if its parent is delayed, and not
11565 -- already frozen. We skip this processing if the type is an anonymous
11566 -- subtype of a record component, or is the corresponding record of a
11567 -- protected type, since ???
11569 if not Is_Type (Scope (Full)) then
11570 Set_Has_Delayed_Freeze (Full,
11571 Has_Delayed_Freeze (Full_Base)
11572 and then (not Is_Frozen (Full_Base)));
11573 end if;
11575 Set_Freeze_Node (Full, Empty);
11576 Set_Is_Frozen (Full, False);
11577 Set_Full_View (Priv, Full);
11579 if Has_Discriminants (Full) then
11580 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11581 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11583 if Has_Unknown_Discriminants (Full) then
11584 Set_Discriminant_Constraint (Full, No_Elist);
11585 end if;
11586 end if;
11588 if Ekind (Full_Base) = E_Record_Type
11589 and then Has_Discriminants (Full_Base)
11590 and then Has_Discriminants (Priv) -- might not, if errors
11591 and then not Has_Unknown_Discriminants (Priv)
11592 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11593 then
11594 Create_Constrained_Components
11595 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11597 -- If the full base is itself derived from private, build a congruent
11598 -- subtype of its underlying type, for use by the back end. For a
11599 -- constrained record component, the declaration cannot be placed on
11600 -- the component list, but it must nevertheless be built an analyzed, to
11601 -- supply enough information for Gigi to compute the size of component.
11603 elsif Ekind (Full_Base) in Private_Kind
11604 and then Is_Derived_Type (Full_Base)
11605 and then Has_Discriminants (Full_Base)
11606 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11607 then
11608 if not Is_Itype (Priv)
11609 and then
11610 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11611 then
11612 Build_Underlying_Full_View
11613 (Parent (Priv), Full, Etype (Full_Base));
11615 elsif Nkind (Related_Nod) = N_Component_Declaration then
11616 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11617 end if;
11619 elsif Is_Record_Type (Full_Base) then
11621 -- Show Full is simply a renaming of Full_Base
11623 Set_Cloned_Subtype (Full, Full_Base);
11624 end if;
11626 -- It is unsafe to share the bounds of a scalar type, because the Itype
11627 -- is elaborated on demand, and if a bound is non-static then different
11628 -- orders of elaboration in different units will lead to different
11629 -- external symbols.
11631 if Is_Scalar_Type (Full_Base) then
11632 Set_Scalar_Range (Full,
11633 Make_Range (Sloc (Related_Nod),
11634 Low_Bound =>
11635 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11636 High_Bound =>
11637 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11639 -- This completion inherits the bounds of the full parent, but if
11640 -- the parent is an unconstrained floating point type, so is the
11641 -- completion.
11643 if Is_Floating_Point_Type (Full_Base) then
11644 Set_Includes_Infinities
11645 (Scalar_Range (Full), Has_Infinities (Full_Base));
11646 end if;
11647 end if;
11649 -- ??? It seems that a lot of fields are missing that should be copied
11650 -- from Full_Base to Full. Here are some that are introduced in a
11651 -- non-disruptive way but a cleanup is necessary.
11653 if Is_Tagged_Type (Full_Base) then
11654 Set_Is_Tagged_Type (Full);
11655 Set_Direct_Primitive_Operations
11656 (Full, Direct_Primitive_Operations (Full_Base));
11657 Set_No_Tagged_Streams_Pragma
11658 (Full, No_Tagged_Streams_Pragma (Full_Base));
11660 -- Inherit class_wide type of full_base in case the partial view was
11661 -- not tagged. Otherwise it has already been created when the private
11662 -- subtype was analyzed.
11664 if No (Class_Wide_Type (Full)) then
11665 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11666 end if;
11668 -- If this is a subtype of a protected or task type, constrain its
11669 -- corresponding record, unless this is a subtype without constraints,
11670 -- i.e. a simple renaming as with an actual subtype in an instance.
11672 elsif Is_Concurrent_Type (Full_Base) then
11673 if Has_Discriminants (Full)
11674 and then Present (Corresponding_Record_Type (Full_Base))
11675 and then
11676 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11677 then
11678 Set_Corresponding_Record_Type (Full,
11679 Constrain_Corresponding_Record
11680 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11682 else
11683 Set_Corresponding_Record_Type (Full,
11684 Corresponding_Record_Type (Full_Base));
11685 end if;
11686 end if;
11688 -- Link rep item chain, and also setting of Has_Predicates from private
11689 -- subtype to full subtype, since we will need these on the full subtype
11690 -- to create the predicate function. Note that the full subtype may
11691 -- already have rep items, inherited from the full view of the base
11692 -- type, so we must be sure not to overwrite these entries.
11694 declare
11695 Append : Boolean;
11696 Item : Node_Id;
11697 Next_Item : Node_Id;
11699 begin
11700 Item := First_Rep_Item (Full);
11702 -- If no existing rep items on full type, we can just link directly
11703 -- to the list of items on the private type, if any exist.. Same if
11704 -- the rep items are only those inherited from the base
11706 if (No (Item)
11707 or else Nkind (Item) /= N_Aspect_Specification
11708 or else Entity (Item) = Full_Base)
11709 and then Present (First_Rep_Item (Priv))
11710 then
11711 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11713 -- Otherwise, search to the end of items currently linked to the full
11714 -- subtype and append the private items to the end. However, if Priv
11715 -- and Full already have the same list of rep items, then the append
11716 -- is not done, as that would create a circularity.
11718 elsif Item /= First_Rep_Item (Priv) then
11719 Append := True;
11720 loop
11721 Next_Item := Next_Rep_Item (Item);
11722 exit when No (Next_Item);
11723 Item := Next_Item;
11725 -- If the private view has aspect specifications, the full view
11726 -- inherits them. Since these aspects may already have been
11727 -- attached to the full view during derivation, do not append
11728 -- them if already present.
11730 if Item = First_Rep_Item (Priv) then
11731 Append := False;
11732 exit;
11733 end if;
11734 end loop;
11736 -- And link the private type items at the end of the chain
11738 if Append then
11739 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11740 end if;
11741 end if;
11742 end;
11744 -- Make sure Has_Predicates is set on full type if it is set on the
11745 -- private type. Note that it may already be set on the full type and
11746 -- if so, we don't want to unset it.
11748 if Has_Predicates (Priv) then
11749 Set_Has_Predicates (Full);
11750 end if;
11751 end Complete_Private_Subtype;
11753 ----------------------------
11754 -- Constant_Redeclaration --
11755 ----------------------------
11757 procedure Constant_Redeclaration
11758 (Id : Entity_Id;
11759 N : Node_Id;
11760 T : out Entity_Id)
11762 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11763 Obj_Def : constant Node_Id := Object_Definition (N);
11764 New_T : Entity_Id;
11766 procedure Check_Possible_Deferred_Completion
11767 (Prev_Id : Entity_Id;
11768 Prev_Obj_Def : Node_Id;
11769 Curr_Obj_Def : Node_Id);
11770 -- Determine whether the two object definitions describe the partial
11771 -- and the full view of a constrained deferred constant. Generate
11772 -- a subtype for the full view and verify that it statically matches
11773 -- the subtype of the partial view.
11775 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11776 -- If deferred constant is an access type initialized with an allocator,
11777 -- check whether there is an illegal recursion in the definition,
11778 -- through a default value of some record subcomponent. This is normally
11779 -- detected when generating init procs, but requires this additional
11780 -- mechanism when expansion is disabled.
11782 ----------------------------------------
11783 -- Check_Possible_Deferred_Completion --
11784 ----------------------------------------
11786 procedure Check_Possible_Deferred_Completion
11787 (Prev_Id : Entity_Id;
11788 Prev_Obj_Def : Node_Id;
11789 Curr_Obj_Def : Node_Id)
11791 begin
11792 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11793 and then Present (Constraint (Prev_Obj_Def))
11794 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11795 and then Present (Constraint (Curr_Obj_Def))
11796 then
11797 declare
11798 Loc : constant Source_Ptr := Sloc (N);
11799 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11800 Decl : constant Node_Id :=
11801 Make_Subtype_Declaration (Loc,
11802 Defining_Identifier => Def_Id,
11803 Subtype_Indication =>
11804 Relocate_Node (Curr_Obj_Def));
11806 begin
11807 Insert_Before_And_Analyze (N, Decl);
11808 Set_Etype (Id, Def_Id);
11810 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11811 Error_Msg_Sloc := Sloc (Prev_Id);
11812 Error_Msg_N ("subtype does not statically match deferred "
11813 & "declaration #", N);
11814 end if;
11815 end;
11816 end if;
11817 end Check_Possible_Deferred_Completion;
11819 ---------------------------------
11820 -- Check_Recursive_Declaration --
11821 ---------------------------------
11823 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11824 Comp : Entity_Id;
11826 begin
11827 if Is_Record_Type (Typ) then
11828 Comp := First_Component (Typ);
11829 while Present (Comp) loop
11830 if Comes_From_Source (Comp) then
11831 if Present (Expression (Parent (Comp)))
11832 and then Is_Entity_Name (Expression (Parent (Comp)))
11833 and then Entity (Expression (Parent (Comp))) = Prev
11834 then
11835 Error_Msg_Sloc := Sloc (Parent (Comp));
11836 Error_Msg_NE
11837 ("illegal circularity with declaration for & #",
11838 N, Comp);
11839 return;
11841 elsif Is_Record_Type (Etype (Comp)) then
11842 Check_Recursive_Declaration (Etype (Comp));
11843 end if;
11844 end if;
11846 Next_Component (Comp);
11847 end loop;
11848 end if;
11849 end Check_Recursive_Declaration;
11851 -- Start of processing for Constant_Redeclaration
11853 begin
11854 if Nkind (Parent (Prev)) = N_Object_Declaration then
11855 if Nkind (Object_Definition
11856 (Parent (Prev))) = N_Subtype_Indication
11857 then
11858 -- Find type of new declaration. The constraints of the two
11859 -- views must match statically, but there is no point in
11860 -- creating an itype for the full view.
11862 if Nkind (Obj_Def) = N_Subtype_Indication then
11863 Find_Type (Subtype_Mark (Obj_Def));
11864 New_T := Entity (Subtype_Mark (Obj_Def));
11866 else
11867 Find_Type (Obj_Def);
11868 New_T := Entity (Obj_Def);
11869 end if;
11871 T := Etype (Prev);
11873 else
11874 -- The full view may impose a constraint, even if the partial
11875 -- view does not, so construct the subtype.
11877 New_T := Find_Type_Of_Object (Obj_Def, N);
11878 T := New_T;
11879 end if;
11881 else
11882 -- Current declaration is illegal, diagnosed below in Enter_Name
11884 T := Empty;
11885 New_T := Any_Type;
11886 end if;
11888 -- If previous full declaration or a renaming declaration exists, or if
11889 -- a homograph is present, let Enter_Name handle it, either with an
11890 -- error or with the removal of an overridden implicit subprogram.
11891 -- The previous one is a full declaration if it has an expression
11892 -- (which in the case of an aggregate is indicated by the Init flag).
11894 if Ekind (Prev) /= E_Constant
11895 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11896 or else Present (Expression (Parent (Prev)))
11897 or else Has_Init_Expression (Parent (Prev))
11898 or else Present (Full_View (Prev))
11899 then
11900 Enter_Name (Id);
11902 -- Verify that types of both declarations match, or else that both types
11903 -- are anonymous access types whose designated subtypes statically match
11904 -- (as allowed in Ada 2005 by AI-385).
11906 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11907 and then
11908 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11909 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11910 or else Is_Access_Constant (Etype (New_T)) /=
11911 Is_Access_Constant (Etype (Prev))
11912 or else Can_Never_Be_Null (Etype (New_T)) /=
11913 Can_Never_Be_Null (Etype (Prev))
11914 or else Null_Exclusion_Present (Parent (Prev)) /=
11915 Null_Exclusion_Present (Parent (Id))
11916 or else not Subtypes_Statically_Match
11917 (Designated_Type (Etype (Prev)),
11918 Designated_Type (Etype (New_T))))
11919 then
11920 Error_Msg_Sloc := Sloc (Prev);
11921 Error_Msg_N ("type does not match declaration#", N);
11922 Set_Full_View (Prev, Id);
11923 Set_Etype (Id, Any_Type);
11925 -- A deferred constant whose type is an anonymous array is always
11926 -- illegal (unless imported). A detailed error message might be
11927 -- helpful for Ada beginners.
11929 if Nkind (Object_Definition (Parent (Prev)))
11930 = N_Constrained_Array_Definition
11931 and then Nkind (Object_Definition (N))
11932 = N_Constrained_Array_Definition
11933 then
11934 Error_Msg_N ("\each anonymous array is a distinct type", N);
11935 Error_Msg_N ("a deferred constant must have a named type",
11936 Object_Definition (Parent (Prev)));
11937 end if;
11939 elsif
11940 Null_Exclusion_Present (Parent (Prev))
11941 and then not Null_Exclusion_Present (N)
11942 then
11943 Error_Msg_Sloc := Sloc (Prev);
11944 Error_Msg_N ("null-exclusion does not match declaration#", N);
11945 Set_Full_View (Prev, Id);
11946 Set_Etype (Id, Any_Type);
11948 -- If so, process the full constant declaration
11950 else
11951 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11952 -- the deferred declaration is constrained, then the subtype defined
11953 -- by the subtype_indication in the full declaration shall match it
11954 -- statically.
11956 Check_Possible_Deferred_Completion
11957 (Prev_Id => Prev,
11958 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11959 Curr_Obj_Def => Obj_Def);
11961 Set_Full_View (Prev, Id);
11962 Set_Is_Public (Id, Is_Public (Prev));
11963 Set_Is_Internal (Id);
11964 Append_Entity (Id, Current_Scope);
11966 -- Check ALIASED present if present before (RM 7.4(7))
11968 if Is_Aliased (Prev)
11969 and then not Aliased_Present (N)
11970 then
11971 Error_Msg_Sloc := Sloc (Prev);
11972 Error_Msg_N ("ALIASED required (see declaration #)", N);
11973 end if;
11975 -- Check that placement is in private part and that the incomplete
11976 -- declaration appeared in the visible part.
11978 if Ekind (Current_Scope) = E_Package
11979 and then not In_Private_Part (Current_Scope)
11980 then
11981 Error_Msg_Sloc := Sloc (Prev);
11982 Error_Msg_N
11983 ("full constant for declaration # must be in private part", N);
11985 elsif Ekind (Current_Scope) = E_Package
11986 and then
11987 List_Containing (Parent (Prev)) /=
11988 Visible_Declarations (Package_Specification (Current_Scope))
11989 then
11990 Error_Msg_N
11991 ("deferred constant must be declared in visible part",
11992 Parent (Prev));
11993 end if;
11995 if Is_Access_Type (T)
11996 and then Nkind (Expression (N)) = N_Allocator
11997 then
11998 Check_Recursive_Declaration (Designated_Type (T));
11999 end if;
12001 -- A deferred constant is a visible entity. If type has invariants,
12002 -- verify that the initial value satisfies them.
12004 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12005 Insert_After (N,
12006 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12007 end if;
12008 end if;
12009 end Constant_Redeclaration;
12011 ----------------------
12012 -- Constrain_Access --
12013 ----------------------
12015 procedure Constrain_Access
12016 (Def_Id : in out Entity_Id;
12017 S : Node_Id;
12018 Related_Nod : Node_Id)
12020 T : constant Entity_Id := Entity (Subtype_Mark (S));
12021 Desig_Type : constant Entity_Id := Designated_Type (T);
12022 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12023 Constraint_OK : Boolean := True;
12025 begin
12026 if Is_Array_Type (Desig_Type) then
12027 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12029 elsif (Is_Record_Type (Desig_Type)
12030 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12031 and then not Is_Constrained (Desig_Type)
12032 then
12033 -- ??? The following code is a temporary bypass to ignore a
12034 -- discriminant constraint on access type if it is constraining
12035 -- the current record. Avoid creating the implicit subtype of the
12036 -- record we are currently compiling since right now, we cannot
12037 -- handle these. For now, just return the access type itself.
12039 if Desig_Type = Current_Scope
12040 and then No (Def_Id)
12041 then
12042 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12043 Def_Id := Entity (Subtype_Mark (S));
12045 -- This call added to ensure that the constraint is analyzed
12046 -- (needed for a B test). Note that we still return early from
12047 -- this procedure to avoid recursive processing. ???
12049 Constrain_Discriminated_Type
12050 (Desig_Subtype, S, Related_Nod, For_Access => True);
12051 return;
12052 end if;
12054 -- Enforce rule that the constraint is illegal if there is an
12055 -- unconstrained view of the designated type. This means that the
12056 -- partial view (either a private type declaration or a derivation
12057 -- from a private type) has no discriminants. (Defect Report
12058 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12060 -- Rule updated for Ada 2005: The private type is said to have
12061 -- a constrained partial view, given that objects of the type
12062 -- can be declared. Furthermore, the rule applies to all access
12063 -- types, unlike the rule concerning default discriminants (see
12064 -- RM 3.7.1(7/3))
12066 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12067 and then Has_Private_Declaration (Desig_Type)
12068 and then In_Open_Scopes (Scope (Desig_Type))
12069 and then Has_Discriminants (Desig_Type)
12070 then
12071 declare
12072 Pack : constant Node_Id :=
12073 Unit_Declaration_Node (Scope (Desig_Type));
12074 Decls : List_Id;
12075 Decl : Node_Id;
12077 begin
12078 if Nkind (Pack) = N_Package_Declaration then
12079 Decls := Visible_Declarations (Specification (Pack));
12080 Decl := First (Decls);
12081 while Present (Decl) loop
12082 if (Nkind (Decl) = N_Private_Type_Declaration
12083 and then Chars (Defining_Identifier (Decl)) =
12084 Chars (Desig_Type))
12086 or else
12087 (Nkind (Decl) = N_Full_Type_Declaration
12088 and then
12089 Chars (Defining_Identifier (Decl)) =
12090 Chars (Desig_Type)
12091 and then Is_Derived_Type (Desig_Type)
12092 and then
12093 Has_Private_Declaration (Etype (Desig_Type)))
12094 then
12095 if No (Discriminant_Specifications (Decl)) then
12096 Error_Msg_N
12097 ("cannot constrain access type if designated "
12098 & "type has constrained partial view", S);
12099 end if;
12101 exit;
12102 end if;
12104 Next (Decl);
12105 end loop;
12106 end if;
12107 end;
12108 end if;
12110 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12111 For_Access => True);
12113 elsif Is_Concurrent_Type (Desig_Type)
12114 and then not Is_Constrained (Desig_Type)
12115 then
12116 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12118 else
12119 Error_Msg_N ("invalid constraint on access type", S);
12121 -- We simply ignore an invalid constraint
12123 Desig_Subtype := Desig_Type;
12124 Constraint_OK := False;
12125 end if;
12127 if No (Def_Id) then
12128 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12129 else
12130 Set_Ekind (Def_Id, E_Access_Subtype);
12131 end if;
12133 if Constraint_OK then
12134 Set_Etype (Def_Id, Base_Type (T));
12136 if Is_Private_Type (Desig_Type) then
12137 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12138 end if;
12139 else
12140 Set_Etype (Def_Id, Any_Type);
12141 end if;
12143 Set_Size_Info (Def_Id, T);
12144 Set_Is_Constrained (Def_Id, Constraint_OK);
12145 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12146 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12147 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12149 Conditional_Delay (Def_Id, T);
12151 -- AI-363 : Subtypes of general access types whose designated types have
12152 -- default discriminants are disallowed. In instances, the rule has to
12153 -- be checked against the actual, of which T is the subtype. In a
12154 -- generic body, the rule is checked assuming that the actual type has
12155 -- defaulted discriminants.
12157 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12158 if Ekind (Base_Type (T)) = E_General_Access_Type
12159 and then Has_Defaulted_Discriminants (Desig_Type)
12160 then
12161 if Ada_Version < Ada_2005 then
12162 Error_Msg_N
12163 ("access subtype of general access type would not " &
12164 "be allowed in Ada 2005?y?", S);
12165 else
12166 Error_Msg_N
12167 ("access subtype of general access type not allowed", S);
12168 end if;
12170 Error_Msg_N ("\discriminants have defaults", S);
12172 elsif Is_Access_Type (T)
12173 and then Is_Generic_Type (Desig_Type)
12174 and then Has_Discriminants (Desig_Type)
12175 and then In_Package_Body (Current_Scope)
12176 then
12177 if Ada_Version < Ada_2005 then
12178 Error_Msg_N
12179 ("access subtype would not be allowed in generic body "
12180 & "in Ada 2005?y?", S);
12181 else
12182 Error_Msg_N
12183 ("access subtype not allowed in generic body", S);
12184 end if;
12186 Error_Msg_N
12187 ("\designated type is a discriminated formal", S);
12188 end if;
12189 end if;
12190 end Constrain_Access;
12192 ---------------------
12193 -- Constrain_Array --
12194 ---------------------
12196 procedure Constrain_Array
12197 (Def_Id : in out Entity_Id;
12198 SI : Node_Id;
12199 Related_Nod : Node_Id;
12200 Related_Id : Entity_Id;
12201 Suffix : Character)
12203 C : constant Node_Id := Constraint (SI);
12204 Number_Of_Constraints : Nat := 0;
12205 Index : Node_Id;
12206 S, T : Entity_Id;
12207 Constraint_OK : Boolean := True;
12209 begin
12210 T := Entity (Subtype_Mark (SI));
12212 if Is_Access_Type (T) then
12213 T := Designated_Type (T);
12214 end if;
12216 -- If an index constraint follows a subtype mark in a subtype indication
12217 -- then the type or subtype denoted by the subtype mark must not already
12218 -- impose an index constraint. The subtype mark must denote either an
12219 -- unconstrained array type or an access type whose designated type
12220 -- is such an array type... (RM 3.6.1)
12222 if Is_Constrained (T) then
12223 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12224 Constraint_OK := False;
12226 else
12227 S := First (Constraints (C));
12228 while Present (S) loop
12229 Number_Of_Constraints := Number_Of_Constraints + 1;
12230 Next (S);
12231 end loop;
12233 -- In either case, the index constraint must provide a discrete
12234 -- range for each index of the array type and the type of each
12235 -- discrete range must be the same as that of the corresponding
12236 -- index. (RM 3.6.1)
12238 if Number_Of_Constraints /= Number_Dimensions (T) then
12239 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12240 Constraint_OK := False;
12242 else
12243 S := First (Constraints (C));
12244 Index := First_Index (T);
12245 Analyze (Index);
12247 -- Apply constraints to each index type
12249 for J in 1 .. Number_Of_Constraints loop
12250 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12251 Next (Index);
12252 Next (S);
12253 end loop;
12255 end if;
12256 end if;
12258 if No (Def_Id) then
12259 Def_Id :=
12260 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12261 Set_Parent (Def_Id, Related_Nod);
12263 else
12264 Set_Ekind (Def_Id, E_Array_Subtype);
12265 end if;
12267 Set_Size_Info (Def_Id, (T));
12268 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12269 Set_Etype (Def_Id, Base_Type (T));
12271 if Constraint_OK then
12272 Set_First_Index (Def_Id, First (Constraints (C)));
12273 else
12274 Set_First_Index (Def_Id, First_Index (T));
12275 end if;
12277 Set_Is_Constrained (Def_Id, True);
12278 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12279 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12281 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12282 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12284 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12285 -- We need to initialize the attribute because if Def_Id is previously
12286 -- analyzed through a limited_with clause, it will have the attributes
12287 -- of an incomplete type, one of which is an Elist that overlaps the
12288 -- Packed_Array_Impl_Type field.
12290 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12292 -- Build a freeze node if parent still needs one. Also make sure that
12293 -- the Depends_On_Private status is set because the subtype will need
12294 -- reprocessing at the time the base type does, and also we must set a
12295 -- conditional delay.
12297 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12298 Conditional_Delay (Def_Id, T);
12299 end Constrain_Array;
12301 ------------------------------
12302 -- Constrain_Component_Type --
12303 ------------------------------
12305 function Constrain_Component_Type
12306 (Comp : Entity_Id;
12307 Constrained_Typ : Entity_Id;
12308 Related_Node : Node_Id;
12309 Typ : Entity_Id;
12310 Constraints : Elist_Id) return Entity_Id
12312 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12313 Compon_Type : constant Entity_Id := Etype (Comp);
12315 function Build_Constrained_Array_Type
12316 (Old_Type : Entity_Id) return Entity_Id;
12317 -- If Old_Type is an array type, one of whose indexes is constrained
12318 -- by a discriminant, build an Itype whose constraint replaces the
12319 -- discriminant with its value in the constraint.
12321 function Build_Constrained_Discriminated_Type
12322 (Old_Type : Entity_Id) return Entity_Id;
12323 -- Ditto for record components
12325 function Build_Constrained_Access_Type
12326 (Old_Type : Entity_Id) return Entity_Id;
12327 -- Ditto for access types. Makes use of previous two functions, to
12328 -- constrain designated type.
12330 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12331 -- T is an array or discriminated type, C is a list of constraints
12332 -- that apply to T. This routine builds the constrained subtype.
12334 function Is_Discriminant (Expr : Node_Id) return Boolean;
12335 -- Returns True if Expr is a discriminant
12337 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12338 -- Find the value of discriminant Discrim in Constraint
12340 -----------------------------------
12341 -- Build_Constrained_Access_Type --
12342 -----------------------------------
12344 function Build_Constrained_Access_Type
12345 (Old_Type : Entity_Id) return Entity_Id
12347 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12348 Itype : Entity_Id;
12349 Desig_Subtype : Entity_Id;
12350 Scop : Entity_Id;
12352 begin
12353 -- if the original access type was not embedded in the enclosing
12354 -- type definition, there is no need to produce a new access
12355 -- subtype. In fact every access type with an explicit constraint
12356 -- generates an itype whose scope is the enclosing record.
12358 if not Is_Type (Scope (Old_Type)) then
12359 return Old_Type;
12361 elsif Is_Array_Type (Desig_Type) then
12362 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12364 elsif Has_Discriminants (Desig_Type) then
12366 -- This may be an access type to an enclosing record type for
12367 -- which we are constructing the constrained components. Return
12368 -- the enclosing record subtype. This is not always correct,
12369 -- but avoids infinite recursion. ???
12371 Desig_Subtype := Any_Type;
12373 for J in reverse 0 .. Scope_Stack.Last loop
12374 Scop := Scope_Stack.Table (J).Entity;
12376 if Is_Type (Scop)
12377 and then Base_Type (Scop) = Base_Type (Desig_Type)
12378 then
12379 Desig_Subtype := Scop;
12380 end if;
12382 exit when not Is_Type (Scop);
12383 end loop;
12385 if Desig_Subtype = Any_Type then
12386 Desig_Subtype :=
12387 Build_Constrained_Discriminated_Type (Desig_Type);
12388 end if;
12390 else
12391 return Old_Type;
12392 end if;
12394 if Desig_Subtype /= Desig_Type then
12396 -- The Related_Node better be here or else we won't be able
12397 -- to attach new itypes to a node in the tree.
12399 pragma Assert (Present (Related_Node));
12401 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12403 Set_Etype (Itype, Base_Type (Old_Type));
12404 Set_Size_Info (Itype, (Old_Type));
12405 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12406 Set_Depends_On_Private (Itype, Has_Private_Component
12407 (Old_Type));
12408 Set_Is_Access_Constant (Itype, Is_Access_Constant
12409 (Old_Type));
12411 -- The new itype needs freezing when it depends on a not frozen
12412 -- type and the enclosing subtype needs freezing.
12414 if Has_Delayed_Freeze (Constrained_Typ)
12415 and then not Is_Frozen (Constrained_Typ)
12416 then
12417 Conditional_Delay (Itype, Base_Type (Old_Type));
12418 end if;
12420 return Itype;
12422 else
12423 return Old_Type;
12424 end if;
12425 end Build_Constrained_Access_Type;
12427 ----------------------------------
12428 -- Build_Constrained_Array_Type --
12429 ----------------------------------
12431 function Build_Constrained_Array_Type
12432 (Old_Type : Entity_Id) return Entity_Id
12434 Lo_Expr : Node_Id;
12435 Hi_Expr : Node_Id;
12436 Old_Index : Node_Id;
12437 Range_Node : Node_Id;
12438 Constr_List : List_Id;
12440 Need_To_Create_Itype : Boolean := False;
12442 begin
12443 Old_Index := First_Index (Old_Type);
12444 while Present (Old_Index) loop
12445 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12447 if Is_Discriminant (Lo_Expr)
12448 or else
12449 Is_Discriminant (Hi_Expr)
12450 then
12451 Need_To_Create_Itype := True;
12452 end if;
12454 Next_Index (Old_Index);
12455 end loop;
12457 if Need_To_Create_Itype then
12458 Constr_List := New_List;
12460 Old_Index := First_Index (Old_Type);
12461 while Present (Old_Index) loop
12462 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12464 if Is_Discriminant (Lo_Expr) then
12465 Lo_Expr := Get_Discr_Value (Lo_Expr);
12466 end if;
12468 if Is_Discriminant (Hi_Expr) then
12469 Hi_Expr := Get_Discr_Value (Hi_Expr);
12470 end if;
12472 Range_Node :=
12473 Make_Range
12474 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12476 Append (Range_Node, To => Constr_List);
12478 Next_Index (Old_Index);
12479 end loop;
12481 return Build_Subtype (Old_Type, Constr_List);
12483 else
12484 return Old_Type;
12485 end if;
12486 end Build_Constrained_Array_Type;
12488 ------------------------------------------
12489 -- Build_Constrained_Discriminated_Type --
12490 ------------------------------------------
12492 function Build_Constrained_Discriminated_Type
12493 (Old_Type : Entity_Id) return Entity_Id
12495 Expr : Node_Id;
12496 Constr_List : List_Id;
12497 Old_Constraint : Elmt_Id;
12499 Need_To_Create_Itype : Boolean := False;
12501 begin
12502 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12503 while Present (Old_Constraint) loop
12504 Expr := Node (Old_Constraint);
12506 if Is_Discriminant (Expr) then
12507 Need_To_Create_Itype := True;
12508 end if;
12510 Next_Elmt (Old_Constraint);
12511 end loop;
12513 if Need_To_Create_Itype then
12514 Constr_List := New_List;
12516 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12517 while Present (Old_Constraint) loop
12518 Expr := Node (Old_Constraint);
12520 if Is_Discriminant (Expr) then
12521 Expr := Get_Discr_Value (Expr);
12522 end if;
12524 Append (New_Copy_Tree (Expr), To => Constr_List);
12526 Next_Elmt (Old_Constraint);
12527 end loop;
12529 return Build_Subtype (Old_Type, Constr_List);
12531 else
12532 return Old_Type;
12533 end if;
12534 end Build_Constrained_Discriminated_Type;
12536 -------------------
12537 -- Build_Subtype --
12538 -------------------
12540 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12541 Indic : Node_Id;
12542 Subtyp_Decl : Node_Id;
12543 Def_Id : Entity_Id;
12544 Btyp : Entity_Id := Base_Type (T);
12546 begin
12547 -- The Related_Node better be here or else we won't be able to
12548 -- attach new itypes to a node in the tree.
12550 pragma Assert (Present (Related_Node));
12552 -- If the view of the component's type is incomplete or private
12553 -- with unknown discriminants, then the constraint must be applied
12554 -- to the full type.
12556 if Has_Unknown_Discriminants (Btyp)
12557 and then Present (Underlying_Type (Btyp))
12558 then
12559 Btyp := Underlying_Type (Btyp);
12560 end if;
12562 Indic :=
12563 Make_Subtype_Indication (Loc,
12564 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12565 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12567 Def_Id := Create_Itype (Ekind (T), Related_Node);
12569 Subtyp_Decl :=
12570 Make_Subtype_Declaration (Loc,
12571 Defining_Identifier => Def_Id,
12572 Subtype_Indication => Indic);
12574 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12576 -- Itypes must be analyzed with checks off (see package Itypes)
12578 Analyze (Subtyp_Decl, Suppress => All_Checks);
12580 return Def_Id;
12581 end Build_Subtype;
12583 ---------------------
12584 -- Get_Discr_Value --
12585 ---------------------
12587 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12588 D : Entity_Id;
12589 E : Elmt_Id;
12591 begin
12592 -- The discriminant may be declared for the type, in which case we
12593 -- find it by iterating over the list of discriminants. If the
12594 -- discriminant is inherited from a parent type, it appears as the
12595 -- corresponding discriminant of the current type. This will be the
12596 -- case when constraining an inherited component whose constraint is
12597 -- given by a discriminant of the parent.
12599 D := First_Discriminant (Typ);
12600 E := First_Elmt (Constraints);
12602 while Present (D) loop
12603 if D = Entity (Discrim)
12604 or else D = CR_Discriminant (Entity (Discrim))
12605 or else Corresponding_Discriminant (D) = Entity (Discrim)
12606 then
12607 return Node (E);
12608 end if;
12610 Next_Discriminant (D);
12611 Next_Elmt (E);
12612 end loop;
12614 -- The Corresponding_Discriminant mechanism is incomplete, because
12615 -- the correspondence between new and old discriminants is not one
12616 -- to one: one new discriminant can constrain several old ones. In
12617 -- that case, scan sequentially the stored_constraint, the list of
12618 -- discriminants of the parents, and the constraints.
12620 -- Previous code checked for the present of the Stored_Constraint
12621 -- list for the derived type, but did not use it at all. Should it
12622 -- be present when the component is a discriminated task type?
12624 if Is_Derived_Type (Typ)
12625 and then Scope (Entity (Discrim)) = Etype (Typ)
12626 then
12627 D := First_Discriminant (Etype (Typ));
12628 E := First_Elmt (Constraints);
12629 while Present (D) loop
12630 if D = Entity (Discrim) then
12631 return Node (E);
12632 end if;
12634 Next_Discriminant (D);
12635 Next_Elmt (E);
12636 end loop;
12637 end if;
12639 -- Something is wrong if we did not find the value
12641 raise Program_Error;
12642 end Get_Discr_Value;
12644 ---------------------
12645 -- Is_Discriminant --
12646 ---------------------
12648 function Is_Discriminant (Expr : Node_Id) return Boolean is
12649 Discrim_Scope : Entity_Id;
12651 begin
12652 if Denotes_Discriminant (Expr) then
12653 Discrim_Scope := Scope (Entity (Expr));
12655 -- Either we have a reference to one of Typ's discriminants,
12657 pragma Assert (Discrim_Scope = Typ
12659 -- or to the discriminants of the parent type, in the case
12660 -- of a derivation of a tagged type with variants.
12662 or else Discrim_Scope = Etype (Typ)
12663 or else Full_View (Discrim_Scope) = Etype (Typ)
12665 -- or same as above for the case where the discriminants
12666 -- were declared in Typ's private view.
12668 or else (Is_Private_Type (Discrim_Scope)
12669 and then Chars (Discrim_Scope) = Chars (Typ))
12671 -- or else we are deriving from the full view and the
12672 -- discriminant is declared in the private entity.
12674 or else (Is_Private_Type (Typ)
12675 and then Chars (Discrim_Scope) = Chars (Typ))
12677 -- Or we are constrained the corresponding record of a
12678 -- synchronized type that completes a private declaration.
12680 or else (Is_Concurrent_Record_Type (Typ)
12681 and then
12682 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12684 -- or we have a class-wide type, in which case make sure the
12685 -- discriminant found belongs to the root type.
12687 or else (Is_Class_Wide_Type (Typ)
12688 and then Etype (Typ) = Discrim_Scope));
12690 return True;
12691 end if;
12693 -- In all other cases we have something wrong
12695 return False;
12696 end Is_Discriminant;
12698 -- Start of processing for Constrain_Component_Type
12700 begin
12701 if Nkind (Parent (Comp)) = N_Component_Declaration
12702 and then Comes_From_Source (Parent (Comp))
12703 and then Comes_From_Source
12704 (Subtype_Indication (Component_Definition (Parent (Comp))))
12705 and then
12706 Is_Entity_Name
12707 (Subtype_Indication (Component_Definition (Parent (Comp))))
12708 then
12709 return Compon_Type;
12711 elsif Is_Array_Type (Compon_Type) then
12712 return Build_Constrained_Array_Type (Compon_Type);
12714 elsif Has_Discriminants (Compon_Type) then
12715 return Build_Constrained_Discriminated_Type (Compon_Type);
12717 elsif Is_Access_Type (Compon_Type) then
12718 return Build_Constrained_Access_Type (Compon_Type);
12720 else
12721 return Compon_Type;
12722 end if;
12723 end Constrain_Component_Type;
12725 --------------------------
12726 -- Constrain_Concurrent --
12727 --------------------------
12729 -- For concurrent types, the associated record value type carries the same
12730 -- discriminants, so when we constrain a concurrent type, we must constrain
12731 -- the corresponding record type as well.
12733 procedure Constrain_Concurrent
12734 (Def_Id : in out Entity_Id;
12735 SI : Node_Id;
12736 Related_Nod : Node_Id;
12737 Related_Id : Entity_Id;
12738 Suffix : Character)
12740 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12741 -- case of a private subtype (needed when only doing semantic analysis).
12743 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12744 T_Val : Entity_Id;
12746 begin
12747 if Is_Access_Type (T_Ent) then
12748 T_Ent := Designated_Type (T_Ent);
12749 end if;
12751 T_Val := Corresponding_Record_Type (T_Ent);
12753 if Present (T_Val) then
12755 if No (Def_Id) then
12756 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12757 end if;
12759 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12761 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12762 Set_Corresponding_Record_Type (Def_Id,
12763 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12765 else
12766 -- If there is no associated record, expansion is disabled and this
12767 -- is a generic context. Create a subtype in any case, so that
12768 -- semantic analysis can proceed.
12770 if No (Def_Id) then
12771 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12772 end if;
12774 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12775 end if;
12776 end Constrain_Concurrent;
12778 ------------------------------------
12779 -- Constrain_Corresponding_Record --
12780 ------------------------------------
12782 function Constrain_Corresponding_Record
12783 (Prot_Subt : Entity_Id;
12784 Corr_Rec : Entity_Id;
12785 Related_Nod : Node_Id) return Entity_Id
12787 T_Sub : constant Entity_Id :=
12788 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12790 begin
12791 Set_Etype (T_Sub, Corr_Rec);
12792 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12793 Set_Is_Constrained (T_Sub, True);
12794 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12795 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12797 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12798 Set_Discriminant_Constraint
12799 (T_Sub, Discriminant_Constraint (Prot_Subt));
12800 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12801 Create_Constrained_Components
12802 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12803 end if;
12805 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12807 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12808 Conditional_Delay (T_Sub, Corr_Rec);
12810 else
12811 -- This is a component subtype: it will be frozen in the context of
12812 -- the enclosing record's init_proc, so that discriminant references
12813 -- are resolved to discriminals. (Note: we used to skip freezing
12814 -- altogether in that case, which caused errors downstream for
12815 -- components of a bit packed array type).
12817 Set_Has_Delayed_Freeze (T_Sub);
12818 end if;
12820 return T_Sub;
12821 end Constrain_Corresponding_Record;
12823 -----------------------
12824 -- Constrain_Decimal --
12825 -----------------------
12827 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12828 T : constant Entity_Id := Entity (Subtype_Mark (S));
12829 C : constant Node_Id := Constraint (S);
12830 Loc : constant Source_Ptr := Sloc (C);
12831 Range_Expr : Node_Id;
12832 Digits_Expr : Node_Id;
12833 Digits_Val : Uint;
12834 Bound_Val : Ureal;
12836 begin
12837 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12839 if Nkind (C) = N_Range_Constraint then
12840 Range_Expr := Range_Expression (C);
12841 Digits_Val := Digits_Value (T);
12843 else
12844 pragma Assert (Nkind (C) = N_Digits_Constraint);
12846 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12848 Digits_Expr := Digits_Expression (C);
12849 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12851 Check_Digits_Expression (Digits_Expr);
12852 Digits_Val := Expr_Value (Digits_Expr);
12854 if Digits_Val > Digits_Value (T) then
12855 Error_Msg_N
12856 ("digits expression is incompatible with subtype", C);
12857 Digits_Val := Digits_Value (T);
12858 end if;
12860 if Present (Range_Constraint (C)) then
12861 Range_Expr := Range_Expression (Range_Constraint (C));
12862 else
12863 Range_Expr := Empty;
12864 end if;
12865 end if;
12867 Set_Etype (Def_Id, Base_Type (T));
12868 Set_Size_Info (Def_Id, (T));
12869 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12870 Set_Delta_Value (Def_Id, Delta_Value (T));
12871 Set_Scale_Value (Def_Id, Scale_Value (T));
12872 Set_Small_Value (Def_Id, Small_Value (T));
12873 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12874 Set_Digits_Value (Def_Id, Digits_Val);
12876 -- Manufacture range from given digits value if no range present
12878 if No (Range_Expr) then
12879 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12880 Range_Expr :=
12881 Make_Range (Loc,
12882 Low_Bound =>
12883 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12884 High_Bound =>
12885 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12886 end if;
12888 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12889 Set_Discrete_RM_Size (Def_Id);
12891 -- Unconditionally delay the freeze, since we cannot set size
12892 -- information in all cases correctly until the freeze point.
12894 Set_Has_Delayed_Freeze (Def_Id);
12895 end Constrain_Decimal;
12897 ----------------------------------
12898 -- Constrain_Discriminated_Type --
12899 ----------------------------------
12901 procedure Constrain_Discriminated_Type
12902 (Def_Id : Entity_Id;
12903 S : Node_Id;
12904 Related_Nod : Node_Id;
12905 For_Access : Boolean := False)
12907 E : constant Entity_Id := Entity (Subtype_Mark (S));
12908 T : Entity_Id;
12909 C : Node_Id;
12910 Elist : Elist_Id := New_Elmt_List;
12912 procedure Fixup_Bad_Constraint;
12913 -- This is called after finding a bad constraint, and after having
12914 -- posted an appropriate error message. The mission is to leave the
12915 -- entity T in as reasonable state as possible.
12917 --------------------------
12918 -- Fixup_Bad_Constraint --
12919 --------------------------
12921 procedure Fixup_Bad_Constraint is
12922 begin
12923 -- Set a reasonable Ekind for the entity. For an incomplete type,
12924 -- we can't do much, but for other types, we can set the proper
12925 -- corresponding subtype kind.
12927 if Ekind (T) = E_Incomplete_Type then
12928 Set_Ekind (Def_Id, Ekind (T));
12929 else
12930 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12931 end if;
12933 -- Set Etype to the known type, to reduce chances of cascaded errors
12935 Set_Etype (Def_Id, E);
12936 Set_Error_Posted (Def_Id);
12937 end Fixup_Bad_Constraint;
12939 -- Start of processing for Constrain_Discriminated_Type
12941 begin
12942 C := Constraint (S);
12944 -- A discriminant constraint is only allowed in a subtype indication,
12945 -- after a subtype mark. This subtype mark must denote either a type
12946 -- with discriminants, or an access type whose designated type is a
12947 -- type with discriminants. A discriminant constraint specifies the
12948 -- values of these discriminants (RM 3.7.2(5)).
12950 T := Base_Type (Entity (Subtype_Mark (S)));
12952 if Is_Access_Type (T) then
12953 T := Designated_Type (T);
12954 end if;
12956 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12957 -- Avoid generating an error for access-to-incomplete subtypes.
12959 if Ada_Version >= Ada_2005
12960 and then Ekind (T) = E_Incomplete_Type
12961 and then Nkind (Parent (S)) = N_Subtype_Declaration
12962 and then not Is_Itype (Def_Id)
12963 then
12964 -- A little sanity check, emit an error message if the type
12965 -- has discriminants to begin with. Type T may be a regular
12966 -- incomplete type or imported via a limited with clause.
12968 if Has_Discriminants (T)
12969 or else (From_Limited_With (T)
12970 and then Present (Non_Limited_View (T))
12971 and then Nkind (Parent (Non_Limited_View (T))) =
12972 N_Full_Type_Declaration
12973 and then Present (Discriminant_Specifications
12974 (Parent (Non_Limited_View (T)))))
12975 then
12976 Error_Msg_N
12977 ("(Ada 2005) incomplete subtype may not be constrained", C);
12978 else
12979 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12980 end if;
12982 Fixup_Bad_Constraint;
12983 return;
12985 -- Check that the type has visible discriminants. The type may be
12986 -- a private type with unknown discriminants whose full view has
12987 -- discriminants which are invisible.
12989 elsif not Has_Discriminants (T)
12990 or else
12991 (Has_Unknown_Discriminants (T)
12992 and then Is_Private_Type (T))
12993 then
12994 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12995 Fixup_Bad_Constraint;
12996 return;
12998 elsif Is_Constrained (E)
12999 or else (Ekind (E) = E_Class_Wide_Subtype
13000 and then Present (Discriminant_Constraint (E)))
13001 then
13002 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13003 Fixup_Bad_Constraint;
13004 return;
13005 end if;
13007 -- T may be an unconstrained subtype (e.g. a generic actual).
13008 -- Constraint applies to the base type.
13010 T := Base_Type (T);
13012 Elist := Build_Discriminant_Constraints (T, S);
13014 -- If the list returned was empty we had an error in building the
13015 -- discriminant constraint. We have also already signalled an error
13016 -- in the incomplete type case
13018 if Is_Empty_Elmt_List (Elist) then
13019 Fixup_Bad_Constraint;
13020 return;
13021 end if;
13023 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
13024 end Constrain_Discriminated_Type;
13026 ---------------------------
13027 -- Constrain_Enumeration --
13028 ---------------------------
13030 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13031 T : constant Entity_Id := Entity (Subtype_Mark (S));
13032 C : constant Node_Id := Constraint (S);
13034 begin
13035 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13037 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13039 Set_Etype (Def_Id, Base_Type (T));
13040 Set_Size_Info (Def_Id, (T));
13041 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13042 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13044 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13046 Set_Discrete_RM_Size (Def_Id);
13047 end Constrain_Enumeration;
13049 ----------------------
13050 -- Constrain_Float --
13051 ----------------------
13053 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13054 T : constant Entity_Id := Entity (Subtype_Mark (S));
13055 C : Node_Id;
13056 D : Node_Id;
13057 Rais : Node_Id;
13059 begin
13060 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13062 Set_Etype (Def_Id, Base_Type (T));
13063 Set_Size_Info (Def_Id, (T));
13064 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13066 -- Process the constraint
13068 C := Constraint (S);
13070 -- Digits constraint present
13072 if Nkind (C) = N_Digits_Constraint then
13074 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13075 Check_Restriction (No_Obsolescent_Features, C);
13077 if Warn_On_Obsolescent_Feature then
13078 Error_Msg_N
13079 ("subtype digits constraint is an " &
13080 "obsolescent feature (RM J.3(8))?j?", C);
13081 end if;
13083 D := Digits_Expression (C);
13084 Analyze_And_Resolve (D, Any_Integer);
13085 Check_Digits_Expression (D);
13086 Set_Digits_Value (Def_Id, Expr_Value (D));
13088 -- Check that digits value is in range. Obviously we can do this
13089 -- at compile time, but it is strictly a runtime check, and of
13090 -- course there is an ACVC test that checks this.
13092 if Digits_Value (Def_Id) > Digits_Value (T) then
13093 Error_Msg_Uint_1 := Digits_Value (T);
13094 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13095 Rais :=
13096 Make_Raise_Constraint_Error (Sloc (D),
13097 Reason => CE_Range_Check_Failed);
13098 Insert_Action (Declaration_Node (Def_Id), Rais);
13099 end if;
13101 C := Range_Constraint (C);
13103 -- No digits constraint present
13105 else
13106 Set_Digits_Value (Def_Id, Digits_Value (T));
13107 end if;
13109 -- Range constraint present
13111 if Nkind (C) = N_Range_Constraint then
13112 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13114 -- No range constraint present
13116 else
13117 pragma Assert (No (C));
13118 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13119 end if;
13121 Set_Is_Constrained (Def_Id);
13122 end Constrain_Float;
13124 ---------------------
13125 -- Constrain_Index --
13126 ---------------------
13128 procedure Constrain_Index
13129 (Index : Node_Id;
13130 S : Node_Id;
13131 Related_Nod : Node_Id;
13132 Related_Id : Entity_Id;
13133 Suffix : Character;
13134 Suffix_Index : Nat)
13136 Def_Id : Entity_Id;
13137 R : Node_Id := Empty;
13138 T : constant Entity_Id := Etype (Index);
13140 begin
13141 if Nkind (S) = N_Range
13142 or else
13143 (Nkind (S) = N_Attribute_Reference
13144 and then Attribute_Name (S) = Name_Range)
13145 then
13146 -- A Range attribute will be transformed into N_Range by Resolve
13148 Analyze (S);
13149 Set_Etype (S, T);
13150 R := S;
13152 Process_Range_Expr_In_Decl (R, T);
13154 if not Error_Posted (S)
13155 and then
13156 (Nkind (S) /= N_Range
13157 or else not Covers (T, (Etype (Low_Bound (S))))
13158 or else not Covers (T, (Etype (High_Bound (S)))))
13159 then
13160 if Base_Type (T) /= Any_Type
13161 and then Etype (Low_Bound (S)) /= Any_Type
13162 and then Etype (High_Bound (S)) /= Any_Type
13163 then
13164 Error_Msg_N ("range expected", S);
13165 end if;
13166 end if;
13168 elsif Nkind (S) = N_Subtype_Indication then
13170 -- The parser has verified that this is a discrete indication
13172 Resolve_Discrete_Subtype_Indication (S, T);
13173 Bad_Predicated_Subtype_Use
13174 ("subtype& has predicate, not allowed in index constraint",
13175 S, Entity (Subtype_Mark (S)));
13177 R := Range_Expression (Constraint (S));
13179 -- Capture values of bounds and generate temporaries for them if
13180 -- needed, since checks may cause duplication of the expressions
13181 -- which must not be reevaluated.
13183 -- The forced evaluation removes side effects from expressions, which
13184 -- should occur also in GNATprove mode. Otherwise, we end up with
13185 -- unexpected insertions of actions at places where this is not
13186 -- supposed to occur, e.g. on default parameters of a call.
13188 if Expander_Active or GNATprove_Mode then
13189 Force_Evaluation (Low_Bound (R));
13190 Force_Evaluation (High_Bound (R));
13191 end if;
13193 elsif Nkind (S) = N_Discriminant_Association then
13195 -- Syntactically valid in subtype indication
13197 Error_Msg_N ("invalid index constraint", S);
13198 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13199 return;
13201 -- Subtype_Mark case, no anonymous subtypes to construct
13203 else
13204 Analyze (S);
13206 if Is_Entity_Name (S) then
13207 if not Is_Type (Entity (S)) then
13208 Error_Msg_N ("expect subtype mark for index constraint", S);
13210 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13211 Wrong_Type (S, Base_Type (T));
13213 -- Check error of subtype with predicate in index constraint
13215 else
13216 Bad_Predicated_Subtype_Use
13217 ("subtype& has predicate, not allowed in index constraint",
13218 S, Entity (S));
13219 end if;
13221 return;
13223 else
13224 Error_Msg_N ("invalid index constraint", S);
13225 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13226 return;
13227 end if;
13228 end if;
13230 Def_Id :=
13231 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13233 Set_Etype (Def_Id, Base_Type (T));
13235 if Is_Modular_Integer_Type (T) then
13236 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13238 elsif Is_Integer_Type (T) then
13239 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13241 else
13242 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13243 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13244 Set_First_Literal (Def_Id, First_Literal (T));
13245 end if;
13247 Set_Size_Info (Def_Id, (T));
13248 Set_RM_Size (Def_Id, RM_Size (T));
13249 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13251 Set_Scalar_Range (Def_Id, R);
13253 Set_Etype (S, Def_Id);
13254 Set_Discrete_RM_Size (Def_Id);
13255 end Constrain_Index;
13257 -----------------------
13258 -- Constrain_Integer --
13259 -----------------------
13261 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13262 T : constant Entity_Id := Entity (Subtype_Mark (S));
13263 C : constant Node_Id := Constraint (S);
13265 begin
13266 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13268 if Is_Modular_Integer_Type (T) then
13269 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13270 else
13271 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13272 end if;
13274 Set_Etype (Def_Id, Base_Type (T));
13275 Set_Size_Info (Def_Id, (T));
13276 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13277 Set_Discrete_RM_Size (Def_Id);
13278 end Constrain_Integer;
13280 ------------------------------
13281 -- Constrain_Ordinary_Fixed --
13282 ------------------------------
13284 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13285 T : constant Entity_Id := Entity (Subtype_Mark (S));
13286 C : Node_Id;
13287 D : Node_Id;
13288 Rais : Node_Id;
13290 begin
13291 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13292 Set_Etype (Def_Id, Base_Type (T));
13293 Set_Size_Info (Def_Id, (T));
13294 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13295 Set_Small_Value (Def_Id, Small_Value (T));
13297 -- Process the constraint
13299 C := Constraint (S);
13301 -- Delta constraint present
13303 if Nkind (C) = N_Delta_Constraint then
13305 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13306 Check_Restriction (No_Obsolescent_Features, C);
13308 if Warn_On_Obsolescent_Feature then
13309 Error_Msg_S
13310 ("subtype delta constraint is an " &
13311 "obsolescent feature (RM J.3(7))?j?");
13312 end if;
13314 D := Delta_Expression (C);
13315 Analyze_And_Resolve (D, Any_Real);
13316 Check_Delta_Expression (D);
13317 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13319 -- Check that delta value is in range. Obviously we can do this
13320 -- at compile time, but it is strictly a runtime check, and of
13321 -- course there is an ACVC test that checks this.
13323 if Delta_Value (Def_Id) < Delta_Value (T) then
13324 Error_Msg_N ("??delta value is too small", D);
13325 Rais :=
13326 Make_Raise_Constraint_Error (Sloc (D),
13327 Reason => CE_Range_Check_Failed);
13328 Insert_Action (Declaration_Node (Def_Id), Rais);
13329 end if;
13331 C := Range_Constraint (C);
13333 -- No delta constraint present
13335 else
13336 Set_Delta_Value (Def_Id, Delta_Value (T));
13337 end if;
13339 -- Range constraint present
13341 if Nkind (C) = N_Range_Constraint then
13342 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13344 -- No range constraint present
13346 else
13347 pragma Assert (No (C));
13348 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13350 end if;
13352 Set_Discrete_RM_Size (Def_Id);
13354 -- Unconditionally delay the freeze, since we cannot set size
13355 -- information in all cases correctly until the freeze point.
13357 Set_Has_Delayed_Freeze (Def_Id);
13358 end Constrain_Ordinary_Fixed;
13360 -----------------------
13361 -- Contain_Interface --
13362 -----------------------
13364 function Contain_Interface
13365 (Iface : Entity_Id;
13366 Ifaces : Elist_Id) return Boolean
13368 Iface_Elmt : Elmt_Id;
13370 begin
13371 if Present (Ifaces) then
13372 Iface_Elmt := First_Elmt (Ifaces);
13373 while Present (Iface_Elmt) loop
13374 if Node (Iface_Elmt) = Iface then
13375 return True;
13376 end if;
13378 Next_Elmt (Iface_Elmt);
13379 end loop;
13380 end if;
13382 return False;
13383 end Contain_Interface;
13385 ---------------------------
13386 -- Convert_Scalar_Bounds --
13387 ---------------------------
13389 procedure Convert_Scalar_Bounds
13390 (N : Node_Id;
13391 Parent_Type : Entity_Id;
13392 Derived_Type : Entity_Id;
13393 Loc : Source_Ptr)
13395 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13397 Lo : Node_Id;
13398 Hi : Node_Id;
13399 Rng : Node_Id;
13401 begin
13402 -- Defend against previous errors
13404 if No (Scalar_Range (Derived_Type)) then
13405 Check_Error_Detected;
13406 return;
13407 end if;
13409 Lo := Build_Scalar_Bound
13410 (Type_Low_Bound (Derived_Type),
13411 Parent_Type, Implicit_Base);
13413 Hi := Build_Scalar_Bound
13414 (Type_High_Bound (Derived_Type),
13415 Parent_Type, Implicit_Base);
13417 Rng :=
13418 Make_Range (Loc,
13419 Low_Bound => Lo,
13420 High_Bound => Hi);
13422 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13424 Set_Parent (Rng, N);
13425 Set_Scalar_Range (Derived_Type, Rng);
13427 -- Analyze the bounds
13429 Analyze_And_Resolve (Lo, Implicit_Base);
13430 Analyze_And_Resolve (Hi, Implicit_Base);
13432 -- Analyze the range itself, except that we do not analyze it if
13433 -- the bounds are real literals, and we have a fixed-point type.
13434 -- The reason for this is that we delay setting the bounds in this
13435 -- case till we know the final Small and Size values (see circuit
13436 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13438 if Is_Fixed_Point_Type (Parent_Type)
13439 and then Nkind (Lo) = N_Real_Literal
13440 and then Nkind (Hi) = N_Real_Literal
13441 then
13442 return;
13444 -- Here we do the analysis of the range
13446 -- Note: we do this manually, since if we do a normal Analyze and
13447 -- Resolve call, there are problems with the conversions used for
13448 -- the derived type range.
13450 else
13451 Set_Etype (Rng, Implicit_Base);
13452 Set_Analyzed (Rng, True);
13453 end if;
13454 end Convert_Scalar_Bounds;
13456 -------------------
13457 -- Copy_And_Swap --
13458 -------------------
13460 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13461 begin
13462 -- Initialize new full declaration entity by copying the pertinent
13463 -- fields of the corresponding private declaration entity.
13465 -- We temporarily set Ekind to a value appropriate for a type to
13466 -- avoid assert failures in Einfo from checking for setting type
13467 -- attributes on something that is not a type. Ekind (Priv) is an
13468 -- appropriate choice, since it allowed the attributes to be set
13469 -- in the first place. This Ekind value will be modified later.
13471 Set_Ekind (Full, Ekind (Priv));
13473 -- Also set Etype temporarily to Any_Type, again, in the absence
13474 -- of errors, it will be properly reset, and if there are errors,
13475 -- then we want a value of Any_Type to remain.
13477 Set_Etype (Full, Any_Type);
13479 -- Now start copying attributes
13481 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13483 if Has_Discriminants (Full) then
13484 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13485 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13486 end if;
13488 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13489 Set_Homonym (Full, Homonym (Priv));
13490 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13491 Set_Is_Public (Full, Is_Public (Priv));
13492 Set_Is_Pure (Full, Is_Pure (Priv));
13493 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13494 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13495 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13496 Set_Has_Pragma_Unreferenced_Objects
13497 (Full, Has_Pragma_Unreferenced_Objects
13498 (Priv));
13500 Conditional_Delay (Full, Priv);
13502 if Is_Tagged_Type (Full) then
13503 Set_Direct_Primitive_Operations
13504 (Full, Direct_Primitive_Operations (Priv));
13505 Set_No_Tagged_Streams_Pragma
13506 (Full, No_Tagged_Streams_Pragma (Priv));
13508 if Is_Base_Type (Priv) then
13509 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13510 end if;
13511 end if;
13513 Set_Is_Volatile (Full, Is_Volatile (Priv));
13514 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13515 Set_Scope (Full, Scope (Priv));
13516 Set_Next_Entity (Full, Next_Entity (Priv));
13517 Set_First_Entity (Full, First_Entity (Priv));
13518 Set_Last_Entity (Full, Last_Entity (Priv));
13520 -- If access types have been recorded for later handling, keep them in
13521 -- the full view so that they get handled when the full view freeze
13522 -- node is expanded.
13524 if Present (Freeze_Node (Priv))
13525 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13526 then
13527 Ensure_Freeze_Node (Full);
13528 Set_Access_Types_To_Process
13529 (Freeze_Node (Full),
13530 Access_Types_To_Process (Freeze_Node (Priv)));
13531 end if;
13533 -- Swap the two entities. Now Private is the full type entity and Full
13534 -- is the private one. They will be swapped back at the end of the
13535 -- private part. This swapping ensures that the entity that is visible
13536 -- in the private part is the full declaration.
13538 Exchange_Entities (Priv, Full);
13539 Append_Entity (Full, Scope (Full));
13540 end Copy_And_Swap;
13542 -------------------------------------
13543 -- Copy_Array_Base_Type_Attributes --
13544 -------------------------------------
13546 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13547 begin
13548 Set_Component_Alignment (T1, Component_Alignment (T2));
13549 Set_Component_Type (T1, Component_Type (T2));
13550 Set_Component_Size (T1, Component_Size (T2));
13551 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13552 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13553 Set_Has_Protected (T1, Has_Protected (T2));
13554 Set_Has_Task (T1, Has_Task (T2));
13555 Set_Is_Packed (T1, Is_Packed (T2));
13556 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13557 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13558 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13559 end Copy_Array_Base_Type_Attributes;
13561 -----------------------------------
13562 -- Copy_Array_Subtype_Attributes --
13563 -----------------------------------
13565 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13566 begin
13567 Set_Size_Info (T1, T2);
13569 Set_First_Index (T1, First_Index (T2));
13570 Set_Is_Aliased (T1, Is_Aliased (T2));
13571 Set_Is_Volatile (T1, Is_Volatile (T2));
13572 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13573 Set_Is_Constrained (T1, Is_Constrained (T2));
13574 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13575 Inherit_Rep_Item_Chain (T1, T2);
13576 Set_Convention (T1, Convention (T2));
13577 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13578 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13579 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13580 end Copy_Array_Subtype_Attributes;
13582 -----------------------------------
13583 -- Create_Constrained_Components --
13584 -----------------------------------
13586 procedure Create_Constrained_Components
13587 (Subt : Entity_Id;
13588 Decl_Node : Node_Id;
13589 Typ : Entity_Id;
13590 Constraints : Elist_Id)
13592 Loc : constant Source_Ptr := Sloc (Subt);
13593 Comp_List : constant Elist_Id := New_Elmt_List;
13594 Parent_Type : constant Entity_Id := Etype (Typ);
13595 Assoc_List : constant List_Id := New_List;
13596 Discr_Val : Elmt_Id;
13597 Errors : Boolean;
13598 New_C : Entity_Id;
13599 Old_C : Entity_Id;
13600 Is_Static : Boolean := True;
13602 procedure Collect_Fixed_Components (Typ : Entity_Id);
13603 -- Collect parent type components that do not appear in a variant part
13605 procedure Create_All_Components;
13606 -- Iterate over Comp_List to create the components of the subtype
13608 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13609 -- Creates a new component from Old_Compon, copying all the fields from
13610 -- it, including its Etype, inserts the new component in the Subt entity
13611 -- chain and returns the new component.
13613 function Is_Variant_Record (T : Entity_Id) return Boolean;
13614 -- If true, and discriminants are static, collect only components from
13615 -- variants selected by discriminant values.
13617 ------------------------------
13618 -- Collect_Fixed_Components --
13619 ------------------------------
13621 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13622 begin
13623 -- Build association list for discriminants, and find components of the
13624 -- variant part selected by the values of the discriminants.
13626 Old_C := First_Discriminant (Typ);
13627 Discr_Val := First_Elmt (Constraints);
13628 while Present (Old_C) loop
13629 Append_To (Assoc_List,
13630 Make_Component_Association (Loc,
13631 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13632 Expression => New_Copy (Node (Discr_Val))));
13634 Next_Elmt (Discr_Val);
13635 Next_Discriminant (Old_C);
13636 end loop;
13638 -- The tag and the possible parent component are unconditionally in
13639 -- the subtype.
13641 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13642 Old_C := First_Component (Typ);
13643 while Present (Old_C) loop
13644 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13645 Append_Elmt (Old_C, Comp_List);
13646 end if;
13648 Next_Component (Old_C);
13649 end loop;
13650 end if;
13651 end Collect_Fixed_Components;
13653 ---------------------------
13654 -- Create_All_Components --
13655 ---------------------------
13657 procedure Create_All_Components is
13658 Comp : Elmt_Id;
13660 begin
13661 Comp := First_Elmt (Comp_List);
13662 while Present (Comp) loop
13663 Old_C := Node (Comp);
13664 New_C := Create_Component (Old_C);
13666 Set_Etype
13667 (New_C,
13668 Constrain_Component_Type
13669 (Old_C, Subt, Decl_Node, Typ, Constraints));
13670 Set_Is_Public (New_C, Is_Public (Subt));
13672 Next_Elmt (Comp);
13673 end loop;
13674 end Create_All_Components;
13676 ----------------------
13677 -- Create_Component --
13678 ----------------------
13680 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13681 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13683 begin
13684 if Ekind (Old_Compon) = E_Discriminant
13685 and then Is_Completely_Hidden (Old_Compon)
13686 then
13687 -- This is a shadow discriminant created for a discriminant of
13688 -- the parent type, which needs to be present in the subtype.
13689 -- Give the shadow discriminant an internal name that cannot
13690 -- conflict with that of visible components.
13692 Set_Chars (New_Compon, New_Internal_Name ('C'));
13693 end if;
13695 -- Set the parent so we have a proper link for freezing etc. This is
13696 -- not a real parent pointer, since of course our parent does not own
13697 -- up to us and reference us, we are an illegitimate child of the
13698 -- original parent.
13700 Set_Parent (New_Compon, Parent (Old_Compon));
13702 -- If the old component's Esize was already determined and is a
13703 -- static value, then the new component simply inherits it. Otherwise
13704 -- the old component's size may require run-time determination, but
13705 -- the new component's size still might be statically determinable
13706 -- (if, for example it has a static constraint). In that case we want
13707 -- Layout_Type to recompute the component's size, so we reset its
13708 -- size and positional fields.
13710 if Frontend_Layout_On_Target
13711 and then not Known_Static_Esize (Old_Compon)
13712 then
13713 Set_Esize (New_Compon, Uint_0);
13714 Init_Normalized_First_Bit (New_Compon);
13715 Init_Normalized_Position (New_Compon);
13716 Init_Normalized_Position_Max (New_Compon);
13717 end if;
13719 -- We do not want this node marked as Comes_From_Source, since
13720 -- otherwise it would get first class status and a separate cross-
13721 -- reference line would be generated. Illegitimate children do not
13722 -- rate such recognition.
13724 Set_Comes_From_Source (New_Compon, False);
13726 -- But it is a real entity, and a birth certificate must be properly
13727 -- registered by entering it into the entity list.
13729 Enter_Name (New_Compon);
13731 return New_Compon;
13732 end Create_Component;
13734 -----------------------
13735 -- Is_Variant_Record --
13736 -----------------------
13738 function Is_Variant_Record (T : Entity_Id) return Boolean is
13739 begin
13740 return Nkind (Parent (T)) = N_Full_Type_Declaration
13741 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13742 and then Present (Component_List (Type_Definition (Parent (T))))
13743 and then
13744 Present
13745 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13746 end Is_Variant_Record;
13748 -- Start of processing for Create_Constrained_Components
13750 begin
13751 pragma Assert (Subt /= Base_Type (Subt));
13752 pragma Assert (Typ = Base_Type (Typ));
13754 Set_First_Entity (Subt, Empty);
13755 Set_Last_Entity (Subt, Empty);
13757 -- Check whether constraint is fully static, in which case we can
13758 -- optimize the list of components.
13760 Discr_Val := First_Elmt (Constraints);
13761 while Present (Discr_Val) loop
13762 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13763 Is_Static := False;
13764 exit;
13765 end if;
13767 Next_Elmt (Discr_Val);
13768 end loop;
13770 Set_Has_Static_Discriminants (Subt, Is_Static);
13772 Push_Scope (Subt);
13774 -- Inherit the discriminants of the parent type
13776 Add_Discriminants : declare
13777 Num_Disc : Int;
13778 Num_Gird : Int;
13780 begin
13781 Num_Disc := 0;
13782 Old_C := First_Discriminant (Typ);
13784 while Present (Old_C) loop
13785 Num_Disc := Num_Disc + 1;
13786 New_C := Create_Component (Old_C);
13787 Set_Is_Public (New_C, Is_Public (Subt));
13788 Next_Discriminant (Old_C);
13789 end loop;
13791 -- For an untagged derived subtype, the number of discriminants may
13792 -- be smaller than the number of inherited discriminants, because
13793 -- several of them may be renamed by a single new discriminant or
13794 -- constrained. In this case, add the hidden discriminants back into
13795 -- the subtype, because they need to be present if the optimizer of
13796 -- the GCC 4.x back-end decides to break apart assignments between
13797 -- objects using the parent view into member-wise assignments.
13799 Num_Gird := 0;
13801 if Is_Derived_Type (Typ)
13802 and then not Is_Tagged_Type (Typ)
13803 then
13804 Old_C := First_Stored_Discriminant (Typ);
13806 while Present (Old_C) loop
13807 Num_Gird := Num_Gird + 1;
13808 Next_Stored_Discriminant (Old_C);
13809 end loop;
13810 end if;
13812 if Num_Gird > Num_Disc then
13814 -- Find out multiple uses of new discriminants, and add hidden
13815 -- components for the extra renamed discriminants. We recognize
13816 -- multiple uses through the Corresponding_Discriminant of a
13817 -- new discriminant: if it constrains several old discriminants,
13818 -- this field points to the last one in the parent type. The
13819 -- stored discriminants of the derived type have the same name
13820 -- as those of the parent.
13822 declare
13823 Constr : Elmt_Id;
13824 New_Discr : Entity_Id;
13825 Old_Discr : Entity_Id;
13827 begin
13828 Constr := First_Elmt (Stored_Constraint (Typ));
13829 Old_Discr := First_Stored_Discriminant (Typ);
13830 while Present (Constr) loop
13831 if Is_Entity_Name (Node (Constr))
13832 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13833 then
13834 New_Discr := Entity (Node (Constr));
13836 if Chars (Corresponding_Discriminant (New_Discr)) /=
13837 Chars (Old_Discr)
13838 then
13839 -- The new discriminant has been used to rename a
13840 -- subsequent old discriminant. Introduce a shadow
13841 -- component for the current old discriminant.
13843 New_C := Create_Component (Old_Discr);
13844 Set_Original_Record_Component (New_C, Old_Discr);
13845 end if;
13847 else
13848 -- The constraint has eliminated the old discriminant.
13849 -- Introduce a shadow component.
13851 New_C := Create_Component (Old_Discr);
13852 Set_Original_Record_Component (New_C, Old_Discr);
13853 end if;
13855 Next_Elmt (Constr);
13856 Next_Stored_Discriminant (Old_Discr);
13857 end loop;
13858 end;
13859 end if;
13860 end Add_Discriminants;
13862 if Is_Static
13863 and then Is_Variant_Record (Typ)
13864 then
13865 Collect_Fixed_Components (Typ);
13867 Gather_Components (
13868 Typ,
13869 Component_List (Type_Definition (Parent (Typ))),
13870 Governed_By => Assoc_List,
13871 Into => Comp_List,
13872 Report_Errors => Errors);
13873 pragma Assert (not Errors);
13875 Create_All_Components;
13877 -- If the subtype declaration is created for a tagged type derivation
13878 -- with constraints, we retrieve the record definition of the parent
13879 -- type to select the components of the proper variant.
13881 elsif Is_Static
13882 and then Is_Tagged_Type (Typ)
13883 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13884 and then
13885 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13886 and then Is_Variant_Record (Parent_Type)
13887 then
13888 Collect_Fixed_Components (Typ);
13890 Gather_Components
13891 (Typ,
13892 Component_List (Type_Definition (Parent (Parent_Type))),
13893 Governed_By => Assoc_List,
13894 Into => Comp_List,
13895 Report_Errors => Errors);
13897 -- Note: previously there was a check at this point that no errors
13898 -- were detected. As a consequence of AI05-220 there may be an error
13899 -- if an inherited discriminant that controls a variant has a non-
13900 -- static constraint.
13902 -- If the tagged derivation has a type extension, collect all the
13903 -- new components therein.
13905 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
13906 then
13907 Old_C := First_Component (Typ);
13908 while Present (Old_C) loop
13909 if Original_Record_Component (Old_C) = Old_C
13910 and then Chars (Old_C) /= Name_uTag
13911 and then Chars (Old_C) /= Name_uParent
13912 then
13913 Append_Elmt (Old_C, Comp_List);
13914 end if;
13916 Next_Component (Old_C);
13917 end loop;
13918 end if;
13920 Create_All_Components;
13922 else
13923 -- If discriminants are not static, or if this is a multi-level type
13924 -- extension, we have to include all components of the parent type.
13926 Old_C := First_Component (Typ);
13927 while Present (Old_C) loop
13928 New_C := Create_Component (Old_C);
13930 Set_Etype
13931 (New_C,
13932 Constrain_Component_Type
13933 (Old_C, Subt, Decl_Node, Typ, Constraints));
13934 Set_Is_Public (New_C, Is_Public (Subt));
13936 Next_Component (Old_C);
13937 end loop;
13938 end if;
13940 End_Scope;
13941 end Create_Constrained_Components;
13943 ------------------------------------------
13944 -- Decimal_Fixed_Point_Type_Declaration --
13945 ------------------------------------------
13947 procedure Decimal_Fixed_Point_Type_Declaration
13948 (T : Entity_Id;
13949 Def : Node_Id)
13951 Loc : constant Source_Ptr := Sloc (Def);
13952 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13953 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13954 Implicit_Base : Entity_Id;
13955 Digs_Val : Uint;
13956 Delta_Val : Ureal;
13957 Scale_Val : Uint;
13958 Bound_Val : Ureal;
13960 begin
13961 Check_SPARK_05_Restriction
13962 ("decimal fixed point type is not allowed", Def);
13963 Check_Restriction (No_Fixed_Point, Def);
13965 -- Create implicit base type
13967 Implicit_Base :=
13968 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13969 Set_Etype (Implicit_Base, Implicit_Base);
13971 -- Analyze and process delta expression
13973 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13975 Check_Delta_Expression (Delta_Expr);
13976 Delta_Val := Expr_Value_R (Delta_Expr);
13978 -- Check delta is power of 10, and determine scale value from it
13980 declare
13981 Val : Ureal;
13983 begin
13984 Scale_Val := Uint_0;
13985 Val := Delta_Val;
13987 if Val < Ureal_1 then
13988 while Val < Ureal_1 loop
13989 Val := Val * Ureal_10;
13990 Scale_Val := Scale_Val + 1;
13991 end loop;
13993 if Scale_Val > 18 then
13994 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13995 Scale_Val := UI_From_Int (+18);
13996 end if;
13998 else
13999 while Val > Ureal_1 loop
14000 Val := Val / Ureal_10;
14001 Scale_Val := Scale_Val - 1;
14002 end loop;
14004 if Scale_Val < -18 then
14005 Error_Msg_N ("scale is less than minimum value of -18", Def);
14006 Scale_Val := UI_From_Int (-18);
14007 end if;
14008 end if;
14010 if Val /= Ureal_1 then
14011 Error_Msg_N ("delta expression must be a power of 10", Def);
14012 Delta_Val := Ureal_10 ** (-Scale_Val);
14013 end if;
14014 end;
14016 -- Set delta, scale and small (small = delta for decimal type)
14018 Set_Delta_Value (Implicit_Base, Delta_Val);
14019 Set_Scale_Value (Implicit_Base, Scale_Val);
14020 Set_Small_Value (Implicit_Base, Delta_Val);
14022 -- Analyze and process digits expression
14024 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14025 Check_Digits_Expression (Digs_Expr);
14026 Digs_Val := Expr_Value (Digs_Expr);
14028 if Digs_Val > 18 then
14029 Digs_Val := UI_From_Int (+18);
14030 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14031 end if;
14033 Set_Digits_Value (Implicit_Base, Digs_Val);
14034 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14036 -- Set range of base type from digits value for now. This will be
14037 -- expanded to represent the true underlying base range by Freeze.
14039 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14041 -- Note: We leave size as zero for now, size will be set at freeze
14042 -- time. We have to do this for ordinary fixed-point, because the size
14043 -- depends on the specified small, and we might as well do the same for
14044 -- decimal fixed-point.
14046 pragma Assert (Esize (Implicit_Base) = Uint_0);
14048 -- If there are bounds given in the declaration use them as the
14049 -- bounds of the first named subtype.
14051 if Present (Real_Range_Specification (Def)) then
14052 declare
14053 RRS : constant Node_Id := Real_Range_Specification (Def);
14054 Low : constant Node_Id := Low_Bound (RRS);
14055 High : constant Node_Id := High_Bound (RRS);
14056 Low_Val : Ureal;
14057 High_Val : Ureal;
14059 begin
14060 Analyze_And_Resolve (Low, Any_Real);
14061 Analyze_And_Resolve (High, Any_Real);
14062 Check_Real_Bound (Low);
14063 Check_Real_Bound (High);
14064 Low_Val := Expr_Value_R (Low);
14065 High_Val := Expr_Value_R (High);
14067 if Low_Val < (-Bound_Val) then
14068 Error_Msg_N
14069 ("range low bound too small for digits value", Low);
14070 Low_Val := -Bound_Val;
14071 end if;
14073 if High_Val > Bound_Val then
14074 Error_Msg_N
14075 ("range high bound too large for digits value", High);
14076 High_Val := Bound_Val;
14077 end if;
14079 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14080 end;
14082 -- If no explicit range, use range that corresponds to given
14083 -- digits value. This will end up as the final range for the
14084 -- first subtype.
14086 else
14087 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14088 end if;
14090 -- Complete entity for first subtype. The inheritance of the rep item
14091 -- chain ensures that SPARK-related pragmas are not clobbered when the
14092 -- decimal fixed point type acts as a full view of a private type.
14094 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14095 Set_Etype (T, Implicit_Base);
14096 Set_Size_Info (T, Implicit_Base);
14097 Inherit_Rep_Item_Chain (T, Implicit_Base);
14098 Set_Digits_Value (T, Digs_Val);
14099 Set_Delta_Value (T, Delta_Val);
14100 Set_Small_Value (T, Delta_Val);
14101 Set_Scale_Value (T, Scale_Val);
14102 Set_Is_Constrained (T);
14103 end Decimal_Fixed_Point_Type_Declaration;
14105 -----------------------------------
14106 -- Derive_Progenitor_Subprograms --
14107 -----------------------------------
14109 procedure Derive_Progenitor_Subprograms
14110 (Parent_Type : Entity_Id;
14111 Tagged_Type : Entity_Id)
14113 E : Entity_Id;
14114 Elmt : Elmt_Id;
14115 Iface : Entity_Id;
14116 Iface_Elmt : Elmt_Id;
14117 Iface_Subp : Entity_Id;
14118 New_Subp : Entity_Id := Empty;
14119 Prim_Elmt : Elmt_Id;
14120 Subp : Entity_Id;
14121 Typ : Entity_Id;
14123 begin
14124 pragma Assert (Ada_Version >= Ada_2005
14125 and then Is_Record_Type (Tagged_Type)
14126 and then Is_Tagged_Type (Tagged_Type)
14127 and then Has_Interfaces (Tagged_Type));
14129 -- Step 1: Transfer to the full-view primitives associated with the
14130 -- partial-view that cover interface primitives. Conceptually this
14131 -- work should be done later by Process_Full_View; done here to
14132 -- simplify its implementation at later stages. It can be safely
14133 -- done here because interfaces must be visible in the partial and
14134 -- private view (RM 7.3(7.3/2)).
14136 -- Small optimization: This work is only required if the parent may
14137 -- have entities whose Alias attribute reference an interface primitive.
14138 -- Such a situation may occur if the parent is an abstract type and the
14139 -- primitive has not been yet overridden or if the parent is a generic
14140 -- formal type covering interfaces.
14142 -- If the tagged type is not abstract, it cannot have abstract
14143 -- primitives (the only entities in the list of primitives of
14144 -- non-abstract tagged types that can reference abstract primitives
14145 -- through its Alias attribute are the internal entities that have
14146 -- attribute Interface_Alias, and these entities are generated later
14147 -- by Add_Internal_Interface_Entities).
14149 if In_Private_Part (Current_Scope)
14150 and then (Is_Abstract_Type (Parent_Type)
14151 or else
14152 Is_Generic_Type (Parent_Type))
14153 then
14154 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14155 while Present (Elmt) loop
14156 Subp := Node (Elmt);
14158 -- At this stage it is not possible to have entities in the list
14159 -- of primitives that have attribute Interface_Alias.
14161 pragma Assert (No (Interface_Alias (Subp)));
14163 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14165 if Is_Interface (Typ) then
14166 E := Find_Primitive_Covering_Interface
14167 (Tagged_Type => Tagged_Type,
14168 Iface_Prim => Subp);
14170 if Present (E)
14171 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14172 then
14173 Replace_Elmt (Elmt, E);
14174 Remove_Homonym (Subp);
14175 end if;
14176 end if;
14178 Next_Elmt (Elmt);
14179 end loop;
14180 end if;
14182 -- Step 2: Add primitives of progenitors that are not implemented by
14183 -- parents of Tagged_Type.
14185 if Present (Interfaces (Base_Type (Tagged_Type))) then
14186 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14187 while Present (Iface_Elmt) loop
14188 Iface := Node (Iface_Elmt);
14190 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14191 while Present (Prim_Elmt) loop
14192 Iface_Subp := Node (Prim_Elmt);
14194 -- Exclude derivation of predefined primitives except those
14195 -- that come from source, or are inherited from one that comes
14196 -- from source. Required to catch declarations of equality
14197 -- operators of interfaces. For example:
14199 -- type Iface is interface;
14200 -- function "=" (Left, Right : Iface) return Boolean;
14202 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14203 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14204 then
14205 E := Find_Primitive_Covering_Interface
14206 (Tagged_Type => Tagged_Type,
14207 Iface_Prim => Iface_Subp);
14209 -- If not found we derive a new primitive leaving its alias
14210 -- attribute referencing the interface primitive.
14212 if No (E) then
14213 Derive_Subprogram
14214 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14216 -- Ada 2012 (AI05-0197): If the covering primitive's name
14217 -- differs from the name of the interface primitive then it
14218 -- is a private primitive inherited from a parent type. In
14219 -- such case, given that Tagged_Type covers the interface,
14220 -- the inherited private primitive becomes visible. For such
14221 -- purpose we add a new entity that renames the inherited
14222 -- private primitive.
14224 elsif Chars (E) /= Chars (Iface_Subp) then
14225 pragma Assert (Has_Suffix (E, 'P'));
14226 Derive_Subprogram
14227 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14228 Set_Alias (New_Subp, E);
14229 Set_Is_Abstract_Subprogram (New_Subp,
14230 Is_Abstract_Subprogram (E));
14232 -- Propagate to the full view interface entities associated
14233 -- with the partial view.
14235 elsif In_Private_Part (Current_Scope)
14236 and then Present (Alias (E))
14237 and then Alias (E) = Iface_Subp
14238 and then
14239 List_Containing (Parent (E)) /=
14240 Private_Declarations
14241 (Specification
14242 (Unit_Declaration_Node (Current_Scope)))
14243 then
14244 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14245 end if;
14246 end if;
14248 Next_Elmt (Prim_Elmt);
14249 end loop;
14251 Next_Elmt (Iface_Elmt);
14252 end loop;
14253 end if;
14254 end Derive_Progenitor_Subprograms;
14256 -----------------------
14257 -- Derive_Subprogram --
14258 -----------------------
14260 procedure Derive_Subprogram
14261 (New_Subp : in out Entity_Id;
14262 Parent_Subp : Entity_Id;
14263 Derived_Type : Entity_Id;
14264 Parent_Type : Entity_Id;
14265 Actual_Subp : Entity_Id := Empty)
14267 Formal : Entity_Id;
14268 -- Formal parameter of parent primitive operation
14270 Formal_Of_Actual : Entity_Id;
14271 -- Formal parameter of actual operation, when the derivation is to
14272 -- create a renaming for a primitive operation of an actual in an
14273 -- instantiation.
14275 New_Formal : Entity_Id;
14276 -- Formal of inherited operation
14278 Visible_Subp : Entity_Id := Parent_Subp;
14280 function Is_Private_Overriding return Boolean;
14281 -- If Subp is a private overriding of a visible operation, the inherited
14282 -- operation derives from the overridden op (even though its body is the
14283 -- overriding one) and the inherited operation is visible now. See
14284 -- sem_disp to see the full details of the handling of the overridden
14285 -- subprogram, which is removed from the list of primitive operations of
14286 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14287 -- and used to diagnose abstract operations that need overriding in the
14288 -- derived type.
14290 procedure Replace_Type (Id, New_Id : Entity_Id);
14291 -- When the type is an anonymous access type, create a new access type
14292 -- designating the derived type.
14294 procedure Set_Derived_Name;
14295 -- This procedure sets the appropriate Chars name for New_Subp. This
14296 -- is normally just a copy of the parent name. An exception arises for
14297 -- type support subprograms, where the name is changed to reflect the
14298 -- name of the derived type, e.g. if type foo is derived from type bar,
14299 -- then a procedure barDA is derived with a name fooDA.
14301 ---------------------------
14302 -- Is_Private_Overriding --
14303 ---------------------------
14305 function Is_Private_Overriding return Boolean is
14306 Prev : Entity_Id;
14308 begin
14309 -- If the parent is not a dispatching operation there is no
14310 -- need to investigate overridings
14312 if not Is_Dispatching_Operation (Parent_Subp) then
14313 return False;
14314 end if;
14316 -- The visible operation that is overridden is a homonym of the
14317 -- parent subprogram. We scan the homonym chain to find the one
14318 -- whose alias is the subprogram we are deriving.
14320 Prev := Current_Entity (Parent_Subp);
14321 while Present (Prev) loop
14322 if Ekind (Prev) = Ekind (Parent_Subp)
14323 and then Alias (Prev) = Parent_Subp
14324 and then Scope (Parent_Subp) = Scope (Prev)
14325 and then not Is_Hidden (Prev)
14326 then
14327 Visible_Subp := Prev;
14328 return True;
14329 end if;
14331 Prev := Homonym (Prev);
14332 end loop;
14334 return False;
14335 end Is_Private_Overriding;
14337 ------------------
14338 -- Replace_Type --
14339 ------------------
14341 procedure Replace_Type (Id, New_Id : Entity_Id) is
14342 Id_Type : constant Entity_Id := Etype (Id);
14343 Acc_Type : Entity_Id;
14344 Par : constant Node_Id := Parent (Derived_Type);
14346 begin
14347 -- When the type is an anonymous access type, create a new access
14348 -- type designating the derived type. This itype must be elaborated
14349 -- at the point of the derivation, not on subsequent calls that may
14350 -- be out of the proper scope for Gigi, so we insert a reference to
14351 -- it after the derivation.
14353 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14354 declare
14355 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14357 begin
14358 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14359 and then Present (Full_View (Desig_Typ))
14360 and then not Is_Private_Type (Parent_Type)
14361 then
14362 Desig_Typ := Full_View (Desig_Typ);
14363 end if;
14365 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14367 -- Ada 2005 (AI-251): Handle also derivations of abstract
14368 -- interface primitives.
14370 or else (Is_Interface (Desig_Typ)
14371 and then not Is_Class_Wide_Type (Desig_Typ))
14372 then
14373 Acc_Type := New_Copy (Id_Type);
14374 Set_Etype (Acc_Type, Acc_Type);
14375 Set_Scope (Acc_Type, New_Subp);
14377 -- Set size of anonymous access type. If we have an access
14378 -- to an unconstrained array, this is a fat pointer, so it
14379 -- is sizes at twice addtress size.
14381 if Is_Array_Type (Desig_Typ)
14382 and then not Is_Constrained (Desig_Typ)
14383 then
14384 Init_Size (Acc_Type, 2 * System_Address_Size);
14386 -- Other cases use a thin pointer
14388 else
14389 Init_Size (Acc_Type, System_Address_Size);
14390 end if;
14392 -- Set remaining characterstics of anonymous access type
14394 Init_Alignment (Acc_Type);
14395 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14397 Set_Etype (New_Id, Acc_Type);
14398 Set_Scope (New_Id, New_Subp);
14400 -- Create a reference to it
14402 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14404 else
14405 Set_Etype (New_Id, Id_Type);
14406 end if;
14407 end;
14409 -- In Ada2012, a formal may have an incomplete type but the type
14410 -- derivation that inherits the primitive follows the full view.
14412 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14413 or else
14414 (Ekind (Id_Type) = E_Record_Type_With_Private
14415 and then Present (Full_View (Id_Type))
14416 and then
14417 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14418 or else
14419 (Ada_Version >= Ada_2012
14420 and then Ekind (Id_Type) = E_Incomplete_Type
14421 and then Full_View (Id_Type) = Parent_Type)
14422 then
14423 -- Constraint checks on formals are generated during expansion,
14424 -- based on the signature of the original subprogram. The bounds
14425 -- of the derived type are not relevant, and thus we can use
14426 -- the base type for the formals. However, the return type may be
14427 -- used in a context that requires that the proper static bounds
14428 -- be used (a case statement, for example) and for those cases
14429 -- we must use the derived type (first subtype), not its base.
14431 -- If the derived_type_definition has no constraints, we know that
14432 -- the derived type has the same constraints as the first subtype
14433 -- of the parent, and we can also use it rather than its base,
14434 -- which can lead to more efficient code.
14436 if Etype (Id) = Parent_Type then
14437 if Is_Scalar_Type (Parent_Type)
14438 and then
14439 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14440 then
14441 Set_Etype (New_Id, Derived_Type);
14443 elsif Nkind (Par) = N_Full_Type_Declaration
14444 and then
14445 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14446 and then
14447 Is_Entity_Name
14448 (Subtype_Indication (Type_Definition (Par)))
14449 then
14450 Set_Etype (New_Id, Derived_Type);
14452 else
14453 Set_Etype (New_Id, Base_Type (Derived_Type));
14454 end if;
14456 else
14457 Set_Etype (New_Id, Base_Type (Derived_Type));
14458 end if;
14460 else
14461 Set_Etype (New_Id, Etype (Id));
14462 end if;
14463 end Replace_Type;
14465 ----------------------
14466 -- Set_Derived_Name --
14467 ----------------------
14469 procedure Set_Derived_Name is
14470 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14471 begin
14472 if Nm = TSS_Null then
14473 Set_Chars (New_Subp, Chars (Parent_Subp));
14474 else
14475 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14476 end if;
14477 end Set_Derived_Name;
14479 -- Start of processing for Derive_Subprogram
14481 begin
14482 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14483 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14484 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
14486 -- Check whether the inherited subprogram is a private operation that
14487 -- should be inherited but not yet made visible. Such subprograms can
14488 -- become visible at a later point (e.g., the private part of a public
14489 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14490 -- following predicate is true, then this is not such a private
14491 -- operation and the subprogram simply inherits the name of the parent
14492 -- subprogram. Note the special check for the names of controlled
14493 -- operations, which are currently exempted from being inherited with
14494 -- a hidden name because they must be findable for generation of
14495 -- implicit run-time calls.
14497 if not Is_Hidden (Parent_Subp)
14498 or else Is_Internal (Parent_Subp)
14499 or else Is_Private_Overriding
14500 or else Is_Internal_Name (Chars (Parent_Subp))
14501 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14502 Name_Adjust,
14503 Name_Finalize)
14504 then
14505 Set_Derived_Name;
14507 -- An inherited dispatching equality will be overridden by an internally
14508 -- generated one, or by an explicit one, so preserve its name and thus
14509 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14510 -- private operation it may become invisible if the full view has
14511 -- progenitors, and the dispatch table will be malformed.
14512 -- We check that the type is limited to handle the anomalous declaration
14513 -- of Limited_Controlled, which is derived from a non-limited type, and
14514 -- which is handled specially elsewhere as well.
14516 elsif Chars (Parent_Subp) = Name_Op_Eq
14517 and then Is_Dispatching_Operation (Parent_Subp)
14518 and then Etype (Parent_Subp) = Standard_Boolean
14519 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14520 and then
14521 Etype (First_Formal (Parent_Subp)) =
14522 Etype (Next_Formal (First_Formal (Parent_Subp)))
14523 then
14524 Set_Derived_Name;
14526 -- If parent is hidden, this can be a regular derivation if the
14527 -- parent is immediately visible in a non-instantiating context,
14528 -- or if we are in the private part of an instance. This test
14529 -- should still be refined ???
14531 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14532 -- operation as a non-visible operation in cases where the parent
14533 -- subprogram might not be visible now, but was visible within the
14534 -- original generic, so it would be wrong to make the inherited
14535 -- subprogram non-visible now. (Not clear if this test is fully
14536 -- correct; are there any cases where we should declare the inherited
14537 -- operation as not visible to avoid it being overridden, e.g., when
14538 -- the parent type is a generic actual with private primitives ???)
14540 -- (they should be treated the same as other private inherited
14541 -- subprograms, but it's not clear how to do this cleanly). ???
14543 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14544 and then Is_Immediately_Visible (Parent_Subp)
14545 and then not In_Instance)
14546 or else In_Instance_Not_Visible
14547 then
14548 Set_Derived_Name;
14550 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14551 -- overrides an interface primitive because interface primitives
14552 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14554 elsif Ada_Version >= Ada_2005
14555 and then Is_Dispatching_Operation (Parent_Subp)
14556 and then Covers_Some_Interface (Parent_Subp)
14557 then
14558 Set_Derived_Name;
14560 -- Otherwise, the type is inheriting a private operation, so enter
14561 -- it with a special name so it can't be overridden.
14563 else
14564 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14565 end if;
14567 Set_Parent (New_Subp, Parent (Derived_Type));
14569 if Present (Actual_Subp) then
14570 Replace_Type (Actual_Subp, New_Subp);
14571 else
14572 Replace_Type (Parent_Subp, New_Subp);
14573 end if;
14575 Conditional_Delay (New_Subp, Parent_Subp);
14577 -- If we are creating a renaming for a primitive operation of an
14578 -- actual of a generic derived type, we must examine the signature
14579 -- of the actual primitive, not that of the generic formal, which for
14580 -- example may be an interface. However the name and initial value
14581 -- of the inherited operation are those of the formal primitive.
14583 Formal := First_Formal (Parent_Subp);
14585 if Present (Actual_Subp) then
14586 Formal_Of_Actual := First_Formal (Actual_Subp);
14587 else
14588 Formal_Of_Actual := Empty;
14589 end if;
14591 while Present (Formal) loop
14592 New_Formal := New_Copy (Formal);
14594 -- Normally we do not go copying parents, but in the case of
14595 -- formals, we need to link up to the declaration (which is the
14596 -- parameter specification), and it is fine to link up to the
14597 -- original formal's parameter specification in this case.
14599 Set_Parent (New_Formal, Parent (Formal));
14600 Append_Entity (New_Formal, New_Subp);
14602 if Present (Formal_Of_Actual) then
14603 Replace_Type (Formal_Of_Actual, New_Formal);
14604 Next_Formal (Formal_Of_Actual);
14605 else
14606 Replace_Type (Formal, New_Formal);
14607 end if;
14609 Next_Formal (Formal);
14610 end loop;
14612 -- If this derivation corresponds to a tagged generic actual, then
14613 -- primitive operations rename those of the actual. Otherwise the
14614 -- primitive operations rename those of the parent type, If the parent
14615 -- renames an intrinsic operator, so does the new subprogram. We except
14616 -- concatenation, which is always properly typed, and does not get
14617 -- expanded as other intrinsic operations.
14619 if No (Actual_Subp) then
14620 if Is_Intrinsic_Subprogram (Parent_Subp) then
14621 Set_Is_Intrinsic_Subprogram (New_Subp);
14623 if Present (Alias (Parent_Subp))
14624 and then Chars (Parent_Subp) /= Name_Op_Concat
14625 then
14626 Set_Alias (New_Subp, Alias (Parent_Subp));
14627 else
14628 Set_Alias (New_Subp, Parent_Subp);
14629 end if;
14631 else
14632 Set_Alias (New_Subp, Parent_Subp);
14633 end if;
14635 else
14636 Set_Alias (New_Subp, Actual_Subp);
14637 end if;
14639 -- Inherit the "ghostness" from the parent subprogram
14641 if Is_Ghost_Entity (Alias (New_Subp)) then
14642 Set_Is_Ghost_Entity (New_Subp);
14643 end if;
14645 -- Derived subprograms of a tagged type must inherit the convention
14646 -- of the parent subprogram (a requirement of AI-117). Derived
14647 -- subprograms of untagged types simply get convention Ada by default.
14649 -- If the derived type is a tagged generic formal type with unknown
14650 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14652 -- However, if the type is derived from a generic formal, the further
14653 -- inherited subprogram has the convention of the non-generic ancestor.
14654 -- Otherwise there would be no way to override the operation.
14655 -- (This is subject to forthcoming ARG discussions).
14657 if Is_Tagged_Type (Derived_Type) then
14658 if Is_Generic_Type (Derived_Type)
14659 and then Has_Unknown_Discriminants (Derived_Type)
14660 then
14661 Set_Convention (New_Subp, Convention_Intrinsic);
14663 else
14664 if Is_Generic_Type (Parent_Type)
14665 and then Has_Unknown_Discriminants (Parent_Type)
14666 then
14667 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14668 else
14669 Set_Convention (New_Subp, Convention (Parent_Subp));
14670 end if;
14671 end if;
14672 end if;
14674 -- Predefined controlled operations retain their name even if the parent
14675 -- is hidden (see above), but they are not primitive operations if the
14676 -- ancestor is not visible, for example if the parent is a private
14677 -- extension completed with a controlled extension. Note that a full
14678 -- type that is controlled can break privacy: the flag Is_Controlled is
14679 -- set on both views of the type.
14681 if Is_Controlled (Parent_Type)
14682 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14683 Name_Adjust,
14684 Name_Finalize)
14685 and then Is_Hidden (Parent_Subp)
14686 and then not Is_Visibly_Controlled (Parent_Type)
14687 then
14688 Set_Is_Hidden (New_Subp);
14689 end if;
14691 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14692 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14694 if Ekind (Parent_Subp) = E_Procedure then
14695 Set_Is_Valued_Procedure
14696 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14697 else
14698 Set_Has_Controlling_Result
14699 (New_Subp, Has_Controlling_Result (Parent_Subp));
14700 end if;
14702 -- No_Return must be inherited properly. If this is overridden in the
14703 -- case of a dispatching operation, then a check is made in Sem_Disp
14704 -- that the overriding operation is also No_Return (no such check is
14705 -- required for the case of non-dispatching operation.
14707 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14709 -- A derived function with a controlling result is abstract. If the
14710 -- Derived_Type is a nonabstract formal generic derived type, then
14711 -- inherited operations are not abstract: the required check is done at
14712 -- instantiation time. If the derivation is for a generic actual, the
14713 -- function is not abstract unless the actual is.
14715 if Is_Generic_Type (Derived_Type)
14716 and then not Is_Abstract_Type (Derived_Type)
14717 then
14718 null;
14720 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14721 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14723 -- A subprogram subject to pragma Extensions_Visible with value False
14724 -- requires overriding if the subprogram has at least one controlling
14725 -- OUT parameter (SPARK RM 6.1.7(6)).
14727 elsif Ada_Version >= Ada_2005
14728 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14729 or else (Is_Tagged_Type (Derived_Type)
14730 and then Etype (New_Subp) = Derived_Type
14731 and then not Is_Null_Extension (Derived_Type))
14732 or else (Is_Tagged_Type (Derived_Type)
14733 and then Ekind (Etype (New_Subp)) =
14734 E_Anonymous_Access_Type
14735 and then Designated_Type (Etype (New_Subp)) =
14736 Derived_Type
14737 and then not Is_Null_Extension (Derived_Type))
14738 or else (Comes_From_Source (Alias (New_Subp))
14739 and then Is_EVF_Procedure (Alias (New_Subp))))
14740 and then No (Actual_Subp)
14741 then
14742 if not Is_Tagged_Type (Derived_Type)
14743 or else Is_Abstract_Type (Derived_Type)
14744 or else Is_Abstract_Subprogram (Alias (New_Subp))
14745 then
14746 Set_Is_Abstract_Subprogram (New_Subp);
14747 else
14748 Set_Requires_Overriding (New_Subp);
14749 end if;
14751 elsif Ada_Version < Ada_2005
14752 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14753 or else (Is_Tagged_Type (Derived_Type)
14754 and then Etype (New_Subp) = Derived_Type
14755 and then No (Actual_Subp)))
14756 then
14757 Set_Is_Abstract_Subprogram (New_Subp);
14759 -- AI05-0097 : an inherited operation that dispatches on result is
14760 -- abstract if the derived type is abstract, even if the parent type
14761 -- is concrete and the derived type is a null extension.
14763 elsif Has_Controlling_Result (Alias (New_Subp))
14764 and then Is_Abstract_Type (Etype (New_Subp))
14765 then
14766 Set_Is_Abstract_Subprogram (New_Subp);
14768 -- Finally, if the parent type is abstract we must verify that all
14769 -- inherited operations are either non-abstract or overridden, or that
14770 -- the derived type itself is abstract (this check is performed at the
14771 -- end of a package declaration, in Check_Abstract_Overriding). A
14772 -- private overriding in the parent type will not be visible in the
14773 -- derivation if we are not in an inner package or in a child unit of
14774 -- the parent type, in which case the abstractness of the inherited
14775 -- operation is carried to the new subprogram.
14777 elsif Is_Abstract_Type (Parent_Type)
14778 and then not In_Open_Scopes (Scope (Parent_Type))
14779 and then Is_Private_Overriding
14780 and then Is_Abstract_Subprogram (Visible_Subp)
14781 then
14782 if No (Actual_Subp) then
14783 Set_Alias (New_Subp, Visible_Subp);
14784 Set_Is_Abstract_Subprogram (New_Subp, True);
14786 else
14787 -- If this is a derivation for an instance of a formal derived
14788 -- type, abstractness comes from the primitive operation of the
14789 -- actual, not from the operation inherited from the ancestor.
14791 Set_Is_Abstract_Subprogram
14792 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14793 end if;
14794 end if;
14796 New_Overloaded_Entity (New_Subp, Derived_Type);
14798 -- Check for case of a derived subprogram for the instantiation of a
14799 -- formal derived tagged type, if so mark the subprogram as dispatching
14800 -- and inherit the dispatching attributes of the actual subprogram. The
14801 -- derived subprogram is effectively renaming of the actual subprogram,
14802 -- so it needs to have the same attributes as the actual.
14804 if Present (Actual_Subp)
14805 and then Is_Dispatching_Operation (Actual_Subp)
14806 then
14807 Set_Is_Dispatching_Operation (New_Subp);
14809 if Present (DTC_Entity (Actual_Subp)) then
14810 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14811 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14812 end if;
14813 end if;
14815 -- Indicate that a derived subprogram does not require a body and that
14816 -- it does not require processing of default expressions.
14818 Set_Has_Completion (New_Subp);
14819 Set_Default_Expressions_Processed (New_Subp);
14821 if Ekind (New_Subp) = E_Function then
14822 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14823 end if;
14824 end Derive_Subprogram;
14826 ------------------------
14827 -- Derive_Subprograms --
14828 ------------------------
14830 procedure Derive_Subprograms
14831 (Parent_Type : Entity_Id;
14832 Derived_Type : Entity_Id;
14833 Generic_Actual : Entity_Id := Empty)
14835 Op_List : constant Elist_Id :=
14836 Collect_Primitive_Operations (Parent_Type);
14838 function Check_Derived_Type return Boolean;
14839 -- Check that all the entities derived from Parent_Type are found in
14840 -- the list of primitives of Derived_Type exactly in the same order.
14842 procedure Derive_Interface_Subprogram
14843 (New_Subp : in out Entity_Id;
14844 Subp : Entity_Id;
14845 Actual_Subp : Entity_Id);
14846 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14847 -- (which is an interface primitive). If Generic_Actual is present then
14848 -- Actual_Subp is the actual subprogram corresponding with the generic
14849 -- subprogram Subp.
14851 function Check_Derived_Type return Boolean is
14852 E : Entity_Id;
14853 Elmt : Elmt_Id;
14854 List : Elist_Id;
14855 New_Subp : Entity_Id;
14856 Op_Elmt : Elmt_Id;
14857 Subp : Entity_Id;
14859 begin
14860 -- Traverse list of entities in the current scope searching for
14861 -- an incomplete type whose full-view is derived type
14863 E := First_Entity (Scope (Derived_Type));
14864 while Present (E) and then E /= Derived_Type loop
14865 if Ekind (E) = E_Incomplete_Type
14866 and then Present (Full_View (E))
14867 and then Full_View (E) = Derived_Type
14868 then
14869 -- Disable this test if Derived_Type completes an incomplete
14870 -- type because in such case more primitives can be added
14871 -- later to the list of primitives of Derived_Type by routine
14872 -- Process_Incomplete_Dependents
14874 return True;
14875 end if;
14877 E := Next_Entity (E);
14878 end loop;
14880 List := Collect_Primitive_Operations (Derived_Type);
14881 Elmt := First_Elmt (List);
14883 Op_Elmt := First_Elmt (Op_List);
14884 while Present (Op_Elmt) loop
14885 Subp := Node (Op_Elmt);
14886 New_Subp := Node (Elmt);
14888 -- At this early stage Derived_Type has no entities with attribute
14889 -- Interface_Alias. In addition, such primitives are always
14890 -- located at the end of the list of primitives of Parent_Type.
14891 -- Therefore, if found we can safely stop processing pending
14892 -- entities.
14894 exit when Present (Interface_Alias (Subp));
14896 -- Handle hidden entities
14898 if not Is_Predefined_Dispatching_Operation (Subp)
14899 and then Is_Hidden (Subp)
14900 then
14901 if Present (New_Subp)
14902 and then Primitive_Names_Match (Subp, New_Subp)
14903 then
14904 Next_Elmt (Elmt);
14905 end if;
14907 else
14908 if not Present (New_Subp)
14909 or else Ekind (Subp) /= Ekind (New_Subp)
14910 or else not Primitive_Names_Match (Subp, New_Subp)
14911 then
14912 return False;
14913 end if;
14915 Next_Elmt (Elmt);
14916 end if;
14918 Next_Elmt (Op_Elmt);
14919 end loop;
14921 return True;
14922 end Check_Derived_Type;
14924 ---------------------------------
14925 -- Derive_Interface_Subprogram --
14926 ---------------------------------
14928 procedure Derive_Interface_Subprogram
14929 (New_Subp : in out Entity_Id;
14930 Subp : Entity_Id;
14931 Actual_Subp : Entity_Id)
14933 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14934 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14936 begin
14937 pragma Assert (Is_Interface (Iface_Type));
14939 Derive_Subprogram
14940 (New_Subp => New_Subp,
14941 Parent_Subp => Iface_Subp,
14942 Derived_Type => Derived_Type,
14943 Parent_Type => Iface_Type,
14944 Actual_Subp => Actual_Subp);
14946 -- Given that this new interface entity corresponds with a primitive
14947 -- of the parent that was not overridden we must leave it associated
14948 -- with its parent primitive to ensure that it will share the same
14949 -- dispatch table slot when overridden.
14951 if No (Actual_Subp) then
14952 Set_Alias (New_Subp, Subp);
14954 -- For instantiations this is not needed since the previous call to
14955 -- Derive_Subprogram leaves the entity well decorated.
14957 else
14958 pragma Assert (Alias (New_Subp) = Actual_Subp);
14959 null;
14960 end if;
14961 end Derive_Interface_Subprogram;
14963 -- Local variables
14965 Alias_Subp : Entity_Id;
14966 Act_List : Elist_Id;
14967 Act_Elmt : Elmt_Id;
14968 Act_Subp : Entity_Id := Empty;
14969 Elmt : Elmt_Id;
14970 Need_Search : Boolean := False;
14971 New_Subp : Entity_Id := Empty;
14972 Parent_Base : Entity_Id;
14973 Subp : Entity_Id;
14975 -- Start of processing for Derive_Subprograms
14977 begin
14978 if Ekind (Parent_Type) = E_Record_Type_With_Private
14979 and then Has_Discriminants (Parent_Type)
14980 and then Present (Full_View (Parent_Type))
14981 then
14982 Parent_Base := Full_View (Parent_Type);
14983 else
14984 Parent_Base := Parent_Type;
14985 end if;
14987 if Present (Generic_Actual) then
14988 Act_List := Collect_Primitive_Operations (Generic_Actual);
14989 Act_Elmt := First_Elmt (Act_List);
14990 else
14991 Act_List := No_Elist;
14992 Act_Elmt := No_Elmt;
14993 end if;
14995 -- Derive primitives inherited from the parent. Note that if the generic
14996 -- actual is present, this is not really a type derivation, it is a
14997 -- completion within an instance.
14999 -- Case 1: Derived_Type does not implement interfaces
15001 if not Is_Tagged_Type (Derived_Type)
15002 or else (not Has_Interfaces (Derived_Type)
15003 and then not (Present (Generic_Actual)
15004 and then Has_Interfaces (Generic_Actual)))
15005 then
15006 Elmt := First_Elmt (Op_List);
15007 while Present (Elmt) loop
15008 Subp := Node (Elmt);
15010 -- Literals are derived earlier in the process of building the
15011 -- derived type, and are skipped here.
15013 if Ekind (Subp) = E_Enumeration_Literal then
15014 null;
15016 -- The actual is a direct descendant and the common primitive
15017 -- operations appear in the same order.
15019 -- If the generic parent type is present, the derived type is an
15020 -- instance of a formal derived type, and within the instance its
15021 -- operations are those of the actual. We derive from the formal
15022 -- type but make the inherited operations aliases of the
15023 -- corresponding operations of the actual.
15025 else
15026 pragma Assert (No (Node (Act_Elmt))
15027 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15028 and then
15029 Type_Conformant
15030 (Subp, Node (Act_Elmt),
15031 Skip_Controlling_Formals => True)));
15033 Derive_Subprogram
15034 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15036 if Present (Act_Elmt) then
15037 Next_Elmt (Act_Elmt);
15038 end if;
15039 end if;
15041 Next_Elmt (Elmt);
15042 end loop;
15044 -- Case 2: Derived_Type implements interfaces
15046 else
15047 -- If the parent type has no predefined primitives we remove
15048 -- predefined primitives from the list of primitives of generic
15049 -- actual to simplify the complexity of this algorithm.
15051 if Present (Generic_Actual) then
15052 declare
15053 Has_Predefined_Primitives : Boolean := False;
15055 begin
15056 -- Check if the parent type has predefined primitives
15058 Elmt := First_Elmt (Op_List);
15059 while Present (Elmt) loop
15060 Subp := Node (Elmt);
15062 if Is_Predefined_Dispatching_Operation (Subp)
15063 and then not Comes_From_Source (Ultimate_Alias (Subp))
15064 then
15065 Has_Predefined_Primitives := True;
15066 exit;
15067 end if;
15069 Next_Elmt (Elmt);
15070 end loop;
15072 -- Remove predefined primitives of Generic_Actual. We must use
15073 -- an auxiliary list because in case of tagged types the value
15074 -- returned by Collect_Primitive_Operations is the value stored
15075 -- in its Primitive_Operations attribute (and we don't want to
15076 -- modify its current contents).
15078 if not Has_Predefined_Primitives then
15079 declare
15080 Aux_List : constant Elist_Id := New_Elmt_List;
15082 begin
15083 Elmt := First_Elmt (Act_List);
15084 while Present (Elmt) loop
15085 Subp := Node (Elmt);
15087 if not Is_Predefined_Dispatching_Operation (Subp)
15088 or else Comes_From_Source (Subp)
15089 then
15090 Append_Elmt (Subp, Aux_List);
15091 end if;
15093 Next_Elmt (Elmt);
15094 end loop;
15096 Act_List := Aux_List;
15097 end;
15098 end if;
15100 Act_Elmt := First_Elmt (Act_List);
15101 Act_Subp := Node (Act_Elmt);
15102 end;
15103 end if;
15105 -- Stage 1: If the generic actual is not present we derive the
15106 -- primitives inherited from the parent type. If the generic parent
15107 -- type is present, the derived type is an instance of a formal
15108 -- derived type, and within the instance its operations are those of
15109 -- the actual. We derive from the formal type but make the inherited
15110 -- operations aliases of the corresponding operations of the actual.
15112 Elmt := First_Elmt (Op_List);
15113 while Present (Elmt) loop
15114 Subp := Node (Elmt);
15115 Alias_Subp := Ultimate_Alias (Subp);
15117 -- Do not derive internal entities of the parent that link
15118 -- interface primitives with their covering primitive. These
15119 -- entities will be added to this type when frozen.
15121 if Present (Interface_Alias (Subp)) then
15122 goto Continue;
15123 end if;
15125 -- If the generic actual is present find the corresponding
15126 -- operation in the generic actual. If the parent type is a
15127 -- direct ancestor of the derived type then, even if it is an
15128 -- interface, the operations are inherited from the primary
15129 -- dispatch table and are in the proper order. If we detect here
15130 -- that primitives are not in the same order we traverse the list
15131 -- of primitive operations of the actual to find the one that
15132 -- implements the interface primitive.
15134 if Need_Search
15135 or else
15136 (Present (Generic_Actual)
15137 and then Present (Act_Subp)
15138 and then not
15139 (Primitive_Names_Match (Subp, Act_Subp)
15140 and then
15141 Type_Conformant (Subp, Act_Subp,
15142 Skip_Controlling_Formals => True)))
15143 then
15144 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15145 Use_Full_View => True));
15147 -- Remember that we need searching for all pending primitives
15149 Need_Search := True;
15151 -- Handle entities associated with interface primitives
15153 if Present (Alias_Subp)
15154 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15155 and then not Is_Predefined_Dispatching_Operation (Subp)
15156 then
15157 -- Search for the primitive in the homonym chain
15159 Act_Subp :=
15160 Find_Primitive_Covering_Interface
15161 (Tagged_Type => Generic_Actual,
15162 Iface_Prim => Alias_Subp);
15164 -- Previous search may not locate primitives covering
15165 -- interfaces defined in generics units or instantiations.
15166 -- (it fails if the covering primitive has formals whose
15167 -- type is also defined in generics or instantiations).
15168 -- In such case we search in the list of primitives of the
15169 -- generic actual for the internal entity that links the
15170 -- interface primitive and the covering primitive.
15172 if No (Act_Subp)
15173 and then Is_Generic_Type (Parent_Type)
15174 then
15175 -- This code has been designed to handle only generic
15176 -- formals that implement interfaces that are defined
15177 -- in a generic unit or instantiation. If this code is
15178 -- needed for other cases we must review it because
15179 -- (given that it relies on Original_Location to locate
15180 -- the primitive of Generic_Actual that covers the
15181 -- interface) it could leave linked through attribute
15182 -- Alias entities of unrelated instantiations).
15184 pragma Assert
15185 (Is_Generic_Unit
15186 (Scope (Find_Dispatching_Type (Alias_Subp)))
15187 or else
15188 Instantiation_Depth
15189 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15191 declare
15192 Iface_Prim_Loc : constant Source_Ptr :=
15193 Original_Location (Sloc (Alias_Subp));
15195 Elmt : Elmt_Id;
15196 Prim : Entity_Id;
15198 begin
15199 Elmt :=
15200 First_Elmt (Primitive_Operations (Generic_Actual));
15202 Search : while Present (Elmt) loop
15203 Prim := Node (Elmt);
15205 if Present (Interface_Alias (Prim))
15206 and then Original_Location
15207 (Sloc (Interface_Alias (Prim))) =
15208 Iface_Prim_Loc
15209 then
15210 Act_Subp := Alias (Prim);
15211 exit Search;
15212 end if;
15214 Next_Elmt (Elmt);
15215 end loop Search;
15216 end;
15217 end if;
15219 pragma Assert (Present (Act_Subp)
15220 or else Is_Abstract_Type (Generic_Actual)
15221 or else Serious_Errors_Detected > 0);
15223 -- Handle predefined primitives plus the rest of user-defined
15224 -- primitives
15226 else
15227 Act_Elmt := First_Elmt (Act_List);
15228 while Present (Act_Elmt) loop
15229 Act_Subp := Node (Act_Elmt);
15231 exit when Primitive_Names_Match (Subp, Act_Subp)
15232 and then Type_Conformant
15233 (Subp, Act_Subp,
15234 Skip_Controlling_Formals => True)
15235 and then No (Interface_Alias (Act_Subp));
15237 Next_Elmt (Act_Elmt);
15238 end loop;
15240 if No (Act_Elmt) then
15241 Act_Subp := Empty;
15242 end if;
15243 end if;
15244 end if;
15246 -- Case 1: If the parent is a limited interface then it has the
15247 -- predefined primitives of synchronized interfaces. However, the
15248 -- actual type may be a non-limited type and hence it does not
15249 -- have such primitives.
15251 if Present (Generic_Actual)
15252 and then not Present (Act_Subp)
15253 and then Is_Limited_Interface (Parent_Base)
15254 and then Is_Predefined_Interface_Primitive (Subp)
15255 then
15256 null;
15258 -- Case 2: Inherit entities associated with interfaces that were
15259 -- not covered by the parent type. We exclude here null interface
15260 -- primitives because they do not need special management.
15262 -- We also exclude interface operations that are renamings. If the
15263 -- subprogram is an explicit renaming of an interface primitive,
15264 -- it is a regular primitive operation, and the presence of its
15265 -- alias is not relevant: it has to be derived like any other
15266 -- primitive.
15268 elsif Present (Alias (Subp))
15269 and then Nkind (Unit_Declaration_Node (Subp)) /=
15270 N_Subprogram_Renaming_Declaration
15271 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15272 and then not
15273 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15274 and then Null_Present (Parent (Alias_Subp)))
15275 then
15276 -- If this is an abstract private type then we transfer the
15277 -- derivation of the interface primitive from the partial view
15278 -- to the full view. This is safe because all the interfaces
15279 -- must be visible in the partial view. Done to avoid adding
15280 -- a new interface derivation to the private part of the
15281 -- enclosing package; otherwise this new derivation would be
15282 -- decorated as hidden when the analysis of the enclosing
15283 -- package completes.
15285 if Is_Abstract_Type (Derived_Type)
15286 and then In_Private_Part (Current_Scope)
15287 and then Has_Private_Declaration (Derived_Type)
15288 then
15289 declare
15290 Partial_View : Entity_Id;
15291 Elmt : Elmt_Id;
15292 Ent : Entity_Id;
15294 begin
15295 Partial_View := First_Entity (Current_Scope);
15296 loop
15297 exit when No (Partial_View)
15298 or else (Has_Private_Declaration (Partial_View)
15299 and then
15300 Full_View (Partial_View) = Derived_Type);
15302 Next_Entity (Partial_View);
15303 end loop;
15305 -- If the partial view was not found then the source code
15306 -- has errors and the derivation is not needed.
15308 if Present (Partial_View) then
15309 Elmt :=
15310 First_Elmt (Primitive_Operations (Partial_View));
15311 while Present (Elmt) loop
15312 Ent := Node (Elmt);
15314 if Present (Alias (Ent))
15315 and then Ultimate_Alias (Ent) = Alias (Subp)
15316 then
15317 Append_Elmt
15318 (Ent, Primitive_Operations (Derived_Type));
15319 exit;
15320 end if;
15322 Next_Elmt (Elmt);
15323 end loop;
15325 -- If the interface primitive was not found in the
15326 -- partial view then this interface primitive was
15327 -- overridden. We add a derivation to activate in
15328 -- Derive_Progenitor_Subprograms the machinery to
15329 -- search for it.
15331 if No (Elmt) then
15332 Derive_Interface_Subprogram
15333 (New_Subp => New_Subp,
15334 Subp => Subp,
15335 Actual_Subp => Act_Subp);
15336 end if;
15337 end if;
15338 end;
15339 else
15340 Derive_Interface_Subprogram
15341 (New_Subp => New_Subp,
15342 Subp => Subp,
15343 Actual_Subp => Act_Subp);
15344 end if;
15346 -- Case 3: Common derivation
15348 else
15349 Derive_Subprogram
15350 (New_Subp => New_Subp,
15351 Parent_Subp => Subp,
15352 Derived_Type => Derived_Type,
15353 Parent_Type => Parent_Base,
15354 Actual_Subp => Act_Subp);
15355 end if;
15357 -- No need to update Act_Elm if we must search for the
15358 -- corresponding operation in the generic actual
15360 if not Need_Search
15361 and then Present (Act_Elmt)
15362 then
15363 Next_Elmt (Act_Elmt);
15364 Act_Subp := Node (Act_Elmt);
15365 end if;
15367 <<Continue>>
15368 Next_Elmt (Elmt);
15369 end loop;
15371 -- Inherit additional operations from progenitors. If the derived
15372 -- type is a generic actual, there are not new primitive operations
15373 -- for the type because it has those of the actual, and therefore
15374 -- nothing needs to be done. The renamings generated above are not
15375 -- primitive operations, and their purpose is simply to make the
15376 -- proper operations visible within an instantiation.
15378 if No (Generic_Actual) then
15379 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15380 end if;
15381 end if;
15383 -- Final check: Direct descendants must have their primitives in the
15384 -- same order. We exclude from this test untagged types and instances
15385 -- of formal derived types. We skip this test if we have already
15386 -- reported serious errors in the sources.
15388 pragma Assert (not Is_Tagged_Type (Derived_Type)
15389 or else Present (Generic_Actual)
15390 or else Serious_Errors_Detected > 0
15391 or else Check_Derived_Type);
15392 end Derive_Subprograms;
15394 --------------------------------
15395 -- Derived_Standard_Character --
15396 --------------------------------
15398 procedure Derived_Standard_Character
15399 (N : Node_Id;
15400 Parent_Type : Entity_Id;
15401 Derived_Type : Entity_Id)
15403 Loc : constant Source_Ptr := Sloc (N);
15404 Def : constant Node_Id := Type_Definition (N);
15405 Indic : constant Node_Id := Subtype_Indication (Def);
15406 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15407 Implicit_Base : constant Entity_Id :=
15408 Create_Itype
15409 (E_Enumeration_Type, N, Derived_Type, 'B');
15411 Lo : Node_Id;
15412 Hi : Node_Id;
15414 begin
15415 Discard_Node (Process_Subtype (Indic, N));
15417 Set_Etype (Implicit_Base, Parent_Base);
15418 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15419 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15421 Set_Is_Character_Type (Implicit_Base, True);
15422 Set_Has_Delayed_Freeze (Implicit_Base);
15424 -- The bounds of the implicit base are the bounds of the parent base.
15425 -- Note that their type is the parent base.
15427 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15428 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15430 Set_Scalar_Range (Implicit_Base,
15431 Make_Range (Loc,
15432 Low_Bound => Lo,
15433 High_Bound => Hi));
15435 Conditional_Delay (Derived_Type, Parent_Type);
15437 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15438 Set_Etype (Derived_Type, Implicit_Base);
15439 Set_Size_Info (Derived_Type, Parent_Type);
15441 if Unknown_RM_Size (Derived_Type) then
15442 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15443 end if;
15445 Set_Is_Character_Type (Derived_Type, True);
15447 if Nkind (Indic) /= N_Subtype_Indication then
15449 -- If no explicit constraint, the bounds are those
15450 -- of the parent type.
15452 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15453 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15454 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15455 end if;
15457 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15459 -- Because the implicit base is used in the conversion of the bounds, we
15460 -- have to freeze it now. This is similar to what is done for numeric
15461 -- types, and it equally suspicious, but otherwise a non-static bound
15462 -- will have a reference to an unfrozen type, which is rejected by Gigi
15463 -- (???). This requires specific care for definition of stream
15464 -- attributes. For details, see comments at the end of
15465 -- Build_Derived_Numeric_Type.
15467 Freeze_Before (N, Implicit_Base);
15468 end Derived_Standard_Character;
15470 ------------------------------
15471 -- Derived_Type_Declaration --
15472 ------------------------------
15474 procedure Derived_Type_Declaration
15475 (T : Entity_Id;
15476 N : Node_Id;
15477 Is_Completion : Boolean)
15479 Parent_Type : Entity_Id;
15481 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15482 -- Check whether the parent type is a generic formal, or derives
15483 -- directly or indirectly from one.
15485 ------------------------
15486 -- Comes_From_Generic --
15487 ------------------------
15489 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15490 begin
15491 if Is_Generic_Type (Typ) then
15492 return True;
15494 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15495 return True;
15497 elsif Is_Private_Type (Typ)
15498 and then Present (Full_View (Typ))
15499 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15500 then
15501 return True;
15503 elsif Is_Generic_Actual_Type (Typ) then
15504 return True;
15506 else
15507 return False;
15508 end if;
15509 end Comes_From_Generic;
15511 -- Local variables
15513 Def : constant Node_Id := Type_Definition (N);
15514 Iface_Def : Node_Id;
15515 Indic : constant Node_Id := Subtype_Indication (Def);
15516 Extension : constant Node_Id := Record_Extension_Part (Def);
15517 Parent_Node : Node_Id;
15518 Taggd : Boolean;
15520 -- Start of processing for Derived_Type_Declaration
15522 begin
15523 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15525 -- Ada 2005 (AI-251): In case of interface derivation check that the
15526 -- parent is also an interface.
15528 if Interface_Present (Def) then
15529 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15531 if not Is_Interface (Parent_Type) then
15532 Diagnose_Interface (Indic, Parent_Type);
15534 else
15535 Parent_Node := Parent (Base_Type (Parent_Type));
15536 Iface_Def := Type_Definition (Parent_Node);
15538 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15539 -- other limited interfaces.
15541 if Limited_Present (Def) then
15542 if Limited_Present (Iface_Def) then
15543 null;
15545 elsif Protected_Present (Iface_Def) then
15546 Error_Msg_NE
15547 ("descendant of& must be declared"
15548 & " as a protected interface",
15549 N, Parent_Type);
15551 elsif Synchronized_Present (Iface_Def) then
15552 Error_Msg_NE
15553 ("descendant of& must be declared"
15554 & " as a synchronized interface",
15555 N, Parent_Type);
15557 elsif Task_Present (Iface_Def) then
15558 Error_Msg_NE
15559 ("descendant of& must be declared as a task interface",
15560 N, Parent_Type);
15562 else
15563 Error_Msg_N
15564 ("(Ada 2005) limited interface cannot "
15565 & "inherit from non-limited interface", Indic);
15566 end if;
15568 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15569 -- from non-limited or limited interfaces.
15571 elsif not Protected_Present (Def)
15572 and then not Synchronized_Present (Def)
15573 and then not Task_Present (Def)
15574 then
15575 if Limited_Present (Iface_Def) then
15576 null;
15578 elsif Protected_Present (Iface_Def) then
15579 Error_Msg_NE
15580 ("descendant of& must be declared"
15581 & " as a protected interface",
15582 N, Parent_Type);
15584 elsif Synchronized_Present (Iface_Def) then
15585 Error_Msg_NE
15586 ("descendant of& must be declared"
15587 & " as a synchronized interface",
15588 N, Parent_Type);
15590 elsif Task_Present (Iface_Def) then
15591 Error_Msg_NE
15592 ("descendant of& must be declared as a task interface",
15593 N, Parent_Type);
15594 else
15595 null;
15596 end if;
15597 end if;
15598 end if;
15599 end if;
15601 if Is_Tagged_Type (Parent_Type)
15602 and then Is_Concurrent_Type (Parent_Type)
15603 and then not Is_Interface (Parent_Type)
15604 then
15605 Error_Msg_N
15606 ("parent type of a record extension cannot be "
15607 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
15608 Set_Etype (T, Any_Type);
15609 return;
15610 end if;
15612 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15613 -- interfaces
15615 if Is_Tagged_Type (Parent_Type)
15616 and then Is_Non_Empty_List (Interface_List (Def))
15617 then
15618 declare
15619 Intf : Node_Id;
15620 T : Entity_Id;
15622 begin
15623 Intf := First (Interface_List (Def));
15624 while Present (Intf) loop
15625 T := Find_Type_Of_Subtype_Indic (Intf);
15627 if not Is_Interface (T) then
15628 Diagnose_Interface (Intf, T);
15630 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15631 -- a limited type from having a nonlimited progenitor.
15633 elsif (Limited_Present (Def)
15634 or else (not Is_Interface (Parent_Type)
15635 and then Is_Limited_Type (Parent_Type)))
15636 and then not Is_Limited_Interface (T)
15637 then
15638 Error_Msg_NE
15639 ("progenitor interface& of limited type must be limited",
15640 N, T);
15641 end if;
15643 Next (Intf);
15644 end loop;
15645 end;
15646 end if;
15648 if Parent_Type = Any_Type
15649 or else Etype (Parent_Type) = Any_Type
15650 or else (Is_Class_Wide_Type (Parent_Type)
15651 and then Etype (Parent_Type) = T)
15652 then
15653 -- If Parent_Type is undefined or illegal, make new type into a
15654 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15655 -- errors. If this is a self-definition, emit error now.
15657 if T = Parent_Type or else T = Etype (Parent_Type) then
15658 Error_Msg_N ("type cannot be used in its own definition", Indic);
15659 end if;
15661 Set_Ekind (T, Ekind (Parent_Type));
15662 Set_Etype (T, Any_Type);
15663 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15665 if Is_Tagged_Type (T)
15666 and then Is_Record_Type (T)
15667 then
15668 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15669 end if;
15671 return;
15672 end if;
15674 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15675 -- an interface is special because the list of interfaces in the full
15676 -- view can be given in any order. For example:
15678 -- type A is interface;
15679 -- type B is interface and A;
15680 -- type D is new B with private;
15681 -- private
15682 -- type D is new A and B with null record; -- 1 --
15684 -- In this case we perform the following transformation of -1-:
15686 -- type D is new B and A with null record;
15688 -- If the parent of the full-view covers the parent of the partial-view
15689 -- we have two possible cases:
15691 -- 1) They have the same parent
15692 -- 2) The parent of the full-view implements some further interfaces
15694 -- In both cases we do not need to perform the transformation. In the
15695 -- first case the source program is correct and the transformation is
15696 -- not needed; in the second case the source program does not fulfill
15697 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15698 -- later.
15700 -- This transformation not only simplifies the rest of the analysis of
15701 -- this type declaration but also simplifies the correct generation of
15702 -- the object layout to the expander.
15704 if In_Private_Part (Current_Scope)
15705 and then Is_Interface (Parent_Type)
15706 then
15707 declare
15708 Iface : Node_Id;
15709 Partial_View : Entity_Id;
15710 Partial_View_Parent : Entity_Id;
15711 New_Iface : Node_Id;
15713 begin
15714 -- Look for the associated private type declaration
15716 Partial_View := First_Entity (Current_Scope);
15717 loop
15718 exit when No (Partial_View)
15719 or else (Has_Private_Declaration (Partial_View)
15720 and then Full_View (Partial_View) = T);
15722 Next_Entity (Partial_View);
15723 end loop;
15725 -- If the partial view was not found then the source code has
15726 -- errors and the transformation is not needed.
15728 if Present (Partial_View) then
15729 Partial_View_Parent := Etype (Partial_View);
15731 -- If the parent of the full-view covers the parent of the
15732 -- partial-view we have nothing else to do.
15734 if Interface_Present_In_Ancestor
15735 (Parent_Type, Partial_View_Parent)
15736 then
15737 null;
15739 -- Traverse the list of interfaces of the full-view to look
15740 -- for the parent of the partial-view and perform the tree
15741 -- transformation.
15743 else
15744 Iface := First (Interface_List (Def));
15745 while Present (Iface) loop
15746 if Etype (Iface) = Etype (Partial_View) then
15747 Rewrite (Subtype_Indication (Def),
15748 New_Copy (Subtype_Indication
15749 (Parent (Partial_View))));
15751 New_Iface :=
15752 Make_Identifier (Sloc (N), Chars (Parent_Type));
15753 Append (New_Iface, Interface_List (Def));
15755 -- Analyze the transformed code
15757 Derived_Type_Declaration (T, N, Is_Completion);
15758 return;
15759 end if;
15761 Next (Iface);
15762 end loop;
15763 end if;
15764 end if;
15765 end;
15766 end if;
15768 -- Only composite types other than array types are allowed to have
15769 -- discriminants.
15771 if Present (Discriminant_Specifications (N)) then
15772 if (Is_Elementary_Type (Parent_Type)
15773 or else
15774 Is_Array_Type (Parent_Type))
15775 and then not Error_Posted (N)
15776 then
15777 Error_Msg_N
15778 ("elementary or array type cannot have discriminants",
15779 Defining_Identifier (First (Discriminant_Specifications (N))));
15780 Set_Has_Discriminants (T, False);
15782 -- The type is allowed to have discriminants
15784 else
15785 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15786 end if;
15787 end if;
15789 -- In Ada 83, a derived type defined in a package specification cannot
15790 -- be used for further derivation until the end of its visible part.
15791 -- Note that derivation in the private part of the package is allowed.
15793 if Ada_Version = Ada_83
15794 and then Is_Derived_Type (Parent_Type)
15795 and then In_Visible_Part (Scope (Parent_Type))
15796 then
15797 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15798 Error_Msg_N
15799 ("(Ada 83): premature use of type for derivation", Indic);
15800 end if;
15801 end if;
15803 -- Check for early use of incomplete or private type
15805 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15806 Error_Msg_N ("premature derivation of incomplete type", Indic);
15807 return;
15809 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15810 and then not Comes_From_Generic (Parent_Type))
15811 or else Has_Private_Component (Parent_Type)
15812 then
15813 -- The ancestor type of a formal type can be incomplete, in which
15814 -- case only the operations of the partial view are available in the
15815 -- generic. Subsequent checks may be required when the full view is
15816 -- analyzed to verify that a derivation from a tagged type has an
15817 -- extension.
15819 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15820 null;
15822 elsif No (Underlying_Type (Parent_Type))
15823 or else Has_Private_Component (Parent_Type)
15824 then
15825 Error_Msg_N
15826 ("premature derivation of derived or private type", Indic);
15828 -- Flag the type itself as being in error, this prevents some
15829 -- nasty problems with subsequent uses of the malformed type.
15831 Set_Error_Posted (T);
15833 -- Check that within the immediate scope of an untagged partial
15834 -- view it's illegal to derive from the partial view if the
15835 -- full view is tagged. (7.3(7))
15837 -- We verify that the Parent_Type is a partial view by checking
15838 -- that it is not a Full_Type_Declaration (i.e. a private type or
15839 -- private extension declaration), to distinguish a partial view
15840 -- from a derivation from a private type which also appears as
15841 -- E_Private_Type. If the parent base type is not declared in an
15842 -- enclosing scope there is no need to check.
15844 elsif Present (Full_View (Parent_Type))
15845 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15846 and then not Is_Tagged_Type (Parent_Type)
15847 and then Is_Tagged_Type (Full_View (Parent_Type))
15848 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15849 then
15850 Error_Msg_N
15851 ("premature derivation from type with tagged full view",
15852 Indic);
15853 end if;
15854 end if;
15856 -- Check that form of derivation is appropriate
15858 Taggd := Is_Tagged_Type (Parent_Type);
15860 -- Set the parent type to the class-wide type's specific type in this
15861 -- case to prevent cascading errors
15863 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15864 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15865 Set_Etype (T, Etype (Parent_Type));
15866 return;
15867 end if;
15869 if Present (Extension) and then not Taggd then
15870 Error_Msg_N
15871 ("type derived from untagged type cannot have extension", Indic);
15873 elsif No (Extension) and then Taggd then
15875 -- If this declaration is within a private part (or body) of a
15876 -- generic instantiation then the derivation is allowed (the parent
15877 -- type can only appear tagged in this case if it's a generic actual
15878 -- type, since it would otherwise have been rejected in the analysis
15879 -- of the generic template).
15881 if not Is_Generic_Actual_Type (Parent_Type)
15882 or else In_Visible_Part (Scope (Parent_Type))
15883 then
15884 if Is_Class_Wide_Type (Parent_Type) then
15885 Error_Msg_N
15886 ("parent type must not be a class-wide type", Indic);
15888 -- Use specific type to prevent cascaded errors.
15890 Parent_Type := Etype (Parent_Type);
15892 else
15893 Error_Msg_N
15894 ("type derived from tagged type must have extension", Indic);
15895 end if;
15896 end if;
15897 end if;
15899 -- AI-443: Synchronized formal derived types require a private
15900 -- extension. There is no point in checking the ancestor type or
15901 -- the progenitors since the construct is wrong to begin with.
15903 if Ada_Version >= Ada_2005
15904 and then Is_Generic_Type (T)
15905 and then Present (Original_Node (N))
15906 then
15907 declare
15908 Decl : constant Node_Id := Original_Node (N);
15910 begin
15911 if Nkind (Decl) = N_Formal_Type_Declaration
15912 and then Nkind (Formal_Type_Definition (Decl)) =
15913 N_Formal_Derived_Type_Definition
15914 and then Synchronized_Present (Formal_Type_Definition (Decl))
15915 and then No (Extension)
15917 -- Avoid emitting a duplicate error message
15919 and then not Error_Posted (Indic)
15920 then
15921 Error_Msg_N
15922 ("synchronized derived type must have extension", N);
15923 end if;
15924 end;
15925 end if;
15927 if Null_Exclusion_Present (Def)
15928 and then not Is_Access_Type (Parent_Type)
15929 then
15930 Error_Msg_N ("null exclusion can only apply to an access type", N);
15931 end if;
15933 -- Avoid deriving parent primitives of underlying record views
15935 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15936 Derive_Subps => not Is_Underlying_Record_View (T));
15938 -- AI-419: The parent type of an explicitly limited derived type must
15939 -- be a limited type or a limited interface.
15941 if Limited_Present (Def) then
15942 Set_Is_Limited_Record (T);
15944 if Is_Interface (T) then
15945 Set_Is_Limited_Interface (T);
15946 end if;
15948 if not Is_Limited_Type (Parent_Type)
15949 and then
15950 (not Is_Interface (Parent_Type)
15951 or else not Is_Limited_Interface (Parent_Type))
15952 then
15953 -- AI05-0096: a derivation in the private part of an instance is
15954 -- legal if the generic formal is untagged limited, and the actual
15955 -- is non-limited.
15957 if Is_Generic_Actual_Type (Parent_Type)
15958 and then In_Private_Part (Current_Scope)
15959 and then
15960 not Is_Tagged_Type
15961 (Generic_Parent_Type (Parent (Parent_Type)))
15962 then
15963 null;
15965 else
15966 Error_Msg_NE
15967 ("parent type& of limited type must be limited",
15968 N, Parent_Type);
15969 end if;
15970 end if;
15971 end if;
15973 -- In SPARK, there are no derived type definitions other than type
15974 -- extensions of tagged record types.
15976 if No (Extension) then
15977 Check_SPARK_05_Restriction
15978 ("derived type is not allowed", Original_Node (N));
15979 end if;
15980 end Derived_Type_Declaration;
15982 ------------------------
15983 -- Diagnose_Interface --
15984 ------------------------
15986 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15987 begin
15988 if not Is_Interface (E) and then E /= Any_Type then
15989 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15990 end if;
15991 end Diagnose_Interface;
15993 ----------------------------------
15994 -- Enumeration_Type_Declaration --
15995 ----------------------------------
15997 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15998 Ev : Uint;
15999 L : Node_Id;
16000 R_Node : Node_Id;
16001 B_Node : Node_Id;
16003 begin
16004 -- Create identifier node representing lower bound
16006 B_Node := New_Node (N_Identifier, Sloc (Def));
16007 L := First (Literals (Def));
16008 Set_Chars (B_Node, Chars (L));
16009 Set_Entity (B_Node, L);
16010 Set_Etype (B_Node, T);
16011 Set_Is_Static_Expression (B_Node, True);
16013 R_Node := New_Node (N_Range, Sloc (Def));
16014 Set_Low_Bound (R_Node, B_Node);
16016 Set_Ekind (T, E_Enumeration_Type);
16017 Set_First_Literal (T, L);
16018 Set_Etype (T, T);
16019 Set_Is_Constrained (T);
16021 Ev := Uint_0;
16023 -- Loop through literals of enumeration type setting pos and rep values
16024 -- except that if the Ekind is already set, then it means the literal
16025 -- was already constructed (case of a derived type declaration and we
16026 -- should not disturb the Pos and Rep values.
16028 while Present (L) loop
16029 if Ekind (L) /= E_Enumeration_Literal then
16030 Set_Ekind (L, E_Enumeration_Literal);
16031 Set_Enumeration_Pos (L, Ev);
16032 Set_Enumeration_Rep (L, Ev);
16033 Set_Is_Known_Valid (L, True);
16034 end if;
16036 Set_Etype (L, T);
16037 New_Overloaded_Entity (L);
16038 Generate_Definition (L);
16039 Set_Convention (L, Convention_Intrinsic);
16041 -- Case of character literal
16043 if Nkind (L) = N_Defining_Character_Literal then
16044 Set_Is_Character_Type (T, True);
16046 -- Check violation of No_Wide_Characters
16048 if Restriction_Check_Required (No_Wide_Characters) then
16049 Get_Name_String (Chars (L));
16051 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16052 Check_Restriction (No_Wide_Characters, L);
16053 end if;
16054 end if;
16055 end if;
16057 Ev := Ev + 1;
16058 Next (L);
16059 end loop;
16061 -- Now create a node representing upper bound
16063 B_Node := New_Node (N_Identifier, Sloc (Def));
16064 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16065 Set_Entity (B_Node, Last (Literals (Def)));
16066 Set_Etype (B_Node, T);
16067 Set_Is_Static_Expression (B_Node, True);
16069 Set_High_Bound (R_Node, B_Node);
16071 -- Initialize various fields of the type. Some of this information
16072 -- may be overwritten later through rep.clauses.
16074 Set_Scalar_Range (T, R_Node);
16075 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16076 Set_Enum_Esize (T);
16077 Set_Enum_Pos_To_Rep (T, Empty);
16079 -- Set Discard_Names if configuration pragma set, or if there is
16080 -- a parameterless pragma in the current declarative region
16082 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16083 Set_Discard_Names (T);
16084 end if;
16086 -- Process end label if there is one
16088 if Present (Def) then
16089 Process_End_Label (Def, 'e', T);
16090 end if;
16091 end Enumeration_Type_Declaration;
16093 ---------------------------------
16094 -- Expand_To_Stored_Constraint --
16095 ---------------------------------
16097 function Expand_To_Stored_Constraint
16098 (Typ : Entity_Id;
16099 Constraint : Elist_Id) return Elist_Id
16101 Explicitly_Discriminated_Type : Entity_Id;
16102 Expansion : Elist_Id;
16103 Discriminant : Entity_Id;
16105 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16106 -- Find the nearest type that actually specifies discriminants
16108 ---------------------------------
16109 -- Type_With_Explicit_Discrims --
16110 ---------------------------------
16112 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16113 Typ : constant E := Base_Type (Id);
16115 begin
16116 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16117 if Present (Full_View (Typ)) then
16118 return Type_With_Explicit_Discrims (Full_View (Typ));
16119 end if;
16121 else
16122 if Has_Discriminants (Typ) then
16123 return Typ;
16124 end if;
16125 end if;
16127 if Etype (Typ) = Typ then
16128 return Empty;
16129 elsif Has_Discriminants (Typ) then
16130 return Typ;
16131 else
16132 return Type_With_Explicit_Discrims (Etype (Typ));
16133 end if;
16135 end Type_With_Explicit_Discrims;
16137 -- Start of processing for Expand_To_Stored_Constraint
16139 begin
16140 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16141 return No_Elist;
16142 end if;
16144 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16146 if No (Explicitly_Discriminated_Type) then
16147 return No_Elist;
16148 end if;
16150 Expansion := New_Elmt_List;
16152 Discriminant :=
16153 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16154 while Present (Discriminant) loop
16155 Append_Elmt
16156 (Get_Discriminant_Value
16157 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16158 To => Expansion);
16159 Next_Stored_Discriminant (Discriminant);
16160 end loop;
16162 return Expansion;
16163 end Expand_To_Stored_Constraint;
16165 ---------------------------
16166 -- Find_Hidden_Interface --
16167 ---------------------------
16169 function Find_Hidden_Interface
16170 (Src : Elist_Id;
16171 Dest : Elist_Id) return Entity_Id
16173 Iface : Entity_Id;
16174 Iface_Elmt : Elmt_Id;
16176 begin
16177 if Present (Src) and then Present (Dest) then
16178 Iface_Elmt := First_Elmt (Src);
16179 while Present (Iface_Elmt) loop
16180 Iface := Node (Iface_Elmt);
16182 if Is_Interface (Iface)
16183 and then not Contain_Interface (Iface, Dest)
16184 then
16185 return Iface;
16186 end if;
16188 Next_Elmt (Iface_Elmt);
16189 end loop;
16190 end if;
16192 return Empty;
16193 end Find_Hidden_Interface;
16195 --------------------
16196 -- Find_Type_Name --
16197 --------------------
16199 function Find_Type_Name (N : Node_Id) return Entity_Id is
16200 Id : constant Entity_Id := Defining_Identifier (N);
16201 Prev : Entity_Id;
16202 New_Id : Entity_Id;
16203 Prev_Par : Node_Id;
16205 procedure Check_Duplicate_Aspects;
16206 -- Check that aspects specified in a completion have not been specified
16207 -- already in the partial view. Type_Invariant and others can be
16208 -- specified on either view but never on both.
16210 procedure Tag_Mismatch;
16211 -- Diagnose a tagged partial view whose full view is untagged.
16212 -- We post the message on the full view, with a reference to
16213 -- the previous partial view. The partial view can be private
16214 -- or incomplete, and these are handled in a different manner,
16215 -- so we determine the position of the error message from the
16216 -- respective slocs of both.
16218 -----------------------------
16219 -- Check_Duplicate_Aspects --
16220 -----------------------------
16221 procedure Check_Duplicate_Aspects is
16222 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16223 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16224 F_Spec, P_Spec : Node_Id;
16226 begin
16227 if Present (Prev_Aspects) and then Present (Full_Aspects) then
16228 F_Spec := First (Full_Aspects);
16229 while Present (F_Spec) loop
16230 P_Spec := First (Prev_Aspects);
16231 while Present (P_Spec) loop
16232 if Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
16233 then
16234 Error_Msg_N
16235 ("aspect already specified in private declaration",
16236 F_Spec);
16237 Remove (F_Spec);
16238 return;
16239 end if;
16241 Next (P_Spec);
16242 end loop;
16244 Next (F_Spec);
16245 end loop;
16246 end if;
16247 end Check_Duplicate_Aspects;
16249 ------------------
16250 -- Tag_Mismatch --
16251 ------------------
16253 procedure Tag_Mismatch is
16254 begin
16255 if Sloc (Prev) < Sloc (Id) then
16256 if Ada_Version >= Ada_2012
16257 and then Nkind (N) = N_Private_Type_Declaration
16258 then
16259 Error_Msg_NE
16260 ("declaration of private } must be a tagged type ", Id, Prev);
16261 else
16262 Error_Msg_NE
16263 ("full declaration of } must be a tagged type ", Id, Prev);
16264 end if;
16266 else
16267 if Ada_Version >= Ada_2012
16268 and then Nkind (N) = N_Private_Type_Declaration
16269 then
16270 Error_Msg_NE
16271 ("declaration of private } must be a tagged type ", Prev, Id);
16272 else
16273 Error_Msg_NE
16274 ("full declaration of } must be a tagged type ", Prev, Id);
16275 end if;
16276 end if;
16277 end Tag_Mismatch;
16279 -- Start of processing for Find_Type_Name
16281 begin
16282 -- Find incomplete declaration, if one was given
16284 Prev := Current_Entity_In_Scope (Id);
16286 -- New type declaration
16288 if No (Prev) then
16289 Enter_Name (Id);
16290 return Id;
16292 -- Previous declaration exists
16294 else
16295 Prev_Par := Parent (Prev);
16297 -- Error if not incomplete/private case except if previous
16298 -- declaration is implicit, etc. Enter_Name will emit error if
16299 -- appropriate.
16301 if not Is_Incomplete_Or_Private_Type (Prev) then
16302 Enter_Name (Id);
16303 New_Id := Id;
16305 -- Check invalid completion of private or incomplete type
16307 elsif not Nkind_In (N, N_Full_Type_Declaration,
16308 N_Task_Type_Declaration,
16309 N_Protected_Type_Declaration)
16310 and then
16311 (Ada_Version < Ada_2012
16312 or else not Is_Incomplete_Type (Prev)
16313 or else not Nkind_In (N, N_Private_Type_Declaration,
16314 N_Private_Extension_Declaration))
16315 then
16316 -- Completion must be a full type declarations (RM 7.3(4))
16318 Error_Msg_Sloc := Sloc (Prev);
16319 Error_Msg_NE ("invalid completion of }", Id, Prev);
16321 -- Set scope of Id to avoid cascaded errors. Entity is never
16322 -- examined again, except when saving globals in generics.
16324 Set_Scope (Id, Current_Scope);
16325 New_Id := Id;
16327 -- If this is a repeated incomplete declaration, no further
16328 -- checks are possible.
16330 if Nkind (N) = N_Incomplete_Type_Declaration then
16331 return Prev;
16332 end if;
16334 -- Case of full declaration of incomplete type
16336 elsif Ekind (Prev) = E_Incomplete_Type
16337 and then (Ada_Version < Ada_2012
16338 or else No (Full_View (Prev))
16339 or else not Is_Private_Type (Full_View (Prev)))
16340 then
16341 -- Indicate that the incomplete declaration has a matching full
16342 -- declaration. The defining occurrence of the incomplete
16343 -- declaration remains the visible one, and the procedure
16344 -- Get_Full_View dereferences it whenever the type is used.
16346 if Present (Full_View (Prev)) then
16347 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16348 end if;
16350 Set_Full_View (Prev, Id);
16351 Append_Entity (Id, Current_Scope);
16352 Set_Is_Public (Id, Is_Public (Prev));
16353 Set_Is_Internal (Id);
16354 New_Id := Prev;
16356 -- If the incomplete view is tagged, a class_wide type has been
16357 -- created already. Use it for the private type as well, in order
16358 -- to prevent multiple incompatible class-wide types that may be
16359 -- created for self-referential anonymous access components.
16361 if Is_Tagged_Type (Prev)
16362 and then Present (Class_Wide_Type (Prev))
16363 then
16364 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16365 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16367 -- The type of the classwide type is the current Id. Previously
16368 -- this was not done for private declarations because of order-
16369 -- of elaboration issues in the back-end, but gigi now handles
16370 -- this properly.
16372 Set_Etype (Class_Wide_Type (Id), Id);
16373 end if;
16375 -- Case of full declaration of private type
16377 else
16378 -- If the private type was a completion of an incomplete type then
16379 -- update Prev to reference the private type
16381 if Ada_Version >= Ada_2012
16382 and then Ekind (Prev) = E_Incomplete_Type
16383 and then Present (Full_View (Prev))
16384 and then Is_Private_Type (Full_View (Prev))
16385 then
16386 Prev := Full_View (Prev);
16387 Prev_Par := Parent (Prev);
16388 end if;
16390 if Nkind (N) = N_Full_Type_Declaration
16391 and then Nkind_In
16392 (Type_Definition (N), N_Record_Definition,
16393 N_Derived_Type_Definition)
16394 and then Interface_Present (Type_Definition (N))
16395 then
16396 Error_Msg_N
16397 ("completion of private type cannot be an interface", N);
16398 end if;
16400 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16401 if Etype (Prev) /= Prev then
16403 -- Prev is a private subtype or a derived type, and needs
16404 -- no completion.
16406 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16407 New_Id := Id;
16409 elsif Ekind (Prev) = E_Private_Type
16410 and then Nkind_In (N, N_Task_Type_Declaration,
16411 N_Protected_Type_Declaration)
16412 then
16413 Error_Msg_N
16414 ("completion of nonlimited type cannot be limited", N);
16416 elsif Ekind (Prev) = E_Record_Type_With_Private
16417 and then Nkind_In (N, N_Task_Type_Declaration,
16418 N_Protected_Type_Declaration)
16419 then
16420 if not Is_Limited_Record (Prev) then
16421 Error_Msg_N
16422 ("completion of nonlimited type cannot be limited", N);
16424 elsif No (Interface_List (N)) then
16425 Error_Msg_N
16426 ("completion of tagged private type must be tagged",
16428 end if;
16429 end if;
16431 -- Ada 2005 (AI-251): Private extension declaration of a task
16432 -- type or a protected type. This case arises when covering
16433 -- interface types.
16435 elsif Nkind_In (N, N_Task_Type_Declaration,
16436 N_Protected_Type_Declaration)
16437 then
16438 null;
16440 elsif Nkind (N) /= N_Full_Type_Declaration
16441 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16442 then
16443 Error_Msg_N
16444 ("full view of private extension must be an extension", N);
16446 elsif not (Abstract_Present (Parent (Prev)))
16447 and then Abstract_Present (Type_Definition (N))
16448 then
16449 Error_Msg_N
16450 ("full view of non-abstract extension cannot be abstract", N);
16451 end if;
16453 if not In_Private_Part (Current_Scope) then
16454 Error_Msg_N
16455 ("declaration of full view must appear in private part", N);
16456 end if;
16458 if Ada_Version >= Ada_2012 then
16459 Check_Duplicate_Aspects;
16460 end if;
16462 Copy_And_Swap (Prev, Id);
16463 Set_Has_Private_Declaration (Prev);
16464 Set_Has_Private_Declaration (Id);
16466 -- Preserve aspect and iterator flags that may have been set on
16467 -- the partial view.
16469 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16470 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16472 -- If no error, propagate freeze_node from private to full view.
16473 -- It may have been generated for an early operational item.
16475 if Present (Freeze_Node (Id))
16476 and then Serious_Errors_Detected = 0
16477 and then No (Full_View (Id))
16478 then
16479 Set_Freeze_Node (Prev, Freeze_Node (Id));
16480 Set_Freeze_Node (Id, Empty);
16481 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16482 end if;
16484 Set_Full_View (Id, Prev);
16485 New_Id := Prev;
16486 end if;
16488 -- Verify that full declaration conforms to partial one
16490 if Is_Incomplete_Or_Private_Type (Prev)
16491 and then Present (Discriminant_Specifications (Prev_Par))
16492 then
16493 if Present (Discriminant_Specifications (N)) then
16494 if Ekind (Prev) = E_Incomplete_Type then
16495 Check_Discriminant_Conformance (N, Prev, Prev);
16496 else
16497 Check_Discriminant_Conformance (N, Prev, Id);
16498 end if;
16500 else
16501 Error_Msg_N
16502 ("missing discriminants in full type declaration", N);
16504 -- To avoid cascaded errors on subsequent use, share the
16505 -- discriminants of the partial view.
16507 Set_Discriminant_Specifications (N,
16508 Discriminant_Specifications (Prev_Par));
16509 end if;
16510 end if;
16512 -- A prior untagged partial view can have an associated class-wide
16513 -- type due to use of the class attribute, and in this case the full
16514 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16515 -- of incomplete tagged declarations, but we check for it.
16517 if Is_Type (Prev)
16518 and then (Is_Tagged_Type (Prev)
16519 or else Present (Class_Wide_Type (Prev)))
16520 then
16521 -- Ada 2012 (AI05-0162): A private type may be the completion of
16522 -- an incomplete type.
16524 if Ada_Version >= Ada_2012
16525 and then Is_Incomplete_Type (Prev)
16526 and then Nkind_In (N, N_Private_Type_Declaration,
16527 N_Private_Extension_Declaration)
16528 then
16529 -- No need to check private extensions since they are tagged
16531 if Nkind (N) = N_Private_Type_Declaration
16532 and then not Tagged_Present (N)
16533 then
16534 Tag_Mismatch;
16535 end if;
16537 -- The full declaration is either a tagged type (including
16538 -- a synchronized type that implements interfaces) or a
16539 -- type extension, otherwise this is an error.
16541 elsif Nkind_In (N, N_Task_Type_Declaration,
16542 N_Protected_Type_Declaration)
16543 then
16544 if No (Interface_List (N)) and then not Error_Posted (N) then
16545 Tag_Mismatch;
16546 end if;
16548 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16550 -- Indicate that the previous declaration (tagged incomplete
16551 -- or private declaration) requires the same on the full one.
16553 if not Tagged_Present (Type_Definition (N)) then
16554 Tag_Mismatch;
16555 Set_Is_Tagged_Type (Id);
16556 end if;
16558 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16559 if No (Record_Extension_Part (Type_Definition (N))) then
16560 Error_Msg_NE
16561 ("full declaration of } must be a record extension",
16562 Prev, Id);
16564 -- Set some attributes to produce a usable full view
16566 Set_Is_Tagged_Type (Id);
16567 end if;
16569 else
16570 Tag_Mismatch;
16571 end if;
16572 end if;
16574 if Present (Prev)
16575 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16576 and then Present (Premature_Use (Parent (Prev)))
16577 then
16578 Error_Msg_Sloc := Sloc (N);
16579 Error_Msg_N
16580 ("\full declaration #", Premature_Use (Parent (Prev)));
16581 end if;
16583 return New_Id;
16584 end if;
16585 end Find_Type_Name;
16587 -------------------------
16588 -- Find_Type_Of_Object --
16589 -------------------------
16591 function Find_Type_Of_Object
16592 (Obj_Def : Node_Id;
16593 Related_Nod : Node_Id) return Entity_Id
16595 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16596 P : Node_Id := Parent (Obj_Def);
16597 T : Entity_Id;
16598 Nam : Name_Id;
16600 begin
16601 -- If the parent is a component_definition node we climb to the
16602 -- component_declaration node
16604 if Nkind (P) = N_Component_Definition then
16605 P := Parent (P);
16606 end if;
16608 -- Case of an anonymous array subtype
16610 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16611 N_Unconstrained_Array_Definition)
16612 then
16613 T := Empty;
16614 Array_Type_Declaration (T, Obj_Def);
16616 -- Create an explicit subtype whenever possible
16618 elsif Nkind (P) /= N_Component_Declaration
16619 and then Def_Kind = N_Subtype_Indication
16620 then
16621 -- Base name of subtype on object name, which will be unique in
16622 -- the current scope.
16624 -- If this is a duplicate declaration, return base type, to avoid
16625 -- generating duplicate anonymous types.
16627 if Error_Posted (P) then
16628 Analyze (Subtype_Mark (Obj_Def));
16629 return Entity (Subtype_Mark (Obj_Def));
16630 end if;
16632 Nam :=
16633 New_External_Name
16634 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16636 T := Make_Defining_Identifier (Sloc (P), Nam);
16638 Insert_Action (Obj_Def,
16639 Make_Subtype_Declaration (Sloc (P),
16640 Defining_Identifier => T,
16641 Subtype_Indication => Relocate_Node (Obj_Def)));
16643 -- This subtype may need freezing, and this will not be done
16644 -- automatically if the object declaration is not in declarative
16645 -- part. Since this is an object declaration, the type cannot always
16646 -- be frozen here. Deferred constants do not freeze their type
16647 -- (which often enough will be private).
16649 if Nkind (P) = N_Object_Declaration
16650 and then Constant_Present (P)
16651 and then No (Expression (P))
16652 then
16653 null;
16655 -- Here we freeze the base type of object type to catch premature use
16656 -- of discriminated private type without a full view.
16658 else
16659 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16660 end if;
16662 -- Ada 2005 AI-406: the object definition in an object declaration
16663 -- can be an access definition.
16665 elsif Def_Kind = N_Access_Definition then
16666 T := Access_Definition (Related_Nod, Obj_Def);
16668 Set_Is_Local_Anonymous_Access
16670 V => (Ada_Version < Ada_2012)
16671 or else (Nkind (P) /= N_Object_Declaration)
16672 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16674 -- Otherwise, the object definition is just a subtype_mark
16676 else
16677 T := Process_Subtype (Obj_Def, Related_Nod);
16679 -- If expansion is disabled an object definition that is an aggregate
16680 -- will not get expanded and may lead to scoping problems in the back
16681 -- end, if the object is referenced in an inner scope. In that case
16682 -- create an itype reference for the object definition now. This
16683 -- may be redundant in some cases, but harmless.
16685 if Is_Itype (T)
16686 and then Nkind (Related_Nod) = N_Object_Declaration
16687 and then ASIS_Mode
16688 then
16689 Build_Itype_Reference (T, Related_Nod);
16690 end if;
16691 end if;
16693 return T;
16694 end Find_Type_Of_Object;
16696 --------------------------------
16697 -- Find_Type_Of_Subtype_Indic --
16698 --------------------------------
16700 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16701 Typ : Entity_Id;
16703 begin
16704 -- Case of subtype mark with a constraint
16706 if Nkind (S) = N_Subtype_Indication then
16707 Find_Type (Subtype_Mark (S));
16708 Typ := Entity (Subtype_Mark (S));
16710 if not
16711 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16712 then
16713 Error_Msg_N
16714 ("incorrect constraint for this kind of type", Constraint (S));
16715 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16716 end if;
16718 -- Otherwise we have a subtype mark without a constraint
16720 elsif Error_Posted (S) then
16721 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16722 return Any_Type;
16724 else
16725 Find_Type (S);
16726 Typ := Entity (S);
16727 end if;
16729 -- Check No_Wide_Characters restriction
16731 Check_Wide_Character_Restriction (Typ, S);
16733 return Typ;
16734 end Find_Type_Of_Subtype_Indic;
16736 -------------------------------------
16737 -- Floating_Point_Type_Declaration --
16738 -------------------------------------
16740 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16741 Digs : constant Node_Id := Digits_Expression (Def);
16742 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16743 Digs_Val : Uint;
16744 Base_Typ : Entity_Id;
16745 Implicit_Base : Entity_Id;
16746 Bound : Node_Id;
16748 function Can_Derive_From (E : Entity_Id) return Boolean;
16749 -- Find if given digits value, and possibly a specified range, allows
16750 -- derivation from specified type
16752 function Find_Base_Type return Entity_Id;
16753 -- Find a predefined base type that Def can derive from, or generate
16754 -- an error and substitute Long_Long_Float if none exists.
16756 ---------------------
16757 -- Can_Derive_From --
16758 ---------------------
16760 function Can_Derive_From (E : Entity_Id) return Boolean is
16761 Spec : constant Entity_Id := Real_Range_Specification (Def);
16763 begin
16764 -- Check specified "digits" constraint
16766 if Digs_Val > Digits_Value (E) then
16767 return False;
16768 end if;
16770 -- Check for matching range, if specified
16772 if Present (Spec) then
16773 if Expr_Value_R (Type_Low_Bound (E)) >
16774 Expr_Value_R (Low_Bound (Spec))
16775 then
16776 return False;
16777 end if;
16779 if Expr_Value_R (Type_High_Bound (E)) <
16780 Expr_Value_R (High_Bound (Spec))
16781 then
16782 return False;
16783 end if;
16784 end if;
16786 return True;
16787 end Can_Derive_From;
16789 --------------------
16790 -- Find_Base_Type --
16791 --------------------
16793 function Find_Base_Type return Entity_Id is
16794 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16796 begin
16797 -- Iterate over the predefined types in order, returning the first
16798 -- one that Def can derive from.
16800 while Present (Choice) loop
16801 if Can_Derive_From (Node (Choice)) then
16802 return Node (Choice);
16803 end if;
16805 Next_Elmt (Choice);
16806 end loop;
16808 -- If we can't derive from any existing type, use Long_Long_Float
16809 -- and give appropriate message explaining the problem.
16811 if Digs_Val > Max_Digs_Val then
16812 -- It might be the case that there is a type with the requested
16813 -- range, just not the combination of digits and range.
16815 Error_Msg_N
16816 ("no predefined type has requested range and precision",
16817 Real_Range_Specification (Def));
16819 else
16820 Error_Msg_N
16821 ("range too large for any predefined type",
16822 Real_Range_Specification (Def));
16823 end if;
16825 return Standard_Long_Long_Float;
16826 end Find_Base_Type;
16828 -- Start of processing for Floating_Point_Type_Declaration
16830 begin
16831 Check_Restriction (No_Floating_Point, Def);
16833 -- Create an implicit base type
16835 Implicit_Base :=
16836 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16838 -- Analyze and verify digits value
16840 Analyze_And_Resolve (Digs, Any_Integer);
16841 Check_Digits_Expression (Digs);
16842 Digs_Val := Expr_Value (Digs);
16844 -- Process possible range spec and find correct type to derive from
16846 Process_Real_Range_Specification (Def);
16848 -- Check that requested number of digits is not too high.
16850 if Digs_Val > Max_Digs_Val then
16852 -- The check for Max_Base_Digits may be somewhat expensive, as it
16853 -- requires reading System, so only do it when necessary.
16855 declare
16856 Max_Base_Digits : constant Uint :=
16857 Expr_Value
16858 (Expression
16859 (Parent (RTE (RE_Max_Base_Digits))));
16861 begin
16862 if Digs_Val > Max_Base_Digits then
16863 Error_Msg_Uint_1 := Max_Base_Digits;
16864 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16866 elsif No (Real_Range_Specification (Def)) then
16867 Error_Msg_Uint_1 := Max_Digs_Val;
16868 Error_Msg_N ("types with more than ^ digits need range spec "
16869 & "(RM 3.5.7(6))", Digs);
16870 end if;
16871 end;
16872 end if;
16874 -- Find a suitable type to derive from or complain and use a substitute
16876 Base_Typ := Find_Base_Type;
16878 -- If there are bounds given in the declaration use them as the bounds
16879 -- of the type, otherwise use the bounds of the predefined base type
16880 -- that was chosen based on the Digits value.
16882 if Present (Real_Range_Specification (Def)) then
16883 Set_Scalar_Range (T, Real_Range_Specification (Def));
16884 Set_Is_Constrained (T);
16886 -- The bounds of this range must be converted to machine numbers
16887 -- in accordance with RM 4.9(38).
16889 Bound := Type_Low_Bound (T);
16891 if Nkind (Bound) = N_Real_Literal then
16892 Set_Realval
16893 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16894 Set_Is_Machine_Number (Bound);
16895 end if;
16897 Bound := Type_High_Bound (T);
16899 if Nkind (Bound) = N_Real_Literal then
16900 Set_Realval
16901 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16902 Set_Is_Machine_Number (Bound);
16903 end if;
16905 else
16906 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16907 end if;
16909 -- Complete definition of implicit base and declared first subtype. The
16910 -- inheritance of the rep item chain ensures that SPARK-related pragmas
16911 -- are not clobbered when the floating point type acts as a full view of
16912 -- a private type.
16914 Set_Etype (Implicit_Base, Base_Typ);
16915 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16916 Set_Size_Info (Implicit_Base, Base_Typ);
16917 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16918 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16919 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16920 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16922 Set_Ekind (T, E_Floating_Point_Subtype);
16923 Set_Etype (T, Implicit_Base);
16924 Set_Size_Info (T, Implicit_Base);
16925 Set_RM_Size (T, RM_Size (Implicit_Base));
16926 Inherit_Rep_Item_Chain (T, Implicit_Base);
16927 Set_Digits_Value (T, Digs_Val);
16928 end Floating_Point_Type_Declaration;
16930 ----------------------------
16931 -- Get_Discriminant_Value --
16932 ----------------------------
16934 -- This is the situation:
16936 -- There is a non-derived type
16938 -- type T0 (Dx, Dy, Dz...)
16940 -- There are zero or more levels of derivation, with each derivation
16941 -- either purely inheriting the discriminants, or defining its own.
16943 -- type Ti is new Ti-1
16944 -- or
16945 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16946 -- or
16947 -- subtype Ti is ...
16949 -- The subtype issue is avoided by the use of Original_Record_Component,
16950 -- and the fact that derived subtypes also derive the constraints.
16952 -- This chain leads back from
16954 -- Typ_For_Constraint
16956 -- Typ_For_Constraint has discriminants, and the value for each
16957 -- discriminant is given by its corresponding Elmt of Constraints.
16959 -- Discriminant is some discriminant in this hierarchy
16961 -- We need to return its value
16963 -- We do this by recursively searching each level, and looking for
16964 -- Discriminant. Once we get to the bottom, we start backing up
16965 -- returning the value for it which may in turn be a discriminant
16966 -- further up, so on the backup we continue the substitution.
16968 function Get_Discriminant_Value
16969 (Discriminant : Entity_Id;
16970 Typ_For_Constraint : Entity_Id;
16971 Constraint : Elist_Id) return Node_Id
16973 function Root_Corresponding_Discriminant
16974 (Discr : Entity_Id) return Entity_Id;
16975 -- Given a discriminant, traverse the chain of inherited discriminants
16976 -- and return the topmost discriminant.
16978 function Search_Derivation_Levels
16979 (Ti : Entity_Id;
16980 Discrim_Values : Elist_Id;
16981 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16982 -- This is the routine that performs the recursive search of levels
16983 -- as described above.
16985 -------------------------------------
16986 -- Root_Corresponding_Discriminant --
16987 -------------------------------------
16989 function Root_Corresponding_Discriminant
16990 (Discr : Entity_Id) return Entity_Id
16992 D : Entity_Id;
16994 begin
16995 D := Discr;
16996 while Present (Corresponding_Discriminant (D)) loop
16997 D := Corresponding_Discriminant (D);
16998 end loop;
17000 return D;
17001 end Root_Corresponding_Discriminant;
17003 ------------------------------
17004 -- Search_Derivation_Levels --
17005 ------------------------------
17007 function Search_Derivation_Levels
17008 (Ti : Entity_Id;
17009 Discrim_Values : Elist_Id;
17010 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17012 Assoc : Elmt_Id;
17013 Disc : Entity_Id;
17014 Result : Node_Or_Entity_Id;
17015 Result_Entity : Node_Id;
17017 begin
17018 -- If inappropriate type, return Error, this happens only in
17019 -- cascaded error situations, and we want to avoid a blow up.
17021 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17022 return Error;
17023 end if;
17025 -- Look deeper if possible. Use Stored_Constraints only for
17026 -- untagged types. For tagged types use the given constraint.
17027 -- This asymmetry needs explanation???
17029 if not Stored_Discrim_Values
17030 and then Present (Stored_Constraint (Ti))
17031 and then not Is_Tagged_Type (Ti)
17032 then
17033 Result :=
17034 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17035 else
17036 declare
17037 Td : constant Entity_Id := Etype (Ti);
17039 begin
17040 if Td = Ti then
17041 Result := Discriminant;
17043 else
17044 if Present (Stored_Constraint (Ti)) then
17045 Result :=
17046 Search_Derivation_Levels
17047 (Td, Stored_Constraint (Ti), True);
17048 else
17049 Result :=
17050 Search_Derivation_Levels
17051 (Td, Discrim_Values, Stored_Discrim_Values);
17052 end if;
17053 end if;
17054 end;
17055 end if;
17057 -- Extra underlying places to search, if not found above. For
17058 -- concurrent types, the relevant discriminant appears in the
17059 -- corresponding record. For a type derived from a private type
17060 -- without discriminant, the full view inherits the discriminants
17061 -- of the full view of the parent.
17063 if Result = Discriminant then
17064 if Is_Concurrent_Type (Ti)
17065 and then Present (Corresponding_Record_Type (Ti))
17066 then
17067 Result :=
17068 Search_Derivation_Levels (
17069 Corresponding_Record_Type (Ti),
17070 Discrim_Values,
17071 Stored_Discrim_Values);
17073 elsif Is_Private_Type (Ti)
17074 and then not Has_Discriminants (Ti)
17075 and then Present (Full_View (Ti))
17076 and then Etype (Full_View (Ti)) /= Ti
17077 then
17078 Result :=
17079 Search_Derivation_Levels (
17080 Full_View (Ti),
17081 Discrim_Values,
17082 Stored_Discrim_Values);
17083 end if;
17084 end if;
17086 -- If Result is not a (reference to a) discriminant, return it,
17087 -- otherwise set Result_Entity to the discriminant.
17089 if Nkind (Result) = N_Defining_Identifier then
17090 pragma Assert (Result = Discriminant);
17091 Result_Entity := Result;
17093 else
17094 if not Denotes_Discriminant (Result) then
17095 return Result;
17096 end if;
17098 Result_Entity := Entity (Result);
17099 end if;
17101 -- See if this level of derivation actually has discriminants because
17102 -- tagged derivations can add them, hence the lower levels need not
17103 -- have any.
17105 if not Has_Discriminants (Ti) then
17106 return Result;
17107 end if;
17109 -- Scan Ti's discriminants for Result_Entity, and return its
17110 -- corresponding value, if any.
17112 Result_Entity := Original_Record_Component (Result_Entity);
17114 Assoc := First_Elmt (Discrim_Values);
17116 if Stored_Discrim_Values then
17117 Disc := First_Stored_Discriminant (Ti);
17118 else
17119 Disc := First_Discriminant (Ti);
17120 end if;
17122 while Present (Disc) loop
17123 pragma Assert (Present (Assoc));
17125 if Original_Record_Component (Disc) = Result_Entity then
17126 return Node (Assoc);
17127 end if;
17129 Next_Elmt (Assoc);
17131 if Stored_Discrim_Values then
17132 Next_Stored_Discriminant (Disc);
17133 else
17134 Next_Discriminant (Disc);
17135 end if;
17136 end loop;
17138 -- Could not find it
17140 return Result;
17141 end Search_Derivation_Levels;
17143 -- Local Variables
17145 Result : Node_Or_Entity_Id;
17147 -- Start of processing for Get_Discriminant_Value
17149 begin
17150 -- ??? This routine is a gigantic mess and will be deleted. For the
17151 -- time being just test for the trivial case before calling recurse.
17153 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17154 declare
17155 D : Entity_Id;
17156 E : Elmt_Id;
17158 begin
17159 D := First_Discriminant (Typ_For_Constraint);
17160 E := First_Elmt (Constraint);
17161 while Present (D) loop
17162 if Chars (D) = Chars (Discriminant) then
17163 return Node (E);
17164 end if;
17166 Next_Discriminant (D);
17167 Next_Elmt (E);
17168 end loop;
17169 end;
17170 end if;
17172 Result := Search_Derivation_Levels
17173 (Typ_For_Constraint, Constraint, False);
17175 -- ??? hack to disappear when this routine is gone
17177 if Nkind (Result) = N_Defining_Identifier then
17178 declare
17179 D : Entity_Id;
17180 E : Elmt_Id;
17182 begin
17183 D := First_Discriminant (Typ_For_Constraint);
17184 E := First_Elmt (Constraint);
17185 while Present (D) loop
17186 if Root_Corresponding_Discriminant (D) = Discriminant then
17187 return Node (E);
17188 end if;
17190 Next_Discriminant (D);
17191 Next_Elmt (E);
17192 end loop;
17193 end;
17194 end if;
17196 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17197 return Result;
17198 end Get_Discriminant_Value;
17200 --------------------------
17201 -- Has_Range_Constraint --
17202 --------------------------
17204 function Has_Range_Constraint (N : Node_Id) return Boolean is
17205 C : constant Node_Id := Constraint (N);
17207 begin
17208 if Nkind (C) = N_Range_Constraint then
17209 return True;
17211 elsif Nkind (C) = N_Digits_Constraint then
17212 return
17213 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17214 or else Present (Range_Constraint (C));
17216 elsif Nkind (C) = N_Delta_Constraint then
17217 return Present (Range_Constraint (C));
17219 else
17220 return False;
17221 end if;
17222 end Has_Range_Constraint;
17224 ------------------------
17225 -- Inherit_Components --
17226 ------------------------
17228 function Inherit_Components
17229 (N : Node_Id;
17230 Parent_Base : Entity_Id;
17231 Derived_Base : Entity_Id;
17232 Is_Tagged : Boolean;
17233 Inherit_Discr : Boolean;
17234 Discs : Elist_Id) return Elist_Id
17236 Assoc_List : constant Elist_Id := New_Elmt_List;
17238 procedure Inherit_Component
17239 (Old_C : Entity_Id;
17240 Plain_Discrim : Boolean := False;
17241 Stored_Discrim : Boolean := False);
17242 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17243 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17244 -- True, Old_C is a stored discriminant. If they are both false then
17245 -- Old_C is a regular component.
17247 -----------------------
17248 -- Inherit_Component --
17249 -----------------------
17251 procedure Inherit_Component
17252 (Old_C : Entity_Id;
17253 Plain_Discrim : Boolean := False;
17254 Stored_Discrim : Boolean := False)
17256 procedure Set_Anonymous_Type (Id : Entity_Id);
17257 -- Id denotes the entity of an access discriminant or anonymous
17258 -- access component. Set the type of Id to either the same type of
17259 -- Old_C or create a new one depending on whether the parent and
17260 -- the child types are in the same scope.
17262 ------------------------
17263 -- Set_Anonymous_Type --
17264 ------------------------
17266 procedure Set_Anonymous_Type (Id : Entity_Id) is
17267 Old_Typ : constant Entity_Id := Etype (Old_C);
17269 begin
17270 if Scope (Parent_Base) = Scope (Derived_Base) then
17271 Set_Etype (Id, Old_Typ);
17273 -- The parent and the derived type are in two different scopes.
17274 -- Reuse the type of the original discriminant / component by
17275 -- copying it in order to preserve all attributes.
17277 else
17278 declare
17279 Typ : constant Entity_Id := New_Copy (Old_Typ);
17281 begin
17282 Set_Etype (Id, Typ);
17284 -- Since we do not generate component declarations for
17285 -- inherited components, associate the itype with the
17286 -- derived type.
17288 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17289 Set_Scope (Typ, Derived_Base);
17290 end;
17291 end if;
17292 end Set_Anonymous_Type;
17294 -- Local variables and constants
17296 New_C : constant Entity_Id := New_Copy (Old_C);
17298 Corr_Discrim : Entity_Id;
17299 Discrim : Entity_Id;
17301 -- Start of processing for Inherit_Component
17303 begin
17304 pragma Assert (not Is_Tagged or not Stored_Discrim);
17306 Set_Parent (New_C, Parent (Old_C));
17308 -- Regular discriminants and components must be inserted in the scope
17309 -- of the Derived_Base. Do it here.
17311 if not Stored_Discrim then
17312 Enter_Name (New_C);
17313 end if;
17315 -- For tagged types the Original_Record_Component must point to
17316 -- whatever this field was pointing to in the parent type. This has
17317 -- already been achieved by the call to New_Copy above.
17319 if not Is_Tagged then
17320 Set_Original_Record_Component (New_C, New_C);
17321 end if;
17323 -- Set the proper type of an access discriminant
17325 if Ekind (New_C) = E_Discriminant
17326 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17327 then
17328 Set_Anonymous_Type (New_C);
17329 end if;
17331 -- If we have inherited a component then see if its Etype contains
17332 -- references to Parent_Base discriminants. In this case, replace
17333 -- these references with the constraints given in Discs. We do not
17334 -- do this for the partial view of private types because this is
17335 -- not needed (only the components of the full view will be used
17336 -- for code generation) and cause problem. We also avoid this
17337 -- transformation in some error situations.
17339 if Ekind (New_C) = E_Component then
17341 -- Set the proper type of an anonymous access component
17343 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17344 Set_Anonymous_Type (New_C);
17346 elsif (Is_Private_Type (Derived_Base)
17347 and then not Is_Generic_Type (Derived_Base))
17348 or else (Is_Empty_Elmt_List (Discs)
17349 and then not Expander_Active)
17350 then
17351 Set_Etype (New_C, Etype (Old_C));
17353 else
17354 -- The current component introduces a circularity of the
17355 -- following kind:
17357 -- limited with Pack_2;
17358 -- package Pack_1 is
17359 -- type T_1 is tagged record
17360 -- Comp : access Pack_2.T_2;
17361 -- ...
17362 -- end record;
17363 -- end Pack_1;
17365 -- with Pack_1;
17366 -- package Pack_2 is
17367 -- type T_2 is new Pack_1.T_1 with ...;
17368 -- end Pack_2;
17370 Set_Etype
17371 (New_C,
17372 Constrain_Component_Type
17373 (Old_C, Derived_Base, N, Parent_Base, Discs));
17374 end if;
17375 end if;
17377 -- In derived tagged types it is illegal to reference a non
17378 -- discriminant component in the parent type. To catch this, mark
17379 -- these components with an Ekind of E_Void. This will be reset in
17380 -- Record_Type_Definition after processing the record extension of
17381 -- the derived type.
17383 -- If the declaration is a private extension, there is no further
17384 -- record extension to process, and the components retain their
17385 -- current kind, because they are visible at this point.
17387 if Is_Tagged and then Ekind (New_C) = E_Component
17388 and then Nkind (N) /= N_Private_Extension_Declaration
17389 then
17390 Set_Ekind (New_C, E_Void);
17391 end if;
17393 if Plain_Discrim then
17394 Set_Corresponding_Discriminant (New_C, Old_C);
17395 Build_Discriminal (New_C);
17397 -- If we are explicitly inheriting a stored discriminant it will be
17398 -- completely hidden.
17400 elsif Stored_Discrim then
17401 Set_Corresponding_Discriminant (New_C, Empty);
17402 Set_Discriminal (New_C, Empty);
17403 Set_Is_Completely_Hidden (New_C);
17405 -- Set the Original_Record_Component of each discriminant in the
17406 -- derived base to point to the corresponding stored that we just
17407 -- created.
17409 Discrim := First_Discriminant (Derived_Base);
17410 while Present (Discrim) loop
17411 Corr_Discrim := Corresponding_Discriminant (Discrim);
17413 -- Corr_Discrim could be missing in an error situation
17415 if Present (Corr_Discrim)
17416 and then Original_Record_Component (Corr_Discrim) = Old_C
17417 then
17418 Set_Original_Record_Component (Discrim, New_C);
17419 end if;
17421 Next_Discriminant (Discrim);
17422 end loop;
17424 Append_Entity (New_C, Derived_Base);
17425 end if;
17427 if not Is_Tagged then
17428 Append_Elmt (Old_C, Assoc_List);
17429 Append_Elmt (New_C, Assoc_List);
17430 end if;
17431 end Inherit_Component;
17433 -- Variables local to Inherit_Component
17435 Loc : constant Source_Ptr := Sloc (N);
17437 Parent_Discrim : Entity_Id;
17438 Stored_Discrim : Entity_Id;
17439 D : Entity_Id;
17440 Component : Entity_Id;
17442 -- Start of processing for Inherit_Components
17444 begin
17445 if not Is_Tagged then
17446 Append_Elmt (Parent_Base, Assoc_List);
17447 Append_Elmt (Derived_Base, Assoc_List);
17448 end if;
17450 -- Inherit parent discriminants if needed
17452 if Inherit_Discr then
17453 Parent_Discrim := First_Discriminant (Parent_Base);
17454 while Present (Parent_Discrim) loop
17455 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17456 Next_Discriminant (Parent_Discrim);
17457 end loop;
17458 end if;
17460 -- Create explicit stored discrims for untagged types when necessary
17462 if not Has_Unknown_Discriminants (Derived_Base)
17463 and then Has_Discriminants (Parent_Base)
17464 and then not Is_Tagged
17465 and then
17466 (not Inherit_Discr
17467 or else First_Discriminant (Parent_Base) /=
17468 First_Stored_Discriminant (Parent_Base))
17469 then
17470 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17471 while Present (Stored_Discrim) loop
17472 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17473 Next_Stored_Discriminant (Stored_Discrim);
17474 end loop;
17475 end if;
17477 -- See if we can apply the second transformation for derived types, as
17478 -- explained in point 6. in the comments above Build_Derived_Record_Type
17479 -- This is achieved by appending Derived_Base discriminants into Discs,
17480 -- which has the side effect of returning a non empty Discs list to the
17481 -- caller of Inherit_Components, which is what we want. This must be
17482 -- done for private derived types if there are explicit stored
17483 -- discriminants, to ensure that we can retrieve the values of the
17484 -- constraints provided in the ancestors.
17486 if Inherit_Discr
17487 and then Is_Empty_Elmt_List (Discs)
17488 and then Present (First_Discriminant (Derived_Base))
17489 and then
17490 (not Is_Private_Type (Derived_Base)
17491 or else Is_Completely_Hidden
17492 (First_Stored_Discriminant (Derived_Base))
17493 or else Is_Generic_Type (Derived_Base))
17494 then
17495 D := First_Discriminant (Derived_Base);
17496 while Present (D) loop
17497 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17498 Next_Discriminant (D);
17499 end loop;
17500 end if;
17502 -- Finally, inherit non-discriminant components unless they are not
17503 -- visible because defined or inherited from the full view of the
17504 -- parent. Don't inherit the _parent field of the parent type.
17506 Component := First_Entity (Parent_Base);
17507 while Present (Component) loop
17509 -- Ada 2005 (AI-251): Do not inherit components associated with
17510 -- secondary tags of the parent.
17512 if Ekind (Component) = E_Component
17513 and then Present (Related_Type (Component))
17514 then
17515 null;
17517 elsif Ekind (Component) /= E_Component
17518 or else Chars (Component) = Name_uParent
17519 then
17520 null;
17522 -- If the derived type is within the parent type's declarative
17523 -- region, then the components can still be inherited even though
17524 -- they aren't visible at this point. This can occur for cases
17525 -- such as within public child units where the components must
17526 -- become visible upon entering the child unit's private part.
17528 elsif not Is_Visible_Component (Component)
17529 and then not In_Open_Scopes (Scope (Parent_Base))
17530 then
17531 null;
17533 elsif Ekind_In (Derived_Base, E_Private_Type,
17534 E_Limited_Private_Type)
17535 then
17536 null;
17538 else
17539 Inherit_Component (Component);
17540 end if;
17542 Next_Entity (Component);
17543 end loop;
17545 -- For tagged derived types, inherited discriminants cannot be used in
17546 -- component declarations of the record extension part. To achieve this
17547 -- we mark the inherited discriminants as not visible.
17549 if Is_Tagged and then Inherit_Discr then
17550 D := First_Discriminant (Derived_Base);
17551 while Present (D) loop
17552 Set_Is_Immediately_Visible (D, False);
17553 Next_Discriminant (D);
17554 end loop;
17555 end if;
17557 return Assoc_List;
17558 end Inherit_Components;
17560 -----------------------------
17561 -- Inherit_Predicate_Flags --
17562 -----------------------------
17564 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17565 begin
17566 Set_Has_Predicates (Subt, Has_Predicates (Par));
17567 Set_Has_Static_Predicate_Aspect
17568 (Subt, Has_Static_Predicate_Aspect (Par));
17569 Set_Has_Dynamic_Predicate_Aspect
17570 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17571 end Inherit_Predicate_Flags;
17573 ----------------------
17574 -- Is_EVF_Procedure --
17575 ----------------------
17577 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17578 Formal : Entity_Id;
17580 begin
17581 -- Examine the formals of an Extensions_Visible False procedure looking
17582 -- for a controlling OUT parameter.
17584 if Ekind (Subp) = E_Procedure
17585 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17586 then
17587 Formal := First_Formal (Subp);
17588 while Present (Formal) loop
17589 if Ekind (Formal) = E_Out_Parameter
17590 and then Is_Controlling_Formal (Formal)
17591 then
17592 return True;
17593 end if;
17595 Next_Formal (Formal);
17596 end loop;
17597 end if;
17599 return False;
17600 end Is_EVF_Procedure;
17602 -----------------------
17603 -- Is_Null_Extension --
17604 -----------------------
17606 function Is_Null_Extension (T : Entity_Id) return Boolean is
17607 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17608 Comp_List : Node_Id;
17609 Comp : Node_Id;
17611 begin
17612 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17613 or else not Is_Tagged_Type (T)
17614 or else Nkind (Type_Definition (Type_Decl)) /=
17615 N_Derived_Type_Definition
17616 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17617 then
17618 return False;
17619 end if;
17621 Comp_List :=
17622 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17624 if Present (Discriminant_Specifications (Type_Decl)) then
17625 return False;
17627 elsif Present (Comp_List)
17628 and then Is_Non_Empty_List (Component_Items (Comp_List))
17629 then
17630 Comp := First (Component_Items (Comp_List));
17632 -- Only user-defined components are relevant. The component list
17633 -- may also contain a parent component and internal components
17634 -- corresponding to secondary tags, but these do not determine
17635 -- whether this is a null extension.
17637 while Present (Comp) loop
17638 if Comes_From_Source (Comp) then
17639 return False;
17640 end if;
17642 Next (Comp);
17643 end loop;
17645 return True;
17647 else
17648 return True;
17649 end if;
17650 end Is_Null_Extension;
17652 ------------------------------
17653 -- Is_Valid_Constraint_Kind --
17654 ------------------------------
17656 function Is_Valid_Constraint_Kind
17657 (T_Kind : Type_Kind;
17658 Constraint_Kind : Node_Kind) return Boolean
17660 begin
17661 case T_Kind is
17662 when Enumeration_Kind |
17663 Integer_Kind =>
17664 return Constraint_Kind = N_Range_Constraint;
17666 when Decimal_Fixed_Point_Kind =>
17667 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17668 N_Range_Constraint);
17670 when Ordinary_Fixed_Point_Kind =>
17671 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17672 N_Range_Constraint);
17674 when Float_Kind =>
17675 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17676 N_Range_Constraint);
17678 when Access_Kind |
17679 Array_Kind |
17680 E_Record_Type |
17681 E_Record_Subtype |
17682 Class_Wide_Kind |
17683 E_Incomplete_Type |
17684 Private_Kind |
17685 Concurrent_Kind =>
17686 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17688 when others =>
17689 return True; -- Error will be detected later
17690 end case;
17691 end Is_Valid_Constraint_Kind;
17693 --------------------------
17694 -- Is_Visible_Component --
17695 --------------------------
17697 function Is_Visible_Component
17698 (C : Entity_Id;
17699 N : Node_Id := Empty) return Boolean
17701 Original_Comp : Entity_Id := Empty;
17702 Original_Scope : Entity_Id;
17703 Type_Scope : Entity_Id;
17705 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17706 -- Check whether parent type of inherited component is declared locally,
17707 -- possibly within a nested package or instance. The current scope is
17708 -- the derived record itself.
17710 -------------------
17711 -- Is_Local_Type --
17712 -------------------
17714 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17715 Scop : Entity_Id;
17717 begin
17718 Scop := Scope (Typ);
17719 while Present (Scop)
17720 and then Scop /= Standard_Standard
17721 loop
17722 if Scop = Scope (Current_Scope) then
17723 return True;
17724 end if;
17726 Scop := Scope (Scop);
17727 end loop;
17729 return False;
17730 end Is_Local_Type;
17732 -- Start of processing for Is_Visible_Component
17734 begin
17735 if Ekind_In (C, E_Component, E_Discriminant) then
17736 Original_Comp := Original_Record_Component (C);
17737 end if;
17739 if No (Original_Comp) then
17741 -- Premature usage, or previous error
17743 return False;
17745 else
17746 Original_Scope := Scope (Original_Comp);
17747 Type_Scope := Scope (Base_Type (Scope (C)));
17748 end if;
17750 -- This test only concerns tagged types
17752 if not Is_Tagged_Type (Original_Scope) then
17753 return True;
17755 -- If it is _Parent or _Tag, there is no visibility issue
17757 elsif not Comes_From_Source (Original_Comp) then
17758 return True;
17760 -- Discriminants are visible unless the (private) type has unknown
17761 -- discriminants. If the discriminant reference is inserted for a
17762 -- discriminant check on a full view it is also visible.
17764 elsif Ekind (Original_Comp) = E_Discriminant
17765 and then
17766 (not Has_Unknown_Discriminants (Original_Scope)
17767 or else (Present (N)
17768 and then Nkind (N) = N_Selected_Component
17769 and then Nkind (Prefix (N)) = N_Type_Conversion
17770 and then not Comes_From_Source (Prefix (N))))
17771 then
17772 return True;
17774 -- In the body of an instantiation, no need to check for the visibility
17775 -- of a component.
17777 elsif In_Instance_Body then
17778 return True;
17780 -- If the component has been declared in an ancestor which is currently
17781 -- a private type, then it is not visible. The same applies if the
17782 -- component's containing type is not in an open scope and the original
17783 -- component's enclosing type is a visible full view of a private type
17784 -- (which can occur in cases where an attempt is being made to reference
17785 -- a component in a sibling package that is inherited from a visible
17786 -- component of a type in an ancestor package; the component in the
17787 -- sibling package should not be visible even though the component it
17788 -- inherited from is visible). This does not apply however in the case
17789 -- where the scope of the type is a private child unit, or when the
17790 -- parent comes from a local package in which the ancestor is currently
17791 -- visible. The latter suppression of visibility is needed for cases
17792 -- that are tested in B730006.
17794 elsif Is_Private_Type (Original_Scope)
17795 or else
17796 (not Is_Private_Descendant (Type_Scope)
17797 and then not In_Open_Scopes (Type_Scope)
17798 and then Has_Private_Declaration (Original_Scope))
17799 then
17800 -- If the type derives from an entity in a formal package, there
17801 -- are no additional visible components.
17803 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17804 N_Formal_Package_Declaration
17805 then
17806 return False;
17808 -- if we are not in the private part of the current package, there
17809 -- are no additional visible components.
17811 elsif Ekind (Scope (Current_Scope)) = E_Package
17812 and then not In_Private_Part (Scope (Current_Scope))
17813 then
17814 return False;
17815 else
17816 return
17817 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17818 and then In_Open_Scopes (Scope (Original_Scope))
17819 and then Is_Local_Type (Type_Scope);
17820 end if;
17822 -- There is another weird way in which a component may be invisible when
17823 -- the private and the full view are not derived from the same ancestor.
17824 -- Here is an example :
17826 -- type A1 is tagged record F1 : integer; end record;
17827 -- type A2 is new A1 with record F2 : integer; end record;
17828 -- type T is new A1 with private;
17829 -- private
17830 -- type T is new A2 with null record;
17832 -- In this case, the full view of T inherits F1 and F2 but the private
17833 -- view inherits only F1
17835 else
17836 declare
17837 Ancestor : Entity_Id := Scope (C);
17839 begin
17840 loop
17841 if Ancestor = Original_Scope then
17842 return True;
17843 elsif Ancestor = Etype (Ancestor) then
17844 return False;
17845 end if;
17847 Ancestor := Etype (Ancestor);
17848 end loop;
17849 end;
17850 end if;
17851 end Is_Visible_Component;
17853 --------------------------
17854 -- Make_Class_Wide_Type --
17855 --------------------------
17857 procedure Make_Class_Wide_Type (T : Entity_Id) is
17858 CW_Type : Entity_Id;
17859 CW_Name : Name_Id;
17860 Next_E : Entity_Id;
17862 begin
17863 if Present (Class_Wide_Type (T)) then
17865 -- The class-wide type is a partially decorated entity created for a
17866 -- unanalyzed tagged type referenced through a limited with clause.
17867 -- When the tagged type is analyzed, its class-wide type needs to be
17868 -- redecorated. Note that we reuse the entity created by Decorate_
17869 -- Tagged_Type in order to preserve all links.
17871 if Materialize_Entity (Class_Wide_Type (T)) then
17872 CW_Type := Class_Wide_Type (T);
17873 Set_Materialize_Entity (CW_Type, False);
17875 -- The class wide type can have been defined by the partial view, in
17876 -- which case everything is already done.
17878 else
17879 return;
17880 end if;
17882 -- Default case, we need to create a new class-wide type
17884 else
17885 CW_Type :=
17886 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17887 end if;
17889 -- Inherit root type characteristics
17891 CW_Name := Chars (CW_Type);
17892 Next_E := Next_Entity (CW_Type);
17893 Copy_Node (T, CW_Type);
17894 Set_Comes_From_Source (CW_Type, False);
17895 Set_Chars (CW_Type, CW_Name);
17896 Set_Parent (CW_Type, Parent (T));
17897 Set_Next_Entity (CW_Type, Next_E);
17899 -- Ensure we have a new freeze node for the class-wide type. The partial
17900 -- view may have freeze action of its own, requiring a proper freeze
17901 -- node, and the same freeze node cannot be shared between the two
17902 -- types.
17904 Set_Has_Delayed_Freeze (CW_Type);
17905 Set_Freeze_Node (CW_Type, Empty);
17907 -- Customize the class-wide type: It has no prim. op., it cannot be
17908 -- abstract and its Etype points back to the specific root type.
17910 Set_Ekind (CW_Type, E_Class_Wide_Type);
17911 Set_Is_Tagged_Type (CW_Type, True);
17912 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17913 Set_Is_Abstract_Type (CW_Type, False);
17914 Set_Is_Constrained (CW_Type, False);
17915 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17916 Set_Default_SSO (CW_Type);
17918 if Ekind (T) = E_Class_Wide_Subtype then
17919 Set_Etype (CW_Type, Etype (Base_Type (T)));
17920 else
17921 Set_Etype (CW_Type, T);
17922 end if;
17924 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
17926 -- If this is the class_wide type of a constrained subtype, it does
17927 -- not have discriminants.
17929 Set_Has_Discriminants (CW_Type,
17930 Has_Discriminants (T) and then not Is_Constrained (T));
17932 Set_Has_Unknown_Discriminants (CW_Type, True);
17933 Set_Class_Wide_Type (T, CW_Type);
17934 Set_Equivalent_Type (CW_Type, Empty);
17936 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17938 Set_Class_Wide_Type (CW_Type, CW_Type);
17939 end Make_Class_Wide_Type;
17941 ----------------
17942 -- Make_Index --
17943 ----------------
17945 procedure Make_Index
17946 (N : Node_Id;
17947 Related_Nod : Node_Id;
17948 Related_Id : Entity_Id := Empty;
17949 Suffix_Index : Nat := 1;
17950 In_Iter_Schm : Boolean := False)
17952 R : Node_Id;
17953 T : Entity_Id;
17954 Def_Id : Entity_Id := Empty;
17955 Found : Boolean := False;
17957 begin
17958 -- For a discrete range used in a constrained array definition and
17959 -- defined by a range, an implicit conversion to the predefined type
17960 -- INTEGER is assumed if each bound is either a numeric literal, a named
17961 -- number, or an attribute, and the type of both bounds (prior to the
17962 -- implicit conversion) is the type universal_integer. Otherwise, both
17963 -- bounds must be of the same discrete type, other than universal
17964 -- integer; this type must be determinable independently of the
17965 -- context, but using the fact that the type must be discrete and that
17966 -- both bounds must have the same type.
17968 -- Character literals also have a universal type in the absence of
17969 -- of additional context, and are resolved to Standard_Character.
17971 if Nkind (N) = N_Range then
17973 -- The index is given by a range constraint. The bounds are known
17974 -- to be of a consistent type.
17976 if not Is_Overloaded (N) then
17977 T := Etype (N);
17979 -- For universal bounds, choose the specific predefined type
17981 if T = Universal_Integer then
17982 T := Standard_Integer;
17984 elsif T = Any_Character then
17985 Ambiguous_Character (Low_Bound (N));
17987 T := Standard_Character;
17988 end if;
17990 -- The node may be overloaded because some user-defined operators
17991 -- are available, but if a universal interpretation exists it is
17992 -- also the selected one.
17994 elsif Universal_Interpretation (N) = Universal_Integer then
17995 T := Standard_Integer;
17997 else
17998 T := Any_Type;
18000 declare
18001 Ind : Interp_Index;
18002 It : Interp;
18004 begin
18005 Get_First_Interp (N, Ind, It);
18006 while Present (It.Typ) loop
18007 if Is_Discrete_Type (It.Typ) then
18009 if Found
18010 and then not Covers (It.Typ, T)
18011 and then not Covers (T, It.Typ)
18012 then
18013 Error_Msg_N ("ambiguous bounds in discrete range", N);
18014 exit;
18015 else
18016 T := It.Typ;
18017 Found := True;
18018 end if;
18019 end if;
18021 Get_Next_Interp (Ind, It);
18022 end loop;
18024 if T = Any_Type then
18025 Error_Msg_N ("discrete type required for range", N);
18026 Set_Etype (N, Any_Type);
18027 return;
18029 elsif T = Universal_Integer then
18030 T := Standard_Integer;
18031 end if;
18032 end;
18033 end if;
18035 if not Is_Discrete_Type (T) then
18036 Error_Msg_N ("discrete type required for range", N);
18037 Set_Etype (N, Any_Type);
18038 return;
18039 end if;
18041 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18042 and then Attribute_Name (Low_Bound (N)) = Name_First
18043 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18044 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18045 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18046 then
18047 -- The type of the index will be the type of the prefix, as long
18048 -- as the upper bound is 'Last of the same type.
18050 Def_Id := Entity (Prefix (Low_Bound (N)));
18052 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18053 or else Attribute_Name (High_Bound (N)) /= Name_Last
18054 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18055 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18056 then
18057 Def_Id := Empty;
18058 end if;
18059 end if;
18061 R := N;
18062 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18064 elsif Nkind (N) = N_Subtype_Indication then
18066 -- The index is given by a subtype with a range constraint
18068 T := Base_Type (Entity (Subtype_Mark (N)));
18070 if not Is_Discrete_Type (T) then
18071 Error_Msg_N ("discrete type required for range", N);
18072 Set_Etype (N, Any_Type);
18073 return;
18074 end if;
18076 R := Range_Expression (Constraint (N));
18078 Resolve (R, T);
18079 Process_Range_Expr_In_Decl
18080 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18082 elsif Nkind (N) = N_Attribute_Reference then
18084 -- Catch beginner's error (use of attribute other than 'Range)
18086 if Attribute_Name (N) /= Name_Range then
18087 Error_Msg_N ("expect attribute ''Range", N);
18088 Set_Etype (N, Any_Type);
18089 return;
18090 end if;
18092 -- If the node denotes the range of a type mark, that is also the
18093 -- resulting type, and we do not need to create an Itype for it.
18095 if Is_Entity_Name (Prefix (N))
18096 and then Comes_From_Source (N)
18097 and then Is_Type (Entity (Prefix (N)))
18098 and then Is_Discrete_Type (Entity (Prefix (N)))
18099 then
18100 Def_Id := Entity (Prefix (N));
18101 end if;
18103 Analyze_And_Resolve (N);
18104 T := Etype (N);
18105 R := N;
18107 -- If none of the above, must be a subtype. We convert this to a
18108 -- range attribute reference because in the case of declared first
18109 -- named subtypes, the types in the range reference can be different
18110 -- from the type of the entity. A range attribute normalizes the
18111 -- reference and obtains the correct types for the bounds.
18113 -- This transformation is in the nature of an expansion, is only
18114 -- done if expansion is active. In particular, it is not done on
18115 -- formal generic types, because we need to retain the name of the
18116 -- original index for instantiation purposes.
18118 else
18119 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18120 Error_Msg_N ("invalid subtype mark in discrete range ", N);
18121 Set_Etype (N, Any_Integer);
18122 return;
18124 else
18125 -- The type mark may be that of an incomplete type. It is only
18126 -- now that we can get the full view, previous analysis does
18127 -- not look specifically for a type mark.
18129 Set_Entity (N, Get_Full_View (Entity (N)));
18130 Set_Etype (N, Entity (N));
18131 Def_Id := Entity (N);
18133 if not Is_Discrete_Type (Def_Id) then
18134 Error_Msg_N ("discrete type required for index", N);
18135 Set_Etype (N, Any_Type);
18136 return;
18137 end if;
18138 end if;
18140 if Expander_Active then
18141 Rewrite (N,
18142 Make_Attribute_Reference (Sloc (N),
18143 Attribute_Name => Name_Range,
18144 Prefix => Relocate_Node (N)));
18146 -- The original was a subtype mark that does not freeze. This
18147 -- means that the rewritten version must not freeze either.
18149 Set_Must_Not_Freeze (N);
18150 Set_Must_Not_Freeze (Prefix (N));
18151 Analyze_And_Resolve (N);
18152 T := Etype (N);
18153 R := N;
18155 -- If expander is inactive, type is legal, nothing else to construct
18157 else
18158 return;
18159 end if;
18160 end if;
18162 if not Is_Discrete_Type (T) then
18163 Error_Msg_N ("discrete type required for range", N);
18164 Set_Etype (N, Any_Type);
18165 return;
18167 elsif T = Any_Type then
18168 Set_Etype (N, Any_Type);
18169 return;
18170 end if;
18172 -- We will now create the appropriate Itype to describe the range, but
18173 -- first a check. If we originally had a subtype, then we just label
18174 -- the range with this subtype. Not only is there no need to construct
18175 -- a new subtype, but it is wrong to do so for two reasons:
18177 -- 1. A legality concern, if we have a subtype, it must not freeze,
18178 -- and the Itype would cause freezing incorrectly
18180 -- 2. An efficiency concern, if we created an Itype, it would not be
18181 -- recognized as the same type for the purposes of eliminating
18182 -- checks in some circumstances.
18184 -- We signal this case by setting the subtype entity in Def_Id
18186 if No (Def_Id) then
18187 Def_Id :=
18188 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18189 Set_Etype (Def_Id, Base_Type (T));
18191 if Is_Signed_Integer_Type (T) then
18192 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18194 elsif Is_Modular_Integer_Type (T) then
18195 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18197 else
18198 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18199 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18200 Set_First_Literal (Def_Id, First_Literal (T));
18201 end if;
18203 Set_Size_Info (Def_Id, (T));
18204 Set_RM_Size (Def_Id, RM_Size (T));
18205 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18207 Set_Scalar_Range (Def_Id, R);
18208 Conditional_Delay (Def_Id, T);
18210 if Nkind (N) = N_Subtype_Indication then
18211 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18212 end if;
18214 -- In the subtype indication case, if the immediate parent of the
18215 -- new subtype is non-static, then the subtype we create is non-
18216 -- static, even if its bounds are static.
18218 if Nkind (N) = N_Subtype_Indication
18219 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18220 then
18221 Set_Is_Non_Static_Subtype (Def_Id);
18222 end if;
18223 end if;
18225 -- Final step is to label the index with this constructed type
18227 Set_Etype (N, Def_Id);
18228 end Make_Index;
18230 ------------------------------
18231 -- Modular_Type_Declaration --
18232 ------------------------------
18234 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18235 Mod_Expr : constant Node_Id := Expression (Def);
18236 M_Val : Uint;
18238 procedure Set_Modular_Size (Bits : Int);
18239 -- Sets RM_Size to Bits, and Esize to normal word size above this
18241 ----------------------
18242 -- Set_Modular_Size --
18243 ----------------------
18245 procedure Set_Modular_Size (Bits : Int) is
18246 begin
18247 Set_RM_Size (T, UI_From_Int (Bits));
18249 if Bits <= 8 then
18250 Init_Esize (T, 8);
18252 elsif Bits <= 16 then
18253 Init_Esize (T, 16);
18255 elsif Bits <= 32 then
18256 Init_Esize (T, 32);
18258 else
18259 Init_Esize (T, System_Max_Binary_Modulus_Power);
18260 end if;
18262 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
18263 Set_Is_Known_Valid (T);
18264 end if;
18265 end Set_Modular_Size;
18267 -- Start of processing for Modular_Type_Declaration
18269 begin
18270 -- If the mod expression is (exactly) 2 * literal, where literal is
18271 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18273 if Warn_On_Suspicious_Modulus_Value
18274 and then Nkind (Mod_Expr) = N_Op_Multiply
18275 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18276 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18277 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18278 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18279 then
18280 Error_Msg_N
18281 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18282 end if;
18284 -- Proceed with analysis of mod expression
18286 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18287 Set_Etype (T, T);
18288 Set_Ekind (T, E_Modular_Integer_Type);
18289 Init_Alignment (T);
18290 Set_Is_Constrained (T);
18292 if not Is_OK_Static_Expression (Mod_Expr) then
18293 Flag_Non_Static_Expr
18294 ("non-static expression used for modular type bound!", Mod_Expr);
18295 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18296 else
18297 M_Val := Expr_Value (Mod_Expr);
18298 end if;
18300 if M_Val < 1 then
18301 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18302 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18303 end if;
18305 if M_Val > 2 ** Standard_Long_Integer_Size then
18306 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18307 end if;
18309 Set_Modulus (T, M_Val);
18311 -- Create bounds for the modular type based on the modulus given in
18312 -- the type declaration and then analyze and resolve those bounds.
18314 Set_Scalar_Range (T,
18315 Make_Range (Sloc (Mod_Expr),
18316 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18317 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18319 -- Properly analyze the literals for the range. We do this manually
18320 -- because we can't go calling Resolve, since we are resolving these
18321 -- bounds with the type, and this type is certainly not complete yet.
18323 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18324 Set_Etype (High_Bound (Scalar_Range (T)), T);
18325 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18326 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18328 -- Loop through powers of two to find number of bits required
18330 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18332 -- Binary case
18334 if M_Val = 2 ** Bits then
18335 Set_Modular_Size (Bits);
18336 return;
18338 -- Non-binary case
18340 elsif M_Val < 2 ** Bits then
18341 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18342 Set_Non_Binary_Modulus (T);
18344 if Bits > System_Max_Nonbinary_Modulus_Power then
18345 Error_Msg_Uint_1 :=
18346 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18347 Error_Msg_F
18348 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18349 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18350 return;
18352 else
18353 -- In the non-binary case, set size as per RM 13.3(55)
18355 Set_Modular_Size (Bits);
18356 return;
18357 end if;
18358 end if;
18360 end loop;
18362 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18363 -- so we just signal an error and set the maximum size.
18365 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18366 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18368 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18369 Init_Alignment (T);
18371 end Modular_Type_Declaration;
18373 --------------------------
18374 -- New_Concatenation_Op --
18375 --------------------------
18377 procedure New_Concatenation_Op (Typ : Entity_Id) is
18378 Loc : constant Source_Ptr := Sloc (Typ);
18379 Op : Entity_Id;
18381 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18382 -- Create abbreviated declaration for the formal of a predefined
18383 -- Operator 'Op' of type 'Typ'
18385 --------------------
18386 -- Make_Op_Formal --
18387 --------------------
18389 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18390 Formal : Entity_Id;
18391 begin
18392 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18393 Set_Etype (Formal, Typ);
18394 Set_Mechanism (Formal, Default_Mechanism);
18395 return Formal;
18396 end Make_Op_Formal;
18398 -- Start of processing for New_Concatenation_Op
18400 begin
18401 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18403 Set_Ekind (Op, E_Operator);
18404 Set_Scope (Op, Current_Scope);
18405 Set_Etype (Op, Typ);
18406 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18407 Set_Is_Immediately_Visible (Op);
18408 Set_Is_Intrinsic_Subprogram (Op);
18409 Set_Has_Completion (Op);
18410 Append_Entity (Op, Current_Scope);
18412 Set_Name_Entity_Id (Name_Op_Concat, Op);
18414 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18415 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18416 end New_Concatenation_Op;
18418 -------------------------
18419 -- OK_For_Limited_Init --
18420 -------------------------
18422 -- ???Check all calls of this, and compare the conditions under which it's
18423 -- called.
18425 function OK_For_Limited_Init
18426 (Typ : Entity_Id;
18427 Exp : Node_Id) return Boolean
18429 begin
18430 return Is_CPP_Constructor_Call (Exp)
18431 or else (Ada_Version >= Ada_2005
18432 and then not Debug_Flag_Dot_L
18433 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18434 end OK_For_Limited_Init;
18436 -------------------------------
18437 -- OK_For_Limited_Init_In_05 --
18438 -------------------------------
18440 function OK_For_Limited_Init_In_05
18441 (Typ : Entity_Id;
18442 Exp : Node_Id) return Boolean
18444 begin
18445 -- An object of a limited interface type can be initialized with any
18446 -- expression of a nonlimited descendant type.
18448 if Is_Class_Wide_Type (Typ)
18449 and then Is_Limited_Interface (Typ)
18450 and then not Is_Limited_Type (Etype (Exp))
18451 then
18452 return True;
18453 end if;
18455 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18456 -- case of limited aggregates (including extension aggregates), and
18457 -- function calls. The function call may have been given in prefixed
18458 -- notation, in which case the original node is an indexed component.
18459 -- If the function is parameterless, the original node was an explicit
18460 -- dereference. The function may also be parameterless, in which case
18461 -- the source node is just an identifier.
18463 case Nkind (Original_Node (Exp)) is
18464 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18465 return True;
18467 when N_Identifier =>
18468 return Present (Entity (Original_Node (Exp)))
18469 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18471 when N_Qualified_Expression =>
18472 return
18473 OK_For_Limited_Init_In_05
18474 (Typ, Expression (Original_Node (Exp)));
18476 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18477 -- with a function call, the expander has rewritten the call into an
18478 -- N_Type_Conversion node to force displacement of the pointer to
18479 -- reference the component containing the secondary dispatch table.
18480 -- Otherwise a type conversion is not a legal context.
18481 -- A return statement for a build-in-place function returning a
18482 -- synchronized type also introduces an unchecked conversion.
18484 when N_Type_Conversion |
18485 N_Unchecked_Type_Conversion =>
18486 return not Comes_From_Source (Exp)
18487 and then
18488 OK_For_Limited_Init_In_05
18489 (Typ, Expression (Original_Node (Exp)));
18491 when N_Indexed_Component |
18492 N_Selected_Component |
18493 N_Explicit_Dereference =>
18494 return Nkind (Exp) = N_Function_Call;
18496 -- A use of 'Input is a function call, hence allowed. Normally the
18497 -- attribute will be changed to a call, but the attribute by itself
18498 -- can occur with -gnatc.
18500 when N_Attribute_Reference =>
18501 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18503 -- For a case expression, all dependent expressions must be legal
18505 when N_Case_Expression =>
18506 declare
18507 Alt : Node_Id;
18509 begin
18510 Alt := First (Alternatives (Original_Node (Exp)));
18511 while Present (Alt) loop
18512 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18513 return False;
18514 end if;
18516 Next (Alt);
18517 end loop;
18519 return True;
18520 end;
18522 -- For an if expression, all dependent expressions must be legal
18524 when N_If_Expression =>
18525 declare
18526 Then_Expr : constant Node_Id :=
18527 Next (First (Expressions (Original_Node (Exp))));
18528 Else_Expr : constant Node_Id := Next (Then_Expr);
18529 begin
18530 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18531 and then
18532 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18533 end;
18535 when others =>
18536 return False;
18537 end case;
18538 end OK_For_Limited_Init_In_05;
18540 -------------------------------------------
18541 -- Ordinary_Fixed_Point_Type_Declaration --
18542 -------------------------------------------
18544 procedure Ordinary_Fixed_Point_Type_Declaration
18545 (T : Entity_Id;
18546 Def : Node_Id)
18548 Loc : constant Source_Ptr := Sloc (Def);
18549 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18550 RRS : constant Node_Id := Real_Range_Specification (Def);
18551 Implicit_Base : Entity_Id;
18552 Delta_Val : Ureal;
18553 Small_Val : Ureal;
18554 Low_Val : Ureal;
18555 High_Val : Ureal;
18557 begin
18558 Check_Restriction (No_Fixed_Point, Def);
18560 -- Create implicit base type
18562 Implicit_Base :=
18563 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18564 Set_Etype (Implicit_Base, Implicit_Base);
18566 -- Analyze and process delta expression
18568 Analyze_And_Resolve (Delta_Expr, Any_Real);
18570 Check_Delta_Expression (Delta_Expr);
18571 Delta_Val := Expr_Value_R (Delta_Expr);
18573 Set_Delta_Value (Implicit_Base, Delta_Val);
18575 -- Compute default small from given delta, which is the largest power
18576 -- of two that does not exceed the given delta value.
18578 declare
18579 Tmp : Ureal;
18580 Scale : Int;
18582 begin
18583 Tmp := Ureal_1;
18584 Scale := 0;
18586 if Delta_Val < Ureal_1 then
18587 while Delta_Val < Tmp loop
18588 Tmp := Tmp / Ureal_2;
18589 Scale := Scale + 1;
18590 end loop;
18592 else
18593 loop
18594 Tmp := Tmp * Ureal_2;
18595 exit when Tmp > Delta_Val;
18596 Scale := Scale - 1;
18597 end loop;
18598 end if;
18600 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18601 end;
18603 Set_Small_Value (Implicit_Base, Small_Val);
18605 -- If no range was given, set a dummy range
18607 if RRS <= Empty_Or_Error then
18608 Low_Val := -Small_Val;
18609 High_Val := Small_Val;
18611 -- Otherwise analyze and process given range
18613 else
18614 declare
18615 Low : constant Node_Id := Low_Bound (RRS);
18616 High : constant Node_Id := High_Bound (RRS);
18618 begin
18619 Analyze_And_Resolve (Low, Any_Real);
18620 Analyze_And_Resolve (High, Any_Real);
18621 Check_Real_Bound (Low);
18622 Check_Real_Bound (High);
18624 -- Obtain and set the range
18626 Low_Val := Expr_Value_R (Low);
18627 High_Val := Expr_Value_R (High);
18629 if Low_Val > High_Val then
18630 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18631 end if;
18632 end;
18633 end if;
18635 -- The range for both the implicit base and the declared first subtype
18636 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18637 -- set a temporary range in place. Note that the bounds of the base
18638 -- type will be widened to be symmetrical and to fill the available
18639 -- bits when the type is frozen.
18641 -- We could do this with all discrete types, and probably should, but
18642 -- we absolutely have to do it for fixed-point, since the end-points
18643 -- of the range and the size are determined by the small value, which
18644 -- could be reset before the freeze point.
18646 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18647 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18649 -- Complete definition of first subtype. The inheritance of the rep item
18650 -- chain ensures that SPARK-related pragmas are not clobbered when the
18651 -- ordinary fixed point type acts as a full view of a private type.
18653 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18654 Set_Etype (T, Implicit_Base);
18655 Init_Size_Align (T);
18656 Inherit_Rep_Item_Chain (T, Implicit_Base);
18657 Set_Small_Value (T, Small_Val);
18658 Set_Delta_Value (T, Delta_Val);
18659 Set_Is_Constrained (T);
18660 end Ordinary_Fixed_Point_Type_Declaration;
18662 ----------------------------------
18663 -- Preanalyze_Assert_Expression --
18664 ----------------------------------
18666 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18667 begin
18668 In_Assertion_Expr := In_Assertion_Expr + 1;
18669 Preanalyze_Spec_Expression (N, T);
18670 In_Assertion_Expr := In_Assertion_Expr - 1;
18671 end Preanalyze_Assert_Expression;
18673 -----------------------------------
18674 -- Preanalyze_Default_Expression --
18675 -----------------------------------
18677 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18678 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18679 begin
18680 In_Default_Expr := True;
18681 Preanalyze_Spec_Expression (N, T);
18682 In_Default_Expr := Save_In_Default_Expr;
18683 end Preanalyze_Default_Expression;
18685 --------------------------------
18686 -- Preanalyze_Spec_Expression --
18687 --------------------------------
18689 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18690 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18691 begin
18692 In_Spec_Expression := True;
18693 Preanalyze_And_Resolve (N, T);
18694 In_Spec_Expression := Save_In_Spec_Expression;
18695 end Preanalyze_Spec_Expression;
18697 ----------------------------------------
18698 -- Prepare_Private_Subtype_Completion --
18699 ----------------------------------------
18701 procedure Prepare_Private_Subtype_Completion
18702 (Id : Entity_Id;
18703 Related_Nod : Node_Id)
18705 Id_B : constant Entity_Id := Base_Type (Id);
18706 Full_B : Entity_Id := Full_View (Id_B);
18707 Full : Entity_Id;
18709 begin
18710 if Present (Full_B) then
18712 -- Get to the underlying full view if necessary
18714 if Is_Private_Type (Full_B)
18715 and then Present (Underlying_Full_View (Full_B))
18716 then
18717 Full_B := Underlying_Full_View (Full_B);
18718 end if;
18720 -- The Base_Type is already completed, we can complete the subtype
18721 -- now. We have to create a new entity with the same name, Thus we
18722 -- can't use Create_Itype.
18724 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18725 Set_Is_Itype (Full);
18726 Set_Associated_Node_For_Itype (Full, Related_Nod);
18727 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18728 end if;
18730 -- The parent subtype may be private, but the base might not, in some
18731 -- nested instances. In that case, the subtype does not need to be
18732 -- exchanged. It would still be nice to make private subtypes and their
18733 -- bases consistent at all times ???
18735 if Is_Private_Type (Id_B) then
18736 Append_Elmt (Id, Private_Dependents (Id_B));
18737 end if;
18738 end Prepare_Private_Subtype_Completion;
18740 ---------------------------
18741 -- Process_Discriminants --
18742 ---------------------------
18744 procedure Process_Discriminants
18745 (N : Node_Id;
18746 Prev : Entity_Id := Empty)
18748 Elist : constant Elist_Id := New_Elmt_List;
18749 Id : Node_Id;
18750 Discr : Node_Id;
18751 Discr_Number : Uint;
18752 Discr_Type : Entity_Id;
18753 Default_Present : Boolean := False;
18754 Default_Not_Present : Boolean := False;
18756 begin
18757 -- A composite type other than an array type can have discriminants.
18758 -- On entry, the current scope is the composite type.
18760 -- The discriminants are initially entered into the scope of the type
18761 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18762 -- use, as explained at the end of this procedure.
18764 Discr := First (Discriminant_Specifications (N));
18765 while Present (Discr) loop
18766 Enter_Name (Defining_Identifier (Discr));
18768 -- For navigation purposes we add a reference to the discriminant
18769 -- in the entity for the type. If the current declaration is a
18770 -- completion, place references on the partial view. Otherwise the
18771 -- type is the current scope.
18773 if Present (Prev) then
18775 -- The references go on the partial view, if present. If the
18776 -- partial view has discriminants, the references have been
18777 -- generated already.
18779 if not Has_Discriminants (Prev) then
18780 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18781 end if;
18782 else
18783 Generate_Reference
18784 (Current_Scope, Defining_Identifier (Discr), 'd');
18785 end if;
18787 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18788 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18790 -- Ada 2005 (AI-254)
18792 if Present (Access_To_Subprogram_Definition
18793 (Discriminant_Type (Discr)))
18794 and then Protected_Present (Access_To_Subprogram_Definition
18795 (Discriminant_Type (Discr)))
18796 then
18797 Discr_Type :=
18798 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18799 end if;
18801 else
18802 Find_Type (Discriminant_Type (Discr));
18803 Discr_Type := Etype (Discriminant_Type (Discr));
18805 if Error_Posted (Discriminant_Type (Discr)) then
18806 Discr_Type := Any_Type;
18807 end if;
18808 end if;
18810 -- Handling of discriminants that are access types
18812 if Is_Access_Type (Discr_Type) then
18814 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18815 -- limited record types
18817 if Ada_Version < Ada_2005 then
18818 Check_Access_Discriminant_Requires_Limited
18819 (Discr, Discriminant_Type (Discr));
18820 end if;
18822 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18823 Error_Msg_N
18824 ("(Ada 83) access discriminant not allowed", Discr);
18825 end if;
18827 -- If not access type, must be a discrete type
18829 elsif not Is_Discrete_Type (Discr_Type) then
18830 Error_Msg_N
18831 ("discriminants must have a discrete or access type",
18832 Discriminant_Type (Discr));
18833 end if;
18835 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18837 -- If a discriminant specification includes the assignment compound
18838 -- delimiter followed by an expression, the expression is the default
18839 -- expression of the discriminant; the default expression must be of
18840 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18841 -- a default expression, we do the special preanalysis, since this
18842 -- expression does not freeze (see section "Handling of Default and
18843 -- Per-Object Expressions" in spec of package Sem).
18845 if Present (Expression (Discr)) then
18846 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18848 -- Legaity checks
18850 if Nkind (N) = N_Formal_Type_Declaration then
18851 Error_Msg_N
18852 ("discriminant defaults not allowed for formal type",
18853 Expression (Discr));
18855 -- Flag an error for a tagged type with defaulted discriminants,
18856 -- excluding limited tagged types when compiling for Ada 2012
18857 -- (see AI05-0214).
18859 elsif Is_Tagged_Type (Current_Scope)
18860 and then (not Is_Limited_Type (Current_Scope)
18861 or else Ada_Version < Ada_2012)
18862 and then Comes_From_Source (N)
18863 then
18864 -- Note: see similar test in Check_Or_Process_Discriminants, to
18865 -- handle the (illegal) case of the completion of an untagged
18866 -- view with discriminants with defaults by a tagged full view.
18867 -- We skip the check if Discr does not come from source, to
18868 -- account for the case of an untagged derived type providing
18869 -- defaults for a renamed discriminant from a private untagged
18870 -- ancestor with a tagged full view (ACATS B460006).
18872 if Ada_Version >= Ada_2012 then
18873 Error_Msg_N
18874 ("discriminants of nonlimited tagged type cannot have"
18875 & " defaults",
18876 Expression (Discr));
18877 else
18878 Error_Msg_N
18879 ("discriminants of tagged type cannot have defaults",
18880 Expression (Discr));
18881 end if;
18883 else
18884 Default_Present := True;
18885 Append_Elmt (Expression (Discr), Elist);
18887 -- Tag the defining identifiers for the discriminants with
18888 -- their corresponding default expressions from the tree.
18890 Set_Discriminant_Default_Value
18891 (Defining_Identifier (Discr), Expression (Discr));
18892 end if;
18894 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18895 -- gets set unless we can be sure that no range check is required.
18897 if (GNATprove_Mode or not Expander_Active)
18898 and then not
18899 Is_In_Range
18900 (Expression (Discr), Discr_Type, Assume_Valid => True)
18901 then
18902 Set_Do_Range_Check (Expression (Discr));
18903 end if;
18905 -- No default discriminant value given
18907 else
18908 Default_Not_Present := True;
18909 end if;
18911 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18912 -- Discr_Type but with the null-exclusion attribute
18914 if Ada_Version >= Ada_2005 then
18916 -- Ada 2005 (AI-231): Static checks
18918 if Can_Never_Be_Null (Discr_Type) then
18919 Null_Exclusion_Static_Checks (Discr);
18921 elsif Is_Access_Type (Discr_Type)
18922 and then Null_Exclusion_Present (Discr)
18924 -- No need to check itypes because in their case this check
18925 -- was done at their point of creation
18927 and then not Is_Itype (Discr_Type)
18928 then
18929 if Can_Never_Be_Null (Discr_Type) then
18930 Error_Msg_NE
18931 ("`NOT NULL` not allowed (& already excludes null)",
18932 Discr,
18933 Discr_Type);
18934 end if;
18936 Set_Etype (Defining_Identifier (Discr),
18937 Create_Null_Excluding_Itype
18938 (T => Discr_Type,
18939 Related_Nod => Discr));
18941 -- Check for improper null exclusion if the type is otherwise
18942 -- legal for a discriminant.
18944 elsif Null_Exclusion_Present (Discr)
18945 and then Is_Discrete_Type (Discr_Type)
18946 then
18947 Error_Msg_N
18948 ("null exclusion can only apply to an access type", Discr);
18949 end if;
18951 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18952 -- can't have defaults. Synchronized types, or types that are
18953 -- explicitly limited are fine, but special tests apply to derived
18954 -- types in generics: in a generic body we have to assume the
18955 -- worst, and therefore defaults are not allowed if the parent is
18956 -- a generic formal private type (see ACATS B370001).
18958 if Is_Access_Type (Discr_Type) and then Default_Present then
18959 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18960 or else Is_Limited_Record (Current_Scope)
18961 or else Is_Concurrent_Type (Current_Scope)
18962 or else Is_Concurrent_Record_Type (Current_Scope)
18963 or else Ekind (Current_Scope) = E_Limited_Private_Type
18964 then
18965 if not Is_Derived_Type (Current_Scope)
18966 or else not Is_Generic_Type (Etype (Current_Scope))
18967 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18968 or else Limited_Present
18969 (Type_Definition (Parent (Current_Scope)))
18970 then
18971 null;
18973 else
18974 Error_Msg_N
18975 ("access discriminants of nonlimited types cannot "
18976 & "have defaults", Expression (Discr));
18977 end if;
18979 elsif Present (Expression (Discr)) then
18980 Error_Msg_N
18981 ("(Ada 2005) access discriminants of nonlimited types "
18982 & "cannot have defaults", Expression (Discr));
18983 end if;
18984 end if;
18985 end if;
18987 -- A discriminant cannot be effectively volatile. This check is only
18988 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18989 -- rule (SPARK RM 7.1.3(6)).
18991 if SPARK_Mode = On
18992 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18993 then
18994 Error_Msg_N ("discriminant cannot be volatile", Discr);
18995 end if;
18997 Next (Discr);
18998 end loop;
19000 -- An element list consisting of the default expressions of the
19001 -- discriminants is constructed in the above loop and used to set
19002 -- the Discriminant_Constraint attribute for the type. If an object
19003 -- is declared of this (record or task) type without any explicit
19004 -- discriminant constraint given, this element list will form the
19005 -- actual parameters for the corresponding initialization procedure
19006 -- for the type.
19008 Set_Discriminant_Constraint (Current_Scope, Elist);
19009 Set_Stored_Constraint (Current_Scope, No_Elist);
19011 -- Default expressions must be provided either for all or for none
19012 -- of the discriminants of a discriminant part. (RM 3.7.1)
19014 if Default_Present and then Default_Not_Present then
19015 Error_Msg_N
19016 ("incomplete specification of defaults for discriminants", N);
19017 end if;
19019 -- The use of the name of a discriminant is not allowed in default
19020 -- expressions of a discriminant part if the specification of the
19021 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19023 -- To detect this, the discriminant names are entered initially with an
19024 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19025 -- attempt to use a void entity (for example in an expression that is
19026 -- type-checked) produces the error message: premature usage. Now after
19027 -- completing the semantic analysis of the discriminant part, we can set
19028 -- the Ekind of all the discriminants appropriately.
19030 Discr := First (Discriminant_Specifications (N));
19031 Discr_Number := Uint_1;
19032 while Present (Discr) loop
19033 Id := Defining_Identifier (Discr);
19034 Set_Ekind (Id, E_Discriminant);
19035 Init_Component_Location (Id);
19036 Init_Esize (Id);
19037 Set_Discriminant_Number (Id, Discr_Number);
19039 -- Make sure this is always set, even in illegal programs
19041 Set_Corresponding_Discriminant (Id, Empty);
19043 -- Initialize the Original_Record_Component to the entity itself.
19044 -- Inherit_Components will propagate the right value to
19045 -- discriminants in derived record types.
19047 Set_Original_Record_Component (Id, Id);
19049 -- Create the discriminal for the discriminant
19051 Build_Discriminal (Id);
19053 Next (Discr);
19054 Discr_Number := Discr_Number + 1;
19055 end loop;
19057 Set_Has_Discriminants (Current_Scope);
19058 end Process_Discriminants;
19060 -----------------------
19061 -- Process_Full_View --
19062 -----------------------
19064 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19065 procedure Collect_Implemented_Interfaces
19066 (Typ : Entity_Id;
19067 Ifaces : Elist_Id);
19068 -- Ada 2005: Gather all the interfaces that Typ directly or
19069 -- inherently implements. Duplicate entries are not added to
19070 -- the list Ifaces.
19072 ------------------------------------
19073 -- Collect_Implemented_Interfaces --
19074 ------------------------------------
19076 procedure Collect_Implemented_Interfaces
19077 (Typ : Entity_Id;
19078 Ifaces : Elist_Id)
19080 Iface : Entity_Id;
19081 Iface_Elmt : Elmt_Id;
19083 begin
19084 -- Abstract interfaces are only associated with tagged record types
19086 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19087 return;
19088 end if;
19090 -- Recursively climb to the ancestors
19092 if Etype (Typ) /= Typ
19094 -- Protect the frontend against wrong cyclic declarations like:
19096 -- type B is new A with private;
19097 -- type C is new A with private;
19098 -- private
19099 -- type B is new C with null record;
19100 -- type C is new B with null record;
19102 and then Etype (Typ) /= Priv_T
19103 and then Etype (Typ) /= Full_T
19104 then
19105 -- Keep separate the management of private type declarations
19107 if Ekind (Typ) = E_Record_Type_With_Private then
19109 -- Handle the following illegal usage:
19110 -- type Private_Type is tagged private;
19111 -- private
19112 -- type Private_Type is new Type_Implementing_Iface;
19114 if Present (Full_View (Typ))
19115 and then Etype (Typ) /= Full_View (Typ)
19116 then
19117 if Is_Interface (Etype (Typ)) then
19118 Append_Unique_Elmt (Etype (Typ), Ifaces);
19119 end if;
19121 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19122 end if;
19124 -- Non-private types
19126 else
19127 if Is_Interface (Etype (Typ)) then
19128 Append_Unique_Elmt (Etype (Typ), Ifaces);
19129 end if;
19131 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19132 end if;
19133 end if;
19135 -- Handle entities in the list of abstract interfaces
19137 if Present (Interfaces (Typ)) then
19138 Iface_Elmt := First_Elmt (Interfaces (Typ));
19139 while Present (Iface_Elmt) loop
19140 Iface := Node (Iface_Elmt);
19142 pragma Assert (Is_Interface (Iface));
19144 if not Contain_Interface (Iface, Ifaces) then
19145 Append_Elmt (Iface, Ifaces);
19146 Collect_Implemented_Interfaces (Iface, Ifaces);
19147 end if;
19149 Next_Elmt (Iface_Elmt);
19150 end loop;
19151 end if;
19152 end Collect_Implemented_Interfaces;
19154 -- Local variables
19156 Full_Indic : Node_Id;
19157 Full_Parent : Entity_Id;
19158 Priv_Parent : Entity_Id;
19160 -- Start of processing for Process_Full_View
19162 begin
19163 -- First some sanity checks that must be done after semantic
19164 -- decoration of the full view and thus cannot be placed with other
19165 -- similar checks in Find_Type_Name
19167 if not Is_Limited_Type (Priv_T)
19168 and then (Is_Limited_Type (Full_T)
19169 or else Is_Limited_Composite (Full_T))
19170 then
19171 if In_Instance then
19172 null;
19173 else
19174 Error_Msg_N
19175 ("completion of nonlimited type cannot be limited", Full_T);
19176 Explain_Limited_Type (Full_T, Full_T);
19177 end if;
19179 elsif Is_Abstract_Type (Full_T)
19180 and then not Is_Abstract_Type (Priv_T)
19181 then
19182 Error_Msg_N
19183 ("completion of nonabstract type cannot be abstract", Full_T);
19185 elsif Is_Tagged_Type (Priv_T)
19186 and then Is_Limited_Type (Priv_T)
19187 and then not Is_Limited_Type (Full_T)
19188 then
19189 -- If pragma CPP_Class was applied to the private declaration
19190 -- propagate the limitedness to the full-view
19192 if Is_CPP_Class (Priv_T) then
19193 Set_Is_Limited_Record (Full_T);
19195 -- GNAT allow its own definition of Limited_Controlled to disobey
19196 -- this rule in order in ease the implementation. This test is safe
19197 -- because Root_Controlled is defined in a child of System that
19198 -- normal programs are not supposed to use.
19200 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19201 Set_Is_Limited_Composite (Full_T);
19202 else
19203 Error_Msg_N
19204 ("completion of limited tagged type must be limited", Full_T);
19205 end if;
19207 elsif Is_Generic_Type (Priv_T) then
19208 Error_Msg_N ("generic type cannot have a completion", Full_T);
19209 end if;
19211 -- Check that ancestor interfaces of private and full views are
19212 -- consistent. We omit this check for synchronized types because
19213 -- they are performed on the corresponding record type when frozen.
19215 if Ada_Version >= Ada_2005
19216 and then Is_Tagged_Type (Priv_T)
19217 and then Is_Tagged_Type (Full_T)
19218 and then not Is_Concurrent_Type (Full_T)
19219 then
19220 declare
19221 Iface : Entity_Id;
19222 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19223 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19225 begin
19226 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19227 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19229 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19230 -- an interface type if and only if the full type is descendant
19231 -- of the interface type (AARM 7.3 (7.3/2)).
19233 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19235 if Present (Iface) then
19236 Error_Msg_NE
19237 ("interface in partial view& not implemented by full type "
19238 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19239 end if;
19241 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19243 if Present (Iface) then
19244 Error_Msg_NE
19245 ("interface & not implemented by partial view "
19246 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19247 end if;
19248 end;
19249 end if;
19251 if Is_Tagged_Type (Priv_T)
19252 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19253 and then Is_Derived_Type (Full_T)
19254 then
19255 Priv_Parent := Etype (Priv_T);
19257 -- The full view of a private extension may have been transformed
19258 -- into an unconstrained derived type declaration and a subtype
19259 -- declaration (see build_derived_record_type for details).
19261 if Nkind (N) = N_Subtype_Declaration then
19262 Full_Indic := Subtype_Indication (N);
19263 Full_Parent := Etype (Base_Type (Full_T));
19264 else
19265 Full_Indic := Subtype_Indication (Type_Definition (N));
19266 Full_Parent := Etype (Full_T);
19267 end if;
19269 -- Check that the parent type of the full type is a descendant of
19270 -- the ancestor subtype given in the private extension. If either
19271 -- entity has an Etype equal to Any_Type then we had some previous
19272 -- error situation [7.3(8)].
19274 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19275 return;
19277 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19278 -- any order. Therefore we don't have to check that its parent must
19279 -- be a descendant of the parent of the private type declaration.
19281 elsif Is_Interface (Priv_Parent)
19282 and then Is_Interface (Full_Parent)
19283 then
19284 null;
19286 -- Ada 2005 (AI-251): If the parent of the private type declaration
19287 -- is an interface there is no need to check that it is an ancestor
19288 -- of the associated full type declaration. The required tests for
19289 -- this case are performed by Build_Derived_Record_Type.
19291 elsif not Is_Interface (Base_Type (Priv_Parent))
19292 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19293 then
19294 Error_Msg_N
19295 ("parent of full type must descend from parent"
19296 & " of private extension", Full_Indic);
19298 -- First check a formal restriction, and then proceed with checking
19299 -- Ada rules. Since the formal restriction is not a serious error, we
19300 -- don't prevent further error detection for this check, hence the
19301 -- ELSE.
19303 else
19304 -- In formal mode, when completing a private extension the type
19305 -- named in the private part must be exactly the same as that
19306 -- named in the visible part.
19308 if Priv_Parent /= Full_Parent then
19309 Error_Msg_Name_1 := Chars (Priv_Parent);
19310 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19311 end if;
19313 -- Check the rules of 7.3(10): if the private extension inherits
19314 -- known discriminants, then the full type must also inherit those
19315 -- discriminants from the same (ancestor) type, and the parent
19316 -- subtype of the full type must be constrained if and only if
19317 -- the ancestor subtype of the private extension is constrained.
19319 if No (Discriminant_Specifications (Parent (Priv_T)))
19320 and then not Has_Unknown_Discriminants (Priv_T)
19321 and then Has_Discriminants (Base_Type (Priv_Parent))
19322 then
19323 declare
19324 Priv_Indic : constant Node_Id :=
19325 Subtype_Indication (Parent (Priv_T));
19327 Priv_Constr : constant Boolean :=
19328 Is_Constrained (Priv_Parent)
19329 or else
19330 Nkind (Priv_Indic) = N_Subtype_Indication
19331 or else
19332 Is_Constrained (Entity (Priv_Indic));
19334 Full_Constr : constant Boolean :=
19335 Is_Constrained (Full_Parent)
19336 or else
19337 Nkind (Full_Indic) = N_Subtype_Indication
19338 or else
19339 Is_Constrained (Entity (Full_Indic));
19341 Priv_Discr : Entity_Id;
19342 Full_Discr : Entity_Id;
19344 begin
19345 Priv_Discr := First_Discriminant (Priv_Parent);
19346 Full_Discr := First_Discriminant (Full_Parent);
19347 while Present (Priv_Discr) and then Present (Full_Discr) loop
19348 if Original_Record_Component (Priv_Discr) =
19349 Original_Record_Component (Full_Discr)
19350 or else
19351 Corresponding_Discriminant (Priv_Discr) =
19352 Corresponding_Discriminant (Full_Discr)
19353 then
19354 null;
19355 else
19356 exit;
19357 end if;
19359 Next_Discriminant (Priv_Discr);
19360 Next_Discriminant (Full_Discr);
19361 end loop;
19363 if Present (Priv_Discr) or else Present (Full_Discr) then
19364 Error_Msg_N
19365 ("full view must inherit discriminants of the parent"
19366 & " type used in the private extension", Full_Indic);
19368 elsif Priv_Constr and then not Full_Constr then
19369 Error_Msg_N
19370 ("parent subtype of full type must be constrained",
19371 Full_Indic);
19373 elsif Full_Constr and then not Priv_Constr then
19374 Error_Msg_N
19375 ("parent subtype of full type must be unconstrained",
19376 Full_Indic);
19377 end if;
19378 end;
19380 -- Check the rules of 7.3(12): if a partial view has neither
19381 -- known or unknown discriminants, then the full type
19382 -- declaration shall define a definite subtype.
19384 elsif not Has_Unknown_Discriminants (Priv_T)
19385 and then not Has_Discriminants (Priv_T)
19386 and then not Is_Constrained (Full_T)
19387 then
19388 Error_Msg_N
19389 ("full view must define a constrained type if partial view"
19390 & " has no discriminants", Full_T);
19391 end if;
19393 -- ??????? Do we implement the following properly ?????
19394 -- If the ancestor subtype of a private extension has constrained
19395 -- discriminants, then the parent subtype of the full view shall
19396 -- impose a statically matching constraint on those discriminants
19397 -- [7.3(13)].
19398 end if;
19400 else
19401 -- For untagged types, verify that a type without discriminants is
19402 -- not completed with an unconstrained type. A separate error message
19403 -- is produced if the full type has defaulted discriminants.
19405 if not Is_Indefinite_Subtype (Priv_T)
19406 and then Is_Indefinite_Subtype (Full_T)
19407 then
19408 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19409 Error_Msg_NE
19410 ("full view of& not compatible with declaration#",
19411 Full_T, Priv_T);
19413 if not Is_Tagged_Type (Full_T) then
19414 Error_Msg_N
19415 ("\one is constrained, the other unconstrained", Full_T);
19416 end if;
19417 end if;
19418 end if;
19420 -- AI-419: verify that the use of "limited" is consistent
19422 declare
19423 Orig_Decl : constant Node_Id := Original_Node (N);
19425 begin
19426 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19427 and then not Limited_Present (Parent (Priv_T))
19428 and then not Synchronized_Present (Parent (Priv_T))
19429 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19430 and then Nkind
19431 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19432 and then Limited_Present (Type_Definition (Orig_Decl))
19433 then
19434 Error_Msg_N
19435 ("full view of non-limited extension cannot be limited", N);
19436 end if;
19437 end;
19439 -- Ada 2005 (AI-443): A synchronized private extension must be
19440 -- completed by a task or protected type.
19442 if Ada_Version >= Ada_2005
19443 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19444 and then Synchronized_Present (Parent (Priv_T))
19445 and then not Is_Concurrent_Type (Full_T)
19446 then
19447 Error_Msg_N ("full view of synchronized extension must " &
19448 "be synchronized type", N);
19449 end if;
19451 -- Ada 2005 AI-363: if the full view has discriminants with
19452 -- defaults, it is illegal to declare constrained access subtypes
19453 -- whose designated type is the current type. This allows objects
19454 -- of the type that are declared in the heap to be unconstrained.
19456 if not Has_Unknown_Discriminants (Priv_T)
19457 and then not Has_Discriminants (Priv_T)
19458 and then Has_Discriminants (Full_T)
19459 and then
19460 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19461 then
19462 Set_Has_Constrained_Partial_View (Full_T);
19463 Set_Has_Constrained_Partial_View (Priv_T);
19464 end if;
19466 -- Create a full declaration for all its subtypes recorded in
19467 -- Private_Dependents and swap them similarly to the base type. These
19468 -- are subtypes that have been define before the full declaration of
19469 -- the private type. We also swap the entry in Private_Dependents list
19470 -- so we can properly restore the private view on exit from the scope.
19472 declare
19473 Priv_Elmt : Elmt_Id;
19474 Priv_Scop : Entity_Id;
19475 Priv : Entity_Id;
19476 Full : Entity_Id;
19478 begin
19479 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19480 while Present (Priv_Elmt) loop
19481 Priv := Node (Priv_Elmt);
19482 Priv_Scop := Scope (Priv);
19484 if Ekind_In (Priv, E_Private_Subtype,
19485 E_Limited_Private_Subtype,
19486 E_Record_Subtype_With_Private)
19487 then
19488 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19489 Set_Is_Itype (Full);
19490 Set_Parent (Full, Parent (Priv));
19491 Set_Associated_Node_For_Itype (Full, N);
19493 -- Now we need to complete the private subtype, but since the
19494 -- base type has already been swapped, we must also swap the
19495 -- subtypes (and thus, reverse the arguments in the call to
19496 -- Complete_Private_Subtype). Also note that we may need to
19497 -- re-establish the scope of the private subtype.
19499 Copy_And_Swap (Priv, Full);
19501 if not In_Open_Scopes (Priv_Scop) then
19502 Push_Scope (Priv_Scop);
19504 else
19505 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19507 Priv_Scop := Empty;
19508 end if;
19510 Complete_Private_Subtype (Full, Priv, Full_T, N);
19512 if Present (Priv_Scop) then
19513 Pop_Scope;
19514 end if;
19516 Replace_Elmt (Priv_Elmt, Full);
19517 end if;
19519 Next_Elmt (Priv_Elmt);
19520 end loop;
19521 end;
19523 -- If the private view was tagged, copy the new primitive operations
19524 -- from the private view to the full view.
19526 if Is_Tagged_Type (Full_T) then
19527 declare
19528 Disp_Typ : Entity_Id;
19529 Full_List : Elist_Id;
19530 Prim : Entity_Id;
19531 Prim_Elmt : Elmt_Id;
19532 Priv_List : Elist_Id;
19534 function Contains
19535 (E : Entity_Id;
19536 L : Elist_Id) return Boolean;
19537 -- Determine whether list L contains element E
19539 --------------
19540 -- Contains --
19541 --------------
19543 function Contains
19544 (E : Entity_Id;
19545 L : Elist_Id) return Boolean
19547 List_Elmt : Elmt_Id;
19549 begin
19550 List_Elmt := First_Elmt (L);
19551 while Present (List_Elmt) loop
19552 if Node (List_Elmt) = E then
19553 return True;
19554 end if;
19556 Next_Elmt (List_Elmt);
19557 end loop;
19559 return False;
19560 end Contains;
19562 -- Start of processing
19564 begin
19565 if Is_Tagged_Type (Priv_T) then
19566 Priv_List := Primitive_Operations (Priv_T);
19567 Prim_Elmt := First_Elmt (Priv_List);
19569 -- In the case of a concurrent type completing a private tagged
19570 -- type, primitives may have been declared in between the two
19571 -- views. These subprograms need to be wrapped the same way
19572 -- entries and protected procedures are handled because they
19573 -- cannot be directly shared by the two views.
19575 if Is_Concurrent_Type (Full_T) then
19576 declare
19577 Conc_Typ : constant Entity_Id :=
19578 Corresponding_Record_Type (Full_T);
19579 Curr_Nod : Node_Id := Parent (Conc_Typ);
19580 Wrap_Spec : Node_Id;
19582 begin
19583 while Present (Prim_Elmt) loop
19584 Prim := Node (Prim_Elmt);
19586 if Comes_From_Source (Prim)
19587 and then not Is_Abstract_Subprogram (Prim)
19588 then
19589 Wrap_Spec :=
19590 Make_Subprogram_Declaration (Sloc (Prim),
19591 Specification =>
19592 Build_Wrapper_Spec
19593 (Subp_Id => Prim,
19594 Obj_Typ => Conc_Typ,
19595 Formals =>
19596 Parameter_Specifications (
19597 Parent (Prim))));
19599 Insert_After (Curr_Nod, Wrap_Spec);
19600 Curr_Nod := Wrap_Spec;
19602 Analyze (Wrap_Spec);
19603 end if;
19605 Next_Elmt (Prim_Elmt);
19606 end loop;
19608 return;
19609 end;
19611 -- For non-concurrent types, transfer explicit primitives, but
19612 -- omit those inherited from the parent of the private view
19613 -- since they will be re-inherited later on.
19615 else
19616 Full_List := Primitive_Operations (Full_T);
19618 while Present (Prim_Elmt) loop
19619 Prim := Node (Prim_Elmt);
19621 if Comes_From_Source (Prim)
19622 and then not Contains (Prim, Full_List)
19623 then
19624 Append_Elmt (Prim, Full_List);
19625 end if;
19627 Next_Elmt (Prim_Elmt);
19628 end loop;
19629 end if;
19631 -- Untagged private view
19633 else
19634 Full_List := Primitive_Operations (Full_T);
19636 -- In this case the partial view is untagged, so here we locate
19637 -- all of the earlier primitives that need to be treated as
19638 -- dispatching (those that appear between the two views). Note
19639 -- that these additional operations must all be new operations
19640 -- (any earlier operations that override inherited operations
19641 -- of the full view will already have been inserted in the
19642 -- primitives list, marked by Check_Operation_From_Private_View
19643 -- as dispatching. Note that implicit "/=" operators are
19644 -- excluded from being added to the primitives list since they
19645 -- shouldn't be treated as dispatching (tagged "/=" is handled
19646 -- specially).
19648 Prim := Next_Entity (Full_T);
19649 while Present (Prim) and then Prim /= Priv_T loop
19650 if Ekind_In (Prim, E_Procedure, E_Function) then
19651 Disp_Typ := Find_Dispatching_Type (Prim);
19653 if Disp_Typ = Full_T
19654 and then (Chars (Prim) /= Name_Op_Ne
19655 or else Comes_From_Source (Prim))
19656 then
19657 Check_Controlling_Formals (Full_T, Prim);
19659 if not Is_Dispatching_Operation (Prim) then
19660 Append_Elmt (Prim, Full_List);
19661 Set_Is_Dispatching_Operation (Prim, True);
19662 Set_DT_Position (Prim, No_Uint);
19663 end if;
19665 elsif Is_Dispatching_Operation (Prim)
19666 and then Disp_Typ /= Full_T
19667 then
19669 -- Verify that it is not otherwise controlled by a
19670 -- formal or a return value of type T.
19672 Check_Controlling_Formals (Disp_Typ, Prim);
19673 end if;
19674 end if;
19676 Next_Entity (Prim);
19677 end loop;
19678 end if;
19680 -- For the tagged case, the two views can share the same primitive
19681 -- operations list and the same class-wide type. Update attributes
19682 -- of the class-wide type which depend on the full declaration.
19684 if Is_Tagged_Type (Priv_T) then
19685 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19686 Set_Class_Wide_Type
19687 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19689 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19690 Set_Has_Protected
19691 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19692 end if;
19693 end;
19694 end if;
19696 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19698 if Known_To_Have_Preelab_Init (Priv_T) then
19700 -- Case where there is a pragma Preelaborable_Initialization. We
19701 -- always allow this in predefined units, which is cheating a bit,
19702 -- but it means we don't have to struggle to meet the requirements in
19703 -- the RM for having Preelaborable Initialization. Otherwise we
19704 -- require that the type meets the RM rules. But we can't check that
19705 -- yet, because of the rule about overriding Initialize, so we simply
19706 -- set a flag that will be checked at freeze time.
19708 if not In_Predefined_Unit (Full_T) then
19709 Set_Must_Have_Preelab_Init (Full_T);
19710 end if;
19711 end if;
19713 -- If pragma CPP_Class was applied to the private type declaration,
19714 -- propagate it now to the full type declaration.
19716 if Is_CPP_Class (Priv_T) then
19717 Set_Is_CPP_Class (Full_T);
19718 Set_Convention (Full_T, Convention_CPP);
19720 -- Check that components of imported CPP types do not have default
19721 -- expressions.
19723 Check_CPP_Type_Has_No_Defaults (Full_T);
19724 end if;
19726 -- If the private view has user specified stream attributes, then so has
19727 -- the full view.
19729 -- Why the test, how could these flags be already set in Full_T ???
19731 if Has_Specified_Stream_Read (Priv_T) then
19732 Set_Has_Specified_Stream_Read (Full_T);
19733 end if;
19735 if Has_Specified_Stream_Write (Priv_T) then
19736 Set_Has_Specified_Stream_Write (Full_T);
19737 end if;
19739 if Has_Specified_Stream_Input (Priv_T) then
19740 Set_Has_Specified_Stream_Input (Full_T);
19741 end if;
19743 if Has_Specified_Stream_Output (Priv_T) then
19744 Set_Has_Specified_Stream_Output (Full_T);
19745 end if;
19747 -- Propagate the attributes related to pragma Default_Initial_Condition
19748 -- from the private to the full view. Note that both flags are mutually
19749 -- exclusive.
19751 if Has_Default_Init_Cond (Priv_T)
19752 or else Has_Inherited_Default_Init_Cond (Priv_T)
19753 then
19754 Propagate_Default_Init_Cond_Attributes
19755 (From_Typ => Priv_T,
19756 To_Typ => Full_T,
19757 Private_To_Full_View => True);
19759 -- In the case where the full view is derived from another private type,
19760 -- the attributes related to pragma Default_Initial_Condition must be
19761 -- propagated from the full to the private view to maintain consistency
19762 -- of views.
19764 -- package Pack is
19765 -- type Parent_Typ is private
19766 -- with Default_Initial_Condition ...;
19767 -- private
19768 -- type Parent_Typ is ...;
19769 -- end Pack;
19771 -- with Pack; use Pack;
19772 -- package Pack_2 is
19773 -- type Deriv_Typ is private; -- must inherit
19774 -- private
19775 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19776 -- end Pack_2;
19778 elsif Has_Default_Init_Cond (Full_T)
19779 or else Has_Inherited_Default_Init_Cond (Full_T)
19780 then
19781 Propagate_Default_Init_Cond_Attributes
19782 (From_Typ => Full_T,
19783 To_Typ => Priv_T,
19784 Private_To_Full_View => True);
19785 end if;
19787 -- Propagate the attributes related to pragma Ghost from the private to
19788 -- the full view.
19790 if Is_Ghost_Entity (Priv_T) then
19791 Set_Is_Ghost_Entity (Full_T);
19793 -- The Ghost policy in effect at the point of declaration and at the
19794 -- point of completion must match (SPARK RM 6.9(15)).
19796 Check_Ghost_Completion (Priv_T, Full_T);
19798 -- In the case where the private view of a tagged type lacks a parent
19799 -- type and is subject to pragma Ghost, ensure that the parent type
19800 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19802 if Is_Derived_Type (Full_T) then
19803 Check_Ghost_Derivation (Full_T);
19804 end if;
19805 end if;
19807 -- Propagate invariants to full type
19809 if Has_Invariants (Priv_T) then
19810 Set_Has_Invariants (Full_T);
19811 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19812 end if;
19814 if Has_Inheritable_Invariants (Priv_T) then
19815 Set_Has_Inheritable_Invariants (Full_T);
19816 end if;
19818 -- Propagate predicates to full type, and predicate function if already
19819 -- defined. It is not clear that this can actually happen? the partial
19820 -- view cannot be frozen yet, and the predicate function has not been
19821 -- built. Still it is a cheap check and seems safer to make it.
19823 if Has_Predicates (Priv_T) then
19824 if Present (Predicate_Function (Priv_T)) then
19825 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
19826 end if;
19828 Set_Has_Predicates (Full_T);
19829 end if;
19830 end Process_Full_View;
19832 -----------------------------------
19833 -- Process_Incomplete_Dependents --
19834 -----------------------------------
19836 procedure Process_Incomplete_Dependents
19837 (N : Node_Id;
19838 Full_T : Entity_Id;
19839 Inc_T : Entity_Id)
19841 Inc_Elmt : Elmt_Id;
19842 Priv_Dep : Entity_Id;
19843 New_Subt : Entity_Id;
19845 Disc_Constraint : Elist_Id;
19847 begin
19848 if No (Private_Dependents (Inc_T)) then
19849 return;
19850 end if;
19852 -- Itypes that may be generated by the completion of an incomplete
19853 -- subtype are not used by the back-end and not attached to the tree.
19854 -- They are created only for constraint-checking purposes.
19856 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
19857 while Present (Inc_Elmt) loop
19858 Priv_Dep := Node (Inc_Elmt);
19860 if Ekind (Priv_Dep) = E_Subprogram_Type then
19862 -- An Access_To_Subprogram type may have a return type or a
19863 -- parameter type that is incomplete. Replace with the full view.
19865 if Etype (Priv_Dep) = Inc_T then
19866 Set_Etype (Priv_Dep, Full_T);
19867 end if;
19869 declare
19870 Formal : Entity_Id;
19872 begin
19873 Formal := First_Formal (Priv_Dep);
19874 while Present (Formal) loop
19875 if Etype (Formal) = Inc_T then
19876 Set_Etype (Formal, Full_T);
19877 end if;
19879 Next_Formal (Formal);
19880 end loop;
19881 end;
19883 elsif Is_Overloadable (Priv_Dep) then
19885 -- If a subprogram in the incomplete dependents list is primitive
19886 -- for a tagged full type then mark it as a dispatching operation,
19887 -- check whether it overrides an inherited subprogram, and check
19888 -- restrictions on its controlling formals. Note that a protected
19889 -- operation is never dispatching: only its wrapper operation
19890 -- (which has convention Ada) is.
19892 if Is_Tagged_Type (Full_T)
19893 and then Is_Primitive (Priv_Dep)
19894 and then Convention (Priv_Dep) /= Convention_Protected
19895 then
19896 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
19897 Set_Is_Dispatching_Operation (Priv_Dep);
19898 Check_Controlling_Formals (Full_T, Priv_Dep);
19899 end if;
19901 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
19903 -- Can happen during processing of a body before the completion
19904 -- of a TA type. Ignore, because spec is also on dependent list.
19906 return;
19908 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19909 -- corresponding subtype of the full view.
19911 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19912 Set_Subtype_Indication
19913 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19914 Set_Etype (Priv_Dep, Full_T);
19915 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19916 Set_Analyzed (Parent (Priv_Dep), False);
19918 -- Reanalyze the declaration, suppressing the call to
19919 -- Enter_Name to avoid duplicate names.
19921 Analyze_Subtype_Declaration
19922 (N => Parent (Priv_Dep),
19923 Skip => True);
19925 -- Dependent is a subtype
19927 else
19928 -- We build a new subtype indication using the full view of the
19929 -- incomplete parent. The discriminant constraints have been
19930 -- elaborated already at the point of the subtype declaration.
19932 New_Subt := Create_Itype (E_Void, N);
19934 if Has_Discriminants (Full_T) then
19935 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19936 else
19937 Disc_Constraint := No_Elist;
19938 end if;
19940 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19941 Set_Full_View (Priv_Dep, New_Subt);
19942 end if;
19944 Next_Elmt (Inc_Elmt);
19945 end loop;
19946 end Process_Incomplete_Dependents;
19948 --------------------------------
19949 -- Process_Range_Expr_In_Decl --
19950 --------------------------------
19952 procedure Process_Range_Expr_In_Decl
19953 (R : Node_Id;
19954 T : Entity_Id;
19955 Subtyp : Entity_Id := Empty;
19956 Check_List : List_Id := Empty_List;
19957 R_Check_Off : Boolean := False;
19958 In_Iter_Schm : Boolean := False)
19960 Lo, Hi : Node_Id;
19961 R_Checks : Check_Result;
19962 Insert_Node : Node_Id;
19963 Def_Id : Entity_Id;
19965 begin
19966 Analyze_And_Resolve (R, Base_Type (T));
19968 if Nkind (R) = N_Range then
19970 -- In SPARK, all ranges should be static, with the exception of the
19971 -- discrete type definition of a loop parameter specification.
19973 if not In_Iter_Schm
19974 and then not Is_OK_Static_Range (R)
19975 then
19976 Check_SPARK_05_Restriction ("range should be static", R);
19977 end if;
19979 Lo := Low_Bound (R);
19980 Hi := High_Bound (R);
19982 -- Validity checks on the range of a quantified expression are
19983 -- delayed until the construct is transformed into a loop.
19985 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
19986 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
19987 then
19988 null;
19990 -- We need to ensure validity of the bounds here, because if we
19991 -- go ahead and do the expansion, then the expanded code will get
19992 -- analyzed with range checks suppressed and we miss the check.
19994 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
19995 -- the temporaries generated by routine Remove_Side_Effects by means
19996 -- of validity checks must use the same names. When a range appears
19997 -- in the parent of a generic, the range is processed with checks
19998 -- disabled as part of the generic context and with checks enabled
19999 -- for code generation purposes. This leads to link issues as the
20000 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20001 -- template sees the temporaries generated by Remove_Side_Effects.
20003 else
20004 Validity_Check_Range (R, Subtyp);
20005 end if;
20007 -- If there were errors in the declaration, try and patch up some
20008 -- common mistakes in the bounds. The cases handled are literals
20009 -- which are Integer where the expected type is Real and vice versa.
20010 -- These corrections allow the compilation process to proceed further
20011 -- along since some basic assumptions of the format of the bounds
20012 -- are guaranteed.
20014 if Etype (R) = Any_Type then
20015 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20016 Rewrite (Lo,
20017 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20019 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20020 Rewrite (Hi,
20021 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20023 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20024 Rewrite (Lo,
20025 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20027 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20028 Rewrite (Hi,
20029 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20030 end if;
20032 Set_Etype (Lo, T);
20033 Set_Etype (Hi, T);
20034 end if;
20036 -- If the bounds of the range have been mistakenly given as string
20037 -- literals (perhaps in place of character literals), then an error
20038 -- has already been reported, but we rewrite the string literal as a
20039 -- bound of the range's type to avoid blowups in later processing
20040 -- that looks at static values.
20042 if Nkind (Lo) = N_String_Literal then
20043 Rewrite (Lo,
20044 Make_Attribute_Reference (Sloc (Lo),
20045 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20046 Attribute_Name => Name_First));
20047 Analyze_And_Resolve (Lo);
20048 end if;
20050 if Nkind (Hi) = N_String_Literal then
20051 Rewrite (Hi,
20052 Make_Attribute_Reference (Sloc (Hi),
20053 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20054 Attribute_Name => Name_First));
20055 Analyze_And_Resolve (Hi);
20056 end if;
20058 -- If bounds aren't scalar at this point then exit, avoiding
20059 -- problems with further processing of the range in this procedure.
20061 if not Is_Scalar_Type (Etype (Lo)) then
20062 return;
20063 end if;
20065 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20066 -- then range of the base type. Here we check whether the bounds
20067 -- are in the range of the subtype itself. Note that if the bounds
20068 -- represent the null range the Constraint_Error exception should
20069 -- not be raised.
20071 -- ??? The following code should be cleaned up as follows
20073 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20074 -- is done in the call to Range_Check (R, T); below
20076 -- 2. The use of R_Check_Off should be investigated and possibly
20077 -- removed, this would clean up things a bit.
20079 if Is_Null_Range (Lo, Hi) then
20080 null;
20082 else
20083 -- Capture values of bounds and generate temporaries for them
20084 -- if needed, before applying checks, since checks may cause
20085 -- duplication of the expression without forcing evaluation.
20087 -- The forced evaluation removes side effects from expressions,
20088 -- which should occur also in GNATprove mode. Otherwise, we end up
20089 -- with unexpected insertions of actions at places where this is
20090 -- not supposed to occur, e.g. on default parameters of a call.
20092 if Expander_Active or GNATprove_Mode then
20094 -- If no subtype name, then just call Force_Evaluation to
20095 -- create declarations as needed to deal with side effects.
20096 -- Also ignore calls from within a record type, where we
20097 -- have possible scoping issues.
20099 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
20100 Force_Evaluation (Lo);
20101 Force_Evaluation (Hi);
20103 -- If a subtype is given, then we capture the bounds if they
20104 -- are not known at compile time, using constant identifiers
20105 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
20107 -- Note: we do this transformation even if expansion is not
20108 -- active, and in particular we do it in GNATprove_Mode since
20109 -- the transformation is in general required to ensure that the
20110 -- resulting tree has proper Ada semantics.
20112 -- Historical note: We used to just do Force_Evaluation calls
20113 -- in all cases, but it is better to capture the bounds with
20114 -- proper non-serialized names, since these will be accessed
20115 -- from other units, and hence may be public, and also we can
20116 -- then expand 'First and 'Last references to be references to
20117 -- these special names.
20119 else
20120 if not Compile_Time_Known_Value (Lo)
20122 -- No need to capture bounds if they already are
20123 -- references to constants.
20125 and then not (Is_Entity_Name (Lo)
20126 and then Is_Constant_Object (Entity (Lo)))
20127 then
20128 declare
20129 Loc : constant Source_Ptr := Sloc (Lo);
20130 Lov : constant Entity_Id :=
20131 Make_Defining_Identifier (Loc,
20132 Chars =>
20133 New_External_Name (Chars (Subtyp), "_FIRST"));
20134 begin
20135 Insert_Action (R,
20136 Make_Object_Declaration (Loc,
20137 Defining_Identifier => Lov,
20138 Object_Definition =>
20139 New_Occurrence_Of (Base_Type (T), Loc),
20140 Constant_Present => True,
20141 Expression => Relocate_Node (Lo)));
20142 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
20143 end;
20144 end if;
20146 if not Compile_Time_Known_Value (Hi)
20147 and then not (Is_Entity_Name (Hi)
20148 and then Is_Constant_Object (Entity (Hi)))
20149 then
20150 declare
20151 Loc : constant Source_Ptr := Sloc (Hi);
20152 Hiv : constant Entity_Id :=
20153 Make_Defining_Identifier (Loc,
20154 Chars =>
20155 New_External_Name (Chars (Subtyp), "_LAST"));
20156 begin
20157 Insert_Action (R,
20158 Make_Object_Declaration (Loc,
20159 Defining_Identifier => Hiv,
20160 Object_Definition =>
20161 New_Occurrence_Of (Base_Type (T), Loc),
20162 Constant_Present => True,
20163 Expression => Relocate_Node (Hi)));
20164 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
20165 end;
20166 end if;
20167 end if;
20168 end if;
20170 -- We use a flag here instead of suppressing checks on the
20171 -- type because the type we check against isn't necessarily
20172 -- the place where we put the check.
20174 if not R_Check_Off then
20175 R_Checks := Get_Range_Checks (R, T);
20177 -- Look up tree to find an appropriate insertion point. We
20178 -- can't just use insert_actions because later processing
20179 -- depends on the insertion node. Prior to Ada 2012 the
20180 -- insertion point could only be a declaration or a loop, but
20181 -- quantified expressions can appear within any context in an
20182 -- expression, and the insertion point can be any statement,
20183 -- pragma, or declaration.
20185 Insert_Node := Parent (R);
20186 while Present (Insert_Node) loop
20187 exit when
20188 Nkind (Insert_Node) in N_Declaration
20189 and then
20190 not Nkind_In
20191 (Insert_Node, N_Component_Declaration,
20192 N_Loop_Parameter_Specification,
20193 N_Function_Specification,
20194 N_Procedure_Specification);
20196 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20197 or else Nkind (Insert_Node) in
20198 N_Statement_Other_Than_Procedure_Call
20199 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20200 N_Pragma);
20202 Insert_Node := Parent (Insert_Node);
20203 end loop;
20205 -- Why would Type_Decl not be present??? Without this test,
20206 -- short regression tests fail.
20208 if Present (Insert_Node) then
20210 -- Case of loop statement. Verify that the range is part
20211 -- of the subtype indication of the iteration scheme.
20213 if Nkind (Insert_Node) = N_Loop_Statement then
20214 declare
20215 Indic : Node_Id;
20217 begin
20218 Indic := Parent (R);
20219 while Present (Indic)
20220 and then Nkind (Indic) /= N_Subtype_Indication
20221 loop
20222 Indic := Parent (Indic);
20223 end loop;
20225 if Present (Indic) then
20226 Def_Id := Etype (Subtype_Mark (Indic));
20228 Insert_Range_Checks
20229 (R_Checks,
20230 Insert_Node,
20231 Def_Id,
20232 Sloc (Insert_Node),
20234 Do_Before => True);
20235 end if;
20236 end;
20238 -- Insertion before a declaration. If the declaration
20239 -- includes discriminants, the list of applicable checks
20240 -- is given by the caller.
20242 elsif Nkind (Insert_Node) in N_Declaration then
20243 Def_Id := Defining_Identifier (Insert_Node);
20245 if (Ekind (Def_Id) = E_Record_Type
20246 and then Depends_On_Discriminant (R))
20247 or else
20248 (Ekind (Def_Id) = E_Protected_Type
20249 and then Has_Discriminants (Def_Id))
20250 then
20251 Append_Range_Checks
20252 (R_Checks,
20253 Check_List, Def_Id, Sloc (Insert_Node), R);
20255 else
20256 Insert_Range_Checks
20257 (R_Checks,
20258 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20260 end if;
20262 -- Insertion before a statement. Range appears in the
20263 -- context of a quantified expression. Insertion will
20264 -- take place when expression is expanded.
20266 else
20267 null;
20268 end if;
20269 end if;
20270 end if;
20271 end if;
20273 -- Case of other than an explicit N_Range node
20275 -- The forced evaluation removes side effects from expressions, which
20276 -- should occur also in GNATprove mode. Otherwise, we end up with
20277 -- unexpected insertions of actions at places where this is not
20278 -- supposed to occur, e.g. on default parameters of a call.
20280 elsif Expander_Active or GNATprove_Mode then
20281 Get_Index_Bounds (R, Lo, Hi);
20282 Force_Evaluation (Lo);
20283 Force_Evaluation (Hi);
20284 end if;
20285 end Process_Range_Expr_In_Decl;
20287 --------------------------------------
20288 -- Process_Real_Range_Specification --
20289 --------------------------------------
20291 procedure Process_Real_Range_Specification (Def : Node_Id) is
20292 Spec : constant Node_Id := Real_Range_Specification (Def);
20293 Lo : Node_Id;
20294 Hi : Node_Id;
20295 Err : Boolean := False;
20297 procedure Analyze_Bound (N : Node_Id);
20298 -- Analyze and check one bound
20300 -------------------
20301 -- Analyze_Bound --
20302 -------------------
20304 procedure Analyze_Bound (N : Node_Id) is
20305 begin
20306 Analyze_And_Resolve (N, Any_Real);
20308 if not Is_OK_Static_Expression (N) then
20309 Flag_Non_Static_Expr
20310 ("bound in real type definition is not static!", N);
20311 Err := True;
20312 end if;
20313 end Analyze_Bound;
20315 -- Start of processing for Process_Real_Range_Specification
20317 begin
20318 if Present (Spec) then
20319 Lo := Low_Bound (Spec);
20320 Hi := High_Bound (Spec);
20321 Analyze_Bound (Lo);
20322 Analyze_Bound (Hi);
20324 -- If error, clear away junk range specification
20326 if Err then
20327 Set_Real_Range_Specification (Def, Empty);
20328 end if;
20329 end if;
20330 end Process_Real_Range_Specification;
20332 ---------------------
20333 -- Process_Subtype --
20334 ---------------------
20336 function Process_Subtype
20337 (S : Node_Id;
20338 Related_Nod : Node_Id;
20339 Related_Id : Entity_Id := Empty;
20340 Suffix : Character := ' ') return Entity_Id
20342 P : Node_Id;
20343 Def_Id : Entity_Id;
20344 Error_Node : Node_Id;
20345 Full_View_Id : Entity_Id;
20346 Subtype_Mark_Id : Entity_Id;
20348 May_Have_Null_Exclusion : Boolean;
20350 procedure Check_Incomplete (T : Entity_Id);
20351 -- Called to verify that an incomplete type is not used prematurely
20353 ----------------------
20354 -- Check_Incomplete --
20355 ----------------------
20357 procedure Check_Incomplete (T : Entity_Id) is
20358 begin
20359 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20361 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20362 and then
20363 not (Ada_Version >= Ada_2005
20364 and then
20365 (Nkind (Parent (T)) = N_Subtype_Declaration
20366 or else (Nkind (Parent (T)) = N_Subtype_Indication
20367 and then Nkind (Parent (Parent (T))) =
20368 N_Subtype_Declaration)))
20369 then
20370 Error_Msg_N ("invalid use of type before its full declaration", T);
20371 end if;
20372 end Check_Incomplete;
20374 -- Start of processing for Process_Subtype
20376 begin
20377 -- Case of no constraints present
20379 if Nkind (S) /= N_Subtype_Indication then
20380 Find_Type (S);
20381 Check_Incomplete (S);
20382 P := Parent (S);
20384 -- Ada 2005 (AI-231): Static check
20386 if Ada_Version >= Ada_2005
20387 and then Present (P)
20388 and then Null_Exclusion_Present (P)
20389 and then Nkind (P) /= N_Access_To_Object_Definition
20390 and then not Is_Access_Type (Entity (S))
20391 then
20392 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20393 end if;
20395 -- The following is ugly, can't we have a range or even a flag???
20397 May_Have_Null_Exclusion :=
20398 Nkind_In (P, N_Access_Definition,
20399 N_Access_Function_Definition,
20400 N_Access_Procedure_Definition,
20401 N_Access_To_Object_Definition,
20402 N_Allocator,
20403 N_Component_Definition)
20404 or else
20405 Nkind_In (P, N_Derived_Type_Definition,
20406 N_Discriminant_Specification,
20407 N_Formal_Object_Declaration,
20408 N_Object_Declaration,
20409 N_Object_Renaming_Declaration,
20410 N_Parameter_Specification,
20411 N_Subtype_Declaration);
20413 -- Create an Itype that is a duplicate of Entity (S) but with the
20414 -- null-exclusion attribute.
20416 if May_Have_Null_Exclusion
20417 and then Is_Access_Type (Entity (S))
20418 and then Null_Exclusion_Present (P)
20420 -- No need to check the case of an access to object definition.
20421 -- It is correct to define double not-null pointers.
20423 -- Example:
20424 -- type Not_Null_Int_Ptr is not null access Integer;
20425 -- type Acc is not null access Not_Null_Int_Ptr;
20427 and then Nkind (P) /= N_Access_To_Object_Definition
20428 then
20429 if Can_Never_Be_Null (Entity (S)) then
20430 case Nkind (Related_Nod) is
20431 when N_Full_Type_Declaration =>
20432 if Nkind (Type_Definition (Related_Nod))
20433 in N_Array_Type_Definition
20434 then
20435 Error_Node :=
20436 Subtype_Indication
20437 (Component_Definition
20438 (Type_Definition (Related_Nod)));
20439 else
20440 Error_Node :=
20441 Subtype_Indication (Type_Definition (Related_Nod));
20442 end if;
20444 when N_Subtype_Declaration =>
20445 Error_Node := Subtype_Indication (Related_Nod);
20447 when N_Object_Declaration =>
20448 Error_Node := Object_Definition (Related_Nod);
20450 when N_Component_Declaration =>
20451 Error_Node :=
20452 Subtype_Indication (Component_Definition (Related_Nod));
20454 when N_Allocator =>
20455 Error_Node := Expression (Related_Nod);
20457 when others =>
20458 pragma Assert (False);
20459 Error_Node := Related_Nod;
20460 end case;
20462 Error_Msg_NE
20463 ("`NOT NULL` not allowed (& already excludes null)",
20464 Error_Node,
20465 Entity (S));
20466 end if;
20468 Set_Etype (S,
20469 Create_Null_Excluding_Itype
20470 (T => Entity (S),
20471 Related_Nod => P));
20472 Set_Entity (S, Etype (S));
20473 end if;
20475 return Entity (S);
20477 -- Case of constraint present, so that we have an N_Subtype_Indication
20478 -- node (this node is created only if constraints are present).
20480 else
20481 Find_Type (Subtype_Mark (S));
20483 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20484 and then not
20485 (Nkind (Parent (S)) = N_Subtype_Declaration
20486 and then Is_Itype (Defining_Identifier (Parent (S))))
20487 then
20488 Check_Incomplete (Subtype_Mark (S));
20489 end if;
20491 P := Parent (S);
20492 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20494 -- Explicit subtype declaration case
20496 if Nkind (P) = N_Subtype_Declaration then
20497 Def_Id := Defining_Identifier (P);
20499 -- Explicit derived type definition case
20501 elsif Nkind (P) = N_Derived_Type_Definition then
20502 Def_Id := Defining_Identifier (Parent (P));
20504 -- Implicit case, the Def_Id must be created as an implicit type.
20505 -- The one exception arises in the case of concurrent types, array
20506 -- and access types, where other subsidiary implicit types may be
20507 -- created and must appear before the main implicit type. In these
20508 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20509 -- has not yet been called to create Def_Id.
20511 else
20512 if Is_Array_Type (Subtype_Mark_Id)
20513 or else Is_Concurrent_Type (Subtype_Mark_Id)
20514 or else Is_Access_Type (Subtype_Mark_Id)
20515 then
20516 Def_Id := Empty;
20518 -- For the other cases, we create a new unattached Itype,
20519 -- and set the indication to ensure it gets attached later.
20521 else
20522 Def_Id :=
20523 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20524 end if;
20525 end if;
20527 -- If the kind of constraint is invalid for this kind of type,
20528 -- then give an error, and then pretend no constraint was given.
20530 if not Is_Valid_Constraint_Kind
20531 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20532 then
20533 Error_Msg_N
20534 ("incorrect constraint for this kind of type", Constraint (S));
20536 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20538 -- Set Ekind of orphan itype, to prevent cascaded errors
20540 if Present (Def_Id) then
20541 Set_Ekind (Def_Id, Ekind (Any_Type));
20542 end if;
20544 -- Make recursive call, having got rid of the bogus constraint
20546 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20547 end if;
20549 -- Remaining processing depends on type. Select on Base_Type kind to
20550 -- ensure getting to the concrete type kind in the case of a private
20551 -- subtype (needed when only doing semantic analysis).
20553 case Ekind (Base_Type (Subtype_Mark_Id)) is
20554 when Access_Kind =>
20556 -- If this is a constraint on a class-wide type, discard it.
20557 -- There is currently no way to express a partial discriminant
20558 -- constraint on a type with unknown discriminants. This is
20559 -- a pathology that the ACATS wisely decides not to test.
20561 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20562 if Comes_From_Source (S) then
20563 Error_Msg_N
20564 ("constraint on class-wide type ignored??",
20565 Constraint (S));
20566 end if;
20568 if Nkind (P) = N_Subtype_Declaration then
20569 Set_Subtype_Indication (P,
20570 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20571 end if;
20573 return Subtype_Mark_Id;
20574 end if;
20576 Constrain_Access (Def_Id, S, Related_Nod);
20578 if Expander_Active
20579 and then Is_Itype (Designated_Type (Def_Id))
20580 and then Nkind (Related_Nod) = N_Subtype_Declaration
20581 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20582 then
20583 Build_Itype_Reference
20584 (Designated_Type (Def_Id), Related_Nod);
20585 end if;
20587 when Array_Kind =>
20588 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20590 when Decimal_Fixed_Point_Kind =>
20591 Constrain_Decimal (Def_Id, S);
20593 when Enumeration_Kind =>
20594 Constrain_Enumeration (Def_Id, S);
20595 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20597 when Ordinary_Fixed_Point_Kind =>
20598 Constrain_Ordinary_Fixed (Def_Id, S);
20600 when Float_Kind =>
20601 Constrain_Float (Def_Id, S);
20603 when Integer_Kind =>
20604 Constrain_Integer (Def_Id, S);
20605 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20607 when E_Record_Type |
20608 E_Record_Subtype |
20609 Class_Wide_Kind |
20610 E_Incomplete_Type =>
20611 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20613 if Ekind (Def_Id) = E_Incomplete_Type then
20614 Set_Private_Dependents (Def_Id, New_Elmt_List);
20615 end if;
20617 when Private_Kind =>
20618 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20619 Set_Private_Dependents (Def_Id, New_Elmt_List);
20621 -- In case of an invalid constraint prevent further processing
20622 -- since the type constructed is missing expected fields.
20624 if Etype (Def_Id) = Any_Type then
20625 return Def_Id;
20626 end if;
20628 -- If the full view is that of a task with discriminants,
20629 -- we must constrain both the concurrent type and its
20630 -- corresponding record type. Otherwise we will just propagate
20631 -- the constraint to the full view, if available.
20633 if Present (Full_View (Subtype_Mark_Id))
20634 and then Has_Discriminants (Subtype_Mark_Id)
20635 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20636 then
20637 Full_View_Id :=
20638 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20640 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20641 Constrain_Concurrent (Full_View_Id, S,
20642 Related_Nod, Related_Id, Suffix);
20643 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20644 Set_Full_View (Def_Id, Full_View_Id);
20646 -- Introduce an explicit reference to the private subtype,
20647 -- to prevent scope anomalies in gigi if first use appears
20648 -- in a nested context, e.g. a later function body.
20649 -- Should this be generated in other contexts than a full
20650 -- type declaration?
20652 if Is_Itype (Def_Id)
20653 and then
20654 Nkind (Parent (P)) = N_Full_Type_Declaration
20655 then
20656 Build_Itype_Reference (Def_Id, Parent (P));
20657 end if;
20659 else
20660 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20661 end if;
20663 when Concurrent_Kind =>
20664 Constrain_Concurrent (Def_Id, S,
20665 Related_Nod, Related_Id, Suffix);
20667 when others =>
20668 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20669 end case;
20671 -- Size and Convention are always inherited from the base type
20673 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20674 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20676 return Def_Id;
20677 end if;
20678 end Process_Subtype;
20680 --------------------------------------------
20681 -- Propagate_Default_Init_Cond_Attributes --
20682 --------------------------------------------
20684 procedure Propagate_Default_Init_Cond_Attributes
20685 (From_Typ : Entity_Id;
20686 To_Typ : Entity_Id;
20687 Parent_To_Derivation : Boolean := False;
20688 Private_To_Full_View : Boolean := False)
20690 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20691 -- Remove the default initial procedure (if any) from the rep chain of
20692 -- type Typ.
20694 ----------------------------------------
20695 -- Remove_Default_Init_Cond_Procedure --
20696 ----------------------------------------
20698 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20699 Found : Boolean := False;
20700 Prev : Entity_Id;
20701 Subp : Entity_Id;
20703 begin
20704 Prev := Typ;
20705 Subp := Subprograms_For_Type (Typ);
20706 while Present (Subp) loop
20707 if Is_Default_Init_Cond_Procedure (Subp) then
20708 Found := True;
20709 exit;
20710 end if;
20712 Prev := Subp;
20713 Subp := Subprograms_For_Type (Subp);
20714 end loop;
20716 if Found then
20717 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20718 Set_Subprograms_For_Type (Subp, Empty);
20719 end if;
20720 end Remove_Default_Init_Cond_Procedure;
20722 -- Local variables
20724 Inherit_Procedure : Boolean := False;
20726 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20728 begin
20729 if Has_Default_Init_Cond (From_Typ) then
20731 -- A derived type inherits the attributes from its parent type
20733 if Parent_To_Derivation then
20734 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20736 -- A full view shares the attributes with its private view
20738 else
20739 Set_Has_Default_Init_Cond (To_Typ);
20740 end if;
20742 Inherit_Procedure := True;
20744 -- Due to the order of expansion, a derived private type is processed
20745 -- by two routines which both attempt to set the attributes related
20746 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20747 -- Process_Full_View.
20749 -- package Pack is
20750 -- type Parent_Typ is private
20751 -- with Default_Initial_Condition ...;
20752 -- private
20753 -- type Parent_Typ is ...;
20754 -- end Pack;
20756 -- with Pack; use Pack;
20757 -- package Pack_2 is
20758 -- type Deriv_Typ is private
20759 -- with Default_Initial_Condition ...;
20760 -- private
20761 -- type Deriv_Typ is new Parent_Typ;
20762 -- end Pack_2;
20764 -- When Build_Derived_Type operates, it sets the attributes on the
20765 -- full view without taking into account that the private view may
20766 -- define its own default initial condition procedure. This becomes
20767 -- apparent in Process_Full_View which must undo some of the work by
20768 -- Build_Derived_Type and propagate the attributes from the private
20769 -- to the full view.
20771 if Private_To_Full_View then
20772 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20773 Remove_Default_Init_Cond_Procedure (To_Typ);
20774 end if;
20776 -- A type must inherit the default initial condition procedure from a
20777 -- parent type when the parent itself is inheriting the procedure or
20778 -- when it is defining one. This circuitry is also used when dealing
20779 -- with the private / full view of a type.
20781 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20782 or (Parent_To_Derivation
20783 and Present (Get_Pragma
20784 (From_Typ, Pragma_Default_Initial_Condition)))
20785 then
20786 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20787 Inherit_Procedure := True;
20788 end if;
20790 if Inherit_Procedure
20791 and then No (Default_Init_Cond_Procedure (To_Typ))
20792 then
20793 Set_Default_Init_Cond_Procedure
20794 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20795 end if;
20796 end Propagate_Default_Init_Cond_Attributes;
20798 -----------------------------
20799 -- Record_Type_Declaration --
20800 -----------------------------
20802 procedure Record_Type_Declaration
20803 (T : Entity_Id;
20804 N : Node_Id;
20805 Prev : Entity_Id)
20807 Def : constant Node_Id := Type_Definition (N);
20808 Is_Tagged : Boolean;
20809 Tag_Comp : Entity_Id;
20811 begin
20812 -- These flags must be initialized before calling Process_Discriminants
20813 -- because this routine makes use of them.
20815 Set_Ekind (T, E_Record_Type);
20816 Set_Etype (T, T);
20817 Init_Size_Align (T);
20818 Set_Interfaces (T, No_Elist);
20819 Set_Stored_Constraint (T, No_Elist);
20820 Set_Default_SSO (T);
20822 -- Normal case
20824 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20825 if Limited_Present (Def) then
20826 Check_SPARK_05_Restriction ("limited is not allowed", N);
20827 end if;
20829 if Abstract_Present (Def) then
20830 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20831 end if;
20833 -- The flag Is_Tagged_Type might have already been set by
20834 -- Find_Type_Name if it detected an error for declaration T. This
20835 -- arises in the case of private tagged types where the full view
20836 -- omits the word tagged.
20838 Is_Tagged :=
20839 Tagged_Present (Def)
20840 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20842 Set_Is_Limited_Record (T, Limited_Present (Def));
20844 if Is_Tagged then
20845 Set_Is_Tagged_Type (T, True);
20846 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20847 end if;
20849 -- Type is abstract if full declaration carries keyword, or if
20850 -- previous partial view did.
20852 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20853 or else Abstract_Present (Def));
20855 else
20856 Check_SPARK_05_Restriction ("interface is not allowed", N);
20858 Is_Tagged := True;
20859 Analyze_Interface_Declaration (T, Def);
20861 if Present (Discriminant_Specifications (N)) then
20862 Error_Msg_N
20863 ("interface types cannot have discriminants",
20864 Defining_Identifier
20865 (First (Discriminant_Specifications (N))));
20866 end if;
20867 end if;
20869 -- First pass: if there are self-referential access components,
20870 -- create the required anonymous access type declarations, and if
20871 -- need be an incomplete type declaration for T itself.
20873 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20875 if Ada_Version >= Ada_2005
20876 and then Present (Interface_List (Def))
20877 then
20878 Check_Interfaces (N, Def);
20880 declare
20881 Ifaces_List : Elist_Id;
20883 begin
20884 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20885 -- already in the parents.
20887 Collect_Interfaces
20888 (T => T,
20889 Ifaces_List => Ifaces_List,
20890 Exclude_Parents => True);
20892 Set_Interfaces (T, Ifaces_List);
20893 end;
20894 end if;
20896 -- Records constitute a scope for the component declarations within.
20897 -- The scope is created prior to the processing of these declarations.
20898 -- Discriminants are processed first, so that they are visible when
20899 -- processing the other components. The Ekind of the record type itself
20900 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20902 -- Enter record scope
20904 Push_Scope (T);
20906 -- If an incomplete or private type declaration was already given for
20907 -- the type, then this scope already exists, and the discriminants have
20908 -- been declared within. We must verify that the full declaration
20909 -- matches the incomplete one.
20911 Check_Or_Process_Discriminants (N, T, Prev);
20913 Set_Is_Constrained (T, not Has_Discriminants (T));
20914 Set_Has_Delayed_Freeze (T, True);
20916 -- For tagged types add a manually analyzed component corresponding
20917 -- to the component _tag, the corresponding piece of tree will be
20918 -- expanded as part of the freezing actions if it is not a CPP_Class.
20920 if Is_Tagged then
20922 -- Do not add the tag unless we are in expansion mode
20924 if Expander_Active then
20925 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20926 Enter_Name (Tag_Comp);
20928 Set_Ekind (Tag_Comp, E_Component);
20929 Set_Is_Tag (Tag_Comp);
20930 Set_Is_Aliased (Tag_Comp);
20931 Set_Etype (Tag_Comp, RTE (RE_Tag));
20932 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20933 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20934 Init_Component_Location (Tag_Comp);
20936 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20937 -- implemented interfaces.
20939 if Has_Interfaces (T) then
20940 Add_Interface_Tag_Components (N, T);
20941 end if;
20942 end if;
20944 Make_Class_Wide_Type (T);
20945 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20946 end if;
20948 -- We must suppress range checks when processing record components in
20949 -- the presence of discriminants, since we don't want spurious checks to
20950 -- be generated during their analysis, but Suppress_Range_Checks flags
20951 -- must be reset the after processing the record definition.
20953 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20954 -- couldn't we just use the normal range check suppression method here.
20955 -- That would seem cleaner ???
20957 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20958 Set_Kill_Range_Checks (T, True);
20959 Record_Type_Definition (Def, Prev);
20960 Set_Kill_Range_Checks (T, False);
20961 else
20962 Record_Type_Definition (Def, Prev);
20963 end if;
20965 -- Exit from record scope
20967 End_Scope;
20969 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20970 -- the implemented interfaces and associate them an aliased entity.
20972 if Is_Tagged
20973 and then not Is_Empty_List (Interface_List (Def))
20974 then
20975 Derive_Progenitor_Subprograms (T, T);
20976 end if;
20978 Check_Function_Writable_Actuals (N);
20979 end Record_Type_Declaration;
20981 ----------------------------
20982 -- Record_Type_Definition --
20983 ----------------------------
20985 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20986 Component : Entity_Id;
20987 Ctrl_Components : Boolean := False;
20988 Final_Storage_Only : Boolean;
20989 T : Entity_Id;
20991 begin
20992 if Ekind (Prev_T) = E_Incomplete_Type then
20993 T := Full_View (Prev_T);
20994 else
20995 T := Prev_T;
20996 end if;
20998 -- In SPARK, tagged types and type extensions may only be declared in
20999 -- the specification of library unit packages.
21001 if Present (Def) and then Is_Tagged_Type (T) then
21002 declare
21003 Typ : Node_Id;
21004 Ctxt : Node_Id;
21006 begin
21007 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21008 Typ := Parent (Def);
21009 else
21010 pragma Assert
21011 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21012 Typ := Parent (Parent (Def));
21013 end if;
21015 Ctxt := Parent (Typ);
21017 if Nkind (Ctxt) = N_Package_Body
21018 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21019 then
21020 Check_SPARK_05_Restriction
21021 ("type should be defined in package specification", Typ);
21023 elsif Nkind (Ctxt) /= N_Package_Specification
21024 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21025 then
21026 Check_SPARK_05_Restriction
21027 ("type should be defined in library unit package", Typ);
21028 end if;
21029 end;
21030 end if;
21032 Final_Storage_Only := not Is_Controlled (T);
21034 -- Ada 2005: Check whether an explicit Limited is present in a derived
21035 -- type declaration.
21037 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21038 and then Limited_Present (Parent (Def))
21039 then
21040 Set_Is_Limited_Record (T);
21041 end if;
21043 -- If the component list of a record type is defined by the reserved
21044 -- word null and there is no discriminant part, then the record type has
21045 -- no components and all records of the type are null records (RM 3.7)
21046 -- This procedure is also called to process the extension part of a
21047 -- record extension, in which case the current scope may have inherited
21048 -- components.
21050 if No (Def)
21051 or else No (Component_List (Def))
21052 or else Null_Present (Component_List (Def))
21053 then
21054 if not Is_Tagged_Type (T) then
21055 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21056 end if;
21058 else
21059 Analyze_Declarations (Component_Items (Component_List (Def)));
21061 if Present (Variant_Part (Component_List (Def))) then
21062 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21063 Analyze (Variant_Part (Component_List (Def)));
21064 end if;
21065 end if;
21067 -- After completing the semantic analysis of the record definition,
21068 -- record components, both new and inherited, are accessible. Set their
21069 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21070 -- whose Ekind may be void.
21072 Component := First_Entity (Current_Scope);
21073 while Present (Component) loop
21074 if Ekind (Component) = E_Void
21075 and then not Is_Itype (Component)
21076 then
21077 Set_Ekind (Component, E_Component);
21078 Init_Component_Location (Component);
21079 end if;
21081 if Has_Task (Etype (Component)) then
21082 Set_Has_Task (T);
21083 end if;
21085 if Has_Protected (Etype (Component)) then
21086 Set_Has_Protected (T);
21087 end if;
21089 if Ekind (Component) /= E_Component then
21090 null;
21092 -- Do not set Has_Controlled_Component on a class-wide equivalent
21093 -- type. See Make_CW_Equivalent_Type.
21095 elsif not Is_Class_Wide_Equivalent_Type (T)
21096 and then (Has_Controlled_Component (Etype (Component))
21097 or else (Chars (Component) /= Name_uParent
21098 and then Is_Controlled (Etype (Component))))
21099 then
21100 Set_Has_Controlled_Component (T, True);
21101 Final_Storage_Only :=
21102 Final_Storage_Only
21103 and then Finalize_Storage_Only (Etype (Component));
21104 Ctrl_Components := True;
21105 end if;
21107 Next_Entity (Component);
21108 end loop;
21110 -- A Type is Finalize_Storage_Only only if all its controlled components
21111 -- are also.
21113 if Ctrl_Components then
21114 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21115 end if;
21117 -- Place reference to end record on the proper entity, which may
21118 -- be a partial view.
21120 if Present (Def) then
21121 Process_End_Label (Def, 'e', Prev_T);
21122 end if;
21123 end Record_Type_Definition;
21125 ------------------------
21126 -- Replace_Components --
21127 ------------------------
21129 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21130 function Process (N : Node_Id) return Traverse_Result;
21132 -------------
21133 -- Process --
21134 -------------
21136 function Process (N : Node_Id) return Traverse_Result is
21137 Comp : Entity_Id;
21139 begin
21140 if Nkind (N) = N_Discriminant_Specification then
21141 Comp := First_Discriminant (Typ);
21142 while Present (Comp) loop
21143 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21144 Set_Defining_Identifier (N, Comp);
21145 exit;
21146 end if;
21148 Next_Discriminant (Comp);
21149 end loop;
21151 elsif Nkind (N) = N_Component_Declaration then
21152 Comp := First_Component (Typ);
21153 while Present (Comp) loop
21154 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21155 Set_Defining_Identifier (N, Comp);
21156 exit;
21157 end if;
21159 Next_Component (Comp);
21160 end loop;
21161 end if;
21163 return OK;
21164 end Process;
21166 procedure Replace is new Traverse_Proc (Process);
21168 -- Start of processing for Replace_Components
21170 begin
21171 Replace (Decl);
21172 end Replace_Components;
21174 -------------------------------
21175 -- Set_Completion_Referenced --
21176 -------------------------------
21178 procedure Set_Completion_Referenced (E : Entity_Id) is
21179 begin
21180 -- If in main unit, mark entity that is a completion as referenced,
21181 -- warnings go on the partial view when needed.
21183 if In_Extended_Main_Source_Unit (E) then
21184 Set_Referenced (E);
21185 end if;
21186 end Set_Completion_Referenced;
21188 ---------------------
21189 -- Set_Default_SSO --
21190 ---------------------
21192 procedure Set_Default_SSO (T : Entity_Id) is
21193 begin
21194 case Opt.Default_SSO is
21195 when ' ' =>
21196 null;
21197 when 'L' =>
21198 Set_SSO_Set_Low_By_Default (T, True);
21199 when 'H' =>
21200 Set_SSO_Set_High_By_Default (T, True);
21201 when others =>
21202 raise Program_Error;
21203 end case;
21204 end Set_Default_SSO;
21206 ---------------------
21207 -- Set_Fixed_Range --
21208 ---------------------
21210 -- The range for fixed-point types is complicated by the fact that we
21211 -- do not know the exact end points at the time of the declaration. This
21212 -- is true for three reasons:
21214 -- A size clause may affect the fudging of the end-points.
21215 -- A small clause may affect the values of the end-points.
21216 -- We try to include the end-points if it does not affect the size.
21218 -- This means that the actual end-points must be established at the
21219 -- point when the type is frozen. Meanwhile, we first narrow the range
21220 -- as permitted (so that it will fit if necessary in a small specified
21221 -- size), and then build a range subtree with these narrowed bounds.
21222 -- Set_Fixed_Range constructs the range from real literal values, and
21223 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21225 -- The parent of this range is set to point to the entity so that it is
21226 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21227 -- other scalar types, which are just pointers to the range in the
21228 -- original tree, this would otherwise be an orphan).
21230 -- The tree is left unanalyzed. When the type is frozen, the processing
21231 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21232 -- analyzed, and uses this as an indication that it should complete
21233 -- work on the range (it will know the final small and size values).
21235 procedure Set_Fixed_Range
21236 (E : Entity_Id;
21237 Loc : Source_Ptr;
21238 Lo : Ureal;
21239 Hi : Ureal)
21241 S : constant Node_Id :=
21242 Make_Range (Loc,
21243 Low_Bound => Make_Real_Literal (Loc, Lo),
21244 High_Bound => Make_Real_Literal (Loc, Hi));
21245 begin
21246 Set_Scalar_Range (E, S);
21247 Set_Parent (S, E);
21249 -- Before the freeze point, the bounds of a fixed point are universal
21250 -- and carry the corresponding type.
21252 Set_Etype (Low_Bound (S), Universal_Real);
21253 Set_Etype (High_Bound (S), Universal_Real);
21254 end Set_Fixed_Range;
21256 ----------------------------------
21257 -- Set_Scalar_Range_For_Subtype --
21258 ----------------------------------
21260 procedure Set_Scalar_Range_For_Subtype
21261 (Def_Id : Entity_Id;
21262 R : Node_Id;
21263 Subt : Entity_Id)
21265 Kind : constant Entity_Kind := Ekind (Def_Id);
21267 begin
21268 -- Defend against previous error
21270 if Nkind (R) = N_Error then
21271 return;
21272 end if;
21274 Set_Scalar_Range (Def_Id, R);
21276 -- We need to link the range into the tree before resolving it so
21277 -- that types that are referenced, including importantly the subtype
21278 -- itself, are properly frozen (Freeze_Expression requires that the
21279 -- expression be properly linked into the tree). Of course if it is
21280 -- already linked in, then we do not disturb the current link.
21282 if No (Parent (R)) then
21283 Set_Parent (R, Def_Id);
21284 end if;
21286 -- Reset the kind of the subtype during analysis of the range, to
21287 -- catch possible premature use in the bounds themselves.
21289 Set_Ekind (Def_Id, E_Void);
21290 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21291 Set_Ekind (Def_Id, Kind);
21292 end Set_Scalar_Range_For_Subtype;
21294 --------------------------------------------------------
21295 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21296 --------------------------------------------------------
21298 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21299 (E : Entity_Id)
21301 begin
21302 -- Make sure set if encountered during Expand_To_Stored_Constraint
21304 Set_Stored_Constraint (E, No_Elist);
21306 -- Give it the right value
21308 if Is_Constrained (E) and then Has_Discriminants (E) then
21309 Set_Stored_Constraint (E,
21310 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21311 end if;
21312 end Set_Stored_Constraint_From_Discriminant_Constraint;
21314 -------------------------------------
21315 -- Signed_Integer_Type_Declaration --
21316 -------------------------------------
21318 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21319 Implicit_Base : Entity_Id;
21320 Base_Typ : Entity_Id;
21321 Lo_Val : Uint;
21322 Hi_Val : Uint;
21323 Errs : Boolean := False;
21324 Lo : Node_Id;
21325 Hi : Node_Id;
21327 function Can_Derive_From (E : Entity_Id) return Boolean;
21328 -- Determine whether given bounds allow derivation from specified type
21330 procedure Check_Bound (Expr : Node_Id);
21331 -- Check bound to make sure it is integral and static. If not, post
21332 -- appropriate error message and set Errs flag
21334 ---------------------
21335 -- Can_Derive_From --
21336 ---------------------
21338 -- Note we check both bounds against both end values, to deal with
21339 -- strange types like ones with a range of 0 .. -12341234.
21341 function Can_Derive_From (E : Entity_Id) return Boolean is
21342 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21343 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21344 begin
21345 return Lo <= Lo_Val and then Lo_Val <= Hi
21346 and then
21347 Lo <= Hi_Val and then Hi_Val <= Hi;
21348 end Can_Derive_From;
21350 -----------------
21351 -- Check_Bound --
21352 -----------------
21354 procedure Check_Bound (Expr : Node_Id) is
21355 begin
21356 -- If a range constraint is used as an integer type definition, each
21357 -- bound of the range must be defined by a static expression of some
21358 -- integer type, but the two bounds need not have the same integer
21359 -- type (Negative bounds are allowed.) (RM 3.5.4)
21361 if not Is_Integer_Type (Etype (Expr)) then
21362 Error_Msg_N
21363 ("integer type definition bounds must be of integer type", Expr);
21364 Errs := True;
21366 elsif not Is_OK_Static_Expression (Expr) then
21367 Flag_Non_Static_Expr
21368 ("non-static expression used for integer type bound!", Expr);
21369 Errs := True;
21371 -- The bounds are folded into literals, and we set their type to be
21372 -- universal, to avoid typing difficulties: we cannot set the type
21373 -- of the literal to the new type, because this would be a forward
21374 -- reference for the back end, and if the original type is user-
21375 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21377 else
21378 if Is_Entity_Name (Expr) then
21379 Fold_Uint (Expr, Expr_Value (Expr), True);
21380 end if;
21382 Set_Etype (Expr, Universal_Integer);
21383 end if;
21384 end Check_Bound;
21386 -- Start of processing for Signed_Integer_Type_Declaration
21388 begin
21389 -- Create an anonymous base type
21391 Implicit_Base :=
21392 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21394 -- Analyze and check the bounds, they can be of any integer type
21396 Lo := Low_Bound (Def);
21397 Hi := High_Bound (Def);
21399 -- Arbitrarily use Integer as the type if either bound had an error
21401 if Hi = Error or else Lo = Error then
21402 Base_Typ := Any_Integer;
21403 Set_Error_Posted (T, True);
21405 -- Here both bounds are OK expressions
21407 else
21408 Analyze_And_Resolve (Lo, Any_Integer);
21409 Analyze_And_Resolve (Hi, Any_Integer);
21411 Check_Bound (Lo);
21412 Check_Bound (Hi);
21414 if Errs then
21415 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21416 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21417 end if;
21419 -- Find type to derive from
21421 Lo_Val := Expr_Value (Lo);
21422 Hi_Val := Expr_Value (Hi);
21424 if Can_Derive_From (Standard_Short_Short_Integer) then
21425 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21427 elsif Can_Derive_From (Standard_Short_Integer) then
21428 Base_Typ := Base_Type (Standard_Short_Integer);
21430 elsif Can_Derive_From (Standard_Integer) then
21431 Base_Typ := Base_Type (Standard_Integer);
21433 elsif Can_Derive_From (Standard_Long_Integer) then
21434 Base_Typ := Base_Type (Standard_Long_Integer);
21436 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21437 Check_Restriction (No_Long_Long_Integers, Def);
21438 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21440 else
21441 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21442 Error_Msg_N ("integer type definition bounds out of range", Def);
21443 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21444 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21445 end if;
21446 end if;
21448 -- Complete both implicit base and declared first subtype entities. The
21449 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21450 -- are not clobbered when the signed integer type acts as a full view of
21451 -- a private type.
21453 Set_Etype (Implicit_Base, Base_Typ);
21454 Set_Size_Info (Implicit_Base, Base_Typ);
21455 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21456 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21457 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21459 Set_Ekind (T, E_Signed_Integer_Subtype);
21460 Set_Etype (T, Implicit_Base);
21461 Set_Size_Info (T, Implicit_Base);
21462 Inherit_Rep_Item_Chain (T, Implicit_Base);
21463 Set_Scalar_Range (T, Def);
21464 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21465 Set_Is_Constrained (T);
21466 end Signed_Integer_Type_Declaration;
21468 end Sem_Ch3;