1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Elists
; use Elists
;
31 with Einfo
; use Einfo
;
32 with Errout
; use Errout
;
33 with Eval_Fat
; use Eval_Fat
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Dist
; use Exp_Dist
;
38 with Exp_Tss
; use Exp_Tss
;
39 with Exp_Util
; use Exp_Util
;
40 with Fname
; use Fname
;
41 with Freeze
; use Freeze
;
42 with Ghost
; use Ghost
;
43 with Itypes
; use Itypes
;
44 with Layout
; use Layout
;
46 with Lib
.Xref
; use Lib
.Xref
;
47 with Namet
; use Namet
;
48 with Nmake
; use Nmake
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Case
; use Sem_Case
;
56 with Sem_Cat
; use Sem_Cat
;
57 with Sem_Ch6
; use Sem_Ch6
;
58 with Sem_Ch7
; use Sem_Ch7
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Ch10
; use Sem_Ch10
;
61 with Sem_Ch13
; use Sem_Ch13
;
62 with Sem_Dim
; use Sem_Dim
;
63 with Sem_Disp
; use Sem_Disp
;
64 with Sem_Dist
; use Sem_Dist
;
65 with Sem_Elim
; use Sem_Elim
;
66 with Sem_Eval
; use Sem_Eval
;
67 with Sem_Mech
; use Sem_Mech
;
68 with Sem_Prag
; use Sem_Prag
;
69 with Sem_Res
; use Sem_Res
;
70 with Sem_Smem
; use Sem_Smem
;
71 with Sem_Type
; use Sem_Type
;
72 with Sem_Util
; use Sem_Util
;
73 with Sem_Warn
; use Sem_Warn
;
74 with Stand
; use Stand
;
75 with Sinfo
; use Sinfo
;
76 with Sinput
; use Sinput
;
77 with Snames
; use Snames
;
78 with Targparm
; use Targparm
;
79 with Tbuild
; use Tbuild
;
80 with Ttypes
; use Ttypes
;
81 with Uintp
; use Uintp
;
82 with Urealp
; use Urealp
;
84 package body Sem_Ch3
is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
91 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
92 -- abstract interface types implemented by a record type or a derived
95 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
);
96 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
97 -- if they appeared at the end of the declarative region. The pragmas to be
105 procedure Build_Derived_Type
107 Parent_Type
: Entity_Id
;
108 Derived_Type
: Entity_Id
;
109 Is_Completion
: Boolean;
110 Derive_Subps
: Boolean := True);
111 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
112 -- the N_Full_Type_Declaration node containing the derived type definition.
113 -- Parent_Type is the entity for the parent type in the derived type
114 -- definition and Derived_Type the actual derived type. Is_Completion must
115 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
116 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
117 -- completion of a private type declaration. If Is_Completion is set to
118 -- True, N is the completion of a private type declaration and Derived_Type
119 -- is different from the defining identifier inside N (i.e. Derived_Type /=
120 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
121 -- subprograms should be derived. The only case where this parameter is
122 -- False is when Build_Derived_Type is recursively called to process an
123 -- implicit derived full type for a type derived from a private type (in
124 -- that case the subprograms must only be derived for the private view of
127 -- ??? These flags need a bit of re-examination and re-documentation:
128 -- ??? are they both necessary (both seem related to the recursion)?
130 procedure Build_Derived_Access_Type
132 Parent_Type
: Entity_Id
;
133 Derived_Type
: Entity_Id
);
134 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
135 -- create an implicit base if the parent type is constrained or if the
136 -- subtype indication has a constraint.
138 procedure Build_Derived_Array_Type
140 Parent_Type
: Entity_Id
;
141 Derived_Type
: Entity_Id
);
142 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
143 -- create an implicit base if the parent type is constrained or if the
144 -- subtype indication has a constraint.
146 procedure Build_Derived_Concurrent_Type
148 Parent_Type
: Entity_Id
;
149 Derived_Type
: Entity_Id
);
150 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
151 -- protected type, inherit entries and protected subprograms, check
152 -- legality of discriminant constraints if any.
154 procedure Build_Derived_Enumeration_Type
156 Parent_Type
: Entity_Id
;
157 Derived_Type
: Entity_Id
);
158 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
159 -- type, we must create a new list of literals. Types derived from
160 -- Character and [Wide_]Wide_Character are special-cased.
162 procedure Build_Derived_Numeric_Type
164 Parent_Type
: Entity_Id
;
165 Derived_Type
: Entity_Id
);
166 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
167 -- an anonymous base type, and propagate constraint to subtype if needed.
169 procedure Build_Derived_Private_Type
171 Parent_Type
: Entity_Id
;
172 Derived_Type
: Entity_Id
;
173 Is_Completion
: Boolean;
174 Derive_Subps
: Boolean := True);
175 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
176 -- because the parent may or may not have a completion, and the derivation
177 -- may itself be a completion.
179 procedure Build_Derived_Record_Type
181 Parent_Type
: Entity_Id
;
182 Derived_Type
: Entity_Id
;
183 Derive_Subps
: Boolean := True);
184 -- Subsidiary procedure used for tagged and untagged record types
185 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
186 -- All parameters are as in Build_Derived_Type except that N, in
187 -- addition to being an N_Full_Type_Declaration node, can also be an
188 -- N_Private_Extension_Declaration node. See the definition of this routine
189 -- for much more info. Derive_Subps indicates whether subprograms should be
190 -- derived from the parent type. The only case where Derive_Subps is False
191 -- is for an implicit derived full type for a type derived from a private
192 -- type (see Build_Derived_Type).
194 procedure Build_Discriminal
(Discrim
: Entity_Id
);
195 -- Create the discriminal corresponding to discriminant Discrim, that is
196 -- the parameter corresponding to Discrim to be used in initialization
197 -- procedures for the type where Discrim is a discriminant. Discriminals
198 -- are not used during semantic analysis, and are not fully defined
199 -- entities until expansion. Thus they are not given a scope until
200 -- initialization procedures are built.
202 function Build_Discriminant_Constraints
205 Derived_Def
: Boolean := False) return Elist_Id
;
206 -- Validate discriminant constraints and return the list of the constraints
207 -- in order of discriminant declarations, where T is the discriminated
208 -- unconstrained type. Def is the N_Subtype_Indication node where the
209 -- discriminants constraints for T are specified. Derived_Def is True
210 -- when building the discriminant constraints in a derived type definition
211 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
212 -- type and Def is the constraint "(xxx)" on T and this routine sets the
213 -- Corresponding_Discriminant field of the discriminants in the derived
214 -- type D to point to the corresponding discriminants in the parent type T.
216 procedure Build_Discriminated_Subtype
220 Related_Nod
: Node_Id
;
221 For_Access
: Boolean := False);
222 -- Subsidiary procedure to Constrain_Discriminated_Type and to
223 -- Process_Incomplete_Dependents. Given
225 -- T (a possibly discriminated base type)
226 -- Def_Id (a very partially built subtype for T),
228 -- the call completes Def_Id to be the appropriate E_*_Subtype.
230 -- The Elist is the list of discriminant constraints if any (it is set
231 -- to No_Elist if T is not a discriminated type, and to an empty list if
232 -- T has discriminants but there are no discriminant constraints). The
233 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
234 -- The For_Access says whether or not this subtype is really constraining
235 -- an access type. That is its sole purpose is the designated type of an
236 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
237 -- is built to avoid freezing T when the access subtype is frozen.
239 function Build_Scalar_Bound
242 Der_T
: Entity_Id
) return Node_Id
;
243 -- The bounds of a derived scalar type are conversions of the bounds of
244 -- the parent type. Optimize the representation if the bounds are literals.
245 -- Needs a more complete spec--what are the parameters exactly, and what
246 -- exactly is the returned value, and how is Bound affected???
248 procedure Build_Underlying_Full_View
252 -- If the completion of a private type is itself derived from a private
253 -- type, or if the full view of a private subtype is itself private, the
254 -- back-end has no way to compute the actual size of this type. We build
255 -- an internal subtype declaration of the proper parent type to convey
256 -- this information. This extra mechanism is needed because a full
257 -- view cannot itself have a full view (it would get clobbered during
260 procedure Check_Access_Discriminant_Requires_Limited
263 -- Check the restriction that the type to which an access discriminant
264 -- belongs must be a concurrent type or a descendant of a type with
265 -- the reserved word 'limited' in its declaration.
267 procedure Check_Anonymous_Access_Components
271 Comp_List
: Node_Id
);
272 -- Ada 2005 AI-382: an access component in a record definition can refer to
273 -- the enclosing record, in which case it denotes the type itself, and not
274 -- the current instance of the type. We create an anonymous access type for
275 -- the component, and flag it as an access to a component, so accessibility
276 -- checks are properly performed on it. The declaration of the access type
277 -- is placed ahead of that of the record to prevent order-of-elaboration
278 -- circularity issues in Gigi. We create an incomplete type for the record
279 -- declaration, which is the designated type of the anonymous access.
281 procedure Check_Delta_Expression
(E
: Node_Id
);
282 -- Check that the expression represented by E is suitable for use as a
283 -- delta expression, i.e. it is of real type and is static.
285 procedure Check_Digits_Expression
(E
: Node_Id
);
286 -- Check that the expression represented by E is suitable for use as a
287 -- digits expression, i.e. it is of integer type, positive and static.
289 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
290 -- Validate the initialization of an object declaration. T is the required
291 -- type, and Exp is the initialization expression.
293 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
294 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
296 procedure Check_Or_Process_Discriminants
299 Prev
: Entity_Id
:= Empty
);
300 -- If N is the full declaration of the completion T of an incomplete or
301 -- private type, check its discriminants (which are already known to be
302 -- conformant with those of the partial view, see Find_Type_Name),
303 -- otherwise process them. Prev is the entity of the partial declaration,
306 procedure Check_Real_Bound
(Bound
: Node_Id
);
307 -- Check given bound for being of real type and static. If not, post an
308 -- appropriate message, and rewrite the bound with the real literal zero.
310 procedure Constant_Redeclaration
314 -- Various checks on legality of full declaration of deferred constant.
315 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
316 -- node. The caller has not yet set any attributes of this entity.
318 function Contain_Interface
320 Ifaces
: Elist_Id
) return Boolean;
321 -- Ada 2005: Determine whether Iface is present in the list Ifaces
323 procedure Convert_Scalar_Bounds
325 Parent_Type
: Entity_Id
;
326 Derived_Type
: Entity_Id
;
328 -- For derived scalar types, convert the bounds in the type definition to
329 -- the derived type, and complete their analysis. Given a constraint of the
330 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
331 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
332 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
333 -- subtype are conversions of those bounds to the derived_type, so that
334 -- their typing is consistent.
336 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
337 -- Copies attributes from array base type T2 to array base type T1. Copies
338 -- only attributes that apply to base types, but not subtypes.
340 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
341 -- Copies attributes from array subtype T2 to array subtype T1. Copies
342 -- attributes that apply to both subtypes and base types.
344 procedure Create_Constrained_Components
348 Constraints
: Elist_Id
);
349 -- Build the list of entities for a constrained discriminated record
350 -- subtype. If a component depends on a discriminant, replace its subtype
351 -- using the discriminant values in the discriminant constraint. Subt
352 -- is the defining identifier for the subtype whose list of constrained
353 -- entities we will create. Decl_Node is the type declaration node where
354 -- we will attach all the itypes created. Typ is the base discriminated
355 -- type for the subtype Subt. Constraints is the list of discriminant
356 -- constraints for Typ.
358 function Constrain_Component_Type
360 Constrained_Typ
: Entity_Id
;
361 Related_Node
: Node_Id
;
363 Constraints
: Elist_Id
) return Entity_Id
;
364 -- Given a discriminated base type Typ, a list of discriminant constraints,
365 -- Constraints, for Typ and a component Comp of Typ, create and return the
366 -- type corresponding to Etype (Comp) where all discriminant references
367 -- are replaced with the corresponding constraint. If Etype (Comp) contains
368 -- no discriminant references then it is returned as-is. Constrained_Typ
369 -- is the final constrained subtype to which the constrained component
370 -- belongs. Related_Node is the node where we attach all created itypes.
372 procedure Constrain_Access
373 (Def_Id
: in out Entity_Id
;
375 Related_Nod
: Node_Id
);
376 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
377 -- an anonymous type created for a subtype indication. In that case it is
378 -- created in the procedure and attached to Related_Nod.
380 procedure Constrain_Array
381 (Def_Id
: in out Entity_Id
;
383 Related_Nod
: Node_Id
;
384 Related_Id
: Entity_Id
;
386 -- Apply a list of index constraints to an unconstrained array type. The
387 -- first parameter is the entity for the resulting subtype. A value of
388 -- Empty for Def_Id indicates that an implicit type must be created, but
389 -- creation is delayed (and must be done by this procedure) because other
390 -- subsidiary implicit types must be created first (which is why Def_Id
391 -- is an in/out parameter). The second parameter is a subtype indication
392 -- node for the constrained array to be created (e.g. something of the
393 -- form string (1 .. 10)). Related_Nod gives the place where this type
394 -- has to be inserted in the tree. The Related_Id and Suffix parameters
395 -- are used to build the associated Implicit type name.
397 procedure Constrain_Concurrent
398 (Def_Id
: in out Entity_Id
;
400 Related_Nod
: Node_Id
;
401 Related_Id
: Entity_Id
;
403 -- Apply list of discriminant constraints to an unconstrained concurrent
406 -- SI is the N_Subtype_Indication node containing the constraint and
407 -- the unconstrained type to constrain.
409 -- Def_Id is the entity for the resulting constrained subtype. A value
410 -- of Empty for Def_Id indicates that an implicit type must be created,
411 -- but creation is delayed (and must be done by this procedure) because
412 -- other subsidiary implicit types must be created first (which is why
413 -- Def_Id is an in/out parameter).
415 -- Related_Nod gives the place where this type has to be inserted
418 -- The last two arguments are used to create its external name if needed.
420 function Constrain_Corresponding_Record
421 (Prot_Subt
: Entity_Id
;
422 Corr_Rec
: Entity_Id
;
423 Related_Nod
: Node_Id
) return Entity_Id
;
424 -- When constraining a protected type or task type with discriminants,
425 -- constrain the corresponding record with the same discriminant values.
427 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
428 -- Constrain a decimal fixed point type with a digits constraint and/or a
429 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
431 procedure Constrain_Discriminated_Type
434 Related_Nod
: Node_Id
;
435 For_Access
: Boolean := False);
436 -- Process discriminant constraints of composite type. Verify that values
437 -- have been provided for all discriminants, that the original type is
438 -- unconstrained, and that the types of the supplied expressions match
439 -- the discriminant types. The first three parameters are like in routine
440 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
443 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
444 -- Constrain an enumeration type with a range constraint. This is identical
445 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
447 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
448 -- Constrain a floating point type with either a digits constraint
449 -- and/or a range constraint, building a E_Floating_Point_Subtype.
451 procedure Constrain_Index
454 Related_Nod
: Node_Id
;
455 Related_Id
: Entity_Id
;
458 -- Process an index constraint S in a constrained array declaration. The
459 -- constraint can be a subtype name, or a range with or without an explicit
460 -- subtype mark. The index is the corresponding index of the unconstrained
461 -- array. The Related_Id and Suffix parameters are used to build the
462 -- associated Implicit type name.
464 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
465 -- Build subtype of a signed or modular integer type
467 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
468 -- Constrain an ordinary fixed point type with a range constraint, and
469 -- build an E_Ordinary_Fixed_Point_Subtype entity.
471 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
472 -- Copy the Priv entity into the entity of its full declaration then swap
473 -- the two entities in such a manner that the former private type is now
474 -- seen as a full type.
476 procedure Decimal_Fixed_Point_Type_Declaration
479 -- Create a new decimal fixed point type, and apply the constraint to
480 -- obtain a subtype of this new type.
482 procedure Complete_Private_Subtype
485 Full_Base
: Entity_Id
;
486 Related_Nod
: Node_Id
);
487 -- Complete the implicit full view of a private subtype by setting the
488 -- appropriate semantic fields. If the full view of the parent is a record
489 -- type, build constrained components of subtype.
491 procedure Derive_Progenitor_Subprograms
492 (Parent_Type
: Entity_Id
;
493 Tagged_Type
: Entity_Id
);
494 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
495 -- operations of progenitors of Tagged_Type, and replace the subsidiary
496 -- subtypes with Tagged_Type, to build the specs of the inherited interface
497 -- primitives. The derived primitives are aliased to those of the
498 -- interface. This routine takes care also of transferring to the full view
499 -- subprograms associated with the partial view of Tagged_Type that cover
500 -- interface primitives.
502 procedure Derived_Standard_Character
504 Parent_Type
: Entity_Id
;
505 Derived_Type
: Entity_Id
);
506 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
507 -- derivations from types Standard.Character and Standard.Wide_Character.
509 procedure Derived_Type_Declaration
512 Is_Completion
: Boolean);
513 -- Process a derived type declaration. Build_Derived_Type is invoked
514 -- to process the actual derived type definition. Parameters N and
515 -- Is_Completion have the same meaning as in Build_Derived_Type.
516 -- T is the N_Defining_Identifier for the entity defined in the
517 -- N_Full_Type_Declaration node N, that is T is the derived type.
519 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
520 -- Insert each literal in symbol table, as an overloadable identifier. Each
521 -- enumeration type is mapped into a sequence of integers, and each literal
522 -- is defined as a constant with integer value. If any of the literals are
523 -- character literals, the type is a character type, which means that
524 -- strings are legal aggregates for arrays of components of the type.
526 function Expand_To_Stored_Constraint
528 Constraint
: Elist_Id
) return Elist_Id
;
529 -- Given a constraint (i.e. a list of expressions) on the discriminants of
530 -- Typ, expand it into a constraint on the stored discriminants and return
531 -- the new list of expressions constraining the stored discriminants.
533 function Find_Type_Of_Object
535 Related_Nod
: Node_Id
) return Entity_Id
;
536 -- Get type entity for object referenced by Obj_Def, attaching the implicit
537 -- types generated to Related_Nod.
539 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
540 -- Create a new float and apply the constraint to obtain subtype of it
542 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
543 -- Given an N_Subtype_Indication node N, return True if a range constraint
544 -- is present, either directly, or as part of a digits or delta constraint.
545 -- In addition, a digits constraint in the decimal case returns True, since
546 -- it establishes a default range if no explicit range is present.
548 function Inherit_Components
550 Parent_Base
: Entity_Id
;
551 Derived_Base
: Entity_Id
;
553 Inherit_Discr
: Boolean;
554 Discs
: Elist_Id
) return Elist_Id
;
555 -- Called from Build_Derived_Record_Type to inherit the components of
556 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
557 -- For more information on derived types and component inheritance please
558 -- consult the comment above the body of Build_Derived_Record_Type.
560 -- N is the original derived type declaration
562 -- Is_Tagged is set if we are dealing with tagged types
564 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
565 -- Parent_Base, otherwise no discriminants are inherited.
567 -- Discs gives the list of constraints that apply to Parent_Base in the
568 -- derived type declaration. If Discs is set to No_Elist, then we have
569 -- the following situation:
571 -- type Parent (D1..Dn : ..) is [tagged] record ...;
572 -- type Derived is new Parent [with ...];
574 -- which gets treated as
576 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
578 -- For untagged types the returned value is an association list. The list
579 -- starts from the association (Parent_Base => Derived_Base), and then it
580 -- contains a sequence of the associations of the form
582 -- (Old_Component => New_Component),
584 -- where Old_Component is the Entity_Id of a component in Parent_Base and
585 -- New_Component is the Entity_Id of the corresponding component in
586 -- Derived_Base. For untagged records, this association list is needed when
587 -- copying the record declaration for the derived base. In the tagged case
588 -- the value returned is irrelevant.
590 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
);
591 -- Propagate static and dynamic predicate flags from a parent to the
592 -- subtype in a subtype declaration with and without constraints.
594 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean;
595 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
596 -- Determine whether subprogram Subp is a procedure subject to pragma
597 -- Extensions_Visible with value False and has at least one controlling
598 -- parameter of mode OUT.
600 function Is_Valid_Constraint_Kind
602 Constraint_Kind
: Node_Kind
) return Boolean;
603 -- Returns True if it is legal to apply the given kind of constraint to the
604 -- given kind of type (index constraint to an array type, for example).
606 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
607 -- Create new modular type. Verify that modulus is in bounds
609 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
610 -- Create an abbreviated declaration for an operator in order to
611 -- materialize concatenation on array types.
613 procedure Ordinary_Fixed_Point_Type_Declaration
616 -- Create a new ordinary fixed point type, and apply the constraint to
617 -- obtain subtype of it.
619 procedure Prepare_Private_Subtype_Completion
621 Related_Nod
: Node_Id
);
622 -- Id is a subtype of some private type. Creates the full declaration
623 -- associated with Id whenever possible, i.e. when the full declaration
624 -- of the base type is already known. Records each subtype into
625 -- Private_Dependents of the base type.
627 procedure Process_Incomplete_Dependents
631 -- Process all entities that depend on an incomplete type. There include
632 -- subtypes, subprogram types that mention the incomplete type in their
633 -- profiles, and subprogram with access parameters that designate the
636 -- Inc_T is the defining identifier of an incomplete type declaration, its
637 -- Ekind is E_Incomplete_Type.
639 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
641 -- Full_T is N's defining identifier.
643 -- Subtypes of incomplete types with discriminants are completed when the
644 -- parent type is. This is simpler than private subtypes, because they can
645 -- only appear in the same scope, and there is no need to exchange views.
646 -- Similarly, access_to_subprogram types may have a parameter or a return
647 -- type that is an incomplete type, and that must be replaced with the
650 -- If the full type is tagged, subprogram with access parameters that
651 -- designated the incomplete may be primitive operations of the full type,
652 -- and have to be processed accordingly.
654 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
655 -- Given the type definition for a real type, this procedure processes and
656 -- checks the real range specification of this type definition if one is
657 -- present. If errors are found, error messages are posted, and the
658 -- Real_Range_Specification of Def is reset to Empty.
660 procedure Propagate_Default_Init_Cond_Attributes
661 (From_Typ
: Entity_Id
;
663 Parent_To_Derivation
: Boolean := False;
664 Private_To_Full_View
: Boolean := False);
665 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
666 -- all attributes related to pragma Default_Initial_Condition from From_Typ
667 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
668 -- the creation of a derived type. Flag Private_To_Full_View should be set
669 -- when processing both views of a private type.
671 procedure Record_Type_Declaration
675 -- Process a record type declaration (for both untagged and tagged
676 -- records). Parameters T and N are exactly like in procedure
677 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
678 -- for this routine. If this is the completion of an incomplete type
679 -- declaration, Prev is the entity of the incomplete declaration, used for
680 -- cross-referencing. Otherwise Prev = T.
682 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
683 -- This routine is used to process the actual record type definition (both
684 -- for untagged and tagged records). Def is a record type definition node.
685 -- This procedure analyzes the components in this record type definition.
686 -- Prev_T is the entity for the enclosing record type. It is provided so
687 -- that its Has_Task flag can be set if any of the component have Has_Task
688 -- set. If the declaration is the completion of an incomplete type
689 -- declaration, Prev_T is the original incomplete type, whose full view is
692 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
693 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
694 -- build a copy of the declaration tree of the parent, and we create
695 -- independently the list of components for the derived type. Semantic
696 -- information uses the component entities, but record representation
697 -- clauses are validated on the declaration tree. This procedure replaces
698 -- discriminants and components in the declaration with those that have
699 -- been created by Inherit_Components.
701 procedure Set_Fixed_Range
706 -- Build a range node with the given bounds and set it as the Scalar_Range
707 -- of the given fixed-point type entity. Loc is the source location used
708 -- for the constructed range. See body for further details.
710 procedure Set_Scalar_Range_For_Subtype
714 -- This routine is used to set the scalar range field for a subtype given
715 -- Def_Id, the entity for the subtype, and R, the range expression for the
716 -- scalar range. Subt provides the parent subtype to be used to analyze,
717 -- resolve, and check the given range.
719 procedure Set_Default_SSO
(T
: Entity_Id
);
720 -- T is the entity for an array or record being declared. This procedure
721 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
722 -- to the setting of Opt.Default_SSO.
724 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
725 -- Create a new signed integer entity, and apply the constraint to obtain
726 -- the required first named subtype of this type.
728 procedure Set_Stored_Constraint_From_Discriminant_Constraint
730 -- E is some record type. This routine computes E's Stored_Constraint
731 -- from its Discriminant_Constraint.
733 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
734 -- Check that an entity in a list of progenitors is an interface,
735 -- emit error otherwise.
737 -----------------------
738 -- Access_Definition --
739 -----------------------
741 function Access_Definition
742 (Related_Nod
: Node_Id
;
743 N
: Node_Id
) return Entity_Id
745 Anon_Type
: Entity_Id
;
746 Anon_Scope
: Entity_Id
;
747 Desig_Type
: Entity_Id
;
748 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
751 Check_SPARK_05_Restriction
("access type is not allowed", N
);
753 if Is_Entry
(Current_Scope
)
754 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
756 Error_Msg_N
("task entries cannot have access parameters", N
);
760 -- Ada 2005: For an object declaration the corresponding anonymous
761 -- type is declared in the current scope.
763 -- If the access definition is the return type of another access to
764 -- function, scope is the current one, because it is the one of the
765 -- current type declaration, except for the pathological case below.
767 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
768 N_Access_Function_Definition
)
770 Anon_Scope
:= Current_Scope
;
772 -- A pathological case: function returning access functions that
773 -- return access functions, etc. Each anonymous access type created
774 -- is in the enclosing scope of the outermost function.
781 while Nkind_In
(Par
, N_Access_Function_Definition
,
787 if Nkind
(Par
) = N_Function_Specification
then
788 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
792 -- For the anonymous function result case, retrieve the scope of the
793 -- function specification's associated entity rather than using the
794 -- current scope. The current scope will be the function itself if the
795 -- formal part is currently being analyzed, but will be the parent scope
796 -- in the case of a parameterless function, and we always want to use
797 -- the function's parent scope. Finally, if the function is a child
798 -- unit, we must traverse the tree to retrieve the proper entity.
800 elsif Nkind
(Related_Nod
) = N_Function_Specification
801 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
803 -- If the current scope is a protected type, the anonymous access
804 -- is associated with one of the protected operations, and must
805 -- be available in the scope that encloses the protected declaration.
806 -- Otherwise the type is in the scope enclosing the subprogram.
808 -- If the function has formals, The return type of a subprogram
809 -- declaration is analyzed in the scope of the subprogram (see
810 -- Process_Formals) and thus the protected type, if present, is
811 -- the scope of the current function scope.
813 if Ekind
(Current_Scope
) = E_Protected_Type
then
814 Enclosing_Prot_Type
:= Current_Scope
;
816 elsif Ekind
(Current_Scope
) = E_Function
817 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
819 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
822 if Present
(Enclosing_Prot_Type
) then
823 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
826 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
829 -- For an access type definition, if the current scope is a child
830 -- unit it is the scope of the type.
832 elsif Is_Compilation_Unit
(Current_Scope
) then
833 Anon_Scope
:= Current_Scope
;
835 -- For access formals, access components, and access discriminants, the
836 -- scope is that of the enclosing declaration,
839 Anon_Scope
:= Scope
(Current_Scope
);
844 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
847 and then Ada_Version
>= Ada_2005
849 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
852 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
853 -- the corresponding semantic routine
855 if Present
(Access_To_Subprogram_Definition
(N
)) then
857 -- Compiler runtime units are compiled in Ada 2005 mode when building
858 -- the runtime library but must also be compilable in Ada 95 mode
859 -- (when bootstrapping the compiler).
861 Check_Compiler_Unit
("anonymous access to subprogram", N
);
863 Access_Subprogram_Declaration
864 (T_Name
=> Anon_Type
,
865 T_Def
=> Access_To_Subprogram_Definition
(N
));
867 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
869 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
871 Set_Ekind
(Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
874 Set_Can_Use_Internal_Rep
875 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
877 -- If the anonymous access is associated with a protected operation,
878 -- create a reference to it after the enclosing protected definition
879 -- because the itype will be used in the subsequent bodies.
881 if Ekind
(Current_Scope
) = E_Protected_Type
then
882 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
888 Find_Type
(Subtype_Mark
(N
));
889 Desig_Type
:= Entity
(Subtype_Mark
(N
));
891 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
892 Set_Etype
(Anon_Type
, Anon_Type
);
894 -- Make sure the anonymous access type has size and alignment fields
895 -- set, as required by gigi. This is necessary in the case of the
896 -- Task_Body_Procedure.
898 if not Has_Private_Component
(Desig_Type
) then
899 Layout_Type
(Anon_Type
);
902 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
903 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
904 -- the null value is allowed. In Ada 95 the null value is never allowed.
906 if Ada_Version
>= Ada_2005
then
907 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
909 Set_Can_Never_Be_Null
(Anon_Type
, True);
912 -- The anonymous access type is as public as the discriminated type or
913 -- subprogram that defines it. It is imported (for back-end purposes)
914 -- if the designated type is.
916 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
918 -- Ada 2005 (AI-231): Propagate the access-constant attribute
920 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
922 -- The context is either a subprogram declaration, object declaration,
923 -- or an access discriminant, in a private or a full type declaration.
924 -- In the case of a subprogram, if the designated type is incomplete,
925 -- the operation will be a primitive operation of the full type, to be
926 -- updated subsequently. If the type is imported through a limited_with
927 -- clause, the subprogram is not a primitive operation of the type
928 -- (which is declared elsewhere in some other scope).
930 if Ekind
(Desig_Type
) = E_Incomplete_Type
931 and then not From_Limited_With
(Desig_Type
)
932 and then Is_Overloadable
(Current_Scope
)
934 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
935 Set_Has_Delayed_Freeze
(Current_Scope
);
938 -- Ada 2005: If the designated type is an interface that may contain
939 -- tasks, create a Master entity for the declaration. This must be done
940 -- before expansion of the full declaration, because the declaration may
941 -- include an expression that is an allocator, whose expansion needs the
942 -- proper Master for the created tasks.
944 if Nkind
(Related_Nod
) = N_Object_Declaration
and then Expander_Active
946 if Is_Interface
(Desig_Type
) and then Is_Limited_Record
(Desig_Type
)
948 Build_Class_Wide_Master
(Anon_Type
);
950 -- Similarly, if the type is an anonymous access that designates
951 -- tasks, create a master entity for it in the current context.
953 elsif Has_Task
(Desig_Type
) and then Comes_From_Source
(Related_Nod
)
955 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
956 Build_Master_Renaming
(Anon_Type
);
960 -- For a private component of a protected type, it is imperative that
961 -- the back-end elaborate the type immediately after the protected
962 -- declaration, because this type will be used in the declarations
963 -- created for the component within each protected body, so we must
964 -- create an itype reference for it now.
966 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
967 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
969 -- Similarly, if the access definition is the return result of a
970 -- function, create an itype reference for it because it will be used
971 -- within the function body. For a regular function that is not a
972 -- compilation unit, insert reference after the declaration. For a
973 -- protected operation, insert it after the enclosing protected type
974 -- declaration. In either case, do not create a reference for a type
975 -- obtained through a limited_with clause, because this would introduce
976 -- semantic dependencies.
978 -- Similarly, do not create a reference if the designated type is a
979 -- generic formal, because no use of it will reach the backend.
981 elsif Nkind
(Related_Nod
) = N_Function_Specification
982 and then not From_Limited_With
(Desig_Type
)
983 and then not Is_Generic_Type
(Desig_Type
)
985 if Present
(Enclosing_Prot_Type
) then
986 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
988 elsif Is_List_Member
(Parent
(Related_Nod
))
989 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
991 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
994 -- Finally, create an itype reference for an object declaration of an
995 -- anonymous access type. This is strictly necessary only for deferred
996 -- constants, but in any case will avoid out-of-scope problems in the
999 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
1000 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
1004 end Access_Definition
;
1006 -----------------------------------
1007 -- Access_Subprogram_Declaration --
1008 -----------------------------------
1010 procedure Access_Subprogram_Declaration
1011 (T_Name
: Entity_Id
;
1014 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
1015 -- Check that type T_Name is not used, directly or recursively, as a
1016 -- parameter or a return type in Def. Def is either a subtype, an
1017 -- access_definition, or an access_to_subprogram_definition.
1019 -------------------------------
1020 -- Check_For_Premature_Usage --
1021 -------------------------------
1023 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
1027 -- Check for a subtype mark
1029 if Nkind
(Def
) in N_Has_Etype
then
1030 if Etype
(Def
) = T_Name
then
1032 ("type& cannot be used before end of its declaration", Def
);
1035 -- If this is not a subtype, then this is an access_definition
1037 elsif Nkind
(Def
) = N_Access_Definition
then
1038 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1039 Check_For_Premature_Usage
1040 (Access_To_Subprogram_Definition
(Def
));
1042 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1045 -- The only cases left are N_Access_Function_Definition and
1046 -- N_Access_Procedure_Definition.
1049 if Present
(Parameter_Specifications
(Def
)) then
1050 Param
:= First
(Parameter_Specifications
(Def
));
1051 while Present
(Param
) loop
1052 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1053 Param
:= Next
(Param
);
1057 if Nkind
(Def
) = N_Access_Function_Definition
then
1058 Check_For_Premature_Usage
(Result_Definition
(Def
));
1061 end Check_For_Premature_Usage
;
1065 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1068 Desig_Type
: constant Entity_Id
:=
1069 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1071 -- Start of processing for Access_Subprogram_Declaration
1074 Check_SPARK_05_Restriction
("access type is not allowed", T_Def
);
1076 -- Associate the Itype node with the inner full-type declaration or
1077 -- subprogram spec or entry body. This is required to handle nested
1078 -- anonymous declarations. For example:
1081 -- (X : access procedure
1082 -- (Y : access procedure
1085 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1086 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1087 N_Private_Type_Declaration
,
1088 N_Private_Extension_Declaration
,
1089 N_Procedure_Specification
,
1090 N_Function_Specification
,
1094 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1095 N_Object_Renaming_Declaration
,
1096 N_Formal_Object_Declaration
,
1097 N_Formal_Type_Declaration
,
1098 N_Task_Type_Declaration
,
1099 N_Protected_Type_Declaration
))
1101 D_Ityp
:= Parent
(D_Ityp
);
1102 pragma Assert
(D_Ityp
/= Empty
);
1105 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1107 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1108 N_Function_Specification
)
1110 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1112 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1113 N_Object_Declaration
,
1114 N_Object_Renaming_Declaration
,
1115 N_Formal_Type_Declaration
)
1117 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1120 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1121 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1123 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1126 if Present
(Access_To_Subprogram_Definition
(Acc
))
1128 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1132 Replace_Anonymous_Access_To_Protected_Subprogram
1138 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1143 Analyze
(Result_Definition
(T_Def
));
1146 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1149 -- If a null exclusion is imposed on the result type, then
1150 -- create a null-excluding itype (an access subtype) and use
1151 -- it as the function's Etype.
1153 if Is_Access_Type
(Typ
)
1154 and then Null_Exclusion_In_Return_Present
(T_Def
)
1156 Set_Etype
(Desig_Type
,
1157 Create_Null_Excluding_Itype
1159 Related_Nod
=> T_Def
,
1160 Scope_Id
=> Current_Scope
));
1163 if From_Limited_With
(Typ
) then
1165 -- AI05-151: Incomplete types are allowed in all basic
1166 -- declarations, including access to subprograms.
1168 if Ada_Version
>= Ada_2012
then
1173 ("illegal use of incomplete type&",
1174 Result_Definition
(T_Def
), Typ
);
1177 elsif Ekind
(Current_Scope
) = E_Package
1178 and then In_Private_Part
(Current_Scope
)
1180 if Ekind
(Typ
) = E_Incomplete_Type
then
1181 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1183 elsif Is_Class_Wide_Type
(Typ
)
1184 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1187 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1191 Set_Etype
(Desig_Type
, Typ
);
1196 if not (Is_Type
(Etype
(Desig_Type
))) then
1198 ("expect type in function specification",
1199 Result_Definition
(T_Def
));
1203 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1206 if Present
(Formals
) then
1207 Push_Scope
(Desig_Type
);
1209 -- Some special tests here. These special tests can be removed
1210 -- if and when Itypes always have proper parent pointers to their
1213 -- Special test 1) Link defining_identifier of formals. Required by
1214 -- First_Formal to provide its functionality.
1220 F
:= First
(Formals
);
1222 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1223 -- when it is part of an unconstrained type and subtype expansion
1224 -- is disabled. To avoid back-end problems with shared profiles,
1225 -- use previous subprogram type as the designated type, and then
1226 -- remove scope added above.
1228 if ASIS_Mode
and then Present
(Scope
(Defining_Identifier
(F
)))
1230 Set_Etype
(T_Name
, T_Name
);
1231 Init_Size_Align
(T_Name
);
1232 Set_Directly_Designated_Type
(T_Name
,
1233 Scope
(Defining_Identifier
(F
)));
1238 while Present
(F
) loop
1239 if No
(Parent
(Defining_Identifier
(F
))) then
1240 Set_Parent
(Defining_Identifier
(F
), F
);
1247 Process_Formals
(Formals
, Parent
(T_Def
));
1249 -- Special test 2) End_Scope requires that the parent pointer be set
1250 -- to something reasonable, but Itypes don't have parent pointers. So
1251 -- we set it and then unset it ???
1253 Set_Parent
(Desig_Type
, T_Name
);
1255 Set_Parent
(Desig_Type
, Empty
);
1258 -- Check for premature usage of the type being defined
1260 Check_For_Premature_Usage
(T_Def
);
1262 -- The return type and/or any parameter type may be incomplete. Mark the
1263 -- subprogram_type as depending on the incomplete type, so that it can
1264 -- be updated when the full type declaration is seen. This only applies
1265 -- to incomplete types declared in some enclosing scope, not to limited
1266 -- views from other packages.
1268 -- Prior to Ada 2012, access to functions can only have in_parameters.
1270 if Present
(Formals
) then
1271 Formal
:= First_Formal
(Desig_Type
);
1272 while Present
(Formal
) loop
1273 if Ekind
(Formal
) /= E_In_Parameter
1274 and then Nkind
(T_Def
) = N_Access_Function_Definition
1275 and then Ada_Version
< Ada_2012
1277 Error_Msg_N
("functions can only have IN parameters", Formal
);
1280 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1281 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1283 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1284 Set_Has_Delayed_Freeze
(Desig_Type
);
1287 Next_Formal
(Formal
);
1291 -- Check whether an indirect call without actuals may be possible. This
1292 -- is used when resolving calls whose result is then indexed.
1294 May_Need_Actuals
(Desig_Type
);
1296 -- If the return type is incomplete, this is legal as long as the type
1297 -- is declared in the current scope and will be completed in it (rather
1298 -- than being part of limited view).
1300 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1301 and then not Has_Delayed_Freeze
(Desig_Type
)
1302 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1304 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1305 Set_Has_Delayed_Freeze
(Desig_Type
);
1308 Check_Delayed_Subprogram
(Desig_Type
);
1310 if Protected_Present
(T_Def
) then
1311 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1312 Set_Convention
(Desig_Type
, Convention_Protected
);
1314 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1317 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1319 Set_Etype
(T_Name
, T_Name
);
1320 Init_Size_Align
(T_Name
);
1321 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1323 Generate_Reference_To_Formals
(T_Name
);
1325 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1327 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1329 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1330 end Access_Subprogram_Declaration
;
1332 ----------------------------
1333 -- Access_Type_Declaration --
1334 ----------------------------
1336 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1337 P
: constant Node_Id
:= Parent
(Def
);
1338 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1340 Full_Desig
: Entity_Id
;
1343 Check_SPARK_05_Restriction
("access type is not allowed", Def
);
1345 -- Check for permissible use of incomplete type
1347 if Nkind
(S
) /= N_Subtype_Indication
then
1350 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1351 Set_Directly_Designated_Type
(T
, Entity
(S
));
1353 -- If the designated type is a limited view, we cannot tell if
1354 -- the full view contains tasks, and there is no way to handle
1355 -- that full view in a client. We create a master entity for the
1356 -- scope, which will be used when a client determines that one
1359 if From_Limited_With
(Entity
(S
))
1360 and then not Is_Class_Wide_Type
(Entity
(S
))
1362 Set_Ekind
(T
, E_Access_Type
);
1363 Build_Master_Entity
(T
);
1364 Build_Master_Renaming
(T
);
1368 Set_Directly_Designated_Type
(T
, Process_Subtype
(S
, P
, T
, 'P'));
1371 -- If the access definition is of the form: ACCESS NOT NULL ..
1372 -- the subtype indication must be of an access type. Create
1373 -- a null-excluding subtype of it.
1375 if Null_Excluding_Subtype
(Def
) then
1376 if not Is_Access_Type
(Entity
(S
)) then
1377 Error_Msg_N
("null exclusion must apply to access type", Def
);
1381 Loc
: constant Source_Ptr
:= Sloc
(S
);
1383 Nam
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1387 Make_Subtype_Declaration
(Loc
,
1388 Defining_Identifier
=> Nam
,
1389 Subtype_Indication
=>
1390 New_Occurrence_Of
(Entity
(S
), Loc
));
1391 Set_Null_Exclusion_Present
(Decl
);
1392 Insert_Before
(Parent
(Def
), Decl
);
1394 Set_Entity
(S
, Nam
);
1400 Set_Directly_Designated_Type
(T
,
1401 Process_Subtype
(S
, P
, T
, 'P'));
1404 if All_Present
(Def
) or Constant_Present
(Def
) then
1405 Set_Ekind
(T
, E_General_Access_Type
);
1407 Set_Ekind
(T
, E_Access_Type
);
1410 Full_Desig
:= Designated_Type
(T
);
1412 if Base_Type
(Full_Desig
) = T
then
1413 Error_Msg_N
("access type cannot designate itself", S
);
1415 -- In Ada 2005, the type may have a limited view through some unit in
1416 -- its own context, allowing the following circularity that cannot be
1417 -- detected earlier.
1419 elsif Is_Class_Wide_Type
(Full_Desig
) and then Etype
(Full_Desig
) = T
1422 ("access type cannot designate its own classwide type", S
);
1424 -- Clean up indication of tagged status to prevent cascaded errors
1426 Set_Is_Tagged_Type
(T
, False);
1431 -- If the type has appeared already in a with_type clause, it is frozen
1432 -- and the pointer size is already set. Else, initialize.
1434 if not From_Limited_With
(T
) then
1435 Init_Size_Align
(T
);
1438 -- Note that Has_Task is always false, since the access type itself
1439 -- is not a task type. See Einfo for more description on this point.
1440 -- Exactly the same consideration applies to Has_Controlled_Component
1441 -- and to Has_Protected.
1443 Set_Has_Task
(T
, False);
1444 Set_Has_Controlled_Component
(T
, False);
1445 Set_Has_Protected
(T
, False);
1447 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1448 -- problems where an incomplete view of this entity has been previously
1449 -- established by a limited with and an overlaid version of this field
1450 -- (Stored_Constraint) was initialized for the incomplete view.
1452 -- This reset is performed in most cases except where the access type
1453 -- has been created for the purposes of allocating or deallocating a
1454 -- build-in-place object. Such access types have explicitly set pools
1455 -- and finalization masters.
1457 if No
(Associated_Storage_Pool
(T
)) then
1458 Set_Finalization_Master
(T
, Empty
);
1461 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1464 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1465 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1466 end Access_Type_Declaration
;
1468 ----------------------------------
1469 -- Add_Interface_Tag_Components --
1470 ----------------------------------
1472 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1473 Loc
: constant Source_Ptr
:= Sloc
(N
);
1477 procedure Add_Tag
(Iface
: Entity_Id
);
1478 -- Add tag for one of the progenitor interfaces
1484 procedure Add_Tag
(Iface
: Entity_Id
) is
1491 pragma Assert
(Is_Tagged_Type
(Iface
) and then Is_Interface
(Iface
));
1493 -- This is a reasonable place to propagate predicates
1495 if Has_Predicates
(Iface
) then
1496 Set_Has_Predicates
(Typ
);
1500 Make_Component_Definition
(Loc
,
1501 Aliased_Present
=> True,
1502 Subtype_Indication
=>
1503 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1505 Tag
:= Make_Temporary
(Loc
, 'V');
1508 Make_Component_Declaration
(Loc
,
1509 Defining_Identifier
=> Tag
,
1510 Component_Definition
=> Def
);
1512 Analyze_Component_Declaration
(Decl
);
1514 Set_Analyzed
(Decl
);
1515 Set_Ekind
(Tag
, E_Component
);
1517 Set_Is_Aliased
(Tag
);
1518 Set_Related_Type
(Tag
, Iface
);
1519 Init_Component_Location
(Tag
);
1521 pragma Assert
(Is_Frozen
(Iface
));
1523 Set_DT_Entry_Count
(Tag
,
1524 DT_Entry_Count
(First_Entity
(Iface
)));
1526 if No
(Last_Tag
) then
1529 Insert_After
(Last_Tag
, Decl
);
1534 -- If the ancestor has discriminants we need to give special support
1535 -- to store the offset_to_top value of the secondary dispatch tables.
1536 -- For this purpose we add a supplementary component just after the
1537 -- field that contains the tag associated with each secondary DT.
1539 if Typ
/= Etype
(Typ
) and then Has_Discriminants
(Etype
(Typ
)) then
1541 Make_Component_Definition
(Loc
,
1542 Subtype_Indication
=>
1543 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1545 Offset
:= Make_Temporary
(Loc
, 'V');
1548 Make_Component_Declaration
(Loc
,
1549 Defining_Identifier
=> Offset
,
1550 Component_Definition
=> Def
);
1552 Analyze_Component_Declaration
(Decl
);
1554 Set_Analyzed
(Decl
);
1555 Set_Ekind
(Offset
, E_Component
);
1556 Set_Is_Aliased
(Offset
);
1557 Set_Related_Type
(Offset
, Iface
);
1558 Init_Component_Location
(Offset
);
1559 Insert_After
(Last_Tag
, Decl
);
1570 -- Start of processing for Add_Interface_Tag_Components
1573 if not RTE_Available
(RE_Interface_Tag
) then
1575 ("(Ada 2005) interface types not supported by this run-time!",
1580 if Ekind
(Typ
) /= E_Record_Type
1581 or else (Is_Concurrent_Record_Type
(Typ
)
1582 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1583 or else (not Is_Concurrent_Record_Type
(Typ
)
1584 and then No
(Interfaces
(Typ
))
1585 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1590 -- Find the current last tag
1592 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1593 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1595 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1596 Ext
:= Type_Definition
(N
);
1601 if not (Present
(Component_List
(Ext
))) then
1602 Set_Null_Present
(Ext
, False);
1604 Set_Component_List
(Ext
,
1605 Make_Component_List
(Loc
,
1606 Component_Items
=> L
,
1607 Null_Present
=> False));
1609 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1610 L
:= Component_Items
1612 (Record_Extension_Part
1613 (Type_Definition
(N
))));
1615 L
:= Component_Items
1617 (Type_Definition
(N
)));
1620 -- Find the last tag component
1623 while Present
(Comp
) loop
1624 if Nkind
(Comp
) = N_Component_Declaration
1625 and then Is_Tag
(Defining_Identifier
(Comp
))
1634 -- At this point L references the list of components and Last_Tag
1635 -- references the current last tag (if any). Now we add the tag
1636 -- corresponding with all the interfaces that are not implemented
1639 if Present
(Interfaces
(Typ
)) then
1640 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1641 while Present
(Elmt
) loop
1642 Add_Tag
(Node
(Elmt
));
1646 end Add_Interface_Tag_Components
;
1648 -------------------------------------
1649 -- Add_Internal_Interface_Entities --
1650 -------------------------------------
1652 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1655 Iface_Elmt
: Elmt_Id
;
1656 Iface_Prim
: Entity_Id
;
1657 Ifaces_List
: Elist_Id
;
1658 New_Subp
: Entity_Id
:= Empty
;
1660 Restore_Scope
: Boolean := False;
1663 pragma Assert
(Ada_Version
>= Ada_2005
1664 and then Is_Record_Type
(Tagged_Type
)
1665 and then Is_Tagged_Type
(Tagged_Type
)
1666 and then Has_Interfaces
(Tagged_Type
)
1667 and then not Is_Interface
(Tagged_Type
));
1669 -- Ensure that the internal entities are added to the scope of the type
1671 if Scope
(Tagged_Type
) /= Current_Scope
then
1672 Push_Scope
(Scope
(Tagged_Type
));
1673 Restore_Scope
:= True;
1676 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1678 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1679 while Present
(Iface_Elmt
) loop
1680 Iface
:= Node
(Iface_Elmt
);
1682 -- Originally we excluded here from this processing interfaces that
1683 -- are parents of Tagged_Type because their primitives are located
1684 -- in the primary dispatch table (and hence no auxiliary internal
1685 -- entities are required to handle secondary dispatch tables in such
1686 -- case). However, these auxiliary entities are also required to
1687 -- handle derivations of interfaces in formals of generics (see
1688 -- Derive_Subprograms).
1690 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1691 while Present
(Elmt
) loop
1692 Iface_Prim
:= Node
(Elmt
);
1694 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1696 Find_Primitive_Covering_Interface
1697 (Tagged_Type
=> Tagged_Type
,
1698 Iface_Prim
=> Iface_Prim
);
1700 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1704 pragma Assert
(Present
(Prim
));
1706 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1707 -- differs from the name of the interface primitive then it is
1708 -- a private primitive inherited from a parent type. In such
1709 -- case, given that Tagged_Type covers the interface, the
1710 -- inherited private primitive becomes visible. For such
1711 -- purpose we add a new entity that renames the inherited
1712 -- private primitive.
1714 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1715 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1717 (New_Subp
=> New_Subp
,
1718 Parent_Subp
=> Iface_Prim
,
1719 Derived_Type
=> Tagged_Type
,
1720 Parent_Type
=> Iface
);
1721 Set_Alias
(New_Subp
, Prim
);
1722 Set_Is_Abstract_Subprogram
1723 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1727 (New_Subp
=> New_Subp
,
1728 Parent_Subp
=> Iface_Prim
,
1729 Derived_Type
=> Tagged_Type
,
1730 Parent_Type
=> Iface
);
1732 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1733 -- associated with interface types. These entities are
1734 -- only registered in the list of primitives of its
1735 -- corresponding tagged type because they are only used
1736 -- to fill the contents of the secondary dispatch tables.
1737 -- Therefore they are removed from the homonym chains.
1739 Set_Is_Hidden
(New_Subp
);
1740 Set_Is_Internal
(New_Subp
);
1741 Set_Alias
(New_Subp
, Prim
);
1742 Set_Is_Abstract_Subprogram
1743 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1744 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1746 -- If the returned type is an interface then propagate it to
1747 -- the returned type. Needed by the thunk to generate the code
1748 -- which displaces "this" to reference the corresponding
1749 -- secondary dispatch table in the returned object.
1751 if Is_Interface
(Etype
(Iface_Prim
)) then
1752 Set_Etype
(New_Subp
, Etype
(Iface_Prim
));
1755 -- Internal entities associated with interface types are
1756 -- only registered in the list of primitives of the tagged
1757 -- type. They are only used to fill the contents of the
1758 -- secondary dispatch tables. Therefore they are not needed
1759 -- in the homonym chains.
1761 Remove_Homonym
(New_Subp
);
1763 -- Hidden entities associated with interfaces must have set
1764 -- the Has_Delay_Freeze attribute to ensure that, in case of
1765 -- locally defined tagged types (or compiling with static
1766 -- dispatch tables generation disabled) the corresponding
1767 -- entry of the secondary dispatch table is filled when
1768 -- such an entity is frozen.
1770 Set_Has_Delayed_Freeze
(New_Subp
);
1777 Next_Elmt
(Iface_Elmt
);
1780 if Restore_Scope
then
1783 end Add_Internal_Interface_Entities
;
1785 -----------------------------------
1786 -- Analyze_Component_Declaration --
1787 -----------------------------------
1789 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1790 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1791 E
: constant Node_Id
:= Expression
(N
);
1792 Typ
: constant Node_Id
:=
1793 Subtype_Indication
(Component_Definition
(N
));
1797 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1798 -- Determines whether a constraint uses the discriminant of a record
1799 -- type thus becoming a per-object constraint (POC).
1801 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1802 -- Typ is the type of the current component, check whether this type is
1803 -- a limited type. Used to validate declaration against that of
1804 -- enclosing record.
1810 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1812 -- Prevent cascaded errors
1814 if Error_Posted
(Constr
) then
1818 case Nkind
(Constr
) is
1819 when N_Attribute_Reference
=>
1820 return Attribute_Name
(Constr
) = Name_Access
1821 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1823 when N_Discriminant_Association
=>
1824 return Denotes_Discriminant
(Expression
(Constr
));
1826 when N_Identifier
=>
1827 return Denotes_Discriminant
(Constr
);
1829 when N_Index_Or_Discriminant_Constraint
=>
1834 IDC
:= First
(Constraints
(Constr
));
1835 while Present
(IDC
) loop
1837 -- One per-object constraint is sufficient
1839 if Contains_POC
(IDC
) then
1850 return Denotes_Discriminant
(Low_Bound
(Constr
))
1852 Denotes_Discriminant
(High_Bound
(Constr
));
1854 when N_Range_Constraint
=>
1855 return Denotes_Discriminant
(Range_Expression
(Constr
));
1863 ----------------------
1864 -- Is_Known_Limited --
1865 ----------------------
1867 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1868 P
: constant Entity_Id
:= Etype
(Typ
);
1869 R
: constant Entity_Id
:= Root_Type
(Typ
);
1872 if Is_Limited_Record
(Typ
) then
1875 -- If the root type is limited (and not a limited interface)
1876 -- so is the current type
1878 elsif Is_Limited_Record
(R
)
1879 and then (not Is_Interface
(R
) or else not Is_Limited_Interface
(R
))
1883 -- Else the type may have a limited interface progenitor, but a
1884 -- limited record parent.
1886 elsif R
/= P
and then Is_Limited_Record
(P
) then
1892 end Is_Known_Limited
;
1894 -- Start of processing for Analyze_Component_Declaration
1897 Generate_Definition
(Id
);
1900 if Present
(Typ
) then
1901 T
:= Find_Type_Of_Object
1902 (Subtype_Indication
(Component_Definition
(N
)), N
);
1904 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1905 Check_SPARK_05_Restriction
("subtype mark required", Typ
);
1908 -- Ada 2005 (AI-230): Access Definition case
1911 pragma Assert
(Present
1912 (Access_Definition
(Component_Definition
(N
))));
1914 T
:= Access_Definition
1916 N
=> Access_Definition
(Component_Definition
(N
)));
1917 Set_Is_Local_Anonymous_Access
(T
);
1919 -- Ada 2005 (AI-254)
1921 if Present
(Access_To_Subprogram_Definition
1922 (Access_Definition
(Component_Definition
(N
))))
1923 and then Protected_Present
(Access_To_Subprogram_Definition
1925 (Component_Definition
(N
))))
1927 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1931 -- If the subtype is a constrained subtype of the enclosing record,
1932 -- (which must have a partial view) the back-end does not properly
1933 -- handle the recursion. Rewrite the component declaration with an
1934 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1935 -- the tree directly because side effects have already been removed from
1936 -- discriminant constraints.
1938 if Ekind
(T
) = E_Access_Subtype
1939 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1940 and then Comes_From_Source
(T
)
1941 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1942 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1945 (Subtype_Indication
(Component_Definition
(N
)),
1946 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1947 T
:= Find_Type_Of_Object
1948 (Subtype_Indication
(Component_Definition
(N
)), N
);
1951 -- If the component declaration includes a default expression, then we
1952 -- check that the component is not of a limited type (RM 3.7(5)),
1953 -- and do the special preanalysis of the expression (see section on
1954 -- "Handling of Default and Per-Object Expressions" in the spec of
1958 Check_SPARK_05_Restriction
("default expression is not allowed", E
);
1959 Preanalyze_Default_Expression
(E
, T
);
1960 Check_Initialization
(T
, E
);
1962 if Ada_Version
>= Ada_2005
1963 and then Ekind
(T
) = E_Anonymous_Access_Type
1964 and then Etype
(E
) /= Any_Type
1966 -- Check RM 3.9.2(9): "if the expected type for an expression is
1967 -- an anonymous access-to-specific tagged type, then the object
1968 -- designated by the expression shall not be dynamically tagged
1969 -- unless it is a controlling operand in a call on a dispatching
1972 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1974 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1976 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1980 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1983 -- (Ada 2005: AI-230): Accessibility check for anonymous
1986 if Type_Access_Level
(Etype
(E
)) >
1987 Deepest_Type_Access_Level
(T
)
1990 ("expression has deeper access level than component " &
1991 "(RM 3.10.2 (12.2))", E
);
1994 -- The initialization expression is a reference to an access
1995 -- discriminant. The type of the discriminant is always deeper
1996 -- than any access type.
1998 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
1999 and then Is_Entity_Name
(E
)
2000 and then Ekind
(Entity
(E
)) = E_In_Parameter
2001 and then Present
(Discriminal_Link
(Entity
(E
)))
2004 ("discriminant has deeper accessibility level than target",
2010 -- The parent type may be a private view with unknown discriminants,
2011 -- and thus unconstrained. Regular components must be constrained.
2013 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
2014 if Is_Class_Wide_Type
(T
) then
2016 ("class-wide subtype with unknown discriminants" &
2017 " in component declaration",
2018 Subtype_Indication
(Component_Definition
(N
)));
2021 ("unconstrained subtype in component declaration",
2022 Subtype_Indication
(Component_Definition
(N
)));
2025 -- Components cannot be abstract, except for the special case of
2026 -- the _Parent field (case of extending an abstract tagged type)
2028 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
2029 Error_Msg_N
("type of a component cannot be abstract", N
);
2033 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
2035 -- The component declaration may have a per-object constraint, set
2036 -- the appropriate flag in the defining identifier of the subtype.
2038 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
2040 Sindic
: constant Node_Id
:=
2041 Subtype_Indication
(Component_Definition
(N
));
2043 if Nkind
(Sindic
) = N_Subtype_Indication
2044 and then Present
(Constraint
(Sindic
))
2045 and then Contains_POC
(Constraint
(Sindic
))
2047 Set_Has_Per_Object_Constraint
(Id
);
2052 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2053 -- out some static checks.
2055 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
2056 Null_Exclusion_Static_Checks
(N
);
2059 -- If this component is private (or depends on a private type), flag the
2060 -- record type to indicate that some operations are not available.
2062 P
:= Private_Component
(T
);
2066 -- Check for circular definitions
2068 if P
= Any_Type
then
2069 Set_Etype
(Id
, Any_Type
);
2071 -- There is a gap in the visibility of operations only if the
2072 -- component type is not defined in the scope of the record type.
2074 elsif Scope
(P
) = Scope
(Current_Scope
) then
2077 elsif Is_Limited_Type
(P
) then
2078 Set_Is_Limited_Composite
(Current_Scope
);
2081 Set_Is_Private_Composite
(Current_Scope
);
2086 and then Is_Limited_Type
(T
)
2087 and then Chars
(Id
) /= Name_uParent
2088 and then Is_Tagged_Type
(Current_Scope
)
2090 if Is_Derived_Type
(Current_Scope
)
2091 and then not Is_Known_Limited
(Current_Scope
)
2094 ("extension of nonlimited type cannot have limited components",
2097 if Is_Interface
(Root_Type
(Current_Scope
)) then
2099 ("\limitedness is not inherited from limited interface", N
);
2100 Error_Msg_N
("\add LIMITED to type indication", N
);
2103 Explain_Limited_Type
(T
, N
);
2104 Set_Etype
(Id
, Any_Type
);
2105 Set_Is_Limited_Composite
(Current_Scope
, False);
2107 elsif not Is_Derived_Type
(Current_Scope
)
2108 and then not Is_Limited_Record
(Current_Scope
)
2109 and then not Is_Concurrent_Type
(Current_Scope
)
2112 ("nonlimited tagged type cannot have limited components", N
);
2113 Explain_Limited_Type
(T
, N
);
2114 Set_Etype
(Id
, Any_Type
);
2115 Set_Is_Limited_Composite
(Current_Scope
, False);
2119 Set_Original_Record_Component
(Id
, Id
);
2121 if Has_Aspects
(N
) then
2122 Analyze_Aspect_Specifications
(N
, Id
);
2125 Analyze_Dimension
(N
);
2126 end Analyze_Component_Declaration
;
2128 --------------------------
2129 -- Analyze_Declarations --
2130 --------------------------
2132 procedure Analyze_Declarations
(L
: List_Id
) is
2135 procedure Adjust_Decl
;
2136 -- Adjust Decl not to include implicit label declarations, since these
2137 -- have strange Sloc values that result in elaboration check problems.
2138 -- (They have the sloc of the label as found in the source, and that
2139 -- is ahead of the current declarative part).
2141 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
);
2142 -- Determine whether Body_Decl denotes the body of a late controlled
2143 -- primitive (either Initialize, Adjust or Finalize). If this is the
2144 -- case, add a proper spec if the body lacks one. The spec is inserted
2145 -- before Body_Decl and immedately analyzed.
2147 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
);
2148 -- Spec_Id is the entity of a package that may define abstract states.
2149 -- If the states have visible refinement, remove the visibility of each
2150 -- constituent at the end of the package body declarations.
2156 procedure Adjust_Decl
is
2158 while Present
(Prev
(Decl
))
2159 and then Nkind
(Decl
) = N_Implicit_Label_Declaration
2165 --------------------------------------
2166 -- Handle_Late_Controlled_Primitive --
2167 --------------------------------------
2169 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
) is
2170 Body_Spec
: constant Node_Id
:= Specification
(Body_Decl
);
2171 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2172 Loc
: constant Source_Ptr
:= Sloc
(Body_Id
);
2173 Params
: constant List_Id
:=
2174 Parameter_Specifications
(Body_Spec
);
2176 Spec_Id
: Entity_Id
;
2180 -- Consider only procedure bodies whose name matches one of the three
2181 -- controlled primitives.
2183 if Nkind
(Body_Spec
) /= N_Procedure_Specification
2184 or else not Nam_In
(Chars
(Body_Id
), Name_Adjust
,
2190 -- A controlled primitive must have exactly one formal which is not
2191 -- an anonymous access type.
2193 elsif List_Length
(Params
) /= 1 then
2197 Typ
:= Parameter_Type
(First
(Params
));
2199 if Nkind
(Typ
) = N_Access_Definition
then
2205 -- The type of the formal must be derived from [Limited_]Controlled
2207 if not Is_Controlled
(Entity
(Typ
)) then
2211 -- Check whether a specification exists for this body. We do not
2212 -- analyze the spec of the body in full, because it will be analyzed
2213 -- again when the body is properly analyzed, and we cannot create
2214 -- duplicate entries in the formals chain. We look for an explicit
2215 -- specification because the body may be an overriding operation and
2216 -- an inherited spec may be present.
2218 Spec_Id
:= Current_Entity
(Body_Id
);
2220 while Present
(Spec_Id
) loop
2221 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
)
2222 and then Scope
(Spec_Id
) = Current_Scope
2223 and then Present
(First_Formal
(Spec_Id
))
2224 and then No
(Next_Formal
(First_Formal
(Spec_Id
)))
2225 and then Etype
(First_Formal
(Spec_Id
)) = Entity
(Typ
)
2226 and then Comes_From_Source
(Spec_Id
)
2231 Spec_Id
:= Homonym
(Spec_Id
);
2234 -- At this point the body is known to be a late controlled primitive.
2235 -- Generate a matching spec and insert it before the body. Note the
2236 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2237 -- tree in this case.
2239 Spec
:= Copy_Separate_Tree
(Body_Spec
);
2241 -- Ensure that the subprogram declaration does not inherit the null
2242 -- indicator from the body as we now have a proper spec/body pair.
2244 Set_Null_Present
(Spec
, False);
2246 Insert_Before_And_Analyze
(Body_Decl
,
2247 Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
));
2248 end Handle_Late_Controlled_Primitive
;
2250 --------------------------------
2251 -- Remove_Visible_Refinements --
2252 --------------------------------
2254 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
) is
2255 State_Elmt
: Elmt_Id
;
2257 if Present
(Abstract_States
(Spec_Id
)) then
2258 State_Elmt
:= First_Elmt
(Abstract_States
(Spec_Id
));
2259 while Present
(State_Elmt
) loop
2260 Set_Has_Visible_Refinement
(Node
(State_Elmt
), False);
2261 Next_Elmt
(State_Elmt
);
2264 end Remove_Visible_Refinements
;
2269 Freeze_From
: Entity_Id
:= Empty
;
2270 Next_Decl
: Node_Id
;
2271 Spec_Id
: Entity_Id
;
2273 Body_Seen
: Boolean := False;
2274 -- Flag set when the first body [stub] is encountered
2276 In_Package_Body
: Boolean := False;
2277 -- Flag set when the current declaration list belongs to a package body
2279 -- Start of processing for Analyze_Declarations
2282 if Restriction_Check_Required
(SPARK_05
) then
2283 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2287 while Present
(Decl
) loop
2289 -- Package spec cannot contain a package declaration in SPARK
2291 if Nkind
(Decl
) = N_Package_Declaration
2292 and then Nkind
(Parent
(L
)) = N_Package_Specification
2294 Check_SPARK_05_Restriction
2295 ("package specification cannot contain a package declaration",
2299 -- Complete analysis of declaration
2302 Next_Decl
:= Next
(Decl
);
2304 if No
(Freeze_From
) then
2305 Freeze_From
:= First_Entity
(Current_Scope
);
2308 -- At the end of a declarative part, freeze remaining entities
2309 -- declared in it. The end of the visible declarations of package
2310 -- specification is not the end of a declarative part if private
2311 -- declarations are present. The end of a package declaration is a
2312 -- freezing point only if it a library package. A task definition or
2313 -- protected type definition is not a freeze point either. Finally,
2314 -- we do not freeze entities in generic scopes, because there is no
2315 -- code generated for them and freeze nodes will be generated for
2318 -- The end of a package instantiation is not a freeze point, but
2319 -- for now we make it one, because the generic body is inserted
2320 -- (currently) immediately after. Generic instantiations will not
2321 -- be a freeze point once delayed freezing of bodies is implemented.
2322 -- (This is needed in any case for early instantiations ???).
2324 if No
(Next_Decl
) then
2325 if Nkind_In
(Parent
(L
), N_Component_List
,
2327 N_Protected_Definition
)
2331 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2332 if Nkind
(Parent
(L
)) = N_Package_Body
then
2333 Freeze_From
:= First_Entity
(Current_Scope
);
2336 -- There may have been several freezing points previously,
2337 -- for example object declarations or subprogram bodies, but
2338 -- at the end of a declarative part we check freezing from
2339 -- the beginning, even though entities may already be frozen,
2340 -- in order to perform visibility checks on delayed aspects.
2343 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2344 Freeze_From
:= Last_Entity
(Current_Scope
);
2346 elsif Scope
(Current_Scope
) /= Standard_Standard
2347 and then not Is_Child_Unit
(Current_Scope
)
2348 and then No
(Generic_Parent
(Parent
(L
)))
2352 elsif L
/= Visible_Declarations
(Parent
(L
))
2353 or else No
(Private_Declarations
(Parent
(L
)))
2354 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2357 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2358 Freeze_From
:= Last_Entity
(Current_Scope
);
2361 -- If next node is a body then freeze all types before the body.
2362 -- An exception occurs for some expander-generated bodies. If these
2363 -- are generated at places where in general language rules would not
2364 -- allow a freeze point, then we assume that the expander has
2365 -- explicitly checked that all required types are properly frozen,
2366 -- and we do not cause general freezing here. This special circuit
2367 -- is used when the encountered body is marked as having already
2370 -- In all other cases (bodies that come from source, and expander
2371 -- generated bodies that have not been analyzed yet), freeze all
2372 -- types now. Note that in the latter case, the expander must take
2373 -- care to attach the bodies at a proper place in the tree so as to
2374 -- not cause unwanted freezing at that point.
2376 elsif not Analyzed
(Next_Decl
) and then Is_Body
(Next_Decl
) then
2378 -- When a controlled type is frozen, the expander generates stream
2379 -- and controlled type support routines. If the freeze is caused
2380 -- by the stand alone body of Initialize, Adjust and Finalize, the
2381 -- expander will end up using the wrong version of these routines
2382 -- as the body has not been processed yet. To remedy this, detect
2383 -- a late controlled primitive and create a proper spec for it.
2384 -- This ensures that the primitive will override its inherited
2385 -- counterpart before the freeze takes place.
2387 -- If the declaration we just processed is a body, do not attempt
2388 -- to examine Next_Decl as the late primitive idiom can only apply
2389 -- to the first encountered body.
2391 -- The spec of the late primitive is not generated in ASIS mode to
2392 -- ensure a consistent list of primitives that indicates the true
2393 -- semantic structure of the program (which is not relevant when
2394 -- generating executable code.
2396 -- ??? a cleaner approach may be possible and/or this solution
2397 -- could be extended to general-purpose late primitives, TBD.
2399 if not ASIS_Mode
and then not Body_Seen
and then not Is_Body
(Decl
)
2403 if Nkind
(Next_Decl
) = N_Subprogram_Body
then
2404 Handle_Late_Controlled_Primitive
(Next_Decl
);
2409 Freeze_All
(Freeze_From
, Decl
);
2410 Freeze_From
:= Last_Entity
(Current_Scope
);
2416 -- Analyze the contracts of packages and their bodies
2419 Context
:= Parent
(L
);
2421 if Nkind
(Context
) = N_Package_Specification
then
2423 -- When a package has private declarations, its contract must be
2424 -- analyzed at the end of the said declarations. This way both the
2425 -- analysis and freeze actions are properly synchronized in case
2426 -- of private type use within the contract.
2428 if L
= Private_Declarations
(Context
) then
2429 Analyze_Package_Contract
(Defining_Entity
(Context
));
2431 -- Build the bodies of the default initial condition procedures
2432 -- for all types subject to pragma Default_Initial_Condition.
2433 -- From a purely Ada stand point, this is a freezing activity,
2434 -- however freezing is not available under GNATprove_Mode. To
2435 -- accomodate both scenarios, the bodies are build at the end
2436 -- of private declaration analysis.
2438 Build_Default_Init_Cond_Procedure_Bodies
(L
);
2440 -- Otherwise the contract is analyzed at the end of the visible
2443 elsif L
= Visible_Declarations
(Context
)
2444 and then No
(Private_Declarations
(Context
))
2446 Analyze_Package_Contract
(Defining_Entity
(Context
));
2449 elsif Nkind
(Context
) = N_Package_Body
then
2450 In_Package_Body
:= True;
2451 Spec_Id
:= Corresponding_Spec
(Context
);
2453 Analyze_Package_Body_Contract
(Defining_Entity
(Context
));
2457 -- Analyze the contracts of subprogram declarations, subprogram bodies
2458 -- and variables now due to the delayed visibility requirements of their
2462 while Present
(Decl
) loop
2463 if Nkind
(Decl
) = N_Object_Declaration
then
2464 Analyze_Object_Contract
(Defining_Entity
(Decl
));
2466 elsif Nkind_In
(Decl
, N_Abstract_Subprogram_Declaration
,
2467 N_Subprogram_Declaration
)
2469 Analyze_Subprogram_Contract
(Defining_Entity
(Decl
));
2471 elsif Nkind
(Decl
) = N_Subprogram_Body
then
2472 Analyze_Subprogram_Body_Contract
(Defining_Entity
(Decl
));
2474 elsif Nkind
(Decl
) = N_Subprogram_Body_Stub
then
2475 Analyze_Subprogram_Body_Stub_Contract
(Defining_Entity
(Decl
));
2481 -- State refinements are visible upto the end the of the package body
2482 -- declarations. Hide the refinements from visibility to restore the
2483 -- original state conditions.
2485 if In_Package_Body
then
2486 Remove_Visible_Refinements
(Spec_Id
);
2488 end Analyze_Declarations
;
2490 -----------------------------------
2491 -- Analyze_Full_Type_Declaration --
2492 -----------------------------------
2494 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2495 Def
: constant Node_Id
:= Type_Definition
(N
);
2496 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2500 Is_Remote
: constant Boolean :=
2501 (Is_Remote_Types
(Current_Scope
)
2502 or else Is_Remote_Call_Interface
(Current_Scope
))
2503 and then not (In_Private_Part
(Current_Scope
)
2504 or else In_Package_Body
(Current_Scope
));
2506 procedure Check_Ops_From_Incomplete_Type
;
2507 -- If there is a tagged incomplete partial view of the type, traverse
2508 -- the primitives of the incomplete view and change the type of any
2509 -- controlling formals and result to indicate the full view. The
2510 -- primitives will be added to the full type's primitive operations
2511 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2512 -- is called from Process_Incomplete_Dependents).
2514 ------------------------------------
2515 -- Check_Ops_From_Incomplete_Type --
2516 ------------------------------------
2518 procedure Check_Ops_From_Incomplete_Type
is
2525 and then Ekind
(Prev
) = E_Incomplete_Type
2526 and then Is_Tagged_Type
(Prev
)
2527 and then Is_Tagged_Type
(T
)
2529 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2530 while Present
(Elmt
) loop
2533 Formal
:= First_Formal
(Op
);
2534 while Present
(Formal
) loop
2535 if Etype
(Formal
) = Prev
then
2536 Set_Etype
(Formal
, T
);
2539 Next_Formal
(Formal
);
2542 if Etype
(Op
) = Prev
then
2549 end Check_Ops_From_Incomplete_Type
;
2551 -- Start of processing for Analyze_Full_Type_Declaration
2554 Prev
:= Find_Type_Name
(N
);
2556 -- The type declaration may be subject to pragma Ghost with policy
2557 -- Ignore. Set the mode now to ensure that any nodes generated during
2558 -- analysis and expansion are properly flagged as ignored Ghost.
2560 Set_Ghost_Mode
(N
, Prev
);
2562 -- The full view, if present, now points to the current type. If there
2563 -- is an incomplete partial view, set a link to it, to simplify the
2564 -- retrieval of primitive operations of the type.
2566 -- Ada 2005 (AI-50217): If the type was previously decorated when
2567 -- imported through a LIMITED WITH clause, it appears as incomplete
2568 -- but has no full view.
2570 if Ekind
(Prev
) = E_Incomplete_Type
2571 and then Present
(Full_View
(Prev
))
2573 T
:= Full_View
(Prev
);
2574 Set_Incomplete_View
(N
, Parent
(Prev
));
2579 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2581 -- We set the flag Is_First_Subtype here. It is needed to set the
2582 -- corresponding flag for the Implicit class-wide-type created
2583 -- during tagged types processing.
2585 Set_Is_First_Subtype
(T
, True);
2587 -- Only composite types other than array types are allowed to have
2592 -- For derived types, the rule will be checked once we've figured
2593 -- out the parent type.
2595 when N_Derived_Type_Definition
=>
2598 -- For record types, discriminants are allowed, unless we are in
2601 when N_Record_Definition
=>
2602 if Present
(Discriminant_Specifications
(N
)) then
2603 Check_SPARK_05_Restriction
2604 ("discriminant type is not allowed",
2606 (First
(Discriminant_Specifications
(N
))));
2610 if Present
(Discriminant_Specifications
(N
)) then
2612 ("elementary or array type cannot have discriminants",
2614 (First
(Discriminant_Specifications
(N
))));
2618 -- Elaborate the type definition according to kind, and generate
2619 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2620 -- already done (this happens during the reanalysis that follows a call
2621 -- to the high level optimizer).
2623 if not Analyzed
(T
) then
2627 when N_Access_To_Subprogram_Definition
=>
2628 Access_Subprogram_Declaration
(T
, Def
);
2630 -- If this is a remote access to subprogram, we must create the
2631 -- equivalent fat pointer type, and related subprograms.
2634 Process_Remote_AST_Declaration
(N
);
2637 -- Validate categorization rule against access type declaration
2638 -- usually a violation in Pure unit, Shared_Passive unit.
2640 Validate_Access_Type_Declaration
(T
, N
);
2642 when N_Access_To_Object_Definition
=>
2643 Access_Type_Declaration
(T
, Def
);
2645 -- Validate categorization rule against access type declaration
2646 -- usually a violation in Pure unit, Shared_Passive unit.
2648 Validate_Access_Type_Declaration
(T
, N
);
2650 -- If we are in a Remote_Call_Interface package and define a
2651 -- RACW, then calling stubs and specific stream attributes
2655 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2657 Add_RACW_Features
(Def_Id
);
2660 when N_Array_Type_Definition
=>
2661 Array_Type_Declaration
(T
, Def
);
2663 when N_Derived_Type_Definition
=>
2664 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2666 when N_Enumeration_Type_Definition
=>
2667 Enumeration_Type_Declaration
(T
, Def
);
2669 when N_Floating_Point_Definition
=>
2670 Floating_Point_Type_Declaration
(T
, Def
);
2672 when N_Decimal_Fixed_Point_Definition
=>
2673 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2675 when N_Ordinary_Fixed_Point_Definition
=>
2676 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2678 when N_Signed_Integer_Type_Definition
=>
2679 Signed_Integer_Type_Declaration
(T
, Def
);
2681 when N_Modular_Type_Definition
=>
2682 Modular_Type_Declaration
(T
, Def
);
2684 when N_Record_Definition
=>
2685 Record_Type_Declaration
(T
, N
, Prev
);
2687 -- If declaration has a parse error, nothing to elaborate.
2693 raise Program_Error
;
2698 if Etype
(T
) = Any_Type
then
2702 -- Controlled type is not allowed in SPARK
2704 if Is_Visibly_Controlled
(T
) then
2705 Check_SPARK_05_Restriction
("controlled type is not allowed", N
);
2708 -- A type declared within a Ghost region is automatically Ghost
2709 -- (SPARK RM 6.9(2)).
2711 if Comes_From_Source
(T
) and then Ghost_Mode
> None
then
2712 Set_Is_Ghost_Entity
(T
);
2715 -- Some common processing for all types
2717 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2718 Check_Ops_From_Incomplete_Type
;
2720 -- Both the declared entity, and its anonymous base type if one was
2721 -- created, need freeze nodes allocated.
2724 B
: constant Entity_Id
:= Base_Type
(T
);
2727 -- In the case where the base type differs from the first subtype, we
2728 -- pre-allocate a freeze node, and set the proper link to the first
2729 -- subtype. Freeze_Entity will use this preallocated freeze node when
2730 -- it freezes the entity.
2732 -- This does not apply if the base type is a generic type, whose
2733 -- declaration is independent of the current derived definition.
2735 if B
/= T
and then not Is_Generic_Type
(B
) then
2736 Ensure_Freeze_Node
(B
);
2737 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2740 -- A type that is imported through a limited_with clause cannot
2741 -- generate any code, and thus need not be frozen. However, an access
2742 -- type with an imported designated type needs a finalization list,
2743 -- which may be referenced in some other package that has non-limited
2744 -- visibility on the designated type. Thus we must create the
2745 -- finalization list at the point the access type is frozen, to
2746 -- prevent unsatisfied references at link time.
2748 if not From_Limited_With
(T
) or else Is_Access_Type
(T
) then
2749 Set_Has_Delayed_Freeze
(T
);
2753 -- Case where T is the full declaration of some private type which has
2754 -- been swapped in Defining_Identifier (N).
2756 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2757 Process_Full_View
(N
, T
, Def_Id
);
2759 -- Record the reference. The form of this is a little strange, since
2760 -- the full declaration has been swapped in. So the first parameter
2761 -- here represents the entity to which a reference is made which is
2762 -- the "real" entity, i.e. the one swapped in, and the second
2763 -- parameter provides the reference location.
2765 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2766 -- since we don't want a complaint about the full type being an
2767 -- unwanted reference to the private type
2770 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2772 Set_Has_Pragma_Unreferenced
(T
, False);
2773 Generate_Reference
(T
, T
, 'c');
2774 Set_Has_Pragma_Unreferenced
(T
, B
);
2777 Set_Completion_Referenced
(Def_Id
);
2779 -- For completion of incomplete type, process incomplete dependents
2780 -- and always mark the full type as referenced (it is the incomplete
2781 -- type that we get for any real reference).
2783 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2784 Process_Incomplete_Dependents
(N
, T
, Prev
);
2785 Generate_Reference
(Prev
, Def_Id
, 'c');
2786 Set_Completion_Referenced
(Def_Id
);
2788 -- If not private type or incomplete type completion, this is a real
2789 -- definition of a new entity, so record it.
2792 Generate_Definition
(Def_Id
);
2795 if Chars
(Scope
(Def_Id
)) = Name_System
2796 and then Chars
(Def_Id
) = Name_Address
2797 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2799 Set_Is_Descendent_Of_Address
(Def_Id
);
2800 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
2801 Set_Is_Descendent_Of_Address
(Prev
);
2804 Set_Optimize_Alignment_Flags
(Def_Id
);
2805 Check_Eliminated
(Def_Id
);
2807 -- If the declaration is a completion and aspects are present, apply
2808 -- them to the entity for the type which is currently the partial
2809 -- view, but which is the one that will be frozen.
2811 if Has_Aspects
(N
) then
2813 -- In most cases the partial view is a private type, and both views
2814 -- appear in different declarative parts. In the unusual case where
2815 -- the partial view is incomplete, perform the analysis on the
2816 -- full view, to prevent freezing anomalies with the corresponding
2817 -- class-wide type, which otherwise might be frozen before the
2818 -- dispatch table is built.
2821 and then Ekind
(Prev
) /= E_Incomplete_Type
2823 Analyze_Aspect_Specifications
(N
, Prev
);
2828 Analyze_Aspect_Specifications
(N
, Def_Id
);
2831 end Analyze_Full_Type_Declaration
;
2833 ----------------------------------
2834 -- Analyze_Incomplete_Type_Decl --
2835 ----------------------------------
2837 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2838 F
: constant Boolean := Is_Pure
(Current_Scope
);
2842 Check_SPARK_05_Restriction
("incomplete type is not allowed", N
);
2844 Generate_Definition
(Defining_Identifier
(N
));
2846 -- Process an incomplete declaration. The identifier must not have been
2847 -- declared already in the scope. However, an incomplete declaration may
2848 -- appear in the private part of a package, for a private type that has
2849 -- already been declared.
2851 -- In this case, the discriminants (if any) must match
2853 T
:= Find_Type_Name
(N
);
2855 Set_Ekind
(T
, E_Incomplete_Type
);
2856 Init_Size_Align
(T
);
2857 Set_Is_First_Subtype
(T
, True);
2860 -- An incomplete type declared within a Ghost region is automatically
2861 -- Ghost (SPARK RM 6.9(2)).
2863 if Ghost_Mode
> None
then
2864 Set_Is_Ghost_Entity
(T
);
2867 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2868 -- incomplete types.
2870 if Tagged_Present
(N
) then
2871 Set_Is_Tagged_Type
(T
, True);
2872 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2873 Make_Class_Wide_Type
(T
);
2874 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2879 Set_Stored_Constraint
(T
, No_Elist
);
2881 if Present
(Discriminant_Specifications
(N
)) then
2882 Process_Discriminants
(N
);
2887 -- If the type has discriminants, non-trivial subtypes may be
2888 -- declared before the full view of the type. The full views of those
2889 -- subtypes will be built after the full view of the type.
2891 Set_Private_Dependents
(T
, New_Elmt_List
);
2893 end Analyze_Incomplete_Type_Decl
;
2895 -----------------------------------
2896 -- Analyze_Interface_Declaration --
2897 -----------------------------------
2899 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
2900 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
2903 Set_Is_Tagged_Type
(T
);
2904 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2906 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
2907 or else Task_Present
(Def
)
2908 or else Protected_Present
(Def
)
2909 or else Synchronized_Present
(Def
));
2911 -- Type is abstract if full declaration carries keyword, or if previous
2912 -- partial view did.
2914 Set_Is_Abstract_Type
(T
);
2915 Set_Is_Interface
(T
);
2917 -- Type is a limited interface if it includes the keyword limited, task,
2918 -- protected, or synchronized.
2920 Set_Is_Limited_Interface
2921 (T
, Limited_Present
(Def
)
2922 or else Protected_Present
(Def
)
2923 or else Synchronized_Present
(Def
)
2924 or else Task_Present
(Def
));
2926 Set_Interfaces
(T
, New_Elmt_List
);
2927 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2929 -- Complete the decoration of the class-wide entity if it was already
2930 -- built (i.e. during the creation of the limited view)
2932 if Present
(CW
) then
2933 Set_Is_Interface
(CW
);
2934 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
2937 -- Check runtime support for synchronized interfaces
2939 if VM_Target
= No_VM
2940 and then (Is_Task_Interface
(T
)
2941 or else Is_Protected_Interface
(T
)
2942 or else Is_Synchronized_Interface
(T
))
2943 and then not RTE_Available
(RE_Select_Specific_Data
)
2945 Error_Msg_CRT
("synchronized interfaces", T
);
2947 end Analyze_Interface_Declaration
;
2949 -----------------------------
2950 -- Analyze_Itype_Reference --
2951 -----------------------------
2953 -- Nothing to do. This node is placed in the tree only for the benefit of
2954 -- back end processing, and has no effect on the semantic processing.
2956 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
2958 pragma Assert
(Is_Itype
(Itype
(N
)));
2960 end Analyze_Itype_Reference
;
2962 --------------------------------
2963 -- Analyze_Number_Declaration --
2964 --------------------------------
2966 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
2967 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2968 E
: constant Node_Id
:= Expression
(N
);
2970 Index
: Interp_Index
;
2974 -- The number declaration may be subject to pragma Ghost with policy
2975 -- Ignore. Set the mode now to ensure that any nodes generated during
2976 -- analysis and expansion are properly flagged as ignored Ghost.
2980 Generate_Definition
(Id
);
2983 -- A number declared within a Ghost region is automatically Ghost
2984 -- (SPARK RM 6.9(2)).
2986 if Ghost_Mode
> None
then
2987 Set_Is_Ghost_Entity
(Id
);
2990 -- This is an optimization of a common case of an integer literal
2992 if Nkind
(E
) = N_Integer_Literal
then
2993 Set_Is_Static_Expression
(E
, True);
2994 Set_Etype
(E
, Universal_Integer
);
2996 Set_Etype
(Id
, Universal_Integer
);
2997 Set_Ekind
(Id
, E_Named_Integer
);
2998 Set_Is_Frozen
(Id
, True);
3002 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3004 -- Process expression, replacing error by integer zero, to avoid
3005 -- cascaded errors or aborts further along in the processing
3007 -- Replace Error by integer zero, which seems least likely to cause
3011 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
3012 Set_Error_Posted
(E
);
3017 -- Verify that the expression is static and numeric. If
3018 -- the expression is overloaded, we apply the preference
3019 -- rule that favors root numeric types.
3021 if not Is_Overloaded
(E
) then
3023 if Has_Dynamic_Predicate_Aspect
(T
) then
3025 ("subtype has dynamic predicate, "
3026 & "not allowed in number declaration", N
);
3032 Get_First_Interp
(E
, Index
, It
);
3033 while Present
(It
.Typ
) loop
3034 if (Is_Integer_Type
(It
.Typ
) or else Is_Real_Type
(It
.Typ
))
3035 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
3037 if T
= Any_Type
then
3040 elsif It
.Typ
= Universal_Real
3042 It
.Typ
= Universal_Integer
3044 -- Choose universal interpretation over any other
3051 Get_Next_Interp
(Index
, It
);
3055 if Is_Integer_Type
(T
) then
3057 Set_Etype
(Id
, Universal_Integer
);
3058 Set_Ekind
(Id
, E_Named_Integer
);
3060 elsif Is_Real_Type
(T
) then
3062 -- Because the real value is converted to universal_real, this is a
3063 -- legal context for a universal fixed expression.
3065 if T
= Universal_Fixed
then
3067 Loc
: constant Source_Ptr
:= Sloc
(N
);
3068 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
3070 New_Occurrence_Of
(Universal_Real
, Loc
),
3071 Expression
=> Relocate_Node
(E
));
3078 elsif T
= Any_Fixed
then
3079 Error_Msg_N
("illegal context for mixed mode operation", E
);
3081 -- Expression is of the form : universal_fixed * integer. Try to
3082 -- resolve as universal_real.
3084 T
:= Universal_Real
;
3089 Set_Etype
(Id
, Universal_Real
);
3090 Set_Ekind
(Id
, E_Named_Real
);
3093 Wrong_Type
(E
, Any_Numeric
);
3097 Set_Ekind
(Id
, E_Constant
);
3098 Set_Never_Set_In_Source
(Id
, True);
3099 Set_Is_True_Constant
(Id
, True);
3103 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
3104 Set_Etype
(E
, Etype
(Id
));
3107 if not Is_OK_Static_Expression
(E
) then
3108 Flag_Non_Static_Expr
3109 ("non-static expression used in number declaration!", E
);
3110 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
3111 Set_Etype
(E
, Any_Type
);
3113 end Analyze_Number_Declaration
;
3115 -----------------------------
3116 -- Analyze_Object_Contract --
3117 -----------------------------
3119 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
) is
3120 Obj_Typ
: constant Entity_Id
:= Etype
(Obj_Id
);
3121 AR_Val
: Boolean := False;
3122 AW_Val
: Boolean := False;
3123 ER_Val
: Boolean := False;
3124 EW_Val
: Boolean := False;
3126 Seen
: Boolean := False;
3129 -- The loop parameter in an element iterator over a formal container
3130 -- is declared with an object declaration but no contracts apply.
3132 if Ekind
(Obj_Id
) = E_Loop_Parameter
then
3136 if Ekind
(Obj_Id
) = E_Constant
then
3138 -- A constant cannot be effectively volatile. This check is only
3139 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3140 -- rule. Do not flag internally-generated constants that map generic
3141 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3144 and then Is_Effectively_Volatile
(Obj_Id
)
3145 and then No
(Corresponding_Generic_Association
(Parent
(Obj_Id
)))
3147 Error_Msg_N
("constant cannot be volatile", Obj_Id
);
3150 else pragma Assert
(Ekind
(Obj_Id
) = E_Variable
);
3152 -- The following checks are only relevant when SPARK_Mode is on as
3153 -- they are not standard Ada legality rules. Internally generated
3154 -- temporaries are ignored.
3156 if SPARK_Mode
= On
and then Comes_From_Source
(Obj_Id
) then
3157 if Is_Effectively_Volatile
(Obj_Id
) then
3159 -- The declaration of an effectively volatile object must
3160 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3162 if not Is_Library_Level_Entity
(Obj_Id
) then
3164 ("volatile variable & must be declared at library level",
3167 -- An object of a discriminated type cannot be effectively
3168 -- volatile (SPARK RM C.6(4)).
3170 elsif Has_Discriminants
(Obj_Typ
) then
3172 ("discriminated object & cannot be volatile", Obj_Id
);
3174 -- An object of a tagged type cannot be effectively volatile
3175 -- (SPARK RM C.6(5)).
3177 elsif Is_Tagged_Type
(Obj_Typ
) then
3178 Error_Msg_N
("tagged object & cannot be volatile", Obj_Id
);
3181 -- The object is not effectively volatile
3184 -- A non-effectively volatile object cannot have effectively
3185 -- volatile components (SPARK RM 7.1.3(7)).
3187 if not Is_Effectively_Volatile
(Obj_Id
)
3188 and then Has_Volatile_Component
(Obj_Typ
)
3191 ("non-volatile object & cannot have volatile components",
3197 if Is_Ghost_Entity
(Obj_Id
) then
3199 -- A Ghost object cannot be effectively volatile (SPARK RM 6.9(8))
3201 if Is_Effectively_Volatile
(Obj_Id
) then
3202 Error_Msg_N
("ghost variable & cannot be volatile", Obj_Id
);
3204 -- A Ghost object cannot be imported or exported (SPARK RM 6.9(8))
3206 elsif Is_Imported
(Obj_Id
) then
3207 Error_Msg_N
("ghost object & cannot be imported", Obj_Id
);
3209 elsif Is_Exported
(Obj_Id
) then
3210 Error_Msg_N
("ghost object & cannot be exported", Obj_Id
);
3214 -- Analyze all external properties
3216 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Readers
);
3218 if Present
(Prag
) then
3219 Analyze_External_Property_In_Decl_Part
(Prag
, AR_Val
);
3223 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Writers
);
3225 if Present
(Prag
) then
3226 Analyze_External_Property_In_Decl_Part
(Prag
, AW_Val
);
3230 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Reads
);
3232 if Present
(Prag
) then
3233 Analyze_External_Property_In_Decl_Part
(Prag
, ER_Val
);
3237 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Writes
);
3239 if Present
(Prag
) then
3240 Analyze_External_Property_In_Decl_Part
(Prag
, EW_Val
);
3244 -- Verify the mutual interaction of the various external properties
3247 Check_External_Properties
(Obj_Id
, AR_Val
, AW_Val
, ER_Val
, EW_Val
);
3250 -- Check whether the lack of indicator Part_Of agrees with the
3251 -- placement of the variable with respect to the state space.
3253 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Part_Of
);
3256 Check_Missing_Part_Of
(Obj_Id
);
3260 -- A ghost object cannot be imported or exported (SPARK RM 6.9(8))
3262 if Is_Ghost_Entity
(Obj_Id
) then
3263 if Is_Exported
(Obj_Id
) then
3264 Error_Msg_N
("ghost object & cannot be exported", Obj_Id
);
3266 elsif Is_Imported
(Obj_Id
) then
3267 Error_Msg_N
("ghost object & cannot be imported", Obj_Id
);
3270 end Analyze_Object_Contract
;
3272 --------------------------------
3273 -- Analyze_Object_Declaration --
3274 --------------------------------
3276 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
3277 Loc
: constant Source_Ptr
:= Sloc
(N
);
3278 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3282 E
: Node_Id
:= Expression
(N
);
3283 -- E is set to Expression (N) throughout this routine. When
3284 -- Expression (N) is modified, E is changed accordingly.
3286 Prev_Entity
: Entity_Id
:= Empty
;
3288 function Count_Tasks
(T
: Entity_Id
) return Uint
;
3289 -- This function is called when a non-generic library level object of a
3290 -- task type is declared. Its function is to count the static number of
3291 -- tasks declared within the type (it is only called if Has_Tasks is set
3292 -- for T). As a side effect, if an array of tasks with non-static bounds
3293 -- or a variant record type is encountered, Check_Restrictions is called
3294 -- indicating the count is unknown.
3300 function Count_Tasks
(T
: Entity_Id
) return Uint
is
3306 if Is_Task_Type
(T
) then
3309 elsif Is_Record_Type
(T
) then
3310 if Has_Discriminants
(T
) then
3311 Check_Restriction
(Max_Tasks
, N
);
3316 C
:= First_Component
(T
);
3317 while Present
(C
) loop
3318 V
:= V
+ Count_Tasks
(Etype
(C
));
3325 elsif Is_Array_Type
(T
) then
3326 X
:= First_Index
(T
);
3327 V
:= Count_Tasks
(Component_Type
(T
));
3328 while Present
(X
) loop
3331 if not Is_OK_Static_Subtype
(C
) then
3332 Check_Restriction
(Max_Tasks
, N
);
3335 V
:= V
* (UI_Max
(Uint_0
,
3336 Expr_Value
(Type_High_Bound
(C
)) -
3337 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
3350 -- Start of processing for Analyze_Object_Declaration
3353 -- There are three kinds of implicit types generated by an
3354 -- object declaration:
3356 -- 1. Those generated by the original Object Definition
3358 -- 2. Those generated by the Expression
3360 -- 3. Those used to constrain the Object Definition with the
3361 -- expression constraints when the definition is unconstrained.
3363 -- They must be generated in this order to avoid order of elaboration
3364 -- issues. Thus the first step (after entering the name) is to analyze
3365 -- the object definition.
3367 if Constant_Present
(N
) then
3368 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
3370 if Present
(Prev_Entity
)
3372 -- If the homograph is an implicit subprogram, it is overridden
3373 -- by the current declaration.
3375 ((Is_Overloadable
(Prev_Entity
)
3376 and then Is_Inherited_Operation
(Prev_Entity
))
3378 -- The current object is a discriminal generated for an entry
3379 -- family index. Even though the index is a constant, in this
3380 -- particular context there is no true constant redeclaration.
3381 -- Enter_Name will handle the visibility.
3384 (Is_Discriminal
(Id
)
3385 and then Ekind
(Discriminal_Link
(Id
)) =
3386 E_Entry_Index_Parameter
)
3388 -- The current object is the renaming for a generic declared
3389 -- within the instance.
3392 (Ekind
(Prev_Entity
) = E_Package
3393 and then Nkind
(Parent
(Prev_Entity
)) =
3394 N_Package_Renaming_Declaration
3395 and then not Comes_From_Source
(Prev_Entity
)
3397 Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
3399 Prev_Entity
:= Empty
;
3403 -- The object declaration may be subject to pragma Ghost with policy
3404 -- Ignore. Set the mode now to ensure that any nodes generated during
3405 -- analysis and expansion are properly flagged as ignored Ghost.
3407 Set_Ghost_Mode
(N
, Prev_Entity
);
3409 if Present
(Prev_Entity
) then
3410 Constant_Redeclaration
(Id
, N
, T
);
3412 Generate_Reference
(Prev_Entity
, Id
, 'c');
3413 Set_Completion_Referenced
(Id
);
3415 if Error_Posted
(N
) then
3417 -- Type mismatch or illegal redeclaration, Do not analyze
3418 -- expression to avoid cascaded errors.
3420 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3422 Set_Ekind
(Id
, E_Variable
);
3426 -- In the normal case, enter identifier at the start to catch premature
3427 -- usage in the initialization expression.
3430 Generate_Definition
(Id
);
3433 Mark_Coextensions
(N
, Object_Definition
(N
));
3435 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3437 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
3439 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3440 and then Protected_Present
3441 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3443 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
3446 if Error_Posted
(Id
) then
3448 Set_Ekind
(Id
, E_Variable
);
3453 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3454 -- out some static checks
3456 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
3458 -- In case of aggregates we must also take care of the correct
3459 -- initialization of nested aggregates bug this is done at the
3460 -- point of the analysis of the aggregate (see sem_aggr.adb).
3462 if Present
(Expression
(N
))
3463 and then Nkind
(Expression
(N
)) = N_Aggregate
3469 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
3471 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
3472 Null_Exclusion_Static_Checks
(N
);
3473 Set_Etype
(Id
, Save_Typ
);
3478 -- Object is marked pure if it is in a pure scope
3480 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3482 -- If deferred constant, make sure context is appropriate. We detect
3483 -- a deferred constant as a constant declaration with no expression.
3484 -- A deferred constant can appear in a package body if its completion
3485 -- is by means of an interface pragma.
3487 if Constant_Present
(N
) and then No
(E
) then
3489 -- A deferred constant may appear in the declarative part of the
3490 -- following constructs:
3494 -- extended return statements
3497 -- subprogram bodies
3500 -- When declared inside a package spec, a deferred constant must be
3501 -- completed by a full constant declaration or pragma Import. In all
3502 -- other cases, the only proper completion is pragma Import. Extended
3503 -- return statements are flagged as invalid contexts because they do
3504 -- not have a declarative part and so cannot accommodate the pragma.
3506 if Ekind
(Current_Scope
) = E_Return_Statement
then
3508 ("invalid context for deferred constant declaration (RM 7.4)",
3511 ("\declaration requires an initialization expression",
3513 Set_Constant_Present
(N
, False);
3515 -- In Ada 83, deferred constant must be of private type
3517 elsif not Is_Private_Type
(T
) then
3518 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3520 ("(Ada 83) deferred constant must be private type", N
);
3524 -- If not a deferred constant, then the object declaration freezes
3525 -- its type, unless the object is of an anonymous type and has delayed
3526 -- aspects. In that case the type is frozen when the object itself is.
3529 Check_Fully_Declared
(T
, N
);
3531 if Has_Delayed_Aspects
(Id
)
3532 and then Is_Array_Type
(T
)
3533 and then Is_Itype
(T
)
3535 Set_Has_Delayed_Freeze
(T
);
3537 Freeze_Before
(N
, T
);
3541 -- If the object was created by a constrained array definition, then
3542 -- set the link in both the anonymous base type and anonymous subtype
3543 -- that are built to represent the array type to point to the object.
3545 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3546 N_Constrained_Array_Definition
3548 Set_Related_Array_Object
(T
, Id
);
3549 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3552 -- Special checks for protected objects not at library level
3554 if Is_Protected_Type
(T
)
3555 and then not Is_Library_Level_Entity
(Id
)
3557 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3559 -- Protected objects with interrupt handlers must be at library level
3561 -- Ada 2005: This test is not needed (and the corresponding clause
3562 -- in the RM is removed) because accessibility checks are sufficient
3563 -- to make handlers not at the library level illegal.
3565 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3566 -- applies to the '95 version of the language as well.
3568 if Has_Interrupt_Handler
(T
) and then Ada_Version
< Ada_95
then
3570 ("interrupt object can only be declared at library level", Id
);
3574 -- The actual subtype of the object is the nominal subtype, unless
3575 -- the nominal one is unconstrained and obtained from the expression.
3579 -- These checks should be performed before the initialization expression
3580 -- is considered, so that the Object_Definition node is still the same
3581 -- as in source code.
3583 -- In SPARK, the nominal subtype is always given by a subtype mark
3584 -- and must not be unconstrained. (The only exception to this is the
3585 -- acceptance of declarations of constants of type String.)
3587 if not Nkind_In
(Object_Definition
(N
), N_Expanded_Name
, N_Identifier
)
3589 Check_SPARK_05_Restriction
3590 ("subtype mark required", Object_Definition
(N
));
3592 elsif Is_Array_Type
(T
)
3593 and then not Is_Constrained
(T
)
3594 and then T
/= Standard_String
3596 Check_SPARK_05_Restriction
3597 ("subtype mark of constrained type expected",
3598 Object_Definition
(N
));
3601 -- There are no aliased objects in SPARK
3603 if Aliased_Present
(N
) then
3604 Check_SPARK_05_Restriction
("aliased object is not allowed", N
);
3607 -- Process initialization expression if present and not in error
3609 if Present
(E
) and then E
/= Error
then
3611 -- Generate an error in case of CPP class-wide object initialization.
3612 -- Required because otherwise the expansion of the class-wide
3613 -- assignment would try to use 'size to initialize the object
3614 -- (primitive that is not available in CPP tagged types).
3616 if Is_Class_Wide_Type
(Act_T
)
3618 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3620 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3622 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3625 ("predefined assignment not available for 'C'P'P tagged types",
3629 Mark_Coextensions
(N
, E
);
3632 -- In case of errors detected in the analysis of the expression,
3633 -- decorate it with the expected type to avoid cascaded errors
3635 if No
(Etype
(E
)) then
3639 -- If an initialization expression is present, then we set the
3640 -- Is_True_Constant flag. It will be reset if this is a variable
3641 -- and it is indeed modified.
3643 Set_Is_True_Constant
(Id
, True);
3645 -- If we are analyzing a constant declaration, set its completion
3646 -- flag after analyzing and resolving the expression.
3648 if Constant_Present
(N
) then
3649 Set_Has_Completion
(Id
);
3652 -- Set type and resolve (type may be overridden later on). Note:
3653 -- Ekind (Id) must still be E_Void at this point so that incorrect
3654 -- early usage within E is properly diagnosed.
3658 -- If the expression is an aggregate we must look ahead to detect
3659 -- the possible presence of an address clause, and defer resolution
3660 -- and expansion of the aggregate to the freeze point of the entity.
3662 if Comes_From_Source
(N
)
3663 and then Expander_Active
3664 and then Nkind
(E
) = N_Aggregate
3665 and then Present
(Following_Address_Clause
(N
))
3673 -- No further action needed if E is a call to an inlined function
3674 -- which returns an unconstrained type and it has been expanded into
3675 -- a procedure call. In that case N has been replaced by an object
3676 -- declaration without initializing expression and it has been
3677 -- analyzed (see Expand_Inlined_Call).
3679 if Back_End_Inlining
3680 and then Expander_Active
3681 and then Nkind
(E
) = N_Function_Call
3682 and then Nkind
(Name
(E
)) in N_Has_Entity
3683 and then Is_Inlined
(Entity
(Name
(E
)))
3684 and then not Is_Constrained
(Etype
(E
))
3685 and then Analyzed
(N
)
3686 and then No
(Expression
(N
))
3691 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3692 -- node (which was marked already-analyzed), we need to set the type
3693 -- to something other than Any_Access in order to keep gigi happy.
3695 if Etype
(E
) = Any_Access
then
3699 -- If the object is an access to variable, the initialization
3700 -- expression cannot be an access to constant.
3702 if Is_Access_Type
(T
)
3703 and then not Is_Access_Constant
(T
)
3704 and then Is_Access_Type
(Etype
(E
))
3705 and then Is_Access_Constant
(Etype
(E
))
3708 ("access to variable cannot be initialized with an "
3709 & "access-to-constant expression", E
);
3712 if not Assignment_OK
(N
) then
3713 Check_Initialization
(T
, E
);
3716 Check_Unset_Reference
(E
);
3718 -- If this is a variable, then set current value. If this is a
3719 -- declared constant of a scalar type with a static expression,
3720 -- indicate that it is always valid.
3722 if not Constant_Present
(N
) then
3723 if Compile_Time_Known_Value
(E
) then
3724 Set_Current_Value
(Id
, E
);
3727 elsif Is_Scalar_Type
(T
) and then Is_OK_Static_Expression
(E
) then
3728 Set_Is_Known_Valid
(Id
);
3731 -- Deal with setting of null flags
3733 if Is_Access_Type
(T
) then
3734 if Known_Non_Null
(E
) then
3735 Set_Is_Known_Non_Null
(Id
, True);
3736 elsif Known_Null
(E
) and then not Can_Never_Be_Null
(Id
) then
3737 Set_Is_Known_Null
(Id
, True);
3741 -- Check incorrect use of dynamically tagged expressions
3743 if Is_Tagged_Type
(T
) then
3744 Check_Dynamically_Tagged_Expression
3750 Apply_Scalar_Range_Check
(E
, T
);
3751 Apply_Static_Length_Check
(E
, T
);
3753 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3754 and then Comes_From_Source
(Original_Node
(N
))
3756 -- Only call test if needed
3758 and then Restriction_Check_Required
(SPARK_05
)
3759 and then not Is_SPARK_05_Initialization_Expr
(Original_Node
(E
))
3761 Check_SPARK_05_Restriction
3762 ("initialization expression is not appropriate", E
);
3765 -- A formal parameter of a specific tagged type whose related
3766 -- subprogram is subject to pragma Extensions_Visible with value
3767 -- "False" cannot be implicitly converted to a class-wide type by
3768 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3770 if Is_Class_Wide_Type
(T
) and then Is_EVF_Expression
(E
) then
3772 ("formal parameter with Extensions_Visible False cannot be "
3773 & "implicitly converted to class-wide type", E
);
3777 -- If the No_Streams restriction is set, check that the type of the
3778 -- object is not, and does not contain, any subtype derived from
3779 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3780 -- Has_Stream just for efficiency reasons. There is no point in
3781 -- spending time on a Has_Stream check if the restriction is not set.
3783 if Restriction_Check_Required
(No_Streams
) then
3784 if Has_Stream
(T
) then
3785 Check_Restriction
(No_Streams
, N
);
3789 -- Deal with predicate check before we start to do major rewriting. It
3790 -- is OK to initialize and then check the initialized value, since the
3791 -- object goes out of scope if we get a predicate failure. Note that we
3792 -- do this in the analyzer and not the expander because the analyzer
3793 -- does some substantial rewriting in some cases.
3795 -- We need a predicate check if the type has predicates, and if either
3796 -- there is an initializing expression, or for default initialization
3797 -- when we have at least one case of an explicit default initial value
3798 -- and then this is not an internal declaration whose initialization
3799 -- comes later (as for an aggregate expansion).
3801 if not Suppress_Assignment_Checks
(N
)
3802 and then Present
(Predicate_Function
(T
))
3803 and then not No_Initialization
(N
)
3807 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3809 -- If the type has a static predicate and the expression is known at
3810 -- compile time, see if the expression satisfies the predicate.
3813 Check_Expression_Against_Static_Predicate
(E
, T
);
3817 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
3820 -- Case of unconstrained type
3822 if Is_Indefinite_Subtype
(T
) then
3824 -- In SPARK, a declaration of unconstrained type is allowed
3825 -- only for constants of type string.
3827 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
3828 Check_SPARK_05_Restriction
3829 ("declaration of object of unconstrained type not allowed", N
);
3832 -- Nothing to do in deferred constant case
3834 if Constant_Present
(N
) and then No
(E
) then
3837 -- Case of no initialization present
3840 if No_Initialization
(N
) then
3843 elsif Is_Class_Wide_Type
(T
) then
3845 ("initialization required in class-wide declaration ", N
);
3849 ("unconstrained subtype not allowed (need initialization)",
3850 Object_Definition
(N
));
3852 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3854 ("\provide initial value or explicit discriminant values",
3855 Object_Definition
(N
));
3858 ("\or give default discriminant values for type&",
3859 Object_Definition
(N
), T
);
3861 elsif Is_Array_Type
(T
) then
3863 ("\provide initial value or explicit array bounds",
3864 Object_Definition
(N
));
3868 -- Case of initialization present but in error. Set initial
3869 -- expression as absent (but do not make above complaints)
3871 elsif E
= Error
then
3872 Set_Expression
(N
, Empty
);
3875 -- Case of initialization present
3878 -- Check restrictions in Ada 83
3880 if not Constant_Present
(N
) then
3882 -- Unconstrained variables not allowed in Ada 83 mode
3884 if Ada_Version
= Ada_83
3885 and then Comes_From_Source
(Object_Definition
(N
))
3888 ("(Ada 83) unconstrained variable not allowed",
3889 Object_Definition
(N
));
3893 -- Now we constrain the variable from the initializing expression
3895 -- If the expression is an aggregate, it has been expanded into
3896 -- individual assignments. Retrieve the actual type from the
3897 -- expanded construct.
3899 if Is_Array_Type
(T
)
3900 and then No_Initialization
(N
)
3901 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3905 -- In case of class-wide interface object declarations we delay
3906 -- the generation of the equivalent record type declarations until
3907 -- its expansion because there are cases in they are not required.
3909 elsif Is_Interface
(T
) then
3912 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3913 -- we should prevent the generation of another Itype with the
3914 -- same name as the one already generated, or we end up with
3915 -- two identical types in GNATprove.
3917 elsif GNATprove_Mode
then
3920 -- If the type is an unchecked union, no subtype can be built from
3921 -- the expression. Rewrite declaration as a renaming, which the
3922 -- back-end can handle properly. This is a rather unusual case,
3923 -- because most unchecked_union declarations have default values
3924 -- for discriminants and are thus not indefinite.
3926 elsif Is_Unchecked_Union
(T
) then
3927 if Constant_Present
(N
) or else Nkind
(E
) = N_Function_Call
then
3928 Set_Ekind
(Id
, E_Constant
);
3930 Set_Ekind
(Id
, E_Variable
);
3933 -- An object declared within a Ghost region is automatically
3934 -- Ghost (SPARK RM 6.9(2)).
3936 if Comes_From_Source
(Id
) and then Ghost_Mode
> None
then
3937 Set_Is_Ghost_Entity
(Id
);
3939 -- The Ghost policy in effect at the point of declaration
3940 -- and at the point of completion must match
3941 -- (SPARK RM 6.9(15)).
3943 if Present
(Prev_Entity
)
3944 and then Is_Ghost_Entity
(Prev_Entity
)
3946 Check_Ghost_Completion
(Prev_Entity
, Id
);
3951 Make_Object_Renaming_Declaration
(Loc
,
3952 Defining_Identifier
=> Id
,
3953 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
3956 Set_Renamed_Object
(Id
, E
);
3957 Freeze_Before
(N
, T
);
3962 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
3963 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3966 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
3968 if Aliased_Present
(N
) then
3969 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3972 Freeze_Before
(N
, Act_T
);
3973 Freeze_Before
(N
, T
);
3976 elsif Is_Array_Type
(T
)
3977 and then No_Initialization
(N
)
3978 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3980 if not Is_Entity_Name
(Object_Definition
(N
)) then
3982 Check_Compile_Time_Size
(Act_T
);
3984 if Aliased_Present
(N
) then
3985 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3989 -- When the given object definition and the aggregate are specified
3990 -- independently, and their lengths might differ do a length check.
3991 -- This cannot happen if the aggregate is of the form (others =>...)
3993 if not Is_Constrained
(T
) then
3996 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
3998 -- Aggregate is statically illegal. Place back in declaration
4000 Set_Expression
(N
, E
);
4001 Set_No_Initialization
(N
, False);
4003 elsif T
= Etype
(E
) then
4006 elsif Nkind
(E
) = N_Aggregate
4007 and then Present
(Component_Associations
(E
))
4008 and then Present
(Choices
(First
(Component_Associations
(E
))))
4009 and then Nkind
(First
4010 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
4015 Apply_Length_Check
(E
, T
);
4018 -- If the type is limited unconstrained with defaulted discriminants and
4019 -- there is no expression, then the object is constrained by the
4020 -- defaults, so it is worthwhile building the corresponding subtype.
4022 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
4023 and then not Is_Constrained
(T
)
4024 and then Has_Discriminants
(T
)
4027 Act_T
:= Build_Default_Subtype
(T
, N
);
4029 -- Ada 2005: A limited object may be initialized by means of an
4030 -- aggregate. If the type has default discriminants it has an
4031 -- unconstrained nominal type, Its actual subtype will be obtained
4032 -- from the aggregate, and not from the default discriminants.
4037 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
4039 elsif Nkind
(E
) = N_Function_Call
4040 and then Constant_Present
(N
)
4041 and then Has_Unconstrained_Elements
(Etype
(E
))
4043 -- The back-end has problems with constants of a discriminated type
4044 -- with defaults, if the initial value is a function call. We
4045 -- generate an intermediate temporary that will receive a reference
4046 -- to the result of the call. The initialization expression then
4047 -- becomes a dereference of that temporary.
4049 Remove_Side_Effects
(E
);
4051 -- If this is a constant declaration of an unconstrained type and
4052 -- the initialization is an aggregate, we can use the subtype of the
4053 -- aggregate for the declared entity because it is immutable.
4055 elsif not Is_Constrained
(T
)
4056 and then Has_Discriminants
(T
)
4057 and then Constant_Present
(N
)
4058 and then not Has_Unchecked_Union
(T
)
4059 and then Nkind
(E
) = N_Aggregate
4064 -- Check No_Wide_Characters restriction
4066 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
4068 -- Indicate this is not set in source. Certainly true for constants, and
4069 -- true for variables so far (will be reset for a variable if and when
4070 -- we encounter a modification in the source).
4072 Set_Never_Set_In_Source
(Id
);
4074 -- Now establish the proper kind and type of the object
4076 if Constant_Present
(N
) then
4077 Set_Ekind
(Id
, E_Constant
);
4078 Set_Is_True_Constant
(Id
);
4081 Set_Ekind
(Id
, E_Variable
);
4083 -- A variable is set as shared passive if it appears in a shared
4084 -- passive package, and is at the outer level. This is not done for
4085 -- entities generated during expansion, because those are always
4086 -- manipulated locally.
4088 if Is_Shared_Passive
(Current_Scope
)
4089 and then Is_Library_Level_Entity
(Id
)
4090 and then Comes_From_Source
(Id
)
4092 Set_Is_Shared_Passive
(Id
);
4093 Check_Shared_Var
(Id
, T
, N
);
4096 -- Set Has_Initial_Value if initializing expression present. Note
4097 -- that if there is no initializing expression, we leave the state
4098 -- of this flag unchanged (usually it will be False, but notably in
4099 -- the case of exception choice variables, it will already be true).
4102 Set_Has_Initial_Value
(Id
);
4105 Set_Contract
(Id
, Make_Contract
(Sloc
(Id
)));
4108 -- Initialize alignment and size and capture alignment setting
4110 Init_Alignment
(Id
);
4112 Set_Optimize_Alignment_Flags
(Id
);
4114 -- An object declared within a Ghost region is automatically Ghost
4115 -- (SPARK RM 6.9(2)).
4117 if Comes_From_Source
(Id
)
4118 and then (Ghost_Mode
> None
4119 or else (Present
(Prev_Entity
)
4120 and then Is_Ghost_Entity
(Prev_Entity
)))
4122 Set_Is_Ghost_Entity
(Id
);
4124 -- The Ghost policy in effect at the point of declaration and at the
4125 -- point of completion must match (SPARK RM 6.9(16)).
4127 if Present
(Prev_Entity
) and then Is_Ghost_Entity
(Prev_Entity
) then
4128 Check_Ghost_Completion
(Prev_Entity
, Id
);
4132 -- Deal with aliased case
4134 if Aliased_Present
(N
) then
4135 Set_Is_Aliased
(Id
);
4137 -- If the object is aliased and the type is unconstrained with
4138 -- defaulted discriminants and there is no expression, then the
4139 -- object is constrained by the defaults, so it is worthwhile
4140 -- building the corresponding subtype.
4142 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4143 -- unconstrained, then only establish an actual subtype if the
4144 -- nominal subtype is indefinite. In definite cases the object is
4145 -- unconstrained in Ada 2005.
4148 and then Is_Record_Type
(T
)
4149 and then not Is_Constrained
(T
)
4150 and then Has_Discriminants
(T
)
4151 and then (Ada_Version
< Ada_2005
or else Is_Indefinite_Subtype
(T
))
4153 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
4157 -- Now we can set the type of the object
4159 Set_Etype
(Id
, Act_T
);
4161 -- Non-constant object is marked to be treated as volatile if type is
4162 -- volatile and we clear the Current_Value setting that may have been
4163 -- set above. Doing so for constants isn't required and might interfere
4164 -- with possible uses of the object as a static expression in contexts
4165 -- incompatible with volatility (e.g. as a case-statement alternative).
4167 if Ekind
(Id
) /= E_Constant
and then Treat_As_Volatile
(Etype
(Id
)) then
4168 Set_Treat_As_Volatile
(Id
);
4169 Set_Current_Value
(Id
, Empty
);
4172 -- Deal with controlled types
4174 if Has_Controlled_Component
(Etype
(Id
))
4175 or else Is_Controlled
(Etype
(Id
))
4177 if not Is_Library_Level_Entity
(Id
) then
4178 Check_Restriction
(No_Nested_Finalization
, N
);
4180 Validate_Controlled_Object
(Id
);
4184 if Has_Task
(Etype
(Id
)) then
4185 Check_Restriction
(No_Tasking
, N
);
4187 -- Deal with counting max tasks
4189 -- Nothing to do if inside a generic
4191 if Inside_A_Generic
then
4194 -- If library level entity, then count tasks
4196 elsif Is_Library_Level_Entity
(Id
) then
4197 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
4199 -- If not library level entity, then indicate we don't know max
4200 -- tasks and also check task hierarchy restriction and blocking
4201 -- operation (since starting a task is definitely blocking).
4204 Check_Restriction
(Max_Tasks
, N
);
4205 Check_Restriction
(No_Task_Hierarchy
, N
);
4206 Check_Potentially_Blocking_Operation
(N
);
4209 -- A rather specialized test. If we see two tasks being declared
4210 -- of the same type in the same object declaration, and the task
4211 -- has an entry with an address clause, we know that program error
4212 -- will be raised at run time since we can't have two tasks with
4213 -- entries at the same address.
4215 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
4220 E
:= First_Entity
(Etype
(Id
));
4221 while Present
(E
) loop
4222 if Ekind
(E
) = E_Entry
4223 and then Present
(Get_Attribute_Definition_Clause
4224 (E
, Attribute_Address
))
4226 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4228 ("more than one task with same entry address<<", N
);
4229 Error_Msg_N
("\Program_Error [<<", N
);
4231 Make_Raise_Program_Error
(Loc
,
4232 Reason
=> PE_Duplicated_Entry_Address
));
4242 -- Some simple constant-propagation: if the expression is a constant
4243 -- string initialized with a literal, share the literal. This avoids
4247 and then Is_Entity_Name
(E
)
4248 and then Ekind
(Entity
(E
)) = E_Constant
4249 and then Base_Type
(Etype
(E
)) = Standard_String
4252 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
4254 if Present
(Val
) and then Nkind
(Val
) = N_String_Literal
then
4255 Rewrite
(E
, New_Copy
(Val
));
4260 -- Another optimization: if the nominal subtype is unconstrained and
4261 -- the expression is a function call that returns an unconstrained
4262 -- type, rewrite the declaration as a renaming of the result of the
4263 -- call. The exceptions below are cases where the copy is expected,
4264 -- either by the back end (Aliased case) or by the semantics, as for
4265 -- initializing controlled types or copying tags for classwide types.
4268 and then Nkind
(E
) = N_Explicit_Dereference
4269 and then Nkind
(Original_Node
(E
)) = N_Function_Call
4270 and then not Is_Library_Level_Entity
(Id
)
4271 and then not Is_Constrained
(Underlying_Type
(T
))
4272 and then not Is_Aliased
(Id
)
4273 and then not Is_Class_Wide_Type
(T
)
4274 and then not Is_Controlled
(T
)
4275 and then not Has_Controlled_Component
(Base_Type
(T
))
4276 and then Expander_Active
4279 Make_Object_Renaming_Declaration
(Loc
,
4280 Defining_Identifier
=> Id
,
4281 Access_Definition
=> Empty
,
4282 Subtype_Mark
=> New_Occurrence_Of
4283 (Base_Type
(Etype
(Id
)), Loc
),
4286 Set_Renamed_Object
(Id
, E
);
4288 -- Force generation of debugging information for the constant and for
4289 -- the renamed function call.
4291 Set_Debug_Info_Needed
(Id
);
4292 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
4295 if Present
(Prev_Entity
)
4296 and then Is_Frozen
(Prev_Entity
)
4297 and then not Error_Posted
(Id
)
4299 Error_Msg_N
("full constant declaration appears too late", N
);
4302 Check_Eliminated
(Id
);
4304 -- Deal with setting In_Private_Part flag if in private part
4306 if Ekind
(Scope
(Id
)) = E_Package
and then In_Private_Part
(Scope
(Id
))
4308 Set_In_Private_Part
(Id
);
4311 -- Check for violation of No_Local_Timing_Events
4313 if Restriction_Check_Required
(No_Local_Timing_Events
)
4314 and then not Is_Library_Level_Entity
(Id
)
4315 and then Is_RTE
(Etype
(Id
), RE_Timing_Event
)
4317 Check_Restriction
(No_Local_Timing_Events
, N
);
4321 -- Initialize the refined state of a variable here because this is a
4322 -- common destination for legal and illegal object declarations.
4324 if Ekind
(Id
) = E_Variable
then
4325 Set_Encapsulating_State
(Id
, Empty
);
4328 if Has_Aspects
(N
) then
4329 Analyze_Aspect_Specifications
(N
, Id
);
4332 Analyze_Dimension
(N
);
4334 -- Verify whether the object declaration introduces an illegal hidden
4335 -- state within a package subject to a null abstract state.
4337 if Ekind
(Id
) = E_Variable
then
4338 Check_No_Hidden_State
(Id
);
4340 end Analyze_Object_Declaration
;
4342 ---------------------------
4343 -- Analyze_Others_Choice --
4344 ---------------------------
4346 -- Nothing to do for the others choice node itself, the semantic analysis
4347 -- of the others choice will occur as part of the processing of the parent
4349 procedure Analyze_Others_Choice
(N
: Node_Id
) is
4350 pragma Warnings
(Off
, N
);
4353 end Analyze_Others_Choice
;
4355 -------------------------------------------
4356 -- Analyze_Private_Extension_Declaration --
4357 -------------------------------------------
4359 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
4360 T
: constant Entity_Id
:= Defining_Identifier
(N
);
4361 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
4362 Parent_Type
: Entity_Id
;
4363 Parent_Base
: Entity_Id
;
4366 -- The private extension declaration may be subject to pragma Ghost with
4367 -- policy Ignore. Set the mode now to ensure that any nodes generated
4368 -- during analysis and expansion are properly flagged as ignored Ghost.
4372 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4374 if Is_Non_Empty_List
(Interface_List
(N
)) then
4380 Intf
:= First
(Interface_List
(N
));
4381 while Present
(Intf
) loop
4382 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
4384 Diagnose_Interface
(Intf
, T
);
4390 Generate_Definition
(T
);
4392 -- For other than Ada 2012, just enter the name in the current scope
4394 if Ada_Version
< Ada_2012
then
4397 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4398 -- case of private type that completes an incomplete type.
4405 Prev
:= Find_Type_Name
(N
);
4407 pragma Assert
(Prev
= T
4408 or else (Ekind
(Prev
) = E_Incomplete_Type
4409 and then Present
(Full_View
(Prev
))
4410 and then Full_View
(Prev
) = T
));
4414 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
4415 Parent_Base
:= Base_Type
(Parent_Type
);
4417 if Parent_Type
= Any_Type
or else Etype
(Parent_Type
) = Any_Type
then
4418 Set_Ekind
(T
, Ekind
(Parent_Type
));
4419 Set_Etype
(T
, Any_Type
);
4422 elsif not Is_Tagged_Type
(Parent_Type
) then
4424 ("parent of type extension must be a tagged type ", Indic
);
4427 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
4428 Error_Msg_N
("premature derivation of incomplete type", Indic
);
4431 elsif Is_Concurrent_Type
(Parent_Type
) then
4433 ("parent type of a private extension cannot be "
4434 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
4436 Set_Etype
(T
, Any_Type
);
4437 Set_Ekind
(T
, E_Limited_Private_Type
);
4438 Set_Private_Dependents
(T
, New_Elmt_List
);
4439 Set_Error_Posted
(T
);
4443 -- Perhaps the parent type should be changed to the class-wide type's
4444 -- specific type in this case to prevent cascading errors ???
4446 if Is_Class_Wide_Type
(Parent_Type
) then
4448 ("parent of type extension must not be a class-wide type", Indic
);
4452 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
4453 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
4454 or else In_Private_Part
(Current_Scope
)
4457 Error_Msg_N
("invalid context for private extension", N
);
4460 -- Set common attributes
4462 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
4463 Set_Scope
(T
, Current_Scope
);
4464 Set_Ekind
(T
, E_Record_Type_With_Private
);
4465 Init_Size_Align
(T
);
4466 Set_Default_SSO
(T
);
4468 Set_Etype
(T
, Parent_Base
);
4469 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
4470 Set_Has_Protected
(T
, Has_Task
(Parent_Base
));
4472 Set_Convention
(T
, Convention
(Parent_Type
));
4473 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
4474 Set_Is_First_Subtype
(T
);
4475 Make_Class_Wide_Type
(T
);
4477 if Unknown_Discriminants_Present
(N
) then
4478 Set_Discriminant_Constraint
(T
, No_Elist
);
4481 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
4483 -- Propagate inherited invariant information. The new type has
4484 -- invariants, if the parent type has inheritable invariants,
4485 -- and these invariants can in turn be inherited.
4487 if Has_Inheritable_Invariants
(Parent_Type
) then
4488 Set_Has_Inheritable_Invariants
(T
);
4489 Set_Has_Invariants
(T
);
4492 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4493 -- synchronized formal derived type.
4495 if Ada_Version
>= Ada_2005
and then Synchronized_Present
(N
) then
4496 Set_Is_Limited_Record
(T
);
4498 -- Formal derived type case
4500 if Is_Generic_Type
(T
) then
4502 -- The parent must be a tagged limited type or a synchronized
4505 if (not Is_Tagged_Type
(Parent_Type
)
4506 or else not Is_Limited_Type
(Parent_Type
))
4508 (not Is_Interface
(Parent_Type
)
4509 or else not Is_Synchronized_Interface
(Parent_Type
))
4511 Error_Msg_NE
("parent type of & must be tagged limited " &
4512 "or synchronized", N
, T
);
4515 -- The progenitors (if any) must be limited or synchronized
4518 if Present
(Interfaces
(T
)) then
4521 Iface_Elmt
: Elmt_Id
;
4524 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
4525 while Present
(Iface_Elmt
) loop
4526 Iface
:= Node
(Iface_Elmt
);
4528 if not Is_Limited_Interface
(Iface
)
4529 and then not Is_Synchronized_Interface
(Iface
)
4531 Error_Msg_NE
("progenitor & must be limited " &
4532 "or synchronized", N
, Iface
);
4535 Next_Elmt
(Iface_Elmt
);
4540 -- Regular derived extension, the parent must be a limited or
4541 -- synchronized interface.
4544 if not Is_Interface
(Parent_Type
)
4545 or else (not Is_Limited_Interface
(Parent_Type
)
4546 and then not Is_Synchronized_Interface
(Parent_Type
))
4549 ("parent type of & must be limited interface", N
, T
);
4553 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4554 -- extension with a synchronized parent must be explicitly declared
4555 -- synchronized, because the full view will be a synchronized type.
4556 -- This must be checked before the check for limited types below,
4557 -- to ensure that types declared limited are not allowed to extend
4558 -- synchronized interfaces.
4560 elsif Is_Interface
(Parent_Type
)
4561 and then Is_Synchronized_Interface
(Parent_Type
)
4562 and then not Synchronized_Present
(N
)
4565 ("private extension of& must be explicitly synchronized",
4568 elsif Limited_Present
(N
) then
4569 Set_Is_Limited_Record
(T
);
4571 if not Is_Limited_Type
(Parent_Type
)
4573 (not Is_Interface
(Parent_Type
)
4574 or else not Is_Limited_Interface
(Parent_Type
))
4576 Error_Msg_NE
("parent type& of limited extension must be limited",
4582 if Has_Aspects
(N
) then
4583 Analyze_Aspect_Specifications
(N
, T
);
4585 end Analyze_Private_Extension_Declaration
;
4587 ---------------------------------
4588 -- Analyze_Subtype_Declaration --
4589 ---------------------------------
4591 procedure Analyze_Subtype_Declaration
4593 Skip
: Boolean := False)
4595 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4597 R_Checks
: Check_Result
;
4600 -- The subtype declaration may be subject to pragma Ghost with policy
4601 -- Ignore. Set the mode now to ensure that any nodes generated during
4602 -- analysis and expansion are properly flagged as ignored Ghost.
4606 Generate_Definition
(Id
);
4607 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4608 Init_Size_Align
(Id
);
4610 -- The following guard condition on Enter_Name is to handle cases where
4611 -- the defining identifier has already been entered into the scope but
4612 -- the declaration as a whole needs to be analyzed.
4614 -- This case in particular happens for derived enumeration types. The
4615 -- derived enumeration type is processed as an inserted enumeration type
4616 -- declaration followed by a rewritten subtype declaration. The defining
4617 -- identifier, however, is entered into the name scope very early in the
4618 -- processing of the original type declaration and therefore needs to be
4619 -- avoided here, when the created subtype declaration is analyzed. (See
4620 -- Build_Derived_Types)
4622 -- This also happens when the full view of a private type is derived
4623 -- type with constraints. In this case the entity has been introduced
4624 -- in the private declaration.
4626 -- Finally this happens in some complex cases when validity checks are
4627 -- enabled, where the same subtype declaration may be analyzed twice.
4628 -- This can happen if the subtype is created by the pre-analysis of
4629 -- an attribute tht gives the range of a loop statement, and the loop
4630 -- itself appears within an if_statement that will be rewritten during
4634 or else (Present
(Etype
(Id
))
4635 and then (Is_Private_Type
(Etype
(Id
))
4636 or else Is_Task_Type
(Etype
(Id
))
4637 or else Is_Rewrite_Substitution
(N
)))
4641 elsif Current_Entity
(Id
) = Id
then
4648 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4650 -- Class-wide equivalent types of records with unknown discriminants
4651 -- involve the generation of an itype which serves as the private view
4652 -- of a constrained record subtype. In such cases the base type of the
4653 -- current subtype we are processing is the private itype. Use the full
4654 -- of the private itype when decorating various attributes.
4657 and then Is_Private_Type
(T
)
4658 and then Present
(Full_View
(T
))
4663 -- Inherit common attributes
4665 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4666 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4667 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4668 Set_Convention
(Id
, Convention
(T
));
4670 -- If ancestor has predicates then so does the subtype, and in addition
4671 -- we must delay the freeze to properly arrange predicate inheritance.
4673 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4674 -- in which T = ID, so the above tests and assignments do nothing???
4676 if Has_Predicates
(T
)
4677 or else (Present
(Ancestor_Subtype
(T
))
4678 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4680 Set_Has_Predicates
(Id
);
4681 Set_Has_Delayed_Freeze
(Id
);
4684 -- Subtype of Boolean cannot have a constraint in SPARK
4686 if Is_Boolean_Type
(T
)
4687 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4689 Check_SPARK_05_Restriction
4690 ("subtype of Boolean cannot have constraint", N
);
4693 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4695 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4701 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4702 One_Cstr
:= First
(Constraints
(Cstr
));
4703 while Present
(One_Cstr
) loop
4705 -- Index or discriminant constraint in SPARK must be a
4709 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4711 Check_SPARK_05_Restriction
4712 ("subtype mark required", One_Cstr
);
4714 -- String subtype must have a lower bound of 1 in SPARK.
4715 -- Note that we do not need to test for the non-static case
4716 -- here, since that was already taken care of in
4717 -- Process_Range_Expr_In_Decl.
4719 elsif Base_Type
(T
) = Standard_String
then
4720 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4722 if Is_OK_Static_Expression
(Low
)
4723 and then Expr_Value
(Low
) /= 1
4725 Check_SPARK_05_Restriction
4726 ("String subtype must have lower bound of 1", N
);
4736 -- In the case where there is no constraint given in the subtype
4737 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4738 -- semantic attributes must be established here.
4740 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4741 Set_Etype
(Id
, Base_Type
(T
));
4743 -- Subtype of unconstrained array without constraint is not allowed
4746 if Is_Array_Type
(T
) and then not Is_Constrained
(T
) then
4747 Check_SPARK_05_Restriction
4748 ("subtype of unconstrained array must have constraint", N
);
4753 Set_Ekind
(Id
, E_Array_Subtype
);
4754 Copy_Array_Subtype_Attributes
(Id
, T
);
4756 when Decimal_Fixed_Point_Kind
=>
4757 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4758 Set_Digits_Value
(Id
, Digits_Value
(T
));
4759 Set_Delta_Value
(Id
, Delta_Value
(T
));
4760 Set_Scale_Value
(Id
, Scale_Value
(T
));
4761 Set_Small_Value
(Id
, Small_Value
(T
));
4762 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4763 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4764 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4765 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4766 Set_RM_Size
(Id
, RM_Size
(T
));
4768 when Enumeration_Kind
=>
4769 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4770 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4771 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4772 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4773 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4774 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4775 Set_RM_Size
(Id
, RM_Size
(T
));
4776 Inherit_Predicate_Flags
(Id
, T
);
4778 when Ordinary_Fixed_Point_Kind
=>
4779 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4780 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4781 Set_Small_Value
(Id
, Small_Value
(T
));
4782 Set_Delta_Value
(Id
, Delta_Value
(T
));
4783 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4784 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4785 Set_RM_Size
(Id
, RM_Size
(T
));
4788 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4789 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4790 Set_Digits_Value
(Id
, Digits_Value
(T
));
4791 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4793 when Signed_Integer_Kind
=>
4794 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4795 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4796 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4797 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4798 Set_RM_Size
(Id
, RM_Size
(T
));
4799 Inherit_Predicate_Flags
(Id
, T
);
4801 when Modular_Integer_Kind
=>
4802 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4803 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4804 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4805 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4806 Set_RM_Size
(Id
, RM_Size
(T
));
4807 Inherit_Predicate_Flags
(Id
, T
);
4809 when Class_Wide_Kind
=>
4810 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
4811 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4812 Set_Cloned_Subtype
(Id
, T
);
4813 Set_Is_Tagged_Type
(Id
, True);
4814 Set_Has_Unknown_Discriminants
4816 Set_No_Tagged_Streams_Pragma
4817 (Id
, No_Tagged_Streams_Pragma
(T
));
4819 if Ekind
(T
) = E_Class_Wide_Subtype
then
4820 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
4823 when E_Record_Type | E_Record_Subtype
=>
4824 Set_Ekind
(Id
, E_Record_Subtype
);
4826 if Ekind
(T
) = E_Record_Subtype
4827 and then Present
(Cloned_Subtype
(T
))
4829 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
4831 Set_Cloned_Subtype
(Id
, T
);
4834 Set_First_Entity
(Id
, First_Entity
(T
));
4835 Set_Last_Entity
(Id
, Last_Entity
(T
));
4836 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4837 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4838 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4839 Set_Has_Implicit_Dereference
4840 (Id
, Has_Implicit_Dereference
(T
));
4841 Set_Has_Unknown_Discriminants
4842 (Id
, Has_Unknown_Discriminants
(T
));
4844 if Has_Discriminants
(T
) then
4845 Set_Discriminant_Constraint
4846 (Id
, Discriminant_Constraint
(T
));
4847 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4849 elsif Has_Unknown_Discriminants
(Id
) then
4850 Set_Discriminant_Constraint
(Id
, No_Elist
);
4853 if Is_Tagged_Type
(T
) then
4854 Set_Is_Tagged_Type
(Id
, True);
4855 Set_No_Tagged_Streams_Pragma
4856 (Id
, No_Tagged_Streams_Pragma
(T
));
4857 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4858 Set_Direct_Primitive_Operations
4859 (Id
, Direct_Primitive_Operations
(T
));
4860 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4862 if Is_Interface
(T
) then
4863 Set_Is_Interface
(Id
);
4864 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
4868 when Private_Kind
=>
4869 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4870 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4871 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4872 Set_First_Entity
(Id
, First_Entity
(T
));
4873 Set_Last_Entity
(Id
, Last_Entity
(T
));
4874 Set_Private_Dependents
(Id
, New_Elmt_List
);
4875 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4876 Set_Has_Implicit_Dereference
4877 (Id
, Has_Implicit_Dereference
(T
));
4878 Set_Has_Unknown_Discriminants
4879 (Id
, Has_Unknown_Discriminants
(T
));
4880 Set_Known_To_Have_Preelab_Init
4881 (Id
, Known_To_Have_Preelab_Init
(T
));
4883 if Is_Tagged_Type
(T
) then
4884 Set_Is_Tagged_Type
(Id
);
4885 Set_No_Tagged_Streams_Pragma
(Id
,
4886 No_Tagged_Streams_Pragma
(T
));
4887 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4888 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4889 Set_Direct_Primitive_Operations
(Id
,
4890 Direct_Primitive_Operations
(T
));
4893 -- In general the attributes of the subtype of a private type
4894 -- are the attributes of the partial view of parent. However,
4895 -- the full view may be a discriminated type, and the subtype
4896 -- must share the discriminant constraint to generate correct
4897 -- calls to initialization procedures.
4899 if Has_Discriminants
(T
) then
4900 Set_Discriminant_Constraint
4901 (Id
, Discriminant_Constraint
(T
));
4902 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4904 elsif Present
(Full_View
(T
))
4905 and then Has_Discriminants
(Full_View
(T
))
4907 Set_Discriminant_Constraint
4908 (Id
, Discriminant_Constraint
(Full_View
(T
)));
4909 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4911 -- This would seem semantically correct, but apparently
4912 -- generates spurious errors about missing components ???
4914 -- Set_Has_Discriminants (Id);
4917 Prepare_Private_Subtype_Completion
(Id
, N
);
4919 -- If this is the subtype of a constrained private type with
4920 -- discriminants that has got a full view and we also have
4921 -- built a completion just above, show that the completion
4922 -- is a clone of the full view to the back-end.
4924 if Has_Discriminants
(T
)
4925 and then not Has_Unknown_Discriminants
(T
)
4926 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(T
))
4927 and then Present
(Full_View
(T
))
4928 and then Present
(Full_View
(Id
))
4930 Set_Cloned_Subtype
(Full_View
(Id
), Full_View
(T
));
4934 Set_Ekind
(Id
, E_Access_Subtype
);
4935 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4936 Set_Is_Access_Constant
4937 (Id
, Is_Access_Constant
(T
));
4938 Set_Directly_Designated_Type
4939 (Id
, Designated_Type
(T
));
4940 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
4942 -- A Pure library_item must not contain the declaration of a
4943 -- named access type, except within a subprogram, generic
4944 -- subprogram, task unit, or protected unit, or if it has
4945 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4947 if Comes_From_Source
(Id
)
4948 and then In_Pure_Unit
4949 and then not In_Subprogram_Task_Protected_Unit
4950 and then not No_Pool_Assigned
(Id
)
4953 ("named access types not allowed in pure unit", N
);
4956 when Concurrent_Kind
=>
4957 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4958 Set_Corresponding_Record_Type
(Id
,
4959 Corresponding_Record_Type
(T
));
4960 Set_First_Entity
(Id
, First_Entity
(T
));
4961 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
4962 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4963 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4964 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4965 Set_Last_Entity
(Id
, Last_Entity
(T
));
4967 if Is_Tagged_Type
(T
) then
4968 Set_No_Tagged_Streams_Pragma
4969 (Id
, No_Tagged_Streams_Pragma
(T
));
4972 if Has_Discriminants
(T
) then
4973 Set_Discriminant_Constraint
(Id
,
4974 Discriminant_Constraint
(T
));
4975 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4978 when E_Incomplete_Type
=>
4979 if Ada_Version
>= Ada_2005
then
4981 -- In Ada 2005 an incomplete type can be explicitly tagged:
4982 -- propagate indication.
4984 Set_Ekind
(Id
, E_Incomplete_Subtype
);
4985 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4986 Set_Private_Dependents
(Id
, New_Elmt_List
);
4988 if Is_Tagged_Type
(Id
) then
4989 Set_No_Tagged_Streams_Pragma
4990 (Id
, No_Tagged_Streams_Pragma
(T
));
4993 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4994 -- incomplete type visible through a limited with clause.
4996 if From_Limited_With
(T
)
4997 and then Present
(Non_Limited_View
(T
))
4999 Set_From_Limited_With
(Id
);
5000 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
5002 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5003 -- to the private dependents of the original incomplete
5004 -- type for future transformation.
5007 Append_Elmt
(Id
, Private_Dependents
(T
));
5010 -- If the subtype name denotes an incomplete type an error
5011 -- was already reported by Process_Subtype.
5014 Set_Etype
(Id
, Any_Type
);
5018 raise Program_Error
;
5022 if Etype
(Id
) = Any_Type
then
5026 -- Some common processing on all types
5028 Set_Size_Info
(Id
, T
);
5029 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
5031 -- If the parent type is a generic actual, so is the subtype. This may
5032 -- happen in a nested instance. Why Comes_From_Source test???
5034 if not Comes_From_Source
(N
) then
5035 Set_Is_Generic_Actual_Type
(Id
, Is_Generic_Actual_Type
(T
));
5040 Set_Is_Immediately_Visible
(Id
, True);
5041 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
5042 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
5044 if Is_Interface
(T
) then
5045 Set_Is_Interface
(Id
);
5048 if Present
(Generic_Parent_Type
(N
))
5050 (Nkind
(Parent
(Generic_Parent_Type
(N
))) /=
5051 N_Formal_Type_Declaration
5052 or else Nkind
(Formal_Type_Definition
5053 (Parent
(Generic_Parent_Type
(N
)))) /=
5054 N_Formal_Private_Type_Definition
)
5056 if Is_Tagged_Type
(Id
) then
5058 -- If this is a generic actual subtype for a synchronized type,
5059 -- the primitive operations are those of the corresponding record
5060 -- for which there is a separate subtype declaration.
5062 if Is_Concurrent_Type
(Id
) then
5064 elsif Is_Class_Wide_Type
(Id
) then
5065 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
5067 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
5070 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
5071 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
5075 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
5076 Conditional_Delay
(Id
, Full_View
(T
));
5078 -- The subtypes of components or subcomponents of protected types
5079 -- do not need freeze nodes, which would otherwise appear in the
5080 -- wrong scope (before the freeze node for the protected type). The
5081 -- proper subtypes are those of the subcomponents of the corresponding
5084 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
5085 and then Present
(Scope
(Scope
(Id
))) -- error defense
5086 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
5088 Conditional_Delay
(Id
, T
);
5091 -- Check that Constraint_Error is raised for a scalar subtype indication
5092 -- when the lower or upper bound of a non-null range lies outside the
5093 -- range of the type mark.
5095 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5096 if Is_Scalar_Type
(Etype
(Id
))
5097 and then Scalar_Range
(Id
) /=
5098 Scalar_Range
(Etype
(Subtype_Mark
5099 (Subtype_Indication
(N
))))
5103 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
5105 -- In the array case, check compatibility for each index
5107 elsif Is_Array_Type
(Etype
(Id
)) and then Present
(First_Index
(Id
))
5109 -- This really should be a subprogram that finds the indications
5113 Subt_Index
: Node_Id
:= First_Index
(Id
);
5114 Target_Index
: Node_Id
:=
5116 (Subtype_Mark
(Subtype_Indication
(N
))));
5117 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
5120 while Present
(Subt_Index
) loop
5121 if ((Nkind
(Subt_Index
) = N_Identifier
5122 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
5123 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
5125 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
5128 Target_Typ
: constant Entity_Id
:=
5129 Etype
(Target_Index
);
5133 (Scalar_Range
(Etype
(Subt_Index
)),
5136 Defining_Identifier
(N
));
5138 -- Reset Has_Dynamic_Range_Check on the subtype to
5139 -- prevent elision of the index check due to a dynamic
5140 -- check generated for a preceding index (needed since
5141 -- Insert_Range_Checks tries to avoid generating
5142 -- redundant checks on a given declaration).
5144 Set_Has_Dynamic_Range_Check
(N
, False);
5150 Sloc
(Defining_Identifier
(N
)));
5152 -- Record whether this index involved a dynamic check
5155 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
5159 Next_Index
(Subt_Index
);
5160 Next_Index
(Target_Index
);
5163 -- Finally, mark whether the subtype involves dynamic checks
5165 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
5170 -- A type invariant applies to any subtype in its scope, in particular
5171 -- to a generic actual.
5173 if Has_Invariants
(T
) and then In_Open_Scopes
(Scope
(T
)) then
5174 Set_Has_Invariants
(Id
);
5175 Set_Invariant_Procedure
(Id
, Invariant_Procedure
(T
));
5178 -- Make sure that generic actual types are properly frozen. The subtype
5179 -- is marked as a generic actual type when the enclosing instance is
5180 -- analyzed, so here we identify the subtype from the tree structure.
5183 and then Is_Generic_Actual_Type
(Id
)
5184 and then In_Instance
5185 and then not Comes_From_Source
(N
)
5186 and then Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
5187 and then Is_Frozen
(T
)
5189 Freeze_Before
(N
, Id
);
5192 Set_Optimize_Alignment_Flags
(Id
);
5193 Check_Eliminated
(Id
);
5196 if Has_Aspects
(N
) then
5197 Analyze_Aspect_Specifications
(N
, Id
);
5200 Analyze_Dimension
(N
);
5201 end Analyze_Subtype_Declaration
;
5203 --------------------------------
5204 -- Analyze_Subtype_Indication --
5205 --------------------------------
5207 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
5208 T
: constant Entity_Id
:= Subtype_Mark
(N
);
5209 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
5216 Set_Etype
(N
, Etype
(R
));
5217 Resolve
(R
, Entity
(T
));
5219 Set_Error_Posted
(R
);
5220 Set_Error_Posted
(T
);
5222 end Analyze_Subtype_Indication
;
5224 --------------------------
5225 -- Analyze_Variant_Part --
5226 --------------------------
5228 procedure Analyze_Variant_Part
(N
: Node_Id
) is
5229 Discr_Name
: Node_Id
;
5230 Discr_Type
: Entity_Id
;
5232 procedure Process_Variant
(A
: Node_Id
);
5233 -- Analyze declarations for a single variant
5235 package Analyze_Variant_Choices
is
5236 new Generic_Analyze_Choices
(Process_Variant
);
5237 use Analyze_Variant_Choices
;
5239 ---------------------
5240 -- Process_Variant --
5241 ---------------------
5243 procedure Process_Variant
(A
: Node_Id
) is
5244 CL
: constant Node_Id
:= Component_List
(A
);
5246 if not Null_Present
(CL
) then
5247 Analyze_Declarations
(Component_Items
(CL
));
5249 if Present
(Variant_Part
(CL
)) then
5250 Analyze
(Variant_Part
(CL
));
5253 end Process_Variant
;
5255 -- Start of processing for Analyze_Variant_Part
5258 Discr_Name
:= Name
(N
);
5259 Analyze
(Discr_Name
);
5261 -- If Discr_Name bad, get out (prevent cascaded errors)
5263 if Etype
(Discr_Name
) = Any_Type
then
5267 -- Check invalid discriminant in variant part
5269 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
5270 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
5273 Discr_Type
:= Etype
(Entity
(Discr_Name
));
5275 if not Is_Discrete_Type
(Discr_Type
) then
5277 ("discriminant in a variant part must be of a discrete type",
5282 -- Now analyze the choices, which also analyzes the declarations that
5283 -- are associated with each choice.
5285 Analyze_Choices
(Variants
(N
), Discr_Type
);
5287 -- Note: we used to instantiate and call Check_Choices here to check
5288 -- that the choices covered the discriminant, but it's too early to do
5289 -- that because of statically predicated subtypes, whose analysis may
5290 -- be deferred to their freeze point which may be as late as the freeze
5291 -- point of the containing record. So this call is now to be found in
5292 -- Freeze_Record_Declaration.
5294 end Analyze_Variant_Part
;
5296 ----------------------------
5297 -- Array_Type_Declaration --
5298 ----------------------------
5300 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
5301 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
5302 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
5303 Element_Type
: Entity_Id
;
5304 Implicit_Base
: Entity_Id
;
5306 Related_Id
: Entity_Id
:= Empty
;
5308 P
: constant Node_Id
:= Parent
(Def
);
5312 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5313 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
5315 Index
:= First
(Subtype_Marks
(Def
));
5318 -- Find proper names for the implicit types which may be public. In case
5319 -- of anonymous arrays we use the name of the first object of that type
5323 Related_Id
:= Defining_Identifier
(P
);
5329 while Present
(Index
) loop
5332 -- Test for odd case of trying to index a type by the type itself
5334 if Is_Entity_Name
(Index
) and then Entity
(Index
) = T
then
5335 Error_Msg_N
("type& cannot be indexed by itself", Index
);
5336 Set_Entity
(Index
, Standard_Boolean
);
5337 Set_Etype
(Index
, Standard_Boolean
);
5340 -- Check SPARK restriction requiring a subtype mark
5342 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
5343 Check_SPARK_05_Restriction
("subtype mark required", Index
);
5346 -- Add a subtype declaration for each index of private array type
5347 -- declaration whose etype is also private. For example:
5350 -- type Index is private;
5352 -- type Table is array (Index) of ...
5355 -- This is currently required by the expander for the internally
5356 -- generated equality subprogram of records with variant parts in
5357 -- which the etype of some component is such private type.
5359 if Ekind
(Current_Scope
) = E_Package
5360 and then In_Private_Part
(Current_Scope
)
5361 and then Has_Private_Declaration
(Etype
(Index
))
5364 Loc
: constant Source_Ptr
:= Sloc
(Def
);
5369 New_E
:= Make_Temporary
(Loc
, 'T');
5370 Set_Is_Internal
(New_E
);
5373 Make_Subtype_Declaration
(Loc
,
5374 Defining_Identifier
=> New_E
,
5375 Subtype_Indication
=>
5376 New_Occurrence_Of
(Etype
(Index
), Loc
));
5378 Insert_Before
(Parent
(Def
), Decl
);
5380 Set_Etype
(Index
, New_E
);
5382 -- If the index is a range the Entity attribute is not
5383 -- available. Example:
5386 -- type T is private;
5388 -- type T is new Natural;
5389 -- Table : array (T(1) .. T(10)) of Boolean;
5392 if Nkind
(Index
) /= N_Range
then
5393 Set_Entity
(Index
, New_E
);
5398 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
5400 -- Check error of subtype with predicate for index type
5402 Bad_Predicated_Subtype_Use
5403 ("subtype& has predicate, not allowed as index subtype",
5404 Index
, Etype
(Index
));
5406 -- Move to next index
5409 Nb_Index
:= Nb_Index
+ 1;
5412 -- Process subtype indication if one is present
5414 if Present
(Component_Typ
) then
5415 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
5417 Set_Etype
(Component_Typ
, Element_Type
);
5419 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
5420 Check_SPARK_05_Restriction
5421 ("subtype mark required", Component_Typ
);
5424 -- Ada 2005 (AI-230): Access Definition case
5426 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
5428 -- Indicate that the anonymous access type is created by the
5429 -- array type declaration.
5431 Element_Type
:= Access_Definition
5433 N
=> Access_Definition
(Component_Def
));
5434 Set_Is_Local_Anonymous_Access
(Element_Type
);
5436 -- Propagate the parent. This field is needed if we have to generate
5437 -- the master_id associated with an anonymous access to task type
5438 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5440 Set_Parent
(Element_Type
, Parent
(T
));
5442 -- Ada 2005 (AI-230): In case of components that are anonymous access
5443 -- types the level of accessibility depends on the enclosing type
5446 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
5448 -- Ada 2005 (AI-254)
5451 CD
: constant Node_Id
:=
5452 Access_To_Subprogram_Definition
5453 (Access_Definition
(Component_Def
));
5455 if Present
(CD
) and then Protected_Present
(CD
) then
5457 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
5462 -- Constrained array case
5465 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
5468 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5470 -- Establish Implicit_Base as unconstrained base type
5472 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
5474 Set_Etype
(Implicit_Base
, Implicit_Base
);
5475 Set_Scope
(Implicit_Base
, Current_Scope
);
5476 Set_Has_Delayed_Freeze
(Implicit_Base
);
5477 Set_Default_SSO
(Implicit_Base
);
5479 -- The constrained array type is a subtype of the unconstrained one
5481 Set_Ekind
(T
, E_Array_Subtype
);
5482 Init_Size_Align
(T
);
5483 Set_Etype
(T
, Implicit_Base
);
5484 Set_Scope
(T
, Current_Scope
);
5485 Set_Is_Constrained
(T
);
5487 First
(Discrete_Subtype_Definitions
(Def
)));
5488 Set_Has_Delayed_Freeze
(T
);
5490 -- Complete setup of implicit base type
5492 Set_First_Index
(Implicit_Base
, First_Index
(T
));
5493 Set_Component_Type
(Implicit_Base
, Element_Type
);
5494 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
5495 Set_Has_Protected
(Implicit_Base
, Has_Protected
(Element_Type
));
5496 Set_Component_Size
(Implicit_Base
, Uint_0
);
5497 Set_Packed_Array_Impl_Type
(Implicit_Base
, Empty
);
5498 Set_Has_Controlled_Component
(Implicit_Base
,
5499 Has_Controlled_Component
(Element_Type
)
5500 or else Is_Controlled
(Element_Type
));
5501 Set_Finalize_Storage_Only
(Implicit_Base
,
5502 Finalize_Storage_Only
(Element_Type
));
5504 -- Inherit the "ghostness" from the constrained array type
5506 if Is_Ghost_Entity
(T
) or else Ghost_Mode
> None
then
5507 Set_Is_Ghost_Entity
(Implicit_Base
);
5510 -- Unconstrained array case
5513 Set_Ekind
(T
, E_Array_Type
);
5514 Init_Size_Align
(T
);
5516 Set_Scope
(T
, Current_Scope
);
5517 Set_Component_Size
(T
, Uint_0
);
5518 Set_Is_Constrained
(T
, False);
5519 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
5520 Set_Has_Delayed_Freeze
(T
, True);
5521 Set_Has_Task
(T
, Has_Task
(Element_Type
));
5522 Set_Has_Protected
(T
, Has_Protected
(Element_Type
));
5523 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
5526 Is_Controlled
(Element_Type
));
5527 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
5529 Set_Default_SSO
(T
);
5532 -- Common attributes for both cases
5534 Set_Component_Type
(Base_Type
(T
), Element_Type
);
5535 Set_Packed_Array_Impl_Type
(T
, Empty
);
5537 if Aliased_Present
(Component_Definition
(Def
)) then
5538 Check_SPARK_05_Restriction
5539 ("aliased is not allowed", Component_Definition
(Def
));
5540 Set_Has_Aliased_Components
(Etype
(T
));
5543 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5544 -- array type to ensure that objects of this type are initialized.
5546 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(Element_Type
) then
5547 Set_Can_Never_Be_Null
(T
);
5549 if Null_Exclusion_Present
(Component_Definition
(Def
))
5551 -- No need to check itypes because in their case this check was
5552 -- done at their point of creation
5554 and then not Is_Itype
(Element_Type
)
5557 ("`NOT NULL` not allowed (null already excluded)",
5558 Subtype_Indication
(Component_Definition
(Def
)));
5562 Priv
:= Private_Component
(Element_Type
);
5564 if Present
(Priv
) then
5566 -- Check for circular definitions
5568 if Priv
= Any_Type
then
5569 Set_Component_Type
(Etype
(T
), Any_Type
);
5571 -- There is a gap in the visibility of operations on the composite
5572 -- type only if the component type is defined in a different scope.
5574 elsif Scope
(Priv
) = Current_Scope
then
5577 elsif Is_Limited_Type
(Priv
) then
5578 Set_Is_Limited_Composite
(Etype
(T
));
5579 Set_Is_Limited_Composite
(T
);
5581 Set_Is_Private_Composite
(Etype
(T
));
5582 Set_Is_Private_Composite
(T
);
5586 -- A syntax error in the declaration itself may lead to an empty index
5587 -- list, in which case do a minimal patch.
5589 if No
(First_Index
(T
)) then
5590 Error_Msg_N
("missing index definition in array type declaration", T
);
5593 Indexes
: constant List_Id
:=
5594 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
5596 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
5597 Set_First_Index
(T
, First
(Indexes
));
5602 -- Create a concatenation operator for the new type. Internal array
5603 -- types created for packed entities do not need such, they are
5604 -- compatible with the user-defined type.
5606 if Number_Dimensions
(T
) = 1
5607 and then not Is_Packed_Array_Impl_Type
(T
)
5609 New_Concatenation_Op
(T
);
5612 -- In the case of an unconstrained array the parser has already verified
5613 -- that all the indexes are unconstrained but we still need to make sure
5614 -- that the element type is constrained.
5616 if Is_Indefinite_Subtype
(Element_Type
) then
5618 ("unconstrained element type in array declaration",
5619 Subtype_Indication
(Component_Def
));
5621 elsif Is_Abstract_Type
(Element_Type
) then
5623 ("the type of a component cannot be abstract",
5624 Subtype_Indication
(Component_Def
));
5627 -- There may be an invariant declared for the component type, but
5628 -- the construction of the component invariant checking procedure
5629 -- takes place during expansion.
5630 end Array_Type_Declaration
;
5632 ------------------------------------------------------
5633 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5634 ------------------------------------------------------
5636 function Replace_Anonymous_Access_To_Protected_Subprogram
5637 (N
: Node_Id
) return Entity_Id
5639 Loc
: constant Source_Ptr
:= Sloc
(N
);
5641 Curr_Scope
: constant Scope_Stack_Entry
:=
5642 Scope_Stack
.Table
(Scope_Stack
.Last
);
5644 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5647 -- Access definition in declaration
5650 -- Object definition or formal definition with an access definition
5653 -- Declaration of anonymous access to subprogram type
5656 -- Original specification in access to subprogram
5661 Set_Is_Internal
(Anon
);
5664 when N_Component_Declaration |
5665 N_Unconstrained_Array_Definition |
5666 N_Constrained_Array_Definition
=>
5667 Comp
:= Component_Definition
(N
);
5668 Acc
:= Access_Definition
(Comp
);
5670 when N_Discriminant_Specification
=>
5671 Comp
:= Discriminant_Type
(N
);
5674 when N_Parameter_Specification
=>
5675 Comp
:= Parameter_Type
(N
);
5678 when N_Access_Function_Definition
=>
5679 Comp
:= Result_Definition
(N
);
5682 when N_Object_Declaration
=>
5683 Comp
:= Object_Definition
(N
);
5686 when N_Function_Specification
=>
5687 Comp
:= Result_Definition
(N
);
5691 raise Program_Error
;
5694 Spec
:= Access_To_Subprogram_Definition
(Acc
);
5697 Make_Full_Type_Declaration
(Loc
,
5698 Defining_Identifier
=> Anon
,
5699 Type_Definition
=> Copy_Separate_Tree
(Spec
));
5701 Mark_Rewrite_Insertion
(Decl
);
5703 -- In ASIS mode, analyze the profile on the original node, because
5704 -- the separate copy does not provide enough links to recover the
5705 -- original tree. Analysis is limited to type annotations, within
5706 -- a temporary scope that serves as an anonymous subprogram to collect
5707 -- otherwise useless temporaries and itypes.
5711 Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5714 if Nkind
(Spec
) = N_Access_Function_Definition
then
5715 Set_Ekind
(Typ
, E_Function
);
5717 Set_Ekind
(Typ
, E_Procedure
);
5720 Set_Parent
(Typ
, N
);
5721 Set_Scope
(Typ
, Current_Scope
);
5724 Process_Formals
(Parameter_Specifications
(Spec
), Spec
);
5726 if Nkind
(Spec
) = N_Access_Function_Definition
then
5728 Def
: constant Node_Id
:= Result_Definition
(Spec
);
5731 -- The result might itself be an anonymous access type, so
5734 if Nkind
(Def
) = N_Access_Definition
then
5735 if Present
(Access_To_Subprogram_Definition
(Def
)) then
5738 Replace_Anonymous_Access_To_Protected_Subprogram
5741 Find_Type
(Subtype_Mark
(Def
));
5754 -- Insert the new declaration in the nearest enclosing scope. If the
5755 -- node is a body and N is its return type, the declaration belongs in
5756 -- the enclosing scope.
5760 if Nkind
(P
) = N_Subprogram_Body
5761 and then Nkind
(N
) = N_Function_Specification
5766 while Present
(P
) and then not Has_Declarations
(P
) loop
5770 pragma Assert
(Present
(P
));
5772 if Nkind
(P
) = N_Package_Specification
then
5773 Prepend
(Decl
, Visible_Declarations
(P
));
5775 Prepend
(Decl
, Declarations
(P
));
5778 -- Replace the anonymous type with an occurrence of the new declaration.
5779 -- In all cases the rewritten node does not have the null-exclusion
5780 -- attribute because (if present) it was already inherited by the
5781 -- anonymous entity (Anon). Thus, in case of components we do not
5782 -- inherit this attribute.
5784 if Nkind
(N
) = N_Parameter_Specification
then
5785 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5786 Set_Etype
(Defining_Identifier
(N
), Anon
);
5787 Set_Null_Exclusion_Present
(N
, False);
5789 elsif Nkind
(N
) = N_Object_Declaration
then
5790 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5791 Set_Etype
(Defining_Identifier
(N
), Anon
);
5793 elsif Nkind
(N
) = N_Access_Function_Definition
then
5794 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5796 elsif Nkind
(N
) = N_Function_Specification
then
5797 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5798 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
5802 Make_Component_Definition
(Loc
,
5803 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
5806 Mark_Rewrite_Insertion
(Comp
);
5808 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
5812 -- Temporarily remove the current scope (record or subprogram) from
5813 -- the stack to add the new declarations to the enclosing scope.
5815 Scope_Stack
.Decrement_Last
;
5817 Set_Is_Itype
(Anon
);
5818 Scope_Stack
.Append
(Curr_Scope
);
5821 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
5822 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
5824 end Replace_Anonymous_Access_To_Protected_Subprogram
;
5826 -------------------------------
5827 -- Build_Derived_Access_Type --
5828 -------------------------------
5830 procedure Build_Derived_Access_Type
5832 Parent_Type
: Entity_Id
;
5833 Derived_Type
: Entity_Id
)
5835 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
5837 Desig_Type
: Entity_Id
;
5839 Discr_Con_Elist
: Elist_Id
;
5840 Discr_Con_El
: Elmt_Id
;
5844 -- Set the designated type so it is available in case this is an access
5845 -- to a self-referential type, e.g. a standard list type with a next
5846 -- pointer. Will be reset after subtype is built.
5848 Set_Directly_Designated_Type
5849 (Derived_Type
, Designated_Type
(Parent_Type
));
5851 Subt
:= Process_Subtype
(S
, N
);
5853 if Nkind
(S
) /= N_Subtype_Indication
5854 and then Subt
/= Base_Type
(Subt
)
5856 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
5859 if Ekind
(Derived_Type
) = E_Access_Subtype
then
5861 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5862 Ibase
: constant Entity_Id
:=
5863 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
5864 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
5865 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
5868 Copy_Node
(Pbase
, Ibase
);
5870 Set_Chars
(Ibase
, Svg_Chars
);
5871 Set_Next_Entity
(Ibase
, Svg_Next_E
);
5872 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
5873 Set_Scope
(Ibase
, Scope
(Derived_Type
));
5874 Set_Freeze_Node
(Ibase
, Empty
);
5875 Set_Is_Frozen
(Ibase
, False);
5876 Set_Comes_From_Source
(Ibase
, False);
5877 Set_Is_First_Subtype
(Ibase
, False);
5879 Set_Etype
(Ibase
, Pbase
);
5880 Set_Etype
(Derived_Type
, Ibase
);
5884 Set_Directly_Designated_Type
5885 (Derived_Type
, Designated_Type
(Subt
));
5887 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
5888 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
5889 Set_Size_Info
(Derived_Type
, Parent_Type
);
5890 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
5891 Set_Depends_On_Private
(Derived_Type
,
5892 Has_Private_Component
(Derived_Type
));
5893 Conditional_Delay
(Derived_Type
, Subt
);
5895 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5896 -- that it is not redundant.
5898 if Null_Exclusion_Present
(Type_Definition
(N
)) then
5899 Set_Can_Never_Be_Null
(Derived_Type
);
5901 -- What is with the "AND THEN FALSE" here ???
5903 if Can_Never_Be_Null
(Parent_Type
)
5907 ("`NOT NULL` not allowed (& already excludes null)",
5911 elsif Can_Never_Be_Null
(Parent_Type
) then
5912 Set_Can_Never_Be_Null
(Derived_Type
);
5915 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5916 -- the root type for this information.
5918 -- Apply range checks to discriminants for derived record case
5919 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5921 Desig_Type
:= Designated_Type
(Derived_Type
);
5922 if Is_Composite_Type
(Desig_Type
)
5923 and then (not Is_Array_Type
(Desig_Type
))
5924 and then Has_Discriminants
(Desig_Type
)
5925 and then Base_Type
(Desig_Type
) /= Desig_Type
5927 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
5928 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
5930 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
5931 while Present
(Discr_Con_El
) loop
5932 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
5933 Next_Elmt
(Discr_Con_El
);
5934 Next_Discriminant
(Discr
);
5937 end Build_Derived_Access_Type
;
5939 ------------------------------
5940 -- Build_Derived_Array_Type --
5941 ------------------------------
5943 procedure Build_Derived_Array_Type
5945 Parent_Type
: Entity_Id
;
5946 Derived_Type
: Entity_Id
)
5948 Loc
: constant Source_Ptr
:= Sloc
(N
);
5949 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5950 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5951 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5952 Implicit_Base
: Entity_Id
;
5953 New_Indic
: Node_Id
;
5955 procedure Make_Implicit_Base
;
5956 -- If the parent subtype is constrained, the derived type is a subtype
5957 -- of an implicit base type derived from the parent base.
5959 ------------------------
5960 -- Make_Implicit_Base --
5961 ------------------------
5963 procedure Make_Implicit_Base
is
5966 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5968 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5969 Set_Etype
(Implicit_Base
, Parent_Base
);
5971 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
5972 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
5974 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
5976 -- Inherit the "ghostness" from the parent base type
5978 if Is_Ghost_Entity
(Parent_Base
) or else Ghost_Mode
> None
then
5979 Set_Is_Ghost_Entity
(Implicit_Base
);
5981 end Make_Implicit_Base
;
5983 -- Start of processing for Build_Derived_Array_Type
5986 if not Is_Constrained
(Parent_Type
) then
5987 if Nkind
(Indic
) /= N_Subtype_Indication
then
5988 Set_Ekind
(Derived_Type
, E_Array_Type
);
5990 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5991 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
5993 Set_Has_Delayed_Freeze
(Derived_Type
, True);
5997 Set_Etype
(Derived_Type
, Implicit_Base
);
6000 Make_Subtype_Declaration
(Loc
,
6001 Defining_Identifier
=> Derived_Type
,
6002 Subtype_Indication
=>
6003 Make_Subtype_Indication
(Loc
,
6004 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6005 Constraint
=> Constraint
(Indic
)));
6007 Rewrite
(N
, New_Indic
);
6012 if Nkind
(Indic
) /= N_Subtype_Indication
then
6015 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
6016 Set_Etype
(Derived_Type
, Implicit_Base
);
6017 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6020 Error_Msg_N
("illegal constraint on constrained type", Indic
);
6024 -- If parent type is not a derived type itself, and is declared in
6025 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6026 -- the new type's concatenation operator since Derive_Subprograms
6027 -- will not inherit the parent's operator. If the parent type is
6028 -- unconstrained, the operator is of the unconstrained base type.
6030 if Number_Dimensions
(Parent_Type
) = 1
6031 and then not Is_Limited_Type
(Parent_Type
)
6032 and then not Is_Derived_Type
(Parent_Type
)
6033 and then not Is_Package_Or_Generic_Package
6034 (Scope
(Base_Type
(Parent_Type
)))
6036 if not Is_Constrained
(Parent_Type
)
6037 and then Is_Constrained
(Derived_Type
)
6039 New_Concatenation_Op
(Implicit_Base
);
6041 New_Concatenation_Op
(Derived_Type
);
6044 end Build_Derived_Array_Type
;
6046 -----------------------------------
6047 -- Build_Derived_Concurrent_Type --
6048 -----------------------------------
6050 procedure Build_Derived_Concurrent_Type
6052 Parent_Type
: Entity_Id
;
6053 Derived_Type
: Entity_Id
)
6055 Loc
: constant Source_Ptr
:= Sloc
(N
);
6057 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
6058 Corr_Decl
: Node_Id
;
6059 Corr_Decl_Needed
: Boolean;
6060 -- If the derived type has fewer discriminants than its parent, the
6061 -- corresponding record is also a derived type, in order to account for
6062 -- the bound discriminants. We create a full type declaration for it in
6065 Constraint_Present
: constant Boolean :=
6066 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6067 N_Subtype_Indication
;
6069 D_Constraint
: Node_Id
;
6070 New_Constraint
: Elist_Id
;
6071 Old_Disc
: Entity_Id
;
6072 New_Disc
: Entity_Id
;
6076 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6077 Corr_Decl_Needed
:= False;
6080 if Present
(Discriminant_Specifications
(N
))
6081 and then Constraint_Present
6083 Old_Disc
:= First_Discriminant
(Parent_Type
);
6084 New_Disc
:= First
(Discriminant_Specifications
(N
));
6085 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
6086 Next_Discriminant
(Old_Disc
);
6091 if Present
(Old_Disc
) and then Expander_Active
then
6093 -- The new type has fewer discriminants, so we need to create a new
6094 -- corresponding record, which is derived from the corresponding
6095 -- record of the parent, and has a stored constraint that captures
6096 -- the values of the discriminant constraints. The corresponding
6097 -- record is needed only if expander is active and code generation is
6100 -- The type declaration for the derived corresponding record has the
6101 -- same discriminant part and constraints as the current declaration.
6102 -- Copy the unanalyzed tree to build declaration.
6104 Corr_Decl_Needed
:= True;
6105 New_N
:= Copy_Separate_Tree
(N
);
6108 Make_Full_Type_Declaration
(Loc
,
6109 Defining_Identifier
=> Corr_Record
,
6110 Discriminant_Specifications
=>
6111 Discriminant_Specifications
(New_N
),
6113 Make_Derived_Type_Definition
(Loc
,
6114 Subtype_Indication
=>
6115 Make_Subtype_Indication
(Loc
,
6118 (Corresponding_Record_Type
(Parent_Type
), Loc
),
6121 (Subtype_Indication
(Type_Definition
(New_N
))))));
6124 -- Copy Storage_Size and Relative_Deadline variables if task case
6126 if Is_Task_Type
(Parent_Type
) then
6127 Set_Storage_Size_Variable
(Derived_Type
,
6128 Storage_Size_Variable
(Parent_Type
));
6129 Set_Relative_Deadline_Variable
(Derived_Type
,
6130 Relative_Deadline_Variable
(Parent_Type
));
6133 if Present
(Discriminant_Specifications
(N
)) then
6134 Push_Scope
(Derived_Type
);
6135 Check_Or_Process_Discriminants
(N
, Derived_Type
);
6137 if Constraint_Present
then
6139 Expand_To_Stored_Constraint
6141 Build_Discriminant_Constraints
6143 Subtype_Indication
(Type_Definition
(N
)), True));
6148 elsif Constraint_Present
then
6150 -- Build constrained subtype, copying the constraint, and derive
6151 -- from it to create a derived constrained type.
6154 Loc
: constant Source_Ptr
:= Sloc
(N
);
6155 Anon
: constant Entity_Id
:=
6156 Make_Defining_Identifier
(Loc
,
6157 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
6162 Make_Subtype_Declaration
(Loc
,
6163 Defining_Identifier
=> Anon
,
6164 Subtype_Indication
=>
6165 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
6166 Insert_Before
(N
, Decl
);
6169 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
6170 New_Occurrence_Of
(Anon
, Loc
));
6171 Set_Analyzed
(Derived_Type
, False);
6177 -- By default, operations and private data are inherited from parent.
6178 -- However, in the presence of bound discriminants, a new corresponding
6179 -- record will be created, see below.
6181 Set_Has_Discriminants
6182 (Derived_Type
, Has_Discriminants
(Parent_Type
));
6183 Set_Corresponding_Record_Type
6184 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
6186 -- Is_Constrained is set according the parent subtype, but is set to
6187 -- False if the derived type is declared with new discriminants.
6191 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
6192 and then not Present
(Discriminant_Specifications
(N
)));
6194 if Constraint_Present
then
6195 if not Has_Discriminants
(Parent_Type
) then
6196 Error_Msg_N
("untagged parent must have discriminants", N
);
6198 elsif Present
(Discriminant_Specifications
(N
)) then
6200 -- Verify that new discriminants are used to constrain old ones
6205 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
6207 Old_Disc
:= First_Discriminant
(Parent_Type
);
6209 while Present
(D_Constraint
) loop
6210 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
6212 -- Positional constraint. If it is a reference to a new
6213 -- discriminant, it constrains the corresponding old one.
6215 if Nkind
(D_Constraint
) = N_Identifier
then
6216 New_Disc
:= First_Discriminant
(Derived_Type
);
6217 while Present
(New_Disc
) loop
6218 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
6219 Next_Discriminant
(New_Disc
);
6222 if Present
(New_Disc
) then
6223 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
6227 Next_Discriminant
(Old_Disc
);
6229 -- if this is a named constraint, search by name for the old
6230 -- discriminants constrained by the new one.
6232 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
6234 -- Find new discriminant with that name
6236 New_Disc
:= First_Discriminant
(Derived_Type
);
6237 while Present
(New_Disc
) loop
6239 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
6240 Next_Discriminant
(New_Disc
);
6243 if Present
(New_Disc
) then
6245 -- Verify that new discriminant renames some discriminant
6246 -- of the parent type, and associate the new discriminant
6247 -- with one or more old ones that it renames.
6253 Selector
:= First
(Selector_Names
(D_Constraint
));
6254 while Present
(Selector
) loop
6255 Old_Disc
:= First_Discriminant
(Parent_Type
);
6256 while Present
(Old_Disc
) loop
6257 exit when Chars
(Old_Disc
) = Chars
(Selector
);
6258 Next_Discriminant
(Old_Disc
);
6261 if Present
(Old_Disc
) then
6262 Set_Corresponding_Discriminant
6263 (New_Disc
, Old_Disc
);
6272 Next
(D_Constraint
);
6275 New_Disc
:= First_Discriminant
(Derived_Type
);
6276 while Present
(New_Disc
) loop
6277 if No
(Corresponding_Discriminant
(New_Disc
)) then
6279 ("new discriminant& must constrain old one", N
, New_Disc
);
6282 Subtypes_Statically_Compatible
6284 Etype
(Corresponding_Discriminant
(New_Disc
)))
6287 ("& not statically compatible with parent discriminant",
6291 Next_Discriminant
(New_Disc
);
6295 elsif Present
(Discriminant_Specifications
(N
)) then
6297 ("missing discriminant constraint in untagged derivation", N
);
6300 -- The entity chain of the derived type includes the new discriminants
6301 -- but shares operations with the parent.
6303 if Present
(Discriminant_Specifications
(N
)) then
6304 Old_Disc
:= First_Discriminant
(Parent_Type
);
6305 while Present
(Old_Disc
) loop
6306 if No
(Next_Entity
(Old_Disc
))
6307 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
6310 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
6314 Next_Discriminant
(Old_Disc
);
6318 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
6319 if Has_Discriminants
(Parent_Type
) then
6320 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6321 Set_Discriminant_Constraint
(
6322 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
6326 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
6328 Set_Has_Completion
(Derived_Type
);
6330 if Corr_Decl_Needed
then
6331 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
6332 Insert_After
(N
, Corr_Decl
);
6333 Analyze
(Corr_Decl
);
6334 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
6336 end Build_Derived_Concurrent_Type
;
6338 ------------------------------------
6339 -- Build_Derived_Enumeration_Type --
6340 ------------------------------------
6342 procedure Build_Derived_Enumeration_Type
6344 Parent_Type
: Entity_Id
;
6345 Derived_Type
: Entity_Id
)
6347 Loc
: constant Source_Ptr
:= Sloc
(N
);
6348 Def
: constant Node_Id
:= Type_Definition
(N
);
6349 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
6350 Implicit_Base
: Entity_Id
;
6351 Literal
: Entity_Id
;
6352 New_Lit
: Entity_Id
;
6353 Literals_List
: List_Id
;
6354 Type_Decl
: Node_Id
;
6356 Rang_Expr
: Node_Id
;
6359 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6360 -- not have explicit literals lists we need to process types derived
6361 -- from them specially. This is handled by Derived_Standard_Character.
6362 -- If the parent type is a generic type, there are no literals either,
6363 -- and we construct the same skeletal representation as for the generic
6366 if Is_Standard_Character_Type
(Parent_Type
) then
6367 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
6369 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
6375 if Nkind
(Indic
) /= N_Subtype_Indication
then
6377 Make_Attribute_Reference
(Loc
,
6378 Attribute_Name
=> Name_First
,
6379 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6380 Set_Etype
(Lo
, Derived_Type
);
6383 Make_Attribute_Reference
(Loc
,
6384 Attribute_Name
=> Name_Last
,
6385 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6386 Set_Etype
(Hi
, Derived_Type
);
6388 Set_Scalar_Range
(Derived_Type
,
6394 -- Analyze subtype indication and verify compatibility
6395 -- with parent type.
6397 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
6398 Base_Type
(Parent_Type
)
6401 ("illegal constraint for formal discrete type", N
);
6407 -- If a constraint is present, analyze the bounds to catch
6408 -- premature usage of the derived literals.
6410 if Nkind
(Indic
) = N_Subtype_Indication
6411 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
6413 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
6414 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
6417 -- Introduce an implicit base type for the derived type even if there
6418 -- is no constraint attached to it, since this seems closer to the
6419 -- Ada semantics. Build a full type declaration tree for the derived
6420 -- type using the implicit base type as the defining identifier. The
6421 -- build a subtype declaration tree which applies the constraint (if
6422 -- any) have it replace the derived type declaration.
6424 Literal
:= First_Literal
(Parent_Type
);
6425 Literals_List
:= New_List
;
6426 while Present
(Literal
)
6427 and then Ekind
(Literal
) = E_Enumeration_Literal
6429 -- Literals of the derived type have the same representation as
6430 -- those of the parent type, but this representation can be
6431 -- overridden by an explicit representation clause. Indicate
6432 -- that there is no explicit representation given yet. These
6433 -- derived literals are implicit operations of the new type,
6434 -- and can be overridden by explicit ones.
6436 if Nkind
(Literal
) = N_Defining_Character_Literal
then
6438 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
6440 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
6443 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
6444 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
6445 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
6446 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
6447 Set_Alias
(New_Lit
, Literal
);
6448 Set_Is_Known_Valid
(New_Lit
, True);
6450 Append
(New_Lit
, Literals_List
);
6451 Next_Literal
(Literal
);
6455 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6456 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
6458 -- Indicate the proper nature of the derived type. This must be done
6459 -- before analysis of the literals, to recognize cases when a literal
6460 -- may be hidden by a previous explicit function definition (cf.
6463 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
6464 Set_Etype
(Derived_Type
, Implicit_Base
);
6467 Make_Full_Type_Declaration
(Loc
,
6468 Defining_Identifier
=> Implicit_Base
,
6469 Discriminant_Specifications
=> No_List
,
6471 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
6473 Mark_Rewrite_Insertion
(Type_Decl
);
6474 Insert_Before
(N
, Type_Decl
);
6475 Analyze
(Type_Decl
);
6477 -- After the implicit base is analyzed its Etype needs to be changed
6478 -- to reflect the fact that it is derived from the parent type which
6479 -- was ignored during analysis. We also set the size at this point.
6481 Set_Etype
(Implicit_Base
, Parent_Type
);
6483 Set_Size_Info
(Implicit_Base
, Parent_Type
);
6484 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
6485 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
6487 -- Copy other flags from parent type
6489 Set_Has_Non_Standard_Rep
6490 (Implicit_Base
, Has_Non_Standard_Rep
6492 Set_Has_Pragma_Ordered
6493 (Implicit_Base
, Has_Pragma_Ordered
6495 Set_Has_Delayed_Freeze
(Implicit_Base
);
6497 -- Process the subtype indication including a validation check on the
6498 -- constraint, if any. If a constraint is given, its bounds must be
6499 -- implicitly converted to the new type.
6501 if Nkind
(Indic
) = N_Subtype_Indication
then
6503 R
: constant Node_Id
:=
6504 Range_Expression
(Constraint
(Indic
));
6507 if Nkind
(R
) = N_Range
then
6508 Hi
:= Build_Scalar_Bound
6509 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
6510 Lo
:= Build_Scalar_Bound
6511 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
6514 -- Constraint is a Range attribute. Replace with explicit
6515 -- mention of the bounds of the prefix, which must be a
6518 Analyze
(Prefix
(R
));
6520 Convert_To
(Implicit_Base
,
6521 Make_Attribute_Reference
(Loc
,
6522 Attribute_Name
=> Name_Last
,
6524 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6527 Convert_To
(Implicit_Base
,
6528 Make_Attribute_Reference
(Loc
,
6529 Attribute_Name
=> Name_First
,
6531 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6538 (Type_High_Bound
(Parent_Type
),
6539 Parent_Type
, Implicit_Base
);
6542 (Type_Low_Bound
(Parent_Type
),
6543 Parent_Type
, Implicit_Base
);
6551 -- If we constructed a default range for the case where no range
6552 -- was given, then the expressions in the range must not freeze
6553 -- since they do not correspond to expressions in the source.
6555 if Nkind
(Indic
) /= N_Subtype_Indication
then
6556 Set_Must_Not_Freeze
(Lo
);
6557 Set_Must_Not_Freeze
(Hi
);
6558 Set_Must_Not_Freeze
(Rang_Expr
);
6562 Make_Subtype_Declaration
(Loc
,
6563 Defining_Identifier
=> Derived_Type
,
6564 Subtype_Indication
=>
6565 Make_Subtype_Indication
(Loc
,
6566 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6568 Make_Range_Constraint
(Loc
,
6569 Range_Expression
=> Rang_Expr
))));
6573 -- Propagate the aspects from the original type declaration to the
6574 -- declaration of the implicit base.
6576 Move_Aspects
(From
=> Original_Node
(N
), To
=> Type_Decl
);
6578 -- Apply a range check. Since this range expression doesn't have an
6579 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6582 if Nkind
(Indic
) = N_Subtype_Indication
then
6584 (Range_Expression
(Constraint
(Indic
)), Parent_Type
,
6585 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
6588 end Build_Derived_Enumeration_Type
;
6590 --------------------------------
6591 -- Build_Derived_Numeric_Type --
6592 --------------------------------
6594 procedure Build_Derived_Numeric_Type
6596 Parent_Type
: Entity_Id
;
6597 Derived_Type
: Entity_Id
)
6599 Loc
: constant Source_Ptr
:= Sloc
(N
);
6600 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6601 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6602 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6603 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
6604 N_Subtype_Indication
;
6605 Implicit_Base
: Entity_Id
;
6611 -- Process the subtype indication including a validation check on
6612 -- the constraint if any.
6614 Discard_Node
(Process_Subtype
(Indic
, N
));
6616 -- Introduce an implicit base type for the derived type even if there
6617 -- is no constraint attached to it, since this seems closer to the Ada
6621 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6623 Set_Etype
(Implicit_Base
, Parent_Base
);
6624 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6625 Set_Size_Info
(Implicit_Base
, Parent_Base
);
6626 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
6627 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
6628 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6630 -- Set RM Size for discrete type or decimal fixed-point type
6631 -- Ordinary fixed-point is excluded, why???
6633 if Is_Discrete_Type
(Parent_Base
)
6634 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
6636 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
6639 Set_Has_Delayed_Freeze
(Implicit_Base
);
6641 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
6642 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
6644 Set_Scalar_Range
(Implicit_Base
,
6649 if Has_Infinities
(Parent_Base
) then
6650 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
6653 -- The Derived_Type, which is the entity of the declaration, is a
6654 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6655 -- absence of an explicit constraint.
6657 Set_Etype
(Derived_Type
, Implicit_Base
);
6659 -- If we did not have a constraint, then the Ekind is set from the
6660 -- parent type (otherwise Process_Subtype has set the bounds)
6662 if No_Constraint
then
6663 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
6666 -- If we did not have a range constraint, then set the range from the
6667 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6669 if No_Constraint
or else not Has_Range_Constraint
(Indic
) then
6670 Set_Scalar_Range
(Derived_Type
,
6672 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
6673 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
6674 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6676 if Has_Infinities
(Parent_Type
) then
6677 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
6680 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
6683 Set_Is_Descendent_Of_Address
(Derived_Type
,
6684 Is_Descendent_Of_Address
(Parent_Type
));
6685 Set_Is_Descendent_Of_Address
(Implicit_Base
,
6686 Is_Descendent_Of_Address
(Parent_Type
));
6688 -- Set remaining type-specific fields, depending on numeric type
6690 if Is_Modular_Integer_Type
(Parent_Type
) then
6691 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
6693 Set_Non_Binary_Modulus
6694 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
6697 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6699 elsif Is_Floating_Point_Type
(Parent_Type
) then
6701 -- Digits of base type is always copied from the digits value of
6702 -- the parent base type, but the digits of the derived type will
6703 -- already have been set if there was a constraint present.
6705 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6706 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
6708 if No_Constraint
then
6709 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
6712 elsif Is_Fixed_Point_Type
(Parent_Type
) then
6714 -- Small of base type and derived type are always copied from the
6715 -- parent base type, since smalls never change. The delta of the
6716 -- base type is also copied from the parent base type. However the
6717 -- delta of the derived type will have been set already if a
6718 -- constraint was present.
6720 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
6721 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
6722 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6724 if No_Constraint
then
6725 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6728 -- The scale and machine radix in the decimal case are always
6729 -- copied from the parent base type.
6731 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6732 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6733 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6735 Set_Machine_Radix_10
6736 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6737 Set_Machine_Radix_10
6738 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6740 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6742 if No_Constraint
then
6743 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6746 -- the analysis of the subtype_indication sets the
6747 -- digits value of the derived type.
6754 if Is_Integer_Type
(Parent_Type
) then
6755 Set_Has_Shift_Operator
6756 (Implicit_Base
, Has_Shift_Operator
(Parent_Type
));
6759 -- The type of the bounds is that of the parent type, and they
6760 -- must be converted to the derived type.
6762 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6764 -- The implicit_base should be frozen when the derived type is frozen,
6765 -- but note that it is used in the conversions of the bounds. For fixed
6766 -- types we delay the determination of the bounds until the proper
6767 -- freezing point. For other numeric types this is rejected by GCC, for
6768 -- reasons that are currently unclear (???), so we choose to freeze the
6769 -- implicit base now. In the case of integers and floating point types
6770 -- this is harmless because subsequent representation clauses cannot
6771 -- affect anything, but it is still baffling that we cannot use the
6772 -- same mechanism for all derived numeric types.
6774 -- There is a further complication: actually some representation
6775 -- clauses can affect the implicit base type. For example, attribute
6776 -- definition clauses for stream-oriented attributes need to set the
6777 -- corresponding TSS entries on the base type, and this normally
6778 -- cannot be done after the base type is frozen, so the circuitry in
6779 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6780 -- and not use Set_TSS in this case.
6782 -- There are also consequences for the case of delayed representation
6783 -- aspects for some cases. For example, a Size aspect is delayed and
6784 -- should not be evaluated to the freeze point. This early freezing
6785 -- means that the size attribute evaluation happens too early???
6787 if Is_Fixed_Point_Type
(Parent_Type
) then
6788 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6790 Freeze_Before
(N
, Implicit_Base
);
6792 end Build_Derived_Numeric_Type
;
6794 --------------------------------
6795 -- Build_Derived_Private_Type --
6796 --------------------------------
6798 procedure Build_Derived_Private_Type
6800 Parent_Type
: Entity_Id
;
6801 Derived_Type
: Entity_Id
;
6802 Is_Completion
: Boolean;
6803 Derive_Subps
: Boolean := True)
6805 Loc
: constant Source_Ptr
:= Sloc
(N
);
6806 Par_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6807 Par_Scope
: constant Entity_Id
:= Scope
(Par_Base
);
6808 Full_N
: constant Node_Id
:= New_Copy_Tree
(N
);
6809 Full_Der
: Entity_Id
:= New_Copy
(Derived_Type
);
6812 procedure Build_Full_Derivation
;
6813 -- Build full derivation, i.e. derive from the full view
6815 procedure Copy_And_Build
;
6816 -- Copy derived type declaration, replace parent with its full view,
6817 -- and build derivation
6819 ---------------------------
6820 -- Build_Full_Derivation --
6821 ---------------------------
6823 procedure Build_Full_Derivation
is
6825 -- If parent scope is not open, install the declarations
6827 if not In_Open_Scopes
(Par_Scope
) then
6828 Install_Private_Declarations
(Par_Scope
);
6829 Install_Visible_Declarations
(Par_Scope
);
6831 Uninstall_Declarations
(Par_Scope
);
6833 -- If parent scope is open and in another unit, and parent has a
6834 -- completion, then the derivation is taking place in the visible
6835 -- part of a child unit. In that case retrieve the full view of
6836 -- the parent momentarily.
6838 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
6839 Full_P
:= Full_View
(Parent_Type
);
6840 Exchange_Declarations
(Parent_Type
);
6842 Exchange_Declarations
(Full_P
);
6844 -- Otherwise it is a local derivation
6849 end Build_Full_Derivation
;
6851 --------------------
6852 -- Copy_And_Build --
6853 --------------------
6855 procedure Copy_And_Build
is
6856 Full_Parent
: Entity_Id
:= Parent_Type
;
6859 -- If the parent is itself derived from another private type,
6860 -- installing the private declarations has not affected its
6861 -- privacy status, so use its own full view explicitly.
6863 if Is_Private_Type
(Full_Parent
)
6864 and then Present
(Full_View
(Full_Parent
))
6866 Full_Parent
:= Full_View
(Full_Parent
);
6869 -- And its underlying full view if necessary
6871 if Is_Private_Type
(Full_Parent
)
6872 and then Present
(Underlying_Full_View
(Full_Parent
))
6874 Full_Parent
:= Underlying_Full_View
(Full_Parent
);
6877 -- For record, access and most enumeration types, derivation from
6878 -- the full view requires a fully-fledged declaration. In the other
6879 -- cases, just use an itype.
6881 if Ekind
(Full_Parent
) in Record_Kind
6882 or else Ekind
(Full_Parent
) in Access_Kind
6884 (Ekind
(Full_Parent
) in Enumeration_Kind
6885 and then not Is_Standard_Character_Type
(Full_Parent
)
6886 and then not Is_Generic_Type
(Root_Type
(Full_Parent
)))
6888 -- Copy and adjust declaration to provide a completion for what
6889 -- is originally a private declaration. Indicate that full view
6890 -- is internally generated.
6892 Set_Comes_From_Source
(Full_N
, False);
6893 Set_Comes_From_Source
(Full_Der
, False);
6894 Set_Parent
(Full_Der
, Full_N
);
6895 Set_Defining_Identifier
(Full_N
, Full_Der
);
6897 -- If there are no constraints, adjust the subtype mark
6899 if Nkind
(Subtype_Indication
(Type_Definition
(Full_N
))) /=
6900 N_Subtype_Indication
6902 Set_Subtype_Indication
6903 (Type_Definition
(Full_N
),
6904 New_Occurrence_Of
(Full_Parent
, Sloc
(Full_N
)));
6907 Insert_After
(N
, Full_N
);
6909 -- Build full view of derived type from full view of parent which
6910 -- is now installed. Subprograms have been derived on the partial
6911 -- view, the completion does not derive them anew.
6913 if Ekind
(Full_Parent
) in Record_Kind
then
6915 -- If parent type is tagged, the completion inherits the proper
6916 -- primitive operations.
6918 if Is_Tagged_Type
(Parent_Type
) then
6919 Build_Derived_Record_Type
6920 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
);
6922 Build_Derived_Record_Type
6923 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
=> False);
6928 (Full_N
, Full_Parent
, Full_Der
,
6929 Is_Completion
=> False, Derive_Subps
=> False);
6932 -- The full declaration has been introduced into the tree and
6933 -- processed in the step above. It should not be analyzed again
6934 -- (when encountered later in the current list of declarations)
6935 -- to prevent spurious name conflicts. The full entity remains
6938 Set_Analyzed
(Full_N
);
6942 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6943 Chars
=> Chars
(Derived_Type
));
6944 Set_Is_Itype
(Full_Der
);
6945 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6946 Set_Parent
(Full_Der
, N
);
6948 (N
, Full_Parent
, Full_Der
,
6949 Is_Completion
=> False, Derive_Subps
=> False);
6952 Set_Has_Private_Declaration
(Full_Der
);
6953 Set_Has_Private_Declaration
(Derived_Type
);
6955 Set_Scope
(Full_Der
, Scope
(Derived_Type
));
6956 Set_Is_First_Subtype
(Full_Der
, Is_First_Subtype
(Derived_Type
));
6957 Set_Has_Size_Clause
(Full_Der
, False);
6958 Set_Has_Alignment_Clause
(Full_Der
, False);
6959 Set_Has_Delayed_Freeze
(Full_Der
);
6960 Set_Is_Frozen
(Full_Der
, False);
6961 Set_Freeze_Node
(Full_Der
, Empty
);
6962 Set_Depends_On_Private
(Full_Der
, Has_Private_Component
(Full_Der
));
6963 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
6965 -- The convention on the base type may be set in the private part
6966 -- and not propagated to the subtype until later, so we obtain the
6967 -- convention from the base type of the parent.
6969 Set_Convention
(Full_Der
, Convention
(Base_Type
(Full_Parent
)));
6972 -- Start of processing for Build_Derived_Private_Type
6975 if Is_Tagged_Type
(Parent_Type
) then
6976 Full_P
:= Full_View
(Parent_Type
);
6978 -- A type extension of a type with unknown discriminants is an
6979 -- indefinite type that the back-end cannot handle directly.
6980 -- We treat it as a private type, and build a completion that is
6981 -- derived from the full view of the parent, and hopefully has
6982 -- known discriminants.
6984 -- If the full view of the parent type has an underlying record view,
6985 -- use it to generate the underlying record view of this derived type
6986 -- (required for chains of derivations with unknown discriminants).
6988 -- Minor optimization: we avoid the generation of useless underlying
6989 -- record view entities if the private type declaration has unknown
6990 -- discriminants but its corresponding full view has no
6993 if Has_Unknown_Discriminants
(Parent_Type
)
6994 and then Present
(Full_P
)
6995 and then (Has_Discriminants
(Full_P
)
6996 or else Present
(Underlying_Record_View
(Full_P
)))
6997 and then not In_Open_Scopes
(Par_Scope
)
6998 and then Expander_Active
7001 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
7002 New_Ext
: constant Node_Id
:=
7004 (Record_Extension_Part
(Type_Definition
(N
)));
7008 Build_Derived_Record_Type
7009 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7011 -- Build anonymous completion, as a derivation from the full
7012 -- view of the parent. This is not a completion in the usual
7013 -- sense, because the current type is not private.
7016 Make_Full_Type_Declaration
(Loc
,
7017 Defining_Identifier
=> Full_Der
,
7019 Make_Derived_Type_Definition
(Loc
,
7020 Subtype_Indication
=>
7022 (Subtype_Indication
(Type_Definition
(N
))),
7023 Record_Extension_Part
=> New_Ext
));
7025 -- If the parent type has an underlying record view, use it
7026 -- here to build the new underlying record view.
7028 if Present
(Underlying_Record_View
(Full_P
)) then
7030 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
7032 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
7033 Underlying_Record_View
(Full_P
));
7036 Install_Private_Declarations
(Par_Scope
);
7037 Install_Visible_Declarations
(Par_Scope
);
7038 Insert_Before
(N
, Decl
);
7040 -- Mark entity as an underlying record view before analysis,
7041 -- to avoid generating the list of its primitive operations
7042 -- (which is not really required for this entity) and thus
7043 -- prevent spurious errors associated with missing overriding
7044 -- of abstract primitives (overridden only for Derived_Type).
7046 Set_Ekind
(Full_Der
, E_Record_Type
);
7047 Set_Is_Underlying_Record_View
(Full_Der
);
7048 Set_Default_SSO
(Full_Der
);
7052 pragma Assert
(Has_Discriminants
(Full_Der
)
7053 and then not Has_Unknown_Discriminants
(Full_Der
));
7055 Uninstall_Declarations
(Par_Scope
);
7057 -- Freeze the underlying record view, to prevent generation of
7058 -- useless dispatching information, which is simply shared with
7059 -- the real derived type.
7061 Set_Is_Frozen
(Full_Der
);
7063 -- If the derived type has access discriminants, create
7064 -- references to their anonymous types now, to prevent
7065 -- back-end problems when their first use is in generated
7066 -- bodies of primitives.
7072 E
:= First_Entity
(Full_Der
);
7074 while Present
(E
) loop
7075 if Ekind
(E
) = E_Discriminant
7076 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
7078 Build_Itype_Reference
(Etype
(E
), Decl
);
7085 -- Set up links between real entity and underlying record view
7087 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
7088 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
7091 -- If discriminants are known, build derived record
7094 Build_Derived_Record_Type
7095 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7100 elsif Has_Discriminants
(Parent_Type
) then
7102 -- Build partial view of derived type from partial view of parent.
7103 -- This must be done before building the full derivation because the
7104 -- second derivation will modify the discriminants of the first and
7105 -- the discriminants are chained with the rest of the components in
7106 -- the full derivation.
7108 Build_Derived_Record_Type
7109 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7111 -- Build the full derivation if this is not the anonymous derived
7112 -- base type created by Build_Derived_Record_Type in the constrained
7113 -- case (see point 5. of its head comment) since we build it for the
7114 -- derived subtype. And skip it for protected types altogether, as
7115 -- gigi does not use these types directly.
7117 if Present
(Full_View
(Parent_Type
))
7118 and then not Is_Itype
(Derived_Type
)
7119 and then not (Ekind
(Full_View
(Parent_Type
)) in Protected_Kind
)
7122 Der_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
7124 Last_Discr
: Entity_Id
;
7127 -- If this is not a completion, construct the implicit full
7128 -- view by deriving from the full view of the parent type.
7129 -- But if this is a completion, the derived private type
7130 -- being built is a full view and the full derivation can
7131 -- only be its underlying full view.
7133 Build_Full_Derivation
;
7135 if not Is_Completion
then
7136 Set_Full_View
(Derived_Type
, Full_Der
);
7138 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7141 if not Is_Base_Type
(Derived_Type
) then
7142 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
7145 -- Copy the discriminant list from full view to the partial
7146 -- view (base type and its subtype). Gigi requires that the
7147 -- partial and full views have the same discriminants.
7149 -- Note that since the partial view points to discriminants
7150 -- in the full view, their scope will be that of the full
7151 -- view. This might cause some front end problems and need
7154 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
7155 Set_First_Entity
(Der_Base
, Discr
);
7158 Last_Discr
:= Discr
;
7159 Next_Discriminant
(Discr
);
7160 exit when No
(Discr
);
7163 Set_Last_Entity
(Der_Base
, Last_Discr
);
7164 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
7165 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
7167 Set_Stored_Constraint
7168 (Full_Der
, Stored_Constraint
(Derived_Type
));
7172 elsif Present
(Full_View
(Parent_Type
))
7173 and then Has_Discriminants
(Full_View
(Parent_Type
))
7175 if Has_Unknown_Discriminants
(Parent_Type
)
7176 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7177 N_Subtype_Indication
7180 ("cannot constrain type with unknown discriminants",
7181 Subtype_Indication
(Type_Definition
(N
)));
7185 -- If this is not a completion, construct the implicit full view by
7186 -- deriving from the full view of the parent type. But if this is a
7187 -- completion, the derived private type being built is a full view
7188 -- and the full derivation can only be its underlying full view.
7190 Build_Full_Derivation
;
7192 if not Is_Completion
then
7193 Set_Full_View
(Derived_Type
, Full_Der
);
7195 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7198 -- In any case, the primitive operations are inherited from the
7199 -- parent type, not from the internal full view.
7201 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
7203 if Derive_Subps
then
7204 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7207 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7209 (Derived_Type
, Is_Constrained
(Full_View
(Parent_Type
)));
7212 -- Untagged type, No discriminants on either view
7214 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7215 N_Subtype_Indication
7218 ("illegal constraint on type without discriminants", N
);
7221 if Present
(Discriminant_Specifications
(N
))
7222 and then Present
(Full_View
(Parent_Type
))
7223 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7225 Error_Msg_N
("cannot add discriminants to untagged type", N
);
7228 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7229 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7230 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
7231 Set_Has_Controlled_Component
7232 (Derived_Type
, Has_Controlled_Component
7235 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7237 if not Is_Controlled
(Parent_Type
) then
7238 Set_Finalize_Storage_Only
7239 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
7242 -- If this is not a completion, construct the implicit full view by
7243 -- deriving from the full view of the parent type.
7245 -- ??? If the parent is untagged private and its completion is
7246 -- tagged, this mechanism will not work because we cannot derive from
7247 -- the tagged full view unless we have an extension.
7249 if Present
(Full_View
(Parent_Type
))
7250 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7251 and then not Is_Completion
7253 Build_Full_Derivation
;
7254 Set_Full_View
(Derived_Type
, Full_Der
);
7258 Set_Has_Unknown_Discriminants
(Derived_Type
,
7259 Has_Unknown_Discriminants
(Parent_Type
));
7261 if Is_Private_Type
(Derived_Type
) then
7262 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7265 -- If the parent base type is in scope, add the derived type to its
7266 -- list of private dependents, because its full view may become
7267 -- visible subsequently (in a nested private part, a body, or in a
7268 -- further child unit).
7270 if Is_Private_Type
(Par_Base
) and then In_Open_Scopes
(Par_Scope
) then
7271 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
7273 -- Check for unusual case where a type completed by a private
7274 -- derivation occurs within a package nested in a child unit, and
7275 -- the parent is declared in an ancestor.
7277 if Is_Child_Unit
(Scope
(Current_Scope
))
7278 and then Is_Completion
7279 and then In_Private_Part
(Current_Scope
)
7280 and then Scope
(Parent_Type
) /= Current_Scope
7282 -- Note that if the parent has a completion in the private part,
7283 -- (which is itself a derivation from some other private type)
7284 -- it is that completion that is visible, there is no full view
7285 -- available, and no special processing is needed.
7287 and then Present
(Full_View
(Parent_Type
))
7289 -- In this case, the full view of the parent type will become
7290 -- visible in the body of the enclosing child, and only then will
7291 -- the current type be possibly non-private. Build an underlying
7292 -- full view that will be installed when the enclosing child body
7295 if Present
(Underlying_Full_View
(Derived_Type
)) then
7296 Full_Der
:= Underlying_Full_View
(Derived_Type
);
7298 Build_Full_Derivation
;
7299 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7302 -- The full view will be used to swap entities on entry/exit to
7303 -- the body, and must appear in the entity list for the package.
7305 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
7308 end Build_Derived_Private_Type
;
7310 -------------------------------
7311 -- Build_Derived_Record_Type --
7312 -------------------------------
7316 -- Ideally we would like to use the same model of type derivation for
7317 -- tagged and untagged record types. Unfortunately this is not quite
7318 -- possible because the semantics of representation clauses is different
7319 -- for tagged and untagged records under inheritance. Consider the
7322 -- type R (...) is [tagged] record ... end record;
7323 -- type T (...) is new R (...) [with ...];
7325 -- The representation clauses for T can specify a completely different
7326 -- record layout from R's. Hence the same component can be placed in two
7327 -- very different positions in objects of type T and R. If R and T are
7328 -- tagged types, representation clauses for T can only specify the layout
7329 -- of non inherited components, thus components that are common in R and T
7330 -- have the same position in objects of type R and T.
7332 -- This has two implications. The first is that the entire tree for R's
7333 -- declaration needs to be copied for T in the untagged case, so that T
7334 -- can be viewed as a record type of its own with its own representation
7335 -- clauses. The second implication is the way we handle discriminants.
7336 -- Specifically, in the untagged case we need a way to communicate to Gigi
7337 -- what are the real discriminants in the record, while for the semantics
7338 -- we need to consider those introduced by the user to rename the
7339 -- discriminants in the parent type. This is handled by introducing the
7340 -- notion of stored discriminants. See below for more.
7342 -- Fortunately the way regular components are inherited can be handled in
7343 -- the same way in tagged and untagged types.
7345 -- To complicate things a bit more the private view of a private extension
7346 -- cannot be handled in the same way as the full view (for one thing the
7347 -- semantic rules are somewhat different). We will explain what differs
7350 -- 2. DISCRIMINANTS UNDER INHERITANCE
7352 -- The semantic rules governing the discriminants of derived types are
7355 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7356 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7358 -- If parent type has discriminants, then the discriminants that are
7359 -- declared in the derived type are [3.4 (11)]:
7361 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7364 -- o Otherwise, each discriminant of the parent type (implicitly declared
7365 -- in the same order with the same specifications). In this case, the
7366 -- discriminants are said to be "inherited", or if unknown in the parent
7367 -- are also unknown in the derived type.
7369 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7371 -- o The parent subtype must be constrained;
7373 -- o If the parent type is not a tagged type, then each discriminant of
7374 -- the derived type must be used in the constraint defining a parent
7375 -- subtype. [Implementation note: This ensures that the new discriminant
7376 -- can share storage with an existing discriminant.]
7378 -- For the derived type each discriminant of the parent type is either
7379 -- inherited, constrained to equal some new discriminant of the derived
7380 -- type, or constrained to the value of an expression.
7382 -- When inherited or constrained to equal some new discriminant, the
7383 -- parent discriminant and the discriminant of the derived type are said
7386 -- If a discriminant of the parent type is constrained to a specific value
7387 -- in the derived type definition, then the discriminant is said to be
7388 -- "specified" by that derived type definition.
7390 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7392 -- We have spoken about stored discriminants in point 1 (introduction)
7393 -- above. There are two sort of stored discriminants: implicit and
7394 -- explicit. As long as the derived type inherits the same discriminants as
7395 -- the root record type, stored discriminants are the same as regular
7396 -- discriminants, and are said to be implicit. However, if any discriminant
7397 -- in the root type was renamed in the derived type, then the derived
7398 -- type will contain explicit stored discriminants. Explicit stored
7399 -- discriminants are discriminants in addition to the semantically visible
7400 -- discriminants defined for the derived type. Stored discriminants are
7401 -- used by Gigi to figure out what are the physical discriminants in
7402 -- objects of the derived type (see precise definition in einfo.ads).
7403 -- As an example, consider the following:
7405 -- type R (D1, D2, D3 : Int) is record ... end record;
7406 -- type T1 is new R;
7407 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7408 -- type T3 is new T2;
7409 -- type T4 (Y : Int) is new T3 (Y, 99);
7411 -- The following table summarizes the discriminants and stored
7412 -- discriminants in R and T1 through T4.
7414 -- Type Discrim Stored Discrim Comment
7415 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7416 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7417 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7418 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7419 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7421 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7422 -- find the corresponding discriminant in the parent type, while
7423 -- Original_Record_Component (abbreviated ORC below), the actual physical
7424 -- component that is renamed. Finally the field Is_Completely_Hidden
7425 -- (abbreviated ICH below) is set for all explicit stored discriminants
7426 -- (see einfo.ads for more info). For the above example this gives:
7428 -- Discrim CD ORC ICH
7429 -- ^^^^^^^ ^^ ^^^ ^^^
7430 -- D1 in R empty itself no
7431 -- D2 in R empty itself no
7432 -- D3 in R empty itself no
7434 -- D1 in T1 D1 in R itself no
7435 -- D2 in T1 D2 in R itself no
7436 -- D3 in T1 D3 in R itself no
7438 -- X1 in T2 D3 in T1 D3 in T2 no
7439 -- X2 in T2 D1 in T1 D1 in T2 no
7440 -- D1 in T2 empty itself yes
7441 -- D2 in T2 empty itself yes
7442 -- D3 in T2 empty itself yes
7444 -- X1 in T3 X1 in T2 D3 in T3 no
7445 -- X2 in T3 X2 in T2 D1 in T3 no
7446 -- D1 in T3 empty itself yes
7447 -- D2 in T3 empty itself yes
7448 -- D3 in T3 empty itself yes
7450 -- Y in T4 X1 in T3 D3 in T3 no
7451 -- D1 in T3 empty itself yes
7452 -- D2 in T3 empty itself yes
7453 -- D3 in T3 empty itself yes
7455 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7457 -- Type derivation for tagged types is fairly straightforward. If no
7458 -- discriminants are specified by the derived type, these are inherited
7459 -- from the parent. No explicit stored discriminants are ever necessary.
7460 -- The only manipulation that is done to the tree is that of adding a
7461 -- _parent field with parent type and constrained to the same constraint
7462 -- specified for the parent in the derived type definition. For instance:
7464 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7465 -- type T1 is new R with null record;
7466 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7468 -- are changed into:
7470 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7471 -- _parent : R (D1, D2, D3);
7474 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7475 -- _parent : T1 (X2, 88, X1);
7478 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7479 -- ORC and ICH fields are:
7481 -- Discrim CD ORC ICH
7482 -- ^^^^^^^ ^^ ^^^ ^^^
7483 -- D1 in R empty itself no
7484 -- D2 in R empty itself no
7485 -- D3 in R empty itself no
7487 -- D1 in T1 D1 in R D1 in R no
7488 -- D2 in T1 D2 in R D2 in R no
7489 -- D3 in T1 D3 in R D3 in R no
7491 -- X1 in T2 D3 in T1 D3 in R no
7492 -- X2 in T2 D1 in T1 D1 in R no
7494 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7496 -- Regardless of whether we dealing with a tagged or untagged type
7497 -- we will transform all derived type declarations of the form
7499 -- type T is new R (...) [with ...];
7501 -- subtype S is R (...);
7502 -- type T is new S [with ...];
7504 -- type BT is new R [with ...];
7505 -- subtype T is BT (...);
7507 -- That is, the base derived type is constrained only if it has no
7508 -- discriminants. The reason for doing this is that GNAT's semantic model
7509 -- assumes that a base type with discriminants is unconstrained.
7511 -- Note that, strictly speaking, the above transformation is not always
7512 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7514 -- procedure B34011A is
7515 -- type REC (D : integer := 0) is record
7520 -- type T6 is new Rec;
7521 -- function F return T6;
7526 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7529 -- The definition of Q6.U is illegal. However transforming Q6.U into
7531 -- type BaseU is new T6;
7532 -- subtype U is BaseU (Q6.F.I)
7534 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7535 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7536 -- the transformation described above.
7538 -- There is another instance where the above transformation is incorrect.
7542 -- type Base (D : Integer) is tagged null record;
7543 -- procedure P (X : Base);
7545 -- type Der is new Base (2) with null record;
7546 -- procedure P (X : Der);
7549 -- Then the above transformation turns this into
7551 -- type Der_Base is new Base with null record;
7552 -- -- procedure P (X : Base) is implicitly inherited here
7553 -- -- as procedure P (X : Der_Base).
7555 -- subtype Der is Der_Base (2);
7556 -- procedure P (X : Der);
7557 -- -- The overriding of P (X : Der_Base) is illegal since we
7558 -- -- have a parameter conformance problem.
7560 -- To get around this problem, after having semantically processed Der_Base
7561 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7562 -- Discriminant_Constraint from Der so that when parameter conformance is
7563 -- checked when P is overridden, no semantic errors are flagged.
7565 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7567 -- Regardless of whether we are dealing with a tagged or untagged type
7568 -- we will transform all derived type declarations of the form
7570 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7571 -- type T is new R [with ...];
7573 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7575 -- The reason for such transformation is that it allows us to implement a
7576 -- very clean form of component inheritance as explained below.
7578 -- Note that this transformation is not achieved by direct tree rewriting
7579 -- and manipulation, but rather by redoing the semantic actions that the
7580 -- above transformation will entail. This is done directly in routine
7581 -- Inherit_Components.
7583 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7585 -- In both tagged and untagged derived types, regular non discriminant
7586 -- components are inherited in the derived type from the parent type. In
7587 -- the absence of discriminants component, inheritance is straightforward
7588 -- as components can simply be copied from the parent.
7590 -- If the parent has discriminants, inheriting components constrained with
7591 -- these discriminants requires caution. Consider the following example:
7593 -- type R (D1, D2 : Positive) is [tagged] record
7594 -- S : String (D1 .. D2);
7597 -- type T1 is new R [with null record];
7598 -- type T2 (X : positive) is new R (1, X) [with null record];
7600 -- As explained in 6. above, T1 is rewritten as
7601 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7602 -- which makes the treatment for T1 and T2 identical.
7604 -- What we want when inheriting S, is that references to D1 and D2 in R are
7605 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7606 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7607 -- with either discriminant references in the derived type or expressions.
7608 -- This replacement is achieved as follows: before inheriting R's
7609 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7610 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7611 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7612 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7613 -- by String (1 .. X).
7615 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7617 -- We explain here the rules governing private type extensions relevant to
7618 -- type derivation. These rules are explained on the following example:
7620 -- type D [(...)] is new A [(...)] with private; <-- partial view
7621 -- type D [(...)] is new P [(...)] with null record; <-- full view
7623 -- Type A is called the ancestor subtype of the private extension.
7624 -- Type P is the parent type of the full view of the private extension. It
7625 -- must be A or a type derived from A.
7627 -- The rules concerning the discriminants of private type extensions are
7630 -- o If a private extension inherits known discriminants from the ancestor
7631 -- subtype, then the full view must also inherit its discriminants from
7632 -- the ancestor subtype and the parent subtype of the full view must be
7633 -- constrained if and only if the ancestor subtype is constrained.
7635 -- o If a partial view has unknown discriminants, then the full view may
7636 -- define a definite or an indefinite subtype, with or without
7639 -- o If a partial view has neither known nor unknown discriminants, then
7640 -- the full view must define a definite subtype.
7642 -- o If the ancestor subtype of a private extension has constrained
7643 -- discriminants, then the parent subtype of the full view must impose a
7644 -- statically matching constraint on those discriminants.
7646 -- This means that only the following forms of private extensions are
7649 -- type D is new A with private; <-- partial view
7650 -- type D is new P with null record; <-- full view
7652 -- If A has no discriminants than P has no discriminants, otherwise P must
7653 -- inherit A's discriminants.
7655 -- type D is new A (...) with private; <-- partial view
7656 -- type D is new P (:::) with null record; <-- full view
7658 -- P must inherit A's discriminants and (...) and (:::) must statically
7661 -- subtype A is R (...);
7662 -- type D is new A with private; <-- partial view
7663 -- type D is new P with null record; <-- full view
7665 -- P must have inherited R's discriminants and must be derived from A or
7666 -- any of its subtypes.
7668 -- type D (..) is new A with private; <-- partial view
7669 -- type D (..) is new P [(:::)] with null record; <-- full view
7671 -- No specific constraints on P's discriminants or constraint (:::).
7672 -- Note that A can be unconstrained, but the parent subtype P must either
7673 -- be constrained or (:::) must be present.
7675 -- type D (..) is new A [(...)] with private; <-- partial view
7676 -- type D (..) is new P [(:::)] with null record; <-- full view
7678 -- P's constraints on A's discriminants must statically match those
7679 -- imposed by (...).
7681 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7683 -- The full view of a private extension is handled exactly as described
7684 -- above. The model chose for the private view of a private extension is
7685 -- the same for what concerns discriminants (i.e. they receive the same
7686 -- treatment as in the tagged case). However, the private view of the
7687 -- private extension always inherits the components of the parent base,
7688 -- without replacing any discriminant reference. Strictly speaking this is
7689 -- incorrect. However, Gigi never uses this view to generate code so this
7690 -- is a purely semantic issue. In theory, a set of transformations similar
7691 -- to those given in 5. and 6. above could be applied to private views of
7692 -- private extensions to have the same model of component inheritance as
7693 -- for non private extensions. However, this is not done because it would
7694 -- further complicate private type processing. Semantically speaking, this
7695 -- leaves us in an uncomfortable situation. As an example consider:
7698 -- type R (D : integer) is tagged record
7699 -- S : String (1 .. D);
7701 -- procedure P (X : R);
7702 -- type T is new R (1) with private;
7704 -- type T is new R (1) with null record;
7707 -- This is transformed into:
7710 -- type R (D : integer) is tagged record
7711 -- S : String (1 .. D);
7713 -- procedure P (X : R);
7714 -- type T is new R (1) with private;
7716 -- type BaseT is new R with null record;
7717 -- subtype T is BaseT (1);
7720 -- (strictly speaking the above is incorrect Ada)
7722 -- From the semantic standpoint the private view of private extension T
7723 -- should be flagged as constrained since one can clearly have
7727 -- in a unit withing Pack. However, when deriving subprograms for the
7728 -- private view of private extension T, T must be seen as unconstrained
7729 -- since T has discriminants (this is a constraint of the current
7730 -- subprogram derivation model). Thus, when processing the private view of
7731 -- a private extension such as T, we first mark T as unconstrained, we
7732 -- process it, we perform program derivation and just before returning from
7733 -- Build_Derived_Record_Type we mark T as constrained.
7735 -- ??? Are there are other uncomfortable cases that we will have to
7738 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7740 -- Types that are derived from a visible record type and have a private
7741 -- extension present other peculiarities. They behave mostly like private
7742 -- types, but if they have primitive operations defined, these will not
7743 -- have the proper signatures for further inheritance, because other
7744 -- primitive operations will use the implicit base that we define for
7745 -- private derivations below. This affect subprogram inheritance (see
7746 -- Derive_Subprograms for details). We also derive the implicit base from
7747 -- the base type of the full view, so that the implicit base is a record
7748 -- type and not another private type, This avoids infinite loops.
7750 procedure Build_Derived_Record_Type
7752 Parent_Type
: Entity_Id
;
7753 Derived_Type
: Entity_Id
;
7754 Derive_Subps
: Boolean := True)
7756 Discriminant_Specs
: constant Boolean :=
7757 Present
(Discriminant_Specifications
(N
));
7758 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7759 Loc
: constant Source_Ptr
:= Sloc
(N
);
7760 Private_Extension
: constant Boolean :=
7761 Nkind
(N
) = N_Private_Extension_Declaration
;
7762 Assoc_List
: Elist_Id
;
7763 Constraint_Present
: Boolean;
7765 Discrim
: Entity_Id
;
7767 Inherit_Discrims
: Boolean := False;
7768 Last_Discrim
: Entity_Id
;
7769 New_Base
: Entity_Id
;
7771 New_Discrs
: Elist_Id
;
7772 New_Indic
: Node_Id
;
7773 Parent_Base
: Entity_Id
;
7774 Save_Etype
: Entity_Id
;
7775 Save_Discr_Constr
: Elist_Id
;
7776 Save_Next_Entity
: Entity_Id
;
7779 Discs
: Elist_Id
:= New_Elmt_List
;
7780 -- An empty Discs list means that there were no constraints in the
7781 -- subtype indication or that there was an error processing it.
7784 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7785 and then Present
(Full_View
(Parent_Type
))
7786 and then Has_Discriminants
(Parent_Type
)
7788 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
7790 Parent_Base
:= Base_Type
(Parent_Type
);
7793 -- AI05-0115 : if this is a derivation from a private type in some
7794 -- other scope that may lead to invisible components for the derived
7795 -- type, mark it accordingly.
7797 if Is_Private_Type
(Parent_Type
) then
7798 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
7801 elsif In_Open_Scopes
(Scope
(Parent_Type
))
7802 and then In_Private_Part
(Scope
(Parent_Type
))
7807 Set_Has_Private_Ancestor
(Derived_Type
);
7811 Set_Has_Private_Ancestor
7812 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
7815 -- Before we start the previously documented transformations, here is
7816 -- little fix for size and alignment of tagged types. Normally when we
7817 -- derive type D from type P, we copy the size and alignment of P as the
7818 -- default for D, and in the absence of explicit representation clauses
7819 -- for D, the size and alignment are indeed the same as the parent.
7821 -- But this is wrong for tagged types, since fields may be added, and
7822 -- the default size may need to be larger, and the default alignment may
7823 -- need to be larger.
7825 -- We therefore reset the size and alignment fields in the tagged case.
7826 -- Note that the size and alignment will in any case be at least as
7827 -- large as the parent type (since the derived type has a copy of the
7828 -- parent type in the _parent field)
7830 -- The type is also marked as being tagged here, which is needed when
7831 -- processing components with a self-referential anonymous access type
7832 -- in the call to Check_Anonymous_Access_Components below. Note that
7833 -- this flag is also set later on for completeness.
7836 Set_Is_Tagged_Type
(Derived_Type
);
7837 Init_Size_Align
(Derived_Type
);
7840 -- STEP 0a: figure out what kind of derived type declaration we have
7842 if Private_Extension
then
7844 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
7845 Set_Default_SSO
(Derived_Type
);
7848 Type_Def
:= Type_Definition
(N
);
7850 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7851 -- Parent_Base can be a private type or private extension. However,
7852 -- for tagged types with an extension the newly added fields are
7853 -- visible and hence the Derived_Type is always an E_Record_Type.
7854 -- (except that the parent may have its own private fields).
7855 -- For untagged types we preserve the Ekind of the Parent_Base.
7857 if Present
(Record_Extension_Part
(Type_Def
)) then
7858 Set_Ekind
(Derived_Type
, E_Record_Type
);
7859 Set_Default_SSO
(Derived_Type
);
7861 -- Create internal access types for components with anonymous
7864 if Ada_Version
>= Ada_2005
then
7865 Check_Anonymous_Access_Components
7866 (N
, Derived_Type
, Derived_Type
,
7867 Component_List
(Record_Extension_Part
(Type_Def
)));
7871 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7875 -- Indic can either be an N_Identifier if the subtype indication
7876 -- contains no constraint or an N_Subtype_Indication if the subtype
7877 -- indication has a constraint.
7879 Indic
:= Subtype_Indication
(Type_Def
);
7880 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
7882 -- Check that the type has visible discriminants. The type may be
7883 -- a private type with unknown discriminants whose full view has
7884 -- discriminants which are invisible.
7886 if Constraint_Present
then
7887 if not Has_Discriminants
(Parent_Base
)
7889 (Has_Unknown_Discriminants
(Parent_Base
)
7890 and then Is_Private_Type
(Parent_Base
))
7893 ("invalid constraint: type has no discriminant",
7894 Constraint
(Indic
));
7896 Constraint_Present
:= False;
7897 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7899 elsif Is_Constrained
(Parent_Type
) then
7901 ("invalid constraint: parent type is already constrained",
7902 Constraint
(Indic
));
7904 Constraint_Present
:= False;
7905 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7909 -- STEP 0b: If needed, apply transformation given in point 5. above
7911 if not Private_Extension
7912 and then Has_Discriminants
(Parent_Type
)
7913 and then not Discriminant_Specs
7914 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
7916 -- First, we must analyze the constraint (see comment in point 5.)
7917 -- The constraint may come from the subtype indication of the full
7920 if Constraint_Present
then
7921 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7923 -- If there is no explicit constraint, there might be one that is
7924 -- inherited from a constrained parent type. In that case verify that
7925 -- it conforms to the constraint in the partial view. In perverse
7926 -- cases the parent subtypes of the partial and full view can have
7927 -- different constraints.
7929 elsif Present
(Stored_Constraint
(Parent_Type
)) then
7930 New_Discrs
:= Stored_Constraint
(Parent_Type
);
7933 New_Discrs
:= No_Elist
;
7936 if Has_Discriminants
(Derived_Type
)
7937 and then Has_Private_Declaration
(Derived_Type
)
7938 and then Present
(Discriminant_Constraint
(Derived_Type
))
7939 and then Present
(New_Discrs
)
7941 -- Verify that constraints of the full view statically match
7942 -- those given in the partial view.
7948 C1
:= First_Elmt
(New_Discrs
);
7949 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
7950 while Present
(C1
) and then Present
(C2
) loop
7951 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7953 (Is_OK_Static_Expression
(Node
(C1
))
7954 and then Is_OK_Static_Expression
(Node
(C2
))
7956 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
7961 if Constraint_Present
then
7963 ("constraint not conformant to previous declaration",
7967 ("constraint of full view is incompatible "
7968 & "with partial view", N
);
7978 -- Insert and analyze the declaration for the unconstrained base type
7980 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
7983 Make_Full_Type_Declaration
(Loc
,
7984 Defining_Identifier
=> New_Base
,
7986 Make_Derived_Type_Definition
(Loc
,
7987 Abstract_Present
=> Abstract_Present
(Type_Def
),
7988 Limited_Present
=> Limited_Present
(Type_Def
),
7989 Subtype_Indication
=>
7990 New_Occurrence_Of
(Parent_Base
, Loc
),
7991 Record_Extension_Part
=>
7992 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
7993 Interface_List
=> Interface_List
(Type_Def
)));
7995 Set_Parent
(New_Decl
, Parent
(N
));
7996 Mark_Rewrite_Insertion
(New_Decl
);
7997 Insert_Before
(N
, New_Decl
);
7999 -- In the extension case, make sure ancestor is frozen appropriately
8000 -- (see also non-discriminated case below).
8002 if Present
(Record_Extension_Part
(Type_Def
))
8003 or else Is_Interface
(Parent_Base
)
8005 Freeze_Before
(New_Decl
, Parent_Type
);
8008 -- Note that this call passes False for the Derive_Subps parameter
8009 -- because subprogram derivation is deferred until after creating
8010 -- the subtype (see below).
8013 (New_Decl
, Parent_Base
, New_Base
,
8014 Is_Completion
=> False, Derive_Subps
=> False);
8016 -- ??? This needs re-examination to determine whether the
8017 -- above call can simply be replaced by a call to Analyze.
8019 Set_Analyzed
(New_Decl
);
8021 -- Insert and analyze the declaration for the constrained subtype
8023 if Constraint_Present
then
8025 Make_Subtype_Indication
(Loc
,
8026 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8027 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
8031 Constr_List
: constant List_Id
:= New_List
;
8036 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
8037 while Present
(C
) loop
8040 -- It is safe here to call New_Copy_Tree since
8041 -- Force_Evaluation was called on each constraint in
8042 -- Build_Discriminant_Constraints.
8044 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
8050 Make_Subtype_Indication
(Loc
,
8051 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8053 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
8058 Make_Subtype_Declaration
(Loc
,
8059 Defining_Identifier
=> Derived_Type
,
8060 Subtype_Indication
=> New_Indic
));
8064 -- Derivation of subprograms must be delayed until the full subtype
8065 -- has been established, to ensure proper overriding of subprograms
8066 -- inherited by full types. If the derivations occurred as part of
8067 -- the call to Build_Derived_Type above, then the check for type
8068 -- conformance would fail because earlier primitive subprograms
8069 -- could still refer to the full type prior the change to the new
8070 -- subtype and hence would not match the new base type created here.
8071 -- Subprograms are not derived, however, when Derive_Subps is False
8072 -- (since otherwise there could be redundant derivations).
8074 if Derive_Subps
then
8075 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8078 -- For tagged types the Discriminant_Constraint of the new base itype
8079 -- is inherited from the first subtype so that no subtype conformance
8080 -- problem arise when the first subtype overrides primitive
8081 -- operations inherited by the implicit base type.
8084 Set_Discriminant_Constraint
8085 (New_Base
, Discriminant_Constraint
(Derived_Type
));
8091 -- If we get here Derived_Type will have no discriminants or it will be
8092 -- a discriminated unconstrained base type.
8094 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8098 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8099 -- The declaration of a specific descendant of an interface type
8100 -- freezes the interface type (RM 13.14).
8102 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
8103 Freeze_Before
(N
, Parent_Type
);
8106 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8107 -- cannot be declared at a deeper level than its parent type is
8108 -- removed. The check on derivation within a generic body is also
8109 -- relaxed, but there's a restriction that a derived tagged type
8110 -- cannot be declared in a generic body if it's derived directly
8111 -- or indirectly from a formal type of that generic.
8113 if Ada_Version
>= Ada_2005
then
8114 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
8116 Ancestor_Type
: Entity_Id
;
8119 -- Check to see if any ancestor of the derived type is a
8122 Ancestor_Type
:= Parent_Type
;
8123 while not Is_Generic_Type
(Ancestor_Type
)
8124 and then Etype
(Ancestor_Type
) /= Ancestor_Type
8126 Ancestor_Type
:= Etype
(Ancestor_Type
);
8129 -- If the derived type does have a formal type as an
8130 -- ancestor, then it's an error if the derived type is
8131 -- declared within the body of the generic unit that
8132 -- declares the formal type in its generic formal part. It's
8133 -- sufficient to check whether the ancestor type is declared
8134 -- inside the same generic body as the derived type (such as
8135 -- within a nested generic spec), in which case the
8136 -- derivation is legal. If the formal type is declared
8137 -- outside of that generic body, then it's guaranteed that
8138 -- the derived type is declared within the generic body of
8139 -- the generic unit declaring the formal type.
8141 if Is_Generic_Type
(Ancestor_Type
)
8142 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
8143 Enclosing_Generic_Body
(Derived_Type
)
8146 ("parent type of& must not be descendant of formal type"
8147 & " of an enclosing generic body",
8148 Indic
, Derived_Type
);
8153 elsif Type_Access_Level
(Derived_Type
) /=
8154 Type_Access_Level
(Parent_Type
)
8155 and then not Is_Generic_Type
(Derived_Type
)
8157 if Is_Controlled
(Parent_Type
) then
8159 ("controlled type must be declared at the library level",
8163 ("type extension at deeper accessibility level than parent",
8169 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
8172 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
8175 ("parent type of& must not be outside generic body"
8177 Indic
, Derived_Type
);
8183 -- Ada 2005 (AI-251)
8185 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
8187 -- "The declaration of a specific descendant of an interface type
8188 -- freezes the interface type" (RM 13.14).
8193 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
8194 Iface
:= First
(Interface_List
(Type_Def
));
8195 while Present
(Iface
) loop
8196 Freeze_Before
(N
, Etype
(Iface
));
8203 -- STEP 1b : preliminary cleanup of the full view of private types
8205 -- If the type is already marked as having discriminants, then it's the
8206 -- completion of a private type or private extension and we need to
8207 -- retain the discriminants from the partial view if the current
8208 -- declaration has Discriminant_Specifications so that we can verify
8209 -- conformance. However, we must remove any existing components that
8210 -- were inherited from the parent (and attached in Copy_And_Swap)
8211 -- because the full type inherits all appropriate components anyway, and
8212 -- we do not want the partial view's components interfering.
8214 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
8215 Discrim
:= First_Discriminant
(Derived_Type
);
8217 Last_Discrim
:= Discrim
;
8218 Next_Discriminant
(Discrim
);
8219 exit when No
(Discrim
);
8222 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
8224 -- In all other cases wipe out the list of inherited components (even
8225 -- inherited discriminants), it will be properly rebuilt here.
8228 Set_First_Entity
(Derived_Type
, Empty
);
8229 Set_Last_Entity
(Derived_Type
, Empty
);
8232 -- STEP 1c: Initialize some flags for the Derived_Type
8234 -- The following flags must be initialized here so that
8235 -- Process_Discriminants can check that discriminants of tagged types do
8236 -- not have a default initial value and that access discriminants are
8237 -- only specified for limited records. For completeness, these flags are
8238 -- also initialized along with all the other flags below.
8240 -- AI-419: Limitedness is not inherited from an interface parent, so to
8241 -- be limited in that case the type must be explicitly declared as
8242 -- limited. However, task and protected interfaces are always limited.
8244 if Limited_Present
(Type_Def
) then
8245 Set_Is_Limited_Record
(Derived_Type
);
8247 elsif Is_Limited_Record
(Parent_Type
)
8248 or else (Present
(Full_View
(Parent_Type
))
8249 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
8251 if not Is_Interface
(Parent_Type
)
8252 or else Is_Synchronized_Interface
(Parent_Type
)
8253 or else Is_Protected_Interface
(Parent_Type
)
8254 or else Is_Task_Interface
(Parent_Type
)
8256 Set_Is_Limited_Record
(Derived_Type
);
8260 -- STEP 2a: process discriminants of derived type if any
8262 Push_Scope
(Derived_Type
);
8264 if Discriminant_Specs
then
8265 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
8267 -- The following call initializes fields Has_Discriminants and
8268 -- Discriminant_Constraint, unless we are processing the completion
8269 -- of a private type declaration.
8271 Check_Or_Process_Discriminants
(N
, Derived_Type
);
8273 -- For untagged types, the constraint on the Parent_Type must be
8274 -- present and is used to rename the discriminants.
8276 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
8277 Error_Msg_N
("untagged parent must have discriminants", Indic
);
8279 elsif not Is_Tagged
and then not Constraint_Present
then
8281 ("discriminant constraint needed for derived untagged records",
8284 -- Otherwise the parent subtype must be constrained unless we have a
8285 -- private extension.
8287 elsif not Constraint_Present
8288 and then not Private_Extension
8289 and then not Is_Constrained
(Parent_Type
)
8292 ("unconstrained type not allowed in this context", Indic
);
8294 elsif Constraint_Present
then
8295 -- The following call sets the field Corresponding_Discriminant
8296 -- for the discriminants in the Derived_Type.
8298 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
8300 -- For untagged types all new discriminants must rename
8301 -- discriminants in the parent. For private extensions new
8302 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8304 Discrim
:= First_Discriminant
(Derived_Type
);
8305 while Present
(Discrim
) loop
8307 and then No
(Corresponding_Discriminant
(Discrim
))
8310 ("new discriminants must constrain old ones", Discrim
);
8312 elsif Private_Extension
8313 and then Present
(Corresponding_Discriminant
(Discrim
))
8316 ("only static constraints allowed for parent"
8317 & " discriminants in the partial view", Indic
);
8321 -- If a new discriminant is used in the constraint, then its
8322 -- subtype must be statically compatible with the parent
8323 -- discriminant's subtype (3.7(15)).
8325 -- However, if the record contains an array constrained by
8326 -- the discriminant but with some different bound, the compiler
8327 -- attemps to create a smaller range for the discriminant type.
8328 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8329 -- the discriminant type is a scalar type, the check must use
8330 -- the original discriminant type in the parent declaration.
8333 Corr_Disc
: constant Entity_Id
:=
8334 Corresponding_Discriminant
(Discrim
);
8335 Disc_Type
: constant Entity_Id
:= Etype
(Discrim
);
8336 Corr_Type
: Entity_Id
;
8339 if Present
(Corr_Disc
) then
8340 if Is_Scalar_Type
(Disc_Type
) then
8342 Entity
(Discriminant_Type
(Parent
(Corr_Disc
)));
8344 Corr_Type
:= Etype
(Corr_Disc
);
8348 Subtypes_Statically_Compatible
(Disc_Type
, Corr_Type
)
8351 ("subtype must be compatible "
8352 & "with parent discriminant",
8358 Next_Discriminant
(Discrim
);
8361 -- Check whether the constraints of the full view statically
8362 -- match those imposed by the parent subtype [7.3(13)].
8364 if Present
(Stored_Constraint
(Derived_Type
)) then
8369 C1
:= First_Elmt
(Discs
);
8370 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
8371 while Present
(C1
) and then Present
(C2
) loop
8373 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8376 ("not conformant with previous declaration",
8387 -- STEP 2b: No new discriminants, inherit discriminants if any
8390 if Private_Extension
then
8391 Set_Has_Unknown_Discriminants
8393 Has_Unknown_Discriminants
(Parent_Type
)
8394 or else Unknown_Discriminants_Present
(N
));
8396 -- The partial view of the parent may have unknown discriminants,
8397 -- but if the full view has discriminants and the parent type is
8398 -- in scope they must be inherited.
8400 elsif Has_Unknown_Discriminants
(Parent_Type
)
8402 (not Has_Discriminants
(Parent_Type
)
8403 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
8405 Set_Has_Unknown_Discriminants
(Derived_Type
);
8408 if not Has_Unknown_Discriminants
(Derived_Type
)
8409 and then not Has_Unknown_Discriminants
(Parent_Base
)
8410 and then Has_Discriminants
(Parent_Type
)
8412 Inherit_Discrims
:= True;
8413 Set_Has_Discriminants
8414 (Derived_Type
, True);
8415 Set_Discriminant_Constraint
8416 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
8419 -- The following test is true for private types (remember
8420 -- transformation 5. is not applied to those) and in an error
8423 if Constraint_Present
then
8424 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8427 -- For now mark a new derived type as constrained only if it has no
8428 -- discriminants. At the end of Build_Derived_Record_Type we properly
8429 -- set this flag in the case of private extensions. See comments in
8430 -- point 9. just before body of Build_Derived_Record_Type.
8434 not (Inherit_Discrims
8435 or else Has_Unknown_Discriminants
(Derived_Type
)));
8438 -- STEP 3: initialize fields of derived type
8440 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
8441 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
8443 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8444 -- but cannot be interfaces
8446 if not Private_Extension
8447 and then Ekind
(Derived_Type
) /= E_Private_Type
8448 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
8450 if Interface_Present
(Type_Def
) then
8451 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
8454 Set_Interfaces
(Derived_Type
, No_Elist
);
8457 -- Fields inherited from the Parent_Type
8459 Set_Has_Specified_Layout
8460 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
8461 Set_Is_Limited_Composite
8462 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
8463 Set_Is_Private_Composite
8464 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
8466 if Is_Tagged_Type
(Parent_Type
) then
8467 Set_No_Tagged_Streams_Pragma
8468 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8471 -- Fields inherited from the Parent_Base
8473 Set_Has_Controlled_Component
8474 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
8475 Set_Has_Non_Standard_Rep
8476 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8477 Set_Has_Primitive_Operations
8478 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
8480 -- Fields inherited from the Parent_Base in the non-private case
8482 if Ekind
(Derived_Type
) = E_Record_Type
then
8483 Set_Has_Complex_Representation
8484 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
8487 -- Fields inherited from the Parent_Base for record types
8489 if Is_Record_Type
(Derived_Type
) then
8491 Parent_Full
: Entity_Id
;
8494 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8495 -- Parent_Base can be a private type or private extension. Go
8496 -- to the full view here to get the E_Record_Type specific flags.
8498 if Present
(Full_View
(Parent_Base
)) then
8499 Parent_Full
:= Full_View
(Parent_Base
);
8501 Parent_Full
:= Parent_Base
;
8504 Set_OK_To_Reorder_Components
8505 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
8509 -- Set fields for private derived types
8511 if Is_Private_Type
(Derived_Type
) then
8512 Set_Depends_On_Private
(Derived_Type
, True);
8513 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
8515 -- Inherit fields from non private record types. If this is the
8516 -- completion of a derivation from a private type, the parent itself
8517 -- is private, and the attributes come from its full view, which must
8521 if Is_Private_Type
(Parent_Base
)
8522 and then not Is_Record_Type
(Parent_Base
)
8524 Set_Component_Alignment
8525 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
8527 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
8529 Set_Component_Alignment
8530 (Derived_Type
, Component_Alignment
(Parent_Base
));
8532 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
8536 -- Set fields for tagged types
8539 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
8541 -- All tagged types defined in Ada.Finalization are controlled
8543 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
8544 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
8545 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
8547 Set_Is_Controlled
(Derived_Type
);
8549 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
8552 -- Minor optimization: there is no need to generate the class-wide
8553 -- entity associated with an underlying record view.
8555 if not Is_Underlying_Record_View
(Derived_Type
) then
8556 Make_Class_Wide_Type
(Derived_Type
);
8559 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
8561 if Has_Discriminants
(Derived_Type
)
8562 and then Constraint_Present
8564 Set_Stored_Constraint
8565 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
8568 if Ada_Version
>= Ada_2005
then
8570 Ifaces_List
: Elist_Id
;
8573 -- Checks rules 3.9.4 (13/2 and 14/2)
8575 if Comes_From_Source
(Derived_Type
)
8576 and then not Is_Private_Type
(Derived_Type
)
8577 and then Is_Interface
(Parent_Type
)
8578 and then not Is_Interface
(Derived_Type
)
8580 if Is_Task_Interface
(Parent_Type
) then
8582 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8585 elsif Is_Protected_Interface
(Parent_Type
) then
8587 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8592 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8594 Check_Interfaces
(N
, Type_Def
);
8596 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8597 -- not already in the parents.
8601 Ifaces_List
=> Ifaces_List
,
8602 Exclude_Parents
=> True);
8604 Set_Interfaces
(Derived_Type
, Ifaces_List
);
8606 -- If the derived type is the anonymous type created for
8607 -- a declaration whose parent has a constraint, propagate
8608 -- the interface list to the source type. This must be done
8609 -- prior to the completion of the analysis of the source type
8610 -- because the components in the extension may contain current
8611 -- instances whose legality depends on some ancestor.
8613 if Is_Itype
(Derived_Type
) then
8615 Def
: constant Node_Id
:=
8616 Associated_Node_For_Itype
(Derived_Type
);
8619 and then Nkind
(Def
) = N_Full_Type_Declaration
8622 (Defining_Identifier
(Def
), Ifaces_List
);
8627 -- A type extension is automatically Ghost when one of its
8628 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8629 -- also inherited when the parent type is Ghost, but this is
8630 -- done in Build_Derived_Type as the mechanism also handles
8631 -- untagged derivations.
8633 if Implements_Ghost_Interface
(Derived_Type
) then
8634 Set_Is_Ghost_Entity
(Derived_Type
);
8640 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
8641 Set_Has_Non_Standard_Rep
8642 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8645 -- STEP 4: Inherit components from the parent base and constrain them.
8646 -- Apply the second transformation described in point 6. above.
8648 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
8649 or else not Has_Discriminants
(Parent_Type
)
8650 or else not Is_Constrained
(Parent_Type
)
8654 Constrs
:= Discriminant_Constraint
(Parent_Type
);
8659 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
8661 -- STEP 5a: Copy the parent record declaration for untagged types
8663 if not Is_Tagged
then
8665 -- Discriminant_Constraint (Derived_Type) has been properly
8666 -- constructed. Save it and temporarily set it to Empty because we
8667 -- do not want the call to New_Copy_Tree below to mess this list.
8669 if Has_Discriminants
(Derived_Type
) then
8670 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
8671 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
8673 Save_Discr_Constr
:= No_Elist
;
8676 -- Save the Etype field of Derived_Type. It is correctly set now,
8677 -- but the call to New_Copy tree may remap it to point to itself,
8678 -- which is not what we want. Ditto for the Next_Entity field.
8680 Save_Etype
:= Etype
(Derived_Type
);
8681 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
8683 -- Assoc_List maps all stored discriminants in the Parent_Base to
8684 -- stored discriminants in the Derived_Type. It is fundamental that
8685 -- no types or itypes with discriminants other than the stored
8686 -- discriminants appear in the entities declared inside
8687 -- Derived_Type, since the back end cannot deal with it.
8691 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
8693 -- Restore the fields saved prior to the New_Copy_Tree call
8694 -- and compute the stored constraint.
8696 Set_Etype
(Derived_Type
, Save_Etype
);
8697 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
8699 if Has_Discriminants
(Derived_Type
) then
8700 Set_Discriminant_Constraint
8701 (Derived_Type
, Save_Discr_Constr
);
8702 Set_Stored_Constraint
8703 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
8704 Replace_Components
(Derived_Type
, New_Decl
);
8705 Set_Has_Implicit_Dereference
8706 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
8709 -- Insert the new derived type declaration
8711 Rewrite
(N
, New_Decl
);
8713 -- STEP 5b: Complete the processing for record extensions in generics
8715 -- There is no completion for record extensions declared in the
8716 -- parameter part of a generic, so we need to complete processing for
8717 -- these generic record extensions here. The Record_Type_Definition call
8718 -- will change the Ekind of the components from E_Void to E_Component.
8720 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
8721 Record_Type_Definition
(Empty
, Derived_Type
);
8723 -- STEP 5c: Process the record extension for non private tagged types
8725 elsif not Private_Extension
then
8726 Expand_Record_Extension
(Derived_Type
, Type_Def
);
8728 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8729 -- derived type to propagate some semantic information. This led
8730 -- to other ASIS failures and has been removed.
8732 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8733 -- implemented interfaces if we are in expansion mode
8736 and then Has_Interfaces
(Derived_Type
)
8738 Add_Interface_Tag_Components
(N
, Derived_Type
);
8741 -- Analyze the record extension
8743 Record_Type_Definition
8744 (Record_Extension_Part
(Type_Def
), Derived_Type
);
8749 -- Nothing else to do if there is an error in the derivation.
8750 -- An unusual case: the full view may be derived from a type in an
8751 -- instance, when the partial view was used illegally as an actual
8752 -- in that instance, leading to a circular definition.
8754 if Etype
(Derived_Type
) = Any_Type
8755 or else Etype
(Parent_Type
) = Derived_Type
8760 -- Set delayed freeze and then derive subprograms, we need to do
8761 -- this in this order so that derived subprograms inherit the
8762 -- derived freeze if necessary.
8764 Set_Has_Delayed_Freeze
(Derived_Type
);
8766 if Derive_Subps
then
8767 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8770 -- If we have a private extension which defines a constrained derived
8771 -- type mark as constrained here after we have derived subprograms. See
8772 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8774 if Private_Extension
and then Inherit_Discrims
then
8775 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
8776 Set_Is_Constrained
(Derived_Type
, True);
8777 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
8779 elsif Is_Constrained
(Parent_Type
) then
8781 (Derived_Type
, True);
8782 Set_Discriminant_Constraint
8783 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
8787 -- Update the class-wide type, which shares the now-completed entity
8788 -- list with its specific type. In case of underlying record views,
8789 -- we do not generate the corresponding class wide entity.
8792 and then not Is_Underlying_Record_View
(Derived_Type
)
8795 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
8797 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
8800 Check_Function_Writable_Actuals
(N
);
8801 end Build_Derived_Record_Type
;
8803 ------------------------
8804 -- Build_Derived_Type --
8805 ------------------------
8807 procedure Build_Derived_Type
8809 Parent_Type
: Entity_Id
;
8810 Derived_Type
: Entity_Id
;
8811 Is_Completion
: Boolean;
8812 Derive_Subps
: Boolean := True)
8814 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
8817 -- Set common attributes
8819 Set_Scope
(Derived_Type
, Current_Scope
);
8821 Set_Etype
(Derived_Type
, Parent_Base
);
8822 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8823 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
8824 Set_Has_Protected
(Derived_Type
, Has_Protected
(Parent_Base
));
8826 Set_Size_Info
(Derived_Type
, Parent_Type
);
8827 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
8828 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
8829 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
8830 Set_Is_Volatile
(Derived_Type
, Is_Volatile
(Parent_Type
));
8832 if Is_Tagged_Type
(Derived_Type
) then
8833 Set_No_Tagged_Streams_Pragma
8834 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8837 -- If the parent has primitive routines, set the derived type link
8839 if Has_Primitive_Operations
(Parent_Type
) then
8840 Set_Derived_Type_Link
(Parent_Base
, Derived_Type
);
8843 -- If the parent type is a private subtype, the convention on the base
8844 -- type may be set in the private part, and not propagated to the
8845 -- subtype until later, so we obtain the convention from the base type.
8847 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
8849 -- Set SSO default for record or array type
8851 if (Is_Array_Type
(Derived_Type
) or else Is_Record_Type
(Derived_Type
))
8852 and then Is_Base_Type
(Derived_Type
)
8854 Set_Default_SSO
(Derived_Type
);
8857 -- Propagate invariant information. The new type has invariants if
8858 -- they are inherited from the parent type, and these invariants can
8859 -- be further inherited, so both flags are set.
8861 -- We similarly inherit predicates
8863 if Has_Predicates
(Parent_Type
) then
8864 Set_Has_Predicates
(Derived_Type
);
8867 -- The derived type inherits the representation clauses of the parent
8869 Inherit_Rep_Item_Chain
(Derived_Type
, Parent_Type
);
8871 -- Propagate the attributes related to pragma Default_Initial_Condition
8872 -- from the parent type to the private extension. A derived type always
8873 -- inherits the default initial condition flag from the parent type. If
8874 -- the derived type carries its own Default_Initial_Condition pragma,
8875 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8876 -- mutually exclusive.
8878 Propagate_Default_Init_Cond_Attributes
8879 (From_Typ
=> Parent_Type
,
8880 To_Typ
=> Derived_Type
,
8881 Parent_To_Derivation
=> True);
8883 -- If the parent type has delayed rep aspects, then mark the derived
8884 -- type as possibly inheriting a delayed rep aspect.
8886 if Has_Delayed_Rep_Aspects
(Parent_Type
) then
8887 Set_May_Inherit_Delayed_Rep_Aspects
(Derived_Type
);
8890 -- Propagate the attributes related to pragma Ghost from the parent type
8891 -- to the derived type or type extension (SPARK RM 6.9(9)).
8893 if Is_Ghost_Entity
(Parent_Type
) then
8894 Set_Is_Ghost_Entity
(Derived_Type
);
8897 -- Type dependent processing
8899 case Ekind
(Parent_Type
) is
8900 when Numeric_Kind
=>
8901 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
8904 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
8908 | Class_Wide_Kind
=>
8909 Build_Derived_Record_Type
8910 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
8913 when Enumeration_Kind
=>
8914 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
8917 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
8919 when Incomplete_Or_Private_Kind
=>
8920 Build_Derived_Private_Type
8921 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
8923 -- For discriminated types, the derivation includes deriving
8924 -- primitive operations. For others it is done below.
8926 if Is_Tagged_Type
(Parent_Type
)
8927 or else Has_Discriminants
(Parent_Type
)
8928 or else (Present
(Full_View
(Parent_Type
))
8929 and then Has_Discriminants
(Full_View
(Parent_Type
)))
8934 when Concurrent_Kind
=>
8935 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
8938 raise Program_Error
;
8941 -- Nothing more to do if some error occurred
8943 if Etype
(Derived_Type
) = Any_Type
then
8947 -- Set delayed freeze and then derive subprograms, we need to do this
8948 -- in this order so that derived subprograms inherit the derived freeze
8951 Set_Has_Delayed_Freeze
(Derived_Type
);
8953 if Derive_Subps
then
8954 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8957 Set_Has_Primitive_Operations
8958 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
8959 end Build_Derived_Type
;
8961 -----------------------
8962 -- Build_Discriminal --
8963 -----------------------
8965 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
8966 D_Minal
: Entity_Id
;
8967 CR_Disc
: Entity_Id
;
8970 -- A discriminal has the same name as the discriminant
8972 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8974 Set_Ekind
(D_Minal
, E_In_Parameter
);
8975 Set_Mechanism
(D_Minal
, Default_Mechanism
);
8976 Set_Etype
(D_Minal
, Etype
(Discrim
));
8977 Set_Scope
(D_Minal
, Current_Scope
);
8979 Set_Discriminal
(Discrim
, D_Minal
);
8980 Set_Discriminal_Link
(D_Minal
, Discrim
);
8982 -- For task types, build at once the discriminants of the corresponding
8983 -- record, which are needed if discriminants are used in entry defaults
8984 -- and in family bounds.
8986 if Is_Concurrent_Type
(Current_Scope
)
8988 Is_Limited_Type
(Current_Scope
)
8990 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8992 Set_Ekind
(CR_Disc
, E_In_Parameter
);
8993 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
8994 Set_Etype
(CR_Disc
, Etype
(Discrim
));
8995 Set_Scope
(CR_Disc
, Current_Scope
);
8996 Set_Discriminal_Link
(CR_Disc
, Discrim
);
8997 Set_CR_Discriminant
(Discrim
, CR_Disc
);
8999 end Build_Discriminal
;
9001 ------------------------------------
9002 -- Build_Discriminant_Constraints --
9003 ------------------------------------
9005 function Build_Discriminant_Constraints
9008 Derived_Def
: Boolean := False) return Elist_Id
9010 C
: constant Node_Id
:= Constraint
(Def
);
9011 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
9013 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
9014 -- Saves the expression corresponding to a given discriminant in T
9016 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
9017 -- Return the Position number within array Discr_Expr of a discriminant
9018 -- D within the discriminant list of the discriminated type T.
9020 procedure Process_Discriminant_Expression
9023 -- If this is a discriminant constraint on a partial view, do not
9024 -- generate an overflow check on the discriminant expression. The check
9025 -- will be generated when constraining the full view. Otherwise the
9026 -- backend creates duplicate symbols for the temporaries corresponding
9027 -- to the expressions to be checked, causing spurious assembler errors.
9033 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
9037 Disc
:= First_Discriminant
(T
);
9038 for J
in Discr_Expr
'Range loop
9043 Next_Discriminant
(Disc
);
9046 -- Note: Since this function is called on discriminants that are
9047 -- known to belong to the discriminated type, falling through the
9048 -- loop with no match signals an internal compiler error.
9050 raise Program_Error
;
9053 -------------------------------------
9054 -- Process_Discriminant_Expression --
9055 -------------------------------------
9057 procedure Process_Discriminant_Expression
9061 BDT
: constant Entity_Id
:= Base_Type
(Etype
(D
));
9064 -- If this is a discriminant constraint on a partial view, do
9065 -- not generate an overflow on the discriminant expression. The
9066 -- check will be generated when constraining the full view.
9068 if Is_Private_Type
(T
)
9069 and then Present
(Full_View
(T
))
9071 Analyze_And_Resolve
(Expr
, BDT
, Suppress
=> Overflow_Check
);
9073 Analyze_And_Resolve
(Expr
, BDT
);
9075 end Process_Discriminant_Expression
;
9077 -- Declarations local to Build_Discriminant_Constraints
9081 Elist
: constant Elist_Id
:= New_Elmt_List
;
9089 Discrim_Present
: Boolean := False;
9091 -- Start of processing for Build_Discriminant_Constraints
9094 -- The following loop will process positional associations only.
9095 -- For a positional association, the (single) discriminant is
9096 -- implicitly specified by position, in textual order (RM 3.7.2).
9098 Discr
:= First_Discriminant
(T
);
9099 Constr
:= First
(Constraints
(C
));
9100 for D
in Discr_Expr
'Range loop
9101 exit when Nkind
(Constr
) = N_Discriminant_Association
;
9104 Error_Msg_N
("too few discriminants given in constraint", C
);
9105 return New_Elmt_List
;
9107 elsif Nkind
(Constr
) = N_Range
9108 or else (Nkind
(Constr
) = N_Attribute_Reference
9109 and then Attribute_Name
(Constr
) = Name_Range
)
9112 ("a range is not a valid discriminant constraint", Constr
);
9113 Discr_Expr
(D
) := Error
;
9116 Process_Discriminant_Expression
(Constr
, Discr
);
9117 Discr_Expr
(D
) := Constr
;
9120 Next_Discriminant
(Discr
);
9124 if No
(Discr
) and then Present
(Constr
) then
9125 Error_Msg_N
("too many discriminants given in constraint", Constr
);
9126 return New_Elmt_List
;
9129 -- Named associations can be given in any order, but if both positional
9130 -- and named associations are used in the same discriminant constraint,
9131 -- then positional associations must occur first, at their normal
9132 -- position. Hence once a named association is used, the rest of the
9133 -- discriminant constraint must use only named associations.
9135 while Present
(Constr
) loop
9137 -- Positional association forbidden after a named association
9139 if Nkind
(Constr
) /= N_Discriminant_Association
then
9140 Error_Msg_N
("positional association follows named one", Constr
);
9141 return New_Elmt_List
;
9143 -- Otherwise it is a named association
9146 -- E records the type of the discriminants in the named
9147 -- association. All the discriminants specified in the same name
9148 -- association must have the same type.
9152 -- Search the list of discriminants in T to see if the simple name
9153 -- given in the constraint matches any of them.
9155 Id
:= First
(Selector_Names
(Constr
));
9156 while Present
(Id
) loop
9159 -- If Original_Discriminant is present, we are processing a
9160 -- generic instantiation and this is an instance node. We need
9161 -- to find the name of the corresponding discriminant in the
9162 -- actual record type T and not the name of the discriminant in
9163 -- the generic formal. Example:
9166 -- type G (D : int) is private;
9168 -- subtype W is G (D => 1);
9170 -- type Rec (X : int) is record ... end record;
9171 -- package Q is new P (G => Rec);
9173 -- At the point of the instantiation, formal type G is Rec
9174 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9175 -- which really looks like "subtype W is Rec (D => 1);" at
9176 -- the point of instantiation, we want to find the discriminant
9177 -- that corresponds to D in Rec, i.e. X.
9179 if Present
(Original_Discriminant
(Id
))
9180 and then In_Instance
9182 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
9186 Discr
:= First_Discriminant
(T
);
9187 while Present
(Discr
) loop
9188 if Chars
(Discr
) = Chars
(Id
) then
9193 Next_Discriminant
(Discr
);
9197 Error_Msg_N
("& does not match any discriminant", Id
);
9198 return New_Elmt_List
;
9200 -- If the parent type is a generic formal, preserve the
9201 -- name of the discriminant for subsequent instances.
9202 -- see comment at the beginning of this if statement.
9204 elsif Is_Generic_Type
(Root_Type
(T
)) then
9205 Set_Original_Discriminant
(Id
, Discr
);
9209 Position
:= Pos_Of_Discr
(T
, Discr
);
9211 if Present
(Discr_Expr
(Position
)) then
9212 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
9215 -- Each discriminant specified in the same named association
9216 -- must be associated with a separate copy of the
9217 -- corresponding expression.
9219 if Present
(Next
(Id
)) then
9220 Expr
:= New_Copy_Tree
(Expression
(Constr
));
9221 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
9223 Expr
:= Expression
(Constr
);
9226 Discr_Expr
(Position
) := Expr
;
9227 Process_Discriminant_Expression
(Expr
, Discr
);
9230 -- A discriminant association with more than one discriminant
9231 -- name is only allowed if the named discriminants are all of
9232 -- the same type (RM 3.7.1(8)).
9235 E
:= Base_Type
(Etype
(Discr
));
9237 elsif Base_Type
(Etype
(Discr
)) /= E
then
9239 ("all discriminants in an association " &
9240 "must have the same type", Id
);
9250 -- A discriminant constraint must provide exactly one value for each
9251 -- discriminant of the type (RM 3.7.1(8)).
9253 for J
in Discr_Expr
'Range loop
9254 if No
(Discr_Expr
(J
)) then
9255 Error_Msg_N
("too few discriminants given in constraint", C
);
9256 return New_Elmt_List
;
9260 -- Determine if there are discriminant expressions in the constraint
9262 for J
in Discr_Expr
'Range loop
9263 if Denotes_Discriminant
9264 (Discr_Expr
(J
), Check_Concurrent
=> True)
9266 Discrim_Present
:= True;
9270 -- Build an element list consisting of the expressions given in the
9271 -- discriminant constraint and apply the appropriate checks. The list
9272 -- is constructed after resolving any named discriminant associations
9273 -- and therefore the expressions appear in the textual order of the
9276 Discr
:= First_Discriminant
(T
);
9277 for J
in Discr_Expr
'Range loop
9278 if Discr_Expr
(J
) /= Error
then
9279 Append_Elmt
(Discr_Expr
(J
), Elist
);
9281 -- If any of the discriminant constraints is given by a
9282 -- discriminant and we are in a derived type declaration we
9283 -- have a discriminant renaming. Establish link between new
9284 -- and old discriminant.
9286 if Denotes_Discriminant
(Discr_Expr
(J
)) then
9288 Set_Corresponding_Discriminant
9289 (Entity
(Discr_Expr
(J
)), Discr
);
9292 -- Force the evaluation of non-discriminant expressions.
9293 -- If we have found a discriminant in the constraint 3.4(26)
9294 -- and 3.8(18) demand that no range checks are performed are
9295 -- after evaluation. If the constraint is for a component
9296 -- definition that has a per-object constraint, expressions are
9297 -- evaluated but not checked either. In all other cases perform
9301 if Discrim_Present
then
9304 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
9306 Has_Per_Object_Constraint
9307 (Defining_Identifier
(Parent
(Parent
(Def
))))
9311 elsif Is_Access_Type
(Etype
(Discr
)) then
9312 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
9315 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
9318 Force_Evaluation
(Discr_Expr
(J
));
9321 -- Check that the designated type of an access discriminant's
9322 -- expression is not a class-wide type unless the discriminant's
9323 -- designated type is also class-wide.
9325 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
9326 and then not Is_Class_Wide_Type
9327 (Designated_Type
(Etype
(Discr
)))
9328 and then Etype
(Discr_Expr
(J
)) /= Any_Type
9329 and then Is_Class_Wide_Type
9330 (Designated_Type
(Etype
(Discr_Expr
(J
))))
9332 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
9334 elsif Is_Access_Type
(Etype
(Discr
))
9335 and then not Is_Access_Constant
(Etype
(Discr
))
9336 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
9337 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
9340 ("constraint for discriminant& must be access to variable",
9345 Next_Discriminant
(Discr
);
9349 end Build_Discriminant_Constraints
;
9351 ---------------------------------
9352 -- Build_Discriminated_Subtype --
9353 ---------------------------------
9355 procedure Build_Discriminated_Subtype
9359 Related_Nod
: Node_Id
;
9360 For_Access
: Boolean := False)
9362 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
9363 Constrained
: constant Boolean :=
9365 and then not Is_Empty_Elmt_List
(Elist
)
9366 and then not Is_Class_Wide_Type
(T
))
9367 or else Is_Constrained
(T
);
9370 if Ekind
(T
) = E_Record_Type
then
9372 Set_Ekind
(Def_Id
, E_Private_Subtype
);
9373 Set_Is_For_Access_Subtype
(Def_Id
, True);
9375 Set_Ekind
(Def_Id
, E_Record_Subtype
);
9378 -- Inherit preelaboration flag from base, for types for which it
9379 -- may have been set: records, private types, protected types.
9381 Set_Known_To_Have_Preelab_Init
9382 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9384 elsif Ekind
(T
) = E_Task_Type
then
9385 Set_Ekind
(Def_Id
, E_Task_Subtype
);
9387 elsif Ekind
(T
) = E_Protected_Type
then
9388 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
9389 Set_Known_To_Have_Preelab_Init
9390 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9392 elsif Is_Private_Type
(T
) then
9393 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
9394 Set_Known_To_Have_Preelab_Init
9395 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9397 -- Private subtypes may have private dependents
9399 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
9401 elsif Is_Class_Wide_Type
(T
) then
9402 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
9405 -- Incomplete type. Attach subtype to list of dependents, to be
9406 -- completed with full view of parent type, unless is it the
9407 -- designated subtype of a record component within an init_proc.
9408 -- This last case arises for a component of an access type whose
9409 -- designated type is incomplete (e.g. a Taft Amendment type).
9410 -- The designated subtype is within an inner scope, and needs no
9411 -- elaboration, because only the access type is needed in the
9412 -- initialization procedure.
9414 Set_Ekind
(Def_Id
, Ekind
(T
));
9416 if For_Access
and then Within_Init_Proc
then
9419 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
9423 Set_Etype
(Def_Id
, T
);
9424 Init_Size_Align
(Def_Id
);
9425 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
9426 Set_Is_Constrained
(Def_Id
, Constrained
);
9428 Set_First_Entity
(Def_Id
, First_Entity
(T
));
9429 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
9430 Set_Has_Implicit_Dereference
9431 (Def_Id
, Has_Implicit_Dereference
(T
));
9433 -- If the subtype is the completion of a private declaration, there may
9434 -- have been representation clauses for the partial view, and they must
9435 -- be preserved. Build_Derived_Type chains the inherited clauses with
9436 -- the ones appearing on the extension. If this comes from a subtype
9437 -- declaration, all clauses are inherited.
9439 if No
(First_Rep_Item
(Def_Id
)) then
9440 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
9443 if Is_Tagged_Type
(T
) then
9444 Set_Is_Tagged_Type
(Def_Id
);
9445 Set_No_Tagged_Streams_Pragma
(Def_Id
, No_Tagged_Streams_Pragma
(T
));
9446 Make_Class_Wide_Type
(Def_Id
);
9449 Set_Stored_Constraint
(Def_Id
, No_Elist
);
9452 Set_Discriminant_Constraint
(Def_Id
, Elist
);
9453 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
9456 if Is_Tagged_Type
(T
) then
9458 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9459 -- concurrent record type (which has the list of primitive
9462 if Ada_Version
>= Ada_2005
9463 and then Is_Concurrent_Type
(T
)
9465 Set_Corresponding_Record_Type
(Def_Id
,
9466 Corresponding_Record_Type
(T
));
9468 Set_Direct_Primitive_Operations
(Def_Id
,
9469 Direct_Primitive_Operations
(T
));
9472 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
9475 -- Subtypes introduced by component declarations do not need to be
9476 -- marked as delayed, and do not get freeze nodes, because the semantics
9477 -- verifies that the parents of the subtypes are frozen before the
9478 -- enclosing record is frozen.
9480 if not Is_Type
(Scope
(Def_Id
)) then
9481 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
9483 if Is_Private_Type
(T
)
9484 and then Present
(Full_View
(T
))
9486 Conditional_Delay
(Def_Id
, Full_View
(T
));
9488 Conditional_Delay
(Def_Id
, T
);
9492 if Is_Record_Type
(T
) then
9493 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
9496 and then not Is_Empty_Elmt_List
(Elist
)
9497 and then not For_Access
9499 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
9500 elsif not For_Access
then
9501 Set_Cloned_Subtype
(Def_Id
, T
);
9504 end Build_Discriminated_Subtype
;
9506 ---------------------------
9507 -- Build_Itype_Reference --
9508 ---------------------------
9510 procedure Build_Itype_Reference
9514 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
9517 -- Itype references are only created for use by the back-end
9519 if Inside_A_Generic
then
9522 Set_Itype
(IR
, Ityp
);
9523 Insert_After
(Nod
, IR
);
9525 end Build_Itype_Reference
;
9527 ------------------------
9528 -- Build_Scalar_Bound --
9529 ------------------------
9531 function Build_Scalar_Bound
9534 Der_T
: Entity_Id
) return Node_Id
9536 New_Bound
: Entity_Id
;
9539 -- Note: not clear why this is needed, how can the original bound
9540 -- be unanalyzed at this point? and if it is, what business do we
9541 -- have messing around with it? and why is the base type of the
9542 -- parent type the right type for the resolution. It probably is
9543 -- not. It is OK for the new bound we are creating, but not for
9544 -- the old one??? Still if it never happens, no problem.
9546 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
9548 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
9549 New_Bound
:= New_Copy
(Bound
);
9550 Set_Etype
(New_Bound
, Der_T
);
9551 Set_Analyzed
(New_Bound
);
9553 elsif Is_Entity_Name
(Bound
) then
9554 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
9556 -- The following is almost certainly wrong. What business do we have
9557 -- relocating a node (Bound) that is presumably still attached to
9558 -- the tree elsewhere???
9561 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
9564 Set_Etype
(New_Bound
, Der_T
);
9566 end Build_Scalar_Bound
;
9568 --------------------------------
9569 -- Build_Underlying_Full_View --
9570 --------------------------------
9572 procedure Build_Underlying_Full_View
9577 Loc
: constant Source_Ptr
:= Sloc
(N
);
9578 Subt
: constant Entity_Id
:=
9579 Make_Defining_Identifier
9580 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
9587 procedure Set_Discriminant_Name
(Id
: Node_Id
);
9588 -- If the derived type has discriminants, they may rename discriminants
9589 -- of the parent. When building the full view of the parent, we need to
9590 -- recover the names of the original discriminants if the constraint is
9591 -- given by named associations.
9593 ---------------------------
9594 -- Set_Discriminant_Name --
9595 ---------------------------
9597 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
9601 Set_Original_Discriminant
(Id
, Empty
);
9603 if Has_Discriminants
(Typ
) then
9604 Disc
:= First_Discriminant
(Typ
);
9605 while Present
(Disc
) loop
9606 if Chars
(Disc
) = Chars
(Id
)
9607 and then Present
(Corresponding_Discriminant
(Disc
))
9609 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
9611 Next_Discriminant
(Disc
);
9614 end Set_Discriminant_Name
;
9616 -- Start of processing for Build_Underlying_Full_View
9619 if Nkind
(N
) = N_Full_Type_Declaration
then
9620 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
9622 elsif Nkind
(N
) = N_Subtype_Declaration
then
9623 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
9625 elsif Nkind
(N
) = N_Component_Declaration
then
9628 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
9631 raise Program_Error
;
9634 C
:= First
(Constraints
(Constr
));
9635 while Present
(C
) loop
9636 if Nkind
(C
) = N_Discriminant_Association
then
9637 Id
:= First
(Selector_Names
(C
));
9638 while Present
(Id
) loop
9639 Set_Discriminant_Name
(Id
);
9648 Make_Subtype_Declaration
(Loc
,
9649 Defining_Identifier
=> Subt
,
9650 Subtype_Indication
=>
9651 Make_Subtype_Indication
(Loc
,
9652 Subtype_Mark
=> New_Occurrence_Of
(Par
, Loc
),
9653 Constraint
=> New_Copy_Tree
(Constr
)));
9655 -- If this is a component subtype for an outer itype, it is not
9656 -- a list member, so simply set the parent link for analysis: if
9657 -- the enclosing type does not need to be in a declarative list,
9658 -- neither do the components.
9660 if Is_List_Member
(N
)
9661 and then Nkind
(N
) /= N_Component_Declaration
9663 Insert_Before
(N
, Indic
);
9665 Set_Parent
(Indic
, Parent
(N
));
9669 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
9670 end Build_Underlying_Full_View
;
9672 -------------------------------
9673 -- Check_Abstract_Overriding --
9674 -------------------------------
9676 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
9677 Alias_Subp
: Entity_Id
;
9683 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
9684 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9685 -- which has pragma Implemented already set. Check whether Subp's entity
9686 -- kind conforms to the implementation kind of the overridden routine.
9688 procedure Check_Pragma_Implemented
9690 Iface_Subp
: Entity_Id
);
9691 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9692 -- Iface_Subp and both entities have pragma Implemented already set on
9693 -- them. Check whether the two implementation kinds are conforming.
9695 procedure Inherit_Pragma_Implemented
9697 Iface_Subp
: Entity_Id
);
9698 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9699 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9700 -- Propagate the implementation kind of Iface_Subp to Subp.
9702 ------------------------------
9703 -- Check_Pragma_Implemented --
9704 ------------------------------
9706 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
9707 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
9708 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
9709 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
9710 Contr_Typ
: Entity_Id
;
9711 Impl_Subp
: Entity_Id
;
9714 -- Subp must have an alias since it is a hidden entity used to link
9715 -- an interface subprogram to its overriding counterpart.
9717 pragma Assert
(Present
(Subp_Alias
));
9719 -- Handle aliases to synchronized wrappers
9721 Impl_Subp
:= Subp_Alias
;
9723 if Is_Primitive_Wrapper
(Impl_Subp
) then
9724 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
9727 -- Extract the type of the controlling formal
9729 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
9731 if Is_Concurrent_Record_Type
(Contr_Typ
) then
9732 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
9735 -- An interface subprogram whose implementation kind is By_Entry must
9736 -- be implemented by an entry.
9738 if Impl_Kind
= Name_By_Entry
9739 and then Ekind
(Impl_Subp
) /= E_Entry
9741 Error_Msg_Node_2
:= Iface_Alias
;
9743 ("type & must implement abstract subprogram & with an entry",
9744 Subp_Alias
, Contr_Typ
);
9746 elsif Impl_Kind
= Name_By_Protected_Procedure
then
9748 -- An interface subprogram whose implementation kind is By_
9749 -- Protected_Procedure cannot be implemented by a primitive
9750 -- procedure of a task type.
9752 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
9753 Error_Msg_Node_2
:= Contr_Typ
;
9755 ("interface subprogram & cannot be implemented by a " &
9756 "primitive procedure of task type &", Subp_Alias
,
9759 -- An interface subprogram whose implementation kind is By_
9760 -- Protected_Procedure must be implemented by a procedure.
9762 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
9763 Error_Msg_Node_2
:= Iface_Alias
;
9765 ("type & must implement abstract subprogram & with a " &
9766 "procedure", Subp_Alias
, Contr_Typ
);
9768 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9769 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9771 Error_Msg_Name_1
:= Impl_Kind
;
9773 ("overriding operation& must have synchronization%",
9777 -- If primitive has Optional synchronization, overriding operation
9778 -- must match if it has an explicit synchronization..
9780 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9781 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9783 Error_Msg_Name_1
:= Impl_Kind
;
9785 ("overriding operation& must have syncrhonization%",
9788 end Check_Pragma_Implemented
;
9790 ------------------------------
9791 -- Check_Pragma_Implemented --
9792 ------------------------------
9794 procedure Check_Pragma_Implemented
9796 Iface_Subp
: Entity_Id
)
9798 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9799 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
9802 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9803 -- and overriding subprogram are different. In general this is an
9804 -- error except when the implementation kind of the overridden
9805 -- subprograms is By_Any or Optional.
9807 if Iface_Kind
/= Subp_Kind
9808 and then Iface_Kind
/= Name_By_Any
9809 and then Iface_Kind
/= Name_Optional
9811 if Iface_Kind
= Name_By_Entry
then
9813 ("incompatible implementation kind, overridden subprogram " &
9814 "is marked By_Entry", Subp
);
9817 ("incompatible implementation kind, overridden subprogram " &
9818 "is marked By_Protected_Procedure", Subp
);
9821 end Check_Pragma_Implemented
;
9823 --------------------------------
9824 -- Inherit_Pragma_Implemented --
9825 --------------------------------
9827 procedure Inherit_Pragma_Implemented
9829 Iface_Subp
: Entity_Id
)
9831 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9832 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
9833 Impl_Prag
: Node_Id
;
9836 -- Since the implementation kind is stored as a representation item
9837 -- rather than a flag, create a pragma node.
9841 Chars
=> Name_Implemented
,
9842 Pragma_Argument_Associations
=> New_List
(
9843 Make_Pragma_Argument_Association
(Loc
,
9844 Expression
=> New_Occurrence_Of
(Subp
, Loc
)),
9846 Make_Pragma_Argument_Association
(Loc
,
9847 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
9849 -- The pragma doesn't need to be analyzed because it is internally
9850 -- built. It is safe to directly register it as a rep item since we
9851 -- are only interested in the characters of the implementation kind.
9853 Record_Rep_Item
(Subp
, Impl_Prag
);
9854 end Inherit_Pragma_Implemented
;
9856 -- Start of processing for Check_Abstract_Overriding
9859 Op_List
:= Primitive_Operations
(T
);
9861 -- Loop to check primitive operations
9863 Elmt
:= First_Elmt
(Op_List
);
9864 while Present
(Elmt
) loop
9865 Subp
:= Node
(Elmt
);
9866 Alias_Subp
:= Alias
(Subp
);
9868 -- Inherited subprograms are identified by the fact that they do not
9869 -- come from source, and the associated source location is the
9870 -- location of the first subtype of the derived type.
9872 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9873 -- subprograms that "require overriding".
9875 -- Special exception, do not complain about failure to override the
9876 -- stream routines _Input and _Output, as well as the primitive
9877 -- operations used in dispatching selects since we always provide
9878 -- automatic overridings for these subprograms.
9880 -- Also ignore this rule for convention CIL since .NET libraries
9881 -- do bizarre things with interfaces???
9883 -- The partial view of T may have been a private extension, for
9884 -- which inherited functions dispatching on result are abstract.
9885 -- If the full view is a null extension, there is no need for
9886 -- overriding in Ada 2005, but wrappers need to be built for them
9887 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9889 if Is_Null_Extension
(T
)
9890 and then Has_Controlling_Result
(Subp
)
9891 and then Ada_Version
>= Ada_2005
9892 and then Present
(Alias_Subp
)
9893 and then not Comes_From_Source
(Subp
)
9894 and then not Is_Abstract_Subprogram
(Alias_Subp
)
9895 and then not Is_Access_Type
(Etype
(Subp
))
9899 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9900 -- processing because this check is done with the aliased
9903 elsif Present
(Interface_Alias
(Subp
)) then
9906 elsif (Is_Abstract_Subprogram
(Subp
)
9907 or else Requires_Overriding
(Subp
)
9909 (Has_Controlling_Result
(Subp
)
9910 and then Present
(Alias_Subp
)
9911 and then not Comes_From_Source
(Subp
)
9912 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
9913 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
9914 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
9915 and then not Is_Abstract_Type
(T
)
9916 and then Convention
(T
) /= Convention_CIL
9917 and then not Is_Predefined_Interface_Primitive
(Subp
)
9919 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9920 -- with abstract interface types because the check will be done
9921 -- with the aliased entity (otherwise we generate a duplicated
9924 and then not Present
(Interface_Alias
(Subp
))
9926 if Present
(Alias_Subp
) then
9928 -- Only perform the check for a derived subprogram when the
9929 -- type has an explicit record extension. This avoids incorrect
9930 -- flagging of abstract subprograms for the case of a type
9931 -- without an extension that is derived from a formal type
9932 -- with a tagged actual (can occur within a private part).
9934 -- Ada 2005 (AI-391): In the case of an inherited function with
9935 -- a controlling result of the type, the rule does not apply if
9936 -- the type is a null extension (unless the parent function
9937 -- itself is abstract, in which case the function must still be
9938 -- be overridden). The expander will generate an overriding
9939 -- wrapper function calling the parent subprogram (see
9940 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9942 Type_Def
:= Type_Definition
(Parent
(T
));
9944 if Nkind
(Type_Def
) = N_Derived_Type_Definition
9945 and then Present
(Record_Extension_Part
(Type_Def
))
9947 (Ada_Version
< Ada_2005
9948 or else not Is_Null_Extension
(T
)
9949 or else Ekind
(Subp
) = E_Procedure
9950 or else not Has_Controlling_Result
(Subp
)
9951 or else Is_Abstract_Subprogram
(Alias_Subp
)
9952 or else Requires_Overriding
(Subp
)
9953 or else Is_Access_Type
(Etype
(Subp
)))
9955 -- Avoid reporting error in case of abstract predefined
9956 -- primitive inherited from interface type because the
9957 -- body of internally generated predefined primitives
9958 -- of tagged types are generated later by Freeze_Type
9960 if Is_Interface
(Root_Type
(T
))
9961 and then Is_Abstract_Subprogram
(Subp
)
9962 and then Is_Predefined_Dispatching_Operation
(Subp
)
9963 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
9967 -- A null extension is not obliged to override an inherited
9968 -- procedure subject to pragma Extensions_Visible with value
9969 -- False and at least one controlling OUT parameter
9970 -- (SPARK RM 6.1.7(6)).
9972 elsif Is_Null_Extension
(T
)
9973 and then Is_EVF_Procedure
(Subp
)
9979 ("type must be declared abstract or & overridden",
9982 -- Traverse the whole chain of aliased subprograms to
9983 -- complete the error notification. This is especially
9984 -- useful for traceability of the chain of entities when
9985 -- the subprogram corresponds with an interface
9986 -- subprogram (which may be defined in another package).
9988 if Present
(Alias_Subp
) then
9994 while Present
(Alias
(E
)) loop
9996 -- Avoid reporting redundant errors on entities
9997 -- inherited from interfaces
9999 if Sloc
(E
) /= Sloc
(T
) then
10000 Error_Msg_Sloc
:= Sloc
(E
);
10002 ("\& has been inherited #", T
, Subp
);
10008 Error_Msg_Sloc
:= Sloc
(E
);
10010 -- AI05-0068: report if there is an overriding
10011 -- non-abstract subprogram that is invisible.
10014 and then not Is_Abstract_Subprogram
(E
)
10017 ("\& subprogram# is not visible",
10020 -- Clarify the case where a non-null extension must
10021 -- override inherited procedure subject to pragma
10022 -- Extensions_Visible with value False and at least
10023 -- one controlling OUT param.
10025 elsif Is_EVF_Procedure
(E
) then
10027 ("\& # is subject to Extensions_Visible False",
10032 ("\& has been inherited from subprogram #",
10039 -- Ada 2005 (AI-345): Protected or task type implementing
10040 -- abstract interfaces.
10042 elsif Is_Concurrent_Record_Type
(T
)
10043 and then Present
(Interfaces
(T
))
10045 -- If an inherited subprogram is implemented by a protected
10046 -- procedure or an entry, then the first parameter of the
10047 -- inherited subprogram shall be of mode OUT or IN OUT, or
10048 -- an access-to-variable parameter (RM 9.4(11.9/3))
10050 if Is_Protected_Type
(Corresponding_Concurrent_Type
(T
))
10051 and then Ekind
(First_Formal
(Subp
)) = E_In_Parameter
10052 and then Ekind
(Subp
) /= E_Function
10053 and then not Is_Predefined_Dispatching_Operation
(Subp
)
10055 Error_Msg_PT
(T
, Subp
);
10057 -- Some other kind of overriding failure
10061 ("interface subprogram & must be overridden",
10064 -- Examine primitive operations of synchronized type,
10065 -- to find homonyms that have the wrong profile.
10072 First_Entity
(Corresponding_Concurrent_Type
(T
));
10073 while Present
(Prim
) loop
10074 if Chars
(Prim
) = Chars
(Subp
) then
10076 ("profile is not type conformant with "
10077 & "prefixed view profile of "
10078 & "inherited operation&", Prim
, Subp
);
10081 Next_Entity
(Prim
);
10088 Error_Msg_Node_2
:= T
;
10090 ("abstract subprogram& not allowed for type&", Subp
);
10092 -- Also post unconditional warning on the type (unconditional
10093 -- so that if there are more than one of these cases, we get
10094 -- them all, and not just the first one).
10096 Error_Msg_Node_2
:= Subp
;
10097 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
10100 -- A subprogram subject to pragma Extensions_Visible with value
10101 -- "True" cannot override a subprogram subject to the same pragma
10102 -- with value "False" (SPARK RM 6.1.7(5)).
10104 elsif Extensions_Visible_Status
(Subp
) = Extensions_Visible_True
10105 and then Present
(Overridden_Operation
(Subp
))
10106 and then Extensions_Visible_Status
(Overridden_Operation
(Subp
)) =
10107 Extensions_Visible_False
10109 Error_Msg_Sloc
:= Sloc
(Overridden_Operation
(Subp
));
10111 ("subprogram & with Extensions_Visible True cannot override "
10112 & "subprogram # with Extensions_Visible False", Subp
);
10115 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10117 -- Subp is an expander-generated procedure which maps an interface
10118 -- alias to a protected wrapper. The interface alias is flagged by
10119 -- pragma Implemented. Ensure that Subp is a procedure when the
10120 -- implementation kind is By_Protected_Procedure or an entry when
10123 if Ada_Version
>= Ada_2012
10124 and then Is_Hidden
(Subp
)
10125 and then Present
(Interface_Alias
(Subp
))
10126 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
10128 Check_Pragma_Implemented
(Subp
);
10131 -- Subp is an interface primitive which overrides another interface
10132 -- primitive marked with pragma Implemented.
10134 if Ada_Version
>= Ada_2012
10135 and then Present
(Overridden_Operation
(Subp
))
10136 and then Has_Rep_Pragma
10137 (Overridden_Operation
(Subp
), Name_Implemented
)
10139 -- If the overriding routine is also marked by Implemented, check
10140 -- that the two implementation kinds are conforming.
10142 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
10143 Check_Pragma_Implemented
10145 Iface_Subp
=> Overridden_Operation
(Subp
));
10147 -- Otherwise the overriding routine inherits the implementation
10148 -- kind from the overridden subprogram.
10151 Inherit_Pragma_Implemented
10153 Iface_Subp
=> Overridden_Operation
(Subp
));
10157 -- If the operation is a wrapper for a synchronized primitive, it
10158 -- may be called indirectly through a dispatching select. We assume
10159 -- that it will be referenced elsewhere indirectly, and suppress
10160 -- warnings about an unused entity.
10162 if Is_Primitive_Wrapper
(Subp
)
10163 and then Present
(Wrapped_Entity
(Subp
))
10165 Set_Referenced
(Wrapped_Entity
(Subp
));
10170 end Check_Abstract_Overriding
;
10172 ------------------------------------------------
10173 -- Check_Access_Discriminant_Requires_Limited --
10174 ------------------------------------------------
10176 procedure Check_Access_Discriminant_Requires_Limited
10181 -- A discriminant_specification for an access discriminant shall appear
10182 -- only in the declaration for a task or protected type, or for a type
10183 -- with the reserved word 'limited' in its definition or in one of its
10184 -- ancestors (RM 3.7(10)).
10186 -- AI-0063: The proper condition is that type must be immutably limited,
10187 -- or else be a partial view.
10189 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
10190 if Is_Limited_View
(Current_Scope
)
10192 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
10193 and then Limited_Present
(Parent
(Current_Scope
)))
10199 ("access discriminants allowed only for limited types", Loc
);
10202 end Check_Access_Discriminant_Requires_Limited
;
10204 -----------------------------------
10205 -- Check_Aliased_Component_Types --
10206 -----------------------------------
10208 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
10212 -- ??? Also need to check components of record extensions, but not
10213 -- components of protected types (which are always limited).
10215 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10216 -- types to be unconstrained. This is safe because it is illegal to
10217 -- create access subtypes to such types with explicit discriminant
10220 if not Is_Limited_Type
(T
) then
10221 if Ekind
(T
) = E_Record_Type
then
10222 C
:= First_Component
(T
);
10223 while Present
(C
) loop
10225 and then Has_Discriminants
(Etype
(C
))
10226 and then not Is_Constrained
(Etype
(C
))
10227 and then not In_Instance_Body
10228 and then Ada_Version
< Ada_2005
10231 ("aliased component must be constrained (RM 3.6(11))",
10235 Next_Component
(C
);
10238 elsif Ekind
(T
) = E_Array_Type
then
10239 if Has_Aliased_Components
(T
)
10240 and then Has_Discriminants
(Component_Type
(T
))
10241 and then not Is_Constrained
(Component_Type
(T
))
10242 and then not In_Instance_Body
10243 and then Ada_Version
< Ada_2005
10246 ("aliased component type must be constrained (RM 3.6(11))",
10251 end Check_Aliased_Component_Types
;
10253 ---------------------------------------
10254 -- Check_Anonymous_Access_Components --
10255 ---------------------------------------
10257 procedure Check_Anonymous_Access_Components
10258 (Typ_Decl
: Node_Id
;
10261 Comp_List
: Node_Id
)
10263 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
10264 Anon_Access
: Entity_Id
;
10267 Comp_Def
: Node_Id
;
10269 Type_Def
: Node_Id
;
10271 procedure Build_Incomplete_Type_Declaration
;
10272 -- If the record type contains components that include an access to the
10273 -- current record, then create an incomplete type declaration for the
10274 -- record, to be used as the designated type of the anonymous access.
10275 -- This is done only once, and only if there is no previous partial
10276 -- view of the type.
10278 function Designates_T
(Subt
: Node_Id
) return Boolean;
10279 -- Check whether a node designates the enclosing record type, or 'Class
10282 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
10283 -- Check whether an access definition includes a reference to
10284 -- the enclosing record type. The reference can be a subtype mark
10285 -- in the access definition itself, a 'Class attribute reference, or
10286 -- recursively a reference appearing in a parameter specification
10287 -- or result definition of an access_to_subprogram definition.
10289 --------------------------------------
10290 -- Build_Incomplete_Type_Declaration --
10291 --------------------------------------
10293 procedure Build_Incomplete_Type_Declaration
is
10298 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10299 -- it's "is new ... with record" or else "is tagged record ...".
10301 Is_Tagged
: constant Boolean :=
10302 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
10304 Present
(Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
10306 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
10307 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
10310 -- If there is a previous partial view, no need to create a new one
10311 -- If the partial view, given by Prev, is incomplete, If Prev is
10312 -- a private declaration, full declaration is flagged accordingly.
10314 if Prev
/= Typ
then
10316 Make_Class_Wide_Type
(Prev
);
10317 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
10318 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10323 elsif Has_Private_Declaration
(Typ
) then
10325 -- If we refer to T'Class inside T, and T is the completion of a
10326 -- private type, then make sure the class-wide type exists.
10329 Make_Class_Wide_Type
(Typ
);
10334 -- If there was a previous anonymous access type, the incomplete
10335 -- type declaration will have been created already.
10337 elsif Present
(Current_Entity
(Typ
))
10338 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
10339 and then Full_View
(Current_Entity
(Typ
)) = Typ
10342 and then Comes_From_Source
(Current_Entity
(Typ
))
10343 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
10345 Make_Class_Wide_Type
(Typ
);
10347 ("incomplete view of tagged type should be declared tagged??",
10348 Parent
(Current_Entity
(Typ
)));
10353 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
10354 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
10356 -- Type has already been inserted into the current scope. Remove
10357 -- it, and add incomplete declaration for type, so that subsequent
10358 -- anonymous access types can use it. The entity is unchained from
10359 -- the homonym list and from immediate visibility. After analysis,
10360 -- the entity in the incomplete declaration becomes immediately
10361 -- visible in the record declaration that follows.
10363 H
:= Current_Entity
(Typ
);
10366 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
10369 and then Homonym
(H
) /= Typ
10371 H
:= Homonym
(Typ
);
10374 Set_Homonym
(H
, Homonym
(Typ
));
10377 Insert_Before
(Typ_Decl
, Decl
);
10379 Set_Full_View
(Inc_T
, Typ
);
10383 -- Create a common class-wide type for both views, and set the
10384 -- Etype of the class-wide type to the full view.
10386 Make_Class_Wide_Type
(Inc_T
);
10387 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
10388 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10391 end Build_Incomplete_Type_Declaration
;
10397 function Designates_T
(Subt
: Node_Id
) return Boolean is
10398 Type_Id
: constant Name_Id
:= Chars
(Typ
);
10400 function Names_T
(Nam
: Node_Id
) return Boolean;
10401 -- The record type has not been introduced in the current scope
10402 -- yet, so we must examine the name of the type itself, either
10403 -- an identifier T, or an expanded name of the form P.T, where
10404 -- P denotes the current scope.
10410 function Names_T
(Nam
: Node_Id
) return Boolean is
10412 if Nkind
(Nam
) = N_Identifier
then
10413 return Chars
(Nam
) = Type_Id
;
10415 elsif Nkind
(Nam
) = N_Selected_Component
then
10416 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
10417 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
10418 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
10420 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
10421 return Chars
(Selector_Name
(Prefix
(Nam
))) =
10422 Chars
(Current_Scope
);
10436 -- Start of processing for Designates_T
10439 if Nkind
(Subt
) = N_Identifier
then
10440 return Chars
(Subt
) = Type_Id
;
10442 -- Reference can be through an expanded name which has not been
10443 -- analyzed yet, and which designates enclosing scopes.
10445 elsif Nkind
(Subt
) = N_Selected_Component
then
10446 if Names_T
(Subt
) then
10449 -- Otherwise it must denote an entity that is already visible.
10450 -- The access definition may name a subtype of the enclosing
10451 -- type, if there is a previous incomplete declaration for it.
10454 Find_Selected_Component
(Subt
);
10456 Is_Entity_Name
(Subt
)
10457 and then Scope
(Entity
(Subt
)) = Current_Scope
10459 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
10461 (Is_Class_Wide_Type
(Entity
(Subt
))
10463 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
10467 -- A reference to the current type may appear as the prefix of
10468 -- a 'Class attribute.
10470 elsif Nkind
(Subt
) = N_Attribute_Reference
10471 and then Attribute_Name
(Subt
) = Name_Class
10473 return Names_T
(Prefix
(Subt
));
10484 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
10485 Param_Spec
: Node_Id
;
10487 Acc_Subprg
: constant Node_Id
:=
10488 Access_To_Subprogram_Definition
(Acc_Def
);
10491 if No
(Acc_Subprg
) then
10492 return Designates_T
(Subtype_Mark
(Acc_Def
));
10495 -- Component is an access_to_subprogram: examine its formals,
10496 -- and result definition in the case of an access_to_function.
10498 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
10499 while Present
(Param_Spec
) loop
10500 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
10501 and then Mentions_T
(Parameter_Type
(Param_Spec
))
10505 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
10512 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
10513 if Nkind
(Result_Definition
(Acc_Subprg
)) =
10514 N_Access_Definition
10516 return Mentions_T
(Result_Definition
(Acc_Subprg
));
10518 return Designates_T
(Result_Definition
(Acc_Subprg
));
10525 -- Start of processing for Check_Anonymous_Access_Components
10528 if No
(Comp_List
) then
10532 Comp
:= First
(Component_Items
(Comp_List
));
10533 while Present
(Comp
) loop
10534 if Nkind
(Comp
) = N_Component_Declaration
10536 (Access_Definition
(Component_Definition
(Comp
)))
10538 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
10540 Comp_Def
:= Component_Definition
(Comp
);
10542 Access_To_Subprogram_Definition
(Access_Definition
(Comp_Def
));
10544 Build_Incomplete_Type_Declaration
;
10545 Anon_Access
:= Make_Temporary
(Loc
, 'S');
10547 -- Create a declaration for the anonymous access type: either
10548 -- an access_to_object or an access_to_subprogram.
10550 if Present
(Acc_Def
) then
10551 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
10553 Make_Access_Function_Definition
(Loc
,
10554 Parameter_Specifications
=>
10555 Parameter_Specifications
(Acc_Def
),
10556 Result_Definition
=> Result_Definition
(Acc_Def
));
10559 Make_Access_Procedure_Definition
(Loc
,
10560 Parameter_Specifications
=>
10561 Parameter_Specifications
(Acc_Def
));
10566 Make_Access_To_Object_Definition
(Loc
,
10567 Subtype_Indication
=>
10569 (Subtype_Mark
(Access_Definition
(Comp_Def
))));
10571 Set_Constant_Present
10572 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
10574 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
10577 Set_Null_Exclusion_Present
10579 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
10582 Make_Full_Type_Declaration
(Loc
,
10583 Defining_Identifier
=> Anon_Access
,
10584 Type_Definition
=> Type_Def
);
10586 Insert_Before
(Typ_Decl
, Decl
);
10589 -- If an access to subprogram, create the extra formals
10591 if Present
(Acc_Def
) then
10592 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
10594 -- If an access to object, preserve entity of designated type,
10595 -- for ASIS use, before rewriting the component definition.
10602 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
10604 -- If the access definition is to the current record,
10605 -- the visible entity at this point is an incomplete
10606 -- type. Retrieve the full view to simplify ASIS queries
10608 if Ekind
(Desig
) = E_Incomplete_Type
then
10609 Desig
:= Full_View
(Desig
);
10613 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
10618 Make_Component_Definition
(Loc
,
10619 Subtype_Indication
=>
10620 New_Occurrence_Of
(Anon_Access
, Loc
)));
10622 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
10623 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
10625 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
10628 Set_Is_Local_Anonymous_Access
(Anon_Access
);
10634 if Present
(Variant_Part
(Comp_List
)) then
10638 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
10639 while Present
(V
) loop
10640 Check_Anonymous_Access_Components
10641 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
10642 Next_Non_Pragma
(V
);
10646 end Check_Anonymous_Access_Components
;
10648 ----------------------
10649 -- Check_Completion --
10650 ----------------------
10652 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
10655 procedure Post_Error
;
10656 -- Post error message for lack of completion for entity E
10662 procedure Post_Error
is
10664 procedure Missing_Body
;
10665 -- Output missing body message
10671 procedure Missing_Body
is
10673 -- Spec is in same unit, so we can post on spec
10675 if In_Same_Source_Unit
(Body_Id
, E
) then
10676 Error_Msg_N
("missing body for &", E
);
10678 -- Spec is in a separate unit, so we have to post on the body
10681 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
10685 -- Start of processing for Post_Error
10688 if not Comes_From_Source
(E
) then
10690 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
10692 -- It may be an anonymous protected type created for a
10693 -- single variable. Post error on variable, if present.
10699 Var
:= First_Entity
(Current_Scope
);
10700 while Present
(Var
) loop
10701 exit when Etype
(Var
) = E
10702 and then Comes_From_Source
(Var
);
10707 if Present
(Var
) then
10714 -- If a generated entity has no completion, then either previous
10715 -- semantic errors have disabled the expansion phase, or else we had
10716 -- missing subunits, or else we are compiling without expansion,
10717 -- or else something is very wrong.
10719 if not Comes_From_Source
(E
) then
10721 (Serious_Errors_Detected
> 0
10722 or else Configurable_Run_Time_Violations
> 0
10723 or else Subunits_Missing
10724 or else not Expander_Active
);
10727 -- Here for source entity
10730 -- Here if no body to post the error message, so we post the error
10731 -- on the declaration that has no completion. This is not really
10732 -- the right place to post it, think about this later ???
10734 if No
(Body_Id
) then
10735 if Is_Type
(E
) then
10737 ("missing full declaration for }", Parent
(E
), E
);
10739 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
10742 -- Package body has no completion for a declaration that appears
10743 -- in the corresponding spec. Post error on the body, with a
10744 -- reference to the non-completed declaration.
10747 Error_Msg_Sloc
:= Sloc
(E
);
10749 if Is_Type
(E
) then
10750 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
10752 elsif Is_Overloadable
(E
)
10753 and then Current_Entity_In_Scope
(E
) /= E
10755 -- It may be that the completion is mistyped and appears as
10756 -- a distinct overloading of the entity.
10759 Candidate
: constant Entity_Id
:=
10760 Current_Entity_In_Scope
(E
);
10761 Decl
: constant Node_Id
:=
10762 Unit_Declaration_Node
(Candidate
);
10765 if Is_Overloadable
(Candidate
)
10766 and then Ekind
(Candidate
) = Ekind
(E
)
10767 and then Nkind
(Decl
) = N_Subprogram_Body
10768 and then Acts_As_Spec
(Decl
)
10770 Check_Type_Conformant
(Candidate
, E
);
10786 Pack_Id
: constant Entity_Id
:= Current_Scope
;
10788 -- Start of processing for Check_Completion
10791 E
:= First_Entity
(Pack_Id
);
10792 while Present
(E
) loop
10793 if Is_Intrinsic_Subprogram
(E
) then
10796 -- A Ghost entity declared in a non-Ghost package does not force the
10797 -- need for a body (SPARK RM 6.9(11)).
10799 elsif not Is_Ghost_Entity
(Pack_Id
) and then Is_Ghost_Entity
(E
) then
10802 -- The following situation requires special handling: a child unit
10803 -- that appears in the context clause of the body of its parent:
10805 -- procedure Parent.Child (...);
10807 -- with Parent.Child;
10808 -- package body Parent is
10810 -- Here Parent.Child appears as a local entity, but should not be
10811 -- flagged as requiring completion, because it is a compilation
10814 -- Ignore missing completion for a subprogram that does not come from
10815 -- source (including the _Call primitive operation of RAS types,
10816 -- which has to have the flag Comes_From_Source for other purposes):
10817 -- we assume that the expander will provide the missing completion.
10818 -- In case of previous errors, other expansion actions that provide
10819 -- bodies for null procedures with not be invoked, so inhibit message
10822 -- Note that E_Operator is not in the list that follows, because
10823 -- this kind is reserved for predefined operators, that are
10824 -- intrinsic and do not need completion.
10826 elsif Ekind_In
(E
, E_Function
,
10828 E_Generic_Function
,
10829 E_Generic_Procedure
)
10831 if Has_Completion
(E
) then
10834 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
10837 elsif Is_Subprogram
(E
)
10838 and then (not Comes_From_Source
(E
)
10839 or else Chars
(E
) = Name_uCall
)
10844 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
10848 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
10849 and then Null_Present
(Parent
(E
))
10850 and then Serious_Errors_Detected
> 0
10858 elsif Is_Entry
(E
) then
10859 if not Has_Completion
(E
) and then
10860 (Ekind
(Scope
(E
)) = E_Protected_Object
10861 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
10866 elsif Is_Package_Or_Generic_Package
(E
) then
10867 if Unit_Requires_Body
(E
) then
10868 if not Has_Completion
(E
)
10869 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
10875 elsif not Is_Child_Unit
(E
) then
10876 May_Need_Implicit_Body
(E
);
10879 -- A formal incomplete type (Ada 2012) does not require a completion;
10880 -- other incomplete type declarations do.
10882 elsif Ekind
(E
) = E_Incomplete_Type
10883 and then No
(Underlying_Type
(E
))
10884 and then not Is_Generic_Type
(E
)
10888 elsif Ekind_In
(E
, E_Task_Type
, E_Protected_Type
)
10889 and then not Has_Completion
(E
)
10893 -- A single task declared in the current scope is a constant, verify
10894 -- that the body of its anonymous type is in the same scope. If the
10895 -- task is defined elsewhere, this may be a renaming declaration for
10896 -- which no completion is needed.
10898 elsif Ekind
(E
) = E_Constant
10899 and then Ekind
(Etype
(E
)) = E_Task_Type
10900 and then not Has_Completion
(Etype
(E
))
10901 and then Scope
(Etype
(E
)) = Current_Scope
10905 elsif Ekind
(E
) = E_Protected_Object
10906 and then not Has_Completion
(Etype
(E
))
10910 elsif Ekind
(E
) = E_Record_Type
then
10911 if Is_Tagged_Type
(E
) then
10912 Check_Abstract_Overriding
(E
);
10913 Check_Conventions
(E
);
10916 Check_Aliased_Component_Types
(E
);
10918 elsif Ekind
(E
) = E_Array_Type
then
10919 Check_Aliased_Component_Types
(E
);
10925 end Check_Completion
;
10927 ------------------------------------
10928 -- Check_CPP_Type_Has_No_Defaults --
10929 ------------------------------------
10931 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
10932 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
10937 -- Obtain the component list
10939 if Nkind
(Tdef
) = N_Record_Definition
then
10940 Clist
:= Component_List
(Tdef
);
10941 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
10942 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
10945 -- Check all components to ensure no default expressions
10947 if Present
(Clist
) then
10948 Comp
:= First
(Component_Items
(Clist
));
10949 while Present
(Comp
) loop
10950 if Present
(Expression
(Comp
)) then
10952 ("component of imported 'C'P'P type cannot have "
10953 & "default expression", Expression
(Comp
));
10959 end Check_CPP_Type_Has_No_Defaults
;
10961 ----------------------------
10962 -- Check_Delta_Expression --
10963 ----------------------------
10965 procedure Check_Delta_Expression
(E
: Node_Id
) is
10967 if not (Is_Real_Type
(Etype
(E
))) then
10968 Wrong_Type
(E
, Any_Real
);
10970 elsif not Is_OK_Static_Expression
(E
) then
10971 Flag_Non_Static_Expr
10972 ("non-static expression used for delta value!", E
);
10974 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
10975 Error_Msg_N
("delta expression must be positive", E
);
10981 -- If any of above errors occurred, then replace the incorrect
10982 -- expression by the real 0.1, which should prevent further errors.
10985 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
10986 Analyze_And_Resolve
(E
, Standard_Float
);
10987 end Check_Delta_Expression
;
10989 -----------------------------
10990 -- Check_Digits_Expression --
10991 -----------------------------
10993 procedure Check_Digits_Expression
(E
: Node_Id
) is
10995 if not (Is_Integer_Type
(Etype
(E
))) then
10996 Wrong_Type
(E
, Any_Integer
);
10998 elsif not Is_OK_Static_Expression
(E
) then
10999 Flag_Non_Static_Expr
11000 ("non-static expression used for digits value!", E
);
11002 elsif Expr_Value
(E
) <= 0 then
11003 Error_Msg_N
("digits value must be greater than zero", E
);
11009 -- If any of above errors occurred, then replace the incorrect
11010 -- expression by the integer 1, which should prevent further errors.
11012 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
11013 Analyze_And_Resolve
(E
, Standard_Integer
);
11015 end Check_Digits_Expression
;
11017 --------------------------
11018 -- Check_Initialization --
11019 --------------------------
11021 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
11023 -- Special processing for limited types
11025 if Is_Limited_Type
(T
)
11026 and then not In_Instance
11027 and then not In_Inlined_Body
11029 if not OK_For_Limited_Init
(T
, Exp
) then
11031 -- In GNAT mode, this is just a warning, to allow it to be evilly
11032 -- turned off. Otherwise it is a real error.
11036 ("??cannot initialize entities of limited type!", Exp
);
11038 elsif Ada_Version
< Ada_2005
then
11040 -- The side effect removal machinery may generate illegal Ada
11041 -- code to avoid the usage of access types and 'reference in
11042 -- SPARK mode. Since this is legal code with respect to theorem
11043 -- proving, do not emit the error.
11046 and then Nkind
(Exp
) = N_Function_Call
11047 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11048 and then not Comes_From_Source
11049 (Defining_Identifier
(Parent
(Exp
)))
11055 ("cannot initialize entities of limited type", Exp
);
11056 Explain_Limited_Type
(T
, Exp
);
11060 -- Specialize error message according to kind of illegal
11061 -- initial expression.
11063 if Nkind
(Exp
) = N_Type_Conversion
11064 and then Nkind
(Expression
(Exp
)) = N_Function_Call
11067 ("illegal context for call"
11068 & " to function with limited result", Exp
);
11072 ("initialization of limited object requires aggregate "
11073 & "or function call", Exp
);
11079 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11080 -- set unless we can be sure that no range check is required.
11082 if (GNATprove_Mode
or not Expander_Active
)
11083 and then Is_Scalar_Type
(T
)
11084 and then not Is_In_Range
(Exp
, T
, Assume_Valid
=> True)
11086 Set_Do_Range_Check
(Exp
);
11088 end Check_Initialization
;
11090 ----------------------
11091 -- Check_Interfaces --
11092 ----------------------
11094 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
11095 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
11098 Iface_Def
: Node_Id
;
11099 Iface_Typ
: Entity_Id
;
11100 Parent_Node
: Node_Id
;
11102 Is_Task
: Boolean := False;
11103 -- Set True if parent type or any progenitor is a task interface
11105 Is_Protected
: Boolean := False;
11106 -- Set True if parent type or any progenitor is a protected interface
11108 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
11109 -- Check that a progenitor is compatible with declaration. If an error
11110 -- message is output, it is posted on Error_Node.
11116 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
11117 Iface_Id
: constant Entity_Id
:=
11118 Defining_Identifier
(Parent
(Iface_Def
));
11119 Type_Def
: Node_Id
;
11122 if Nkind
(N
) = N_Private_Extension_Declaration
then
11125 Type_Def
:= Type_Definition
(N
);
11128 if Is_Task_Interface
(Iface_Id
) then
11131 elsif Is_Protected_Interface
(Iface_Id
) then
11132 Is_Protected
:= True;
11135 if Is_Synchronized_Interface
(Iface_Id
) then
11137 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11138 -- extension derived from a synchronized interface must explicitly
11139 -- be declared synchronized, because the full view will be a
11140 -- synchronized type.
11142 if Nkind
(N
) = N_Private_Extension_Declaration
then
11143 if not Synchronized_Present
(N
) then
11145 ("private extension of& must be explicitly synchronized",
11149 -- However, by 3.9.4(16/2), a full type that is a record extension
11150 -- is never allowed to derive from a synchronized interface (note
11151 -- that interfaces must be excluded from this check, because those
11152 -- are represented by derived type definitions in some cases).
11154 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11155 and then not Interface_Present
(Type_Definition
(N
))
11157 Error_Msg_N
("record extension cannot derive from synchronized "
11158 & "interface", Error_Node
);
11162 -- Check that the characteristics of the progenitor are compatible
11163 -- with the explicit qualifier in the declaration.
11164 -- The check only applies to qualifiers that come from source.
11165 -- Limited_Present also appears in the declaration of corresponding
11166 -- records, and the check does not apply to them.
11168 if Limited_Present
(Type_Def
)
11170 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
11172 if Is_Limited_Interface
(Parent_Type
)
11173 and then not Is_Limited_Interface
(Iface_Id
)
11176 ("progenitor & must be limited interface",
11177 Error_Node
, Iface_Id
);
11180 (Task_Present
(Iface_Def
)
11181 or else Protected_Present
(Iface_Def
)
11182 or else Synchronized_Present
(Iface_Def
))
11183 and then Nkind
(N
) /= N_Private_Extension_Declaration
11184 and then not Error_Posted
(N
)
11187 ("progenitor & must be limited interface",
11188 Error_Node
, Iface_Id
);
11191 -- Protected interfaces can only inherit from limited, synchronized
11192 -- or protected interfaces.
11194 elsif Nkind
(N
) = N_Full_Type_Declaration
11195 and then Protected_Present
(Type_Def
)
11197 if Limited_Present
(Iface_Def
)
11198 or else Synchronized_Present
(Iface_Def
)
11199 or else Protected_Present
(Iface_Def
)
11203 elsif Task_Present
(Iface_Def
) then
11204 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11205 & "from task interface", Error_Node
);
11208 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11209 & "from non-limited interface", Error_Node
);
11212 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11213 -- limited and synchronized.
11215 elsif Synchronized_Present
(Type_Def
) then
11216 if Limited_Present
(Iface_Def
)
11217 or else Synchronized_Present
(Iface_Def
)
11221 elsif Protected_Present
(Iface_Def
)
11222 and then Nkind
(N
) /= N_Private_Extension_Declaration
11224 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11225 & "from protected interface", Error_Node
);
11227 elsif Task_Present
(Iface_Def
)
11228 and then Nkind
(N
) /= N_Private_Extension_Declaration
11230 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11231 & "from task interface", Error_Node
);
11233 elsif not Is_Limited_Interface
(Iface_Id
) then
11234 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11235 & "from non-limited interface", Error_Node
);
11238 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11239 -- synchronized or task interfaces.
11241 elsif Nkind
(N
) = N_Full_Type_Declaration
11242 and then Task_Present
(Type_Def
)
11244 if Limited_Present
(Iface_Def
)
11245 or else Synchronized_Present
(Iface_Def
)
11246 or else Task_Present
(Iface_Def
)
11250 elsif Protected_Present
(Iface_Def
) then
11251 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11252 & "protected interface", Error_Node
);
11255 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11256 & "non-limited interface", Error_Node
);
11261 -- Start of processing for Check_Interfaces
11264 if Is_Interface
(Parent_Type
) then
11265 if Is_Task_Interface
(Parent_Type
) then
11268 elsif Is_Protected_Interface
(Parent_Type
) then
11269 Is_Protected
:= True;
11273 if Nkind
(N
) = N_Private_Extension_Declaration
then
11275 -- Check that progenitors are compatible with declaration
11277 Iface
:= First
(Interface_List
(Def
));
11278 while Present
(Iface
) loop
11279 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11281 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11282 Iface_Def
:= Type_Definition
(Parent_Node
);
11284 if not Is_Interface
(Iface_Typ
) then
11285 Diagnose_Interface
(Iface
, Iface_Typ
);
11287 Check_Ifaces
(Iface_Def
, Iface
);
11293 if Is_Task
and Is_Protected
then
11295 ("type cannot derive from task and protected interface", N
);
11301 -- Full type declaration of derived type.
11302 -- Check compatibility with parent if it is interface type
11304 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11305 and then Is_Interface
(Parent_Type
)
11307 Parent_Node
:= Parent
(Parent_Type
);
11309 -- More detailed checks for interface varieties
11312 (Iface_Def
=> Type_Definition
(Parent_Node
),
11313 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
11316 Iface
:= First
(Interface_List
(Def
));
11317 while Present
(Iface
) loop
11318 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11320 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11321 Iface_Def
:= Type_Definition
(Parent_Node
);
11323 if not Is_Interface
(Iface_Typ
) then
11324 Diagnose_Interface
(Iface
, Iface_Typ
);
11327 -- "The declaration of a specific descendant of an interface
11328 -- type freezes the interface type" RM 13.14
11330 Freeze_Before
(N
, Iface_Typ
);
11331 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
11337 if Is_Task
and Is_Protected
then
11339 ("type cannot derive from task and protected interface", N
);
11341 end Check_Interfaces
;
11343 ------------------------------------
11344 -- Check_Or_Process_Discriminants --
11345 ------------------------------------
11347 -- If an incomplete or private type declaration was already given for the
11348 -- type, the discriminants may have already been processed if they were
11349 -- present on the incomplete declaration. In this case a full conformance
11350 -- check has been performed in Find_Type_Name, and we then recheck here
11351 -- some properties that can't be checked on the partial view alone.
11352 -- Otherwise we call Process_Discriminants.
11354 procedure Check_Or_Process_Discriminants
11357 Prev
: Entity_Id
:= Empty
)
11360 if Has_Discriminants
(T
) then
11362 -- Discriminants are already set on T if they were already present
11363 -- on the partial view. Make them visible to component declarations.
11367 -- Discriminant on T (full view) referencing expr on partial view
11369 Prev_D
: Entity_Id
;
11370 -- Entity of corresponding discriminant on partial view
11373 -- Discriminant specification for full view, expression is
11374 -- the syntactic copy on full view (which has been checked for
11375 -- conformance with partial view), only used here to post error
11379 D
:= First_Discriminant
(T
);
11380 New_D
:= First
(Discriminant_Specifications
(N
));
11381 while Present
(D
) loop
11382 Prev_D
:= Current_Entity
(D
);
11383 Set_Current_Entity
(D
);
11384 Set_Is_Immediately_Visible
(D
);
11385 Set_Homonym
(D
, Prev_D
);
11387 -- Handle the case where there is an untagged partial view and
11388 -- the full view is tagged: must disallow discriminants with
11389 -- defaults, unless compiling for Ada 2012, which allows a
11390 -- limited tagged type to have defaulted discriminants (see
11391 -- AI05-0214). However, suppress error here if it was already
11392 -- reported on the default expression of the partial view.
11394 if Is_Tagged_Type
(T
)
11395 and then Present
(Expression
(Parent
(D
)))
11396 and then (not Is_Limited_Type
(Current_Scope
)
11397 or else Ada_Version
< Ada_2012
)
11398 and then not Error_Posted
(Expression
(Parent
(D
)))
11400 if Ada_Version
>= Ada_2012
then
11402 ("discriminants of nonlimited tagged type cannot have "
11404 Expression
(New_D
));
11407 ("discriminants of tagged type cannot have defaults",
11408 Expression
(New_D
));
11412 -- Ada 2005 (AI-230): Access discriminant allowed in
11413 -- non-limited record types.
11415 if Ada_Version
< Ada_2005
then
11417 -- This restriction gets applied to the full type here. It
11418 -- has already been applied earlier to the partial view.
11420 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
11423 Next_Discriminant
(D
);
11428 elsif Present
(Discriminant_Specifications
(N
)) then
11429 Process_Discriminants
(N
, Prev
);
11431 end Check_Or_Process_Discriminants
;
11433 ----------------------
11434 -- Check_Real_Bound --
11435 ----------------------
11437 procedure Check_Real_Bound
(Bound
: Node_Id
) is
11439 if not Is_Real_Type
(Etype
(Bound
)) then
11441 ("bound in real type definition must be of real type", Bound
);
11443 elsif not Is_OK_Static_Expression
(Bound
) then
11444 Flag_Non_Static_Expr
11445 ("non-static expression used for real type bound!", Bound
);
11452 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
11454 Resolve
(Bound
, Standard_Float
);
11455 end Check_Real_Bound
;
11457 ------------------------------
11458 -- Complete_Private_Subtype --
11459 ------------------------------
11461 procedure Complete_Private_Subtype
11464 Full_Base
: Entity_Id
;
11465 Related_Nod
: Node_Id
)
11467 Save_Next_Entity
: Entity_Id
;
11468 Save_Homonym
: Entity_Id
;
11471 -- Set semantic attributes for (implicit) private subtype completion.
11472 -- If the full type has no discriminants, then it is a copy of the
11473 -- full view of the base. Otherwise, it is a subtype of the base with
11474 -- a possible discriminant constraint. Save and restore the original
11475 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11476 -- not corrupt the entity chain.
11478 -- Note that the type of the full view is the same entity as the type
11479 -- of the partial view. In this fashion, the subtype has access to the
11480 -- correct view of the parent.
11482 Save_Next_Entity
:= Next_Entity
(Full
);
11483 Save_Homonym
:= Homonym
(Priv
);
11485 case Ekind
(Full_Base
) is
11486 when E_Record_Type |
11492 Copy_Node
(Priv
, Full
);
11494 Set_Has_Discriminants
11495 (Full
, Has_Discriminants
(Full_Base
));
11496 Set_Has_Unknown_Discriminants
11497 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11498 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
11499 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
11501 -- If the underlying base type is constrained, we know that the
11502 -- full view of the subtype is constrained as well (the converse
11503 -- is not necessarily true).
11505 if Is_Constrained
(Full_Base
) then
11506 Set_Is_Constrained
(Full
);
11510 Copy_Node
(Full_Base
, Full
);
11512 Set_Chars
(Full
, Chars
(Priv
));
11513 Conditional_Delay
(Full
, Priv
);
11514 Set_Sloc
(Full
, Sloc
(Priv
));
11517 Set_Next_Entity
(Full
, Save_Next_Entity
);
11518 Set_Homonym
(Full
, Save_Homonym
);
11519 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
11521 -- Set common attributes for all subtypes: kind, convention, etc.
11523 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
11524 Set_Convention
(Full
, Convention
(Full_Base
));
11526 -- The Etype of the full view is inconsistent. Gigi needs to see the
11527 -- structural full view, which is what the current scheme gives: the
11528 -- Etype of the full view is the etype of the full base. However, if the
11529 -- full base is a derived type, the full view then looks like a subtype
11530 -- of the parent, not a subtype of the full base. If instead we write:
11532 -- Set_Etype (Full, Full_Base);
11534 -- then we get inconsistencies in the front-end (confusion between
11535 -- views). Several outstanding bugs are related to this ???
11537 Set_Is_First_Subtype
(Full
, False);
11538 Set_Scope
(Full
, Scope
(Priv
));
11539 Set_Size_Info
(Full
, Full_Base
);
11540 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
11541 Set_Is_Itype
(Full
);
11543 -- A subtype of a private-type-without-discriminants, whose full-view
11544 -- has discriminants with default expressions, is not constrained.
11546 if not Has_Discriminants
(Priv
) then
11547 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
11549 if Has_Discriminants
(Full_Base
) then
11550 Set_Discriminant_Constraint
11551 (Full
, Discriminant_Constraint
(Full_Base
));
11553 -- The partial view may have been indefinite, the full view
11556 Set_Has_Unknown_Discriminants
11557 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11561 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
11562 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
11564 -- Freeze the private subtype entity if its parent is delayed, and not
11565 -- already frozen. We skip this processing if the type is an anonymous
11566 -- subtype of a record component, or is the corresponding record of a
11567 -- protected type, since ???
11569 if not Is_Type
(Scope
(Full
)) then
11570 Set_Has_Delayed_Freeze
(Full
,
11571 Has_Delayed_Freeze
(Full_Base
)
11572 and then (not Is_Frozen
(Full_Base
)));
11575 Set_Freeze_Node
(Full
, Empty
);
11576 Set_Is_Frozen
(Full
, False);
11577 Set_Full_View
(Priv
, Full
);
11579 if Has_Discriminants
(Full
) then
11580 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
11581 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
11583 if Has_Unknown_Discriminants
(Full
) then
11584 Set_Discriminant_Constraint
(Full
, No_Elist
);
11588 if Ekind
(Full_Base
) = E_Record_Type
11589 and then Has_Discriminants
(Full_Base
)
11590 and then Has_Discriminants
(Priv
) -- might not, if errors
11591 and then not Has_Unknown_Discriminants
(Priv
)
11592 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
11594 Create_Constrained_Components
11595 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
11597 -- If the full base is itself derived from private, build a congruent
11598 -- subtype of its underlying type, for use by the back end. For a
11599 -- constrained record component, the declaration cannot be placed on
11600 -- the component list, but it must nevertheless be built an analyzed, to
11601 -- supply enough information for Gigi to compute the size of component.
11603 elsif Ekind
(Full_Base
) in Private_Kind
11604 and then Is_Derived_Type
(Full_Base
)
11605 and then Has_Discriminants
(Full_Base
)
11606 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
11608 if not Is_Itype
(Priv
)
11610 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
11612 Build_Underlying_Full_View
11613 (Parent
(Priv
), Full
, Etype
(Full_Base
));
11615 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
11616 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
11619 elsif Is_Record_Type
(Full_Base
) then
11621 -- Show Full is simply a renaming of Full_Base
11623 Set_Cloned_Subtype
(Full
, Full_Base
);
11626 -- It is unsafe to share the bounds of a scalar type, because the Itype
11627 -- is elaborated on demand, and if a bound is non-static then different
11628 -- orders of elaboration in different units will lead to different
11629 -- external symbols.
11631 if Is_Scalar_Type
(Full_Base
) then
11632 Set_Scalar_Range
(Full
,
11633 Make_Range
(Sloc
(Related_Nod
),
11635 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
11637 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
11639 -- This completion inherits the bounds of the full parent, but if
11640 -- the parent is an unconstrained floating point type, so is the
11643 if Is_Floating_Point_Type
(Full_Base
) then
11644 Set_Includes_Infinities
11645 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
11649 -- ??? It seems that a lot of fields are missing that should be copied
11650 -- from Full_Base to Full. Here are some that are introduced in a
11651 -- non-disruptive way but a cleanup is necessary.
11653 if Is_Tagged_Type
(Full_Base
) then
11654 Set_Is_Tagged_Type
(Full
);
11655 Set_Direct_Primitive_Operations
11656 (Full
, Direct_Primitive_Operations
(Full_Base
));
11657 Set_No_Tagged_Streams_Pragma
11658 (Full
, No_Tagged_Streams_Pragma
(Full_Base
));
11660 -- Inherit class_wide type of full_base in case the partial view was
11661 -- not tagged. Otherwise it has already been created when the private
11662 -- subtype was analyzed.
11664 if No
(Class_Wide_Type
(Full
)) then
11665 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
11668 -- If this is a subtype of a protected or task type, constrain its
11669 -- corresponding record, unless this is a subtype without constraints,
11670 -- i.e. a simple renaming as with an actual subtype in an instance.
11672 elsif Is_Concurrent_Type
(Full_Base
) then
11673 if Has_Discriminants
(Full
)
11674 and then Present
(Corresponding_Record_Type
(Full_Base
))
11676 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
11678 Set_Corresponding_Record_Type
(Full
,
11679 Constrain_Corresponding_Record
11680 (Full
, Corresponding_Record_Type
(Full_Base
), Related_Nod
));
11683 Set_Corresponding_Record_Type
(Full
,
11684 Corresponding_Record_Type
(Full_Base
));
11688 -- Link rep item chain, and also setting of Has_Predicates from private
11689 -- subtype to full subtype, since we will need these on the full subtype
11690 -- to create the predicate function. Note that the full subtype may
11691 -- already have rep items, inherited from the full view of the base
11692 -- type, so we must be sure not to overwrite these entries.
11697 Next_Item
: Node_Id
;
11700 Item
:= First_Rep_Item
(Full
);
11702 -- If no existing rep items on full type, we can just link directly
11703 -- to the list of items on the private type, if any exist.. Same if
11704 -- the rep items are only those inherited from the base
11707 or else Nkind
(Item
) /= N_Aspect_Specification
11708 or else Entity
(Item
) = Full_Base
)
11709 and then Present
(First_Rep_Item
(Priv
))
11711 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
11713 -- Otherwise, search to the end of items currently linked to the full
11714 -- subtype and append the private items to the end. However, if Priv
11715 -- and Full already have the same list of rep items, then the append
11716 -- is not done, as that would create a circularity.
11718 elsif Item
/= First_Rep_Item
(Priv
) then
11721 Next_Item
:= Next_Rep_Item
(Item
);
11722 exit when No
(Next_Item
);
11725 -- If the private view has aspect specifications, the full view
11726 -- inherits them. Since these aspects may already have been
11727 -- attached to the full view during derivation, do not append
11728 -- them if already present.
11730 if Item
= First_Rep_Item
(Priv
) then
11736 -- And link the private type items at the end of the chain
11739 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
11744 -- Make sure Has_Predicates is set on full type if it is set on the
11745 -- private type. Note that it may already be set on the full type and
11746 -- if so, we don't want to unset it.
11748 if Has_Predicates
(Priv
) then
11749 Set_Has_Predicates
(Full
);
11751 end Complete_Private_Subtype
;
11753 ----------------------------
11754 -- Constant_Redeclaration --
11755 ----------------------------
11757 procedure Constant_Redeclaration
11762 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
11763 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
11766 procedure Check_Possible_Deferred_Completion
11767 (Prev_Id
: Entity_Id
;
11768 Prev_Obj_Def
: Node_Id
;
11769 Curr_Obj_Def
: Node_Id
);
11770 -- Determine whether the two object definitions describe the partial
11771 -- and the full view of a constrained deferred constant. Generate
11772 -- a subtype for the full view and verify that it statically matches
11773 -- the subtype of the partial view.
11775 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
11776 -- If deferred constant is an access type initialized with an allocator,
11777 -- check whether there is an illegal recursion in the definition,
11778 -- through a default value of some record subcomponent. This is normally
11779 -- detected when generating init procs, but requires this additional
11780 -- mechanism when expansion is disabled.
11782 ----------------------------------------
11783 -- Check_Possible_Deferred_Completion --
11784 ----------------------------------------
11786 procedure Check_Possible_Deferred_Completion
11787 (Prev_Id
: Entity_Id
;
11788 Prev_Obj_Def
: Node_Id
;
11789 Curr_Obj_Def
: Node_Id
)
11792 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
11793 and then Present
(Constraint
(Prev_Obj_Def
))
11794 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
11795 and then Present
(Constraint
(Curr_Obj_Def
))
11798 Loc
: constant Source_Ptr
:= Sloc
(N
);
11799 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
11800 Decl
: constant Node_Id
:=
11801 Make_Subtype_Declaration
(Loc
,
11802 Defining_Identifier
=> Def_Id
,
11803 Subtype_Indication
=>
11804 Relocate_Node
(Curr_Obj_Def
));
11807 Insert_Before_And_Analyze
(N
, Decl
);
11808 Set_Etype
(Id
, Def_Id
);
11810 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
11811 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
11812 Error_Msg_N
("subtype does not statically match deferred "
11813 & "declaration #", N
);
11817 end Check_Possible_Deferred_Completion
;
11819 ---------------------------------
11820 -- Check_Recursive_Declaration --
11821 ---------------------------------
11823 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
11827 if Is_Record_Type
(Typ
) then
11828 Comp
:= First_Component
(Typ
);
11829 while Present
(Comp
) loop
11830 if Comes_From_Source
(Comp
) then
11831 if Present
(Expression
(Parent
(Comp
)))
11832 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
11833 and then Entity
(Expression
(Parent
(Comp
))) = Prev
11835 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
11837 ("illegal circularity with declaration for & #",
11841 elsif Is_Record_Type
(Etype
(Comp
)) then
11842 Check_Recursive_Declaration
(Etype
(Comp
));
11846 Next_Component
(Comp
);
11849 end Check_Recursive_Declaration
;
11851 -- Start of processing for Constant_Redeclaration
11854 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
11855 if Nkind
(Object_Definition
11856 (Parent
(Prev
))) = N_Subtype_Indication
11858 -- Find type of new declaration. The constraints of the two
11859 -- views must match statically, but there is no point in
11860 -- creating an itype for the full view.
11862 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
11863 Find_Type
(Subtype_Mark
(Obj_Def
));
11864 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
11867 Find_Type
(Obj_Def
);
11868 New_T
:= Entity
(Obj_Def
);
11874 -- The full view may impose a constraint, even if the partial
11875 -- view does not, so construct the subtype.
11877 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
11882 -- Current declaration is illegal, diagnosed below in Enter_Name
11888 -- If previous full declaration or a renaming declaration exists, or if
11889 -- a homograph is present, let Enter_Name handle it, either with an
11890 -- error or with the removal of an overridden implicit subprogram.
11891 -- The previous one is a full declaration if it has an expression
11892 -- (which in the case of an aggregate is indicated by the Init flag).
11894 if Ekind
(Prev
) /= E_Constant
11895 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
11896 or else Present
(Expression
(Parent
(Prev
)))
11897 or else Has_Init_Expression
(Parent
(Prev
))
11898 or else Present
(Full_View
(Prev
))
11902 -- Verify that types of both declarations match, or else that both types
11903 -- are anonymous access types whose designated subtypes statically match
11904 -- (as allowed in Ada 2005 by AI-385).
11906 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
11908 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
11909 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
11910 or else Is_Access_Constant
(Etype
(New_T
)) /=
11911 Is_Access_Constant
(Etype
(Prev
))
11912 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
11913 Can_Never_Be_Null
(Etype
(Prev
))
11914 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
11915 Null_Exclusion_Present
(Parent
(Id
))
11916 or else not Subtypes_Statically_Match
11917 (Designated_Type
(Etype
(Prev
)),
11918 Designated_Type
(Etype
(New_T
))))
11920 Error_Msg_Sloc
:= Sloc
(Prev
);
11921 Error_Msg_N
("type does not match declaration#", N
);
11922 Set_Full_View
(Prev
, Id
);
11923 Set_Etype
(Id
, Any_Type
);
11925 -- A deferred constant whose type is an anonymous array is always
11926 -- illegal (unless imported). A detailed error message might be
11927 -- helpful for Ada beginners.
11929 if Nkind
(Object_Definition
(Parent
(Prev
)))
11930 = N_Constrained_Array_Definition
11931 and then Nkind
(Object_Definition
(N
))
11932 = N_Constrained_Array_Definition
11934 Error_Msg_N
("\each anonymous array is a distinct type", N
);
11935 Error_Msg_N
("a deferred constant must have a named type",
11936 Object_Definition
(Parent
(Prev
)));
11940 Null_Exclusion_Present
(Parent
(Prev
))
11941 and then not Null_Exclusion_Present
(N
)
11943 Error_Msg_Sloc
:= Sloc
(Prev
);
11944 Error_Msg_N
("null-exclusion does not match declaration#", N
);
11945 Set_Full_View
(Prev
, Id
);
11946 Set_Etype
(Id
, Any_Type
);
11948 -- If so, process the full constant declaration
11951 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11952 -- the deferred declaration is constrained, then the subtype defined
11953 -- by the subtype_indication in the full declaration shall match it
11956 Check_Possible_Deferred_Completion
11958 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
11959 Curr_Obj_Def
=> Obj_Def
);
11961 Set_Full_View
(Prev
, Id
);
11962 Set_Is_Public
(Id
, Is_Public
(Prev
));
11963 Set_Is_Internal
(Id
);
11964 Append_Entity
(Id
, Current_Scope
);
11966 -- Check ALIASED present if present before (RM 7.4(7))
11968 if Is_Aliased
(Prev
)
11969 and then not Aliased_Present
(N
)
11971 Error_Msg_Sloc
:= Sloc
(Prev
);
11972 Error_Msg_N
("ALIASED required (see declaration #)", N
);
11975 -- Check that placement is in private part and that the incomplete
11976 -- declaration appeared in the visible part.
11978 if Ekind
(Current_Scope
) = E_Package
11979 and then not In_Private_Part
(Current_Scope
)
11981 Error_Msg_Sloc
:= Sloc
(Prev
);
11983 ("full constant for declaration # must be in private part", N
);
11985 elsif Ekind
(Current_Scope
) = E_Package
11987 List_Containing
(Parent
(Prev
)) /=
11988 Visible_Declarations
(Package_Specification
(Current_Scope
))
11991 ("deferred constant must be declared in visible part",
11995 if Is_Access_Type
(T
)
11996 and then Nkind
(Expression
(N
)) = N_Allocator
11998 Check_Recursive_Declaration
(Designated_Type
(T
));
12001 -- A deferred constant is a visible entity. If type has invariants,
12002 -- verify that the initial value satisfies them.
12004 if Has_Invariants
(T
) and then Present
(Invariant_Procedure
(T
)) then
12006 Make_Invariant_Call
(New_Occurrence_Of
(Prev
, Sloc
(N
))));
12009 end Constant_Redeclaration
;
12011 ----------------------
12012 -- Constrain_Access --
12013 ----------------------
12015 procedure Constrain_Access
12016 (Def_Id
: in out Entity_Id
;
12018 Related_Nod
: Node_Id
)
12020 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12021 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
12022 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
12023 Constraint_OK
: Boolean := True;
12026 if Is_Array_Type
(Desig_Type
) then
12027 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
12029 elsif (Is_Record_Type
(Desig_Type
)
12030 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
12031 and then not Is_Constrained
(Desig_Type
)
12033 -- ??? The following code is a temporary bypass to ignore a
12034 -- discriminant constraint on access type if it is constraining
12035 -- the current record. Avoid creating the implicit subtype of the
12036 -- record we are currently compiling since right now, we cannot
12037 -- handle these. For now, just return the access type itself.
12039 if Desig_Type
= Current_Scope
12040 and then No
(Def_Id
)
12042 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
12043 Def_Id
:= Entity
(Subtype_Mark
(S
));
12045 -- This call added to ensure that the constraint is analyzed
12046 -- (needed for a B test). Note that we still return early from
12047 -- this procedure to avoid recursive processing. ???
12049 Constrain_Discriminated_Type
12050 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
12054 -- Enforce rule that the constraint is illegal if there is an
12055 -- unconstrained view of the designated type. This means that the
12056 -- partial view (either a private type declaration or a derivation
12057 -- from a private type) has no discriminants. (Defect Report
12058 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12060 -- Rule updated for Ada 2005: The private type is said to have
12061 -- a constrained partial view, given that objects of the type
12062 -- can be declared. Furthermore, the rule applies to all access
12063 -- types, unlike the rule concerning default discriminants (see
12066 if (Ekind
(T
) = E_General_Access_Type
or else Ada_Version
>= Ada_2005
)
12067 and then Has_Private_Declaration
(Desig_Type
)
12068 and then In_Open_Scopes
(Scope
(Desig_Type
))
12069 and then Has_Discriminants
(Desig_Type
)
12072 Pack
: constant Node_Id
:=
12073 Unit_Declaration_Node
(Scope
(Desig_Type
));
12078 if Nkind
(Pack
) = N_Package_Declaration
then
12079 Decls
:= Visible_Declarations
(Specification
(Pack
));
12080 Decl
:= First
(Decls
);
12081 while Present
(Decl
) loop
12082 if (Nkind
(Decl
) = N_Private_Type_Declaration
12083 and then Chars
(Defining_Identifier
(Decl
)) =
12084 Chars
(Desig_Type
))
12087 (Nkind
(Decl
) = N_Full_Type_Declaration
12089 Chars
(Defining_Identifier
(Decl
)) =
12091 and then Is_Derived_Type
(Desig_Type
)
12093 Has_Private_Declaration
(Etype
(Desig_Type
)))
12095 if No
(Discriminant_Specifications
(Decl
)) then
12097 ("cannot constrain access type if designated "
12098 & "type has constrained partial view", S
);
12110 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
12111 For_Access
=> True);
12113 elsif Is_Concurrent_Type
(Desig_Type
)
12114 and then not Is_Constrained
(Desig_Type
)
12116 Constrain_Concurrent
(Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
12119 Error_Msg_N
("invalid constraint on access type", S
);
12121 -- We simply ignore an invalid constraint
12123 Desig_Subtype
:= Desig_Type
;
12124 Constraint_OK
:= False;
12127 if No
(Def_Id
) then
12128 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
12130 Set_Ekind
(Def_Id
, E_Access_Subtype
);
12133 if Constraint_OK
then
12134 Set_Etype
(Def_Id
, Base_Type
(T
));
12136 if Is_Private_Type
(Desig_Type
) then
12137 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
12140 Set_Etype
(Def_Id
, Any_Type
);
12143 Set_Size_Info
(Def_Id
, T
);
12144 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
12145 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
12146 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12147 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
12149 Conditional_Delay
(Def_Id
, T
);
12151 -- AI-363 : Subtypes of general access types whose designated types have
12152 -- default discriminants are disallowed. In instances, the rule has to
12153 -- be checked against the actual, of which T is the subtype. In a
12154 -- generic body, the rule is checked assuming that the actual type has
12155 -- defaulted discriminants.
12157 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
12158 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
12159 and then Has_Defaulted_Discriminants
(Desig_Type
)
12161 if Ada_Version
< Ada_2005
then
12163 ("access subtype of general access type would not " &
12164 "be allowed in Ada 2005?y?", S
);
12167 ("access subtype of general access type not allowed", S
);
12170 Error_Msg_N
("\discriminants have defaults", S
);
12172 elsif Is_Access_Type
(T
)
12173 and then Is_Generic_Type
(Desig_Type
)
12174 and then Has_Discriminants
(Desig_Type
)
12175 and then In_Package_Body
(Current_Scope
)
12177 if Ada_Version
< Ada_2005
then
12179 ("access subtype would not be allowed in generic body "
12180 & "in Ada 2005?y?", S
);
12183 ("access subtype not allowed in generic body", S
);
12187 ("\designated type is a discriminated formal", S
);
12190 end Constrain_Access
;
12192 ---------------------
12193 -- Constrain_Array --
12194 ---------------------
12196 procedure Constrain_Array
12197 (Def_Id
: in out Entity_Id
;
12199 Related_Nod
: Node_Id
;
12200 Related_Id
: Entity_Id
;
12201 Suffix
: Character)
12203 C
: constant Node_Id
:= Constraint
(SI
);
12204 Number_Of_Constraints
: Nat
:= 0;
12207 Constraint_OK
: Boolean := True;
12210 T
:= Entity
(Subtype_Mark
(SI
));
12212 if Is_Access_Type
(T
) then
12213 T
:= Designated_Type
(T
);
12216 -- If an index constraint follows a subtype mark in a subtype indication
12217 -- then the type or subtype denoted by the subtype mark must not already
12218 -- impose an index constraint. The subtype mark must denote either an
12219 -- unconstrained array type or an access type whose designated type
12220 -- is such an array type... (RM 3.6.1)
12222 if Is_Constrained
(T
) then
12223 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
12224 Constraint_OK
:= False;
12227 S
:= First
(Constraints
(C
));
12228 while Present
(S
) loop
12229 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
12233 -- In either case, the index constraint must provide a discrete
12234 -- range for each index of the array type and the type of each
12235 -- discrete range must be the same as that of the corresponding
12236 -- index. (RM 3.6.1)
12238 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
12239 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
12240 Constraint_OK
:= False;
12243 S
:= First
(Constraints
(C
));
12244 Index
:= First_Index
(T
);
12247 -- Apply constraints to each index type
12249 for J
in 1 .. Number_Of_Constraints
loop
12250 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
12258 if No
(Def_Id
) then
12260 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
12261 Set_Parent
(Def_Id
, Related_Nod
);
12264 Set_Ekind
(Def_Id
, E_Array_Subtype
);
12267 Set_Size_Info
(Def_Id
, (T
));
12268 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12269 Set_Etype
(Def_Id
, Base_Type
(T
));
12271 if Constraint_OK
then
12272 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
12274 Set_First_Index
(Def_Id
, First_Index
(T
));
12277 Set_Is_Constrained
(Def_Id
, True);
12278 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
12279 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12281 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
12282 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
12284 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12285 -- We need to initialize the attribute because if Def_Id is previously
12286 -- analyzed through a limited_with clause, it will have the attributes
12287 -- of an incomplete type, one of which is an Elist that overlaps the
12288 -- Packed_Array_Impl_Type field.
12290 Set_Packed_Array_Impl_Type
(Def_Id
, Empty
);
12292 -- Build a freeze node if parent still needs one. Also make sure that
12293 -- the Depends_On_Private status is set because the subtype will need
12294 -- reprocessing at the time the base type does, and also we must set a
12295 -- conditional delay.
12297 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
12298 Conditional_Delay
(Def_Id
, T
);
12299 end Constrain_Array
;
12301 ------------------------------
12302 -- Constrain_Component_Type --
12303 ------------------------------
12305 function Constrain_Component_Type
12307 Constrained_Typ
: Entity_Id
;
12308 Related_Node
: Node_Id
;
12310 Constraints
: Elist_Id
) return Entity_Id
12312 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
12313 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
12315 function Build_Constrained_Array_Type
12316 (Old_Type
: Entity_Id
) return Entity_Id
;
12317 -- If Old_Type is an array type, one of whose indexes is constrained
12318 -- by a discriminant, build an Itype whose constraint replaces the
12319 -- discriminant with its value in the constraint.
12321 function Build_Constrained_Discriminated_Type
12322 (Old_Type
: Entity_Id
) return Entity_Id
;
12323 -- Ditto for record components
12325 function Build_Constrained_Access_Type
12326 (Old_Type
: Entity_Id
) return Entity_Id
;
12327 -- Ditto for access types. Makes use of previous two functions, to
12328 -- constrain designated type.
12330 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
12331 -- T is an array or discriminated type, C is a list of constraints
12332 -- that apply to T. This routine builds the constrained subtype.
12334 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
12335 -- Returns True if Expr is a discriminant
12337 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
12338 -- Find the value of discriminant Discrim in Constraint
12340 -----------------------------------
12341 -- Build_Constrained_Access_Type --
12342 -----------------------------------
12344 function Build_Constrained_Access_Type
12345 (Old_Type
: Entity_Id
) return Entity_Id
12347 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
12349 Desig_Subtype
: Entity_Id
;
12353 -- if the original access type was not embedded in the enclosing
12354 -- type definition, there is no need to produce a new access
12355 -- subtype. In fact every access type with an explicit constraint
12356 -- generates an itype whose scope is the enclosing record.
12358 if not Is_Type
(Scope
(Old_Type
)) then
12361 elsif Is_Array_Type
(Desig_Type
) then
12362 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
12364 elsif Has_Discriminants
(Desig_Type
) then
12366 -- This may be an access type to an enclosing record type for
12367 -- which we are constructing the constrained components. Return
12368 -- the enclosing record subtype. This is not always correct,
12369 -- but avoids infinite recursion. ???
12371 Desig_Subtype
:= Any_Type
;
12373 for J
in reverse 0 .. Scope_Stack
.Last
loop
12374 Scop
:= Scope_Stack
.Table
(J
).Entity
;
12377 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
12379 Desig_Subtype
:= Scop
;
12382 exit when not Is_Type
(Scop
);
12385 if Desig_Subtype
= Any_Type
then
12387 Build_Constrained_Discriminated_Type
(Desig_Type
);
12394 if Desig_Subtype
/= Desig_Type
then
12396 -- The Related_Node better be here or else we won't be able
12397 -- to attach new itypes to a node in the tree.
12399 pragma Assert
(Present
(Related_Node
));
12401 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
12403 Set_Etype
(Itype
, Base_Type
(Old_Type
));
12404 Set_Size_Info
(Itype
, (Old_Type
));
12405 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
12406 Set_Depends_On_Private
(Itype
, Has_Private_Component
12408 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
12411 -- The new itype needs freezing when it depends on a not frozen
12412 -- type and the enclosing subtype needs freezing.
12414 if Has_Delayed_Freeze
(Constrained_Typ
)
12415 and then not Is_Frozen
(Constrained_Typ
)
12417 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
12425 end Build_Constrained_Access_Type
;
12427 ----------------------------------
12428 -- Build_Constrained_Array_Type --
12429 ----------------------------------
12431 function Build_Constrained_Array_Type
12432 (Old_Type
: Entity_Id
) return Entity_Id
12436 Old_Index
: Node_Id
;
12437 Range_Node
: Node_Id
;
12438 Constr_List
: List_Id
;
12440 Need_To_Create_Itype
: Boolean := False;
12443 Old_Index
:= First_Index
(Old_Type
);
12444 while Present
(Old_Index
) loop
12445 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12447 if Is_Discriminant
(Lo_Expr
)
12449 Is_Discriminant
(Hi_Expr
)
12451 Need_To_Create_Itype
:= True;
12454 Next_Index
(Old_Index
);
12457 if Need_To_Create_Itype
then
12458 Constr_List
:= New_List
;
12460 Old_Index
:= First_Index
(Old_Type
);
12461 while Present
(Old_Index
) loop
12462 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12464 if Is_Discriminant
(Lo_Expr
) then
12465 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
12468 if Is_Discriminant
(Hi_Expr
) then
12469 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
12474 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
12476 Append
(Range_Node
, To
=> Constr_List
);
12478 Next_Index
(Old_Index
);
12481 return Build_Subtype
(Old_Type
, Constr_List
);
12486 end Build_Constrained_Array_Type
;
12488 ------------------------------------------
12489 -- Build_Constrained_Discriminated_Type --
12490 ------------------------------------------
12492 function Build_Constrained_Discriminated_Type
12493 (Old_Type
: Entity_Id
) return Entity_Id
12496 Constr_List
: List_Id
;
12497 Old_Constraint
: Elmt_Id
;
12499 Need_To_Create_Itype
: Boolean := False;
12502 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12503 while Present
(Old_Constraint
) loop
12504 Expr
:= Node
(Old_Constraint
);
12506 if Is_Discriminant
(Expr
) then
12507 Need_To_Create_Itype
:= True;
12510 Next_Elmt
(Old_Constraint
);
12513 if Need_To_Create_Itype
then
12514 Constr_List
:= New_List
;
12516 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12517 while Present
(Old_Constraint
) loop
12518 Expr
:= Node
(Old_Constraint
);
12520 if Is_Discriminant
(Expr
) then
12521 Expr
:= Get_Discr_Value
(Expr
);
12524 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
12526 Next_Elmt
(Old_Constraint
);
12529 return Build_Subtype
(Old_Type
, Constr_List
);
12534 end Build_Constrained_Discriminated_Type
;
12536 -------------------
12537 -- Build_Subtype --
12538 -------------------
12540 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
12542 Subtyp_Decl
: Node_Id
;
12543 Def_Id
: Entity_Id
;
12544 Btyp
: Entity_Id
:= Base_Type
(T
);
12547 -- The Related_Node better be here or else we won't be able to
12548 -- attach new itypes to a node in the tree.
12550 pragma Assert
(Present
(Related_Node
));
12552 -- If the view of the component's type is incomplete or private
12553 -- with unknown discriminants, then the constraint must be applied
12554 -- to the full type.
12556 if Has_Unknown_Discriminants
(Btyp
)
12557 and then Present
(Underlying_Type
(Btyp
))
12559 Btyp
:= Underlying_Type
(Btyp
);
12563 Make_Subtype_Indication
(Loc
,
12564 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
12565 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
12567 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
12570 Make_Subtype_Declaration
(Loc
,
12571 Defining_Identifier
=> Def_Id
,
12572 Subtype_Indication
=> Indic
);
12574 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
12576 -- Itypes must be analyzed with checks off (see package Itypes)
12578 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
12583 ---------------------
12584 -- Get_Discr_Value --
12585 ---------------------
12587 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
12592 -- The discriminant may be declared for the type, in which case we
12593 -- find it by iterating over the list of discriminants. If the
12594 -- discriminant is inherited from a parent type, it appears as the
12595 -- corresponding discriminant of the current type. This will be the
12596 -- case when constraining an inherited component whose constraint is
12597 -- given by a discriminant of the parent.
12599 D
:= First_Discriminant
(Typ
);
12600 E
:= First_Elmt
(Constraints
);
12602 while Present
(D
) loop
12603 if D
= Entity
(Discrim
)
12604 or else D
= CR_Discriminant
(Entity
(Discrim
))
12605 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
12610 Next_Discriminant
(D
);
12614 -- The Corresponding_Discriminant mechanism is incomplete, because
12615 -- the correspondence between new and old discriminants is not one
12616 -- to one: one new discriminant can constrain several old ones. In
12617 -- that case, scan sequentially the stored_constraint, the list of
12618 -- discriminants of the parents, and the constraints.
12620 -- Previous code checked for the present of the Stored_Constraint
12621 -- list for the derived type, but did not use it at all. Should it
12622 -- be present when the component is a discriminated task type?
12624 if Is_Derived_Type
(Typ
)
12625 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
12627 D
:= First_Discriminant
(Etype
(Typ
));
12628 E
:= First_Elmt
(Constraints
);
12629 while Present
(D
) loop
12630 if D
= Entity
(Discrim
) then
12634 Next_Discriminant
(D
);
12639 -- Something is wrong if we did not find the value
12641 raise Program_Error
;
12642 end Get_Discr_Value
;
12644 ---------------------
12645 -- Is_Discriminant --
12646 ---------------------
12648 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
12649 Discrim_Scope
: Entity_Id
;
12652 if Denotes_Discriminant
(Expr
) then
12653 Discrim_Scope
:= Scope
(Entity
(Expr
));
12655 -- Either we have a reference to one of Typ's discriminants,
12657 pragma Assert
(Discrim_Scope
= Typ
12659 -- or to the discriminants of the parent type, in the case
12660 -- of a derivation of a tagged type with variants.
12662 or else Discrim_Scope
= Etype
(Typ
)
12663 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
12665 -- or same as above for the case where the discriminants
12666 -- were declared in Typ's private view.
12668 or else (Is_Private_Type
(Discrim_Scope
)
12669 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12671 -- or else we are deriving from the full view and the
12672 -- discriminant is declared in the private entity.
12674 or else (Is_Private_Type
(Typ
)
12675 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12677 -- Or we are constrained the corresponding record of a
12678 -- synchronized type that completes a private declaration.
12680 or else (Is_Concurrent_Record_Type
(Typ
)
12682 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
12684 -- or we have a class-wide type, in which case make sure the
12685 -- discriminant found belongs to the root type.
12687 or else (Is_Class_Wide_Type
(Typ
)
12688 and then Etype
(Typ
) = Discrim_Scope
));
12693 -- In all other cases we have something wrong
12696 end Is_Discriminant
;
12698 -- Start of processing for Constrain_Component_Type
12701 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
12702 and then Comes_From_Source
(Parent
(Comp
))
12703 and then Comes_From_Source
12704 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12707 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12709 return Compon_Type
;
12711 elsif Is_Array_Type
(Compon_Type
) then
12712 return Build_Constrained_Array_Type
(Compon_Type
);
12714 elsif Has_Discriminants
(Compon_Type
) then
12715 return Build_Constrained_Discriminated_Type
(Compon_Type
);
12717 elsif Is_Access_Type
(Compon_Type
) then
12718 return Build_Constrained_Access_Type
(Compon_Type
);
12721 return Compon_Type
;
12723 end Constrain_Component_Type
;
12725 --------------------------
12726 -- Constrain_Concurrent --
12727 --------------------------
12729 -- For concurrent types, the associated record value type carries the same
12730 -- discriminants, so when we constrain a concurrent type, we must constrain
12731 -- the corresponding record type as well.
12733 procedure Constrain_Concurrent
12734 (Def_Id
: in out Entity_Id
;
12736 Related_Nod
: Node_Id
;
12737 Related_Id
: Entity_Id
;
12738 Suffix
: Character)
12740 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12741 -- case of a private subtype (needed when only doing semantic analysis).
12743 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
12747 if Is_Access_Type
(T_Ent
) then
12748 T_Ent
:= Designated_Type
(T_Ent
);
12751 T_Val
:= Corresponding_Record_Type
(T_Ent
);
12753 if Present
(T_Val
) then
12755 if No
(Def_Id
) then
12756 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12759 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12761 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12762 Set_Corresponding_Record_Type
(Def_Id
,
12763 Constrain_Corresponding_Record
(Def_Id
, T_Val
, Related_Nod
));
12766 -- If there is no associated record, expansion is disabled and this
12767 -- is a generic context. Create a subtype in any case, so that
12768 -- semantic analysis can proceed.
12770 if No
(Def_Id
) then
12771 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12774 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12776 end Constrain_Concurrent
;
12778 ------------------------------------
12779 -- Constrain_Corresponding_Record --
12780 ------------------------------------
12782 function Constrain_Corresponding_Record
12783 (Prot_Subt
: Entity_Id
;
12784 Corr_Rec
: Entity_Id
;
12785 Related_Nod
: Node_Id
) return Entity_Id
12787 T_Sub
: constant Entity_Id
:=
12788 Create_Itype
(E_Record_Subtype
, Related_Nod
, Corr_Rec
, 'C');
12791 Set_Etype
(T_Sub
, Corr_Rec
);
12792 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
12793 Set_Is_Constrained
(T_Sub
, True);
12794 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
12795 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
12797 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
12798 Set_Discriminant_Constraint
12799 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
12800 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
12801 Create_Constrained_Components
12802 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
12805 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
12807 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
12808 Conditional_Delay
(T_Sub
, Corr_Rec
);
12811 -- This is a component subtype: it will be frozen in the context of
12812 -- the enclosing record's init_proc, so that discriminant references
12813 -- are resolved to discriminals. (Note: we used to skip freezing
12814 -- altogether in that case, which caused errors downstream for
12815 -- components of a bit packed array type).
12817 Set_Has_Delayed_Freeze
(T_Sub
);
12821 end Constrain_Corresponding_Record
;
12823 -----------------------
12824 -- Constrain_Decimal --
12825 -----------------------
12827 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
12828 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12829 C
: constant Node_Id
:= Constraint
(S
);
12830 Loc
: constant Source_Ptr
:= Sloc
(C
);
12831 Range_Expr
: Node_Id
;
12832 Digits_Expr
: Node_Id
;
12837 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
12839 if Nkind
(C
) = N_Range_Constraint
then
12840 Range_Expr
:= Range_Expression
(C
);
12841 Digits_Val
:= Digits_Value
(T
);
12844 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
12846 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
12848 Digits_Expr
:= Digits_Expression
(C
);
12849 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
12851 Check_Digits_Expression
(Digits_Expr
);
12852 Digits_Val
:= Expr_Value
(Digits_Expr
);
12854 if Digits_Val
> Digits_Value
(T
) then
12856 ("digits expression is incompatible with subtype", C
);
12857 Digits_Val
:= Digits_Value
(T
);
12860 if Present
(Range_Constraint
(C
)) then
12861 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
12863 Range_Expr
:= Empty
;
12867 Set_Etype
(Def_Id
, Base_Type
(T
));
12868 Set_Size_Info
(Def_Id
, (T
));
12869 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12870 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
12871 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
12872 Set_Small_Value
(Def_Id
, Small_Value
(T
));
12873 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
12874 Set_Digits_Value
(Def_Id
, Digits_Val
);
12876 -- Manufacture range from given digits value if no range present
12878 if No
(Range_Expr
) then
12879 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
12883 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
12885 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
12888 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
12889 Set_Discrete_RM_Size
(Def_Id
);
12891 -- Unconditionally delay the freeze, since we cannot set size
12892 -- information in all cases correctly until the freeze point.
12894 Set_Has_Delayed_Freeze
(Def_Id
);
12895 end Constrain_Decimal
;
12897 ----------------------------------
12898 -- Constrain_Discriminated_Type --
12899 ----------------------------------
12901 procedure Constrain_Discriminated_Type
12902 (Def_Id
: Entity_Id
;
12904 Related_Nod
: Node_Id
;
12905 For_Access
: Boolean := False)
12907 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12910 Elist
: Elist_Id
:= New_Elmt_List
;
12912 procedure Fixup_Bad_Constraint
;
12913 -- This is called after finding a bad constraint, and after having
12914 -- posted an appropriate error message. The mission is to leave the
12915 -- entity T in as reasonable state as possible.
12917 --------------------------
12918 -- Fixup_Bad_Constraint --
12919 --------------------------
12921 procedure Fixup_Bad_Constraint
is
12923 -- Set a reasonable Ekind for the entity. For an incomplete type,
12924 -- we can't do much, but for other types, we can set the proper
12925 -- corresponding subtype kind.
12927 if Ekind
(T
) = E_Incomplete_Type
then
12928 Set_Ekind
(Def_Id
, Ekind
(T
));
12930 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
12933 -- Set Etype to the known type, to reduce chances of cascaded errors
12935 Set_Etype
(Def_Id
, E
);
12936 Set_Error_Posted
(Def_Id
);
12937 end Fixup_Bad_Constraint
;
12939 -- Start of processing for Constrain_Discriminated_Type
12942 C
:= Constraint
(S
);
12944 -- A discriminant constraint is only allowed in a subtype indication,
12945 -- after a subtype mark. This subtype mark must denote either a type
12946 -- with discriminants, or an access type whose designated type is a
12947 -- type with discriminants. A discriminant constraint specifies the
12948 -- values of these discriminants (RM 3.7.2(5)).
12950 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
12952 if Is_Access_Type
(T
) then
12953 T
:= Designated_Type
(T
);
12956 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12957 -- Avoid generating an error for access-to-incomplete subtypes.
12959 if Ada_Version
>= Ada_2005
12960 and then Ekind
(T
) = E_Incomplete_Type
12961 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
12962 and then not Is_Itype
(Def_Id
)
12964 -- A little sanity check, emit an error message if the type
12965 -- has discriminants to begin with. Type T may be a regular
12966 -- incomplete type or imported via a limited with clause.
12968 if Has_Discriminants
(T
)
12969 or else (From_Limited_With
(T
)
12970 and then Present
(Non_Limited_View
(T
))
12971 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
12972 N_Full_Type_Declaration
12973 and then Present
(Discriminant_Specifications
12974 (Parent
(Non_Limited_View
(T
)))))
12977 ("(Ada 2005) incomplete subtype may not be constrained", C
);
12979 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
12982 Fixup_Bad_Constraint
;
12985 -- Check that the type has visible discriminants. The type may be
12986 -- a private type with unknown discriminants whose full view has
12987 -- discriminants which are invisible.
12989 elsif not Has_Discriminants
(T
)
12991 (Has_Unknown_Discriminants
(T
)
12992 and then Is_Private_Type
(T
))
12994 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
12995 Fixup_Bad_Constraint
;
12998 elsif Is_Constrained
(E
)
12999 or else (Ekind
(E
) = E_Class_Wide_Subtype
13000 and then Present
(Discriminant_Constraint
(E
)))
13002 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
13003 Fixup_Bad_Constraint
;
13007 -- T may be an unconstrained subtype (e.g. a generic actual).
13008 -- Constraint applies to the base type.
13010 T
:= Base_Type
(T
);
13012 Elist
:= Build_Discriminant_Constraints
(T
, S
);
13014 -- If the list returned was empty we had an error in building the
13015 -- discriminant constraint. We have also already signalled an error
13016 -- in the incomplete type case
13018 if Is_Empty_Elmt_List
(Elist
) then
13019 Fixup_Bad_Constraint
;
13023 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
13024 end Constrain_Discriminated_Type
;
13026 ---------------------------
13027 -- Constrain_Enumeration --
13028 ---------------------------
13030 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
13031 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13032 C
: constant Node_Id
:= Constraint
(S
);
13035 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13037 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
13039 Set_Etype
(Def_Id
, Base_Type
(T
));
13040 Set_Size_Info
(Def_Id
, (T
));
13041 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13042 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13044 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13046 Set_Discrete_RM_Size
(Def_Id
);
13047 end Constrain_Enumeration
;
13049 ----------------------
13050 -- Constrain_Float --
13051 ----------------------
13053 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
13054 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13060 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
13062 Set_Etype
(Def_Id
, Base_Type
(T
));
13063 Set_Size_Info
(Def_Id
, (T
));
13064 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13066 -- Process the constraint
13068 C
:= Constraint
(S
);
13070 -- Digits constraint present
13072 if Nkind
(C
) = N_Digits_Constraint
then
13074 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13075 Check_Restriction
(No_Obsolescent_Features
, C
);
13077 if Warn_On_Obsolescent_Feature
then
13079 ("subtype digits constraint is an " &
13080 "obsolescent feature (RM J.3(8))?j?", C
);
13083 D
:= Digits_Expression
(C
);
13084 Analyze_And_Resolve
(D
, Any_Integer
);
13085 Check_Digits_Expression
(D
);
13086 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
13088 -- Check that digits value is in range. Obviously we can do this
13089 -- at compile time, but it is strictly a runtime check, and of
13090 -- course there is an ACVC test that checks this.
13092 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
13093 Error_Msg_Uint_1
:= Digits_Value
(T
);
13094 Error_Msg_N
("??digits value is too large, maximum is ^", D
);
13096 Make_Raise_Constraint_Error
(Sloc
(D
),
13097 Reason
=> CE_Range_Check_Failed
);
13098 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13101 C
:= Range_Constraint
(C
);
13103 -- No digits constraint present
13106 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
13109 -- Range constraint present
13111 if Nkind
(C
) = N_Range_Constraint
then
13112 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13114 -- No range constraint present
13117 pragma Assert
(No
(C
));
13118 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13121 Set_Is_Constrained
(Def_Id
);
13122 end Constrain_Float
;
13124 ---------------------
13125 -- Constrain_Index --
13126 ---------------------
13128 procedure Constrain_Index
13131 Related_Nod
: Node_Id
;
13132 Related_Id
: Entity_Id
;
13133 Suffix
: Character;
13134 Suffix_Index
: Nat
)
13136 Def_Id
: Entity_Id
;
13137 R
: Node_Id
:= Empty
;
13138 T
: constant Entity_Id
:= Etype
(Index
);
13141 if Nkind
(S
) = N_Range
13143 (Nkind
(S
) = N_Attribute_Reference
13144 and then Attribute_Name
(S
) = Name_Range
)
13146 -- A Range attribute will be transformed into N_Range by Resolve
13152 Process_Range_Expr_In_Decl
(R
, T
);
13154 if not Error_Posted
(S
)
13156 (Nkind
(S
) /= N_Range
13157 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
13158 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
13160 if Base_Type
(T
) /= Any_Type
13161 and then Etype
(Low_Bound
(S
)) /= Any_Type
13162 and then Etype
(High_Bound
(S
)) /= Any_Type
13164 Error_Msg_N
("range expected", S
);
13168 elsif Nkind
(S
) = N_Subtype_Indication
then
13170 -- The parser has verified that this is a discrete indication
13172 Resolve_Discrete_Subtype_Indication
(S
, T
);
13173 Bad_Predicated_Subtype_Use
13174 ("subtype& has predicate, not allowed in index constraint",
13175 S
, Entity
(Subtype_Mark
(S
)));
13177 R
:= Range_Expression
(Constraint
(S
));
13179 -- Capture values of bounds and generate temporaries for them if
13180 -- needed, since checks may cause duplication of the expressions
13181 -- which must not be reevaluated.
13183 -- The forced evaluation removes side effects from expressions, which
13184 -- should occur also in GNATprove mode. Otherwise, we end up with
13185 -- unexpected insertions of actions at places where this is not
13186 -- supposed to occur, e.g. on default parameters of a call.
13188 if Expander_Active
or GNATprove_Mode
then
13189 Force_Evaluation
(Low_Bound
(R
));
13190 Force_Evaluation
(High_Bound
(R
));
13193 elsif Nkind
(S
) = N_Discriminant_Association
then
13195 -- Syntactically valid in subtype indication
13197 Error_Msg_N
("invalid index constraint", S
);
13198 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13201 -- Subtype_Mark case, no anonymous subtypes to construct
13206 if Is_Entity_Name
(S
) then
13207 if not Is_Type
(Entity
(S
)) then
13208 Error_Msg_N
("expect subtype mark for index constraint", S
);
13210 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
13211 Wrong_Type
(S
, Base_Type
(T
));
13213 -- Check error of subtype with predicate in index constraint
13216 Bad_Predicated_Subtype_Use
13217 ("subtype& has predicate, not allowed in index constraint",
13224 Error_Msg_N
("invalid index constraint", S
);
13225 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13231 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
13233 Set_Etype
(Def_Id
, Base_Type
(T
));
13235 if Is_Modular_Integer_Type
(T
) then
13236 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13238 elsif Is_Integer_Type
(T
) then
13239 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13242 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13243 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13244 Set_First_Literal
(Def_Id
, First_Literal
(T
));
13247 Set_Size_Info
(Def_Id
, (T
));
13248 Set_RM_Size
(Def_Id
, RM_Size
(T
));
13249 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13251 Set_Scalar_Range
(Def_Id
, R
);
13253 Set_Etype
(S
, Def_Id
);
13254 Set_Discrete_RM_Size
(Def_Id
);
13255 end Constrain_Index
;
13257 -----------------------
13258 -- Constrain_Integer --
13259 -----------------------
13261 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
13262 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13263 C
: constant Node_Id
:= Constraint
(S
);
13266 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13268 if Is_Modular_Integer_Type
(T
) then
13269 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13271 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13274 Set_Etype
(Def_Id
, Base_Type
(T
));
13275 Set_Size_Info
(Def_Id
, (T
));
13276 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13277 Set_Discrete_RM_Size
(Def_Id
);
13278 end Constrain_Integer
;
13280 ------------------------------
13281 -- Constrain_Ordinary_Fixed --
13282 ------------------------------
13284 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
13285 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13291 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
13292 Set_Etype
(Def_Id
, Base_Type
(T
));
13293 Set_Size_Info
(Def_Id
, (T
));
13294 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13295 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13297 -- Process the constraint
13299 C
:= Constraint
(S
);
13301 -- Delta constraint present
13303 if Nkind
(C
) = N_Delta_Constraint
then
13305 Check_SPARK_05_Restriction
("delta constraint is not allowed", S
);
13306 Check_Restriction
(No_Obsolescent_Features
, C
);
13308 if Warn_On_Obsolescent_Feature
then
13310 ("subtype delta constraint is an " &
13311 "obsolescent feature (RM J.3(7))?j?");
13314 D
:= Delta_Expression
(C
);
13315 Analyze_And_Resolve
(D
, Any_Real
);
13316 Check_Delta_Expression
(D
);
13317 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
13319 -- Check that delta value is in range. Obviously we can do this
13320 -- at compile time, but it is strictly a runtime check, and of
13321 -- course there is an ACVC test that checks this.
13323 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
13324 Error_Msg_N
("??delta value is too small", D
);
13326 Make_Raise_Constraint_Error
(Sloc
(D
),
13327 Reason
=> CE_Range_Check_Failed
);
13328 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13331 C
:= Range_Constraint
(C
);
13333 -- No delta constraint present
13336 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13339 -- Range constraint present
13341 if Nkind
(C
) = N_Range_Constraint
then
13342 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13344 -- No range constraint present
13347 pragma Assert
(No
(C
));
13348 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13352 Set_Discrete_RM_Size
(Def_Id
);
13354 -- Unconditionally delay the freeze, since we cannot set size
13355 -- information in all cases correctly until the freeze point.
13357 Set_Has_Delayed_Freeze
(Def_Id
);
13358 end Constrain_Ordinary_Fixed
;
13360 -----------------------
13361 -- Contain_Interface --
13362 -----------------------
13364 function Contain_Interface
13365 (Iface
: Entity_Id
;
13366 Ifaces
: Elist_Id
) return Boolean
13368 Iface_Elmt
: Elmt_Id
;
13371 if Present
(Ifaces
) then
13372 Iface_Elmt
:= First_Elmt
(Ifaces
);
13373 while Present
(Iface_Elmt
) loop
13374 if Node
(Iface_Elmt
) = Iface
then
13378 Next_Elmt
(Iface_Elmt
);
13383 end Contain_Interface
;
13385 ---------------------------
13386 -- Convert_Scalar_Bounds --
13387 ---------------------------
13389 procedure Convert_Scalar_Bounds
13391 Parent_Type
: Entity_Id
;
13392 Derived_Type
: Entity_Id
;
13395 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
13402 -- Defend against previous errors
13404 if No
(Scalar_Range
(Derived_Type
)) then
13405 Check_Error_Detected
;
13409 Lo
:= Build_Scalar_Bound
13410 (Type_Low_Bound
(Derived_Type
),
13411 Parent_Type
, Implicit_Base
);
13413 Hi
:= Build_Scalar_Bound
13414 (Type_High_Bound
(Derived_Type
),
13415 Parent_Type
, Implicit_Base
);
13422 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
13424 Set_Parent
(Rng
, N
);
13425 Set_Scalar_Range
(Derived_Type
, Rng
);
13427 -- Analyze the bounds
13429 Analyze_And_Resolve
(Lo
, Implicit_Base
);
13430 Analyze_And_Resolve
(Hi
, Implicit_Base
);
13432 -- Analyze the range itself, except that we do not analyze it if
13433 -- the bounds are real literals, and we have a fixed-point type.
13434 -- The reason for this is that we delay setting the bounds in this
13435 -- case till we know the final Small and Size values (see circuit
13436 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13438 if Is_Fixed_Point_Type
(Parent_Type
)
13439 and then Nkind
(Lo
) = N_Real_Literal
13440 and then Nkind
(Hi
) = N_Real_Literal
13444 -- Here we do the analysis of the range
13446 -- Note: we do this manually, since if we do a normal Analyze and
13447 -- Resolve call, there are problems with the conversions used for
13448 -- the derived type range.
13451 Set_Etype
(Rng
, Implicit_Base
);
13452 Set_Analyzed
(Rng
, True);
13454 end Convert_Scalar_Bounds
;
13456 -------------------
13457 -- Copy_And_Swap --
13458 -------------------
13460 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
13462 -- Initialize new full declaration entity by copying the pertinent
13463 -- fields of the corresponding private declaration entity.
13465 -- We temporarily set Ekind to a value appropriate for a type to
13466 -- avoid assert failures in Einfo from checking for setting type
13467 -- attributes on something that is not a type. Ekind (Priv) is an
13468 -- appropriate choice, since it allowed the attributes to be set
13469 -- in the first place. This Ekind value will be modified later.
13471 Set_Ekind
(Full
, Ekind
(Priv
));
13473 -- Also set Etype temporarily to Any_Type, again, in the absence
13474 -- of errors, it will be properly reset, and if there are errors,
13475 -- then we want a value of Any_Type to remain.
13477 Set_Etype
(Full
, Any_Type
);
13479 -- Now start copying attributes
13481 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
13483 if Has_Discriminants
(Full
) then
13484 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
13485 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
13488 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
13489 Set_Homonym
(Full
, Homonym
(Priv
));
13490 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
13491 Set_Is_Public
(Full
, Is_Public
(Priv
));
13492 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
13493 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
13494 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
13495 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
13496 Set_Has_Pragma_Unreferenced_Objects
13497 (Full
, Has_Pragma_Unreferenced_Objects
13500 Conditional_Delay
(Full
, Priv
);
13502 if Is_Tagged_Type
(Full
) then
13503 Set_Direct_Primitive_Operations
13504 (Full
, Direct_Primitive_Operations
(Priv
));
13505 Set_No_Tagged_Streams_Pragma
13506 (Full
, No_Tagged_Streams_Pragma
(Priv
));
13508 if Is_Base_Type
(Priv
) then
13509 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
13513 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
13514 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
13515 Set_Scope
(Full
, Scope
(Priv
));
13516 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
13517 Set_First_Entity
(Full
, First_Entity
(Priv
));
13518 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
13520 -- If access types have been recorded for later handling, keep them in
13521 -- the full view so that they get handled when the full view freeze
13522 -- node is expanded.
13524 if Present
(Freeze_Node
(Priv
))
13525 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
13527 Ensure_Freeze_Node
(Full
);
13528 Set_Access_Types_To_Process
13529 (Freeze_Node
(Full
),
13530 Access_Types_To_Process
(Freeze_Node
(Priv
)));
13533 -- Swap the two entities. Now Private is the full type entity and Full
13534 -- is the private one. They will be swapped back at the end of the
13535 -- private part. This swapping ensures that the entity that is visible
13536 -- in the private part is the full declaration.
13538 Exchange_Entities
(Priv
, Full
);
13539 Append_Entity
(Full
, Scope
(Full
));
13542 -------------------------------------
13543 -- Copy_Array_Base_Type_Attributes --
13544 -------------------------------------
13546 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
13548 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
13549 Set_Component_Type
(T1
, Component_Type
(T2
));
13550 Set_Component_Size
(T1
, Component_Size
(T2
));
13551 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
13552 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
13553 Set_Has_Protected
(T1
, Has_Protected
(T2
));
13554 Set_Has_Task
(T1
, Has_Task
(T2
));
13555 Set_Is_Packed
(T1
, Is_Packed
(T2
));
13556 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
13557 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
13558 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
13559 end Copy_Array_Base_Type_Attributes
;
13561 -----------------------------------
13562 -- Copy_Array_Subtype_Attributes --
13563 -----------------------------------
13565 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
13567 Set_Size_Info
(T1
, T2
);
13569 Set_First_Index
(T1
, First_Index
(T2
));
13570 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
13571 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
13572 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
13573 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
13574 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
13575 Inherit_Rep_Item_Chain
(T1
, T2
);
13576 Set_Convention
(T1
, Convention
(T2
));
13577 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
13578 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
13579 Set_Packed_Array_Impl_Type
(T1
, Packed_Array_Impl_Type
(T2
));
13580 end Copy_Array_Subtype_Attributes
;
13582 -----------------------------------
13583 -- Create_Constrained_Components --
13584 -----------------------------------
13586 procedure Create_Constrained_Components
13588 Decl_Node
: Node_Id
;
13590 Constraints
: Elist_Id
)
13592 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
13593 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
13594 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
13595 Assoc_List
: constant List_Id
:= New_List
;
13596 Discr_Val
: Elmt_Id
;
13600 Is_Static
: Boolean := True;
13602 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
13603 -- Collect parent type components that do not appear in a variant part
13605 procedure Create_All_Components
;
13606 -- Iterate over Comp_List to create the components of the subtype
13608 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
13609 -- Creates a new component from Old_Compon, copying all the fields from
13610 -- it, including its Etype, inserts the new component in the Subt entity
13611 -- chain and returns the new component.
13613 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
13614 -- If true, and discriminants are static, collect only components from
13615 -- variants selected by discriminant values.
13617 ------------------------------
13618 -- Collect_Fixed_Components --
13619 ------------------------------
13621 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
13623 -- Build association list for discriminants, and find components of the
13624 -- variant part selected by the values of the discriminants.
13626 Old_C
:= First_Discriminant
(Typ
);
13627 Discr_Val
:= First_Elmt
(Constraints
);
13628 while Present
(Old_C
) loop
13629 Append_To
(Assoc_List
,
13630 Make_Component_Association
(Loc
,
13631 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
13632 Expression
=> New_Copy
(Node
(Discr_Val
))));
13634 Next_Elmt
(Discr_Val
);
13635 Next_Discriminant
(Old_C
);
13638 -- The tag and the possible parent component are unconditionally in
13641 if Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
13642 Old_C
:= First_Component
(Typ
);
13643 while Present
(Old_C
) loop
13644 if Nam_In
(Chars
(Old_C
), Name_uTag
, Name_uParent
) then
13645 Append_Elmt
(Old_C
, Comp_List
);
13648 Next_Component
(Old_C
);
13651 end Collect_Fixed_Components
;
13653 ---------------------------
13654 -- Create_All_Components --
13655 ---------------------------
13657 procedure Create_All_Components
is
13661 Comp
:= First_Elmt
(Comp_List
);
13662 while Present
(Comp
) loop
13663 Old_C
:= Node
(Comp
);
13664 New_C
:= Create_Component
(Old_C
);
13668 Constrain_Component_Type
13669 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
13670 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13674 end Create_All_Components
;
13676 ----------------------
13677 -- Create_Component --
13678 ----------------------
13680 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
13681 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
13684 if Ekind
(Old_Compon
) = E_Discriminant
13685 and then Is_Completely_Hidden
(Old_Compon
)
13687 -- This is a shadow discriminant created for a discriminant of
13688 -- the parent type, which needs to be present in the subtype.
13689 -- Give the shadow discriminant an internal name that cannot
13690 -- conflict with that of visible components.
13692 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
13695 -- Set the parent so we have a proper link for freezing etc. This is
13696 -- not a real parent pointer, since of course our parent does not own
13697 -- up to us and reference us, we are an illegitimate child of the
13698 -- original parent.
13700 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
13702 -- If the old component's Esize was already determined and is a
13703 -- static value, then the new component simply inherits it. Otherwise
13704 -- the old component's size may require run-time determination, but
13705 -- the new component's size still might be statically determinable
13706 -- (if, for example it has a static constraint). In that case we want
13707 -- Layout_Type to recompute the component's size, so we reset its
13708 -- size and positional fields.
13710 if Frontend_Layout_On_Target
13711 and then not Known_Static_Esize
(Old_Compon
)
13713 Set_Esize
(New_Compon
, Uint_0
);
13714 Init_Normalized_First_Bit
(New_Compon
);
13715 Init_Normalized_Position
(New_Compon
);
13716 Init_Normalized_Position_Max
(New_Compon
);
13719 -- We do not want this node marked as Comes_From_Source, since
13720 -- otherwise it would get first class status and a separate cross-
13721 -- reference line would be generated. Illegitimate children do not
13722 -- rate such recognition.
13724 Set_Comes_From_Source
(New_Compon
, False);
13726 -- But it is a real entity, and a birth certificate must be properly
13727 -- registered by entering it into the entity list.
13729 Enter_Name
(New_Compon
);
13732 end Create_Component
;
13734 -----------------------
13735 -- Is_Variant_Record --
13736 -----------------------
13738 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
13740 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
13741 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
13742 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
13745 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
13746 end Is_Variant_Record
;
13748 -- Start of processing for Create_Constrained_Components
13751 pragma Assert
(Subt
/= Base_Type
(Subt
));
13752 pragma Assert
(Typ
= Base_Type
(Typ
));
13754 Set_First_Entity
(Subt
, Empty
);
13755 Set_Last_Entity
(Subt
, Empty
);
13757 -- Check whether constraint is fully static, in which case we can
13758 -- optimize the list of components.
13760 Discr_Val
:= First_Elmt
(Constraints
);
13761 while Present
(Discr_Val
) loop
13762 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
13763 Is_Static
:= False;
13767 Next_Elmt
(Discr_Val
);
13770 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
13774 -- Inherit the discriminants of the parent type
13776 Add_Discriminants
: declare
13782 Old_C
:= First_Discriminant
(Typ
);
13784 while Present
(Old_C
) loop
13785 Num_Disc
:= Num_Disc
+ 1;
13786 New_C
:= Create_Component
(Old_C
);
13787 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13788 Next_Discriminant
(Old_C
);
13791 -- For an untagged derived subtype, the number of discriminants may
13792 -- be smaller than the number of inherited discriminants, because
13793 -- several of them may be renamed by a single new discriminant or
13794 -- constrained. In this case, add the hidden discriminants back into
13795 -- the subtype, because they need to be present if the optimizer of
13796 -- the GCC 4.x back-end decides to break apart assignments between
13797 -- objects using the parent view into member-wise assignments.
13801 if Is_Derived_Type
(Typ
)
13802 and then not Is_Tagged_Type
(Typ
)
13804 Old_C
:= First_Stored_Discriminant
(Typ
);
13806 while Present
(Old_C
) loop
13807 Num_Gird
:= Num_Gird
+ 1;
13808 Next_Stored_Discriminant
(Old_C
);
13812 if Num_Gird
> Num_Disc
then
13814 -- Find out multiple uses of new discriminants, and add hidden
13815 -- components for the extra renamed discriminants. We recognize
13816 -- multiple uses through the Corresponding_Discriminant of a
13817 -- new discriminant: if it constrains several old discriminants,
13818 -- this field points to the last one in the parent type. The
13819 -- stored discriminants of the derived type have the same name
13820 -- as those of the parent.
13824 New_Discr
: Entity_Id
;
13825 Old_Discr
: Entity_Id
;
13828 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
13829 Old_Discr
:= First_Stored_Discriminant
(Typ
);
13830 while Present
(Constr
) loop
13831 if Is_Entity_Name
(Node
(Constr
))
13832 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
13834 New_Discr
:= Entity
(Node
(Constr
));
13836 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
13839 -- The new discriminant has been used to rename a
13840 -- subsequent old discriminant. Introduce a shadow
13841 -- component for the current old discriminant.
13843 New_C
:= Create_Component
(Old_Discr
);
13844 Set_Original_Record_Component
(New_C
, Old_Discr
);
13848 -- The constraint has eliminated the old discriminant.
13849 -- Introduce a shadow component.
13851 New_C
:= Create_Component
(Old_Discr
);
13852 Set_Original_Record_Component
(New_C
, Old_Discr
);
13855 Next_Elmt
(Constr
);
13856 Next_Stored_Discriminant
(Old_Discr
);
13860 end Add_Discriminants
;
13863 and then Is_Variant_Record
(Typ
)
13865 Collect_Fixed_Components
(Typ
);
13867 Gather_Components
(
13869 Component_List
(Type_Definition
(Parent
(Typ
))),
13870 Governed_By
=> Assoc_List
,
13872 Report_Errors
=> Errors
);
13873 pragma Assert
(not Errors
);
13875 Create_All_Components
;
13877 -- If the subtype declaration is created for a tagged type derivation
13878 -- with constraints, we retrieve the record definition of the parent
13879 -- type to select the components of the proper variant.
13882 and then Is_Tagged_Type
(Typ
)
13883 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
13885 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
13886 and then Is_Variant_Record
(Parent_Type
)
13888 Collect_Fixed_Components
(Typ
);
13892 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
13893 Governed_By
=> Assoc_List
,
13895 Report_Errors
=> Errors
);
13897 -- Note: previously there was a check at this point that no errors
13898 -- were detected. As a consequence of AI05-220 there may be an error
13899 -- if an inherited discriminant that controls a variant has a non-
13900 -- static constraint.
13902 -- If the tagged derivation has a type extension, collect all the
13903 -- new components therein.
13905 if Present
(Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
13907 Old_C
:= First_Component
(Typ
);
13908 while Present
(Old_C
) loop
13909 if Original_Record_Component
(Old_C
) = Old_C
13910 and then Chars
(Old_C
) /= Name_uTag
13911 and then Chars
(Old_C
) /= Name_uParent
13913 Append_Elmt
(Old_C
, Comp_List
);
13916 Next_Component
(Old_C
);
13920 Create_All_Components
;
13923 -- If discriminants are not static, or if this is a multi-level type
13924 -- extension, we have to include all components of the parent type.
13926 Old_C
:= First_Component
(Typ
);
13927 while Present
(Old_C
) loop
13928 New_C
:= Create_Component
(Old_C
);
13932 Constrain_Component_Type
13933 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
13934 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13936 Next_Component
(Old_C
);
13941 end Create_Constrained_Components
;
13943 ------------------------------------------
13944 -- Decimal_Fixed_Point_Type_Declaration --
13945 ------------------------------------------
13947 procedure Decimal_Fixed_Point_Type_Declaration
13951 Loc
: constant Source_Ptr
:= Sloc
(Def
);
13952 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
13953 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
13954 Implicit_Base
: Entity_Id
;
13961 Check_SPARK_05_Restriction
13962 ("decimal fixed point type is not allowed", Def
);
13963 Check_Restriction
(No_Fixed_Point
, Def
);
13965 -- Create implicit base type
13968 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
13969 Set_Etype
(Implicit_Base
, Implicit_Base
);
13971 -- Analyze and process delta expression
13973 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
13975 Check_Delta_Expression
(Delta_Expr
);
13976 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
13978 -- Check delta is power of 10, and determine scale value from it
13984 Scale_Val
:= Uint_0
;
13987 if Val
< Ureal_1
then
13988 while Val
< Ureal_1
loop
13989 Val
:= Val
* Ureal_10
;
13990 Scale_Val
:= Scale_Val
+ 1;
13993 if Scale_Val
> 18 then
13994 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
13995 Scale_Val
:= UI_From_Int
(+18);
13999 while Val
> Ureal_1
loop
14000 Val
:= Val
/ Ureal_10
;
14001 Scale_Val
:= Scale_Val
- 1;
14004 if Scale_Val
< -18 then
14005 Error_Msg_N
("scale is less than minimum value of -18", Def
);
14006 Scale_Val
:= UI_From_Int
(-18);
14010 if Val
/= Ureal_1
then
14011 Error_Msg_N
("delta expression must be a power of 10", Def
);
14012 Delta_Val
:= Ureal_10
** (-Scale_Val
);
14016 -- Set delta, scale and small (small = delta for decimal type)
14018 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
14019 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
14020 Set_Small_Value
(Implicit_Base
, Delta_Val
);
14022 -- Analyze and process digits expression
14024 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
14025 Check_Digits_Expression
(Digs_Expr
);
14026 Digs_Val
:= Expr_Value
(Digs_Expr
);
14028 if Digs_Val
> 18 then
14029 Digs_Val
:= UI_From_Int
(+18);
14030 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
14033 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
14034 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
14036 -- Set range of base type from digits value for now. This will be
14037 -- expanded to represent the true underlying base range by Freeze.
14039 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
14041 -- Note: We leave size as zero for now, size will be set at freeze
14042 -- time. We have to do this for ordinary fixed-point, because the size
14043 -- depends on the specified small, and we might as well do the same for
14044 -- decimal fixed-point.
14046 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
14048 -- If there are bounds given in the declaration use them as the
14049 -- bounds of the first named subtype.
14051 if Present
(Real_Range_Specification
(Def
)) then
14053 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
14054 Low
: constant Node_Id
:= Low_Bound
(RRS
);
14055 High
: constant Node_Id
:= High_Bound
(RRS
);
14060 Analyze_And_Resolve
(Low
, Any_Real
);
14061 Analyze_And_Resolve
(High
, Any_Real
);
14062 Check_Real_Bound
(Low
);
14063 Check_Real_Bound
(High
);
14064 Low_Val
:= Expr_Value_R
(Low
);
14065 High_Val
:= Expr_Value_R
(High
);
14067 if Low_Val
< (-Bound_Val
) then
14069 ("range low bound too small for digits value", Low
);
14070 Low_Val
:= -Bound_Val
;
14073 if High_Val
> Bound_Val
then
14075 ("range high bound too large for digits value", High
);
14076 High_Val
:= Bound_Val
;
14079 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
14082 -- If no explicit range, use range that corresponds to given
14083 -- digits value. This will end up as the final range for the
14087 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
14090 -- Complete entity for first subtype. The inheritance of the rep item
14091 -- chain ensures that SPARK-related pragmas are not clobbered when the
14092 -- decimal fixed point type acts as a full view of a private type.
14094 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
14095 Set_Etype
(T
, Implicit_Base
);
14096 Set_Size_Info
(T
, Implicit_Base
);
14097 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
14098 Set_Digits_Value
(T
, Digs_Val
);
14099 Set_Delta_Value
(T
, Delta_Val
);
14100 Set_Small_Value
(T
, Delta_Val
);
14101 Set_Scale_Value
(T
, Scale_Val
);
14102 Set_Is_Constrained
(T
);
14103 end Decimal_Fixed_Point_Type_Declaration
;
14105 -----------------------------------
14106 -- Derive_Progenitor_Subprograms --
14107 -----------------------------------
14109 procedure Derive_Progenitor_Subprograms
14110 (Parent_Type
: Entity_Id
;
14111 Tagged_Type
: Entity_Id
)
14116 Iface_Elmt
: Elmt_Id
;
14117 Iface_Subp
: Entity_Id
;
14118 New_Subp
: Entity_Id
:= Empty
;
14119 Prim_Elmt
: Elmt_Id
;
14124 pragma Assert
(Ada_Version
>= Ada_2005
14125 and then Is_Record_Type
(Tagged_Type
)
14126 and then Is_Tagged_Type
(Tagged_Type
)
14127 and then Has_Interfaces
(Tagged_Type
));
14129 -- Step 1: Transfer to the full-view primitives associated with the
14130 -- partial-view that cover interface primitives. Conceptually this
14131 -- work should be done later by Process_Full_View; done here to
14132 -- simplify its implementation at later stages. It can be safely
14133 -- done here because interfaces must be visible in the partial and
14134 -- private view (RM 7.3(7.3/2)).
14136 -- Small optimization: This work is only required if the parent may
14137 -- have entities whose Alias attribute reference an interface primitive.
14138 -- Such a situation may occur if the parent is an abstract type and the
14139 -- primitive has not been yet overridden or if the parent is a generic
14140 -- formal type covering interfaces.
14142 -- If the tagged type is not abstract, it cannot have abstract
14143 -- primitives (the only entities in the list of primitives of
14144 -- non-abstract tagged types that can reference abstract primitives
14145 -- through its Alias attribute are the internal entities that have
14146 -- attribute Interface_Alias, and these entities are generated later
14147 -- by Add_Internal_Interface_Entities).
14149 if In_Private_Part
(Current_Scope
)
14150 and then (Is_Abstract_Type
(Parent_Type
)
14152 Is_Generic_Type
(Parent_Type
))
14154 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
14155 while Present
(Elmt
) loop
14156 Subp
:= Node
(Elmt
);
14158 -- At this stage it is not possible to have entities in the list
14159 -- of primitives that have attribute Interface_Alias.
14161 pragma Assert
(No
(Interface_Alias
(Subp
)));
14163 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
14165 if Is_Interface
(Typ
) then
14166 E
:= Find_Primitive_Covering_Interface
14167 (Tagged_Type
=> Tagged_Type
,
14168 Iface_Prim
=> Subp
);
14171 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
14173 Replace_Elmt
(Elmt
, E
);
14174 Remove_Homonym
(Subp
);
14182 -- Step 2: Add primitives of progenitors that are not implemented by
14183 -- parents of Tagged_Type.
14185 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
14186 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
14187 while Present
(Iface_Elmt
) loop
14188 Iface
:= Node
(Iface_Elmt
);
14190 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
14191 while Present
(Prim_Elmt
) loop
14192 Iface_Subp
:= Node
(Prim_Elmt
);
14194 -- Exclude derivation of predefined primitives except those
14195 -- that come from source, or are inherited from one that comes
14196 -- from source. Required to catch declarations of equality
14197 -- operators of interfaces. For example:
14199 -- type Iface is interface;
14200 -- function "=" (Left, Right : Iface) return Boolean;
14202 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
14203 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
14205 E
:= Find_Primitive_Covering_Interface
14206 (Tagged_Type
=> Tagged_Type
,
14207 Iface_Prim
=> Iface_Subp
);
14209 -- If not found we derive a new primitive leaving its alias
14210 -- attribute referencing the interface primitive.
14214 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14216 -- Ada 2012 (AI05-0197): If the covering primitive's name
14217 -- differs from the name of the interface primitive then it
14218 -- is a private primitive inherited from a parent type. In
14219 -- such case, given that Tagged_Type covers the interface,
14220 -- the inherited private primitive becomes visible. For such
14221 -- purpose we add a new entity that renames the inherited
14222 -- private primitive.
14224 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
14225 pragma Assert
(Has_Suffix
(E
, 'P'));
14227 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14228 Set_Alias
(New_Subp
, E
);
14229 Set_Is_Abstract_Subprogram
(New_Subp
,
14230 Is_Abstract_Subprogram
(E
));
14232 -- Propagate to the full view interface entities associated
14233 -- with the partial view.
14235 elsif In_Private_Part
(Current_Scope
)
14236 and then Present
(Alias
(E
))
14237 and then Alias
(E
) = Iface_Subp
14239 List_Containing
(Parent
(E
)) /=
14240 Private_Declarations
14242 (Unit_Declaration_Node
(Current_Scope
)))
14244 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
14248 Next_Elmt
(Prim_Elmt
);
14251 Next_Elmt
(Iface_Elmt
);
14254 end Derive_Progenitor_Subprograms
;
14256 -----------------------
14257 -- Derive_Subprogram --
14258 -----------------------
14260 procedure Derive_Subprogram
14261 (New_Subp
: in out Entity_Id
;
14262 Parent_Subp
: Entity_Id
;
14263 Derived_Type
: Entity_Id
;
14264 Parent_Type
: Entity_Id
;
14265 Actual_Subp
: Entity_Id
:= Empty
)
14267 Formal
: Entity_Id
;
14268 -- Formal parameter of parent primitive operation
14270 Formal_Of_Actual
: Entity_Id
;
14271 -- Formal parameter of actual operation, when the derivation is to
14272 -- create a renaming for a primitive operation of an actual in an
14275 New_Formal
: Entity_Id
;
14276 -- Formal of inherited operation
14278 Visible_Subp
: Entity_Id
:= Parent_Subp
;
14280 function Is_Private_Overriding
return Boolean;
14281 -- If Subp is a private overriding of a visible operation, the inherited
14282 -- operation derives from the overridden op (even though its body is the
14283 -- overriding one) and the inherited operation is visible now. See
14284 -- sem_disp to see the full details of the handling of the overridden
14285 -- subprogram, which is removed from the list of primitive operations of
14286 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14287 -- and used to diagnose abstract operations that need overriding in the
14290 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
14291 -- When the type is an anonymous access type, create a new access type
14292 -- designating the derived type.
14294 procedure Set_Derived_Name
;
14295 -- This procedure sets the appropriate Chars name for New_Subp. This
14296 -- is normally just a copy of the parent name. An exception arises for
14297 -- type support subprograms, where the name is changed to reflect the
14298 -- name of the derived type, e.g. if type foo is derived from type bar,
14299 -- then a procedure barDA is derived with a name fooDA.
14301 ---------------------------
14302 -- Is_Private_Overriding --
14303 ---------------------------
14305 function Is_Private_Overriding
return Boolean is
14309 -- If the parent is not a dispatching operation there is no
14310 -- need to investigate overridings
14312 if not Is_Dispatching_Operation
(Parent_Subp
) then
14316 -- The visible operation that is overridden is a homonym of the
14317 -- parent subprogram. We scan the homonym chain to find the one
14318 -- whose alias is the subprogram we are deriving.
14320 Prev
:= Current_Entity
(Parent_Subp
);
14321 while Present
(Prev
) loop
14322 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
14323 and then Alias
(Prev
) = Parent_Subp
14324 and then Scope
(Parent_Subp
) = Scope
(Prev
)
14325 and then not Is_Hidden
(Prev
)
14327 Visible_Subp
:= Prev
;
14331 Prev
:= Homonym
(Prev
);
14335 end Is_Private_Overriding
;
14341 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
14342 Id_Type
: constant Entity_Id
:= Etype
(Id
);
14343 Acc_Type
: Entity_Id
;
14344 Par
: constant Node_Id
:= Parent
(Derived_Type
);
14347 -- When the type is an anonymous access type, create a new access
14348 -- type designating the derived type. This itype must be elaborated
14349 -- at the point of the derivation, not on subsequent calls that may
14350 -- be out of the proper scope for Gigi, so we insert a reference to
14351 -- it after the derivation.
14353 if Ekind
(Id_Type
) = E_Anonymous_Access_Type
then
14355 Desig_Typ
: Entity_Id
:= Designated_Type
(Id_Type
);
14358 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
14359 and then Present
(Full_View
(Desig_Typ
))
14360 and then not Is_Private_Type
(Parent_Type
)
14362 Desig_Typ
:= Full_View
(Desig_Typ
);
14365 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
14367 -- Ada 2005 (AI-251): Handle also derivations of abstract
14368 -- interface primitives.
14370 or else (Is_Interface
(Desig_Typ
)
14371 and then not Is_Class_Wide_Type
(Desig_Typ
))
14373 Acc_Type
:= New_Copy
(Id_Type
);
14374 Set_Etype
(Acc_Type
, Acc_Type
);
14375 Set_Scope
(Acc_Type
, New_Subp
);
14377 -- Set size of anonymous access type. If we have an access
14378 -- to an unconstrained array, this is a fat pointer, so it
14379 -- is sizes at twice addtress size.
14381 if Is_Array_Type
(Desig_Typ
)
14382 and then not Is_Constrained
(Desig_Typ
)
14384 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
14386 -- Other cases use a thin pointer
14389 Init_Size
(Acc_Type
, System_Address_Size
);
14392 -- Set remaining characterstics of anonymous access type
14394 Init_Alignment
(Acc_Type
);
14395 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
14397 Set_Etype
(New_Id
, Acc_Type
);
14398 Set_Scope
(New_Id
, New_Subp
);
14400 -- Create a reference to it
14402 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
14405 Set_Etype
(New_Id
, Id_Type
);
14409 -- In Ada2012, a formal may have an incomplete type but the type
14410 -- derivation that inherits the primitive follows the full view.
14412 elsif Base_Type
(Id_Type
) = Base_Type
(Parent_Type
)
14414 (Ekind
(Id_Type
) = E_Record_Type_With_Private
14415 and then Present
(Full_View
(Id_Type
))
14417 Base_Type
(Full_View
(Id_Type
)) = Base_Type
(Parent_Type
))
14419 (Ada_Version
>= Ada_2012
14420 and then Ekind
(Id_Type
) = E_Incomplete_Type
14421 and then Full_View
(Id_Type
) = Parent_Type
)
14423 -- Constraint checks on formals are generated during expansion,
14424 -- based on the signature of the original subprogram. The bounds
14425 -- of the derived type are not relevant, and thus we can use
14426 -- the base type for the formals. However, the return type may be
14427 -- used in a context that requires that the proper static bounds
14428 -- be used (a case statement, for example) and for those cases
14429 -- we must use the derived type (first subtype), not its base.
14431 -- If the derived_type_definition has no constraints, we know that
14432 -- the derived type has the same constraints as the first subtype
14433 -- of the parent, and we can also use it rather than its base,
14434 -- which can lead to more efficient code.
14436 if Etype
(Id
) = Parent_Type
then
14437 if Is_Scalar_Type
(Parent_Type
)
14439 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
14441 Set_Etype
(New_Id
, Derived_Type
);
14443 elsif Nkind
(Par
) = N_Full_Type_Declaration
14445 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
14448 (Subtype_Indication
(Type_Definition
(Par
)))
14450 Set_Etype
(New_Id
, Derived_Type
);
14453 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14457 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14461 Set_Etype
(New_Id
, Etype
(Id
));
14465 ----------------------
14466 -- Set_Derived_Name --
14467 ----------------------
14469 procedure Set_Derived_Name
is
14470 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
14472 if Nm
= TSS_Null
then
14473 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
14475 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
14477 end Set_Derived_Name
;
14479 -- Start of processing for Derive_Subprogram
14482 New_Subp
:= New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
14483 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
14484 Set_Contract
(New_Subp
, Make_Contract
(Sloc
(New_Subp
)));
14486 -- Check whether the inherited subprogram is a private operation that
14487 -- should be inherited but not yet made visible. Such subprograms can
14488 -- become visible at a later point (e.g., the private part of a public
14489 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14490 -- following predicate is true, then this is not such a private
14491 -- operation and the subprogram simply inherits the name of the parent
14492 -- subprogram. Note the special check for the names of controlled
14493 -- operations, which are currently exempted from being inherited with
14494 -- a hidden name because they must be findable for generation of
14495 -- implicit run-time calls.
14497 if not Is_Hidden
(Parent_Subp
)
14498 or else Is_Internal
(Parent_Subp
)
14499 or else Is_Private_Overriding
14500 or else Is_Internal_Name
(Chars
(Parent_Subp
))
14501 or else Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14507 -- An inherited dispatching equality will be overridden by an internally
14508 -- generated one, or by an explicit one, so preserve its name and thus
14509 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14510 -- private operation it may become invisible if the full view has
14511 -- progenitors, and the dispatch table will be malformed.
14512 -- We check that the type is limited to handle the anomalous declaration
14513 -- of Limited_Controlled, which is derived from a non-limited type, and
14514 -- which is handled specially elsewhere as well.
14516 elsif Chars
(Parent_Subp
) = Name_Op_Eq
14517 and then Is_Dispatching_Operation
(Parent_Subp
)
14518 and then Etype
(Parent_Subp
) = Standard_Boolean
14519 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
14521 Etype
(First_Formal
(Parent_Subp
)) =
14522 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
14526 -- If parent is hidden, this can be a regular derivation if the
14527 -- parent is immediately visible in a non-instantiating context,
14528 -- or if we are in the private part of an instance. This test
14529 -- should still be refined ???
14531 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14532 -- operation as a non-visible operation in cases where the parent
14533 -- subprogram might not be visible now, but was visible within the
14534 -- original generic, so it would be wrong to make the inherited
14535 -- subprogram non-visible now. (Not clear if this test is fully
14536 -- correct; are there any cases where we should declare the inherited
14537 -- operation as not visible to avoid it being overridden, e.g., when
14538 -- the parent type is a generic actual with private primitives ???)
14540 -- (they should be treated the same as other private inherited
14541 -- subprograms, but it's not clear how to do this cleanly). ???
14543 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14544 and then Is_Immediately_Visible
(Parent_Subp
)
14545 and then not In_Instance
)
14546 or else In_Instance_Not_Visible
14550 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14551 -- overrides an interface primitive because interface primitives
14552 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14554 elsif Ada_Version
>= Ada_2005
14555 and then Is_Dispatching_Operation
(Parent_Subp
)
14556 and then Covers_Some_Interface
(Parent_Subp
)
14560 -- Otherwise, the type is inheriting a private operation, so enter
14561 -- it with a special name so it can't be overridden.
14564 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
14567 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
14569 if Present
(Actual_Subp
) then
14570 Replace_Type
(Actual_Subp
, New_Subp
);
14572 Replace_Type
(Parent_Subp
, New_Subp
);
14575 Conditional_Delay
(New_Subp
, Parent_Subp
);
14577 -- If we are creating a renaming for a primitive operation of an
14578 -- actual of a generic derived type, we must examine the signature
14579 -- of the actual primitive, not that of the generic formal, which for
14580 -- example may be an interface. However the name and initial value
14581 -- of the inherited operation are those of the formal primitive.
14583 Formal
:= First_Formal
(Parent_Subp
);
14585 if Present
(Actual_Subp
) then
14586 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
14588 Formal_Of_Actual
:= Empty
;
14591 while Present
(Formal
) loop
14592 New_Formal
:= New_Copy
(Formal
);
14594 -- Normally we do not go copying parents, but in the case of
14595 -- formals, we need to link up to the declaration (which is the
14596 -- parameter specification), and it is fine to link up to the
14597 -- original formal's parameter specification in this case.
14599 Set_Parent
(New_Formal
, Parent
(Formal
));
14600 Append_Entity
(New_Formal
, New_Subp
);
14602 if Present
(Formal_Of_Actual
) then
14603 Replace_Type
(Formal_Of_Actual
, New_Formal
);
14604 Next_Formal
(Formal_Of_Actual
);
14606 Replace_Type
(Formal
, New_Formal
);
14609 Next_Formal
(Formal
);
14612 -- If this derivation corresponds to a tagged generic actual, then
14613 -- primitive operations rename those of the actual. Otherwise the
14614 -- primitive operations rename those of the parent type, If the parent
14615 -- renames an intrinsic operator, so does the new subprogram. We except
14616 -- concatenation, which is always properly typed, and does not get
14617 -- expanded as other intrinsic operations.
14619 if No
(Actual_Subp
) then
14620 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
14621 Set_Is_Intrinsic_Subprogram
(New_Subp
);
14623 if Present
(Alias
(Parent_Subp
))
14624 and then Chars
(Parent_Subp
) /= Name_Op_Concat
14626 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
14628 Set_Alias
(New_Subp
, Parent_Subp
);
14632 Set_Alias
(New_Subp
, Parent_Subp
);
14636 Set_Alias
(New_Subp
, Actual_Subp
);
14639 -- Inherit the "ghostness" from the parent subprogram
14641 if Is_Ghost_Entity
(Alias
(New_Subp
)) then
14642 Set_Is_Ghost_Entity
(New_Subp
);
14645 -- Derived subprograms of a tagged type must inherit the convention
14646 -- of the parent subprogram (a requirement of AI-117). Derived
14647 -- subprograms of untagged types simply get convention Ada by default.
14649 -- If the derived type is a tagged generic formal type with unknown
14650 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14652 -- However, if the type is derived from a generic formal, the further
14653 -- inherited subprogram has the convention of the non-generic ancestor.
14654 -- Otherwise there would be no way to override the operation.
14655 -- (This is subject to forthcoming ARG discussions).
14657 if Is_Tagged_Type
(Derived_Type
) then
14658 if Is_Generic_Type
(Derived_Type
)
14659 and then Has_Unknown_Discriminants
(Derived_Type
)
14661 Set_Convention
(New_Subp
, Convention_Intrinsic
);
14664 if Is_Generic_Type
(Parent_Type
)
14665 and then Has_Unknown_Discriminants
(Parent_Type
)
14667 Set_Convention
(New_Subp
, Convention
(Alias
(Parent_Subp
)));
14669 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
14674 -- Predefined controlled operations retain their name even if the parent
14675 -- is hidden (see above), but they are not primitive operations if the
14676 -- ancestor is not visible, for example if the parent is a private
14677 -- extension completed with a controlled extension. Note that a full
14678 -- type that is controlled can break privacy: the flag Is_Controlled is
14679 -- set on both views of the type.
14681 if Is_Controlled
(Parent_Type
)
14682 and then Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14685 and then Is_Hidden
(Parent_Subp
)
14686 and then not Is_Visibly_Controlled
(Parent_Type
)
14688 Set_Is_Hidden
(New_Subp
);
14691 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
14692 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
14694 if Ekind
(Parent_Subp
) = E_Procedure
then
14695 Set_Is_Valued_Procedure
14696 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
14698 Set_Has_Controlling_Result
14699 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
14702 -- No_Return must be inherited properly. If this is overridden in the
14703 -- case of a dispatching operation, then a check is made in Sem_Disp
14704 -- that the overriding operation is also No_Return (no such check is
14705 -- required for the case of non-dispatching operation.
14707 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
14709 -- A derived function with a controlling result is abstract. If the
14710 -- Derived_Type is a nonabstract formal generic derived type, then
14711 -- inherited operations are not abstract: the required check is done at
14712 -- instantiation time. If the derivation is for a generic actual, the
14713 -- function is not abstract unless the actual is.
14715 if Is_Generic_Type
(Derived_Type
)
14716 and then not Is_Abstract_Type
(Derived_Type
)
14720 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14721 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14723 -- A subprogram subject to pragma Extensions_Visible with value False
14724 -- requires overriding if the subprogram has at least one controlling
14725 -- OUT parameter (SPARK RM 6.1.7(6)).
14727 elsif Ada_Version
>= Ada_2005
14728 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14729 or else (Is_Tagged_Type
(Derived_Type
)
14730 and then Etype
(New_Subp
) = Derived_Type
14731 and then not Is_Null_Extension
(Derived_Type
))
14732 or else (Is_Tagged_Type
(Derived_Type
)
14733 and then Ekind
(Etype
(New_Subp
)) =
14734 E_Anonymous_Access_Type
14735 and then Designated_Type
(Etype
(New_Subp
)) =
14737 and then not Is_Null_Extension
(Derived_Type
))
14738 or else (Comes_From_Source
(Alias
(New_Subp
))
14739 and then Is_EVF_Procedure
(Alias
(New_Subp
))))
14740 and then No
(Actual_Subp
)
14742 if not Is_Tagged_Type
(Derived_Type
)
14743 or else Is_Abstract_Type
(Derived_Type
)
14744 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
14746 Set_Is_Abstract_Subprogram
(New_Subp
);
14748 Set_Requires_Overriding
(New_Subp
);
14751 elsif Ada_Version
< Ada_2005
14752 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14753 or else (Is_Tagged_Type
(Derived_Type
)
14754 and then Etype
(New_Subp
) = Derived_Type
14755 and then No
(Actual_Subp
)))
14757 Set_Is_Abstract_Subprogram
(New_Subp
);
14759 -- AI05-0097 : an inherited operation that dispatches on result is
14760 -- abstract if the derived type is abstract, even if the parent type
14761 -- is concrete and the derived type is a null extension.
14763 elsif Has_Controlling_Result
(Alias
(New_Subp
))
14764 and then Is_Abstract_Type
(Etype
(New_Subp
))
14766 Set_Is_Abstract_Subprogram
(New_Subp
);
14768 -- Finally, if the parent type is abstract we must verify that all
14769 -- inherited operations are either non-abstract or overridden, or that
14770 -- the derived type itself is abstract (this check is performed at the
14771 -- end of a package declaration, in Check_Abstract_Overriding). A
14772 -- private overriding in the parent type will not be visible in the
14773 -- derivation if we are not in an inner package or in a child unit of
14774 -- the parent type, in which case the abstractness of the inherited
14775 -- operation is carried to the new subprogram.
14777 elsif Is_Abstract_Type
(Parent_Type
)
14778 and then not In_Open_Scopes
(Scope
(Parent_Type
))
14779 and then Is_Private_Overriding
14780 and then Is_Abstract_Subprogram
(Visible_Subp
)
14782 if No
(Actual_Subp
) then
14783 Set_Alias
(New_Subp
, Visible_Subp
);
14784 Set_Is_Abstract_Subprogram
(New_Subp
, True);
14787 -- If this is a derivation for an instance of a formal derived
14788 -- type, abstractness comes from the primitive operation of the
14789 -- actual, not from the operation inherited from the ancestor.
14791 Set_Is_Abstract_Subprogram
14792 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
14796 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
14798 -- Check for case of a derived subprogram for the instantiation of a
14799 -- formal derived tagged type, if so mark the subprogram as dispatching
14800 -- and inherit the dispatching attributes of the actual subprogram. The
14801 -- derived subprogram is effectively renaming of the actual subprogram,
14802 -- so it needs to have the same attributes as the actual.
14804 if Present
(Actual_Subp
)
14805 and then Is_Dispatching_Operation
(Actual_Subp
)
14807 Set_Is_Dispatching_Operation
(New_Subp
);
14809 if Present
(DTC_Entity
(Actual_Subp
)) then
14810 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
14811 Set_DT_Position
(New_Subp
, DT_Position
(Actual_Subp
));
14815 -- Indicate that a derived subprogram does not require a body and that
14816 -- it does not require processing of default expressions.
14818 Set_Has_Completion
(New_Subp
);
14819 Set_Default_Expressions_Processed
(New_Subp
);
14821 if Ekind
(New_Subp
) = E_Function
then
14822 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
14824 end Derive_Subprogram
;
14826 ------------------------
14827 -- Derive_Subprograms --
14828 ------------------------
14830 procedure Derive_Subprograms
14831 (Parent_Type
: Entity_Id
;
14832 Derived_Type
: Entity_Id
;
14833 Generic_Actual
: Entity_Id
:= Empty
)
14835 Op_List
: constant Elist_Id
:=
14836 Collect_Primitive_Operations
(Parent_Type
);
14838 function Check_Derived_Type
return Boolean;
14839 -- Check that all the entities derived from Parent_Type are found in
14840 -- the list of primitives of Derived_Type exactly in the same order.
14842 procedure Derive_Interface_Subprogram
14843 (New_Subp
: in out Entity_Id
;
14845 Actual_Subp
: Entity_Id
);
14846 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14847 -- (which is an interface primitive). If Generic_Actual is present then
14848 -- Actual_Subp is the actual subprogram corresponding with the generic
14849 -- subprogram Subp.
14851 function Check_Derived_Type
return Boolean is
14855 New_Subp
: Entity_Id
;
14860 -- Traverse list of entities in the current scope searching for
14861 -- an incomplete type whose full-view is derived type
14863 E
:= First_Entity
(Scope
(Derived_Type
));
14864 while Present
(E
) and then E
/= Derived_Type
loop
14865 if Ekind
(E
) = E_Incomplete_Type
14866 and then Present
(Full_View
(E
))
14867 and then Full_View
(E
) = Derived_Type
14869 -- Disable this test if Derived_Type completes an incomplete
14870 -- type because in such case more primitives can be added
14871 -- later to the list of primitives of Derived_Type by routine
14872 -- Process_Incomplete_Dependents
14877 E
:= Next_Entity
(E
);
14880 List
:= Collect_Primitive_Operations
(Derived_Type
);
14881 Elmt
:= First_Elmt
(List
);
14883 Op_Elmt
:= First_Elmt
(Op_List
);
14884 while Present
(Op_Elmt
) loop
14885 Subp
:= Node
(Op_Elmt
);
14886 New_Subp
:= Node
(Elmt
);
14888 -- At this early stage Derived_Type has no entities with attribute
14889 -- Interface_Alias. In addition, such primitives are always
14890 -- located at the end of the list of primitives of Parent_Type.
14891 -- Therefore, if found we can safely stop processing pending
14894 exit when Present
(Interface_Alias
(Subp
));
14896 -- Handle hidden entities
14898 if not Is_Predefined_Dispatching_Operation
(Subp
)
14899 and then Is_Hidden
(Subp
)
14901 if Present
(New_Subp
)
14902 and then Primitive_Names_Match
(Subp
, New_Subp
)
14908 if not Present
(New_Subp
)
14909 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
14910 or else not Primitive_Names_Match
(Subp
, New_Subp
)
14918 Next_Elmt
(Op_Elmt
);
14922 end Check_Derived_Type
;
14924 ---------------------------------
14925 -- Derive_Interface_Subprogram --
14926 ---------------------------------
14928 procedure Derive_Interface_Subprogram
14929 (New_Subp
: in out Entity_Id
;
14931 Actual_Subp
: Entity_Id
)
14933 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
14934 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
14937 pragma Assert
(Is_Interface
(Iface_Type
));
14940 (New_Subp
=> New_Subp
,
14941 Parent_Subp
=> Iface_Subp
,
14942 Derived_Type
=> Derived_Type
,
14943 Parent_Type
=> Iface_Type
,
14944 Actual_Subp
=> Actual_Subp
);
14946 -- Given that this new interface entity corresponds with a primitive
14947 -- of the parent that was not overridden we must leave it associated
14948 -- with its parent primitive to ensure that it will share the same
14949 -- dispatch table slot when overridden.
14951 if No
(Actual_Subp
) then
14952 Set_Alias
(New_Subp
, Subp
);
14954 -- For instantiations this is not needed since the previous call to
14955 -- Derive_Subprogram leaves the entity well decorated.
14958 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
14961 end Derive_Interface_Subprogram
;
14965 Alias_Subp
: Entity_Id
;
14966 Act_List
: Elist_Id
;
14967 Act_Elmt
: Elmt_Id
;
14968 Act_Subp
: Entity_Id
:= Empty
;
14970 Need_Search
: Boolean := False;
14971 New_Subp
: Entity_Id
:= Empty
;
14972 Parent_Base
: Entity_Id
;
14975 -- Start of processing for Derive_Subprograms
14978 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
14979 and then Has_Discriminants
(Parent_Type
)
14980 and then Present
(Full_View
(Parent_Type
))
14982 Parent_Base
:= Full_View
(Parent_Type
);
14984 Parent_Base
:= Parent_Type
;
14987 if Present
(Generic_Actual
) then
14988 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
14989 Act_Elmt
:= First_Elmt
(Act_List
);
14991 Act_List
:= No_Elist
;
14992 Act_Elmt
:= No_Elmt
;
14995 -- Derive primitives inherited from the parent. Note that if the generic
14996 -- actual is present, this is not really a type derivation, it is a
14997 -- completion within an instance.
14999 -- Case 1: Derived_Type does not implement interfaces
15001 if not Is_Tagged_Type
(Derived_Type
)
15002 or else (not Has_Interfaces
(Derived_Type
)
15003 and then not (Present
(Generic_Actual
)
15004 and then Has_Interfaces
(Generic_Actual
)))
15006 Elmt
:= First_Elmt
(Op_List
);
15007 while Present
(Elmt
) loop
15008 Subp
:= Node
(Elmt
);
15010 -- Literals are derived earlier in the process of building the
15011 -- derived type, and are skipped here.
15013 if Ekind
(Subp
) = E_Enumeration_Literal
then
15016 -- The actual is a direct descendant and the common primitive
15017 -- operations appear in the same order.
15019 -- If the generic parent type is present, the derived type is an
15020 -- instance of a formal derived type, and within the instance its
15021 -- operations are those of the actual. We derive from the formal
15022 -- type but make the inherited operations aliases of the
15023 -- corresponding operations of the actual.
15026 pragma Assert
(No
(Node
(Act_Elmt
))
15027 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
15030 (Subp
, Node
(Act_Elmt
),
15031 Skip_Controlling_Formals
=> True)));
15034 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
15036 if Present
(Act_Elmt
) then
15037 Next_Elmt
(Act_Elmt
);
15044 -- Case 2: Derived_Type implements interfaces
15047 -- If the parent type has no predefined primitives we remove
15048 -- predefined primitives from the list of primitives of generic
15049 -- actual to simplify the complexity of this algorithm.
15051 if Present
(Generic_Actual
) then
15053 Has_Predefined_Primitives
: Boolean := False;
15056 -- Check if the parent type has predefined primitives
15058 Elmt
:= First_Elmt
(Op_List
);
15059 while Present
(Elmt
) loop
15060 Subp
:= Node
(Elmt
);
15062 if Is_Predefined_Dispatching_Operation
(Subp
)
15063 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
15065 Has_Predefined_Primitives
:= True;
15072 -- Remove predefined primitives of Generic_Actual. We must use
15073 -- an auxiliary list because in case of tagged types the value
15074 -- returned by Collect_Primitive_Operations is the value stored
15075 -- in its Primitive_Operations attribute (and we don't want to
15076 -- modify its current contents).
15078 if not Has_Predefined_Primitives
then
15080 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
15083 Elmt
:= First_Elmt
(Act_List
);
15084 while Present
(Elmt
) loop
15085 Subp
:= Node
(Elmt
);
15087 if not Is_Predefined_Dispatching_Operation
(Subp
)
15088 or else Comes_From_Source
(Subp
)
15090 Append_Elmt
(Subp
, Aux_List
);
15096 Act_List
:= Aux_List
;
15100 Act_Elmt
:= First_Elmt
(Act_List
);
15101 Act_Subp
:= Node
(Act_Elmt
);
15105 -- Stage 1: If the generic actual is not present we derive the
15106 -- primitives inherited from the parent type. If the generic parent
15107 -- type is present, the derived type is an instance of a formal
15108 -- derived type, and within the instance its operations are those of
15109 -- the actual. We derive from the formal type but make the inherited
15110 -- operations aliases of the corresponding operations of the actual.
15112 Elmt
:= First_Elmt
(Op_List
);
15113 while Present
(Elmt
) loop
15114 Subp
:= Node
(Elmt
);
15115 Alias_Subp
:= Ultimate_Alias
(Subp
);
15117 -- Do not derive internal entities of the parent that link
15118 -- interface primitives with their covering primitive. These
15119 -- entities will be added to this type when frozen.
15121 if Present
(Interface_Alias
(Subp
)) then
15125 -- If the generic actual is present find the corresponding
15126 -- operation in the generic actual. If the parent type is a
15127 -- direct ancestor of the derived type then, even if it is an
15128 -- interface, the operations are inherited from the primary
15129 -- dispatch table and are in the proper order. If we detect here
15130 -- that primitives are not in the same order we traverse the list
15131 -- of primitive operations of the actual to find the one that
15132 -- implements the interface primitive.
15136 (Present
(Generic_Actual
)
15137 and then Present
(Act_Subp
)
15139 (Primitive_Names_Match
(Subp
, Act_Subp
)
15141 Type_Conformant
(Subp
, Act_Subp
,
15142 Skip_Controlling_Formals
=> True)))
15144 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
15145 Use_Full_View
=> True));
15147 -- Remember that we need searching for all pending primitives
15149 Need_Search
:= True;
15151 -- Handle entities associated with interface primitives
15153 if Present
(Alias_Subp
)
15154 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15155 and then not Is_Predefined_Dispatching_Operation
(Subp
)
15157 -- Search for the primitive in the homonym chain
15160 Find_Primitive_Covering_Interface
15161 (Tagged_Type
=> Generic_Actual
,
15162 Iface_Prim
=> Alias_Subp
);
15164 -- Previous search may not locate primitives covering
15165 -- interfaces defined in generics units or instantiations.
15166 -- (it fails if the covering primitive has formals whose
15167 -- type is also defined in generics or instantiations).
15168 -- In such case we search in the list of primitives of the
15169 -- generic actual for the internal entity that links the
15170 -- interface primitive and the covering primitive.
15173 and then Is_Generic_Type
(Parent_Type
)
15175 -- This code has been designed to handle only generic
15176 -- formals that implement interfaces that are defined
15177 -- in a generic unit or instantiation. If this code is
15178 -- needed for other cases we must review it because
15179 -- (given that it relies on Original_Location to locate
15180 -- the primitive of Generic_Actual that covers the
15181 -- interface) it could leave linked through attribute
15182 -- Alias entities of unrelated instantiations).
15186 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
15188 Instantiation_Depth
15189 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
15192 Iface_Prim_Loc
: constant Source_Ptr
:=
15193 Original_Location
(Sloc
(Alias_Subp
));
15200 First_Elmt
(Primitive_Operations
(Generic_Actual
));
15202 Search
: while Present
(Elmt
) loop
15203 Prim
:= Node
(Elmt
);
15205 if Present
(Interface_Alias
(Prim
))
15206 and then Original_Location
15207 (Sloc
(Interface_Alias
(Prim
))) =
15210 Act_Subp
:= Alias
(Prim
);
15219 pragma Assert
(Present
(Act_Subp
)
15220 or else Is_Abstract_Type
(Generic_Actual
)
15221 or else Serious_Errors_Detected
> 0);
15223 -- Handle predefined primitives plus the rest of user-defined
15227 Act_Elmt
:= First_Elmt
(Act_List
);
15228 while Present
(Act_Elmt
) loop
15229 Act_Subp
:= Node
(Act_Elmt
);
15231 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
15232 and then Type_Conformant
15234 Skip_Controlling_Formals
=> True)
15235 and then No
(Interface_Alias
(Act_Subp
));
15237 Next_Elmt
(Act_Elmt
);
15240 if No
(Act_Elmt
) then
15246 -- Case 1: If the parent is a limited interface then it has the
15247 -- predefined primitives of synchronized interfaces. However, the
15248 -- actual type may be a non-limited type and hence it does not
15249 -- have such primitives.
15251 if Present
(Generic_Actual
)
15252 and then not Present
(Act_Subp
)
15253 and then Is_Limited_Interface
(Parent_Base
)
15254 and then Is_Predefined_Interface_Primitive
(Subp
)
15258 -- Case 2: Inherit entities associated with interfaces that were
15259 -- not covered by the parent type. We exclude here null interface
15260 -- primitives because they do not need special management.
15262 -- We also exclude interface operations that are renamings. If the
15263 -- subprogram is an explicit renaming of an interface primitive,
15264 -- it is a regular primitive operation, and the presence of its
15265 -- alias is not relevant: it has to be derived like any other
15268 elsif Present
(Alias
(Subp
))
15269 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
15270 N_Subprogram_Renaming_Declaration
15271 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15273 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
15274 and then Null_Present
(Parent
(Alias_Subp
)))
15276 -- If this is an abstract private type then we transfer the
15277 -- derivation of the interface primitive from the partial view
15278 -- to the full view. This is safe because all the interfaces
15279 -- must be visible in the partial view. Done to avoid adding
15280 -- a new interface derivation to the private part of the
15281 -- enclosing package; otherwise this new derivation would be
15282 -- decorated as hidden when the analysis of the enclosing
15283 -- package completes.
15285 if Is_Abstract_Type
(Derived_Type
)
15286 and then In_Private_Part
(Current_Scope
)
15287 and then Has_Private_Declaration
(Derived_Type
)
15290 Partial_View
: Entity_Id
;
15295 Partial_View
:= First_Entity
(Current_Scope
);
15297 exit when No
(Partial_View
)
15298 or else (Has_Private_Declaration
(Partial_View
)
15300 Full_View
(Partial_View
) = Derived_Type
);
15302 Next_Entity
(Partial_View
);
15305 -- If the partial view was not found then the source code
15306 -- has errors and the derivation is not needed.
15308 if Present
(Partial_View
) then
15310 First_Elmt
(Primitive_Operations
(Partial_View
));
15311 while Present
(Elmt
) loop
15312 Ent
:= Node
(Elmt
);
15314 if Present
(Alias
(Ent
))
15315 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
15318 (Ent
, Primitive_Operations
(Derived_Type
));
15325 -- If the interface primitive was not found in the
15326 -- partial view then this interface primitive was
15327 -- overridden. We add a derivation to activate in
15328 -- Derive_Progenitor_Subprograms the machinery to
15332 Derive_Interface_Subprogram
15333 (New_Subp
=> New_Subp
,
15335 Actual_Subp
=> Act_Subp
);
15340 Derive_Interface_Subprogram
15341 (New_Subp
=> New_Subp
,
15343 Actual_Subp
=> Act_Subp
);
15346 -- Case 3: Common derivation
15350 (New_Subp
=> New_Subp
,
15351 Parent_Subp
=> Subp
,
15352 Derived_Type
=> Derived_Type
,
15353 Parent_Type
=> Parent_Base
,
15354 Actual_Subp
=> Act_Subp
);
15357 -- No need to update Act_Elm if we must search for the
15358 -- corresponding operation in the generic actual
15361 and then Present
(Act_Elmt
)
15363 Next_Elmt
(Act_Elmt
);
15364 Act_Subp
:= Node
(Act_Elmt
);
15371 -- Inherit additional operations from progenitors. If the derived
15372 -- type is a generic actual, there are not new primitive operations
15373 -- for the type because it has those of the actual, and therefore
15374 -- nothing needs to be done. The renamings generated above are not
15375 -- primitive operations, and their purpose is simply to make the
15376 -- proper operations visible within an instantiation.
15378 if No
(Generic_Actual
) then
15379 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
15383 -- Final check: Direct descendants must have their primitives in the
15384 -- same order. We exclude from this test untagged types and instances
15385 -- of formal derived types. We skip this test if we have already
15386 -- reported serious errors in the sources.
15388 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
15389 or else Present
(Generic_Actual
)
15390 or else Serious_Errors_Detected
> 0
15391 or else Check_Derived_Type
);
15392 end Derive_Subprograms
;
15394 --------------------------------
15395 -- Derived_Standard_Character --
15396 --------------------------------
15398 procedure Derived_Standard_Character
15400 Parent_Type
: Entity_Id
;
15401 Derived_Type
: Entity_Id
)
15403 Loc
: constant Source_Ptr
:= Sloc
(N
);
15404 Def
: constant Node_Id
:= Type_Definition
(N
);
15405 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15406 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
15407 Implicit_Base
: constant Entity_Id
:=
15409 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
15415 Discard_Node
(Process_Subtype
(Indic
, N
));
15417 Set_Etype
(Implicit_Base
, Parent_Base
);
15418 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
15419 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
15421 Set_Is_Character_Type
(Implicit_Base
, True);
15422 Set_Has_Delayed_Freeze
(Implicit_Base
);
15424 -- The bounds of the implicit base are the bounds of the parent base.
15425 -- Note that their type is the parent base.
15427 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
15428 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
15430 Set_Scalar_Range
(Implicit_Base
,
15433 High_Bound
=> Hi
));
15435 Conditional_Delay
(Derived_Type
, Parent_Type
);
15437 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
15438 Set_Etype
(Derived_Type
, Implicit_Base
);
15439 Set_Size_Info
(Derived_Type
, Parent_Type
);
15441 if Unknown_RM_Size
(Derived_Type
) then
15442 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
15445 Set_Is_Character_Type
(Derived_Type
, True);
15447 if Nkind
(Indic
) /= N_Subtype_Indication
then
15449 -- If no explicit constraint, the bounds are those
15450 -- of the parent type.
15452 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
15453 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
15454 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
15457 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
15459 -- Because the implicit base is used in the conversion of the bounds, we
15460 -- have to freeze it now. This is similar to what is done for numeric
15461 -- types, and it equally suspicious, but otherwise a non-static bound
15462 -- will have a reference to an unfrozen type, which is rejected by Gigi
15463 -- (???). This requires specific care for definition of stream
15464 -- attributes. For details, see comments at the end of
15465 -- Build_Derived_Numeric_Type.
15467 Freeze_Before
(N
, Implicit_Base
);
15468 end Derived_Standard_Character
;
15470 ------------------------------
15471 -- Derived_Type_Declaration --
15472 ------------------------------
15474 procedure Derived_Type_Declaration
15477 Is_Completion
: Boolean)
15479 Parent_Type
: Entity_Id
;
15481 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
15482 -- Check whether the parent type is a generic formal, or derives
15483 -- directly or indirectly from one.
15485 ------------------------
15486 -- Comes_From_Generic --
15487 ------------------------
15489 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
15491 if Is_Generic_Type
(Typ
) then
15494 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
15497 elsif Is_Private_Type
(Typ
)
15498 and then Present
(Full_View
(Typ
))
15499 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
15503 elsif Is_Generic_Actual_Type
(Typ
) then
15509 end Comes_From_Generic
;
15513 Def
: constant Node_Id
:= Type_Definition
(N
);
15514 Iface_Def
: Node_Id
;
15515 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15516 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
15517 Parent_Node
: Node_Id
;
15520 -- Start of processing for Derived_Type_Declaration
15523 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
15525 -- Ada 2005 (AI-251): In case of interface derivation check that the
15526 -- parent is also an interface.
15528 if Interface_Present
(Def
) then
15529 Check_SPARK_05_Restriction
("interface is not allowed", Def
);
15531 if not Is_Interface
(Parent_Type
) then
15532 Diagnose_Interface
(Indic
, Parent_Type
);
15535 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
15536 Iface_Def
:= Type_Definition
(Parent_Node
);
15538 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15539 -- other limited interfaces.
15541 if Limited_Present
(Def
) then
15542 if Limited_Present
(Iface_Def
) then
15545 elsif Protected_Present
(Iface_Def
) then
15547 ("descendant of& must be declared"
15548 & " as a protected interface",
15551 elsif Synchronized_Present
(Iface_Def
) then
15553 ("descendant of& must be declared"
15554 & " as a synchronized interface",
15557 elsif Task_Present
(Iface_Def
) then
15559 ("descendant of& must be declared as a task interface",
15564 ("(Ada 2005) limited interface cannot "
15565 & "inherit from non-limited interface", Indic
);
15568 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15569 -- from non-limited or limited interfaces.
15571 elsif not Protected_Present
(Def
)
15572 and then not Synchronized_Present
(Def
)
15573 and then not Task_Present
(Def
)
15575 if Limited_Present
(Iface_Def
) then
15578 elsif Protected_Present
(Iface_Def
) then
15580 ("descendant of& must be declared"
15581 & " as a protected interface",
15584 elsif Synchronized_Present
(Iface_Def
) then
15586 ("descendant of& must be declared"
15587 & " as a synchronized interface",
15590 elsif Task_Present
(Iface_Def
) then
15592 ("descendant of& must be declared as a task interface",
15601 if Is_Tagged_Type
(Parent_Type
)
15602 and then Is_Concurrent_Type
(Parent_Type
)
15603 and then not Is_Interface
(Parent_Type
)
15606 ("parent type of a record extension cannot be "
15607 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
15608 Set_Etype
(T
, Any_Type
);
15612 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15615 if Is_Tagged_Type
(Parent_Type
)
15616 and then Is_Non_Empty_List
(Interface_List
(Def
))
15623 Intf
:= First
(Interface_List
(Def
));
15624 while Present
(Intf
) loop
15625 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
15627 if not Is_Interface
(T
) then
15628 Diagnose_Interface
(Intf
, T
);
15630 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15631 -- a limited type from having a nonlimited progenitor.
15633 elsif (Limited_Present
(Def
)
15634 or else (not Is_Interface
(Parent_Type
)
15635 and then Is_Limited_Type
(Parent_Type
)))
15636 and then not Is_Limited_Interface
(T
)
15639 ("progenitor interface& of limited type must be limited",
15648 if Parent_Type
= Any_Type
15649 or else Etype
(Parent_Type
) = Any_Type
15650 or else (Is_Class_Wide_Type
(Parent_Type
)
15651 and then Etype
(Parent_Type
) = T
)
15653 -- If Parent_Type is undefined or illegal, make new type into a
15654 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15655 -- errors. If this is a self-definition, emit error now.
15657 if T
= Parent_Type
or else T
= Etype
(Parent_Type
) then
15658 Error_Msg_N
("type cannot be used in its own definition", Indic
);
15661 Set_Ekind
(T
, Ekind
(Parent_Type
));
15662 Set_Etype
(T
, Any_Type
);
15663 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
15665 if Is_Tagged_Type
(T
)
15666 and then Is_Record_Type
(T
)
15668 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
15674 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15675 -- an interface is special because the list of interfaces in the full
15676 -- view can be given in any order. For example:
15678 -- type A is interface;
15679 -- type B is interface and A;
15680 -- type D is new B with private;
15682 -- type D is new A and B with null record; -- 1 --
15684 -- In this case we perform the following transformation of -1-:
15686 -- type D is new B and A with null record;
15688 -- If the parent of the full-view covers the parent of the partial-view
15689 -- we have two possible cases:
15691 -- 1) They have the same parent
15692 -- 2) The parent of the full-view implements some further interfaces
15694 -- In both cases we do not need to perform the transformation. In the
15695 -- first case the source program is correct and the transformation is
15696 -- not needed; in the second case the source program does not fulfill
15697 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15700 -- This transformation not only simplifies the rest of the analysis of
15701 -- this type declaration but also simplifies the correct generation of
15702 -- the object layout to the expander.
15704 if In_Private_Part
(Current_Scope
)
15705 and then Is_Interface
(Parent_Type
)
15709 Partial_View
: Entity_Id
;
15710 Partial_View_Parent
: Entity_Id
;
15711 New_Iface
: Node_Id
;
15714 -- Look for the associated private type declaration
15716 Partial_View
:= First_Entity
(Current_Scope
);
15718 exit when No
(Partial_View
)
15719 or else (Has_Private_Declaration
(Partial_View
)
15720 and then Full_View
(Partial_View
) = T
);
15722 Next_Entity
(Partial_View
);
15725 -- If the partial view was not found then the source code has
15726 -- errors and the transformation is not needed.
15728 if Present
(Partial_View
) then
15729 Partial_View_Parent
:= Etype
(Partial_View
);
15731 -- If the parent of the full-view covers the parent of the
15732 -- partial-view we have nothing else to do.
15734 if Interface_Present_In_Ancestor
15735 (Parent_Type
, Partial_View_Parent
)
15739 -- Traverse the list of interfaces of the full-view to look
15740 -- for the parent of the partial-view and perform the tree
15744 Iface
:= First
(Interface_List
(Def
));
15745 while Present
(Iface
) loop
15746 if Etype
(Iface
) = Etype
(Partial_View
) then
15747 Rewrite
(Subtype_Indication
(Def
),
15748 New_Copy
(Subtype_Indication
15749 (Parent
(Partial_View
))));
15752 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
15753 Append
(New_Iface
, Interface_List
(Def
));
15755 -- Analyze the transformed code
15757 Derived_Type_Declaration
(T
, N
, Is_Completion
);
15768 -- Only composite types other than array types are allowed to have
15771 if Present
(Discriminant_Specifications
(N
)) then
15772 if (Is_Elementary_Type
(Parent_Type
)
15774 Is_Array_Type
(Parent_Type
))
15775 and then not Error_Posted
(N
)
15778 ("elementary or array type cannot have discriminants",
15779 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
15780 Set_Has_Discriminants
(T
, False);
15782 -- The type is allowed to have discriminants
15785 Check_SPARK_05_Restriction
("discriminant type is not allowed", N
);
15789 -- In Ada 83, a derived type defined in a package specification cannot
15790 -- be used for further derivation until the end of its visible part.
15791 -- Note that derivation in the private part of the package is allowed.
15793 if Ada_Version
= Ada_83
15794 and then Is_Derived_Type
(Parent_Type
)
15795 and then In_Visible_Part
(Scope
(Parent_Type
))
15797 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
15799 ("(Ada 83): premature use of type for derivation", Indic
);
15803 -- Check for early use of incomplete or private type
15805 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
15806 Error_Msg_N
("premature derivation of incomplete type", Indic
);
15809 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
15810 and then not Comes_From_Generic
(Parent_Type
))
15811 or else Has_Private_Component
(Parent_Type
)
15813 -- The ancestor type of a formal type can be incomplete, in which
15814 -- case only the operations of the partial view are available in the
15815 -- generic. Subsequent checks may be required when the full view is
15816 -- analyzed to verify that a derivation from a tagged type has an
15819 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
15822 elsif No
(Underlying_Type
(Parent_Type
))
15823 or else Has_Private_Component
(Parent_Type
)
15826 ("premature derivation of derived or private type", Indic
);
15828 -- Flag the type itself as being in error, this prevents some
15829 -- nasty problems with subsequent uses of the malformed type.
15831 Set_Error_Posted
(T
);
15833 -- Check that within the immediate scope of an untagged partial
15834 -- view it's illegal to derive from the partial view if the
15835 -- full view is tagged. (7.3(7))
15837 -- We verify that the Parent_Type is a partial view by checking
15838 -- that it is not a Full_Type_Declaration (i.e. a private type or
15839 -- private extension declaration), to distinguish a partial view
15840 -- from a derivation from a private type which also appears as
15841 -- E_Private_Type. If the parent base type is not declared in an
15842 -- enclosing scope there is no need to check.
15844 elsif Present
(Full_View
(Parent_Type
))
15845 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
15846 and then not Is_Tagged_Type
(Parent_Type
)
15847 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
15848 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
15851 ("premature derivation from type with tagged full view",
15856 -- Check that form of derivation is appropriate
15858 Taggd
:= Is_Tagged_Type
(Parent_Type
);
15860 -- Set the parent type to the class-wide type's specific type in this
15861 -- case to prevent cascading errors
15863 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
15864 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
15865 Set_Etype
(T
, Etype
(Parent_Type
));
15869 if Present
(Extension
) and then not Taggd
then
15871 ("type derived from untagged type cannot have extension", Indic
);
15873 elsif No
(Extension
) and then Taggd
then
15875 -- If this declaration is within a private part (or body) of a
15876 -- generic instantiation then the derivation is allowed (the parent
15877 -- type can only appear tagged in this case if it's a generic actual
15878 -- type, since it would otherwise have been rejected in the analysis
15879 -- of the generic template).
15881 if not Is_Generic_Actual_Type
(Parent_Type
)
15882 or else In_Visible_Part
(Scope
(Parent_Type
))
15884 if Is_Class_Wide_Type
(Parent_Type
) then
15886 ("parent type must not be a class-wide type", Indic
);
15888 -- Use specific type to prevent cascaded errors.
15890 Parent_Type
:= Etype
(Parent_Type
);
15894 ("type derived from tagged type must have extension", Indic
);
15899 -- AI-443: Synchronized formal derived types require a private
15900 -- extension. There is no point in checking the ancestor type or
15901 -- the progenitors since the construct is wrong to begin with.
15903 if Ada_Version
>= Ada_2005
15904 and then Is_Generic_Type
(T
)
15905 and then Present
(Original_Node
(N
))
15908 Decl
: constant Node_Id
:= Original_Node
(N
);
15911 if Nkind
(Decl
) = N_Formal_Type_Declaration
15912 and then Nkind
(Formal_Type_Definition
(Decl
)) =
15913 N_Formal_Derived_Type_Definition
15914 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
15915 and then No
(Extension
)
15917 -- Avoid emitting a duplicate error message
15919 and then not Error_Posted
(Indic
)
15922 ("synchronized derived type must have extension", N
);
15927 if Null_Exclusion_Present
(Def
)
15928 and then not Is_Access_Type
(Parent_Type
)
15930 Error_Msg_N
("null exclusion can only apply to an access type", N
);
15933 -- Avoid deriving parent primitives of underlying record views
15935 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
15936 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
15938 -- AI-419: The parent type of an explicitly limited derived type must
15939 -- be a limited type or a limited interface.
15941 if Limited_Present
(Def
) then
15942 Set_Is_Limited_Record
(T
);
15944 if Is_Interface
(T
) then
15945 Set_Is_Limited_Interface
(T
);
15948 if not Is_Limited_Type
(Parent_Type
)
15950 (not Is_Interface
(Parent_Type
)
15951 or else not Is_Limited_Interface
(Parent_Type
))
15953 -- AI05-0096: a derivation in the private part of an instance is
15954 -- legal if the generic formal is untagged limited, and the actual
15957 if Is_Generic_Actual_Type
(Parent_Type
)
15958 and then In_Private_Part
(Current_Scope
)
15961 (Generic_Parent_Type
(Parent
(Parent_Type
)))
15967 ("parent type& of limited type must be limited",
15973 -- In SPARK, there are no derived type definitions other than type
15974 -- extensions of tagged record types.
15976 if No
(Extension
) then
15977 Check_SPARK_05_Restriction
15978 ("derived type is not allowed", Original_Node
(N
));
15980 end Derived_Type_Declaration
;
15982 ------------------------
15983 -- Diagnose_Interface --
15984 ------------------------
15986 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
15988 if not Is_Interface
(E
) and then E
/= Any_Type
then
15989 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
15991 end Diagnose_Interface
;
15993 ----------------------------------
15994 -- Enumeration_Type_Declaration --
15995 ----------------------------------
15997 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16004 -- Create identifier node representing lower bound
16006 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16007 L
:= First
(Literals
(Def
));
16008 Set_Chars
(B_Node
, Chars
(L
));
16009 Set_Entity
(B_Node
, L
);
16010 Set_Etype
(B_Node
, T
);
16011 Set_Is_Static_Expression
(B_Node
, True);
16013 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
16014 Set_Low_Bound
(R_Node
, B_Node
);
16016 Set_Ekind
(T
, E_Enumeration_Type
);
16017 Set_First_Literal
(T
, L
);
16019 Set_Is_Constrained
(T
);
16023 -- Loop through literals of enumeration type setting pos and rep values
16024 -- except that if the Ekind is already set, then it means the literal
16025 -- was already constructed (case of a derived type declaration and we
16026 -- should not disturb the Pos and Rep values.
16028 while Present
(L
) loop
16029 if Ekind
(L
) /= E_Enumeration_Literal
then
16030 Set_Ekind
(L
, E_Enumeration_Literal
);
16031 Set_Enumeration_Pos
(L
, Ev
);
16032 Set_Enumeration_Rep
(L
, Ev
);
16033 Set_Is_Known_Valid
(L
, True);
16037 New_Overloaded_Entity
(L
);
16038 Generate_Definition
(L
);
16039 Set_Convention
(L
, Convention_Intrinsic
);
16041 -- Case of character literal
16043 if Nkind
(L
) = N_Defining_Character_Literal
then
16044 Set_Is_Character_Type
(T
, True);
16046 -- Check violation of No_Wide_Characters
16048 if Restriction_Check_Required
(No_Wide_Characters
) then
16049 Get_Name_String
(Chars
(L
));
16051 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
16052 Check_Restriction
(No_Wide_Characters
, L
);
16061 -- Now create a node representing upper bound
16063 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16064 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
16065 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
16066 Set_Etype
(B_Node
, T
);
16067 Set_Is_Static_Expression
(B_Node
, True);
16069 Set_High_Bound
(R_Node
, B_Node
);
16071 -- Initialize various fields of the type. Some of this information
16072 -- may be overwritten later through rep.clauses.
16074 Set_Scalar_Range
(T
, R_Node
);
16075 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
16076 Set_Enum_Esize
(T
);
16077 Set_Enum_Pos_To_Rep
(T
, Empty
);
16079 -- Set Discard_Names if configuration pragma set, or if there is
16080 -- a parameterless pragma in the current declarative region
16082 if Global_Discard_Names
or else Discard_Names
(Scope
(T
)) then
16083 Set_Discard_Names
(T
);
16086 -- Process end label if there is one
16088 if Present
(Def
) then
16089 Process_End_Label
(Def
, 'e', T
);
16091 end Enumeration_Type_Declaration
;
16093 ---------------------------------
16094 -- Expand_To_Stored_Constraint --
16095 ---------------------------------
16097 function Expand_To_Stored_Constraint
16099 Constraint
: Elist_Id
) return Elist_Id
16101 Explicitly_Discriminated_Type
: Entity_Id
;
16102 Expansion
: Elist_Id
;
16103 Discriminant
: Entity_Id
;
16105 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
16106 -- Find the nearest type that actually specifies discriminants
16108 ---------------------------------
16109 -- Type_With_Explicit_Discrims --
16110 ---------------------------------
16112 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
16113 Typ
: constant E
:= Base_Type
(Id
);
16116 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
16117 if Present
(Full_View
(Typ
)) then
16118 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
16122 if Has_Discriminants
(Typ
) then
16127 if Etype
(Typ
) = Typ
then
16129 elsif Has_Discriminants
(Typ
) then
16132 return Type_With_Explicit_Discrims
(Etype
(Typ
));
16135 end Type_With_Explicit_Discrims
;
16137 -- Start of processing for Expand_To_Stored_Constraint
16140 if No
(Constraint
) or else Is_Empty_Elmt_List
(Constraint
) then
16144 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
16146 if No
(Explicitly_Discriminated_Type
) then
16150 Expansion
:= New_Elmt_List
;
16153 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
16154 while Present
(Discriminant
) loop
16156 (Get_Discriminant_Value
16157 (Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
16159 Next_Stored_Discriminant
(Discriminant
);
16163 end Expand_To_Stored_Constraint
;
16165 ---------------------------
16166 -- Find_Hidden_Interface --
16167 ---------------------------
16169 function Find_Hidden_Interface
16171 Dest
: Elist_Id
) return Entity_Id
16174 Iface_Elmt
: Elmt_Id
;
16177 if Present
(Src
) and then Present
(Dest
) then
16178 Iface_Elmt
:= First_Elmt
(Src
);
16179 while Present
(Iface_Elmt
) loop
16180 Iface
:= Node
(Iface_Elmt
);
16182 if Is_Interface
(Iface
)
16183 and then not Contain_Interface
(Iface
, Dest
)
16188 Next_Elmt
(Iface_Elmt
);
16193 end Find_Hidden_Interface
;
16195 --------------------
16196 -- Find_Type_Name --
16197 --------------------
16199 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
16200 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
16202 New_Id
: Entity_Id
;
16203 Prev_Par
: Node_Id
;
16205 procedure Check_Duplicate_Aspects
;
16206 -- Check that aspects specified in a completion have not been specified
16207 -- already in the partial view. Type_Invariant and others can be
16208 -- specified on either view but never on both.
16210 procedure Tag_Mismatch
;
16211 -- Diagnose a tagged partial view whose full view is untagged.
16212 -- We post the message on the full view, with a reference to
16213 -- the previous partial view. The partial view can be private
16214 -- or incomplete, and these are handled in a different manner,
16215 -- so we determine the position of the error message from the
16216 -- respective slocs of both.
16218 -----------------------------
16219 -- Check_Duplicate_Aspects --
16220 -----------------------------
16221 procedure Check_Duplicate_Aspects
is
16222 Prev_Aspects
: constant List_Id
:= Aspect_Specifications
(Prev_Par
);
16223 Full_Aspects
: constant List_Id
:= Aspect_Specifications
(N
);
16224 F_Spec
, P_Spec
: Node_Id
;
16227 if Present
(Prev_Aspects
) and then Present
(Full_Aspects
) then
16228 F_Spec
:= First
(Full_Aspects
);
16229 while Present
(F_Spec
) loop
16230 P_Spec
:= First
(Prev_Aspects
);
16231 while Present
(P_Spec
) loop
16232 if Chars
(Identifier
(P_Spec
)) = Chars
(Identifier
(F_Spec
))
16235 ("aspect already specified in private declaration",
16247 end Check_Duplicate_Aspects
;
16253 procedure Tag_Mismatch
is
16255 if Sloc
(Prev
) < Sloc
(Id
) then
16256 if Ada_Version
>= Ada_2012
16257 and then Nkind
(N
) = N_Private_Type_Declaration
16260 ("declaration of private } must be a tagged type ", Id
, Prev
);
16263 ("full declaration of } must be a tagged type ", Id
, Prev
);
16267 if Ada_Version
>= Ada_2012
16268 and then Nkind
(N
) = N_Private_Type_Declaration
16271 ("declaration of private } must be a tagged type ", Prev
, Id
);
16274 ("full declaration of } must be a tagged type ", Prev
, Id
);
16279 -- Start of processing for Find_Type_Name
16282 -- Find incomplete declaration, if one was given
16284 Prev
:= Current_Entity_In_Scope
(Id
);
16286 -- New type declaration
16292 -- Previous declaration exists
16295 Prev_Par
:= Parent
(Prev
);
16297 -- Error if not incomplete/private case except if previous
16298 -- declaration is implicit, etc. Enter_Name will emit error if
16301 if not Is_Incomplete_Or_Private_Type
(Prev
) then
16305 -- Check invalid completion of private or incomplete type
16307 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
16308 N_Task_Type_Declaration
,
16309 N_Protected_Type_Declaration
)
16311 (Ada_Version
< Ada_2012
16312 or else not Is_Incomplete_Type
(Prev
)
16313 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
16314 N_Private_Extension_Declaration
))
16316 -- Completion must be a full type declarations (RM 7.3(4))
16318 Error_Msg_Sloc
:= Sloc
(Prev
);
16319 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
16321 -- Set scope of Id to avoid cascaded errors. Entity is never
16322 -- examined again, except when saving globals in generics.
16324 Set_Scope
(Id
, Current_Scope
);
16327 -- If this is a repeated incomplete declaration, no further
16328 -- checks are possible.
16330 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
16334 -- Case of full declaration of incomplete type
16336 elsif Ekind
(Prev
) = E_Incomplete_Type
16337 and then (Ada_Version
< Ada_2012
16338 or else No
(Full_View
(Prev
))
16339 or else not Is_Private_Type
(Full_View
(Prev
)))
16341 -- Indicate that the incomplete declaration has a matching full
16342 -- declaration. The defining occurrence of the incomplete
16343 -- declaration remains the visible one, and the procedure
16344 -- Get_Full_View dereferences it whenever the type is used.
16346 if Present
(Full_View
(Prev
)) then
16347 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16350 Set_Full_View
(Prev
, Id
);
16351 Append_Entity
(Id
, Current_Scope
);
16352 Set_Is_Public
(Id
, Is_Public
(Prev
));
16353 Set_Is_Internal
(Id
);
16356 -- If the incomplete view is tagged, a class_wide type has been
16357 -- created already. Use it for the private type as well, in order
16358 -- to prevent multiple incompatible class-wide types that may be
16359 -- created for self-referential anonymous access components.
16361 if Is_Tagged_Type
(Prev
)
16362 and then Present
(Class_Wide_Type
(Prev
))
16364 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
16365 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
16367 -- The type of the classwide type is the current Id. Previously
16368 -- this was not done for private declarations because of order-
16369 -- of elaboration issues in the back-end, but gigi now handles
16372 Set_Etype
(Class_Wide_Type
(Id
), Id
);
16375 -- Case of full declaration of private type
16378 -- If the private type was a completion of an incomplete type then
16379 -- update Prev to reference the private type
16381 if Ada_Version
>= Ada_2012
16382 and then Ekind
(Prev
) = E_Incomplete_Type
16383 and then Present
(Full_View
(Prev
))
16384 and then Is_Private_Type
(Full_View
(Prev
))
16386 Prev
:= Full_View
(Prev
);
16387 Prev_Par
:= Parent
(Prev
);
16390 if Nkind
(N
) = N_Full_Type_Declaration
16392 (Type_Definition
(N
), N_Record_Definition
,
16393 N_Derived_Type_Definition
)
16394 and then Interface_Present
(Type_Definition
(N
))
16397 ("completion of private type cannot be an interface", N
);
16400 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
16401 if Etype
(Prev
) /= Prev
then
16403 -- Prev is a private subtype or a derived type, and needs
16406 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16409 elsif Ekind
(Prev
) = E_Private_Type
16410 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16411 N_Protected_Type_Declaration
)
16414 ("completion of nonlimited type cannot be limited", N
);
16416 elsif Ekind
(Prev
) = E_Record_Type_With_Private
16417 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16418 N_Protected_Type_Declaration
)
16420 if not Is_Limited_Record
(Prev
) then
16422 ("completion of nonlimited type cannot be limited", N
);
16424 elsif No
(Interface_List
(N
)) then
16426 ("completion of tagged private type must be tagged",
16431 -- Ada 2005 (AI-251): Private extension declaration of a task
16432 -- type or a protected type. This case arises when covering
16433 -- interface types.
16435 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16436 N_Protected_Type_Declaration
)
16440 elsif Nkind
(N
) /= N_Full_Type_Declaration
16441 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
16444 ("full view of private extension must be an extension", N
);
16446 elsif not (Abstract_Present
(Parent
(Prev
)))
16447 and then Abstract_Present
(Type_Definition
(N
))
16450 ("full view of non-abstract extension cannot be abstract", N
);
16453 if not In_Private_Part
(Current_Scope
) then
16455 ("declaration of full view must appear in private part", N
);
16458 if Ada_Version
>= Ada_2012
then
16459 Check_Duplicate_Aspects
;
16462 Copy_And_Swap
(Prev
, Id
);
16463 Set_Has_Private_Declaration
(Prev
);
16464 Set_Has_Private_Declaration
(Id
);
16466 -- Preserve aspect and iterator flags that may have been set on
16467 -- the partial view.
16469 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
16470 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
16472 -- If no error, propagate freeze_node from private to full view.
16473 -- It may have been generated for an early operational item.
16475 if Present
(Freeze_Node
(Id
))
16476 and then Serious_Errors_Detected
= 0
16477 and then No
(Full_View
(Id
))
16479 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
16480 Set_Freeze_Node
(Id
, Empty
);
16481 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
16484 Set_Full_View
(Id
, Prev
);
16488 -- Verify that full declaration conforms to partial one
16490 if Is_Incomplete_Or_Private_Type
(Prev
)
16491 and then Present
(Discriminant_Specifications
(Prev_Par
))
16493 if Present
(Discriminant_Specifications
(N
)) then
16494 if Ekind
(Prev
) = E_Incomplete_Type
then
16495 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
16497 Check_Discriminant_Conformance
(N
, Prev
, Id
);
16502 ("missing discriminants in full type declaration", N
);
16504 -- To avoid cascaded errors on subsequent use, share the
16505 -- discriminants of the partial view.
16507 Set_Discriminant_Specifications
(N
,
16508 Discriminant_Specifications
(Prev_Par
));
16512 -- A prior untagged partial view can have an associated class-wide
16513 -- type due to use of the class attribute, and in this case the full
16514 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16515 -- of incomplete tagged declarations, but we check for it.
16518 and then (Is_Tagged_Type
(Prev
)
16519 or else Present
(Class_Wide_Type
(Prev
)))
16521 -- Ada 2012 (AI05-0162): A private type may be the completion of
16522 -- an incomplete type.
16524 if Ada_Version
>= Ada_2012
16525 and then Is_Incomplete_Type
(Prev
)
16526 and then Nkind_In
(N
, N_Private_Type_Declaration
,
16527 N_Private_Extension_Declaration
)
16529 -- No need to check private extensions since they are tagged
16531 if Nkind
(N
) = N_Private_Type_Declaration
16532 and then not Tagged_Present
(N
)
16537 -- The full declaration is either a tagged type (including
16538 -- a synchronized type that implements interfaces) or a
16539 -- type extension, otherwise this is an error.
16541 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16542 N_Protected_Type_Declaration
)
16544 if No
(Interface_List
(N
)) and then not Error_Posted
(N
) then
16548 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
16550 -- Indicate that the previous declaration (tagged incomplete
16551 -- or private declaration) requires the same on the full one.
16553 if not Tagged_Present
(Type_Definition
(N
)) then
16555 Set_Is_Tagged_Type
(Id
);
16558 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
16559 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
16561 ("full declaration of } must be a record extension",
16564 -- Set some attributes to produce a usable full view
16566 Set_Is_Tagged_Type
(Id
);
16575 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
16576 and then Present
(Premature_Use
(Parent
(Prev
)))
16578 Error_Msg_Sloc
:= Sloc
(N
);
16580 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
16585 end Find_Type_Name
;
16587 -------------------------
16588 -- Find_Type_Of_Object --
16589 -------------------------
16591 function Find_Type_Of_Object
16592 (Obj_Def
: Node_Id
;
16593 Related_Nod
: Node_Id
) return Entity_Id
16595 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
16596 P
: Node_Id
:= Parent
(Obj_Def
);
16601 -- If the parent is a component_definition node we climb to the
16602 -- component_declaration node
16604 if Nkind
(P
) = N_Component_Definition
then
16608 -- Case of an anonymous array subtype
16610 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
16611 N_Unconstrained_Array_Definition
)
16614 Array_Type_Declaration
(T
, Obj_Def
);
16616 -- Create an explicit subtype whenever possible
16618 elsif Nkind
(P
) /= N_Component_Declaration
16619 and then Def_Kind
= N_Subtype_Indication
16621 -- Base name of subtype on object name, which will be unique in
16622 -- the current scope.
16624 -- If this is a duplicate declaration, return base type, to avoid
16625 -- generating duplicate anonymous types.
16627 if Error_Posted
(P
) then
16628 Analyze
(Subtype_Mark
(Obj_Def
));
16629 return Entity
(Subtype_Mark
(Obj_Def
));
16634 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
16636 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
16638 Insert_Action
(Obj_Def
,
16639 Make_Subtype_Declaration
(Sloc
(P
),
16640 Defining_Identifier
=> T
,
16641 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
16643 -- This subtype may need freezing, and this will not be done
16644 -- automatically if the object declaration is not in declarative
16645 -- part. Since this is an object declaration, the type cannot always
16646 -- be frozen here. Deferred constants do not freeze their type
16647 -- (which often enough will be private).
16649 if Nkind
(P
) = N_Object_Declaration
16650 and then Constant_Present
(P
)
16651 and then No
(Expression
(P
))
16655 -- Here we freeze the base type of object type to catch premature use
16656 -- of discriminated private type without a full view.
16659 Insert_Actions
(Obj_Def
, Freeze_Entity
(Base_Type
(T
), P
));
16662 -- Ada 2005 AI-406: the object definition in an object declaration
16663 -- can be an access definition.
16665 elsif Def_Kind
= N_Access_Definition
then
16666 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
16668 Set_Is_Local_Anonymous_Access
16670 V
=> (Ada_Version
< Ada_2012
)
16671 or else (Nkind
(P
) /= N_Object_Declaration
)
16672 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
16674 -- Otherwise, the object definition is just a subtype_mark
16677 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
16679 -- If expansion is disabled an object definition that is an aggregate
16680 -- will not get expanded and may lead to scoping problems in the back
16681 -- end, if the object is referenced in an inner scope. In that case
16682 -- create an itype reference for the object definition now. This
16683 -- may be redundant in some cases, but harmless.
16686 and then Nkind
(Related_Nod
) = N_Object_Declaration
16689 Build_Itype_Reference
(T
, Related_Nod
);
16694 end Find_Type_Of_Object
;
16696 --------------------------------
16697 -- Find_Type_Of_Subtype_Indic --
16698 --------------------------------
16700 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
16704 -- Case of subtype mark with a constraint
16706 if Nkind
(S
) = N_Subtype_Indication
then
16707 Find_Type
(Subtype_Mark
(S
));
16708 Typ
:= Entity
(Subtype_Mark
(S
));
16711 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
16714 ("incorrect constraint for this kind of type", Constraint
(S
));
16715 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
16718 -- Otherwise we have a subtype mark without a constraint
16720 elsif Error_Posted
(S
) then
16721 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
16729 -- Check No_Wide_Characters restriction
16731 Check_Wide_Character_Restriction
(Typ
, S
);
16734 end Find_Type_Of_Subtype_Indic
;
16736 -------------------------------------
16737 -- Floating_Point_Type_Declaration --
16738 -------------------------------------
16740 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16741 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
16742 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
16744 Base_Typ
: Entity_Id
;
16745 Implicit_Base
: Entity_Id
;
16748 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
16749 -- Find if given digits value, and possibly a specified range, allows
16750 -- derivation from specified type
16752 function Find_Base_Type
return Entity_Id
;
16753 -- Find a predefined base type that Def can derive from, or generate
16754 -- an error and substitute Long_Long_Float if none exists.
16756 ---------------------
16757 -- Can_Derive_From --
16758 ---------------------
16760 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
16761 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
16764 -- Check specified "digits" constraint
16766 if Digs_Val
> Digits_Value
(E
) then
16770 -- Check for matching range, if specified
16772 if Present
(Spec
) then
16773 if Expr_Value_R
(Type_Low_Bound
(E
)) >
16774 Expr_Value_R
(Low_Bound
(Spec
))
16779 if Expr_Value_R
(Type_High_Bound
(E
)) <
16780 Expr_Value_R
(High_Bound
(Spec
))
16787 end Can_Derive_From
;
16789 --------------------
16790 -- Find_Base_Type --
16791 --------------------
16793 function Find_Base_Type
return Entity_Id
is
16794 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
16797 -- Iterate over the predefined types in order, returning the first
16798 -- one that Def can derive from.
16800 while Present
(Choice
) loop
16801 if Can_Derive_From
(Node
(Choice
)) then
16802 return Node
(Choice
);
16805 Next_Elmt
(Choice
);
16808 -- If we can't derive from any existing type, use Long_Long_Float
16809 -- and give appropriate message explaining the problem.
16811 if Digs_Val
> Max_Digs_Val
then
16812 -- It might be the case that there is a type with the requested
16813 -- range, just not the combination of digits and range.
16816 ("no predefined type has requested range and precision",
16817 Real_Range_Specification
(Def
));
16821 ("range too large for any predefined type",
16822 Real_Range_Specification
(Def
));
16825 return Standard_Long_Long_Float
;
16826 end Find_Base_Type
;
16828 -- Start of processing for Floating_Point_Type_Declaration
16831 Check_Restriction
(No_Floating_Point
, Def
);
16833 -- Create an implicit base type
16836 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
16838 -- Analyze and verify digits value
16840 Analyze_And_Resolve
(Digs
, Any_Integer
);
16841 Check_Digits_Expression
(Digs
);
16842 Digs_Val
:= Expr_Value
(Digs
);
16844 -- Process possible range spec and find correct type to derive from
16846 Process_Real_Range_Specification
(Def
);
16848 -- Check that requested number of digits is not too high.
16850 if Digs_Val
> Max_Digs_Val
then
16852 -- The check for Max_Base_Digits may be somewhat expensive, as it
16853 -- requires reading System, so only do it when necessary.
16856 Max_Base_Digits
: constant Uint
:=
16859 (Parent
(RTE
(RE_Max_Base_Digits
))));
16862 if Digs_Val
> Max_Base_Digits
then
16863 Error_Msg_Uint_1
:= Max_Base_Digits
;
16864 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
16866 elsif No
(Real_Range_Specification
(Def
)) then
16867 Error_Msg_Uint_1
:= Max_Digs_Val
;
16868 Error_Msg_N
("types with more than ^ digits need range spec "
16869 & "(RM 3.5.7(6))", Digs
);
16874 -- Find a suitable type to derive from or complain and use a substitute
16876 Base_Typ
:= Find_Base_Type
;
16878 -- If there are bounds given in the declaration use them as the bounds
16879 -- of the type, otherwise use the bounds of the predefined base type
16880 -- that was chosen based on the Digits value.
16882 if Present
(Real_Range_Specification
(Def
)) then
16883 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
16884 Set_Is_Constrained
(T
);
16886 -- The bounds of this range must be converted to machine numbers
16887 -- in accordance with RM 4.9(38).
16889 Bound
:= Type_Low_Bound
(T
);
16891 if Nkind
(Bound
) = N_Real_Literal
then
16893 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
16894 Set_Is_Machine_Number
(Bound
);
16897 Bound
:= Type_High_Bound
(T
);
16899 if Nkind
(Bound
) = N_Real_Literal
then
16901 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
16902 Set_Is_Machine_Number
(Bound
);
16906 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
16909 -- Complete definition of implicit base and declared first subtype. The
16910 -- inheritance of the rep item chain ensures that SPARK-related pragmas
16911 -- are not clobbered when the floating point type acts as a full view of
16914 Set_Etype
(Implicit_Base
, Base_Typ
);
16915 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
16916 Set_Size_Info
(Implicit_Base
, Base_Typ
);
16917 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
16918 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
16919 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
16920 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
16922 Set_Ekind
(T
, E_Floating_Point_Subtype
);
16923 Set_Etype
(T
, Implicit_Base
);
16924 Set_Size_Info
(T
, Implicit_Base
);
16925 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
16926 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
16927 Set_Digits_Value
(T
, Digs_Val
);
16928 end Floating_Point_Type_Declaration
;
16930 ----------------------------
16931 -- Get_Discriminant_Value --
16932 ----------------------------
16934 -- This is the situation:
16936 -- There is a non-derived type
16938 -- type T0 (Dx, Dy, Dz...)
16940 -- There are zero or more levels of derivation, with each derivation
16941 -- either purely inheriting the discriminants, or defining its own.
16943 -- type Ti is new Ti-1
16945 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16947 -- subtype Ti is ...
16949 -- The subtype issue is avoided by the use of Original_Record_Component,
16950 -- and the fact that derived subtypes also derive the constraints.
16952 -- This chain leads back from
16954 -- Typ_For_Constraint
16956 -- Typ_For_Constraint has discriminants, and the value for each
16957 -- discriminant is given by its corresponding Elmt of Constraints.
16959 -- Discriminant is some discriminant in this hierarchy
16961 -- We need to return its value
16963 -- We do this by recursively searching each level, and looking for
16964 -- Discriminant. Once we get to the bottom, we start backing up
16965 -- returning the value for it which may in turn be a discriminant
16966 -- further up, so on the backup we continue the substitution.
16968 function Get_Discriminant_Value
16969 (Discriminant
: Entity_Id
;
16970 Typ_For_Constraint
: Entity_Id
;
16971 Constraint
: Elist_Id
) return Node_Id
16973 function Root_Corresponding_Discriminant
16974 (Discr
: Entity_Id
) return Entity_Id
;
16975 -- Given a discriminant, traverse the chain of inherited discriminants
16976 -- and return the topmost discriminant.
16978 function Search_Derivation_Levels
16980 Discrim_Values
: Elist_Id
;
16981 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
16982 -- This is the routine that performs the recursive search of levels
16983 -- as described above.
16985 -------------------------------------
16986 -- Root_Corresponding_Discriminant --
16987 -------------------------------------
16989 function Root_Corresponding_Discriminant
16990 (Discr
: Entity_Id
) return Entity_Id
16996 while Present
(Corresponding_Discriminant
(D
)) loop
16997 D
:= Corresponding_Discriminant
(D
);
17001 end Root_Corresponding_Discriminant
;
17003 ------------------------------
17004 -- Search_Derivation_Levels --
17005 ------------------------------
17007 function Search_Derivation_Levels
17009 Discrim_Values
: Elist_Id
;
17010 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
17014 Result
: Node_Or_Entity_Id
;
17015 Result_Entity
: Node_Id
;
17018 -- If inappropriate type, return Error, this happens only in
17019 -- cascaded error situations, and we want to avoid a blow up.
17021 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
17025 -- Look deeper if possible. Use Stored_Constraints only for
17026 -- untagged types. For tagged types use the given constraint.
17027 -- This asymmetry needs explanation???
17029 if not Stored_Discrim_Values
17030 and then Present
(Stored_Constraint
(Ti
))
17031 and then not Is_Tagged_Type
(Ti
)
17034 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
17037 Td
: constant Entity_Id
:= Etype
(Ti
);
17041 Result
:= Discriminant
;
17044 if Present
(Stored_Constraint
(Ti
)) then
17046 Search_Derivation_Levels
17047 (Td
, Stored_Constraint
(Ti
), True);
17050 Search_Derivation_Levels
17051 (Td
, Discrim_Values
, Stored_Discrim_Values
);
17057 -- Extra underlying places to search, if not found above. For
17058 -- concurrent types, the relevant discriminant appears in the
17059 -- corresponding record. For a type derived from a private type
17060 -- without discriminant, the full view inherits the discriminants
17061 -- of the full view of the parent.
17063 if Result
= Discriminant
then
17064 if Is_Concurrent_Type
(Ti
)
17065 and then Present
(Corresponding_Record_Type
(Ti
))
17068 Search_Derivation_Levels
(
17069 Corresponding_Record_Type
(Ti
),
17071 Stored_Discrim_Values
);
17073 elsif Is_Private_Type
(Ti
)
17074 and then not Has_Discriminants
(Ti
)
17075 and then Present
(Full_View
(Ti
))
17076 and then Etype
(Full_View
(Ti
)) /= Ti
17079 Search_Derivation_Levels
(
17082 Stored_Discrim_Values
);
17086 -- If Result is not a (reference to a) discriminant, return it,
17087 -- otherwise set Result_Entity to the discriminant.
17089 if Nkind
(Result
) = N_Defining_Identifier
then
17090 pragma Assert
(Result
= Discriminant
);
17091 Result_Entity
:= Result
;
17094 if not Denotes_Discriminant
(Result
) then
17098 Result_Entity
:= Entity
(Result
);
17101 -- See if this level of derivation actually has discriminants because
17102 -- tagged derivations can add them, hence the lower levels need not
17105 if not Has_Discriminants
(Ti
) then
17109 -- Scan Ti's discriminants for Result_Entity, and return its
17110 -- corresponding value, if any.
17112 Result_Entity
:= Original_Record_Component
(Result_Entity
);
17114 Assoc
:= First_Elmt
(Discrim_Values
);
17116 if Stored_Discrim_Values
then
17117 Disc
:= First_Stored_Discriminant
(Ti
);
17119 Disc
:= First_Discriminant
(Ti
);
17122 while Present
(Disc
) loop
17123 pragma Assert
(Present
(Assoc
));
17125 if Original_Record_Component
(Disc
) = Result_Entity
then
17126 return Node
(Assoc
);
17131 if Stored_Discrim_Values
then
17132 Next_Stored_Discriminant
(Disc
);
17134 Next_Discriminant
(Disc
);
17138 -- Could not find it
17141 end Search_Derivation_Levels
;
17145 Result
: Node_Or_Entity_Id
;
17147 -- Start of processing for Get_Discriminant_Value
17150 -- ??? This routine is a gigantic mess and will be deleted. For the
17151 -- time being just test for the trivial case before calling recurse.
17153 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
17159 D
:= First_Discriminant
(Typ_For_Constraint
);
17160 E
:= First_Elmt
(Constraint
);
17161 while Present
(D
) loop
17162 if Chars
(D
) = Chars
(Discriminant
) then
17166 Next_Discriminant
(D
);
17172 Result
:= Search_Derivation_Levels
17173 (Typ_For_Constraint
, Constraint
, False);
17175 -- ??? hack to disappear when this routine is gone
17177 if Nkind
(Result
) = N_Defining_Identifier
then
17183 D
:= First_Discriminant
(Typ_For_Constraint
);
17184 E
:= First_Elmt
(Constraint
);
17185 while Present
(D
) loop
17186 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
17190 Next_Discriminant
(D
);
17196 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
17198 end Get_Discriminant_Value
;
17200 --------------------------
17201 -- Has_Range_Constraint --
17202 --------------------------
17204 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
17205 C
: constant Node_Id
:= Constraint
(N
);
17208 if Nkind
(C
) = N_Range_Constraint
then
17211 elsif Nkind
(C
) = N_Digits_Constraint
then
17213 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
17214 or else Present
(Range_Constraint
(C
));
17216 elsif Nkind
(C
) = N_Delta_Constraint
then
17217 return Present
(Range_Constraint
(C
));
17222 end Has_Range_Constraint
;
17224 ------------------------
17225 -- Inherit_Components --
17226 ------------------------
17228 function Inherit_Components
17230 Parent_Base
: Entity_Id
;
17231 Derived_Base
: Entity_Id
;
17232 Is_Tagged
: Boolean;
17233 Inherit_Discr
: Boolean;
17234 Discs
: Elist_Id
) return Elist_Id
17236 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
17238 procedure Inherit_Component
17239 (Old_C
: Entity_Id
;
17240 Plain_Discrim
: Boolean := False;
17241 Stored_Discrim
: Boolean := False);
17242 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17243 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17244 -- True, Old_C is a stored discriminant. If they are both false then
17245 -- Old_C is a regular component.
17247 -----------------------
17248 -- Inherit_Component --
17249 -----------------------
17251 procedure Inherit_Component
17252 (Old_C
: Entity_Id
;
17253 Plain_Discrim
: Boolean := False;
17254 Stored_Discrim
: Boolean := False)
17256 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
17257 -- Id denotes the entity of an access discriminant or anonymous
17258 -- access component. Set the type of Id to either the same type of
17259 -- Old_C or create a new one depending on whether the parent and
17260 -- the child types are in the same scope.
17262 ------------------------
17263 -- Set_Anonymous_Type --
17264 ------------------------
17266 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
17267 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
17270 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
17271 Set_Etype
(Id
, Old_Typ
);
17273 -- The parent and the derived type are in two different scopes.
17274 -- Reuse the type of the original discriminant / component by
17275 -- copying it in order to preserve all attributes.
17279 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
17282 Set_Etype
(Id
, Typ
);
17284 -- Since we do not generate component declarations for
17285 -- inherited components, associate the itype with the
17288 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
17289 Set_Scope
(Typ
, Derived_Base
);
17292 end Set_Anonymous_Type
;
17294 -- Local variables and constants
17296 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
17298 Corr_Discrim
: Entity_Id
;
17299 Discrim
: Entity_Id
;
17301 -- Start of processing for Inherit_Component
17304 pragma Assert
(not Is_Tagged
or not Stored_Discrim
);
17306 Set_Parent
(New_C
, Parent
(Old_C
));
17308 -- Regular discriminants and components must be inserted in the scope
17309 -- of the Derived_Base. Do it here.
17311 if not Stored_Discrim
then
17312 Enter_Name
(New_C
);
17315 -- For tagged types the Original_Record_Component must point to
17316 -- whatever this field was pointing to in the parent type. This has
17317 -- already been achieved by the call to New_Copy above.
17319 if not Is_Tagged
then
17320 Set_Original_Record_Component
(New_C
, New_C
);
17323 -- Set the proper type of an access discriminant
17325 if Ekind
(New_C
) = E_Discriminant
17326 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
17328 Set_Anonymous_Type
(New_C
);
17331 -- If we have inherited a component then see if its Etype contains
17332 -- references to Parent_Base discriminants. In this case, replace
17333 -- these references with the constraints given in Discs. We do not
17334 -- do this for the partial view of private types because this is
17335 -- not needed (only the components of the full view will be used
17336 -- for code generation) and cause problem. We also avoid this
17337 -- transformation in some error situations.
17339 if Ekind
(New_C
) = E_Component
then
17341 -- Set the proper type of an anonymous access component
17343 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
17344 Set_Anonymous_Type
(New_C
);
17346 elsif (Is_Private_Type
(Derived_Base
)
17347 and then not Is_Generic_Type
(Derived_Base
))
17348 or else (Is_Empty_Elmt_List
(Discs
)
17349 and then not Expander_Active
)
17351 Set_Etype
(New_C
, Etype
(Old_C
));
17354 -- The current component introduces a circularity of the
17357 -- limited with Pack_2;
17358 -- package Pack_1 is
17359 -- type T_1 is tagged record
17360 -- Comp : access Pack_2.T_2;
17366 -- package Pack_2 is
17367 -- type T_2 is new Pack_1.T_1 with ...;
17372 Constrain_Component_Type
17373 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
17377 -- In derived tagged types it is illegal to reference a non
17378 -- discriminant component in the parent type. To catch this, mark
17379 -- these components with an Ekind of E_Void. This will be reset in
17380 -- Record_Type_Definition after processing the record extension of
17381 -- the derived type.
17383 -- If the declaration is a private extension, there is no further
17384 -- record extension to process, and the components retain their
17385 -- current kind, because they are visible at this point.
17387 if Is_Tagged
and then Ekind
(New_C
) = E_Component
17388 and then Nkind
(N
) /= N_Private_Extension_Declaration
17390 Set_Ekind
(New_C
, E_Void
);
17393 if Plain_Discrim
then
17394 Set_Corresponding_Discriminant
(New_C
, Old_C
);
17395 Build_Discriminal
(New_C
);
17397 -- If we are explicitly inheriting a stored discriminant it will be
17398 -- completely hidden.
17400 elsif Stored_Discrim
then
17401 Set_Corresponding_Discriminant
(New_C
, Empty
);
17402 Set_Discriminal
(New_C
, Empty
);
17403 Set_Is_Completely_Hidden
(New_C
);
17405 -- Set the Original_Record_Component of each discriminant in the
17406 -- derived base to point to the corresponding stored that we just
17409 Discrim
:= First_Discriminant
(Derived_Base
);
17410 while Present
(Discrim
) loop
17411 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
17413 -- Corr_Discrim could be missing in an error situation
17415 if Present
(Corr_Discrim
)
17416 and then Original_Record_Component
(Corr_Discrim
) = Old_C
17418 Set_Original_Record_Component
(Discrim
, New_C
);
17421 Next_Discriminant
(Discrim
);
17424 Append_Entity
(New_C
, Derived_Base
);
17427 if not Is_Tagged
then
17428 Append_Elmt
(Old_C
, Assoc_List
);
17429 Append_Elmt
(New_C
, Assoc_List
);
17431 end Inherit_Component
;
17433 -- Variables local to Inherit_Component
17435 Loc
: constant Source_Ptr
:= Sloc
(N
);
17437 Parent_Discrim
: Entity_Id
;
17438 Stored_Discrim
: Entity_Id
;
17440 Component
: Entity_Id
;
17442 -- Start of processing for Inherit_Components
17445 if not Is_Tagged
then
17446 Append_Elmt
(Parent_Base
, Assoc_List
);
17447 Append_Elmt
(Derived_Base
, Assoc_List
);
17450 -- Inherit parent discriminants if needed
17452 if Inherit_Discr
then
17453 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
17454 while Present
(Parent_Discrim
) loop
17455 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
17456 Next_Discriminant
(Parent_Discrim
);
17460 -- Create explicit stored discrims for untagged types when necessary
17462 if not Has_Unknown_Discriminants
(Derived_Base
)
17463 and then Has_Discriminants
(Parent_Base
)
17464 and then not Is_Tagged
17467 or else First_Discriminant
(Parent_Base
) /=
17468 First_Stored_Discriminant
(Parent_Base
))
17470 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
17471 while Present
(Stored_Discrim
) loop
17472 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
17473 Next_Stored_Discriminant
(Stored_Discrim
);
17477 -- See if we can apply the second transformation for derived types, as
17478 -- explained in point 6. in the comments above Build_Derived_Record_Type
17479 -- This is achieved by appending Derived_Base discriminants into Discs,
17480 -- which has the side effect of returning a non empty Discs list to the
17481 -- caller of Inherit_Components, which is what we want. This must be
17482 -- done for private derived types if there are explicit stored
17483 -- discriminants, to ensure that we can retrieve the values of the
17484 -- constraints provided in the ancestors.
17487 and then Is_Empty_Elmt_List
(Discs
)
17488 and then Present
(First_Discriminant
(Derived_Base
))
17490 (not Is_Private_Type
(Derived_Base
)
17491 or else Is_Completely_Hidden
17492 (First_Stored_Discriminant
(Derived_Base
))
17493 or else Is_Generic_Type
(Derived_Base
))
17495 D
:= First_Discriminant
(Derived_Base
);
17496 while Present
(D
) loop
17497 Append_Elmt
(New_Occurrence_Of
(D
, Loc
), Discs
);
17498 Next_Discriminant
(D
);
17502 -- Finally, inherit non-discriminant components unless they are not
17503 -- visible because defined or inherited from the full view of the
17504 -- parent. Don't inherit the _parent field of the parent type.
17506 Component
:= First_Entity
(Parent_Base
);
17507 while Present
(Component
) loop
17509 -- Ada 2005 (AI-251): Do not inherit components associated with
17510 -- secondary tags of the parent.
17512 if Ekind
(Component
) = E_Component
17513 and then Present
(Related_Type
(Component
))
17517 elsif Ekind
(Component
) /= E_Component
17518 or else Chars
(Component
) = Name_uParent
17522 -- If the derived type is within the parent type's declarative
17523 -- region, then the components can still be inherited even though
17524 -- they aren't visible at this point. This can occur for cases
17525 -- such as within public child units where the components must
17526 -- become visible upon entering the child unit's private part.
17528 elsif not Is_Visible_Component
(Component
)
17529 and then not In_Open_Scopes
(Scope
(Parent_Base
))
17533 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
17534 E_Limited_Private_Type
)
17539 Inherit_Component
(Component
);
17542 Next_Entity
(Component
);
17545 -- For tagged derived types, inherited discriminants cannot be used in
17546 -- component declarations of the record extension part. To achieve this
17547 -- we mark the inherited discriminants as not visible.
17549 if Is_Tagged
and then Inherit_Discr
then
17550 D
:= First_Discriminant
(Derived_Base
);
17551 while Present
(D
) loop
17552 Set_Is_Immediately_Visible
(D
, False);
17553 Next_Discriminant
(D
);
17558 end Inherit_Components
;
17560 -----------------------------
17561 -- Inherit_Predicate_Flags --
17562 -----------------------------
17564 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
) is
17566 Set_Has_Predicates
(Subt
, Has_Predicates
(Par
));
17567 Set_Has_Static_Predicate_Aspect
17568 (Subt
, Has_Static_Predicate_Aspect
(Par
));
17569 Set_Has_Dynamic_Predicate_Aspect
17570 (Subt
, Has_Dynamic_Predicate_Aspect
(Par
));
17571 end Inherit_Predicate_Flags
;
17573 ----------------------
17574 -- Is_EVF_Procedure --
17575 ----------------------
17577 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean is
17578 Formal
: Entity_Id
;
17581 -- Examine the formals of an Extensions_Visible False procedure looking
17582 -- for a controlling OUT parameter.
17584 if Ekind
(Subp
) = E_Procedure
17585 and then Extensions_Visible_Status
(Subp
) = Extensions_Visible_False
17587 Formal
:= First_Formal
(Subp
);
17588 while Present
(Formal
) loop
17589 if Ekind
(Formal
) = E_Out_Parameter
17590 and then Is_Controlling_Formal
(Formal
)
17595 Next_Formal
(Formal
);
17600 end Is_EVF_Procedure
;
17602 -----------------------
17603 -- Is_Null_Extension --
17604 -----------------------
17606 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
17607 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
17608 Comp_List
: Node_Id
;
17612 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
17613 or else not Is_Tagged_Type
(T
)
17614 or else Nkind
(Type_Definition
(Type_Decl
)) /=
17615 N_Derived_Type_Definition
17616 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
17622 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
17624 if Present
(Discriminant_Specifications
(Type_Decl
)) then
17627 elsif Present
(Comp_List
)
17628 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
17630 Comp
:= First
(Component_Items
(Comp_List
));
17632 -- Only user-defined components are relevant. The component list
17633 -- may also contain a parent component and internal components
17634 -- corresponding to secondary tags, but these do not determine
17635 -- whether this is a null extension.
17637 while Present
(Comp
) loop
17638 if Comes_From_Source
(Comp
) then
17650 end Is_Null_Extension
;
17652 ------------------------------
17653 -- Is_Valid_Constraint_Kind --
17654 ------------------------------
17656 function Is_Valid_Constraint_Kind
17657 (T_Kind
: Type_Kind
;
17658 Constraint_Kind
: Node_Kind
) return Boolean
17662 when Enumeration_Kind |
17664 return Constraint_Kind
= N_Range_Constraint
;
17666 when Decimal_Fixed_Point_Kind
=>
17667 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17668 N_Range_Constraint
);
17670 when Ordinary_Fixed_Point_Kind
=>
17671 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
17672 N_Range_Constraint
);
17675 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17676 N_Range_Constraint
);
17683 E_Incomplete_Type |
17686 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
17689 return True; -- Error will be detected later
17691 end Is_Valid_Constraint_Kind
;
17693 --------------------------
17694 -- Is_Visible_Component --
17695 --------------------------
17697 function Is_Visible_Component
17699 N
: Node_Id
:= Empty
) return Boolean
17701 Original_Comp
: Entity_Id
:= Empty
;
17702 Original_Scope
: Entity_Id
;
17703 Type_Scope
: Entity_Id
;
17705 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
17706 -- Check whether parent type of inherited component is declared locally,
17707 -- possibly within a nested package or instance. The current scope is
17708 -- the derived record itself.
17710 -------------------
17711 -- Is_Local_Type --
17712 -------------------
17714 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
17718 Scop
:= Scope
(Typ
);
17719 while Present
(Scop
)
17720 and then Scop
/= Standard_Standard
17722 if Scop
= Scope
(Current_Scope
) then
17726 Scop
:= Scope
(Scop
);
17732 -- Start of processing for Is_Visible_Component
17735 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
17736 Original_Comp
:= Original_Record_Component
(C
);
17739 if No
(Original_Comp
) then
17741 -- Premature usage, or previous error
17746 Original_Scope
:= Scope
(Original_Comp
);
17747 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
17750 -- This test only concerns tagged types
17752 if not Is_Tagged_Type
(Original_Scope
) then
17755 -- If it is _Parent or _Tag, there is no visibility issue
17757 elsif not Comes_From_Source
(Original_Comp
) then
17760 -- Discriminants are visible unless the (private) type has unknown
17761 -- discriminants. If the discriminant reference is inserted for a
17762 -- discriminant check on a full view it is also visible.
17764 elsif Ekind
(Original_Comp
) = E_Discriminant
17766 (not Has_Unknown_Discriminants
(Original_Scope
)
17767 or else (Present
(N
)
17768 and then Nkind
(N
) = N_Selected_Component
17769 and then Nkind
(Prefix
(N
)) = N_Type_Conversion
17770 and then not Comes_From_Source
(Prefix
(N
))))
17774 -- In the body of an instantiation, no need to check for the visibility
17777 elsif In_Instance_Body
then
17780 -- If the component has been declared in an ancestor which is currently
17781 -- a private type, then it is not visible. The same applies if the
17782 -- component's containing type is not in an open scope and the original
17783 -- component's enclosing type is a visible full view of a private type
17784 -- (which can occur in cases where an attempt is being made to reference
17785 -- a component in a sibling package that is inherited from a visible
17786 -- component of a type in an ancestor package; the component in the
17787 -- sibling package should not be visible even though the component it
17788 -- inherited from is visible). This does not apply however in the case
17789 -- where the scope of the type is a private child unit, or when the
17790 -- parent comes from a local package in which the ancestor is currently
17791 -- visible. The latter suppression of visibility is needed for cases
17792 -- that are tested in B730006.
17794 elsif Is_Private_Type
(Original_Scope
)
17796 (not Is_Private_Descendant
(Type_Scope
)
17797 and then not In_Open_Scopes
(Type_Scope
)
17798 and then Has_Private_Declaration
(Original_Scope
))
17800 -- If the type derives from an entity in a formal package, there
17801 -- are no additional visible components.
17803 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
17804 N_Formal_Package_Declaration
17808 -- if we are not in the private part of the current package, there
17809 -- are no additional visible components.
17811 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
17812 and then not In_Private_Part
(Scope
(Current_Scope
))
17817 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
17818 and then In_Open_Scopes
(Scope
(Original_Scope
))
17819 and then Is_Local_Type
(Type_Scope
);
17822 -- There is another weird way in which a component may be invisible when
17823 -- the private and the full view are not derived from the same ancestor.
17824 -- Here is an example :
17826 -- type A1 is tagged record F1 : integer; end record;
17827 -- type A2 is new A1 with record F2 : integer; end record;
17828 -- type T is new A1 with private;
17830 -- type T is new A2 with null record;
17832 -- In this case, the full view of T inherits F1 and F2 but the private
17833 -- view inherits only F1
17837 Ancestor
: Entity_Id
:= Scope
(C
);
17841 if Ancestor
= Original_Scope
then
17843 elsif Ancestor
= Etype
(Ancestor
) then
17847 Ancestor
:= Etype
(Ancestor
);
17851 end Is_Visible_Component
;
17853 --------------------------
17854 -- Make_Class_Wide_Type --
17855 --------------------------
17857 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
17858 CW_Type
: Entity_Id
;
17860 Next_E
: Entity_Id
;
17863 if Present
(Class_Wide_Type
(T
)) then
17865 -- The class-wide type is a partially decorated entity created for a
17866 -- unanalyzed tagged type referenced through a limited with clause.
17867 -- When the tagged type is analyzed, its class-wide type needs to be
17868 -- redecorated. Note that we reuse the entity created by Decorate_
17869 -- Tagged_Type in order to preserve all links.
17871 if Materialize_Entity
(Class_Wide_Type
(T
)) then
17872 CW_Type
:= Class_Wide_Type
(T
);
17873 Set_Materialize_Entity
(CW_Type
, False);
17875 -- The class wide type can have been defined by the partial view, in
17876 -- which case everything is already done.
17882 -- Default case, we need to create a new class-wide type
17886 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
17889 -- Inherit root type characteristics
17891 CW_Name
:= Chars
(CW_Type
);
17892 Next_E
:= Next_Entity
(CW_Type
);
17893 Copy_Node
(T
, CW_Type
);
17894 Set_Comes_From_Source
(CW_Type
, False);
17895 Set_Chars
(CW_Type
, CW_Name
);
17896 Set_Parent
(CW_Type
, Parent
(T
));
17897 Set_Next_Entity
(CW_Type
, Next_E
);
17899 -- Ensure we have a new freeze node for the class-wide type. The partial
17900 -- view may have freeze action of its own, requiring a proper freeze
17901 -- node, and the same freeze node cannot be shared between the two
17904 Set_Has_Delayed_Freeze
(CW_Type
);
17905 Set_Freeze_Node
(CW_Type
, Empty
);
17907 -- Customize the class-wide type: It has no prim. op., it cannot be
17908 -- abstract and its Etype points back to the specific root type.
17910 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
17911 Set_Is_Tagged_Type
(CW_Type
, True);
17912 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
17913 Set_Is_Abstract_Type
(CW_Type
, False);
17914 Set_Is_Constrained
(CW_Type
, False);
17915 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
17916 Set_Default_SSO
(CW_Type
);
17918 if Ekind
(T
) = E_Class_Wide_Subtype
then
17919 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
17921 Set_Etype
(CW_Type
, T
);
17924 Set_No_Tagged_Streams_Pragma
(CW_Type
, No_Tagged_Streams
);
17926 -- If this is the class_wide type of a constrained subtype, it does
17927 -- not have discriminants.
17929 Set_Has_Discriminants
(CW_Type
,
17930 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
17932 Set_Has_Unknown_Discriminants
(CW_Type
, True);
17933 Set_Class_Wide_Type
(T
, CW_Type
);
17934 Set_Equivalent_Type
(CW_Type
, Empty
);
17936 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17938 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
17939 end Make_Class_Wide_Type
;
17945 procedure Make_Index
17947 Related_Nod
: Node_Id
;
17948 Related_Id
: Entity_Id
:= Empty
;
17949 Suffix_Index
: Nat
:= 1;
17950 In_Iter_Schm
: Boolean := False)
17954 Def_Id
: Entity_Id
:= Empty
;
17955 Found
: Boolean := False;
17958 -- For a discrete range used in a constrained array definition and
17959 -- defined by a range, an implicit conversion to the predefined type
17960 -- INTEGER is assumed if each bound is either a numeric literal, a named
17961 -- number, or an attribute, and the type of both bounds (prior to the
17962 -- implicit conversion) is the type universal_integer. Otherwise, both
17963 -- bounds must be of the same discrete type, other than universal
17964 -- integer; this type must be determinable independently of the
17965 -- context, but using the fact that the type must be discrete and that
17966 -- both bounds must have the same type.
17968 -- Character literals also have a universal type in the absence of
17969 -- of additional context, and are resolved to Standard_Character.
17971 if Nkind
(N
) = N_Range
then
17973 -- The index is given by a range constraint. The bounds are known
17974 -- to be of a consistent type.
17976 if not Is_Overloaded
(N
) then
17979 -- For universal bounds, choose the specific predefined type
17981 if T
= Universal_Integer
then
17982 T
:= Standard_Integer
;
17984 elsif T
= Any_Character
then
17985 Ambiguous_Character
(Low_Bound
(N
));
17987 T
:= Standard_Character
;
17990 -- The node may be overloaded because some user-defined operators
17991 -- are available, but if a universal interpretation exists it is
17992 -- also the selected one.
17994 elsif Universal_Interpretation
(N
) = Universal_Integer
then
17995 T
:= Standard_Integer
;
18001 Ind
: Interp_Index
;
18005 Get_First_Interp
(N
, Ind
, It
);
18006 while Present
(It
.Typ
) loop
18007 if Is_Discrete_Type
(It
.Typ
) then
18010 and then not Covers
(It
.Typ
, T
)
18011 and then not Covers
(T
, It
.Typ
)
18013 Error_Msg_N
("ambiguous bounds in discrete range", N
);
18021 Get_Next_Interp
(Ind
, It
);
18024 if T
= Any_Type
then
18025 Error_Msg_N
("discrete type required for range", N
);
18026 Set_Etype
(N
, Any_Type
);
18029 elsif T
= Universal_Integer
then
18030 T
:= Standard_Integer
;
18035 if not Is_Discrete_Type
(T
) then
18036 Error_Msg_N
("discrete type required for range", N
);
18037 Set_Etype
(N
, Any_Type
);
18041 if Nkind
(Low_Bound
(N
)) = N_Attribute_Reference
18042 and then Attribute_Name
(Low_Bound
(N
)) = Name_First
18043 and then Is_Entity_Name
(Prefix
(Low_Bound
(N
)))
18044 and then Is_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18045 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18047 -- The type of the index will be the type of the prefix, as long
18048 -- as the upper bound is 'Last of the same type.
18050 Def_Id
:= Entity
(Prefix
(Low_Bound
(N
)));
18052 if Nkind
(High_Bound
(N
)) /= N_Attribute_Reference
18053 or else Attribute_Name
(High_Bound
(N
)) /= Name_Last
18054 or else not Is_Entity_Name
(Prefix
(High_Bound
(N
)))
18055 or else Entity
(Prefix
(High_Bound
(N
))) /= Def_Id
18062 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
18064 elsif Nkind
(N
) = N_Subtype_Indication
then
18066 -- The index is given by a subtype with a range constraint
18068 T
:= Base_Type
(Entity
(Subtype_Mark
(N
)));
18070 if not Is_Discrete_Type
(T
) then
18071 Error_Msg_N
("discrete type required for range", N
);
18072 Set_Etype
(N
, Any_Type
);
18076 R
:= Range_Expression
(Constraint
(N
));
18079 Process_Range_Expr_In_Decl
18080 (R
, Entity
(Subtype_Mark
(N
)), In_Iter_Schm
=> In_Iter_Schm
);
18082 elsif Nkind
(N
) = N_Attribute_Reference
then
18084 -- Catch beginner's error (use of attribute other than 'Range)
18086 if Attribute_Name
(N
) /= Name_Range
then
18087 Error_Msg_N
("expect attribute ''Range", N
);
18088 Set_Etype
(N
, Any_Type
);
18092 -- If the node denotes the range of a type mark, that is also the
18093 -- resulting type, and we do not need to create an Itype for it.
18095 if Is_Entity_Name
(Prefix
(N
))
18096 and then Comes_From_Source
(N
)
18097 and then Is_Type
(Entity
(Prefix
(N
)))
18098 and then Is_Discrete_Type
(Entity
(Prefix
(N
)))
18100 Def_Id
:= Entity
(Prefix
(N
));
18103 Analyze_And_Resolve
(N
);
18107 -- If none of the above, must be a subtype. We convert this to a
18108 -- range attribute reference because in the case of declared first
18109 -- named subtypes, the types in the range reference can be different
18110 -- from the type of the entity. A range attribute normalizes the
18111 -- reference and obtains the correct types for the bounds.
18113 -- This transformation is in the nature of an expansion, is only
18114 -- done if expansion is active. In particular, it is not done on
18115 -- formal generic types, because we need to retain the name of the
18116 -- original index for instantiation purposes.
18119 if not Is_Entity_Name
(N
) or else not Is_Type
(Entity
(N
)) then
18120 Error_Msg_N
("invalid subtype mark in discrete range ", N
);
18121 Set_Etype
(N
, Any_Integer
);
18125 -- The type mark may be that of an incomplete type. It is only
18126 -- now that we can get the full view, previous analysis does
18127 -- not look specifically for a type mark.
18129 Set_Entity
(N
, Get_Full_View
(Entity
(N
)));
18130 Set_Etype
(N
, Entity
(N
));
18131 Def_Id
:= Entity
(N
);
18133 if not Is_Discrete_Type
(Def_Id
) then
18134 Error_Msg_N
("discrete type required for index", N
);
18135 Set_Etype
(N
, Any_Type
);
18140 if Expander_Active
then
18142 Make_Attribute_Reference
(Sloc
(N
),
18143 Attribute_Name
=> Name_Range
,
18144 Prefix
=> Relocate_Node
(N
)));
18146 -- The original was a subtype mark that does not freeze. This
18147 -- means that the rewritten version must not freeze either.
18149 Set_Must_Not_Freeze
(N
);
18150 Set_Must_Not_Freeze
(Prefix
(N
));
18151 Analyze_And_Resolve
(N
);
18155 -- If expander is inactive, type is legal, nothing else to construct
18162 if not Is_Discrete_Type
(T
) then
18163 Error_Msg_N
("discrete type required for range", N
);
18164 Set_Etype
(N
, Any_Type
);
18167 elsif T
= Any_Type
then
18168 Set_Etype
(N
, Any_Type
);
18172 -- We will now create the appropriate Itype to describe the range, but
18173 -- first a check. If we originally had a subtype, then we just label
18174 -- the range with this subtype. Not only is there no need to construct
18175 -- a new subtype, but it is wrong to do so for two reasons:
18177 -- 1. A legality concern, if we have a subtype, it must not freeze,
18178 -- and the Itype would cause freezing incorrectly
18180 -- 2. An efficiency concern, if we created an Itype, it would not be
18181 -- recognized as the same type for the purposes of eliminating
18182 -- checks in some circumstances.
18184 -- We signal this case by setting the subtype entity in Def_Id
18186 if No
(Def_Id
) then
18188 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
18189 Set_Etype
(Def_Id
, Base_Type
(T
));
18191 if Is_Signed_Integer_Type
(T
) then
18192 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
18194 elsif Is_Modular_Integer_Type
(T
) then
18195 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
18198 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
18199 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
18200 Set_First_Literal
(Def_Id
, First_Literal
(T
));
18203 Set_Size_Info
(Def_Id
, (T
));
18204 Set_RM_Size
(Def_Id
, RM_Size
(T
));
18205 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
18207 Set_Scalar_Range
(Def_Id
, R
);
18208 Conditional_Delay
(Def_Id
, T
);
18210 if Nkind
(N
) = N_Subtype_Indication
then
18211 Inherit_Predicate_Flags
(Def_Id
, Entity
(Subtype_Mark
(N
)));
18214 -- In the subtype indication case, if the immediate parent of the
18215 -- new subtype is non-static, then the subtype we create is non-
18216 -- static, even if its bounds are static.
18218 if Nkind
(N
) = N_Subtype_Indication
18219 and then not Is_OK_Static_Subtype
(Entity
(Subtype_Mark
(N
)))
18221 Set_Is_Non_Static_Subtype
(Def_Id
);
18225 -- Final step is to label the index with this constructed type
18227 Set_Etype
(N
, Def_Id
);
18230 ------------------------------
18231 -- Modular_Type_Declaration --
18232 ------------------------------
18234 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
18235 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
18238 procedure Set_Modular_Size
(Bits
: Int
);
18239 -- Sets RM_Size to Bits, and Esize to normal word size above this
18241 ----------------------
18242 -- Set_Modular_Size --
18243 ----------------------
18245 procedure Set_Modular_Size
(Bits
: Int
) is
18247 Set_RM_Size
(T
, UI_From_Int
(Bits
));
18252 elsif Bits
<= 16 then
18253 Init_Esize
(T
, 16);
18255 elsif Bits
<= 32 then
18256 Init_Esize
(T
, 32);
18259 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
18262 if not Non_Binary_Modulus
(T
) and then Esize
(T
) = RM_Size
(T
) then
18263 Set_Is_Known_Valid
(T
);
18265 end Set_Modular_Size
;
18267 -- Start of processing for Modular_Type_Declaration
18270 -- If the mod expression is (exactly) 2 * literal, where literal is
18271 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18273 if Warn_On_Suspicious_Modulus_Value
18274 and then Nkind
(Mod_Expr
) = N_Op_Multiply
18275 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
18276 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
18277 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
18278 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
18281 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr
);
18284 -- Proceed with analysis of mod expression
18286 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
18288 Set_Ekind
(T
, E_Modular_Integer_Type
);
18289 Init_Alignment
(T
);
18290 Set_Is_Constrained
(T
);
18292 if not Is_OK_Static_Expression
(Mod_Expr
) then
18293 Flag_Non_Static_Expr
18294 ("non-static expression used for modular type bound!", Mod_Expr
);
18295 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18297 M_Val
:= Expr_Value
(Mod_Expr
);
18301 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
18302 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18305 if M_Val
> 2 ** Standard_Long_Integer_Size
then
18306 Check_Restriction
(No_Long_Long_Integers
, Mod_Expr
);
18309 Set_Modulus
(T
, M_Val
);
18311 -- Create bounds for the modular type based on the modulus given in
18312 -- the type declaration and then analyze and resolve those bounds.
18314 Set_Scalar_Range
(T
,
18315 Make_Range
(Sloc
(Mod_Expr
),
18316 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
18317 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
18319 -- Properly analyze the literals for the range. We do this manually
18320 -- because we can't go calling Resolve, since we are resolving these
18321 -- bounds with the type, and this type is certainly not complete yet.
18323 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
18324 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
18325 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
18326 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
18328 -- Loop through powers of two to find number of bits required
18330 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
18334 if M_Val
= 2 ** Bits
then
18335 Set_Modular_Size
(Bits
);
18340 elsif M_Val
< 2 ** Bits
then
18341 Check_SPARK_05_Restriction
("modulus should be a power of 2", T
);
18342 Set_Non_Binary_Modulus
(T
);
18344 if Bits
> System_Max_Nonbinary_Modulus_Power
then
18345 Error_Msg_Uint_1
:=
18346 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
18348 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
18349 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18353 -- In the non-binary case, set size as per RM 13.3(55)
18355 Set_Modular_Size
(Bits
);
18362 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18363 -- so we just signal an error and set the maximum size.
18365 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
18366 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
18368 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18369 Init_Alignment
(T
);
18371 end Modular_Type_Declaration
;
18373 --------------------------
18374 -- New_Concatenation_Op --
18375 --------------------------
18377 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
18378 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
18381 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
18382 -- Create abbreviated declaration for the formal of a predefined
18383 -- Operator 'Op' of type 'Typ'
18385 --------------------
18386 -- Make_Op_Formal --
18387 --------------------
18389 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
18390 Formal
: Entity_Id
;
18392 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
18393 Set_Etype
(Formal
, Typ
);
18394 Set_Mechanism
(Formal
, Default_Mechanism
);
18396 end Make_Op_Formal
;
18398 -- Start of processing for New_Concatenation_Op
18401 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
18403 Set_Ekind
(Op
, E_Operator
);
18404 Set_Scope
(Op
, Current_Scope
);
18405 Set_Etype
(Op
, Typ
);
18406 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
18407 Set_Is_Immediately_Visible
(Op
);
18408 Set_Is_Intrinsic_Subprogram
(Op
);
18409 Set_Has_Completion
(Op
);
18410 Append_Entity
(Op
, Current_Scope
);
18412 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
18414 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18415 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18416 end New_Concatenation_Op
;
18418 -------------------------
18419 -- OK_For_Limited_Init --
18420 -------------------------
18422 -- ???Check all calls of this, and compare the conditions under which it's
18425 function OK_For_Limited_Init
18427 Exp
: Node_Id
) return Boolean
18430 return Is_CPP_Constructor_Call
(Exp
)
18431 or else (Ada_Version
>= Ada_2005
18432 and then not Debug_Flag_Dot_L
18433 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
18434 end OK_For_Limited_Init
;
18436 -------------------------------
18437 -- OK_For_Limited_Init_In_05 --
18438 -------------------------------
18440 function OK_For_Limited_Init_In_05
18442 Exp
: Node_Id
) return Boolean
18445 -- An object of a limited interface type can be initialized with any
18446 -- expression of a nonlimited descendant type.
18448 if Is_Class_Wide_Type
(Typ
)
18449 and then Is_Limited_Interface
(Typ
)
18450 and then not Is_Limited_Type
(Etype
(Exp
))
18455 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18456 -- case of limited aggregates (including extension aggregates), and
18457 -- function calls. The function call may have been given in prefixed
18458 -- notation, in which case the original node is an indexed component.
18459 -- If the function is parameterless, the original node was an explicit
18460 -- dereference. The function may also be parameterless, in which case
18461 -- the source node is just an identifier.
18463 case Nkind
(Original_Node
(Exp
)) is
18464 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
18467 when N_Identifier
=>
18468 return Present
(Entity
(Original_Node
(Exp
)))
18469 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
18471 when N_Qualified_Expression
=>
18473 OK_For_Limited_Init_In_05
18474 (Typ
, Expression
(Original_Node
(Exp
)));
18476 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18477 -- with a function call, the expander has rewritten the call into an
18478 -- N_Type_Conversion node to force displacement of the pointer to
18479 -- reference the component containing the secondary dispatch table.
18480 -- Otherwise a type conversion is not a legal context.
18481 -- A return statement for a build-in-place function returning a
18482 -- synchronized type also introduces an unchecked conversion.
18484 when N_Type_Conversion |
18485 N_Unchecked_Type_Conversion
=>
18486 return not Comes_From_Source
(Exp
)
18488 OK_For_Limited_Init_In_05
18489 (Typ
, Expression
(Original_Node
(Exp
)));
18491 when N_Indexed_Component |
18492 N_Selected_Component |
18493 N_Explicit_Dereference
=>
18494 return Nkind
(Exp
) = N_Function_Call
;
18496 -- A use of 'Input is a function call, hence allowed. Normally the
18497 -- attribute will be changed to a call, but the attribute by itself
18498 -- can occur with -gnatc.
18500 when N_Attribute_Reference
=>
18501 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
18503 -- For a case expression, all dependent expressions must be legal
18505 when N_Case_Expression
=>
18510 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
18511 while Present
(Alt
) loop
18512 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
18522 -- For an if expression, all dependent expressions must be legal
18524 when N_If_Expression
=>
18526 Then_Expr
: constant Node_Id
:=
18527 Next
(First
(Expressions
(Original_Node
(Exp
))));
18528 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
18530 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
18532 OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
18538 end OK_For_Limited_Init_In_05
;
18540 -------------------------------------------
18541 -- Ordinary_Fixed_Point_Type_Declaration --
18542 -------------------------------------------
18544 procedure Ordinary_Fixed_Point_Type_Declaration
18548 Loc
: constant Source_Ptr
:= Sloc
(Def
);
18549 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
18550 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
18551 Implicit_Base
: Entity_Id
;
18558 Check_Restriction
(No_Fixed_Point
, Def
);
18560 -- Create implicit base type
18563 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
18564 Set_Etype
(Implicit_Base
, Implicit_Base
);
18566 -- Analyze and process delta expression
18568 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
18570 Check_Delta_Expression
(Delta_Expr
);
18571 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
18573 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
18575 -- Compute default small from given delta, which is the largest power
18576 -- of two that does not exceed the given delta value.
18586 if Delta_Val
< Ureal_1
then
18587 while Delta_Val
< Tmp
loop
18588 Tmp
:= Tmp
/ Ureal_2
;
18589 Scale
:= Scale
+ 1;
18594 Tmp
:= Tmp
* Ureal_2
;
18595 exit when Tmp
> Delta_Val
;
18596 Scale
:= Scale
- 1;
18600 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
18603 Set_Small_Value
(Implicit_Base
, Small_Val
);
18605 -- If no range was given, set a dummy range
18607 if RRS
<= Empty_Or_Error
then
18608 Low_Val
:= -Small_Val
;
18609 High_Val
:= Small_Val
;
18611 -- Otherwise analyze and process given range
18615 Low
: constant Node_Id
:= Low_Bound
(RRS
);
18616 High
: constant Node_Id
:= High_Bound
(RRS
);
18619 Analyze_And_Resolve
(Low
, Any_Real
);
18620 Analyze_And_Resolve
(High
, Any_Real
);
18621 Check_Real_Bound
(Low
);
18622 Check_Real_Bound
(High
);
18624 -- Obtain and set the range
18626 Low_Val
:= Expr_Value_R
(Low
);
18627 High_Val
:= Expr_Value_R
(High
);
18629 if Low_Val
> High_Val
then
18630 Error_Msg_NE
("??fixed point type& has null range", Def
, T
);
18635 -- The range for both the implicit base and the declared first subtype
18636 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18637 -- set a temporary range in place. Note that the bounds of the base
18638 -- type will be widened to be symmetrical and to fill the available
18639 -- bits when the type is frozen.
18641 -- We could do this with all discrete types, and probably should, but
18642 -- we absolutely have to do it for fixed-point, since the end-points
18643 -- of the range and the size are determined by the small value, which
18644 -- could be reset before the freeze point.
18646 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
18647 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
18649 -- Complete definition of first subtype. The inheritance of the rep item
18650 -- chain ensures that SPARK-related pragmas are not clobbered when the
18651 -- ordinary fixed point type acts as a full view of a private type.
18653 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
18654 Set_Etype
(T
, Implicit_Base
);
18655 Init_Size_Align
(T
);
18656 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
18657 Set_Small_Value
(T
, Small_Val
);
18658 Set_Delta_Value
(T
, Delta_Val
);
18659 Set_Is_Constrained
(T
);
18660 end Ordinary_Fixed_Point_Type_Declaration
;
18662 ----------------------------------
18663 -- Preanalyze_Assert_Expression --
18664 ----------------------------------
18666 procedure Preanalyze_Assert_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18668 In_Assertion_Expr
:= In_Assertion_Expr
+ 1;
18669 Preanalyze_Spec_Expression
(N
, T
);
18670 In_Assertion_Expr
:= In_Assertion_Expr
- 1;
18671 end Preanalyze_Assert_Expression
;
18673 -----------------------------------
18674 -- Preanalyze_Default_Expression --
18675 -----------------------------------
18677 procedure Preanalyze_Default_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18678 Save_In_Default_Expr
: constant Boolean := In_Default_Expr
;
18680 In_Default_Expr
:= True;
18681 Preanalyze_Spec_Expression
(N
, T
);
18682 In_Default_Expr
:= Save_In_Default_Expr
;
18683 end Preanalyze_Default_Expression
;
18685 --------------------------------
18686 -- Preanalyze_Spec_Expression --
18687 --------------------------------
18689 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18690 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
18692 In_Spec_Expression
:= True;
18693 Preanalyze_And_Resolve
(N
, T
);
18694 In_Spec_Expression
:= Save_In_Spec_Expression
;
18695 end Preanalyze_Spec_Expression
;
18697 ----------------------------------------
18698 -- Prepare_Private_Subtype_Completion --
18699 ----------------------------------------
18701 procedure Prepare_Private_Subtype_Completion
18703 Related_Nod
: Node_Id
)
18705 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
18706 Full_B
: Entity_Id
:= Full_View
(Id_B
);
18710 if Present
(Full_B
) then
18712 -- Get to the underlying full view if necessary
18714 if Is_Private_Type
(Full_B
)
18715 and then Present
(Underlying_Full_View
(Full_B
))
18717 Full_B
:= Underlying_Full_View
(Full_B
);
18720 -- The Base_Type is already completed, we can complete the subtype
18721 -- now. We have to create a new entity with the same name, Thus we
18722 -- can't use Create_Itype.
18724 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
18725 Set_Is_Itype
(Full
);
18726 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
18727 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
18730 -- The parent subtype may be private, but the base might not, in some
18731 -- nested instances. In that case, the subtype does not need to be
18732 -- exchanged. It would still be nice to make private subtypes and their
18733 -- bases consistent at all times ???
18735 if Is_Private_Type
(Id_B
) then
18736 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
18738 end Prepare_Private_Subtype_Completion
;
18740 ---------------------------
18741 -- Process_Discriminants --
18742 ---------------------------
18744 procedure Process_Discriminants
18746 Prev
: Entity_Id
:= Empty
)
18748 Elist
: constant Elist_Id
:= New_Elmt_List
;
18751 Discr_Number
: Uint
;
18752 Discr_Type
: Entity_Id
;
18753 Default_Present
: Boolean := False;
18754 Default_Not_Present
: Boolean := False;
18757 -- A composite type other than an array type can have discriminants.
18758 -- On entry, the current scope is the composite type.
18760 -- The discriminants are initially entered into the scope of the type
18761 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18762 -- use, as explained at the end of this procedure.
18764 Discr
:= First
(Discriminant_Specifications
(N
));
18765 while Present
(Discr
) loop
18766 Enter_Name
(Defining_Identifier
(Discr
));
18768 -- For navigation purposes we add a reference to the discriminant
18769 -- in the entity for the type. If the current declaration is a
18770 -- completion, place references on the partial view. Otherwise the
18771 -- type is the current scope.
18773 if Present
(Prev
) then
18775 -- The references go on the partial view, if present. If the
18776 -- partial view has discriminants, the references have been
18777 -- generated already.
18779 if not Has_Discriminants
(Prev
) then
18780 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
18784 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
18787 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
18788 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
18790 -- Ada 2005 (AI-254)
18792 if Present
(Access_To_Subprogram_Definition
18793 (Discriminant_Type
(Discr
)))
18794 and then Protected_Present
(Access_To_Subprogram_Definition
18795 (Discriminant_Type
(Discr
)))
18798 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
18802 Find_Type
(Discriminant_Type
(Discr
));
18803 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
18805 if Error_Posted
(Discriminant_Type
(Discr
)) then
18806 Discr_Type
:= Any_Type
;
18810 -- Handling of discriminants that are access types
18812 if Is_Access_Type
(Discr_Type
) then
18814 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18815 -- limited record types
18817 if Ada_Version
< Ada_2005
then
18818 Check_Access_Discriminant_Requires_Limited
18819 (Discr
, Discriminant_Type
(Discr
));
18822 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
18824 ("(Ada 83) access discriminant not allowed", Discr
);
18827 -- If not access type, must be a discrete type
18829 elsif not Is_Discrete_Type
(Discr_Type
) then
18831 ("discriminants must have a discrete or access type",
18832 Discriminant_Type
(Discr
));
18835 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
18837 -- If a discriminant specification includes the assignment compound
18838 -- delimiter followed by an expression, the expression is the default
18839 -- expression of the discriminant; the default expression must be of
18840 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18841 -- a default expression, we do the special preanalysis, since this
18842 -- expression does not freeze (see section "Handling of Default and
18843 -- Per-Object Expressions" in spec of package Sem).
18845 if Present
(Expression
(Discr
)) then
18846 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
18850 if Nkind
(N
) = N_Formal_Type_Declaration
then
18852 ("discriminant defaults not allowed for formal type",
18853 Expression
(Discr
));
18855 -- Flag an error for a tagged type with defaulted discriminants,
18856 -- excluding limited tagged types when compiling for Ada 2012
18857 -- (see AI05-0214).
18859 elsif Is_Tagged_Type
(Current_Scope
)
18860 and then (not Is_Limited_Type
(Current_Scope
)
18861 or else Ada_Version
< Ada_2012
)
18862 and then Comes_From_Source
(N
)
18864 -- Note: see similar test in Check_Or_Process_Discriminants, to
18865 -- handle the (illegal) case of the completion of an untagged
18866 -- view with discriminants with defaults by a tagged full view.
18867 -- We skip the check if Discr does not come from source, to
18868 -- account for the case of an untagged derived type providing
18869 -- defaults for a renamed discriminant from a private untagged
18870 -- ancestor with a tagged full view (ACATS B460006).
18872 if Ada_Version
>= Ada_2012
then
18874 ("discriminants of nonlimited tagged type cannot have"
18876 Expression
(Discr
));
18879 ("discriminants of tagged type cannot have defaults",
18880 Expression
(Discr
));
18884 Default_Present
:= True;
18885 Append_Elmt
(Expression
(Discr
), Elist
);
18887 -- Tag the defining identifiers for the discriminants with
18888 -- their corresponding default expressions from the tree.
18890 Set_Discriminant_Default_Value
18891 (Defining_Identifier
(Discr
), Expression
(Discr
));
18894 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18895 -- gets set unless we can be sure that no range check is required.
18897 if (GNATprove_Mode
or not Expander_Active
)
18900 (Expression
(Discr
), Discr_Type
, Assume_Valid
=> True)
18902 Set_Do_Range_Check
(Expression
(Discr
));
18905 -- No default discriminant value given
18908 Default_Not_Present
:= True;
18911 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18912 -- Discr_Type but with the null-exclusion attribute
18914 if Ada_Version
>= Ada_2005
then
18916 -- Ada 2005 (AI-231): Static checks
18918 if Can_Never_Be_Null
(Discr_Type
) then
18919 Null_Exclusion_Static_Checks
(Discr
);
18921 elsif Is_Access_Type
(Discr_Type
)
18922 and then Null_Exclusion_Present
(Discr
)
18924 -- No need to check itypes because in their case this check
18925 -- was done at their point of creation
18927 and then not Is_Itype
(Discr_Type
)
18929 if Can_Never_Be_Null
(Discr_Type
) then
18931 ("`NOT NULL` not allowed (& already excludes null)",
18936 Set_Etype
(Defining_Identifier
(Discr
),
18937 Create_Null_Excluding_Itype
18939 Related_Nod
=> Discr
));
18941 -- Check for improper null exclusion if the type is otherwise
18942 -- legal for a discriminant.
18944 elsif Null_Exclusion_Present
(Discr
)
18945 and then Is_Discrete_Type
(Discr_Type
)
18948 ("null exclusion can only apply to an access type", Discr
);
18951 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18952 -- can't have defaults. Synchronized types, or types that are
18953 -- explicitly limited are fine, but special tests apply to derived
18954 -- types in generics: in a generic body we have to assume the
18955 -- worst, and therefore defaults are not allowed if the parent is
18956 -- a generic formal private type (see ACATS B370001).
18958 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
18959 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
18960 or else Is_Limited_Record
(Current_Scope
)
18961 or else Is_Concurrent_Type
(Current_Scope
)
18962 or else Is_Concurrent_Record_Type
(Current_Scope
)
18963 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
18965 if not Is_Derived_Type
(Current_Scope
)
18966 or else not Is_Generic_Type
(Etype
(Current_Scope
))
18967 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
18968 or else Limited_Present
18969 (Type_Definition
(Parent
(Current_Scope
)))
18975 ("access discriminants of nonlimited types cannot "
18976 & "have defaults", Expression
(Discr
));
18979 elsif Present
(Expression
(Discr
)) then
18981 ("(Ada 2005) access discriminants of nonlimited types "
18982 & "cannot have defaults", Expression
(Discr
));
18987 -- A discriminant cannot be effectively volatile. This check is only
18988 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18989 -- rule (SPARK RM 7.1.3(6)).
18992 and then Is_Effectively_Volatile
(Defining_Identifier
(Discr
))
18994 Error_Msg_N
("discriminant cannot be volatile", Discr
);
19000 -- An element list consisting of the default expressions of the
19001 -- discriminants is constructed in the above loop and used to set
19002 -- the Discriminant_Constraint attribute for the type. If an object
19003 -- is declared of this (record or task) type without any explicit
19004 -- discriminant constraint given, this element list will form the
19005 -- actual parameters for the corresponding initialization procedure
19008 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
19009 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
19011 -- Default expressions must be provided either for all or for none
19012 -- of the discriminants of a discriminant part. (RM 3.7.1)
19014 if Default_Present
and then Default_Not_Present
then
19016 ("incomplete specification of defaults for discriminants", N
);
19019 -- The use of the name of a discriminant is not allowed in default
19020 -- expressions of a discriminant part if the specification of the
19021 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19023 -- To detect this, the discriminant names are entered initially with an
19024 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19025 -- attempt to use a void entity (for example in an expression that is
19026 -- type-checked) produces the error message: premature usage. Now after
19027 -- completing the semantic analysis of the discriminant part, we can set
19028 -- the Ekind of all the discriminants appropriately.
19030 Discr
:= First
(Discriminant_Specifications
(N
));
19031 Discr_Number
:= Uint_1
;
19032 while Present
(Discr
) loop
19033 Id
:= Defining_Identifier
(Discr
);
19034 Set_Ekind
(Id
, E_Discriminant
);
19035 Init_Component_Location
(Id
);
19037 Set_Discriminant_Number
(Id
, Discr_Number
);
19039 -- Make sure this is always set, even in illegal programs
19041 Set_Corresponding_Discriminant
(Id
, Empty
);
19043 -- Initialize the Original_Record_Component to the entity itself.
19044 -- Inherit_Components will propagate the right value to
19045 -- discriminants in derived record types.
19047 Set_Original_Record_Component
(Id
, Id
);
19049 -- Create the discriminal for the discriminant
19051 Build_Discriminal
(Id
);
19054 Discr_Number
:= Discr_Number
+ 1;
19057 Set_Has_Discriminants
(Current_Scope
);
19058 end Process_Discriminants
;
19060 -----------------------
19061 -- Process_Full_View --
19062 -----------------------
19064 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
19065 procedure Collect_Implemented_Interfaces
19067 Ifaces
: Elist_Id
);
19068 -- Ada 2005: Gather all the interfaces that Typ directly or
19069 -- inherently implements. Duplicate entries are not added to
19070 -- the list Ifaces.
19072 ------------------------------------
19073 -- Collect_Implemented_Interfaces --
19074 ------------------------------------
19076 procedure Collect_Implemented_Interfaces
19081 Iface_Elmt
: Elmt_Id
;
19084 -- Abstract interfaces are only associated with tagged record types
19086 if not Is_Tagged_Type
(Typ
) or else not Is_Record_Type
(Typ
) then
19090 -- Recursively climb to the ancestors
19092 if Etype
(Typ
) /= Typ
19094 -- Protect the frontend against wrong cyclic declarations like:
19096 -- type B is new A with private;
19097 -- type C is new A with private;
19099 -- type B is new C with null record;
19100 -- type C is new B with null record;
19102 and then Etype
(Typ
) /= Priv_T
19103 and then Etype
(Typ
) /= Full_T
19105 -- Keep separate the management of private type declarations
19107 if Ekind
(Typ
) = E_Record_Type_With_Private
then
19109 -- Handle the following illegal usage:
19110 -- type Private_Type is tagged private;
19112 -- type Private_Type is new Type_Implementing_Iface;
19114 if Present
(Full_View
(Typ
))
19115 and then Etype
(Typ
) /= Full_View
(Typ
)
19117 if Is_Interface
(Etype
(Typ
)) then
19118 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19121 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19124 -- Non-private types
19127 if Is_Interface
(Etype
(Typ
)) then
19128 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19131 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19135 -- Handle entities in the list of abstract interfaces
19137 if Present
(Interfaces
(Typ
)) then
19138 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
19139 while Present
(Iface_Elmt
) loop
19140 Iface
:= Node
(Iface_Elmt
);
19142 pragma Assert
(Is_Interface
(Iface
));
19144 if not Contain_Interface
(Iface
, Ifaces
) then
19145 Append_Elmt
(Iface
, Ifaces
);
19146 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
19149 Next_Elmt
(Iface_Elmt
);
19152 end Collect_Implemented_Interfaces
;
19156 Full_Indic
: Node_Id
;
19157 Full_Parent
: Entity_Id
;
19158 Priv_Parent
: Entity_Id
;
19160 -- Start of processing for Process_Full_View
19163 -- First some sanity checks that must be done after semantic
19164 -- decoration of the full view and thus cannot be placed with other
19165 -- similar checks in Find_Type_Name
19167 if not Is_Limited_Type
(Priv_T
)
19168 and then (Is_Limited_Type
(Full_T
)
19169 or else Is_Limited_Composite
(Full_T
))
19171 if In_Instance
then
19175 ("completion of nonlimited type cannot be limited", Full_T
);
19176 Explain_Limited_Type
(Full_T
, Full_T
);
19179 elsif Is_Abstract_Type
(Full_T
)
19180 and then not Is_Abstract_Type
(Priv_T
)
19183 ("completion of nonabstract type cannot be abstract", Full_T
);
19185 elsif Is_Tagged_Type
(Priv_T
)
19186 and then Is_Limited_Type
(Priv_T
)
19187 and then not Is_Limited_Type
(Full_T
)
19189 -- If pragma CPP_Class was applied to the private declaration
19190 -- propagate the limitedness to the full-view
19192 if Is_CPP_Class
(Priv_T
) then
19193 Set_Is_Limited_Record
(Full_T
);
19195 -- GNAT allow its own definition of Limited_Controlled to disobey
19196 -- this rule in order in ease the implementation. This test is safe
19197 -- because Root_Controlled is defined in a child of System that
19198 -- normal programs are not supposed to use.
19200 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
19201 Set_Is_Limited_Composite
(Full_T
);
19204 ("completion of limited tagged type must be limited", Full_T
);
19207 elsif Is_Generic_Type
(Priv_T
) then
19208 Error_Msg_N
("generic type cannot have a completion", Full_T
);
19211 -- Check that ancestor interfaces of private and full views are
19212 -- consistent. We omit this check for synchronized types because
19213 -- they are performed on the corresponding record type when frozen.
19215 if Ada_Version
>= Ada_2005
19216 and then Is_Tagged_Type
(Priv_T
)
19217 and then Is_Tagged_Type
(Full_T
)
19218 and then not Is_Concurrent_Type
(Full_T
)
19222 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19223 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19226 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
19227 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
19229 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19230 -- an interface type if and only if the full type is descendant
19231 -- of the interface type (AARM 7.3 (7.3/2)).
19233 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
19235 if Present
(Iface
) then
19237 ("interface in partial view& not implemented by full type "
19238 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19241 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
19243 if Present
(Iface
) then
19245 ("interface & not implemented by partial view "
19246 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19251 if Is_Tagged_Type
(Priv_T
)
19252 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19253 and then Is_Derived_Type
(Full_T
)
19255 Priv_Parent
:= Etype
(Priv_T
);
19257 -- The full view of a private extension may have been transformed
19258 -- into an unconstrained derived type declaration and a subtype
19259 -- declaration (see build_derived_record_type for details).
19261 if Nkind
(N
) = N_Subtype_Declaration
then
19262 Full_Indic
:= Subtype_Indication
(N
);
19263 Full_Parent
:= Etype
(Base_Type
(Full_T
));
19265 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
19266 Full_Parent
:= Etype
(Full_T
);
19269 -- Check that the parent type of the full type is a descendant of
19270 -- the ancestor subtype given in the private extension. If either
19271 -- entity has an Etype equal to Any_Type then we had some previous
19272 -- error situation [7.3(8)].
19274 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
19277 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19278 -- any order. Therefore we don't have to check that its parent must
19279 -- be a descendant of the parent of the private type declaration.
19281 elsif Is_Interface
(Priv_Parent
)
19282 and then Is_Interface
(Full_Parent
)
19286 -- Ada 2005 (AI-251): If the parent of the private type declaration
19287 -- is an interface there is no need to check that it is an ancestor
19288 -- of the associated full type declaration. The required tests for
19289 -- this case are performed by Build_Derived_Record_Type.
19291 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
19292 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
19295 ("parent of full type must descend from parent"
19296 & " of private extension", Full_Indic
);
19298 -- First check a formal restriction, and then proceed with checking
19299 -- Ada rules. Since the formal restriction is not a serious error, we
19300 -- don't prevent further error detection for this check, hence the
19304 -- In formal mode, when completing a private extension the type
19305 -- named in the private part must be exactly the same as that
19306 -- named in the visible part.
19308 if Priv_Parent
/= Full_Parent
then
19309 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
19310 Check_SPARK_05_Restriction
("% expected", Full_Indic
);
19313 -- Check the rules of 7.3(10): if the private extension inherits
19314 -- known discriminants, then the full type must also inherit those
19315 -- discriminants from the same (ancestor) type, and the parent
19316 -- subtype of the full type must be constrained if and only if
19317 -- the ancestor subtype of the private extension is constrained.
19319 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
19320 and then not Has_Unknown_Discriminants
(Priv_T
)
19321 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
19324 Priv_Indic
: constant Node_Id
:=
19325 Subtype_Indication
(Parent
(Priv_T
));
19327 Priv_Constr
: constant Boolean :=
19328 Is_Constrained
(Priv_Parent
)
19330 Nkind
(Priv_Indic
) = N_Subtype_Indication
19332 Is_Constrained
(Entity
(Priv_Indic
));
19334 Full_Constr
: constant Boolean :=
19335 Is_Constrained
(Full_Parent
)
19337 Nkind
(Full_Indic
) = N_Subtype_Indication
19339 Is_Constrained
(Entity
(Full_Indic
));
19341 Priv_Discr
: Entity_Id
;
19342 Full_Discr
: Entity_Id
;
19345 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
19346 Full_Discr
:= First_Discriminant
(Full_Parent
);
19347 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
19348 if Original_Record_Component
(Priv_Discr
) =
19349 Original_Record_Component
(Full_Discr
)
19351 Corresponding_Discriminant
(Priv_Discr
) =
19352 Corresponding_Discriminant
(Full_Discr
)
19359 Next_Discriminant
(Priv_Discr
);
19360 Next_Discriminant
(Full_Discr
);
19363 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
19365 ("full view must inherit discriminants of the parent"
19366 & " type used in the private extension", Full_Indic
);
19368 elsif Priv_Constr
and then not Full_Constr
then
19370 ("parent subtype of full type must be constrained",
19373 elsif Full_Constr
and then not Priv_Constr
then
19375 ("parent subtype of full type must be unconstrained",
19380 -- Check the rules of 7.3(12): if a partial view has neither
19381 -- known or unknown discriminants, then the full type
19382 -- declaration shall define a definite subtype.
19384 elsif not Has_Unknown_Discriminants
(Priv_T
)
19385 and then not Has_Discriminants
(Priv_T
)
19386 and then not Is_Constrained
(Full_T
)
19389 ("full view must define a constrained type if partial view"
19390 & " has no discriminants", Full_T
);
19393 -- ??????? Do we implement the following properly ?????
19394 -- If the ancestor subtype of a private extension has constrained
19395 -- discriminants, then the parent subtype of the full view shall
19396 -- impose a statically matching constraint on those discriminants
19401 -- For untagged types, verify that a type without discriminants is
19402 -- not completed with an unconstrained type. A separate error message
19403 -- is produced if the full type has defaulted discriminants.
19405 if not Is_Indefinite_Subtype
(Priv_T
)
19406 and then Is_Indefinite_Subtype
(Full_T
)
19408 Error_Msg_Sloc
:= Sloc
(Parent
(Priv_T
));
19410 ("full view of& not compatible with declaration#",
19413 if not Is_Tagged_Type
(Full_T
) then
19415 ("\one is constrained, the other unconstrained", Full_T
);
19420 -- AI-419: verify that the use of "limited" is consistent
19423 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
19426 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19427 and then not Limited_Present
(Parent
(Priv_T
))
19428 and then not Synchronized_Present
(Parent
(Priv_T
))
19429 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
19431 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
19432 and then Limited_Present
(Type_Definition
(Orig_Decl
))
19435 ("full view of non-limited extension cannot be limited", N
);
19439 -- Ada 2005 (AI-443): A synchronized private extension must be
19440 -- completed by a task or protected type.
19442 if Ada_Version
>= Ada_2005
19443 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19444 and then Synchronized_Present
(Parent
(Priv_T
))
19445 and then not Is_Concurrent_Type
(Full_T
)
19447 Error_Msg_N
("full view of synchronized extension must " &
19448 "be synchronized type", N
);
19451 -- Ada 2005 AI-363: if the full view has discriminants with
19452 -- defaults, it is illegal to declare constrained access subtypes
19453 -- whose designated type is the current type. This allows objects
19454 -- of the type that are declared in the heap to be unconstrained.
19456 if not Has_Unknown_Discriminants
(Priv_T
)
19457 and then not Has_Discriminants
(Priv_T
)
19458 and then Has_Discriminants
(Full_T
)
19460 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
19462 Set_Has_Constrained_Partial_View
(Full_T
);
19463 Set_Has_Constrained_Partial_View
(Priv_T
);
19466 -- Create a full declaration for all its subtypes recorded in
19467 -- Private_Dependents and swap them similarly to the base type. These
19468 -- are subtypes that have been define before the full declaration of
19469 -- the private type. We also swap the entry in Private_Dependents list
19470 -- so we can properly restore the private view on exit from the scope.
19473 Priv_Elmt
: Elmt_Id
;
19474 Priv_Scop
: Entity_Id
;
19479 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
19480 while Present
(Priv_Elmt
) loop
19481 Priv
:= Node
(Priv_Elmt
);
19482 Priv_Scop
:= Scope
(Priv
);
19484 if Ekind_In
(Priv
, E_Private_Subtype
,
19485 E_Limited_Private_Subtype
,
19486 E_Record_Subtype_With_Private
)
19488 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
19489 Set_Is_Itype
(Full
);
19490 Set_Parent
(Full
, Parent
(Priv
));
19491 Set_Associated_Node_For_Itype
(Full
, N
);
19493 -- Now we need to complete the private subtype, but since the
19494 -- base type has already been swapped, we must also swap the
19495 -- subtypes (and thus, reverse the arguments in the call to
19496 -- Complete_Private_Subtype). Also note that we may need to
19497 -- re-establish the scope of the private subtype.
19499 Copy_And_Swap
(Priv
, Full
);
19501 if not In_Open_Scopes
(Priv_Scop
) then
19502 Push_Scope
(Priv_Scop
);
19505 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19507 Priv_Scop
:= Empty
;
19510 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
19512 if Present
(Priv_Scop
) then
19516 Replace_Elmt
(Priv_Elmt
, Full
);
19519 Next_Elmt
(Priv_Elmt
);
19523 -- If the private view was tagged, copy the new primitive operations
19524 -- from the private view to the full view.
19526 if Is_Tagged_Type
(Full_T
) then
19528 Disp_Typ
: Entity_Id
;
19529 Full_List
: Elist_Id
;
19531 Prim_Elmt
: Elmt_Id
;
19532 Priv_List
: Elist_Id
;
19536 L
: Elist_Id
) return Boolean;
19537 -- Determine whether list L contains element E
19545 L
: Elist_Id
) return Boolean
19547 List_Elmt
: Elmt_Id
;
19550 List_Elmt
:= First_Elmt
(L
);
19551 while Present
(List_Elmt
) loop
19552 if Node
(List_Elmt
) = E
then
19556 Next_Elmt
(List_Elmt
);
19562 -- Start of processing
19565 if Is_Tagged_Type
(Priv_T
) then
19566 Priv_List
:= Primitive_Operations
(Priv_T
);
19567 Prim_Elmt
:= First_Elmt
(Priv_List
);
19569 -- In the case of a concurrent type completing a private tagged
19570 -- type, primitives may have been declared in between the two
19571 -- views. These subprograms need to be wrapped the same way
19572 -- entries and protected procedures are handled because they
19573 -- cannot be directly shared by the two views.
19575 if Is_Concurrent_Type
(Full_T
) then
19577 Conc_Typ
: constant Entity_Id
:=
19578 Corresponding_Record_Type
(Full_T
);
19579 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
19580 Wrap_Spec
: Node_Id
;
19583 while Present
(Prim_Elmt
) loop
19584 Prim
:= Node
(Prim_Elmt
);
19586 if Comes_From_Source
(Prim
)
19587 and then not Is_Abstract_Subprogram
(Prim
)
19590 Make_Subprogram_Declaration
(Sloc
(Prim
),
19594 Obj_Typ
=> Conc_Typ
,
19596 Parameter_Specifications
(
19599 Insert_After
(Curr_Nod
, Wrap_Spec
);
19600 Curr_Nod
:= Wrap_Spec
;
19602 Analyze
(Wrap_Spec
);
19605 Next_Elmt
(Prim_Elmt
);
19611 -- For non-concurrent types, transfer explicit primitives, but
19612 -- omit those inherited from the parent of the private view
19613 -- since they will be re-inherited later on.
19616 Full_List
:= Primitive_Operations
(Full_T
);
19618 while Present
(Prim_Elmt
) loop
19619 Prim
:= Node
(Prim_Elmt
);
19621 if Comes_From_Source
(Prim
)
19622 and then not Contains
(Prim
, Full_List
)
19624 Append_Elmt
(Prim
, Full_List
);
19627 Next_Elmt
(Prim_Elmt
);
19631 -- Untagged private view
19634 Full_List
:= Primitive_Operations
(Full_T
);
19636 -- In this case the partial view is untagged, so here we locate
19637 -- all of the earlier primitives that need to be treated as
19638 -- dispatching (those that appear between the two views). Note
19639 -- that these additional operations must all be new operations
19640 -- (any earlier operations that override inherited operations
19641 -- of the full view will already have been inserted in the
19642 -- primitives list, marked by Check_Operation_From_Private_View
19643 -- as dispatching. Note that implicit "/=" operators are
19644 -- excluded from being added to the primitives list since they
19645 -- shouldn't be treated as dispatching (tagged "/=" is handled
19648 Prim
:= Next_Entity
(Full_T
);
19649 while Present
(Prim
) and then Prim
/= Priv_T
loop
19650 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
19651 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
19653 if Disp_Typ
= Full_T
19654 and then (Chars
(Prim
) /= Name_Op_Ne
19655 or else Comes_From_Source
(Prim
))
19657 Check_Controlling_Formals
(Full_T
, Prim
);
19659 if not Is_Dispatching_Operation
(Prim
) then
19660 Append_Elmt
(Prim
, Full_List
);
19661 Set_Is_Dispatching_Operation
(Prim
, True);
19662 Set_DT_Position
(Prim
, No_Uint
);
19665 elsif Is_Dispatching_Operation
(Prim
)
19666 and then Disp_Typ
/= Full_T
19669 -- Verify that it is not otherwise controlled by a
19670 -- formal or a return value of type T.
19672 Check_Controlling_Formals
(Disp_Typ
, Prim
);
19676 Next_Entity
(Prim
);
19680 -- For the tagged case, the two views can share the same primitive
19681 -- operations list and the same class-wide type. Update attributes
19682 -- of the class-wide type which depend on the full declaration.
19684 if Is_Tagged_Type
(Priv_T
) then
19685 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
19686 Set_Class_Wide_Type
19687 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
19689 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
19691 (Class_Wide_Type
(Priv_T
), Has_Protected
(Full_T
));
19696 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19698 if Known_To_Have_Preelab_Init
(Priv_T
) then
19700 -- Case where there is a pragma Preelaborable_Initialization. We
19701 -- always allow this in predefined units, which is cheating a bit,
19702 -- but it means we don't have to struggle to meet the requirements in
19703 -- the RM for having Preelaborable Initialization. Otherwise we
19704 -- require that the type meets the RM rules. But we can't check that
19705 -- yet, because of the rule about overriding Initialize, so we simply
19706 -- set a flag that will be checked at freeze time.
19708 if not In_Predefined_Unit
(Full_T
) then
19709 Set_Must_Have_Preelab_Init
(Full_T
);
19713 -- If pragma CPP_Class was applied to the private type declaration,
19714 -- propagate it now to the full type declaration.
19716 if Is_CPP_Class
(Priv_T
) then
19717 Set_Is_CPP_Class
(Full_T
);
19718 Set_Convention
(Full_T
, Convention_CPP
);
19720 -- Check that components of imported CPP types do not have default
19723 Check_CPP_Type_Has_No_Defaults
(Full_T
);
19726 -- If the private view has user specified stream attributes, then so has
19729 -- Why the test, how could these flags be already set in Full_T ???
19731 if Has_Specified_Stream_Read
(Priv_T
) then
19732 Set_Has_Specified_Stream_Read
(Full_T
);
19735 if Has_Specified_Stream_Write
(Priv_T
) then
19736 Set_Has_Specified_Stream_Write
(Full_T
);
19739 if Has_Specified_Stream_Input
(Priv_T
) then
19740 Set_Has_Specified_Stream_Input
(Full_T
);
19743 if Has_Specified_Stream_Output
(Priv_T
) then
19744 Set_Has_Specified_Stream_Output
(Full_T
);
19747 -- Propagate the attributes related to pragma Default_Initial_Condition
19748 -- from the private to the full view. Note that both flags are mutually
19751 if Has_Default_Init_Cond
(Priv_T
)
19752 or else Has_Inherited_Default_Init_Cond
(Priv_T
)
19754 Propagate_Default_Init_Cond_Attributes
19755 (From_Typ
=> Priv_T
,
19757 Private_To_Full_View
=> True);
19759 -- In the case where the full view is derived from another private type,
19760 -- the attributes related to pragma Default_Initial_Condition must be
19761 -- propagated from the full to the private view to maintain consistency
19765 -- type Parent_Typ is private
19766 -- with Default_Initial_Condition ...;
19768 -- type Parent_Typ is ...;
19771 -- with Pack; use Pack;
19772 -- package Pack_2 is
19773 -- type Deriv_Typ is private; -- must inherit
19775 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19778 elsif Has_Default_Init_Cond
(Full_T
)
19779 or else Has_Inherited_Default_Init_Cond
(Full_T
)
19781 Propagate_Default_Init_Cond_Attributes
19782 (From_Typ
=> Full_T
,
19784 Private_To_Full_View
=> True);
19787 -- Propagate the attributes related to pragma Ghost from the private to
19790 if Is_Ghost_Entity
(Priv_T
) then
19791 Set_Is_Ghost_Entity
(Full_T
);
19793 -- The Ghost policy in effect at the point of declaration and at the
19794 -- point of completion must match (SPARK RM 6.9(15)).
19796 Check_Ghost_Completion
(Priv_T
, Full_T
);
19798 -- In the case where the private view of a tagged type lacks a parent
19799 -- type and is subject to pragma Ghost, ensure that the parent type
19800 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19802 if Is_Derived_Type
(Full_T
) then
19803 Check_Ghost_Derivation
(Full_T
);
19807 -- Propagate invariants to full type
19809 if Has_Invariants
(Priv_T
) then
19810 Set_Has_Invariants
(Full_T
);
19811 Set_Invariant_Procedure
(Full_T
, Invariant_Procedure
(Priv_T
));
19814 if Has_Inheritable_Invariants
(Priv_T
) then
19815 Set_Has_Inheritable_Invariants
(Full_T
);
19818 -- Propagate predicates to full type, and predicate function if already
19819 -- defined. It is not clear that this can actually happen? the partial
19820 -- view cannot be frozen yet, and the predicate function has not been
19821 -- built. Still it is a cheap check and seems safer to make it.
19823 if Has_Predicates
(Priv_T
) then
19824 if Present
(Predicate_Function
(Priv_T
)) then
19825 Set_Predicate_Function
(Full_T
, Predicate_Function
(Priv_T
));
19828 Set_Has_Predicates
(Full_T
);
19830 end Process_Full_View
;
19832 -----------------------------------
19833 -- Process_Incomplete_Dependents --
19834 -----------------------------------
19836 procedure Process_Incomplete_Dependents
19838 Full_T
: Entity_Id
;
19841 Inc_Elmt
: Elmt_Id
;
19842 Priv_Dep
: Entity_Id
;
19843 New_Subt
: Entity_Id
;
19845 Disc_Constraint
: Elist_Id
;
19848 if No
(Private_Dependents
(Inc_T
)) then
19852 -- Itypes that may be generated by the completion of an incomplete
19853 -- subtype are not used by the back-end and not attached to the tree.
19854 -- They are created only for constraint-checking purposes.
19856 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
19857 while Present
(Inc_Elmt
) loop
19858 Priv_Dep
:= Node
(Inc_Elmt
);
19860 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
19862 -- An Access_To_Subprogram type may have a return type or a
19863 -- parameter type that is incomplete. Replace with the full view.
19865 if Etype
(Priv_Dep
) = Inc_T
then
19866 Set_Etype
(Priv_Dep
, Full_T
);
19870 Formal
: Entity_Id
;
19873 Formal
:= First_Formal
(Priv_Dep
);
19874 while Present
(Formal
) loop
19875 if Etype
(Formal
) = Inc_T
then
19876 Set_Etype
(Formal
, Full_T
);
19879 Next_Formal
(Formal
);
19883 elsif Is_Overloadable
(Priv_Dep
) then
19885 -- If a subprogram in the incomplete dependents list is primitive
19886 -- for a tagged full type then mark it as a dispatching operation,
19887 -- check whether it overrides an inherited subprogram, and check
19888 -- restrictions on its controlling formals. Note that a protected
19889 -- operation is never dispatching: only its wrapper operation
19890 -- (which has convention Ada) is.
19892 if Is_Tagged_Type
(Full_T
)
19893 and then Is_Primitive
(Priv_Dep
)
19894 and then Convention
(Priv_Dep
) /= Convention_Protected
19896 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
19897 Set_Is_Dispatching_Operation
(Priv_Dep
);
19898 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
19901 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
19903 -- Can happen during processing of a body before the completion
19904 -- of a TA type. Ignore, because spec is also on dependent list.
19908 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19909 -- corresponding subtype of the full view.
19911 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
19912 Set_Subtype_Indication
19913 (Parent
(Priv_Dep
), New_Occurrence_Of
(Full_T
, Sloc
(Priv_Dep
)));
19914 Set_Etype
(Priv_Dep
, Full_T
);
19915 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
19916 Set_Analyzed
(Parent
(Priv_Dep
), False);
19918 -- Reanalyze the declaration, suppressing the call to
19919 -- Enter_Name to avoid duplicate names.
19921 Analyze_Subtype_Declaration
19922 (N
=> Parent
(Priv_Dep
),
19925 -- Dependent is a subtype
19928 -- We build a new subtype indication using the full view of the
19929 -- incomplete parent. The discriminant constraints have been
19930 -- elaborated already at the point of the subtype declaration.
19932 New_Subt
:= Create_Itype
(E_Void
, N
);
19934 if Has_Discriminants
(Full_T
) then
19935 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
19937 Disc_Constraint
:= No_Elist
;
19940 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
19941 Set_Full_View
(Priv_Dep
, New_Subt
);
19944 Next_Elmt
(Inc_Elmt
);
19946 end Process_Incomplete_Dependents
;
19948 --------------------------------
19949 -- Process_Range_Expr_In_Decl --
19950 --------------------------------
19952 procedure Process_Range_Expr_In_Decl
19955 Subtyp
: Entity_Id
:= Empty
;
19956 Check_List
: List_Id
:= Empty_List
;
19957 R_Check_Off
: Boolean := False;
19958 In_Iter_Schm
: Boolean := False)
19961 R_Checks
: Check_Result
;
19962 Insert_Node
: Node_Id
;
19963 Def_Id
: Entity_Id
;
19966 Analyze_And_Resolve
(R
, Base_Type
(T
));
19968 if Nkind
(R
) = N_Range
then
19970 -- In SPARK, all ranges should be static, with the exception of the
19971 -- discrete type definition of a loop parameter specification.
19973 if not In_Iter_Schm
19974 and then not Is_OK_Static_Range
(R
)
19976 Check_SPARK_05_Restriction
("range should be static", R
);
19979 Lo
:= Low_Bound
(R
);
19980 Hi
:= High_Bound
(R
);
19982 -- Validity checks on the range of a quantified expression are
19983 -- delayed until the construct is transformed into a loop.
19985 if Nkind
(Parent
(R
)) = N_Loop_Parameter_Specification
19986 and then Nkind
(Parent
(Parent
(R
))) = N_Quantified_Expression
19990 -- We need to ensure validity of the bounds here, because if we
19991 -- go ahead and do the expansion, then the expanded code will get
19992 -- analyzed with range checks suppressed and we miss the check.
19994 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
19995 -- the temporaries generated by routine Remove_Side_Effects by means
19996 -- of validity checks must use the same names. When a range appears
19997 -- in the parent of a generic, the range is processed with checks
19998 -- disabled as part of the generic context and with checks enabled
19999 -- for code generation purposes. This leads to link issues as the
20000 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20001 -- template sees the temporaries generated by Remove_Side_Effects.
20004 Validity_Check_Range
(R
, Subtyp
);
20007 -- If there were errors in the declaration, try and patch up some
20008 -- common mistakes in the bounds. The cases handled are literals
20009 -- which are Integer where the expected type is Real and vice versa.
20010 -- These corrections allow the compilation process to proceed further
20011 -- along since some basic assumptions of the format of the bounds
20014 if Etype
(R
) = Any_Type
then
20015 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20017 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
20019 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20021 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
20023 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20025 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
20027 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20029 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
20036 -- If the bounds of the range have been mistakenly given as string
20037 -- literals (perhaps in place of character literals), then an error
20038 -- has already been reported, but we rewrite the string literal as a
20039 -- bound of the range's type to avoid blowups in later processing
20040 -- that looks at static values.
20042 if Nkind
(Lo
) = N_String_Literal
then
20044 Make_Attribute_Reference
(Sloc
(Lo
),
20045 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Lo
)),
20046 Attribute_Name
=> Name_First
));
20047 Analyze_And_Resolve
(Lo
);
20050 if Nkind
(Hi
) = N_String_Literal
then
20052 Make_Attribute_Reference
(Sloc
(Hi
),
20053 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Hi
)),
20054 Attribute_Name
=> Name_First
));
20055 Analyze_And_Resolve
(Hi
);
20058 -- If bounds aren't scalar at this point then exit, avoiding
20059 -- problems with further processing of the range in this procedure.
20061 if not Is_Scalar_Type
(Etype
(Lo
)) then
20065 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20066 -- then range of the base type. Here we check whether the bounds
20067 -- are in the range of the subtype itself. Note that if the bounds
20068 -- represent the null range the Constraint_Error exception should
20071 -- ??? The following code should be cleaned up as follows
20073 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20074 -- is done in the call to Range_Check (R, T); below
20076 -- 2. The use of R_Check_Off should be investigated and possibly
20077 -- removed, this would clean up things a bit.
20079 if Is_Null_Range
(Lo
, Hi
) then
20083 -- Capture values of bounds and generate temporaries for them
20084 -- if needed, before applying checks, since checks may cause
20085 -- duplication of the expression without forcing evaluation.
20087 -- The forced evaluation removes side effects from expressions,
20088 -- which should occur also in GNATprove mode. Otherwise, we end up
20089 -- with unexpected insertions of actions at places where this is
20090 -- not supposed to occur, e.g. on default parameters of a call.
20092 if Expander_Active
or GNATprove_Mode
then
20094 -- If no subtype name, then just call Force_Evaluation to
20095 -- create declarations as needed to deal with side effects.
20096 -- Also ignore calls from within a record type, where we
20097 -- have possible scoping issues.
20099 if No
(Subtyp
) or else Is_Record_Type
(Current_Scope
) then
20100 Force_Evaluation
(Lo
);
20101 Force_Evaluation
(Hi
);
20103 -- If a subtype is given, then we capture the bounds if they
20104 -- are not known at compile time, using constant identifiers
20105 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
20107 -- Note: we do this transformation even if expansion is not
20108 -- active, and in particular we do it in GNATprove_Mode since
20109 -- the transformation is in general required to ensure that the
20110 -- resulting tree has proper Ada semantics.
20112 -- Historical note: We used to just do Force_Evaluation calls
20113 -- in all cases, but it is better to capture the bounds with
20114 -- proper non-serialized names, since these will be accessed
20115 -- from other units, and hence may be public, and also we can
20116 -- then expand 'First and 'Last references to be references to
20117 -- these special names.
20120 if not Compile_Time_Known_Value
(Lo
)
20122 -- No need to capture bounds if they already are
20123 -- references to constants.
20125 and then not (Is_Entity_Name
(Lo
)
20126 and then Is_Constant_Object
(Entity
(Lo
)))
20129 Loc
: constant Source_Ptr
:= Sloc
(Lo
);
20130 Lov
: constant Entity_Id
:=
20131 Make_Defining_Identifier
(Loc
,
20133 New_External_Name
(Chars
(Subtyp
), "_FIRST"));
20136 Make_Object_Declaration
(Loc
,
20137 Defining_Identifier
=> Lov
,
20138 Object_Definition
=>
20139 New_Occurrence_Of
(Base_Type
(T
), Loc
),
20140 Constant_Present
=> True,
20141 Expression
=> Relocate_Node
(Lo
)));
20142 Rewrite
(Lo
, New_Occurrence_Of
(Lov
, Loc
));
20146 if not Compile_Time_Known_Value
(Hi
)
20147 and then not (Is_Entity_Name
(Hi
)
20148 and then Is_Constant_Object
(Entity
(Hi
)))
20151 Loc
: constant Source_Ptr
:= Sloc
(Hi
);
20152 Hiv
: constant Entity_Id
:=
20153 Make_Defining_Identifier
(Loc
,
20155 New_External_Name
(Chars
(Subtyp
), "_LAST"));
20158 Make_Object_Declaration
(Loc
,
20159 Defining_Identifier
=> Hiv
,
20160 Object_Definition
=>
20161 New_Occurrence_Of
(Base_Type
(T
), Loc
),
20162 Constant_Present
=> True,
20163 Expression
=> Relocate_Node
(Hi
)));
20164 Rewrite
(Hi
, New_Occurrence_Of
(Hiv
, Loc
));
20170 -- We use a flag here instead of suppressing checks on the
20171 -- type because the type we check against isn't necessarily
20172 -- the place where we put the check.
20174 if not R_Check_Off
then
20175 R_Checks
:= Get_Range_Checks
(R
, T
);
20177 -- Look up tree to find an appropriate insertion point. We
20178 -- can't just use insert_actions because later processing
20179 -- depends on the insertion node. Prior to Ada 2012 the
20180 -- insertion point could only be a declaration or a loop, but
20181 -- quantified expressions can appear within any context in an
20182 -- expression, and the insertion point can be any statement,
20183 -- pragma, or declaration.
20185 Insert_Node
:= Parent
(R
);
20186 while Present
(Insert_Node
) loop
20188 Nkind
(Insert_Node
) in N_Declaration
20191 (Insert_Node
, N_Component_Declaration
,
20192 N_Loop_Parameter_Specification
,
20193 N_Function_Specification
,
20194 N_Procedure_Specification
);
20196 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
20197 or else Nkind
(Insert_Node
) in
20198 N_Statement_Other_Than_Procedure_Call
20199 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
20202 Insert_Node
:= Parent
(Insert_Node
);
20205 -- Why would Type_Decl not be present??? Without this test,
20206 -- short regression tests fail.
20208 if Present
(Insert_Node
) then
20210 -- Case of loop statement. Verify that the range is part
20211 -- of the subtype indication of the iteration scheme.
20213 if Nkind
(Insert_Node
) = N_Loop_Statement
then
20218 Indic
:= Parent
(R
);
20219 while Present
(Indic
)
20220 and then Nkind
(Indic
) /= N_Subtype_Indication
20222 Indic
:= Parent
(Indic
);
20225 if Present
(Indic
) then
20226 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
20228 Insert_Range_Checks
20232 Sloc
(Insert_Node
),
20234 Do_Before
=> True);
20238 -- Insertion before a declaration. If the declaration
20239 -- includes discriminants, the list of applicable checks
20240 -- is given by the caller.
20242 elsif Nkind
(Insert_Node
) in N_Declaration
then
20243 Def_Id
:= Defining_Identifier
(Insert_Node
);
20245 if (Ekind
(Def_Id
) = E_Record_Type
20246 and then Depends_On_Discriminant
(R
))
20248 (Ekind
(Def_Id
) = E_Protected_Type
20249 and then Has_Discriminants
(Def_Id
))
20251 Append_Range_Checks
20253 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
20256 Insert_Range_Checks
20258 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
20262 -- Insertion before a statement. Range appears in the
20263 -- context of a quantified expression. Insertion will
20264 -- take place when expression is expanded.
20273 -- Case of other than an explicit N_Range node
20275 -- The forced evaluation removes side effects from expressions, which
20276 -- should occur also in GNATprove mode. Otherwise, we end up with
20277 -- unexpected insertions of actions at places where this is not
20278 -- supposed to occur, e.g. on default parameters of a call.
20280 elsif Expander_Active
or GNATprove_Mode
then
20281 Get_Index_Bounds
(R
, Lo
, Hi
);
20282 Force_Evaluation
(Lo
);
20283 Force_Evaluation
(Hi
);
20285 end Process_Range_Expr_In_Decl
;
20287 --------------------------------------
20288 -- Process_Real_Range_Specification --
20289 --------------------------------------
20291 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
20292 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
20295 Err
: Boolean := False;
20297 procedure Analyze_Bound
(N
: Node_Id
);
20298 -- Analyze and check one bound
20300 -------------------
20301 -- Analyze_Bound --
20302 -------------------
20304 procedure Analyze_Bound
(N
: Node_Id
) is
20306 Analyze_And_Resolve
(N
, Any_Real
);
20308 if not Is_OK_Static_Expression
(N
) then
20309 Flag_Non_Static_Expr
20310 ("bound in real type definition is not static!", N
);
20315 -- Start of processing for Process_Real_Range_Specification
20318 if Present
(Spec
) then
20319 Lo
:= Low_Bound
(Spec
);
20320 Hi
:= High_Bound
(Spec
);
20321 Analyze_Bound
(Lo
);
20322 Analyze_Bound
(Hi
);
20324 -- If error, clear away junk range specification
20327 Set_Real_Range_Specification
(Def
, Empty
);
20330 end Process_Real_Range_Specification
;
20332 ---------------------
20333 -- Process_Subtype --
20334 ---------------------
20336 function Process_Subtype
20338 Related_Nod
: Node_Id
;
20339 Related_Id
: Entity_Id
:= Empty
;
20340 Suffix
: Character := ' ') return Entity_Id
20343 Def_Id
: Entity_Id
;
20344 Error_Node
: Node_Id
;
20345 Full_View_Id
: Entity_Id
;
20346 Subtype_Mark_Id
: Entity_Id
;
20348 May_Have_Null_Exclusion
: Boolean;
20350 procedure Check_Incomplete
(T
: Entity_Id
);
20351 -- Called to verify that an incomplete type is not used prematurely
20353 ----------------------
20354 -- Check_Incomplete --
20355 ----------------------
20357 procedure Check_Incomplete
(T
: Entity_Id
) is
20359 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20361 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
20363 not (Ada_Version
>= Ada_2005
20365 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
20366 or else (Nkind
(Parent
(T
)) = N_Subtype_Indication
20367 and then Nkind
(Parent
(Parent
(T
))) =
20368 N_Subtype_Declaration
)))
20370 Error_Msg_N
("invalid use of type before its full declaration", T
);
20372 end Check_Incomplete
;
20374 -- Start of processing for Process_Subtype
20377 -- Case of no constraints present
20379 if Nkind
(S
) /= N_Subtype_Indication
then
20381 Check_Incomplete
(S
);
20384 -- Ada 2005 (AI-231): Static check
20386 if Ada_Version
>= Ada_2005
20387 and then Present
(P
)
20388 and then Null_Exclusion_Present
(P
)
20389 and then Nkind
(P
) /= N_Access_To_Object_Definition
20390 and then not Is_Access_Type
(Entity
(S
))
20392 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
20395 -- The following is ugly, can't we have a range or even a flag???
20397 May_Have_Null_Exclusion
:=
20398 Nkind_In
(P
, N_Access_Definition
,
20399 N_Access_Function_Definition
,
20400 N_Access_Procedure_Definition
,
20401 N_Access_To_Object_Definition
,
20403 N_Component_Definition
)
20405 Nkind_In
(P
, N_Derived_Type_Definition
,
20406 N_Discriminant_Specification
,
20407 N_Formal_Object_Declaration
,
20408 N_Object_Declaration
,
20409 N_Object_Renaming_Declaration
,
20410 N_Parameter_Specification
,
20411 N_Subtype_Declaration
);
20413 -- Create an Itype that is a duplicate of Entity (S) but with the
20414 -- null-exclusion attribute.
20416 if May_Have_Null_Exclusion
20417 and then Is_Access_Type
(Entity
(S
))
20418 and then Null_Exclusion_Present
(P
)
20420 -- No need to check the case of an access to object definition.
20421 -- It is correct to define double not-null pointers.
20424 -- type Not_Null_Int_Ptr is not null access Integer;
20425 -- type Acc is not null access Not_Null_Int_Ptr;
20427 and then Nkind
(P
) /= N_Access_To_Object_Definition
20429 if Can_Never_Be_Null
(Entity
(S
)) then
20430 case Nkind
(Related_Nod
) is
20431 when N_Full_Type_Declaration
=>
20432 if Nkind
(Type_Definition
(Related_Nod
))
20433 in N_Array_Type_Definition
20437 (Component_Definition
20438 (Type_Definition
(Related_Nod
)));
20441 Subtype_Indication
(Type_Definition
(Related_Nod
));
20444 when N_Subtype_Declaration
=>
20445 Error_Node
:= Subtype_Indication
(Related_Nod
);
20447 when N_Object_Declaration
=>
20448 Error_Node
:= Object_Definition
(Related_Nod
);
20450 when N_Component_Declaration
=>
20452 Subtype_Indication
(Component_Definition
(Related_Nod
));
20454 when N_Allocator
=>
20455 Error_Node
:= Expression
(Related_Nod
);
20458 pragma Assert
(False);
20459 Error_Node
:= Related_Nod
;
20463 ("`NOT NULL` not allowed (& already excludes null)",
20469 Create_Null_Excluding_Itype
20471 Related_Nod
=> P
));
20472 Set_Entity
(S
, Etype
(S
));
20477 -- Case of constraint present, so that we have an N_Subtype_Indication
20478 -- node (this node is created only if constraints are present).
20481 Find_Type
(Subtype_Mark
(S
));
20483 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
20485 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
20486 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
20488 Check_Incomplete
(Subtype_Mark
(S
));
20492 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
20494 -- Explicit subtype declaration case
20496 if Nkind
(P
) = N_Subtype_Declaration
then
20497 Def_Id
:= Defining_Identifier
(P
);
20499 -- Explicit derived type definition case
20501 elsif Nkind
(P
) = N_Derived_Type_Definition
then
20502 Def_Id
:= Defining_Identifier
(Parent
(P
));
20504 -- Implicit case, the Def_Id must be created as an implicit type.
20505 -- The one exception arises in the case of concurrent types, array
20506 -- and access types, where other subsidiary implicit types may be
20507 -- created and must appear before the main implicit type. In these
20508 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20509 -- has not yet been called to create Def_Id.
20512 if Is_Array_Type
(Subtype_Mark_Id
)
20513 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
20514 or else Is_Access_Type
(Subtype_Mark_Id
)
20518 -- For the other cases, we create a new unattached Itype,
20519 -- and set the indication to ensure it gets attached later.
20523 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20527 -- If the kind of constraint is invalid for this kind of type,
20528 -- then give an error, and then pretend no constraint was given.
20530 if not Is_Valid_Constraint_Kind
20531 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
20534 ("incorrect constraint for this kind of type", Constraint
(S
));
20536 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
20538 -- Set Ekind of orphan itype, to prevent cascaded errors
20540 if Present
(Def_Id
) then
20541 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
20544 -- Make recursive call, having got rid of the bogus constraint
20546 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
20549 -- Remaining processing depends on type. Select on Base_Type kind to
20550 -- ensure getting to the concrete type kind in the case of a private
20551 -- subtype (needed when only doing semantic analysis).
20553 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
20554 when Access_Kind
=>
20556 -- If this is a constraint on a class-wide type, discard it.
20557 -- There is currently no way to express a partial discriminant
20558 -- constraint on a type with unknown discriminants. This is
20559 -- a pathology that the ACATS wisely decides not to test.
20561 if Is_Class_Wide_Type
(Designated_Type
(Subtype_Mark_Id
)) then
20562 if Comes_From_Source
(S
) then
20564 ("constraint on class-wide type ignored??",
20568 if Nkind
(P
) = N_Subtype_Declaration
then
20569 Set_Subtype_Indication
(P
,
20570 New_Occurrence_Of
(Subtype_Mark_Id
, Sloc
(S
)));
20573 return Subtype_Mark_Id
;
20576 Constrain_Access
(Def_Id
, S
, Related_Nod
);
20579 and then Is_Itype
(Designated_Type
(Def_Id
))
20580 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
20581 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
20583 Build_Itype_Reference
20584 (Designated_Type
(Def_Id
), Related_Nod
);
20588 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
20590 when Decimal_Fixed_Point_Kind
=>
20591 Constrain_Decimal
(Def_Id
, S
);
20593 when Enumeration_Kind
=>
20594 Constrain_Enumeration
(Def_Id
, S
);
20595 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20597 when Ordinary_Fixed_Point_Kind
=>
20598 Constrain_Ordinary_Fixed
(Def_Id
, S
);
20601 Constrain_Float
(Def_Id
, S
);
20603 when Integer_Kind
=>
20604 Constrain_Integer
(Def_Id
, S
);
20605 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20607 when E_Record_Type |
20610 E_Incomplete_Type
=>
20611 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20613 if Ekind
(Def_Id
) = E_Incomplete_Type
then
20614 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20617 when Private_Kind
=>
20618 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20619 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20621 -- In case of an invalid constraint prevent further processing
20622 -- since the type constructed is missing expected fields.
20624 if Etype
(Def_Id
) = Any_Type
then
20628 -- If the full view is that of a task with discriminants,
20629 -- we must constrain both the concurrent type and its
20630 -- corresponding record type. Otherwise we will just propagate
20631 -- the constraint to the full view, if available.
20633 if Present
(Full_View
(Subtype_Mark_Id
))
20634 and then Has_Discriminants
(Subtype_Mark_Id
)
20635 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
20638 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20640 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
20641 Constrain_Concurrent
(Full_View_Id
, S
,
20642 Related_Nod
, Related_Id
, Suffix
);
20643 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
20644 Set_Full_View
(Def_Id
, Full_View_Id
);
20646 -- Introduce an explicit reference to the private subtype,
20647 -- to prevent scope anomalies in gigi if first use appears
20648 -- in a nested context, e.g. a later function body.
20649 -- Should this be generated in other contexts than a full
20650 -- type declaration?
20652 if Is_Itype
(Def_Id
)
20654 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
20656 Build_Itype_Reference
(Def_Id
, Parent
(P
));
20660 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
20663 when Concurrent_Kind
=>
20664 Constrain_Concurrent
(Def_Id
, S
,
20665 Related_Nod
, Related_Id
, Suffix
);
20668 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
20671 -- Size and Convention are always inherited from the base type
20673 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
20674 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
20678 end Process_Subtype
;
20680 --------------------------------------------
20681 -- Propagate_Default_Init_Cond_Attributes --
20682 --------------------------------------------
20684 procedure Propagate_Default_Init_Cond_Attributes
20685 (From_Typ
: Entity_Id
;
20686 To_Typ
: Entity_Id
;
20687 Parent_To_Derivation
: Boolean := False;
20688 Private_To_Full_View
: Boolean := False)
20690 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
);
20691 -- Remove the default initial procedure (if any) from the rep chain of
20694 ----------------------------------------
20695 -- Remove_Default_Init_Cond_Procedure --
20696 ----------------------------------------
20698 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
) is
20699 Found
: Boolean := False;
20705 Subp
:= Subprograms_For_Type
(Typ
);
20706 while Present
(Subp
) loop
20707 if Is_Default_Init_Cond_Procedure
(Subp
) then
20713 Subp
:= Subprograms_For_Type
(Subp
);
20717 Set_Subprograms_For_Type
(Prev
, Subprograms_For_Type
(Subp
));
20718 Set_Subprograms_For_Type
(Subp
, Empty
);
20720 end Remove_Default_Init_Cond_Procedure
;
20724 Inherit_Procedure
: Boolean := False;
20726 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20729 if Has_Default_Init_Cond
(From_Typ
) then
20731 -- A derived type inherits the attributes from its parent type
20733 if Parent_To_Derivation
then
20734 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20736 -- A full view shares the attributes with its private view
20739 Set_Has_Default_Init_Cond
(To_Typ
);
20742 Inherit_Procedure
:= True;
20744 -- Due to the order of expansion, a derived private type is processed
20745 -- by two routines which both attempt to set the attributes related
20746 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20747 -- Process_Full_View.
20750 -- type Parent_Typ is private
20751 -- with Default_Initial_Condition ...;
20753 -- type Parent_Typ is ...;
20756 -- with Pack; use Pack;
20757 -- package Pack_2 is
20758 -- type Deriv_Typ is private
20759 -- with Default_Initial_Condition ...;
20761 -- type Deriv_Typ is new Parent_Typ;
20764 -- When Build_Derived_Type operates, it sets the attributes on the
20765 -- full view without taking into account that the private view may
20766 -- define its own default initial condition procedure. This becomes
20767 -- apparent in Process_Full_View which must undo some of the work by
20768 -- Build_Derived_Type and propagate the attributes from the private
20769 -- to the full view.
20771 if Private_To_Full_View
then
20772 Set_Has_Inherited_Default_Init_Cond
(To_Typ
, False);
20773 Remove_Default_Init_Cond_Procedure
(To_Typ
);
20776 -- A type must inherit the default initial condition procedure from a
20777 -- parent type when the parent itself is inheriting the procedure or
20778 -- when it is defining one. This circuitry is also used when dealing
20779 -- with the private / full view of a type.
20781 elsif Has_Inherited_Default_Init_Cond
(From_Typ
)
20782 or (Parent_To_Derivation
20783 and Present
(Get_Pragma
20784 (From_Typ
, Pragma_Default_Initial_Condition
)))
20786 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20787 Inherit_Procedure
:= True;
20790 if Inherit_Procedure
20791 and then No
(Default_Init_Cond_Procedure
(To_Typ
))
20793 Set_Default_Init_Cond_Procedure
20794 (To_Typ
, Default_Init_Cond_Procedure
(From_Typ
));
20796 end Propagate_Default_Init_Cond_Attributes
;
20798 -----------------------------
20799 -- Record_Type_Declaration --
20800 -----------------------------
20802 procedure Record_Type_Declaration
20807 Def
: constant Node_Id
:= Type_Definition
(N
);
20808 Is_Tagged
: Boolean;
20809 Tag_Comp
: Entity_Id
;
20812 -- These flags must be initialized before calling Process_Discriminants
20813 -- because this routine makes use of them.
20815 Set_Ekind
(T
, E_Record_Type
);
20817 Init_Size_Align
(T
);
20818 Set_Interfaces
(T
, No_Elist
);
20819 Set_Stored_Constraint
(T
, No_Elist
);
20820 Set_Default_SSO
(T
);
20824 if Ada_Version
< Ada_2005
or else not Interface_Present
(Def
) then
20825 if Limited_Present
(Def
) then
20826 Check_SPARK_05_Restriction
("limited is not allowed", N
);
20829 if Abstract_Present
(Def
) then
20830 Check_SPARK_05_Restriction
("abstract is not allowed", N
);
20833 -- The flag Is_Tagged_Type might have already been set by
20834 -- Find_Type_Name if it detected an error for declaration T. This
20835 -- arises in the case of private tagged types where the full view
20836 -- omits the word tagged.
20839 Tagged_Present
(Def
)
20840 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
20842 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
20845 Set_Is_Tagged_Type
(T
, True);
20846 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
20849 -- Type is abstract if full declaration carries keyword, or if
20850 -- previous partial view did.
20852 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
20853 or else Abstract_Present
(Def
));
20856 Check_SPARK_05_Restriction
("interface is not allowed", N
);
20859 Analyze_Interface_Declaration
(T
, Def
);
20861 if Present
(Discriminant_Specifications
(N
)) then
20863 ("interface types cannot have discriminants",
20864 Defining_Identifier
20865 (First
(Discriminant_Specifications
(N
))));
20869 -- First pass: if there are self-referential access components,
20870 -- create the required anonymous access type declarations, and if
20871 -- need be an incomplete type declaration for T itself.
20873 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
20875 if Ada_Version
>= Ada_2005
20876 and then Present
(Interface_List
(Def
))
20878 Check_Interfaces
(N
, Def
);
20881 Ifaces_List
: Elist_Id
;
20884 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20885 -- already in the parents.
20889 Ifaces_List
=> Ifaces_List
,
20890 Exclude_Parents
=> True);
20892 Set_Interfaces
(T
, Ifaces_List
);
20896 -- Records constitute a scope for the component declarations within.
20897 -- The scope is created prior to the processing of these declarations.
20898 -- Discriminants are processed first, so that they are visible when
20899 -- processing the other components. The Ekind of the record type itself
20900 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20902 -- Enter record scope
20906 -- If an incomplete or private type declaration was already given for
20907 -- the type, then this scope already exists, and the discriminants have
20908 -- been declared within. We must verify that the full declaration
20909 -- matches the incomplete one.
20911 Check_Or_Process_Discriminants
(N
, T
, Prev
);
20913 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
20914 Set_Has_Delayed_Freeze
(T
, True);
20916 -- For tagged types add a manually analyzed component corresponding
20917 -- to the component _tag, the corresponding piece of tree will be
20918 -- expanded as part of the freezing actions if it is not a CPP_Class.
20922 -- Do not add the tag unless we are in expansion mode
20924 if Expander_Active
then
20925 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
20926 Enter_Name
(Tag_Comp
);
20928 Set_Ekind
(Tag_Comp
, E_Component
);
20929 Set_Is_Tag
(Tag_Comp
);
20930 Set_Is_Aliased
(Tag_Comp
);
20931 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
20932 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
20933 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
20934 Init_Component_Location
(Tag_Comp
);
20936 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20937 -- implemented interfaces.
20939 if Has_Interfaces
(T
) then
20940 Add_Interface_Tag_Components
(N
, T
);
20944 Make_Class_Wide_Type
(T
);
20945 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
20948 -- We must suppress range checks when processing record components in
20949 -- the presence of discriminants, since we don't want spurious checks to
20950 -- be generated during their analysis, but Suppress_Range_Checks flags
20951 -- must be reset the after processing the record definition.
20953 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20954 -- couldn't we just use the normal range check suppression method here.
20955 -- That would seem cleaner ???
20957 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
20958 Set_Kill_Range_Checks
(T
, True);
20959 Record_Type_Definition
(Def
, Prev
);
20960 Set_Kill_Range_Checks
(T
, False);
20962 Record_Type_Definition
(Def
, Prev
);
20965 -- Exit from record scope
20969 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20970 -- the implemented interfaces and associate them an aliased entity.
20973 and then not Is_Empty_List
(Interface_List
(Def
))
20975 Derive_Progenitor_Subprograms
(T
, T
);
20978 Check_Function_Writable_Actuals
(N
);
20979 end Record_Type_Declaration
;
20981 ----------------------------
20982 -- Record_Type_Definition --
20983 ----------------------------
20985 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
20986 Component
: Entity_Id
;
20987 Ctrl_Components
: Boolean := False;
20988 Final_Storage_Only
: Boolean;
20992 if Ekind
(Prev_T
) = E_Incomplete_Type
then
20993 T
:= Full_View
(Prev_T
);
20998 -- In SPARK, tagged types and type extensions may only be declared in
20999 -- the specification of library unit packages.
21001 if Present
(Def
) and then Is_Tagged_Type
(T
) then
21007 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
21008 Typ
:= Parent
(Def
);
21011 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
21012 Typ
:= Parent
(Parent
(Def
));
21015 Ctxt
:= Parent
(Typ
);
21017 if Nkind
(Ctxt
) = N_Package_Body
21018 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
21020 Check_SPARK_05_Restriction
21021 ("type should be defined in package specification", Typ
);
21023 elsif Nkind
(Ctxt
) /= N_Package_Specification
21024 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
21026 Check_SPARK_05_Restriction
21027 ("type should be defined in library unit package", Typ
);
21032 Final_Storage_Only
:= not Is_Controlled
(T
);
21034 -- Ada 2005: Check whether an explicit Limited is present in a derived
21035 -- type declaration.
21037 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
21038 and then Limited_Present
(Parent
(Def
))
21040 Set_Is_Limited_Record
(T
);
21043 -- If the component list of a record type is defined by the reserved
21044 -- word null and there is no discriminant part, then the record type has
21045 -- no components and all records of the type are null records (RM 3.7)
21046 -- This procedure is also called to process the extension part of a
21047 -- record extension, in which case the current scope may have inherited
21051 or else No
(Component_List
(Def
))
21052 or else Null_Present
(Component_List
(Def
))
21054 if not Is_Tagged_Type
(T
) then
21055 Check_SPARK_05_Restriction
("untagged record cannot be null", Def
);
21059 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
21061 if Present
(Variant_Part
(Component_List
(Def
))) then
21062 Check_SPARK_05_Restriction
("variant part is not allowed", Def
);
21063 Analyze
(Variant_Part
(Component_List
(Def
)));
21067 -- After completing the semantic analysis of the record definition,
21068 -- record components, both new and inherited, are accessible. Set their
21069 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21070 -- whose Ekind may be void.
21072 Component
:= First_Entity
(Current_Scope
);
21073 while Present
(Component
) loop
21074 if Ekind
(Component
) = E_Void
21075 and then not Is_Itype
(Component
)
21077 Set_Ekind
(Component
, E_Component
);
21078 Init_Component_Location
(Component
);
21081 if Has_Task
(Etype
(Component
)) then
21085 if Has_Protected
(Etype
(Component
)) then
21086 Set_Has_Protected
(T
);
21089 if Ekind
(Component
) /= E_Component
then
21092 -- Do not set Has_Controlled_Component on a class-wide equivalent
21093 -- type. See Make_CW_Equivalent_Type.
21095 elsif not Is_Class_Wide_Equivalent_Type
(T
)
21096 and then (Has_Controlled_Component
(Etype
(Component
))
21097 or else (Chars
(Component
) /= Name_uParent
21098 and then Is_Controlled
(Etype
(Component
))))
21100 Set_Has_Controlled_Component
(T
, True);
21101 Final_Storage_Only
:=
21103 and then Finalize_Storage_Only
(Etype
(Component
));
21104 Ctrl_Components
:= True;
21107 Next_Entity
(Component
);
21110 -- A Type is Finalize_Storage_Only only if all its controlled components
21113 if Ctrl_Components
then
21114 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
21117 -- Place reference to end record on the proper entity, which may
21118 -- be a partial view.
21120 if Present
(Def
) then
21121 Process_End_Label
(Def
, 'e', Prev_T
);
21123 end Record_Type_Definition
;
21125 ------------------------
21126 -- Replace_Components --
21127 ------------------------
21129 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
21130 function Process
(N
: Node_Id
) return Traverse_Result
;
21136 function Process
(N
: Node_Id
) return Traverse_Result
is
21140 if Nkind
(N
) = N_Discriminant_Specification
then
21141 Comp
:= First_Discriminant
(Typ
);
21142 while Present
(Comp
) loop
21143 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21144 Set_Defining_Identifier
(N
, Comp
);
21148 Next_Discriminant
(Comp
);
21151 elsif Nkind
(N
) = N_Component_Declaration
then
21152 Comp
:= First_Component
(Typ
);
21153 while Present
(Comp
) loop
21154 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21155 Set_Defining_Identifier
(N
, Comp
);
21159 Next_Component
(Comp
);
21166 procedure Replace
is new Traverse_Proc
(Process
);
21168 -- Start of processing for Replace_Components
21172 end Replace_Components
;
21174 -------------------------------
21175 -- Set_Completion_Referenced --
21176 -------------------------------
21178 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
21180 -- If in main unit, mark entity that is a completion as referenced,
21181 -- warnings go on the partial view when needed.
21183 if In_Extended_Main_Source_Unit
(E
) then
21184 Set_Referenced
(E
);
21186 end Set_Completion_Referenced
;
21188 ---------------------
21189 -- Set_Default_SSO --
21190 ---------------------
21192 procedure Set_Default_SSO
(T
: Entity_Id
) is
21194 case Opt
.Default_SSO
is
21198 Set_SSO_Set_Low_By_Default
(T
, True);
21200 Set_SSO_Set_High_By_Default
(T
, True);
21202 raise Program_Error
;
21204 end Set_Default_SSO
;
21206 ---------------------
21207 -- Set_Fixed_Range --
21208 ---------------------
21210 -- The range for fixed-point types is complicated by the fact that we
21211 -- do not know the exact end points at the time of the declaration. This
21212 -- is true for three reasons:
21214 -- A size clause may affect the fudging of the end-points.
21215 -- A small clause may affect the values of the end-points.
21216 -- We try to include the end-points if it does not affect the size.
21218 -- This means that the actual end-points must be established at the
21219 -- point when the type is frozen. Meanwhile, we first narrow the range
21220 -- as permitted (so that it will fit if necessary in a small specified
21221 -- size), and then build a range subtree with these narrowed bounds.
21222 -- Set_Fixed_Range constructs the range from real literal values, and
21223 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21225 -- The parent of this range is set to point to the entity so that it is
21226 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21227 -- other scalar types, which are just pointers to the range in the
21228 -- original tree, this would otherwise be an orphan).
21230 -- The tree is left unanalyzed. When the type is frozen, the processing
21231 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21232 -- analyzed, and uses this as an indication that it should complete
21233 -- work on the range (it will know the final small and size values).
21235 procedure Set_Fixed_Range
21241 S
: constant Node_Id
:=
21243 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
21244 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
21246 Set_Scalar_Range
(E
, S
);
21249 -- Before the freeze point, the bounds of a fixed point are universal
21250 -- and carry the corresponding type.
21252 Set_Etype
(Low_Bound
(S
), Universal_Real
);
21253 Set_Etype
(High_Bound
(S
), Universal_Real
);
21254 end Set_Fixed_Range
;
21256 ----------------------------------
21257 -- Set_Scalar_Range_For_Subtype --
21258 ----------------------------------
21260 procedure Set_Scalar_Range_For_Subtype
21261 (Def_Id
: Entity_Id
;
21265 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
21268 -- Defend against previous error
21270 if Nkind
(R
) = N_Error
then
21274 Set_Scalar_Range
(Def_Id
, R
);
21276 -- We need to link the range into the tree before resolving it so
21277 -- that types that are referenced, including importantly the subtype
21278 -- itself, are properly frozen (Freeze_Expression requires that the
21279 -- expression be properly linked into the tree). Of course if it is
21280 -- already linked in, then we do not disturb the current link.
21282 if No
(Parent
(R
)) then
21283 Set_Parent
(R
, Def_Id
);
21286 -- Reset the kind of the subtype during analysis of the range, to
21287 -- catch possible premature use in the bounds themselves.
21289 Set_Ekind
(Def_Id
, E_Void
);
21290 Process_Range_Expr_In_Decl
(R
, Subt
, Subtyp
=> Def_Id
);
21291 Set_Ekind
(Def_Id
, Kind
);
21292 end Set_Scalar_Range_For_Subtype
;
21294 --------------------------------------------------------
21295 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21296 --------------------------------------------------------
21298 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21302 -- Make sure set if encountered during Expand_To_Stored_Constraint
21304 Set_Stored_Constraint
(E
, No_Elist
);
21306 -- Give it the right value
21308 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
21309 Set_Stored_Constraint
(E
,
21310 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
21312 end Set_Stored_Constraint_From_Discriminant_Constraint
;
21314 -------------------------------------
21315 -- Signed_Integer_Type_Declaration --
21316 -------------------------------------
21318 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
21319 Implicit_Base
: Entity_Id
;
21320 Base_Typ
: Entity_Id
;
21323 Errs
: Boolean := False;
21327 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
21328 -- Determine whether given bounds allow derivation from specified type
21330 procedure Check_Bound
(Expr
: Node_Id
);
21331 -- Check bound to make sure it is integral and static. If not, post
21332 -- appropriate error message and set Errs flag
21334 ---------------------
21335 -- Can_Derive_From --
21336 ---------------------
21338 -- Note we check both bounds against both end values, to deal with
21339 -- strange types like ones with a range of 0 .. -12341234.
21341 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
21342 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
21343 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
21345 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
21347 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
21348 end Can_Derive_From
;
21354 procedure Check_Bound
(Expr
: Node_Id
) is
21356 -- If a range constraint is used as an integer type definition, each
21357 -- bound of the range must be defined by a static expression of some
21358 -- integer type, but the two bounds need not have the same integer
21359 -- type (Negative bounds are allowed.) (RM 3.5.4)
21361 if not Is_Integer_Type
(Etype
(Expr
)) then
21363 ("integer type definition bounds must be of integer type", Expr
);
21366 elsif not Is_OK_Static_Expression
(Expr
) then
21367 Flag_Non_Static_Expr
21368 ("non-static expression used for integer type bound!", Expr
);
21371 -- The bounds are folded into literals, and we set their type to be
21372 -- universal, to avoid typing difficulties: we cannot set the type
21373 -- of the literal to the new type, because this would be a forward
21374 -- reference for the back end, and if the original type is user-
21375 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21378 if Is_Entity_Name
(Expr
) then
21379 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
21382 Set_Etype
(Expr
, Universal_Integer
);
21386 -- Start of processing for Signed_Integer_Type_Declaration
21389 -- Create an anonymous base type
21392 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
21394 -- Analyze and check the bounds, they can be of any integer type
21396 Lo
:= Low_Bound
(Def
);
21397 Hi
:= High_Bound
(Def
);
21399 -- Arbitrarily use Integer as the type if either bound had an error
21401 if Hi
= Error
or else Lo
= Error
then
21402 Base_Typ
:= Any_Integer
;
21403 Set_Error_Posted
(T
, True);
21405 -- Here both bounds are OK expressions
21408 Analyze_And_Resolve
(Lo
, Any_Integer
);
21409 Analyze_And_Resolve
(Hi
, Any_Integer
);
21415 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21416 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21419 -- Find type to derive from
21421 Lo_Val
:= Expr_Value
(Lo
);
21422 Hi_Val
:= Expr_Value
(Hi
);
21424 if Can_Derive_From
(Standard_Short_Short_Integer
) then
21425 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
21427 elsif Can_Derive_From
(Standard_Short_Integer
) then
21428 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
21430 elsif Can_Derive_From
(Standard_Integer
) then
21431 Base_Typ
:= Base_Type
(Standard_Integer
);
21433 elsif Can_Derive_From
(Standard_Long_Integer
) then
21434 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
21436 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
21437 Check_Restriction
(No_Long_Long_Integers
, Def
);
21438 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21441 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21442 Error_Msg_N
("integer type definition bounds out of range", Def
);
21443 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21444 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21448 -- Complete both implicit base and declared first subtype entities. The
21449 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21450 -- are not clobbered when the signed integer type acts as a full view of
21453 Set_Etype
(Implicit_Base
, Base_Typ
);
21454 Set_Size_Info
(Implicit_Base
, Base_Typ
);
21455 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
21456 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
21457 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
21459 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
21460 Set_Etype
(T
, Implicit_Base
);
21461 Set_Size_Info
(T
, Implicit_Base
);
21462 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
21463 Set_Scalar_Range
(T
, Def
);
21464 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
21465 Set_Is_Constrained
(T
);
21466 end Signed_Integer_Type_Declaration
;