[29/77] Make some *_loc_descriptor helpers take scalar_int_mode
[official-gcc.git] / gcc / dwarf2out.c
blob4c840b4094c119b5757cdd09d1544a48e1c5959e
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Gary Funck (gary@intrepid.com).
4 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
5 Extensively modified by Jason Merrill (jason@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* TODO: Emit .debug_line header even when there are no functions, since
24 the file numbers are used by .debug_info. Alternately, leave
25 out locations for types and decls.
26 Avoid talking about ctors and op= for PODs.
27 Factor out common prologue sequences into multiple CIEs. */
29 /* The first part of this file deals with the DWARF 2 frame unwind
30 information, which is also used by the GCC efficient exception handling
31 mechanism. The second part, controlled only by an #ifdef
32 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
33 information. */
35 /* DWARF2 Abbreviation Glossary:
37 CFA = Canonical Frame Address
38 a fixed address on the stack which identifies a call frame.
39 We define it to be the value of SP just before the call insn.
40 The CFA register and offset, which may change during the course
41 of the function, are used to calculate its value at runtime.
43 CFI = Call Frame Instruction
44 an instruction for the DWARF2 abstract machine
46 CIE = Common Information Entry
47 information describing information common to one or more FDEs
49 DIE = Debugging Information Entry
51 FDE = Frame Description Entry
52 information describing the stack call frame, in particular,
53 how to restore registers
55 DW_CFA_... = DWARF2 CFA call frame instruction
56 DW_TAG_... = DWARF2 DIE tag */
58 #include "config.h"
59 #include "system.h"
60 #include "coretypes.h"
61 #include "target.h"
62 #include "function.h"
63 #include "rtl.h"
64 #include "tree.h"
65 #include "memmodel.h"
66 #include "tm_p.h"
67 #include "stringpool.h"
68 #include "insn-config.h"
69 #include "ira.h"
70 #include "cgraph.h"
71 #include "diagnostic.h"
72 #include "fold-const.h"
73 #include "stor-layout.h"
74 #include "varasm.h"
75 #include "version.h"
76 #include "flags.h"
77 #include "rtlhash.h"
78 #include "reload.h"
79 #include "output.h"
80 #include "expr.h"
81 #include "dwarf2out.h"
82 #include "dwarf2asm.h"
83 #include "toplev.h"
84 #include "md5.h"
85 #include "tree-pretty-print.h"
86 #include "debug.h"
87 #include "common/common-target.h"
88 #include "langhooks.h"
89 #include "lra.h"
90 #include "dumpfile.h"
91 #include "opts.h"
92 #include "tree-dfa.h"
93 #include "gdb/gdb-index.h"
94 #include "rtl-iter.h"
95 #include "stringpool.h"
96 #include "attribs.h"
98 static void dwarf2out_source_line (unsigned int, unsigned int, const char *,
99 int, bool);
100 static rtx_insn *last_var_location_insn;
101 static rtx_insn *cached_next_real_insn;
102 static void dwarf2out_decl (tree);
104 #ifndef XCOFF_DEBUGGING_INFO
105 #define XCOFF_DEBUGGING_INFO 0
106 #endif
108 #ifndef HAVE_XCOFF_DWARF_EXTRAS
109 #define HAVE_XCOFF_DWARF_EXTRAS 0
110 #endif
112 #ifdef VMS_DEBUGGING_INFO
113 int vms_file_stats_name (const char *, long long *, long *, char *, int *);
115 /* Define this macro to be a nonzero value if the directory specifications
116 which are output in the debug info should end with a separator. */
117 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 1
118 /* Define this macro to evaluate to a nonzero value if GCC should refrain
119 from generating indirect strings in DWARF2 debug information, for instance
120 if your target is stuck with an old version of GDB that is unable to
121 process them properly or uses VMS Debug. */
122 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 1
123 #else
124 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 0
125 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 0
126 #endif
128 /* ??? Poison these here until it can be done generically. They've been
129 totally replaced in this file; make sure it stays that way. */
130 #undef DWARF2_UNWIND_INFO
131 #undef DWARF2_FRAME_INFO
132 #if (GCC_VERSION >= 3000)
133 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
134 #endif
136 /* The size of the target's pointer type. */
137 #ifndef PTR_SIZE
138 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
139 #endif
141 /* Array of RTXes referenced by the debugging information, which therefore
142 must be kept around forever. */
143 static GTY(()) vec<rtx, va_gc> *used_rtx_array;
145 /* A pointer to the base of a list of incomplete types which might be
146 completed at some later time. incomplete_types_list needs to be a
147 vec<tree, va_gc> *because we want to tell the garbage collector about
148 it. */
149 static GTY(()) vec<tree, va_gc> *incomplete_types;
151 /* A pointer to the base of a table of references to declaration
152 scopes. This table is a display which tracks the nesting
153 of declaration scopes at the current scope and containing
154 scopes. This table is used to find the proper place to
155 define type declaration DIE's. */
156 static GTY(()) vec<tree, va_gc> *decl_scope_table;
158 /* Pointers to various DWARF2 sections. */
159 static GTY(()) section *debug_info_section;
160 static GTY(()) section *debug_skeleton_info_section;
161 static GTY(()) section *debug_abbrev_section;
162 static GTY(()) section *debug_skeleton_abbrev_section;
163 static GTY(()) section *debug_aranges_section;
164 static GTY(()) section *debug_addr_section;
165 static GTY(()) section *debug_macinfo_section;
166 static const char *debug_macinfo_section_name;
167 static unsigned macinfo_label_base = 1;
168 static GTY(()) section *debug_line_section;
169 static GTY(()) section *debug_skeleton_line_section;
170 static GTY(()) section *debug_loc_section;
171 static GTY(()) section *debug_pubnames_section;
172 static GTY(()) section *debug_pubtypes_section;
173 static GTY(()) section *debug_str_section;
174 static GTY(()) section *debug_line_str_section;
175 static GTY(()) section *debug_str_dwo_section;
176 static GTY(()) section *debug_str_offsets_section;
177 static GTY(()) section *debug_ranges_section;
178 static GTY(()) section *debug_frame_section;
180 /* Maximum size (in bytes) of an artificially generated label. */
181 #define MAX_ARTIFICIAL_LABEL_BYTES 40
183 /* According to the (draft) DWARF 3 specification, the initial length
184 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
185 bytes are 0xffffffff, followed by the length stored in the next 8
186 bytes.
188 However, the SGI/MIPS ABI uses an initial length which is equal to
189 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
191 #ifndef DWARF_INITIAL_LENGTH_SIZE
192 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
193 #endif
195 #ifndef DWARF_INITIAL_LENGTH_SIZE_STR
196 #define DWARF_INITIAL_LENGTH_SIZE_STR (DWARF_OFFSET_SIZE == 4 ? "-4" : "-12")
197 #endif
199 /* Round SIZE up to the nearest BOUNDARY. */
200 #define DWARF_ROUND(SIZE,BOUNDARY) \
201 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
203 /* CIE identifier. */
204 #if HOST_BITS_PER_WIDE_INT >= 64
205 #define DWARF_CIE_ID \
206 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
207 #else
208 #define DWARF_CIE_ID DW_CIE_ID
209 #endif
212 /* A vector for a table that contains frame description
213 information for each routine. */
214 #define NOT_INDEXED (-1U)
215 #define NO_INDEX_ASSIGNED (-2U)
217 static GTY(()) vec<dw_fde_ref, va_gc> *fde_vec;
219 struct GTY((for_user)) indirect_string_node {
220 const char *str;
221 unsigned int refcount;
222 enum dwarf_form form;
223 char *label;
224 unsigned int index;
227 struct indirect_string_hasher : ggc_ptr_hash<indirect_string_node>
229 typedef const char *compare_type;
231 static hashval_t hash (indirect_string_node *);
232 static bool equal (indirect_string_node *, const char *);
235 static GTY (()) hash_table<indirect_string_hasher> *debug_str_hash;
237 static GTY (()) hash_table<indirect_string_hasher> *debug_line_str_hash;
239 /* With split_debug_info, both the comp_dir and dwo_name go in the
240 main object file, rather than the dwo, similar to the force_direct
241 parameter elsewhere but with additional complications:
243 1) The string is needed in both the main object file and the dwo.
244 That is, the comp_dir and dwo_name will appear in both places.
246 2) Strings can use four forms: DW_FORM_string, DW_FORM_strp,
247 DW_FORM_line_strp or DW_FORM_GNU_str_index.
249 3) GCC chooses the form to use late, depending on the size and
250 reference count.
252 Rather than forcing the all debug string handling functions and
253 callers to deal with these complications, simply use a separate,
254 special-cased string table for any attribute that should go in the
255 main object file. This limits the complexity to just the places
256 that need it. */
258 static GTY (()) hash_table<indirect_string_hasher> *skeleton_debug_str_hash;
260 static GTY(()) int dw2_string_counter;
262 /* True if the compilation unit places functions in more than one section. */
263 static GTY(()) bool have_multiple_function_sections = false;
265 /* Whether the default text and cold text sections have been used at all. */
267 static GTY(()) bool text_section_used = false;
268 static GTY(()) bool cold_text_section_used = false;
270 /* The default cold text section. */
271 static GTY(()) section *cold_text_section;
273 /* The DIE for C++14 'auto' in a function return type. */
274 static GTY(()) dw_die_ref auto_die;
276 /* The DIE for C++14 'decltype(auto)' in a function return type. */
277 static GTY(()) dw_die_ref decltype_auto_die;
279 /* Forward declarations for functions defined in this file. */
281 static void output_call_frame_info (int);
282 static void dwarf2out_note_section_used (void);
284 /* Personality decl of current unit. Used only when assembler does not support
285 personality CFI. */
286 static GTY(()) rtx current_unit_personality;
288 /* .debug_rnglists next index. */
289 static unsigned int rnglist_idx;
291 /* Data and reference forms for relocatable data. */
292 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
293 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
295 #ifndef DEBUG_FRAME_SECTION
296 #define DEBUG_FRAME_SECTION ".debug_frame"
297 #endif
299 #ifndef FUNC_BEGIN_LABEL
300 #define FUNC_BEGIN_LABEL "LFB"
301 #endif
303 #ifndef FUNC_END_LABEL
304 #define FUNC_END_LABEL "LFE"
305 #endif
307 #ifndef PROLOGUE_END_LABEL
308 #define PROLOGUE_END_LABEL "LPE"
309 #endif
311 #ifndef EPILOGUE_BEGIN_LABEL
312 #define EPILOGUE_BEGIN_LABEL "LEB"
313 #endif
315 #ifndef FRAME_BEGIN_LABEL
316 #define FRAME_BEGIN_LABEL "Lframe"
317 #endif
318 #define CIE_AFTER_SIZE_LABEL "LSCIE"
319 #define CIE_END_LABEL "LECIE"
320 #define FDE_LABEL "LSFDE"
321 #define FDE_AFTER_SIZE_LABEL "LASFDE"
322 #define FDE_END_LABEL "LEFDE"
323 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
324 #define LINE_NUMBER_END_LABEL "LELT"
325 #define LN_PROLOG_AS_LABEL "LASLTP"
326 #define LN_PROLOG_END_LABEL "LELTP"
327 #define DIE_LABEL_PREFIX "DW"
329 /* Match the base name of a file to the base name of a compilation unit. */
331 static int
332 matches_main_base (const char *path)
334 /* Cache the last query. */
335 static const char *last_path = NULL;
336 static int last_match = 0;
337 if (path != last_path)
339 const char *base;
340 int length = base_of_path (path, &base);
341 last_path = path;
342 last_match = (length == main_input_baselength
343 && memcmp (base, main_input_basename, length) == 0);
345 return last_match;
348 #ifdef DEBUG_DEBUG_STRUCT
350 static int
351 dump_struct_debug (tree type, enum debug_info_usage usage,
352 enum debug_struct_file criterion, int generic,
353 int matches, int result)
355 /* Find the type name. */
356 tree type_decl = TYPE_STUB_DECL (type);
357 tree t = type_decl;
358 const char *name = 0;
359 if (TREE_CODE (t) == TYPE_DECL)
360 t = DECL_NAME (t);
361 if (t)
362 name = IDENTIFIER_POINTER (t);
364 fprintf (stderr, " struct %d %s %s %s %s %d %p %s\n",
365 criterion,
366 DECL_IN_SYSTEM_HEADER (type_decl) ? "sys" : "usr",
367 matches ? "bas" : "hdr",
368 generic ? "gen" : "ord",
369 usage == DINFO_USAGE_DFN ? ";" :
370 usage == DINFO_USAGE_DIR_USE ? "." : "*",
371 result,
372 (void*) type_decl, name);
373 return result;
375 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
376 dump_struct_debug (type, usage, criterion, generic, matches, result)
378 #else
380 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
381 (result)
383 #endif
385 /* Get the number of HOST_WIDE_INTs needed to represent the precision
386 of the number. Some constants have a large uniform precision, so
387 we get the precision needed for the actual value of the number. */
389 static unsigned int
390 get_full_len (const wide_int &op)
392 int prec = wi::min_precision (op, UNSIGNED);
393 return ((prec + HOST_BITS_PER_WIDE_INT - 1)
394 / HOST_BITS_PER_WIDE_INT);
397 static bool
398 should_emit_struct_debug (tree type, enum debug_info_usage usage)
400 enum debug_struct_file criterion;
401 tree type_decl;
402 bool generic = lang_hooks.types.generic_p (type);
404 if (generic)
405 criterion = debug_struct_generic[usage];
406 else
407 criterion = debug_struct_ordinary[usage];
409 if (criterion == DINFO_STRUCT_FILE_NONE)
410 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
411 if (criterion == DINFO_STRUCT_FILE_ANY)
412 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
414 type_decl = TYPE_STUB_DECL (TYPE_MAIN_VARIANT (type));
416 if (type_decl != NULL)
418 if (criterion == DINFO_STRUCT_FILE_SYS && DECL_IN_SYSTEM_HEADER (type_decl))
419 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
421 if (matches_main_base (DECL_SOURCE_FILE (type_decl)))
422 return DUMP_GSTRUCT (type, usage, criterion, generic, true, true);
425 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
428 /* Switch [BACK] to eh_frame_section. If we don't have an eh_frame_section,
429 switch to the data section instead, and write out a synthetic start label
430 for collect2 the first time around. */
432 static void
433 switch_to_eh_frame_section (bool back ATTRIBUTE_UNUSED)
435 if (eh_frame_section == 0)
437 int flags;
439 if (EH_TABLES_CAN_BE_READ_ONLY)
441 int fde_encoding;
442 int per_encoding;
443 int lsda_encoding;
445 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
446 /*global=*/0);
447 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
448 /*global=*/1);
449 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
450 /*global=*/0);
451 flags = ((! flag_pic
452 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
453 && (fde_encoding & 0x70) != DW_EH_PE_aligned
454 && (per_encoding & 0x70) != DW_EH_PE_absptr
455 && (per_encoding & 0x70) != DW_EH_PE_aligned
456 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
457 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
458 ? 0 : SECTION_WRITE);
460 else
461 flags = SECTION_WRITE;
463 #ifdef EH_FRAME_SECTION_NAME
464 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
465 #else
466 eh_frame_section = ((flags == SECTION_WRITE)
467 ? data_section : readonly_data_section);
468 #endif /* EH_FRAME_SECTION_NAME */
471 switch_to_section (eh_frame_section);
473 #ifdef EH_FRAME_THROUGH_COLLECT2
474 /* We have no special eh_frame section. Emit special labels to guide
475 collect2. */
476 if (!back)
478 tree label = get_file_function_name ("F");
479 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
480 targetm.asm_out.globalize_label (asm_out_file,
481 IDENTIFIER_POINTER (label));
482 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
484 #endif
487 /* Switch [BACK] to the eh or debug frame table section, depending on
488 FOR_EH. */
490 static void
491 switch_to_frame_table_section (int for_eh, bool back)
493 if (for_eh)
494 switch_to_eh_frame_section (back);
495 else
497 if (!debug_frame_section)
498 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
499 SECTION_DEBUG, NULL);
500 switch_to_section (debug_frame_section);
504 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
506 enum dw_cfi_oprnd_type
507 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
509 switch (cfi)
511 case DW_CFA_nop:
512 case DW_CFA_GNU_window_save:
513 case DW_CFA_remember_state:
514 case DW_CFA_restore_state:
515 return dw_cfi_oprnd_unused;
517 case DW_CFA_set_loc:
518 case DW_CFA_advance_loc1:
519 case DW_CFA_advance_loc2:
520 case DW_CFA_advance_loc4:
521 case DW_CFA_MIPS_advance_loc8:
522 return dw_cfi_oprnd_addr;
524 case DW_CFA_offset:
525 case DW_CFA_offset_extended:
526 case DW_CFA_def_cfa:
527 case DW_CFA_offset_extended_sf:
528 case DW_CFA_def_cfa_sf:
529 case DW_CFA_restore:
530 case DW_CFA_restore_extended:
531 case DW_CFA_undefined:
532 case DW_CFA_same_value:
533 case DW_CFA_def_cfa_register:
534 case DW_CFA_register:
535 case DW_CFA_expression:
536 case DW_CFA_val_expression:
537 return dw_cfi_oprnd_reg_num;
539 case DW_CFA_def_cfa_offset:
540 case DW_CFA_GNU_args_size:
541 case DW_CFA_def_cfa_offset_sf:
542 return dw_cfi_oprnd_offset;
544 case DW_CFA_def_cfa_expression:
545 return dw_cfi_oprnd_loc;
547 default:
548 gcc_unreachable ();
552 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
554 enum dw_cfi_oprnd_type
555 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
557 switch (cfi)
559 case DW_CFA_def_cfa:
560 case DW_CFA_def_cfa_sf:
561 case DW_CFA_offset:
562 case DW_CFA_offset_extended_sf:
563 case DW_CFA_offset_extended:
564 return dw_cfi_oprnd_offset;
566 case DW_CFA_register:
567 return dw_cfi_oprnd_reg_num;
569 case DW_CFA_expression:
570 case DW_CFA_val_expression:
571 return dw_cfi_oprnd_loc;
573 default:
574 return dw_cfi_oprnd_unused;
578 /* Output one FDE. */
580 static void
581 output_fde (dw_fde_ref fde, bool for_eh, bool second,
582 char *section_start_label, int fde_encoding, char *augmentation,
583 bool any_lsda_needed, int lsda_encoding)
585 const char *begin, *end;
586 static unsigned int j;
587 char l1[MAX_ARTIFICIAL_LABEL_BYTES], l2[MAX_ARTIFICIAL_LABEL_BYTES];
589 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, for_eh,
590 /* empty */ 0);
591 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL,
592 for_eh + j);
593 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + j);
594 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + j);
595 if (!XCOFF_DEBUGGING_INFO || for_eh)
597 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
598 dw2_asm_output_data (4, 0xffffffff, "Initial length escape value"
599 " indicating 64-bit DWARF extension");
600 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
601 "FDE Length");
603 ASM_OUTPUT_LABEL (asm_out_file, l1);
605 if (for_eh)
606 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
607 else
608 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
609 debug_frame_section, "FDE CIE offset");
611 begin = second ? fde->dw_fde_second_begin : fde->dw_fde_begin;
612 end = second ? fde->dw_fde_second_end : fde->dw_fde_end;
614 if (for_eh)
616 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, begin);
617 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
618 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref, false,
619 "FDE initial location");
620 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
621 end, begin, "FDE address range");
623 else
625 dw2_asm_output_addr (DWARF2_ADDR_SIZE, begin, "FDE initial location");
626 dw2_asm_output_delta (DWARF2_ADDR_SIZE, end, begin, "FDE address range");
629 if (augmentation[0])
631 if (any_lsda_needed)
633 int size = size_of_encoded_value (lsda_encoding);
635 if (lsda_encoding == DW_EH_PE_aligned)
637 int offset = ( 4 /* Length */
638 + 4 /* CIE offset */
639 + 2 * size_of_encoded_value (fde_encoding)
640 + 1 /* Augmentation size */ );
641 int pad = -offset & (PTR_SIZE - 1);
643 size += pad;
644 gcc_assert (size_of_uleb128 (size) == 1);
647 dw2_asm_output_data_uleb128 (size, "Augmentation size");
649 if (fde->uses_eh_lsda)
651 ASM_GENERATE_INTERNAL_LABEL (l1, second ? "LLSDAC" : "LLSDA",
652 fde->funcdef_number);
653 dw2_asm_output_encoded_addr_rtx (lsda_encoding,
654 gen_rtx_SYMBOL_REF (Pmode, l1),
655 false,
656 "Language Specific Data Area");
658 else
660 if (lsda_encoding == DW_EH_PE_aligned)
661 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
662 dw2_asm_output_data (size_of_encoded_value (lsda_encoding), 0,
663 "Language Specific Data Area (none)");
666 else
667 dw2_asm_output_data_uleb128 (0, "Augmentation size");
670 /* Loop through the Call Frame Instructions associated with this FDE. */
671 fde->dw_fde_current_label = begin;
673 size_t from, until, i;
675 from = 0;
676 until = vec_safe_length (fde->dw_fde_cfi);
678 if (fde->dw_fde_second_begin == NULL)
680 else if (!second)
681 until = fde->dw_fde_switch_cfi_index;
682 else
683 from = fde->dw_fde_switch_cfi_index;
685 for (i = from; i < until; i++)
686 output_cfi ((*fde->dw_fde_cfi)[i], fde, for_eh);
689 /* If we are to emit a ref/link from function bodies to their frame tables,
690 do it now. This is typically performed to make sure that tables
691 associated with functions are dragged with them and not discarded in
692 garbage collecting links. We need to do this on a per function basis to
693 cope with -ffunction-sections. */
695 #ifdef ASM_OUTPUT_DWARF_TABLE_REF
696 /* Switch to the function section, emit the ref to the tables, and
697 switch *back* into the table section. */
698 switch_to_section (function_section (fde->decl));
699 ASM_OUTPUT_DWARF_TABLE_REF (section_start_label);
700 switch_to_frame_table_section (for_eh, true);
701 #endif
703 /* Pad the FDE out to an address sized boundary. */
704 ASM_OUTPUT_ALIGN (asm_out_file,
705 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
706 ASM_OUTPUT_LABEL (asm_out_file, l2);
708 j += 2;
711 /* Return true if frame description entry FDE is needed for EH. */
713 static bool
714 fde_needed_for_eh_p (dw_fde_ref fde)
716 if (flag_asynchronous_unwind_tables)
717 return true;
719 if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde->decl))
720 return true;
722 if (fde->uses_eh_lsda)
723 return true;
725 /* If exceptions are enabled, we have collected nothrow info. */
726 if (flag_exceptions && (fde->all_throwers_are_sibcalls || fde->nothrow))
727 return false;
729 return true;
732 /* Output the call frame information used to record information
733 that relates to calculating the frame pointer, and records the
734 location of saved registers. */
736 static void
737 output_call_frame_info (int for_eh)
739 unsigned int i;
740 dw_fde_ref fde;
741 dw_cfi_ref cfi;
742 char l1[MAX_ARTIFICIAL_LABEL_BYTES], l2[MAX_ARTIFICIAL_LABEL_BYTES];
743 char section_start_label[MAX_ARTIFICIAL_LABEL_BYTES];
744 bool any_lsda_needed = false;
745 char augmentation[6];
746 int augmentation_size;
747 int fde_encoding = DW_EH_PE_absptr;
748 int per_encoding = DW_EH_PE_absptr;
749 int lsda_encoding = DW_EH_PE_absptr;
750 int return_reg;
751 rtx personality = NULL;
752 int dw_cie_version;
754 /* Don't emit a CIE if there won't be any FDEs. */
755 if (!fde_vec)
756 return;
758 /* Nothing to do if the assembler's doing it all. */
759 if (dwarf2out_do_cfi_asm ())
760 return;
762 /* If we don't have any functions we'll want to unwind out of, don't emit
763 any EH unwind information. If we make FDEs linkonce, we may have to
764 emit an empty label for an FDE that wouldn't otherwise be emitted. We
765 want to avoid having an FDE kept around when the function it refers to
766 is discarded. Example where this matters: a primary function template
767 in C++ requires EH information, an explicit specialization doesn't. */
768 if (for_eh)
770 bool any_eh_needed = false;
772 FOR_EACH_VEC_ELT (*fde_vec, i, fde)
774 if (fde->uses_eh_lsda)
775 any_eh_needed = any_lsda_needed = true;
776 else if (fde_needed_for_eh_p (fde))
777 any_eh_needed = true;
778 else if (TARGET_USES_WEAK_UNWIND_INFO)
779 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, 1, 1);
782 if (!any_eh_needed)
783 return;
786 /* We're going to be generating comments, so turn on app. */
787 if (flag_debug_asm)
788 app_enable ();
790 /* Switch to the proper frame section, first time. */
791 switch_to_frame_table_section (for_eh, false);
793 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
794 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
796 /* Output the CIE. */
797 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
798 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
799 if (!XCOFF_DEBUGGING_INFO || for_eh)
801 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
802 dw2_asm_output_data (4, 0xffffffff,
803 "Initial length escape value indicating 64-bit DWARF extension");
804 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
805 "Length of Common Information Entry");
807 ASM_OUTPUT_LABEL (asm_out_file, l1);
809 /* Now that the CIE pointer is PC-relative for EH,
810 use 0 to identify the CIE. */
811 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
812 (for_eh ? 0 : DWARF_CIE_ID),
813 "CIE Identifier Tag");
815 /* Use the CIE version 3 for DWARF3; allow DWARF2 to continue to
816 use CIE version 1, unless that would produce incorrect results
817 due to overflowing the return register column. */
818 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
819 dw_cie_version = 1;
820 if (return_reg >= 256 || dwarf_version > 2)
821 dw_cie_version = 3;
822 dw2_asm_output_data (1, dw_cie_version, "CIE Version");
824 augmentation[0] = 0;
825 augmentation_size = 0;
827 personality = current_unit_personality;
828 if (for_eh)
830 char *p;
832 /* Augmentation:
833 z Indicates that a uleb128 is present to size the
834 augmentation section.
835 L Indicates the encoding (and thus presence) of
836 an LSDA pointer in the FDE augmentation.
837 R Indicates a non-default pointer encoding for
838 FDE code pointers.
839 P Indicates the presence of an encoding + language
840 personality routine in the CIE augmentation. */
842 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
843 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
844 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
846 p = augmentation + 1;
847 if (personality)
849 *p++ = 'P';
850 augmentation_size += 1 + size_of_encoded_value (per_encoding);
851 assemble_external_libcall (personality);
853 if (any_lsda_needed)
855 *p++ = 'L';
856 augmentation_size += 1;
858 if (fde_encoding != DW_EH_PE_absptr)
860 *p++ = 'R';
861 augmentation_size += 1;
863 if (p > augmentation + 1)
865 augmentation[0] = 'z';
866 *p = '\0';
869 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
870 if (personality && per_encoding == DW_EH_PE_aligned)
872 int offset = ( 4 /* Length */
873 + 4 /* CIE Id */
874 + 1 /* CIE version */
875 + strlen (augmentation) + 1 /* Augmentation */
876 + size_of_uleb128 (1) /* Code alignment */
877 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
878 + 1 /* RA column */
879 + 1 /* Augmentation size */
880 + 1 /* Personality encoding */ );
881 int pad = -offset & (PTR_SIZE - 1);
883 augmentation_size += pad;
885 /* Augmentations should be small, so there's scarce need to
886 iterate for a solution. Die if we exceed one uleb128 byte. */
887 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
891 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
892 if (dw_cie_version >= 4)
894 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "CIE Address Size");
895 dw2_asm_output_data (1, 0, "CIE Segment Size");
897 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
898 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
899 "CIE Data Alignment Factor");
901 if (dw_cie_version == 1)
902 dw2_asm_output_data (1, return_reg, "CIE RA Column");
903 else
904 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
906 if (augmentation[0])
908 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
909 if (personality)
911 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
912 eh_data_format_name (per_encoding));
913 dw2_asm_output_encoded_addr_rtx (per_encoding,
914 personality,
915 true, NULL);
918 if (any_lsda_needed)
919 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
920 eh_data_format_name (lsda_encoding));
922 if (fde_encoding != DW_EH_PE_absptr)
923 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
924 eh_data_format_name (fde_encoding));
927 FOR_EACH_VEC_ELT (*cie_cfi_vec, i, cfi)
928 output_cfi (cfi, NULL, for_eh);
930 /* Pad the CIE out to an address sized boundary. */
931 ASM_OUTPUT_ALIGN (asm_out_file,
932 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
933 ASM_OUTPUT_LABEL (asm_out_file, l2);
935 /* Loop through all of the FDE's. */
936 FOR_EACH_VEC_ELT (*fde_vec, i, fde)
938 unsigned int k;
940 /* Don't emit EH unwind info for leaf functions that don't need it. */
941 if (for_eh && !fde_needed_for_eh_p (fde))
942 continue;
944 for (k = 0; k < (fde->dw_fde_second_begin ? 2 : 1); k++)
945 output_fde (fde, for_eh, k, section_start_label, fde_encoding,
946 augmentation, any_lsda_needed, lsda_encoding);
949 if (for_eh && targetm.terminate_dw2_eh_frame_info)
950 dw2_asm_output_data (4, 0, "End of Table");
952 /* Turn off app to make assembly quicker. */
953 if (flag_debug_asm)
954 app_disable ();
957 /* Emit .cfi_startproc and .cfi_personality/.cfi_lsda if needed. */
959 static void
960 dwarf2out_do_cfi_startproc (bool second)
962 int enc;
963 rtx ref;
964 rtx personality = get_personality_function (current_function_decl);
966 fprintf (asm_out_file, "\t.cfi_startproc\n");
968 if (personality)
970 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
971 ref = personality;
973 /* ??? The GAS support isn't entirely consistent. We have to
974 handle indirect support ourselves, but PC-relative is done
975 in the assembler. Further, the assembler can't handle any
976 of the weirder relocation types. */
977 if (enc & DW_EH_PE_indirect)
978 ref = dw2_force_const_mem (ref, true);
980 fprintf (asm_out_file, "\t.cfi_personality %#x,", enc);
981 output_addr_const (asm_out_file, ref);
982 fputc ('\n', asm_out_file);
985 if (crtl->uses_eh_lsda)
987 char lab[MAX_ARTIFICIAL_LABEL_BYTES];
989 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
990 ASM_GENERATE_INTERNAL_LABEL (lab, second ? "LLSDAC" : "LLSDA",
991 current_function_funcdef_no);
992 ref = gen_rtx_SYMBOL_REF (Pmode, lab);
993 SYMBOL_REF_FLAGS (ref) = SYMBOL_FLAG_LOCAL;
995 if (enc & DW_EH_PE_indirect)
996 ref = dw2_force_const_mem (ref, true);
998 fprintf (asm_out_file, "\t.cfi_lsda %#x,", enc);
999 output_addr_const (asm_out_file, ref);
1000 fputc ('\n', asm_out_file);
1004 /* Allocate CURRENT_FDE. Immediately initialize all we can, noting that
1005 this allocation may be done before pass_final. */
1007 dw_fde_ref
1008 dwarf2out_alloc_current_fde (void)
1010 dw_fde_ref fde;
1012 fde = ggc_cleared_alloc<dw_fde_node> ();
1013 fde->decl = current_function_decl;
1014 fde->funcdef_number = current_function_funcdef_no;
1015 fde->fde_index = vec_safe_length (fde_vec);
1016 fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls;
1017 fde->uses_eh_lsda = crtl->uses_eh_lsda;
1018 fde->nothrow = crtl->nothrow;
1019 fde->drap_reg = INVALID_REGNUM;
1020 fde->vdrap_reg = INVALID_REGNUM;
1022 /* Record the FDE associated with this function. */
1023 cfun->fde = fde;
1024 vec_safe_push (fde_vec, fde);
1026 return fde;
1029 /* Output a marker (i.e. a label) for the beginning of a function, before
1030 the prologue. */
1032 void
1033 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
1034 unsigned int column ATTRIBUTE_UNUSED,
1035 const char *file ATTRIBUTE_UNUSED)
1037 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1038 char * dup_label;
1039 dw_fde_ref fde;
1040 section *fnsec;
1041 bool do_frame;
1043 current_function_func_begin_label = NULL;
1045 do_frame = dwarf2out_do_frame ();
1047 /* ??? current_function_func_begin_label is also used by except.c for
1048 call-site information. We must emit this label if it might be used. */
1049 if (!do_frame
1050 && (!flag_exceptions
1051 || targetm_common.except_unwind_info (&global_options) == UI_SJLJ))
1052 return;
1054 fnsec = function_section (current_function_decl);
1055 switch_to_section (fnsec);
1056 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
1057 current_function_funcdef_no);
1058 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
1059 current_function_funcdef_no);
1060 dup_label = xstrdup (label);
1061 current_function_func_begin_label = dup_label;
1063 /* We can elide the fde allocation if we're not emitting debug info. */
1064 if (!do_frame)
1065 return;
1067 /* Cater to the various TARGET_ASM_OUTPUT_MI_THUNK implementations that
1068 emit insns as rtx but bypass the bulk of rest_of_compilation, which
1069 would include pass_dwarf2_frame. If we've not created the FDE yet,
1070 do so now. */
1071 fde = cfun->fde;
1072 if (fde == NULL)
1073 fde = dwarf2out_alloc_current_fde ();
1075 /* Initialize the bits of CURRENT_FDE that were not available earlier. */
1076 fde->dw_fde_begin = dup_label;
1077 fde->dw_fde_current_label = dup_label;
1078 fde->in_std_section = (fnsec == text_section
1079 || (cold_text_section && fnsec == cold_text_section));
1081 /* We only want to output line number information for the genuine dwarf2
1082 prologue case, not the eh frame case. */
1083 #ifdef DWARF2_DEBUGGING_INFO
1084 if (file)
1085 dwarf2out_source_line (line, column, file, 0, true);
1086 #endif
1088 if (dwarf2out_do_cfi_asm ())
1089 dwarf2out_do_cfi_startproc (false);
1090 else
1092 rtx personality = get_personality_function (current_function_decl);
1093 if (!current_unit_personality)
1094 current_unit_personality = personality;
1096 /* We cannot keep a current personality per function as without CFI
1097 asm, at the point where we emit the CFI data, there is no current
1098 function anymore. */
1099 if (personality && current_unit_personality != personality)
1100 sorry ("multiple EH personalities are supported only with assemblers "
1101 "supporting .cfi_personality directive");
1105 /* Output a marker (i.e. a label) for the end of the generated code
1106 for a function prologue. This gets called *after* the prologue code has
1107 been generated. */
1109 void
1110 dwarf2out_vms_end_prologue (unsigned int line ATTRIBUTE_UNUSED,
1111 const char *file ATTRIBUTE_UNUSED)
1113 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1115 /* Output a label to mark the endpoint of the code generated for this
1116 function. */
1117 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
1118 current_function_funcdef_no);
1119 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, PROLOGUE_END_LABEL,
1120 current_function_funcdef_no);
1121 cfun->fde->dw_fde_vms_end_prologue = xstrdup (label);
1124 /* Output a marker (i.e. a label) for the beginning of the generated code
1125 for a function epilogue. This gets called *before* the prologue code has
1126 been generated. */
1128 void
1129 dwarf2out_vms_begin_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1130 const char *file ATTRIBUTE_UNUSED)
1132 dw_fde_ref fde = cfun->fde;
1133 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1135 if (fde->dw_fde_vms_begin_epilogue)
1136 return;
1138 /* Output a label to mark the endpoint of the code generated for this
1139 function. */
1140 ASM_GENERATE_INTERNAL_LABEL (label, EPILOGUE_BEGIN_LABEL,
1141 current_function_funcdef_no);
1142 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, EPILOGUE_BEGIN_LABEL,
1143 current_function_funcdef_no);
1144 fde->dw_fde_vms_begin_epilogue = xstrdup (label);
1147 /* Output a marker (i.e. a label) for the absolute end of the generated code
1148 for a function definition. This gets called *after* the epilogue code has
1149 been generated. */
1151 void
1152 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1153 const char *file ATTRIBUTE_UNUSED)
1155 dw_fde_ref fde;
1156 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1158 last_var_location_insn = NULL;
1159 cached_next_real_insn = NULL;
1161 if (dwarf2out_do_cfi_asm ())
1162 fprintf (asm_out_file, "\t.cfi_endproc\n");
1164 /* Output a label to mark the endpoint of the code generated for this
1165 function. */
1166 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
1167 current_function_funcdef_no);
1168 ASM_OUTPUT_LABEL (asm_out_file, label);
1169 fde = cfun->fde;
1170 gcc_assert (fde != NULL);
1171 if (fde->dw_fde_second_begin == NULL)
1172 fde->dw_fde_end = xstrdup (label);
1175 void
1176 dwarf2out_frame_finish (void)
1178 /* Output call frame information. */
1179 if (targetm.debug_unwind_info () == UI_DWARF2)
1180 output_call_frame_info (0);
1182 /* Output another copy for the unwinder. */
1183 if ((flag_unwind_tables || flag_exceptions)
1184 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
1185 output_call_frame_info (1);
1188 /* Note that the current function section is being used for code. */
1190 static void
1191 dwarf2out_note_section_used (void)
1193 section *sec = current_function_section ();
1194 if (sec == text_section)
1195 text_section_used = true;
1196 else if (sec == cold_text_section)
1197 cold_text_section_used = true;
1200 static void var_location_switch_text_section (void);
1201 static void set_cur_line_info_table (section *);
1203 void
1204 dwarf2out_switch_text_section (void)
1206 section *sect;
1207 dw_fde_ref fde = cfun->fde;
1209 gcc_assert (cfun && fde && fde->dw_fde_second_begin == NULL);
1211 if (!in_cold_section_p)
1213 fde->dw_fde_end = crtl->subsections.cold_section_end_label;
1214 fde->dw_fde_second_begin = crtl->subsections.hot_section_label;
1215 fde->dw_fde_second_end = crtl->subsections.hot_section_end_label;
1217 else
1219 fde->dw_fde_end = crtl->subsections.hot_section_end_label;
1220 fde->dw_fde_second_begin = crtl->subsections.cold_section_label;
1221 fde->dw_fde_second_end = crtl->subsections.cold_section_end_label;
1223 have_multiple_function_sections = true;
1225 /* There is no need to mark used sections when not debugging. */
1226 if (cold_text_section != NULL)
1227 dwarf2out_note_section_used ();
1229 if (dwarf2out_do_cfi_asm ())
1230 fprintf (asm_out_file, "\t.cfi_endproc\n");
1232 /* Now do the real section switch. */
1233 sect = current_function_section ();
1234 switch_to_section (sect);
1236 fde->second_in_std_section
1237 = (sect == text_section
1238 || (cold_text_section && sect == cold_text_section));
1240 if (dwarf2out_do_cfi_asm ())
1241 dwarf2out_do_cfi_startproc (true);
1243 var_location_switch_text_section ();
1245 if (cold_text_section != NULL)
1246 set_cur_line_info_table (sect);
1249 /* And now, the subset of the debugging information support code necessary
1250 for emitting location expressions. */
1252 /* Data about a single source file. */
1253 struct GTY((for_user)) dwarf_file_data {
1254 const char * filename;
1255 int emitted_number;
1258 /* Describe an entry into the .debug_addr section. */
1260 enum ate_kind {
1261 ate_kind_rtx,
1262 ate_kind_rtx_dtprel,
1263 ate_kind_label
1266 struct GTY((for_user)) addr_table_entry {
1267 enum ate_kind kind;
1268 unsigned int refcount;
1269 unsigned int index;
1270 union addr_table_entry_struct_union
1272 rtx GTY ((tag ("0"))) rtl;
1273 char * GTY ((tag ("1"))) label;
1275 GTY ((desc ("%1.kind"))) addr;
1278 /* Location lists are ranges + location descriptions for that range,
1279 so you can track variables that are in different places over
1280 their entire life. */
1281 typedef struct GTY(()) dw_loc_list_struct {
1282 dw_loc_list_ref dw_loc_next;
1283 const char *begin; /* Label and addr_entry for start of range */
1284 addr_table_entry *begin_entry;
1285 const char *end; /* Label for end of range */
1286 char *ll_symbol; /* Label for beginning of location list.
1287 Only on head of list */
1288 const char *section; /* Section this loclist is relative to */
1289 dw_loc_descr_ref expr;
1290 hashval_t hash;
1291 /* True if all addresses in this and subsequent lists are known to be
1292 resolved. */
1293 bool resolved_addr;
1294 /* True if this list has been replaced by dw_loc_next. */
1295 bool replaced;
1296 /* True if it has been emitted into .debug_loc* / .debug_loclists*
1297 section. */
1298 unsigned char emitted : 1;
1299 /* True if hash field is index rather than hash value. */
1300 unsigned char num_assigned : 1;
1301 /* True if .debug_loclists.dwo offset has been emitted for it already. */
1302 unsigned char offset_emitted : 1;
1303 /* True if note_variable_value_in_expr has been called on it. */
1304 unsigned char noted_variable_value : 1;
1305 /* True if the range should be emitted even if begin and end
1306 are the same. */
1307 bool force;
1308 } dw_loc_list_node;
1310 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
1311 static dw_loc_descr_ref uint_loc_descriptor (unsigned HOST_WIDE_INT);
1313 /* Convert a DWARF stack opcode into its string name. */
1315 static const char *
1316 dwarf_stack_op_name (unsigned int op)
1318 const char *name = get_DW_OP_name (op);
1320 if (name != NULL)
1321 return name;
1323 return "OP_<unknown>";
1326 /* Return a pointer to a newly allocated location description. Location
1327 descriptions are simple expression terms that can be strung
1328 together to form more complicated location (address) descriptions. */
1330 static inline dw_loc_descr_ref
1331 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
1332 unsigned HOST_WIDE_INT oprnd2)
1334 dw_loc_descr_ref descr = ggc_cleared_alloc<dw_loc_descr_node> ();
1336 descr->dw_loc_opc = op;
1337 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
1338 descr->dw_loc_oprnd1.val_entry = NULL;
1339 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
1340 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
1341 descr->dw_loc_oprnd2.val_entry = NULL;
1342 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
1344 return descr;
1347 /* Return a pointer to a newly allocated location description for
1348 REG and OFFSET. */
1350 static inline dw_loc_descr_ref
1351 new_reg_loc_descr (unsigned int reg, unsigned HOST_WIDE_INT offset)
1353 if (reg <= 31)
1354 return new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + reg),
1355 offset, 0);
1356 else
1357 return new_loc_descr (DW_OP_bregx, reg, offset);
1360 /* Add a location description term to a location description expression. */
1362 static inline void
1363 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
1365 dw_loc_descr_ref *d;
1367 /* Find the end of the chain. */
1368 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
1371 *d = descr;
1374 /* Compare two location operands for exact equality. */
1376 static bool
1377 dw_val_equal_p (dw_val_node *a, dw_val_node *b)
1379 if (a->val_class != b->val_class)
1380 return false;
1381 switch (a->val_class)
1383 case dw_val_class_none:
1384 return true;
1385 case dw_val_class_addr:
1386 return rtx_equal_p (a->v.val_addr, b->v.val_addr);
1388 case dw_val_class_offset:
1389 case dw_val_class_unsigned_const:
1390 case dw_val_class_const:
1391 case dw_val_class_unsigned_const_implicit:
1392 case dw_val_class_const_implicit:
1393 case dw_val_class_range_list:
1394 /* These are all HOST_WIDE_INT, signed or unsigned. */
1395 return a->v.val_unsigned == b->v.val_unsigned;
1397 case dw_val_class_loc:
1398 return a->v.val_loc == b->v.val_loc;
1399 case dw_val_class_loc_list:
1400 return a->v.val_loc_list == b->v.val_loc_list;
1401 case dw_val_class_die_ref:
1402 return a->v.val_die_ref.die == b->v.val_die_ref.die;
1403 case dw_val_class_fde_ref:
1404 return a->v.val_fde_index == b->v.val_fde_index;
1405 case dw_val_class_lbl_id:
1406 case dw_val_class_lineptr:
1407 case dw_val_class_macptr:
1408 case dw_val_class_loclistsptr:
1409 case dw_val_class_high_pc:
1410 return strcmp (a->v.val_lbl_id, b->v.val_lbl_id) == 0;
1411 case dw_val_class_str:
1412 return a->v.val_str == b->v.val_str;
1413 case dw_val_class_flag:
1414 return a->v.val_flag == b->v.val_flag;
1415 case dw_val_class_file:
1416 case dw_val_class_file_implicit:
1417 return a->v.val_file == b->v.val_file;
1418 case dw_val_class_decl_ref:
1419 return a->v.val_decl_ref == b->v.val_decl_ref;
1421 case dw_val_class_const_double:
1422 return (a->v.val_double.high == b->v.val_double.high
1423 && a->v.val_double.low == b->v.val_double.low);
1425 case dw_val_class_wide_int:
1426 return *a->v.val_wide == *b->v.val_wide;
1428 case dw_val_class_vec:
1430 size_t a_len = a->v.val_vec.elt_size * a->v.val_vec.length;
1431 size_t b_len = b->v.val_vec.elt_size * b->v.val_vec.length;
1433 return (a_len == b_len
1434 && !memcmp (a->v.val_vec.array, b->v.val_vec.array, a_len));
1437 case dw_val_class_data8:
1438 return memcmp (a->v.val_data8, b->v.val_data8, 8) == 0;
1440 case dw_val_class_vms_delta:
1441 return (!strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1)
1442 && !strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1));
1444 case dw_val_class_discr_value:
1445 return (a->v.val_discr_value.pos == b->v.val_discr_value.pos
1446 && a->v.val_discr_value.v.uval == b->v.val_discr_value.v.uval);
1447 case dw_val_class_discr_list:
1448 /* It makes no sense comparing two discriminant value lists. */
1449 return false;
1451 gcc_unreachable ();
1454 /* Compare two location atoms for exact equality. */
1456 static bool
1457 loc_descr_equal_p_1 (dw_loc_descr_ref a, dw_loc_descr_ref b)
1459 if (a->dw_loc_opc != b->dw_loc_opc)
1460 return false;
1462 /* ??? This is only ever set for DW_OP_constNu, for N equal to the
1463 address size, but since we always allocate cleared storage it
1464 should be zero for other types of locations. */
1465 if (a->dtprel != b->dtprel)
1466 return false;
1468 return (dw_val_equal_p (&a->dw_loc_oprnd1, &b->dw_loc_oprnd1)
1469 && dw_val_equal_p (&a->dw_loc_oprnd2, &b->dw_loc_oprnd2));
1472 /* Compare two complete location expressions for exact equality. */
1474 bool
1475 loc_descr_equal_p (dw_loc_descr_ref a, dw_loc_descr_ref b)
1477 while (1)
1479 if (a == b)
1480 return true;
1481 if (a == NULL || b == NULL)
1482 return false;
1483 if (!loc_descr_equal_p_1 (a, b))
1484 return false;
1486 a = a->dw_loc_next;
1487 b = b->dw_loc_next;
1492 /* Add a constant OFFSET to a location expression. */
1494 static void
1495 loc_descr_plus_const (dw_loc_descr_ref *list_head, HOST_WIDE_INT offset)
1497 dw_loc_descr_ref loc;
1498 HOST_WIDE_INT *p;
1500 gcc_assert (*list_head != NULL);
1502 if (!offset)
1503 return;
1505 /* Find the end of the chain. */
1506 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
1509 p = NULL;
1510 if (loc->dw_loc_opc == DW_OP_fbreg
1511 || (loc->dw_loc_opc >= DW_OP_breg0 && loc->dw_loc_opc <= DW_OP_breg31))
1512 p = &loc->dw_loc_oprnd1.v.val_int;
1513 else if (loc->dw_loc_opc == DW_OP_bregx)
1514 p = &loc->dw_loc_oprnd2.v.val_int;
1516 /* If the last operation is fbreg, breg{0..31,x}, optimize by adjusting its
1517 offset. Don't optimize if an signed integer overflow would happen. */
1518 if (p != NULL
1519 && ((offset > 0 && *p <= INTTYPE_MAXIMUM (HOST_WIDE_INT) - offset)
1520 || (offset < 0 && *p >= INTTYPE_MINIMUM (HOST_WIDE_INT) - offset)))
1521 *p += offset;
1523 else if (offset > 0)
1524 loc->dw_loc_next = new_loc_descr (DW_OP_plus_uconst, offset, 0);
1526 else
1528 loc->dw_loc_next
1529 = uint_loc_descriptor (-(unsigned HOST_WIDE_INT) offset);
1530 add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_minus, 0, 0));
1534 /* Add a constant OFFSET to a location list. */
1536 static void
1537 loc_list_plus_const (dw_loc_list_ref list_head, HOST_WIDE_INT offset)
1539 dw_loc_list_ref d;
1540 for (d = list_head; d != NULL; d = d->dw_loc_next)
1541 loc_descr_plus_const (&d->expr, offset);
1544 #define DWARF_REF_SIZE \
1545 (dwarf_version == 2 ? DWARF2_ADDR_SIZE : DWARF_OFFSET_SIZE)
1547 /* The number of bits that can be encoded by largest DW_FORM_dataN.
1548 In DWARF4 and earlier it is DW_FORM_data8 with 64 bits, in DWARF5
1549 DW_FORM_data16 with 128 bits. */
1550 #define DWARF_LARGEST_DATA_FORM_BITS \
1551 (dwarf_version >= 5 ? 128 : 64)
1553 /* Utility inline function for construction of ops that were GNU extension
1554 before DWARF 5. */
1555 static inline enum dwarf_location_atom
1556 dwarf_OP (enum dwarf_location_atom op)
1558 switch (op)
1560 case DW_OP_implicit_pointer:
1561 if (dwarf_version < 5)
1562 return DW_OP_GNU_implicit_pointer;
1563 break;
1565 case DW_OP_entry_value:
1566 if (dwarf_version < 5)
1567 return DW_OP_GNU_entry_value;
1568 break;
1570 case DW_OP_const_type:
1571 if (dwarf_version < 5)
1572 return DW_OP_GNU_const_type;
1573 break;
1575 case DW_OP_regval_type:
1576 if (dwarf_version < 5)
1577 return DW_OP_GNU_regval_type;
1578 break;
1580 case DW_OP_deref_type:
1581 if (dwarf_version < 5)
1582 return DW_OP_GNU_deref_type;
1583 break;
1585 case DW_OP_convert:
1586 if (dwarf_version < 5)
1587 return DW_OP_GNU_convert;
1588 break;
1590 case DW_OP_reinterpret:
1591 if (dwarf_version < 5)
1592 return DW_OP_GNU_reinterpret;
1593 break;
1595 default:
1596 break;
1598 return op;
1601 /* Similarly for attributes. */
1602 static inline enum dwarf_attribute
1603 dwarf_AT (enum dwarf_attribute at)
1605 switch (at)
1607 case DW_AT_call_return_pc:
1608 if (dwarf_version < 5)
1609 return DW_AT_low_pc;
1610 break;
1612 case DW_AT_call_tail_call:
1613 if (dwarf_version < 5)
1614 return DW_AT_GNU_tail_call;
1615 break;
1617 case DW_AT_call_origin:
1618 if (dwarf_version < 5)
1619 return DW_AT_abstract_origin;
1620 break;
1622 case DW_AT_call_target:
1623 if (dwarf_version < 5)
1624 return DW_AT_GNU_call_site_target;
1625 break;
1627 case DW_AT_call_target_clobbered:
1628 if (dwarf_version < 5)
1629 return DW_AT_GNU_call_site_target_clobbered;
1630 break;
1632 case DW_AT_call_parameter:
1633 if (dwarf_version < 5)
1634 return DW_AT_abstract_origin;
1635 break;
1637 case DW_AT_call_value:
1638 if (dwarf_version < 5)
1639 return DW_AT_GNU_call_site_value;
1640 break;
1642 case DW_AT_call_data_value:
1643 if (dwarf_version < 5)
1644 return DW_AT_GNU_call_site_data_value;
1645 break;
1647 case DW_AT_call_all_calls:
1648 if (dwarf_version < 5)
1649 return DW_AT_GNU_all_call_sites;
1650 break;
1652 case DW_AT_call_all_tail_calls:
1653 if (dwarf_version < 5)
1654 return DW_AT_GNU_all_tail_call_sites;
1655 break;
1657 case DW_AT_dwo_name:
1658 if (dwarf_version < 5)
1659 return DW_AT_GNU_dwo_name;
1660 break;
1662 default:
1663 break;
1665 return at;
1668 /* And similarly for tags. */
1669 static inline enum dwarf_tag
1670 dwarf_TAG (enum dwarf_tag tag)
1672 switch (tag)
1674 case DW_TAG_call_site:
1675 if (dwarf_version < 5)
1676 return DW_TAG_GNU_call_site;
1677 break;
1679 case DW_TAG_call_site_parameter:
1680 if (dwarf_version < 5)
1681 return DW_TAG_GNU_call_site_parameter;
1682 break;
1684 default:
1685 break;
1687 return tag;
1690 static unsigned long int get_base_type_offset (dw_die_ref);
1692 /* Return the size of a location descriptor. */
1694 static unsigned long
1695 size_of_loc_descr (dw_loc_descr_ref loc)
1697 unsigned long size = 1;
1699 switch (loc->dw_loc_opc)
1701 case DW_OP_addr:
1702 size += DWARF2_ADDR_SIZE;
1703 break;
1704 case DW_OP_GNU_addr_index:
1705 case DW_OP_GNU_const_index:
1706 gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
1707 size += size_of_uleb128 (loc->dw_loc_oprnd1.val_entry->index);
1708 break;
1709 case DW_OP_const1u:
1710 case DW_OP_const1s:
1711 size += 1;
1712 break;
1713 case DW_OP_const2u:
1714 case DW_OP_const2s:
1715 size += 2;
1716 break;
1717 case DW_OP_const4u:
1718 case DW_OP_const4s:
1719 size += 4;
1720 break;
1721 case DW_OP_const8u:
1722 case DW_OP_const8s:
1723 size += 8;
1724 break;
1725 case DW_OP_constu:
1726 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1727 break;
1728 case DW_OP_consts:
1729 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1730 break;
1731 case DW_OP_pick:
1732 size += 1;
1733 break;
1734 case DW_OP_plus_uconst:
1735 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1736 break;
1737 case DW_OP_skip:
1738 case DW_OP_bra:
1739 size += 2;
1740 break;
1741 case DW_OP_breg0:
1742 case DW_OP_breg1:
1743 case DW_OP_breg2:
1744 case DW_OP_breg3:
1745 case DW_OP_breg4:
1746 case DW_OP_breg5:
1747 case DW_OP_breg6:
1748 case DW_OP_breg7:
1749 case DW_OP_breg8:
1750 case DW_OP_breg9:
1751 case DW_OP_breg10:
1752 case DW_OP_breg11:
1753 case DW_OP_breg12:
1754 case DW_OP_breg13:
1755 case DW_OP_breg14:
1756 case DW_OP_breg15:
1757 case DW_OP_breg16:
1758 case DW_OP_breg17:
1759 case DW_OP_breg18:
1760 case DW_OP_breg19:
1761 case DW_OP_breg20:
1762 case DW_OP_breg21:
1763 case DW_OP_breg22:
1764 case DW_OP_breg23:
1765 case DW_OP_breg24:
1766 case DW_OP_breg25:
1767 case DW_OP_breg26:
1768 case DW_OP_breg27:
1769 case DW_OP_breg28:
1770 case DW_OP_breg29:
1771 case DW_OP_breg30:
1772 case DW_OP_breg31:
1773 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1774 break;
1775 case DW_OP_regx:
1776 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1777 break;
1778 case DW_OP_fbreg:
1779 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1780 break;
1781 case DW_OP_bregx:
1782 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1783 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1784 break;
1785 case DW_OP_piece:
1786 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1787 break;
1788 case DW_OP_bit_piece:
1789 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1790 size += size_of_uleb128 (loc->dw_loc_oprnd2.v.val_unsigned);
1791 break;
1792 case DW_OP_deref_size:
1793 case DW_OP_xderef_size:
1794 size += 1;
1795 break;
1796 case DW_OP_call2:
1797 size += 2;
1798 break;
1799 case DW_OP_call4:
1800 size += 4;
1801 break;
1802 case DW_OP_call_ref:
1803 case DW_OP_GNU_variable_value:
1804 size += DWARF_REF_SIZE;
1805 break;
1806 case DW_OP_implicit_value:
1807 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1808 + loc->dw_loc_oprnd1.v.val_unsigned;
1809 break;
1810 case DW_OP_implicit_pointer:
1811 case DW_OP_GNU_implicit_pointer:
1812 size += DWARF_REF_SIZE + size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1813 break;
1814 case DW_OP_entry_value:
1815 case DW_OP_GNU_entry_value:
1817 unsigned long op_size = size_of_locs (loc->dw_loc_oprnd1.v.val_loc);
1818 size += size_of_uleb128 (op_size) + op_size;
1819 break;
1821 case DW_OP_const_type:
1822 case DW_OP_GNU_const_type:
1824 unsigned long o
1825 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1826 size += size_of_uleb128 (o) + 1;
1827 switch (loc->dw_loc_oprnd2.val_class)
1829 case dw_val_class_vec:
1830 size += loc->dw_loc_oprnd2.v.val_vec.length
1831 * loc->dw_loc_oprnd2.v.val_vec.elt_size;
1832 break;
1833 case dw_val_class_const:
1834 size += HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT;
1835 break;
1836 case dw_val_class_const_double:
1837 size += HOST_BITS_PER_DOUBLE_INT / BITS_PER_UNIT;
1838 break;
1839 case dw_val_class_wide_int:
1840 size += (get_full_len (*loc->dw_loc_oprnd2.v.val_wide)
1841 * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
1842 break;
1843 default:
1844 gcc_unreachable ();
1846 break;
1848 case DW_OP_regval_type:
1849 case DW_OP_GNU_regval_type:
1851 unsigned long o
1852 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1853 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1854 + size_of_uleb128 (o);
1856 break;
1857 case DW_OP_deref_type:
1858 case DW_OP_GNU_deref_type:
1860 unsigned long o
1861 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1862 size += 1 + size_of_uleb128 (o);
1864 break;
1865 case DW_OP_convert:
1866 case DW_OP_reinterpret:
1867 case DW_OP_GNU_convert:
1868 case DW_OP_GNU_reinterpret:
1869 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
1870 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1871 else
1873 unsigned long o
1874 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1875 size += size_of_uleb128 (o);
1877 break;
1878 case DW_OP_GNU_parameter_ref:
1879 size += 4;
1880 break;
1881 default:
1882 break;
1885 return size;
1888 /* Return the size of a series of location descriptors. */
1890 unsigned long
1891 size_of_locs (dw_loc_descr_ref loc)
1893 dw_loc_descr_ref l;
1894 unsigned long size;
1896 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
1897 field, to avoid writing to a PCH file. */
1898 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1900 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
1901 break;
1902 size += size_of_loc_descr (l);
1904 if (! l)
1905 return size;
1907 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1909 l->dw_loc_addr = size;
1910 size += size_of_loc_descr (l);
1913 return size;
1916 /* Return the size of the value in a DW_AT_discr_value attribute. */
1918 static int
1919 size_of_discr_value (dw_discr_value *discr_value)
1921 if (discr_value->pos)
1922 return size_of_uleb128 (discr_value->v.uval);
1923 else
1924 return size_of_sleb128 (discr_value->v.sval);
1927 /* Return the size of the value in a DW_AT_discr_list attribute. */
1929 static int
1930 size_of_discr_list (dw_discr_list_ref discr_list)
1932 int size = 0;
1934 for (dw_discr_list_ref list = discr_list;
1935 list != NULL;
1936 list = list->dw_discr_next)
1938 /* One byte for the discriminant value descriptor, and then one or two
1939 LEB128 numbers, depending on whether it's a single case label or a
1940 range label. */
1941 size += 1;
1942 size += size_of_discr_value (&list->dw_discr_lower_bound);
1943 if (list->dw_discr_range != 0)
1944 size += size_of_discr_value (&list->dw_discr_upper_bound);
1946 return size;
1949 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
1950 static void get_ref_die_offset_label (char *, dw_die_ref);
1951 static unsigned long int get_ref_die_offset (dw_die_ref);
1953 /* Output location description stack opcode's operands (if any).
1954 The for_eh_or_skip parameter controls whether register numbers are
1955 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
1956 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
1957 info). This should be suppressed for the cases that have not been converted
1958 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
1960 static void
1961 output_loc_operands (dw_loc_descr_ref loc, int for_eh_or_skip)
1963 dw_val_ref val1 = &loc->dw_loc_oprnd1;
1964 dw_val_ref val2 = &loc->dw_loc_oprnd2;
1966 switch (loc->dw_loc_opc)
1968 #ifdef DWARF2_DEBUGGING_INFO
1969 case DW_OP_const2u:
1970 case DW_OP_const2s:
1971 dw2_asm_output_data (2, val1->v.val_int, NULL);
1972 break;
1973 case DW_OP_const4u:
1974 if (loc->dtprel)
1976 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
1977 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 4,
1978 val1->v.val_addr);
1979 fputc ('\n', asm_out_file);
1980 break;
1982 /* FALLTHRU */
1983 case DW_OP_const4s:
1984 dw2_asm_output_data (4, val1->v.val_int, NULL);
1985 break;
1986 case DW_OP_const8u:
1987 if (loc->dtprel)
1989 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
1990 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 8,
1991 val1->v.val_addr);
1992 fputc ('\n', asm_out_file);
1993 break;
1995 /* FALLTHRU */
1996 case DW_OP_const8s:
1997 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
1998 dw2_asm_output_data (8, val1->v.val_int, NULL);
1999 break;
2000 case DW_OP_skip:
2001 case DW_OP_bra:
2003 int offset;
2005 gcc_assert (val1->val_class == dw_val_class_loc);
2006 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2008 dw2_asm_output_data (2, offset, NULL);
2010 break;
2011 case DW_OP_implicit_value:
2012 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2013 switch (val2->val_class)
2015 case dw_val_class_const:
2016 dw2_asm_output_data (val1->v.val_unsigned, val2->v.val_int, NULL);
2017 break;
2018 case dw_val_class_vec:
2020 unsigned int elt_size = val2->v.val_vec.elt_size;
2021 unsigned int len = val2->v.val_vec.length;
2022 unsigned int i;
2023 unsigned char *p;
2025 if (elt_size > sizeof (HOST_WIDE_INT))
2027 elt_size /= 2;
2028 len *= 2;
2030 for (i = 0, p = (unsigned char *) val2->v.val_vec.array;
2031 i < len;
2032 i++, p += elt_size)
2033 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
2034 "fp or vector constant word %u", i);
2036 break;
2037 case dw_val_class_const_double:
2039 unsigned HOST_WIDE_INT first, second;
2041 if (WORDS_BIG_ENDIAN)
2043 first = val2->v.val_double.high;
2044 second = val2->v.val_double.low;
2046 else
2048 first = val2->v.val_double.low;
2049 second = val2->v.val_double.high;
2051 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
2052 first, NULL);
2053 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
2054 second, NULL);
2056 break;
2057 case dw_val_class_wide_int:
2059 int i;
2060 int len = get_full_len (*val2->v.val_wide);
2061 if (WORDS_BIG_ENDIAN)
2062 for (i = len - 1; i >= 0; --i)
2063 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
2064 val2->v.val_wide->elt (i), NULL);
2065 else
2066 for (i = 0; i < len; ++i)
2067 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
2068 val2->v.val_wide->elt (i), NULL);
2070 break;
2071 case dw_val_class_addr:
2072 gcc_assert (val1->v.val_unsigned == DWARF2_ADDR_SIZE);
2073 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val2->v.val_addr, NULL);
2074 break;
2075 default:
2076 gcc_unreachable ();
2078 break;
2079 #else
2080 case DW_OP_const2u:
2081 case DW_OP_const2s:
2082 case DW_OP_const4u:
2083 case DW_OP_const4s:
2084 case DW_OP_const8u:
2085 case DW_OP_const8s:
2086 case DW_OP_skip:
2087 case DW_OP_bra:
2088 case DW_OP_implicit_value:
2089 /* We currently don't make any attempt to make sure these are
2090 aligned properly like we do for the main unwind info, so
2091 don't support emitting things larger than a byte if we're
2092 only doing unwinding. */
2093 gcc_unreachable ();
2094 #endif
2095 case DW_OP_const1u:
2096 case DW_OP_const1s:
2097 dw2_asm_output_data (1, val1->v.val_int, NULL);
2098 break;
2099 case DW_OP_constu:
2100 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2101 break;
2102 case DW_OP_consts:
2103 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2104 break;
2105 case DW_OP_pick:
2106 dw2_asm_output_data (1, val1->v.val_int, NULL);
2107 break;
2108 case DW_OP_plus_uconst:
2109 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2110 break;
2111 case DW_OP_breg0:
2112 case DW_OP_breg1:
2113 case DW_OP_breg2:
2114 case DW_OP_breg3:
2115 case DW_OP_breg4:
2116 case DW_OP_breg5:
2117 case DW_OP_breg6:
2118 case DW_OP_breg7:
2119 case DW_OP_breg8:
2120 case DW_OP_breg9:
2121 case DW_OP_breg10:
2122 case DW_OP_breg11:
2123 case DW_OP_breg12:
2124 case DW_OP_breg13:
2125 case DW_OP_breg14:
2126 case DW_OP_breg15:
2127 case DW_OP_breg16:
2128 case DW_OP_breg17:
2129 case DW_OP_breg18:
2130 case DW_OP_breg19:
2131 case DW_OP_breg20:
2132 case DW_OP_breg21:
2133 case DW_OP_breg22:
2134 case DW_OP_breg23:
2135 case DW_OP_breg24:
2136 case DW_OP_breg25:
2137 case DW_OP_breg26:
2138 case DW_OP_breg27:
2139 case DW_OP_breg28:
2140 case DW_OP_breg29:
2141 case DW_OP_breg30:
2142 case DW_OP_breg31:
2143 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2144 break;
2145 case DW_OP_regx:
2147 unsigned r = val1->v.val_unsigned;
2148 if (for_eh_or_skip >= 0)
2149 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2150 gcc_assert (size_of_uleb128 (r)
2151 == size_of_uleb128 (val1->v.val_unsigned));
2152 dw2_asm_output_data_uleb128 (r, NULL);
2154 break;
2155 case DW_OP_fbreg:
2156 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2157 break;
2158 case DW_OP_bregx:
2160 unsigned r = val1->v.val_unsigned;
2161 if (for_eh_or_skip >= 0)
2162 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2163 gcc_assert (size_of_uleb128 (r)
2164 == size_of_uleb128 (val1->v.val_unsigned));
2165 dw2_asm_output_data_uleb128 (r, NULL);
2166 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2168 break;
2169 case DW_OP_piece:
2170 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2171 break;
2172 case DW_OP_bit_piece:
2173 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2174 dw2_asm_output_data_uleb128 (val2->v.val_unsigned, NULL);
2175 break;
2176 case DW_OP_deref_size:
2177 case DW_OP_xderef_size:
2178 dw2_asm_output_data (1, val1->v.val_int, NULL);
2179 break;
2181 case DW_OP_addr:
2182 if (loc->dtprel)
2184 if (targetm.asm_out.output_dwarf_dtprel)
2186 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
2187 DWARF2_ADDR_SIZE,
2188 val1->v.val_addr);
2189 fputc ('\n', asm_out_file);
2191 else
2192 gcc_unreachable ();
2194 else
2196 #ifdef DWARF2_DEBUGGING_INFO
2197 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2198 #else
2199 gcc_unreachable ();
2200 #endif
2202 break;
2204 case DW_OP_GNU_addr_index:
2205 case DW_OP_GNU_const_index:
2206 gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
2207 dw2_asm_output_data_uleb128 (loc->dw_loc_oprnd1.val_entry->index,
2208 "(index into .debug_addr)");
2209 break;
2211 case DW_OP_call2:
2212 case DW_OP_call4:
2214 unsigned long die_offset
2215 = get_ref_die_offset (val1->v.val_die_ref.die);
2216 /* Make sure the offset has been computed and that we can encode it as
2217 an operand. */
2218 gcc_assert (die_offset > 0
2219 && die_offset <= (loc->dw_loc_opc == DW_OP_call2
2220 ? 0xffff
2221 : 0xffffffff));
2222 dw2_asm_output_data ((loc->dw_loc_opc == DW_OP_call2) ? 2 : 4,
2223 die_offset, NULL);
2225 break;
2227 case DW_OP_call_ref:
2228 case DW_OP_GNU_variable_value:
2230 char label[MAX_ARTIFICIAL_LABEL_BYTES
2231 + HOST_BITS_PER_WIDE_INT / 2 + 2];
2232 gcc_assert (val1->val_class == dw_val_class_die_ref);
2233 get_ref_die_offset_label (label, val1->v.val_die_ref.die);
2234 dw2_asm_output_offset (DWARF_REF_SIZE, label, debug_info_section, NULL);
2236 break;
2238 case DW_OP_implicit_pointer:
2239 case DW_OP_GNU_implicit_pointer:
2241 char label[MAX_ARTIFICIAL_LABEL_BYTES
2242 + HOST_BITS_PER_WIDE_INT / 2 + 2];
2243 gcc_assert (val1->val_class == dw_val_class_die_ref);
2244 get_ref_die_offset_label (label, val1->v.val_die_ref.die);
2245 dw2_asm_output_offset (DWARF_REF_SIZE, label, debug_info_section, NULL);
2246 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2248 break;
2250 case DW_OP_entry_value:
2251 case DW_OP_GNU_entry_value:
2252 dw2_asm_output_data_uleb128 (size_of_locs (val1->v.val_loc), NULL);
2253 output_loc_sequence (val1->v.val_loc, for_eh_or_skip);
2254 break;
2256 case DW_OP_const_type:
2257 case DW_OP_GNU_const_type:
2259 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die), l;
2260 gcc_assert (o);
2261 dw2_asm_output_data_uleb128 (o, NULL);
2262 switch (val2->val_class)
2264 case dw_val_class_const:
2265 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2266 dw2_asm_output_data (1, l, NULL);
2267 dw2_asm_output_data (l, val2->v.val_int, NULL);
2268 break;
2269 case dw_val_class_vec:
2271 unsigned int elt_size = val2->v.val_vec.elt_size;
2272 unsigned int len = val2->v.val_vec.length;
2273 unsigned int i;
2274 unsigned char *p;
2276 l = len * elt_size;
2277 dw2_asm_output_data (1, l, NULL);
2278 if (elt_size > sizeof (HOST_WIDE_INT))
2280 elt_size /= 2;
2281 len *= 2;
2283 for (i = 0, p = (unsigned char *) val2->v.val_vec.array;
2284 i < len;
2285 i++, p += elt_size)
2286 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
2287 "fp or vector constant word %u", i);
2289 break;
2290 case dw_val_class_const_double:
2292 unsigned HOST_WIDE_INT first, second;
2293 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2295 dw2_asm_output_data (1, 2 * l, NULL);
2296 if (WORDS_BIG_ENDIAN)
2298 first = val2->v.val_double.high;
2299 second = val2->v.val_double.low;
2301 else
2303 first = val2->v.val_double.low;
2304 second = val2->v.val_double.high;
2306 dw2_asm_output_data (l, first, NULL);
2307 dw2_asm_output_data (l, second, NULL);
2309 break;
2310 case dw_val_class_wide_int:
2312 int i;
2313 int len = get_full_len (*val2->v.val_wide);
2314 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2316 dw2_asm_output_data (1, len * l, NULL);
2317 if (WORDS_BIG_ENDIAN)
2318 for (i = len - 1; i >= 0; --i)
2319 dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
2320 else
2321 for (i = 0; i < len; ++i)
2322 dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
2324 break;
2325 default:
2326 gcc_unreachable ();
2329 break;
2330 case DW_OP_regval_type:
2331 case DW_OP_GNU_regval_type:
2333 unsigned r = val1->v.val_unsigned;
2334 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2335 gcc_assert (o);
2336 if (for_eh_or_skip >= 0)
2338 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2339 gcc_assert (size_of_uleb128 (r)
2340 == size_of_uleb128 (val1->v.val_unsigned));
2342 dw2_asm_output_data_uleb128 (r, NULL);
2343 dw2_asm_output_data_uleb128 (o, NULL);
2345 break;
2346 case DW_OP_deref_type:
2347 case DW_OP_GNU_deref_type:
2349 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2350 gcc_assert (o);
2351 dw2_asm_output_data (1, val1->v.val_int, NULL);
2352 dw2_asm_output_data_uleb128 (o, NULL);
2354 break;
2355 case DW_OP_convert:
2356 case DW_OP_reinterpret:
2357 case DW_OP_GNU_convert:
2358 case DW_OP_GNU_reinterpret:
2359 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
2360 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2361 else
2363 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die);
2364 gcc_assert (o);
2365 dw2_asm_output_data_uleb128 (o, NULL);
2367 break;
2369 case DW_OP_GNU_parameter_ref:
2371 unsigned long o;
2372 gcc_assert (val1->val_class == dw_val_class_die_ref);
2373 o = get_ref_die_offset (val1->v.val_die_ref.die);
2374 dw2_asm_output_data (4, o, NULL);
2376 break;
2378 default:
2379 /* Other codes have no operands. */
2380 break;
2384 /* Output a sequence of location operations.
2385 The for_eh_or_skip parameter controls whether register numbers are
2386 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
2387 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
2388 info). This should be suppressed for the cases that have not been converted
2389 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
2391 void
2392 output_loc_sequence (dw_loc_descr_ref loc, int for_eh_or_skip)
2394 for (; loc != NULL; loc = loc->dw_loc_next)
2396 enum dwarf_location_atom opc = loc->dw_loc_opc;
2397 /* Output the opcode. */
2398 if (for_eh_or_skip >= 0
2399 && opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2401 unsigned r = (opc - DW_OP_breg0);
2402 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2403 gcc_assert (r <= 31);
2404 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2406 else if (for_eh_or_skip >= 0
2407 && opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2409 unsigned r = (opc - DW_OP_reg0);
2410 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2411 gcc_assert (r <= 31);
2412 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2415 dw2_asm_output_data (1, opc,
2416 "%s", dwarf_stack_op_name (opc));
2418 /* Output the operand(s) (if any). */
2419 output_loc_operands (loc, for_eh_or_skip);
2423 /* Output location description stack opcode's operands (if any).
2424 The output is single bytes on a line, suitable for .cfi_escape. */
2426 static void
2427 output_loc_operands_raw (dw_loc_descr_ref loc)
2429 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2430 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2432 switch (loc->dw_loc_opc)
2434 case DW_OP_addr:
2435 case DW_OP_GNU_addr_index:
2436 case DW_OP_GNU_const_index:
2437 case DW_OP_implicit_value:
2438 /* We cannot output addresses in .cfi_escape, only bytes. */
2439 gcc_unreachable ();
2441 case DW_OP_const1u:
2442 case DW_OP_const1s:
2443 case DW_OP_pick:
2444 case DW_OP_deref_size:
2445 case DW_OP_xderef_size:
2446 fputc (',', asm_out_file);
2447 dw2_asm_output_data_raw (1, val1->v.val_int);
2448 break;
2450 case DW_OP_const2u:
2451 case DW_OP_const2s:
2452 fputc (',', asm_out_file);
2453 dw2_asm_output_data_raw (2, val1->v.val_int);
2454 break;
2456 case DW_OP_const4u:
2457 case DW_OP_const4s:
2458 fputc (',', asm_out_file);
2459 dw2_asm_output_data_raw (4, val1->v.val_int);
2460 break;
2462 case DW_OP_const8u:
2463 case DW_OP_const8s:
2464 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
2465 fputc (',', asm_out_file);
2466 dw2_asm_output_data_raw (8, val1->v.val_int);
2467 break;
2469 case DW_OP_skip:
2470 case DW_OP_bra:
2472 int offset;
2474 gcc_assert (val1->val_class == dw_val_class_loc);
2475 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2477 fputc (',', asm_out_file);
2478 dw2_asm_output_data_raw (2, offset);
2480 break;
2482 case DW_OP_regx:
2484 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2485 gcc_assert (size_of_uleb128 (r)
2486 == size_of_uleb128 (val1->v.val_unsigned));
2487 fputc (',', asm_out_file);
2488 dw2_asm_output_data_uleb128_raw (r);
2490 break;
2492 case DW_OP_constu:
2493 case DW_OP_plus_uconst:
2494 case DW_OP_piece:
2495 fputc (',', asm_out_file);
2496 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2497 break;
2499 case DW_OP_bit_piece:
2500 fputc (',', asm_out_file);
2501 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2502 dw2_asm_output_data_uleb128_raw (val2->v.val_unsigned);
2503 break;
2505 case DW_OP_consts:
2506 case DW_OP_breg0:
2507 case DW_OP_breg1:
2508 case DW_OP_breg2:
2509 case DW_OP_breg3:
2510 case DW_OP_breg4:
2511 case DW_OP_breg5:
2512 case DW_OP_breg6:
2513 case DW_OP_breg7:
2514 case DW_OP_breg8:
2515 case DW_OP_breg9:
2516 case DW_OP_breg10:
2517 case DW_OP_breg11:
2518 case DW_OP_breg12:
2519 case DW_OP_breg13:
2520 case DW_OP_breg14:
2521 case DW_OP_breg15:
2522 case DW_OP_breg16:
2523 case DW_OP_breg17:
2524 case DW_OP_breg18:
2525 case DW_OP_breg19:
2526 case DW_OP_breg20:
2527 case DW_OP_breg21:
2528 case DW_OP_breg22:
2529 case DW_OP_breg23:
2530 case DW_OP_breg24:
2531 case DW_OP_breg25:
2532 case DW_OP_breg26:
2533 case DW_OP_breg27:
2534 case DW_OP_breg28:
2535 case DW_OP_breg29:
2536 case DW_OP_breg30:
2537 case DW_OP_breg31:
2538 case DW_OP_fbreg:
2539 fputc (',', asm_out_file);
2540 dw2_asm_output_data_sleb128_raw (val1->v.val_int);
2541 break;
2543 case DW_OP_bregx:
2545 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2546 gcc_assert (size_of_uleb128 (r)
2547 == size_of_uleb128 (val1->v.val_unsigned));
2548 fputc (',', asm_out_file);
2549 dw2_asm_output_data_uleb128_raw (r);
2550 fputc (',', asm_out_file);
2551 dw2_asm_output_data_sleb128_raw (val2->v.val_int);
2553 break;
2555 case DW_OP_implicit_pointer:
2556 case DW_OP_entry_value:
2557 case DW_OP_const_type:
2558 case DW_OP_regval_type:
2559 case DW_OP_deref_type:
2560 case DW_OP_convert:
2561 case DW_OP_reinterpret:
2562 case DW_OP_GNU_implicit_pointer:
2563 case DW_OP_GNU_entry_value:
2564 case DW_OP_GNU_const_type:
2565 case DW_OP_GNU_regval_type:
2566 case DW_OP_GNU_deref_type:
2567 case DW_OP_GNU_convert:
2568 case DW_OP_GNU_reinterpret:
2569 case DW_OP_GNU_parameter_ref:
2570 gcc_unreachable ();
2571 break;
2573 default:
2574 /* Other codes have no operands. */
2575 break;
2579 void
2580 output_loc_sequence_raw (dw_loc_descr_ref loc)
2582 while (1)
2584 enum dwarf_location_atom opc = loc->dw_loc_opc;
2585 /* Output the opcode. */
2586 if (opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2588 unsigned r = (opc - DW_OP_breg0);
2589 r = DWARF2_FRAME_REG_OUT (r, 1);
2590 gcc_assert (r <= 31);
2591 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2593 else if (opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2595 unsigned r = (opc - DW_OP_reg0);
2596 r = DWARF2_FRAME_REG_OUT (r, 1);
2597 gcc_assert (r <= 31);
2598 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2600 /* Output the opcode. */
2601 fprintf (asm_out_file, "%#x", opc);
2602 output_loc_operands_raw (loc);
2604 if (!loc->dw_loc_next)
2605 break;
2606 loc = loc->dw_loc_next;
2608 fputc (',', asm_out_file);
2612 /* This function builds a dwarf location descriptor sequence from a
2613 dw_cfa_location, adding the given OFFSET to the result of the
2614 expression. */
2616 struct dw_loc_descr_node *
2617 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
2619 struct dw_loc_descr_node *head, *tmp;
2621 offset += cfa->offset;
2623 if (cfa->indirect)
2625 head = new_reg_loc_descr (cfa->reg, cfa->base_offset);
2626 head->dw_loc_oprnd1.val_class = dw_val_class_const;
2627 head->dw_loc_oprnd1.val_entry = NULL;
2628 tmp = new_loc_descr (DW_OP_deref, 0, 0);
2629 add_loc_descr (&head, tmp);
2630 if (offset != 0)
2632 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
2633 add_loc_descr (&head, tmp);
2636 else
2637 head = new_reg_loc_descr (cfa->reg, offset);
2639 return head;
2642 /* This function builds a dwarf location descriptor sequence for
2643 the address at OFFSET from the CFA when stack is aligned to
2644 ALIGNMENT byte. */
2646 struct dw_loc_descr_node *
2647 build_cfa_aligned_loc (dw_cfa_location *cfa,
2648 HOST_WIDE_INT offset, HOST_WIDE_INT alignment)
2650 struct dw_loc_descr_node *head;
2651 unsigned int dwarf_fp
2652 = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2654 /* When CFA is defined as FP+OFFSET, emulate stack alignment. */
2655 if (cfa->reg == HARD_FRAME_POINTER_REGNUM && cfa->indirect == 0)
2657 head = new_reg_loc_descr (dwarf_fp, 0);
2658 add_loc_descr (&head, int_loc_descriptor (alignment));
2659 add_loc_descr (&head, new_loc_descr (DW_OP_and, 0, 0));
2660 loc_descr_plus_const (&head, offset);
2662 else
2663 head = new_reg_loc_descr (dwarf_fp, offset);
2664 return head;
2667 /* And now, the support for symbolic debugging information. */
2669 /* .debug_str support. */
2671 static void dwarf2out_init (const char *);
2672 static void dwarf2out_finish (const char *);
2673 static void dwarf2out_early_finish (const char *);
2674 static void dwarf2out_assembly_start (void);
2675 static void dwarf2out_define (unsigned int, const char *);
2676 static void dwarf2out_undef (unsigned int, const char *);
2677 static void dwarf2out_start_source_file (unsigned, const char *);
2678 static void dwarf2out_end_source_file (unsigned);
2679 static void dwarf2out_function_decl (tree);
2680 static void dwarf2out_begin_block (unsigned, unsigned);
2681 static void dwarf2out_end_block (unsigned, unsigned);
2682 static bool dwarf2out_ignore_block (const_tree);
2683 static void dwarf2out_early_global_decl (tree);
2684 static void dwarf2out_late_global_decl (tree);
2685 static void dwarf2out_type_decl (tree, int);
2686 static void dwarf2out_imported_module_or_decl (tree, tree, tree, bool, bool);
2687 static void dwarf2out_imported_module_or_decl_1 (tree, tree, tree,
2688 dw_die_ref);
2689 static void dwarf2out_abstract_function (tree);
2690 static void dwarf2out_var_location (rtx_insn *);
2691 static void dwarf2out_size_function (tree);
2692 static void dwarf2out_begin_function (tree);
2693 static void dwarf2out_end_function (unsigned int);
2694 static void dwarf2out_register_main_translation_unit (tree unit);
2695 static void dwarf2out_set_name (tree, tree);
2696 static void dwarf2out_register_external_die (tree decl, const char *sym,
2697 unsigned HOST_WIDE_INT off);
2698 static bool dwarf2out_die_ref_for_decl (tree decl, const char **sym,
2699 unsigned HOST_WIDE_INT *off);
2701 /* The debug hooks structure. */
2703 const struct gcc_debug_hooks dwarf2_debug_hooks =
2705 dwarf2out_init,
2706 dwarf2out_finish,
2707 dwarf2out_early_finish,
2708 dwarf2out_assembly_start,
2709 dwarf2out_define,
2710 dwarf2out_undef,
2711 dwarf2out_start_source_file,
2712 dwarf2out_end_source_file,
2713 dwarf2out_begin_block,
2714 dwarf2out_end_block,
2715 dwarf2out_ignore_block,
2716 dwarf2out_source_line,
2717 dwarf2out_begin_prologue,
2718 #if VMS_DEBUGGING_INFO
2719 dwarf2out_vms_end_prologue,
2720 dwarf2out_vms_begin_epilogue,
2721 #else
2722 debug_nothing_int_charstar,
2723 debug_nothing_int_charstar,
2724 #endif
2725 dwarf2out_end_epilogue,
2726 dwarf2out_begin_function,
2727 dwarf2out_end_function, /* end_function */
2728 dwarf2out_register_main_translation_unit,
2729 dwarf2out_function_decl, /* function_decl */
2730 dwarf2out_early_global_decl,
2731 dwarf2out_late_global_decl,
2732 dwarf2out_type_decl, /* type_decl */
2733 dwarf2out_imported_module_or_decl,
2734 dwarf2out_die_ref_for_decl,
2735 dwarf2out_register_external_die,
2736 debug_nothing_tree, /* deferred_inline_function */
2737 /* The DWARF 2 backend tries to reduce debugging bloat by not
2738 emitting the abstract description of inline functions until
2739 something tries to reference them. */
2740 dwarf2out_abstract_function, /* outlining_inline_function */
2741 debug_nothing_rtx_code_label, /* label */
2742 debug_nothing_int, /* handle_pch */
2743 dwarf2out_var_location,
2744 dwarf2out_size_function, /* size_function */
2745 dwarf2out_switch_text_section,
2746 dwarf2out_set_name,
2747 1, /* start_end_main_source_file */
2748 TYPE_SYMTAB_IS_DIE /* tree_type_symtab_field */
2751 const struct gcc_debug_hooks dwarf2_lineno_debug_hooks =
2753 dwarf2out_init,
2754 debug_nothing_charstar,
2755 debug_nothing_charstar,
2756 dwarf2out_assembly_start,
2757 debug_nothing_int_charstar,
2758 debug_nothing_int_charstar,
2759 debug_nothing_int_charstar,
2760 debug_nothing_int,
2761 debug_nothing_int_int, /* begin_block */
2762 debug_nothing_int_int, /* end_block */
2763 debug_true_const_tree, /* ignore_block */
2764 dwarf2out_source_line, /* source_line */
2765 debug_nothing_int_int_charstar, /* begin_prologue */
2766 debug_nothing_int_charstar, /* end_prologue */
2767 debug_nothing_int_charstar, /* begin_epilogue */
2768 debug_nothing_int_charstar, /* end_epilogue */
2769 debug_nothing_tree, /* begin_function */
2770 debug_nothing_int, /* end_function */
2771 debug_nothing_tree, /* register_main_translation_unit */
2772 debug_nothing_tree, /* function_decl */
2773 debug_nothing_tree, /* early_global_decl */
2774 debug_nothing_tree, /* late_global_decl */
2775 debug_nothing_tree_int, /* type_decl */
2776 debug_nothing_tree_tree_tree_bool_bool,/* imported_module_or_decl */
2777 debug_false_tree_charstarstar_uhwistar,/* die_ref_for_decl */
2778 debug_nothing_tree_charstar_uhwi, /* register_external_die */
2779 debug_nothing_tree, /* deferred_inline_function */
2780 debug_nothing_tree, /* outlining_inline_function */
2781 debug_nothing_rtx_code_label, /* label */
2782 debug_nothing_int, /* handle_pch */
2783 debug_nothing_rtx_insn, /* var_location */
2784 debug_nothing_tree, /* size_function */
2785 debug_nothing_void, /* switch_text_section */
2786 debug_nothing_tree_tree, /* set_name */
2787 0, /* start_end_main_source_file */
2788 TYPE_SYMTAB_IS_ADDRESS /* tree_type_symtab_field */
2791 /* NOTE: In the comments in this file, many references are made to
2792 "Debugging Information Entries". This term is abbreviated as `DIE'
2793 throughout the remainder of this file. */
2795 /* An internal representation of the DWARF output is built, and then
2796 walked to generate the DWARF debugging info. The walk of the internal
2797 representation is done after the entire program has been compiled.
2798 The types below are used to describe the internal representation. */
2800 /* Whether to put type DIEs into their own section .debug_types instead
2801 of making them part of the .debug_info section. Only supported for
2802 Dwarf V4 or higher and the user didn't disable them through
2803 -fno-debug-types-section. It is more efficient to put them in a
2804 separate comdat sections since the linker will then be able to
2805 remove duplicates. But not all tools support .debug_types sections
2806 yet. For Dwarf V5 or higher .debug_types doesn't exist any more,
2807 it is DW_UT_type unit type in .debug_info section. */
2809 #define use_debug_types (dwarf_version >= 4 && flag_debug_types_section)
2811 /* Various DIE's use offsets relative to the beginning of the
2812 .debug_info section to refer to each other. */
2814 typedef long int dw_offset;
2816 struct comdat_type_node;
2818 /* The entries in the line_info table more-or-less mirror the opcodes
2819 that are used in the real dwarf line table. Arrays of these entries
2820 are collected per section when DWARF2_ASM_LINE_DEBUG_INFO is not
2821 supported. */
2823 enum dw_line_info_opcode {
2824 /* Emit DW_LNE_set_address; the operand is the label index. */
2825 LI_set_address,
2827 /* Emit a row to the matrix with the given line. This may be done
2828 via any combination of DW_LNS_copy, DW_LNS_advance_line, and
2829 special opcodes. */
2830 LI_set_line,
2832 /* Emit a DW_LNS_set_file. */
2833 LI_set_file,
2835 /* Emit a DW_LNS_set_column. */
2836 LI_set_column,
2838 /* Emit a DW_LNS_negate_stmt; the operand is ignored. */
2839 LI_negate_stmt,
2841 /* Emit a DW_LNS_set_prologue_end/epilogue_begin; the operand is ignored. */
2842 LI_set_prologue_end,
2843 LI_set_epilogue_begin,
2845 /* Emit a DW_LNE_set_discriminator. */
2846 LI_set_discriminator
2849 typedef struct GTY(()) dw_line_info_struct {
2850 enum dw_line_info_opcode opcode;
2851 unsigned int val;
2852 } dw_line_info_entry;
2855 struct GTY(()) dw_line_info_table {
2856 /* The label that marks the end of this section. */
2857 const char *end_label;
2859 /* The values for the last row of the matrix, as collected in the table.
2860 These are used to minimize the changes to the next row. */
2861 unsigned int file_num;
2862 unsigned int line_num;
2863 unsigned int column_num;
2864 int discrim_num;
2865 bool is_stmt;
2866 bool in_use;
2868 vec<dw_line_info_entry, va_gc> *entries;
2872 /* Each DIE attribute has a field specifying the attribute kind,
2873 a link to the next attribute in the chain, and an attribute value.
2874 Attributes are typically linked below the DIE they modify. */
2876 typedef struct GTY(()) dw_attr_struct {
2877 enum dwarf_attribute dw_attr;
2878 dw_val_node dw_attr_val;
2880 dw_attr_node;
2883 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
2884 The children of each node form a circular list linked by
2885 die_sib. die_child points to the node *before* the "first" child node. */
2887 typedef struct GTY((chain_circular ("%h.die_sib"), for_user)) die_struct {
2888 union die_symbol_or_type_node
2890 const char * GTY ((tag ("0"))) die_symbol;
2891 comdat_type_node *GTY ((tag ("1"))) die_type_node;
2893 GTY ((desc ("%0.comdat_type_p"))) die_id;
2894 vec<dw_attr_node, va_gc> *die_attr;
2895 dw_die_ref die_parent;
2896 dw_die_ref die_child;
2897 dw_die_ref die_sib;
2898 dw_die_ref die_definition; /* ref from a specification to its definition */
2899 dw_offset die_offset;
2900 unsigned long die_abbrev;
2901 int die_mark;
2902 unsigned int decl_id;
2903 enum dwarf_tag die_tag;
2904 /* Die is used and must not be pruned as unused. */
2905 BOOL_BITFIELD die_perennial_p : 1;
2906 BOOL_BITFIELD comdat_type_p : 1; /* DIE has a type signature */
2907 /* For an external ref to die_symbol if die_offset contains an extra
2908 offset to that symbol. */
2909 BOOL_BITFIELD with_offset : 1;
2910 /* Whether this DIE was removed from the DIE tree, for example via
2911 prune_unused_types. We don't consider those present from the
2912 DIE lookup routines. */
2913 BOOL_BITFIELD removed : 1;
2914 /* Lots of spare bits. */
2916 die_node;
2918 /* Set to TRUE while dwarf2out_early_global_decl is running. */
2919 static bool early_dwarf;
2920 static bool early_dwarf_finished;
2921 struct set_early_dwarf {
2922 bool saved;
2923 set_early_dwarf () : saved(early_dwarf)
2925 gcc_assert (! early_dwarf_finished);
2926 early_dwarf = true;
2928 ~set_early_dwarf () { early_dwarf = saved; }
2931 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
2932 #define FOR_EACH_CHILD(die, c, expr) do { \
2933 c = die->die_child; \
2934 if (c) do { \
2935 c = c->die_sib; \
2936 expr; \
2937 } while (c != die->die_child); \
2938 } while (0)
2940 /* The pubname structure */
2942 typedef struct GTY(()) pubname_struct {
2943 dw_die_ref die;
2944 const char *name;
2946 pubname_entry;
2949 struct GTY(()) dw_ranges {
2950 const char *label;
2951 /* If this is positive, it's a block number, otherwise it's a
2952 bitwise-negated index into dw_ranges_by_label. */
2953 int num;
2954 /* Index for the range list for DW_FORM_rnglistx. */
2955 unsigned int idx : 31;
2956 /* True if this range might be possibly in a different section
2957 from previous entry. */
2958 unsigned int maybe_new_sec : 1;
2961 /* A structure to hold a macinfo entry. */
2963 typedef struct GTY(()) macinfo_struct {
2964 unsigned char code;
2965 unsigned HOST_WIDE_INT lineno;
2966 const char *info;
2968 macinfo_entry;
2971 struct GTY(()) dw_ranges_by_label {
2972 const char *begin;
2973 const char *end;
2976 /* The comdat type node structure. */
2977 struct GTY(()) comdat_type_node
2979 dw_die_ref root_die;
2980 dw_die_ref type_die;
2981 dw_die_ref skeleton_die;
2982 char signature[DWARF_TYPE_SIGNATURE_SIZE];
2983 comdat_type_node *next;
2986 /* A list of DIEs for which we can't determine ancestry (parent_die
2987 field) just yet. Later in dwarf2out_finish we will fill in the
2988 missing bits. */
2989 typedef struct GTY(()) limbo_die_struct {
2990 dw_die_ref die;
2991 /* The tree for which this DIE was created. We use this to
2992 determine ancestry later. */
2993 tree created_for;
2994 struct limbo_die_struct *next;
2996 limbo_die_node;
2998 typedef struct skeleton_chain_struct
3000 dw_die_ref old_die;
3001 dw_die_ref new_die;
3002 struct skeleton_chain_struct *parent;
3004 skeleton_chain_node;
3006 /* Define a macro which returns nonzero for a TYPE_DECL which was
3007 implicitly generated for a type.
3009 Note that, unlike the C front-end (which generates a NULL named
3010 TYPE_DECL node for each complete tagged type, each array type,
3011 and each function type node created) the C++ front-end generates
3012 a _named_ TYPE_DECL node for each tagged type node created.
3013 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3014 generate a DW_TAG_typedef DIE for them. Likewise with the Ada
3015 front-end, but for each type, tagged or not. */
3017 #define TYPE_DECL_IS_STUB(decl) \
3018 (DECL_NAME (decl) == NULL_TREE \
3019 || (DECL_ARTIFICIAL (decl) \
3020 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3021 /* This is necessary for stub decls that \
3022 appear in nested inline functions. */ \
3023 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3024 && (decl_ultimate_origin (decl) \
3025 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3027 /* Information concerning the compilation unit's programming
3028 language, and compiler version. */
3030 /* Fixed size portion of the DWARF compilation unit header. */
3031 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3032 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE \
3033 + (dwarf_version >= 5 ? 4 : 3))
3035 /* Fixed size portion of the DWARF comdat type unit header. */
3036 #define DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE \
3037 (DWARF_COMPILE_UNIT_HEADER_SIZE \
3038 + DWARF_TYPE_SIGNATURE_SIZE + DWARF_OFFSET_SIZE)
3040 /* Fixed size portion of the DWARF skeleton compilation unit header. */
3041 #define DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE \
3042 (DWARF_COMPILE_UNIT_HEADER_SIZE + (dwarf_version >= 5 ? 8 : 0))
3044 /* Fixed size portion of public names info. */
3045 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3047 /* Fixed size portion of the address range info. */
3048 #define DWARF_ARANGES_HEADER_SIZE \
3049 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3050 DWARF2_ADDR_SIZE * 2) \
3051 - DWARF_INITIAL_LENGTH_SIZE)
3053 /* Size of padding portion in the address range info. It must be
3054 aligned to twice the pointer size. */
3055 #define DWARF_ARANGES_PAD_SIZE \
3056 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3057 DWARF2_ADDR_SIZE * 2) \
3058 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3060 /* Use assembler line directives if available. */
3061 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3062 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3063 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3064 #else
3065 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3066 #endif
3067 #endif
3069 /* Minimum line offset in a special line info. opcode.
3070 This value was chosen to give a reasonable range of values. */
3071 #define DWARF_LINE_BASE -10
3073 /* First special line opcode - leave room for the standard opcodes. */
3074 #define DWARF_LINE_OPCODE_BASE ((int)DW_LNS_set_isa + 1)
3076 /* Range of line offsets in a special line info. opcode. */
3077 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3079 /* Flag that indicates the initial value of the is_stmt_start flag.
3080 In the present implementation, we do not mark any lines as
3081 the beginning of a source statement, because that information
3082 is not made available by the GCC front-end. */
3083 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3085 /* Maximum number of operations per instruction bundle. */
3086 #ifndef DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN
3087 #define DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN 1
3088 #endif
3090 /* This location is used by calc_die_sizes() to keep track
3091 the offset of each DIE within the .debug_info section. */
3092 static unsigned long next_die_offset;
3094 /* Record the root of the DIE's built for the current compilation unit. */
3095 static GTY(()) dw_die_ref single_comp_unit_die;
3097 /* A list of type DIEs that have been separated into comdat sections. */
3098 static GTY(()) comdat_type_node *comdat_type_list;
3100 /* A list of CU DIEs that have been separated. */
3101 static GTY(()) limbo_die_node *cu_die_list;
3103 /* A list of DIEs with a NULL parent waiting to be relocated. */
3104 static GTY(()) limbo_die_node *limbo_die_list;
3106 /* A list of DIEs for which we may have to generate
3107 DW_AT_{,MIPS_}linkage_name once their DECL_ASSEMBLER_NAMEs are set. */
3108 static GTY(()) limbo_die_node *deferred_asm_name;
3110 struct dwarf_file_hasher : ggc_ptr_hash<dwarf_file_data>
3112 typedef const char *compare_type;
3114 static hashval_t hash (dwarf_file_data *);
3115 static bool equal (dwarf_file_data *, const char *);
3118 /* Filenames referenced by this compilation unit. */
3119 static GTY(()) hash_table<dwarf_file_hasher> *file_table;
3121 struct decl_die_hasher : ggc_ptr_hash<die_node>
3123 typedef tree compare_type;
3125 static hashval_t hash (die_node *);
3126 static bool equal (die_node *, tree);
3128 /* A hash table of references to DIE's that describe declarations.
3129 The key is a DECL_UID() which is a unique number identifying each decl. */
3130 static GTY (()) hash_table<decl_die_hasher> *decl_die_table;
3132 struct GTY ((for_user)) variable_value_struct {
3133 unsigned int decl_id;
3134 vec<dw_die_ref, va_gc> *dies;
3137 struct variable_value_hasher : ggc_ptr_hash<variable_value_struct>
3139 typedef tree compare_type;
3141 static hashval_t hash (variable_value_struct *);
3142 static bool equal (variable_value_struct *, tree);
3144 /* A hash table of DIEs that contain DW_OP_GNU_variable_value with
3145 dw_val_class_decl_ref class, indexed by FUNCTION_DECLs which is
3146 DECL_CONTEXT of the referenced VAR_DECLs. */
3147 static GTY (()) hash_table<variable_value_hasher> *variable_value_hash;
3149 struct block_die_hasher : ggc_ptr_hash<die_struct>
3151 static hashval_t hash (die_struct *);
3152 static bool equal (die_struct *, die_struct *);
3155 /* A hash table of references to DIE's that describe COMMON blocks.
3156 The key is DECL_UID() ^ die_parent. */
3157 static GTY (()) hash_table<block_die_hasher> *common_block_die_table;
3159 typedef struct GTY(()) die_arg_entry_struct {
3160 dw_die_ref die;
3161 tree arg;
3162 } die_arg_entry;
3165 /* Node of the variable location list. */
3166 struct GTY ((chain_next ("%h.next"))) var_loc_node {
3167 /* Either NOTE_INSN_VAR_LOCATION, or, for SRA optimized variables,
3168 EXPR_LIST chain. For small bitsizes, bitsize is encoded
3169 in mode of the EXPR_LIST node and first EXPR_LIST operand
3170 is either NOTE_INSN_VAR_LOCATION for a piece with a known
3171 location or NULL for padding. For larger bitsizes,
3172 mode is 0 and first operand is a CONCAT with bitsize
3173 as first CONCAT operand and NOTE_INSN_VAR_LOCATION resp.
3174 NULL as second operand. */
3175 rtx GTY (()) loc;
3176 const char * GTY (()) label;
3177 struct var_loc_node * GTY (()) next;
3180 /* Variable location list. */
3181 struct GTY ((for_user)) var_loc_list_def {
3182 struct var_loc_node * GTY (()) first;
3184 /* Pointer to the last but one or last element of the
3185 chained list. If the list is empty, both first and
3186 last are NULL, if the list contains just one node
3187 or the last node certainly is not redundant, it points
3188 to the last node, otherwise points to the last but one.
3189 Do not mark it for GC because it is marked through the chain. */
3190 struct var_loc_node * GTY ((skip ("%h"))) last;
3192 /* Pointer to the last element before section switch,
3193 if NULL, either sections weren't switched or first
3194 is after section switch. */
3195 struct var_loc_node * GTY ((skip ("%h"))) last_before_switch;
3197 /* DECL_UID of the variable decl. */
3198 unsigned int decl_id;
3200 typedef struct var_loc_list_def var_loc_list;
3202 /* Call argument location list. */
3203 struct GTY ((chain_next ("%h.next"))) call_arg_loc_node {
3204 rtx GTY (()) call_arg_loc_note;
3205 const char * GTY (()) label;
3206 tree GTY (()) block;
3207 bool tail_call_p;
3208 rtx GTY (()) symbol_ref;
3209 struct call_arg_loc_node * GTY (()) next;
3213 struct decl_loc_hasher : ggc_ptr_hash<var_loc_list>
3215 typedef const_tree compare_type;
3217 static hashval_t hash (var_loc_list *);
3218 static bool equal (var_loc_list *, const_tree);
3221 /* Table of decl location linked lists. */
3222 static GTY (()) hash_table<decl_loc_hasher> *decl_loc_table;
3224 /* Head and tail of call_arg_loc chain. */
3225 static GTY (()) struct call_arg_loc_node *call_arg_locations;
3226 static struct call_arg_loc_node *call_arg_loc_last;
3228 /* Number of call sites in the current function. */
3229 static int call_site_count = -1;
3230 /* Number of tail call sites in the current function. */
3231 static int tail_call_site_count = -1;
3233 /* A cached location list. */
3234 struct GTY ((for_user)) cached_dw_loc_list_def {
3235 /* The DECL_UID of the decl that this entry describes. */
3236 unsigned int decl_id;
3238 /* The cached location list. */
3239 dw_loc_list_ref loc_list;
3241 typedef struct cached_dw_loc_list_def cached_dw_loc_list;
3243 struct dw_loc_list_hasher : ggc_ptr_hash<cached_dw_loc_list>
3246 typedef const_tree compare_type;
3248 static hashval_t hash (cached_dw_loc_list *);
3249 static bool equal (cached_dw_loc_list *, const_tree);
3252 /* Table of cached location lists. */
3253 static GTY (()) hash_table<dw_loc_list_hasher> *cached_dw_loc_list_table;
3255 /* A vector of references to DIE's that are uniquely identified by their tag,
3256 presence/absence of children DIE's, and list of attribute/value pairs. */
3257 static GTY(()) vec<dw_die_ref, va_gc> *abbrev_die_table;
3259 /* A hash map to remember the stack usage for DWARF procedures. The value
3260 stored is the stack size difference between before the DWARF procedure
3261 invokation and after it returned. In other words, for a DWARF procedure
3262 that consumes N stack slots and that pushes M ones, this stores M - N. */
3263 static hash_map<dw_die_ref, int> *dwarf_proc_stack_usage_map;
3265 /* A global counter for generating labels for line number data. */
3266 static unsigned int line_info_label_num;
3268 /* The current table to which we should emit line number information
3269 for the current function. This will be set up at the beginning of
3270 assembly for the function. */
3271 static GTY(()) dw_line_info_table *cur_line_info_table;
3273 /* The two default tables of line number info. */
3274 static GTY(()) dw_line_info_table *text_section_line_info;
3275 static GTY(()) dw_line_info_table *cold_text_section_line_info;
3277 /* The set of all non-default tables of line number info. */
3278 static GTY(()) vec<dw_line_info_table *, va_gc> *separate_line_info;
3280 /* A flag to tell pubnames/types export if there is an info section to
3281 refer to. */
3282 static bool info_section_emitted;
3284 /* A pointer to the base of a table that contains a list of publicly
3285 accessible names. */
3286 static GTY (()) vec<pubname_entry, va_gc> *pubname_table;
3288 /* A pointer to the base of a table that contains a list of publicly
3289 accessible types. */
3290 static GTY (()) vec<pubname_entry, va_gc> *pubtype_table;
3292 /* A pointer to the base of a table that contains a list of macro
3293 defines/undefines (and file start/end markers). */
3294 static GTY (()) vec<macinfo_entry, va_gc> *macinfo_table;
3296 /* True if .debug_macinfo or .debug_macros section is going to be
3297 emitted. */
3298 #define have_macinfo \
3299 ((!XCOFF_DEBUGGING_INFO || HAVE_XCOFF_DWARF_EXTRAS) \
3300 && debug_info_level >= DINFO_LEVEL_VERBOSE \
3301 && !macinfo_table->is_empty ())
3303 /* Vector of dies for which we should generate .debug_ranges info. */
3304 static GTY (()) vec<dw_ranges, va_gc> *ranges_table;
3306 /* Vector of pairs of labels referenced in ranges_table. */
3307 static GTY (()) vec<dw_ranges_by_label, va_gc> *ranges_by_label;
3309 /* Whether we have location lists that need outputting */
3310 static GTY(()) bool have_location_lists;
3312 /* Unique label counter. */
3313 static GTY(()) unsigned int loclabel_num;
3315 /* Unique label counter for point-of-call tables. */
3316 static GTY(()) unsigned int poc_label_num;
3318 /* The last file entry emitted by maybe_emit_file(). */
3319 static GTY(()) struct dwarf_file_data * last_emitted_file;
3321 /* Number of internal labels generated by gen_internal_sym(). */
3322 static GTY(()) int label_num;
3324 static GTY(()) vec<die_arg_entry, va_gc> *tmpl_value_parm_die_table;
3326 /* Instances of generic types for which we need to generate debug
3327 info that describe their generic parameters and arguments. That
3328 generation needs to happen once all types are properly laid out so
3329 we do it at the end of compilation. */
3330 static GTY(()) vec<tree, va_gc> *generic_type_instances;
3332 /* Offset from the "steady-state frame pointer" to the frame base,
3333 within the current function. */
3334 static HOST_WIDE_INT frame_pointer_fb_offset;
3335 static bool frame_pointer_fb_offset_valid;
3337 static vec<dw_die_ref> base_types;
3339 /* Flags to represent a set of attribute classes for attributes that represent
3340 a scalar value (bounds, pointers, ...). */
3341 enum dw_scalar_form
3343 dw_scalar_form_constant = 0x01,
3344 dw_scalar_form_exprloc = 0x02,
3345 dw_scalar_form_reference = 0x04
3348 /* Forward declarations for functions defined in this file. */
3350 static int is_pseudo_reg (const_rtx);
3351 static tree type_main_variant (tree);
3352 static int is_tagged_type (const_tree);
3353 static const char *dwarf_tag_name (unsigned);
3354 static const char *dwarf_attr_name (unsigned);
3355 static const char *dwarf_form_name (unsigned);
3356 static tree decl_ultimate_origin (const_tree);
3357 static tree decl_class_context (tree);
3358 static void add_dwarf_attr (dw_die_ref, dw_attr_node *);
3359 static inline enum dw_val_class AT_class (dw_attr_node *);
3360 static inline unsigned int AT_index (dw_attr_node *);
3361 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3362 static inline unsigned AT_flag (dw_attr_node *);
3363 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3364 static inline HOST_WIDE_INT AT_int (dw_attr_node *);
3365 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3366 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_node *);
3367 static void add_AT_double (dw_die_ref, enum dwarf_attribute,
3368 HOST_WIDE_INT, unsigned HOST_WIDE_INT);
3369 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3370 unsigned int, unsigned char *);
3371 static void add_AT_data8 (dw_die_ref, enum dwarf_attribute, unsigned char *);
3372 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3373 static inline const char *AT_string (dw_attr_node *);
3374 static enum dwarf_form AT_string_form (dw_attr_node *);
3375 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3376 static void add_AT_specification (dw_die_ref, dw_die_ref);
3377 static inline dw_die_ref AT_ref (dw_attr_node *);
3378 static inline int AT_ref_external (dw_attr_node *);
3379 static inline void set_AT_ref_external (dw_attr_node *, int);
3380 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3381 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3382 static inline dw_loc_descr_ref AT_loc (dw_attr_node *);
3383 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3384 dw_loc_list_ref);
3385 static inline dw_loc_list_ref AT_loc_list (dw_attr_node *);
3386 static addr_table_entry *add_addr_table_entry (void *, enum ate_kind);
3387 static void remove_addr_table_entry (addr_table_entry *);
3388 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx, bool);
3389 static inline rtx AT_addr (dw_attr_node *);
3390 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3391 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
3392 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
3393 static void add_AT_loclistsptr (dw_die_ref, enum dwarf_attribute,
3394 const char *);
3395 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3396 unsigned HOST_WIDE_INT);
3397 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3398 unsigned long, bool);
3399 static inline const char *AT_lbl (dw_attr_node *);
3400 static dw_attr_node *get_AT (dw_die_ref, enum dwarf_attribute);
3401 static const char *get_AT_low_pc (dw_die_ref);
3402 static const char *get_AT_hi_pc (dw_die_ref);
3403 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3404 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3405 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3406 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3407 static bool is_cxx (void);
3408 static bool is_cxx (const_tree);
3409 static bool is_fortran (void);
3410 static bool is_ada (void);
3411 static bool remove_AT (dw_die_ref, enum dwarf_attribute);
3412 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3413 static void add_child_die (dw_die_ref, dw_die_ref);
3414 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3415 static dw_die_ref lookup_type_die (tree);
3416 static dw_die_ref strip_naming_typedef (tree, dw_die_ref);
3417 static dw_die_ref lookup_type_die_strip_naming_typedef (tree);
3418 static void equate_type_number_to_die (tree, dw_die_ref);
3419 static dw_die_ref lookup_decl_die (tree);
3420 static var_loc_list *lookup_decl_loc (const_tree);
3421 static void equate_decl_number_to_die (tree, dw_die_ref);
3422 static struct var_loc_node *add_var_loc_to_decl (tree, rtx, const char *);
3423 static void print_spaces (FILE *);
3424 static void print_die (dw_die_ref, FILE *);
3425 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3426 static void attr_checksum (dw_attr_node *, struct md5_ctx *, int *);
3427 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3428 static void checksum_sleb128 (HOST_WIDE_INT, struct md5_ctx *);
3429 static void checksum_uleb128 (unsigned HOST_WIDE_INT, struct md5_ctx *);
3430 static void loc_checksum_ordered (dw_loc_descr_ref, struct md5_ctx *);
3431 static void attr_checksum_ordered (enum dwarf_tag, dw_attr_node *,
3432 struct md5_ctx *, int *);
3433 struct checksum_attributes;
3434 static void collect_checksum_attributes (struct checksum_attributes *, dw_die_ref);
3435 static void die_checksum_ordered (dw_die_ref, struct md5_ctx *, int *);
3436 static void checksum_die_context (dw_die_ref, struct md5_ctx *);
3437 static void generate_type_signature (dw_die_ref, comdat_type_node *);
3438 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3439 static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *);
3440 static int same_attr_p (dw_attr_node *, dw_attr_node *, int *);
3441 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3442 static int is_type_die (dw_die_ref);
3443 static int is_comdat_die (dw_die_ref);
3444 static inline bool is_template_instantiation (dw_die_ref);
3445 static int is_declaration_die (dw_die_ref);
3446 static int should_move_die_to_comdat (dw_die_ref);
3447 static dw_die_ref clone_as_declaration (dw_die_ref);
3448 static dw_die_ref clone_die (dw_die_ref);
3449 static dw_die_ref clone_tree (dw_die_ref);
3450 static dw_die_ref copy_declaration_context (dw_die_ref, dw_die_ref);
3451 static void generate_skeleton_ancestor_tree (skeleton_chain_node *);
3452 static void generate_skeleton_bottom_up (skeleton_chain_node *);
3453 static dw_die_ref generate_skeleton (dw_die_ref);
3454 static dw_die_ref remove_child_or_replace_with_skeleton (dw_die_ref,
3455 dw_die_ref,
3456 dw_die_ref);
3457 static void break_out_comdat_types (dw_die_ref);
3458 static void copy_decls_for_unworthy_types (dw_die_ref);
3460 static void add_sibling_attributes (dw_die_ref);
3461 static void output_location_lists (dw_die_ref);
3462 static int constant_size (unsigned HOST_WIDE_INT);
3463 static unsigned long size_of_die (dw_die_ref);
3464 static void calc_die_sizes (dw_die_ref);
3465 static void calc_base_type_die_sizes (void);
3466 static void mark_dies (dw_die_ref);
3467 static void unmark_dies (dw_die_ref);
3468 static void unmark_all_dies (dw_die_ref);
3469 static unsigned long size_of_pubnames (vec<pubname_entry, va_gc> *);
3470 static unsigned long size_of_aranges (void);
3471 static enum dwarf_form value_format (dw_attr_node *);
3472 static void output_value_format (dw_attr_node *);
3473 static void output_abbrev_section (void);
3474 static void output_die_abbrevs (unsigned long, dw_die_ref);
3475 static void output_die_symbol (dw_die_ref);
3476 static void output_die (dw_die_ref);
3477 static void output_compilation_unit_header (enum dwarf_unit_type);
3478 static void output_comp_unit (dw_die_ref, int, const unsigned char *);
3479 static void output_comdat_type_unit (comdat_type_node *);
3480 static const char *dwarf2_name (tree, int);
3481 static void add_pubname (tree, dw_die_ref);
3482 static void add_enumerator_pubname (const char *, dw_die_ref);
3483 static void add_pubname_string (const char *, dw_die_ref);
3484 static void add_pubtype (tree, dw_die_ref);
3485 static void output_pubnames (vec<pubname_entry, va_gc> *);
3486 static void output_aranges (void);
3487 static unsigned int add_ranges (const_tree, bool = false);
3488 static void add_ranges_by_labels (dw_die_ref, const char *, const char *,
3489 bool *, bool);
3490 static void output_ranges (void);
3491 static dw_line_info_table *new_line_info_table (void);
3492 static void output_line_info (bool);
3493 static void output_file_names (void);
3494 static dw_die_ref base_type_die (tree, bool);
3495 static int is_base_type (tree);
3496 static dw_die_ref subrange_type_die (tree, tree, tree, tree, dw_die_ref);
3497 static int decl_quals (const_tree);
3498 static dw_die_ref modified_type_die (tree, int, bool, dw_die_ref);
3499 static dw_die_ref generic_parameter_die (tree, tree, bool, dw_die_ref);
3500 static dw_die_ref template_parameter_pack_die (tree, tree, dw_die_ref);
3501 static int type_is_enum (const_tree);
3502 static unsigned int dbx_reg_number (const_rtx);
3503 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
3504 static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status);
3505 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int,
3506 enum var_init_status);
3507 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx,
3508 enum var_init_status);
3509 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT,
3510 enum var_init_status);
3511 static int is_based_loc (const_rtx);
3512 static bool resolve_one_addr (rtx *);
3513 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx,
3514 enum var_init_status);
3515 static dw_loc_descr_ref loc_descriptor (rtx, machine_mode mode,
3516 enum var_init_status);
3517 struct loc_descr_context;
3518 static void add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref);
3519 static void add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list);
3520 static dw_loc_list_ref loc_list_from_tree (tree, int,
3521 struct loc_descr_context *);
3522 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int,
3523 struct loc_descr_context *);
3524 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3525 static tree field_type (const_tree);
3526 static unsigned int simple_type_align_in_bits (const_tree);
3527 static unsigned int simple_decl_align_in_bits (const_tree);
3528 static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree);
3529 struct vlr_context;
3530 static dw_loc_descr_ref field_byte_offset (const_tree, struct vlr_context *,
3531 HOST_WIDE_INT *);
3532 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3533 dw_loc_list_ref);
3534 static void add_data_member_location_attribute (dw_die_ref, tree,
3535 struct vlr_context *);
3536 static bool add_const_value_attribute (dw_die_ref, rtx);
3537 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3538 static void insert_wide_int (const wide_int &, unsigned char *, int);
3539 static void insert_float (const_rtx, unsigned char *);
3540 static rtx rtl_for_decl_location (tree);
3541 static bool add_location_or_const_value_attribute (dw_die_ref, tree, bool);
3542 static bool tree_add_const_value_attribute (dw_die_ref, tree);
3543 static bool tree_add_const_value_attribute_for_decl (dw_die_ref, tree);
3544 static void add_name_attribute (dw_die_ref, const char *);
3545 static void add_gnat_descriptive_type_attribute (dw_die_ref, tree, dw_die_ref);
3546 static void add_comp_dir_attribute (dw_die_ref);
3547 static void add_scalar_info (dw_die_ref, enum dwarf_attribute, tree, int,
3548 struct loc_descr_context *);
3549 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree,
3550 struct loc_descr_context *);
3551 static void add_subscript_info (dw_die_ref, tree, bool);
3552 static void add_byte_size_attribute (dw_die_ref, tree);
3553 static void add_alignment_attribute (dw_die_ref, tree);
3554 static inline void add_bit_offset_attribute (dw_die_ref, tree,
3555 struct vlr_context *);
3556 static void add_bit_size_attribute (dw_die_ref, tree);
3557 static void add_prototyped_attribute (dw_die_ref, tree);
3558 static dw_die_ref add_abstract_origin_attribute (dw_die_ref, tree);
3559 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3560 static void add_src_coords_attributes (dw_die_ref, tree);
3561 static void add_name_and_src_coords_attributes (dw_die_ref, tree, bool = false);
3562 static void add_discr_value (dw_die_ref, dw_discr_value *);
3563 static void add_discr_list (dw_die_ref, dw_discr_list_ref);
3564 static inline dw_discr_list_ref AT_discr_list (dw_attr_node *);
3565 static void push_decl_scope (tree);
3566 static void pop_decl_scope (void);
3567 static dw_die_ref scope_die_for (tree, dw_die_ref);
3568 static inline int local_scope_p (dw_die_ref);
3569 static inline int class_scope_p (dw_die_ref);
3570 static inline int class_or_namespace_scope_p (dw_die_ref);
3571 static void add_type_attribute (dw_die_ref, tree, int, bool, dw_die_ref);
3572 static void add_calling_convention_attribute (dw_die_ref, tree);
3573 static const char *type_tag (const_tree);
3574 static tree member_declared_type (const_tree);
3575 #if 0
3576 static const char *decl_start_label (tree);
3577 #endif
3578 static void gen_array_type_die (tree, dw_die_ref);
3579 static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref);
3580 #if 0
3581 static void gen_entry_point_die (tree, dw_die_ref);
3582 #endif
3583 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3584 static dw_die_ref gen_formal_parameter_die (tree, tree, bool, dw_die_ref);
3585 static dw_die_ref gen_formal_parameter_pack_die (tree, tree, dw_die_ref, tree*);
3586 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3587 static void gen_formal_types_die (tree, dw_die_ref);
3588 static void gen_subprogram_die (tree, dw_die_ref);
3589 static void gen_variable_die (tree, tree, dw_die_ref);
3590 static void gen_const_die (tree, dw_die_ref);
3591 static void gen_label_die (tree, dw_die_ref);
3592 static void gen_lexical_block_die (tree, dw_die_ref);
3593 static void gen_inlined_subroutine_die (tree, dw_die_ref);
3594 static void gen_field_die (tree, struct vlr_context *, dw_die_ref);
3595 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3596 static dw_die_ref gen_compile_unit_die (const char *);
3597 static void gen_inheritance_die (tree, tree, tree, dw_die_ref);
3598 static void gen_member_die (tree, dw_die_ref);
3599 static void gen_struct_or_union_type_die (tree, dw_die_ref,
3600 enum debug_info_usage);
3601 static void gen_subroutine_type_die (tree, dw_die_ref);
3602 static void gen_typedef_die (tree, dw_die_ref);
3603 static void gen_type_die (tree, dw_die_ref);
3604 static void gen_block_die (tree, dw_die_ref);
3605 static void decls_for_scope (tree, dw_die_ref);
3606 static bool is_naming_typedef_decl (const_tree);
3607 static inline dw_die_ref get_context_die (tree);
3608 static void gen_namespace_die (tree, dw_die_ref);
3609 static dw_die_ref gen_namelist_decl (tree, dw_die_ref, tree);
3610 static dw_die_ref gen_decl_die (tree, tree, struct vlr_context *, dw_die_ref);
3611 static dw_die_ref force_decl_die (tree);
3612 static dw_die_ref force_type_die (tree);
3613 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3614 static dw_die_ref declare_in_namespace (tree, dw_die_ref);
3615 static struct dwarf_file_data * lookup_filename (const char *);
3616 static void retry_incomplete_types (void);
3617 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3618 static void gen_generic_params_dies (tree);
3619 static void gen_tagged_type_die (tree, dw_die_ref, enum debug_info_usage);
3620 static void gen_type_die_with_usage (tree, dw_die_ref, enum debug_info_usage);
3621 static void splice_child_die (dw_die_ref, dw_die_ref);
3622 static int file_info_cmp (const void *, const void *);
3623 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3624 const char *, const char *);
3625 static void output_loc_list (dw_loc_list_ref);
3626 static char *gen_internal_sym (const char *);
3627 static bool want_pubnames (void);
3629 static void prune_unmark_dies (dw_die_ref);
3630 static void prune_unused_types_mark_generic_parms_dies (dw_die_ref);
3631 static void prune_unused_types_mark (dw_die_ref, int);
3632 static void prune_unused_types_walk (dw_die_ref);
3633 static void prune_unused_types_walk_attribs (dw_die_ref);
3634 static void prune_unused_types_prune (dw_die_ref);
3635 static void prune_unused_types (void);
3636 static int maybe_emit_file (struct dwarf_file_data *fd);
3637 static inline const char *AT_vms_delta1 (dw_attr_node *);
3638 static inline const char *AT_vms_delta2 (dw_attr_node *);
3639 static inline void add_AT_vms_delta (dw_die_ref, enum dwarf_attribute,
3640 const char *, const char *);
3641 static void append_entry_to_tmpl_value_parm_die_table (dw_die_ref, tree);
3642 static void gen_remaining_tmpl_value_param_die_attribute (void);
3643 static bool generic_type_p (tree);
3644 static void schedule_generic_params_dies_gen (tree t);
3645 static void gen_scheduled_generic_parms_dies (void);
3646 static void resolve_variable_values (void);
3648 static const char *comp_dir_string (void);
3650 static void hash_loc_operands (dw_loc_descr_ref, inchash::hash &);
3652 /* enum for tracking thread-local variables whose address is really an offset
3653 relative to the TLS pointer, which will need link-time relocation, but will
3654 not need relocation by the DWARF consumer. */
3656 enum dtprel_bool
3658 dtprel_false = 0,
3659 dtprel_true = 1
3662 /* Return the operator to use for an address of a variable. For dtprel_true, we
3663 use DW_OP_const*. For regular variables, which need both link-time
3664 relocation and consumer-level relocation (e.g., to account for shared objects
3665 loaded at a random address), we use DW_OP_addr*. */
3667 static inline enum dwarf_location_atom
3668 dw_addr_op (enum dtprel_bool dtprel)
3670 if (dtprel == dtprel_true)
3671 return (dwarf_split_debug_info ? DW_OP_GNU_const_index
3672 : (DWARF2_ADDR_SIZE == 4 ? DW_OP_const4u : DW_OP_const8u));
3673 else
3674 return dwarf_split_debug_info ? DW_OP_GNU_addr_index : DW_OP_addr;
3677 /* Return a pointer to a newly allocated address location description. If
3678 dwarf_split_debug_info is true, then record the address with the appropriate
3679 relocation. */
3680 static inline dw_loc_descr_ref
3681 new_addr_loc_descr (rtx addr, enum dtprel_bool dtprel)
3683 dw_loc_descr_ref ref = new_loc_descr (dw_addr_op (dtprel), 0, 0);
3685 ref->dw_loc_oprnd1.val_class = dw_val_class_addr;
3686 ref->dw_loc_oprnd1.v.val_addr = addr;
3687 ref->dtprel = dtprel;
3688 if (dwarf_split_debug_info)
3689 ref->dw_loc_oprnd1.val_entry
3690 = add_addr_table_entry (addr,
3691 dtprel ? ate_kind_rtx_dtprel : ate_kind_rtx);
3692 else
3693 ref->dw_loc_oprnd1.val_entry = NULL;
3695 return ref;
3698 /* Section names used to hold DWARF debugging information. */
3700 #ifndef DEBUG_INFO_SECTION
3701 #define DEBUG_INFO_SECTION ".debug_info"
3702 #endif
3703 #ifndef DEBUG_DWO_INFO_SECTION
3704 #define DEBUG_DWO_INFO_SECTION ".debug_info.dwo"
3705 #endif
3706 #ifndef DEBUG_LTO_DWO_INFO_SECTION
3707 #define DEBUG_LTO_DWO_INFO_SECTION ".gnu.debuglto_.debug_info.dwo"
3708 #endif
3709 #ifndef DEBUG_LTO_INFO_SECTION
3710 #define DEBUG_LTO_INFO_SECTION ".gnu.debuglto_.debug_info"
3711 #endif
3712 #ifndef DEBUG_ABBREV_SECTION
3713 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3714 #endif
3715 #ifndef DEBUG_DWO_ABBREV_SECTION
3716 #define DEBUG_DWO_ABBREV_SECTION ".debug_abbrev.dwo"
3717 #endif
3718 #ifndef DEBUG_LTO_DWO_ABBREV_SECTION
3719 #define DEBUG_LTO_DWO_ABBREV_SECTION ".gnu.debuglto_.debug_abbrev.dwo"
3720 #endif
3721 #ifndef DEBUG_LTO_ABBREV_SECTION
3722 #define DEBUG_LTO_ABBREV_SECTION ".gnu.debuglto_.debug_abbrev"
3723 #endif
3724 #ifndef DEBUG_ARANGES_SECTION
3725 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3726 #endif
3727 #ifndef DEBUG_ADDR_SECTION
3728 #define DEBUG_ADDR_SECTION ".debug_addr"
3729 #endif
3730 #ifndef DEBUG_MACINFO_SECTION
3731 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3732 #endif
3733 #ifndef DEBUG_DWO_MACINFO_SECTION
3734 #define DEBUG_DWO_MACINFO_SECTION ".debug_macinfo.dwo"
3735 #endif
3736 #ifndef DEBUG_LTO_DWO_MACINFO_SECTION
3737 #define DEBUG_LTO_DWO_MACINFO_SECTION ".gnu.debuglto_.debug_macinfo.dwo"
3738 #endif
3739 #ifndef DEBUG_LTO_MACINFO_SECTION
3740 #define DEBUG_LTO_MACINFO_SECTION ".gnu.debuglto_.debug_macinfo"
3741 #endif
3742 #ifndef DEBUG_DWO_MACRO_SECTION
3743 #define DEBUG_DWO_MACRO_SECTION ".debug_macro.dwo"
3744 #endif
3745 #ifndef DEBUG_MACRO_SECTION
3746 #define DEBUG_MACRO_SECTION ".debug_macro"
3747 #endif
3748 #ifndef DEBUG_LTO_DWO_MACRO_SECTION
3749 #define DEBUG_LTO_DWO_MACRO_SECTION ".gnu.debuglto_.debug_macro.dwo"
3750 #endif
3751 #ifndef DEBUG_LTO_MACRO_SECTION
3752 #define DEBUG_LTO_MACRO_SECTION ".gnu.debuglto_.debug_macro"
3753 #endif
3754 #ifndef DEBUG_LINE_SECTION
3755 #define DEBUG_LINE_SECTION ".debug_line"
3756 #endif
3757 #ifndef DEBUG_DWO_LINE_SECTION
3758 #define DEBUG_DWO_LINE_SECTION ".debug_line.dwo"
3759 #endif
3760 #ifndef DEBUG_LTO_LINE_SECTION
3761 #define DEBUG_LTO_LINE_SECTION ".gnu.debuglto_.debug_line.dwo"
3762 #endif
3763 #ifndef DEBUG_LOC_SECTION
3764 #define DEBUG_LOC_SECTION ".debug_loc"
3765 #endif
3766 #ifndef DEBUG_DWO_LOC_SECTION
3767 #define DEBUG_DWO_LOC_SECTION ".debug_loc.dwo"
3768 #endif
3769 #ifndef DEBUG_LOCLISTS_SECTION
3770 #define DEBUG_LOCLISTS_SECTION ".debug_loclists"
3771 #endif
3772 #ifndef DEBUG_DWO_LOCLISTS_SECTION
3773 #define DEBUG_DWO_LOCLISTS_SECTION ".debug_loclists.dwo"
3774 #endif
3775 #ifndef DEBUG_PUBNAMES_SECTION
3776 #define DEBUG_PUBNAMES_SECTION \
3777 ((debug_generate_pub_sections == 2) \
3778 ? ".debug_gnu_pubnames" : ".debug_pubnames")
3779 #endif
3780 #ifndef DEBUG_PUBTYPES_SECTION
3781 #define DEBUG_PUBTYPES_SECTION \
3782 ((debug_generate_pub_sections == 2) \
3783 ? ".debug_gnu_pubtypes" : ".debug_pubtypes")
3784 #endif
3785 #ifndef DEBUG_STR_OFFSETS_SECTION
3786 #define DEBUG_STR_OFFSETS_SECTION ".debug_str_offsets"
3787 #endif
3788 #ifndef DEBUG_DWO_STR_OFFSETS_SECTION
3789 #define DEBUG_DWO_STR_OFFSETS_SECTION ".debug_str_offsets.dwo"
3790 #endif
3791 #ifndef DEBUG_LTO_DWO_STR_OFFSETS_SECTION
3792 #define DEBUG_LTO_DWO_STR_OFFSETS_SECTION ".gnu.debuglto_.debug_str_offsets.dwo"
3793 #endif
3794 #ifndef DEBUG_STR_DWO_SECTION
3795 #define DEBUG_STR_DWO_SECTION ".debug_str.dwo"
3796 #endif
3797 #ifndef DEBUG_LTO_STR_DWO_SECTION
3798 #define DEBUG_LTO_STR_DWO_SECTION ".gnu.debuglto_.debug_str.dwo"
3799 #endif
3800 #ifndef DEBUG_STR_SECTION
3801 #define DEBUG_STR_SECTION ".debug_str"
3802 #endif
3803 #ifndef DEBUG_LTO_STR_SECTION
3804 #define DEBUG_LTO_STR_SECTION ".gnu.debuglto_.debug_str"
3805 #endif
3806 #ifndef DEBUG_RANGES_SECTION
3807 #define DEBUG_RANGES_SECTION ".debug_ranges"
3808 #endif
3809 #ifndef DEBUG_RNGLISTS_SECTION
3810 #define DEBUG_RNGLISTS_SECTION ".debug_rnglists"
3811 #endif
3812 #ifndef DEBUG_LINE_STR_SECTION
3813 #define DEBUG_LINE_STR_SECTION ".debug_line_str"
3814 #endif
3816 /* Standard ELF section names for compiled code and data. */
3817 #ifndef TEXT_SECTION_NAME
3818 #define TEXT_SECTION_NAME ".text"
3819 #endif
3821 /* Section flags for .debug_str section. */
3822 #define DEBUG_STR_SECTION_FLAGS \
3823 (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \
3824 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3825 : SECTION_DEBUG)
3827 /* Section flags for .debug_str.dwo section. */
3828 #define DEBUG_STR_DWO_SECTION_FLAGS (SECTION_DEBUG | SECTION_EXCLUDE)
3830 /* Attribute used to refer to the macro section. */
3831 #define DEBUG_MACRO_ATTRIBUTE (dwarf_version >= 5 ? DW_AT_macros \
3832 : dwarf_strict ? DW_AT_macro_info : DW_AT_GNU_macros)
3834 /* Labels we insert at beginning sections we can reference instead of
3835 the section names themselves. */
3837 #ifndef TEXT_SECTION_LABEL
3838 #define TEXT_SECTION_LABEL "Ltext"
3839 #endif
3840 #ifndef COLD_TEXT_SECTION_LABEL
3841 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
3842 #endif
3843 #ifndef DEBUG_LINE_SECTION_LABEL
3844 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3845 #endif
3846 #ifndef DEBUG_SKELETON_LINE_SECTION_LABEL
3847 #define DEBUG_SKELETON_LINE_SECTION_LABEL "Lskeleton_debug_line"
3848 #endif
3849 #ifndef DEBUG_INFO_SECTION_LABEL
3850 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3851 #endif
3852 #ifndef DEBUG_SKELETON_INFO_SECTION_LABEL
3853 #define DEBUG_SKELETON_INFO_SECTION_LABEL "Lskeleton_debug_info"
3854 #endif
3855 #ifndef DEBUG_ABBREV_SECTION_LABEL
3856 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3857 #endif
3858 #ifndef DEBUG_SKELETON_ABBREV_SECTION_LABEL
3859 #define DEBUG_SKELETON_ABBREV_SECTION_LABEL "Lskeleton_debug_abbrev"
3860 #endif
3861 #ifndef DEBUG_ADDR_SECTION_LABEL
3862 #define DEBUG_ADDR_SECTION_LABEL "Ldebug_addr"
3863 #endif
3864 #ifndef DEBUG_LOC_SECTION_LABEL
3865 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3866 #endif
3867 #ifndef DEBUG_RANGES_SECTION_LABEL
3868 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3869 #endif
3870 #ifndef DEBUG_MACINFO_SECTION_LABEL
3871 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3872 #endif
3873 #ifndef DEBUG_MACRO_SECTION_LABEL
3874 #define DEBUG_MACRO_SECTION_LABEL "Ldebug_macro"
3875 #endif
3876 #define SKELETON_COMP_DIE_ABBREV 1
3877 #define SKELETON_TYPE_DIE_ABBREV 2
3879 /* Definitions of defaults for formats and names of various special
3880 (artificial) labels which may be generated within this file (when the -g
3881 options is used and DWARF2_DEBUGGING_INFO is in effect.
3882 If necessary, these may be overridden from within the tm.h file, but
3883 typically, overriding these defaults is unnecessary. */
3885 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3886 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3887 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3888 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3889 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3890 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3891 static char debug_skeleton_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3892 static char debug_skeleton_abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3893 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3894 static char debug_addr_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3895 static char debug_skeleton_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3896 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3897 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3898 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3899 static char ranges_base_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3901 #ifndef TEXT_END_LABEL
3902 #define TEXT_END_LABEL "Letext"
3903 #endif
3904 #ifndef COLD_END_LABEL
3905 #define COLD_END_LABEL "Letext_cold"
3906 #endif
3907 #ifndef BLOCK_BEGIN_LABEL
3908 #define BLOCK_BEGIN_LABEL "LBB"
3909 #endif
3910 #ifndef BLOCK_END_LABEL
3911 #define BLOCK_END_LABEL "LBE"
3912 #endif
3913 #ifndef LINE_CODE_LABEL
3914 #define LINE_CODE_LABEL "LM"
3915 #endif
3918 /* Return the root of the DIE's built for the current compilation unit. */
3919 static dw_die_ref
3920 comp_unit_die (void)
3922 if (!single_comp_unit_die)
3923 single_comp_unit_die = gen_compile_unit_die (NULL);
3924 return single_comp_unit_die;
3927 /* We allow a language front-end to designate a function that is to be
3928 called to "demangle" any name before it is put into a DIE. */
3930 static const char *(*demangle_name_func) (const char *);
3932 void
3933 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3935 demangle_name_func = func;
3938 /* Test if rtl node points to a pseudo register. */
3940 static inline int
3941 is_pseudo_reg (const_rtx rtl)
3943 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3944 || (GET_CODE (rtl) == SUBREG
3945 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3948 /* Return a reference to a type, with its const and volatile qualifiers
3949 removed. */
3951 static inline tree
3952 type_main_variant (tree type)
3954 type = TYPE_MAIN_VARIANT (type);
3956 /* ??? There really should be only one main variant among any group of
3957 variants of a given type (and all of the MAIN_VARIANT values for all
3958 members of the group should point to that one type) but sometimes the C
3959 front-end messes this up for array types, so we work around that bug
3960 here. */
3961 if (TREE_CODE (type) == ARRAY_TYPE)
3962 while (type != TYPE_MAIN_VARIANT (type))
3963 type = TYPE_MAIN_VARIANT (type);
3965 return type;
3968 /* Return nonzero if the given type node represents a tagged type. */
3970 static inline int
3971 is_tagged_type (const_tree type)
3973 enum tree_code code = TREE_CODE (type);
3975 return (code == RECORD_TYPE || code == UNION_TYPE
3976 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3979 /* Set label to debug_info_section_label + die_offset of a DIE reference. */
3981 static void
3982 get_ref_die_offset_label (char *label, dw_die_ref ref)
3984 sprintf (label, "%s+%ld", debug_info_section_label, ref->die_offset);
3987 /* Return die_offset of a DIE reference to a base type. */
3989 static unsigned long int
3990 get_base_type_offset (dw_die_ref ref)
3992 if (ref->die_offset)
3993 return ref->die_offset;
3994 if (comp_unit_die ()->die_abbrev)
3996 calc_base_type_die_sizes ();
3997 gcc_assert (ref->die_offset);
3999 return ref->die_offset;
4002 /* Return die_offset of a DIE reference other than base type. */
4004 static unsigned long int
4005 get_ref_die_offset (dw_die_ref ref)
4007 gcc_assert (ref->die_offset);
4008 return ref->die_offset;
4011 /* Convert a DIE tag into its string name. */
4013 static const char *
4014 dwarf_tag_name (unsigned int tag)
4016 const char *name = get_DW_TAG_name (tag);
4018 if (name != NULL)
4019 return name;
4021 return "DW_TAG_<unknown>";
4024 /* Convert a DWARF attribute code into its string name. */
4026 static const char *
4027 dwarf_attr_name (unsigned int attr)
4029 const char *name;
4031 switch (attr)
4033 #if VMS_DEBUGGING_INFO
4034 case DW_AT_HP_prologue:
4035 return "DW_AT_HP_prologue";
4036 #else
4037 case DW_AT_MIPS_loop_unroll_factor:
4038 return "DW_AT_MIPS_loop_unroll_factor";
4039 #endif
4041 #if VMS_DEBUGGING_INFO
4042 case DW_AT_HP_epilogue:
4043 return "DW_AT_HP_epilogue";
4044 #else
4045 case DW_AT_MIPS_stride:
4046 return "DW_AT_MIPS_stride";
4047 #endif
4050 name = get_DW_AT_name (attr);
4052 if (name != NULL)
4053 return name;
4055 return "DW_AT_<unknown>";
4058 /* Convert a DWARF value form code into its string name. */
4060 static const char *
4061 dwarf_form_name (unsigned int form)
4063 const char *name = get_DW_FORM_name (form);
4065 if (name != NULL)
4066 return name;
4068 return "DW_FORM_<unknown>";
4071 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4072 instance of an inlined instance of a decl which is local to an inline
4073 function, so we have to trace all of the way back through the origin chain
4074 to find out what sort of node actually served as the original seed for the
4075 given block. */
4077 static tree
4078 decl_ultimate_origin (const_tree decl)
4080 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4081 return NULL_TREE;
4083 /* DECL_ABSTRACT_ORIGIN can point to itself; ignore that if
4084 we're trying to output the abstract instance of this function. */
4085 if (DECL_ABSTRACT_P (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4086 return NULL_TREE;
4088 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4089 most distant ancestor, this should never happen. */
4090 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4092 return DECL_ABSTRACT_ORIGIN (decl);
4095 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4096 of a virtual function may refer to a base class, so we check the 'this'
4097 parameter. */
4099 static tree
4100 decl_class_context (tree decl)
4102 tree context = NULL_TREE;
4104 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4105 context = DECL_CONTEXT (decl);
4106 else
4107 context = TYPE_MAIN_VARIANT
4108 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4110 if (context && !TYPE_P (context))
4111 context = NULL_TREE;
4113 return context;
4116 /* Add an attribute/value pair to a DIE. */
4118 static inline void
4119 add_dwarf_attr (dw_die_ref die, dw_attr_node *attr)
4121 /* Maybe this should be an assert? */
4122 if (die == NULL)
4123 return;
4125 if (flag_checking)
4127 /* Check we do not add duplicate attrs. Can't use get_AT here
4128 because that recurses to the specification/abstract origin DIE. */
4129 dw_attr_node *a;
4130 unsigned ix;
4131 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
4132 gcc_assert (a->dw_attr != attr->dw_attr);
4135 vec_safe_reserve (die->die_attr, 1);
4136 vec_safe_push (die->die_attr, *attr);
4139 static inline enum dw_val_class
4140 AT_class (dw_attr_node *a)
4142 return a->dw_attr_val.val_class;
4145 /* Return the index for any attribute that will be referenced with a
4146 DW_FORM_GNU_addr_index or DW_FORM_GNU_str_index. String indices
4147 are stored in dw_attr_val.v.val_str for reference counting
4148 pruning. */
4150 static inline unsigned int
4151 AT_index (dw_attr_node *a)
4153 if (AT_class (a) == dw_val_class_str)
4154 return a->dw_attr_val.v.val_str->index;
4155 else if (a->dw_attr_val.val_entry != NULL)
4156 return a->dw_attr_val.val_entry->index;
4157 return NOT_INDEXED;
4160 /* Add a flag value attribute to a DIE. */
4162 static inline void
4163 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4165 dw_attr_node attr;
4167 attr.dw_attr = attr_kind;
4168 attr.dw_attr_val.val_class = dw_val_class_flag;
4169 attr.dw_attr_val.val_entry = NULL;
4170 attr.dw_attr_val.v.val_flag = flag;
4171 add_dwarf_attr (die, &attr);
4174 static inline unsigned
4175 AT_flag (dw_attr_node *a)
4177 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4178 return a->dw_attr_val.v.val_flag;
4181 /* Add a signed integer attribute value to a DIE. */
4183 static inline void
4184 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4186 dw_attr_node attr;
4188 attr.dw_attr = attr_kind;
4189 attr.dw_attr_val.val_class = dw_val_class_const;
4190 attr.dw_attr_val.val_entry = NULL;
4191 attr.dw_attr_val.v.val_int = int_val;
4192 add_dwarf_attr (die, &attr);
4195 static inline HOST_WIDE_INT
4196 AT_int (dw_attr_node *a)
4198 gcc_assert (a && (AT_class (a) == dw_val_class_const
4199 || AT_class (a) == dw_val_class_const_implicit));
4200 return a->dw_attr_val.v.val_int;
4203 /* Add an unsigned integer attribute value to a DIE. */
4205 static inline void
4206 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4207 unsigned HOST_WIDE_INT unsigned_val)
4209 dw_attr_node attr;
4211 attr.dw_attr = attr_kind;
4212 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4213 attr.dw_attr_val.val_entry = NULL;
4214 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4215 add_dwarf_attr (die, &attr);
4218 static inline unsigned HOST_WIDE_INT
4219 AT_unsigned (dw_attr_node *a)
4221 gcc_assert (a && (AT_class (a) == dw_val_class_unsigned_const
4222 || AT_class (a) == dw_val_class_unsigned_const_implicit));
4223 return a->dw_attr_val.v.val_unsigned;
4226 /* Add an unsigned wide integer attribute value to a DIE. */
4228 static inline void
4229 add_AT_wide (dw_die_ref die, enum dwarf_attribute attr_kind,
4230 const wide_int& w)
4232 dw_attr_node attr;
4234 attr.dw_attr = attr_kind;
4235 attr.dw_attr_val.val_class = dw_val_class_wide_int;
4236 attr.dw_attr_val.val_entry = NULL;
4237 attr.dw_attr_val.v.val_wide = ggc_alloc<wide_int> ();
4238 *attr.dw_attr_val.v.val_wide = w;
4239 add_dwarf_attr (die, &attr);
4242 /* Add an unsigned double integer attribute value to a DIE. */
4244 static inline void
4245 add_AT_double (dw_die_ref die, enum dwarf_attribute attr_kind,
4246 HOST_WIDE_INT high, unsigned HOST_WIDE_INT low)
4248 dw_attr_node attr;
4250 attr.dw_attr = attr_kind;
4251 attr.dw_attr_val.val_class = dw_val_class_const_double;
4252 attr.dw_attr_val.val_entry = NULL;
4253 attr.dw_attr_val.v.val_double.high = high;
4254 attr.dw_attr_val.v.val_double.low = low;
4255 add_dwarf_attr (die, &attr);
4258 /* Add a floating point attribute value to a DIE and return it. */
4260 static inline void
4261 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4262 unsigned int length, unsigned int elt_size, unsigned char *array)
4264 dw_attr_node attr;
4266 attr.dw_attr = attr_kind;
4267 attr.dw_attr_val.val_class = dw_val_class_vec;
4268 attr.dw_attr_val.val_entry = NULL;
4269 attr.dw_attr_val.v.val_vec.length = length;
4270 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4271 attr.dw_attr_val.v.val_vec.array = array;
4272 add_dwarf_attr (die, &attr);
4275 /* Add an 8-byte data attribute value to a DIE. */
4277 static inline void
4278 add_AT_data8 (dw_die_ref die, enum dwarf_attribute attr_kind,
4279 unsigned char data8[8])
4281 dw_attr_node attr;
4283 attr.dw_attr = attr_kind;
4284 attr.dw_attr_val.val_class = dw_val_class_data8;
4285 attr.dw_attr_val.val_entry = NULL;
4286 memcpy (attr.dw_attr_val.v.val_data8, data8, 8);
4287 add_dwarf_attr (die, &attr);
4290 /* Add DW_AT_low_pc and DW_AT_high_pc to a DIE. When using
4291 dwarf_split_debug_info, address attributes in dies destined for the
4292 final executable have force_direct set to avoid using indexed
4293 references. */
4295 static inline void
4296 add_AT_low_high_pc (dw_die_ref die, const char *lbl_low, const char *lbl_high,
4297 bool force_direct)
4299 dw_attr_node attr;
4300 char * lbl_id;
4302 lbl_id = xstrdup (lbl_low);
4303 attr.dw_attr = DW_AT_low_pc;
4304 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4305 attr.dw_attr_val.v.val_lbl_id = lbl_id;
4306 if (dwarf_split_debug_info && !force_direct)
4307 attr.dw_attr_val.val_entry
4308 = add_addr_table_entry (lbl_id, ate_kind_label);
4309 else
4310 attr.dw_attr_val.val_entry = NULL;
4311 add_dwarf_attr (die, &attr);
4313 attr.dw_attr = DW_AT_high_pc;
4314 if (dwarf_version < 4)
4315 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4316 else
4317 attr.dw_attr_val.val_class = dw_val_class_high_pc;
4318 lbl_id = xstrdup (lbl_high);
4319 attr.dw_attr_val.v.val_lbl_id = lbl_id;
4320 if (attr.dw_attr_val.val_class == dw_val_class_lbl_id
4321 && dwarf_split_debug_info && !force_direct)
4322 attr.dw_attr_val.val_entry
4323 = add_addr_table_entry (lbl_id, ate_kind_label);
4324 else
4325 attr.dw_attr_val.val_entry = NULL;
4326 add_dwarf_attr (die, &attr);
4329 /* Hash and equality functions for debug_str_hash. */
4331 hashval_t
4332 indirect_string_hasher::hash (indirect_string_node *x)
4334 return htab_hash_string (x->str);
4337 bool
4338 indirect_string_hasher::equal (indirect_string_node *x1, const char *x2)
4340 return strcmp (x1->str, x2) == 0;
4343 /* Add STR to the given string hash table. */
4345 static struct indirect_string_node *
4346 find_AT_string_in_table (const char *str,
4347 hash_table<indirect_string_hasher> *table)
4349 struct indirect_string_node *node;
4351 indirect_string_node **slot
4352 = table->find_slot_with_hash (str, htab_hash_string (str), INSERT);
4353 if (*slot == NULL)
4355 node = ggc_cleared_alloc<indirect_string_node> ();
4356 node->str = ggc_strdup (str);
4357 *slot = node;
4359 else
4360 node = *slot;
4362 node->refcount++;
4363 return node;
4366 /* Add STR to the indirect string hash table. */
4368 static struct indirect_string_node *
4369 find_AT_string (const char *str)
4371 if (! debug_str_hash)
4372 debug_str_hash = hash_table<indirect_string_hasher>::create_ggc (10);
4374 return find_AT_string_in_table (str, debug_str_hash);
4377 /* Add a string attribute value to a DIE. */
4379 static inline void
4380 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4382 dw_attr_node attr;
4383 struct indirect_string_node *node;
4385 node = find_AT_string (str);
4387 attr.dw_attr = attr_kind;
4388 attr.dw_attr_val.val_class = dw_val_class_str;
4389 attr.dw_attr_val.val_entry = NULL;
4390 attr.dw_attr_val.v.val_str = node;
4391 add_dwarf_attr (die, &attr);
4394 static inline const char *
4395 AT_string (dw_attr_node *a)
4397 gcc_assert (a && AT_class (a) == dw_val_class_str);
4398 return a->dw_attr_val.v.val_str->str;
4401 /* Call this function directly to bypass AT_string_form's logic to put
4402 the string inline in the die. */
4404 static void
4405 set_indirect_string (struct indirect_string_node *node)
4407 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4408 /* Already indirect is a no op. */
4409 if (node->form == DW_FORM_strp
4410 || node->form == DW_FORM_line_strp
4411 || node->form == DW_FORM_GNU_str_index)
4413 gcc_assert (node->label);
4414 return;
4416 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4417 ++dw2_string_counter;
4418 node->label = xstrdup (label);
4420 if (!dwarf_split_debug_info)
4422 node->form = DW_FORM_strp;
4423 node->index = NOT_INDEXED;
4425 else
4427 node->form = DW_FORM_GNU_str_index;
4428 node->index = NO_INDEX_ASSIGNED;
4432 /* A helper function for dwarf2out_finish, called to reset indirect
4433 string decisions done for early LTO dwarf output before fat object
4434 dwarf output. */
4437 reset_indirect_string (indirect_string_node **h, void *)
4439 struct indirect_string_node *node = *h;
4440 if (node->form == DW_FORM_strp || node->form == DW_FORM_GNU_str_index)
4442 free (node->label);
4443 node->label = NULL;
4444 node->form = (dwarf_form) 0;
4445 node->index = 0;
4447 return 1;
4450 /* Find out whether a string should be output inline in DIE
4451 or out-of-line in .debug_str section. */
4453 static enum dwarf_form
4454 find_string_form (struct indirect_string_node *node)
4456 unsigned int len;
4458 if (node->form)
4459 return node->form;
4461 len = strlen (node->str) + 1;
4463 /* If the string is shorter or equal to the size of the reference, it is
4464 always better to put it inline. */
4465 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4466 return node->form = DW_FORM_string;
4468 /* If we cannot expect the linker to merge strings in .debug_str
4469 section, only put it into .debug_str if it is worth even in this
4470 single module. */
4471 if (DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
4472 || ((debug_str_section->common.flags & SECTION_MERGE) == 0
4473 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len))
4474 return node->form = DW_FORM_string;
4476 set_indirect_string (node);
4478 return node->form;
4481 /* Find out whether the string referenced from the attribute should be
4482 output inline in DIE or out-of-line in .debug_str section. */
4484 static enum dwarf_form
4485 AT_string_form (dw_attr_node *a)
4487 gcc_assert (a && AT_class (a) == dw_val_class_str);
4488 return find_string_form (a->dw_attr_val.v.val_str);
4491 /* Add a DIE reference attribute value to a DIE. */
4493 static inline void
4494 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4496 dw_attr_node attr;
4497 gcc_checking_assert (targ_die != NULL);
4499 /* With LTO we can end up trying to reference something we didn't create
4500 a DIE for. Avoid crashing later on a NULL referenced DIE. */
4501 if (targ_die == NULL)
4502 return;
4504 attr.dw_attr = attr_kind;
4505 attr.dw_attr_val.val_class = dw_val_class_die_ref;
4506 attr.dw_attr_val.val_entry = NULL;
4507 attr.dw_attr_val.v.val_die_ref.die = targ_die;
4508 attr.dw_attr_val.v.val_die_ref.external = 0;
4509 add_dwarf_attr (die, &attr);
4512 /* Change DIE reference REF to point to NEW_DIE instead. */
4514 static inline void
4515 change_AT_die_ref (dw_attr_node *ref, dw_die_ref new_die)
4517 gcc_assert (ref->dw_attr_val.val_class == dw_val_class_die_ref);
4518 ref->dw_attr_val.v.val_die_ref.die = new_die;
4519 ref->dw_attr_val.v.val_die_ref.external = 0;
4522 /* Add an AT_specification attribute to a DIE, and also make the back
4523 pointer from the specification to the definition. */
4525 static inline void
4526 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4528 add_AT_die_ref (die, DW_AT_specification, targ_die);
4529 gcc_assert (!targ_die->die_definition);
4530 targ_die->die_definition = die;
4533 static inline dw_die_ref
4534 AT_ref (dw_attr_node *a)
4536 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4537 return a->dw_attr_val.v.val_die_ref.die;
4540 static inline int
4541 AT_ref_external (dw_attr_node *a)
4543 if (a && AT_class (a) == dw_val_class_die_ref)
4544 return a->dw_attr_val.v.val_die_ref.external;
4546 return 0;
4549 static inline void
4550 set_AT_ref_external (dw_attr_node *a, int i)
4552 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4553 a->dw_attr_val.v.val_die_ref.external = i;
4556 /* Add an FDE reference attribute value to a DIE. */
4558 static inline void
4559 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4561 dw_attr_node attr;
4563 attr.dw_attr = attr_kind;
4564 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
4565 attr.dw_attr_val.val_entry = NULL;
4566 attr.dw_attr_val.v.val_fde_index = targ_fde;
4567 add_dwarf_attr (die, &attr);
4570 /* Add a location description attribute value to a DIE. */
4572 static inline void
4573 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4575 dw_attr_node attr;
4577 attr.dw_attr = attr_kind;
4578 attr.dw_attr_val.val_class = dw_val_class_loc;
4579 attr.dw_attr_val.val_entry = NULL;
4580 attr.dw_attr_val.v.val_loc = loc;
4581 add_dwarf_attr (die, &attr);
4584 static inline dw_loc_descr_ref
4585 AT_loc (dw_attr_node *a)
4587 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4588 return a->dw_attr_val.v.val_loc;
4591 static inline void
4592 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4594 dw_attr_node attr;
4596 if (XCOFF_DEBUGGING_INFO && !HAVE_XCOFF_DWARF_EXTRAS)
4597 return;
4599 attr.dw_attr = attr_kind;
4600 attr.dw_attr_val.val_class = dw_val_class_loc_list;
4601 attr.dw_attr_val.val_entry = NULL;
4602 attr.dw_attr_val.v.val_loc_list = loc_list;
4603 add_dwarf_attr (die, &attr);
4604 have_location_lists = true;
4607 static inline dw_loc_list_ref
4608 AT_loc_list (dw_attr_node *a)
4610 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4611 return a->dw_attr_val.v.val_loc_list;
4614 static inline dw_loc_list_ref *
4615 AT_loc_list_ptr (dw_attr_node *a)
4617 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4618 return &a->dw_attr_val.v.val_loc_list;
4621 struct addr_hasher : ggc_ptr_hash<addr_table_entry>
4623 static hashval_t hash (addr_table_entry *);
4624 static bool equal (addr_table_entry *, addr_table_entry *);
4627 /* Table of entries into the .debug_addr section. */
4629 static GTY (()) hash_table<addr_hasher> *addr_index_table;
4631 /* Hash an address_table_entry. */
4633 hashval_t
4634 addr_hasher::hash (addr_table_entry *a)
4636 inchash::hash hstate;
4637 switch (a->kind)
4639 case ate_kind_rtx:
4640 hstate.add_int (0);
4641 break;
4642 case ate_kind_rtx_dtprel:
4643 hstate.add_int (1);
4644 break;
4645 case ate_kind_label:
4646 return htab_hash_string (a->addr.label);
4647 default:
4648 gcc_unreachable ();
4650 inchash::add_rtx (a->addr.rtl, hstate);
4651 return hstate.end ();
4654 /* Determine equality for two address_table_entries. */
4656 bool
4657 addr_hasher::equal (addr_table_entry *a1, addr_table_entry *a2)
4659 if (a1->kind != a2->kind)
4660 return 0;
4661 switch (a1->kind)
4663 case ate_kind_rtx:
4664 case ate_kind_rtx_dtprel:
4665 return rtx_equal_p (a1->addr.rtl, a2->addr.rtl);
4666 case ate_kind_label:
4667 return strcmp (a1->addr.label, a2->addr.label) == 0;
4668 default:
4669 gcc_unreachable ();
4673 /* Initialize an addr_table_entry. */
4675 void
4676 init_addr_table_entry (addr_table_entry *e, enum ate_kind kind, void *addr)
4678 e->kind = kind;
4679 switch (kind)
4681 case ate_kind_rtx:
4682 case ate_kind_rtx_dtprel:
4683 e->addr.rtl = (rtx) addr;
4684 break;
4685 case ate_kind_label:
4686 e->addr.label = (char *) addr;
4687 break;
4689 e->refcount = 0;
4690 e->index = NO_INDEX_ASSIGNED;
4693 /* Add attr to the address table entry to the table. Defer setting an
4694 index until output time. */
4696 static addr_table_entry *
4697 add_addr_table_entry (void *addr, enum ate_kind kind)
4699 addr_table_entry *node;
4700 addr_table_entry finder;
4702 gcc_assert (dwarf_split_debug_info);
4703 if (! addr_index_table)
4704 addr_index_table = hash_table<addr_hasher>::create_ggc (10);
4705 init_addr_table_entry (&finder, kind, addr);
4706 addr_table_entry **slot = addr_index_table->find_slot (&finder, INSERT);
4708 if (*slot == HTAB_EMPTY_ENTRY)
4710 node = ggc_cleared_alloc<addr_table_entry> ();
4711 init_addr_table_entry (node, kind, addr);
4712 *slot = node;
4714 else
4715 node = *slot;
4717 node->refcount++;
4718 return node;
4721 /* Remove an entry from the addr table by decrementing its refcount.
4722 Strictly, decrementing the refcount would be enough, but the
4723 assertion that the entry is actually in the table has found
4724 bugs. */
4726 static void
4727 remove_addr_table_entry (addr_table_entry *entry)
4729 gcc_assert (dwarf_split_debug_info && addr_index_table);
4730 /* After an index is assigned, the table is frozen. */
4731 gcc_assert (entry->refcount > 0 && entry->index == NO_INDEX_ASSIGNED);
4732 entry->refcount--;
4735 /* Given a location list, remove all addresses it refers to from the
4736 address_table. */
4738 static void
4739 remove_loc_list_addr_table_entries (dw_loc_descr_ref descr)
4741 for (; descr; descr = descr->dw_loc_next)
4742 if (descr->dw_loc_oprnd1.val_entry != NULL)
4744 gcc_assert (descr->dw_loc_oprnd1.val_entry->index == NO_INDEX_ASSIGNED);
4745 remove_addr_table_entry (descr->dw_loc_oprnd1.val_entry);
4749 /* A helper function for dwarf2out_finish called through
4750 htab_traverse. Assign an addr_table_entry its index. All entries
4751 must be collected into the table when this function is called,
4752 because the indexing code relies on htab_traverse to traverse nodes
4753 in the same order for each run. */
4756 index_addr_table_entry (addr_table_entry **h, unsigned int *index)
4758 addr_table_entry *node = *h;
4760 /* Don't index unreferenced nodes. */
4761 if (node->refcount == 0)
4762 return 1;
4764 gcc_assert (node->index == NO_INDEX_ASSIGNED);
4765 node->index = *index;
4766 *index += 1;
4768 return 1;
4771 /* Add an address constant attribute value to a DIE. When using
4772 dwarf_split_debug_info, address attributes in dies destined for the
4773 final executable should be direct references--setting the parameter
4774 force_direct ensures this behavior. */
4776 static inline void
4777 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr,
4778 bool force_direct)
4780 dw_attr_node attr;
4782 attr.dw_attr = attr_kind;
4783 attr.dw_attr_val.val_class = dw_val_class_addr;
4784 attr.dw_attr_val.v.val_addr = addr;
4785 if (dwarf_split_debug_info && !force_direct)
4786 attr.dw_attr_val.val_entry = add_addr_table_entry (addr, ate_kind_rtx);
4787 else
4788 attr.dw_attr_val.val_entry = NULL;
4789 add_dwarf_attr (die, &attr);
4792 /* Get the RTX from to an address DIE attribute. */
4794 static inline rtx
4795 AT_addr (dw_attr_node *a)
4797 gcc_assert (a && AT_class (a) == dw_val_class_addr);
4798 return a->dw_attr_val.v.val_addr;
4801 /* Add a file attribute value to a DIE. */
4803 static inline void
4804 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
4805 struct dwarf_file_data *fd)
4807 dw_attr_node attr;
4809 attr.dw_attr = attr_kind;
4810 attr.dw_attr_val.val_class = dw_val_class_file;
4811 attr.dw_attr_val.val_entry = NULL;
4812 attr.dw_attr_val.v.val_file = fd;
4813 add_dwarf_attr (die, &attr);
4816 /* Get the dwarf_file_data from a file DIE attribute. */
4818 static inline struct dwarf_file_data *
4819 AT_file (dw_attr_node *a)
4821 gcc_assert (a && (AT_class (a) == dw_val_class_file
4822 || AT_class (a) == dw_val_class_file_implicit));
4823 return a->dw_attr_val.v.val_file;
4826 /* Add a vms delta attribute value to a DIE. */
4828 static inline void
4829 add_AT_vms_delta (dw_die_ref die, enum dwarf_attribute attr_kind,
4830 const char *lbl1, const char *lbl2)
4832 dw_attr_node attr;
4834 attr.dw_attr = attr_kind;
4835 attr.dw_attr_val.val_class = dw_val_class_vms_delta;
4836 attr.dw_attr_val.val_entry = NULL;
4837 attr.dw_attr_val.v.val_vms_delta.lbl1 = xstrdup (lbl1);
4838 attr.dw_attr_val.v.val_vms_delta.lbl2 = xstrdup (lbl2);
4839 add_dwarf_attr (die, &attr);
4842 /* Add a label identifier attribute value to a DIE. */
4844 static inline void
4845 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind,
4846 const char *lbl_id)
4848 dw_attr_node attr;
4850 attr.dw_attr = attr_kind;
4851 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4852 attr.dw_attr_val.val_entry = NULL;
4853 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4854 if (dwarf_split_debug_info)
4855 attr.dw_attr_val.val_entry
4856 = add_addr_table_entry (attr.dw_attr_val.v.val_lbl_id,
4857 ate_kind_label);
4858 add_dwarf_attr (die, &attr);
4861 /* Add a section offset attribute value to a DIE, an offset into the
4862 debug_line section. */
4864 static inline void
4865 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4866 const char *label)
4868 dw_attr_node attr;
4870 attr.dw_attr = attr_kind;
4871 attr.dw_attr_val.val_class = dw_val_class_lineptr;
4872 attr.dw_attr_val.val_entry = NULL;
4873 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4874 add_dwarf_attr (die, &attr);
4877 /* Add a section offset attribute value to a DIE, an offset into the
4878 debug_loclists section. */
4880 static inline void
4881 add_AT_loclistsptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4882 const char *label)
4884 dw_attr_node attr;
4886 attr.dw_attr = attr_kind;
4887 attr.dw_attr_val.val_class = dw_val_class_loclistsptr;
4888 attr.dw_attr_val.val_entry = NULL;
4889 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4890 add_dwarf_attr (die, &attr);
4893 /* Add a section offset attribute value to a DIE, an offset into the
4894 debug_macinfo section. */
4896 static inline void
4897 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4898 const char *label)
4900 dw_attr_node attr;
4902 attr.dw_attr = attr_kind;
4903 attr.dw_attr_val.val_class = dw_val_class_macptr;
4904 attr.dw_attr_val.val_entry = NULL;
4905 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4906 add_dwarf_attr (die, &attr);
4909 /* Add an offset attribute value to a DIE. */
4911 static inline void
4912 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4913 unsigned HOST_WIDE_INT offset)
4915 dw_attr_node attr;
4917 attr.dw_attr = attr_kind;
4918 attr.dw_attr_val.val_class = dw_val_class_offset;
4919 attr.dw_attr_val.val_entry = NULL;
4920 attr.dw_attr_val.v.val_offset = offset;
4921 add_dwarf_attr (die, &attr);
4924 /* Add a range_list attribute value to a DIE. When using
4925 dwarf_split_debug_info, address attributes in dies destined for the
4926 final executable should be direct references--setting the parameter
4927 force_direct ensures this behavior. */
4929 #define UNRELOCATED_OFFSET ((addr_table_entry *) 1)
4930 #define RELOCATED_OFFSET (NULL)
4932 static void
4933 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4934 long unsigned int offset, bool force_direct)
4936 dw_attr_node attr;
4938 attr.dw_attr = attr_kind;
4939 attr.dw_attr_val.val_class = dw_val_class_range_list;
4940 /* For the range_list attribute, use val_entry to store whether the
4941 offset should follow split-debug-info or normal semantics. This
4942 value is read in output_range_list_offset. */
4943 if (dwarf_split_debug_info && !force_direct)
4944 attr.dw_attr_val.val_entry = UNRELOCATED_OFFSET;
4945 else
4946 attr.dw_attr_val.val_entry = RELOCATED_OFFSET;
4947 attr.dw_attr_val.v.val_offset = offset;
4948 add_dwarf_attr (die, &attr);
4951 /* Return the start label of a delta attribute. */
4953 static inline const char *
4954 AT_vms_delta1 (dw_attr_node *a)
4956 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
4957 return a->dw_attr_val.v.val_vms_delta.lbl1;
4960 /* Return the end label of a delta attribute. */
4962 static inline const char *
4963 AT_vms_delta2 (dw_attr_node *a)
4965 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
4966 return a->dw_attr_val.v.val_vms_delta.lbl2;
4969 static inline const char *
4970 AT_lbl (dw_attr_node *a)
4972 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
4973 || AT_class (a) == dw_val_class_lineptr
4974 || AT_class (a) == dw_val_class_macptr
4975 || AT_class (a) == dw_val_class_loclistsptr
4976 || AT_class (a) == dw_val_class_high_pc));
4977 return a->dw_attr_val.v.val_lbl_id;
4980 /* Get the attribute of type attr_kind. */
4982 static dw_attr_node *
4983 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4985 dw_attr_node *a;
4986 unsigned ix;
4987 dw_die_ref spec = NULL;
4989 if (! die)
4990 return NULL;
4992 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
4993 if (a->dw_attr == attr_kind)
4994 return a;
4995 else if (a->dw_attr == DW_AT_specification
4996 || a->dw_attr == DW_AT_abstract_origin)
4997 spec = AT_ref (a);
4999 if (spec)
5000 return get_AT (spec, attr_kind);
5002 return NULL;
5005 /* Returns the parent of the declaration of DIE. */
5007 static dw_die_ref
5008 get_die_parent (dw_die_ref die)
5010 dw_die_ref t;
5012 if (!die)
5013 return NULL;
5015 if ((t = get_AT_ref (die, DW_AT_abstract_origin))
5016 || (t = get_AT_ref (die, DW_AT_specification)))
5017 die = t;
5019 return die->die_parent;
5022 /* Return the "low pc" attribute value, typically associated with a subprogram
5023 DIE. Return null if the "low pc" attribute is either not present, or if it
5024 cannot be represented as an assembler label identifier. */
5026 static inline const char *
5027 get_AT_low_pc (dw_die_ref die)
5029 dw_attr_node *a = get_AT (die, DW_AT_low_pc);
5031 return a ? AT_lbl (a) : NULL;
5034 /* Return the "high pc" attribute value, typically associated with a subprogram
5035 DIE. Return null if the "high pc" attribute is either not present, or if it
5036 cannot be represented as an assembler label identifier. */
5038 static inline const char *
5039 get_AT_hi_pc (dw_die_ref die)
5041 dw_attr_node *a = get_AT (die, DW_AT_high_pc);
5043 return a ? AT_lbl (a) : NULL;
5046 /* Return the value of the string attribute designated by ATTR_KIND, or
5047 NULL if it is not present. */
5049 static inline const char *
5050 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5052 dw_attr_node *a = get_AT (die, attr_kind);
5054 return a ? AT_string (a) : NULL;
5057 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5058 if it is not present. */
5060 static inline int
5061 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5063 dw_attr_node *a = get_AT (die, attr_kind);
5065 return a ? AT_flag (a) : 0;
5068 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5069 if it is not present. */
5071 static inline unsigned
5072 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5074 dw_attr_node *a = get_AT (die, attr_kind);
5076 return a ? AT_unsigned (a) : 0;
5079 static inline dw_die_ref
5080 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5082 dw_attr_node *a = get_AT (die, attr_kind);
5084 return a ? AT_ref (a) : NULL;
5087 static inline struct dwarf_file_data *
5088 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5090 dw_attr_node *a = get_AT (die, attr_kind);
5092 return a ? AT_file (a) : NULL;
5095 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
5097 static const_tree
5098 get_ultimate_context (const_tree decl)
5100 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
5102 if (TREE_CODE (decl) == BLOCK)
5103 decl = BLOCK_SUPERCONTEXT (decl);
5104 else
5105 decl = get_containing_scope (decl);
5107 return decl;
5110 /* Return TRUE if the language is C++. */
5112 static inline bool
5113 is_cxx (void)
5115 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
5117 return (lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus
5118 || lang == DW_LANG_C_plus_plus_11 || lang == DW_LANG_C_plus_plus_14);
5121 /* Return TRUE if DECL was created by the C++ frontend. */
5123 static bool
5124 is_cxx (const_tree decl)
5126 if (in_lto_p)
5128 const_tree context = get_ultimate_context (decl);
5129 if (context && TRANSLATION_UNIT_LANGUAGE (context))
5130 return strncmp (TRANSLATION_UNIT_LANGUAGE (context), "GNU C++", 7) == 0;
5132 return is_cxx ();
5135 /* Return TRUE if the language is Fortran. */
5137 static inline bool
5138 is_fortran (void)
5140 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
5142 return (lang == DW_LANG_Fortran77
5143 || lang == DW_LANG_Fortran90
5144 || lang == DW_LANG_Fortran95
5145 || lang == DW_LANG_Fortran03
5146 || lang == DW_LANG_Fortran08);
5149 static inline bool
5150 is_fortran (const_tree decl)
5152 if (in_lto_p)
5154 const_tree context = get_ultimate_context (decl);
5155 if (context && TRANSLATION_UNIT_LANGUAGE (context))
5156 return (strncmp (TRANSLATION_UNIT_LANGUAGE (context),
5157 "GNU Fortran", 11) == 0
5158 || strcmp (TRANSLATION_UNIT_LANGUAGE (context),
5159 "GNU F77") == 0);
5161 return is_fortran ();
5164 /* Return TRUE if the language is Ada. */
5166 static inline bool
5167 is_ada (void)
5169 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
5171 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5174 /* Remove the specified attribute if present. Return TRUE if removal
5175 was successful. */
5177 static bool
5178 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5180 dw_attr_node *a;
5181 unsigned ix;
5183 if (! die)
5184 return false;
5186 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
5187 if (a->dw_attr == attr_kind)
5189 if (AT_class (a) == dw_val_class_str)
5190 if (a->dw_attr_val.v.val_str->refcount)
5191 a->dw_attr_val.v.val_str->refcount--;
5193 /* vec::ordered_remove should help reduce the number of abbrevs
5194 that are needed. */
5195 die->die_attr->ordered_remove (ix);
5196 return true;
5198 return false;
5201 /* Remove CHILD from its parent. PREV must have the property that
5202 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5204 static void
5205 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5207 gcc_assert (child->die_parent == prev->die_parent);
5208 gcc_assert (prev->die_sib == child);
5209 if (prev == child)
5211 gcc_assert (child->die_parent->die_child == child);
5212 prev = NULL;
5214 else
5215 prev->die_sib = child->die_sib;
5216 if (child->die_parent->die_child == child)
5217 child->die_parent->die_child = prev;
5218 child->die_sib = NULL;
5221 /* Replace OLD_CHILD with NEW_CHILD. PREV must have the property that
5222 PREV->DIE_SIB == OLD_CHILD. Does not alter OLD_CHILD. */
5224 static void
5225 replace_child (dw_die_ref old_child, dw_die_ref new_child, dw_die_ref prev)
5227 dw_die_ref parent = old_child->die_parent;
5229 gcc_assert (parent == prev->die_parent);
5230 gcc_assert (prev->die_sib == old_child);
5232 new_child->die_parent = parent;
5233 if (prev == old_child)
5235 gcc_assert (parent->die_child == old_child);
5236 new_child->die_sib = new_child;
5238 else
5240 prev->die_sib = new_child;
5241 new_child->die_sib = old_child->die_sib;
5243 if (old_child->die_parent->die_child == old_child)
5244 old_child->die_parent->die_child = new_child;
5245 old_child->die_sib = NULL;
5248 /* Move all children from OLD_PARENT to NEW_PARENT. */
5250 static void
5251 move_all_children (dw_die_ref old_parent, dw_die_ref new_parent)
5253 dw_die_ref c;
5254 new_parent->die_child = old_parent->die_child;
5255 old_parent->die_child = NULL;
5256 FOR_EACH_CHILD (new_parent, c, c->die_parent = new_parent);
5259 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5260 matches TAG. */
5262 static void
5263 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5265 dw_die_ref c;
5267 c = die->die_child;
5268 if (c) do {
5269 dw_die_ref prev = c;
5270 c = c->die_sib;
5271 while (c->die_tag == tag)
5273 remove_child_with_prev (c, prev);
5274 c->die_parent = NULL;
5275 /* Might have removed every child. */
5276 if (die->die_child == NULL)
5277 return;
5278 c = prev->die_sib;
5280 } while (c != die->die_child);
5283 /* Add a CHILD_DIE as the last child of DIE. */
5285 static void
5286 add_child_die (dw_die_ref die, dw_die_ref child_die)
5288 /* FIXME this should probably be an assert. */
5289 if (! die || ! child_die)
5290 return;
5291 gcc_assert (die != child_die);
5293 child_die->die_parent = die;
5294 if (die->die_child)
5296 child_die->die_sib = die->die_child->die_sib;
5297 die->die_child->die_sib = child_die;
5299 else
5300 child_die->die_sib = child_die;
5301 die->die_child = child_die;
5304 /* Like add_child_die, but put CHILD_DIE after AFTER_DIE. */
5306 static void
5307 add_child_die_after (dw_die_ref die, dw_die_ref child_die,
5308 dw_die_ref after_die)
5310 gcc_assert (die
5311 && child_die
5312 && after_die
5313 && die->die_child
5314 && die != child_die);
5316 child_die->die_parent = die;
5317 child_die->die_sib = after_die->die_sib;
5318 after_die->die_sib = child_die;
5319 if (die->die_child == after_die)
5320 die->die_child = child_die;
5323 /* Unassociate CHILD from its parent, and make its parent be
5324 NEW_PARENT. */
5326 static void
5327 reparent_child (dw_die_ref child, dw_die_ref new_parent)
5329 for (dw_die_ref p = child->die_parent->die_child; ; p = p->die_sib)
5330 if (p->die_sib == child)
5332 remove_child_with_prev (child, p);
5333 break;
5335 add_child_die (new_parent, child);
5338 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5339 is the specification, to the end of PARENT's list of children.
5340 This is done by removing and re-adding it. */
5342 static void
5343 splice_child_die (dw_die_ref parent, dw_die_ref child)
5345 /* We want the declaration DIE from inside the class, not the
5346 specification DIE at toplevel. */
5347 if (child->die_parent != parent)
5349 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5351 if (tmp)
5352 child = tmp;
5355 gcc_assert (child->die_parent == parent
5356 || (child->die_parent
5357 == get_AT_ref (parent, DW_AT_specification)));
5359 reparent_child (child, parent);
5362 /* Create and return a new die with a parent of PARENT_DIE. If
5363 PARENT_DIE is NULL, the new DIE is placed in limbo and an
5364 associated tree T must be supplied to determine parenthood
5365 later. */
5367 static inline dw_die_ref
5368 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5370 dw_die_ref die = ggc_cleared_alloc<die_node> ();
5372 die->die_tag = tag_value;
5374 if (parent_die != NULL)
5375 add_child_die (parent_die, die);
5376 else
5378 limbo_die_node *limbo_node;
5380 /* No DIEs created after early dwarf should end up in limbo,
5381 because the limbo list should not persist past LTO
5382 streaming. */
5383 if (tag_value != DW_TAG_compile_unit
5384 /* These are allowed because they're generated while
5385 breaking out COMDAT units late. */
5386 && tag_value != DW_TAG_type_unit
5387 && tag_value != DW_TAG_skeleton_unit
5388 && !early_dwarf
5389 /* Allow nested functions to live in limbo because they will
5390 only temporarily live there, as decls_for_scope will fix
5391 them up. */
5392 && (TREE_CODE (t) != FUNCTION_DECL
5393 || !decl_function_context (t))
5394 /* Same as nested functions above but for types. Types that
5395 are local to a function will be fixed in
5396 decls_for_scope. */
5397 && (!RECORD_OR_UNION_TYPE_P (t)
5398 || !TYPE_CONTEXT (t)
5399 || TREE_CODE (TYPE_CONTEXT (t)) != FUNCTION_DECL)
5400 /* FIXME debug-early: Allow late limbo DIE creation for LTO,
5401 especially in the ltrans stage, but once we implement LTO
5402 dwarf streaming, we should remove this exception. */
5403 && !in_lto_p)
5405 fprintf (stderr, "symbol ended up in limbo too late:");
5406 debug_generic_stmt (t);
5407 gcc_unreachable ();
5410 limbo_node = ggc_cleared_alloc<limbo_die_node> ();
5411 limbo_node->die = die;
5412 limbo_node->created_for = t;
5413 limbo_node->next = limbo_die_list;
5414 limbo_die_list = limbo_node;
5417 return die;
5420 /* Return the DIE associated with the given type specifier. */
5422 static inline dw_die_ref
5423 lookup_type_die (tree type)
5425 dw_die_ref die = TYPE_SYMTAB_DIE (type);
5426 if (die && die->removed)
5428 TYPE_SYMTAB_DIE (type) = NULL;
5429 return NULL;
5431 return die;
5434 /* Given a TYPE_DIE representing the type TYPE, if TYPE is an
5435 anonymous type named by the typedef TYPE_DIE, return the DIE of the
5436 anonymous type instead the one of the naming typedef. */
5438 static inline dw_die_ref
5439 strip_naming_typedef (tree type, dw_die_ref type_die)
5441 if (type
5442 && TREE_CODE (type) == RECORD_TYPE
5443 && type_die
5444 && type_die->die_tag == DW_TAG_typedef
5445 && is_naming_typedef_decl (TYPE_NAME (type)))
5446 type_die = get_AT_ref (type_die, DW_AT_type);
5447 return type_die;
5450 /* Like lookup_type_die, but if type is an anonymous type named by a
5451 typedef[1], return the DIE of the anonymous type instead the one of
5452 the naming typedef. This is because in gen_typedef_die, we did
5453 equate the anonymous struct named by the typedef with the DIE of
5454 the naming typedef. So by default, lookup_type_die on an anonymous
5455 struct yields the DIE of the naming typedef.
5457 [1]: Read the comment of is_naming_typedef_decl to learn about what
5458 a naming typedef is. */
5460 static inline dw_die_ref
5461 lookup_type_die_strip_naming_typedef (tree type)
5463 dw_die_ref die = lookup_type_die (type);
5464 return strip_naming_typedef (type, die);
5467 /* Equate a DIE to a given type specifier. */
5469 static inline void
5470 equate_type_number_to_die (tree type, dw_die_ref type_die)
5472 TYPE_SYMTAB_DIE (type) = type_die;
5475 /* Returns a hash value for X (which really is a die_struct). */
5477 inline hashval_t
5478 decl_die_hasher::hash (die_node *x)
5480 return (hashval_t) x->decl_id;
5483 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5485 inline bool
5486 decl_die_hasher::equal (die_node *x, tree y)
5488 return (x->decl_id == DECL_UID (y));
5491 /* Return the DIE associated with a given declaration. */
5493 static inline dw_die_ref
5494 lookup_decl_die (tree decl)
5496 dw_die_ref *die = decl_die_table->find_slot_with_hash (decl, DECL_UID (decl),
5497 NO_INSERT);
5498 if (!die)
5499 return NULL;
5500 if ((*die)->removed)
5502 decl_die_table->clear_slot (die);
5503 return NULL;
5505 return *die;
5509 /* For DECL which might have early dwarf output query a SYMBOL + OFFSET
5510 style reference. Return true if we found one refering to a DIE for
5511 DECL, otherwise return false. */
5513 static bool
5514 dwarf2out_die_ref_for_decl (tree decl, const char **sym,
5515 unsigned HOST_WIDE_INT *off)
5517 dw_die_ref die;
5519 if (flag_wpa && !decl_die_table)
5520 return false;
5522 if (TREE_CODE (decl) == BLOCK)
5523 die = BLOCK_DIE (decl);
5524 else
5525 die = lookup_decl_die (decl);
5526 if (!die)
5527 return false;
5529 /* During WPA stage we currently use DIEs to store the
5530 decl <-> label + offset map. That's quite inefficient but it
5531 works for now. */
5532 if (flag_wpa)
5534 dw_die_ref ref = get_AT_ref (die, DW_AT_abstract_origin);
5535 if (!ref)
5537 gcc_assert (die == comp_unit_die ());
5538 return false;
5540 *off = ref->die_offset;
5541 *sym = ref->die_id.die_symbol;
5542 return true;
5545 /* Similar to get_ref_die_offset_label, but using the "correct"
5546 label. */
5547 *off = die->die_offset;
5548 while (die->die_parent)
5549 die = die->die_parent;
5550 /* For the containing CU DIE we compute a die_symbol in
5551 compute_comp_unit_symbol. */
5552 gcc_assert (die->die_tag == DW_TAG_compile_unit
5553 && die->die_id.die_symbol != NULL);
5554 *sym = die->die_id.die_symbol;
5555 return true;
5558 /* Add a reference of kind ATTR_KIND to a DIE at SYMBOL + OFFSET to DIE. */
5560 static void
5561 add_AT_external_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind,
5562 const char *symbol, HOST_WIDE_INT offset)
5564 /* Create a fake DIE that contains the reference. Don't use
5565 new_die because we don't want to end up in the limbo list. */
5566 dw_die_ref ref = ggc_cleared_alloc<die_node> ();
5567 ref->die_tag = die->die_tag;
5568 ref->die_id.die_symbol = IDENTIFIER_POINTER (get_identifier (symbol));
5569 ref->die_offset = offset;
5570 ref->with_offset = 1;
5571 add_AT_die_ref (die, attr_kind, ref);
5574 /* Create a DIE for DECL if required and add a reference to a DIE
5575 at SYMBOL + OFFSET which contains attributes dumped early. */
5577 static void
5578 dwarf2out_register_external_die (tree decl, const char *sym,
5579 unsigned HOST_WIDE_INT off)
5581 if (debug_info_level == DINFO_LEVEL_NONE)
5582 return;
5584 if (flag_wpa && !decl_die_table)
5585 decl_die_table = hash_table<decl_die_hasher>::create_ggc (1000);
5587 dw_die_ref die
5588 = TREE_CODE (decl) == BLOCK ? BLOCK_DIE (decl) : lookup_decl_die (decl);
5589 gcc_assert (!die);
5591 tree ctx;
5592 dw_die_ref parent = NULL;
5593 /* Need to lookup a DIE for the decls context - the containing
5594 function or translation unit. */
5595 if (TREE_CODE (decl) == BLOCK)
5597 ctx = BLOCK_SUPERCONTEXT (decl);
5598 /* ??? We do not output DIEs for all scopes thus skip as
5599 many DIEs as needed. */
5600 while (TREE_CODE (ctx) == BLOCK
5601 && !BLOCK_DIE (ctx))
5602 ctx = BLOCK_SUPERCONTEXT (ctx);
5604 else
5605 ctx = DECL_CONTEXT (decl);
5606 while (ctx && TYPE_P (ctx))
5607 ctx = TYPE_CONTEXT (ctx);
5608 if (ctx)
5610 if (TREE_CODE (ctx) == BLOCK)
5611 parent = BLOCK_DIE (ctx);
5612 else if (TREE_CODE (ctx) == TRANSLATION_UNIT_DECL
5613 /* Keep the 1:1 association during WPA. */
5614 && !flag_wpa)
5615 /* Otherwise all late annotations go to the main CU which
5616 imports the original CUs. */
5617 parent = comp_unit_die ();
5618 else if (TREE_CODE (ctx) == FUNCTION_DECL
5619 && TREE_CODE (decl) != PARM_DECL
5620 && TREE_CODE (decl) != BLOCK)
5621 /* Leave function local entities parent determination to when
5622 we process scope vars. */
5624 else
5625 parent = lookup_decl_die (ctx);
5627 else
5628 /* In some cases the FEs fail to set DECL_CONTEXT properly.
5629 Handle this case gracefully by globalizing stuff. */
5630 parent = comp_unit_die ();
5631 /* Create a DIE "stub". */
5632 switch (TREE_CODE (decl))
5634 case TRANSLATION_UNIT_DECL:
5635 if (! flag_wpa)
5637 die = comp_unit_die ();
5638 dw_die_ref import = new_die (DW_TAG_imported_unit, die, NULL_TREE);
5639 add_AT_external_die_ref (import, DW_AT_import, sym, off);
5640 /* We re-target all CU decls to the LTRANS CU DIE, so no need
5641 to create a DIE for the original CUs. */
5642 return;
5644 /* Keep the 1:1 association during WPA. */
5645 die = new_die (DW_TAG_compile_unit, NULL, decl);
5646 break;
5647 case NAMESPACE_DECL:
5648 if (is_fortran (decl))
5649 die = new_die (DW_TAG_module, parent, decl);
5650 else
5651 die = new_die (DW_TAG_namespace, parent, decl);
5652 break;
5653 case FUNCTION_DECL:
5654 die = new_die (DW_TAG_subprogram, parent, decl);
5655 break;
5656 case VAR_DECL:
5657 die = new_die (DW_TAG_variable, parent, decl);
5658 break;
5659 case RESULT_DECL:
5660 die = new_die (DW_TAG_variable, parent, decl);
5661 break;
5662 case PARM_DECL:
5663 die = new_die (DW_TAG_formal_parameter, parent, decl);
5664 break;
5665 case CONST_DECL:
5666 die = new_die (DW_TAG_constant, parent, decl);
5667 break;
5668 case LABEL_DECL:
5669 die = new_die (DW_TAG_label, parent, decl);
5670 break;
5671 case BLOCK:
5672 die = new_die (DW_TAG_lexical_block, parent, decl);
5673 break;
5674 default:
5675 gcc_unreachable ();
5677 if (TREE_CODE (decl) == BLOCK)
5678 BLOCK_DIE (decl) = die;
5679 else
5680 equate_decl_number_to_die (decl, die);
5682 /* Add a reference to the DIE providing early debug at $sym + off. */
5683 add_AT_external_die_ref (die, DW_AT_abstract_origin, sym, off);
5686 /* Returns a hash value for X (which really is a var_loc_list). */
5688 inline hashval_t
5689 decl_loc_hasher::hash (var_loc_list *x)
5691 return (hashval_t) x->decl_id;
5694 /* Return nonzero if decl_id of var_loc_list X is the same as
5695 UID of decl *Y. */
5697 inline bool
5698 decl_loc_hasher::equal (var_loc_list *x, const_tree y)
5700 return (x->decl_id == DECL_UID (y));
5703 /* Return the var_loc list associated with a given declaration. */
5705 static inline var_loc_list *
5706 lookup_decl_loc (const_tree decl)
5708 if (!decl_loc_table)
5709 return NULL;
5710 return decl_loc_table->find_with_hash (decl, DECL_UID (decl));
5713 /* Returns a hash value for X (which really is a cached_dw_loc_list_list). */
5715 inline hashval_t
5716 dw_loc_list_hasher::hash (cached_dw_loc_list *x)
5718 return (hashval_t) x->decl_id;
5721 /* Return nonzero if decl_id of cached_dw_loc_list X is the same as
5722 UID of decl *Y. */
5724 inline bool
5725 dw_loc_list_hasher::equal (cached_dw_loc_list *x, const_tree y)
5727 return (x->decl_id == DECL_UID (y));
5730 /* Equate a DIE to a particular declaration. */
5732 static void
5733 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5735 unsigned int decl_id = DECL_UID (decl);
5737 *decl_die_table->find_slot_with_hash (decl, decl_id, INSERT) = decl_die;
5738 decl_die->decl_id = decl_id;
5741 /* Return how many bits covers PIECE EXPR_LIST. */
5743 static HOST_WIDE_INT
5744 decl_piece_bitsize (rtx piece)
5746 int ret = (int) GET_MODE (piece);
5747 if (ret)
5748 return ret;
5749 gcc_assert (GET_CODE (XEXP (piece, 0)) == CONCAT
5750 && CONST_INT_P (XEXP (XEXP (piece, 0), 0)));
5751 return INTVAL (XEXP (XEXP (piece, 0), 0));
5754 /* Return pointer to the location of location note in PIECE EXPR_LIST. */
5756 static rtx *
5757 decl_piece_varloc_ptr (rtx piece)
5759 if ((int) GET_MODE (piece))
5760 return &XEXP (piece, 0);
5761 else
5762 return &XEXP (XEXP (piece, 0), 1);
5765 /* Create an EXPR_LIST for location note LOC_NOTE covering BITSIZE bits.
5766 Next is the chain of following piece nodes. */
5768 static rtx_expr_list *
5769 decl_piece_node (rtx loc_note, HOST_WIDE_INT bitsize, rtx next)
5771 if (bitsize > 0 && bitsize <= (int) MAX_MACHINE_MODE)
5772 return alloc_EXPR_LIST (bitsize, loc_note, next);
5773 else
5774 return alloc_EXPR_LIST (0, gen_rtx_CONCAT (VOIDmode,
5775 GEN_INT (bitsize),
5776 loc_note), next);
5779 /* Return rtx that should be stored into loc field for
5780 LOC_NOTE and BITPOS/BITSIZE. */
5782 static rtx
5783 construct_piece_list (rtx loc_note, HOST_WIDE_INT bitpos,
5784 HOST_WIDE_INT bitsize)
5786 if (bitsize != -1)
5788 loc_note = decl_piece_node (loc_note, bitsize, NULL_RTX);
5789 if (bitpos != 0)
5790 loc_note = decl_piece_node (NULL_RTX, bitpos, loc_note);
5792 return loc_note;
5795 /* This function either modifies location piece list *DEST in
5796 place (if SRC and INNER is NULL), or copies location piece list
5797 *SRC to *DEST while modifying it. Location BITPOS is modified
5798 to contain LOC_NOTE, any pieces overlapping it are removed resp.
5799 not copied and if needed some padding around it is added.
5800 When modifying in place, DEST should point to EXPR_LIST where
5801 earlier pieces cover PIECE_BITPOS bits, when copying SRC points
5802 to the start of the whole list and INNER points to the EXPR_LIST
5803 where earlier pieces cover PIECE_BITPOS bits. */
5805 static void
5806 adjust_piece_list (rtx *dest, rtx *src, rtx *inner,
5807 HOST_WIDE_INT bitpos, HOST_WIDE_INT piece_bitpos,
5808 HOST_WIDE_INT bitsize, rtx loc_note)
5810 HOST_WIDE_INT diff;
5811 bool copy = inner != NULL;
5813 if (copy)
5815 /* First copy all nodes preceding the current bitpos. */
5816 while (src != inner)
5818 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5819 decl_piece_bitsize (*src), NULL_RTX);
5820 dest = &XEXP (*dest, 1);
5821 src = &XEXP (*src, 1);
5824 /* Add padding if needed. */
5825 if (bitpos != piece_bitpos)
5827 *dest = decl_piece_node (NULL_RTX, bitpos - piece_bitpos,
5828 copy ? NULL_RTX : *dest);
5829 dest = &XEXP (*dest, 1);
5831 else if (*dest && decl_piece_bitsize (*dest) == bitsize)
5833 gcc_assert (!copy);
5834 /* A piece with correct bitpos and bitsize already exist,
5835 just update the location for it and return. */
5836 *decl_piece_varloc_ptr (*dest) = loc_note;
5837 return;
5839 /* Add the piece that changed. */
5840 *dest = decl_piece_node (loc_note, bitsize, copy ? NULL_RTX : *dest);
5841 dest = &XEXP (*dest, 1);
5842 /* Skip over pieces that overlap it. */
5843 diff = bitpos - piece_bitpos + bitsize;
5844 if (!copy)
5845 src = dest;
5846 while (diff > 0 && *src)
5848 rtx piece = *src;
5849 diff -= decl_piece_bitsize (piece);
5850 if (copy)
5851 src = &XEXP (piece, 1);
5852 else
5854 *src = XEXP (piece, 1);
5855 free_EXPR_LIST_node (piece);
5858 /* Add padding if needed. */
5859 if (diff < 0 && *src)
5861 if (!copy)
5862 dest = src;
5863 *dest = decl_piece_node (NULL_RTX, -diff, copy ? NULL_RTX : *dest);
5864 dest = &XEXP (*dest, 1);
5866 if (!copy)
5867 return;
5868 /* Finally copy all nodes following it. */
5869 while (*src)
5871 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5872 decl_piece_bitsize (*src), NULL_RTX);
5873 dest = &XEXP (*dest, 1);
5874 src = &XEXP (*src, 1);
5878 /* Add a variable location node to the linked list for DECL. */
5880 static struct var_loc_node *
5881 add_var_loc_to_decl (tree decl, rtx loc_note, const char *label)
5883 unsigned int decl_id;
5884 var_loc_list *temp;
5885 struct var_loc_node *loc = NULL;
5886 HOST_WIDE_INT bitsize = -1, bitpos = -1;
5888 if (VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
5890 tree realdecl = DECL_DEBUG_EXPR (decl);
5891 if (handled_component_p (realdecl)
5892 || (TREE_CODE (realdecl) == MEM_REF
5893 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5895 HOST_WIDE_INT maxsize;
5896 bool reverse;
5897 tree innerdecl
5898 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize, &maxsize,
5899 &reverse);
5900 if (!DECL_P (innerdecl)
5901 || DECL_IGNORED_P (innerdecl)
5902 || TREE_STATIC (innerdecl)
5903 || bitsize <= 0
5904 || bitpos + bitsize > 256
5905 || bitsize != maxsize)
5906 return NULL;
5907 decl = innerdecl;
5911 decl_id = DECL_UID (decl);
5912 var_loc_list **slot
5913 = decl_loc_table->find_slot_with_hash (decl, decl_id, INSERT);
5914 if (*slot == NULL)
5916 temp = ggc_cleared_alloc<var_loc_list> ();
5917 temp->decl_id = decl_id;
5918 *slot = temp;
5920 else
5921 temp = *slot;
5923 /* For PARM_DECLs try to keep around the original incoming value,
5924 even if that means we'll emit a zero-range .debug_loc entry. */
5925 if (temp->last
5926 && temp->first == temp->last
5927 && TREE_CODE (decl) == PARM_DECL
5928 && NOTE_P (temp->first->loc)
5929 && NOTE_VAR_LOCATION_DECL (temp->first->loc) == decl
5930 && DECL_INCOMING_RTL (decl)
5931 && NOTE_VAR_LOCATION_LOC (temp->first->loc)
5932 && GET_CODE (NOTE_VAR_LOCATION_LOC (temp->first->loc))
5933 == GET_CODE (DECL_INCOMING_RTL (decl))
5934 && prev_real_insn (as_a<rtx_insn *> (temp->first->loc)) == NULL_RTX
5935 && (bitsize != -1
5936 || !rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->first->loc),
5937 NOTE_VAR_LOCATION_LOC (loc_note))
5938 || (NOTE_VAR_LOCATION_STATUS (temp->first->loc)
5939 != NOTE_VAR_LOCATION_STATUS (loc_note))))
5941 loc = ggc_cleared_alloc<var_loc_node> ();
5942 temp->first->next = loc;
5943 temp->last = loc;
5944 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5946 else if (temp->last)
5948 struct var_loc_node *last = temp->last, *unused = NULL;
5949 rtx *piece_loc = NULL, last_loc_note;
5950 HOST_WIDE_INT piece_bitpos = 0;
5951 if (last->next)
5953 last = last->next;
5954 gcc_assert (last->next == NULL);
5956 if (bitsize != -1 && GET_CODE (last->loc) == EXPR_LIST)
5958 piece_loc = &last->loc;
5961 HOST_WIDE_INT cur_bitsize = decl_piece_bitsize (*piece_loc);
5962 if (piece_bitpos + cur_bitsize > bitpos)
5963 break;
5964 piece_bitpos += cur_bitsize;
5965 piece_loc = &XEXP (*piece_loc, 1);
5967 while (*piece_loc);
5969 /* TEMP->LAST here is either pointer to the last but one or
5970 last element in the chained list, LAST is pointer to the
5971 last element. */
5972 if (label && strcmp (last->label, label) == 0)
5974 /* For SRA optimized variables if there weren't any real
5975 insns since last note, just modify the last node. */
5976 if (piece_loc != NULL)
5978 adjust_piece_list (piece_loc, NULL, NULL,
5979 bitpos, piece_bitpos, bitsize, loc_note);
5980 return NULL;
5982 /* If the last note doesn't cover any instructions, remove it. */
5983 if (temp->last != last)
5985 temp->last->next = NULL;
5986 unused = last;
5987 last = temp->last;
5988 gcc_assert (strcmp (last->label, label) != 0);
5990 else
5992 gcc_assert (temp->first == temp->last
5993 || (temp->first->next == temp->last
5994 && TREE_CODE (decl) == PARM_DECL));
5995 memset (temp->last, '\0', sizeof (*temp->last));
5996 temp->last->loc = construct_piece_list (loc_note, bitpos, bitsize);
5997 return temp->last;
6000 if (bitsize == -1 && NOTE_P (last->loc))
6001 last_loc_note = last->loc;
6002 else if (piece_loc != NULL
6003 && *piece_loc != NULL_RTX
6004 && piece_bitpos == bitpos
6005 && decl_piece_bitsize (*piece_loc) == bitsize)
6006 last_loc_note = *decl_piece_varloc_ptr (*piece_loc);
6007 else
6008 last_loc_note = NULL_RTX;
6009 /* If the current location is the same as the end of the list,
6010 and either both or neither of the locations is uninitialized,
6011 we have nothing to do. */
6012 if (last_loc_note == NULL_RTX
6013 || (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (last_loc_note),
6014 NOTE_VAR_LOCATION_LOC (loc_note)))
6015 || ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
6016 != NOTE_VAR_LOCATION_STATUS (loc_note))
6017 && ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
6018 == VAR_INIT_STATUS_UNINITIALIZED)
6019 || (NOTE_VAR_LOCATION_STATUS (loc_note)
6020 == VAR_INIT_STATUS_UNINITIALIZED))))
6022 /* Add LOC to the end of list and update LAST. If the last
6023 element of the list has been removed above, reuse its
6024 memory for the new node, otherwise allocate a new one. */
6025 if (unused)
6027 loc = unused;
6028 memset (loc, '\0', sizeof (*loc));
6030 else
6031 loc = ggc_cleared_alloc<var_loc_node> ();
6032 if (bitsize == -1 || piece_loc == NULL)
6033 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
6034 else
6035 adjust_piece_list (&loc->loc, &last->loc, piece_loc,
6036 bitpos, piece_bitpos, bitsize, loc_note);
6037 last->next = loc;
6038 /* Ensure TEMP->LAST will point either to the new last but one
6039 element of the chain, or to the last element in it. */
6040 if (last != temp->last)
6041 temp->last = last;
6043 else if (unused)
6044 ggc_free (unused);
6046 else
6048 loc = ggc_cleared_alloc<var_loc_node> ();
6049 temp->first = loc;
6050 temp->last = loc;
6051 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
6053 return loc;
6056 /* Keep track of the number of spaces used to indent the
6057 output of the debugging routines that print the structure of
6058 the DIE internal representation. */
6059 static int print_indent;
6061 /* Indent the line the number of spaces given by print_indent. */
6063 static inline void
6064 print_spaces (FILE *outfile)
6066 fprintf (outfile, "%*s", print_indent, "");
6069 /* Print a type signature in hex. */
6071 static inline void
6072 print_signature (FILE *outfile, char *sig)
6074 int i;
6076 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
6077 fprintf (outfile, "%02x", sig[i] & 0xff);
6080 static inline void
6081 print_discr_value (FILE *outfile, dw_discr_value *discr_value)
6083 if (discr_value->pos)
6084 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, discr_value->v.sval);
6085 else
6086 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, discr_value->v.uval);
6089 static void print_loc_descr (dw_loc_descr_ref, FILE *);
6091 /* Print the value associated to the VAL DWARF value node to OUTFILE. If
6092 RECURSE, output location descriptor operations. */
6094 static void
6095 print_dw_val (dw_val_node *val, bool recurse, FILE *outfile)
6097 switch (val->val_class)
6099 case dw_val_class_addr:
6100 fprintf (outfile, "address");
6101 break;
6102 case dw_val_class_offset:
6103 fprintf (outfile, "offset");
6104 break;
6105 case dw_val_class_loc:
6106 fprintf (outfile, "location descriptor");
6107 if (val->v.val_loc == NULL)
6108 fprintf (outfile, " -> <null>\n");
6109 else if (recurse)
6111 fprintf (outfile, ":\n");
6112 print_indent += 4;
6113 print_loc_descr (val->v.val_loc, outfile);
6114 print_indent -= 4;
6116 else
6117 fprintf (outfile, " (%p)\n", (void *) val->v.val_loc);
6118 break;
6119 case dw_val_class_loc_list:
6120 fprintf (outfile, "location list -> label:%s",
6121 val->v.val_loc_list->ll_symbol);
6122 break;
6123 case dw_val_class_range_list:
6124 fprintf (outfile, "range list");
6125 break;
6126 case dw_val_class_const:
6127 case dw_val_class_const_implicit:
6128 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, val->v.val_int);
6129 break;
6130 case dw_val_class_unsigned_const:
6131 case dw_val_class_unsigned_const_implicit:
6132 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, val->v.val_unsigned);
6133 break;
6134 case dw_val_class_const_double:
6135 fprintf (outfile, "constant (" HOST_WIDE_INT_PRINT_DEC","\
6136 HOST_WIDE_INT_PRINT_UNSIGNED")",
6137 val->v.val_double.high,
6138 val->v.val_double.low);
6139 break;
6140 case dw_val_class_wide_int:
6142 int i = val->v.val_wide->get_len ();
6143 fprintf (outfile, "constant (");
6144 gcc_assert (i > 0);
6145 if (val->v.val_wide->elt (i - 1) == 0)
6146 fprintf (outfile, "0x");
6147 fprintf (outfile, HOST_WIDE_INT_PRINT_HEX,
6148 val->v.val_wide->elt (--i));
6149 while (--i >= 0)
6150 fprintf (outfile, HOST_WIDE_INT_PRINT_PADDED_HEX,
6151 val->v.val_wide->elt (i));
6152 fprintf (outfile, ")");
6153 break;
6155 case dw_val_class_vec:
6156 fprintf (outfile, "floating-point or vector constant");
6157 break;
6158 case dw_val_class_flag:
6159 fprintf (outfile, "%u", val->v.val_flag);
6160 break;
6161 case dw_val_class_die_ref:
6162 if (val->v.val_die_ref.die != NULL)
6164 dw_die_ref die = val->v.val_die_ref.die;
6166 if (die->comdat_type_p)
6168 fprintf (outfile, "die -> signature: ");
6169 print_signature (outfile,
6170 die->die_id.die_type_node->signature);
6172 else if (die->die_id.die_symbol)
6174 fprintf (outfile, "die -> label: %s", die->die_id.die_symbol);
6175 if (die->with_offset)
6176 fprintf (outfile, " + %ld", die->die_offset);
6178 else
6179 fprintf (outfile, "die -> %ld", die->die_offset);
6180 fprintf (outfile, " (%p)", (void *) die);
6182 else
6183 fprintf (outfile, "die -> <null>");
6184 break;
6185 case dw_val_class_vms_delta:
6186 fprintf (outfile, "delta: @slotcount(%s-%s)",
6187 val->v.val_vms_delta.lbl2, val->v.val_vms_delta.lbl1);
6188 break;
6189 case dw_val_class_lbl_id:
6190 case dw_val_class_lineptr:
6191 case dw_val_class_macptr:
6192 case dw_val_class_loclistsptr:
6193 case dw_val_class_high_pc:
6194 fprintf (outfile, "label: %s", val->v.val_lbl_id);
6195 break;
6196 case dw_val_class_str:
6197 if (val->v.val_str->str != NULL)
6198 fprintf (outfile, "\"%s\"", val->v.val_str->str);
6199 else
6200 fprintf (outfile, "<null>");
6201 break;
6202 case dw_val_class_file:
6203 case dw_val_class_file_implicit:
6204 fprintf (outfile, "\"%s\" (%d)", val->v.val_file->filename,
6205 val->v.val_file->emitted_number);
6206 break;
6207 case dw_val_class_data8:
6209 int i;
6211 for (i = 0; i < 8; i++)
6212 fprintf (outfile, "%02x", val->v.val_data8[i]);
6213 break;
6215 case dw_val_class_discr_value:
6216 print_discr_value (outfile, &val->v.val_discr_value);
6217 break;
6218 case dw_val_class_discr_list:
6219 for (dw_discr_list_ref node = val->v.val_discr_list;
6220 node != NULL;
6221 node = node->dw_discr_next)
6223 if (node->dw_discr_range)
6225 fprintf (outfile, " .. ");
6226 print_discr_value (outfile, &node->dw_discr_lower_bound);
6227 print_discr_value (outfile, &node->dw_discr_upper_bound);
6229 else
6230 print_discr_value (outfile, &node->dw_discr_lower_bound);
6232 if (node->dw_discr_next != NULL)
6233 fprintf (outfile, " | ");
6235 default:
6236 break;
6240 /* Likewise, for a DIE attribute. */
6242 static void
6243 print_attribute (dw_attr_node *a, bool recurse, FILE *outfile)
6245 print_dw_val (&a->dw_attr_val, recurse, outfile);
6249 /* Print the list of operands in the LOC location description to OUTFILE. This
6250 routine is a debugging aid only. */
6252 static void
6253 print_loc_descr (dw_loc_descr_ref loc, FILE *outfile)
6255 dw_loc_descr_ref l = loc;
6257 if (loc == NULL)
6259 print_spaces (outfile);
6260 fprintf (outfile, "<null>\n");
6261 return;
6264 for (l = loc; l != NULL; l = l->dw_loc_next)
6266 print_spaces (outfile);
6267 fprintf (outfile, "(%p) %s",
6268 (void *) l,
6269 dwarf_stack_op_name (l->dw_loc_opc));
6270 if (l->dw_loc_oprnd1.val_class != dw_val_class_none)
6272 fprintf (outfile, " ");
6273 print_dw_val (&l->dw_loc_oprnd1, false, outfile);
6275 if (l->dw_loc_oprnd2.val_class != dw_val_class_none)
6277 fprintf (outfile, ", ");
6278 print_dw_val (&l->dw_loc_oprnd2, false, outfile);
6280 fprintf (outfile, "\n");
6284 /* Print the information associated with a given DIE, and its children.
6285 This routine is a debugging aid only. */
6287 static void
6288 print_die (dw_die_ref die, FILE *outfile)
6290 dw_attr_node *a;
6291 dw_die_ref c;
6292 unsigned ix;
6294 print_spaces (outfile);
6295 fprintf (outfile, "DIE %4ld: %s (%p)\n",
6296 die->die_offset, dwarf_tag_name (die->die_tag),
6297 (void*) die);
6298 print_spaces (outfile);
6299 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
6300 fprintf (outfile, " offset: %ld", die->die_offset);
6301 fprintf (outfile, " mark: %d\n", die->die_mark);
6303 if (die->comdat_type_p)
6305 print_spaces (outfile);
6306 fprintf (outfile, " signature: ");
6307 print_signature (outfile, die->die_id.die_type_node->signature);
6308 fprintf (outfile, "\n");
6311 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6313 print_spaces (outfile);
6314 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
6316 print_attribute (a, true, outfile);
6317 fprintf (outfile, "\n");
6320 if (die->die_child != NULL)
6322 print_indent += 4;
6323 FOR_EACH_CHILD (die, c, print_die (c, outfile));
6324 print_indent -= 4;
6326 if (print_indent == 0)
6327 fprintf (outfile, "\n");
6330 /* Print the list of operations in the LOC location description. */
6332 DEBUG_FUNCTION void
6333 debug_dwarf_loc_descr (dw_loc_descr_ref loc)
6335 print_loc_descr (loc, stderr);
6338 /* Print the information collected for a given DIE. */
6340 DEBUG_FUNCTION void
6341 debug_dwarf_die (dw_die_ref die)
6343 print_die (die, stderr);
6346 DEBUG_FUNCTION void
6347 debug (die_struct &ref)
6349 print_die (&ref, stderr);
6352 DEBUG_FUNCTION void
6353 debug (die_struct *ptr)
6355 if (ptr)
6356 debug (*ptr);
6357 else
6358 fprintf (stderr, "<nil>\n");
6362 /* Print all DWARF information collected for the compilation unit.
6363 This routine is a debugging aid only. */
6365 DEBUG_FUNCTION void
6366 debug_dwarf (void)
6368 print_indent = 0;
6369 print_die (comp_unit_die (), stderr);
6372 /* Verify the DIE tree structure. */
6374 DEBUG_FUNCTION void
6375 verify_die (dw_die_ref die)
6377 gcc_assert (!die->die_mark);
6378 if (die->die_parent == NULL
6379 && die->die_sib == NULL)
6380 return;
6381 /* Verify the die_sib list is cyclic. */
6382 dw_die_ref x = die;
6385 x->die_mark = 1;
6386 x = x->die_sib;
6388 while (x && !x->die_mark);
6389 gcc_assert (x == die);
6390 x = die;
6393 /* Verify all dies have the same parent. */
6394 gcc_assert (x->die_parent == die->die_parent);
6395 if (x->die_child)
6397 /* Verify the child has the proper parent and recurse. */
6398 gcc_assert (x->die_child->die_parent == x);
6399 verify_die (x->die_child);
6401 x->die_mark = 0;
6402 x = x->die_sib;
6404 while (x && x->die_mark);
6407 /* Sanity checks on DIEs. */
6409 static void
6410 check_die (dw_die_ref die)
6412 unsigned ix;
6413 dw_attr_node *a;
6414 bool inline_found = false;
6415 int n_location = 0, n_low_pc = 0, n_high_pc = 0, n_artificial = 0;
6416 int n_decl_line = 0, n_decl_column = 0, n_decl_file = 0;
6417 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6419 switch (a->dw_attr)
6421 case DW_AT_inline:
6422 if (a->dw_attr_val.v.val_unsigned)
6423 inline_found = true;
6424 break;
6425 case DW_AT_location:
6426 ++n_location;
6427 break;
6428 case DW_AT_low_pc:
6429 ++n_low_pc;
6430 break;
6431 case DW_AT_high_pc:
6432 ++n_high_pc;
6433 break;
6434 case DW_AT_artificial:
6435 ++n_artificial;
6436 break;
6437 case DW_AT_decl_column:
6438 ++n_decl_column;
6439 break;
6440 case DW_AT_decl_line:
6441 ++n_decl_line;
6442 break;
6443 case DW_AT_decl_file:
6444 ++n_decl_file;
6445 break;
6446 default:
6447 break;
6450 if (n_location > 1 || n_low_pc > 1 || n_high_pc > 1 || n_artificial > 1
6451 || n_decl_column > 1 || n_decl_line > 1 || n_decl_file > 1)
6453 fprintf (stderr, "Duplicate attributes in DIE:\n");
6454 debug_dwarf_die (die);
6455 gcc_unreachable ();
6457 if (inline_found)
6459 /* A debugging information entry that is a member of an abstract
6460 instance tree [that has DW_AT_inline] should not contain any
6461 attributes which describe aspects of the subroutine which vary
6462 between distinct inlined expansions or distinct out-of-line
6463 expansions. */
6464 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6465 gcc_assert (a->dw_attr != DW_AT_low_pc
6466 && a->dw_attr != DW_AT_high_pc
6467 && a->dw_attr != DW_AT_location
6468 && a->dw_attr != DW_AT_frame_base
6469 && a->dw_attr != DW_AT_call_all_calls
6470 && a->dw_attr != DW_AT_GNU_all_call_sites);
6474 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
6475 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
6476 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
6478 /* Calculate the checksum of a location expression. */
6480 static inline void
6481 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
6483 int tem;
6484 inchash::hash hstate;
6485 hashval_t hash;
6487 tem = (loc->dtprel << 8) | ((unsigned int) loc->dw_loc_opc);
6488 CHECKSUM (tem);
6489 hash_loc_operands (loc, hstate);
6490 hash = hstate.end();
6491 CHECKSUM (hash);
6494 /* Calculate the checksum of an attribute. */
6496 static void
6497 attr_checksum (dw_attr_node *at, struct md5_ctx *ctx, int *mark)
6499 dw_loc_descr_ref loc;
6500 rtx r;
6502 CHECKSUM (at->dw_attr);
6504 /* We don't care that this was compiled with a different compiler
6505 snapshot; if the output is the same, that's what matters. */
6506 if (at->dw_attr == DW_AT_producer)
6507 return;
6509 switch (AT_class (at))
6511 case dw_val_class_const:
6512 case dw_val_class_const_implicit:
6513 CHECKSUM (at->dw_attr_val.v.val_int);
6514 break;
6515 case dw_val_class_unsigned_const:
6516 case dw_val_class_unsigned_const_implicit:
6517 CHECKSUM (at->dw_attr_val.v.val_unsigned);
6518 break;
6519 case dw_val_class_const_double:
6520 CHECKSUM (at->dw_attr_val.v.val_double);
6521 break;
6522 case dw_val_class_wide_int:
6523 CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
6524 get_full_len (*at->dw_attr_val.v.val_wide)
6525 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
6526 break;
6527 case dw_val_class_vec:
6528 CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
6529 (at->dw_attr_val.v.val_vec.length
6530 * at->dw_attr_val.v.val_vec.elt_size));
6531 break;
6532 case dw_val_class_flag:
6533 CHECKSUM (at->dw_attr_val.v.val_flag);
6534 break;
6535 case dw_val_class_str:
6536 CHECKSUM_STRING (AT_string (at));
6537 break;
6539 case dw_val_class_addr:
6540 r = AT_addr (at);
6541 gcc_assert (GET_CODE (r) == SYMBOL_REF);
6542 CHECKSUM_STRING (XSTR (r, 0));
6543 break;
6545 case dw_val_class_offset:
6546 CHECKSUM (at->dw_attr_val.v.val_offset);
6547 break;
6549 case dw_val_class_loc:
6550 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
6551 loc_checksum (loc, ctx);
6552 break;
6554 case dw_val_class_die_ref:
6555 die_checksum (AT_ref (at), ctx, mark);
6556 break;
6558 case dw_val_class_fde_ref:
6559 case dw_val_class_vms_delta:
6560 case dw_val_class_lbl_id:
6561 case dw_val_class_lineptr:
6562 case dw_val_class_macptr:
6563 case dw_val_class_loclistsptr:
6564 case dw_val_class_high_pc:
6565 break;
6567 case dw_val_class_file:
6568 case dw_val_class_file_implicit:
6569 CHECKSUM_STRING (AT_file (at)->filename);
6570 break;
6572 case dw_val_class_data8:
6573 CHECKSUM (at->dw_attr_val.v.val_data8);
6574 break;
6576 default:
6577 break;
6581 /* Calculate the checksum of a DIE. */
6583 static void
6584 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6586 dw_die_ref c;
6587 dw_attr_node *a;
6588 unsigned ix;
6590 /* To avoid infinite recursion. */
6591 if (die->die_mark)
6593 CHECKSUM (die->die_mark);
6594 return;
6596 die->die_mark = ++(*mark);
6598 CHECKSUM (die->die_tag);
6600 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6601 attr_checksum (a, ctx, mark);
6603 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6606 #undef CHECKSUM
6607 #undef CHECKSUM_BLOCK
6608 #undef CHECKSUM_STRING
6610 /* For DWARF-4 types, include the trailing NULL when checksumming strings. */
6611 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
6612 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
6613 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO) + 1, ctx)
6614 #define CHECKSUM_SLEB128(FOO) checksum_sleb128 ((FOO), ctx)
6615 #define CHECKSUM_ULEB128(FOO) checksum_uleb128 ((FOO), ctx)
6616 #define CHECKSUM_ATTR(FOO) \
6617 if (FOO) attr_checksum_ordered (die->die_tag, (FOO), ctx, mark)
6619 /* Calculate the checksum of a number in signed LEB128 format. */
6621 static void
6622 checksum_sleb128 (HOST_WIDE_INT value, struct md5_ctx *ctx)
6624 unsigned char byte;
6625 bool more;
6627 while (1)
6629 byte = (value & 0x7f);
6630 value >>= 7;
6631 more = !((value == 0 && (byte & 0x40) == 0)
6632 || (value == -1 && (byte & 0x40) != 0));
6633 if (more)
6634 byte |= 0x80;
6635 CHECKSUM (byte);
6636 if (!more)
6637 break;
6641 /* Calculate the checksum of a number in unsigned LEB128 format. */
6643 static void
6644 checksum_uleb128 (unsigned HOST_WIDE_INT value, struct md5_ctx *ctx)
6646 while (1)
6648 unsigned char byte = (value & 0x7f);
6649 value >>= 7;
6650 if (value != 0)
6651 /* More bytes to follow. */
6652 byte |= 0x80;
6653 CHECKSUM (byte);
6654 if (value == 0)
6655 break;
6659 /* Checksum the context of the DIE. This adds the names of any
6660 surrounding namespaces or structures to the checksum. */
6662 static void
6663 checksum_die_context (dw_die_ref die, struct md5_ctx *ctx)
6665 const char *name;
6666 dw_die_ref spec;
6667 int tag = die->die_tag;
6669 if (tag != DW_TAG_namespace
6670 && tag != DW_TAG_structure_type
6671 && tag != DW_TAG_class_type)
6672 return;
6674 name = get_AT_string (die, DW_AT_name);
6676 spec = get_AT_ref (die, DW_AT_specification);
6677 if (spec != NULL)
6678 die = spec;
6680 if (die->die_parent != NULL)
6681 checksum_die_context (die->die_parent, ctx);
6683 CHECKSUM_ULEB128 ('C');
6684 CHECKSUM_ULEB128 (tag);
6685 if (name != NULL)
6686 CHECKSUM_STRING (name);
6689 /* Calculate the checksum of a location expression. */
6691 static inline void
6692 loc_checksum_ordered (dw_loc_descr_ref loc, struct md5_ctx *ctx)
6694 /* Special case for lone DW_OP_plus_uconst: checksum as if the location
6695 were emitted as a DW_FORM_sdata instead of a location expression. */
6696 if (loc->dw_loc_opc == DW_OP_plus_uconst && loc->dw_loc_next == NULL)
6698 CHECKSUM_ULEB128 (DW_FORM_sdata);
6699 CHECKSUM_SLEB128 ((HOST_WIDE_INT) loc->dw_loc_oprnd1.v.val_unsigned);
6700 return;
6703 /* Otherwise, just checksum the raw location expression. */
6704 while (loc != NULL)
6706 inchash::hash hstate;
6707 hashval_t hash;
6709 CHECKSUM_ULEB128 (loc->dtprel);
6710 CHECKSUM_ULEB128 (loc->dw_loc_opc);
6711 hash_loc_operands (loc, hstate);
6712 hash = hstate.end ();
6713 CHECKSUM (hash);
6714 loc = loc->dw_loc_next;
6718 /* Calculate the checksum of an attribute. */
6720 static void
6721 attr_checksum_ordered (enum dwarf_tag tag, dw_attr_node *at,
6722 struct md5_ctx *ctx, int *mark)
6724 dw_loc_descr_ref loc;
6725 rtx r;
6727 if (AT_class (at) == dw_val_class_die_ref)
6729 dw_die_ref target_die = AT_ref (at);
6731 /* For pointer and reference types, we checksum only the (qualified)
6732 name of the target type (if there is a name). For friend entries,
6733 we checksum only the (qualified) name of the target type or function.
6734 This allows the checksum to remain the same whether the target type
6735 is complete or not. */
6736 if ((at->dw_attr == DW_AT_type
6737 && (tag == DW_TAG_pointer_type
6738 || tag == DW_TAG_reference_type
6739 || tag == DW_TAG_rvalue_reference_type
6740 || tag == DW_TAG_ptr_to_member_type))
6741 || (at->dw_attr == DW_AT_friend
6742 && tag == DW_TAG_friend))
6744 dw_attr_node *name_attr = get_AT (target_die, DW_AT_name);
6746 if (name_attr != NULL)
6748 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
6750 if (decl == NULL)
6751 decl = target_die;
6752 CHECKSUM_ULEB128 ('N');
6753 CHECKSUM_ULEB128 (at->dw_attr);
6754 if (decl->die_parent != NULL)
6755 checksum_die_context (decl->die_parent, ctx);
6756 CHECKSUM_ULEB128 ('E');
6757 CHECKSUM_STRING (AT_string (name_attr));
6758 return;
6762 /* For all other references to another DIE, we check to see if the
6763 target DIE has already been visited. If it has, we emit a
6764 backward reference; if not, we descend recursively. */
6765 if (target_die->die_mark > 0)
6767 CHECKSUM_ULEB128 ('R');
6768 CHECKSUM_ULEB128 (at->dw_attr);
6769 CHECKSUM_ULEB128 (target_die->die_mark);
6771 else
6773 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
6775 if (decl == NULL)
6776 decl = target_die;
6777 target_die->die_mark = ++(*mark);
6778 CHECKSUM_ULEB128 ('T');
6779 CHECKSUM_ULEB128 (at->dw_attr);
6780 if (decl->die_parent != NULL)
6781 checksum_die_context (decl->die_parent, ctx);
6782 die_checksum_ordered (target_die, ctx, mark);
6784 return;
6787 CHECKSUM_ULEB128 ('A');
6788 CHECKSUM_ULEB128 (at->dw_attr);
6790 switch (AT_class (at))
6792 case dw_val_class_const:
6793 case dw_val_class_const_implicit:
6794 CHECKSUM_ULEB128 (DW_FORM_sdata);
6795 CHECKSUM_SLEB128 (at->dw_attr_val.v.val_int);
6796 break;
6798 case dw_val_class_unsigned_const:
6799 case dw_val_class_unsigned_const_implicit:
6800 CHECKSUM_ULEB128 (DW_FORM_sdata);
6801 CHECKSUM_SLEB128 ((int) at->dw_attr_val.v.val_unsigned);
6802 break;
6804 case dw_val_class_const_double:
6805 CHECKSUM_ULEB128 (DW_FORM_block);
6806 CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_double));
6807 CHECKSUM (at->dw_attr_val.v.val_double);
6808 break;
6810 case dw_val_class_wide_int:
6811 CHECKSUM_ULEB128 (DW_FORM_block);
6812 CHECKSUM_ULEB128 (get_full_len (*at->dw_attr_val.v.val_wide)
6813 * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
6814 CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
6815 get_full_len (*at->dw_attr_val.v.val_wide)
6816 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
6817 break;
6819 case dw_val_class_vec:
6820 CHECKSUM_ULEB128 (DW_FORM_block);
6821 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_vec.length
6822 * at->dw_attr_val.v.val_vec.elt_size);
6823 CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
6824 (at->dw_attr_val.v.val_vec.length
6825 * at->dw_attr_val.v.val_vec.elt_size));
6826 break;
6828 case dw_val_class_flag:
6829 CHECKSUM_ULEB128 (DW_FORM_flag);
6830 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_flag ? 1 : 0);
6831 break;
6833 case dw_val_class_str:
6834 CHECKSUM_ULEB128 (DW_FORM_string);
6835 CHECKSUM_STRING (AT_string (at));
6836 break;
6838 case dw_val_class_addr:
6839 r = AT_addr (at);
6840 gcc_assert (GET_CODE (r) == SYMBOL_REF);
6841 CHECKSUM_ULEB128 (DW_FORM_string);
6842 CHECKSUM_STRING (XSTR (r, 0));
6843 break;
6845 case dw_val_class_offset:
6846 CHECKSUM_ULEB128 (DW_FORM_sdata);
6847 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_offset);
6848 break;
6850 case dw_val_class_loc:
6851 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
6852 loc_checksum_ordered (loc, ctx);
6853 break;
6855 case dw_val_class_fde_ref:
6856 case dw_val_class_lbl_id:
6857 case dw_val_class_lineptr:
6858 case dw_val_class_macptr:
6859 case dw_val_class_loclistsptr:
6860 case dw_val_class_high_pc:
6861 break;
6863 case dw_val_class_file:
6864 case dw_val_class_file_implicit:
6865 CHECKSUM_ULEB128 (DW_FORM_string);
6866 CHECKSUM_STRING (AT_file (at)->filename);
6867 break;
6869 case dw_val_class_data8:
6870 CHECKSUM (at->dw_attr_val.v.val_data8);
6871 break;
6873 default:
6874 break;
6878 struct checksum_attributes
6880 dw_attr_node *at_name;
6881 dw_attr_node *at_type;
6882 dw_attr_node *at_friend;
6883 dw_attr_node *at_accessibility;
6884 dw_attr_node *at_address_class;
6885 dw_attr_node *at_alignment;
6886 dw_attr_node *at_allocated;
6887 dw_attr_node *at_artificial;
6888 dw_attr_node *at_associated;
6889 dw_attr_node *at_binary_scale;
6890 dw_attr_node *at_bit_offset;
6891 dw_attr_node *at_bit_size;
6892 dw_attr_node *at_bit_stride;
6893 dw_attr_node *at_byte_size;
6894 dw_attr_node *at_byte_stride;
6895 dw_attr_node *at_const_value;
6896 dw_attr_node *at_containing_type;
6897 dw_attr_node *at_count;
6898 dw_attr_node *at_data_location;
6899 dw_attr_node *at_data_member_location;
6900 dw_attr_node *at_decimal_scale;
6901 dw_attr_node *at_decimal_sign;
6902 dw_attr_node *at_default_value;
6903 dw_attr_node *at_digit_count;
6904 dw_attr_node *at_discr;
6905 dw_attr_node *at_discr_list;
6906 dw_attr_node *at_discr_value;
6907 dw_attr_node *at_encoding;
6908 dw_attr_node *at_endianity;
6909 dw_attr_node *at_explicit;
6910 dw_attr_node *at_is_optional;
6911 dw_attr_node *at_location;
6912 dw_attr_node *at_lower_bound;
6913 dw_attr_node *at_mutable;
6914 dw_attr_node *at_ordering;
6915 dw_attr_node *at_picture_string;
6916 dw_attr_node *at_prototyped;
6917 dw_attr_node *at_small;
6918 dw_attr_node *at_segment;
6919 dw_attr_node *at_string_length;
6920 dw_attr_node *at_string_length_bit_size;
6921 dw_attr_node *at_string_length_byte_size;
6922 dw_attr_node *at_threads_scaled;
6923 dw_attr_node *at_upper_bound;
6924 dw_attr_node *at_use_location;
6925 dw_attr_node *at_use_UTF8;
6926 dw_attr_node *at_variable_parameter;
6927 dw_attr_node *at_virtuality;
6928 dw_attr_node *at_visibility;
6929 dw_attr_node *at_vtable_elem_location;
6932 /* Collect the attributes that we will want to use for the checksum. */
6934 static void
6935 collect_checksum_attributes (struct checksum_attributes *attrs, dw_die_ref die)
6937 dw_attr_node *a;
6938 unsigned ix;
6940 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6942 switch (a->dw_attr)
6944 case DW_AT_name:
6945 attrs->at_name = a;
6946 break;
6947 case DW_AT_type:
6948 attrs->at_type = a;
6949 break;
6950 case DW_AT_friend:
6951 attrs->at_friend = a;
6952 break;
6953 case DW_AT_accessibility:
6954 attrs->at_accessibility = a;
6955 break;
6956 case DW_AT_address_class:
6957 attrs->at_address_class = a;
6958 break;
6959 case DW_AT_alignment:
6960 attrs->at_alignment = a;
6961 break;
6962 case DW_AT_allocated:
6963 attrs->at_allocated = a;
6964 break;
6965 case DW_AT_artificial:
6966 attrs->at_artificial = a;
6967 break;
6968 case DW_AT_associated:
6969 attrs->at_associated = a;
6970 break;
6971 case DW_AT_binary_scale:
6972 attrs->at_binary_scale = a;
6973 break;
6974 case DW_AT_bit_offset:
6975 attrs->at_bit_offset = a;
6976 break;
6977 case DW_AT_bit_size:
6978 attrs->at_bit_size = a;
6979 break;
6980 case DW_AT_bit_stride:
6981 attrs->at_bit_stride = a;
6982 break;
6983 case DW_AT_byte_size:
6984 attrs->at_byte_size = a;
6985 break;
6986 case DW_AT_byte_stride:
6987 attrs->at_byte_stride = a;
6988 break;
6989 case DW_AT_const_value:
6990 attrs->at_const_value = a;
6991 break;
6992 case DW_AT_containing_type:
6993 attrs->at_containing_type = a;
6994 break;
6995 case DW_AT_count:
6996 attrs->at_count = a;
6997 break;
6998 case DW_AT_data_location:
6999 attrs->at_data_location = a;
7000 break;
7001 case DW_AT_data_member_location:
7002 attrs->at_data_member_location = a;
7003 break;
7004 case DW_AT_decimal_scale:
7005 attrs->at_decimal_scale = a;
7006 break;
7007 case DW_AT_decimal_sign:
7008 attrs->at_decimal_sign = a;
7009 break;
7010 case DW_AT_default_value:
7011 attrs->at_default_value = a;
7012 break;
7013 case DW_AT_digit_count:
7014 attrs->at_digit_count = a;
7015 break;
7016 case DW_AT_discr:
7017 attrs->at_discr = a;
7018 break;
7019 case DW_AT_discr_list:
7020 attrs->at_discr_list = a;
7021 break;
7022 case DW_AT_discr_value:
7023 attrs->at_discr_value = a;
7024 break;
7025 case DW_AT_encoding:
7026 attrs->at_encoding = a;
7027 break;
7028 case DW_AT_endianity:
7029 attrs->at_endianity = a;
7030 break;
7031 case DW_AT_explicit:
7032 attrs->at_explicit = a;
7033 break;
7034 case DW_AT_is_optional:
7035 attrs->at_is_optional = a;
7036 break;
7037 case DW_AT_location:
7038 attrs->at_location = a;
7039 break;
7040 case DW_AT_lower_bound:
7041 attrs->at_lower_bound = a;
7042 break;
7043 case DW_AT_mutable:
7044 attrs->at_mutable = a;
7045 break;
7046 case DW_AT_ordering:
7047 attrs->at_ordering = a;
7048 break;
7049 case DW_AT_picture_string:
7050 attrs->at_picture_string = a;
7051 break;
7052 case DW_AT_prototyped:
7053 attrs->at_prototyped = a;
7054 break;
7055 case DW_AT_small:
7056 attrs->at_small = a;
7057 break;
7058 case DW_AT_segment:
7059 attrs->at_segment = a;
7060 break;
7061 case DW_AT_string_length:
7062 attrs->at_string_length = a;
7063 break;
7064 case DW_AT_string_length_bit_size:
7065 attrs->at_string_length_bit_size = a;
7066 break;
7067 case DW_AT_string_length_byte_size:
7068 attrs->at_string_length_byte_size = a;
7069 break;
7070 case DW_AT_threads_scaled:
7071 attrs->at_threads_scaled = a;
7072 break;
7073 case DW_AT_upper_bound:
7074 attrs->at_upper_bound = a;
7075 break;
7076 case DW_AT_use_location:
7077 attrs->at_use_location = a;
7078 break;
7079 case DW_AT_use_UTF8:
7080 attrs->at_use_UTF8 = a;
7081 break;
7082 case DW_AT_variable_parameter:
7083 attrs->at_variable_parameter = a;
7084 break;
7085 case DW_AT_virtuality:
7086 attrs->at_virtuality = a;
7087 break;
7088 case DW_AT_visibility:
7089 attrs->at_visibility = a;
7090 break;
7091 case DW_AT_vtable_elem_location:
7092 attrs->at_vtable_elem_location = a;
7093 break;
7094 default:
7095 break;
7100 /* Calculate the checksum of a DIE, using an ordered subset of attributes. */
7102 static void
7103 die_checksum_ordered (dw_die_ref die, struct md5_ctx *ctx, int *mark)
7105 dw_die_ref c;
7106 dw_die_ref decl;
7107 struct checksum_attributes attrs;
7109 CHECKSUM_ULEB128 ('D');
7110 CHECKSUM_ULEB128 (die->die_tag);
7112 memset (&attrs, 0, sizeof (attrs));
7114 decl = get_AT_ref (die, DW_AT_specification);
7115 if (decl != NULL)
7116 collect_checksum_attributes (&attrs, decl);
7117 collect_checksum_attributes (&attrs, die);
7119 CHECKSUM_ATTR (attrs.at_name);
7120 CHECKSUM_ATTR (attrs.at_accessibility);
7121 CHECKSUM_ATTR (attrs.at_address_class);
7122 CHECKSUM_ATTR (attrs.at_allocated);
7123 CHECKSUM_ATTR (attrs.at_artificial);
7124 CHECKSUM_ATTR (attrs.at_associated);
7125 CHECKSUM_ATTR (attrs.at_binary_scale);
7126 CHECKSUM_ATTR (attrs.at_bit_offset);
7127 CHECKSUM_ATTR (attrs.at_bit_size);
7128 CHECKSUM_ATTR (attrs.at_bit_stride);
7129 CHECKSUM_ATTR (attrs.at_byte_size);
7130 CHECKSUM_ATTR (attrs.at_byte_stride);
7131 CHECKSUM_ATTR (attrs.at_const_value);
7132 CHECKSUM_ATTR (attrs.at_containing_type);
7133 CHECKSUM_ATTR (attrs.at_count);
7134 CHECKSUM_ATTR (attrs.at_data_location);
7135 CHECKSUM_ATTR (attrs.at_data_member_location);
7136 CHECKSUM_ATTR (attrs.at_decimal_scale);
7137 CHECKSUM_ATTR (attrs.at_decimal_sign);
7138 CHECKSUM_ATTR (attrs.at_default_value);
7139 CHECKSUM_ATTR (attrs.at_digit_count);
7140 CHECKSUM_ATTR (attrs.at_discr);
7141 CHECKSUM_ATTR (attrs.at_discr_list);
7142 CHECKSUM_ATTR (attrs.at_discr_value);
7143 CHECKSUM_ATTR (attrs.at_encoding);
7144 CHECKSUM_ATTR (attrs.at_endianity);
7145 CHECKSUM_ATTR (attrs.at_explicit);
7146 CHECKSUM_ATTR (attrs.at_is_optional);
7147 CHECKSUM_ATTR (attrs.at_location);
7148 CHECKSUM_ATTR (attrs.at_lower_bound);
7149 CHECKSUM_ATTR (attrs.at_mutable);
7150 CHECKSUM_ATTR (attrs.at_ordering);
7151 CHECKSUM_ATTR (attrs.at_picture_string);
7152 CHECKSUM_ATTR (attrs.at_prototyped);
7153 CHECKSUM_ATTR (attrs.at_small);
7154 CHECKSUM_ATTR (attrs.at_segment);
7155 CHECKSUM_ATTR (attrs.at_string_length);
7156 CHECKSUM_ATTR (attrs.at_string_length_bit_size);
7157 CHECKSUM_ATTR (attrs.at_string_length_byte_size);
7158 CHECKSUM_ATTR (attrs.at_threads_scaled);
7159 CHECKSUM_ATTR (attrs.at_upper_bound);
7160 CHECKSUM_ATTR (attrs.at_use_location);
7161 CHECKSUM_ATTR (attrs.at_use_UTF8);
7162 CHECKSUM_ATTR (attrs.at_variable_parameter);
7163 CHECKSUM_ATTR (attrs.at_virtuality);
7164 CHECKSUM_ATTR (attrs.at_visibility);
7165 CHECKSUM_ATTR (attrs.at_vtable_elem_location);
7166 CHECKSUM_ATTR (attrs.at_type);
7167 CHECKSUM_ATTR (attrs.at_friend);
7168 CHECKSUM_ATTR (attrs.at_alignment);
7170 /* Checksum the child DIEs. */
7171 c = die->die_child;
7172 if (c) do {
7173 dw_attr_node *name_attr;
7175 c = c->die_sib;
7176 name_attr = get_AT (c, DW_AT_name);
7177 if (is_template_instantiation (c))
7179 /* Ignore instantiations of member type and function templates. */
7181 else if (name_attr != NULL
7182 && (is_type_die (c) || c->die_tag == DW_TAG_subprogram))
7184 /* Use a shallow checksum for named nested types and member
7185 functions. */
7186 CHECKSUM_ULEB128 ('S');
7187 CHECKSUM_ULEB128 (c->die_tag);
7188 CHECKSUM_STRING (AT_string (name_attr));
7190 else
7192 /* Use a deep checksum for other children. */
7193 /* Mark this DIE so it gets processed when unmarking. */
7194 if (c->die_mark == 0)
7195 c->die_mark = -1;
7196 die_checksum_ordered (c, ctx, mark);
7198 } while (c != die->die_child);
7200 CHECKSUM_ULEB128 (0);
7203 /* Add a type name and tag to a hash. */
7204 static void
7205 die_odr_checksum (int tag, const char *name, md5_ctx *ctx)
7207 CHECKSUM_ULEB128 (tag);
7208 CHECKSUM_STRING (name);
7211 #undef CHECKSUM
7212 #undef CHECKSUM_STRING
7213 #undef CHECKSUM_ATTR
7214 #undef CHECKSUM_LEB128
7215 #undef CHECKSUM_ULEB128
7217 /* Generate the type signature for DIE. This is computed by generating an
7218 MD5 checksum over the DIE's tag, its relevant attributes, and its
7219 children. Attributes that are references to other DIEs are processed
7220 by recursion, using the MARK field to prevent infinite recursion.
7221 If the DIE is nested inside a namespace or another type, we also
7222 need to include that context in the signature. The lower 64 bits
7223 of the resulting MD5 checksum comprise the signature. */
7225 static void
7226 generate_type_signature (dw_die_ref die, comdat_type_node *type_node)
7228 int mark;
7229 const char *name;
7230 unsigned char checksum[16];
7231 struct md5_ctx ctx;
7232 dw_die_ref decl;
7233 dw_die_ref parent;
7235 name = get_AT_string (die, DW_AT_name);
7236 decl = get_AT_ref (die, DW_AT_specification);
7237 parent = get_die_parent (die);
7239 /* First, compute a signature for just the type name (and its surrounding
7240 context, if any. This is stored in the type unit DIE for link-time
7241 ODR (one-definition rule) checking. */
7243 if (is_cxx () && name != NULL)
7245 md5_init_ctx (&ctx);
7247 /* Checksum the names of surrounding namespaces and structures. */
7248 if (parent != NULL)
7249 checksum_die_context (parent, &ctx);
7251 /* Checksum the current DIE. */
7252 die_odr_checksum (die->die_tag, name, &ctx);
7253 md5_finish_ctx (&ctx, checksum);
7255 add_AT_data8 (type_node->root_die, DW_AT_GNU_odr_signature, &checksum[8]);
7258 /* Next, compute the complete type signature. */
7260 md5_init_ctx (&ctx);
7261 mark = 1;
7262 die->die_mark = mark;
7264 /* Checksum the names of surrounding namespaces and structures. */
7265 if (parent != NULL)
7266 checksum_die_context (parent, &ctx);
7268 /* Checksum the DIE and its children. */
7269 die_checksum_ordered (die, &ctx, &mark);
7270 unmark_all_dies (die);
7271 md5_finish_ctx (&ctx, checksum);
7273 /* Store the signature in the type node and link the type DIE and the
7274 type node together. */
7275 memcpy (type_node->signature, &checksum[16 - DWARF_TYPE_SIGNATURE_SIZE],
7276 DWARF_TYPE_SIGNATURE_SIZE);
7277 die->comdat_type_p = true;
7278 die->die_id.die_type_node = type_node;
7279 type_node->type_die = die;
7281 /* If the DIE is a specification, link its declaration to the type node
7282 as well. */
7283 if (decl != NULL)
7285 decl->comdat_type_p = true;
7286 decl->die_id.die_type_node = type_node;
7290 /* Do the location expressions look same? */
7291 static inline int
7292 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
7294 return loc1->dw_loc_opc == loc2->dw_loc_opc
7295 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
7296 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
7299 /* Do the values look the same? */
7300 static int
7301 same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark)
7303 dw_loc_descr_ref loc1, loc2;
7304 rtx r1, r2;
7306 if (v1->val_class != v2->val_class)
7307 return 0;
7309 switch (v1->val_class)
7311 case dw_val_class_const:
7312 case dw_val_class_const_implicit:
7313 return v1->v.val_int == v2->v.val_int;
7314 case dw_val_class_unsigned_const:
7315 case dw_val_class_unsigned_const_implicit:
7316 return v1->v.val_unsigned == v2->v.val_unsigned;
7317 case dw_val_class_const_double:
7318 return v1->v.val_double.high == v2->v.val_double.high
7319 && v1->v.val_double.low == v2->v.val_double.low;
7320 case dw_val_class_wide_int:
7321 return *v1->v.val_wide == *v2->v.val_wide;
7322 case dw_val_class_vec:
7323 if (v1->v.val_vec.length != v2->v.val_vec.length
7324 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
7325 return 0;
7326 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
7327 v1->v.val_vec.length * v1->v.val_vec.elt_size))
7328 return 0;
7329 return 1;
7330 case dw_val_class_flag:
7331 return v1->v.val_flag == v2->v.val_flag;
7332 case dw_val_class_str:
7333 return !strcmp (v1->v.val_str->str, v2->v.val_str->str);
7335 case dw_val_class_addr:
7336 r1 = v1->v.val_addr;
7337 r2 = v2->v.val_addr;
7338 if (GET_CODE (r1) != GET_CODE (r2))
7339 return 0;
7340 return !rtx_equal_p (r1, r2);
7342 case dw_val_class_offset:
7343 return v1->v.val_offset == v2->v.val_offset;
7345 case dw_val_class_loc:
7346 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
7347 loc1 && loc2;
7348 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
7349 if (!same_loc_p (loc1, loc2, mark))
7350 return 0;
7351 return !loc1 && !loc2;
7353 case dw_val_class_die_ref:
7354 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
7356 case dw_val_class_fde_ref:
7357 case dw_val_class_vms_delta:
7358 case dw_val_class_lbl_id:
7359 case dw_val_class_lineptr:
7360 case dw_val_class_macptr:
7361 case dw_val_class_loclistsptr:
7362 case dw_val_class_high_pc:
7363 return 1;
7365 case dw_val_class_file:
7366 case dw_val_class_file_implicit:
7367 return v1->v.val_file == v2->v.val_file;
7369 case dw_val_class_data8:
7370 return !memcmp (v1->v.val_data8, v2->v.val_data8, 8);
7372 default:
7373 return 1;
7377 /* Do the attributes look the same? */
7379 static int
7380 same_attr_p (dw_attr_node *at1, dw_attr_node *at2, int *mark)
7382 if (at1->dw_attr != at2->dw_attr)
7383 return 0;
7385 /* We don't care that this was compiled with a different compiler
7386 snapshot; if the output is the same, that's what matters. */
7387 if (at1->dw_attr == DW_AT_producer)
7388 return 1;
7390 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
7393 /* Do the dies look the same? */
7395 static int
7396 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
7398 dw_die_ref c1, c2;
7399 dw_attr_node *a1;
7400 unsigned ix;
7402 /* To avoid infinite recursion. */
7403 if (die1->die_mark)
7404 return die1->die_mark == die2->die_mark;
7405 die1->die_mark = die2->die_mark = ++(*mark);
7407 if (die1->die_tag != die2->die_tag)
7408 return 0;
7410 if (vec_safe_length (die1->die_attr) != vec_safe_length (die2->die_attr))
7411 return 0;
7413 FOR_EACH_VEC_SAFE_ELT (die1->die_attr, ix, a1)
7414 if (!same_attr_p (a1, &(*die2->die_attr)[ix], mark))
7415 return 0;
7417 c1 = die1->die_child;
7418 c2 = die2->die_child;
7419 if (! c1)
7421 if (c2)
7422 return 0;
7424 else
7425 for (;;)
7427 if (!same_die_p (c1, c2, mark))
7428 return 0;
7429 c1 = c1->die_sib;
7430 c2 = c2->die_sib;
7431 if (c1 == die1->die_child)
7433 if (c2 == die2->die_child)
7434 break;
7435 else
7436 return 0;
7440 return 1;
7443 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
7444 children, and set die_symbol. */
7446 static void
7447 compute_comp_unit_symbol (dw_die_ref unit_die)
7449 const char *die_name = get_AT_string (unit_die, DW_AT_name);
7450 const char *base = die_name ? lbasename (die_name) : "anonymous";
7451 char *name = XALLOCAVEC (char, strlen (base) + 64);
7452 char *p;
7453 int i, mark;
7454 unsigned char checksum[16];
7455 struct md5_ctx ctx;
7457 /* Compute the checksum of the DIE, then append part of it as hex digits to
7458 the name filename of the unit. */
7460 md5_init_ctx (&ctx);
7461 mark = 0;
7462 die_checksum (unit_die, &ctx, &mark);
7463 unmark_all_dies (unit_die);
7464 md5_finish_ctx (&ctx, checksum);
7466 /* When we this for comp_unit_die () we have a DW_AT_name that might
7467 not start with a letter but with anything valid for filenames and
7468 clean_symbol_name doesn't fix that up. Prepend 'g' if the first
7469 character is not a letter. */
7470 sprintf (name, "%s%s.", ISALPHA (*base) ? "" : "g", base);
7471 clean_symbol_name (name);
7473 p = name + strlen (name);
7474 for (i = 0; i < 4; i++)
7476 sprintf (p, "%.2x", checksum[i]);
7477 p += 2;
7480 unit_die->die_id.die_symbol = xstrdup (name);
7483 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
7485 static int
7486 is_type_die (dw_die_ref die)
7488 switch (die->die_tag)
7490 case DW_TAG_array_type:
7491 case DW_TAG_class_type:
7492 case DW_TAG_interface_type:
7493 case DW_TAG_enumeration_type:
7494 case DW_TAG_pointer_type:
7495 case DW_TAG_reference_type:
7496 case DW_TAG_rvalue_reference_type:
7497 case DW_TAG_string_type:
7498 case DW_TAG_structure_type:
7499 case DW_TAG_subroutine_type:
7500 case DW_TAG_union_type:
7501 case DW_TAG_ptr_to_member_type:
7502 case DW_TAG_set_type:
7503 case DW_TAG_subrange_type:
7504 case DW_TAG_base_type:
7505 case DW_TAG_const_type:
7506 case DW_TAG_file_type:
7507 case DW_TAG_packed_type:
7508 case DW_TAG_volatile_type:
7509 case DW_TAG_typedef:
7510 return 1;
7511 default:
7512 return 0;
7516 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
7517 Basically, we want to choose the bits that are likely to be shared between
7518 compilations (types) and leave out the bits that are specific to individual
7519 compilations (functions). */
7521 static int
7522 is_comdat_die (dw_die_ref c)
7524 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
7525 we do for stabs. The advantage is a greater likelihood of sharing between
7526 objects that don't include headers in the same order (and therefore would
7527 put the base types in a different comdat). jason 8/28/00 */
7529 if (c->die_tag == DW_TAG_base_type)
7530 return 0;
7532 if (c->die_tag == DW_TAG_pointer_type
7533 || c->die_tag == DW_TAG_reference_type
7534 || c->die_tag == DW_TAG_rvalue_reference_type
7535 || c->die_tag == DW_TAG_const_type
7536 || c->die_tag == DW_TAG_volatile_type)
7538 dw_die_ref t = get_AT_ref (c, DW_AT_type);
7540 return t ? is_comdat_die (t) : 0;
7543 return is_type_die (c);
7546 /* Returns true iff C is a compile-unit DIE. */
7548 static inline bool
7549 is_cu_die (dw_die_ref c)
7551 return c && (c->die_tag == DW_TAG_compile_unit
7552 || c->die_tag == DW_TAG_skeleton_unit);
7555 /* Returns true iff C is a unit DIE of some sort. */
7557 static inline bool
7558 is_unit_die (dw_die_ref c)
7560 return c && (c->die_tag == DW_TAG_compile_unit
7561 || c->die_tag == DW_TAG_partial_unit
7562 || c->die_tag == DW_TAG_type_unit
7563 || c->die_tag == DW_TAG_skeleton_unit);
7566 /* Returns true iff C is a namespace DIE. */
7568 static inline bool
7569 is_namespace_die (dw_die_ref c)
7571 return c && c->die_tag == DW_TAG_namespace;
7574 /* Returns true iff C is a class or structure DIE. */
7576 static inline bool
7577 is_class_die (dw_die_ref c)
7579 return c && (c->die_tag == DW_TAG_class_type
7580 || c->die_tag == DW_TAG_structure_type);
7583 /* Return non-zero if this DIE is a template parameter. */
7585 static inline bool
7586 is_template_parameter (dw_die_ref die)
7588 switch (die->die_tag)
7590 case DW_TAG_template_type_param:
7591 case DW_TAG_template_value_param:
7592 case DW_TAG_GNU_template_template_param:
7593 case DW_TAG_GNU_template_parameter_pack:
7594 return true;
7595 default:
7596 return false;
7600 /* Return non-zero if this DIE represents a template instantiation. */
7602 static inline bool
7603 is_template_instantiation (dw_die_ref die)
7605 dw_die_ref c;
7607 if (!is_type_die (die) && die->die_tag != DW_TAG_subprogram)
7608 return false;
7609 FOR_EACH_CHILD (die, c, if (is_template_parameter (c)) return true);
7610 return false;
7613 static char *
7614 gen_internal_sym (const char *prefix)
7616 char buf[MAX_ARTIFICIAL_LABEL_BYTES];
7618 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
7619 return xstrdup (buf);
7622 /* Return non-zero if this DIE is a declaration. */
7624 static int
7625 is_declaration_die (dw_die_ref die)
7627 dw_attr_node *a;
7628 unsigned ix;
7630 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7631 if (a->dw_attr == DW_AT_declaration)
7632 return 1;
7634 return 0;
7637 /* Return non-zero if this DIE is nested inside a subprogram. */
7639 static int
7640 is_nested_in_subprogram (dw_die_ref die)
7642 dw_die_ref decl = get_AT_ref (die, DW_AT_specification);
7644 if (decl == NULL)
7645 decl = die;
7646 return local_scope_p (decl);
7649 /* Return non-zero if this DIE contains a defining declaration of a
7650 subprogram. */
7652 static int
7653 contains_subprogram_definition (dw_die_ref die)
7655 dw_die_ref c;
7657 if (die->die_tag == DW_TAG_subprogram && ! is_declaration_die (die))
7658 return 1;
7659 FOR_EACH_CHILD (die, c, if (contains_subprogram_definition (c)) return 1);
7660 return 0;
7663 /* Return non-zero if this is a type DIE that should be moved to a
7664 COMDAT .debug_types section or .debug_info section with DW_UT_*type
7665 unit type. */
7667 static int
7668 should_move_die_to_comdat (dw_die_ref die)
7670 switch (die->die_tag)
7672 case DW_TAG_class_type:
7673 case DW_TAG_structure_type:
7674 case DW_TAG_enumeration_type:
7675 case DW_TAG_union_type:
7676 /* Don't move declarations, inlined instances, types nested in a
7677 subprogram, or types that contain subprogram definitions. */
7678 if (is_declaration_die (die)
7679 || get_AT (die, DW_AT_abstract_origin)
7680 || is_nested_in_subprogram (die)
7681 || contains_subprogram_definition (die))
7682 return 0;
7683 return 1;
7684 case DW_TAG_array_type:
7685 case DW_TAG_interface_type:
7686 case DW_TAG_pointer_type:
7687 case DW_TAG_reference_type:
7688 case DW_TAG_rvalue_reference_type:
7689 case DW_TAG_string_type:
7690 case DW_TAG_subroutine_type:
7691 case DW_TAG_ptr_to_member_type:
7692 case DW_TAG_set_type:
7693 case DW_TAG_subrange_type:
7694 case DW_TAG_base_type:
7695 case DW_TAG_const_type:
7696 case DW_TAG_file_type:
7697 case DW_TAG_packed_type:
7698 case DW_TAG_volatile_type:
7699 case DW_TAG_typedef:
7700 default:
7701 return 0;
7705 /* Make a clone of DIE. */
7707 static dw_die_ref
7708 clone_die (dw_die_ref die)
7710 dw_die_ref clone;
7711 dw_attr_node *a;
7712 unsigned ix;
7714 clone = ggc_cleared_alloc<die_node> ();
7715 clone->die_tag = die->die_tag;
7717 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7718 add_dwarf_attr (clone, a);
7720 return clone;
7723 /* Make a clone of the tree rooted at DIE. */
7725 static dw_die_ref
7726 clone_tree (dw_die_ref die)
7728 dw_die_ref c;
7729 dw_die_ref clone = clone_die (die);
7731 FOR_EACH_CHILD (die, c, add_child_die (clone, clone_tree (c)));
7733 return clone;
7736 /* Make a clone of DIE as a declaration. */
7738 static dw_die_ref
7739 clone_as_declaration (dw_die_ref die)
7741 dw_die_ref clone;
7742 dw_die_ref decl;
7743 dw_attr_node *a;
7744 unsigned ix;
7746 /* If the DIE is already a declaration, just clone it. */
7747 if (is_declaration_die (die))
7748 return clone_die (die);
7750 /* If the DIE is a specification, just clone its declaration DIE. */
7751 decl = get_AT_ref (die, DW_AT_specification);
7752 if (decl != NULL)
7754 clone = clone_die (decl);
7755 if (die->comdat_type_p)
7756 add_AT_die_ref (clone, DW_AT_signature, die);
7757 return clone;
7760 clone = ggc_cleared_alloc<die_node> ();
7761 clone->die_tag = die->die_tag;
7763 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7765 /* We don't want to copy over all attributes.
7766 For example we don't want DW_AT_byte_size because otherwise we will no
7767 longer have a declaration and GDB will treat it as a definition. */
7769 switch (a->dw_attr)
7771 case DW_AT_abstract_origin:
7772 case DW_AT_artificial:
7773 case DW_AT_containing_type:
7774 case DW_AT_external:
7775 case DW_AT_name:
7776 case DW_AT_type:
7777 case DW_AT_virtuality:
7778 case DW_AT_linkage_name:
7779 case DW_AT_MIPS_linkage_name:
7780 add_dwarf_attr (clone, a);
7781 break;
7782 case DW_AT_byte_size:
7783 case DW_AT_alignment:
7784 default:
7785 break;
7789 if (die->comdat_type_p)
7790 add_AT_die_ref (clone, DW_AT_signature, die);
7792 add_AT_flag (clone, DW_AT_declaration, 1);
7793 return clone;
7797 /* Structure to map a DIE in one CU to its copy in a comdat type unit. */
7799 struct decl_table_entry
7801 dw_die_ref orig;
7802 dw_die_ref copy;
7805 /* Helpers to manipulate hash table of copied declarations. */
7807 /* Hashtable helpers. */
7809 struct decl_table_entry_hasher : free_ptr_hash <decl_table_entry>
7811 typedef die_struct *compare_type;
7812 static inline hashval_t hash (const decl_table_entry *);
7813 static inline bool equal (const decl_table_entry *, const die_struct *);
7816 inline hashval_t
7817 decl_table_entry_hasher::hash (const decl_table_entry *entry)
7819 return htab_hash_pointer (entry->orig);
7822 inline bool
7823 decl_table_entry_hasher::equal (const decl_table_entry *entry1,
7824 const die_struct *entry2)
7826 return entry1->orig == entry2;
7829 typedef hash_table<decl_table_entry_hasher> decl_hash_type;
7831 /* Copy DIE and its ancestors, up to, but not including, the compile unit
7832 or type unit entry, to a new tree. Adds the new tree to UNIT and returns
7833 a pointer to the copy of DIE. If DECL_TABLE is provided, it is used
7834 to check if the ancestor has already been copied into UNIT. */
7836 static dw_die_ref
7837 copy_ancestor_tree (dw_die_ref unit, dw_die_ref die,
7838 decl_hash_type *decl_table)
7840 dw_die_ref parent = die->die_parent;
7841 dw_die_ref new_parent = unit;
7842 dw_die_ref copy;
7843 decl_table_entry **slot = NULL;
7844 struct decl_table_entry *entry = NULL;
7846 if (decl_table)
7848 /* Check if the entry has already been copied to UNIT. */
7849 slot = decl_table->find_slot_with_hash (die, htab_hash_pointer (die),
7850 INSERT);
7851 if (*slot != HTAB_EMPTY_ENTRY)
7853 entry = *slot;
7854 return entry->copy;
7857 /* Record in DECL_TABLE that DIE has been copied to UNIT. */
7858 entry = XCNEW (struct decl_table_entry);
7859 entry->orig = die;
7860 entry->copy = NULL;
7861 *slot = entry;
7864 if (parent != NULL)
7866 dw_die_ref spec = get_AT_ref (parent, DW_AT_specification);
7867 if (spec != NULL)
7868 parent = spec;
7869 if (!is_unit_die (parent))
7870 new_parent = copy_ancestor_tree (unit, parent, decl_table);
7873 copy = clone_as_declaration (die);
7874 add_child_die (new_parent, copy);
7876 if (decl_table)
7878 /* Record the pointer to the copy. */
7879 entry->copy = copy;
7882 return copy;
7884 /* Copy the declaration context to the new type unit DIE. This includes
7885 any surrounding namespace or type declarations. If the DIE has an
7886 AT_specification attribute, it also includes attributes and children
7887 attached to the specification, and returns a pointer to the original
7888 parent of the declaration DIE. Returns NULL otherwise. */
7890 static dw_die_ref
7891 copy_declaration_context (dw_die_ref unit, dw_die_ref die)
7893 dw_die_ref decl;
7894 dw_die_ref new_decl;
7895 dw_die_ref orig_parent = NULL;
7897 decl = get_AT_ref (die, DW_AT_specification);
7898 if (decl == NULL)
7899 decl = die;
7900 else
7902 unsigned ix;
7903 dw_die_ref c;
7904 dw_attr_node *a;
7906 /* The original DIE will be changed to a declaration, and must
7907 be moved to be a child of the original declaration DIE. */
7908 orig_parent = decl->die_parent;
7910 /* Copy the type node pointer from the new DIE to the original
7911 declaration DIE so we can forward references later. */
7912 decl->comdat_type_p = true;
7913 decl->die_id.die_type_node = die->die_id.die_type_node;
7915 remove_AT (die, DW_AT_specification);
7917 FOR_EACH_VEC_SAFE_ELT (decl->die_attr, ix, a)
7919 if (a->dw_attr != DW_AT_name
7920 && a->dw_attr != DW_AT_declaration
7921 && a->dw_attr != DW_AT_external)
7922 add_dwarf_attr (die, a);
7925 FOR_EACH_CHILD (decl, c, add_child_die (die, clone_tree (c)));
7928 if (decl->die_parent != NULL
7929 && !is_unit_die (decl->die_parent))
7931 new_decl = copy_ancestor_tree (unit, decl, NULL);
7932 if (new_decl != NULL)
7934 remove_AT (new_decl, DW_AT_signature);
7935 add_AT_specification (die, new_decl);
7939 return orig_parent;
7942 /* Generate the skeleton ancestor tree for the given NODE, then clone
7943 the DIE and add the clone into the tree. */
7945 static void
7946 generate_skeleton_ancestor_tree (skeleton_chain_node *node)
7948 if (node->new_die != NULL)
7949 return;
7951 node->new_die = clone_as_declaration (node->old_die);
7953 if (node->parent != NULL)
7955 generate_skeleton_ancestor_tree (node->parent);
7956 add_child_die (node->parent->new_die, node->new_die);
7960 /* Generate a skeleton tree of DIEs containing any declarations that are
7961 found in the original tree. We traverse the tree looking for declaration
7962 DIEs, and construct the skeleton from the bottom up whenever we find one. */
7964 static void
7965 generate_skeleton_bottom_up (skeleton_chain_node *parent)
7967 skeleton_chain_node node;
7968 dw_die_ref c;
7969 dw_die_ref first;
7970 dw_die_ref prev = NULL;
7971 dw_die_ref next = NULL;
7973 node.parent = parent;
7975 first = c = parent->old_die->die_child;
7976 if (c)
7977 next = c->die_sib;
7978 if (c) do {
7979 if (prev == NULL || prev->die_sib == c)
7980 prev = c;
7981 c = next;
7982 next = (c == first ? NULL : c->die_sib);
7983 node.old_die = c;
7984 node.new_die = NULL;
7985 if (is_declaration_die (c))
7987 if (is_template_instantiation (c))
7989 /* Instantiated templates do not need to be cloned into the
7990 type unit. Just move the DIE and its children back to
7991 the skeleton tree (in the main CU). */
7992 remove_child_with_prev (c, prev);
7993 add_child_die (parent->new_die, c);
7994 c = prev;
7996 else if (c->comdat_type_p)
7998 /* This is the skeleton of earlier break_out_comdat_types
7999 type. Clone the existing DIE, but keep the children
8000 under the original (which is in the main CU). */
8001 dw_die_ref clone = clone_die (c);
8003 replace_child (c, clone, prev);
8004 generate_skeleton_ancestor_tree (parent);
8005 add_child_die (parent->new_die, c);
8006 c = clone;
8007 continue;
8009 else
8011 /* Clone the existing DIE, move the original to the skeleton
8012 tree (which is in the main CU), and put the clone, with
8013 all the original's children, where the original came from
8014 (which is about to be moved to the type unit). */
8015 dw_die_ref clone = clone_die (c);
8016 move_all_children (c, clone);
8018 /* If the original has a DW_AT_object_pointer attribute,
8019 it would now point to a child DIE just moved to the
8020 cloned tree, so we need to remove that attribute from
8021 the original. */
8022 remove_AT (c, DW_AT_object_pointer);
8024 replace_child (c, clone, prev);
8025 generate_skeleton_ancestor_tree (parent);
8026 add_child_die (parent->new_die, c);
8027 node.old_die = clone;
8028 node.new_die = c;
8029 c = clone;
8032 generate_skeleton_bottom_up (&node);
8033 } while (next != NULL);
8036 /* Wrapper function for generate_skeleton_bottom_up. */
8038 static dw_die_ref
8039 generate_skeleton (dw_die_ref die)
8041 skeleton_chain_node node;
8043 node.old_die = die;
8044 node.new_die = NULL;
8045 node.parent = NULL;
8047 /* If this type definition is nested inside another type,
8048 and is not an instantiation of a template, always leave
8049 at least a declaration in its place. */
8050 if (die->die_parent != NULL
8051 && is_type_die (die->die_parent)
8052 && !is_template_instantiation (die))
8053 node.new_die = clone_as_declaration (die);
8055 generate_skeleton_bottom_up (&node);
8056 return node.new_die;
8059 /* Remove the CHILD DIE from its parent, possibly replacing it with a cloned
8060 declaration. The original DIE is moved to a new compile unit so that
8061 existing references to it follow it to the new location. If any of the
8062 original DIE's descendants is a declaration, we need to replace the
8063 original DIE with a skeleton tree and move the declarations back into the
8064 skeleton tree. */
8066 static dw_die_ref
8067 remove_child_or_replace_with_skeleton (dw_die_ref unit, dw_die_ref child,
8068 dw_die_ref prev)
8070 dw_die_ref skeleton, orig_parent;
8072 /* Copy the declaration context to the type unit DIE. If the returned
8073 ORIG_PARENT is not NULL, the skeleton needs to be added as a child of
8074 that DIE. */
8075 orig_parent = copy_declaration_context (unit, child);
8077 skeleton = generate_skeleton (child);
8078 if (skeleton == NULL)
8079 remove_child_with_prev (child, prev);
8080 else
8082 skeleton->comdat_type_p = true;
8083 skeleton->die_id.die_type_node = child->die_id.die_type_node;
8085 /* If the original DIE was a specification, we need to put
8086 the skeleton under the parent DIE of the declaration.
8087 This leaves the original declaration in the tree, but
8088 it will be pruned later since there are no longer any
8089 references to it. */
8090 if (orig_parent != NULL)
8092 remove_child_with_prev (child, prev);
8093 add_child_die (orig_parent, skeleton);
8095 else
8096 replace_child (child, skeleton, prev);
8099 return skeleton;
8102 static void
8103 copy_dwarf_procs_ref_in_attrs (dw_die_ref die,
8104 comdat_type_node *type_node,
8105 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs);
8107 /* Helper for copy_dwarf_procs_ref_in_dies. Make a copy of the DIE DWARF
8108 procedure, put it under TYPE_NODE and return the copy. Continue looking for
8109 DWARF procedure references in the DW_AT_location attribute. */
8111 static dw_die_ref
8112 copy_dwarf_procedure (dw_die_ref die,
8113 comdat_type_node *type_node,
8114 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
8116 gcc_assert (die->die_tag == DW_TAG_dwarf_procedure);
8118 /* DWARF procedures are not supposed to have children... */
8119 gcc_assert (die->die_child == NULL);
8121 /* ... and they are supposed to have only one attribute: DW_AT_location. */
8122 gcc_assert (vec_safe_length (die->die_attr) == 1
8123 && ((*die->die_attr)[0].dw_attr == DW_AT_location));
8125 /* Do not copy more than once DWARF procedures. */
8126 bool existed;
8127 dw_die_ref &die_copy = copied_dwarf_procs.get_or_insert (die, &existed);
8128 if (existed)
8129 return die_copy;
8131 die_copy = clone_die (die);
8132 add_child_die (type_node->root_die, die_copy);
8133 copy_dwarf_procs_ref_in_attrs (die_copy, type_node, copied_dwarf_procs);
8134 return die_copy;
8137 /* Helper for copy_dwarf_procs_ref_in_dies. Look for references to DWARF
8138 procedures in DIE's attributes. */
8140 static void
8141 copy_dwarf_procs_ref_in_attrs (dw_die_ref die,
8142 comdat_type_node *type_node,
8143 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
8145 dw_attr_node *a;
8146 unsigned i;
8148 FOR_EACH_VEC_SAFE_ELT (die->die_attr, i, a)
8150 dw_loc_descr_ref loc;
8152 if (a->dw_attr_val.val_class != dw_val_class_loc)
8153 continue;
8155 for (loc = a->dw_attr_val.v.val_loc; loc != NULL; loc = loc->dw_loc_next)
8157 switch (loc->dw_loc_opc)
8159 case DW_OP_call2:
8160 case DW_OP_call4:
8161 case DW_OP_call_ref:
8162 gcc_assert (loc->dw_loc_oprnd1.val_class
8163 == dw_val_class_die_ref);
8164 loc->dw_loc_oprnd1.v.val_die_ref.die
8165 = copy_dwarf_procedure (loc->dw_loc_oprnd1.v.val_die_ref.die,
8166 type_node,
8167 copied_dwarf_procs);
8169 default:
8170 break;
8176 /* Copy DWARF procedures that are referenced by the DIE tree to TREE_NODE and
8177 rewrite references to point to the copies.
8179 References are looked for in DIE's attributes and recursively in all its
8180 children attributes that are location descriptions. COPIED_DWARF_PROCS is a
8181 mapping from old DWARF procedures to their copy. It is used not to copy
8182 twice the same DWARF procedure under TYPE_NODE. */
8184 static void
8185 copy_dwarf_procs_ref_in_dies (dw_die_ref die,
8186 comdat_type_node *type_node,
8187 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
8189 dw_die_ref c;
8191 copy_dwarf_procs_ref_in_attrs (die, type_node, copied_dwarf_procs);
8192 FOR_EACH_CHILD (die, c, copy_dwarf_procs_ref_in_dies (c,
8193 type_node,
8194 copied_dwarf_procs));
8197 /* Traverse the DIE and set up additional .debug_types or .debug_info
8198 DW_UT_*type sections for each type worthy of being placed in a COMDAT
8199 section. */
8201 static void
8202 break_out_comdat_types (dw_die_ref die)
8204 dw_die_ref c;
8205 dw_die_ref first;
8206 dw_die_ref prev = NULL;
8207 dw_die_ref next = NULL;
8208 dw_die_ref unit = NULL;
8210 first = c = die->die_child;
8211 if (c)
8212 next = c->die_sib;
8213 if (c) do {
8214 if (prev == NULL || prev->die_sib == c)
8215 prev = c;
8216 c = next;
8217 next = (c == first ? NULL : c->die_sib);
8218 if (should_move_die_to_comdat (c))
8220 dw_die_ref replacement;
8221 comdat_type_node *type_node;
8223 /* Break out nested types into their own type units. */
8224 break_out_comdat_types (c);
8226 /* Create a new type unit DIE as the root for the new tree, and
8227 add it to the list of comdat types. */
8228 unit = new_die (DW_TAG_type_unit, NULL, NULL);
8229 add_AT_unsigned (unit, DW_AT_language,
8230 get_AT_unsigned (comp_unit_die (), DW_AT_language));
8231 type_node = ggc_cleared_alloc<comdat_type_node> ();
8232 type_node->root_die = unit;
8233 type_node->next = comdat_type_list;
8234 comdat_type_list = type_node;
8236 /* Generate the type signature. */
8237 generate_type_signature (c, type_node);
8239 /* Copy the declaration context, attributes, and children of the
8240 declaration into the new type unit DIE, then remove this DIE
8241 from the main CU (or replace it with a skeleton if necessary). */
8242 replacement = remove_child_or_replace_with_skeleton (unit, c, prev);
8243 type_node->skeleton_die = replacement;
8245 /* Add the DIE to the new compunit. */
8246 add_child_die (unit, c);
8248 /* Types can reference DWARF procedures for type size or data location
8249 expressions. Calls in DWARF expressions cannot target procedures
8250 that are not in the same section. So we must copy DWARF procedures
8251 along with this type and then rewrite references to them. */
8252 hash_map<dw_die_ref, dw_die_ref> copied_dwarf_procs;
8253 copy_dwarf_procs_ref_in_dies (c, type_node, copied_dwarf_procs);
8255 if (replacement != NULL)
8256 c = replacement;
8258 else if (c->die_tag == DW_TAG_namespace
8259 || c->die_tag == DW_TAG_class_type
8260 || c->die_tag == DW_TAG_structure_type
8261 || c->die_tag == DW_TAG_union_type)
8263 /* Look for nested types that can be broken out. */
8264 break_out_comdat_types (c);
8266 } while (next != NULL);
8269 /* Like clone_tree, but copy DW_TAG_subprogram DIEs as declarations.
8270 Enter all the cloned children into the hash table decl_table. */
8272 static dw_die_ref
8273 clone_tree_partial (dw_die_ref die, decl_hash_type *decl_table)
8275 dw_die_ref c;
8276 dw_die_ref clone;
8277 struct decl_table_entry *entry;
8278 decl_table_entry **slot;
8280 if (die->die_tag == DW_TAG_subprogram)
8281 clone = clone_as_declaration (die);
8282 else
8283 clone = clone_die (die);
8285 slot = decl_table->find_slot_with_hash (die,
8286 htab_hash_pointer (die), INSERT);
8288 /* Assert that DIE isn't in the hash table yet. If it would be there
8289 before, the ancestors would be necessarily there as well, therefore
8290 clone_tree_partial wouldn't be called. */
8291 gcc_assert (*slot == HTAB_EMPTY_ENTRY);
8293 entry = XCNEW (struct decl_table_entry);
8294 entry->orig = die;
8295 entry->copy = clone;
8296 *slot = entry;
8298 if (die->die_tag != DW_TAG_subprogram)
8299 FOR_EACH_CHILD (die, c,
8300 add_child_die (clone, clone_tree_partial (c, decl_table)));
8302 return clone;
8305 /* Walk the DIE and its children, looking for references to incomplete
8306 or trivial types that are unmarked (i.e., that are not in the current
8307 type_unit). */
8309 static void
8310 copy_decls_walk (dw_die_ref unit, dw_die_ref die, decl_hash_type *decl_table)
8312 dw_die_ref c;
8313 dw_attr_node *a;
8314 unsigned ix;
8316 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8318 if (AT_class (a) == dw_val_class_die_ref)
8320 dw_die_ref targ = AT_ref (a);
8321 decl_table_entry **slot;
8322 struct decl_table_entry *entry;
8324 if (targ->die_mark != 0 || targ->comdat_type_p)
8325 continue;
8327 slot = decl_table->find_slot_with_hash (targ,
8328 htab_hash_pointer (targ),
8329 INSERT);
8331 if (*slot != HTAB_EMPTY_ENTRY)
8333 /* TARG has already been copied, so we just need to
8334 modify the reference to point to the copy. */
8335 entry = *slot;
8336 a->dw_attr_val.v.val_die_ref.die = entry->copy;
8338 else
8340 dw_die_ref parent = unit;
8341 dw_die_ref copy = clone_die (targ);
8343 /* Record in DECL_TABLE that TARG has been copied.
8344 Need to do this now, before the recursive call,
8345 because DECL_TABLE may be expanded and SLOT
8346 would no longer be a valid pointer. */
8347 entry = XCNEW (struct decl_table_entry);
8348 entry->orig = targ;
8349 entry->copy = copy;
8350 *slot = entry;
8352 /* If TARG is not a declaration DIE, we need to copy its
8353 children. */
8354 if (!is_declaration_die (targ))
8356 FOR_EACH_CHILD (
8357 targ, c,
8358 add_child_die (copy,
8359 clone_tree_partial (c, decl_table)));
8362 /* Make sure the cloned tree is marked as part of the
8363 type unit. */
8364 mark_dies (copy);
8366 /* If TARG has surrounding context, copy its ancestor tree
8367 into the new type unit. */
8368 if (targ->die_parent != NULL
8369 && !is_unit_die (targ->die_parent))
8370 parent = copy_ancestor_tree (unit, targ->die_parent,
8371 decl_table);
8373 add_child_die (parent, copy);
8374 a->dw_attr_val.v.val_die_ref.die = copy;
8376 /* Make sure the newly-copied DIE is walked. If it was
8377 installed in a previously-added context, it won't
8378 get visited otherwise. */
8379 if (parent != unit)
8381 /* Find the highest point of the newly-added tree,
8382 mark each node along the way, and walk from there. */
8383 parent->die_mark = 1;
8384 while (parent->die_parent
8385 && parent->die_parent->die_mark == 0)
8387 parent = parent->die_parent;
8388 parent->die_mark = 1;
8390 copy_decls_walk (unit, parent, decl_table);
8396 FOR_EACH_CHILD (die, c, copy_decls_walk (unit, c, decl_table));
8399 /* Copy declarations for "unworthy" types into the new comdat section.
8400 Incomplete types, modified types, and certain other types aren't broken
8401 out into comdat sections of their own, so they don't have a signature,
8402 and we need to copy the declaration into the same section so that we
8403 don't have an external reference. */
8405 static void
8406 copy_decls_for_unworthy_types (dw_die_ref unit)
8408 mark_dies (unit);
8409 decl_hash_type decl_table (10);
8410 copy_decls_walk (unit, unit, &decl_table);
8411 unmark_dies (unit);
8414 /* Traverse the DIE and add a sibling attribute if it may have the
8415 effect of speeding up access to siblings. To save some space,
8416 avoid generating sibling attributes for DIE's without children. */
8418 static void
8419 add_sibling_attributes (dw_die_ref die)
8421 dw_die_ref c;
8423 if (! die->die_child)
8424 return;
8426 if (die->die_parent && die != die->die_parent->die_child)
8427 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
8429 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
8432 /* Output all location lists for the DIE and its children. */
8434 static void
8435 output_location_lists (dw_die_ref die)
8437 dw_die_ref c;
8438 dw_attr_node *a;
8439 unsigned ix;
8441 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8442 if (AT_class (a) == dw_val_class_loc_list)
8443 output_loc_list (AT_loc_list (a));
8445 FOR_EACH_CHILD (die, c, output_location_lists (c));
8448 /* During assign_location_list_indexes and output_loclists_offset the
8449 current index, after it the number of assigned indexes (i.e. how
8450 large the .debug_loclists* offset table should be). */
8451 static unsigned int loc_list_idx;
8453 /* Output all location list offsets for the DIE and its children. */
8455 static void
8456 output_loclists_offsets (dw_die_ref die)
8458 dw_die_ref c;
8459 dw_attr_node *a;
8460 unsigned ix;
8462 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8463 if (AT_class (a) == dw_val_class_loc_list)
8465 dw_loc_list_ref l = AT_loc_list (a);
8466 if (l->offset_emitted)
8467 continue;
8468 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l->ll_symbol,
8469 loc_section_label, NULL);
8470 gcc_assert (l->hash == loc_list_idx);
8471 loc_list_idx++;
8472 l->offset_emitted = true;
8475 FOR_EACH_CHILD (die, c, output_loclists_offsets (c));
8478 /* Recursively set indexes of location lists. */
8480 static void
8481 assign_location_list_indexes (dw_die_ref die)
8483 dw_die_ref c;
8484 dw_attr_node *a;
8485 unsigned ix;
8487 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8488 if (AT_class (a) == dw_val_class_loc_list)
8490 dw_loc_list_ref list = AT_loc_list (a);
8491 if (!list->num_assigned)
8493 list->num_assigned = true;
8494 list->hash = loc_list_idx++;
8498 FOR_EACH_CHILD (die, c, assign_location_list_indexes (c));
8501 /* We want to limit the number of external references, because they are
8502 larger than local references: a relocation takes multiple words, and
8503 even a sig8 reference is always eight bytes, whereas a local reference
8504 can be as small as one byte (though DW_FORM_ref is usually 4 in GCC).
8505 So if we encounter multiple external references to the same type DIE, we
8506 make a local typedef stub for it and redirect all references there.
8508 This is the element of the hash table for keeping track of these
8509 references. */
8511 struct external_ref
8513 dw_die_ref type;
8514 dw_die_ref stub;
8515 unsigned n_refs;
8518 /* Hashtable helpers. */
8520 struct external_ref_hasher : free_ptr_hash <external_ref>
8522 static inline hashval_t hash (const external_ref *);
8523 static inline bool equal (const external_ref *, const external_ref *);
8526 inline hashval_t
8527 external_ref_hasher::hash (const external_ref *r)
8529 dw_die_ref die = r->type;
8530 hashval_t h = 0;
8532 /* We can't use the address of the DIE for hashing, because
8533 that will make the order of the stub DIEs non-deterministic. */
8534 if (! die->comdat_type_p)
8535 /* We have a symbol; use it to compute a hash. */
8536 h = htab_hash_string (die->die_id.die_symbol);
8537 else
8539 /* We have a type signature; use a subset of the bits as the hash.
8540 The 8-byte signature is at least as large as hashval_t. */
8541 comdat_type_node *type_node = die->die_id.die_type_node;
8542 memcpy (&h, type_node->signature, sizeof (h));
8544 return h;
8547 inline bool
8548 external_ref_hasher::equal (const external_ref *r1, const external_ref *r2)
8550 return r1->type == r2->type;
8553 typedef hash_table<external_ref_hasher> external_ref_hash_type;
8555 /* Return a pointer to the external_ref for references to DIE. */
8557 static struct external_ref *
8558 lookup_external_ref (external_ref_hash_type *map, dw_die_ref die)
8560 struct external_ref ref, *ref_p;
8561 external_ref **slot;
8563 ref.type = die;
8564 slot = map->find_slot (&ref, INSERT);
8565 if (*slot != HTAB_EMPTY_ENTRY)
8566 return *slot;
8568 ref_p = XCNEW (struct external_ref);
8569 ref_p->type = die;
8570 *slot = ref_p;
8571 return ref_p;
8574 /* Subroutine of optimize_external_refs, below.
8576 If we see a type skeleton, record it as our stub. If we see external
8577 references, remember how many we've seen. */
8579 static void
8580 optimize_external_refs_1 (dw_die_ref die, external_ref_hash_type *map)
8582 dw_die_ref c;
8583 dw_attr_node *a;
8584 unsigned ix;
8585 struct external_ref *ref_p;
8587 if (is_type_die (die)
8588 && (c = get_AT_ref (die, DW_AT_signature)))
8590 /* This is a local skeleton; use it for local references. */
8591 ref_p = lookup_external_ref (map, c);
8592 ref_p->stub = die;
8595 /* Scan the DIE references, and remember any that refer to DIEs from
8596 other CUs (i.e. those which are not marked). */
8597 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8598 if (AT_class (a) == dw_val_class_die_ref
8599 && (c = AT_ref (a))->die_mark == 0
8600 && is_type_die (c))
8602 ref_p = lookup_external_ref (map, c);
8603 ref_p->n_refs++;
8606 FOR_EACH_CHILD (die, c, optimize_external_refs_1 (c, map));
8609 /* htab_traverse callback function for optimize_external_refs, below. SLOT
8610 points to an external_ref, DATA is the CU we're processing. If we don't
8611 already have a local stub, and we have multiple refs, build a stub. */
8614 dwarf2_build_local_stub (external_ref **slot, dw_die_ref data)
8616 struct external_ref *ref_p = *slot;
8618 if (ref_p->stub == NULL && ref_p->n_refs > 1 && !dwarf_strict)
8620 /* We have multiple references to this type, so build a small stub.
8621 Both of these forms are a bit dodgy from the perspective of the
8622 DWARF standard, since technically they should have names. */
8623 dw_die_ref cu = data;
8624 dw_die_ref type = ref_p->type;
8625 dw_die_ref stub = NULL;
8627 if (type->comdat_type_p)
8629 /* If we refer to this type via sig8, use AT_signature. */
8630 stub = new_die (type->die_tag, cu, NULL_TREE);
8631 add_AT_die_ref (stub, DW_AT_signature, type);
8633 else
8635 /* Otherwise, use a typedef with no name. */
8636 stub = new_die (DW_TAG_typedef, cu, NULL_TREE);
8637 add_AT_die_ref (stub, DW_AT_type, type);
8640 stub->die_mark++;
8641 ref_p->stub = stub;
8643 return 1;
8646 /* DIE is a unit; look through all the DIE references to see if there are
8647 any external references to types, and if so, create local stubs for
8648 them which will be applied in build_abbrev_table. This is useful because
8649 references to local DIEs are smaller. */
8651 static external_ref_hash_type *
8652 optimize_external_refs (dw_die_ref die)
8654 external_ref_hash_type *map = new external_ref_hash_type (10);
8655 optimize_external_refs_1 (die, map);
8656 map->traverse <dw_die_ref, dwarf2_build_local_stub> (die);
8657 return map;
8660 /* The following 3 variables are temporaries that are computed only during the
8661 build_abbrev_table call and used and released during the following
8662 optimize_abbrev_table call. */
8664 /* First abbrev_id that can be optimized based on usage. */
8665 static unsigned int abbrev_opt_start;
8667 /* Maximum abbrev_id of a base type plus one (we can't optimize DIEs with
8668 abbrev_id smaller than this, because they must be already sized
8669 during build_abbrev_table). */
8670 static unsigned int abbrev_opt_base_type_end;
8672 /* Vector of usage counts during build_abbrev_table. Indexed by
8673 abbrev_id - abbrev_opt_start. */
8674 static vec<unsigned int> abbrev_usage_count;
8676 /* Vector of all DIEs added with die_abbrev >= abbrev_opt_start. */
8677 static vec<dw_die_ref> sorted_abbrev_dies;
8679 /* The format of each DIE (and its attribute value pairs) is encoded in an
8680 abbreviation table. This routine builds the abbreviation table and assigns
8681 a unique abbreviation id for each abbreviation entry. The children of each
8682 die are visited recursively. */
8684 static void
8685 build_abbrev_table (dw_die_ref die, external_ref_hash_type *extern_map)
8687 unsigned int abbrev_id = 0;
8688 dw_die_ref c;
8689 dw_attr_node *a;
8690 unsigned ix;
8691 dw_die_ref abbrev;
8693 /* Scan the DIE references, and replace any that refer to
8694 DIEs from other CUs (i.e. those which are not marked) with
8695 the local stubs we built in optimize_external_refs. */
8696 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8697 if (AT_class (a) == dw_val_class_die_ref
8698 && (c = AT_ref (a))->die_mark == 0)
8700 struct external_ref *ref_p;
8701 gcc_assert (AT_ref (a)->comdat_type_p || AT_ref (a)->die_id.die_symbol);
8703 ref_p = lookup_external_ref (extern_map, c);
8704 if (ref_p->stub && ref_p->stub != die)
8705 change_AT_die_ref (a, ref_p->stub);
8706 else
8707 /* We aren't changing this reference, so mark it external. */
8708 set_AT_ref_external (a, 1);
8711 FOR_EACH_VEC_SAFE_ELT (abbrev_die_table, abbrev_id, abbrev)
8713 dw_attr_node *die_a, *abbrev_a;
8714 unsigned ix;
8715 bool ok = true;
8717 if (abbrev_id == 0)
8718 continue;
8719 if (abbrev->die_tag != die->die_tag)
8720 continue;
8721 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
8722 continue;
8724 if (vec_safe_length (abbrev->die_attr) != vec_safe_length (die->die_attr))
8725 continue;
8727 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, die_a)
8729 abbrev_a = &(*abbrev->die_attr)[ix];
8730 if ((abbrev_a->dw_attr != die_a->dw_attr)
8731 || (value_format (abbrev_a) != value_format (die_a)))
8733 ok = false;
8734 break;
8737 if (ok)
8738 break;
8741 if (abbrev_id >= vec_safe_length (abbrev_die_table))
8743 vec_safe_push (abbrev_die_table, die);
8744 if (abbrev_opt_start)
8745 abbrev_usage_count.safe_push (0);
8747 if (abbrev_opt_start && abbrev_id >= abbrev_opt_start)
8749 abbrev_usage_count[abbrev_id - abbrev_opt_start]++;
8750 sorted_abbrev_dies.safe_push (die);
8753 die->die_abbrev = abbrev_id;
8754 FOR_EACH_CHILD (die, c, build_abbrev_table (c, extern_map));
8757 /* Callback function for sorted_abbrev_dies vector sorting. We sort
8758 by die_abbrev's usage count, from the most commonly used
8759 abbreviation to the least. */
8761 static int
8762 die_abbrev_cmp (const void *p1, const void *p2)
8764 dw_die_ref die1 = *(const dw_die_ref *) p1;
8765 dw_die_ref die2 = *(const dw_die_ref *) p2;
8767 gcc_checking_assert (die1->die_abbrev >= abbrev_opt_start);
8768 gcc_checking_assert (die2->die_abbrev >= abbrev_opt_start);
8770 if (die1->die_abbrev >= abbrev_opt_base_type_end
8771 && die2->die_abbrev >= abbrev_opt_base_type_end)
8773 if (abbrev_usage_count[die1->die_abbrev - abbrev_opt_start]
8774 > abbrev_usage_count[die2->die_abbrev - abbrev_opt_start])
8775 return -1;
8776 if (abbrev_usage_count[die1->die_abbrev - abbrev_opt_start]
8777 < abbrev_usage_count[die2->die_abbrev - abbrev_opt_start])
8778 return 1;
8781 /* Stabilize the sort. */
8782 if (die1->die_abbrev < die2->die_abbrev)
8783 return -1;
8784 if (die1->die_abbrev > die2->die_abbrev)
8785 return 1;
8787 return 0;
8790 /* Convert dw_val_class_const and dw_val_class_unsigned_const class attributes
8791 of DIEs in between sorted_abbrev_dies[first_id] and abbrev_dies[end_id - 1]
8792 into dw_val_class_const_implicit or
8793 dw_val_class_unsigned_const_implicit. */
8795 static void
8796 optimize_implicit_const (unsigned int first_id, unsigned int end,
8797 vec<bool> &implicit_consts)
8799 /* It never makes sense if there is just one DIE using the abbreviation. */
8800 if (end < first_id + 2)
8801 return;
8803 dw_attr_node *a;
8804 unsigned ix, i;
8805 dw_die_ref die = sorted_abbrev_dies[first_id];
8806 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8807 if (implicit_consts[ix])
8809 enum dw_val_class new_class = dw_val_class_none;
8810 switch (AT_class (a))
8812 case dw_val_class_unsigned_const:
8813 if ((HOST_WIDE_INT) AT_unsigned (a) < 0)
8814 continue;
8816 /* The .debug_abbrev section will grow by
8817 size_of_sleb128 (AT_unsigned (a)) and we avoid the constants
8818 in all the DIEs using that abbreviation. */
8819 if (constant_size (AT_unsigned (a)) * (end - first_id)
8820 <= (unsigned) size_of_sleb128 (AT_unsigned (a)))
8821 continue;
8823 new_class = dw_val_class_unsigned_const_implicit;
8824 break;
8826 case dw_val_class_const:
8827 new_class = dw_val_class_const_implicit;
8828 break;
8830 case dw_val_class_file:
8831 new_class = dw_val_class_file_implicit;
8832 break;
8834 default:
8835 continue;
8837 for (i = first_id; i < end; i++)
8838 (*sorted_abbrev_dies[i]->die_attr)[ix].dw_attr_val.val_class
8839 = new_class;
8843 /* Attempt to optimize abbreviation table from abbrev_opt_start
8844 abbreviation above. */
8846 static void
8847 optimize_abbrev_table (void)
8849 if (abbrev_opt_start
8850 && vec_safe_length (abbrev_die_table) > abbrev_opt_start
8851 && (dwarf_version >= 5 || vec_safe_length (abbrev_die_table) > 127))
8853 auto_vec<bool, 32> implicit_consts;
8854 sorted_abbrev_dies.qsort (die_abbrev_cmp);
8856 unsigned int abbrev_id = abbrev_opt_start - 1;
8857 unsigned int first_id = ~0U;
8858 unsigned int last_abbrev_id = 0;
8859 unsigned int i;
8860 dw_die_ref die;
8861 if (abbrev_opt_base_type_end > abbrev_opt_start)
8862 abbrev_id = abbrev_opt_base_type_end - 1;
8863 /* Reassign abbreviation ids from abbrev_opt_start above, so that
8864 most commonly used abbreviations come first. */
8865 FOR_EACH_VEC_ELT (sorted_abbrev_dies, i, die)
8867 dw_attr_node *a;
8868 unsigned ix;
8870 /* If calc_base_type_die_sizes has been called, the CU and
8871 base types after it can't be optimized, because we've already
8872 calculated their DIE offsets. We've sorted them first. */
8873 if (die->die_abbrev < abbrev_opt_base_type_end)
8874 continue;
8875 if (die->die_abbrev != last_abbrev_id)
8877 last_abbrev_id = die->die_abbrev;
8878 if (dwarf_version >= 5 && first_id != ~0U)
8879 optimize_implicit_const (first_id, i, implicit_consts);
8880 abbrev_id++;
8881 (*abbrev_die_table)[abbrev_id] = die;
8882 if (dwarf_version >= 5)
8884 first_id = i;
8885 implicit_consts.truncate (0);
8887 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8888 switch (AT_class (a))
8890 case dw_val_class_const:
8891 case dw_val_class_unsigned_const:
8892 case dw_val_class_file:
8893 implicit_consts.safe_push (true);
8894 break;
8895 default:
8896 implicit_consts.safe_push (false);
8897 break;
8901 else if (dwarf_version >= 5)
8903 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8904 if (!implicit_consts[ix])
8905 continue;
8906 else
8908 dw_attr_node *other_a
8909 = &(*(*abbrev_die_table)[abbrev_id]->die_attr)[ix];
8910 if (!dw_val_equal_p (&a->dw_attr_val,
8911 &other_a->dw_attr_val))
8912 implicit_consts[ix] = false;
8915 die->die_abbrev = abbrev_id;
8917 gcc_assert (abbrev_id == vec_safe_length (abbrev_die_table) - 1);
8918 if (dwarf_version >= 5 && first_id != ~0U)
8919 optimize_implicit_const (first_id, i, implicit_consts);
8922 abbrev_opt_start = 0;
8923 abbrev_opt_base_type_end = 0;
8924 abbrev_usage_count.release ();
8925 sorted_abbrev_dies.release ();
8928 /* Return the power-of-two number of bytes necessary to represent VALUE. */
8930 static int
8931 constant_size (unsigned HOST_WIDE_INT value)
8933 int log;
8935 if (value == 0)
8936 log = 0;
8937 else
8938 log = floor_log2 (value);
8940 log = log / 8;
8941 log = 1 << (floor_log2 (log) + 1);
8943 return log;
8946 /* Return the size of a DIE as it is represented in the
8947 .debug_info section. */
8949 static unsigned long
8950 size_of_die (dw_die_ref die)
8952 unsigned long size = 0;
8953 dw_attr_node *a;
8954 unsigned ix;
8955 enum dwarf_form form;
8957 size += size_of_uleb128 (die->die_abbrev);
8958 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8960 switch (AT_class (a))
8962 case dw_val_class_addr:
8963 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8965 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8966 size += size_of_uleb128 (AT_index (a));
8968 else
8969 size += DWARF2_ADDR_SIZE;
8970 break;
8971 case dw_val_class_offset:
8972 size += DWARF_OFFSET_SIZE;
8973 break;
8974 case dw_val_class_loc:
8976 unsigned long lsize = size_of_locs (AT_loc (a));
8978 /* Block length. */
8979 if (dwarf_version >= 4)
8980 size += size_of_uleb128 (lsize);
8981 else
8982 size += constant_size (lsize);
8983 size += lsize;
8985 break;
8986 case dw_val_class_loc_list:
8987 if (dwarf_split_debug_info && dwarf_version >= 5)
8989 gcc_assert (AT_loc_list (a)->num_assigned);
8990 size += size_of_uleb128 (AT_loc_list (a)->hash);
8992 else
8993 size += DWARF_OFFSET_SIZE;
8994 break;
8995 case dw_val_class_range_list:
8996 if (value_format (a) == DW_FORM_rnglistx)
8998 gcc_assert (rnglist_idx);
8999 dw_ranges *r = &(*ranges_table)[a->dw_attr_val.v.val_offset];
9000 size += size_of_uleb128 (r->idx);
9002 else
9003 size += DWARF_OFFSET_SIZE;
9004 break;
9005 case dw_val_class_const:
9006 size += size_of_sleb128 (AT_int (a));
9007 break;
9008 case dw_val_class_unsigned_const:
9010 int csize = constant_size (AT_unsigned (a));
9011 if (dwarf_version == 3
9012 && a->dw_attr == DW_AT_data_member_location
9013 && csize >= 4)
9014 size += size_of_uleb128 (AT_unsigned (a));
9015 else
9016 size += csize;
9018 break;
9019 case dw_val_class_const_implicit:
9020 case dw_val_class_unsigned_const_implicit:
9021 case dw_val_class_file_implicit:
9022 /* These occupy no size in the DIE, just an extra sleb128 in
9023 .debug_abbrev. */
9024 break;
9025 case dw_val_class_const_double:
9026 size += HOST_BITS_PER_DOUBLE_INT / HOST_BITS_PER_CHAR;
9027 if (HOST_BITS_PER_WIDE_INT >= DWARF_LARGEST_DATA_FORM_BITS)
9028 size++; /* block */
9029 break;
9030 case dw_val_class_wide_int:
9031 size += (get_full_len (*a->dw_attr_val.v.val_wide)
9032 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
9033 if (get_full_len (*a->dw_attr_val.v.val_wide)
9034 * HOST_BITS_PER_WIDE_INT > DWARF_LARGEST_DATA_FORM_BITS)
9035 size++; /* block */
9036 break;
9037 case dw_val_class_vec:
9038 size += constant_size (a->dw_attr_val.v.val_vec.length
9039 * a->dw_attr_val.v.val_vec.elt_size)
9040 + a->dw_attr_val.v.val_vec.length
9041 * a->dw_attr_val.v.val_vec.elt_size; /* block */
9042 break;
9043 case dw_val_class_flag:
9044 if (dwarf_version >= 4)
9045 /* Currently all add_AT_flag calls pass in 1 as last argument,
9046 so DW_FORM_flag_present can be used. If that ever changes,
9047 we'll need to use DW_FORM_flag and have some optimization
9048 in build_abbrev_table that will change those to
9049 DW_FORM_flag_present if it is set to 1 in all DIEs using
9050 the same abbrev entry. */
9051 gcc_assert (a->dw_attr_val.v.val_flag == 1);
9052 else
9053 size += 1;
9054 break;
9055 case dw_val_class_die_ref:
9056 if (AT_ref_external (a))
9058 /* In DWARF4, we use DW_FORM_ref_sig8; for earlier versions
9059 we use DW_FORM_ref_addr. In DWARF2, DW_FORM_ref_addr
9060 is sized by target address length, whereas in DWARF3
9061 it's always sized as an offset. */
9062 if (use_debug_types)
9063 size += DWARF_TYPE_SIGNATURE_SIZE;
9064 else if (dwarf_version == 2)
9065 size += DWARF2_ADDR_SIZE;
9066 else
9067 size += DWARF_OFFSET_SIZE;
9069 else
9070 size += DWARF_OFFSET_SIZE;
9071 break;
9072 case dw_val_class_fde_ref:
9073 size += DWARF_OFFSET_SIZE;
9074 break;
9075 case dw_val_class_lbl_id:
9076 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
9078 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
9079 size += size_of_uleb128 (AT_index (a));
9081 else
9082 size += DWARF2_ADDR_SIZE;
9083 break;
9084 case dw_val_class_lineptr:
9085 case dw_val_class_macptr:
9086 case dw_val_class_loclistsptr:
9087 size += DWARF_OFFSET_SIZE;
9088 break;
9089 case dw_val_class_str:
9090 form = AT_string_form (a);
9091 if (form == DW_FORM_strp || form == DW_FORM_line_strp)
9092 size += DWARF_OFFSET_SIZE;
9093 else if (form == DW_FORM_GNU_str_index)
9094 size += size_of_uleb128 (AT_index (a));
9095 else
9096 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
9097 break;
9098 case dw_val_class_file:
9099 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
9100 break;
9101 case dw_val_class_data8:
9102 size += 8;
9103 break;
9104 case dw_val_class_vms_delta:
9105 size += DWARF_OFFSET_SIZE;
9106 break;
9107 case dw_val_class_high_pc:
9108 size += DWARF2_ADDR_SIZE;
9109 break;
9110 case dw_val_class_discr_value:
9111 size += size_of_discr_value (&a->dw_attr_val.v.val_discr_value);
9112 break;
9113 case dw_val_class_discr_list:
9115 unsigned block_size = size_of_discr_list (AT_discr_list (a));
9117 /* This is a block, so we have the block length and then its
9118 data. */
9119 size += constant_size (block_size) + block_size;
9121 break;
9122 default:
9123 gcc_unreachable ();
9127 return size;
9130 /* Size the debugging information associated with a given DIE. Visits the
9131 DIE's children recursively. Updates the global variable next_die_offset, on
9132 each time through. Uses the current value of next_die_offset to update the
9133 die_offset field in each DIE. */
9135 static void
9136 calc_die_sizes (dw_die_ref die)
9138 dw_die_ref c;
9140 gcc_assert (die->die_offset == 0
9141 || (unsigned long int) die->die_offset == next_die_offset);
9142 die->die_offset = next_die_offset;
9143 next_die_offset += size_of_die (die);
9145 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
9147 if (die->die_child != NULL)
9148 /* Count the null byte used to terminate sibling lists. */
9149 next_die_offset += 1;
9152 /* Size just the base type children at the start of the CU.
9153 This is needed because build_abbrev needs to size locs
9154 and sizing of type based stack ops needs to know die_offset
9155 values for the base types. */
9157 static void
9158 calc_base_type_die_sizes (void)
9160 unsigned long die_offset = (dwarf_split_debug_info
9161 ? DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
9162 : DWARF_COMPILE_UNIT_HEADER_SIZE);
9163 unsigned int i;
9164 dw_die_ref base_type;
9165 #if ENABLE_ASSERT_CHECKING
9166 dw_die_ref prev = comp_unit_die ()->die_child;
9167 #endif
9169 die_offset += size_of_die (comp_unit_die ());
9170 for (i = 0; base_types.iterate (i, &base_type); i++)
9172 #if ENABLE_ASSERT_CHECKING
9173 gcc_assert (base_type->die_offset == 0
9174 && prev->die_sib == base_type
9175 && base_type->die_child == NULL
9176 && base_type->die_abbrev);
9177 prev = base_type;
9178 #endif
9179 if (abbrev_opt_start
9180 && base_type->die_abbrev >= abbrev_opt_base_type_end)
9181 abbrev_opt_base_type_end = base_type->die_abbrev + 1;
9182 base_type->die_offset = die_offset;
9183 die_offset += size_of_die (base_type);
9187 /* Set the marks for a die and its children. We do this so
9188 that we know whether or not a reference needs to use FORM_ref_addr; only
9189 DIEs in the same CU will be marked. We used to clear out the offset
9190 and use that as the flag, but ran into ordering problems. */
9192 static void
9193 mark_dies (dw_die_ref die)
9195 dw_die_ref c;
9197 gcc_assert (!die->die_mark);
9199 die->die_mark = 1;
9200 FOR_EACH_CHILD (die, c, mark_dies (c));
9203 /* Clear the marks for a die and its children. */
9205 static void
9206 unmark_dies (dw_die_ref die)
9208 dw_die_ref c;
9210 if (! use_debug_types)
9211 gcc_assert (die->die_mark);
9213 die->die_mark = 0;
9214 FOR_EACH_CHILD (die, c, unmark_dies (c));
9217 /* Clear the marks for a die, its children and referred dies. */
9219 static void
9220 unmark_all_dies (dw_die_ref die)
9222 dw_die_ref c;
9223 dw_attr_node *a;
9224 unsigned ix;
9226 if (!die->die_mark)
9227 return;
9228 die->die_mark = 0;
9230 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
9232 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
9233 if (AT_class (a) == dw_val_class_die_ref)
9234 unmark_all_dies (AT_ref (a));
9237 /* Calculate if the entry should appear in the final output file. It may be
9238 from a pruned a type. */
9240 static bool
9241 include_pubname_in_output (vec<pubname_entry, va_gc> *table, pubname_entry *p)
9243 /* By limiting gnu pubnames to definitions only, gold can generate a
9244 gdb index without entries for declarations, which don't include
9245 enough information to be useful. */
9246 if (debug_generate_pub_sections == 2 && is_declaration_die (p->die))
9247 return false;
9249 if (table == pubname_table)
9251 /* Enumerator names are part of the pubname table, but the
9252 parent DW_TAG_enumeration_type die may have been pruned.
9253 Don't output them if that is the case. */
9254 if (p->die->die_tag == DW_TAG_enumerator &&
9255 (p->die->die_parent == NULL
9256 || !p->die->die_parent->die_perennial_p))
9257 return false;
9259 /* Everything else in the pubname table is included. */
9260 return true;
9263 /* The pubtypes table shouldn't include types that have been
9264 pruned. */
9265 return (p->die->die_offset != 0
9266 || !flag_eliminate_unused_debug_types);
9269 /* Return the size of the .debug_pubnames or .debug_pubtypes table
9270 generated for the compilation unit. */
9272 static unsigned long
9273 size_of_pubnames (vec<pubname_entry, va_gc> *names)
9275 unsigned long size;
9276 unsigned i;
9277 pubname_entry *p;
9278 int space_for_flags = (debug_generate_pub_sections == 2) ? 1 : 0;
9280 size = DWARF_PUBNAMES_HEADER_SIZE;
9281 FOR_EACH_VEC_ELT (*names, i, p)
9282 if (include_pubname_in_output (names, p))
9283 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1 + space_for_flags;
9285 size += DWARF_OFFSET_SIZE;
9286 return size;
9289 /* Return the size of the information in the .debug_aranges section. */
9291 static unsigned long
9292 size_of_aranges (void)
9294 unsigned long size;
9296 size = DWARF_ARANGES_HEADER_SIZE;
9298 /* Count the address/length pair for this compilation unit. */
9299 if (text_section_used)
9300 size += 2 * DWARF2_ADDR_SIZE;
9301 if (cold_text_section_used)
9302 size += 2 * DWARF2_ADDR_SIZE;
9303 if (have_multiple_function_sections)
9305 unsigned fde_idx;
9306 dw_fde_ref fde;
9308 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
9310 if (DECL_IGNORED_P (fde->decl))
9311 continue;
9312 if (!fde->in_std_section)
9313 size += 2 * DWARF2_ADDR_SIZE;
9314 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
9315 size += 2 * DWARF2_ADDR_SIZE;
9319 /* Count the two zero words used to terminated the address range table. */
9320 size += 2 * DWARF2_ADDR_SIZE;
9321 return size;
9324 /* Select the encoding of an attribute value. */
9326 static enum dwarf_form
9327 value_format (dw_attr_node *a)
9329 switch (AT_class (a))
9331 case dw_val_class_addr:
9332 /* Only very few attributes allow DW_FORM_addr. */
9333 switch (a->dw_attr)
9335 case DW_AT_low_pc:
9336 case DW_AT_high_pc:
9337 case DW_AT_entry_pc:
9338 case DW_AT_trampoline:
9339 return (AT_index (a) == NOT_INDEXED
9340 ? DW_FORM_addr : DW_FORM_GNU_addr_index);
9341 default:
9342 break;
9344 switch (DWARF2_ADDR_SIZE)
9346 case 1:
9347 return DW_FORM_data1;
9348 case 2:
9349 return DW_FORM_data2;
9350 case 4:
9351 return DW_FORM_data4;
9352 case 8:
9353 return DW_FORM_data8;
9354 default:
9355 gcc_unreachable ();
9357 case dw_val_class_loc_list:
9358 if (dwarf_split_debug_info
9359 && dwarf_version >= 5
9360 && AT_loc_list (a)->num_assigned)
9361 return DW_FORM_loclistx;
9362 /* FALLTHRU */
9363 case dw_val_class_range_list:
9364 /* For range lists in DWARF 5, use DW_FORM_rnglistx from .debug_info.dwo
9365 but in .debug_info use DW_FORM_sec_offset, which is shorter if we
9366 care about sizes of .debug* sections in shared libraries and
9367 executables and don't take into account relocations that affect just
9368 relocatable objects - for DW_FORM_rnglistx we'd have to emit offset
9369 table in the .debug_rnglists section. */
9370 if (dwarf_split_debug_info
9371 && dwarf_version >= 5
9372 && AT_class (a) == dw_val_class_range_list
9373 && rnglist_idx
9374 && a->dw_attr_val.val_entry != RELOCATED_OFFSET)
9375 return DW_FORM_rnglistx;
9376 if (dwarf_version >= 4)
9377 return DW_FORM_sec_offset;
9378 /* FALLTHRU */
9379 case dw_val_class_vms_delta:
9380 case dw_val_class_offset:
9381 switch (DWARF_OFFSET_SIZE)
9383 case 4:
9384 return DW_FORM_data4;
9385 case 8:
9386 return DW_FORM_data8;
9387 default:
9388 gcc_unreachable ();
9390 case dw_val_class_loc:
9391 if (dwarf_version >= 4)
9392 return DW_FORM_exprloc;
9393 switch (constant_size (size_of_locs (AT_loc (a))))
9395 case 1:
9396 return DW_FORM_block1;
9397 case 2:
9398 return DW_FORM_block2;
9399 case 4:
9400 return DW_FORM_block4;
9401 default:
9402 gcc_unreachable ();
9404 case dw_val_class_const:
9405 return DW_FORM_sdata;
9406 case dw_val_class_unsigned_const:
9407 switch (constant_size (AT_unsigned (a)))
9409 case 1:
9410 return DW_FORM_data1;
9411 case 2:
9412 return DW_FORM_data2;
9413 case 4:
9414 /* In DWARF3 DW_AT_data_member_location with
9415 DW_FORM_data4 or DW_FORM_data8 is a loclistptr, not
9416 constant, so we need to use DW_FORM_udata if we need
9417 a large constant. */
9418 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
9419 return DW_FORM_udata;
9420 return DW_FORM_data4;
9421 case 8:
9422 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
9423 return DW_FORM_udata;
9424 return DW_FORM_data8;
9425 default:
9426 gcc_unreachable ();
9428 case dw_val_class_const_implicit:
9429 case dw_val_class_unsigned_const_implicit:
9430 case dw_val_class_file_implicit:
9431 return DW_FORM_implicit_const;
9432 case dw_val_class_const_double:
9433 switch (HOST_BITS_PER_WIDE_INT)
9435 case 8:
9436 return DW_FORM_data2;
9437 case 16:
9438 return DW_FORM_data4;
9439 case 32:
9440 return DW_FORM_data8;
9441 case 64:
9442 if (dwarf_version >= 5)
9443 return DW_FORM_data16;
9444 /* FALLTHRU */
9445 default:
9446 return DW_FORM_block1;
9448 case dw_val_class_wide_int:
9449 switch (get_full_len (*a->dw_attr_val.v.val_wide) * HOST_BITS_PER_WIDE_INT)
9451 case 8:
9452 return DW_FORM_data1;
9453 case 16:
9454 return DW_FORM_data2;
9455 case 32:
9456 return DW_FORM_data4;
9457 case 64:
9458 return DW_FORM_data8;
9459 case 128:
9460 if (dwarf_version >= 5)
9461 return DW_FORM_data16;
9462 /* FALLTHRU */
9463 default:
9464 return DW_FORM_block1;
9466 case dw_val_class_vec:
9467 switch (constant_size (a->dw_attr_val.v.val_vec.length
9468 * a->dw_attr_val.v.val_vec.elt_size))
9470 case 1:
9471 return DW_FORM_block1;
9472 case 2:
9473 return DW_FORM_block2;
9474 case 4:
9475 return DW_FORM_block4;
9476 default:
9477 gcc_unreachable ();
9479 case dw_val_class_flag:
9480 if (dwarf_version >= 4)
9482 /* Currently all add_AT_flag calls pass in 1 as last argument,
9483 so DW_FORM_flag_present can be used. If that ever changes,
9484 we'll need to use DW_FORM_flag and have some optimization
9485 in build_abbrev_table that will change those to
9486 DW_FORM_flag_present if it is set to 1 in all DIEs using
9487 the same abbrev entry. */
9488 gcc_assert (a->dw_attr_val.v.val_flag == 1);
9489 return DW_FORM_flag_present;
9491 return DW_FORM_flag;
9492 case dw_val_class_die_ref:
9493 if (AT_ref_external (a))
9494 return use_debug_types ? DW_FORM_ref_sig8 : DW_FORM_ref_addr;
9495 else
9496 return DW_FORM_ref;
9497 case dw_val_class_fde_ref:
9498 return DW_FORM_data;
9499 case dw_val_class_lbl_id:
9500 return (AT_index (a) == NOT_INDEXED
9501 ? DW_FORM_addr : DW_FORM_GNU_addr_index);
9502 case dw_val_class_lineptr:
9503 case dw_val_class_macptr:
9504 case dw_val_class_loclistsptr:
9505 return dwarf_version >= 4 ? DW_FORM_sec_offset : DW_FORM_data;
9506 case dw_val_class_str:
9507 return AT_string_form (a);
9508 case dw_val_class_file:
9509 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
9511 case 1:
9512 return DW_FORM_data1;
9513 case 2:
9514 return DW_FORM_data2;
9515 case 4:
9516 return DW_FORM_data4;
9517 default:
9518 gcc_unreachable ();
9521 case dw_val_class_data8:
9522 return DW_FORM_data8;
9524 case dw_val_class_high_pc:
9525 switch (DWARF2_ADDR_SIZE)
9527 case 1:
9528 return DW_FORM_data1;
9529 case 2:
9530 return DW_FORM_data2;
9531 case 4:
9532 return DW_FORM_data4;
9533 case 8:
9534 return DW_FORM_data8;
9535 default:
9536 gcc_unreachable ();
9539 case dw_val_class_discr_value:
9540 return (a->dw_attr_val.v.val_discr_value.pos
9541 ? DW_FORM_udata
9542 : DW_FORM_sdata);
9543 case dw_val_class_discr_list:
9544 switch (constant_size (size_of_discr_list (AT_discr_list (a))))
9546 case 1:
9547 return DW_FORM_block1;
9548 case 2:
9549 return DW_FORM_block2;
9550 case 4:
9551 return DW_FORM_block4;
9552 default:
9553 gcc_unreachable ();
9556 default:
9557 gcc_unreachable ();
9561 /* Output the encoding of an attribute value. */
9563 static void
9564 output_value_format (dw_attr_node *a)
9566 enum dwarf_form form = value_format (a);
9568 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
9571 /* Given a die and id, produce the appropriate abbreviations. */
9573 static void
9574 output_die_abbrevs (unsigned long abbrev_id, dw_die_ref abbrev)
9576 unsigned ix;
9577 dw_attr_node *a_attr;
9579 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
9580 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
9581 dwarf_tag_name (abbrev->die_tag));
9583 if (abbrev->die_child != NULL)
9584 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
9585 else
9586 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
9588 for (ix = 0; vec_safe_iterate (abbrev->die_attr, ix, &a_attr); ix++)
9590 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
9591 dwarf_attr_name (a_attr->dw_attr));
9592 output_value_format (a_attr);
9593 if (value_format (a_attr) == DW_FORM_implicit_const)
9595 if (AT_class (a_attr) == dw_val_class_file_implicit)
9597 int f = maybe_emit_file (a_attr->dw_attr_val.v.val_file);
9598 const char *filename = a_attr->dw_attr_val.v.val_file->filename;
9599 dw2_asm_output_data_sleb128 (f, "(%s)", filename);
9601 else
9602 dw2_asm_output_data_sleb128 (a_attr->dw_attr_val.v.val_int, NULL);
9606 dw2_asm_output_data (1, 0, NULL);
9607 dw2_asm_output_data (1, 0, NULL);
9611 /* Output the .debug_abbrev section which defines the DIE abbreviation
9612 table. */
9614 static void
9615 output_abbrev_section (void)
9617 unsigned int abbrev_id;
9618 dw_die_ref abbrev;
9620 FOR_EACH_VEC_SAFE_ELT (abbrev_die_table, abbrev_id, abbrev)
9621 if (abbrev_id != 0)
9622 output_die_abbrevs (abbrev_id, abbrev);
9624 /* Terminate the table. */
9625 dw2_asm_output_data (1, 0, NULL);
9628 /* Output a symbol we can use to refer to this DIE from another CU. */
9630 static inline void
9631 output_die_symbol (dw_die_ref die)
9633 const char *sym = die->die_id.die_symbol;
9635 gcc_assert (!die->comdat_type_p);
9637 if (sym == 0)
9638 return;
9640 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
9641 /* We make these global, not weak; if the target doesn't support
9642 .linkonce, it doesn't support combining the sections, so debugging
9643 will break. */
9644 targetm.asm_out.globalize_label (asm_out_file, sym);
9646 ASM_OUTPUT_LABEL (asm_out_file, sym);
9649 /* Return a new location list, given the begin and end range, and the
9650 expression. */
9652 static inline dw_loc_list_ref
9653 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
9654 const char *section)
9656 dw_loc_list_ref retlist = ggc_cleared_alloc<dw_loc_list_node> ();
9658 retlist->begin = begin;
9659 retlist->begin_entry = NULL;
9660 retlist->end = end;
9661 retlist->expr = expr;
9662 retlist->section = section;
9664 return retlist;
9667 /* Generate a new internal symbol for this location list node, if it
9668 hasn't got one yet. */
9670 static inline void
9671 gen_llsym (dw_loc_list_ref list)
9673 gcc_assert (!list->ll_symbol);
9674 list->ll_symbol = gen_internal_sym ("LLST");
9677 /* Output the location list given to us. */
9679 static void
9680 output_loc_list (dw_loc_list_ref list_head)
9682 if (list_head->emitted)
9683 return;
9684 list_head->emitted = true;
9686 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
9688 dw_loc_list_ref curr = list_head;
9689 const char *last_section = NULL;
9690 const char *base_label = NULL;
9692 /* Walk the location list, and output each range + expression. */
9693 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
9695 unsigned long size;
9696 /* Don't output an entry that starts and ends at the same address. */
9697 if (strcmp (curr->begin, curr->end) == 0 && !curr->force)
9698 continue;
9699 size = size_of_locs (curr->expr);
9700 /* If the expression is too large, drop it on the floor. We could
9701 perhaps put it into DW_TAG_dwarf_procedure and refer to that
9702 in the expression, but >= 64KB expressions for a single value
9703 in a single range are unlikely very useful. */
9704 if (dwarf_version < 5 && size > 0xffff)
9705 continue;
9706 if (dwarf_version >= 5)
9708 if (dwarf_split_debug_info)
9710 /* For -gsplit-dwarf, emit DW_LLE_starx_length, which has
9711 uleb128 index into .debug_addr and uleb128 length. */
9712 dw2_asm_output_data (1, DW_LLE_startx_length,
9713 "DW_LLE_startx_length (%s)",
9714 list_head->ll_symbol);
9715 dw2_asm_output_data_uleb128 (curr->begin_entry->index,
9716 "Location list range start index "
9717 "(%s)", curr->begin);
9718 /* FIXME: This will ICE ifndef HAVE_AS_LEB128.
9719 For that case we probably need to emit DW_LLE_startx_endx,
9720 but we'd need 2 .debug_addr entries rather than just one. */
9721 dw2_asm_output_delta_uleb128 (curr->end, curr->begin,
9722 "Location list length (%s)",
9723 list_head->ll_symbol);
9725 else if (!have_multiple_function_sections && HAVE_AS_LEB128)
9727 /* If all code is in .text section, the base address is
9728 already provided by the CU attributes. Use
9729 DW_LLE_offset_pair where both addresses are uleb128 encoded
9730 offsets against that base. */
9731 dw2_asm_output_data (1, DW_LLE_offset_pair,
9732 "DW_LLE_offset_pair (%s)",
9733 list_head->ll_symbol);
9734 dw2_asm_output_delta_uleb128 (curr->begin, curr->section,
9735 "Location list begin address (%s)",
9736 list_head->ll_symbol);
9737 dw2_asm_output_delta_uleb128 (curr->end, curr->section,
9738 "Location list end address (%s)",
9739 list_head->ll_symbol);
9741 else if (HAVE_AS_LEB128)
9743 /* Otherwise, find out how many consecutive entries could share
9744 the same base entry. If just one, emit DW_LLE_start_length,
9745 otherwise emit DW_LLE_base_address for the base address
9746 followed by a series of DW_LLE_offset_pair. */
9747 if (last_section == NULL || curr->section != last_section)
9749 dw_loc_list_ref curr2;
9750 for (curr2 = curr->dw_loc_next; curr2 != NULL;
9751 curr2 = curr2->dw_loc_next)
9753 if (strcmp (curr2->begin, curr2->end) == 0
9754 && !curr2->force)
9755 continue;
9756 break;
9758 if (curr2 == NULL || curr->section != curr2->section)
9759 last_section = NULL;
9760 else
9762 last_section = curr->section;
9763 base_label = curr->begin;
9764 dw2_asm_output_data (1, DW_LLE_base_address,
9765 "DW_LLE_base_address (%s)",
9766 list_head->ll_symbol);
9767 dw2_asm_output_addr (DWARF2_ADDR_SIZE, base_label,
9768 "Base address (%s)",
9769 list_head->ll_symbol);
9772 /* Only one entry with the same base address. Use
9773 DW_LLE_start_length with absolute address and uleb128
9774 length. */
9775 if (last_section == NULL)
9777 dw2_asm_output_data (1, DW_LLE_start_length,
9778 "DW_LLE_start_length (%s)",
9779 list_head->ll_symbol);
9780 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
9781 "Location list begin address (%s)",
9782 list_head->ll_symbol);
9783 dw2_asm_output_delta_uleb128 (curr->end, curr->begin,
9784 "Location list length "
9785 "(%s)", list_head->ll_symbol);
9787 /* Otherwise emit DW_LLE_offset_pair, relative to above emitted
9788 DW_LLE_base_address. */
9789 else
9791 dw2_asm_output_data (1, DW_LLE_offset_pair,
9792 "DW_LLE_offset_pair (%s)",
9793 list_head->ll_symbol);
9794 dw2_asm_output_delta_uleb128 (curr->begin, base_label,
9795 "Location list begin address "
9796 "(%s)", list_head->ll_symbol);
9797 dw2_asm_output_delta_uleb128 (curr->end, base_label,
9798 "Location list end address "
9799 "(%s)", list_head->ll_symbol);
9802 /* The assembler does not support .uleb128 directive. Emit
9803 DW_LLE_start_end with a pair of absolute addresses. */
9804 else
9806 dw2_asm_output_data (1, DW_LLE_start_end,
9807 "DW_LLE_start_end (%s)",
9808 list_head->ll_symbol);
9809 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
9810 "Location list begin address (%s)",
9811 list_head->ll_symbol);
9812 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
9813 "Location list end address (%s)",
9814 list_head->ll_symbol);
9817 else if (dwarf_split_debug_info)
9819 /* For -gsplit-dwarf -gdwarf-{2,3,4} emit index into .debug_addr
9820 and 4 byte length. */
9821 dw2_asm_output_data (1, DW_LLE_GNU_start_length_entry,
9822 "Location list start/length entry (%s)",
9823 list_head->ll_symbol);
9824 dw2_asm_output_data_uleb128 (curr->begin_entry->index,
9825 "Location list range start index (%s)",
9826 curr->begin);
9827 /* The length field is 4 bytes. If we ever need to support
9828 an 8-byte length, we can add a new DW_LLE code or fall back
9829 to DW_LLE_GNU_start_end_entry. */
9830 dw2_asm_output_delta (4, curr->end, curr->begin,
9831 "Location list range length (%s)",
9832 list_head->ll_symbol);
9834 else if (!have_multiple_function_sections)
9836 /* Pair of relative addresses against start of text section. */
9837 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
9838 "Location list begin address (%s)",
9839 list_head->ll_symbol);
9840 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
9841 "Location list end address (%s)",
9842 list_head->ll_symbol);
9844 else
9846 /* Pair of absolute addresses. */
9847 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
9848 "Location list begin address (%s)",
9849 list_head->ll_symbol);
9850 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
9851 "Location list end address (%s)",
9852 list_head->ll_symbol);
9855 /* Output the block length for this list of location operations. */
9856 if (dwarf_version >= 5)
9857 dw2_asm_output_data_uleb128 (size, "Location expression size");
9858 else
9860 gcc_assert (size <= 0xffff);
9861 dw2_asm_output_data (2, size, "Location expression size");
9864 output_loc_sequence (curr->expr, -1);
9867 /* And finally list termination. */
9868 if (dwarf_version >= 5)
9869 dw2_asm_output_data (1, DW_LLE_end_of_list,
9870 "DW_LLE_end_of_list (%s)", list_head->ll_symbol);
9871 else if (dwarf_split_debug_info)
9872 dw2_asm_output_data (1, DW_LLE_GNU_end_of_list_entry,
9873 "Location list terminator (%s)",
9874 list_head->ll_symbol);
9875 else
9877 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
9878 "Location list terminator begin (%s)",
9879 list_head->ll_symbol);
9880 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
9881 "Location list terminator end (%s)",
9882 list_head->ll_symbol);
9886 /* Output a range_list offset into the .debug_ranges or .debug_rnglists
9887 section. Emit a relocated reference if val_entry is NULL, otherwise,
9888 emit an indirect reference. */
9890 static void
9891 output_range_list_offset (dw_attr_node *a)
9893 const char *name = dwarf_attr_name (a->dw_attr);
9895 if (a->dw_attr_val.val_entry == RELOCATED_OFFSET)
9897 if (dwarf_version >= 5)
9899 dw_ranges *r = &(*ranges_table)[a->dw_attr_val.v.val_offset];
9900 dw2_asm_output_offset (DWARF_OFFSET_SIZE, r->label,
9901 debug_ranges_section, "%s", name);
9903 else
9905 char *p = strchr (ranges_section_label, '\0');
9906 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
9907 a->dw_attr_val.v.val_offset * 2 * DWARF2_ADDR_SIZE);
9908 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
9909 debug_ranges_section, "%s", name);
9910 *p = '\0';
9913 else if (dwarf_version >= 5)
9915 dw_ranges *r = &(*ranges_table)[a->dw_attr_val.v.val_offset];
9916 gcc_assert (rnglist_idx);
9917 dw2_asm_output_data_uleb128 (r->idx, "%s", name);
9919 else
9920 dw2_asm_output_data (DWARF_OFFSET_SIZE,
9921 a->dw_attr_val.v.val_offset * 2 * DWARF2_ADDR_SIZE,
9922 "%s (offset from %s)", name, ranges_section_label);
9925 /* Output the offset into the debug_loc section. */
9927 static void
9928 output_loc_list_offset (dw_attr_node *a)
9930 char *sym = AT_loc_list (a)->ll_symbol;
9932 gcc_assert (sym);
9933 if (!dwarf_split_debug_info)
9934 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
9935 "%s", dwarf_attr_name (a->dw_attr));
9936 else if (dwarf_version >= 5)
9938 gcc_assert (AT_loc_list (a)->num_assigned);
9939 dw2_asm_output_data_uleb128 (AT_loc_list (a)->hash, "%s (%s)",
9940 dwarf_attr_name (a->dw_attr),
9941 sym);
9943 else
9944 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym, loc_section_label,
9945 "%s", dwarf_attr_name (a->dw_attr));
9948 /* Output an attribute's index or value appropriately. */
9950 static void
9951 output_attr_index_or_value (dw_attr_node *a)
9953 const char *name = dwarf_attr_name (a->dw_attr);
9955 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
9957 dw2_asm_output_data_uleb128 (AT_index (a), "%s", name);
9958 return;
9960 switch (AT_class (a))
9962 case dw_val_class_addr:
9963 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
9964 break;
9965 case dw_val_class_high_pc:
9966 case dw_val_class_lbl_id:
9967 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
9968 break;
9969 default:
9970 gcc_unreachable ();
9974 /* Output a type signature. */
9976 static inline void
9977 output_signature (const char *sig, const char *name)
9979 int i;
9981 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
9982 dw2_asm_output_data (1, sig[i], i == 0 ? "%s" : NULL, name);
9985 /* Output a discriminant value. */
9987 static inline void
9988 output_discr_value (dw_discr_value *discr_value, const char *name)
9990 if (discr_value->pos)
9991 dw2_asm_output_data_uleb128 (discr_value->v.uval, "%s", name);
9992 else
9993 dw2_asm_output_data_sleb128 (discr_value->v.sval, "%s", name);
9996 /* Output the DIE and its attributes. Called recursively to generate
9997 the definitions of each child DIE. */
9999 static void
10000 output_die (dw_die_ref die)
10002 dw_attr_node *a;
10003 dw_die_ref c;
10004 unsigned long size;
10005 unsigned ix;
10007 /* If someone in another CU might refer to us, set up a symbol for
10008 them to point to. */
10009 if (! die->comdat_type_p && die->die_id.die_symbol
10010 /* Don't output the symbol twice. For LTO we want the label
10011 on the section beginning, not on the actual DIE. */
10012 && ((!flag_generate_lto && !flag_generate_offload)
10013 || die->die_tag != DW_TAG_compile_unit))
10014 output_die_symbol (die);
10016 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (%#lx) %s)",
10017 (unsigned long)die->die_offset,
10018 dwarf_tag_name (die->die_tag));
10020 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
10022 const char *name = dwarf_attr_name (a->dw_attr);
10024 switch (AT_class (a))
10026 case dw_val_class_addr:
10027 output_attr_index_or_value (a);
10028 break;
10030 case dw_val_class_offset:
10031 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
10032 "%s", name);
10033 break;
10035 case dw_val_class_range_list:
10036 output_range_list_offset (a);
10037 break;
10039 case dw_val_class_loc:
10040 size = size_of_locs (AT_loc (a));
10042 /* Output the block length for this list of location operations. */
10043 if (dwarf_version >= 4)
10044 dw2_asm_output_data_uleb128 (size, "%s", name);
10045 else
10046 dw2_asm_output_data (constant_size (size), size, "%s", name);
10048 output_loc_sequence (AT_loc (a), -1);
10049 break;
10051 case dw_val_class_const:
10052 /* ??? It would be slightly more efficient to use a scheme like is
10053 used for unsigned constants below, but gdb 4.x does not sign
10054 extend. Gdb 5.x does sign extend. */
10055 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
10056 break;
10058 case dw_val_class_unsigned_const:
10060 int csize = constant_size (AT_unsigned (a));
10061 if (dwarf_version == 3
10062 && a->dw_attr == DW_AT_data_member_location
10063 && csize >= 4)
10064 dw2_asm_output_data_uleb128 (AT_unsigned (a), "%s", name);
10065 else
10066 dw2_asm_output_data (csize, AT_unsigned (a), "%s", name);
10068 break;
10070 case dw_val_class_const_implicit:
10071 if (flag_debug_asm)
10072 fprintf (asm_out_file, "\t\t\t%s %s ("
10073 HOST_WIDE_INT_PRINT_DEC ")\n",
10074 ASM_COMMENT_START, name, AT_int (a));
10075 break;
10077 case dw_val_class_unsigned_const_implicit:
10078 if (flag_debug_asm)
10079 fprintf (asm_out_file, "\t\t\t%s %s ("
10080 HOST_WIDE_INT_PRINT_HEX ")\n",
10081 ASM_COMMENT_START, name, AT_unsigned (a));
10082 break;
10084 case dw_val_class_const_double:
10086 unsigned HOST_WIDE_INT first, second;
10088 if (HOST_BITS_PER_WIDE_INT >= DWARF_LARGEST_DATA_FORM_BITS)
10089 dw2_asm_output_data (1,
10090 HOST_BITS_PER_DOUBLE_INT
10091 / HOST_BITS_PER_CHAR,
10092 NULL);
10094 if (WORDS_BIG_ENDIAN)
10096 first = a->dw_attr_val.v.val_double.high;
10097 second = a->dw_attr_val.v.val_double.low;
10099 else
10101 first = a->dw_attr_val.v.val_double.low;
10102 second = a->dw_attr_val.v.val_double.high;
10105 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
10106 first, "%s", name);
10107 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
10108 second, NULL);
10110 break;
10112 case dw_val_class_wide_int:
10114 int i;
10115 int len = get_full_len (*a->dw_attr_val.v.val_wide);
10116 int l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
10117 if (len * HOST_BITS_PER_WIDE_INT > DWARF_LARGEST_DATA_FORM_BITS)
10118 dw2_asm_output_data (1, get_full_len (*a->dw_attr_val.v.val_wide)
10119 * l, NULL);
10121 if (WORDS_BIG_ENDIAN)
10122 for (i = len - 1; i >= 0; --i)
10124 dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
10125 "%s", name);
10126 name = "";
10128 else
10129 for (i = 0; i < len; ++i)
10131 dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
10132 "%s", name);
10133 name = "";
10136 break;
10138 case dw_val_class_vec:
10140 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
10141 unsigned int len = a->dw_attr_val.v.val_vec.length;
10142 unsigned int i;
10143 unsigned char *p;
10145 dw2_asm_output_data (constant_size (len * elt_size),
10146 len * elt_size, "%s", name);
10147 if (elt_size > sizeof (HOST_WIDE_INT))
10149 elt_size /= 2;
10150 len *= 2;
10152 for (i = 0, p = (unsigned char *) a->dw_attr_val.v.val_vec.array;
10153 i < len;
10154 i++, p += elt_size)
10155 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
10156 "fp or vector constant word %u", i);
10157 break;
10160 case dw_val_class_flag:
10161 if (dwarf_version >= 4)
10163 /* Currently all add_AT_flag calls pass in 1 as last argument,
10164 so DW_FORM_flag_present can be used. If that ever changes,
10165 we'll need to use DW_FORM_flag and have some optimization
10166 in build_abbrev_table that will change those to
10167 DW_FORM_flag_present if it is set to 1 in all DIEs using
10168 the same abbrev entry. */
10169 gcc_assert (AT_flag (a) == 1);
10170 if (flag_debug_asm)
10171 fprintf (asm_out_file, "\t\t\t%s %s\n",
10172 ASM_COMMENT_START, name);
10173 break;
10175 dw2_asm_output_data (1, AT_flag (a), "%s", name);
10176 break;
10178 case dw_val_class_loc_list:
10179 output_loc_list_offset (a);
10180 break;
10182 case dw_val_class_die_ref:
10183 if (AT_ref_external (a))
10185 if (AT_ref (a)->comdat_type_p)
10187 comdat_type_node *type_node
10188 = AT_ref (a)->die_id.die_type_node;
10190 gcc_assert (type_node);
10191 output_signature (type_node->signature, name);
10193 else
10195 const char *sym = AT_ref (a)->die_id.die_symbol;
10196 int size;
10198 gcc_assert (sym);
10199 /* In DWARF2, DW_FORM_ref_addr is sized by target address
10200 length, whereas in DWARF3 it's always sized as an
10201 offset. */
10202 if (dwarf_version == 2)
10203 size = DWARF2_ADDR_SIZE;
10204 else
10205 size = DWARF_OFFSET_SIZE;
10206 /* ??? We cannot unconditionally output die_offset if
10207 non-zero - others might create references to those
10208 DIEs via symbols.
10209 And we do not clear its DIE offset after outputting it
10210 (and the label refers to the actual DIEs, not the
10211 DWARF CU unit header which is when using label + offset
10212 would be the correct thing to do).
10213 ??? This is the reason for the with_offset flag. */
10214 if (AT_ref (a)->with_offset)
10215 dw2_asm_output_offset (size, sym, AT_ref (a)->die_offset,
10216 debug_info_section, "%s", name);
10217 else
10218 dw2_asm_output_offset (size, sym, debug_info_section, "%s",
10219 name);
10222 else
10224 gcc_assert (AT_ref (a)->die_offset);
10225 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
10226 "%s", name);
10228 break;
10230 case dw_val_class_fde_ref:
10232 char l1[MAX_ARTIFICIAL_LABEL_BYTES];
10234 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
10235 a->dw_attr_val.v.val_fde_index * 2);
10236 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
10237 "%s", name);
10239 break;
10241 case dw_val_class_vms_delta:
10242 #ifdef ASM_OUTPUT_DWARF_VMS_DELTA
10243 dw2_asm_output_vms_delta (DWARF_OFFSET_SIZE,
10244 AT_vms_delta2 (a), AT_vms_delta1 (a),
10245 "%s", name);
10246 #else
10247 dw2_asm_output_delta (DWARF_OFFSET_SIZE,
10248 AT_vms_delta2 (a), AT_vms_delta1 (a),
10249 "%s", name);
10250 #endif
10251 break;
10253 case dw_val_class_lbl_id:
10254 output_attr_index_or_value (a);
10255 break;
10257 case dw_val_class_lineptr:
10258 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
10259 debug_line_section, "%s", name);
10260 break;
10262 case dw_val_class_macptr:
10263 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
10264 debug_macinfo_section, "%s", name);
10265 break;
10267 case dw_val_class_loclistsptr:
10268 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
10269 debug_loc_section, "%s", name);
10270 break;
10272 case dw_val_class_str:
10273 if (a->dw_attr_val.v.val_str->form == DW_FORM_strp)
10274 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
10275 a->dw_attr_val.v.val_str->label,
10276 debug_str_section,
10277 "%s: \"%s\"", name, AT_string (a));
10278 else if (a->dw_attr_val.v.val_str->form == DW_FORM_line_strp)
10279 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
10280 a->dw_attr_val.v.val_str->label,
10281 debug_line_str_section,
10282 "%s: \"%s\"", name, AT_string (a));
10283 else if (a->dw_attr_val.v.val_str->form == DW_FORM_GNU_str_index)
10284 dw2_asm_output_data_uleb128 (AT_index (a),
10285 "%s: \"%s\"", name, AT_string (a));
10286 else
10287 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
10288 break;
10290 case dw_val_class_file:
10292 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
10294 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
10295 a->dw_attr_val.v.val_file->filename);
10296 break;
10299 case dw_val_class_file_implicit:
10300 if (flag_debug_asm)
10301 fprintf (asm_out_file, "\t\t\t%s %s (%d, %s)\n",
10302 ASM_COMMENT_START, name,
10303 maybe_emit_file (a->dw_attr_val.v.val_file),
10304 a->dw_attr_val.v.val_file->filename);
10305 break;
10307 case dw_val_class_data8:
10309 int i;
10311 for (i = 0; i < 8; i++)
10312 dw2_asm_output_data (1, a->dw_attr_val.v.val_data8[i],
10313 i == 0 ? "%s" : NULL, name);
10314 break;
10317 case dw_val_class_high_pc:
10318 dw2_asm_output_delta (DWARF2_ADDR_SIZE, AT_lbl (a),
10319 get_AT_low_pc (die), "DW_AT_high_pc");
10320 break;
10322 case dw_val_class_discr_value:
10323 output_discr_value (&a->dw_attr_val.v.val_discr_value, name);
10324 break;
10326 case dw_val_class_discr_list:
10328 dw_discr_list_ref list = AT_discr_list (a);
10329 const int size = size_of_discr_list (list);
10331 /* This is a block, so output its length first. */
10332 dw2_asm_output_data (constant_size (size), size,
10333 "%s: block size", name);
10335 for (; list != NULL; list = list->dw_discr_next)
10337 /* One byte for the discriminant value descriptor, and then as
10338 many LEB128 numbers as required. */
10339 if (list->dw_discr_range)
10340 dw2_asm_output_data (1, DW_DSC_range,
10341 "%s: DW_DSC_range", name);
10342 else
10343 dw2_asm_output_data (1, DW_DSC_label,
10344 "%s: DW_DSC_label", name);
10346 output_discr_value (&list->dw_discr_lower_bound, name);
10347 if (list->dw_discr_range)
10348 output_discr_value (&list->dw_discr_upper_bound, name);
10350 break;
10353 default:
10354 gcc_unreachable ();
10358 FOR_EACH_CHILD (die, c, output_die (c));
10360 /* Add null byte to terminate sibling list. */
10361 if (die->die_child != NULL)
10362 dw2_asm_output_data (1, 0, "end of children of DIE %#lx",
10363 (unsigned long) die->die_offset);
10366 /* Output the compilation unit that appears at the beginning of the
10367 .debug_info section, and precedes the DIE descriptions. */
10369 static void
10370 output_compilation_unit_header (enum dwarf_unit_type ut)
10372 if (!XCOFF_DEBUGGING_INFO)
10374 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10375 dw2_asm_output_data (4, 0xffffffff,
10376 "Initial length escape value indicating 64-bit DWARF extension");
10377 dw2_asm_output_data (DWARF_OFFSET_SIZE,
10378 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
10379 "Length of Compilation Unit Info");
10382 dw2_asm_output_data (2, dwarf_version, "DWARF version number");
10383 if (dwarf_version >= 5)
10385 const char *name;
10386 switch (ut)
10388 case DW_UT_compile: name = "DW_UT_compile"; break;
10389 case DW_UT_type: name = "DW_UT_type"; break;
10390 case DW_UT_split_compile: name = "DW_UT_split_compile"; break;
10391 case DW_UT_split_type: name = "DW_UT_split_type"; break;
10392 default: gcc_unreachable ();
10394 dw2_asm_output_data (1, ut, "%s", name);
10395 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
10397 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
10398 debug_abbrev_section,
10399 "Offset Into Abbrev. Section");
10400 if (dwarf_version < 5)
10401 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
10404 /* Output the compilation unit DIE and its children. */
10406 static void
10407 output_comp_unit (dw_die_ref die, int output_if_empty,
10408 const unsigned char *dwo_id)
10410 const char *secname, *oldsym;
10411 char *tmp;
10413 /* Unless we are outputting main CU, we may throw away empty ones. */
10414 if (!output_if_empty && die->die_child == NULL)
10415 return;
10417 /* Even if there are no children of this DIE, we must output the information
10418 about the compilation unit. Otherwise, on an empty translation unit, we
10419 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
10420 will then complain when examining the file. First mark all the DIEs in
10421 this CU so we know which get local refs. */
10422 mark_dies (die);
10424 external_ref_hash_type *extern_map = optimize_external_refs (die);
10426 /* For now, optimize only the main CU, in order to optimize the rest
10427 we'd need to see all of them earlier. Leave the rest for post-linking
10428 tools like DWZ. */
10429 if (die == comp_unit_die ())
10430 abbrev_opt_start = vec_safe_length (abbrev_die_table);
10432 build_abbrev_table (die, extern_map);
10434 optimize_abbrev_table ();
10436 delete extern_map;
10438 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
10439 next_die_offset = (dwo_id
10440 ? DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
10441 : DWARF_COMPILE_UNIT_HEADER_SIZE);
10442 calc_die_sizes (die);
10444 oldsym = die->die_id.die_symbol;
10445 if (oldsym && die->comdat_type_p)
10447 tmp = XALLOCAVEC (char, strlen (oldsym) + 24);
10449 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
10450 secname = tmp;
10451 die->die_id.die_symbol = NULL;
10452 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
10454 else
10456 switch_to_section (debug_info_section);
10457 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
10458 info_section_emitted = true;
10461 /* For LTO cross unit DIE refs we want a symbol on the start of the
10462 debuginfo section, not on the CU DIE. */
10463 if ((flag_generate_lto || flag_generate_offload) && oldsym)
10465 /* ??? No way to get visibility assembled without a decl. */
10466 tree decl = build_decl (UNKNOWN_LOCATION, VAR_DECL,
10467 get_identifier (oldsym), char_type_node);
10468 TREE_PUBLIC (decl) = true;
10469 TREE_STATIC (decl) = true;
10470 DECL_ARTIFICIAL (decl) = true;
10471 DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
10472 DECL_VISIBILITY_SPECIFIED (decl) = true;
10473 targetm.asm_out.assemble_visibility (decl, VISIBILITY_HIDDEN);
10474 #ifdef ASM_WEAKEN_LABEL
10475 /* We prefer a .weak because that handles duplicates from duplicate
10476 archive members in a graceful way. */
10477 ASM_WEAKEN_LABEL (asm_out_file, oldsym);
10478 #else
10479 targetm.asm_out.globalize_label (asm_out_file, oldsym);
10480 #endif
10481 ASM_OUTPUT_LABEL (asm_out_file, oldsym);
10484 /* Output debugging information. */
10485 output_compilation_unit_header (dwo_id
10486 ? DW_UT_split_compile : DW_UT_compile);
10487 if (dwarf_version >= 5)
10489 if (dwo_id != NULL)
10490 for (int i = 0; i < 8; i++)
10491 dw2_asm_output_data (1, dwo_id[i], i == 0 ? "DWO id" : NULL);
10493 output_die (die);
10495 /* Leave the marks on the main CU, so we can check them in
10496 output_pubnames. */
10497 if (oldsym)
10499 unmark_dies (die);
10500 die->die_id.die_symbol = oldsym;
10504 /* Whether to generate the DWARF accelerator tables in .debug_pubnames
10505 and .debug_pubtypes. This is configured per-target, but can be
10506 overridden by the -gpubnames or -gno-pubnames options. */
10508 static inline bool
10509 want_pubnames (void)
10511 if (debug_info_level <= DINFO_LEVEL_TERSE)
10512 return false;
10513 if (debug_generate_pub_sections != -1)
10514 return debug_generate_pub_sections;
10515 return targetm.want_debug_pub_sections;
10518 /* Add the DW_AT_GNU_pubnames and DW_AT_GNU_pubtypes attributes. */
10520 static void
10521 add_AT_pubnames (dw_die_ref die)
10523 if (want_pubnames ())
10524 add_AT_flag (die, DW_AT_GNU_pubnames, 1);
10527 /* Add a string attribute value to a skeleton DIE. */
10529 static inline void
10530 add_skeleton_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind,
10531 const char *str)
10533 dw_attr_node attr;
10534 struct indirect_string_node *node;
10536 if (! skeleton_debug_str_hash)
10537 skeleton_debug_str_hash
10538 = hash_table<indirect_string_hasher>::create_ggc (10);
10540 node = find_AT_string_in_table (str, skeleton_debug_str_hash);
10541 find_string_form (node);
10542 if (node->form == DW_FORM_GNU_str_index)
10543 node->form = DW_FORM_strp;
10545 attr.dw_attr = attr_kind;
10546 attr.dw_attr_val.val_class = dw_val_class_str;
10547 attr.dw_attr_val.val_entry = NULL;
10548 attr.dw_attr_val.v.val_str = node;
10549 add_dwarf_attr (die, &attr);
10552 /* Helper function to generate top-level dies for skeleton debug_info and
10553 debug_types. */
10555 static void
10556 add_top_level_skeleton_die_attrs (dw_die_ref die)
10558 const char *dwo_file_name = concat (aux_base_name, ".dwo", NULL);
10559 const char *comp_dir = comp_dir_string ();
10561 add_skeleton_AT_string (die, dwarf_AT (DW_AT_dwo_name), dwo_file_name);
10562 if (comp_dir != NULL)
10563 add_skeleton_AT_string (die, DW_AT_comp_dir, comp_dir);
10564 add_AT_pubnames (die);
10565 add_AT_lineptr (die, DW_AT_GNU_addr_base, debug_addr_section_label);
10568 /* Output skeleton debug sections that point to the dwo file. */
10570 static void
10571 output_skeleton_debug_sections (dw_die_ref comp_unit,
10572 const unsigned char *dwo_id)
10574 /* These attributes will be found in the full debug_info section. */
10575 remove_AT (comp_unit, DW_AT_producer);
10576 remove_AT (comp_unit, DW_AT_language);
10578 switch_to_section (debug_skeleton_info_section);
10579 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_info_section_label);
10581 /* Produce the skeleton compilation-unit header. This one differs enough from
10582 a normal CU header that it's better not to call output_compilation_unit
10583 header. */
10584 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10585 dw2_asm_output_data (4, 0xffffffff,
10586 "Initial length escape value indicating 64-bit "
10587 "DWARF extension");
10589 dw2_asm_output_data (DWARF_OFFSET_SIZE,
10590 DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
10591 - DWARF_INITIAL_LENGTH_SIZE
10592 + size_of_die (comp_unit),
10593 "Length of Compilation Unit Info");
10594 dw2_asm_output_data (2, dwarf_version, "DWARF version number");
10595 if (dwarf_version >= 5)
10597 dw2_asm_output_data (1, DW_UT_skeleton, "DW_UT_skeleton");
10598 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
10600 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_abbrev_section_label,
10601 debug_skeleton_abbrev_section,
10602 "Offset Into Abbrev. Section");
10603 if (dwarf_version < 5)
10604 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
10605 else
10606 for (int i = 0; i < 8; i++)
10607 dw2_asm_output_data (1, dwo_id[i], i == 0 ? "DWO id" : NULL);
10609 comp_unit->die_abbrev = SKELETON_COMP_DIE_ABBREV;
10610 output_die (comp_unit);
10612 /* Build the skeleton debug_abbrev section. */
10613 switch_to_section (debug_skeleton_abbrev_section);
10614 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_abbrev_section_label);
10616 output_die_abbrevs (SKELETON_COMP_DIE_ABBREV, comp_unit);
10618 dw2_asm_output_data (1, 0, "end of skeleton .debug_abbrev");
10621 /* Output a comdat type unit DIE and its children. */
10623 static void
10624 output_comdat_type_unit (comdat_type_node *node)
10626 const char *secname;
10627 char *tmp;
10628 int i;
10629 #if defined (OBJECT_FORMAT_ELF)
10630 tree comdat_key;
10631 #endif
10633 /* First mark all the DIEs in this CU so we know which get local refs. */
10634 mark_dies (node->root_die);
10636 external_ref_hash_type *extern_map = optimize_external_refs (node->root_die);
10638 build_abbrev_table (node->root_die, extern_map);
10640 delete extern_map;
10641 extern_map = NULL;
10643 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
10644 next_die_offset = DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE;
10645 calc_die_sizes (node->root_die);
10647 #if defined (OBJECT_FORMAT_ELF)
10648 if (dwarf_version >= 5)
10650 if (!dwarf_split_debug_info)
10651 secname = ".debug_info";
10652 else
10653 secname = ".debug_info.dwo";
10655 else if (!dwarf_split_debug_info)
10656 secname = ".debug_types";
10657 else
10658 secname = ".debug_types.dwo";
10660 tmp = XALLOCAVEC (char, 4 + DWARF_TYPE_SIGNATURE_SIZE * 2);
10661 sprintf (tmp, dwarf_version >= 5 ? "wi." : "wt.");
10662 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
10663 sprintf (tmp + 3 + i * 2, "%02x", node->signature[i] & 0xff);
10664 comdat_key = get_identifier (tmp);
10665 targetm.asm_out.named_section (secname,
10666 SECTION_DEBUG | SECTION_LINKONCE,
10667 comdat_key);
10668 #else
10669 tmp = XALLOCAVEC (char, 18 + DWARF_TYPE_SIGNATURE_SIZE * 2);
10670 sprintf (tmp, (dwarf_version >= 5
10671 ? ".gnu.linkonce.wi." : ".gnu.linkonce.wt."));
10672 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
10673 sprintf (tmp + 17 + i * 2, "%02x", node->signature[i] & 0xff);
10674 secname = tmp;
10675 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
10676 #endif
10678 /* Output debugging information. */
10679 output_compilation_unit_header (dwarf_split_debug_info
10680 ? DW_UT_split_type : DW_UT_type);
10681 output_signature (node->signature, "Type Signature");
10682 dw2_asm_output_data (DWARF_OFFSET_SIZE, node->type_die->die_offset,
10683 "Offset to Type DIE");
10684 output_die (node->root_die);
10686 unmark_dies (node->root_die);
10689 /* Return the DWARF2/3 pubname associated with a decl. */
10691 static const char *
10692 dwarf2_name (tree decl, int scope)
10694 if (DECL_NAMELESS (decl))
10695 return NULL;
10696 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
10699 /* Add a new entry to .debug_pubnames if appropriate. */
10701 static void
10702 add_pubname_string (const char *str, dw_die_ref die)
10704 pubname_entry e;
10706 e.die = die;
10707 e.name = xstrdup (str);
10708 vec_safe_push (pubname_table, e);
10711 static void
10712 add_pubname (tree decl, dw_die_ref die)
10714 if (!want_pubnames ())
10715 return;
10717 /* Don't add items to the table when we expect that the consumer will have
10718 just read the enclosing die. For example, if the consumer is looking at a
10719 class_member, it will either be inside the class already, or will have just
10720 looked up the class to find the member. Either way, searching the class is
10721 faster than searching the index. */
10722 if ((TREE_PUBLIC (decl) && !class_scope_p (die->die_parent))
10723 || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
10725 const char *name = dwarf2_name (decl, 1);
10727 if (name)
10728 add_pubname_string (name, die);
10732 /* Add an enumerator to the pubnames section. */
10734 static void
10735 add_enumerator_pubname (const char *scope_name, dw_die_ref die)
10737 pubname_entry e;
10739 gcc_assert (scope_name);
10740 e.name = concat (scope_name, get_AT_string (die, DW_AT_name), NULL);
10741 e.die = die;
10742 vec_safe_push (pubname_table, e);
10745 /* Add a new entry to .debug_pubtypes if appropriate. */
10747 static void
10748 add_pubtype (tree decl, dw_die_ref die)
10750 pubname_entry e;
10752 if (!want_pubnames ())
10753 return;
10755 if ((TREE_PUBLIC (decl)
10756 || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
10757 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
10759 tree scope = NULL;
10760 const char *scope_name = "";
10761 const char *sep = is_cxx () ? "::" : ".";
10762 const char *name;
10764 scope = TYPE_P (decl) ? TYPE_CONTEXT (decl) : NULL;
10765 if (scope && TREE_CODE (scope) == NAMESPACE_DECL)
10767 scope_name = lang_hooks.dwarf_name (scope, 1);
10768 if (scope_name != NULL && scope_name[0] != '\0')
10769 scope_name = concat (scope_name, sep, NULL);
10770 else
10771 scope_name = "";
10774 if (TYPE_P (decl))
10775 name = type_tag (decl);
10776 else
10777 name = lang_hooks.dwarf_name (decl, 1);
10779 /* If we don't have a name for the type, there's no point in adding
10780 it to the table. */
10781 if (name != NULL && name[0] != '\0')
10783 e.die = die;
10784 e.name = concat (scope_name, name, NULL);
10785 vec_safe_push (pubtype_table, e);
10788 /* Although it might be more consistent to add the pubinfo for the
10789 enumerators as their dies are created, they should only be added if the
10790 enum type meets the criteria above. So rather than re-check the parent
10791 enum type whenever an enumerator die is created, just output them all
10792 here. This isn't protected by the name conditional because anonymous
10793 enums don't have names. */
10794 if (die->die_tag == DW_TAG_enumeration_type)
10796 dw_die_ref c;
10798 FOR_EACH_CHILD (die, c, add_enumerator_pubname (scope_name, c));
10803 /* Output a single entry in the pubnames table. */
10805 static void
10806 output_pubname (dw_offset die_offset, pubname_entry *entry)
10808 dw_die_ref die = entry->die;
10809 int is_static = get_AT_flag (die, DW_AT_external) ? 0 : 1;
10811 dw2_asm_output_data (DWARF_OFFSET_SIZE, die_offset, "DIE offset");
10813 if (debug_generate_pub_sections == 2)
10815 /* This logic follows gdb's method for determining the value of the flag
10816 byte. */
10817 uint32_t flags = GDB_INDEX_SYMBOL_KIND_NONE;
10818 switch (die->die_tag)
10820 case DW_TAG_typedef:
10821 case DW_TAG_base_type:
10822 case DW_TAG_subrange_type:
10823 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
10824 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
10825 break;
10826 case DW_TAG_enumerator:
10827 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
10828 GDB_INDEX_SYMBOL_KIND_VARIABLE);
10829 if (!is_cxx ())
10830 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
10831 break;
10832 case DW_TAG_subprogram:
10833 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
10834 GDB_INDEX_SYMBOL_KIND_FUNCTION);
10835 if (!is_ada ())
10836 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
10837 break;
10838 case DW_TAG_constant:
10839 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
10840 GDB_INDEX_SYMBOL_KIND_VARIABLE);
10841 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
10842 break;
10843 case DW_TAG_variable:
10844 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
10845 GDB_INDEX_SYMBOL_KIND_VARIABLE);
10846 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
10847 break;
10848 case DW_TAG_namespace:
10849 case DW_TAG_imported_declaration:
10850 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
10851 break;
10852 case DW_TAG_class_type:
10853 case DW_TAG_interface_type:
10854 case DW_TAG_structure_type:
10855 case DW_TAG_union_type:
10856 case DW_TAG_enumeration_type:
10857 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
10858 if (!is_cxx ())
10859 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
10860 break;
10861 default:
10862 /* An unusual tag. Leave the flag-byte empty. */
10863 break;
10865 dw2_asm_output_data (1, flags >> GDB_INDEX_CU_BITSIZE,
10866 "GDB-index flags");
10869 dw2_asm_output_nstring (entry->name, -1, "external name");
10873 /* Output the public names table used to speed up access to externally
10874 visible names; or the public types table used to find type definitions. */
10876 static void
10877 output_pubnames (vec<pubname_entry, va_gc> *names)
10879 unsigned i;
10880 unsigned long pubnames_length = size_of_pubnames (names);
10881 pubname_entry *pub;
10883 if (!XCOFF_DEBUGGING_INFO)
10885 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10886 dw2_asm_output_data (4, 0xffffffff,
10887 "Initial length escape value indicating 64-bit DWARF extension");
10888 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
10889 "Pub Info Length");
10892 /* Version number for pubnames/pubtypes is independent of dwarf version. */
10893 dw2_asm_output_data (2, 2, "DWARF Version");
10895 if (dwarf_split_debug_info)
10896 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_info_section_label,
10897 debug_skeleton_info_section,
10898 "Offset of Compilation Unit Info");
10899 else
10900 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
10901 debug_info_section,
10902 "Offset of Compilation Unit Info");
10903 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
10904 "Compilation Unit Length");
10906 FOR_EACH_VEC_ELT (*names, i, pub)
10908 if (include_pubname_in_output (names, pub))
10910 dw_offset die_offset = pub->die->die_offset;
10912 /* We shouldn't see pubnames for DIEs outside of the main CU. */
10913 if (names == pubname_table && pub->die->die_tag != DW_TAG_enumerator)
10914 gcc_assert (pub->die->die_mark);
10916 /* If we're putting types in their own .debug_types sections,
10917 the .debug_pubtypes table will still point to the compile
10918 unit (not the type unit), so we want to use the offset of
10919 the skeleton DIE (if there is one). */
10920 if (pub->die->comdat_type_p && names == pubtype_table)
10922 comdat_type_node *type_node = pub->die->die_id.die_type_node;
10924 if (type_node != NULL)
10925 die_offset = (type_node->skeleton_die != NULL
10926 ? type_node->skeleton_die->die_offset
10927 : comp_unit_die ()->die_offset);
10930 output_pubname (die_offset, pub);
10934 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
10937 /* Output public names and types tables if necessary. */
10939 static void
10940 output_pubtables (void)
10942 if (!want_pubnames () || !info_section_emitted)
10943 return;
10945 switch_to_section (debug_pubnames_section);
10946 output_pubnames (pubname_table);
10947 /* ??? Only defined by DWARF3, but emitted by Darwin for DWARF2.
10948 It shouldn't hurt to emit it always, since pure DWARF2 consumers
10949 simply won't look for the section. */
10950 switch_to_section (debug_pubtypes_section);
10951 output_pubnames (pubtype_table);
10955 /* Output the information that goes into the .debug_aranges table.
10956 Namely, define the beginning and ending address range of the
10957 text section generated for this compilation unit. */
10959 static void
10960 output_aranges (void)
10962 unsigned i;
10963 unsigned long aranges_length = size_of_aranges ();
10965 if (!XCOFF_DEBUGGING_INFO)
10967 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10968 dw2_asm_output_data (4, 0xffffffff,
10969 "Initial length escape value indicating 64-bit DWARF extension");
10970 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
10971 "Length of Address Ranges Info");
10974 /* Version number for aranges is still 2, even up to DWARF5. */
10975 dw2_asm_output_data (2, 2, "DWARF Version");
10976 if (dwarf_split_debug_info)
10977 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_info_section_label,
10978 debug_skeleton_info_section,
10979 "Offset of Compilation Unit Info");
10980 else
10981 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
10982 debug_info_section,
10983 "Offset of Compilation Unit Info");
10984 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
10985 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
10987 /* We need to align to twice the pointer size here. */
10988 if (DWARF_ARANGES_PAD_SIZE)
10990 /* Pad using a 2 byte words so that padding is correct for any
10991 pointer size. */
10992 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
10993 2 * DWARF2_ADDR_SIZE);
10994 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
10995 dw2_asm_output_data (2, 0, NULL);
10998 /* It is necessary not to output these entries if the sections were
10999 not used; if the sections were not used, the length will be 0 and
11000 the address may end up as 0 if the section is discarded by ld
11001 --gc-sections, leaving an invalid (0, 0) entry that can be
11002 confused with the terminator. */
11003 if (text_section_used)
11005 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
11006 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
11007 text_section_label, "Length");
11009 if (cold_text_section_used)
11011 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
11012 "Address");
11013 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
11014 cold_text_section_label, "Length");
11017 if (have_multiple_function_sections)
11019 unsigned fde_idx;
11020 dw_fde_ref fde;
11022 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
11024 if (DECL_IGNORED_P (fde->decl))
11025 continue;
11026 if (!fde->in_std_section)
11028 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
11029 "Address");
11030 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_end,
11031 fde->dw_fde_begin, "Length");
11033 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
11035 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_second_begin,
11036 "Address");
11037 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_second_end,
11038 fde->dw_fde_second_begin, "Length");
11043 /* Output the terminator words. */
11044 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11045 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11048 /* Add a new entry to .debug_ranges. Return its index into
11049 ranges_table vector. */
11051 static unsigned int
11052 add_ranges_num (int num, bool maybe_new_sec)
11054 dw_ranges r = { NULL, num, 0, maybe_new_sec };
11055 vec_safe_push (ranges_table, r);
11056 return vec_safe_length (ranges_table) - 1;
11059 /* Add a new entry to .debug_ranges corresponding to a block, or a
11060 range terminator if BLOCK is NULL. MAYBE_NEW_SEC is true if
11061 this entry might be in a different section from previous range. */
11063 static unsigned int
11064 add_ranges (const_tree block, bool maybe_new_sec)
11066 return add_ranges_num (block ? BLOCK_NUMBER (block) : 0, maybe_new_sec);
11069 /* Note that (*rnglist_table)[offset] is either a head of a rnglist
11070 chain, or middle entry of a chain that will be directly referred to. */
11072 static void
11073 note_rnglist_head (unsigned int offset)
11075 if (dwarf_version < 5 || (*ranges_table)[offset].label)
11076 return;
11077 (*ranges_table)[offset].label = gen_internal_sym ("LLRL");
11080 /* Add a new entry to .debug_ranges corresponding to a pair of labels.
11081 When using dwarf_split_debug_info, address attributes in dies destined
11082 for the final executable should be direct references--setting the
11083 parameter force_direct ensures this behavior. */
11085 static void
11086 add_ranges_by_labels (dw_die_ref die, const char *begin, const char *end,
11087 bool *added, bool force_direct)
11089 unsigned int in_use = vec_safe_length (ranges_by_label);
11090 unsigned int offset;
11091 dw_ranges_by_label rbl = { begin, end };
11092 vec_safe_push (ranges_by_label, rbl);
11093 offset = add_ranges_num (-(int)in_use - 1, true);
11094 if (!*added)
11096 add_AT_range_list (die, DW_AT_ranges, offset, force_direct);
11097 *added = true;
11098 note_rnglist_head (offset);
11102 /* Emit .debug_ranges section. */
11104 static void
11105 output_ranges (void)
11107 unsigned i;
11108 static const char *const start_fmt = "Offset %#x";
11109 const char *fmt = start_fmt;
11110 dw_ranges *r;
11112 switch_to_section (debug_ranges_section);
11113 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
11114 FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r)
11116 int block_num = r->num;
11118 if (block_num > 0)
11120 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
11121 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
11123 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
11124 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
11126 /* If all code is in the text section, then the compilation
11127 unit base address defaults to DW_AT_low_pc, which is the
11128 base of the text section. */
11129 if (!have_multiple_function_sections)
11131 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
11132 text_section_label,
11133 fmt, i * 2 * DWARF2_ADDR_SIZE);
11134 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
11135 text_section_label, NULL);
11138 /* Otherwise, the compilation unit base address is zero,
11139 which allows us to use absolute addresses, and not worry
11140 about whether the target supports cross-section
11141 arithmetic. */
11142 else
11144 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11145 fmt, i * 2 * DWARF2_ADDR_SIZE);
11146 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
11149 fmt = NULL;
11152 /* Negative block_num stands for an index into ranges_by_label. */
11153 else if (block_num < 0)
11155 int lab_idx = - block_num - 1;
11157 if (!have_multiple_function_sections)
11159 gcc_unreachable ();
11160 #if 0
11161 /* If we ever use add_ranges_by_labels () for a single
11162 function section, all we have to do is to take out
11163 the #if 0 above. */
11164 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
11165 (*ranges_by_label)[lab_idx].begin,
11166 text_section_label,
11167 fmt, i * 2 * DWARF2_ADDR_SIZE);
11168 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
11169 (*ranges_by_label)[lab_idx].end,
11170 text_section_label, NULL);
11171 #endif
11173 else
11175 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
11176 (*ranges_by_label)[lab_idx].begin,
11177 fmt, i * 2 * DWARF2_ADDR_SIZE);
11178 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
11179 (*ranges_by_label)[lab_idx].end,
11180 NULL);
11183 else
11185 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11186 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11187 fmt = start_fmt;
11192 /* Non-zero if .debug_line_str should be used for .debug_line section
11193 strings or strings that are likely shareable with those. */
11194 #define DWARF5_USE_DEBUG_LINE_STR \
11195 (!DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET \
11196 && (DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) != 0 \
11197 /* FIXME: there is no .debug_line_str.dwo section, \
11198 for -gsplit-dwarf we should use DW_FORM_strx instead. */ \
11199 && !dwarf_split_debug_info)
11201 /* Assign .debug_rnglists indexes. */
11203 static void
11204 index_rnglists (void)
11206 unsigned i;
11207 dw_ranges *r;
11209 FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r)
11210 if (r->label)
11211 r->idx = rnglist_idx++;
11214 /* Emit .debug_rnglists section. */
11216 static void
11217 output_rnglists (void)
11219 unsigned i;
11220 dw_ranges *r;
11221 char l1[MAX_ARTIFICIAL_LABEL_BYTES];
11222 char l2[MAX_ARTIFICIAL_LABEL_BYTES];
11223 char basebuf[MAX_ARTIFICIAL_LABEL_BYTES];
11225 switch_to_section (debug_ranges_section);
11226 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
11227 ASM_GENERATE_INTERNAL_LABEL (l1, DEBUG_RANGES_SECTION_LABEL, 2);
11228 ASM_GENERATE_INTERNAL_LABEL (l2, DEBUG_RANGES_SECTION_LABEL, 3);
11229 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
11230 dw2_asm_output_data (4, 0xffffffff,
11231 "Initial length escape value indicating "
11232 "64-bit DWARF extension");
11233 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
11234 "Length of Range Lists");
11235 ASM_OUTPUT_LABEL (asm_out_file, l1);
11236 dw2_asm_output_data (2, dwarf_version, "DWARF Version");
11237 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Address Size");
11238 dw2_asm_output_data (1, 0, "Segment Size");
11239 /* Emit the offset table only for -gsplit-dwarf. If we don't care
11240 about relocation sizes and primarily care about the size of .debug*
11241 sections in linked shared libraries and executables, then
11242 the offset table plus corresponding DW_FORM_rnglistx uleb128 indexes
11243 into it are usually larger than just DW_FORM_sec_offset offsets
11244 into the .debug_rnglists section. */
11245 dw2_asm_output_data (4, dwarf_split_debug_info ? rnglist_idx : 0,
11246 "Offset Entry Count");
11247 if (dwarf_split_debug_info)
11249 ASM_OUTPUT_LABEL (asm_out_file, ranges_base_label);
11250 FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r)
11251 if (r->label)
11252 dw2_asm_output_delta (DWARF_OFFSET_SIZE, r->label,
11253 ranges_base_label, NULL);
11256 const char *lab = "";
11257 unsigned int len = vec_safe_length (ranges_table);
11258 const char *base = NULL;
11259 FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r)
11261 int block_num = r->num;
11263 if (r->label)
11265 ASM_OUTPUT_LABEL (asm_out_file, r->label);
11266 lab = r->label;
11268 if (HAVE_AS_LEB128 && (r->label || r->maybe_new_sec))
11269 base = NULL;
11270 if (block_num > 0)
11272 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
11273 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
11275 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
11276 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
11278 if (HAVE_AS_LEB128)
11280 /* If all code is in the text section, then the compilation
11281 unit base address defaults to DW_AT_low_pc, which is the
11282 base of the text section. */
11283 if (!have_multiple_function_sections)
11285 dw2_asm_output_data (1, DW_RLE_offset_pair,
11286 "DW_RLE_offset_pair (%s)", lab);
11287 dw2_asm_output_delta_uleb128 (blabel, text_section_label,
11288 "Range begin address (%s)", lab);
11289 dw2_asm_output_delta_uleb128 (elabel, text_section_label,
11290 "Range end address (%s)", lab);
11291 continue;
11293 if (base == NULL)
11295 dw_ranges *r2 = NULL;
11296 if (i < len - 1)
11297 r2 = &(*ranges_table)[i + 1];
11298 if (r2
11299 && r2->num != 0
11300 && r2->label == NULL
11301 && !r2->maybe_new_sec)
11303 dw2_asm_output_data (1, DW_RLE_base_address,
11304 "DW_RLE_base_address (%s)", lab);
11305 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11306 "Base address (%s)", lab);
11307 strcpy (basebuf, blabel);
11308 base = basebuf;
11311 if (base)
11313 dw2_asm_output_data (1, DW_RLE_offset_pair,
11314 "DW_RLE_offset_pair (%s)", lab);
11315 dw2_asm_output_delta_uleb128 (blabel, base,
11316 "Range begin address (%s)", lab);
11317 dw2_asm_output_delta_uleb128 (elabel, base,
11318 "Range end address (%s)", lab);
11319 continue;
11321 dw2_asm_output_data (1, DW_RLE_start_length,
11322 "DW_RLE_start_length (%s)", lab);
11323 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11324 "Range begin address (%s)", lab);
11325 dw2_asm_output_delta_uleb128 (elabel, blabel,
11326 "Range length (%s)", lab);
11328 else
11330 dw2_asm_output_data (1, DW_RLE_start_end,
11331 "DW_RLE_start_end (%s)", lab);
11332 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11333 "Range begin address (%s)", lab);
11334 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel,
11335 "Range end address (%s)", lab);
11339 /* Negative block_num stands for an index into ranges_by_label. */
11340 else if (block_num < 0)
11342 int lab_idx = - block_num - 1;
11343 const char *blabel = (*ranges_by_label)[lab_idx].begin;
11344 const char *elabel = (*ranges_by_label)[lab_idx].end;
11346 if (!have_multiple_function_sections)
11347 gcc_unreachable ();
11348 if (HAVE_AS_LEB128)
11350 dw2_asm_output_data (1, DW_RLE_start_length,
11351 "DW_RLE_start_length (%s)", lab);
11352 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11353 "Range begin address (%s)", lab);
11354 dw2_asm_output_delta_uleb128 (elabel, blabel,
11355 "Range length (%s)", lab);
11357 else
11359 dw2_asm_output_data (1, DW_RLE_start_end,
11360 "DW_RLE_start_end (%s)", lab);
11361 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11362 "Range begin address (%s)", lab);
11363 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel,
11364 "Range end address (%s)", lab);
11367 else
11368 dw2_asm_output_data (1, DW_RLE_end_of_list,
11369 "DW_RLE_end_of_list (%s)", lab);
11371 ASM_OUTPUT_LABEL (asm_out_file, l2);
11374 /* Data structure containing information about input files. */
11375 struct file_info
11377 const char *path; /* Complete file name. */
11378 const char *fname; /* File name part. */
11379 int length; /* Length of entire string. */
11380 struct dwarf_file_data * file_idx; /* Index in input file table. */
11381 int dir_idx; /* Index in directory table. */
11384 /* Data structure containing information about directories with source
11385 files. */
11386 struct dir_info
11388 const char *path; /* Path including directory name. */
11389 int length; /* Path length. */
11390 int prefix; /* Index of directory entry which is a prefix. */
11391 int count; /* Number of files in this directory. */
11392 int dir_idx; /* Index of directory used as base. */
11395 /* Callback function for file_info comparison. We sort by looking at
11396 the directories in the path. */
11398 static int
11399 file_info_cmp (const void *p1, const void *p2)
11401 const struct file_info *const s1 = (const struct file_info *) p1;
11402 const struct file_info *const s2 = (const struct file_info *) p2;
11403 const unsigned char *cp1;
11404 const unsigned char *cp2;
11406 /* Take care of file names without directories. We need to make sure that
11407 we return consistent values to qsort since some will get confused if
11408 we return the same value when identical operands are passed in opposite
11409 orders. So if neither has a directory, return 0 and otherwise return
11410 1 or -1 depending on which one has the directory. */
11411 if ((s1->path == s1->fname || s2->path == s2->fname))
11412 return (s2->path == s2->fname) - (s1->path == s1->fname);
11414 cp1 = (const unsigned char *) s1->path;
11415 cp2 = (const unsigned char *) s2->path;
11417 while (1)
11419 ++cp1;
11420 ++cp2;
11421 /* Reached the end of the first path? If so, handle like above. */
11422 if ((cp1 == (const unsigned char *) s1->fname)
11423 || (cp2 == (const unsigned char *) s2->fname))
11424 return ((cp2 == (const unsigned char *) s2->fname)
11425 - (cp1 == (const unsigned char *) s1->fname));
11427 /* Character of current path component the same? */
11428 else if (*cp1 != *cp2)
11429 return *cp1 - *cp2;
11433 struct file_name_acquire_data
11435 struct file_info *files;
11436 int used_files;
11437 int max_files;
11440 /* Traversal function for the hash table. */
11443 file_name_acquire (dwarf_file_data **slot, file_name_acquire_data *fnad)
11445 struct dwarf_file_data *d = *slot;
11446 struct file_info *fi;
11447 const char *f;
11449 gcc_assert (fnad->max_files >= d->emitted_number);
11451 if (! d->emitted_number)
11452 return 1;
11454 gcc_assert (fnad->max_files != fnad->used_files);
11456 fi = fnad->files + fnad->used_files++;
11458 /* Skip all leading "./". */
11459 f = d->filename;
11460 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
11461 f += 2;
11463 /* Create a new array entry. */
11464 fi->path = f;
11465 fi->length = strlen (f);
11466 fi->file_idx = d;
11468 /* Search for the file name part. */
11469 f = strrchr (f, DIR_SEPARATOR);
11470 #if defined (DIR_SEPARATOR_2)
11472 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
11474 if (g != NULL)
11476 if (f == NULL || f < g)
11477 f = g;
11480 #endif
11482 fi->fname = f == NULL ? fi->path : f + 1;
11483 return 1;
11486 /* Helper function for output_file_names. Emit a FORM encoded
11487 string STR, with assembly comment start ENTRY_KIND and
11488 index IDX */
11490 static void
11491 output_line_string (enum dwarf_form form, const char *str,
11492 const char *entry_kind, unsigned int idx)
11494 switch (form)
11496 case DW_FORM_string:
11497 dw2_asm_output_nstring (str, -1, "%s: %#x", entry_kind, idx);
11498 break;
11499 case DW_FORM_line_strp:
11500 if (!debug_line_str_hash)
11501 debug_line_str_hash
11502 = hash_table<indirect_string_hasher>::create_ggc (10);
11504 struct indirect_string_node *node;
11505 node = find_AT_string_in_table (str, debug_line_str_hash);
11506 set_indirect_string (node);
11507 node->form = form;
11508 dw2_asm_output_offset (DWARF_OFFSET_SIZE, node->label,
11509 debug_line_str_section, "%s: %#x: \"%s\"",
11510 entry_kind, 0, node->str);
11511 break;
11512 default:
11513 gcc_unreachable ();
11517 /* Output the directory table and the file name table. We try to minimize
11518 the total amount of memory needed. A heuristic is used to avoid large
11519 slowdowns with many input files. */
11521 static void
11522 output_file_names (void)
11524 struct file_name_acquire_data fnad;
11525 int numfiles;
11526 struct file_info *files;
11527 struct dir_info *dirs;
11528 int *saved;
11529 int *savehere;
11530 int *backmap;
11531 int ndirs;
11532 int idx_offset;
11533 int i;
11535 if (!last_emitted_file)
11537 if (dwarf_version >= 5)
11539 dw2_asm_output_data (1, 0, "Directory entry format count");
11540 dw2_asm_output_data_uleb128 (0, "Directories count");
11541 dw2_asm_output_data (1, 0, "File name entry format count");
11542 dw2_asm_output_data_uleb128 (0, "File names count");
11544 else
11546 dw2_asm_output_data (1, 0, "End directory table");
11547 dw2_asm_output_data (1, 0, "End file name table");
11549 return;
11552 numfiles = last_emitted_file->emitted_number;
11554 /* Allocate the various arrays we need. */
11555 files = XALLOCAVEC (struct file_info, numfiles);
11556 dirs = XALLOCAVEC (struct dir_info, numfiles);
11558 fnad.files = files;
11559 fnad.used_files = 0;
11560 fnad.max_files = numfiles;
11561 file_table->traverse<file_name_acquire_data *, file_name_acquire> (&fnad);
11562 gcc_assert (fnad.used_files == fnad.max_files);
11564 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
11566 /* Find all the different directories used. */
11567 dirs[0].path = files[0].path;
11568 dirs[0].length = files[0].fname - files[0].path;
11569 dirs[0].prefix = -1;
11570 dirs[0].count = 1;
11571 dirs[0].dir_idx = 0;
11572 files[0].dir_idx = 0;
11573 ndirs = 1;
11575 for (i = 1; i < numfiles; i++)
11576 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
11577 && memcmp (dirs[ndirs - 1].path, files[i].path,
11578 dirs[ndirs - 1].length) == 0)
11580 /* Same directory as last entry. */
11581 files[i].dir_idx = ndirs - 1;
11582 ++dirs[ndirs - 1].count;
11584 else
11586 int j;
11588 /* This is a new directory. */
11589 dirs[ndirs].path = files[i].path;
11590 dirs[ndirs].length = files[i].fname - files[i].path;
11591 dirs[ndirs].count = 1;
11592 dirs[ndirs].dir_idx = ndirs;
11593 files[i].dir_idx = ndirs;
11595 /* Search for a prefix. */
11596 dirs[ndirs].prefix = -1;
11597 for (j = 0; j < ndirs; j++)
11598 if (dirs[j].length < dirs[ndirs].length
11599 && dirs[j].length > 1
11600 && (dirs[ndirs].prefix == -1
11601 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
11602 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
11603 dirs[ndirs].prefix = j;
11605 ++ndirs;
11608 /* Now to the actual work. We have to find a subset of the directories which
11609 allow expressing the file name using references to the directory table
11610 with the least amount of characters. We do not do an exhaustive search
11611 where we would have to check out every combination of every single
11612 possible prefix. Instead we use a heuristic which provides nearly optimal
11613 results in most cases and never is much off. */
11614 saved = XALLOCAVEC (int, ndirs);
11615 savehere = XALLOCAVEC (int, ndirs);
11617 memset (saved, '\0', ndirs * sizeof (saved[0]));
11618 for (i = 0; i < ndirs; i++)
11620 int j;
11621 int total;
11623 /* We can always save some space for the current directory. But this
11624 does not mean it will be enough to justify adding the directory. */
11625 savehere[i] = dirs[i].length;
11626 total = (savehere[i] - saved[i]) * dirs[i].count;
11628 for (j = i + 1; j < ndirs; j++)
11630 savehere[j] = 0;
11631 if (saved[j] < dirs[i].length)
11633 /* Determine whether the dirs[i] path is a prefix of the
11634 dirs[j] path. */
11635 int k;
11637 k = dirs[j].prefix;
11638 while (k != -1 && k != (int) i)
11639 k = dirs[k].prefix;
11641 if (k == (int) i)
11643 /* Yes it is. We can possibly save some memory by
11644 writing the filenames in dirs[j] relative to
11645 dirs[i]. */
11646 savehere[j] = dirs[i].length;
11647 total += (savehere[j] - saved[j]) * dirs[j].count;
11652 /* Check whether we can save enough to justify adding the dirs[i]
11653 directory. */
11654 if (total > dirs[i].length + 1)
11656 /* It's worthwhile adding. */
11657 for (j = i; j < ndirs; j++)
11658 if (savehere[j] > 0)
11660 /* Remember how much we saved for this directory so far. */
11661 saved[j] = savehere[j];
11663 /* Remember the prefix directory. */
11664 dirs[j].dir_idx = i;
11669 /* Emit the directory name table. */
11670 idx_offset = dirs[0].length > 0 ? 1 : 0;
11671 enum dwarf_form str_form = DW_FORM_string;
11672 enum dwarf_form idx_form = DW_FORM_udata;
11673 if (dwarf_version >= 5)
11675 const char *comp_dir = comp_dir_string ();
11676 if (comp_dir == NULL)
11677 comp_dir = "";
11678 dw2_asm_output_data (1, 1, "Directory entry format count");
11679 if (DWARF5_USE_DEBUG_LINE_STR)
11680 str_form = DW_FORM_line_strp;
11681 dw2_asm_output_data_uleb128 (DW_LNCT_path, "DW_LNCT_path");
11682 dw2_asm_output_data_uleb128 (str_form, "%s",
11683 get_DW_FORM_name (str_form));
11684 dw2_asm_output_data_uleb128 (ndirs + idx_offset, "Directories count");
11685 if (str_form == DW_FORM_string)
11687 dw2_asm_output_nstring (comp_dir, -1, "Directory Entry: %#x", 0);
11688 for (i = 1 - idx_offset; i < ndirs; i++)
11689 dw2_asm_output_nstring (dirs[i].path,
11690 dirs[i].length
11691 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR,
11692 "Directory Entry: %#x", i + idx_offset);
11694 else
11696 output_line_string (str_form, comp_dir, "Directory Entry", 0);
11697 for (i = 1 - idx_offset; i < ndirs; i++)
11699 const char *str
11700 = ggc_alloc_string (dirs[i].path,
11701 dirs[i].length
11702 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR);
11703 output_line_string (str_form, str, "Directory Entry",
11704 (unsigned) i + idx_offset);
11708 else
11710 for (i = 1 - idx_offset; i < ndirs; i++)
11711 dw2_asm_output_nstring (dirs[i].path,
11712 dirs[i].length
11713 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR,
11714 "Directory Entry: %#x", i + idx_offset);
11716 dw2_asm_output_data (1, 0, "End directory table");
11719 /* We have to emit them in the order of emitted_number since that's
11720 used in the debug info generation. To do this efficiently we
11721 generate a back-mapping of the indices first. */
11722 backmap = XALLOCAVEC (int, numfiles);
11723 for (i = 0; i < numfiles; i++)
11724 backmap[files[i].file_idx->emitted_number - 1] = i;
11726 if (dwarf_version >= 5)
11728 const char *filename0 = get_AT_string (comp_unit_die (), DW_AT_name);
11729 if (filename0 == NULL)
11730 filename0 = "";
11731 /* DW_LNCT_directory_index can use DW_FORM_udata, DW_FORM_data1 and
11732 DW_FORM_data2. Choose one based on the number of directories
11733 and how much space would they occupy in each encoding.
11734 If we have at most 256 directories, all indexes fit into
11735 a single byte, so DW_FORM_data1 is most compact (if there
11736 are at most 128 directories, DW_FORM_udata would be as
11737 compact as that, but not shorter and slower to decode). */
11738 if (ndirs + idx_offset <= 256)
11739 idx_form = DW_FORM_data1;
11740 /* If there are more than 65536 directories, we have to use
11741 DW_FORM_udata, DW_FORM_data2 can't refer to them.
11742 Otherwise, compute what space would occupy if all the indexes
11743 used DW_FORM_udata - sum - and compare that to how large would
11744 be DW_FORM_data2 encoding, and pick the more efficient one. */
11745 else if (ndirs + idx_offset <= 65536)
11747 unsigned HOST_WIDE_INT sum = 1;
11748 for (i = 0; i < numfiles; i++)
11750 int file_idx = backmap[i];
11751 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
11752 sum += size_of_uleb128 (dir_idx);
11754 if (sum >= HOST_WIDE_INT_UC (2) * (numfiles + 1))
11755 idx_form = DW_FORM_data2;
11757 #ifdef VMS_DEBUGGING_INFO
11758 dw2_asm_output_data (1, 4, "File name entry format count");
11759 #else
11760 dw2_asm_output_data (1, 2, "File name entry format count");
11761 #endif
11762 dw2_asm_output_data_uleb128 (DW_LNCT_path, "DW_LNCT_path");
11763 dw2_asm_output_data_uleb128 (str_form, "%s",
11764 get_DW_FORM_name (str_form));
11765 dw2_asm_output_data_uleb128 (DW_LNCT_directory_index,
11766 "DW_LNCT_directory_index");
11767 dw2_asm_output_data_uleb128 (idx_form, "%s",
11768 get_DW_FORM_name (idx_form));
11769 #ifdef VMS_DEBUGGING_INFO
11770 dw2_asm_output_data_uleb128 (DW_LNCT_timestamp, "DW_LNCT_timestamp");
11771 dw2_asm_output_data_uleb128 (DW_FORM_udata, "DW_FORM_udata");
11772 dw2_asm_output_data_uleb128 (DW_LNCT_size, "DW_LNCT_size");
11773 dw2_asm_output_data_uleb128 (DW_FORM_udata, "DW_FORM_udata");
11774 #endif
11775 dw2_asm_output_data_uleb128 (numfiles + 1, "File names count");
11777 output_line_string (str_form, filename0, "File Entry", 0);
11779 /* Include directory index. */
11780 if (idx_form != DW_FORM_udata)
11781 dw2_asm_output_data (idx_form == DW_FORM_data1 ? 1 : 2,
11782 0, NULL);
11783 else
11784 dw2_asm_output_data_uleb128 (0, NULL);
11786 #ifdef VMS_DEBUGGING_INFO
11787 dw2_asm_output_data_uleb128 (0, NULL);
11788 dw2_asm_output_data_uleb128 (0, NULL);
11789 #endif
11792 /* Now write all the file names. */
11793 for (i = 0; i < numfiles; i++)
11795 int file_idx = backmap[i];
11796 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
11798 #ifdef VMS_DEBUGGING_INFO
11799 #define MAX_VMS_VERSION_LEN 6 /* ";32768" */
11801 /* Setting these fields can lead to debugger miscomparisons,
11802 but VMS Debug requires them to be set correctly. */
11804 int ver;
11805 long long cdt;
11806 long siz;
11807 int maxfilelen = (strlen (files[file_idx].path)
11808 + dirs[dir_idx].length
11809 + MAX_VMS_VERSION_LEN + 1);
11810 char *filebuf = XALLOCAVEC (char, maxfilelen);
11812 vms_file_stats_name (files[file_idx].path, 0, 0, 0, &ver);
11813 snprintf (filebuf, maxfilelen, "%s;%d",
11814 files[file_idx].path + dirs[dir_idx].length, ver);
11816 output_line_string (str_form, filebuf, "File Entry", (unsigned) i + 1);
11818 /* Include directory index. */
11819 if (dwarf_version >= 5 && idx_form != DW_FORM_udata)
11820 dw2_asm_output_data (idx_form == DW_FORM_data1 ? 1 : 2,
11821 dir_idx + idx_offset, NULL);
11822 else
11823 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
11825 /* Modification time. */
11826 dw2_asm_output_data_uleb128 ((vms_file_stats_name (files[file_idx].path,
11827 &cdt, 0, 0, 0) == 0)
11828 ? cdt : 0, NULL);
11830 /* File length in bytes. */
11831 dw2_asm_output_data_uleb128 ((vms_file_stats_name (files[file_idx].path,
11832 0, &siz, 0, 0) == 0)
11833 ? siz : 0, NULL);
11834 #else
11835 output_line_string (str_form,
11836 files[file_idx].path + dirs[dir_idx].length,
11837 "File Entry", (unsigned) i + 1);
11839 /* Include directory index. */
11840 if (dwarf_version >= 5 && idx_form != DW_FORM_udata)
11841 dw2_asm_output_data (idx_form == DW_FORM_data1 ? 1 : 2,
11842 dir_idx + idx_offset, NULL);
11843 else
11844 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
11846 if (dwarf_version >= 5)
11847 continue;
11849 /* Modification time. */
11850 dw2_asm_output_data_uleb128 (0, NULL);
11852 /* File length in bytes. */
11853 dw2_asm_output_data_uleb128 (0, NULL);
11854 #endif /* VMS_DEBUGGING_INFO */
11857 if (dwarf_version < 5)
11858 dw2_asm_output_data (1, 0, "End file name table");
11862 /* Output one line number table into the .debug_line section. */
11864 static void
11865 output_one_line_info_table (dw_line_info_table *table)
11867 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
11868 unsigned int current_line = 1;
11869 bool current_is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
11870 dw_line_info_entry *ent;
11871 size_t i;
11873 FOR_EACH_VEC_SAFE_ELT (table->entries, i, ent)
11875 switch (ent->opcode)
11877 case LI_set_address:
11878 /* ??? Unfortunately, we have little choice here currently, and
11879 must always use the most general form. GCC does not know the
11880 address delta itself, so we can't use DW_LNS_advance_pc. Many
11881 ports do have length attributes which will give an upper bound
11882 on the address range. We could perhaps use length attributes
11883 to determine when it is safe to use DW_LNS_fixed_advance_pc. */
11884 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, ent->val);
11886 /* This can handle any delta. This takes
11887 4+DWARF2_ADDR_SIZE bytes. */
11888 dw2_asm_output_data (1, 0, "set address %s", line_label);
11889 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
11890 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
11891 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
11892 break;
11894 case LI_set_line:
11895 if (ent->val == current_line)
11897 /* We still need to start a new row, so output a copy insn. */
11898 dw2_asm_output_data (1, DW_LNS_copy,
11899 "copy line %u", current_line);
11901 else
11903 int line_offset = ent->val - current_line;
11904 int line_delta = line_offset - DWARF_LINE_BASE;
11906 current_line = ent->val;
11907 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
11909 /* This can handle deltas from -10 to 234, using the current
11910 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.
11911 This takes 1 byte. */
11912 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
11913 "line %u", current_line);
11915 else
11917 /* This can handle any delta. This takes at least 4 bytes,
11918 depending on the value being encoded. */
11919 dw2_asm_output_data (1, DW_LNS_advance_line,
11920 "advance to line %u", current_line);
11921 dw2_asm_output_data_sleb128 (line_offset, NULL);
11922 dw2_asm_output_data (1, DW_LNS_copy, NULL);
11925 break;
11927 case LI_set_file:
11928 dw2_asm_output_data (1, DW_LNS_set_file, "set file %u", ent->val);
11929 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
11930 break;
11932 case LI_set_column:
11933 dw2_asm_output_data (1, DW_LNS_set_column, "column %u", ent->val);
11934 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
11935 break;
11937 case LI_negate_stmt:
11938 current_is_stmt = !current_is_stmt;
11939 dw2_asm_output_data (1, DW_LNS_negate_stmt,
11940 "is_stmt %d", current_is_stmt);
11941 break;
11943 case LI_set_prologue_end:
11944 dw2_asm_output_data (1, DW_LNS_set_prologue_end,
11945 "set prologue end");
11946 break;
11948 case LI_set_epilogue_begin:
11949 dw2_asm_output_data (1, DW_LNS_set_epilogue_begin,
11950 "set epilogue begin");
11951 break;
11953 case LI_set_discriminator:
11954 dw2_asm_output_data (1, 0, "discriminator %u", ent->val);
11955 dw2_asm_output_data_uleb128 (1 + size_of_uleb128 (ent->val), NULL);
11956 dw2_asm_output_data (1, DW_LNE_set_discriminator, NULL);
11957 dw2_asm_output_data_uleb128 (ent->val, NULL);
11958 break;
11962 /* Emit debug info for the address of the end of the table. */
11963 dw2_asm_output_data (1, 0, "set address %s", table->end_label);
11964 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
11965 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
11966 dw2_asm_output_addr (DWARF2_ADDR_SIZE, table->end_label, NULL);
11968 dw2_asm_output_data (1, 0, "end sequence");
11969 dw2_asm_output_data_uleb128 (1, NULL);
11970 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
11973 /* Output the source line number correspondence information. This
11974 information goes into the .debug_line section. */
11976 static void
11977 output_line_info (bool prologue_only)
11979 static unsigned int generation;
11980 char l1[MAX_ARTIFICIAL_LABEL_BYTES], l2[MAX_ARTIFICIAL_LABEL_BYTES];
11981 char p1[MAX_ARTIFICIAL_LABEL_BYTES], p2[MAX_ARTIFICIAL_LABEL_BYTES];
11982 bool saw_one = false;
11983 int opc;
11985 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, generation);
11986 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, generation);
11987 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, generation);
11988 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, generation++);
11990 if (!XCOFF_DEBUGGING_INFO)
11992 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
11993 dw2_asm_output_data (4, 0xffffffff,
11994 "Initial length escape value indicating 64-bit DWARF extension");
11995 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
11996 "Length of Source Line Info");
11999 ASM_OUTPUT_LABEL (asm_out_file, l1);
12001 dw2_asm_output_data (2, dwarf_version, "DWARF Version");
12002 if (dwarf_version >= 5)
12004 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Address Size");
12005 dw2_asm_output_data (1, 0, "Segment Size");
12007 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
12008 ASM_OUTPUT_LABEL (asm_out_file, p1);
12010 /* Define the architecture-dependent minimum instruction length (in bytes).
12011 In this implementation of DWARF, this field is used for information
12012 purposes only. Since GCC generates assembly language, we have no
12013 a priori knowledge of how many instruction bytes are generated for each
12014 source line, and therefore can use only the DW_LNE_set_address and
12015 DW_LNS_fixed_advance_pc line information commands. Accordingly, we fix
12016 this as '1', which is "correct enough" for all architectures,
12017 and don't let the target override. */
12018 dw2_asm_output_data (1, 1, "Minimum Instruction Length");
12020 if (dwarf_version >= 4)
12021 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN,
12022 "Maximum Operations Per Instruction");
12023 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
12024 "Default is_stmt_start flag");
12025 dw2_asm_output_data (1, DWARF_LINE_BASE,
12026 "Line Base Value (Special Opcodes)");
12027 dw2_asm_output_data (1, DWARF_LINE_RANGE,
12028 "Line Range Value (Special Opcodes)");
12029 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
12030 "Special Opcode Base");
12032 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
12034 int n_op_args;
12035 switch (opc)
12037 case DW_LNS_advance_pc:
12038 case DW_LNS_advance_line:
12039 case DW_LNS_set_file:
12040 case DW_LNS_set_column:
12041 case DW_LNS_fixed_advance_pc:
12042 case DW_LNS_set_isa:
12043 n_op_args = 1;
12044 break;
12045 default:
12046 n_op_args = 0;
12047 break;
12050 dw2_asm_output_data (1, n_op_args, "opcode: %#x has %d args",
12051 opc, n_op_args);
12054 /* Write out the information about the files we use. */
12055 output_file_names ();
12056 ASM_OUTPUT_LABEL (asm_out_file, p2);
12057 if (prologue_only)
12059 /* Output the marker for the end of the line number info. */
12060 ASM_OUTPUT_LABEL (asm_out_file, l2);
12061 return;
12064 if (separate_line_info)
12066 dw_line_info_table *table;
12067 size_t i;
12069 FOR_EACH_VEC_ELT (*separate_line_info, i, table)
12070 if (table->in_use)
12072 output_one_line_info_table (table);
12073 saw_one = true;
12076 if (cold_text_section_line_info && cold_text_section_line_info->in_use)
12078 output_one_line_info_table (cold_text_section_line_info);
12079 saw_one = true;
12082 /* ??? Some Darwin linkers crash on a .debug_line section with no
12083 sequences. Further, merely a DW_LNE_end_sequence entry is not
12084 sufficient -- the address column must also be initialized.
12085 Make sure to output at least one set_address/end_sequence pair,
12086 choosing .text since that section is always present. */
12087 if (text_section_line_info->in_use || !saw_one)
12088 output_one_line_info_table (text_section_line_info);
12090 /* Output the marker for the end of the line number info. */
12091 ASM_OUTPUT_LABEL (asm_out_file, l2);
12094 /* Return true if DW_AT_endianity should be emitted according to REVERSE. */
12096 static inline bool
12097 need_endianity_attribute_p (bool reverse)
12099 return reverse && (dwarf_version >= 3 || !dwarf_strict);
12102 /* Given a pointer to a tree node for some base type, return a pointer to
12103 a DIE that describes the given type. REVERSE is true if the type is
12104 to be interpreted in the reverse storage order wrt the target order.
12106 This routine must only be called for GCC type nodes that correspond to
12107 Dwarf base (fundamental) types. */
12109 static dw_die_ref
12110 base_type_die (tree type, bool reverse)
12112 dw_die_ref base_type_result;
12113 enum dwarf_type encoding;
12114 bool fpt_used = false;
12115 struct fixed_point_type_info fpt_info;
12116 tree type_bias = NULL_TREE;
12118 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
12119 return 0;
12121 /* If this is a subtype that should not be emitted as a subrange type,
12122 use the base type. See subrange_type_for_debug_p. */
12123 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
12124 type = TREE_TYPE (type);
12126 switch (TREE_CODE (type))
12128 case INTEGER_TYPE:
12129 if ((dwarf_version >= 4 || !dwarf_strict)
12130 && TYPE_NAME (type)
12131 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12132 && DECL_IS_BUILTIN (TYPE_NAME (type))
12133 && DECL_NAME (TYPE_NAME (type)))
12135 const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
12136 if (strcmp (name, "char16_t") == 0
12137 || strcmp (name, "char32_t") == 0)
12139 encoding = DW_ATE_UTF;
12140 break;
12143 if ((dwarf_version >= 3 || !dwarf_strict)
12144 && lang_hooks.types.get_fixed_point_type_info)
12146 memset (&fpt_info, 0, sizeof (fpt_info));
12147 if (lang_hooks.types.get_fixed_point_type_info (type, &fpt_info))
12149 fpt_used = true;
12150 encoding = ((TYPE_UNSIGNED (type))
12151 ? DW_ATE_unsigned_fixed
12152 : DW_ATE_signed_fixed);
12153 break;
12156 if (TYPE_STRING_FLAG (type))
12158 if (TYPE_UNSIGNED (type))
12159 encoding = DW_ATE_unsigned_char;
12160 else
12161 encoding = DW_ATE_signed_char;
12163 else if (TYPE_UNSIGNED (type))
12164 encoding = DW_ATE_unsigned;
12165 else
12166 encoding = DW_ATE_signed;
12168 if (!dwarf_strict
12169 && lang_hooks.types.get_type_bias)
12170 type_bias = lang_hooks.types.get_type_bias (type);
12171 break;
12173 case REAL_TYPE:
12174 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
12176 if (dwarf_version >= 3 || !dwarf_strict)
12177 encoding = DW_ATE_decimal_float;
12178 else
12179 encoding = DW_ATE_lo_user;
12181 else
12182 encoding = DW_ATE_float;
12183 break;
12185 case FIXED_POINT_TYPE:
12186 if (!(dwarf_version >= 3 || !dwarf_strict))
12187 encoding = DW_ATE_lo_user;
12188 else if (TYPE_UNSIGNED (type))
12189 encoding = DW_ATE_unsigned_fixed;
12190 else
12191 encoding = DW_ATE_signed_fixed;
12192 break;
12194 /* Dwarf2 doesn't know anything about complex ints, so use
12195 a user defined type for it. */
12196 case COMPLEX_TYPE:
12197 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
12198 encoding = DW_ATE_complex_float;
12199 else
12200 encoding = DW_ATE_lo_user;
12201 break;
12203 case BOOLEAN_TYPE:
12204 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
12205 encoding = DW_ATE_boolean;
12206 break;
12208 default:
12209 /* No other TREE_CODEs are Dwarf fundamental types. */
12210 gcc_unreachable ();
12213 base_type_result = new_die (DW_TAG_base_type, comp_unit_die (), type);
12215 add_AT_unsigned (base_type_result, DW_AT_byte_size,
12216 int_size_in_bytes (type));
12217 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
12219 if (need_endianity_attribute_p (reverse))
12220 add_AT_unsigned (base_type_result, DW_AT_endianity,
12221 BYTES_BIG_ENDIAN ? DW_END_little : DW_END_big);
12223 add_alignment_attribute (base_type_result, type);
12225 if (fpt_used)
12227 switch (fpt_info.scale_factor_kind)
12229 case fixed_point_scale_factor_binary:
12230 add_AT_int (base_type_result, DW_AT_binary_scale,
12231 fpt_info.scale_factor.binary);
12232 break;
12234 case fixed_point_scale_factor_decimal:
12235 add_AT_int (base_type_result, DW_AT_decimal_scale,
12236 fpt_info.scale_factor.decimal);
12237 break;
12239 case fixed_point_scale_factor_arbitrary:
12240 /* Arbitrary scale factors cannot be described in standard DWARF,
12241 yet. */
12242 if (!dwarf_strict)
12244 /* Describe the scale factor as a rational constant. */
12245 const dw_die_ref scale_factor
12246 = new_die (DW_TAG_constant, comp_unit_die (), type);
12248 add_AT_unsigned (scale_factor, DW_AT_GNU_numerator,
12249 fpt_info.scale_factor.arbitrary.numerator);
12250 add_AT_int (scale_factor, DW_AT_GNU_denominator,
12251 fpt_info.scale_factor.arbitrary.denominator);
12253 add_AT_die_ref (base_type_result, DW_AT_small, scale_factor);
12255 break;
12257 default:
12258 gcc_unreachable ();
12262 if (type_bias)
12263 add_scalar_info (base_type_result, DW_AT_GNU_bias, type_bias,
12264 dw_scalar_form_constant
12265 | dw_scalar_form_exprloc
12266 | dw_scalar_form_reference,
12267 NULL);
12269 add_pubtype (type, base_type_result);
12271 return base_type_result;
12274 /* A C++ function with deduced return type can have a TEMPLATE_TYPE_PARM
12275 named 'auto' in its type: return true for it, false otherwise. */
12277 static inline bool
12278 is_cxx_auto (tree type)
12280 if (is_cxx ())
12282 tree name = TYPE_IDENTIFIER (type);
12283 if (name == get_identifier ("auto")
12284 || name == get_identifier ("decltype(auto)"))
12285 return true;
12287 return false;
12290 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
12291 given input type is a Dwarf "fundamental" type. Otherwise return null. */
12293 static inline int
12294 is_base_type (tree type)
12296 switch (TREE_CODE (type))
12298 case ERROR_MARK:
12299 case VOID_TYPE:
12300 case INTEGER_TYPE:
12301 case REAL_TYPE:
12302 case FIXED_POINT_TYPE:
12303 case COMPLEX_TYPE:
12304 case BOOLEAN_TYPE:
12305 case POINTER_BOUNDS_TYPE:
12306 return 1;
12308 case ARRAY_TYPE:
12309 case RECORD_TYPE:
12310 case UNION_TYPE:
12311 case QUAL_UNION_TYPE:
12312 case ENUMERAL_TYPE:
12313 case FUNCTION_TYPE:
12314 case METHOD_TYPE:
12315 case POINTER_TYPE:
12316 case REFERENCE_TYPE:
12317 case NULLPTR_TYPE:
12318 case OFFSET_TYPE:
12319 case LANG_TYPE:
12320 case VECTOR_TYPE:
12321 return 0;
12323 default:
12324 if (is_cxx_auto (type))
12325 return 0;
12326 gcc_unreachable ();
12329 return 0;
12332 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
12333 node, return the size in bits for the type if it is a constant, or else
12334 return the alignment for the type if the type's size is not constant, or
12335 else return BITS_PER_WORD if the type actually turns out to be an
12336 ERROR_MARK node. */
12338 static inline unsigned HOST_WIDE_INT
12339 simple_type_size_in_bits (const_tree type)
12341 if (TREE_CODE (type) == ERROR_MARK)
12342 return BITS_PER_WORD;
12343 else if (TYPE_SIZE (type) == NULL_TREE)
12344 return 0;
12345 else if (tree_fits_uhwi_p (TYPE_SIZE (type)))
12346 return tree_to_uhwi (TYPE_SIZE (type));
12347 else
12348 return TYPE_ALIGN (type);
12351 /* Similarly, but return an offset_int instead of UHWI. */
12353 static inline offset_int
12354 offset_int_type_size_in_bits (const_tree type)
12356 if (TREE_CODE (type) == ERROR_MARK)
12357 return BITS_PER_WORD;
12358 else if (TYPE_SIZE (type) == NULL_TREE)
12359 return 0;
12360 else if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
12361 return wi::to_offset (TYPE_SIZE (type));
12362 else
12363 return TYPE_ALIGN (type);
12366 /* Given a pointer to a tree node for a subrange type, return a pointer
12367 to a DIE that describes the given type. */
12369 static dw_die_ref
12370 subrange_type_die (tree type, tree low, tree high, tree bias,
12371 dw_die_ref context_die)
12373 dw_die_ref subrange_die;
12374 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
12376 if (context_die == NULL)
12377 context_die = comp_unit_die ();
12379 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
12381 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
12383 /* The size of the subrange type and its base type do not match,
12384 so we need to generate a size attribute for the subrange type. */
12385 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
12388 add_alignment_attribute (subrange_die, type);
12390 if (low)
12391 add_bound_info (subrange_die, DW_AT_lower_bound, low, NULL);
12392 if (high)
12393 add_bound_info (subrange_die, DW_AT_upper_bound, high, NULL);
12394 if (bias && !dwarf_strict)
12395 add_scalar_info (subrange_die, DW_AT_GNU_bias, bias,
12396 dw_scalar_form_constant
12397 | dw_scalar_form_exprloc
12398 | dw_scalar_form_reference,
12399 NULL);
12401 return subrange_die;
12404 /* Returns the (const and/or volatile) cv_qualifiers associated with
12405 the decl node. This will normally be augmented with the
12406 cv_qualifiers of the underlying type in add_type_attribute. */
12408 static int
12409 decl_quals (const_tree decl)
12411 return ((TREE_READONLY (decl)
12412 /* The C++ front-end correctly marks reference-typed
12413 variables as readonly, but from a language (and debug
12414 info) standpoint they are not const-qualified. */
12415 && TREE_CODE (TREE_TYPE (decl)) != REFERENCE_TYPE
12416 ? TYPE_QUAL_CONST : TYPE_UNQUALIFIED)
12417 | (TREE_THIS_VOLATILE (decl)
12418 ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED));
12421 /* Determine the TYPE whose qualifiers match the largest strict subset
12422 of the given TYPE_QUALS, and return its qualifiers. Ignore all
12423 qualifiers outside QUAL_MASK. */
12425 static int
12426 get_nearest_type_subqualifiers (tree type, int type_quals, int qual_mask)
12428 tree t;
12429 int best_rank = 0, best_qual = 0, max_rank;
12431 type_quals &= qual_mask;
12432 max_rank = popcount_hwi (type_quals) - 1;
12434 for (t = TYPE_MAIN_VARIANT (type); t && best_rank < max_rank;
12435 t = TYPE_NEXT_VARIANT (t))
12437 int q = TYPE_QUALS (t) & qual_mask;
12439 if ((q & type_quals) == q && q != type_quals
12440 && check_base_type (t, type))
12442 int rank = popcount_hwi (q);
12444 if (rank > best_rank)
12446 best_rank = rank;
12447 best_qual = q;
12452 return best_qual;
12455 struct dwarf_qual_info_t { int q; enum dwarf_tag t; };
12456 static const dwarf_qual_info_t dwarf_qual_info[] =
12458 { TYPE_QUAL_CONST, DW_TAG_const_type },
12459 { TYPE_QUAL_VOLATILE, DW_TAG_volatile_type },
12460 { TYPE_QUAL_RESTRICT, DW_TAG_restrict_type },
12461 { TYPE_QUAL_ATOMIC, DW_TAG_atomic_type }
12463 static const unsigned int dwarf_qual_info_size
12464 = sizeof (dwarf_qual_info) / sizeof (dwarf_qual_info[0]);
12466 /* If DIE is a qualified DIE of some base DIE with the same parent,
12467 return the base DIE, otherwise return NULL. Set MASK to the
12468 qualifiers added compared to the returned DIE. */
12470 static dw_die_ref
12471 qualified_die_p (dw_die_ref die, int *mask, unsigned int depth)
12473 unsigned int i;
12474 for (i = 0; i < dwarf_qual_info_size; i++)
12475 if (die->die_tag == dwarf_qual_info[i].t)
12476 break;
12477 if (i == dwarf_qual_info_size)
12478 return NULL;
12479 if (vec_safe_length (die->die_attr) != 1)
12480 return NULL;
12481 dw_die_ref type = get_AT_ref (die, DW_AT_type);
12482 if (type == NULL || type->die_parent != die->die_parent)
12483 return NULL;
12484 *mask |= dwarf_qual_info[i].q;
12485 if (depth)
12487 dw_die_ref ret = qualified_die_p (type, mask, depth - 1);
12488 if (ret)
12489 return ret;
12491 return type;
12494 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
12495 entry that chains the modifiers specified by CV_QUALS in front of the
12496 given type. REVERSE is true if the type is to be interpreted in the
12497 reverse storage order wrt the target order. */
12499 static dw_die_ref
12500 modified_type_die (tree type, int cv_quals, bool reverse,
12501 dw_die_ref context_die)
12503 enum tree_code code = TREE_CODE (type);
12504 dw_die_ref mod_type_die;
12505 dw_die_ref sub_die = NULL;
12506 tree item_type = NULL;
12507 tree qualified_type;
12508 tree name, low, high;
12509 dw_die_ref mod_scope;
12510 /* Only these cv-qualifiers are currently handled. */
12511 const int cv_qual_mask = (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE
12512 | TYPE_QUAL_RESTRICT | TYPE_QUAL_ATOMIC);
12514 if (code == ERROR_MARK)
12515 return NULL;
12517 if (lang_hooks.types.get_debug_type)
12519 tree debug_type = lang_hooks.types.get_debug_type (type);
12521 if (debug_type != NULL_TREE && debug_type != type)
12522 return modified_type_die (debug_type, cv_quals, reverse, context_die);
12525 cv_quals &= cv_qual_mask;
12527 /* Don't emit DW_TAG_restrict_type for DWARFv2, since it is a type
12528 tag modifier (and not an attribute) old consumers won't be able
12529 to handle it. */
12530 if (dwarf_version < 3)
12531 cv_quals &= ~TYPE_QUAL_RESTRICT;
12533 /* Likewise for DW_TAG_atomic_type for DWARFv5. */
12534 if (dwarf_version < 5)
12535 cv_quals &= ~TYPE_QUAL_ATOMIC;
12537 /* See if we already have the appropriately qualified variant of
12538 this type. */
12539 qualified_type = get_qualified_type (type, cv_quals);
12541 if (qualified_type == sizetype)
12543 /* Try not to expose the internal sizetype type's name. */
12544 if (TYPE_NAME (qualified_type)
12545 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL)
12547 tree t = TREE_TYPE (TYPE_NAME (qualified_type));
12549 gcc_checking_assert (TREE_CODE (t) == INTEGER_TYPE
12550 && (TYPE_PRECISION (t)
12551 == TYPE_PRECISION (qualified_type))
12552 && (TYPE_UNSIGNED (t)
12553 == TYPE_UNSIGNED (qualified_type)));
12554 qualified_type = t;
12556 else if (qualified_type == sizetype
12557 && TREE_CODE (sizetype) == TREE_CODE (size_type_node)
12558 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (size_type_node)
12559 && TYPE_UNSIGNED (sizetype) == TYPE_UNSIGNED (size_type_node))
12560 qualified_type = size_type_node;
12564 /* If we do, then we can just use its DIE, if it exists. */
12565 if (qualified_type)
12567 mod_type_die = lookup_type_die (qualified_type);
12569 /* DW_AT_endianity doesn't come from a qualifier on the type. */
12570 if (mod_type_die
12571 && (!need_endianity_attribute_p (reverse)
12572 || !is_base_type (type)
12573 || get_AT_unsigned (mod_type_die, DW_AT_endianity)))
12574 return mod_type_die;
12577 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
12579 /* Handle C typedef types. */
12580 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name)
12581 && !DECL_ARTIFICIAL (name))
12583 tree dtype = TREE_TYPE (name);
12585 if (qualified_type == dtype)
12587 tree origin = decl_ultimate_origin (name);
12589 /* Typedef variants that have an abstract origin don't get their own
12590 type DIE (see gen_typedef_die), so fall back on the ultimate
12591 abstract origin instead. */
12592 if (origin != NULL && origin != name)
12593 return modified_type_die (TREE_TYPE (origin), cv_quals, reverse,
12594 context_die);
12596 /* For a named type, use the typedef. */
12597 gen_type_die (qualified_type, context_die);
12598 return lookup_type_die (qualified_type);
12600 else
12602 int dquals = TYPE_QUALS_NO_ADDR_SPACE (dtype);
12603 dquals &= cv_qual_mask;
12604 if ((dquals & ~cv_quals) != TYPE_UNQUALIFIED
12605 || (cv_quals == dquals && DECL_ORIGINAL_TYPE (name) != type))
12606 /* cv-unqualified version of named type. Just use
12607 the unnamed type to which it refers. */
12608 return modified_type_die (DECL_ORIGINAL_TYPE (name), cv_quals,
12609 reverse, context_die);
12610 /* Else cv-qualified version of named type; fall through. */
12614 mod_scope = scope_die_for (type, context_die);
12616 if (cv_quals)
12618 int sub_quals = 0, first_quals = 0;
12619 unsigned i;
12620 dw_die_ref first = NULL, last = NULL;
12622 /* Determine a lesser qualified type that most closely matches
12623 this one. Then generate DW_TAG_* entries for the remaining
12624 qualifiers. */
12625 sub_quals = get_nearest_type_subqualifiers (type, cv_quals,
12626 cv_qual_mask);
12627 if (sub_quals && use_debug_types)
12629 bool needed = false;
12630 /* If emitting type units, make sure the order of qualifiers
12631 is canonical. Thus, start from unqualified type if
12632 an earlier qualifier is missing in sub_quals, but some later
12633 one is present there. */
12634 for (i = 0; i < dwarf_qual_info_size; i++)
12635 if (dwarf_qual_info[i].q & cv_quals & ~sub_quals)
12636 needed = true;
12637 else if (needed && (dwarf_qual_info[i].q & cv_quals))
12639 sub_quals = 0;
12640 break;
12643 mod_type_die = modified_type_die (type, sub_quals, reverse, context_die);
12644 if (mod_scope && mod_type_die && mod_type_die->die_parent == mod_scope)
12646 /* As not all intermediate qualified DIEs have corresponding
12647 tree types, ensure that qualified DIEs in the same scope
12648 as their DW_AT_type are emitted after their DW_AT_type,
12649 only with other qualified DIEs for the same type possibly
12650 in between them. Determine the range of such qualified
12651 DIEs now (first being the base type, last being corresponding
12652 last qualified DIE for it). */
12653 unsigned int count = 0;
12654 first = qualified_die_p (mod_type_die, &first_quals,
12655 dwarf_qual_info_size);
12656 if (first == NULL)
12657 first = mod_type_die;
12658 gcc_assert ((first_quals & ~sub_quals) == 0);
12659 for (count = 0, last = first;
12660 count < (1U << dwarf_qual_info_size);
12661 count++, last = last->die_sib)
12663 int quals = 0;
12664 if (last == mod_scope->die_child)
12665 break;
12666 if (qualified_die_p (last->die_sib, &quals, dwarf_qual_info_size)
12667 != first)
12668 break;
12672 for (i = 0; i < dwarf_qual_info_size; i++)
12673 if (dwarf_qual_info[i].q & cv_quals & ~sub_quals)
12675 dw_die_ref d;
12676 if (first && first != last)
12678 for (d = first->die_sib; ; d = d->die_sib)
12680 int quals = 0;
12681 qualified_die_p (d, &quals, dwarf_qual_info_size);
12682 if (quals == (first_quals | dwarf_qual_info[i].q))
12683 break;
12684 if (d == last)
12686 d = NULL;
12687 break;
12690 if (d)
12692 mod_type_die = d;
12693 continue;
12696 if (first)
12698 d = ggc_cleared_alloc<die_node> ();
12699 d->die_tag = dwarf_qual_info[i].t;
12700 add_child_die_after (mod_scope, d, last);
12701 last = d;
12703 else
12704 d = new_die (dwarf_qual_info[i].t, mod_scope, type);
12705 if (mod_type_die)
12706 add_AT_die_ref (d, DW_AT_type, mod_type_die);
12707 mod_type_die = d;
12708 first_quals |= dwarf_qual_info[i].q;
12711 else if (code == POINTER_TYPE || code == REFERENCE_TYPE)
12713 dwarf_tag tag = DW_TAG_pointer_type;
12714 if (code == REFERENCE_TYPE)
12716 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
12717 tag = DW_TAG_rvalue_reference_type;
12718 else
12719 tag = DW_TAG_reference_type;
12721 mod_type_die = new_die (tag, mod_scope, type);
12723 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
12724 simple_type_size_in_bits (type) / BITS_PER_UNIT);
12725 add_alignment_attribute (mod_type_die, type);
12726 item_type = TREE_TYPE (type);
12728 addr_space_t as = TYPE_ADDR_SPACE (item_type);
12729 if (!ADDR_SPACE_GENERIC_P (as))
12731 int action = targetm.addr_space.debug (as);
12732 if (action >= 0)
12734 /* Positive values indicate an address_class. */
12735 add_AT_unsigned (mod_type_die, DW_AT_address_class, action);
12737 else
12739 /* Negative values indicate an (inverted) segment base reg. */
12740 dw_loc_descr_ref d
12741 = one_reg_loc_descriptor (~action, VAR_INIT_STATUS_INITIALIZED);
12742 add_AT_loc (mod_type_die, DW_AT_segment, d);
12746 else if (code == INTEGER_TYPE
12747 && TREE_TYPE (type) != NULL_TREE
12748 && subrange_type_for_debug_p (type, &low, &high))
12750 tree bias = NULL_TREE;
12751 if (lang_hooks.types.get_type_bias)
12752 bias = lang_hooks.types.get_type_bias (type);
12753 mod_type_die = subrange_type_die (type, low, high, bias, context_die);
12754 item_type = TREE_TYPE (type);
12756 else if (is_base_type (type))
12757 mod_type_die = base_type_die (type, reverse);
12758 else
12760 gen_type_die (type, context_die);
12762 /* We have to get the type_main_variant here (and pass that to the
12763 `lookup_type_die' routine) because the ..._TYPE node we have
12764 might simply be a *copy* of some original type node (where the
12765 copy was created to help us keep track of typedef names) and
12766 that copy might have a different TYPE_UID from the original
12767 ..._TYPE node. */
12768 if (TREE_CODE (type) == FUNCTION_TYPE
12769 || TREE_CODE (type) == METHOD_TYPE)
12771 /* For function/method types, can't just use type_main_variant here,
12772 because that can have different ref-qualifiers for C++,
12773 but try to canonicalize. */
12774 tree main = TYPE_MAIN_VARIANT (type);
12775 for (tree t = main; t; t = TYPE_NEXT_VARIANT (t))
12776 if (TYPE_QUALS_NO_ADDR_SPACE (t) == 0
12777 && check_base_type (t, main)
12778 && check_lang_type (t, type))
12779 return lookup_type_die (t);
12780 return lookup_type_die (type);
12782 else if (TREE_CODE (type) != VECTOR_TYPE
12783 && TREE_CODE (type) != ARRAY_TYPE)
12784 return lookup_type_die (type_main_variant (type));
12785 else
12786 /* Vectors have the debugging information in the type,
12787 not the main variant. */
12788 return lookup_type_die (type);
12791 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
12792 don't output a DW_TAG_typedef, since there isn't one in the
12793 user's program; just attach a DW_AT_name to the type.
12794 Don't attach a DW_AT_name to DW_TAG_const_type or DW_TAG_volatile_type
12795 if the base type already has the same name. */
12796 if (name
12797 && ((TREE_CODE (name) != TYPE_DECL
12798 && (qualified_type == TYPE_MAIN_VARIANT (type)
12799 || (cv_quals == TYPE_UNQUALIFIED)))
12800 || (TREE_CODE (name) == TYPE_DECL
12801 && TREE_TYPE (name) == qualified_type
12802 && DECL_NAME (name))))
12804 if (TREE_CODE (name) == TYPE_DECL)
12805 /* Could just call add_name_and_src_coords_attributes here,
12806 but since this is a builtin type it doesn't have any
12807 useful source coordinates anyway. */
12808 name = DECL_NAME (name);
12809 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
12811 /* This probably indicates a bug. */
12812 else if (mod_type_die && mod_type_die->die_tag == DW_TAG_base_type)
12814 name = TYPE_IDENTIFIER (type);
12815 add_name_attribute (mod_type_die,
12816 name ? IDENTIFIER_POINTER (name) : "__unknown__");
12819 if (qualified_type)
12820 equate_type_number_to_die (qualified_type, mod_type_die);
12822 if (item_type)
12823 /* We must do this after the equate_type_number_to_die call, in case
12824 this is a recursive type. This ensures that the modified_type_die
12825 recursion will terminate even if the type is recursive. Recursive
12826 types are possible in Ada. */
12827 sub_die = modified_type_die (item_type,
12828 TYPE_QUALS_NO_ADDR_SPACE (item_type),
12829 reverse,
12830 context_die);
12832 if (sub_die != NULL)
12833 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
12835 add_gnat_descriptive_type_attribute (mod_type_die, type, context_die);
12836 if (TYPE_ARTIFICIAL (type))
12837 add_AT_flag (mod_type_die, DW_AT_artificial, 1);
12839 return mod_type_die;
12842 /* Generate DIEs for the generic parameters of T.
12843 T must be either a generic type or a generic function.
12844 See http://gcc.gnu.org/wiki/TemplateParmsDwarf for more. */
12846 static void
12847 gen_generic_params_dies (tree t)
12849 tree parms, args;
12850 int parms_num, i;
12851 dw_die_ref die = NULL;
12852 int non_default;
12854 if (!t || (TYPE_P (t) && !COMPLETE_TYPE_P (t)))
12855 return;
12857 if (TYPE_P (t))
12858 die = lookup_type_die (t);
12859 else if (DECL_P (t))
12860 die = lookup_decl_die (t);
12862 gcc_assert (die);
12864 parms = lang_hooks.get_innermost_generic_parms (t);
12865 if (!parms)
12866 /* T has no generic parameter. It means T is neither a generic type
12867 or function. End of story. */
12868 return;
12870 parms_num = TREE_VEC_LENGTH (parms);
12871 args = lang_hooks.get_innermost_generic_args (t);
12872 if (TREE_CHAIN (args) && TREE_CODE (TREE_CHAIN (args)) == INTEGER_CST)
12873 non_default = int_cst_value (TREE_CHAIN (args));
12874 else
12875 non_default = TREE_VEC_LENGTH (args);
12876 for (i = 0; i < parms_num; i++)
12878 tree parm, arg, arg_pack_elems;
12879 dw_die_ref parm_die;
12881 parm = TREE_VEC_ELT (parms, i);
12882 arg = TREE_VEC_ELT (args, i);
12883 arg_pack_elems = lang_hooks.types.get_argument_pack_elems (arg);
12884 gcc_assert (parm && TREE_VALUE (parm) && arg);
12886 if (parm && TREE_VALUE (parm) && arg)
12888 /* If PARM represents a template parameter pack,
12889 emit a DW_TAG_GNU_template_parameter_pack DIE, followed
12890 by DW_TAG_template_*_parameter DIEs for the argument
12891 pack elements of ARG. Note that ARG would then be
12892 an argument pack. */
12893 if (arg_pack_elems)
12894 parm_die = template_parameter_pack_die (TREE_VALUE (parm),
12895 arg_pack_elems,
12896 die);
12897 else
12898 parm_die = generic_parameter_die (TREE_VALUE (parm), arg,
12899 true /* emit name */, die);
12900 if (i >= non_default)
12901 add_AT_flag (parm_die, DW_AT_default_value, 1);
12906 /* Create and return a DIE for PARM which should be
12907 the representation of a generic type parameter.
12908 For instance, in the C++ front end, PARM would be a template parameter.
12909 ARG is the argument to PARM.
12910 EMIT_NAME_P if tree, the DIE will have DW_AT_name attribute set to the
12911 name of the PARM.
12912 PARENT_DIE is the parent DIE which the new created DIE should be added to,
12913 as a child node. */
12915 static dw_die_ref
12916 generic_parameter_die (tree parm, tree arg,
12917 bool emit_name_p,
12918 dw_die_ref parent_die)
12920 dw_die_ref tmpl_die = NULL;
12921 const char *name = NULL;
12923 if (!parm || !DECL_NAME (parm) || !arg)
12924 return NULL;
12926 /* We support non-type generic parameters and arguments,
12927 type generic parameters and arguments, as well as
12928 generic generic parameters (a.k.a. template template parameters in C++)
12929 and arguments. */
12930 if (TREE_CODE (parm) == PARM_DECL)
12931 /* PARM is a nontype generic parameter */
12932 tmpl_die = new_die (DW_TAG_template_value_param, parent_die, parm);
12933 else if (TREE_CODE (parm) == TYPE_DECL)
12934 /* PARM is a type generic parameter. */
12935 tmpl_die = new_die (DW_TAG_template_type_param, parent_die, parm);
12936 else if (lang_hooks.decls.generic_generic_parameter_decl_p (parm))
12937 /* PARM is a generic generic parameter.
12938 Its DIE is a GNU extension. It shall have a
12939 DW_AT_name attribute to represent the name of the template template
12940 parameter, and a DW_AT_GNU_template_name attribute to represent the
12941 name of the template template argument. */
12942 tmpl_die = new_die (DW_TAG_GNU_template_template_param,
12943 parent_die, parm);
12944 else
12945 gcc_unreachable ();
12947 if (tmpl_die)
12949 tree tmpl_type;
12951 /* If PARM is a generic parameter pack, it means we are
12952 emitting debug info for a template argument pack element.
12953 In other terms, ARG is a template argument pack element.
12954 In that case, we don't emit any DW_AT_name attribute for
12955 the die. */
12956 if (emit_name_p)
12958 name = IDENTIFIER_POINTER (DECL_NAME (parm));
12959 gcc_assert (name);
12960 add_AT_string (tmpl_die, DW_AT_name, name);
12963 if (!lang_hooks.decls.generic_generic_parameter_decl_p (parm))
12965 /* DWARF3, 5.6.8 says if PARM is a non-type generic parameter
12966 TMPL_DIE should have a child DW_AT_type attribute that is set
12967 to the type of the argument to PARM, which is ARG.
12968 If PARM is a type generic parameter, TMPL_DIE should have a
12969 child DW_AT_type that is set to ARG. */
12970 tmpl_type = TYPE_P (arg) ? arg : TREE_TYPE (arg);
12971 add_type_attribute (tmpl_die, tmpl_type,
12972 (TREE_THIS_VOLATILE (tmpl_type)
12973 ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED),
12974 false, parent_die);
12976 else
12978 /* So TMPL_DIE is a DIE representing a
12979 a generic generic template parameter, a.k.a template template
12980 parameter in C++ and arg is a template. */
12982 /* The DW_AT_GNU_template_name attribute of the DIE must be set
12983 to the name of the argument. */
12984 name = dwarf2_name (TYPE_P (arg) ? TYPE_NAME (arg) : arg, 1);
12985 if (name)
12986 add_AT_string (tmpl_die, DW_AT_GNU_template_name, name);
12989 if (TREE_CODE (parm) == PARM_DECL)
12990 /* So PARM is a non-type generic parameter.
12991 DWARF3 5.6.8 says we must set a DW_AT_const_value child
12992 attribute of TMPL_DIE which value represents the value
12993 of ARG.
12994 We must be careful here:
12995 The value of ARG might reference some function decls.
12996 We might currently be emitting debug info for a generic
12997 type and types are emitted before function decls, we don't
12998 know if the function decls referenced by ARG will actually be
12999 emitted after cgraph computations.
13000 So must defer the generation of the DW_AT_const_value to
13001 after cgraph is ready. */
13002 append_entry_to_tmpl_value_parm_die_table (tmpl_die, arg);
13005 return tmpl_die;
13008 /* Generate and return a DW_TAG_GNU_template_parameter_pack DIE representing.
13009 PARM_PACK must be a template parameter pack. The returned DIE
13010 will be child DIE of PARENT_DIE. */
13012 static dw_die_ref
13013 template_parameter_pack_die (tree parm_pack,
13014 tree parm_pack_args,
13015 dw_die_ref parent_die)
13017 dw_die_ref die;
13018 int j;
13020 gcc_assert (parent_die && parm_pack);
13022 die = new_die (DW_TAG_GNU_template_parameter_pack, parent_die, parm_pack);
13023 add_name_and_src_coords_attributes (die, parm_pack);
13024 for (j = 0; j < TREE_VEC_LENGTH (parm_pack_args); j++)
13025 generic_parameter_die (parm_pack,
13026 TREE_VEC_ELT (parm_pack_args, j),
13027 false /* Don't emit DW_AT_name */,
13028 die);
13029 return die;
13032 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
13033 an enumerated type. */
13035 static inline int
13036 type_is_enum (const_tree type)
13038 return TREE_CODE (type) == ENUMERAL_TYPE;
13041 /* Return the DBX register number described by a given RTL node. */
13043 static unsigned int
13044 dbx_reg_number (const_rtx rtl)
13046 unsigned regno = REGNO (rtl);
13048 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
13050 #ifdef LEAF_REG_REMAP
13051 if (crtl->uses_only_leaf_regs)
13053 int leaf_reg = LEAF_REG_REMAP (regno);
13054 if (leaf_reg != -1)
13055 regno = (unsigned) leaf_reg;
13057 #endif
13059 regno = DBX_REGISTER_NUMBER (regno);
13060 gcc_assert (regno != INVALID_REGNUM);
13061 return regno;
13064 /* Optionally add a DW_OP_piece term to a location description expression.
13065 DW_OP_piece is only added if the location description expression already
13066 doesn't end with DW_OP_piece. */
13068 static void
13069 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
13071 dw_loc_descr_ref loc;
13073 if (*list_head != NULL)
13075 /* Find the end of the chain. */
13076 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
13079 if (loc->dw_loc_opc != DW_OP_piece)
13080 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
13084 /* Return a location descriptor that designates a machine register or
13085 zero if there is none. */
13087 static dw_loc_descr_ref
13088 reg_loc_descriptor (rtx rtl, enum var_init_status initialized)
13090 rtx regs;
13092 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
13093 return 0;
13095 /* We only use "frame base" when we're sure we're talking about the
13096 post-prologue local stack frame. We do this by *not* running
13097 register elimination until this point, and recognizing the special
13098 argument pointer and soft frame pointer rtx's.
13099 Use DW_OP_fbreg offset DW_OP_stack_value in this case. */
13100 if ((rtl == arg_pointer_rtx || rtl == frame_pointer_rtx)
13101 && eliminate_regs (rtl, VOIDmode, NULL_RTX) != rtl)
13103 dw_loc_descr_ref result = NULL;
13105 if (dwarf_version >= 4 || !dwarf_strict)
13107 result = mem_loc_descriptor (rtl, GET_MODE (rtl), VOIDmode,
13108 initialized);
13109 if (result)
13110 add_loc_descr (&result,
13111 new_loc_descr (DW_OP_stack_value, 0, 0));
13113 return result;
13116 regs = targetm.dwarf_register_span (rtl);
13118 if (REG_NREGS (rtl) > 1 || regs)
13119 return multiple_reg_loc_descriptor (rtl, regs, initialized);
13120 else
13122 unsigned int dbx_regnum = dbx_reg_number (rtl);
13123 if (dbx_regnum == IGNORED_DWARF_REGNUM)
13124 return 0;
13125 return one_reg_loc_descriptor (dbx_regnum, initialized);
13129 /* Return a location descriptor that designates a machine register for
13130 a given hard register number. */
13132 static dw_loc_descr_ref
13133 one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized)
13135 dw_loc_descr_ref reg_loc_descr;
13137 if (regno <= 31)
13138 reg_loc_descr
13139 = new_loc_descr ((enum dwarf_location_atom) (DW_OP_reg0 + regno), 0, 0);
13140 else
13141 reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0);
13143 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
13144 add_loc_descr (&reg_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13146 return reg_loc_descr;
13149 /* Given an RTL of a register, return a location descriptor that
13150 designates a value that spans more than one register. */
13152 static dw_loc_descr_ref
13153 multiple_reg_loc_descriptor (rtx rtl, rtx regs,
13154 enum var_init_status initialized)
13156 int size, i;
13157 dw_loc_descr_ref loc_result = NULL;
13159 /* Simple, contiguous registers. */
13160 if (regs == NULL_RTX)
13162 unsigned reg = REGNO (rtl);
13163 int nregs;
13165 #ifdef LEAF_REG_REMAP
13166 if (crtl->uses_only_leaf_regs)
13168 int leaf_reg = LEAF_REG_REMAP (reg);
13169 if (leaf_reg != -1)
13170 reg = (unsigned) leaf_reg;
13172 #endif
13174 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
13175 nregs = REG_NREGS (rtl);
13177 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
13179 loc_result = NULL;
13180 while (nregs--)
13182 dw_loc_descr_ref t;
13184 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg),
13185 VAR_INIT_STATUS_INITIALIZED);
13186 add_loc_descr (&loc_result, t);
13187 add_loc_descr_op_piece (&loc_result, size);
13188 ++reg;
13190 return loc_result;
13193 /* Now onto stupid register sets in non contiguous locations. */
13195 gcc_assert (GET_CODE (regs) == PARALLEL);
13197 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
13198 loc_result = NULL;
13200 for (i = 0; i < XVECLEN (regs, 0); ++i)
13202 dw_loc_descr_ref t;
13204 t = one_reg_loc_descriptor (dbx_reg_number (XVECEXP (regs, 0, i)),
13205 VAR_INIT_STATUS_INITIALIZED);
13206 add_loc_descr (&loc_result, t);
13207 add_loc_descr_op_piece (&loc_result, size);
13210 if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
13211 add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13212 return loc_result;
13215 static unsigned long size_of_int_loc_descriptor (HOST_WIDE_INT);
13217 /* Return a location descriptor that designates a constant i,
13218 as a compound operation from constant (i >> shift), constant shift
13219 and DW_OP_shl. */
13221 static dw_loc_descr_ref
13222 int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
13224 dw_loc_descr_ref ret = int_loc_descriptor (i >> shift);
13225 add_loc_descr (&ret, int_loc_descriptor (shift));
13226 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
13227 return ret;
13230 /* Return a location descriptor that designates a constant. */
13232 static dw_loc_descr_ref
13233 int_loc_descriptor (HOST_WIDE_INT i)
13235 enum dwarf_location_atom op;
13237 /* Pick the smallest representation of a constant, rather than just
13238 defaulting to the LEB encoding. */
13239 if (i >= 0)
13241 int clz = clz_hwi (i);
13242 int ctz = ctz_hwi (i);
13243 if (i <= 31)
13244 op = (enum dwarf_location_atom) (DW_OP_lit0 + i);
13245 else if (i <= 0xff)
13246 op = DW_OP_const1u;
13247 else if (i <= 0xffff)
13248 op = DW_OP_const2u;
13249 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
13250 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
13251 /* DW_OP_litX DW_OP_litY DW_OP_shl takes just 3 bytes and
13252 DW_OP_litX DW_OP_const1u Y DW_OP_shl takes just 4 bytes,
13253 while DW_OP_const4u is 5 bytes. */
13254 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 5);
13255 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
13256 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
13257 /* DW_OP_const1u X DW_OP_litY DW_OP_shl takes just 4 bytes,
13258 while DW_OP_const4u is 5 bytes. */
13259 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
13261 else if (DWARF2_ADDR_SIZE == 4 && i > 0x7fffffff
13262 && size_of_int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i)
13263 <= 4)
13265 /* As i >= 2**31, the double cast above will yield a negative number.
13266 Since wrapping is defined in DWARF expressions we can output big
13267 positive integers as small negative ones, regardless of the size
13268 of host wide ints.
13270 Here, since the evaluator will handle 32-bit values and since i >=
13271 2**31, we know it's going to be interpreted as a negative literal:
13272 store it this way if we can do better than 5 bytes this way. */
13273 return int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i);
13275 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
13276 op = DW_OP_const4u;
13278 /* Past this point, i >= 0x100000000 and thus DW_OP_constu will take at
13279 least 6 bytes: see if we can do better before falling back to it. */
13280 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
13281 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
13282 /* DW_OP_const1u X DW_OP_const1u Y DW_OP_shl takes just 5 bytes. */
13283 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
13284 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
13285 && clz + 16 + (size_of_uleb128 (i) > 5 ? 255 : 31)
13286 >= HOST_BITS_PER_WIDE_INT)
13287 /* DW_OP_const2u X DW_OP_litY DW_OP_shl takes just 5 bytes,
13288 DW_OP_const2u X DW_OP_const1u Y DW_OP_shl takes 6 bytes. */
13289 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 16);
13290 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
13291 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
13292 && size_of_uleb128 (i) > 6)
13293 /* DW_OP_const4u X DW_OP_litY DW_OP_shl takes just 7 bytes. */
13294 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 32);
13295 else
13296 op = DW_OP_constu;
13298 else
13300 if (i >= -0x80)
13301 op = DW_OP_const1s;
13302 else if (i >= -0x8000)
13303 op = DW_OP_const2s;
13304 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
13306 if (size_of_int_loc_descriptor (i) < 5)
13308 dw_loc_descr_ref ret = int_loc_descriptor (-i);
13309 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
13310 return ret;
13312 op = DW_OP_const4s;
13314 else
13316 if (size_of_int_loc_descriptor (i)
13317 < (unsigned long) 1 + size_of_sleb128 (i))
13319 dw_loc_descr_ref ret = int_loc_descriptor (-i);
13320 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
13321 return ret;
13323 op = DW_OP_consts;
13327 return new_loc_descr (op, i, 0);
13330 /* Likewise, for unsigned constants. */
13332 static dw_loc_descr_ref
13333 uint_loc_descriptor (unsigned HOST_WIDE_INT i)
13335 const unsigned HOST_WIDE_INT max_int = INTTYPE_MAXIMUM (HOST_WIDE_INT);
13336 const unsigned HOST_WIDE_INT max_uint
13337 = INTTYPE_MAXIMUM (unsigned HOST_WIDE_INT);
13339 /* If possible, use the clever signed constants handling. */
13340 if (i <= max_int)
13341 return int_loc_descriptor ((HOST_WIDE_INT) i);
13343 /* Here, we are left with positive numbers that cannot be represented as
13344 HOST_WIDE_INT, i.e.:
13345 max (HOST_WIDE_INT) < i <= max (unsigned HOST_WIDE_INT)
13347 Using DW_OP_const4/8/./u operation to encode them consumes a lot of bytes
13348 whereas may be better to output a negative integer: thanks to integer
13349 wrapping, we know that:
13350 x = x - 2 ** DWARF2_ADDR_SIZE
13351 = x - 2 * (max (HOST_WIDE_INT) + 1)
13352 So numbers close to max (unsigned HOST_WIDE_INT) could be represented as
13353 small negative integers. Let's try that in cases it will clearly improve
13354 the encoding: there is no gain turning DW_OP_const4u into
13355 DW_OP_const4s. */
13356 if (DWARF2_ADDR_SIZE * 8 == HOST_BITS_PER_WIDE_INT
13357 && ((DWARF2_ADDR_SIZE == 4 && i > max_uint - 0x8000)
13358 || (DWARF2_ADDR_SIZE == 8 && i > max_uint - 0x80000000)))
13360 const unsigned HOST_WIDE_INT first_shift = i - max_int - 1;
13362 /* Now, -1 < first_shift <= max (HOST_WIDE_INT)
13363 i.e. 0 <= first_shift <= max (HOST_WIDE_INT). */
13364 const HOST_WIDE_INT second_shift
13365 = (HOST_WIDE_INT) first_shift - (HOST_WIDE_INT) max_int - 1;
13367 /* So we finally have:
13368 -max (HOST_WIDE_INT) - 1 <= second_shift <= -1.
13369 i.e. min (HOST_WIDE_INT) <= second_shift < 0. */
13370 return int_loc_descriptor (second_shift);
13373 /* Last chance: fallback to a simple constant operation. */
13374 return new_loc_descr
13375 ((HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
13376 ? DW_OP_const4u
13377 : DW_OP_const8u,
13378 i, 0);
13381 /* Generate and return a location description that computes the unsigned
13382 comparison of the two stack top entries (a OP b where b is the top-most
13383 entry and a is the second one). The KIND of comparison can be LT_EXPR,
13384 LE_EXPR, GT_EXPR or GE_EXPR. */
13386 static dw_loc_descr_ref
13387 uint_comparison_loc_list (enum tree_code kind)
13389 enum dwarf_location_atom op, flip_op;
13390 dw_loc_descr_ref ret, bra_node, jmp_node, tmp;
13392 switch (kind)
13394 case LT_EXPR:
13395 op = DW_OP_lt;
13396 break;
13397 case LE_EXPR:
13398 op = DW_OP_le;
13399 break;
13400 case GT_EXPR:
13401 op = DW_OP_gt;
13402 break;
13403 case GE_EXPR:
13404 op = DW_OP_ge;
13405 break;
13406 default:
13407 gcc_unreachable ();
13410 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
13411 jmp_node = new_loc_descr (DW_OP_skip, 0, 0);
13413 /* Until DWARFv4, operations all work on signed integers. It is nevertheless
13414 possible to perform unsigned comparisons: we just have to distinguish
13415 three cases:
13417 1. when a and b have the same sign (as signed integers); then we should
13418 return: a OP(signed) b;
13420 2. when a is a negative signed integer while b is a positive one, then a
13421 is a greater unsigned integer than b; likewise when a and b's roles
13422 are flipped.
13424 So first, compare the sign of the two operands. */
13425 ret = new_loc_descr (DW_OP_over, 0, 0);
13426 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
13427 add_loc_descr (&ret, new_loc_descr (DW_OP_xor, 0, 0));
13428 /* If they have different signs (i.e. they have different sign bits), then
13429 the stack top value has now the sign bit set and thus it's smaller than
13430 zero. */
13431 add_loc_descr (&ret, new_loc_descr (DW_OP_lit0, 0, 0));
13432 add_loc_descr (&ret, new_loc_descr (DW_OP_lt, 0, 0));
13433 add_loc_descr (&ret, bra_node);
13435 /* We are in case 1. At this point, we know both operands have the same
13436 sign, to it's safe to use the built-in signed comparison. */
13437 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
13438 add_loc_descr (&ret, jmp_node);
13440 /* We are in case 2. Here, we know both operands do not have the same sign,
13441 so we have to flip the signed comparison. */
13442 flip_op = (kind == LT_EXPR || kind == LE_EXPR) ? DW_OP_gt : DW_OP_lt;
13443 tmp = new_loc_descr (flip_op, 0, 0);
13444 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
13445 bra_node->dw_loc_oprnd1.v.val_loc = tmp;
13446 add_loc_descr (&ret, tmp);
13448 /* This dummy operation is necessary to make the two branches join. */
13449 tmp = new_loc_descr (DW_OP_nop, 0, 0);
13450 jmp_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
13451 jmp_node->dw_loc_oprnd1.v.val_loc = tmp;
13452 add_loc_descr (&ret, tmp);
13454 return ret;
13457 /* Likewise, but takes the location description lists (might be destructive on
13458 them). Return NULL if either is NULL or if concatenation fails. */
13460 static dw_loc_list_ref
13461 loc_list_from_uint_comparison (dw_loc_list_ref left, dw_loc_list_ref right,
13462 enum tree_code kind)
13464 if (left == NULL || right == NULL)
13465 return NULL;
13467 add_loc_list (&left, right);
13468 if (left == NULL)
13469 return NULL;
13471 add_loc_descr_to_each (left, uint_comparison_loc_list (kind));
13472 return left;
13475 /* Return size_of_locs (int_shift_loc_descriptor (i, shift))
13476 without actually allocating it. */
13478 static unsigned long
13479 size_of_int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
13481 return size_of_int_loc_descriptor (i >> shift)
13482 + size_of_int_loc_descriptor (shift)
13483 + 1;
13486 /* Return size_of_locs (int_loc_descriptor (i)) without
13487 actually allocating it. */
13489 static unsigned long
13490 size_of_int_loc_descriptor (HOST_WIDE_INT i)
13492 unsigned long s;
13494 if (i >= 0)
13496 int clz, ctz;
13497 if (i <= 31)
13498 return 1;
13499 else if (i <= 0xff)
13500 return 2;
13501 else if (i <= 0xffff)
13502 return 3;
13503 clz = clz_hwi (i);
13504 ctz = ctz_hwi (i);
13505 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
13506 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
13507 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
13508 - clz - 5);
13509 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
13510 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
13511 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
13512 - clz - 8);
13513 else if (DWARF2_ADDR_SIZE == 4 && i > 0x7fffffff
13514 && size_of_int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i)
13515 <= 4)
13516 return size_of_int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i);
13517 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
13518 return 5;
13519 s = size_of_uleb128 ((unsigned HOST_WIDE_INT) i);
13520 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
13521 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
13522 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
13523 - clz - 8);
13524 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
13525 && clz + 16 + (s > 5 ? 255 : 31) >= HOST_BITS_PER_WIDE_INT)
13526 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
13527 - clz - 16);
13528 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
13529 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
13530 && s > 6)
13531 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
13532 - clz - 32);
13533 else
13534 return 1 + s;
13536 else
13538 if (i >= -0x80)
13539 return 2;
13540 else if (i >= -0x8000)
13541 return 3;
13542 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
13544 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
13546 s = size_of_int_loc_descriptor (-i) + 1;
13547 if (s < 5)
13548 return s;
13550 return 5;
13552 else
13554 unsigned long r = 1 + size_of_sleb128 (i);
13555 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
13557 s = size_of_int_loc_descriptor (-i) + 1;
13558 if (s < r)
13559 return s;
13561 return r;
13566 /* Return loc description representing "address" of integer value.
13567 This can appear only as toplevel expression. */
13569 static dw_loc_descr_ref
13570 address_of_int_loc_descriptor (int size, HOST_WIDE_INT i)
13572 int litsize;
13573 dw_loc_descr_ref loc_result = NULL;
13575 if (!(dwarf_version >= 4 || !dwarf_strict))
13576 return NULL;
13578 litsize = size_of_int_loc_descriptor (i);
13579 /* Determine if DW_OP_stack_value or DW_OP_implicit_value
13580 is more compact. For DW_OP_stack_value we need:
13581 litsize + 1 (DW_OP_stack_value)
13582 and for DW_OP_implicit_value:
13583 1 (DW_OP_implicit_value) + 1 (length) + size. */
13584 if ((int) DWARF2_ADDR_SIZE >= size && litsize + 1 <= 1 + 1 + size)
13586 loc_result = int_loc_descriptor (i);
13587 add_loc_descr (&loc_result,
13588 new_loc_descr (DW_OP_stack_value, 0, 0));
13589 return loc_result;
13592 loc_result = new_loc_descr (DW_OP_implicit_value,
13593 size, 0);
13594 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
13595 loc_result->dw_loc_oprnd2.v.val_int = i;
13596 return loc_result;
13599 /* Return a location descriptor that designates a base+offset location. */
13601 static dw_loc_descr_ref
13602 based_loc_descr (rtx reg, HOST_WIDE_INT offset,
13603 enum var_init_status initialized)
13605 unsigned int regno;
13606 dw_loc_descr_ref result;
13607 dw_fde_ref fde = cfun->fde;
13609 /* We only use "frame base" when we're sure we're talking about the
13610 post-prologue local stack frame. We do this by *not* running
13611 register elimination until this point, and recognizing the special
13612 argument pointer and soft frame pointer rtx's. */
13613 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
13615 rtx elim = (ira_use_lra_p
13616 ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
13617 : eliminate_regs (reg, VOIDmode, NULL_RTX));
13619 if (elim != reg)
13621 if (GET_CODE (elim) == PLUS)
13623 offset += INTVAL (XEXP (elim, 1));
13624 elim = XEXP (elim, 0);
13626 gcc_assert ((SUPPORTS_STACK_ALIGNMENT
13627 && (elim == hard_frame_pointer_rtx
13628 || elim == stack_pointer_rtx))
13629 || elim == (frame_pointer_needed
13630 ? hard_frame_pointer_rtx
13631 : stack_pointer_rtx));
13633 /* If drap register is used to align stack, use frame
13634 pointer + offset to access stack variables. If stack
13635 is aligned without drap, use stack pointer + offset to
13636 access stack variables. */
13637 if (crtl->stack_realign_tried
13638 && reg == frame_pointer_rtx)
13640 int base_reg
13641 = DWARF_FRAME_REGNUM ((fde && fde->drap_reg != INVALID_REGNUM)
13642 ? HARD_FRAME_POINTER_REGNUM
13643 : REGNO (elim));
13644 return new_reg_loc_descr (base_reg, offset);
13647 gcc_assert (frame_pointer_fb_offset_valid);
13648 offset += frame_pointer_fb_offset;
13649 return new_loc_descr (DW_OP_fbreg, offset, 0);
13653 regno = REGNO (reg);
13654 #ifdef LEAF_REG_REMAP
13655 if (crtl->uses_only_leaf_regs)
13657 int leaf_reg = LEAF_REG_REMAP (regno);
13658 if (leaf_reg != -1)
13659 regno = (unsigned) leaf_reg;
13661 #endif
13662 regno = DWARF_FRAME_REGNUM (regno);
13664 if (!optimize && fde
13665 && (fde->drap_reg == regno || fde->vdrap_reg == regno))
13667 /* Use cfa+offset to represent the location of arguments passed
13668 on the stack when drap is used to align stack.
13669 Only do this when not optimizing, for optimized code var-tracking
13670 is supposed to track where the arguments live and the register
13671 used as vdrap or drap in some spot might be used for something
13672 else in other part of the routine. */
13673 return new_loc_descr (DW_OP_fbreg, offset, 0);
13676 if (regno <= 31)
13677 result = new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + regno),
13678 offset, 0);
13679 else
13680 result = new_loc_descr (DW_OP_bregx, regno, offset);
13682 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
13683 add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13685 return result;
13688 /* Return true if this RTL expression describes a base+offset calculation. */
13690 static inline int
13691 is_based_loc (const_rtx rtl)
13693 return (GET_CODE (rtl) == PLUS
13694 && ((REG_P (XEXP (rtl, 0))
13695 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
13696 && CONST_INT_P (XEXP (rtl, 1)))));
13699 /* Try to handle TLS MEMs, for which mem_loc_descriptor on XEXP (mem, 0)
13700 failed. */
13702 static dw_loc_descr_ref
13703 tls_mem_loc_descriptor (rtx mem)
13705 tree base;
13706 dw_loc_descr_ref loc_result;
13708 if (MEM_EXPR (mem) == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
13709 return NULL;
13711 base = get_base_address (MEM_EXPR (mem));
13712 if (base == NULL
13713 || !VAR_P (base)
13714 || !DECL_THREAD_LOCAL_P (base))
13715 return NULL;
13717 loc_result = loc_descriptor_from_tree (MEM_EXPR (mem), 1, NULL);
13718 if (loc_result == NULL)
13719 return NULL;
13721 if (MEM_OFFSET (mem))
13722 loc_descr_plus_const (&loc_result, MEM_OFFSET (mem));
13724 return loc_result;
13727 /* Output debug info about reason why we failed to expand expression as dwarf
13728 expression. */
13730 static void
13731 expansion_failed (tree expr, rtx rtl, char const *reason)
13733 if (dump_file && (dump_flags & TDF_DETAILS))
13735 fprintf (dump_file, "Failed to expand as dwarf: ");
13736 if (expr)
13737 print_generic_expr (dump_file, expr, dump_flags);
13738 if (rtl)
13740 fprintf (dump_file, "\n");
13741 print_rtl (dump_file, rtl);
13743 fprintf (dump_file, "\nReason: %s\n", reason);
13747 /* Helper function for const_ok_for_output. */
13749 static bool
13750 const_ok_for_output_1 (rtx rtl)
13752 if (GET_CODE (rtl) == UNSPEC)
13754 /* If delegitimize_address couldn't do anything with the UNSPEC, assume
13755 we can't express it in the debug info. */
13756 /* Don't complain about TLS UNSPECs, those are just too hard to
13757 delegitimize. Note this could be a non-decl SYMBOL_REF such as
13758 one in a constant pool entry, so testing SYMBOL_REF_TLS_MODEL
13759 rather than DECL_THREAD_LOCAL_P is not just an optimization. */
13760 if (flag_checking
13761 && (XVECLEN (rtl, 0) == 0
13762 || GET_CODE (XVECEXP (rtl, 0, 0)) != SYMBOL_REF
13763 || SYMBOL_REF_TLS_MODEL (XVECEXP (rtl, 0, 0)) == TLS_MODEL_NONE))
13764 inform (current_function_decl
13765 ? DECL_SOURCE_LOCATION (current_function_decl)
13766 : UNKNOWN_LOCATION,
13767 #if NUM_UNSPEC_VALUES > 0
13768 "non-delegitimized UNSPEC %s (%d) found in variable location",
13769 ((XINT (rtl, 1) >= 0 && XINT (rtl, 1) < NUM_UNSPEC_VALUES)
13770 ? unspec_strings[XINT (rtl, 1)] : "unknown"),
13771 XINT (rtl, 1));
13772 #else
13773 "non-delegitimized UNSPEC %d found in variable location",
13774 XINT (rtl, 1));
13775 #endif
13776 expansion_failed (NULL_TREE, rtl,
13777 "UNSPEC hasn't been delegitimized.\n");
13778 return false;
13781 if (targetm.const_not_ok_for_debug_p (rtl))
13783 expansion_failed (NULL_TREE, rtl,
13784 "Expression rejected for debug by the backend.\n");
13785 return false;
13788 /* FIXME: Refer to PR60655. It is possible for simplification
13789 of rtl expressions in var tracking to produce such expressions.
13790 We should really identify / validate expressions
13791 enclosed in CONST that can be handled by assemblers on various
13792 targets and only handle legitimate cases here. */
13793 if (GET_CODE (rtl) != SYMBOL_REF)
13795 if (GET_CODE (rtl) == NOT)
13796 return false;
13797 return true;
13800 if (CONSTANT_POOL_ADDRESS_P (rtl))
13802 bool marked;
13803 get_pool_constant_mark (rtl, &marked);
13804 /* If all references to this pool constant were optimized away,
13805 it was not output and thus we can't represent it. */
13806 if (!marked)
13808 expansion_failed (NULL_TREE, rtl,
13809 "Constant was removed from constant pool.\n");
13810 return false;
13814 if (SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
13815 return false;
13817 /* Avoid references to external symbols in debug info, on several targets
13818 the linker might even refuse to link when linking a shared library,
13819 and in many other cases the relocations for .debug_info/.debug_loc are
13820 dropped, so the address becomes zero anyway. Hidden symbols, guaranteed
13821 to be defined within the same shared library or executable are fine. */
13822 if (SYMBOL_REF_EXTERNAL_P (rtl))
13824 tree decl = SYMBOL_REF_DECL (rtl);
13826 if (decl == NULL || !targetm.binds_local_p (decl))
13828 expansion_failed (NULL_TREE, rtl,
13829 "Symbol not defined in current TU.\n");
13830 return false;
13834 return true;
13837 /* Return true if constant RTL can be emitted in DW_OP_addr or
13838 DW_AT_const_value. TLS SYMBOL_REFs, external SYMBOL_REFs or
13839 non-marked constant pool SYMBOL_REFs can't be referenced in it. */
13841 static bool
13842 const_ok_for_output (rtx rtl)
13844 if (GET_CODE (rtl) == SYMBOL_REF)
13845 return const_ok_for_output_1 (rtl);
13847 if (GET_CODE (rtl) == CONST)
13849 subrtx_var_iterator::array_type array;
13850 FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 0), ALL)
13851 if (!const_ok_for_output_1 (*iter))
13852 return false;
13853 return true;
13856 return true;
13859 /* Return a reference to DW_TAG_base_type corresponding to MODE and UNSIGNEDP
13860 if possible, NULL otherwise. */
13862 static dw_die_ref
13863 base_type_for_mode (machine_mode mode, bool unsignedp)
13865 dw_die_ref type_die;
13866 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
13868 if (type == NULL)
13869 return NULL;
13870 switch (TREE_CODE (type))
13872 case INTEGER_TYPE:
13873 case REAL_TYPE:
13874 break;
13875 default:
13876 return NULL;
13878 type_die = lookup_type_die (type);
13879 if (!type_die)
13880 type_die = modified_type_die (type, TYPE_UNQUALIFIED, false,
13881 comp_unit_die ());
13882 if (type_die == NULL || type_die->die_tag != DW_TAG_base_type)
13883 return NULL;
13884 return type_die;
13887 /* For OP descriptor assumed to be in unsigned MODE, convert it to a unsigned
13888 type matching MODE, or, if MODE is narrower than or as wide as
13889 DWARF2_ADDR_SIZE, untyped. Return NULL if the conversion is not
13890 possible. */
13892 static dw_loc_descr_ref
13893 convert_descriptor_to_mode (machine_mode mode, dw_loc_descr_ref op)
13895 machine_mode outer_mode = mode;
13896 dw_die_ref type_die;
13897 dw_loc_descr_ref cvt;
13899 if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
13901 add_loc_descr (&op, new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0));
13902 return op;
13904 type_die = base_type_for_mode (outer_mode, 1);
13905 if (type_die == NULL)
13906 return NULL;
13907 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
13908 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13909 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13910 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13911 add_loc_descr (&op, cvt);
13912 return op;
13915 /* Return location descriptor for comparison OP with operands OP0 and OP1. */
13917 static dw_loc_descr_ref
13918 compare_loc_descriptor (enum dwarf_location_atom op, dw_loc_descr_ref op0,
13919 dw_loc_descr_ref op1)
13921 dw_loc_descr_ref ret = op0;
13922 add_loc_descr (&ret, op1);
13923 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
13924 if (STORE_FLAG_VALUE != 1)
13926 add_loc_descr (&ret, int_loc_descriptor (STORE_FLAG_VALUE));
13927 add_loc_descr (&ret, new_loc_descr (DW_OP_mul, 0, 0));
13929 return ret;
13932 /* Subroutine of scompare_loc_descriptor for the case in which we're
13933 comparing two scalar integer operands OP0 and OP1 that have mode OP_MODE,
13934 and in which OP_MODE is bigger than DWARF2_ADDR_SIZE. */
13936 static dw_loc_descr_ref
13937 scompare_loc_descriptor_wide (enum dwarf_location_atom op,
13938 machine_mode op_mode,
13939 dw_loc_descr_ref op0, dw_loc_descr_ref op1)
13941 dw_die_ref type_die = base_type_for_mode (op_mode, 0);
13942 dw_loc_descr_ref cvt;
13944 if (type_die == NULL)
13945 return NULL;
13946 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
13947 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13948 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13949 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13950 add_loc_descr (&op0, cvt);
13951 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
13952 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13953 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13954 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13955 add_loc_descr (&op1, cvt);
13956 return compare_loc_descriptor (op, op0, op1);
13959 /* Subroutine of scompare_loc_descriptor for the case in which we're
13960 comparing two scalar integer operands OP0 and OP1 that have mode OP_MODE,
13961 and in which OP_MODE is smaller than DWARF2_ADDR_SIZE. */
13963 static dw_loc_descr_ref
13964 scompare_loc_descriptor_narrow (enum dwarf_location_atom op, rtx rtl,
13965 machine_mode op_mode,
13966 dw_loc_descr_ref op0, dw_loc_descr_ref op1)
13968 int shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (op_mode)) * BITS_PER_UNIT;
13969 /* For eq/ne, if the operands are known to be zero-extended,
13970 there is no need to do the fancy shifting up. */
13971 if (op == DW_OP_eq || op == DW_OP_ne)
13973 dw_loc_descr_ref last0, last1;
13974 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
13976 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
13978 /* deref_size zero extends, and for constants we can check
13979 whether they are zero extended or not. */
13980 if (((last0->dw_loc_opc == DW_OP_deref_size
13981 && last0->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
13982 || (CONST_INT_P (XEXP (rtl, 0))
13983 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 0))
13984 == (INTVAL (XEXP (rtl, 0)) & GET_MODE_MASK (op_mode))))
13985 && ((last1->dw_loc_opc == DW_OP_deref_size
13986 && last1->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
13987 || (CONST_INT_P (XEXP (rtl, 1))
13988 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 1))
13989 == (INTVAL (XEXP (rtl, 1)) & GET_MODE_MASK (op_mode)))))
13990 return compare_loc_descriptor (op, op0, op1);
13992 /* EQ/NE comparison against constant in narrower type than
13993 DWARF2_ADDR_SIZE can be performed either as
13994 DW_OP_const1u <shift> DW_OP_shl DW_OP_const* <cst << shift>
13995 DW_OP_{eq,ne}
13997 DW_OP_const*u <mode_mask> DW_OP_and DW_OP_const* <cst & mode_mask>
13998 DW_OP_{eq,ne}. Pick whatever is shorter. */
13999 if (CONST_INT_P (XEXP (rtl, 1))
14000 && GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
14001 && (size_of_int_loc_descriptor (shift) + 1
14002 + size_of_int_loc_descriptor (UINTVAL (XEXP (rtl, 1)) << shift)
14003 >= size_of_int_loc_descriptor (GET_MODE_MASK (op_mode)) + 1
14004 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1))
14005 & GET_MODE_MASK (op_mode))))
14007 add_loc_descr (&op0, int_loc_descriptor (GET_MODE_MASK (op_mode)));
14008 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
14009 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1))
14010 & GET_MODE_MASK (op_mode));
14011 return compare_loc_descriptor (op, op0, op1);
14014 add_loc_descr (&op0, int_loc_descriptor (shift));
14015 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
14016 if (CONST_INT_P (XEXP (rtl, 1)))
14017 op1 = int_loc_descriptor (UINTVAL (XEXP (rtl, 1)) << shift);
14018 else
14020 add_loc_descr (&op1, int_loc_descriptor (shift));
14021 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
14023 return compare_loc_descriptor (op, op0, op1);
14026 /* Return location descriptor for unsigned comparison OP RTL. */
14028 static dw_loc_descr_ref
14029 scompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
14030 machine_mode mem_mode)
14032 machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
14033 dw_loc_descr_ref op0, op1;
14035 if (op_mode == VOIDmode)
14036 op_mode = GET_MODE (XEXP (rtl, 1));
14037 if (op_mode == VOIDmode)
14038 return NULL;
14040 scalar_int_mode int_op_mode;
14041 if (dwarf_strict
14042 && dwarf_version < 5
14043 && (!is_a <scalar_int_mode> (op_mode, &int_op_mode)
14044 || GET_MODE_SIZE (int_op_mode) > DWARF2_ADDR_SIZE))
14045 return NULL;
14047 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
14048 VAR_INIT_STATUS_INITIALIZED);
14049 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
14050 VAR_INIT_STATUS_INITIALIZED);
14052 if (op0 == NULL || op1 == NULL)
14053 return NULL;
14055 if (is_a <scalar_int_mode> (op_mode, &int_op_mode))
14057 if (GET_MODE_SIZE (int_op_mode) < DWARF2_ADDR_SIZE)
14058 return scompare_loc_descriptor_narrow (op, rtl, int_op_mode, op0, op1);
14060 if (GET_MODE_SIZE (int_op_mode) > DWARF2_ADDR_SIZE)
14061 return scompare_loc_descriptor_wide (op, int_op_mode, op0, op1);
14063 return compare_loc_descriptor (op, op0, op1);
14066 /* Return location descriptor for unsigned comparison OP RTL. */
14068 static dw_loc_descr_ref
14069 ucompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
14070 machine_mode mem_mode)
14072 dw_loc_descr_ref op0, op1;
14074 machine_mode test_op_mode = GET_MODE (XEXP (rtl, 0));
14075 if (test_op_mode == VOIDmode)
14076 test_op_mode = GET_MODE (XEXP (rtl, 1));
14078 scalar_int_mode op_mode;
14079 if (!is_a <scalar_int_mode> (test_op_mode, &op_mode))
14080 return NULL;
14082 if (dwarf_strict
14083 && dwarf_version < 5
14084 && GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE)
14085 return NULL;
14087 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
14088 VAR_INIT_STATUS_INITIALIZED);
14089 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
14090 VAR_INIT_STATUS_INITIALIZED);
14092 if (op0 == NULL || op1 == NULL)
14093 return NULL;
14095 if (GET_MODE_SIZE (op_mode) < DWARF2_ADDR_SIZE)
14097 HOST_WIDE_INT mask = GET_MODE_MASK (op_mode);
14098 dw_loc_descr_ref last0, last1;
14099 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
14101 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
14103 if (CONST_INT_P (XEXP (rtl, 0)))
14104 op0 = int_loc_descriptor (INTVAL (XEXP (rtl, 0)) & mask);
14105 /* deref_size zero extends, so no need to mask it again. */
14106 else if (last0->dw_loc_opc != DW_OP_deref_size
14107 || last0->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
14109 add_loc_descr (&op0, int_loc_descriptor (mask));
14110 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
14112 if (CONST_INT_P (XEXP (rtl, 1)))
14113 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) & mask);
14114 /* deref_size zero extends, so no need to mask it again. */
14115 else if (last1->dw_loc_opc != DW_OP_deref_size
14116 || last1->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
14118 add_loc_descr (&op1, int_loc_descriptor (mask));
14119 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
14122 else if (GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE)
14124 HOST_WIDE_INT bias = 1;
14125 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
14126 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
14127 if (CONST_INT_P (XEXP (rtl, 1)))
14128 op1 = int_loc_descriptor ((unsigned HOST_WIDE_INT) bias
14129 + INTVAL (XEXP (rtl, 1)));
14130 else
14131 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst,
14132 bias, 0));
14134 return compare_loc_descriptor (op, op0, op1);
14137 /* Return location descriptor for {U,S}{MIN,MAX}. */
14139 static dw_loc_descr_ref
14140 minmax_loc_descriptor (rtx rtl, machine_mode mode,
14141 machine_mode mem_mode)
14143 enum dwarf_location_atom op;
14144 dw_loc_descr_ref op0, op1, ret;
14145 dw_loc_descr_ref bra_node, drop_node;
14147 scalar_int_mode int_mode;
14148 if (dwarf_strict
14149 && dwarf_version < 5
14150 && (!is_a <scalar_int_mode> (mode, &int_mode)
14151 || GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE))
14152 return NULL;
14154 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
14155 VAR_INIT_STATUS_INITIALIZED);
14156 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
14157 VAR_INIT_STATUS_INITIALIZED);
14159 if (op0 == NULL || op1 == NULL)
14160 return NULL;
14162 add_loc_descr (&op0, new_loc_descr (DW_OP_dup, 0, 0));
14163 add_loc_descr (&op1, new_loc_descr (DW_OP_swap, 0, 0));
14164 add_loc_descr (&op1, new_loc_descr (DW_OP_over, 0, 0));
14165 if (GET_CODE (rtl) == UMIN || GET_CODE (rtl) == UMAX)
14167 if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
14169 HOST_WIDE_INT mask = GET_MODE_MASK (mode);
14170 add_loc_descr (&op0, int_loc_descriptor (mask));
14171 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
14172 add_loc_descr (&op1, int_loc_descriptor (mask));
14173 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
14175 else if (GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE)
14177 HOST_WIDE_INT bias = 1;
14178 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
14179 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
14180 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst, bias, 0));
14183 else if (is_a <scalar_int_mode> (mode, &int_mode)
14184 && GET_MODE_SIZE (int_mode) < DWARF2_ADDR_SIZE)
14186 int shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (int_mode)) * BITS_PER_UNIT;
14187 add_loc_descr (&op0, int_loc_descriptor (shift));
14188 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
14189 add_loc_descr (&op1, int_loc_descriptor (shift));
14190 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
14192 else if (is_a <scalar_int_mode> (mode, &int_mode)
14193 && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
14195 dw_die_ref type_die = base_type_for_mode (int_mode, 0);
14196 dw_loc_descr_ref cvt;
14197 if (type_die == NULL)
14198 return NULL;
14199 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14200 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14201 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14202 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14203 add_loc_descr (&op0, cvt);
14204 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14205 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14206 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14207 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14208 add_loc_descr (&op1, cvt);
14211 if (GET_CODE (rtl) == SMIN || GET_CODE (rtl) == UMIN)
14212 op = DW_OP_lt;
14213 else
14214 op = DW_OP_gt;
14215 ret = op0;
14216 add_loc_descr (&ret, op1);
14217 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
14218 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
14219 add_loc_descr (&ret, bra_node);
14220 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14221 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
14222 add_loc_descr (&ret, drop_node);
14223 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
14224 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
14225 if ((GET_CODE (rtl) == SMIN || GET_CODE (rtl) == SMAX)
14226 && is_a <scalar_int_mode> (mode, &int_mode)
14227 && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
14228 ret = convert_descriptor_to_mode (int_mode, ret);
14229 return ret;
14232 /* Helper function for mem_loc_descriptor. Perform OP binary op,
14233 but after converting arguments to type_die, afterwards
14234 convert back to unsigned. */
14236 static dw_loc_descr_ref
14237 typed_binop (enum dwarf_location_atom op, rtx rtl, dw_die_ref type_die,
14238 scalar_int_mode mode, machine_mode mem_mode)
14240 dw_loc_descr_ref cvt, op0, op1;
14242 if (type_die == NULL)
14243 return NULL;
14244 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
14245 VAR_INIT_STATUS_INITIALIZED);
14246 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
14247 VAR_INIT_STATUS_INITIALIZED);
14248 if (op0 == NULL || op1 == NULL)
14249 return NULL;
14250 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14251 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14252 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14253 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14254 add_loc_descr (&op0, cvt);
14255 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14256 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14257 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14258 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14259 add_loc_descr (&op1, cvt);
14260 add_loc_descr (&op0, op1);
14261 add_loc_descr (&op0, new_loc_descr (op, 0, 0));
14262 return convert_descriptor_to_mode (mode, op0);
14265 /* CLZ (where constV is CLZ_DEFINED_VALUE_AT_ZERO computed value,
14266 const0 is DW_OP_lit0 or corresponding typed constant,
14267 const1 is DW_OP_lit1 or corresponding typed constant
14268 and constMSB is constant with just the MSB bit set
14269 for the mode):
14270 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
14271 L1: const0 DW_OP_swap
14272 L2: DW_OP_dup constMSB DW_OP_and DW_OP_bra <L3> const1 DW_OP_shl
14273 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
14274 L3: DW_OP_drop
14275 L4: DW_OP_nop
14277 CTZ is similar:
14278 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
14279 L1: const0 DW_OP_swap
14280 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
14281 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
14282 L3: DW_OP_drop
14283 L4: DW_OP_nop
14285 FFS is similar:
14286 DW_OP_dup DW_OP_bra <L1> DW_OP_drop const0 DW_OP_skip <L4>
14287 L1: const1 DW_OP_swap
14288 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
14289 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
14290 L3: DW_OP_drop
14291 L4: DW_OP_nop */
14293 static dw_loc_descr_ref
14294 clz_loc_descriptor (rtx rtl, scalar_int_mode mode,
14295 machine_mode mem_mode)
14297 dw_loc_descr_ref op0, ret, tmp;
14298 HOST_WIDE_INT valv;
14299 dw_loc_descr_ref l1jump, l1label;
14300 dw_loc_descr_ref l2jump, l2label;
14301 dw_loc_descr_ref l3jump, l3label;
14302 dw_loc_descr_ref l4jump, l4label;
14303 rtx msb;
14305 if (GET_MODE (XEXP (rtl, 0)) != mode)
14306 return NULL;
14308 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
14309 VAR_INIT_STATUS_INITIALIZED);
14310 if (op0 == NULL)
14311 return NULL;
14312 ret = op0;
14313 if (GET_CODE (rtl) == CLZ)
14315 if (!CLZ_DEFINED_VALUE_AT_ZERO (mode, valv))
14316 valv = GET_MODE_BITSIZE (mode);
14318 else if (GET_CODE (rtl) == FFS)
14319 valv = 0;
14320 else if (!CTZ_DEFINED_VALUE_AT_ZERO (mode, valv))
14321 valv = GET_MODE_BITSIZE (mode);
14322 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
14323 l1jump = new_loc_descr (DW_OP_bra, 0, 0);
14324 add_loc_descr (&ret, l1jump);
14325 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
14326 tmp = mem_loc_descriptor (GEN_INT (valv), mode, mem_mode,
14327 VAR_INIT_STATUS_INITIALIZED);
14328 if (tmp == NULL)
14329 return NULL;
14330 add_loc_descr (&ret, tmp);
14331 l4jump = new_loc_descr (DW_OP_skip, 0, 0);
14332 add_loc_descr (&ret, l4jump);
14333 l1label = mem_loc_descriptor (GET_CODE (rtl) == FFS
14334 ? const1_rtx : const0_rtx,
14335 mode, mem_mode,
14336 VAR_INIT_STATUS_INITIALIZED);
14337 if (l1label == NULL)
14338 return NULL;
14339 add_loc_descr (&ret, l1label);
14340 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14341 l2label = new_loc_descr (DW_OP_dup, 0, 0);
14342 add_loc_descr (&ret, l2label);
14343 if (GET_CODE (rtl) != CLZ)
14344 msb = const1_rtx;
14345 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
14346 msb = GEN_INT (HOST_WIDE_INT_1U
14347 << (GET_MODE_BITSIZE (mode) - 1));
14348 else
14349 msb = immed_wide_int_const
14350 (wi::set_bit_in_zero (GET_MODE_PRECISION (mode) - 1,
14351 GET_MODE_PRECISION (mode)), mode);
14352 if (GET_CODE (msb) == CONST_INT && INTVAL (msb) < 0)
14353 tmp = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
14354 ? DW_OP_const4u : HOST_BITS_PER_WIDE_INT == 64
14355 ? DW_OP_const8u : DW_OP_constu, INTVAL (msb), 0);
14356 else
14357 tmp = mem_loc_descriptor (msb, mode, mem_mode,
14358 VAR_INIT_STATUS_INITIALIZED);
14359 if (tmp == NULL)
14360 return NULL;
14361 add_loc_descr (&ret, tmp);
14362 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
14363 l3jump = new_loc_descr (DW_OP_bra, 0, 0);
14364 add_loc_descr (&ret, l3jump);
14365 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
14366 VAR_INIT_STATUS_INITIALIZED);
14367 if (tmp == NULL)
14368 return NULL;
14369 add_loc_descr (&ret, tmp);
14370 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == CLZ
14371 ? DW_OP_shl : DW_OP_shr, 0, 0));
14372 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14373 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, 1, 0));
14374 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14375 l2jump = new_loc_descr (DW_OP_skip, 0, 0);
14376 add_loc_descr (&ret, l2jump);
14377 l3label = new_loc_descr (DW_OP_drop, 0, 0);
14378 add_loc_descr (&ret, l3label);
14379 l4label = new_loc_descr (DW_OP_nop, 0, 0);
14380 add_loc_descr (&ret, l4label);
14381 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14382 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
14383 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14384 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
14385 l3jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14386 l3jump->dw_loc_oprnd1.v.val_loc = l3label;
14387 l4jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14388 l4jump->dw_loc_oprnd1.v.val_loc = l4label;
14389 return ret;
14392 /* POPCOUNT (const0 is DW_OP_lit0 or corresponding typed constant,
14393 const1 is DW_OP_lit1 or corresponding typed constant):
14394 const0 DW_OP_swap
14395 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
14396 DW_OP_plus DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
14397 L2: DW_OP_drop
14399 PARITY is similar:
14400 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
14401 DW_OP_xor DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
14402 L2: DW_OP_drop */
14404 static dw_loc_descr_ref
14405 popcount_loc_descriptor (rtx rtl, scalar_int_mode mode,
14406 machine_mode mem_mode)
14408 dw_loc_descr_ref op0, ret, tmp;
14409 dw_loc_descr_ref l1jump, l1label;
14410 dw_loc_descr_ref l2jump, l2label;
14412 if (GET_MODE (XEXP (rtl, 0)) != mode)
14413 return NULL;
14415 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
14416 VAR_INIT_STATUS_INITIALIZED);
14417 if (op0 == NULL)
14418 return NULL;
14419 ret = op0;
14420 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
14421 VAR_INIT_STATUS_INITIALIZED);
14422 if (tmp == NULL)
14423 return NULL;
14424 add_loc_descr (&ret, tmp);
14425 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14426 l1label = new_loc_descr (DW_OP_dup, 0, 0);
14427 add_loc_descr (&ret, l1label);
14428 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
14429 add_loc_descr (&ret, l2jump);
14430 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
14431 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
14432 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
14433 VAR_INIT_STATUS_INITIALIZED);
14434 if (tmp == NULL)
14435 return NULL;
14436 add_loc_descr (&ret, tmp);
14437 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
14438 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == POPCOUNT
14439 ? DW_OP_plus : DW_OP_xor, 0, 0));
14440 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14441 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
14442 VAR_INIT_STATUS_INITIALIZED);
14443 add_loc_descr (&ret, tmp);
14444 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
14445 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
14446 add_loc_descr (&ret, l1jump);
14447 l2label = new_loc_descr (DW_OP_drop, 0, 0);
14448 add_loc_descr (&ret, l2label);
14449 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14450 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
14451 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14452 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
14453 return ret;
14456 /* BSWAP (constS is initial shift count, either 56 or 24):
14457 constS const0
14458 L1: DW_OP_pick <2> constS DW_OP_pick <3> DW_OP_minus DW_OP_shr
14459 const255 DW_OP_and DW_OP_pick <2> DW_OP_shl DW_OP_or
14460 DW_OP_swap DW_OP_dup const0 DW_OP_eq DW_OP_bra <L2> const8
14461 DW_OP_minus DW_OP_swap DW_OP_skip <L1>
14462 L2: DW_OP_drop DW_OP_swap DW_OP_drop */
14464 static dw_loc_descr_ref
14465 bswap_loc_descriptor (rtx rtl, scalar_int_mode mode,
14466 machine_mode mem_mode)
14468 dw_loc_descr_ref op0, ret, tmp;
14469 dw_loc_descr_ref l1jump, l1label;
14470 dw_loc_descr_ref l2jump, l2label;
14472 if (BITS_PER_UNIT != 8
14473 || (GET_MODE_BITSIZE (mode) != 32
14474 && GET_MODE_BITSIZE (mode) != 64))
14475 return NULL;
14477 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
14478 VAR_INIT_STATUS_INITIALIZED);
14479 if (op0 == NULL)
14480 return NULL;
14482 ret = op0;
14483 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
14484 mode, mem_mode,
14485 VAR_INIT_STATUS_INITIALIZED);
14486 if (tmp == NULL)
14487 return NULL;
14488 add_loc_descr (&ret, tmp);
14489 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
14490 VAR_INIT_STATUS_INITIALIZED);
14491 if (tmp == NULL)
14492 return NULL;
14493 add_loc_descr (&ret, tmp);
14494 l1label = new_loc_descr (DW_OP_pick, 2, 0);
14495 add_loc_descr (&ret, l1label);
14496 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
14497 mode, mem_mode,
14498 VAR_INIT_STATUS_INITIALIZED);
14499 add_loc_descr (&ret, tmp);
14500 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 3, 0));
14501 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
14502 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
14503 tmp = mem_loc_descriptor (GEN_INT (255), mode, mem_mode,
14504 VAR_INIT_STATUS_INITIALIZED);
14505 if (tmp == NULL)
14506 return NULL;
14507 add_loc_descr (&ret, tmp);
14508 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
14509 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 2, 0));
14510 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
14511 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
14512 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14513 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
14514 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
14515 VAR_INIT_STATUS_INITIALIZED);
14516 add_loc_descr (&ret, tmp);
14517 add_loc_descr (&ret, new_loc_descr (DW_OP_eq, 0, 0));
14518 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
14519 add_loc_descr (&ret, l2jump);
14520 tmp = mem_loc_descriptor (GEN_INT (8), mode, mem_mode,
14521 VAR_INIT_STATUS_INITIALIZED);
14522 add_loc_descr (&ret, tmp);
14523 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
14524 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14525 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
14526 add_loc_descr (&ret, l1jump);
14527 l2label = new_loc_descr (DW_OP_drop, 0, 0);
14528 add_loc_descr (&ret, l2label);
14529 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14530 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
14531 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14532 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
14533 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
14534 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
14535 return ret;
14538 /* ROTATE (constMASK is mode mask, BITSIZE is bitsize of mode):
14539 DW_OP_over DW_OP_over DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
14540 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_neg
14541 DW_OP_plus_uconst <BITSIZE> DW_OP_shr DW_OP_or
14543 ROTATERT is similar:
14544 DW_OP_over DW_OP_over DW_OP_neg DW_OP_plus_uconst <BITSIZE>
14545 DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
14546 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_shr DW_OP_or */
14548 static dw_loc_descr_ref
14549 rotate_loc_descriptor (rtx rtl, scalar_int_mode mode,
14550 machine_mode mem_mode)
14552 rtx rtlop1 = XEXP (rtl, 1);
14553 dw_loc_descr_ref op0, op1, ret, mask[2] = { NULL, NULL };
14554 int i;
14556 if (GET_MODE (rtlop1) != VOIDmode
14557 && GET_MODE_BITSIZE (GET_MODE (rtlop1)) < GET_MODE_BITSIZE (mode))
14558 rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1);
14559 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
14560 VAR_INIT_STATUS_INITIALIZED);
14561 op1 = mem_loc_descriptor (rtlop1, mode, mem_mode,
14562 VAR_INIT_STATUS_INITIALIZED);
14563 if (op0 == NULL || op1 == NULL)
14564 return NULL;
14565 if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
14566 for (i = 0; i < 2; i++)
14568 if (GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT)
14569 mask[i] = mem_loc_descriptor (GEN_INT (GET_MODE_MASK (mode)),
14570 mode, mem_mode,
14571 VAR_INIT_STATUS_INITIALIZED);
14572 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
14573 mask[i] = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
14574 ? DW_OP_const4u
14575 : HOST_BITS_PER_WIDE_INT == 64
14576 ? DW_OP_const8u : DW_OP_constu,
14577 GET_MODE_MASK (mode), 0);
14578 else
14579 mask[i] = NULL;
14580 if (mask[i] == NULL)
14581 return NULL;
14582 add_loc_descr (&mask[i], new_loc_descr (DW_OP_and, 0, 0));
14584 ret = op0;
14585 add_loc_descr (&ret, op1);
14586 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
14587 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
14588 if (GET_CODE (rtl) == ROTATERT)
14590 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
14591 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
14592 GET_MODE_BITSIZE (mode), 0));
14594 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
14595 if (mask[0] != NULL)
14596 add_loc_descr (&ret, mask[0]);
14597 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
14598 if (mask[1] != NULL)
14600 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14601 add_loc_descr (&ret, mask[1]);
14602 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
14604 if (GET_CODE (rtl) == ROTATE)
14606 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
14607 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
14608 GET_MODE_BITSIZE (mode), 0));
14610 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
14611 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
14612 return ret;
14615 /* Helper function for mem_loc_descriptor. Return DW_OP_GNU_parameter_ref
14616 for DEBUG_PARAMETER_REF RTL. */
14618 static dw_loc_descr_ref
14619 parameter_ref_descriptor (rtx rtl)
14621 dw_loc_descr_ref ret;
14622 dw_die_ref ref;
14624 if (dwarf_strict)
14625 return NULL;
14626 gcc_assert (TREE_CODE (DEBUG_PARAMETER_REF_DECL (rtl)) == PARM_DECL);
14627 /* With LTO during LTRANS we get the late DIE that refers to the early
14628 DIE, thus we add another indirection here. This seems to confuse
14629 gdb enough to make gcc.dg/guality/pr68860-1.c FAIL with LTO. */
14630 ref = lookup_decl_die (DEBUG_PARAMETER_REF_DECL (rtl));
14631 ret = new_loc_descr (DW_OP_GNU_parameter_ref, 0, 0);
14632 if (ref)
14634 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14635 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
14636 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
14638 else
14640 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
14641 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_PARAMETER_REF_DECL (rtl);
14643 return ret;
14646 /* The following routine converts the RTL for a variable or parameter
14647 (resident in memory) into an equivalent Dwarf representation of a
14648 mechanism for getting the address of that same variable onto the top of a
14649 hypothetical "address evaluation" stack.
14651 When creating memory location descriptors, we are effectively transforming
14652 the RTL for a memory-resident object into its Dwarf postfix expression
14653 equivalent. This routine recursively descends an RTL tree, turning
14654 it into Dwarf postfix code as it goes.
14656 MODE is the mode that should be assumed for the rtl if it is VOIDmode.
14658 MEM_MODE is the mode of the memory reference, needed to handle some
14659 autoincrement addressing modes.
14661 Return 0 if we can't represent the location. */
14663 dw_loc_descr_ref
14664 mem_loc_descriptor (rtx rtl, machine_mode mode,
14665 machine_mode mem_mode,
14666 enum var_init_status initialized)
14668 dw_loc_descr_ref mem_loc_result = NULL;
14669 enum dwarf_location_atom op;
14670 dw_loc_descr_ref op0, op1;
14671 rtx inner = NULL_RTX;
14673 if (mode == VOIDmode)
14674 mode = GET_MODE (rtl);
14676 /* Note that for a dynamically sized array, the location we will generate a
14677 description of here will be the lowest numbered location which is
14678 actually within the array. That's *not* necessarily the same as the
14679 zeroth element of the array. */
14681 rtl = targetm.delegitimize_address (rtl);
14683 if (mode != GET_MODE (rtl) && GET_MODE (rtl) != VOIDmode)
14684 return NULL;
14686 scalar_int_mode int_mode, inner_mode, op1_mode;
14687 switch (GET_CODE (rtl))
14689 case POST_INC:
14690 case POST_DEC:
14691 case POST_MODIFY:
14692 return mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, initialized);
14694 case SUBREG:
14695 /* The case of a subreg may arise when we have a local (register)
14696 variable or a formal (register) parameter which doesn't quite fill
14697 up an entire register. For now, just assume that it is
14698 legitimate to make the Dwarf info refer to the whole register which
14699 contains the given subreg. */
14700 if (!subreg_lowpart_p (rtl))
14701 break;
14702 inner = SUBREG_REG (rtl);
14703 /* FALLTHRU */
14704 case TRUNCATE:
14705 if (inner == NULL_RTX)
14706 inner = XEXP (rtl, 0);
14707 if (is_a <scalar_int_mode> (mode, &int_mode)
14708 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
14709 && (GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
14710 #ifdef POINTERS_EXTEND_UNSIGNED
14711 || (int_mode == Pmode && mem_mode != VOIDmode)
14712 #endif
14714 && GET_MODE_SIZE (inner_mode) <= DWARF2_ADDR_SIZE)
14716 mem_loc_result = mem_loc_descriptor (inner,
14717 inner_mode,
14718 mem_mode, initialized);
14719 break;
14721 if (dwarf_strict && dwarf_version < 5)
14722 break;
14723 if (is_a <scalar_int_mode> (mode, &int_mode)
14724 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
14725 ? GET_MODE_SIZE (int_mode) <= GET_MODE_SIZE (inner_mode)
14726 : GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (inner)))
14728 dw_die_ref type_die;
14729 dw_loc_descr_ref cvt;
14731 mem_loc_result = mem_loc_descriptor (inner,
14732 GET_MODE (inner),
14733 mem_mode, initialized);
14734 if (mem_loc_result == NULL)
14735 break;
14736 type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
14737 if (type_die == NULL)
14739 mem_loc_result = NULL;
14740 break;
14742 if (GET_MODE_SIZE (mode)
14743 != GET_MODE_SIZE (GET_MODE (inner)))
14744 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14745 else
14746 cvt = new_loc_descr (dwarf_OP (DW_OP_reinterpret), 0, 0);
14747 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14748 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14749 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14750 add_loc_descr (&mem_loc_result, cvt);
14751 if (is_a <scalar_int_mode> (mode, &int_mode)
14752 && GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE)
14754 /* Convert it to untyped afterwards. */
14755 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14756 add_loc_descr (&mem_loc_result, cvt);
14759 break;
14761 case REG:
14762 if (!is_a <scalar_int_mode> (mode, &int_mode)
14763 || (GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE
14764 && rtl != arg_pointer_rtx
14765 && rtl != frame_pointer_rtx
14766 #ifdef POINTERS_EXTEND_UNSIGNED
14767 && (int_mode != Pmode || mem_mode == VOIDmode)
14768 #endif
14771 dw_die_ref type_die;
14772 unsigned int dbx_regnum;
14774 if (dwarf_strict && dwarf_version < 5)
14775 break;
14776 if (REGNO (rtl) > FIRST_PSEUDO_REGISTER)
14777 break;
14778 type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
14779 if (type_die == NULL)
14780 break;
14782 dbx_regnum = dbx_reg_number (rtl);
14783 if (dbx_regnum == IGNORED_DWARF_REGNUM)
14784 break;
14785 mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_regval_type),
14786 dbx_regnum, 0);
14787 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
14788 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.die = type_die;
14789 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.external = 0;
14790 break;
14792 /* Whenever a register number forms a part of the description of the
14793 method for calculating the (dynamic) address of a memory resident
14794 object, DWARF rules require the register number be referred to as
14795 a "base register". This distinction is not based in any way upon
14796 what category of register the hardware believes the given register
14797 belongs to. This is strictly DWARF terminology we're dealing with
14798 here. Note that in cases where the location of a memory-resident
14799 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
14800 OP_CONST (0)) the actual DWARF location descriptor that we generate
14801 may just be OP_BASEREG (basereg). This may look deceptively like
14802 the object in question was allocated to a register (rather than in
14803 memory) so DWARF consumers need to be aware of the subtle
14804 distinction between OP_REG and OP_BASEREG. */
14805 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
14806 mem_loc_result = based_loc_descr (rtl, 0, VAR_INIT_STATUS_INITIALIZED);
14807 else if (stack_realign_drap
14808 && crtl->drap_reg
14809 && crtl->args.internal_arg_pointer == rtl
14810 && REGNO (crtl->drap_reg) < FIRST_PSEUDO_REGISTER)
14812 /* If RTL is internal_arg_pointer, which has been optimized
14813 out, use DRAP instead. */
14814 mem_loc_result = based_loc_descr (crtl->drap_reg, 0,
14815 VAR_INIT_STATUS_INITIALIZED);
14817 break;
14819 case SIGN_EXTEND:
14820 case ZERO_EXTEND:
14821 if (!is_a <scalar_int_mode> (mode, &int_mode)
14822 || !is_a <scalar_int_mode> (GET_MODE (XEXP (rtl, 0)), &inner_mode))
14823 break;
14824 op0 = mem_loc_descriptor (XEXP (rtl, 0), inner_mode,
14825 mem_mode, VAR_INIT_STATUS_INITIALIZED);
14826 if (op0 == 0)
14827 break;
14828 else if (GET_CODE (rtl) == ZERO_EXTEND
14829 && GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
14830 && GET_MODE_BITSIZE (inner_mode) < HOST_BITS_PER_WIDE_INT
14831 /* If DW_OP_const{1,2,4}u won't be used, it is shorter
14832 to expand zero extend as two shifts instead of
14833 masking. */
14834 && GET_MODE_SIZE (inner_mode) <= 4)
14836 mem_loc_result = op0;
14837 add_loc_descr (&mem_loc_result,
14838 int_loc_descriptor (GET_MODE_MASK (inner_mode)));
14839 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_and, 0, 0));
14841 else if (GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE)
14843 int shift = DWARF2_ADDR_SIZE - GET_MODE_SIZE (inner_mode);
14844 shift *= BITS_PER_UNIT;
14845 if (GET_CODE (rtl) == SIGN_EXTEND)
14846 op = DW_OP_shra;
14847 else
14848 op = DW_OP_shr;
14849 mem_loc_result = op0;
14850 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
14851 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
14852 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
14853 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
14855 else if (!dwarf_strict || dwarf_version >= 5)
14857 dw_die_ref type_die1, type_die2;
14858 dw_loc_descr_ref cvt;
14860 type_die1 = base_type_for_mode (inner_mode,
14861 GET_CODE (rtl) == ZERO_EXTEND);
14862 if (type_die1 == NULL)
14863 break;
14864 type_die2 = base_type_for_mode (int_mode, 1);
14865 if (type_die2 == NULL)
14866 break;
14867 mem_loc_result = op0;
14868 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14869 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14870 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die1;
14871 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14872 add_loc_descr (&mem_loc_result, cvt);
14873 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
14874 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14875 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die2;
14876 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14877 add_loc_descr (&mem_loc_result, cvt);
14879 break;
14881 case MEM:
14883 rtx new_rtl = avoid_constant_pool_reference (rtl);
14884 if (new_rtl != rtl)
14886 mem_loc_result = mem_loc_descriptor (new_rtl, mode, mem_mode,
14887 initialized);
14888 if (mem_loc_result != NULL)
14889 return mem_loc_result;
14892 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0),
14893 get_address_mode (rtl), mode,
14894 VAR_INIT_STATUS_INITIALIZED);
14895 if (mem_loc_result == NULL)
14896 mem_loc_result = tls_mem_loc_descriptor (rtl);
14897 if (mem_loc_result != NULL)
14899 if (!is_a <scalar_int_mode> (mode, &int_mode)
14900 || GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
14902 dw_die_ref type_die;
14903 dw_loc_descr_ref deref;
14905 if (dwarf_strict && dwarf_version < 5)
14906 return NULL;
14907 type_die
14908 = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
14909 if (type_die == NULL)
14910 return NULL;
14911 deref = new_loc_descr (dwarf_OP (DW_OP_deref_type),
14912 GET_MODE_SIZE (mode), 0);
14913 deref->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
14914 deref->dw_loc_oprnd2.v.val_die_ref.die = type_die;
14915 deref->dw_loc_oprnd2.v.val_die_ref.external = 0;
14916 add_loc_descr (&mem_loc_result, deref);
14918 else if (GET_MODE_SIZE (int_mode) == DWARF2_ADDR_SIZE)
14919 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
14920 else
14921 add_loc_descr (&mem_loc_result,
14922 new_loc_descr (DW_OP_deref_size,
14923 GET_MODE_SIZE (int_mode), 0));
14925 break;
14927 case LO_SUM:
14928 return mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode, initialized);
14930 case LABEL_REF:
14931 /* Some ports can transform a symbol ref into a label ref, because
14932 the symbol ref is too far away and has to be dumped into a constant
14933 pool. */
14934 case CONST:
14935 case SYMBOL_REF:
14936 if (!is_a <scalar_int_mode> (mode, &int_mode)
14937 || (GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE
14938 #ifdef POINTERS_EXTEND_UNSIGNED
14939 && (int_mode != Pmode || mem_mode == VOIDmode)
14940 #endif
14942 break;
14943 if (GET_CODE (rtl) == SYMBOL_REF
14944 && SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
14946 dw_loc_descr_ref temp;
14948 /* If this is not defined, we have no way to emit the data. */
14949 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
14950 break;
14952 temp = new_addr_loc_descr (rtl, dtprel_true);
14954 /* We check for DWARF 5 here because gdb did not implement
14955 DW_OP_form_tls_address until after 7.12. */
14956 mem_loc_result = new_loc_descr ((dwarf_version >= 5
14957 ? DW_OP_form_tls_address
14958 : DW_OP_GNU_push_tls_address),
14959 0, 0);
14960 add_loc_descr (&mem_loc_result, temp);
14962 break;
14965 if (!const_ok_for_output (rtl))
14967 if (GET_CODE (rtl) == CONST)
14968 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), int_mode,
14969 mem_mode, initialized);
14970 break;
14973 symref:
14974 mem_loc_result = new_addr_loc_descr (rtl, dtprel_false);
14975 vec_safe_push (used_rtx_array, rtl);
14976 break;
14978 case CONCAT:
14979 case CONCATN:
14980 case VAR_LOCATION:
14981 case DEBUG_IMPLICIT_PTR:
14982 expansion_failed (NULL_TREE, rtl,
14983 "CONCAT/CONCATN/VAR_LOCATION is handled only by loc_descriptor");
14984 return 0;
14986 case ENTRY_VALUE:
14987 if (dwarf_strict && dwarf_version < 5)
14988 return NULL;
14989 if (REG_P (ENTRY_VALUE_EXP (rtl)))
14991 if (!is_a <scalar_int_mode> (mode, &int_mode)
14992 || GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
14993 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
14994 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
14995 else
14997 unsigned int dbx_regnum = dbx_reg_number (ENTRY_VALUE_EXP (rtl));
14998 if (dbx_regnum == IGNORED_DWARF_REGNUM)
14999 return NULL;
15000 op0 = one_reg_loc_descriptor (dbx_regnum,
15001 VAR_INIT_STATUS_INITIALIZED);
15004 else if (MEM_P (ENTRY_VALUE_EXP (rtl))
15005 && REG_P (XEXP (ENTRY_VALUE_EXP (rtl), 0)))
15007 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
15008 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
15009 if (op0 && op0->dw_loc_opc == DW_OP_fbreg)
15010 return NULL;
15012 else
15013 gcc_unreachable ();
15014 if (op0 == NULL)
15015 return NULL;
15016 mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_entry_value), 0, 0);
15017 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_loc;
15018 mem_loc_result->dw_loc_oprnd1.v.val_loc = op0;
15019 break;
15021 case DEBUG_PARAMETER_REF:
15022 mem_loc_result = parameter_ref_descriptor (rtl);
15023 break;
15025 case PRE_MODIFY:
15026 /* Extract the PLUS expression nested inside and fall into
15027 PLUS code below. */
15028 rtl = XEXP (rtl, 1);
15029 goto plus;
15031 case PRE_INC:
15032 case PRE_DEC:
15033 /* Turn these into a PLUS expression and fall into the PLUS code
15034 below. */
15035 rtl = gen_rtx_PLUS (mode, XEXP (rtl, 0),
15036 gen_int_mode (GET_CODE (rtl) == PRE_INC
15037 ? GET_MODE_UNIT_SIZE (mem_mode)
15038 : -GET_MODE_UNIT_SIZE (mem_mode),
15039 mode));
15041 /* fall through */
15043 case PLUS:
15044 plus:
15045 if (is_based_loc (rtl)
15046 && is_a <scalar_int_mode> (mode, &int_mode)
15047 && (GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
15048 || XEXP (rtl, 0) == arg_pointer_rtx
15049 || XEXP (rtl, 0) == frame_pointer_rtx))
15050 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
15051 INTVAL (XEXP (rtl, 1)),
15052 VAR_INIT_STATUS_INITIALIZED);
15053 else
15055 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
15056 VAR_INIT_STATUS_INITIALIZED);
15057 if (mem_loc_result == 0)
15058 break;
15060 if (CONST_INT_P (XEXP (rtl, 1))
15061 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
15062 loc_descr_plus_const (&mem_loc_result, INTVAL (XEXP (rtl, 1)));
15063 else
15065 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
15066 VAR_INIT_STATUS_INITIALIZED);
15067 if (op1 == 0)
15068 return NULL;
15069 add_loc_descr (&mem_loc_result, op1);
15070 add_loc_descr (&mem_loc_result,
15071 new_loc_descr (DW_OP_plus, 0, 0));
15074 break;
15076 /* If a pseudo-reg is optimized away, it is possible for it to
15077 be replaced with a MEM containing a multiply or shift. */
15078 case MINUS:
15079 op = DW_OP_minus;
15080 goto do_binop;
15082 case MULT:
15083 op = DW_OP_mul;
15084 goto do_binop;
15086 case DIV:
15087 if ((!dwarf_strict || dwarf_version >= 5)
15088 && is_a <scalar_int_mode> (mode, &int_mode)
15089 && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
15091 mem_loc_result = typed_binop (DW_OP_div, rtl,
15092 base_type_for_mode (mode, 0),
15093 int_mode, mem_mode);
15094 break;
15096 op = DW_OP_div;
15097 goto do_binop;
15099 case UMOD:
15100 op = DW_OP_mod;
15101 goto do_binop;
15103 case ASHIFT:
15104 op = DW_OP_shl;
15105 goto do_shift;
15107 case ASHIFTRT:
15108 op = DW_OP_shra;
15109 goto do_shift;
15111 case LSHIFTRT:
15112 op = DW_OP_shr;
15113 goto do_shift;
15115 do_shift:
15116 if (!is_a <scalar_int_mode> (mode, &int_mode))
15117 break;
15118 op0 = mem_loc_descriptor (XEXP (rtl, 0), int_mode, mem_mode,
15119 VAR_INIT_STATUS_INITIALIZED);
15121 rtx rtlop1 = XEXP (rtl, 1);
15122 if (is_a <scalar_int_mode> (GET_MODE (rtlop1), &op1_mode)
15123 && GET_MODE_BITSIZE (op1_mode) < GET_MODE_BITSIZE (int_mode))
15124 rtlop1 = gen_rtx_ZERO_EXTEND (int_mode, rtlop1);
15125 op1 = mem_loc_descriptor (rtlop1, int_mode, mem_mode,
15126 VAR_INIT_STATUS_INITIALIZED);
15129 if (op0 == 0 || op1 == 0)
15130 break;
15132 mem_loc_result = op0;
15133 add_loc_descr (&mem_loc_result, op1);
15134 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
15135 break;
15137 case AND:
15138 op = DW_OP_and;
15139 goto do_binop;
15141 case IOR:
15142 op = DW_OP_or;
15143 goto do_binop;
15145 case XOR:
15146 op = DW_OP_xor;
15147 goto do_binop;
15149 do_binop:
15150 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
15151 VAR_INIT_STATUS_INITIALIZED);
15152 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
15153 VAR_INIT_STATUS_INITIALIZED);
15155 if (op0 == 0 || op1 == 0)
15156 break;
15158 mem_loc_result = op0;
15159 add_loc_descr (&mem_loc_result, op1);
15160 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
15161 break;
15163 case MOD:
15164 if ((!dwarf_strict || dwarf_version >= 5)
15165 && is_a <scalar_int_mode> (mode, &int_mode)
15166 && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
15168 mem_loc_result = typed_binop (DW_OP_mod, rtl,
15169 base_type_for_mode (mode, 0),
15170 int_mode, mem_mode);
15171 break;
15174 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
15175 VAR_INIT_STATUS_INITIALIZED);
15176 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
15177 VAR_INIT_STATUS_INITIALIZED);
15179 if (op0 == 0 || op1 == 0)
15180 break;
15182 mem_loc_result = op0;
15183 add_loc_descr (&mem_loc_result, op1);
15184 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
15185 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
15186 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_div, 0, 0));
15187 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
15188 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_minus, 0, 0));
15189 break;
15191 case UDIV:
15192 if ((!dwarf_strict || dwarf_version >= 5)
15193 && is_a <scalar_int_mode> (mode, &int_mode))
15195 if (GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
15197 op = DW_OP_div;
15198 goto do_binop;
15200 mem_loc_result = typed_binop (DW_OP_div, rtl,
15201 base_type_for_mode (int_mode, 1),
15202 int_mode, mem_mode);
15204 break;
15206 case NOT:
15207 op = DW_OP_not;
15208 goto do_unop;
15210 case ABS:
15211 op = DW_OP_abs;
15212 goto do_unop;
15214 case NEG:
15215 op = DW_OP_neg;
15216 goto do_unop;
15218 do_unop:
15219 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
15220 VAR_INIT_STATUS_INITIALIZED);
15222 if (op0 == 0)
15223 break;
15225 mem_loc_result = op0;
15226 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
15227 break;
15229 case CONST_INT:
15230 if (!is_a <scalar_int_mode> (mode, &int_mode)
15231 || GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
15232 #ifdef POINTERS_EXTEND_UNSIGNED
15233 || (int_mode == Pmode
15234 && mem_mode != VOIDmode
15235 && trunc_int_for_mode (INTVAL (rtl), ptr_mode) == INTVAL (rtl))
15236 #endif
15239 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
15240 break;
15242 if ((!dwarf_strict || dwarf_version >= 5)
15243 && (GET_MODE_BITSIZE (int_mode) == HOST_BITS_PER_WIDE_INT
15244 || GET_MODE_BITSIZE (int_mode) == HOST_BITS_PER_DOUBLE_INT))
15246 dw_die_ref type_die = base_type_for_mode (int_mode, 1);
15247 scalar_int_mode amode;
15248 if (type_die == NULL)
15249 return NULL;
15250 if (INTVAL (rtl) >= 0
15251 && (int_mode_for_size (DWARF2_ADDR_SIZE * BITS_PER_UNIT, 0)
15252 .exists (&amode))
15253 && trunc_int_for_mode (INTVAL (rtl), amode) == INTVAL (rtl)
15254 /* const DW_OP_convert <XXX> vs.
15255 DW_OP_const_type <XXX, 1, const>. */
15256 && size_of_int_loc_descriptor (INTVAL (rtl)) + 1 + 1
15257 < (unsigned long) 1 + 1 + 1 + GET_MODE_SIZE (int_mode))
15259 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
15260 op0 = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
15261 op0->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15262 op0->dw_loc_oprnd1.v.val_die_ref.die = type_die;
15263 op0->dw_loc_oprnd1.v.val_die_ref.external = 0;
15264 add_loc_descr (&mem_loc_result, op0);
15265 return mem_loc_result;
15267 mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_const_type), 0,
15268 INTVAL (rtl));
15269 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15270 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
15271 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
15272 if (GET_MODE_BITSIZE (int_mode) == HOST_BITS_PER_WIDE_INT)
15273 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
15274 else
15276 mem_loc_result->dw_loc_oprnd2.val_class
15277 = dw_val_class_const_double;
15278 mem_loc_result->dw_loc_oprnd2.v.val_double
15279 = double_int::from_shwi (INTVAL (rtl));
15282 break;
15284 case CONST_DOUBLE:
15285 if (!dwarf_strict || dwarf_version >= 5)
15287 dw_die_ref type_die;
15289 /* Note that if TARGET_SUPPORTS_WIDE_INT == 0, a
15290 CONST_DOUBLE rtx could represent either a large integer
15291 or a floating-point constant. If TARGET_SUPPORTS_WIDE_INT != 0,
15292 the value is always a floating point constant.
15294 When it is an integer, a CONST_DOUBLE is used whenever
15295 the constant requires 2 HWIs to be adequately represented.
15296 We output CONST_DOUBLEs as blocks. */
15297 if (mode == VOIDmode
15298 || (GET_MODE (rtl) == VOIDmode
15299 && GET_MODE_BITSIZE (mode) != HOST_BITS_PER_DOUBLE_INT))
15300 break;
15301 type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
15302 if (type_die == NULL)
15303 return NULL;
15304 mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_const_type), 0, 0);
15305 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15306 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
15307 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
15308 #if TARGET_SUPPORTS_WIDE_INT == 0
15309 if (!SCALAR_FLOAT_MODE_P (mode))
15311 mem_loc_result->dw_loc_oprnd2.val_class
15312 = dw_val_class_const_double;
15313 mem_loc_result->dw_loc_oprnd2.v.val_double
15314 = rtx_to_double_int (rtl);
15316 else
15317 #endif
15319 scalar_float_mode float_mode = as_a <scalar_float_mode> (mode);
15320 unsigned int length = GET_MODE_SIZE (float_mode);
15321 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
15323 insert_float (rtl, array);
15324 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
15325 mem_loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
15326 mem_loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
15327 mem_loc_result->dw_loc_oprnd2.v.val_vec.array = array;
15330 break;
15332 case CONST_WIDE_INT:
15333 if (!dwarf_strict || dwarf_version >= 5)
15335 dw_die_ref type_die;
15337 type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
15338 if (type_die == NULL)
15339 return NULL;
15340 mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_const_type), 0, 0);
15341 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15342 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
15343 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
15344 mem_loc_result->dw_loc_oprnd2.val_class
15345 = dw_val_class_wide_int;
15346 mem_loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
15347 *mem_loc_result->dw_loc_oprnd2.v.val_wide = rtx_mode_t (rtl, mode);
15349 break;
15351 case EQ:
15352 mem_loc_result = scompare_loc_descriptor (DW_OP_eq, rtl, mem_mode);
15353 break;
15355 case GE:
15356 mem_loc_result = scompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
15357 break;
15359 case GT:
15360 mem_loc_result = scompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
15361 break;
15363 case LE:
15364 mem_loc_result = scompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
15365 break;
15367 case LT:
15368 mem_loc_result = scompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
15369 break;
15371 case NE:
15372 mem_loc_result = scompare_loc_descriptor (DW_OP_ne, rtl, mem_mode);
15373 break;
15375 case GEU:
15376 mem_loc_result = ucompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
15377 break;
15379 case GTU:
15380 mem_loc_result = ucompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
15381 break;
15383 case LEU:
15384 mem_loc_result = ucompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
15385 break;
15387 case LTU:
15388 mem_loc_result = ucompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
15389 break;
15391 case UMIN:
15392 case UMAX:
15393 if (!SCALAR_INT_MODE_P (mode))
15394 break;
15395 /* FALLTHRU */
15396 case SMIN:
15397 case SMAX:
15398 mem_loc_result = minmax_loc_descriptor (rtl, mode, mem_mode);
15399 break;
15401 case ZERO_EXTRACT:
15402 case SIGN_EXTRACT:
15403 if (CONST_INT_P (XEXP (rtl, 1))
15404 && CONST_INT_P (XEXP (rtl, 2))
15405 && is_a <scalar_int_mode> (mode, &int_mode)
15406 && is_a <scalar_int_mode> (GET_MODE (XEXP (rtl, 0)), &inner_mode)
15407 && GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
15408 && GET_MODE_SIZE (inner_mode) <= DWARF2_ADDR_SIZE
15409 && ((unsigned) INTVAL (XEXP (rtl, 1))
15410 + (unsigned) INTVAL (XEXP (rtl, 2))
15411 <= GET_MODE_BITSIZE (int_mode)))
15413 int shift, size;
15414 op0 = mem_loc_descriptor (XEXP (rtl, 0), inner_mode,
15415 mem_mode, VAR_INIT_STATUS_INITIALIZED);
15416 if (op0 == 0)
15417 break;
15418 if (GET_CODE (rtl) == SIGN_EXTRACT)
15419 op = DW_OP_shra;
15420 else
15421 op = DW_OP_shr;
15422 mem_loc_result = op0;
15423 size = INTVAL (XEXP (rtl, 1));
15424 shift = INTVAL (XEXP (rtl, 2));
15425 if (BITS_BIG_ENDIAN)
15426 shift = GET_MODE_BITSIZE (inner_mode) - shift - size;
15427 if (shift + size != (int) DWARF2_ADDR_SIZE)
15429 add_loc_descr (&mem_loc_result,
15430 int_loc_descriptor (DWARF2_ADDR_SIZE
15431 - shift - size));
15432 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
15434 if (size != (int) DWARF2_ADDR_SIZE)
15436 add_loc_descr (&mem_loc_result,
15437 int_loc_descriptor (DWARF2_ADDR_SIZE - size));
15438 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
15441 break;
15443 case IF_THEN_ELSE:
15445 dw_loc_descr_ref op2, bra_node, drop_node;
15446 op0 = mem_loc_descriptor (XEXP (rtl, 0),
15447 GET_MODE (XEXP (rtl, 0)) == VOIDmode
15448 ? word_mode : GET_MODE (XEXP (rtl, 0)),
15449 mem_mode, VAR_INIT_STATUS_INITIALIZED);
15450 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
15451 VAR_INIT_STATUS_INITIALIZED);
15452 op2 = mem_loc_descriptor (XEXP (rtl, 2), mode, mem_mode,
15453 VAR_INIT_STATUS_INITIALIZED);
15454 if (op0 == NULL || op1 == NULL || op2 == NULL)
15455 break;
15457 mem_loc_result = op1;
15458 add_loc_descr (&mem_loc_result, op2);
15459 add_loc_descr (&mem_loc_result, op0);
15460 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
15461 add_loc_descr (&mem_loc_result, bra_node);
15462 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_swap, 0, 0));
15463 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
15464 add_loc_descr (&mem_loc_result, drop_node);
15465 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
15466 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
15468 break;
15470 case FLOAT_EXTEND:
15471 case FLOAT_TRUNCATE:
15472 case FLOAT:
15473 case UNSIGNED_FLOAT:
15474 case FIX:
15475 case UNSIGNED_FIX:
15476 if (!dwarf_strict || dwarf_version >= 5)
15478 dw_die_ref type_die;
15479 dw_loc_descr_ref cvt;
15481 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
15482 mem_mode, VAR_INIT_STATUS_INITIALIZED);
15483 if (op0 == NULL)
15484 break;
15485 if (is_a <scalar_int_mode> (GET_MODE (XEXP (rtl, 0)), &int_mode)
15486 && (GET_CODE (rtl) == FLOAT
15487 || GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE))
15489 type_die = base_type_for_mode (int_mode,
15490 GET_CODE (rtl) == UNSIGNED_FLOAT);
15491 if (type_die == NULL)
15492 break;
15493 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
15494 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15495 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
15496 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
15497 add_loc_descr (&op0, cvt);
15499 type_die = base_type_for_mode (mode, GET_CODE (rtl) == UNSIGNED_FIX);
15500 if (type_die == NULL)
15501 break;
15502 cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
15503 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15504 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
15505 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
15506 add_loc_descr (&op0, cvt);
15507 if (is_a <scalar_int_mode> (mode, &int_mode)
15508 && (GET_CODE (rtl) == FIX
15509 || GET_MODE_SIZE (int_mode) < DWARF2_ADDR_SIZE))
15511 op0 = convert_descriptor_to_mode (int_mode, op0);
15512 if (op0 == NULL)
15513 break;
15515 mem_loc_result = op0;
15517 break;
15519 case CLZ:
15520 case CTZ:
15521 case FFS:
15522 if (is_a <scalar_int_mode> (mode, &int_mode))
15523 mem_loc_result = clz_loc_descriptor (rtl, int_mode, mem_mode);
15524 break;
15526 case POPCOUNT:
15527 case PARITY:
15528 if (is_a <scalar_int_mode> (mode, &int_mode))
15529 mem_loc_result = popcount_loc_descriptor (rtl, int_mode, mem_mode);
15530 break;
15532 case BSWAP:
15533 if (is_a <scalar_int_mode> (mode, &int_mode))
15534 mem_loc_result = bswap_loc_descriptor (rtl, int_mode, mem_mode);
15535 break;
15537 case ROTATE:
15538 case ROTATERT:
15539 if (is_a <scalar_int_mode> (mode, &int_mode))
15540 mem_loc_result = rotate_loc_descriptor (rtl, int_mode, mem_mode);
15541 break;
15543 case COMPARE:
15544 /* In theory, we could implement the above. */
15545 /* DWARF cannot represent the unsigned compare operations
15546 natively. */
15547 case SS_MULT:
15548 case US_MULT:
15549 case SS_DIV:
15550 case US_DIV:
15551 case SS_PLUS:
15552 case US_PLUS:
15553 case SS_MINUS:
15554 case US_MINUS:
15555 case SS_NEG:
15556 case US_NEG:
15557 case SS_ABS:
15558 case SS_ASHIFT:
15559 case US_ASHIFT:
15560 case SS_TRUNCATE:
15561 case US_TRUNCATE:
15562 case UNORDERED:
15563 case ORDERED:
15564 case UNEQ:
15565 case UNGE:
15566 case UNGT:
15567 case UNLE:
15568 case UNLT:
15569 case LTGT:
15570 case FRACT_CONVERT:
15571 case UNSIGNED_FRACT_CONVERT:
15572 case SAT_FRACT:
15573 case UNSIGNED_SAT_FRACT:
15574 case SQRT:
15575 case ASM_OPERANDS:
15576 case VEC_MERGE:
15577 case VEC_SELECT:
15578 case VEC_CONCAT:
15579 case VEC_DUPLICATE:
15580 case UNSPEC:
15581 case HIGH:
15582 case FMA:
15583 case STRICT_LOW_PART:
15584 case CONST_VECTOR:
15585 case CONST_FIXED:
15586 case CLRSB:
15587 case CLOBBER:
15588 /* If delegitimize_address couldn't do anything with the UNSPEC, we
15589 can't express it in the debug info. This can happen e.g. with some
15590 TLS UNSPECs. */
15591 break;
15593 case CONST_STRING:
15594 resolve_one_addr (&rtl);
15595 goto symref;
15597 /* RTL sequences inside PARALLEL record a series of DWARF operations for
15598 the expression. An UNSPEC rtx represents a raw DWARF operation,
15599 new_loc_descr is called for it to build the operation directly.
15600 Otherwise mem_loc_descriptor is called recursively. */
15601 case PARALLEL:
15603 int index = 0;
15604 dw_loc_descr_ref exp_result = NULL;
15606 for (; index < XVECLEN (rtl, 0); index++)
15608 rtx elem = XVECEXP (rtl, 0, index);
15609 if (GET_CODE (elem) == UNSPEC)
15611 /* Each DWARF operation UNSPEC contain two operands, if
15612 one operand is not used for the operation, const0_rtx is
15613 passed. */
15614 gcc_assert (XVECLEN (elem, 0) == 2);
15616 HOST_WIDE_INT dw_op = XINT (elem, 1);
15617 HOST_WIDE_INT oprnd1 = INTVAL (XVECEXP (elem, 0, 0));
15618 HOST_WIDE_INT oprnd2 = INTVAL (XVECEXP (elem, 0, 1));
15619 exp_result
15620 = new_loc_descr ((enum dwarf_location_atom) dw_op, oprnd1,
15621 oprnd2);
15623 else
15624 exp_result
15625 = mem_loc_descriptor (elem, mode, mem_mode,
15626 VAR_INIT_STATUS_INITIALIZED);
15628 if (!mem_loc_result)
15629 mem_loc_result = exp_result;
15630 else
15631 add_loc_descr (&mem_loc_result, exp_result);
15634 break;
15637 default:
15638 if (flag_checking)
15640 print_rtl (stderr, rtl);
15641 gcc_unreachable ();
15643 break;
15646 if (mem_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
15647 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
15649 return mem_loc_result;
15652 /* Return a descriptor that describes the concatenation of two locations.
15653 This is typically a complex variable. */
15655 static dw_loc_descr_ref
15656 concat_loc_descriptor (rtx x0, rtx x1, enum var_init_status initialized)
15658 dw_loc_descr_ref cc_loc_result = NULL;
15659 dw_loc_descr_ref x0_ref
15660 = loc_descriptor (x0, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
15661 dw_loc_descr_ref x1_ref
15662 = loc_descriptor (x1, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
15664 if (x0_ref == 0 || x1_ref == 0)
15665 return 0;
15667 cc_loc_result = x0_ref;
15668 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
15670 add_loc_descr (&cc_loc_result, x1_ref);
15671 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
15673 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
15674 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
15676 return cc_loc_result;
15679 /* Return a descriptor that describes the concatenation of N
15680 locations. */
15682 static dw_loc_descr_ref
15683 concatn_loc_descriptor (rtx concatn, enum var_init_status initialized)
15685 unsigned int i;
15686 dw_loc_descr_ref cc_loc_result = NULL;
15687 unsigned int n = XVECLEN (concatn, 0);
15689 for (i = 0; i < n; ++i)
15691 dw_loc_descr_ref ref;
15692 rtx x = XVECEXP (concatn, 0, i);
15694 ref = loc_descriptor (x, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
15695 if (ref == NULL)
15696 return NULL;
15698 add_loc_descr (&cc_loc_result, ref);
15699 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
15702 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
15703 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
15705 return cc_loc_result;
15708 /* Helper function for loc_descriptor. Return DW_OP_implicit_pointer
15709 for DEBUG_IMPLICIT_PTR RTL. */
15711 static dw_loc_descr_ref
15712 implicit_ptr_descriptor (rtx rtl, HOST_WIDE_INT offset)
15714 dw_loc_descr_ref ret;
15715 dw_die_ref ref;
15717 if (dwarf_strict && dwarf_version < 5)
15718 return NULL;
15719 gcc_assert (TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == VAR_DECL
15720 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == PARM_DECL
15721 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == RESULT_DECL);
15722 ref = lookup_decl_die (DEBUG_IMPLICIT_PTR_DECL (rtl));
15723 ret = new_loc_descr (dwarf_OP (DW_OP_implicit_pointer), 0, offset);
15724 ret->dw_loc_oprnd2.val_class = dw_val_class_const;
15725 if (ref)
15727 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15728 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
15729 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
15731 else
15733 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
15734 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_IMPLICIT_PTR_DECL (rtl);
15736 return ret;
15739 /* Output a proper Dwarf location descriptor for a variable or parameter
15740 which is either allocated in a register or in a memory location. For a
15741 register, we just generate an OP_REG and the register number. For a
15742 memory location we provide a Dwarf postfix expression describing how to
15743 generate the (dynamic) address of the object onto the address stack.
15745 MODE is mode of the decl if this loc_descriptor is going to be used in
15746 .debug_loc section where DW_OP_stack_value and DW_OP_implicit_value are
15747 allowed, VOIDmode otherwise.
15749 If we don't know how to describe it, return 0. */
15751 static dw_loc_descr_ref
15752 loc_descriptor (rtx rtl, machine_mode mode,
15753 enum var_init_status initialized)
15755 dw_loc_descr_ref loc_result = NULL;
15756 scalar_int_mode int_mode;
15758 switch (GET_CODE (rtl))
15760 case SUBREG:
15761 /* The case of a subreg may arise when we have a local (register)
15762 variable or a formal (register) parameter which doesn't quite fill
15763 up an entire register. For now, just assume that it is
15764 legitimate to make the Dwarf info refer to the whole register which
15765 contains the given subreg. */
15766 if (REG_P (SUBREG_REG (rtl)) && subreg_lowpart_p (rtl))
15767 loc_result = loc_descriptor (SUBREG_REG (rtl),
15768 GET_MODE (SUBREG_REG (rtl)), initialized);
15769 else
15770 goto do_default;
15771 break;
15773 case REG:
15774 loc_result = reg_loc_descriptor (rtl, initialized);
15775 break;
15777 case MEM:
15778 loc_result = mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
15779 GET_MODE (rtl), initialized);
15780 if (loc_result == NULL)
15781 loc_result = tls_mem_loc_descriptor (rtl);
15782 if (loc_result == NULL)
15784 rtx new_rtl = avoid_constant_pool_reference (rtl);
15785 if (new_rtl != rtl)
15786 loc_result = loc_descriptor (new_rtl, mode, initialized);
15788 break;
15790 case CONCAT:
15791 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1),
15792 initialized);
15793 break;
15795 case CONCATN:
15796 loc_result = concatn_loc_descriptor (rtl, initialized);
15797 break;
15799 case VAR_LOCATION:
15800 /* Single part. */
15801 if (GET_CODE (PAT_VAR_LOCATION_LOC (rtl)) != PARALLEL)
15803 rtx loc = PAT_VAR_LOCATION_LOC (rtl);
15804 if (GET_CODE (loc) == EXPR_LIST)
15805 loc = XEXP (loc, 0);
15806 loc_result = loc_descriptor (loc, mode, initialized);
15807 break;
15810 rtl = XEXP (rtl, 1);
15811 /* FALLTHRU */
15813 case PARALLEL:
15815 rtvec par_elems = XVEC (rtl, 0);
15816 int num_elem = GET_NUM_ELEM (par_elems);
15817 machine_mode mode;
15818 int i;
15820 /* Create the first one, so we have something to add to. */
15821 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
15822 VOIDmode, initialized);
15823 if (loc_result == NULL)
15824 return NULL;
15825 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
15826 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
15827 for (i = 1; i < num_elem; i++)
15829 dw_loc_descr_ref temp;
15831 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
15832 VOIDmode, initialized);
15833 if (temp == NULL)
15834 return NULL;
15835 add_loc_descr (&loc_result, temp);
15836 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
15837 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
15840 break;
15842 case CONST_INT:
15843 if (mode != VOIDmode && mode != BLKmode)
15844 loc_result = address_of_int_loc_descriptor (GET_MODE_SIZE (mode),
15845 INTVAL (rtl));
15846 break;
15848 case CONST_DOUBLE:
15849 if (mode == VOIDmode)
15850 mode = GET_MODE (rtl);
15852 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
15854 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
15856 /* Note that a CONST_DOUBLE rtx could represent either an integer
15857 or a floating-point constant. A CONST_DOUBLE is used whenever
15858 the constant requires more than one word in order to be
15859 adequately represented. We output CONST_DOUBLEs as blocks. */
15860 loc_result = new_loc_descr (DW_OP_implicit_value,
15861 GET_MODE_SIZE (mode), 0);
15862 #if TARGET_SUPPORTS_WIDE_INT == 0
15863 if (!SCALAR_FLOAT_MODE_P (mode))
15865 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const_double;
15866 loc_result->dw_loc_oprnd2.v.val_double
15867 = rtx_to_double_int (rtl);
15869 else
15870 #endif
15872 unsigned int length = GET_MODE_SIZE (mode);
15873 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
15875 insert_float (rtl, array);
15876 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
15877 loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
15878 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
15879 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
15882 break;
15884 case CONST_WIDE_INT:
15885 if (mode == VOIDmode)
15886 mode = GET_MODE (rtl);
15888 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
15890 loc_result = new_loc_descr (DW_OP_implicit_value,
15891 GET_MODE_SIZE (mode), 0);
15892 loc_result->dw_loc_oprnd2.val_class = dw_val_class_wide_int;
15893 loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
15894 *loc_result->dw_loc_oprnd2.v.val_wide = rtx_mode_t (rtl, mode);
15896 break;
15898 case CONST_VECTOR:
15899 if (mode == VOIDmode)
15900 mode = GET_MODE (rtl);
15902 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
15904 unsigned int elt_size = GET_MODE_UNIT_SIZE (GET_MODE (rtl));
15905 unsigned int length = CONST_VECTOR_NUNITS (rtl);
15906 unsigned char *array
15907 = ggc_vec_alloc<unsigned char> (length * elt_size);
15908 unsigned int i;
15909 unsigned char *p;
15910 machine_mode imode = GET_MODE_INNER (mode);
15912 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
15913 switch (GET_MODE_CLASS (mode))
15915 case MODE_VECTOR_INT:
15916 for (i = 0, p = array; i < length; i++, p += elt_size)
15918 rtx elt = CONST_VECTOR_ELT (rtl, i);
15919 insert_wide_int (rtx_mode_t (elt, imode), p, elt_size);
15921 break;
15923 case MODE_VECTOR_FLOAT:
15924 for (i = 0, p = array; i < length; i++, p += elt_size)
15926 rtx elt = CONST_VECTOR_ELT (rtl, i);
15927 insert_float (elt, p);
15929 break;
15931 default:
15932 gcc_unreachable ();
15935 loc_result = new_loc_descr (DW_OP_implicit_value,
15936 length * elt_size, 0);
15937 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
15938 loc_result->dw_loc_oprnd2.v.val_vec.length = length;
15939 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = elt_size;
15940 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
15942 break;
15944 case CONST:
15945 if (mode == VOIDmode
15946 || CONST_SCALAR_INT_P (XEXP (rtl, 0))
15947 || CONST_DOUBLE_AS_FLOAT_P (XEXP (rtl, 0))
15948 || GET_CODE (XEXP (rtl, 0)) == CONST_VECTOR)
15950 loc_result = loc_descriptor (XEXP (rtl, 0), mode, initialized);
15951 break;
15953 /* FALLTHROUGH */
15954 case SYMBOL_REF:
15955 if (!const_ok_for_output (rtl))
15956 break;
15957 /* FALLTHROUGH */
15958 case LABEL_REF:
15959 if (is_a <scalar_int_mode> (mode, &int_mode)
15960 && GET_MODE_SIZE (int_mode) == DWARF2_ADDR_SIZE
15961 && (dwarf_version >= 4 || !dwarf_strict))
15963 loc_result = new_addr_loc_descr (rtl, dtprel_false);
15964 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
15965 vec_safe_push (used_rtx_array, rtl);
15967 break;
15969 case DEBUG_IMPLICIT_PTR:
15970 loc_result = implicit_ptr_descriptor (rtl, 0);
15971 break;
15973 case PLUS:
15974 if (GET_CODE (XEXP (rtl, 0)) == DEBUG_IMPLICIT_PTR
15975 && CONST_INT_P (XEXP (rtl, 1)))
15977 loc_result
15978 = implicit_ptr_descriptor (XEXP (rtl, 0), INTVAL (XEXP (rtl, 1)));
15979 break;
15981 /* FALLTHRU */
15982 do_default:
15983 default:
15984 if ((is_a <scalar_int_mode> (mode, &int_mode)
15985 && GET_MODE (rtl) == int_mode
15986 && GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
15987 && dwarf_version >= 4)
15988 || (!dwarf_strict && mode != VOIDmode && mode != BLKmode))
15990 /* Value expression. */
15991 loc_result = mem_loc_descriptor (rtl, mode, VOIDmode, initialized);
15992 if (loc_result)
15993 add_loc_descr (&loc_result,
15994 new_loc_descr (DW_OP_stack_value, 0, 0));
15996 break;
15999 return loc_result;
16002 /* We need to figure out what section we should use as the base for the
16003 address ranges where a given location is valid.
16004 1. If this particular DECL has a section associated with it, use that.
16005 2. If this function has a section associated with it, use that.
16006 3. Otherwise, use the text section.
16007 XXX: If you split a variable across multiple sections, we won't notice. */
16009 static const char *
16010 secname_for_decl (const_tree decl)
16012 const char *secname;
16014 if (VAR_OR_FUNCTION_DECL_P (decl)
16015 && (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl) || TREE_STATIC (decl))
16016 && DECL_SECTION_NAME (decl))
16017 secname = DECL_SECTION_NAME (decl);
16018 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
16019 secname = DECL_SECTION_NAME (current_function_decl);
16020 else if (cfun && in_cold_section_p)
16021 secname = crtl->subsections.cold_section_label;
16022 else
16023 secname = text_section_label;
16025 return secname;
16028 /* Return true when DECL_BY_REFERENCE is defined and set for DECL. */
16030 static bool
16031 decl_by_reference_p (tree decl)
16033 return ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL
16034 || VAR_P (decl))
16035 && DECL_BY_REFERENCE (decl));
16038 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
16039 for VARLOC. */
16041 static dw_loc_descr_ref
16042 dw_loc_list_1 (tree loc, rtx varloc, int want_address,
16043 enum var_init_status initialized)
16045 int have_address = 0;
16046 dw_loc_descr_ref descr;
16047 machine_mode mode;
16049 if (want_address != 2)
16051 gcc_assert (GET_CODE (varloc) == VAR_LOCATION);
16052 /* Single part. */
16053 if (GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
16055 varloc = PAT_VAR_LOCATION_LOC (varloc);
16056 if (GET_CODE (varloc) == EXPR_LIST)
16057 varloc = XEXP (varloc, 0);
16058 mode = GET_MODE (varloc);
16059 if (MEM_P (varloc))
16061 rtx addr = XEXP (varloc, 0);
16062 descr = mem_loc_descriptor (addr, get_address_mode (varloc),
16063 mode, initialized);
16064 if (descr)
16065 have_address = 1;
16066 else
16068 rtx x = avoid_constant_pool_reference (varloc);
16069 if (x != varloc)
16070 descr = mem_loc_descriptor (x, mode, VOIDmode,
16071 initialized);
16074 else
16075 descr = mem_loc_descriptor (varloc, mode, VOIDmode, initialized);
16077 else
16078 return 0;
16080 else
16082 if (GET_CODE (varloc) == VAR_LOCATION)
16083 mode = DECL_MODE (PAT_VAR_LOCATION_DECL (varloc));
16084 else
16085 mode = DECL_MODE (loc);
16086 descr = loc_descriptor (varloc, mode, initialized);
16087 have_address = 1;
16090 if (!descr)
16091 return 0;
16093 if (want_address == 2 && !have_address
16094 && (dwarf_version >= 4 || !dwarf_strict))
16096 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
16098 expansion_failed (loc, NULL_RTX,
16099 "DWARF address size mismatch");
16100 return 0;
16102 add_loc_descr (&descr, new_loc_descr (DW_OP_stack_value, 0, 0));
16103 have_address = 1;
16105 /* Show if we can't fill the request for an address. */
16106 if (want_address && !have_address)
16108 expansion_failed (loc, NULL_RTX,
16109 "Want address and only have value");
16110 return 0;
16113 /* If we've got an address and don't want one, dereference. */
16114 if (!want_address && have_address)
16116 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
16117 enum dwarf_location_atom op;
16119 if (size > DWARF2_ADDR_SIZE || size == -1)
16121 expansion_failed (loc, NULL_RTX,
16122 "DWARF address size mismatch");
16123 return 0;
16125 else if (size == DWARF2_ADDR_SIZE)
16126 op = DW_OP_deref;
16127 else
16128 op = DW_OP_deref_size;
16130 add_loc_descr (&descr, new_loc_descr (op, size, 0));
16133 return descr;
16136 /* Create a DW_OP_piece or DW_OP_bit_piece for bitsize, or return NULL
16137 if it is not possible. */
16139 static dw_loc_descr_ref
16140 new_loc_descr_op_bit_piece (HOST_WIDE_INT bitsize, HOST_WIDE_INT offset)
16142 if ((bitsize % BITS_PER_UNIT) == 0 && offset == 0)
16143 return new_loc_descr (DW_OP_piece, bitsize / BITS_PER_UNIT, 0);
16144 else if (dwarf_version >= 3 || !dwarf_strict)
16145 return new_loc_descr (DW_OP_bit_piece, bitsize, offset);
16146 else
16147 return NULL;
16150 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
16151 for VAR_LOC_NOTE for variable DECL that has been optimized by SRA. */
16153 static dw_loc_descr_ref
16154 dw_sra_loc_expr (tree decl, rtx loc)
16156 rtx p;
16157 unsigned HOST_WIDE_INT padsize = 0;
16158 dw_loc_descr_ref descr, *descr_tail;
16159 unsigned HOST_WIDE_INT decl_size;
16160 rtx varloc;
16161 enum var_init_status initialized;
16163 if (DECL_SIZE (decl) == NULL
16164 || !tree_fits_uhwi_p (DECL_SIZE (decl)))
16165 return NULL;
16167 decl_size = tree_to_uhwi (DECL_SIZE (decl));
16168 descr = NULL;
16169 descr_tail = &descr;
16171 for (p = loc; p; p = XEXP (p, 1))
16173 unsigned HOST_WIDE_INT bitsize = decl_piece_bitsize (p);
16174 rtx loc_note = *decl_piece_varloc_ptr (p);
16175 dw_loc_descr_ref cur_descr;
16176 dw_loc_descr_ref *tail, last = NULL;
16177 unsigned HOST_WIDE_INT opsize = 0;
16179 if (loc_note == NULL_RTX
16180 || NOTE_VAR_LOCATION_LOC (loc_note) == NULL_RTX)
16182 padsize += bitsize;
16183 continue;
16185 initialized = NOTE_VAR_LOCATION_STATUS (loc_note);
16186 varloc = NOTE_VAR_LOCATION (loc_note);
16187 cur_descr = dw_loc_list_1 (decl, varloc, 2, initialized);
16188 if (cur_descr == NULL)
16190 padsize += bitsize;
16191 continue;
16194 /* Check that cur_descr either doesn't use
16195 DW_OP_*piece operations, or their sum is equal
16196 to bitsize. Otherwise we can't embed it. */
16197 for (tail = &cur_descr; *tail != NULL;
16198 tail = &(*tail)->dw_loc_next)
16199 if ((*tail)->dw_loc_opc == DW_OP_piece)
16201 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned
16202 * BITS_PER_UNIT;
16203 last = *tail;
16205 else if ((*tail)->dw_loc_opc == DW_OP_bit_piece)
16207 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned;
16208 last = *tail;
16211 if (last != NULL && opsize != bitsize)
16213 padsize += bitsize;
16214 /* Discard the current piece of the descriptor and release any
16215 addr_table entries it uses. */
16216 remove_loc_list_addr_table_entries (cur_descr);
16217 continue;
16220 /* If there is a hole, add DW_OP_*piece after empty DWARF
16221 expression, which means that those bits are optimized out. */
16222 if (padsize)
16224 if (padsize > decl_size)
16226 remove_loc_list_addr_table_entries (cur_descr);
16227 goto discard_descr;
16229 decl_size -= padsize;
16230 *descr_tail = new_loc_descr_op_bit_piece (padsize, 0);
16231 if (*descr_tail == NULL)
16233 remove_loc_list_addr_table_entries (cur_descr);
16234 goto discard_descr;
16236 descr_tail = &(*descr_tail)->dw_loc_next;
16237 padsize = 0;
16239 *descr_tail = cur_descr;
16240 descr_tail = tail;
16241 if (bitsize > decl_size)
16242 goto discard_descr;
16243 decl_size -= bitsize;
16244 if (last == NULL)
16246 HOST_WIDE_INT offset = 0;
16247 if (GET_CODE (varloc) == VAR_LOCATION
16248 && GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
16250 varloc = PAT_VAR_LOCATION_LOC (varloc);
16251 if (GET_CODE (varloc) == EXPR_LIST)
16252 varloc = XEXP (varloc, 0);
16256 if (GET_CODE (varloc) == CONST
16257 || GET_CODE (varloc) == SIGN_EXTEND
16258 || GET_CODE (varloc) == ZERO_EXTEND)
16259 varloc = XEXP (varloc, 0);
16260 else if (GET_CODE (varloc) == SUBREG)
16261 varloc = SUBREG_REG (varloc);
16262 else
16263 break;
16265 while (1);
16266 /* DW_OP_bit_size offset should be zero for register
16267 or implicit location descriptions and empty location
16268 descriptions, but for memory addresses needs big endian
16269 adjustment. */
16270 if (MEM_P (varloc))
16272 unsigned HOST_WIDE_INT memsize
16273 = MEM_SIZE (varloc) * BITS_PER_UNIT;
16274 if (memsize != bitsize)
16276 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
16277 && (memsize > BITS_PER_WORD || bitsize > BITS_PER_WORD))
16278 goto discard_descr;
16279 if (memsize < bitsize)
16280 goto discard_descr;
16281 if (BITS_BIG_ENDIAN)
16282 offset = memsize - bitsize;
16286 *descr_tail = new_loc_descr_op_bit_piece (bitsize, offset);
16287 if (*descr_tail == NULL)
16288 goto discard_descr;
16289 descr_tail = &(*descr_tail)->dw_loc_next;
16293 /* If there were any non-empty expressions, add padding till the end of
16294 the decl. */
16295 if (descr != NULL && decl_size != 0)
16297 *descr_tail = new_loc_descr_op_bit_piece (decl_size, 0);
16298 if (*descr_tail == NULL)
16299 goto discard_descr;
16301 return descr;
16303 discard_descr:
16304 /* Discard the descriptor and release any addr_table entries it uses. */
16305 remove_loc_list_addr_table_entries (descr);
16306 return NULL;
16309 /* Return the dwarf representation of the location list LOC_LIST of
16310 DECL. WANT_ADDRESS has the same meaning as in loc_list_from_tree
16311 function. */
16313 static dw_loc_list_ref
16314 dw_loc_list (var_loc_list *loc_list, tree decl, int want_address)
16316 const char *endname, *secname;
16317 rtx varloc;
16318 enum var_init_status initialized;
16319 struct var_loc_node *node;
16320 dw_loc_descr_ref descr;
16321 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
16322 dw_loc_list_ref list = NULL;
16323 dw_loc_list_ref *listp = &list;
16325 /* Now that we know what section we are using for a base,
16326 actually construct the list of locations.
16327 The first location information is what is passed to the
16328 function that creates the location list, and the remaining
16329 locations just get added on to that list.
16330 Note that we only know the start address for a location
16331 (IE location changes), so to build the range, we use
16332 the range [current location start, next location start].
16333 This means we have to special case the last node, and generate
16334 a range of [last location start, end of function label]. */
16336 secname = secname_for_decl (decl);
16338 for (node = loc_list->first; node; node = node->next)
16339 if (GET_CODE (node->loc) == EXPR_LIST
16340 || NOTE_VAR_LOCATION_LOC (node->loc) != NULL_RTX)
16342 if (GET_CODE (node->loc) == EXPR_LIST)
16344 /* This requires DW_OP_{,bit_}piece, which is not usable
16345 inside DWARF expressions. */
16346 if (want_address != 2)
16347 continue;
16348 descr = dw_sra_loc_expr (decl, node->loc);
16349 if (descr == NULL)
16350 continue;
16352 else
16354 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
16355 varloc = NOTE_VAR_LOCATION (node->loc);
16356 descr = dw_loc_list_1 (decl, varloc, want_address, initialized);
16358 if (descr)
16360 bool range_across_switch = false;
16361 /* If section switch happens in between node->label
16362 and node->next->label (or end of function) and
16363 we can't emit it as a single entry list,
16364 emit two ranges, first one ending at the end
16365 of first partition and second one starting at the
16366 beginning of second partition. */
16367 if (node == loc_list->last_before_switch
16368 && (node != loc_list->first || loc_list->first->next)
16369 && current_function_decl)
16371 endname = cfun->fde->dw_fde_end;
16372 range_across_switch = true;
16374 /* The variable has a location between NODE->LABEL and
16375 NODE->NEXT->LABEL. */
16376 else if (node->next)
16377 endname = node->next->label;
16378 /* If the variable has a location at the last label
16379 it keeps its location until the end of function. */
16380 else if (!current_function_decl)
16381 endname = text_end_label;
16382 else
16384 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
16385 current_function_funcdef_no);
16386 endname = ggc_strdup (label_id);
16389 *listp = new_loc_list (descr, node->label, endname, secname);
16390 if (TREE_CODE (decl) == PARM_DECL
16391 && node == loc_list->first
16392 && NOTE_P (node->loc)
16393 && strcmp (node->label, endname) == 0)
16394 (*listp)->force = true;
16395 listp = &(*listp)->dw_loc_next;
16397 if (range_across_switch)
16399 if (GET_CODE (node->loc) == EXPR_LIST)
16400 descr = dw_sra_loc_expr (decl, node->loc);
16401 else
16403 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
16404 varloc = NOTE_VAR_LOCATION (node->loc);
16405 descr = dw_loc_list_1 (decl, varloc, want_address,
16406 initialized);
16408 gcc_assert (descr);
16409 /* The variable has a location between NODE->LABEL and
16410 NODE->NEXT->LABEL. */
16411 if (node->next)
16412 endname = node->next->label;
16413 else
16414 endname = cfun->fde->dw_fde_second_end;
16415 *listp = new_loc_list (descr,
16416 cfun->fde->dw_fde_second_begin,
16417 endname, secname);
16418 listp = &(*listp)->dw_loc_next;
16423 /* Try to avoid the overhead of a location list emitting a location
16424 expression instead, but only if we didn't have more than one
16425 location entry in the first place. If some entries were not
16426 representable, we don't want to pretend a single entry that was
16427 applies to the entire scope in which the variable is
16428 available. */
16429 if (list && loc_list->first->next)
16430 gen_llsym (list);
16432 return list;
16435 /* Return if the loc_list has only single element and thus can be represented
16436 as location description. */
16438 static bool
16439 single_element_loc_list_p (dw_loc_list_ref list)
16441 gcc_assert (!list->dw_loc_next || list->ll_symbol);
16442 return !list->ll_symbol;
16445 /* Duplicate a single element of location list. */
16447 static inline dw_loc_descr_ref
16448 copy_loc_descr (dw_loc_descr_ref ref)
16450 dw_loc_descr_ref copy = ggc_alloc<dw_loc_descr_node> ();
16451 memcpy (copy, ref, sizeof (dw_loc_descr_node));
16452 return copy;
16455 /* To each location in list LIST append loc descr REF. */
16457 static void
16458 add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref)
16460 dw_loc_descr_ref copy;
16461 add_loc_descr (&list->expr, ref);
16462 list = list->dw_loc_next;
16463 while (list)
16465 copy = copy_loc_descr (ref);
16466 add_loc_descr (&list->expr, copy);
16467 while (copy->dw_loc_next)
16468 copy = copy->dw_loc_next = copy_loc_descr (copy->dw_loc_next);
16469 list = list->dw_loc_next;
16473 /* To each location in list LIST prepend loc descr REF. */
16475 static void
16476 prepend_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref)
16478 dw_loc_descr_ref copy;
16479 dw_loc_descr_ref ref_end = list->expr;
16480 add_loc_descr (&ref, list->expr);
16481 list->expr = ref;
16482 list = list->dw_loc_next;
16483 while (list)
16485 dw_loc_descr_ref end = list->expr;
16486 list->expr = copy = copy_loc_descr (ref);
16487 while (copy->dw_loc_next != ref_end)
16488 copy = copy->dw_loc_next = copy_loc_descr (copy->dw_loc_next);
16489 copy->dw_loc_next = end;
16490 list = list->dw_loc_next;
16494 /* Given two lists RET and LIST
16495 produce location list that is result of adding expression in LIST
16496 to expression in RET on each position in program.
16497 Might be destructive on both RET and LIST.
16499 TODO: We handle only simple cases of RET or LIST having at most one
16500 element. General case would involve sorting the lists in program order
16501 and merging them that will need some additional work.
16502 Adding that will improve quality of debug info especially for SRA-ed
16503 structures. */
16505 static void
16506 add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list)
16508 if (!list)
16509 return;
16510 if (!*ret)
16512 *ret = list;
16513 return;
16515 if (!list->dw_loc_next)
16517 add_loc_descr_to_each (*ret, list->expr);
16518 return;
16520 if (!(*ret)->dw_loc_next)
16522 prepend_loc_descr_to_each (list, (*ret)->expr);
16523 *ret = list;
16524 return;
16526 expansion_failed (NULL_TREE, NULL_RTX,
16527 "Don't know how to merge two non-trivial"
16528 " location lists.\n");
16529 *ret = NULL;
16530 return;
16533 /* LOC is constant expression. Try a luck, look it up in constant
16534 pool and return its loc_descr of its address. */
16536 static dw_loc_descr_ref
16537 cst_pool_loc_descr (tree loc)
16539 /* Get an RTL for this, if something has been emitted. */
16540 rtx rtl = lookup_constant_def (loc);
16542 if (!rtl || !MEM_P (rtl))
16544 gcc_assert (!rtl);
16545 return 0;
16547 gcc_assert (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF);
16549 /* TODO: We might get more coverage if we was actually delaying expansion
16550 of all expressions till end of compilation when constant pools are fully
16551 populated. */
16552 if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (XEXP (rtl, 0))))
16554 expansion_failed (loc, NULL_RTX,
16555 "CST value in contant pool but not marked.");
16556 return 0;
16558 return mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
16559 GET_MODE (rtl), VAR_INIT_STATUS_INITIALIZED);
16562 /* Return dw_loc_list representing address of addr_expr LOC
16563 by looking for inner INDIRECT_REF expression and turning
16564 it into simple arithmetics.
16566 See loc_list_from_tree for the meaning of CONTEXT. */
16568 static dw_loc_list_ref
16569 loc_list_for_address_of_addr_expr_of_indirect_ref (tree loc, bool toplev,
16570 loc_descr_context *context)
16572 tree obj, offset;
16573 HOST_WIDE_INT bitsize, bitpos, bytepos;
16574 machine_mode mode;
16575 int unsignedp, reversep, volatilep = 0;
16576 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
16578 obj = get_inner_reference (TREE_OPERAND (loc, 0),
16579 &bitsize, &bitpos, &offset, &mode,
16580 &unsignedp, &reversep, &volatilep);
16581 STRIP_NOPS (obj);
16582 if (bitpos % BITS_PER_UNIT)
16584 expansion_failed (loc, NULL_RTX, "bitfield access");
16585 return 0;
16587 if (!INDIRECT_REF_P (obj))
16589 expansion_failed (obj,
16590 NULL_RTX, "no indirect ref in inner refrence");
16591 return 0;
16593 if (!offset && !bitpos)
16594 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), toplev ? 2 : 1,
16595 context);
16596 else if (toplev
16597 && int_size_in_bytes (TREE_TYPE (loc)) <= DWARF2_ADDR_SIZE
16598 && (dwarf_version >= 4 || !dwarf_strict))
16600 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), 0, context);
16601 if (!list_ret)
16602 return 0;
16603 if (offset)
16605 /* Variable offset. */
16606 list_ret1 = loc_list_from_tree (offset, 0, context);
16607 if (list_ret1 == 0)
16608 return 0;
16609 add_loc_list (&list_ret, list_ret1);
16610 if (!list_ret)
16611 return 0;
16612 add_loc_descr_to_each (list_ret,
16613 new_loc_descr (DW_OP_plus, 0, 0));
16615 bytepos = bitpos / BITS_PER_UNIT;
16616 if (bytepos > 0)
16617 add_loc_descr_to_each (list_ret,
16618 new_loc_descr (DW_OP_plus_uconst,
16619 bytepos, 0));
16620 else if (bytepos < 0)
16621 loc_list_plus_const (list_ret, bytepos);
16622 add_loc_descr_to_each (list_ret,
16623 new_loc_descr (DW_OP_stack_value, 0, 0));
16625 return list_ret;
16628 /* Set LOC to the next operation that is not a DW_OP_nop operation. In the case
16629 all operations from LOC are nops, move to the last one. Insert in NOPS all
16630 operations that are skipped. */
16632 static void
16633 loc_descr_to_next_no_nop (dw_loc_descr_ref &loc,
16634 hash_set<dw_loc_descr_ref> &nops)
16636 while (loc->dw_loc_next != NULL && loc->dw_loc_opc == DW_OP_nop)
16638 nops.add (loc);
16639 loc = loc->dw_loc_next;
16643 /* Helper for loc_descr_without_nops: free the location description operation
16644 P. */
16646 bool
16647 free_loc_descr (const dw_loc_descr_ref &loc, void *data ATTRIBUTE_UNUSED)
16649 ggc_free (loc);
16650 return true;
16653 /* Remove all DW_OP_nop operations from LOC except, if it exists, the one that
16654 finishes LOC. */
16656 static void
16657 loc_descr_without_nops (dw_loc_descr_ref &loc)
16659 if (loc->dw_loc_opc == DW_OP_nop && loc->dw_loc_next == NULL)
16660 return;
16662 /* Set of all DW_OP_nop operations we remove. */
16663 hash_set<dw_loc_descr_ref> nops;
16665 /* First, strip all prefix NOP operations in order to keep the head of the
16666 operations list. */
16667 loc_descr_to_next_no_nop (loc, nops);
16669 for (dw_loc_descr_ref cur = loc; cur != NULL;)
16671 /* For control flow operations: strip "prefix" nops in destination
16672 labels. */
16673 if (cur->dw_loc_oprnd1.val_class == dw_val_class_loc)
16674 loc_descr_to_next_no_nop (cur->dw_loc_oprnd1.v.val_loc, nops);
16675 if (cur->dw_loc_oprnd2.val_class == dw_val_class_loc)
16676 loc_descr_to_next_no_nop (cur->dw_loc_oprnd2.v.val_loc, nops);
16678 /* Do the same for the operations that follow, then move to the next
16679 iteration. */
16680 if (cur->dw_loc_next != NULL)
16681 loc_descr_to_next_no_nop (cur->dw_loc_next, nops);
16682 cur = cur->dw_loc_next;
16685 nops.traverse<void *, free_loc_descr> (NULL);
16689 struct dwarf_procedure_info;
16691 /* Helper structure for location descriptions generation. */
16692 struct loc_descr_context
16694 /* The type that is implicitly referenced by DW_OP_push_object_address, or
16695 NULL_TREE if DW_OP_push_object_address in invalid for this location
16696 description. This is used when processing PLACEHOLDER_EXPR nodes. */
16697 tree context_type;
16698 /* The ..._DECL node that should be translated as a
16699 DW_OP_push_object_address operation. */
16700 tree base_decl;
16701 /* Information about the DWARF procedure we are currently generating. NULL if
16702 we are not generating a DWARF procedure. */
16703 struct dwarf_procedure_info *dpi;
16704 /* True if integral PLACEHOLDER_EXPR stands for the first argument passed
16705 by consumer. Used for DW_TAG_generic_subrange attributes. */
16706 bool placeholder_arg;
16707 /* True if PLACEHOLDER_EXPR has been seen. */
16708 bool placeholder_seen;
16711 /* DWARF procedures generation
16713 DWARF expressions (aka. location descriptions) are used to encode variable
16714 things such as sizes or offsets. Such computations can have redundant parts
16715 that can be factorized in order to reduce the size of the output debug
16716 information. This is the whole point of DWARF procedures.
16718 Thanks to stor-layout.c, size and offset expressions in GENERIC trees are
16719 already factorized into functions ("size functions") in order to handle very
16720 big and complex types. Such functions are quite simple: they have integral
16721 arguments, they return an integral result and their body contains only a
16722 return statement with arithmetic expressions. This is the only kind of
16723 function we are interested in translating into DWARF procedures, here.
16725 DWARF expressions and DWARF procedure are executed using a stack, so we have
16726 to define some calling convention for them to interact. Let's say that:
16728 - Before calling a DWARF procedure, DWARF expressions must push on the stack
16729 all arguments in reverse order (right-to-left) so that when the DWARF
16730 procedure execution starts, the first argument is the top of the stack.
16732 - Then, when returning, the DWARF procedure must have consumed all arguments
16733 on the stack, must have pushed the result and touched nothing else.
16735 - Each integral argument and the result are integral types can be hold in a
16736 single stack slot.
16738 - We call "frame offset" the number of stack slots that are "under DWARF
16739 procedure control": it includes the arguments slots, the temporaries and
16740 the result slot. Thus, it is equal to the number of arguments when the
16741 procedure execution starts and must be equal to one (the result) when it
16742 returns. */
16744 /* Helper structure used when generating operations for a DWARF procedure. */
16745 struct dwarf_procedure_info
16747 /* The FUNCTION_DECL node corresponding to the DWARF procedure that is
16748 currently translated. */
16749 tree fndecl;
16750 /* The number of arguments FNDECL takes. */
16751 unsigned args_count;
16754 /* Return a pointer to a newly created DIE node for a DWARF procedure. Add
16755 LOCATION as its DW_AT_location attribute. If FNDECL is not NULL_TREE,
16756 equate it to this DIE. */
16758 static dw_die_ref
16759 new_dwarf_proc_die (dw_loc_descr_ref location, tree fndecl,
16760 dw_die_ref parent_die)
16762 dw_die_ref dwarf_proc_die;
16764 if ((dwarf_version < 3 && dwarf_strict)
16765 || location == NULL)
16766 return NULL;
16768 dwarf_proc_die = new_die (DW_TAG_dwarf_procedure, parent_die, fndecl);
16769 if (fndecl)
16770 equate_decl_number_to_die (fndecl, dwarf_proc_die);
16771 add_AT_loc (dwarf_proc_die, DW_AT_location, location);
16772 return dwarf_proc_die;
16775 /* Return whether TYPE is a supported type as a DWARF procedure argument
16776 type or return type (we handle only scalar types and pointer types that
16777 aren't wider than the DWARF expression evaluation stack. */
16779 static bool
16780 is_handled_procedure_type (tree type)
16782 return ((INTEGRAL_TYPE_P (type)
16783 || TREE_CODE (type) == OFFSET_TYPE
16784 || TREE_CODE (type) == POINTER_TYPE)
16785 && int_size_in_bytes (type) <= DWARF2_ADDR_SIZE);
16788 /* Helper for resolve_args_picking: do the same but stop when coming across
16789 visited nodes. For each node we visit, register in FRAME_OFFSETS the frame
16790 offset *before* evaluating the corresponding operation. */
16792 static bool
16793 resolve_args_picking_1 (dw_loc_descr_ref loc, unsigned initial_frame_offset,
16794 struct dwarf_procedure_info *dpi,
16795 hash_map<dw_loc_descr_ref, unsigned> &frame_offsets)
16797 /* The "frame_offset" identifier is already used to name a macro... */
16798 unsigned frame_offset_ = initial_frame_offset;
16799 dw_loc_descr_ref l;
16801 for (l = loc; l != NULL;)
16803 bool existed;
16804 unsigned &l_frame_offset = frame_offsets.get_or_insert (l, &existed);
16806 /* If we already met this node, there is nothing to compute anymore. */
16807 if (existed)
16809 /* Make sure that the stack size is consistent wherever the execution
16810 flow comes from. */
16811 gcc_assert ((unsigned) l_frame_offset == frame_offset_);
16812 break;
16814 l_frame_offset = frame_offset_;
16816 /* If needed, relocate the picking offset with respect to the frame
16817 offset. */
16818 if (l->frame_offset_rel)
16820 unsigned HOST_WIDE_INT off;
16821 switch (l->dw_loc_opc)
16823 case DW_OP_pick:
16824 off = l->dw_loc_oprnd1.v.val_unsigned;
16825 break;
16826 case DW_OP_dup:
16827 off = 0;
16828 break;
16829 case DW_OP_over:
16830 off = 1;
16831 break;
16832 default:
16833 gcc_unreachable ();
16835 /* frame_offset_ is the size of the current stack frame, including
16836 incoming arguments. Besides, the arguments are pushed
16837 right-to-left. Thus, in order to access the Nth argument from
16838 this operation node, the picking has to skip temporaries *plus*
16839 one stack slot per argument (0 for the first one, 1 for the second
16840 one, etc.).
16842 The targetted argument number (N) is already set as the operand,
16843 and the number of temporaries can be computed with:
16844 frame_offsets_ - dpi->args_count */
16845 off += frame_offset_ - dpi->args_count;
16847 /* DW_OP_pick handles only offsets from 0 to 255 (inclusive)... */
16848 if (off > 255)
16849 return false;
16851 if (off == 0)
16853 l->dw_loc_opc = DW_OP_dup;
16854 l->dw_loc_oprnd1.v.val_unsigned = 0;
16856 else if (off == 1)
16858 l->dw_loc_opc = DW_OP_over;
16859 l->dw_loc_oprnd1.v.val_unsigned = 0;
16861 else
16863 l->dw_loc_opc = DW_OP_pick;
16864 l->dw_loc_oprnd1.v.val_unsigned = off;
16868 /* Update frame_offset according to the effect the current operation has
16869 on the stack. */
16870 switch (l->dw_loc_opc)
16872 case DW_OP_deref:
16873 case DW_OP_swap:
16874 case DW_OP_rot:
16875 case DW_OP_abs:
16876 case DW_OP_neg:
16877 case DW_OP_not:
16878 case DW_OP_plus_uconst:
16879 case DW_OP_skip:
16880 case DW_OP_reg0:
16881 case DW_OP_reg1:
16882 case DW_OP_reg2:
16883 case DW_OP_reg3:
16884 case DW_OP_reg4:
16885 case DW_OP_reg5:
16886 case DW_OP_reg6:
16887 case DW_OP_reg7:
16888 case DW_OP_reg8:
16889 case DW_OP_reg9:
16890 case DW_OP_reg10:
16891 case DW_OP_reg11:
16892 case DW_OP_reg12:
16893 case DW_OP_reg13:
16894 case DW_OP_reg14:
16895 case DW_OP_reg15:
16896 case DW_OP_reg16:
16897 case DW_OP_reg17:
16898 case DW_OP_reg18:
16899 case DW_OP_reg19:
16900 case DW_OP_reg20:
16901 case DW_OP_reg21:
16902 case DW_OP_reg22:
16903 case DW_OP_reg23:
16904 case DW_OP_reg24:
16905 case DW_OP_reg25:
16906 case DW_OP_reg26:
16907 case DW_OP_reg27:
16908 case DW_OP_reg28:
16909 case DW_OP_reg29:
16910 case DW_OP_reg30:
16911 case DW_OP_reg31:
16912 case DW_OP_bregx:
16913 case DW_OP_piece:
16914 case DW_OP_deref_size:
16915 case DW_OP_nop:
16916 case DW_OP_bit_piece:
16917 case DW_OP_implicit_value:
16918 case DW_OP_stack_value:
16919 break;
16921 case DW_OP_addr:
16922 case DW_OP_const1u:
16923 case DW_OP_const1s:
16924 case DW_OP_const2u:
16925 case DW_OP_const2s:
16926 case DW_OP_const4u:
16927 case DW_OP_const4s:
16928 case DW_OP_const8u:
16929 case DW_OP_const8s:
16930 case DW_OP_constu:
16931 case DW_OP_consts:
16932 case DW_OP_dup:
16933 case DW_OP_over:
16934 case DW_OP_pick:
16935 case DW_OP_lit0:
16936 case DW_OP_lit1:
16937 case DW_OP_lit2:
16938 case DW_OP_lit3:
16939 case DW_OP_lit4:
16940 case DW_OP_lit5:
16941 case DW_OP_lit6:
16942 case DW_OP_lit7:
16943 case DW_OP_lit8:
16944 case DW_OP_lit9:
16945 case DW_OP_lit10:
16946 case DW_OP_lit11:
16947 case DW_OP_lit12:
16948 case DW_OP_lit13:
16949 case DW_OP_lit14:
16950 case DW_OP_lit15:
16951 case DW_OP_lit16:
16952 case DW_OP_lit17:
16953 case DW_OP_lit18:
16954 case DW_OP_lit19:
16955 case DW_OP_lit20:
16956 case DW_OP_lit21:
16957 case DW_OP_lit22:
16958 case DW_OP_lit23:
16959 case DW_OP_lit24:
16960 case DW_OP_lit25:
16961 case DW_OP_lit26:
16962 case DW_OP_lit27:
16963 case DW_OP_lit28:
16964 case DW_OP_lit29:
16965 case DW_OP_lit30:
16966 case DW_OP_lit31:
16967 case DW_OP_breg0:
16968 case DW_OP_breg1:
16969 case DW_OP_breg2:
16970 case DW_OP_breg3:
16971 case DW_OP_breg4:
16972 case DW_OP_breg5:
16973 case DW_OP_breg6:
16974 case DW_OP_breg7:
16975 case DW_OP_breg8:
16976 case DW_OP_breg9:
16977 case DW_OP_breg10:
16978 case DW_OP_breg11:
16979 case DW_OP_breg12:
16980 case DW_OP_breg13:
16981 case DW_OP_breg14:
16982 case DW_OP_breg15:
16983 case DW_OP_breg16:
16984 case DW_OP_breg17:
16985 case DW_OP_breg18:
16986 case DW_OP_breg19:
16987 case DW_OP_breg20:
16988 case DW_OP_breg21:
16989 case DW_OP_breg22:
16990 case DW_OP_breg23:
16991 case DW_OP_breg24:
16992 case DW_OP_breg25:
16993 case DW_OP_breg26:
16994 case DW_OP_breg27:
16995 case DW_OP_breg28:
16996 case DW_OP_breg29:
16997 case DW_OP_breg30:
16998 case DW_OP_breg31:
16999 case DW_OP_fbreg:
17000 case DW_OP_push_object_address:
17001 case DW_OP_call_frame_cfa:
17002 case DW_OP_GNU_variable_value:
17003 ++frame_offset_;
17004 break;
17006 case DW_OP_drop:
17007 case DW_OP_xderef:
17008 case DW_OP_and:
17009 case DW_OP_div:
17010 case DW_OP_minus:
17011 case DW_OP_mod:
17012 case DW_OP_mul:
17013 case DW_OP_or:
17014 case DW_OP_plus:
17015 case DW_OP_shl:
17016 case DW_OP_shr:
17017 case DW_OP_shra:
17018 case DW_OP_xor:
17019 case DW_OP_bra:
17020 case DW_OP_eq:
17021 case DW_OP_ge:
17022 case DW_OP_gt:
17023 case DW_OP_le:
17024 case DW_OP_lt:
17025 case DW_OP_ne:
17026 case DW_OP_regx:
17027 case DW_OP_xderef_size:
17028 --frame_offset_;
17029 break;
17031 case DW_OP_call2:
17032 case DW_OP_call4:
17033 case DW_OP_call_ref:
17035 dw_die_ref dwarf_proc = l->dw_loc_oprnd1.v.val_die_ref.die;
17036 int *stack_usage = dwarf_proc_stack_usage_map->get (dwarf_proc);
17038 if (stack_usage == NULL)
17039 return false;
17040 frame_offset_ += *stack_usage;
17041 break;
17044 case DW_OP_implicit_pointer:
17045 case DW_OP_entry_value:
17046 case DW_OP_const_type:
17047 case DW_OP_regval_type:
17048 case DW_OP_deref_type:
17049 case DW_OP_convert:
17050 case DW_OP_reinterpret:
17051 case DW_OP_form_tls_address:
17052 case DW_OP_GNU_push_tls_address:
17053 case DW_OP_GNU_uninit:
17054 case DW_OP_GNU_encoded_addr:
17055 case DW_OP_GNU_implicit_pointer:
17056 case DW_OP_GNU_entry_value:
17057 case DW_OP_GNU_const_type:
17058 case DW_OP_GNU_regval_type:
17059 case DW_OP_GNU_deref_type:
17060 case DW_OP_GNU_convert:
17061 case DW_OP_GNU_reinterpret:
17062 case DW_OP_GNU_parameter_ref:
17063 /* loc_list_from_tree will probably not output these operations for
17064 size functions, so assume they will not appear here. */
17065 /* Fall through... */
17067 default:
17068 gcc_unreachable ();
17071 /* Now, follow the control flow (except subroutine calls). */
17072 switch (l->dw_loc_opc)
17074 case DW_OP_bra:
17075 if (!resolve_args_picking_1 (l->dw_loc_next, frame_offset_, dpi,
17076 frame_offsets))
17077 return false;
17078 /* Fall through. */
17080 case DW_OP_skip:
17081 l = l->dw_loc_oprnd1.v.val_loc;
17082 break;
17084 case DW_OP_stack_value:
17085 return true;
17087 default:
17088 l = l->dw_loc_next;
17089 break;
17093 return true;
17096 /* Make a DFS over operations reachable through LOC (i.e. follow branch
17097 operations) in order to resolve the operand of DW_OP_pick operations that
17098 target DWARF procedure arguments (DPI). INITIAL_FRAME_OFFSET is the frame
17099 offset *before* LOC is executed. Return if all relocations were
17100 successful. */
17102 static bool
17103 resolve_args_picking (dw_loc_descr_ref loc, unsigned initial_frame_offset,
17104 struct dwarf_procedure_info *dpi)
17106 /* Associate to all visited operations the frame offset *before* evaluating
17107 this operation. */
17108 hash_map<dw_loc_descr_ref, unsigned> frame_offsets;
17110 return resolve_args_picking_1 (loc, initial_frame_offset, dpi,
17111 frame_offsets);
17114 /* Try to generate a DWARF procedure that computes the same result as FNDECL.
17115 Return NULL if it is not possible. */
17117 static dw_die_ref
17118 function_to_dwarf_procedure (tree fndecl)
17120 struct loc_descr_context ctx;
17121 struct dwarf_procedure_info dpi;
17122 dw_die_ref dwarf_proc_die;
17123 tree tree_body = DECL_SAVED_TREE (fndecl);
17124 dw_loc_descr_ref loc_body, epilogue;
17126 tree cursor;
17127 unsigned i;
17129 /* Do not generate multiple DWARF procedures for the same function
17130 declaration. */
17131 dwarf_proc_die = lookup_decl_die (fndecl);
17132 if (dwarf_proc_die != NULL)
17133 return dwarf_proc_die;
17135 /* DWARF procedures are available starting with the DWARFv3 standard. */
17136 if (dwarf_version < 3 && dwarf_strict)
17137 return NULL;
17139 /* We handle only functions for which we still have a body, that return a
17140 supported type and that takes arguments with supported types. Note that
17141 there is no point translating functions that return nothing. */
17142 if (tree_body == NULL_TREE
17143 || DECL_RESULT (fndecl) == NULL_TREE
17144 || !is_handled_procedure_type (TREE_TYPE (DECL_RESULT (fndecl))))
17145 return NULL;
17147 for (cursor = DECL_ARGUMENTS (fndecl);
17148 cursor != NULL_TREE;
17149 cursor = TREE_CHAIN (cursor))
17150 if (!is_handled_procedure_type (TREE_TYPE (cursor)))
17151 return NULL;
17153 /* Match only "expr" in: RETURN_EXPR (MODIFY_EXPR (RESULT_DECL, expr)). */
17154 if (TREE_CODE (tree_body) != RETURN_EXPR)
17155 return NULL;
17156 tree_body = TREE_OPERAND (tree_body, 0);
17157 if (TREE_CODE (tree_body) != MODIFY_EXPR
17158 || TREE_OPERAND (tree_body, 0) != DECL_RESULT (fndecl))
17159 return NULL;
17160 tree_body = TREE_OPERAND (tree_body, 1);
17162 /* Try to translate the body expression itself. Note that this will probably
17163 cause an infinite recursion if its call graph has a cycle. This is very
17164 unlikely for size functions, however, so don't bother with such things at
17165 the moment. */
17166 ctx.context_type = NULL_TREE;
17167 ctx.base_decl = NULL_TREE;
17168 ctx.dpi = &dpi;
17169 ctx.placeholder_arg = false;
17170 ctx.placeholder_seen = false;
17171 dpi.fndecl = fndecl;
17172 dpi.args_count = list_length (DECL_ARGUMENTS (fndecl));
17173 loc_body = loc_descriptor_from_tree (tree_body, 0, &ctx);
17174 if (!loc_body)
17175 return NULL;
17177 /* After evaluating all operands in "loc_body", we should still have on the
17178 stack all arguments plus the desired function result (top of the stack).
17179 Generate code in order to keep only the result in our stack frame. */
17180 epilogue = NULL;
17181 for (i = 0; i < dpi.args_count; ++i)
17183 dw_loc_descr_ref op_couple = new_loc_descr (DW_OP_swap, 0, 0);
17184 op_couple->dw_loc_next = new_loc_descr (DW_OP_drop, 0, 0);
17185 op_couple->dw_loc_next->dw_loc_next = epilogue;
17186 epilogue = op_couple;
17188 add_loc_descr (&loc_body, epilogue);
17189 if (!resolve_args_picking (loc_body, dpi.args_count, &dpi))
17190 return NULL;
17192 /* Trailing nops from loc_descriptor_from_tree (if any) cannot be removed
17193 because they are considered useful. Now there is an epilogue, they are
17194 not anymore, so give it another try. */
17195 loc_descr_without_nops (loc_body);
17197 /* fndecl may be used both as a regular DW_TAG_subprogram DIE and as
17198 a DW_TAG_dwarf_procedure, so we may have a conflict, here. It's unlikely,
17199 though, given that size functions do not come from source, so they should
17200 not have a dedicated DW_TAG_subprogram DIE. */
17201 dwarf_proc_die
17202 = new_dwarf_proc_die (loc_body, fndecl,
17203 get_context_die (DECL_CONTEXT (fndecl)));
17205 /* The called DWARF procedure consumes one stack slot per argument and
17206 returns one stack slot. */
17207 dwarf_proc_stack_usage_map->put (dwarf_proc_die, 1 - dpi.args_count);
17209 return dwarf_proc_die;
17213 /* Generate Dwarf location list representing LOC.
17214 If WANT_ADDRESS is false, expression computing LOC will be computed
17215 If WANT_ADDRESS is 1, expression computing address of LOC will be returned
17216 if WANT_ADDRESS is 2, expression computing address useable in location
17217 will be returned (i.e. DW_OP_reg can be used
17218 to refer to register values).
17220 CONTEXT provides information to customize the location descriptions
17221 generation. Its context_type field specifies what type is implicitly
17222 referenced by DW_OP_push_object_address. If it is NULL_TREE, this operation
17223 will not be generated.
17225 Its DPI field determines whether we are generating a DWARF expression for a
17226 DWARF procedure, so PARM_DECL references are processed specifically.
17228 If CONTEXT is NULL, the behavior is the same as if context_type, base_decl
17229 and dpi fields were null. */
17231 static dw_loc_list_ref
17232 loc_list_from_tree_1 (tree loc, int want_address,
17233 struct loc_descr_context *context)
17235 dw_loc_descr_ref ret = NULL, ret1 = NULL;
17236 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
17237 int have_address = 0;
17238 enum dwarf_location_atom op;
17240 /* ??? Most of the time we do not take proper care for sign/zero
17241 extending the values properly. Hopefully this won't be a real
17242 problem... */
17244 if (context != NULL
17245 && context->base_decl == loc
17246 && want_address == 0)
17248 if (dwarf_version >= 3 || !dwarf_strict)
17249 return new_loc_list (new_loc_descr (DW_OP_push_object_address, 0, 0),
17250 NULL, NULL, NULL);
17251 else
17252 return NULL;
17255 switch (TREE_CODE (loc))
17257 case ERROR_MARK:
17258 expansion_failed (loc, NULL_RTX, "ERROR_MARK");
17259 return 0;
17261 case PLACEHOLDER_EXPR:
17262 /* This case involves extracting fields from an object to determine the
17263 position of other fields. It is supposed to appear only as the first
17264 operand of COMPONENT_REF nodes and to reference precisely the type
17265 that the context allows. */
17266 if (context != NULL
17267 && TREE_TYPE (loc) == context->context_type
17268 && want_address >= 1)
17270 if (dwarf_version >= 3 || !dwarf_strict)
17272 ret = new_loc_descr (DW_OP_push_object_address, 0, 0);
17273 have_address = 1;
17274 break;
17276 else
17277 return NULL;
17279 /* For DW_TAG_generic_subrange attributes, PLACEHOLDER_EXPR stands for
17280 the single argument passed by consumer. */
17281 else if (context != NULL
17282 && context->placeholder_arg
17283 && INTEGRAL_TYPE_P (TREE_TYPE (loc))
17284 && want_address == 0)
17286 ret = new_loc_descr (DW_OP_pick, 0, 0);
17287 ret->frame_offset_rel = 1;
17288 context->placeholder_seen = true;
17289 break;
17291 else
17292 expansion_failed (loc, NULL_RTX,
17293 "PLACEHOLDER_EXPR for an unexpected type");
17294 break;
17296 case CALL_EXPR:
17298 const int nargs = call_expr_nargs (loc);
17299 tree callee = get_callee_fndecl (loc);
17300 int i;
17301 dw_die_ref dwarf_proc;
17303 if (callee == NULL_TREE)
17304 goto call_expansion_failed;
17306 /* We handle only functions that return an integer. */
17307 if (!is_handled_procedure_type (TREE_TYPE (TREE_TYPE (callee))))
17308 goto call_expansion_failed;
17310 dwarf_proc = function_to_dwarf_procedure (callee);
17311 if (dwarf_proc == NULL)
17312 goto call_expansion_failed;
17314 /* Evaluate arguments right-to-left so that the first argument will
17315 be the top-most one on the stack. */
17316 for (i = nargs - 1; i >= 0; --i)
17318 dw_loc_descr_ref loc_descr
17319 = loc_descriptor_from_tree (CALL_EXPR_ARG (loc, i), 0,
17320 context);
17322 if (loc_descr == NULL)
17323 goto call_expansion_failed;
17325 add_loc_descr (&ret, loc_descr);
17328 ret1 = new_loc_descr (DW_OP_call4, 0, 0);
17329 ret1->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
17330 ret1->dw_loc_oprnd1.v.val_die_ref.die = dwarf_proc;
17331 ret1->dw_loc_oprnd1.v.val_die_ref.external = 0;
17332 add_loc_descr (&ret, ret1);
17333 break;
17335 call_expansion_failed:
17336 expansion_failed (loc, NULL_RTX, "CALL_EXPR");
17337 /* There are no opcodes for these operations. */
17338 return 0;
17341 case PREINCREMENT_EXPR:
17342 case PREDECREMENT_EXPR:
17343 case POSTINCREMENT_EXPR:
17344 case POSTDECREMENT_EXPR:
17345 expansion_failed (loc, NULL_RTX, "PRE/POST INDCREMENT/DECREMENT");
17346 /* There are no opcodes for these operations. */
17347 return 0;
17349 case ADDR_EXPR:
17350 /* If we already want an address, see if there is INDIRECT_REF inside
17351 e.g. for &this->field. */
17352 if (want_address)
17354 list_ret = loc_list_for_address_of_addr_expr_of_indirect_ref
17355 (loc, want_address == 2, context);
17356 if (list_ret)
17357 have_address = 1;
17358 else if (decl_address_ip_invariant_p (TREE_OPERAND (loc, 0))
17359 && (ret = cst_pool_loc_descr (loc)))
17360 have_address = 1;
17362 /* Otherwise, process the argument and look for the address. */
17363 if (!list_ret && !ret)
17364 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 1, context);
17365 else
17367 if (want_address)
17368 expansion_failed (loc, NULL_RTX, "need address of ADDR_EXPR");
17369 return NULL;
17371 break;
17373 case VAR_DECL:
17374 if (DECL_THREAD_LOCAL_P (loc))
17376 rtx rtl;
17377 enum dwarf_location_atom tls_op;
17378 enum dtprel_bool dtprel = dtprel_false;
17380 if (targetm.have_tls)
17382 /* If this is not defined, we have no way to emit the
17383 data. */
17384 if (!targetm.asm_out.output_dwarf_dtprel)
17385 return 0;
17387 /* The way DW_OP_GNU_push_tls_address is specified, we
17388 can only look up addresses of objects in the current
17389 module. We used DW_OP_addr as first op, but that's
17390 wrong, because DW_OP_addr is relocated by the debug
17391 info consumer, while DW_OP_GNU_push_tls_address
17392 operand shouldn't be. */
17393 if (DECL_EXTERNAL (loc) && !targetm.binds_local_p (loc))
17394 return 0;
17395 dtprel = dtprel_true;
17396 /* We check for DWARF 5 here because gdb did not implement
17397 DW_OP_form_tls_address until after 7.12. */
17398 tls_op = (dwarf_version >= 5 ? DW_OP_form_tls_address
17399 : DW_OP_GNU_push_tls_address);
17401 else
17403 if (!targetm.emutls.debug_form_tls_address
17404 || !(dwarf_version >= 3 || !dwarf_strict))
17405 return 0;
17406 /* We stuffed the control variable into the DECL_VALUE_EXPR
17407 to signal (via DECL_HAS_VALUE_EXPR_P) that the decl should
17408 no longer appear in gimple code. We used the control
17409 variable in specific so that we could pick it up here. */
17410 loc = DECL_VALUE_EXPR (loc);
17411 tls_op = DW_OP_form_tls_address;
17414 rtl = rtl_for_decl_location (loc);
17415 if (rtl == NULL_RTX)
17416 return 0;
17418 if (!MEM_P (rtl))
17419 return 0;
17420 rtl = XEXP (rtl, 0);
17421 if (! CONSTANT_P (rtl))
17422 return 0;
17424 ret = new_addr_loc_descr (rtl, dtprel);
17425 ret1 = new_loc_descr (tls_op, 0, 0);
17426 add_loc_descr (&ret, ret1);
17428 have_address = 1;
17429 break;
17431 /* FALLTHRU */
17433 case PARM_DECL:
17434 if (context != NULL && context->dpi != NULL
17435 && DECL_CONTEXT (loc) == context->dpi->fndecl)
17437 /* We are generating code for a DWARF procedure and we want to access
17438 one of its arguments: find the appropriate argument offset and let
17439 the resolve_args_picking pass compute the offset that complies
17440 with the stack frame size. */
17441 unsigned i = 0;
17442 tree cursor;
17444 for (cursor = DECL_ARGUMENTS (context->dpi->fndecl);
17445 cursor != NULL_TREE && cursor != loc;
17446 cursor = TREE_CHAIN (cursor), ++i)
17448 /* If we are translating a DWARF procedure, all referenced parameters
17449 must belong to the current function. */
17450 gcc_assert (cursor != NULL_TREE);
17452 ret = new_loc_descr (DW_OP_pick, i, 0);
17453 ret->frame_offset_rel = 1;
17454 break;
17456 /* FALLTHRU */
17458 case RESULT_DECL:
17459 if (DECL_HAS_VALUE_EXPR_P (loc))
17460 return loc_list_from_tree_1 (DECL_VALUE_EXPR (loc),
17461 want_address, context);
17462 /* FALLTHRU */
17464 case FUNCTION_DECL:
17466 rtx rtl;
17467 var_loc_list *loc_list = lookup_decl_loc (loc);
17469 if (loc_list && loc_list->first)
17471 list_ret = dw_loc_list (loc_list, loc, want_address);
17472 have_address = want_address != 0;
17473 break;
17475 rtl = rtl_for_decl_location (loc);
17476 if (rtl == NULL_RTX)
17478 if (TREE_CODE (loc) != FUNCTION_DECL
17479 && early_dwarf
17480 && current_function_decl
17481 && want_address != 1
17482 && ! DECL_IGNORED_P (loc)
17483 && (INTEGRAL_TYPE_P (TREE_TYPE (loc))
17484 || POINTER_TYPE_P (TREE_TYPE (loc)))
17485 && DECL_CONTEXT (loc) == current_function_decl
17486 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (loc)))
17487 <= DWARF2_ADDR_SIZE))
17489 dw_die_ref ref = lookup_decl_die (loc);
17490 ret = new_loc_descr (DW_OP_GNU_variable_value, 0, 0);
17491 if (ref)
17493 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
17494 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
17495 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
17497 else
17499 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
17500 ret->dw_loc_oprnd1.v.val_decl_ref = loc;
17502 break;
17504 expansion_failed (loc, NULL_RTX, "DECL has no RTL");
17505 return 0;
17507 else if (CONST_INT_P (rtl))
17509 HOST_WIDE_INT val = INTVAL (rtl);
17510 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
17511 val &= GET_MODE_MASK (DECL_MODE (loc));
17512 ret = int_loc_descriptor (val);
17514 else if (GET_CODE (rtl) == CONST_STRING)
17516 expansion_failed (loc, NULL_RTX, "CONST_STRING");
17517 return 0;
17519 else if (CONSTANT_P (rtl) && const_ok_for_output (rtl))
17520 ret = new_addr_loc_descr (rtl, dtprel_false);
17521 else
17523 machine_mode mode, mem_mode;
17525 /* Certain constructs can only be represented at top-level. */
17526 if (want_address == 2)
17528 ret = loc_descriptor (rtl, VOIDmode,
17529 VAR_INIT_STATUS_INITIALIZED);
17530 have_address = 1;
17532 else
17534 mode = GET_MODE (rtl);
17535 mem_mode = VOIDmode;
17536 if (MEM_P (rtl))
17538 mem_mode = mode;
17539 mode = get_address_mode (rtl);
17540 rtl = XEXP (rtl, 0);
17541 have_address = 1;
17543 ret = mem_loc_descriptor (rtl, mode, mem_mode,
17544 VAR_INIT_STATUS_INITIALIZED);
17546 if (!ret)
17547 expansion_failed (loc, rtl,
17548 "failed to produce loc descriptor for rtl");
17551 break;
17553 case MEM_REF:
17554 if (!integer_zerop (TREE_OPERAND (loc, 1)))
17556 have_address = 1;
17557 goto do_plus;
17559 /* Fallthru. */
17560 case INDIRECT_REF:
17561 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
17562 have_address = 1;
17563 break;
17565 case TARGET_MEM_REF:
17566 case SSA_NAME:
17567 case DEBUG_EXPR_DECL:
17568 return NULL;
17570 case COMPOUND_EXPR:
17571 return loc_list_from_tree_1 (TREE_OPERAND (loc, 1), want_address,
17572 context);
17574 CASE_CONVERT:
17575 case VIEW_CONVERT_EXPR:
17576 case SAVE_EXPR:
17577 case MODIFY_EXPR:
17578 case NON_LVALUE_EXPR:
17579 return loc_list_from_tree_1 (TREE_OPERAND (loc, 0), want_address,
17580 context);
17582 case COMPONENT_REF:
17583 case BIT_FIELD_REF:
17584 case ARRAY_REF:
17585 case ARRAY_RANGE_REF:
17586 case REALPART_EXPR:
17587 case IMAGPART_EXPR:
17589 tree obj, offset;
17590 HOST_WIDE_INT bitsize, bitpos, bytepos;
17591 machine_mode mode;
17592 int unsignedp, reversep, volatilep = 0;
17594 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
17595 &unsignedp, &reversep, &volatilep);
17597 gcc_assert (obj != loc);
17599 list_ret = loc_list_from_tree_1 (obj,
17600 want_address == 2
17601 && !bitpos && !offset ? 2 : 1,
17602 context);
17603 /* TODO: We can extract value of the small expression via shifting even
17604 for nonzero bitpos. */
17605 if (list_ret == 0)
17606 return 0;
17607 if (bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
17609 expansion_failed (loc, NULL_RTX,
17610 "bitfield access");
17611 return 0;
17614 if (offset != NULL_TREE)
17616 /* Variable offset. */
17617 list_ret1 = loc_list_from_tree_1 (offset, 0, context);
17618 if (list_ret1 == 0)
17619 return 0;
17620 add_loc_list (&list_ret, list_ret1);
17621 if (!list_ret)
17622 return 0;
17623 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus, 0, 0));
17626 bytepos = bitpos / BITS_PER_UNIT;
17627 if (bytepos > 0)
17628 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
17629 else if (bytepos < 0)
17630 loc_list_plus_const (list_ret, bytepos);
17632 have_address = 1;
17633 break;
17636 case INTEGER_CST:
17637 if ((want_address || !tree_fits_shwi_p (loc))
17638 && (ret = cst_pool_loc_descr (loc)))
17639 have_address = 1;
17640 else if (want_address == 2
17641 && tree_fits_shwi_p (loc)
17642 && (ret = address_of_int_loc_descriptor
17643 (int_size_in_bytes (TREE_TYPE (loc)),
17644 tree_to_shwi (loc))))
17645 have_address = 1;
17646 else if (tree_fits_shwi_p (loc))
17647 ret = int_loc_descriptor (tree_to_shwi (loc));
17648 else if (tree_fits_uhwi_p (loc))
17649 ret = uint_loc_descriptor (tree_to_uhwi (loc));
17650 else
17652 expansion_failed (loc, NULL_RTX,
17653 "Integer operand is not host integer");
17654 return 0;
17656 break;
17658 case CONSTRUCTOR:
17659 case REAL_CST:
17660 case STRING_CST:
17661 case COMPLEX_CST:
17662 if ((ret = cst_pool_loc_descr (loc)))
17663 have_address = 1;
17664 else if (TREE_CODE (loc) == CONSTRUCTOR)
17666 tree type = TREE_TYPE (loc);
17667 unsigned HOST_WIDE_INT size = int_size_in_bytes (type);
17668 unsigned HOST_WIDE_INT offset = 0;
17669 unsigned HOST_WIDE_INT cnt;
17670 constructor_elt *ce;
17672 if (TREE_CODE (type) == RECORD_TYPE)
17674 /* This is very limited, but it's enough to output
17675 pointers to member functions, as long as the
17676 referenced function is defined in the current
17677 translation unit. */
17678 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (loc), cnt, ce)
17680 tree val = ce->value;
17682 tree field = ce->index;
17684 if (val)
17685 STRIP_NOPS (val);
17687 if (!field || DECL_BIT_FIELD (field))
17689 expansion_failed (loc, NULL_RTX,
17690 "bitfield in record type constructor");
17691 size = offset = (unsigned HOST_WIDE_INT)-1;
17692 ret = NULL;
17693 break;
17696 HOST_WIDE_INT fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field));
17697 unsigned HOST_WIDE_INT pos = int_byte_position (field);
17698 gcc_assert (pos + fieldsize <= size);
17699 if (pos < offset)
17701 expansion_failed (loc, NULL_RTX,
17702 "out-of-order fields in record constructor");
17703 size = offset = (unsigned HOST_WIDE_INT)-1;
17704 ret = NULL;
17705 break;
17707 if (pos > offset)
17709 ret1 = new_loc_descr (DW_OP_piece, pos - offset, 0);
17710 add_loc_descr (&ret, ret1);
17711 offset = pos;
17713 if (val && fieldsize != 0)
17715 ret1 = loc_descriptor_from_tree (val, want_address, context);
17716 if (!ret1)
17718 expansion_failed (loc, NULL_RTX,
17719 "unsupported expression in field");
17720 size = offset = (unsigned HOST_WIDE_INT)-1;
17721 ret = NULL;
17722 break;
17724 add_loc_descr (&ret, ret1);
17726 if (fieldsize)
17728 ret1 = new_loc_descr (DW_OP_piece, fieldsize, 0);
17729 add_loc_descr (&ret, ret1);
17730 offset = pos + fieldsize;
17734 if (offset != size)
17736 ret1 = new_loc_descr (DW_OP_piece, size - offset, 0);
17737 add_loc_descr (&ret, ret1);
17738 offset = size;
17741 have_address = !!want_address;
17743 else
17744 expansion_failed (loc, NULL_RTX,
17745 "constructor of non-record type");
17747 else
17748 /* We can construct small constants here using int_loc_descriptor. */
17749 expansion_failed (loc, NULL_RTX,
17750 "constructor or constant not in constant pool");
17751 break;
17753 case TRUTH_AND_EXPR:
17754 case TRUTH_ANDIF_EXPR:
17755 case BIT_AND_EXPR:
17756 op = DW_OP_and;
17757 goto do_binop;
17759 case TRUTH_XOR_EXPR:
17760 case BIT_XOR_EXPR:
17761 op = DW_OP_xor;
17762 goto do_binop;
17764 case TRUTH_OR_EXPR:
17765 case TRUTH_ORIF_EXPR:
17766 case BIT_IOR_EXPR:
17767 op = DW_OP_or;
17768 goto do_binop;
17770 case FLOOR_DIV_EXPR:
17771 case CEIL_DIV_EXPR:
17772 case ROUND_DIV_EXPR:
17773 case TRUNC_DIV_EXPR:
17774 case EXACT_DIV_EXPR:
17775 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
17776 return 0;
17777 op = DW_OP_div;
17778 goto do_binop;
17780 case MINUS_EXPR:
17781 op = DW_OP_minus;
17782 goto do_binop;
17784 case FLOOR_MOD_EXPR:
17785 case CEIL_MOD_EXPR:
17786 case ROUND_MOD_EXPR:
17787 case TRUNC_MOD_EXPR:
17788 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
17790 op = DW_OP_mod;
17791 goto do_binop;
17793 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
17794 list_ret1 = loc_list_from_tree_1 (TREE_OPERAND (loc, 1), 0, context);
17795 if (list_ret == 0 || list_ret1 == 0)
17796 return 0;
17798 add_loc_list (&list_ret, list_ret1);
17799 if (list_ret == 0)
17800 return 0;
17801 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
17802 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
17803 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_div, 0, 0));
17804 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_mul, 0, 0));
17805 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_minus, 0, 0));
17806 break;
17808 case MULT_EXPR:
17809 op = DW_OP_mul;
17810 goto do_binop;
17812 case LSHIFT_EXPR:
17813 op = DW_OP_shl;
17814 goto do_binop;
17816 case RSHIFT_EXPR:
17817 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
17818 goto do_binop;
17820 case POINTER_PLUS_EXPR:
17821 case PLUS_EXPR:
17822 do_plus:
17823 if (tree_fits_shwi_p (TREE_OPERAND (loc, 1)))
17825 /* Big unsigned numbers can fit in HOST_WIDE_INT but it may be
17826 smarter to encode their opposite. The DW_OP_plus_uconst operation
17827 takes 1 + X bytes, X being the size of the ULEB128 addend. On the
17828 other hand, a "<push literal>; DW_OP_minus" pattern takes 1 + Y
17829 bytes, Y being the size of the operation that pushes the opposite
17830 of the addend. So let's choose the smallest representation. */
17831 const tree tree_addend = TREE_OPERAND (loc, 1);
17832 offset_int wi_addend;
17833 HOST_WIDE_INT shwi_addend;
17834 dw_loc_descr_ref loc_naddend;
17836 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
17837 if (list_ret == 0)
17838 return 0;
17840 /* Try to get the literal to push. It is the opposite of the addend,
17841 so as we rely on wrapping during DWARF evaluation, first decode
17842 the literal as a "DWARF-sized" signed number. */
17843 wi_addend = wi::to_offset (tree_addend);
17844 wi_addend = wi::sext (wi_addend, DWARF2_ADDR_SIZE * 8);
17845 shwi_addend = wi_addend.to_shwi ();
17846 loc_naddend = (shwi_addend != INTTYPE_MINIMUM (HOST_WIDE_INT))
17847 ? int_loc_descriptor (-shwi_addend)
17848 : NULL;
17850 if (loc_naddend != NULL
17851 && ((unsigned) size_of_uleb128 (shwi_addend)
17852 > size_of_loc_descr (loc_naddend)))
17854 add_loc_descr_to_each (list_ret, loc_naddend);
17855 add_loc_descr_to_each (list_ret,
17856 new_loc_descr (DW_OP_minus, 0, 0));
17858 else
17860 for (dw_loc_descr_ref loc_cur = loc_naddend; loc_cur != NULL; )
17862 loc_naddend = loc_cur;
17863 loc_cur = loc_cur->dw_loc_next;
17864 ggc_free (loc_naddend);
17866 loc_list_plus_const (list_ret, wi_addend.to_shwi ());
17868 break;
17871 op = DW_OP_plus;
17872 goto do_binop;
17874 case LE_EXPR:
17875 op = DW_OP_le;
17876 goto do_comp_binop;
17878 case GE_EXPR:
17879 op = DW_OP_ge;
17880 goto do_comp_binop;
17882 case LT_EXPR:
17883 op = DW_OP_lt;
17884 goto do_comp_binop;
17886 case GT_EXPR:
17887 op = DW_OP_gt;
17888 goto do_comp_binop;
17890 do_comp_binop:
17891 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
17893 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
17894 list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0, context);
17895 list_ret = loc_list_from_uint_comparison (list_ret, list_ret1,
17896 TREE_CODE (loc));
17897 break;
17899 else
17900 goto do_binop;
17902 case EQ_EXPR:
17903 op = DW_OP_eq;
17904 goto do_binop;
17906 case NE_EXPR:
17907 op = DW_OP_ne;
17908 goto do_binop;
17910 do_binop:
17911 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
17912 list_ret1 = loc_list_from_tree_1 (TREE_OPERAND (loc, 1), 0, context);
17913 if (list_ret == 0 || list_ret1 == 0)
17914 return 0;
17916 add_loc_list (&list_ret, list_ret1);
17917 if (list_ret == 0)
17918 return 0;
17919 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
17920 break;
17922 case TRUTH_NOT_EXPR:
17923 case BIT_NOT_EXPR:
17924 op = DW_OP_not;
17925 goto do_unop;
17927 case ABS_EXPR:
17928 op = DW_OP_abs;
17929 goto do_unop;
17931 case NEGATE_EXPR:
17932 op = DW_OP_neg;
17933 goto do_unop;
17935 do_unop:
17936 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
17937 if (list_ret == 0)
17938 return 0;
17940 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
17941 break;
17943 case MIN_EXPR:
17944 case MAX_EXPR:
17946 const enum tree_code code =
17947 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
17949 loc = build3 (COND_EXPR, TREE_TYPE (loc),
17950 build2 (code, integer_type_node,
17951 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
17952 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
17955 /* fall through */
17957 case COND_EXPR:
17959 dw_loc_descr_ref lhs
17960 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0, context);
17961 dw_loc_list_ref rhs
17962 = loc_list_from_tree_1 (TREE_OPERAND (loc, 2), 0, context);
17963 dw_loc_descr_ref bra_node, jump_node, tmp;
17965 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
17966 if (list_ret == 0 || lhs == 0 || rhs == 0)
17967 return 0;
17969 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
17970 add_loc_descr_to_each (list_ret, bra_node);
17972 add_loc_list (&list_ret, rhs);
17973 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
17974 add_loc_descr_to_each (list_ret, jump_node);
17976 add_loc_descr_to_each (list_ret, lhs);
17977 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
17978 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
17980 /* ??? Need a node to point the skip at. Use a nop. */
17981 tmp = new_loc_descr (DW_OP_nop, 0, 0);
17982 add_loc_descr_to_each (list_ret, tmp);
17983 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
17984 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
17986 break;
17988 case FIX_TRUNC_EXPR:
17989 return 0;
17991 default:
17992 /* Leave front-end specific codes as simply unknown. This comes
17993 up, for instance, with the C STMT_EXPR. */
17994 if ((unsigned int) TREE_CODE (loc)
17995 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
17997 expansion_failed (loc, NULL_RTX,
17998 "language specific tree node");
17999 return 0;
18002 /* Otherwise this is a generic code; we should just lists all of
18003 these explicitly. We forgot one. */
18004 if (flag_checking)
18005 gcc_unreachable ();
18007 /* In a release build, we want to degrade gracefully: better to
18008 generate incomplete debugging information than to crash. */
18009 return NULL;
18012 if (!ret && !list_ret)
18013 return 0;
18015 if (want_address == 2 && !have_address
18016 && (dwarf_version >= 4 || !dwarf_strict))
18018 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
18020 expansion_failed (loc, NULL_RTX,
18021 "DWARF address size mismatch");
18022 return 0;
18024 if (ret)
18025 add_loc_descr (&ret, new_loc_descr (DW_OP_stack_value, 0, 0));
18026 else
18027 add_loc_descr_to_each (list_ret,
18028 new_loc_descr (DW_OP_stack_value, 0, 0));
18029 have_address = 1;
18031 /* Show if we can't fill the request for an address. */
18032 if (want_address && !have_address)
18034 expansion_failed (loc, NULL_RTX,
18035 "Want address and only have value");
18036 return 0;
18039 gcc_assert (!ret || !list_ret);
18041 /* If we've got an address and don't want one, dereference. */
18042 if (!want_address && have_address)
18044 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
18046 if (size > DWARF2_ADDR_SIZE || size == -1)
18048 expansion_failed (loc, NULL_RTX,
18049 "DWARF address size mismatch");
18050 return 0;
18052 else if (size == DWARF2_ADDR_SIZE)
18053 op = DW_OP_deref;
18054 else
18055 op = DW_OP_deref_size;
18057 if (ret)
18058 add_loc_descr (&ret, new_loc_descr (op, size, 0));
18059 else
18060 add_loc_descr_to_each (list_ret, new_loc_descr (op, size, 0));
18062 if (ret)
18063 list_ret = new_loc_list (ret, NULL, NULL, NULL);
18065 return list_ret;
18068 /* Likewise, but strip useless DW_OP_nop operations in the resulting
18069 expressions. */
18071 static dw_loc_list_ref
18072 loc_list_from_tree (tree loc, int want_address,
18073 struct loc_descr_context *context)
18075 dw_loc_list_ref result = loc_list_from_tree_1 (loc, want_address, context);
18077 for (dw_loc_list_ref loc_cur = result;
18078 loc_cur != NULL; loc_cur = loc_cur->dw_loc_next)
18079 loc_descr_without_nops (loc_cur->expr);
18080 return result;
18083 /* Same as above but return only single location expression. */
18084 static dw_loc_descr_ref
18085 loc_descriptor_from_tree (tree loc, int want_address,
18086 struct loc_descr_context *context)
18088 dw_loc_list_ref ret = loc_list_from_tree (loc, want_address, context);
18089 if (!ret)
18090 return NULL;
18091 if (ret->dw_loc_next)
18093 expansion_failed (loc, NULL_RTX,
18094 "Location list where only loc descriptor needed");
18095 return NULL;
18097 return ret->expr;
18100 /* Given a value, round it up to the lowest multiple of `boundary'
18101 which is not less than the value itself. */
18103 static inline HOST_WIDE_INT
18104 ceiling (HOST_WIDE_INT value, unsigned int boundary)
18106 return (((value + boundary - 1) / boundary) * boundary);
18109 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
18110 pointer to the declared type for the relevant field variable, or return
18111 `integer_type_node' if the given node turns out to be an
18112 ERROR_MARK node. */
18114 static inline tree
18115 field_type (const_tree decl)
18117 tree type;
18119 if (TREE_CODE (decl) == ERROR_MARK)
18120 return integer_type_node;
18122 type = DECL_BIT_FIELD_TYPE (decl);
18123 if (type == NULL_TREE)
18124 type = TREE_TYPE (decl);
18126 return type;
18129 /* Given a pointer to a tree node, return the alignment in bits for
18130 it, or else return BITS_PER_WORD if the node actually turns out to
18131 be an ERROR_MARK node. */
18133 static inline unsigned
18134 simple_type_align_in_bits (const_tree type)
18136 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
18139 static inline unsigned
18140 simple_decl_align_in_bits (const_tree decl)
18142 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
18145 /* Return the result of rounding T up to ALIGN. */
18147 static inline offset_int
18148 round_up_to_align (const offset_int &t, unsigned int align)
18150 return wi::udiv_trunc (t + align - 1, align) * align;
18153 /* Compute the size of TYPE in bytes. If possible, return NULL and store the
18154 size as an integer constant in CST_SIZE. Otherwise, if possible, return a
18155 DWARF expression that computes the size. Return NULL and set CST_SIZE to -1
18156 if we fail to return the size in one of these two forms. */
18158 static dw_loc_descr_ref
18159 type_byte_size (const_tree type, HOST_WIDE_INT *cst_size)
18161 tree tree_size;
18162 struct loc_descr_context ctx;
18164 /* Return a constant integer in priority, if possible. */
18165 *cst_size = int_size_in_bytes (type);
18166 if (*cst_size != -1)
18167 return NULL;
18169 ctx.context_type = const_cast<tree> (type);
18170 ctx.base_decl = NULL_TREE;
18171 ctx.dpi = NULL;
18172 ctx.placeholder_arg = false;
18173 ctx.placeholder_seen = false;
18175 type = TYPE_MAIN_VARIANT (type);
18176 tree_size = TYPE_SIZE_UNIT (type);
18177 return ((tree_size != NULL_TREE)
18178 ? loc_descriptor_from_tree (tree_size, 0, &ctx)
18179 : NULL);
18182 /* Helper structure for RECORD_TYPE processing. */
18183 struct vlr_context
18185 /* Root RECORD_TYPE. It is needed to generate data member location
18186 descriptions in variable-length records (VLR), but also to cope with
18187 variants, which are composed of nested structures multiplexed with
18188 QUAL_UNION_TYPE nodes. Each time such a structure is passed to a
18189 function processing a FIELD_DECL, it is required to be non null. */
18190 tree struct_type;
18191 /* When generating a variant part in a RECORD_TYPE (i.e. a nested
18192 QUAL_UNION_TYPE), this holds an expression that computes the offset for
18193 this variant part as part of the root record (in storage units). For
18194 regular records, it must be NULL_TREE. */
18195 tree variant_part_offset;
18198 /* Given a pointer to a FIELD_DECL, compute the byte offset of the lowest
18199 addressed byte of the "containing object" for the given FIELD_DECL. If
18200 possible, return a native constant through CST_OFFSET (in which case NULL is
18201 returned); otherwise return a DWARF expression that computes the offset.
18203 Set *CST_OFFSET to 0 and return NULL if we are unable to determine what
18204 that offset is, either because the argument turns out to be a pointer to an
18205 ERROR_MARK node, or because the offset expression is too complex for us.
18207 CTX is required: see the comment for VLR_CONTEXT. */
18209 static dw_loc_descr_ref
18210 field_byte_offset (const_tree decl, struct vlr_context *ctx,
18211 HOST_WIDE_INT *cst_offset)
18213 tree tree_result;
18214 dw_loc_list_ref loc_result;
18216 *cst_offset = 0;
18218 if (TREE_CODE (decl) == ERROR_MARK)
18219 return NULL;
18220 else
18221 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
18223 /* We cannot handle variable bit offsets at the moment, so abort if it's the
18224 case. */
18225 if (TREE_CODE (DECL_FIELD_BIT_OFFSET (decl)) != INTEGER_CST)
18226 return NULL;
18228 #ifdef PCC_BITFIELD_TYPE_MATTERS
18229 /* We used to handle only constant offsets in all cases. Now, we handle
18230 properly dynamic byte offsets only when PCC bitfield type doesn't
18231 matter. */
18232 if (PCC_BITFIELD_TYPE_MATTERS
18233 && TREE_CODE (DECL_FIELD_OFFSET (decl)) == INTEGER_CST)
18235 offset_int object_offset_in_bits;
18236 offset_int object_offset_in_bytes;
18237 offset_int bitpos_int;
18238 tree type;
18239 tree field_size_tree;
18240 offset_int deepest_bitpos;
18241 offset_int field_size_in_bits;
18242 unsigned int type_align_in_bits;
18243 unsigned int decl_align_in_bits;
18244 offset_int type_size_in_bits;
18246 bitpos_int = wi::to_offset (bit_position (decl));
18247 type = field_type (decl);
18248 type_size_in_bits = offset_int_type_size_in_bits (type);
18249 type_align_in_bits = simple_type_align_in_bits (type);
18251 field_size_tree = DECL_SIZE (decl);
18253 /* The size could be unspecified if there was an error, or for
18254 a flexible array member. */
18255 if (!field_size_tree)
18256 field_size_tree = bitsize_zero_node;
18258 /* If the size of the field is not constant, use the type size. */
18259 if (TREE_CODE (field_size_tree) == INTEGER_CST)
18260 field_size_in_bits = wi::to_offset (field_size_tree);
18261 else
18262 field_size_in_bits = type_size_in_bits;
18264 decl_align_in_bits = simple_decl_align_in_bits (decl);
18266 /* The GCC front-end doesn't make any attempt to keep track of the
18267 starting bit offset (relative to the start of the containing
18268 structure type) of the hypothetical "containing object" for a
18269 bit-field. Thus, when computing the byte offset value for the
18270 start of the "containing object" of a bit-field, we must deduce
18271 this information on our own. This can be rather tricky to do in
18272 some cases. For example, handling the following structure type
18273 definition when compiling for an i386/i486 target (which only
18274 aligns long long's to 32-bit boundaries) can be very tricky:
18276 struct S { int field1; long long field2:31; };
18278 Fortunately, there is a simple rule-of-thumb which can be used
18279 in such cases. When compiling for an i386/i486, GCC will
18280 allocate 8 bytes for the structure shown above. It decides to
18281 do this based upon one simple rule for bit-field allocation.
18282 GCC allocates each "containing object" for each bit-field at
18283 the first (i.e. lowest addressed) legitimate alignment boundary
18284 (based upon the required minimum alignment for the declared
18285 type of the field) which it can possibly use, subject to the
18286 condition that there is still enough available space remaining
18287 in the containing object (when allocated at the selected point)
18288 to fully accommodate all of the bits of the bit-field itself.
18290 This simple rule makes it obvious why GCC allocates 8 bytes for
18291 each object of the structure type shown above. When looking
18292 for a place to allocate the "containing object" for `field2',
18293 the compiler simply tries to allocate a 64-bit "containing
18294 object" at each successive 32-bit boundary (starting at zero)
18295 until it finds a place to allocate that 64- bit field such that
18296 at least 31 contiguous (and previously unallocated) bits remain
18297 within that selected 64 bit field. (As it turns out, for the
18298 example above, the compiler finds it is OK to allocate the
18299 "containing object" 64-bit field at bit-offset zero within the
18300 structure type.)
18302 Here we attempt to work backwards from the limited set of facts
18303 we're given, and we try to deduce from those facts, where GCC
18304 must have believed that the containing object started (within
18305 the structure type). The value we deduce is then used (by the
18306 callers of this routine) to generate DW_AT_location and
18307 DW_AT_bit_offset attributes for fields (both bit-fields and, in
18308 the case of DW_AT_location, regular fields as well). */
18310 /* Figure out the bit-distance from the start of the structure to
18311 the "deepest" bit of the bit-field. */
18312 deepest_bitpos = bitpos_int + field_size_in_bits;
18314 /* This is the tricky part. Use some fancy footwork to deduce
18315 where the lowest addressed bit of the containing object must
18316 be. */
18317 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
18319 /* Round up to type_align by default. This works best for
18320 bitfields. */
18321 object_offset_in_bits
18322 = round_up_to_align (object_offset_in_bits, type_align_in_bits);
18324 if (wi::gtu_p (object_offset_in_bits, bitpos_int))
18326 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
18328 /* Round up to decl_align instead. */
18329 object_offset_in_bits
18330 = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
18333 object_offset_in_bytes
18334 = wi::lrshift (object_offset_in_bits, LOG2_BITS_PER_UNIT);
18335 if (ctx->variant_part_offset == NULL_TREE)
18337 *cst_offset = object_offset_in_bytes.to_shwi ();
18338 return NULL;
18340 tree_result = wide_int_to_tree (sizetype, object_offset_in_bytes);
18342 else
18343 #endif /* PCC_BITFIELD_TYPE_MATTERS */
18344 tree_result = byte_position (decl);
18346 if (ctx->variant_part_offset != NULL_TREE)
18347 tree_result = fold_build2 (PLUS_EXPR, TREE_TYPE (tree_result),
18348 ctx->variant_part_offset, tree_result);
18350 /* If the byte offset is a constant, it's simplier to handle a native
18351 constant rather than a DWARF expression. */
18352 if (TREE_CODE (tree_result) == INTEGER_CST)
18354 *cst_offset = wi::to_offset (tree_result).to_shwi ();
18355 return NULL;
18357 struct loc_descr_context loc_ctx = {
18358 ctx->struct_type, /* context_type */
18359 NULL_TREE, /* base_decl */
18360 NULL, /* dpi */
18361 false, /* placeholder_arg */
18362 false /* placeholder_seen */
18364 loc_result = loc_list_from_tree (tree_result, 0, &loc_ctx);
18366 /* We want a DWARF expression: abort if we only have a location list with
18367 multiple elements. */
18368 if (!loc_result || !single_element_loc_list_p (loc_result))
18369 return NULL;
18370 else
18371 return loc_result->expr;
18374 /* The following routines define various Dwarf attributes and any data
18375 associated with them. */
18377 /* Add a location description attribute value to a DIE.
18379 This emits location attributes suitable for whole variables and
18380 whole parameters. Note that the location attributes for struct fields are
18381 generated by the routine `data_member_location_attribute' below. */
18383 static inline void
18384 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
18385 dw_loc_list_ref descr)
18387 if (descr == 0)
18388 return;
18389 if (single_element_loc_list_p (descr))
18390 add_AT_loc (die, attr_kind, descr->expr);
18391 else
18392 add_AT_loc_list (die, attr_kind, descr);
18395 /* Add DW_AT_accessibility attribute to DIE if needed. */
18397 static void
18398 add_accessibility_attribute (dw_die_ref die, tree decl)
18400 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
18401 children, otherwise the default is DW_ACCESS_public. In DWARF2
18402 the default has always been DW_ACCESS_public. */
18403 if (TREE_PROTECTED (decl))
18404 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
18405 else if (TREE_PRIVATE (decl))
18407 if (dwarf_version == 2
18408 || die->die_parent == NULL
18409 || die->die_parent->die_tag != DW_TAG_class_type)
18410 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
18412 else if (dwarf_version > 2
18413 && die->die_parent
18414 && die->die_parent->die_tag == DW_TAG_class_type)
18415 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
18418 /* Attach the specialized form of location attribute used for data members of
18419 struct and union types. In the special case of a FIELD_DECL node which
18420 represents a bit-field, the "offset" part of this special location
18421 descriptor must indicate the distance in bytes from the lowest-addressed
18422 byte of the containing struct or union type to the lowest-addressed byte of
18423 the "containing object" for the bit-field. (See the `field_byte_offset'
18424 function above).
18426 For any given bit-field, the "containing object" is a hypothetical object
18427 (of some integral or enum type) within which the given bit-field lives. The
18428 type of this hypothetical "containing object" is always the same as the
18429 declared type of the individual bit-field itself (for GCC anyway... the
18430 DWARF spec doesn't actually mandate this). Note that it is the size (in
18431 bytes) of the hypothetical "containing object" which will be given in the
18432 DW_AT_byte_size attribute for this bit-field. (See the
18433 `byte_size_attribute' function below.) It is also used when calculating the
18434 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
18435 function below.)
18437 CTX is required: see the comment for VLR_CONTEXT. */
18439 static void
18440 add_data_member_location_attribute (dw_die_ref die,
18441 tree decl,
18442 struct vlr_context *ctx)
18444 HOST_WIDE_INT offset;
18445 dw_loc_descr_ref loc_descr = 0;
18447 if (TREE_CODE (decl) == TREE_BINFO)
18449 /* We're working on the TAG_inheritance for a base class. */
18450 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
18452 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
18453 aren't at a fixed offset from all (sub)objects of the same
18454 type. We need to extract the appropriate offset from our
18455 vtable. The following dwarf expression means
18457 BaseAddr = ObAddr + *((*ObAddr) - Offset)
18459 This is specific to the V3 ABI, of course. */
18461 dw_loc_descr_ref tmp;
18463 /* Make a copy of the object address. */
18464 tmp = new_loc_descr (DW_OP_dup, 0, 0);
18465 add_loc_descr (&loc_descr, tmp);
18467 /* Extract the vtable address. */
18468 tmp = new_loc_descr (DW_OP_deref, 0, 0);
18469 add_loc_descr (&loc_descr, tmp);
18471 /* Calculate the address of the offset. */
18472 offset = tree_to_shwi (BINFO_VPTR_FIELD (decl));
18473 gcc_assert (offset < 0);
18475 tmp = int_loc_descriptor (-offset);
18476 add_loc_descr (&loc_descr, tmp);
18477 tmp = new_loc_descr (DW_OP_minus, 0, 0);
18478 add_loc_descr (&loc_descr, tmp);
18480 /* Extract the offset. */
18481 tmp = new_loc_descr (DW_OP_deref, 0, 0);
18482 add_loc_descr (&loc_descr, tmp);
18484 /* Add it to the object address. */
18485 tmp = new_loc_descr (DW_OP_plus, 0, 0);
18486 add_loc_descr (&loc_descr, tmp);
18488 else
18489 offset = tree_to_shwi (BINFO_OFFSET (decl));
18491 else
18493 loc_descr = field_byte_offset (decl, ctx, &offset);
18495 /* If loc_descr is available then we know the field offset is dynamic.
18496 However, GDB does not handle dynamic field offsets very well at the
18497 moment. */
18498 if (loc_descr != NULL && gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
18500 loc_descr = NULL;
18501 offset = 0;
18504 /* Data member location evalutation starts with the base address on the
18505 stack. Compute the field offset and add it to this base address. */
18506 else if (loc_descr != NULL)
18507 add_loc_descr (&loc_descr, new_loc_descr (DW_OP_plus, 0, 0));
18510 if (! loc_descr)
18512 /* While DW_AT_data_bit_offset has been added already in DWARF4,
18513 e.g. GDB only added support to it in November 2016. For DWARF5
18514 we need newer debug info consumers anyway. We might change this
18515 to dwarf_version >= 4 once most consumers catched up. */
18516 if (dwarf_version >= 5
18517 && TREE_CODE (decl) == FIELD_DECL
18518 && DECL_BIT_FIELD_TYPE (decl))
18520 tree off = bit_position (decl);
18521 if (tree_fits_uhwi_p (off) && get_AT (die, DW_AT_bit_size))
18523 remove_AT (die, DW_AT_byte_size);
18524 remove_AT (die, DW_AT_bit_offset);
18525 add_AT_unsigned (die, DW_AT_data_bit_offset, tree_to_uhwi (off));
18526 return;
18529 if (dwarf_version > 2)
18531 /* Don't need to output a location expression, just the constant. */
18532 if (offset < 0)
18533 add_AT_int (die, DW_AT_data_member_location, offset);
18534 else
18535 add_AT_unsigned (die, DW_AT_data_member_location, offset);
18536 return;
18538 else
18540 enum dwarf_location_atom op;
18542 /* The DWARF2 standard says that we should assume that the structure
18543 address is already on the stack, so we can specify a structure
18544 field address by using DW_OP_plus_uconst. */
18545 op = DW_OP_plus_uconst;
18546 loc_descr = new_loc_descr (op, offset, 0);
18550 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
18553 /* Writes integer values to dw_vec_const array. */
18555 static void
18556 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
18558 while (size != 0)
18560 *dest++ = val & 0xff;
18561 val >>= 8;
18562 --size;
18566 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
18568 static HOST_WIDE_INT
18569 extract_int (const unsigned char *src, unsigned int size)
18571 HOST_WIDE_INT val = 0;
18573 src += size;
18574 while (size != 0)
18576 val <<= 8;
18577 val |= *--src & 0xff;
18578 --size;
18580 return val;
18583 /* Writes wide_int values to dw_vec_const array. */
18585 static void
18586 insert_wide_int (const wide_int &val, unsigned char *dest, int elt_size)
18588 int i;
18590 if (elt_size <= HOST_BITS_PER_WIDE_INT/BITS_PER_UNIT)
18592 insert_int ((HOST_WIDE_INT) val.elt (0), elt_size, dest);
18593 return;
18596 /* We'd have to extend this code to support odd sizes. */
18597 gcc_assert (elt_size % (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT) == 0);
18599 int n = elt_size / (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
18601 if (WORDS_BIG_ENDIAN)
18602 for (i = n - 1; i >= 0; i--)
18604 insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
18605 dest += sizeof (HOST_WIDE_INT);
18607 else
18608 for (i = 0; i < n; i++)
18610 insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
18611 dest += sizeof (HOST_WIDE_INT);
18615 /* Writes floating point values to dw_vec_const array. */
18617 static void
18618 insert_float (const_rtx rtl, unsigned char *array)
18620 long val[4];
18621 int i;
18622 scalar_float_mode mode = as_a <scalar_float_mode> (GET_MODE (rtl));
18624 real_to_target (val, CONST_DOUBLE_REAL_VALUE (rtl), mode);
18626 /* real_to_target puts 32-bit pieces in each long. Pack them. */
18627 for (i = 0; i < GET_MODE_SIZE (mode) / 4; i++)
18629 insert_int (val[i], 4, array);
18630 array += 4;
18634 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
18635 does not have a "location" either in memory or in a register. These
18636 things can arise in GNU C when a constant is passed as an actual parameter
18637 to an inlined function. They can also arise in C++ where declared
18638 constants do not necessarily get memory "homes". */
18640 static bool
18641 add_const_value_attribute (dw_die_ref die, rtx rtl)
18643 switch (GET_CODE (rtl))
18645 case CONST_INT:
18647 HOST_WIDE_INT val = INTVAL (rtl);
18649 if (val < 0)
18650 add_AT_int (die, DW_AT_const_value, val);
18651 else
18652 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
18654 return true;
18656 case CONST_WIDE_INT:
18658 wide_int w1 = rtx_mode_t (rtl, MAX_MODE_INT);
18659 unsigned int prec = MIN (wi::min_precision (w1, UNSIGNED),
18660 (unsigned int)CONST_WIDE_INT_NUNITS (rtl) * HOST_BITS_PER_WIDE_INT);
18661 wide_int w = wi::zext (w1, prec);
18662 add_AT_wide (die, DW_AT_const_value, w);
18664 return true;
18666 case CONST_DOUBLE:
18667 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
18668 floating-point constant. A CONST_DOUBLE is used whenever the
18669 constant requires more than one word in order to be adequately
18670 represented. */
18671 if (TARGET_SUPPORTS_WIDE_INT == 0
18672 && !SCALAR_FLOAT_MODE_P (GET_MODE (rtl)))
18673 add_AT_double (die, DW_AT_const_value,
18674 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
18675 else
18677 scalar_float_mode mode = as_a <scalar_float_mode> (GET_MODE (rtl));
18678 unsigned int length = GET_MODE_SIZE (mode);
18679 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
18681 insert_float (rtl, array);
18682 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
18684 return true;
18686 case CONST_VECTOR:
18688 machine_mode mode = GET_MODE (rtl);
18689 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
18690 unsigned int length = CONST_VECTOR_NUNITS (rtl);
18691 unsigned char *array
18692 = ggc_vec_alloc<unsigned char> (length * elt_size);
18693 unsigned int i;
18694 unsigned char *p;
18695 machine_mode imode = GET_MODE_INNER (mode);
18697 switch (GET_MODE_CLASS (mode))
18699 case MODE_VECTOR_INT:
18700 for (i = 0, p = array; i < length; i++, p += elt_size)
18702 rtx elt = CONST_VECTOR_ELT (rtl, i);
18703 insert_wide_int (rtx_mode_t (elt, imode), p, elt_size);
18705 break;
18707 case MODE_VECTOR_FLOAT:
18708 for (i = 0, p = array; i < length; i++, p += elt_size)
18710 rtx elt = CONST_VECTOR_ELT (rtl, i);
18711 insert_float (elt, p);
18713 break;
18715 default:
18716 gcc_unreachable ();
18719 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
18721 return true;
18723 case CONST_STRING:
18724 if (dwarf_version >= 4 || !dwarf_strict)
18726 dw_loc_descr_ref loc_result;
18727 resolve_one_addr (&rtl);
18728 rtl_addr:
18729 loc_result = new_addr_loc_descr (rtl, dtprel_false);
18730 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
18731 add_AT_loc (die, DW_AT_location, loc_result);
18732 vec_safe_push (used_rtx_array, rtl);
18733 return true;
18735 return false;
18737 case CONST:
18738 if (CONSTANT_P (XEXP (rtl, 0)))
18739 return add_const_value_attribute (die, XEXP (rtl, 0));
18740 /* FALLTHROUGH */
18741 case SYMBOL_REF:
18742 if (!const_ok_for_output (rtl))
18743 return false;
18744 /* FALLTHROUGH */
18745 case LABEL_REF:
18746 if (dwarf_version >= 4 || !dwarf_strict)
18747 goto rtl_addr;
18748 return false;
18750 case PLUS:
18751 /* In cases where an inlined instance of an inline function is passed
18752 the address of an `auto' variable (which is local to the caller) we
18753 can get a situation where the DECL_RTL of the artificial local
18754 variable (for the inlining) which acts as a stand-in for the
18755 corresponding formal parameter (of the inline function) will look
18756 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
18757 exactly a compile-time constant expression, but it isn't the address
18758 of the (artificial) local variable either. Rather, it represents the
18759 *value* which the artificial local variable always has during its
18760 lifetime. We currently have no way to represent such quasi-constant
18761 values in Dwarf, so for now we just punt and generate nothing. */
18762 return false;
18764 case HIGH:
18765 case CONST_FIXED:
18766 return false;
18768 case MEM:
18769 if (GET_CODE (XEXP (rtl, 0)) == CONST_STRING
18770 && MEM_READONLY_P (rtl)
18771 && GET_MODE (rtl) == BLKmode)
18773 add_AT_string (die, DW_AT_const_value, XSTR (XEXP (rtl, 0), 0));
18774 return true;
18776 return false;
18778 default:
18779 /* No other kinds of rtx should be possible here. */
18780 gcc_unreachable ();
18782 return false;
18785 /* Determine whether the evaluation of EXPR references any variables
18786 or functions which aren't otherwise used (and therefore may not be
18787 output). */
18788 static tree
18789 reference_to_unused (tree * tp, int * walk_subtrees,
18790 void * data ATTRIBUTE_UNUSED)
18792 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
18793 *walk_subtrees = 0;
18795 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
18796 && ! TREE_ASM_WRITTEN (*tp))
18797 return *tp;
18798 /* ??? The C++ FE emits debug information for using decls, so
18799 putting gcc_unreachable here falls over. See PR31899. For now
18800 be conservative. */
18801 else if (!symtab->global_info_ready && VAR_OR_FUNCTION_DECL_P (*tp))
18802 return *tp;
18803 else if (VAR_P (*tp))
18805 varpool_node *node = varpool_node::get (*tp);
18806 if (!node || !node->definition)
18807 return *tp;
18809 else if (TREE_CODE (*tp) == FUNCTION_DECL
18810 && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
18812 /* The call graph machinery must have finished analyzing,
18813 optimizing and gimplifying the CU by now.
18814 So if *TP has no call graph node associated
18815 to it, it means *TP will not be emitted. */
18816 if (!cgraph_node::get (*tp))
18817 return *tp;
18819 else if (TREE_CODE (*tp) == STRING_CST && !TREE_ASM_WRITTEN (*tp))
18820 return *tp;
18822 return NULL_TREE;
18825 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
18826 for use in a later add_const_value_attribute call. */
18828 static rtx
18829 rtl_for_decl_init (tree init, tree type)
18831 rtx rtl = NULL_RTX;
18833 STRIP_NOPS (init);
18835 /* If a variable is initialized with a string constant without embedded
18836 zeros, build CONST_STRING. */
18837 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
18839 tree enttype = TREE_TYPE (type);
18840 tree domain = TYPE_DOMAIN (type);
18841 scalar_int_mode mode;
18843 if (is_int_mode (TYPE_MODE (enttype), &mode)
18844 && GET_MODE_SIZE (mode) == 1
18845 && domain
18846 && integer_zerop (TYPE_MIN_VALUE (domain))
18847 && compare_tree_int (TYPE_MAX_VALUE (domain),
18848 TREE_STRING_LENGTH (init) - 1) == 0
18849 && ((size_t) TREE_STRING_LENGTH (init)
18850 == strlen (TREE_STRING_POINTER (init)) + 1))
18852 rtl = gen_rtx_CONST_STRING (VOIDmode,
18853 ggc_strdup (TREE_STRING_POINTER (init)));
18854 rtl = gen_rtx_MEM (BLKmode, rtl);
18855 MEM_READONLY_P (rtl) = 1;
18858 /* Other aggregates, and complex values, could be represented using
18859 CONCAT: FIXME! */
18860 else if (AGGREGATE_TYPE_P (type)
18861 || (TREE_CODE (init) == VIEW_CONVERT_EXPR
18862 && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (init, 0))))
18863 || TREE_CODE (type) == COMPLEX_TYPE)
18865 /* Vectors only work if their mode is supported by the target.
18866 FIXME: generic vectors ought to work too. */
18867 else if (TREE_CODE (type) == VECTOR_TYPE
18868 && !VECTOR_MODE_P (TYPE_MODE (type)))
18870 /* If the initializer is something that we know will expand into an
18871 immediate RTL constant, expand it now. We must be careful not to
18872 reference variables which won't be output. */
18873 else if (initializer_constant_valid_p (init, type)
18874 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
18876 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
18877 possible. */
18878 if (TREE_CODE (type) == VECTOR_TYPE)
18879 switch (TREE_CODE (init))
18881 case VECTOR_CST:
18882 break;
18883 case CONSTRUCTOR:
18884 if (TREE_CONSTANT (init))
18886 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (init);
18887 bool constant_p = true;
18888 tree value;
18889 unsigned HOST_WIDE_INT ix;
18891 /* Even when ctor is constant, it might contain non-*_CST
18892 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
18893 belong into VECTOR_CST nodes. */
18894 FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
18895 if (!CONSTANT_CLASS_P (value))
18897 constant_p = false;
18898 break;
18901 if (constant_p)
18903 init = build_vector_from_ctor (type, elts);
18904 break;
18907 /* FALLTHRU */
18909 default:
18910 return NULL;
18913 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
18915 /* If expand_expr returns a MEM, it wasn't immediate. */
18916 gcc_assert (!rtl || !MEM_P (rtl));
18919 return rtl;
18922 /* Generate RTL for the variable DECL to represent its location. */
18924 static rtx
18925 rtl_for_decl_location (tree decl)
18927 rtx rtl;
18929 /* Here we have to decide where we are going to say the parameter "lives"
18930 (as far as the debugger is concerned). We only have a couple of
18931 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
18933 DECL_RTL normally indicates where the parameter lives during most of the
18934 activation of the function. If optimization is enabled however, this
18935 could be either NULL or else a pseudo-reg. Both of those cases indicate
18936 that the parameter doesn't really live anywhere (as far as the code
18937 generation parts of GCC are concerned) during most of the function's
18938 activation. That will happen (for example) if the parameter is never
18939 referenced within the function.
18941 We could just generate a location descriptor here for all non-NULL
18942 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
18943 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
18944 where DECL_RTL is NULL or is a pseudo-reg.
18946 Note however that we can only get away with using DECL_INCOMING_RTL as
18947 a backup substitute for DECL_RTL in certain limited cases. In cases
18948 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
18949 we can be sure that the parameter was passed using the same type as it is
18950 declared to have within the function, and that its DECL_INCOMING_RTL
18951 points us to a place where a value of that type is passed.
18953 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
18954 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
18955 because in these cases DECL_INCOMING_RTL points us to a value of some
18956 type which is *different* from the type of the parameter itself. Thus,
18957 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
18958 such cases, the debugger would end up (for example) trying to fetch a
18959 `float' from a place which actually contains the first part of a
18960 `double'. That would lead to really incorrect and confusing
18961 output at debug-time.
18963 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
18964 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
18965 are a couple of exceptions however. On little-endian machines we can
18966 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
18967 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
18968 an integral type that is smaller than TREE_TYPE (decl). These cases arise
18969 when (on a little-endian machine) a non-prototyped function has a
18970 parameter declared to be of type `short' or `char'. In such cases,
18971 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
18972 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
18973 passed `int' value. If the debugger then uses that address to fetch
18974 a `short' or a `char' (on a little-endian machine) the result will be
18975 the correct data, so we allow for such exceptional cases below.
18977 Note that our goal here is to describe the place where the given formal
18978 parameter lives during most of the function's activation (i.e. between the
18979 end of the prologue and the start of the epilogue). We'll do that as best
18980 as we can. Note however that if the given formal parameter is modified
18981 sometime during the execution of the function, then a stack backtrace (at
18982 debug-time) will show the function as having been called with the *new*
18983 value rather than the value which was originally passed in. This happens
18984 rarely enough that it is not a major problem, but it *is* a problem, and
18985 I'd like to fix it.
18987 A future version of dwarf2out.c may generate two additional attributes for
18988 any given DW_TAG_formal_parameter DIE which will describe the "passed
18989 type" and the "passed location" for the given formal parameter in addition
18990 to the attributes we now generate to indicate the "declared type" and the
18991 "active location" for each parameter. This additional set of attributes
18992 could be used by debuggers for stack backtraces. Separately, note that
18993 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
18994 This happens (for example) for inlined-instances of inline function formal
18995 parameters which are never referenced. This really shouldn't be
18996 happening. All PARM_DECL nodes should get valid non-NULL
18997 DECL_INCOMING_RTL values. FIXME. */
18999 /* Use DECL_RTL as the "location" unless we find something better. */
19000 rtl = DECL_RTL_IF_SET (decl);
19002 /* When generating abstract instances, ignore everything except
19003 constants, symbols living in memory, and symbols living in
19004 fixed registers. */
19005 if (! reload_completed)
19007 if (rtl
19008 && (CONSTANT_P (rtl)
19009 || (MEM_P (rtl)
19010 && CONSTANT_P (XEXP (rtl, 0)))
19011 || (REG_P (rtl)
19012 && VAR_P (decl)
19013 && TREE_STATIC (decl))))
19015 rtl = targetm.delegitimize_address (rtl);
19016 return rtl;
19018 rtl = NULL_RTX;
19020 else if (TREE_CODE (decl) == PARM_DECL)
19022 if (rtl == NULL_RTX
19023 || is_pseudo_reg (rtl)
19024 || (MEM_P (rtl)
19025 && is_pseudo_reg (XEXP (rtl, 0))
19026 && DECL_INCOMING_RTL (decl)
19027 && MEM_P (DECL_INCOMING_RTL (decl))
19028 && GET_MODE (rtl) == GET_MODE (DECL_INCOMING_RTL (decl))))
19030 tree declared_type = TREE_TYPE (decl);
19031 tree passed_type = DECL_ARG_TYPE (decl);
19032 machine_mode dmode = TYPE_MODE (declared_type);
19033 machine_mode pmode = TYPE_MODE (passed_type);
19035 /* This decl represents a formal parameter which was optimized out.
19036 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
19037 all cases where (rtl == NULL_RTX) just below. */
19038 if (dmode == pmode)
19039 rtl = DECL_INCOMING_RTL (decl);
19040 else if ((rtl == NULL_RTX || is_pseudo_reg (rtl))
19041 && SCALAR_INT_MODE_P (dmode)
19042 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
19043 && DECL_INCOMING_RTL (decl))
19045 rtx inc = DECL_INCOMING_RTL (decl);
19046 if (REG_P (inc))
19047 rtl = inc;
19048 else if (MEM_P (inc))
19050 if (BYTES_BIG_ENDIAN)
19051 rtl = adjust_address_nv (inc, dmode,
19052 GET_MODE_SIZE (pmode)
19053 - GET_MODE_SIZE (dmode));
19054 else
19055 rtl = inc;
19060 /* If the parm was passed in registers, but lives on the stack, then
19061 make a big endian correction if the mode of the type of the
19062 parameter is not the same as the mode of the rtl. */
19063 /* ??? This is the same series of checks that are made in dbxout.c before
19064 we reach the big endian correction code there. It isn't clear if all
19065 of these checks are necessary here, but keeping them all is the safe
19066 thing to do. */
19067 else if (MEM_P (rtl)
19068 && XEXP (rtl, 0) != const0_rtx
19069 && ! CONSTANT_P (XEXP (rtl, 0))
19070 /* Not passed in memory. */
19071 && !MEM_P (DECL_INCOMING_RTL (decl))
19072 /* Not passed by invisible reference. */
19073 && (!REG_P (XEXP (rtl, 0))
19074 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
19075 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
19076 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
19077 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
19078 #endif
19080 /* Big endian correction check. */
19081 && BYTES_BIG_ENDIAN
19082 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
19083 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
19084 < UNITS_PER_WORD))
19086 machine_mode addr_mode = get_address_mode (rtl);
19087 int offset = (UNITS_PER_WORD
19088 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
19090 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
19091 plus_constant (addr_mode, XEXP (rtl, 0), offset));
19094 else if (VAR_P (decl)
19095 && rtl
19096 && MEM_P (rtl)
19097 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
19098 && BYTES_BIG_ENDIAN)
19100 machine_mode addr_mode = get_address_mode (rtl);
19101 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
19102 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
19104 /* If a variable is declared "register" yet is smaller than
19105 a register, then if we store the variable to memory, it
19106 looks like we're storing a register-sized value, when in
19107 fact we are not. We need to adjust the offset of the
19108 storage location to reflect the actual value's bytes,
19109 else gdb will not be able to display it. */
19110 if (rsize > dsize)
19111 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
19112 plus_constant (addr_mode, XEXP (rtl, 0),
19113 rsize - dsize));
19116 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
19117 and will have been substituted directly into all expressions that use it.
19118 C does not have such a concept, but C++ and other languages do. */
19119 if (!rtl && VAR_P (decl) && DECL_INITIAL (decl))
19120 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
19122 if (rtl)
19123 rtl = targetm.delegitimize_address (rtl);
19125 /* If we don't look past the constant pool, we risk emitting a
19126 reference to a constant pool entry that isn't referenced from
19127 code, and thus is not emitted. */
19128 if (rtl)
19129 rtl = avoid_constant_pool_reference (rtl);
19131 /* Try harder to get a rtl. If this symbol ends up not being emitted
19132 in the current CU, resolve_addr will remove the expression referencing
19133 it. */
19134 if (rtl == NULL_RTX
19135 && VAR_P (decl)
19136 && !DECL_EXTERNAL (decl)
19137 && TREE_STATIC (decl)
19138 && DECL_NAME (decl)
19139 && !DECL_HARD_REGISTER (decl)
19140 && DECL_MODE (decl) != VOIDmode)
19142 rtl = make_decl_rtl_for_debug (decl);
19143 if (!MEM_P (rtl)
19144 || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF
19145 || SYMBOL_REF_DECL (XEXP (rtl, 0)) != decl)
19146 rtl = NULL_RTX;
19149 return rtl;
19152 /* Check whether decl is a Fortran COMMON symbol. If not, NULL_TREE is
19153 returned. If so, the decl for the COMMON block is returned, and the
19154 value is the offset into the common block for the symbol. */
19156 static tree
19157 fortran_common (tree decl, HOST_WIDE_INT *value)
19159 tree val_expr, cvar;
19160 machine_mode mode;
19161 HOST_WIDE_INT bitsize, bitpos;
19162 tree offset;
19163 int unsignedp, reversep, volatilep = 0;
19165 /* If the decl isn't a VAR_DECL, or if it isn't static, or if
19166 it does not have a value (the offset into the common area), or if it
19167 is thread local (as opposed to global) then it isn't common, and shouldn't
19168 be handled as such. */
19169 if (!VAR_P (decl)
19170 || !TREE_STATIC (decl)
19171 || !DECL_HAS_VALUE_EXPR_P (decl)
19172 || !is_fortran ())
19173 return NULL_TREE;
19175 val_expr = DECL_VALUE_EXPR (decl);
19176 if (TREE_CODE (val_expr) != COMPONENT_REF)
19177 return NULL_TREE;
19179 cvar = get_inner_reference (val_expr, &bitsize, &bitpos, &offset, &mode,
19180 &unsignedp, &reversep, &volatilep);
19182 if (cvar == NULL_TREE
19183 || !VAR_P (cvar)
19184 || DECL_ARTIFICIAL (cvar)
19185 || !TREE_PUBLIC (cvar))
19186 return NULL_TREE;
19188 *value = 0;
19189 if (offset != NULL)
19191 if (!tree_fits_shwi_p (offset))
19192 return NULL_TREE;
19193 *value = tree_to_shwi (offset);
19195 if (bitpos != 0)
19196 *value += bitpos / BITS_PER_UNIT;
19198 return cvar;
19201 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
19202 data attribute for a variable or a parameter. We generate the
19203 DW_AT_const_value attribute only in those cases where the given variable
19204 or parameter does not have a true "location" either in memory or in a
19205 register. This can happen (for example) when a constant is passed as an
19206 actual argument in a call to an inline function. (It's possible that
19207 these things can crop up in other ways also.) Note that one type of
19208 constant value which can be passed into an inlined function is a constant
19209 pointer. This can happen for example if an actual argument in an inlined
19210 function call evaluates to a compile-time constant address.
19212 CACHE_P is true if it is worth caching the location list for DECL,
19213 so that future calls can reuse it rather than regenerate it from scratch.
19214 This is true for BLOCK_NONLOCALIZED_VARS in inlined subroutines,
19215 since we will need to refer to them each time the function is inlined. */
19217 static bool
19218 add_location_or_const_value_attribute (dw_die_ref die, tree decl, bool cache_p)
19220 rtx rtl;
19221 dw_loc_list_ref list;
19222 var_loc_list *loc_list;
19223 cached_dw_loc_list *cache;
19225 if (early_dwarf)
19226 return false;
19228 if (TREE_CODE (decl) == ERROR_MARK)
19229 return false;
19231 if (get_AT (die, DW_AT_location)
19232 || get_AT (die, DW_AT_const_value))
19233 return true;
19235 gcc_assert (VAR_P (decl) || TREE_CODE (decl) == PARM_DECL
19236 || TREE_CODE (decl) == RESULT_DECL);
19238 /* Try to get some constant RTL for this decl, and use that as the value of
19239 the location. */
19241 rtl = rtl_for_decl_location (decl);
19242 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
19243 && add_const_value_attribute (die, rtl))
19244 return true;
19246 /* See if we have single element location list that is equivalent to
19247 a constant value. That way we are better to use add_const_value_attribute
19248 rather than expanding constant value equivalent. */
19249 loc_list = lookup_decl_loc (decl);
19250 if (loc_list
19251 && loc_list->first
19252 && loc_list->first->next == NULL
19253 && NOTE_P (loc_list->first->loc)
19254 && NOTE_VAR_LOCATION (loc_list->first->loc)
19255 && NOTE_VAR_LOCATION_LOC (loc_list->first->loc))
19257 struct var_loc_node *node;
19259 node = loc_list->first;
19260 rtl = NOTE_VAR_LOCATION_LOC (node->loc);
19261 if (GET_CODE (rtl) == EXPR_LIST)
19262 rtl = XEXP (rtl, 0);
19263 if ((CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
19264 && add_const_value_attribute (die, rtl))
19265 return true;
19267 /* If this decl is from BLOCK_NONLOCALIZED_VARS, we might need its
19268 list several times. See if we've already cached the contents. */
19269 list = NULL;
19270 if (loc_list == NULL || cached_dw_loc_list_table == NULL)
19271 cache_p = false;
19272 if (cache_p)
19274 cache = cached_dw_loc_list_table->find_with_hash (decl, DECL_UID (decl));
19275 if (cache)
19276 list = cache->loc_list;
19278 if (list == NULL)
19280 list = loc_list_from_tree (decl, decl_by_reference_p (decl) ? 0 : 2,
19281 NULL);
19282 /* It is usually worth caching this result if the decl is from
19283 BLOCK_NONLOCALIZED_VARS and if the list has at least two elements. */
19284 if (cache_p && list && list->dw_loc_next)
19286 cached_dw_loc_list **slot
19287 = cached_dw_loc_list_table->find_slot_with_hash (decl,
19288 DECL_UID (decl),
19289 INSERT);
19290 cache = ggc_cleared_alloc<cached_dw_loc_list> ();
19291 cache->decl_id = DECL_UID (decl);
19292 cache->loc_list = list;
19293 *slot = cache;
19296 if (list)
19298 add_AT_location_description (die, DW_AT_location, list);
19299 return true;
19301 /* None of that worked, so it must not really have a location;
19302 try adding a constant value attribute from the DECL_INITIAL. */
19303 return tree_add_const_value_attribute_for_decl (die, decl);
19306 /* Helper function for tree_add_const_value_attribute. Natively encode
19307 initializer INIT into an array. Return true if successful. */
19309 static bool
19310 native_encode_initializer (tree init, unsigned char *array, int size)
19312 tree type;
19314 if (init == NULL_TREE)
19315 return false;
19317 STRIP_NOPS (init);
19318 switch (TREE_CODE (init))
19320 case STRING_CST:
19321 type = TREE_TYPE (init);
19322 if (TREE_CODE (type) == ARRAY_TYPE)
19324 tree enttype = TREE_TYPE (type);
19325 scalar_int_mode mode;
19327 if (!is_int_mode (TYPE_MODE (enttype), &mode)
19328 || GET_MODE_SIZE (mode) != 1)
19329 return false;
19330 if (int_size_in_bytes (type) != size)
19331 return false;
19332 if (size > TREE_STRING_LENGTH (init))
19334 memcpy (array, TREE_STRING_POINTER (init),
19335 TREE_STRING_LENGTH (init));
19336 memset (array + TREE_STRING_LENGTH (init),
19337 '\0', size - TREE_STRING_LENGTH (init));
19339 else
19340 memcpy (array, TREE_STRING_POINTER (init), size);
19341 return true;
19343 return false;
19344 case CONSTRUCTOR:
19345 type = TREE_TYPE (init);
19346 if (int_size_in_bytes (type) != size)
19347 return false;
19348 if (TREE_CODE (type) == ARRAY_TYPE)
19350 HOST_WIDE_INT min_index;
19351 unsigned HOST_WIDE_INT cnt;
19352 int curpos = 0, fieldsize;
19353 constructor_elt *ce;
19355 if (TYPE_DOMAIN (type) == NULL_TREE
19356 || !tree_fits_shwi_p (TYPE_MIN_VALUE (TYPE_DOMAIN (type))))
19357 return false;
19359 fieldsize = int_size_in_bytes (TREE_TYPE (type));
19360 if (fieldsize <= 0)
19361 return false;
19363 min_index = tree_to_shwi (TYPE_MIN_VALUE (TYPE_DOMAIN (type)));
19364 memset (array, '\0', size);
19365 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
19367 tree val = ce->value;
19368 tree index = ce->index;
19369 int pos = curpos;
19370 if (index && TREE_CODE (index) == RANGE_EXPR)
19371 pos = (tree_to_shwi (TREE_OPERAND (index, 0)) - min_index)
19372 * fieldsize;
19373 else if (index)
19374 pos = (tree_to_shwi (index) - min_index) * fieldsize;
19376 if (val)
19378 STRIP_NOPS (val);
19379 if (!native_encode_initializer (val, array + pos, fieldsize))
19380 return false;
19382 curpos = pos + fieldsize;
19383 if (index && TREE_CODE (index) == RANGE_EXPR)
19385 int count = tree_to_shwi (TREE_OPERAND (index, 1))
19386 - tree_to_shwi (TREE_OPERAND (index, 0));
19387 while (count-- > 0)
19389 if (val)
19390 memcpy (array + curpos, array + pos, fieldsize);
19391 curpos += fieldsize;
19394 gcc_assert (curpos <= size);
19396 return true;
19398 else if (TREE_CODE (type) == RECORD_TYPE
19399 || TREE_CODE (type) == UNION_TYPE)
19401 tree field = NULL_TREE;
19402 unsigned HOST_WIDE_INT cnt;
19403 constructor_elt *ce;
19405 if (int_size_in_bytes (type) != size)
19406 return false;
19408 if (TREE_CODE (type) == RECORD_TYPE)
19409 field = TYPE_FIELDS (type);
19411 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
19413 tree val = ce->value;
19414 int pos, fieldsize;
19416 if (ce->index != 0)
19417 field = ce->index;
19419 if (val)
19420 STRIP_NOPS (val);
19422 if (field == NULL_TREE || DECL_BIT_FIELD (field))
19423 return false;
19425 if (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
19426 && TYPE_DOMAIN (TREE_TYPE (field))
19427 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field))))
19428 return false;
19429 else if (DECL_SIZE_UNIT (field) == NULL_TREE
19430 || !tree_fits_shwi_p (DECL_SIZE_UNIT (field)))
19431 return false;
19432 fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field));
19433 pos = int_byte_position (field);
19434 gcc_assert (pos + fieldsize <= size);
19435 if (val && fieldsize != 0
19436 && !native_encode_initializer (val, array + pos, fieldsize))
19437 return false;
19439 return true;
19441 return false;
19442 case VIEW_CONVERT_EXPR:
19443 case NON_LVALUE_EXPR:
19444 return native_encode_initializer (TREE_OPERAND (init, 0), array, size);
19445 default:
19446 return native_encode_expr (init, array, size) == size;
19450 /* Attach a DW_AT_const_value attribute to DIE. The value of the
19451 attribute is the const value T. */
19453 static bool
19454 tree_add_const_value_attribute (dw_die_ref die, tree t)
19456 tree init;
19457 tree type = TREE_TYPE (t);
19458 rtx rtl;
19460 if (!t || !TREE_TYPE (t) || TREE_TYPE (t) == error_mark_node)
19461 return false;
19463 init = t;
19464 gcc_assert (!DECL_P (init));
19466 if (! early_dwarf)
19468 rtl = rtl_for_decl_init (init, type);
19469 if (rtl)
19470 return add_const_value_attribute (die, rtl);
19472 /* If the host and target are sane, try harder. */
19473 if (CHAR_BIT == 8 && BITS_PER_UNIT == 8
19474 && initializer_constant_valid_p (init, type))
19476 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (init));
19477 if (size > 0 && (int) size == size)
19479 unsigned char *array = ggc_cleared_vec_alloc<unsigned char> (size);
19481 if (native_encode_initializer (init, array, size))
19483 add_AT_vec (die, DW_AT_const_value, size, 1, array);
19484 return true;
19486 ggc_free (array);
19489 return false;
19492 /* Attach a DW_AT_const_value attribute to VAR_DIE. The value of the
19493 attribute is the const value of T, where T is an integral constant
19494 variable with static storage duration
19495 (so it can't be a PARM_DECL or a RESULT_DECL). */
19497 static bool
19498 tree_add_const_value_attribute_for_decl (dw_die_ref var_die, tree decl)
19501 if (!decl
19502 || (!VAR_P (decl) && TREE_CODE (decl) != CONST_DECL)
19503 || (VAR_P (decl) && !TREE_STATIC (decl)))
19504 return false;
19506 if (TREE_READONLY (decl)
19507 && ! TREE_THIS_VOLATILE (decl)
19508 && DECL_INITIAL (decl))
19509 /* OK */;
19510 else
19511 return false;
19513 /* Don't add DW_AT_const_value if abstract origin already has one. */
19514 if (get_AT (var_die, DW_AT_const_value))
19515 return false;
19517 return tree_add_const_value_attribute (var_die, DECL_INITIAL (decl));
19520 /* Convert the CFI instructions for the current function into a
19521 location list. This is used for DW_AT_frame_base when we targeting
19522 a dwarf2 consumer that does not support the dwarf3
19523 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
19524 expressions. */
19526 static dw_loc_list_ref
19527 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
19529 int ix;
19530 dw_fde_ref fde;
19531 dw_loc_list_ref list, *list_tail;
19532 dw_cfi_ref cfi;
19533 dw_cfa_location last_cfa, next_cfa;
19534 const char *start_label, *last_label, *section;
19535 dw_cfa_location remember;
19537 fde = cfun->fde;
19538 gcc_assert (fde != NULL);
19540 section = secname_for_decl (current_function_decl);
19541 list_tail = &list;
19542 list = NULL;
19544 memset (&next_cfa, 0, sizeof (next_cfa));
19545 next_cfa.reg = INVALID_REGNUM;
19546 remember = next_cfa;
19548 start_label = fde->dw_fde_begin;
19550 /* ??? Bald assumption that the CIE opcode list does not contain
19551 advance opcodes. */
19552 FOR_EACH_VEC_ELT (*cie_cfi_vec, ix, cfi)
19553 lookup_cfa_1 (cfi, &next_cfa, &remember);
19555 last_cfa = next_cfa;
19556 last_label = start_label;
19558 if (fde->dw_fde_second_begin && fde->dw_fde_switch_cfi_index == 0)
19560 /* If the first partition contained no CFI adjustments, the
19561 CIE opcodes apply to the whole first partition. */
19562 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
19563 fde->dw_fde_begin, fde->dw_fde_end, section);
19564 list_tail =&(*list_tail)->dw_loc_next;
19565 start_label = last_label = fde->dw_fde_second_begin;
19568 FOR_EACH_VEC_SAFE_ELT (fde->dw_fde_cfi, ix, cfi)
19570 switch (cfi->dw_cfi_opc)
19572 case DW_CFA_set_loc:
19573 case DW_CFA_advance_loc1:
19574 case DW_CFA_advance_loc2:
19575 case DW_CFA_advance_loc4:
19576 if (!cfa_equal_p (&last_cfa, &next_cfa))
19578 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
19579 start_label, last_label, section);
19581 list_tail = &(*list_tail)->dw_loc_next;
19582 last_cfa = next_cfa;
19583 start_label = last_label;
19585 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
19586 break;
19588 case DW_CFA_advance_loc:
19589 /* The encoding is complex enough that we should never emit this. */
19590 gcc_unreachable ();
19592 default:
19593 lookup_cfa_1 (cfi, &next_cfa, &remember);
19594 break;
19596 if (ix + 1 == fde->dw_fde_switch_cfi_index)
19598 if (!cfa_equal_p (&last_cfa, &next_cfa))
19600 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
19601 start_label, last_label, section);
19603 list_tail = &(*list_tail)->dw_loc_next;
19604 last_cfa = next_cfa;
19605 start_label = last_label;
19607 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
19608 start_label, fde->dw_fde_end, section);
19609 list_tail = &(*list_tail)->dw_loc_next;
19610 start_label = last_label = fde->dw_fde_second_begin;
19614 if (!cfa_equal_p (&last_cfa, &next_cfa))
19616 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
19617 start_label, last_label, section);
19618 list_tail = &(*list_tail)->dw_loc_next;
19619 start_label = last_label;
19622 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
19623 start_label,
19624 fde->dw_fde_second_begin
19625 ? fde->dw_fde_second_end : fde->dw_fde_end,
19626 section);
19628 if (list && list->dw_loc_next)
19629 gen_llsym (list);
19631 return list;
19634 /* Compute a displacement from the "steady-state frame pointer" to the
19635 frame base (often the same as the CFA), and store it in
19636 frame_pointer_fb_offset. OFFSET is added to the displacement
19637 before the latter is negated. */
19639 static void
19640 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
19642 rtx reg, elim;
19644 #ifdef FRAME_POINTER_CFA_OFFSET
19645 reg = frame_pointer_rtx;
19646 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
19647 #else
19648 reg = arg_pointer_rtx;
19649 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
19650 #endif
19652 elim = (ira_use_lra_p
19653 ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
19654 : eliminate_regs (reg, VOIDmode, NULL_RTX));
19655 if (GET_CODE (elim) == PLUS)
19657 offset += INTVAL (XEXP (elim, 1));
19658 elim = XEXP (elim, 0);
19661 frame_pointer_fb_offset = -offset;
19663 /* ??? AVR doesn't set up valid eliminations when there is no stack frame
19664 in which to eliminate. This is because it's stack pointer isn't
19665 directly accessible as a register within the ISA. To work around
19666 this, assume that while we cannot provide a proper value for
19667 frame_pointer_fb_offset, we won't need one either. */
19668 frame_pointer_fb_offset_valid
19669 = ((SUPPORTS_STACK_ALIGNMENT
19670 && (elim == hard_frame_pointer_rtx
19671 || elim == stack_pointer_rtx))
19672 || elim == (frame_pointer_needed
19673 ? hard_frame_pointer_rtx
19674 : stack_pointer_rtx));
19677 /* Generate a DW_AT_name attribute given some string value to be included as
19678 the value of the attribute. */
19680 static void
19681 add_name_attribute (dw_die_ref die, const char *name_string)
19683 if (name_string != NULL && *name_string != 0)
19685 if (demangle_name_func)
19686 name_string = (*demangle_name_func) (name_string);
19688 add_AT_string (die, DW_AT_name, name_string);
19692 /* Retrieve the descriptive type of TYPE, if any, make sure it has a
19693 DIE and attach a DW_AT_GNAT_descriptive_type attribute to the DIE
19694 of TYPE accordingly.
19696 ??? This is a temporary measure until after we're able to generate
19697 regular DWARF for the complex Ada type system. */
19699 static void
19700 add_gnat_descriptive_type_attribute (dw_die_ref die, tree type,
19701 dw_die_ref context_die)
19703 tree dtype;
19704 dw_die_ref dtype_die;
19706 if (!lang_hooks.types.descriptive_type)
19707 return;
19709 dtype = lang_hooks.types.descriptive_type (type);
19710 if (!dtype)
19711 return;
19713 dtype_die = lookup_type_die (dtype);
19714 if (!dtype_die)
19716 gen_type_die (dtype, context_die);
19717 dtype_die = lookup_type_die (dtype);
19718 gcc_assert (dtype_die);
19721 add_AT_die_ref (die, DW_AT_GNAT_descriptive_type, dtype_die);
19724 /* Retrieve the comp_dir string suitable for use with DW_AT_comp_dir. */
19726 static const char *
19727 comp_dir_string (void)
19729 const char *wd;
19730 char *wd1;
19731 static const char *cached_wd = NULL;
19733 if (cached_wd != NULL)
19734 return cached_wd;
19736 wd = get_src_pwd ();
19737 if (wd == NULL)
19738 return NULL;
19740 if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR)
19742 int wdlen;
19744 wdlen = strlen (wd);
19745 wd1 = ggc_vec_alloc<char> (wdlen + 2);
19746 strcpy (wd1, wd);
19747 wd1 [wdlen] = DIR_SEPARATOR;
19748 wd1 [wdlen + 1] = 0;
19749 wd = wd1;
19752 cached_wd = remap_debug_filename (wd);
19753 return cached_wd;
19756 /* Generate a DW_AT_comp_dir attribute for DIE. */
19758 static void
19759 add_comp_dir_attribute (dw_die_ref die)
19761 const char * wd = comp_dir_string ();
19762 if (wd != NULL)
19763 add_AT_string (die, DW_AT_comp_dir, wd);
19766 /* Given a tree node VALUE describing a scalar attribute ATTR (i.e. a bound, a
19767 pointer computation, ...), output a representation for that bound according
19768 to the accepted FORMS (see enum dw_scalar_form) and add it to DIE. See
19769 loc_list_from_tree for the meaning of CONTEXT. */
19771 static void
19772 add_scalar_info (dw_die_ref die, enum dwarf_attribute attr, tree value,
19773 int forms, struct loc_descr_context *context)
19775 dw_die_ref context_die, decl_die;
19776 dw_loc_list_ref list;
19777 bool strip_conversions = true;
19778 bool placeholder_seen = false;
19780 while (strip_conversions)
19781 switch (TREE_CODE (value))
19783 case ERROR_MARK:
19784 case SAVE_EXPR:
19785 return;
19787 CASE_CONVERT:
19788 case VIEW_CONVERT_EXPR:
19789 value = TREE_OPERAND (value, 0);
19790 break;
19792 default:
19793 strip_conversions = false;
19794 break;
19797 /* If possible and permitted, output the attribute as a constant. */
19798 if ((forms & dw_scalar_form_constant) != 0
19799 && TREE_CODE (value) == INTEGER_CST)
19801 unsigned int prec = simple_type_size_in_bits (TREE_TYPE (value));
19803 /* If HOST_WIDE_INT is big enough then represent the bound as
19804 a constant value. We need to choose a form based on
19805 whether the type is signed or unsigned. We cannot just
19806 call add_AT_unsigned if the value itself is positive
19807 (add_AT_unsigned might add the unsigned value encoded as
19808 DW_FORM_data[1248]). Some DWARF consumers will lookup the
19809 bounds type and then sign extend any unsigned values found
19810 for signed types. This is needed only for
19811 DW_AT_{lower,upper}_bound, since for most other attributes,
19812 consumers will treat DW_FORM_data[1248] as unsigned values,
19813 regardless of the underlying type. */
19814 if (prec <= HOST_BITS_PER_WIDE_INT
19815 || tree_fits_uhwi_p (value))
19817 if (TYPE_UNSIGNED (TREE_TYPE (value)))
19818 add_AT_unsigned (die, attr, TREE_INT_CST_LOW (value));
19819 else
19820 add_AT_int (die, attr, TREE_INT_CST_LOW (value));
19822 else
19823 /* Otherwise represent the bound as an unsigned value with
19824 the precision of its type. The precision and signedness
19825 of the type will be necessary to re-interpret it
19826 unambiguously. */
19827 add_AT_wide (die, attr, value);
19828 return;
19831 /* Otherwise, if it's possible and permitted too, output a reference to
19832 another DIE. */
19833 if ((forms & dw_scalar_form_reference) != 0)
19835 tree decl = NULL_TREE;
19837 /* Some type attributes reference an outer type. For instance, the upper
19838 bound of an array may reference an embedding record (this happens in
19839 Ada). */
19840 if (TREE_CODE (value) == COMPONENT_REF
19841 && TREE_CODE (TREE_OPERAND (value, 0)) == PLACEHOLDER_EXPR
19842 && TREE_CODE (TREE_OPERAND (value, 1)) == FIELD_DECL)
19843 decl = TREE_OPERAND (value, 1);
19845 else if (VAR_P (value)
19846 || TREE_CODE (value) == PARM_DECL
19847 || TREE_CODE (value) == RESULT_DECL)
19848 decl = value;
19850 if (decl != NULL_TREE)
19852 dw_die_ref decl_die = lookup_decl_die (decl);
19854 /* ??? Can this happen, or should the variable have been bound
19855 first? Probably it can, since I imagine that we try to create
19856 the types of parameters in the order in which they exist in
19857 the list, and won't have created a forward reference to a
19858 later parameter. */
19859 if (decl_die != NULL)
19861 add_AT_die_ref (die, attr, decl_die);
19862 return;
19867 /* Last chance: try to create a stack operation procedure to evaluate the
19868 value. Do nothing if even that is not possible or permitted. */
19869 if ((forms & dw_scalar_form_exprloc) == 0)
19870 return;
19872 list = loc_list_from_tree (value, 2, context);
19873 if (context && context->placeholder_arg)
19875 placeholder_seen = context->placeholder_seen;
19876 context->placeholder_seen = false;
19878 if (list == NULL || single_element_loc_list_p (list))
19880 /* If this attribute is not a reference nor constant, it is
19881 a DWARF expression rather than location description. For that
19882 loc_list_from_tree (value, 0, &context) is needed. */
19883 dw_loc_list_ref list2 = loc_list_from_tree (value, 0, context);
19884 if (list2 && single_element_loc_list_p (list2))
19886 if (placeholder_seen)
19888 struct dwarf_procedure_info dpi;
19889 dpi.fndecl = NULL_TREE;
19890 dpi.args_count = 1;
19891 if (!resolve_args_picking (list2->expr, 1, &dpi))
19892 return;
19894 add_AT_loc (die, attr, list2->expr);
19895 return;
19899 /* If that failed to give a single element location list, fall back to
19900 outputting this as a reference... still if permitted. */
19901 if (list == NULL
19902 || (forms & dw_scalar_form_reference) == 0
19903 || placeholder_seen)
19904 return;
19906 if (current_function_decl == 0)
19907 context_die = comp_unit_die ();
19908 else
19909 context_die = lookup_decl_die (current_function_decl);
19911 decl_die = new_die (DW_TAG_variable, context_die, value);
19912 add_AT_flag (decl_die, DW_AT_artificial, 1);
19913 add_type_attribute (decl_die, TREE_TYPE (value), TYPE_QUAL_CONST, false,
19914 context_die);
19915 add_AT_location_description (decl_die, DW_AT_location, list);
19916 add_AT_die_ref (die, attr, decl_die);
19919 /* Return the default for DW_AT_lower_bound, or -1 if there is not any
19920 default. */
19922 static int
19923 lower_bound_default (void)
19925 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
19927 case DW_LANG_C:
19928 case DW_LANG_C89:
19929 case DW_LANG_C99:
19930 case DW_LANG_C11:
19931 case DW_LANG_C_plus_plus:
19932 case DW_LANG_C_plus_plus_11:
19933 case DW_LANG_C_plus_plus_14:
19934 case DW_LANG_ObjC:
19935 case DW_LANG_ObjC_plus_plus:
19936 return 0;
19937 case DW_LANG_Fortran77:
19938 case DW_LANG_Fortran90:
19939 case DW_LANG_Fortran95:
19940 case DW_LANG_Fortran03:
19941 case DW_LANG_Fortran08:
19942 return 1;
19943 case DW_LANG_UPC:
19944 case DW_LANG_D:
19945 case DW_LANG_Python:
19946 return dwarf_version >= 4 ? 0 : -1;
19947 case DW_LANG_Ada95:
19948 case DW_LANG_Ada83:
19949 case DW_LANG_Cobol74:
19950 case DW_LANG_Cobol85:
19951 case DW_LANG_Modula2:
19952 case DW_LANG_PLI:
19953 return dwarf_version >= 4 ? 1 : -1;
19954 default:
19955 return -1;
19959 /* Given a tree node describing an array bound (either lower or upper) output
19960 a representation for that bound. */
19962 static void
19963 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr,
19964 tree bound, struct loc_descr_context *context)
19966 int dflt;
19968 while (1)
19969 switch (TREE_CODE (bound))
19971 /* Strip all conversions. */
19972 CASE_CONVERT:
19973 case VIEW_CONVERT_EXPR:
19974 bound = TREE_OPERAND (bound, 0);
19975 break;
19977 /* All fixed-bounds are represented by INTEGER_CST nodes. Lower bounds
19978 are even omitted when they are the default. */
19979 case INTEGER_CST:
19980 /* If the value for this bound is the default one, we can even omit the
19981 attribute. */
19982 if (bound_attr == DW_AT_lower_bound
19983 && tree_fits_shwi_p (bound)
19984 && (dflt = lower_bound_default ()) != -1
19985 && tree_to_shwi (bound) == dflt)
19986 return;
19988 /* FALLTHRU */
19990 default:
19991 /* Because of the complex interaction there can be with other GNAT
19992 encodings, GDB isn't ready yet to handle proper DWARF description
19993 for self-referencial subrange bounds: let GNAT encodings do the
19994 magic in such a case. */
19995 if (is_ada ()
19996 && gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL
19997 && contains_placeholder_p (bound))
19998 return;
20000 add_scalar_info (subrange_die, bound_attr, bound,
20001 dw_scalar_form_constant
20002 | dw_scalar_form_exprloc
20003 | dw_scalar_form_reference,
20004 context);
20005 return;
20009 /* Add subscript info to TYPE_DIE, describing an array TYPE, collapsing
20010 possibly nested array subscripts in a flat sequence if COLLAPSE_P is true.
20011 Note that the block of subscript information for an array type also
20012 includes information about the element type of the given array type.
20014 This function reuses previously set type and bound information if
20015 available. */
20017 static void
20018 add_subscript_info (dw_die_ref type_die, tree type, bool collapse_p)
20020 unsigned dimension_number;
20021 tree lower, upper;
20022 dw_die_ref child = type_die->die_child;
20024 for (dimension_number = 0;
20025 TREE_CODE (type) == ARRAY_TYPE && (dimension_number == 0 || collapse_p);
20026 type = TREE_TYPE (type), dimension_number++)
20028 tree domain = TYPE_DOMAIN (type);
20030 if (TYPE_STRING_FLAG (type) && is_fortran () && dimension_number > 0)
20031 break;
20033 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
20034 and (in GNU C only) variable bounds. Handle all three forms
20035 here. */
20037 /* Find and reuse a previously generated DW_TAG_subrange_type if
20038 available.
20040 For multi-dimensional arrays, as we iterate through the
20041 various dimensions in the enclosing for loop above, we also
20042 iterate through the DIE children and pick at each
20043 DW_TAG_subrange_type previously generated (if available).
20044 Each child DW_TAG_subrange_type DIE describes the range of
20045 the current dimension. At this point we should have as many
20046 DW_TAG_subrange_type's as we have dimensions in the
20047 array. */
20048 dw_die_ref subrange_die = NULL;
20049 if (child)
20050 while (1)
20052 child = child->die_sib;
20053 if (child->die_tag == DW_TAG_subrange_type)
20054 subrange_die = child;
20055 if (child == type_die->die_child)
20057 /* If we wrapped around, stop looking next time. */
20058 child = NULL;
20059 break;
20061 if (child->die_tag == DW_TAG_subrange_type)
20062 break;
20064 if (!subrange_die)
20065 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
20067 if (domain)
20069 /* We have an array type with specified bounds. */
20070 lower = TYPE_MIN_VALUE (domain);
20071 upper = TYPE_MAX_VALUE (domain);
20073 /* Define the index type. */
20074 if (TREE_TYPE (domain)
20075 && !get_AT (subrange_die, DW_AT_type))
20077 /* ??? This is probably an Ada unnamed subrange type. Ignore the
20078 TREE_TYPE field. We can't emit debug info for this
20079 because it is an unnamed integral type. */
20080 if (TREE_CODE (domain) == INTEGER_TYPE
20081 && TYPE_NAME (domain) == NULL_TREE
20082 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
20083 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
20085 else
20086 add_type_attribute (subrange_die, TREE_TYPE (domain),
20087 TYPE_UNQUALIFIED, false, type_die);
20090 /* ??? If upper is NULL, the array has unspecified length,
20091 but it does have a lower bound. This happens with Fortran
20092 dimension arr(N:*)
20093 Since the debugger is definitely going to need to know N
20094 to produce useful results, go ahead and output the lower
20095 bound solo, and hope the debugger can cope. */
20097 if (!get_AT (subrange_die, DW_AT_lower_bound))
20098 add_bound_info (subrange_die, DW_AT_lower_bound, lower, NULL);
20099 if (upper && !get_AT (subrange_die, DW_AT_upper_bound))
20100 add_bound_info (subrange_die, DW_AT_upper_bound, upper, NULL);
20103 /* Otherwise we have an array type with an unspecified length. The
20104 DWARF-2 spec does not say how to handle this; let's just leave out the
20105 bounds. */
20109 /* Add a DW_AT_byte_size attribute to DIE with TREE_NODE's size. */
20111 static void
20112 add_byte_size_attribute (dw_die_ref die, tree tree_node)
20114 dw_die_ref decl_die;
20115 HOST_WIDE_INT size;
20116 dw_loc_descr_ref size_expr = NULL;
20118 switch (TREE_CODE (tree_node))
20120 case ERROR_MARK:
20121 size = 0;
20122 break;
20123 case ENUMERAL_TYPE:
20124 case RECORD_TYPE:
20125 case UNION_TYPE:
20126 case QUAL_UNION_TYPE:
20127 if (TREE_CODE (TYPE_SIZE_UNIT (tree_node)) == VAR_DECL
20128 && (decl_die = lookup_decl_die (TYPE_SIZE_UNIT (tree_node))))
20130 add_AT_die_ref (die, DW_AT_byte_size, decl_die);
20131 return;
20133 size_expr = type_byte_size (tree_node, &size);
20134 break;
20135 case FIELD_DECL:
20136 /* For a data member of a struct or union, the DW_AT_byte_size is
20137 generally given as the number of bytes normally allocated for an
20138 object of the *declared* type of the member itself. This is true
20139 even for bit-fields. */
20140 size = int_size_in_bytes (field_type (tree_node));
20141 break;
20142 default:
20143 gcc_unreachable ();
20146 /* Support for dynamically-sized objects was introduced by DWARFv3.
20147 At the moment, GDB does not handle variable byte sizes very well,
20148 though. */
20149 if ((dwarf_version >= 3 || !dwarf_strict)
20150 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL
20151 && size_expr != NULL)
20152 add_AT_loc (die, DW_AT_byte_size, size_expr);
20154 /* Note that `size' might be -1 when we get to this point. If it is, that
20155 indicates that the byte size of the entity in question is variable and
20156 that we could not generate a DWARF expression that computes it. */
20157 if (size >= 0)
20158 add_AT_unsigned (die, DW_AT_byte_size, size);
20161 /* Add a DW_AT_alignment attribute to DIE with TREE_NODE's non-default
20162 alignment. */
20164 static void
20165 add_alignment_attribute (dw_die_ref die, tree tree_node)
20167 if (dwarf_version < 5 && dwarf_strict)
20168 return;
20170 unsigned align;
20172 if (DECL_P (tree_node))
20174 if (!DECL_USER_ALIGN (tree_node))
20175 return;
20177 align = DECL_ALIGN_UNIT (tree_node);
20179 else if (TYPE_P (tree_node))
20181 if (!TYPE_USER_ALIGN (tree_node))
20182 return;
20184 align = TYPE_ALIGN_UNIT (tree_node);
20186 else
20187 gcc_unreachable ();
20189 add_AT_unsigned (die, DW_AT_alignment, align);
20192 /* For a FIELD_DECL node which represents a bit-field, output an attribute
20193 which specifies the distance in bits from the highest order bit of the
20194 "containing object" for the bit-field to the highest order bit of the
20195 bit-field itself.
20197 For any given bit-field, the "containing object" is a hypothetical object
20198 (of some integral or enum type) within which the given bit-field lives. The
20199 type of this hypothetical "containing object" is always the same as the
20200 declared type of the individual bit-field itself. The determination of the
20201 exact location of the "containing object" for a bit-field is rather
20202 complicated. It's handled by the `field_byte_offset' function (above).
20204 CTX is required: see the comment for VLR_CONTEXT.
20206 Note that it is the size (in bytes) of the hypothetical "containing object"
20207 which will be given in the DW_AT_byte_size attribute for this bit-field.
20208 (See `byte_size_attribute' above). */
20210 static inline void
20211 add_bit_offset_attribute (dw_die_ref die, tree decl, struct vlr_context *ctx)
20213 HOST_WIDE_INT object_offset_in_bytes;
20214 tree original_type = DECL_BIT_FIELD_TYPE (decl);
20215 HOST_WIDE_INT bitpos_int;
20216 HOST_WIDE_INT highest_order_object_bit_offset;
20217 HOST_WIDE_INT highest_order_field_bit_offset;
20218 HOST_WIDE_INT bit_offset;
20220 field_byte_offset (decl, ctx, &object_offset_in_bytes);
20222 /* Must be a field and a bit field. */
20223 gcc_assert (original_type && TREE_CODE (decl) == FIELD_DECL);
20225 /* We can't yet handle bit-fields whose offsets are variable, so if we
20226 encounter such things, just return without generating any attribute
20227 whatsoever. Likewise for variable or too large size. */
20228 if (! tree_fits_shwi_p (bit_position (decl))
20229 || ! tree_fits_uhwi_p (DECL_SIZE (decl)))
20230 return;
20232 bitpos_int = int_bit_position (decl);
20234 /* Note that the bit offset is always the distance (in bits) from the
20235 highest-order bit of the "containing object" to the highest-order bit of
20236 the bit-field itself. Since the "high-order end" of any object or field
20237 is different on big-endian and little-endian machines, the computation
20238 below must take account of these differences. */
20239 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
20240 highest_order_field_bit_offset = bitpos_int;
20242 if (! BYTES_BIG_ENDIAN)
20244 highest_order_field_bit_offset += tree_to_shwi (DECL_SIZE (decl));
20245 highest_order_object_bit_offset +=
20246 simple_type_size_in_bits (original_type);
20249 bit_offset
20250 = (! BYTES_BIG_ENDIAN
20251 ? highest_order_object_bit_offset - highest_order_field_bit_offset
20252 : highest_order_field_bit_offset - highest_order_object_bit_offset);
20254 if (bit_offset < 0)
20255 add_AT_int (die, DW_AT_bit_offset, bit_offset);
20256 else
20257 add_AT_unsigned (die, DW_AT_bit_offset, (unsigned HOST_WIDE_INT) bit_offset);
20260 /* For a FIELD_DECL node which represents a bit field, output an attribute
20261 which specifies the length in bits of the given field. */
20263 static inline void
20264 add_bit_size_attribute (dw_die_ref die, tree decl)
20266 /* Must be a field and a bit field. */
20267 gcc_assert (TREE_CODE (decl) == FIELD_DECL
20268 && DECL_BIT_FIELD_TYPE (decl));
20270 if (tree_fits_uhwi_p (DECL_SIZE (decl)))
20271 add_AT_unsigned (die, DW_AT_bit_size, tree_to_uhwi (DECL_SIZE (decl)));
20274 /* If the compiled language is ANSI C, then add a 'prototyped'
20275 attribute, if arg types are given for the parameters of a function. */
20277 static inline void
20278 add_prototyped_attribute (dw_die_ref die, tree func_type)
20280 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
20282 case DW_LANG_C:
20283 case DW_LANG_C89:
20284 case DW_LANG_C99:
20285 case DW_LANG_C11:
20286 case DW_LANG_ObjC:
20287 if (prototype_p (func_type))
20288 add_AT_flag (die, DW_AT_prototyped, 1);
20289 break;
20290 default:
20291 break;
20295 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
20296 by looking in the type declaration, the object declaration equate table or
20297 the block mapping. */
20299 static inline dw_die_ref
20300 add_abstract_origin_attribute (dw_die_ref die, tree origin)
20302 dw_die_ref origin_die = NULL;
20304 if (DECL_P (origin))
20306 dw_die_ref c;
20307 origin_die = lookup_decl_die (origin);
20308 /* "Unwrap" the decls DIE which we put in the imported unit context.
20309 We are looking for the abstract copy here. */
20310 if (in_lto_p
20311 && origin_die
20312 && (c = get_AT_ref (origin_die, DW_AT_abstract_origin))
20313 /* ??? Identify this better. */
20314 && c->with_offset)
20315 origin_die = c;
20317 else if (TYPE_P (origin))
20318 origin_die = lookup_type_die (origin);
20319 else if (TREE_CODE (origin) == BLOCK)
20320 origin_die = BLOCK_DIE (origin);
20322 /* XXX: Functions that are never lowered don't always have correct block
20323 trees (in the case of java, they simply have no block tree, in some other
20324 languages). For these functions, there is nothing we can really do to
20325 output correct debug info for inlined functions in all cases. Rather
20326 than die, we'll just produce deficient debug info now, in that we will
20327 have variables without a proper abstract origin. In the future, when all
20328 functions are lowered, we should re-add a gcc_assert (origin_die)
20329 here. */
20331 if (origin_die)
20332 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
20333 return origin_die;
20336 /* We do not currently support the pure_virtual attribute. */
20338 static inline void
20339 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
20341 if (DECL_VINDEX (func_decl))
20343 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
20345 if (tree_fits_shwi_p (DECL_VINDEX (func_decl)))
20346 add_AT_loc (die, DW_AT_vtable_elem_location,
20347 new_loc_descr (DW_OP_constu,
20348 tree_to_shwi (DECL_VINDEX (func_decl)),
20349 0));
20351 /* GNU extension: Record what type this method came from originally. */
20352 if (debug_info_level > DINFO_LEVEL_TERSE
20353 && DECL_CONTEXT (func_decl))
20354 add_AT_die_ref (die, DW_AT_containing_type,
20355 lookup_type_die (DECL_CONTEXT (func_decl)));
20359 /* Add a DW_AT_linkage_name or DW_AT_MIPS_linkage_name attribute for the
20360 given decl. This used to be a vendor extension until after DWARF 4
20361 standardized it. */
20363 static void
20364 add_linkage_attr (dw_die_ref die, tree decl)
20366 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
20368 /* Mimic what assemble_name_raw does with a leading '*'. */
20369 if (name[0] == '*')
20370 name = &name[1];
20372 if (dwarf_version >= 4)
20373 add_AT_string (die, DW_AT_linkage_name, name);
20374 else
20375 add_AT_string (die, DW_AT_MIPS_linkage_name, name);
20378 /* Add source coordinate attributes for the given decl. */
20380 static void
20381 add_src_coords_attributes (dw_die_ref die, tree decl)
20383 expanded_location s;
20385 if (LOCATION_LOCUS (DECL_SOURCE_LOCATION (decl)) == UNKNOWN_LOCATION)
20386 return;
20387 s = expand_location (DECL_SOURCE_LOCATION (decl));
20388 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
20389 add_AT_unsigned (die, DW_AT_decl_line, s.line);
20390 if (debug_column_info && s.column)
20391 add_AT_unsigned (die, DW_AT_decl_column, s.column);
20394 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl. */
20396 static void
20397 add_linkage_name_raw (dw_die_ref die, tree decl)
20399 /* Defer until we have an assembler name set. */
20400 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
20402 limbo_die_node *asm_name;
20404 asm_name = ggc_cleared_alloc<limbo_die_node> ();
20405 asm_name->die = die;
20406 asm_name->created_for = decl;
20407 asm_name->next = deferred_asm_name;
20408 deferred_asm_name = asm_name;
20410 else if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
20411 add_linkage_attr (die, decl);
20414 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl if desired. */
20416 static void
20417 add_linkage_name (dw_die_ref die, tree decl)
20419 if (debug_info_level > DINFO_LEVEL_NONE
20420 && VAR_OR_FUNCTION_DECL_P (decl)
20421 && TREE_PUBLIC (decl)
20422 && !(VAR_P (decl) && DECL_REGISTER (decl))
20423 && die->die_tag != DW_TAG_member)
20424 add_linkage_name_raw (die, decl);
20427 /* Add a DW_AT_name attribute and source coordinate attribute for the
20428 given decl, but only if it actually has a name. */
20430 static void
20431 add_name_and_src_coords_attributes (dw_die_ref die, tree decl,
20432 bool no_linkage_name)
20434 tree decl_name;
20436 decl_name = DECL_NAME (decl);
20437 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
20439 const char *name = dwarf2_name (decl, 0);
20440 if (name)
20441 add_name_attribute (die, name);
20442 if (! DECL_ARTIFICIAL (decl))
20443 add_src_coords_attributes (die, decl);
20445 if (!no_linkage_name)
20446 add_linkage_name (die, decl);
20449 #ifdef VMS_DEBUGGING_INFO
20450 /* Get the function's name, as described by its RTL. This may be different
20451 from the DECL_NAME name used in the source file. */
20452 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
20454 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
20455 XEXP (DECL_RTL (decl), 0), false);
20456 vec_safe_push (used_rtx_array, XEXP (DECL_RTL (decl), 0));
20458 #endif /* VMS_DEBUGGING_INFO */
20461 /* Add VALUE as a DW_AT_discr_value attribute to DIE. */
20463 static void
20464 add_discr_value (dw_die_ref die, dw_discr_value *value)
20466 dw_attr_node attr;
20468 attr.dw_attr = DW_AT_discr_value;
20469 attr.dw_attr_val.val_class = dw_val_class_discr_value;
20470 attr.dw_attr_val.val_entry = NULL;
20471 attr.dw_attr_val.v.val_discr_value.pos = value->pos;
20472 if (value->pos)
20473 attr.dw_attr_val.v.val_discr_value.v.uval = value->v.uval;
20474 else
20475 attr.dw_attr_val.v.val_discr_value.v.sval = value->v.sval;
20476 add_dwarf_attr (die, &attr);
20479 /* Add DISCR_LIST as a DW_AT_discr_list to DIE. */
20481 static void
20482 add_discr_list (dw_die_ref die, dw_discr_list_ref discr_list)
20484 dw_attr_node attr;
20486 attr.dw_attr = DW_AT_discr_list;
20487 attr.dw_attr_val.val_class = dw_val_class_discr_list;
20488 attr.dw_attr_val.val_entry = NULL;
20489 attr.dw_attr_val.v.val_discr_list = discr_list;
20490 add_dwarf_attr (die, &attr);
20493 static inline dw_discr_list_ref
20494 AT_discr_list (dw_attr_node *attr)
20496 return attr->dw_attr_val.v.val_discr_list;
20499 #ifdef VMS_DEBUGGING_INFO
20500 /* Output the debug main pointer die for VMS */
20502 void
20503 dwarf2out_vms_debug_main_pointer (void)
20505 char label[MAX_ARTIFICIAL_LABEL_BYTES];
20506 dw_die_ref die;
20508 /* Allocate the VMS debug main subprogram die. */
20509 die = ggc_cleared_alloc<die_node> ();
20510 die->die_tag = DW_TAG_subprogram;
20511 add_name_attribute (die, VMS_DEBUG_MAIN_POINTER);
20512 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
20513 current_function_funcdef_no);
20514 add_AT_lbl_id (die, DW_AT_entry_pc, label);
20516 /* Make it the first child of comp_unit_die (). */
20517 die->die_parent = comp_unit_die ();
20518 if (comp_unit_die ()->die_child)
20520 die->die_sib = comp_unit_die ()->die_child->die_sib;
20521 comp_unit_die ()->die_child->die_sib = die;
20523 else
20525 die->die_sib = die;
20526 comp_unit_die ()->die_child = die;
20529 #endif /* VMS_DEBUGGING_INFO */
20531 /* Push a new declaration scope. */
20533 static void
20534 push_decl_scope (tree scope)
20536 vec_safe_push (decl_scope_table, scope);
20539 /* Pop a declaration scope. */
20541 static inline void
20542 pop_decl_scope (void)
20544 decl_scope_table->pop ();
20547 /* walk_tree helper function for uses_local_type, below. */
20549 static tree
20550 uses_local_type_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
20552 if (!TYPE_P (*tp))
20553 *walk_subtrees = 0;
20554 else
20556 tree name = TYPE_NAME (*tp);
20557 if (name && DECL_P (name) && decl_function_context (name))
20558 return *tp;
20560 return NULL_TREE;
20563 /* If TYPE involves a function-local type (including a local typedef to a
20564 non-local type), returns that type; otherwise returns NULL_TREE. */
20566 static tree
20567 uses_local_type (tree type)
20569 tree used = walk_tree_without_duplicates (&type, uses_local_type_r, NULL);
20570 return used;
20573 /* Return the DIE for the scope that immediately contains this type.
20574 Non-named types that do not involve a function-local type get global
20575 scope. Named types nested in namespaces or other types get their
20576 containing scope. All other types (i.e. function-local named types) get
20577 the current active scope. */
20579 static dw_die_ref
20580 scope_die_for (tree t, dw_die_ref context_die)
20582 dw_die_ref scope_die = NULL;
20583 tree containing_scope;
20585 /* Non-types always go in the current scope. */
20586 gcc_assert (TYPE_P (t));
20588 /* Use the scope of the typedef, rather than the scope of the type
20589 it refers to. */
20590 if (TYPE_NAME (t) && DECL_P (TYPE_NAME (t)))
20591 containing_scope = DECL_CONTEXT (TYPE_NAME (t));
20592 else
20593 containing_scope = TYPE_CONTEXT (t);
20595 /* Use the containing namespace if there is one. */
20596 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
20598 if (context_die == lookup_decl_die (containing_scope))
20599 /* OK */;
20600 else if (debug_info_level > DINFO_LEVEL_TERSE)
20601 context_die = get_context_die (containing_scope);
20602 else
20603 containing_scope = NULL_TREE;
20606 /* Ignore function type "scopes" from the C frontend. They mean that
20607 a tagged type is local to a parmlist of a function declarator, but
20608 that isn't useful to DWARF. */
20609 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
20610 containing_scope = NULL_TREE;
20612 if (SCOPE_FILE_SCOPE_P (containing_scope))
20614 /* If T uses a local type keep it local as well, to avoid references
20615 to function-local DIEs from outside the function. */
20616 if (current_function_decl && uses_local_type (t))
20617 scope_die = context_die;
20618 else
20619 scope_die = comp_unit_die ();
20621 else if (TYPE_P (containing_scope))
20623 /* For types, we can just look up the appropriate DIE. */
20624 if (debug_info_level > DINFO_LEVEL_TERSE)
20625 scope_die = get_context_die (containing_scope);
20626 else
20628 scope_die = lookup_type_die_strip_naming_typedef (containing_scope);
20629 if (scope_die == NULL)
20630 scope_die = comp_unit_die ();
20633 else
20634 scope_die = context_die;
20636 return scope_die;
20639 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
20641 static inline int
20642 local_scope_p (dw_die_ref context_die)
20644 for (; context_die; context_die = context_die->die_parent)
20645 if (context_die->die_tag == DW_TAG_inlined_subroutine
20646 || context_die->die_tag == DW_TAG_subprogram)
20647 return 1;
20649 return 0;
20652 /* Returns nonzero if CONTEXT_DIE is a class. */
20654 static inline int
20655 class_scope_p (dw_die_ref context_die)
20657 return (context_die
20658 && (context_die->die_tag == DW_TAG_structure_type
20659 || context_die->die_tag == DW_TAG_class_type
20660 || context_die->die_tag == DW_TAG_interface_type
20661 || context_die->die_tag == DW_TAG_union_type));
20664 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
20665 whether or not to treat a DIE in this context as a declaration. */
20667 static inline int
20668 class_or_namespace_scope_p (dw_die_ref context_die)
20670 return (class_scope_p (context_die)
20671 || (context_die && context_die->die_tag == DW_TAG_namespace));
20674 /* Many forms of DIEs require a "type description" attribute. This
20675 routine locates the proper "type descriptor" die for the type given
20676 by 'type' plus any additional qualifiers given by 'cv_quals', and
20677 adds a DW_AT_type attribute below the given die. */
20679 static void
20680 add_type_attribute (dw_die_ref object_die, tree type, int cv_quals,
20681 bool reverse, dw_die_ref context_die)
20683 enum tree_code code = TREE_CODE (type);
20684 dw_die_ref type_die = NULL;
20686 /* ??? If this type is an unnamed subrange type of an integral, floating-point
20687 or fixed-point type, use the inner type. This is because we have no
20688 support for unnamed types in base_type_die. This can happen if this is
20689 an Ada subrange type. Correct solution is emit a subrange type die. */
20690 if ((code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE)
20691 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
20692 type = TREE_TYPE (type), code = TREE_CODE (type);
20694 if (code == ERROR_MARK
20695 /* Handle a special case. For functions whose return type is void, we
20696 generate *no* type attribute. (Note that no object may have type
20697 `void', so this only applies to function return types). */
20698 || code == VOID_TYPE)
20699 return;
20701 type_die = modified_type_die (type,
20702 cv_quals | TYPE_QUALS_NO_ADDR_SPACE (type),
20703 reverse,
20704 context_die);
20706 if (type_die != NULL)
20707 add_AT_die_ref (object_die, DW_AT_type, type_die);
20710 /* Given an object die, add the calling convention attribute for the
20711 function call type. */
20712 static void
20713 add_calling_convention_attribute (dw_die_ref subr_die, tree decl)
20715 enum dwarf_calling_convention value = DW_CC_normal;
20717 value = ((enum dwarf_calling_convention)
20718 targetm.dwarf_calling_convention (TREE_TYPE (decl)));
20720 if (is_fortran ()
20721 && id_equal (DECL_ASSEMBLER_NAME (decl), "MAIN__"))
20723 /* DWARF 2 doesn't provide a way to identify a program's source-level
20724 entry point. DW_AT_calling_convention attributes are only meant
20725 to describe functions' calling conventions. However, lacking a
20726 better way to signal the Fortran main program, we used this for
20727 a long time, following existing custom. Now, DWARF 4 has
20728 DW_AT_main_subprogram, which we add below, but some tools still
20729 rely on the old way, which we thus keep. */
20730 value = DW_CC_program;
20732 if (dwarf_version >= 4 || !dwarf_strict)
20733 add_AT_flag (subr_die, DW_AT_main_subprogram, 1);
20736 /* Only add the attribute if the backend requests it, and
20737 is not DW_CC_normal. */
20738 if (value && (value != DW_CC_normal))
20739 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
20742 /* Given a tree pointer to a struct, class, union, or enum type node, return
20743 a pointer to the (string) tag name for the given type, or zero if the type
20744 was declared without a tag. */
20746 static const char *
20747 type_tag (const_tree type)
20749 const char *name = 0;
20751 if (TYPE_NAME (type) != 0)
20753 tree t = 0;
20755 /* Find the IDENTIFIER_NODE for the type name. */
20756 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE
20757 && !TYPE_NAMELESS (type))
20758 t = TYPE_NAME (type);
20760 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
20761 a TYPE_DECL node, regardless of whether or not a `typedef' was
20762 involved. */
20763 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
20764 && ! DECL_IGNORED_P (TYPE_NAME (type)))
20766 /* We want to be extra verbose. Don't call dwarf_name if
20767 DECL_NAME isn't set. The default hook for decl_printable_name
20768 doesn't like that, and in this context it's correct to return
20769 0, instead of "<anonymous>" or the like. */
20770 if (DECL_NAME (TYPE_NAME (type))
20771 && !DECL_NAMELESS (TYPE_NAME (type)))
20772 name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
20775 /* Now get the name as a string, or invent one. */
20776 if (!name && t != 0)
20777 name = IDENTIFIER_POINTER (t);
20780 return (name == 0 || *name == '\0') ? 0 : name;
20783 /* Return the type associated with a data member, make a special check
20784 for bit field types. */
20786 static inline tree
20787 member_declared_type (const_tree member)
20789 return (DECL_BIT_FIELD_TYPE (member)
20790 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
20793 /* Get the decl's label, as described by its RTL. This may be different
20794 from the DECL_NAME name used in the source file. */
20796 #if 0
20797 static const char *
20798 decl_start_label (tree decl)
20800 rtx x;
20801 const char *fnname;
20803 x = DECL_RTL (decl);
20804 gcc_assert (MEM_P (x));
20806 x = XEXP (x, 0);
20807 gcc_assert (GET_CODE (x) == SYMBOL_REF);
20809 fnname = XSTR (x, 0);
20810 return fnname;
20812 #endif
20814 /* For variable-length arrays that have been previously generated, but
20815 may be incomplete due to missing subscript info, fill the subscript
20816 info. Return TRUE if this is one of those cases. */
20817 static bool
20818 fill_variable_array_bounds (tree type)
20820 if (TREE_ASM_WRITTEN (type)
20821 && TREE_CODE (type) == ARRAY_TYPE
20822 && variably_modified_type_p (type, NULL))
20824 dw_die_ref array_die = lookup_type_die (type);
20825 if (!array_die)
20826 return false;
20827 add_subscript_info (array_die, type, !is_ada ());
20828 return true;
20830 return false;
20833 /* These routines generate the internal representation of the DIE's for
20834 the compilation unit. Debugging information is collected by walking
20835 the declaration trees passed in from dwarf2out_decl(). */
20837 static void
20838 gen_array_type_die (tree type, dw_die_ref context_die)
20840 dw_die_ref array_die;
20842 /* GNU compilers represent multidimensional array types as sequences of one
20843 dimensional array types whose element types are themselves array types.
20844 We sometimes squish that down to a single array_type DIE with multiple
20845 subscripts in the Dwarf debugging info. The draft Dwarf specification
20846 say that we are allowed to do this kind of compression in C, because
20847 there is no difference between an array of arrays and a multidimensional
20848 array. We don't do this for Ada to remain as close as possible to the
20849 actual representation, which is especially important against the language
20850 flexibilty wrt arrays of variable size. */
20852 bool collapse_nested_arrays = !is_ada ();
20854 if (fill_variable_array_bounds (type))
20855 return;
20857 dw_die_ref scope_die = scope_die_for (type, context_die);
20858 tree element_type;
20860 /* Emit DW_TAG_string_type for Fortran character types (with kind 1 only, as
20861 DW_TAG_string_type doesn't have DW_AT_type attribute). */
20862 if (TYPE_STRING_FLAG (type)
20863 && TREE_CODE (type) == ARRAY_TYPE
20864 && is_fortran ()
20865 && TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (char_type_node))
20867 HOST_WIDE_INT size;
20869 array_die = new_die (DW_TAG_string_type, scope_die, type);
20870 add_name_attribute (array_die, type_tag (type));
20871 equate_type_number_to_die (type, array_die);
20872 size = int_size_in_bytes (type);
20873 if (size >= 0)
20874 add_AT_unsigned (array_die, DW_AT_byte_size, size);
20875 /* ??? We can't annotate types late, but for LTO we may not
20876 generate a location early either (gfortran.dg/save_6.f90). */
20877 else if (! (early_dwarf && (flag_generate_lto || flag_generate_offload))
20878 && TYPE_DOMAIN (type) != NULL_TREE
20879 && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != NULL_TREE)
20881 tree szdecl = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
20882 tree rszdecl = szdecl;
20884 size = int_size_in_bytes (TREE_TYPE (szdecl));
20885 if (!DECL_P (szdecl))
20887 if (TREE_CODE (szdecl) == INDIRECT_REF
20888 && DECL_P (TREE_OPERAND (szdecl, 0)))
20890 rszdecl = TREE_OPERAND (szdecl, 0);
20891 if (int_size_in_bytes (TREE_TYPE (rszdecl))
20892 != DWARF2_ADDR_SIZE)
20893 size = 0;
20895 else
20896 size = 0;
20898 if (size > 0)
20900 dw_loc_list_ref loc
20901 = loc_list_from_tree (rszdecl, szdecl == rszdecl ? 2 : 0,
20902 NULL);
20903 if (loc)
20905 add_AT_location_description (array_die, DW_AT_string_length,
20906 loc);
20907 if (size != DWARF2_ADDR_SIZE)
20908 add_AT_unsigned (array_die, dwarf_version >= 5
20909 ? DW_AT_string_length_byte_size
20910 : DW_AT_byte_size, size);
20914 return;
20917 array_die = new_die (DW_TAG_array_type, scope_die, type);
20918 add_name_attribute (array_die, type_tag (type));
20919 equate_type_number_to_die (type, array_die);
20921 if (TREE_CODE (type) == VECTOR_TYPE)
20922 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
20924 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
20925 if (is_fortran ()
20926 && TREE_CODE (type) == ARRAY_TYPE
20927 && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE
20928 && !TYPE_STRING_FLAG (TREE_TYPE (type)))
20929 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
20931 #if 0
20932 /* We default the array ordering. SDB will probably do
20933 the right things even if DW_AT_ordering is not present. It's not even
20934 an issue until we start to get into multidimensional arrays anyway. If
20935 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
20936 then we'll have to put the DW_AT_ordering attribute back in. (But if
20937 and when we find out that we need to put these in, we will only do so
20938 for multidimensional arrays. */
20939 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
20940 #endif
20942 if (TREE_CODE (type) == VECTOR_TYPE)
20944 /* For VECTOR_TYPEs we use an array die with appropriate bounds. */
20945 dw_die_ref subrange_die = new_die (DW_TAG_subrange_type, array_die, NULL);
20946 add_bound_info (subrange_die, DW_AT_lower_bound, size_zero_node, NULL);
20947 add_bound_info (subrange_die, DW_AT_upper_bound,
20948 size_int (TYPE_VECTOR_SUBPARTS (type) - 1), NULL);
20950 else
20951 add_subscript_info (array_die, type, collapse_nested_arrays);
20953 /* Add representation of the type of the elements of this array type and
20954 emit the corresponding DIE if we haven't done it already. */
20955 element_type = TREE_TYPE (type);
20956 if (collapse_nested_arrays)
20957 while (TREE_CODE (element_type) == ARRAY_TYPE)
20959 if (TYPE_STRING_FLAG (element_type) && is_fortran ())
20960 break;
20961 element_type = TREE_TYPE (element_type);
20964 add_type_attribute (array_die, element_type, TYPE_UNQUALIFIED,
20965 TREE_CODE (type) == ARRAY_TYPE
20966 && TYPE_REVERSE_STORAGE_ORDER (type),
20967 context_die);
20969 add_gnat_descriptive_type_attribute (array_die, type, context_die);
20970 if (TYPE_ARTIFICIAL (type))
20971 add_AT_flag (array_die, DW_AT_artificial, 1);
20973 if (get_AT (array_die, DW_AT_name))
20974 add_pubtype (type, array_die);
20976 add_alignment_attribute (array_die, type);
20979 /* This routine generates DIE for array with hidden descriptor, details
20980 are filled into *info by a langhook. */
20982 static void
20983 gen_descr_array_type_die (tree type, struct array_descr_info *info,
20984 dw_die_ref context_die)
20986 const dw_die_ref scope_die = scope_die_for (type, context_die);
20987 const dw_die_ref array_die = new_die (DW_TAG_array_type, scope_die, type);
20988 struct loc_descr_context context = { type, info->base_decl, NULL,
20989 false, false };
20990 enum dwarf_tag subrange_tag = DW_TAG_subrange_type;
20991 int dim;
20993 add_name_attribute (array_die, type_tag (type));
20994 equate_type_number_to_die (type, array_die);
20996 if (info->ndimensions > 1)
20997 switch (info->ordering)
20999 case array_descr_ordering_row_major:
21000 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
21001 break;
21002 case array_descr_ordering_column_major:
21003 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
21004 break;
21005 default:
21006 break;
21009 if (dwarf_version >= 3 || !dwarf_strict)
21011 if (info->data_location)
21012 add_scalar_info (array_die, DW_AT_data_location, info->data_location,
21013 dw_scalar_form_exprloc, &context);
21014 if (info->associated)
21015 add_scalar_info (array_die, DW_AT_associated, info->associated,
21016 dw_scalar_form_constant
21017 | dw_scalar_form_exprloc
21018 | dw_scalar_form_reference, &context);
21019 if (info->allocated)
21020 add_scalar_info (array_die, DW_AT_allocated, info->allocated,
21021 dw_scalar_form_constant
21022 | dw_scalar_form_exprloc
21023 | dw_scalar_form_reference, &context);
21024 if (info->stride)
21026 const enum dwarf_attribute attr
21027 = (info->stride_in_bits) ? DW_AT_bit_stride : DW_AT_byte_stride;
21028 const int forms
21029 = (info->stride_in_bits)
21030 ? dw_scalar_form_constant
21031 : (dw_scalar_form_constant
21032 | dw_scalar_form_exprloc
21033 | dw_scalar_form_reference);
21035 add_scalar_info (array_die, attr, info->stride, forms, &context);
21038 if (dwarf_version >= 5)
21040 if (info->rank)
21042 add_scalar_info (array_die, DW_AT_rank, info->rank,
21043 dw_scalar_form_constant
21044 | dw_scalar_form_exprloc, &context);
21045 subrange_tag = DW_TAG_generic_subrange;
21046 context.placeholder_arg = true;
21050 add_gnat_descriptive_type_attribute (array_die, type, context_die);
21052 for (dim = 0; dim < info->ndimensions; dim++)
21054 dw_die_ref subrange_die = new_die (subrange_tag, array_die, NULL);
21056 if (info->dimen[dim].bounds_type)
21057 add_type_attribute (subrange_die,
21058 info->dimen[dim].bounds_type, TYPE_UNQUALIFIED,
21059 false, context_die);
21060 if (info->dimen[dim].lower_bound)
21061 add_bound_info (subrange_die, DW_AT_lower_bound,
21062 info->dimen[dim].lower_bound, &context);
21063 if (info->dimen[dim].upper_bound)
21064 add_bound_info (subrange_die, DW_AT_upper_bound,
21065 info->dimen[dim].upper_bound, &context);
21066 if ((dwarf_version >= 3 || !dwarf_strict) && info->dimen[dim].stride)
21067 add_scalar_info (subrange_die, DW_AT_byte_stride,
21068 info->dimen[dim].stride,
21069 dw_scalar_form_constant
21070 | dw_scalar_form_exprloc
21071 | dw_scalar_form_reference,
21072 &context);
21075 gen_type_die (info->element_type, context_die);
21076 add_type_attribute (array_die, info->element_type, TYPE_UNQUALIFIED,
21077 TREE_CODE (type) == ARRAY_TYPE
21078 && TYPE_REVERSE_STORAGE_ORDER (type),
21079 context_die);
21081 if (get_AT (array_die, DW_AT_name))
21082 add_pubtype (type, array_die);
21084 add_alignment_attribute (array_die, type);
21087 #if 0
21088 static void
21089 gen_entry_point_die (tree decl, dw_die_ref context_die)
21091 tree origin = decl_ultimate_origin (decl);
21092 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
21094 if (origin != NULL)
21095 add_abstract_origin_attribute (decl_die, origin);
21096 else
21098 add_name_and_src_coords_attributes (decl_die, decl);
21099 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
21100 TYPE_UNQUALIFIED, false, context_die);
21103 if (DECL_ABSTRACT_P (decl))
21104 equate_decl_number_to_die (decl, decl_die);
21105 else
21106 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
21108 #endif
21110 /* Walk through the list of incomplete types again, trying once more to
21111 emit full debugging info for them. */
21113 static void
21114 retry_incomplete_types (void)
21116 set_early_dwarf s;
21117 int i;
21119 for (i = vec_safe_length (incomplete_types) - 1; i >= 0; i--)
21120 if (should_emit_struct_debug ((*incomplete_types)[i], DINFO_USAGE_DIR_USE))
21121 gen_type_die ((*incomplete_types)[i], comp_unit_die ());
21122 vec_safe_truncate (incomplete_types, 0);
21125 /* Determine what tag to use for a record type. */
21127 static enum dwarf_tag
21128 record_type_tag (tree type)
21130 if (! lang_hooks.types.classify_record)
21131 return DW_TAG_structure_type;
21133 switch (lang_hooks.types.classify_record (type))
21135 case RECORD_IS_STRUCT:
21136 return DW_TAG_structure_type;
21138 case RECORD_IS_CLASS:
21139 return DW_TAG_class_type;
21141 case RECORD_IS_INTERFACE:
21142 if (dwarf_version >= 3 || !dwarf_strict)
21143 return DW_TAG_interface_type;
21144 return DW_TAG_structure_type;
21146 default:
21147 gcc_unreachable ();
21151 /* Generate a DIE to represent an enumeration type. Note that these DIEs
21152 include all of the information about the enumeration values also. Each
21153 enumerated type name/value is listed as a child of the enumerated type
21154 DIE. */
21156 static dw_die_ref
21157 gen_enumeration_type_die (tree type, dw_die_ref context_die)
21159 dw_die_ref type_die = lookup_type_die (type);
21161 if (type_die == NULL)
21163 type_die = new_die (DW_TAG_enumeration_type,
21164 scope_die_for (type, context_die), type);
21165 equate_type_number_to_die (type, type_die);
21166 add_name_attribute (type_die, type_tag (type));
21167 if (dwarf_version >= 4 || !dwarf_strict)
21169 if (ENUM_IS_SCOPED (type))
21170 add_AT_flag (type_die, DW_AT_enum_class, 1);
21171 if (ENUM_IS_OPAQUE (type))
21172 add_AT_flag (type_die, DW_AT_declaration, 1);
21174 if (!dwarf_strict)
21175 add_AT_unsigned (type_die, DW_AT_encoding,
21176 TYPE_UNSIGNED (type)
21177 ? DW_ATE_unsigned
21178 : DW_ATE_signed);
21180 else if (! TYPE_SIZE (type))
21181 return type_die;
21182 else
21183 remove_AT (type_die, DW_AT_declaration);
21185 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
21186 given enum type is incomplete, do not generate the DW_AT_byte_size
21187 attribute or the DW_AT_element_list attribute. */
21188 if (TYPE_SIZE (type))
21190 tree link;
21192 TREE_ASM_WRITTEN (type) = 1;
21193 add_byte_size_attribute (type_die, type);
21194 add_alignment_attribute (type_die, type);
21195 if (dwarf_version >= 3 || !dwarf_strict)
21197 tree underlying = lang_hooks.types.enum_underlying_base_type (type);
21198 add_type_attribute (type_die, underlying, TYPE_UNQUALIFIED, false,
21199 context_die);
21201 if (TYPE_STUB_DECL (type) != NULL_TREE)
21203 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
21204 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
21207 /* If the first reference to this type was as the return type of an
21208 inline function, then it may not have a parent. Fix this now. */
21209 if (type_die->die_parent == NULL)
21210 add_child_die (scope_die_for (type, context_die), type_die);
21212 for (link = TYPE_VALUES (type);
21213 link != NULL; link = TREE_CHAIN (link))
21215 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
21216 tree value = TREE_VALUE (link);
21218 add_name_attribute (enum_die,
21219 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
21221 if (TREE_CODE (value) == CONST_DECL)
21222 value = DECL_INITIAL (value);
21224 if (simple_type_size_in_bits (TREE_TYPE (value))
21225 <= HOST_BITS_PER_WIDE_INT || tree_fits_shwi_p (value))
21227 /* For constant forms created by add_AT_unsigned DWARF
21228 consumers (GDB, elfutils, etc.) always zero extend
21229 the value. Only when the actual value is negative
21230 do we need to use add_AT_int to generate a constant
21231 form that can represent negative values. */
21232 HOST_WIDE_INT val = TREE_INT_CST_LOW (value);
21233 if (TYPE_UNSIGNED (TREE_TYPE (value)) || val >= 0)
21234 add_AT_unsigned (enum_die, DW_AT_const_value,
21235 (unsigned HOST_WIDE_INT) val);
21236 else
21237 add_AT_int (enum_die, DW_AT_const_value, val);
21239 else
21240 /* Enumeration constants may be wider than HOST_WIDE_INT. Handle
21241 that here. TODO: This should be re-worked to use correct
21242 signed/unsigned double tags for all cases. */
21243 add_AT_wide (enum_die, DW_AT_const_value, value);
21246 add_gnat_descriptive_type_attribute (type_die, type, context_die);
21247 if (TYPE_ARTIFICIAL (type))
21248 add_AT_flag (type_die, DW_AT_artificial, 1);
21250 else
21251 add_AT_flag (type_die, DW_AT_declaration, 1);
21253 add_alignment_attribute (type_die, type);
21255 add_pubtype (type, type_die);
21257 return type_die;
21260 /* Generate a DIE to represent either a real live formal parameter decl or to
21261 represent just the type of some formal parameter position in some function
21262 type.
21264 Note that this routine is a bit unusual because its argument may be a
21265 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
21266 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
21267 node. If it's the former then this function is being called to output a
21268 DIE to represent a formal parameter object (or some inlining thereof). If
21269 it's the latter, then this function is only being called to output a
21270 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
21271 argument type of some subprogram type.
21272 If EMIT_NAME_P is true, name and source coordinate attributes
21273 are emitted. */
21275 static dw_die_ref
21276 gen_formal_parameter_die (tree node, tree origin, bool emit_name_p,
21277 dw_die_ref context_die)
21279 tree node_or_origin = node ? node : origin;
21280 tree ultimate_origin;
21281 dw_die_ref parm_die = NULL;
21283 if (TREE_CODE_CLASS (TREE_CODE (node_or_origin)) == tcc_declaration)
21285 parm_die = lookup_decl_die (node);
21287 /* If the contexts differ, we may not be talking about the same
21288 thing.
21289 ??? When in LTO the DIE parent is the "abstract" copy and the
21290 context_die is the specification "copy". But this whole block
21291 should eventually be no longer needed. */
21292 if (parm_die && parm_die->die_parent != context_die && !in_lto_p)
21294 if (!DECL_ABSTRACT_P (node))
21296 /* This can happen when creating an inlined instance, in
21297 which case we need to create a new DIE that will get
21298 annotated with DW_AT_abstract_origin. */
21299 parm_die = NULL;
21301 else
21302 gcc_unreachable ();
21305 if (parm_die && parm_die->die_parent == NULL)
21307 /* Check that parm_die already has the right attributes that
21308 we would have added below. If any attributes are
21309 missing, fall through to add them. */
21310 if (! DECL_ABSTRACT_P (node_or_origin)
21311 && !get_AT (parm_die, DW_AT_location)
21312 && !get_AT (parm_die, DW_AT_const_value))
21313 /* We are missing location info, and are about to add it. */
21315 else
21317 add_child_die (context_die, parm_die);
21318 return parm_die;
21323 /* If we have a previously generated DIE, use it, unless this is an
21324 concrete instance (origin != NULL), in which case we need a new
21325 DIE with a corresponding DW_AT_abstract_origin. */
21326 bool reusing_die;
21327 if (parm_die && origin == NULL)
21328 reusing_die = true;
21329 else
21331 parm_die = new_die (DW_TAG_formal_parameter, context_die, node);
21332 reusing_die = false;
21335 switch (TREE_CODE_CLASS (TREE_CODE (node_or_origin)))
21337 case tcc_declaration:
21338 ultimate_origin = decl_ultimate_origin (node_or_origin);
21339 if (node || ultimate_origin)
21340 origin = ultimate_origin;
21342 if (reusing_die)
21343 goto add_location;
21345 if (origin != NULL)
21346 add_abstract_origin_attribute (parm_die, origin);
21347 else if (emit_name_p)
21348 add_name_and_src_coords_attributes (parm_die, node);
21349 if (origin == NULL
21350 || (! DECL_ABSTRACT_P (node_or_origin)
21351 && variably_modified_type_p (TREE_TYPE (node_or_origin),
21352 decl_function_context
21353 (node_or_origin))))
21355 tree type = TREE_TYPE (node_or_origin);
21356 if (decl_by_reference_p (node_or_origin))
21357 add_type_attribute (parm_die, TREE_TYPE (type),
21358 TYPE_UNQUALIFIED,
21359 false, context_die);
21360 else
21361 add_type_attribute (parm_die, type,
21362 decl_quals (node_or_origin),
21363 false, context_die);
21365 if (origin == NULL && DECL_ARTIFICIAL (node))
21366 add_AT_flag (parm_die, DW_AT_artificial, 1);
21367 add_location:
21368 if (node && node != origin)
21369 equate_decl_number_to_die (node, parm_die);
21370 if (! DECL_ABSTRACT_P (node_or_origin))
21371 add_location_or_const_value_attribute (parm_die, node_or_origin,
21372 node == NULL);
21374 break;
21376 case tcc_type:
21377 /* We were called with some kind of a ..._TYPE node. */
21378 add_type_attribute (parm_die, node_or_origin, TYPE_UNQUALIFIED, false,
21379 context_die);
21380 break;
21382 default:
21383 gcc_unreachable ();
21386 return parm_die;
21389 /* Generate and return a DW_TAG_GNU_formal_parameter_pack. Also generate
21390 children DW_TAG_formal_parameter DIEs representing the arguments of the
21391 parameter pack.
21393 PARM_PACK must be a function parameter pack.
21394 PACK_ARG is the first argument of the parameter pack. Its TREE_CHAIN
21395 must point to the subsequent arguments of the function PACK_ARG belongs to.
21396 SUBR_DIE is the DIE of the function PACK_ARG belongs to.
21397 If NEXT_ARG is non NULL, *NEXT_ARG is set to the function argument
21398 following the last one for which a DIE was generated. */
21400 static dw_die_ref
21401 gen_formal_parameter_pack_die (tree parm_pack,
21402 tree pack_arg,
21403 dw_die_ref subr_die,
21404 tree *next_arg)
21406 tree arg;
21407 dw_die_ref parm_pack_die;
21409 gcc_assert (parm_pack
21410 && lang_hooks.function_parameter_pack_p (parm_pack)
21411 && subr_die);
21413 parm_pack_die = new_die (DW_TAG_GNU_formal_parameter_pack, subr_die, parm_pack);
21414 add_src_coords_attributes (parm_pack_die, parm_pack);
21416 for (arg = pack_arg; arg; arg = DECL_CHAIN (arg))
21418 if (! lang_hooks.decls.function_parm_expanded_from_pack_p (arg,
21419 parm_pack))
21420 break;
21421 gen_formal_parameter_die (arg, NULL,
21422 false /* Don't emit name attribute. */,
21423 parm_pack_die);
21425 if (next_arg)
21426 *next_arg = arg;
21427 return parm_pack_die;
21430 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
21431 at the end of an (ANSI prototyped) formal parameters list. */
21433 static void
21434 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
21436 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
21439 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
21440 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
21441 parameters as specified in some function type specification (except for
21442 those which appear as part of a function *definition*). */
21444 static void
21445 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
21447 tree link;
21448 tree formal_type = NULL;
21449 tree first_parm_type;
21450 tree arg;
21452 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
21454 arg = DECL_ARGUMENTS (function_or_method_type);
21455 function_or_method_type = TREE_TYPE (function_or_method_type);
21457 else
21458 arg = NULL_TREE;
21460 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
21462 /* Make our first pass over the list of formal parameter types and output a
21463 DW_TAG_formal_parameter DIE for each one. */
21464 for (link = first_parm_type; link; )
21466 dw_die_ref parm_die;
21468 formal_type = TREE_VALUE (link);
21469 if (formal_type == void_type_node)
21470 break;
21472 /* Output a (nameless) DIE to represent the formal parameter itself. */
21473 if (!POINTER_BOUNDS_TYPE_P (formal_type))
21475 parm_die = gen_formal_parameter_die (formal_type, NULL,
21476 true /* Emit name attribute. */,
21477 context_die);
21478 if (TREE_CODE (function_or_method_type) == METHOD_TYPE
21479 && link == first_parm_type)
21481 add_AT_flag (parm_die, DW_AT_artificial, 1);
21482 if (dwarf_version >= 3 || !dwarf_strict)
21483 add_AT_die_ref (context_die, DW_AT_object_pointer, parm_die);
21485 else if (arg && DECL_ARTIFICIAL (arg))
21486 add_AT_flag (parm_die, DW_AT_artificial, 1);
21489 link = TREE_CHAIN (link);
21490 if (arg)
21491 arg = DECL_CHAIN (arg);
21494 /* If this function type has an ellipsis, add a
21495 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
21496 if (formal_type != void_type_node)
21497 gen_unspecified_parameters_die (function_or_method_type, context_die);
21499 /* Make our second (and final) pass over the list of formal parameter types
21500 and output DIEs to represent those types (as necessary). */
21501 for (link = TYPE_ARG_TYPES (function_or_method_type);
21502 link && TREE_VALUE (link);
21503 link = TREE_CHAIN (link))
21504 gen_type_die (TREE_VALUE (link), context_die);
21507 /* We want to generate the DIE for TYPE so that we can generate the
21508 die for MEMBER, which has been defined; we will need to refer back
21509 to the member declaration nested within TYPE. If we're trying to
21510 generate minimal debug info for TYPE, processing TYPE won't do the
21511 trick; we need to attach the member declaration by hand. */
21513 static void
21514 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
21516 gen_type_die (type, context_die);
21518 /* If we're trying to avoid duplicate debug info, we may not have
21519 emitted the member decl for this function. Emit it now. */
21520 if (TYPE_STUB_DECL (type)
21521 && TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
21522 && ! lookup_decl_die (member))
21524 dw_die_ref type_die;
21525 gcc_assert (!decl_ultimate_origin (member));
21527 push_decl_scope (type);
21528 type_die = lookup_type_die_strip_naming_typedef (type);
21529 if (TREE_CODE (member) == FUNCTION_DECL)
21530 gen_subprogram_die (member, type_die);
21531 else if (TREE_CODE (member) == FIELD_DECL)
21533 /* Ignore the nameless fields that are used to skip bits but handle
21534 C++ anonymous unions and structs. */
21535 if (DECL_NAME (member) != NULL_TREE
21536 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
21537 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
21539 struct vlr_context vlr_ctx = {
21540 DECL_CONTEXT (member), /* struct_type */
21541 NULL_TREE /* variant_part_offset */
21543 gen_type_die (member_declared_type (member), type_die);
21544 gen_field_die (member, &vlr_ctx, type_die);
21547 else
21548 gen_variable_die (member, NULL_TREE, type_die);
21550 pop_decl_scope ();
21554 /* Forward declare these functions, because they are mutually recursive
21555 with their set_block_* pairing functions. */
21556 static void set_decl_origin_self (tree);
21558 /* Given a pointer to some BLOCK node, if the BLOCK_ABSTRACT_ORIGIN for the
21559 given BLOCK node is NULL, set the BLOCK_ABSTRACT_ORIGIN for the node so
21560 that it points to the node itself, thus indicating that the node is its
21561 own (abstract) origin. Additionally, if the BLOCK_ABSTRACT_ORIGIN for
21562 the given node is NULL, recursively descend the decl/block tree which
21563 it is the root of, and for each other ..._DECL or BLOCK node contained
21564 therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also
21565 still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN
21566 values to point to themselves. */
21568 static void
21569 set_block_origin_self (tree stmt)
21571 if (BLOCK_ABSTRACT_ORIGIN (stmt) == NULL_TREE)
21573 BLOCK_ABSTRACT_ORIGIN (stmt) = stmt;
21576 tree local_decl;
21578 for (local_decl = BLOCK_VARS (stmt);
21579 local_decl != NULL_TREE;
21580 local_decl = DECL_CHAIN (local_decl))
21581 /* Do not recurse on nested functions since the inlining status
21582 of parent and child can be different as per the DWARF spec. */
21583 if (TREE_CODE (local_decl) != FUNCTION_DECL
21584 && !DECL_EXTERNAL (local_decl))
21585 set_decl_origin_self (local_decl);
21589 tree subblock;
21591 for (subblock = BLOCK_SUBBLOCKS (stmt);
21592 subblock != NULL_TREE;
21593 subblock = BLOCK_CHAIN (subblock))
21594 set_block_origin_self (subblock); /* Recurse. */
21599 /* Given a pointer to some ..._DECL node, if the DECL_ABSTRACT_ORIGIN for
21600 the given ..._DECL node is NULL, set the DECL_ABSTRACT_ORIGIN for the
21601 node to so that it points to the node itself, thus indicating that the
21602 node represents its own (abstract) origin. Additionally, if the
21603 DECL_ABSTRACT_ORIGIN for the given node is NULL, recursively descend
21604 the decl/block tree of which the given node is the root of, and for
21605 each other ..._DECL or BLOCK node contained therein whose
21606 DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL,
21607 set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to
21608 point to themselves. */
21610 static void
21611 set_decl_origin_self (tree decl)
21613 if (DECL_ABSTRACT_ORIGIN (decl) == NULL_TREE)
21615 DECL_ABSTRACT_ORIGIN (decl) = decl;
21616 if (TREE_CODE (decl) == FUNCTION_DECL)
21618 tree arg;
21620 for (arg = DECL_ARGUMENTS (decl); arg; arg = DECL_CHAIN (arg))
21621 DECL_ABSTRACT_ORIGIN (arg) = arg;
21622 if (DECL_INITIAL (decl) != NULL_TREE
21623 && DECL_INITIAL (decl) != error_mark_node)
21624 set_block_origin_self (DECL_INITIAL (decl));
21629 /* Mark the early DIE for DECL as the abstract instance. */
21631 static void
21632 dwarf2out_abstract_function (tree decl)
21634 dw_die_ref old_die;
21636 /* Make sure we have the actual abstract inline, not a clone. */
21637 decl = DECL_ORIGIN (decl);
21639 if (DECL_IGNORED_P (decl))
21640 return;
21642 old_die = lookup_decl_die (decl);
21643 /* With early debug we always have an old DIE unless we are in LTO
21644 and the user did not compile but only link with debug. */
21645 if (in_lto_p && ! old_die)
21646 return;
21647 gcc_assert (old_die != NULL);
21648 if (get_AT (old_die, DW_AT_inline)
21649 || get_AT (old_die, DW_AT_abstract_origin))
21650 /* We've already generated the abstract instance. */
21651 return;
21653 /* Go ahead and put DW_AT_inline on the DIE. */
21654 if (DECL_DECLARED_INLINE_P (decl))
21656 if (cgraph_function_possibly_inlined_p (decl))
21657 add_AT_unsigned (old_die, DW_AT_inline, DW_INL_declared_inlined);
21658 else
21659 add_AT_unsigned (old_die, DW_AT_inline, DW_INL_declared_not_inlined);
21661 else
21663 if (cgraph_function_possibly_inlined_p (decl))
21664 add_AT_unsigned (old_die, DW_AT_inline, DW_INL_inlined);
21665 else
21666 add_AT_unsigned (old_die, DW_AT_inline, DW_INL_not_inlined);
21669 if (DECL_DECLARED_INLINE_P (decl)
21670 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl)))
21671 add_AT_flag (old_die, DW_AT_artificial, 1);
21673 set_decl_origin_self (decl);
21676 /* Helper function of premark_used_types() which gets called through
21677 htab_traverse.
21679 Marks the DIE of a given type in *SLOT as perennial, so it never gets
21680 marked as unused by prune_unused_types. */
21682 bool
21683 premark_used_types_helper (tree const &type, void *)
21685 dw_die_ref die;
21687 die = lookup_type_die (type);
21688 if (die != NULL)
21689 die->die_perennial_p = 1;
21690 return true;
21693 /* Helper function of premark_types_used_by_global_vars which gets called
21694 through htab_traverse.
21696 Marks the DIE of a given type in *SLOT as perennial, so it never gets
21697 marked as unused by prune_unused_types. The DIE of the type is marked
21698 only if the global variable using the type will actually be emitted. */
21701 premark_types_used_by_global_vars_helper (types_used_by_vars_entry **slot,
21702 void *)
21704 struct types_used_by_vars_entry *entry;
21705 dw_die_ref die;
21707 entry = (struct types_used_by_vars_entry *) *slot;
21708 gcc_assert (entry->type != NULL
21709 && entry->var_decl != NULL);
21710 die = lookup_type_die (entry->type);
21711 if (die)
21713 /* Ask cgraph if the global variable really is to be emitted.
21714 If yes, then we'll keep the DIE of ENTRY->TYPE. */
21715 varpool_node *node = varpool_node::get (entry->var_decl);
21716 if (node && node->definition)
21718 die->die_perennial_p = 1;
21719 /* Keep the parent DIEs as well. */
21720 while ((die = die->die_parent) && die->die_perennial_p == 0)
21721 die->die_perennial_p = 1;
21724 return 1;
21727 /* Mark all members of used_types_hash as perennial. */
21729 static void
21730 premark_used_types (struct function *fun)
21732 if (fun && fun->used_types_hash)
21733 fun->used_types_hash->traverse<void *, premark_used_types_helper> (NULL);
21736 /* Mark all members of types_used_by_vars_entry as perennial. */
21738 static void
21739 premark_types_used_by_global_vars (void)
21741 if (types_used_by_vars_hash)
21742 types_used_by_vars_hash
21743 ->traverse<void *, premark_types_used_by_global_vars_helper> (NULL);
21746 /* Generate a DW_TAG_call_site DIE in function DECL under SUBR_DIE
21747 for CA_LOC call arg loc node. */
21749 static dw_die_ref
21750 gen_call_site_die (tree decl, dw_die_ref subr_die,
21751 struct call_arg_loc_node *ca_loc)
21753 dw_die_ref stmt_die = NULL, die;
21754 tree block = ca_loc->block;
21756 while (block
21757 && block != DECL_INITIAL (decl)
21758 && TREE_CODE (block) == BLOCK)
21760 stmt_die = BLOCK_DIE (block);
21761 if (stmt_die)
21762 break;
21763 block = BLOCK_SUPERCONTEXT (block);
21765 if (stmt_die == NULL)
21766 stmt_die = subr_die;
21767 die = new_die (dwarf_TAG (DW_TAG_call_site), stmt_die, NULL_TREE);
21768 add_AT_lbl_id (die, dwarf_AT (DW_AT_call_return_pc), ca_loc->label);
21769 if (ca_loc->tail_call_p)
21770 add_AT_flag (die, dwarf_AT (DW_AT_call_tail_call), 1);
21771 if (ca_loc->symbol_ref)
21773 dw_die_ref tdie = lookup_decl_die (SYMBOL_REF_DECL (ca_loc->symbol_ref));
21774 if (tdie)
21775 add_AT_die_ref (die, dwarf_AT (DW_AT_call_origin), tdie);
21776 else
21777 add_AT_addr (die, dwarf_AT (DW_AT_call_origin), ca_loc->symbol_ref,
21778 false);
21780 return die;
21783 /* Generate a DIE to represent a declared function (either file-scope or
21784 block-local). */
21786 static void
21787 gen_subprogram_die (tree decl, dw_die_ref context_die)
21789 tree origin = decl_ultimate_origin (decl);
21790 dw_die_ref subr_die;
21791 dw_die_ref old_die = lookup_decl_die (decl);
21793 /* This function gets called multiple times for different stages of
21794 the debug process. For example, for func() in this code:
21796 namespace S
21798 void func() { ... }
21801 ...we get called 4 times. Twice in early debug and twice in
21802 late debug:
21804 Early debug
21805 -----------
21807 1. Once while generating func() within the namespace. This is
21808 the declaration. The declaration bit below is set, as the
21809 context is the namespace.
21811 A new DIE will be generated with DW_AT_declaration set.
21813 2. Once for func() itself. This is the specification. The
21814 declaration bit below is clear as the context is the CU.
21816 We will use the cached DIE from (1) to create a new DIE with
21817 DW_AT_specification pointing to the declaration in (1).
21819 Late debug via rest_of_handle_final()
21820 -------------------------------------
21822 3. Once generating func() within the namespace. This is also the
21823 declaration, as in (1), but this time we will early exit below
21824 as we have a cached DIE and a declaration needs no additional
21825 annotations (no locations), as the source declaration line
21826 info is enough.
21828 4. Once for func() itself. As in (2), this is the specification,
21829 but this time we will re-use the cached DIE, and just annotate
21830 it with the location information that should now be available.
21832 For something without namespaces, but with abstract instances, we
21833 are also called a multiple times:
21835 class Base
21837 public:
21838 Base (); // constructor declaration (1)
21841 Base::Base () { } // constructor specification (2)
21843 Early debug
21844 -----------
21846 1. Once for the Base() constructor by virtue of it being a
21847 member of the Base class. This is done via
21848 rest_of_type_compilation.
21850 This is a declaration, so a new DIE will be created with
21851 DW_AT_declaration.
21853 2. Once for the Base() constructor definition, but this time
21854 while generating the abstract instance of the base
21855 constructor (__base_ctor) which is being generated via early
21856 debug of reachable functions.
21858 Even though we have a cached version of the declaration (1),
21859 we will create a DW_AT_specification of the declaration DIE
21860 in (1).
21862 3. Once for the __base_ctor itself, but this time, we generate
21863 an DW_AT_abstract_origin version of the DW_AT_specification in
21864 (2).
21866 Late debug via rest_of_handle_final
21867 -----------------------------------
21869 4. One final time for the __base_ctor (which will have a cached
21870 DIE with DW_AT_abstract_origin created in (3). This time,
21871 we will just annotate the location information now
21872 available.
21874 int declaration = (current_function_decl != decl
21875 || class_or_namespace_scope_p (context_die));
21877 /* Now that the C++ front end lazily declares artificial member fns, we
21878 might need to retrofit the declaration into its class. */
21879 if (!declaration && !origin && !old_die
21880 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
21881 && !class_or_namespace_scope_p (context_die)
21882 && debug_info_level > DINFO_LEVEL_TERSE)
21883 old_die = force_decl_die (decl);
21885 /* A concrete instance, tag a new DIE with DW_AT_abstract_origin. */
21886 if (origin != NULL)
21888 gcc_assert (!declaration || local_scope_p (context_die));
21890 /* Fixup die_parent for the abstract instance of a nested
21891 inline function. */
21892 if (old_die && old_die->die_parent == NULL)
21893 add_child_die (context_die, old_die);
21895 if (old_die && get_AT_ref (old_die, DW_AT_abstract_origin))
21897 /* If we have a DW_AT_abstract_origin we have a working
21898 cached version. */
21899 subr_die = old_die;
21901 else
21903 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
21904 add_abstract_origin_attribute (subr_die, origin);
21905 /* This is where the actual code for a cloned function is.
21906 Let's emit linkage name attribute for it. This helps
21907 debuggers to e.g, set breakpoints into
21908 constructors/destructors when the user asks "break
21909 K::K". */
21910 add_linkage_name (subr_die, decl);
21913 /* A cached copy, possibly from early dwarf generation. Reuse as
21914 much as possible. */
21915 else if (old_die)
21917 /* A declaration that has been previously dumped needs no
21918 additional information. */
21919 if (declaration)
21920 return;
21922 if (!get_AT_flag (old_die, DW_AT_declaration)
21923 /* We can have a normal definition following an inline one in the
21924 case of redefinition of GNU C extern inlines.
21925 It seems reasonable to use AT_specification in this case. */
21926 && !get_AT (old_die, DW_AT_inline))
21928 /* Detect and ignore this case, where we are trying to output
21929 something we have already output. */
21930 if (get_AT (old_die, DW_AT_low_pc)
21931 || get_AT (old_die, DW_AT_ranges))
21932 return;
21934 /* If we have no location information, this must be a
21935 partially generated DIE from early dwarf generation.
21936 Fall through and generate it. */
21939 /* If the definition comes from the same place as the declaration,
21940 maybe use the old DIE. We always want the DIE for this function
21941 that has the *_pc attributes to be under comp_unit_die so the
21942 debugger can find it. We also need to do this for abstract
21943 instances of inlines, since the spec requires the out-of-line copy
21944 to have the same parent. For local class methods, this doesn't
21945 apply; we just use the old DIE. */
21946 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
21947 struct dwarf_file_data * file_index = lookup_filename (s.file);
21948 if ((is_cu_die (old_die->die_parent)
21949 /* This condition fixes the inconsistency/ICE with the
21950 following Fortran test (or some derivative thereof) while
21951 building libgfortran:
21953 module some_m
21954 contains
21955 logical function funky (FLAG)
21956 funky = .true.
21957 end function
21958 end module
21960 || (old_die->die_parent
21961 && old_die->die_parent->die_tag == DW_TAG_module)
21962 || context_die == NULL)
21963 && (DECL_ARTIFICIAL (decl)
21964 /* The location attributes may be in the abstract origin
21965 which in the case of LTO might be not available to
21966 look at. */
21967 || get_AT (old_die, DW_AT_abstract_origin)
21968 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
21969 && (get_AT_unsigned (old_die, DW_AT_decl_line)
21970 == (unsigned) s.line)
21971 && (!debug_column_info
21972 || s.column == 0
21973 || (get_AT_unsigned (old_die, DW_AT_decl_column)
21974 == (unsigned) s.column)))))
21976 subr_die = old_die;
21978 /* Clear out the declaration attribute, but leave the
21979 parameters so they can be augmented with location
21980 information later. Unless this was a declaration, in
21981 which case, wipe out the nameless parameters and recreate
21982 them further down. */
21983 if (remove_AT (subr_die, DW_AT_declaration))
21986 remove_AT (subr_die, DW_AT_object_pointer);
21987 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
21990 /* Make a specification pointing to the previously built
21991 declaration. */
21992 else
21994 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
21995 add_AT_specification (subr_die, old_die);
21996 add_pubname (decl, subr_die);
21997 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
21998 add_AT_file (subr_die, DW_AT_decl_file, file_index);
21999 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
22000 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
22001 if (debug_column_info
22002 && s.column
22003 && (get_AT_unsigned (old_die, DW_AT_decl_column)
22004 != (unsigned) s.column))
22005 add_AT_unsigned (subr_die, DW_AT_decl_column, s.column);
22007 /* If the prototype had an 'auto' or 'decltype(auto)' return type,
22008 emit the real type on the definition die. */
22009 if (is_cxx () && debug_info_level > DINFO_LEVEL_TERSE)
22011 dw_die_ref die = get_AT_ref (old_die, DW_AT_type);
22012 if (die == auto_die || die == decltype_auto_die)
22013 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
22014 TYPE_UNQUALIFIED, false, context_die);
22017 /* When we process the method declaration, we haven't seen
22018 the out-of-class defaulted definition yet, so we have to
22019 recheck now. */
22020 if ((dwarf_version >= 5 || ! dwarf_strict)
22021 && !get_AT (subr_die, DW_AT_defaulted))
22023 int defaulted
22024 = lang_hooks.decls.decl_dwarf_attribute (decl,
22025 DW_AT_defaulted);
22026 if (defaulted != -1)
22028 /* Other values must have been handled before. */
22029 gcc_assert (defaulted == DW_DEFAULTED_out_of_class);
22030 add_AT_unsigned (subr_die, DW_AT_defaulted, defaulted);
22035 /* Create a fresh DIE for anything else. */
22036 else
22038 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
22040 if (TREE_PUBLIC (decl))
22041 add_AT_flag (subr_die, DW_AT_external, 1);
22043 add_name_and_src_coords_attributes (subr_die, decl);
22044 add_pubname (decl, subr_die);
22045 if (debug_info_level > DINFO_LEVEL_TERSE)
22047 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
22048 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
22049 TYPE_UNQUALIFIED, false, context_die);
22052 add_pure_or_virtual_attribute (subr_die, decl);
22053 if (DECL_ARTIFICIAL (decl))
22054 add_AT_flag (subr_die, DW_AT_artificial, 1);
22056 if (TREE_THIS_VOLATILE (decl) && (dwarf_version >= 5 || !dwarf_strict))
22057 add_AT_flag (subr_die, DW_AT_noreturn, 1);
22059 add_alignment_attribute (subr_die, decl);
22061 add_accessibility_attribute (subr_die, decl);
22064 /* Unless we have an existing non-declaration DIE, equate the new
22065 DIE. */
22066 if (!old_die || is_declaration_die (old_die))
22067 equate_decl_number_to_die (decl, subr_die);
22069 if (declaration)
22071 if (!old_die || !get_AT (old_die, DW_AT_inline))
22073 add_AT_flag (subr_die, DW_AT_declaration, 1);
22075 /* If this is an explicit function declaration then generate
22076 a DW_AT_explicit attribute. */
22077 if ((dwarf_version >= 3 || !dwarf_strict)
22078 && lang_hooks.decls.decl_dwarf_attribute (decl,
22079 DW_AT_explicit) == 1)
22080 add_AT_flag (subr_die, DW_AT_explicit, 1);
22082 /* If this is a C++11 deleted special function member then generate
22083 a DW_AT_deleted attribute. */
22084 if ((dwarf_version >= 5 || !dwarf_strict)
22085 && lang_hooks.decls.decl_dwarf_attribute (decl,
22086 DW_AT_deleted) == 1)
22087 add_AT_flag (subr_die, DW_AT_deleted, 1);
22089 /* If this is a C++11 defaulted special function member then
22090 generate a DW_AT_defaulted attribute. */
22091 if (dwarf_version >= 5 || !dwarf_strict)
22093 int defaulted
22094 = lang_hooks.decls.decl_dwarf_attribute (decl,
22095 DW_AT_defaulted);
22096 if (defaulted != -1)
22097 add_AT_unsigned (subr_die, DW_AT_defaulted, defaulted);
22100 /* If this is a C++11 non-static member function with & ref-qualifier
22101 then generate a DW_AT_reference attribute. */
22102 if ((dwarf_version >= 5 || !dwarf_strict)
22103 && lang_hooks.decls.decl_dwarf_attribute (decl,
22104 DW_AT_reference) == 1)
22105 add_AT_flag (subr_die, DW_AT_reference, 1);
22107 /* If this is a C++11 non-static member function with &&
22108 ref-qualifier then generate a DW_AT_reference attribute. */
22109 if ((dwarf_version >= 5 || !dwarf_strict)
22110 && lang_hooks.decls.decl_dwarf_attribute (decl,
22111 DW_AT_rvalue_reference)
22112 == 1)
22113 add_AT_flag (subr_die, DW_AT_rvalue_reference, 1);
22116 /* For non DECL_EXTERNALs, if range information is available, fill
22117 the DIE with it. */
22118 else if (!DECL_EXTERNAL (decl) && !early_dwarf)
22120 HOST_WIDE_INT cfa_fb_offset;
22122 struct function *fun = DECL_STRUCT_FUNCTION (decl);
22124 if (!crtl->has_bb_partition)
22126 dw_fde_ref fde = fun->fde;
22127 if (fde->dw_fde_begin)
22129 /* We have already generated the labels. */
22130 add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
22131 fde->dw_fde_end, false);
22133 else
22135 /* Create start/end labels and add the range. */
22136 char label_id_low[MAX_ARTIFICIAL_LABEL_BYTES];
22137 char label_id_high[MAX_ARTIFICIAL_LABEL_BYTES];
22138 ASM_GENERATE_INTERNAL_LABEL (label_id_low, FUNC_BEGIN_LABEL,
22139 current_function_funcdef_no);
22140 ASM_GENERATE_INTERNAL_LABEL (label_id_high, FUNC_END_LABEL,
22141 current_function_funcdef_no);
22142 add_AT_low_high_pc (subr_die, label_id_low, label_id_high,
22143 false);
22146 #if VMS_DEBUGGING_INFO
22147 /* HP OpenVMS Industry Standard 64: DWARF Extensions
22148 Section 2.3 Prologue and Epilogue Attributes:
22149 When a breakpoint is set on entry to a function, it is generally
22150 desirable for execution to be suspended, not on the very first
22151 instruction of the function, but rather at a point after the
22152 function's frame has been set up, after any language defined local
22153 declaration processing has been completed, and before execution of
22154 the first statement of the function begins. Debuggers generally
22155 cannot properly determine where this point is. Similarly for a
22156 breakpoint set on exit from a function. The prologue and epilogue
22157 attributes allow a compiler to communicate the location(s) to use. */
22160 if (fde->dw_fde_vms_end_prologue)
22161 add_AT_vms_delta (subr_die, DW_AT_HP_prologue,
22162 fde->dw_fde_begin, fde->dw_fde_vms_end_prologue);
22164 if (fde->dw_fde_vms_begin_epilogue)
22165 add_AT_vms_delta (subr_die, DW_AT_HP_epilogue,
22166 fde->dw_fde_begin, fde->dw_fde_vms_begin_epilogue);
22168 #endif
22171 else
22173 /* Generate pubnames entries for the split function code ranges. */
22174 dw_fde_ref fde = fun->fde;
22176 if (fde->dw_fde_second_begin)
22178 if (dwarf_version >= 3 || !dwarf_strict)
22180 /* We should use ranges for non-contiguous code section
22181 addresses. Use the actual code range for the initial
22182 section, since the HOT/COLD labels might precede an
22183 alignment offset. */
22184 bool range_list_added = false;
22185 add_ranges_by_labels (subr_die, fde->dw_fde_begin,
22186 fde->dw_fde_end, &range_list_added,
22187 false);
22188 add_ranges_by_labels (subr_die, fde->dw_fde_second_begin,
22189 fde->dw_fde_second_end,
22190 &range_list_added, false);
22191 if (range_list_added)
22192 add_ranges (NULL);
22194 else
22196 /* There is no real support in DW2 for this .. so we make
22197 a work-around. First, emit the pub name for the segment
22198 containing the function label. Then make and emit a
22199 simplified subprogram DIE for the second segment with the
22200 name pre-fixed by __hot/cold_sect_of_. We use the same
22201 linkage name for the second die so that gdb will find both
22202 sections when given "b foo". */
22203 const char *name = NULL;
22204 tree decl_name = DECL_NAME (decl);
22205 dw_die_ref seg_die;
22207 /* Do the 'primary' section. */
22208 add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
22209 fde->dw_fde_end, false);
22211 /* Build a minimal DIE for the secondary section. */
22212 seg_die = new_die (DW_TAG_subprogram,
22213 subr_die->die_parent, decl);
22215 if (TREE_PUBLIC (decl))
22216 add_AT_flag (seg_die, DW_AT_external, 1);
22218 if (decl_name != NULL
22219 && IDENTIFIER_POINTER (decl_name) != NULL)
22221 name = dwarf2_name (decl, 1);
22222 if (! DECL_ARTIFICIAL (decl))
22223 add_src_coords_attributes (seg_die, decl);
22225 add_linkage_name (seg_die, decl);
22227 gcc_assert (name != NULL);
22228 add_pure_or_virtual_attribute (seg_die, decl);
22229 if (DECL_ARTIFICIAL (decl))
22230 add_AT_flag (seg_die, DW_AT_artificial, 1);
22232 name = concat ("__second_sect_of_", name, NULL);
22233 add_AT_low_high_pc (seg_die, fde->dw_fde_second_begin,
22234 fde->dw_fde_second_end, false);
22235 add_name_attribute (seg_die, name);
22236 if (want_pubnames ())
22237 add_pubname_string (name, seg_die);
22240 else
22241 add_AT_low_high_pc (subr_die, fde->dw_fde_begin, fde->dw_fde_end,
22242 false);
22245 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
22247 /* We define the "frame base" as the function's CFA. This is more
22248 convenient for several reasons: (1) It's stable across the prologue
22249 and epilogue, which makes it better than just a frame pointer,
22250 (2) With dwarf3, there exists a one-byte encoding that allows us
22251 to reference the .debug_frame data by proxy, but failing that,
22252 (3) We can at least reuse the code inspection and interpretation
22253 code that determines the CFA position at various points in the
22254 function. */
22255 if (dwarf_version >= 3 && targetm.debug_unwind_info () == UI_DWARF2)
22257 dw_loc_descr_ref op = new_loc_descr (DW_OP_call_frame_cfa, 0, 0);
22258 add_AT_loc (subr_die, DW_AT_frame_base, op);
22260 else
22262 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
22263 if (list->dw_loc_next)
22264 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
22265 else
22266 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
22269 /* Compute a displacement from the "steady-state frame pointer" to
22270 the CFA. The former is what all stack slots and argument slots
22271 will reference in the rtl; the latter is what we've told the
22272 debugger about. We'll need to adjust all frame_base references
22273 by this displacement. */
22274 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
22276 if (fun->static_chain_decl)
22278 /* DWARF requires here a location expression that computes the
22279 address of the enclosing subprogram's frame base. The machinery
22280 in tree-nested.c is supposed to store this specific address in the
22281 last field of the FRAME record. */
22282 const tree frame_type
22283 = TREE_TYPE (TREE_TYPE (fun->static_chain_decl));
22284 const tree fb_decl = tree_last (TYPE_FIELDS (frame_type));
22286 tree fb_expr
22287 = build1 (INDIRECT_REF, frame_type, fun->static_chain_decl);
22288 fb_expr = build3 (COMPONENT_REF, TREE_TYPE (fb_decl),
22289 fb_expr, fb_decl, NULL_TREE);
22291 add_AT_location_description (subr_die, DW_AT_static_link,
22292 loc_list_from_tree (fb_expr, 0, NULL));
22295 resolve_variable_values ();
22298 /* Generate child dies for template paramaters. */
22299 if (early_dwarf && debug_info_level > DINFO_LEVEL_TERSE)
22300 gen_generic_params_dies (decl);
22302 /* Now output descriptions of the arguments for this function. This gets
22303 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
22304 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
22305 `...' at the end of the formal parameter list. In order to find out if
22306 there was a trailing ellipsis or not, we must instead look at the type
22307 associated with the FUNCTION_DECL. This will be a node of type
22308 FUNCTION_TYPE. If the chain of type nodes hanging off of this
22309 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
22310 an ellipsis at the end. */
22312 /* In the case where we are describing a mere function declaration, all we
22313 need to do here (and all we *can* do here) is to describe the *types* of
22314 its formal parameters. */
22315 if (debug_info_level <= DINFO_LEVEL_TERSE)
22317 else if (declaration)
22318 gen_formal_types_die (decl, subr_die);
22319 else
22321 /* Generate DIEs to represent all known formal parameters. */
22322 tree parm = DECL_ARGUMENTS (decl);
22323 tree generic_decl = early_dwarf
22324 ? lang_hooks.decls.get_generic_function_decl (decl) : NULL;
22325 tree generic_decl_parm = generic_decl
22326 ? DECL_ARGUMENTS (generic_decl)
22327 : NULL;
22329 /* Now we want to walk the list of parameters of the function and
22330 emit their relevant DIEs.
22332 We consider the case of DECL being an instance of a generic function
22333 as well as it being a normal function.
22335 If DECL is an instance of a generic function we walk the
22336 parameters of the generic function declaration _and_ the parameters of
22337 DECL itself. This is useful because we want to emit specific DIEs for
22338 function parameter packs and those are declared as part of the
22339 generic function declaration. In that particular case,
22340 the parameter pack yields a DW_TAG_GNU_formal_parameter_pack DIE.
22341 That DIE has children DIEs representing the set of arguments
22342 of the pack. Note that the set of pack arguments can be empty.
22343 In that case, the DW_TAG_GNU_formal_parameter_pack DIE will not have any
22344 children DIE.
22346 Otherwise, we just consider the parameters of DECL. */
22347 while (generic_decl_parm || parm)
22349 if (generic_decl_parm
22350 && lang_hooks.function_parameter_pack_p (generic_decl_parm))
22351 gen_formal_parameter_pack_die (generic_decl_parm,
22352 parm, subr_die,
22353 &parm);
22354 else if (parm && !POINTER_BOUNDS_P (parm))
22356 dw_die_ref parm_die = gen_decl_die (parm, NULL, NULL, subr_die);
22358 if (early_dwarf
22359 && parm == DECL_ARGUMENTS (decl)
22360 && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE
22361 && parm_die
22362 && (dwarf_version >= 3 || !dwarf_strict))
22363 add_AT_die_ref (subr_die, DW_AT_object_pointer, parm_die);
22365 parm = DECL_CHAIN (parm);
22367 else if (parm)
22368 parm = DECL_CHAIN (parm);
22370 if (generic_decl_parm)
22371 generic_decl_parm = DECL_CHAIN (generic_decl_parm);
22374 /* Decide whether we need an unspecified_parameters DIE at the end.
22375 There are 2 more cases to do this for: 1) the ansi ... declaration -
22376 this is detectable when the end of the arg list is not a
22377 void_type_node 2) an unprototyped function declaration (not a
22378 definition). This just means that we have no info about the
22379 parameters at all. */
22380 if (early_dwarf)
22382 if (prototype_p (TREE_TYPE (decl)))
22384 /* This is the prototyped case, check for.... */
22385 if (stdarg_p (TREE_TYPE (decl)))
22386 gen_unspecified_parameters_die (decl, subr_die);
22388 else if (DECL_INITIAL (decl) == NULL_TREE)
22389 gen_unspecified_parameters_die (decl, subr_die);
22393 if (subr_die != old_die)
22394 /* Add the calling convention attribute if requested. */
22395 add_calling_convention_attribute (subr_die, decl);
22397 /* Output Dwarf info for all of the stuff within the body of the function
22398 (if it has one - it may be just a declaration).
22400 OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
22401 a function. This BLOCK actually represents the outermost binding contour
22402 for the function, i.e. the contour in which the function's formal
22403 parameters and labels get declared. Curiously, it appears that the front
22404 end doesn't actually put the PARM_DECL nodes for the current function onto
22405 the BLOCK_VARS list for this outer scope, but are strung off of the
22406 DECL_ARGUMENTS list for the function instead.
22408 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
22409 the LABEL_DECL nodes for the function however, and we output DWARF info
22410 for those in decls_for_scope. Just within the `outer_scope' there will be
22411 a BLOCK node representing the function's outermost pair of curly braces,
22412 and any blocks used for the base and member initializers of a C++
22413 constructor function. */
22414 tree outer_scope = DECL_INITIAL (decl);
22415 if (! declaration && outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
22417 int call_site_note_count = 0;
22418 int tail_call_site_note_count = 0;
22420 /* Emit a DW_TAG_variable DIE for a named return value. */
22421 if (DECL_NAME (DECL_RESULT (decl)))
22422 gen_decl_die (DECL_RESULT (decl), NULL, NULL, subr_die);
22424 /* The first time through decls_for_scope we will generate the
22425 DIEs for the locals. The second time, we fill in the
22426 location info. */
22427 decls_for_scope (outer_scope, subr_die);
22429 if (call_arg_locations && (!dwarf_strict || dwarf_version >= 5))
22431 struct call_arg_loc_node *ca_loc;
22432 for (ca_loc = call_arg_locations; ca_loc; ca_loc = ca_loc->next)
22434 dw_die_ref die = NULL;
22435 rtx tloc = NULL_RTX, tlocc = NULL_RTX;
22436 rtx arg, next_arg;
22438 for (arg = (ca_loc->call_arg_loc_note != NULL_RTX
22439 ? NOTE_VAR_LOCATION (ca_loc->call_arg_loc_note)
22440 : NULL_RTX);
22441 arg; arg = next_arg)
22443 dw_loc_descr_ref reg, val;
22444 machine_mode mode = GET_MODE (XEXP (XEXP (arg, 0), 1));
22445 dw_die_ref cdie, tdie = NULL;
22447 next_arg = XEXP (arg, 1);
22448 if (REG_P (XEXP (XEXP (arg, 0), 0))
22449 && next_arg
22450 && MEM_P (XEXP (XEXP (next_arg, 0), 0))
22451 && REG_P (XEXP (XEXP (XEXP (next_arg, 0), 0), 0))
22452 && REGNO (XEXP (XEXP (arg, 0), 0))
22453 == REGNO (XEXP (XEXP (XEXP (next_arg, 0), 0), 0)))
22454 next_arg = XEXP (next_arg, 1);
22455 if (mode == VOIDmode)
22457 mode = GET_MODE (XEXP (XEXP (arg, 0), 0));
22458 if (mode == VOIDmode)
22459 mode = GET_MODE (XEXP (arg, 0));
22461 if (mode == VOIDmode || mode == BLKmode)
22462 continue;
22463 /* Get dynamic information about call target only if we
22464 have no static information: we cannot generate both
22465 DW_AT_call_origin and DW_AT_call_target
22466 attributes. */
22467 if (ca_loc->symbol_ref == NULL_RTX)
22469 if (XEXP (XEXP (arg, 0), 0) == pc_rtx)
22471 tloc = XEXP (XEXP (arg, 0), 1);
22472 continue;
22474 else if (GET_CODE (XEXP (XEXP (arg, 0), 0)) == CLOBBER
22475 && XEXP (XEXP (XEXP (arg, 0), 0), 0) == pc_rtx)
22477 tlocc = XEXP (XEXP (arg, 0), 1);
22478 continue;
22481 reg = NULL;
22482 if (REG_P (XEXP (XEXP (arg, 0), 0)))
22483 reg = reg_loc_descriptor (XEXP (XEXP (arg, 0), 0),
22484 VAR_INIT_STATUS_INITIALIZED);
22485 else if (MEM_P (XEXP (XEXP (arg, 0), 0)))
22487 rtx mem = XEXP (XEXP (arg, 0), 0);
22488 reg = mem_loc_descriptor (XEXP (mem, 0),
22489 get_address_mode (mem),
22490 GET_MODE (mem),
22491 VAR_INIT_STATUS_INITIALIZED);
22493 else if (GET_CODE (XEXP (XEXP (arg, 0), 0))
22494 == DEBUG_PARAMETER_REF)
22496 tree tdecl
22497 = DEBUG_PARAMETER_REF_DECL (XEXP (XEXP (arg, 0), 0));
22498 tdie = lookup_decl_die (tdecl);
22499 if (tdie == NULL)
22500 continue;
22502 else
22503 continue;
22504 if (reg == NULL
22505 && GET_CODE (XEXP (XEXP (arg, 0), 0))
22506 != DEBUG_PARAMETER_REF)
22507 continue;
22508 val = mem_loc_descriptor (XEXP (XEXP (arg, 0), 1), mode,
22509 VOIDmode,
22510 VAR_INIT_STATUS_INITIALIZED);
22511 if (val == NULL)
22512 continue;
22513 if (die == NULL)
22514 die = gen_call_site_die (decl, subr_die, ca_loc);
22515 cdie = new_die (dwarf_TAG (DW_TAG_call_site_parameter), die,
22516 NULL_TREE);
22517 if (reg != NULL)
22518 add_AT_loc (cdie, DW_AT_location, reg);
22519 else if (tdie != NULL)
22520 add_AT_die_ref (cdie, dwarf_AT (DW_AT_call_parameter),
22521 tdie);
22522 add_AT_loc (cdie, dwarf_AT (DW_AT_call_value), val);
22523 if (next_arg != XEXP (arg, 1))
22525 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 1));
22526 if (mode == VOIDmode)
22527 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 0));
22528 val = mem_loc_descriptor (XEXP (XEXP (XEXP (arg, 1),
22529 0), 1),
22530 mode, VOIDmode,
22531 VAR_INIT_STATUS_INITIALIZED);
22532 if (val != NULL)
22533 add_AT_loc (cdie, dwarf_AT (DW_AT_call_data_value),
22534 val);
22537 if (die == NULL
22538 && (ca_loc->symbol_ref || tloc))
22539 die = gen_call_site_die (decl, subr_die, ca_loc);
22540 if (die != NULL && (tloc != NULL_RTX || tlocc != NULL_RTX))
22542 dw_loc_descr_ref tval = NULL;
22544 if (tloc != NULL_RTX)
22545 tval = mem_loc_descriptor (tloc,
22546 GET_MODE (tloc) == VOIDmode
22547 ? Pmode : GET_MODE (tloc),
22548 VOIDmode,
22549 VAR_INIT_STATUS_INITIALIZED);
22550 if (tval)
22551 add_AT_loc (die, dwarf_AT (DW_AT_call_target), tval);
22552 else if (tlocc != NULL_RTX)
22554 tval = mem_loc_descriptor (tlocc,
22555 GET_MODE (tlocc) == VOIDmode
22556 ? Pmode : GET_MODE (tlocc),
22557 VOIDmode,
22558 VAR_INIT_STATUS_INITIALIZED);
22559 if (tval)
22560 add_AT_loc (die,
22561 dwarf_AT (DW_AT_call_target_clobbered),
22562 tval);
22565 if (die != NULL)
22567 call_site_note_count++;
22568 if (ca_loc->tail_call_p)
22569 tail_call_site_note_count++;
22573 call_arg_locations = NULL;
22574 call_arg_loc_last = NULL;
22575 if (tail_call_site_count >= 0
22576 && tail_call_site_count == tail_call_site_note_count
22577 && (!dwarf_strict || dwarf_version >= 5))
22579 if (call_site_count >= 0
22580 && call_site_count == call_site_note_count)
22581 add_AT_flag (subr_die, dwarf_AT (DW_AT_call_all_calls), 1);
22582 else
22583 add_AT_flag (subr_die, dwarf_AT (DW_AT_call_all_tail_calls), 1);
22585 call_site_count = -1;
22586 tail_call_site_count = -1;
22589 /* Mark used types after we have created DIEs for the functions scopes. */
22590 premark_used_types (DECL_STRUCT_FUNCTION (decl));
22593 /* Returns a hash value for X (which really is a die_struct). */
22595 hashval_t
22596 block_die_hasher::hash (die_struct *d)
22598 return (hashval_t) d->decl_id ^ htab_hash_pointer (d->die_parent);
22601 /* Return nonzero if decl_id and die_parent of die_struct X is the same
22602 as decl_id and die_parent of die_struct Y. */
22604 bool
22605 block_die_hasher::equal (die_struct *x, die_struct *y)
22607 return x->decl_id == y->decl_id && x->die_parent == y->die_parent;
22610 /* Return TRUE if DECL, which may have been previously generated as
22611 OLD_DIE, is a candidate for a DW_AT_specification. DECLARATION is
22612 true if decl (or its origin) is either an extern declaration or a
22613 class/namespace scoped declaration.
22615 The declare_in_namespace support causes us to get two DIEs for one
22616 variable, both of which are declarations. We want to avoid
22617 considering one to be a specification, so we must test for
22618 DECLARATION and DW_AT_declaration. */
22619 static inline bool
22620 decl_will_get_specification_p (dw_die_ref old_die, tree decl, bool declaration)
22622 return (old_die && TREE_STATIC (decl) && !declaration
22623 && get_AT_flag (old_die, DW_AT_declaration) == 1);
22626 /* Return true if DECL is a local static. */
22628 static inline bool
22629 local_function_static (tree decl)
22631 gcc_assert (VAR_P (decl));
22632 return TREE_STATIC (decl)
22633 && DECL_CONTEXT (decl)
22634 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL;
22637 /* Generate a DIE to represent a declared data object.
22638 Either DECL or ORIGIN must be non-null. */
22640 static void
22641 gen_variable_die (tree decl, tree origin, dw_die_ref context_die)
22643 HOST_WIDE_INT off = 0;
22644 tree com_decl;
22645 tree decl_or_origin = decl ? decl : origin;
22646 tree ultimate_origin;
22647 dw_die_ref var_die;
22648 dw_die_ref old_die = decl ? lookup_decl_die (decl) : NULL;
22649 bool declaration = (DECL_EXTERNAL (decl_or_origin)
22650 || class_or_namespace_scope_p (context_die));
22651 bool specialization_p = false;
22652 bool no_linkage_name = false;
22654 /* While C++ inline static data members have definitions inside of the
22655 class, force the first DIE to be a declaration, then let gen_member_die
22656 reparent it to the class context and call gen_variable_die again
22657 to create the outside of the class DIE for the definition. */
22658 if (!declaration
22659 && old_die == NULL
22660 && decl
22661 && DECL_CONTEXT (decl)
22662 && TYPE_P (DECL_CONTEXT (decl))
22663 && lang_hooks.decls.decl_dwarf_attribute (decl, DW_AT_inline) != -1)
22665 declaration = true;
22666 if (dwarf_version < 5)
22667 no_linkage_name = true;
22670 ultimate_origin = decl_ultimate_origin (decl_or_origin);
22671 if (decl || ultimate_origin)
22672 origin = ultimate_origin;
22673 com_decl = fortran_common (decl_or_origin, &off);
22675 /* Symbol in common gets emitted as a child of the common block, in the form
22676 of a data member. */
22677 if (com_decl)
22679 dw_die_ref com_die;
22680 dw_loc_list_ref loc = NULL;
22681 die_node com_die_arg;
22683 var_die = lookup_decl_die (decl_or_origin);
22684 if (var_die)
22686 if (! early_dwarf && get_AT (var_die, DW_AT_location) == NULL)
22688 loc = loc_list_from_tree (com_decl, off ? 1 : 2, NULL);
22689 if (loc)
22691 if (off)
22693 /* Optimize the common case. */
22694 if (single_element_loc_list_p (loc)
22695 && loc->expr->dw_loc_opc == DW_OP_addr
22696 && loc->expr->dw_loc_next == NULL
22697 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr)
22698 == SYMBOL_REF)
22700 rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
22701 loc->expr->dw_loc_oprnd1.v.val_addr
22702 = plus_constant (GET_MODE (x), x , off);
22704 else
22705 loc_list_plus_const (loc, off);
22707 add_AT_location_description (var_die, DW_AT_location, loc);
22708 remove_AT (var_die, DW_AT_declaration);
22711 return;
22714 if (common_block_die_table == NULL)
22715 common_block_die_table = hash_table<block_die_hasher>::create_ggc (10);
22717 com_die_arg.decl_id = DECL_UID (com_decl);
22718 com_die_arg.die_parent = context_die;
22719 com_die = common_block_die_table->find (&com_die_arg);
22720 if (! early_dwarf)
22721 loc = loc_list_from_tree (com_decl, 2, NULL);
22722 if (com_die == NULL)
22724 const char *cnam
22725 = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (com_decl));
22726 die_node **slot;
22728 com_die = new_die (DW_TAG_common_block, context_die, decl);
22729 add_name_and_src_coords_attributes (com_die, com_decl);
22730 if (loc)
22732 add_AT_location_description (com_die, DW_AT_location, loc);
22733 /* Avoid sharing the same loc descriptor between
22734 DW_TAG_common_block and DW_TAG_variable. */
22735 loc = loc_list_from_tree (com_decl, 2, NULL);
22737 else if (DECL_EXTERNAL (decl_or_origin))
22738 add_AT_flag (com_die, DW_AT_declaration, 1);
22739 if (want_pubnames ())
22740 add_pubname_string (cnam, com_die); /* ??? needed? */
22741 com_die->decl_id = DECL_UID (com_decl);
22742 slot = common_block_die_table->find_slot (com_die, INSERT);
22743 *slot = com_die;
22745 else if (get_AT (com_die, DW_AT_location) == NULL && loc)
22747 add_AT_location_description (com_die, DW_AT_location, loc);
22748 loc = loc_list_from_tree (com_decl, 2, NULL);
22749 remove_AT (com_die, DW_AT_declaration);
22751 var_die = new_die (DW_TAG_variable, com_die, decl);
22752 add_name_and_src_coords_attributes (var_die, decl_or_origin);
22753 add_type_attribute (var_die, TREE_TYPE (decl_or_origin),
22754 decl_quals (decl_or_origin), false,
22755 context_die);
22756 add_alignment_attribute (var_die, decl);
22757 add_AT_flag (var_die, DW_AT_external, 1);
22758 if (loc)
22760 if (off)
22762 /* Optimize the common case. */
22763 if (single_element_loc_list_p (loc)
22764 && loc->expr->dw_loc_opc == DW_OP_addr
22765 && loc->expr->dw_loc_next == NULL
22766 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF)
22768 rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
22769 loc->expr->dw_loc_oprnd1.v.val_addr
22770 = plus_constant (GET_MODE (x), x, off);
22772 else
22773 loc_list_plus_const (loc, off);
22775 add_AT_location_description (var_die, DW_AT_location, loc);
22777 else if (DECL_EXTERNAL (decl_or_origin))
22778 add_AT_flag (var_die, DW_AT_declaration, 1);
22779 if (decl)
22780 equate_decl_number_to_die (decl, var_die);
22781 return;
22784 if (old_die)
22786 if (declaration)
22788 /* A declaration that has been previously dumped, needs no
22789 further annotations, since it doesn't need location on
22790 the second pass. */
22791 return;
22793 else if (decl_will_get_specification_p (old_die, decl, declaration)
22794 && !get_AT (old_die, DW_AT_specification))
22796 /* Fall-thru so we can make a new variable die along with a
22797 DW_AT_specification. */
22799 else if (origin && old_die->die_parent != context_die)
22801 /* If we will be creating an inlined instance, we need a
22802 new DIE that will get annotated with
22803 DW_AT_abstract_origin. Clear things so we can get a
22804 new DIE. */
22805 gcc_assert (!DECL_ABSTRACT_P (decl));
22806 old_die = NULL;
22808 else
22810 /* If a DIE was dumped early, it still needs location info.
22811 Skip to where we fill the location bits. */
22812 var_die = old_die;
22814 /* ??? In LTRANS we cannot annotate early created variably
22815 modified type DIEs without copying them and adjusting all
22816 references to them. Thus we dumped them again, also add a
22817 reference to them. */
22818 tree type = TREE_TYPE (decl_or_origin);
22819 if (in_lto_p
22820 && variably_modified_type_p
22821 (type, decl_function_context (decl_or_origin)))
22823 if (decl_by_reference_p (decl_or_origin))
22824 add_type_attribute (var_die, TREE_TYPE (type),
22825 TYPE_UNQUALIFIED, false, context_die);
22826 else
22827 add_type_attribute (var_die, type, decl_quals (decl_or_origin),
22828 false, context_die);
22831 goto gen_variable_die_location;
22835 /* For static data members, the declaration in the class is supposed
22836 to have DW_TAG_member tag in DWARF{3,4} and we emit it for compatibility
22837 also in DWARF2; the specification should still be DW_TAG_variable
22838 referencing the DW_TAG_member DIE. */
22839 if (declaration && class_scope_p (context_die) && dwarf_version < 5)
22840 var_die = new_die (DW_TAG_member, context_die, decl);
22841 else
22842 var_die = new_die (DW_TAG_variable, context_die, decl);
22844 if (origin != NULL)
22845 add_abstract_origin_attribute (var_die, origin);
22847 /* Loop unrolling can create multiple blocks that refer to the same
22848 static variable, so we must test for the DW_AT_declaration flag.
22850 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
22851 copy decls and set the DECL_ABSTRACT_P flag on them instead of
22852 sharing them.
22854 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
22855 else if (decl_will_get_specification_p (old_die, decl, declaration))
22857 /* This is a definition of a C++ class level static. */
22858 add_AT_specification (var_die, old_die);
22859 specialization_p = true;
22860 if (DECL_NAME (decl))
22862 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
22863 struct dwarf_file_data * file_index = lookup_filename (s.file);
22865 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
22866 add_AT_file (var_die, DW_AT_decl_file, file_index);
22868 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
22869 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
22871 if (debug_column_info
22872 && s.column
22873 && (get_AT_unsigned (old_die, DW_AT_decl_column)
22874 != (unsigned) s.column))
22875 add_AT_unsigned (var_die, DW_AT_decl_column, s.column);
22877 if (old_die->die_tag == DW_TAG_member)
22878 add_linkage_name (var_die, decl);
22881 else
22882 add_name_and_src_coords_attributes (var_die, decl, no_linkage_name);
22884 if ((origin == NULL && !specialization_p)
22885 || (origin != NULL
22886 && !DECL_ABSTRACT_P (decl_or_origin)
22887 && variably_modified_type_p (TREE_TYPE (decl_or_origin),
22888 decl_function_context
22889 (decl_or_origin))))
22891 tree type = TREE_TYPE (decl_or_origin);
22893 if (decl_by_reference_p (decl_or_origin))
22894 add_type_attribute (var_die, TREE_TYPE (type), TYPE_UNQUALIFIED, false,
22895 context_die);
22896 else
22897 add_type_attribute (var_die, type, decl_quals (decl_or_origin), false,
22898 context_die);
22901 if (origin == NULL && !specialization_p)
22903 if (TREE_PUBLIC (decl))
22904 add_AT_flag (var_die, DW_AT_external, 1);
22906 if (DECL_ARTIFICIAL (decl))
22907 add_AT_flag (var_die, DW_AT_artificial, 1);
22909 add_alignment_attribute (var_die, decl);
22911 add_accessibility_attribute (var_die, decl);
22914 if (declaration)
22915 add_AT_flag (var_die, DW_AT_declaration, 1);
22917 if (decl && (DECL_ABSTRACT_P (decl)
22918 || !old_die || is_declaration_die (old_die)))
22919 equate_decl_number_to_die (decl, var_die);
22921 gen_variable_die_location:
22922 if (! declaration
22923 && (! DECL_ABSTRACT_P (decl_or_origin)
22924 /* Local static vars are shared between all clones/inlines,
22925 so emit DW_AT_location on the abstract DIE if DECL_RTL is
22926 already set. */
22927 || (VAR_P (decl_or_origin)
22928 && TREE_STATIC (decl_or_origin)
22929 && DECL_RTL_SET_P (decl_or_origin))))
22931 if (early_dwarf)
22932 add_pubname (decl_or_origin, var_die);
22933 else
22934 add_location_or_const_value_attribute (var_die, decl_or_origin,
22935 decl == NULL);
22937 else
22938 tree_add_const_value_attribute_for_decl (var_die, decl_or_origin);
22940 if ((dwarf_version >= 4 || !dwarf_strict)
22941 && lang_hooks.decls.decl_dwarf_attribute (decl_or_origin,
22942 DW_AT_const_expr) == 1
22943 && !get_AT (var_die, DW_AT_const_expr)
22944 && !specialization_p)
22945 add_AT_flag (var_die, DW_AT_const_expr, 1);
22947 if (!dwarf_strict)
22949 int inl = lang_hooks.decls.decl_dwarf_attribute (decl_or_origin,
22950 DW_AT_inline);
22951 if (inl != -1
22952 && !get_AT (var_die, DW_AT_inline)
22953 && !specialization_p)
22954 add_AT_unsigned (var_die, DW_AT_inline, inl);
22958 /* Generate a DIE to represent a named constant. */
22960 static void
22961 gen_const_die (tree decl, dw_die_ref context_die)
22963 dw_die_ref const_die;
22964 tree type = TREE_TYPE (decl);
22966 const_die = lookup_decl_die (decl);
22967 if (const_die)
22968 return;
22970 const_die = new_die (DW_TAG_constant, context_die, decl);
22971 equate_decl_number_to_die (decl, const_die);
22972 add_name_and_src_coords_attributes (const_die, decl);
22973 add_type_attribute (const_die, type, TYPE_QUAL_CONST, false, context_die);
22974 if (TREE_PUBLIC (decl))
22975 add_AT_flag (const_die, DW_AT_external, 1);
22976 if (DECL_ARTIFICIAL (decl))
22977 add_AT_flag (const_die, DW_AT_artificial, 1);
22978 tree_add_const_value_attribute_for_decl (const_die, decl);
22981 /* Generate a DIE to represent a label identifier. */
22983 static void
22984 gen_label_die (tree decl, dw_die_ref context_die)
22986 tree origin = decl_ultimate_origin (decl);
22987 dw_die_ref lbl_die = lookup_decl_die (decl);
22988 rtx insn;
22989 char label[MAX_ARTIFICIAL_LABEL_BYTES];
22991 if (!lbl_die)
22993 lbl_die = new_die (DW_TAG_label, context_die, decl);
22994 equate_decl_number_to_die (decl, lbl_die);
22996 if (origin != NULL)
22997 add_abstract_origin_attribute (lbl_die, origin);
22998 else
22999 add_name_and_src_coords_attributes (lbl_die, decl);
23002 if (DECL_ABSTRACT_P (decl))
23003 equate_decl_number_to_die (decl, lbl_die);
23004 else if (! early_dwarf)
23006 insn = DECL_RTL_IF_SET (decl);
23008 /* Deleted labels are programmer specified labels which have been
23009 eliminated because of various optimizations. We still emit them
23010 here so that it is possible to put breakpoints on them. */
23011 if (insn
23012 && (LABEL_P (insn)
23013 || ((NOTE_P (insn)
23014 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))))
23016 /* When optimization is enabled (via -O) some parts of the compiler
23017 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
23018 represent source-level labels which were explicitly declared by
23019 the user. This really shouldn't be happening though, so catch
23020 it if it ever does happen. */
23021 gcc_assert (!as_a<rtx_insn *> (insn)->deleted ());
23023 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
23024 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
23026 else if (insn
23027 && NOTE_P (insn)
23028 && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL
23029 && CODE_LABEL_NUMBER (insn) != -1)
23031 ASM_GENERATE_INTERNAL_LABEL (label, "LDL", CODE_LABEL_NUMBER (insn));
23032 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
23037 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
23038 attributes to the DIE for a block STMT, to describe where the inlined
23039 function was called from. This is similar to add_src_coords_attributes. */
23041 static inline void
23042 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
23044 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
23046 if (dwarf_version >= 3 || !dwarf_strict)
23048 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
23049 add_AT_unsigned (die, DW_AT_call_line, s.line);
23050 if (debug_column_info && s.column)
23051 add_AT_unsigned (die, DW_AT_call_column, s.column);
23056 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
23057 Add low_pc and high_pc attributes to the DIE for a block STMT. */
23059 static inline void
23060 add_high_low_attributes (tree stmt, dw_die_ref die)
23062 char label[MAX_ARTIFICIAL_LABEL_BYTES];
23064 if (BLOCK_FRAGMENT_CHAIN (stmt)
23065 && (dwarf_version >= 3 || !dwarf_strict))
23067 tree chain, superblock = NULL_TREE;
23068 dw_die_ref pdie;
23069 dw_attr_node *attr = NULL;
23071 if (inlined_function_outer_scope_p (stmt))
23073 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
23074 BLOCK_NUMBER (stmt));
23075 add_AT_lbl_id (die, DW_AT_entry_pc, label);
23078 /* Optimize duplicate .debug_ranges lists or even tails of
23079 lists. If this BLOCK has same ranges as its supercontext,
23080 lookup DW_AT_ranges attribute in the supercontext (and
23081 recursively so), verify that the ranges_table contains the
23082 right values and use it instead of adding a new .debug_range. */
23083 for (chain = stmt, pdie = die;
23084 BLOCK_SAME_RANGE (chain);
23085 chain = BLOCK_SUPERCONTEXT (chain))
23087 dw_attr_node *new_attr;
23089 pdie = pdie->die_parent;
23090 if (pdie == NULL)
23091 break;
23092 if (BLOCK_SUPERCONTEXT (chain) == NULL_TREE)
23093 break;
23094 new_attr = get_AT (pdie, DW_AT_ranges);
23095 if (new_attr == NULL
23096 || new_attr->dw_attr_val.val_class != dw_val_class_range_list)
23097 break;
23098 attr = new_attr;
23099 superblock = BLOCK_SUPERCONTEXT (chain);
23101 if (attr != NULL
23102 && ((*ranges_table)[attr->dw_attr_val.v.val_offset].num
23103 == BLOCK_NUMBER (superblock))
23104 && BLOCK_FRAGMENT_CHAIN (superblock))
23106 unsigned long off = attr->dw_attr_val.v.val_offset;
23107 unsigned long supercnt = 0, thiscnt = 0;
23108 for (chain = BLOCK_FRAGMENT_CHAIN (superblock);
23109 chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
23111 ++supercnt;
23112 gcc_checking_assert ((*ranges_table)[off + supercnt].num
23113 == BLOCK_NUMBER (chain));
23115 gcc_checking_assert ((*ranges_table)[off + supercnt + 1].num == 0);
23116 for (chain = BLOCK_FRAGMENT_CHAIN (stmt);
23117 chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
23118 ++thiscnt;
23119 gcc_assert (supercnt >= thiscnt);
23120 add_AT_range_list (die, DW_AT_ranges, off + supercnt - thiscnt,
23121 false);
23122 note_rnglist_head (off + supercnt - thiscnt);
23123 return;
23126 unsigned int offset = add_ranges (stmt, true);
23127 add_AT_range_list (die, DW_AT_ranges, offset, false);
23128 note_rnglist_head (offset);
23130 bool prev_in_cold = BLOCK_IN_COLD_SECTION_P (stmt);
23131 chain = BLOCK_FRAGMENT_CHAIN (stmt);
23134 add_ranges (chain, prev_in_cold != BLOCK_IN_COLD_SECTION_P (chain));
23135 prev_in_cold = BLOCK_IN_COLD_SECTION_P (chain);
23136 chain = BLOCK_FRAGMENT_CHAIN (chain);
23138 while (chain);
23139 add_ranges (NULL);
23141 else
23143 char label_high[MAX_ARTIFICIAL_LABEL_BYTES];
23144 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
23145 BLOCK_NUMBER (stmt));
23146 ASM_GENERATE_INTERNAL_LABEL (label_high, BLOCK_END_LABEL,
23147 BLOCK_NUMBER (stmt));
23148 add_AT_low_high_pc (die, label, label_high, false);
23152 /* Generate a DIE for a lexical block. */
23154 static void
23155 gen_lexical_block_die (tree stmt, dw_die_ref context_die)
23157 dw_die_ref old_die = BLOCK_DIE (stmt);
23158 dw_die_ref stmt_die = NULL;
23159 if (!old_die)
23161 stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
23162 BLOCK_DIE (stmt) = stmt_die;
23165 if (BLOCK_ABSTRACT (stmt))
23167 if (old_die)
23169 /* This must have been generated early and it won't even
23170 need location information since it's a DW_AT_inline
23171 function. */
23172 if (flag_checking)
23173 for (dw_die_ref c = context_die; c; c = c->die_parent)
23174 if (c->die_tag == DW_TAG_inlined_subroutine
23175 || c->die_tag == DW_TAG_subprogram)
23177 gcc_assert (get_AT (c, DW_AT_inline));
23178 break;
23180 return;
23183 else if (BLOCK_ABSTRACT_ORIGIN (stmt))
23185 /* If this is an inlined instance, create a new lexical die for
23186 anything below to attach DW_AT_abstract_origin to. */
23187 if (old_die)
23189 stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
23190 BLOCK_DIE (stmt) = stmt_die;
23191 old_die = NULL;
23194 tree origin = block_ultimate_origin (stmt);
23195 if (origin != NULL_TREE && origin != stmt)
23196 add_abstract_origin_attribute (stmt_die, origin);
23199 if (old_die)
23200 stmt_die = old_die;
23202 /* A non abstract block whose blocks have already been reordered
23203 should have the instruction range for this block. If so, set the
23204 high/low attributes. */
23205 if (!early_dwarf && !BLOCK_ABSTRACT (stmt) && TREE_ASM_WRITTEN (stmt))
23207 gcc_assert (stmt_die);
23208 add_high_low_attributes (stmt, stmt_die);
23211 decls_for_scope (stmt, stmt_die);
23214 /* Generate a DIE for an inlined subprogram. */
23216 static void
23217 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die)
23219 tree decl;
23221 /* The instance of function that is effectively being inlined shall not
23222 be abstract. */
23223 gcc_assert (! BLOCK_ABSTRACT (stmt));
23225 decl = block_ultimate_origin (stmt);
23227 /* Make sure any inlined functions are known to be inlineable. */
23228 gcc_checking_assert (DECL_ABSTRACT_P (decl)
23229 || cgraph_function_possibly_inlined_p (decl));
23231 if (! BLOCK_ABSTRACT (stmt))
23233 dw_die_ref subr_die
23234 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
23236 if (call_arg_locations)
23237 BLOCK_DIE (stmt) = subr_die;
23238 add_abstract_origin_attribute (subr_die, decl);
23239 if (TREE_ASM_WRITTEN (stmt))
23240 add_high_low_attributes (stmt, subr_die);
23241 add_call_src_coords_attributes (stmt, subr_die);
23243 decls_for_scope (stmt, subr_die);
23247 /* Generate a DIE for a field in a record, or structure. CTX is required: see
23248 the comment for VLR_CONTEXT. */
23250 static void
23251 gen_field_die (tree decl, struct vlr_context *ctx, dw_die_ref context_die)
23253 dw_die_ref decl_die;
23255 if (TREE_TYPE (decl) == error_mark_node)
23256 return;
23258 decl_die = new_die (DW_TAG_member, context_die, decl);
23259 add_name_and_src_coords_attributes (decl_die, decl);
23260 add_type_attribute (decl_die, member_declared_type (decl), decl_quals (decl),
23261 TYPE_REVERSE_STORAGE_ORDER (DECL_FIELD_CONTEXT (decl)),
23262 context_die);
23264 if (DECL_BIT_FIELD_TYPE (decl))
23266 add_byte_size_attribute (decl_die, decl);
23267 add_bit_size_attribute (decl_die, decl);
23268 add_bit_offset_attribute (decl_die, decl, ctx);
23271 add_alignment_attribute (decl_die, decl);
23273 /* If we have a variant part offset, then we are supposed to process a member
23274 of a QUAL_UNION_TYPE, which is how we represent variant parts in
23275 trees. */
23276 gcc_assert (ctx->variant_part_offset == NULL_TREE
23277 || TREE_CODE (DECL_FIELD_CONTEXT (decl)) != QUAL_UNION_TYPE);
23278 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
23279 add_data_member_location_attribute (decl_die, decl, ctx);
23281 if (DECL_ARTIFICIAL (decl))
23282 add_AT_flag (decl_die, DW_AT_artificial, 1);
23284 add_accessibility_attribute (decl_die, decl);
23286 /* Equate decl number to die, so that we can look up this decl later on. */
23287 equate_decl_number_to_die (decl, decl_die);
23290 /* Generate a DIE for a pointer to a member type. TYPE can be an
23291 OFFSET_TYPE, for a pointer to data member, or a RECORD_TYPE, for a
23292 pointer to member function. */
23294 static void
23295 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
23297 if (lookup_type_die (type))
23298 return;
23300 dw_die_ref ptr_die = new_die (DW_TAG_ptr_to_member_type,
23301 scope_die_for (type, context_die), type);
23303 equate_type_number_to_die (type, ptr_die);
23304 add_AT_die_ref (ptr_die, DW_AT_containing_type,
23305 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
23306 add_type_attribute (ptr_die, TREE_TYPE (type), TYPE_UNQUALIFIED, false,
23307 context_die);
23308 add_alignment_attribute (ptr_die, type);
23310 if (TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE
23311 && TREE_CODE (TREE_TYPE (type)) != METHOD_TYPE)
23313 dw_loc_descr_ref op = new_loc_descr (DW_OP_plus, 0, 0);
23314 add_AT_loc (ptr_die, DW_AT_use_location, op);
23318 static char *producer_string;
23320 /* Return a heap allocated producer string including command line options
23321 if -grecord-gcc-switches. */
23323 static char *
23324 gen_producer_string (void)
23326 size_t j;
23327 auto_vec<const char *> switches;
23328 const char *language_string = lang_hooks.name;
23329 char *producer, *tail;
23330 const char *p;
23331 size_t len = dwarf_record_gcc_switches ? 0 : 3;
23332 size_t plen = strlen (language_string) + 1 + strlen (version_string);
23334 for (j = 1; dwarf_record_gcc_switches && j < save_decoded_options_count; j++)
23335 switch (save_decoded_options[j].opt_index)
23337 case OPT_o:
23338 case OPT_d:
23339 case OPT_dumpbase:
23340 case OPT_dumpdir:
23341 case OPT_auxbase:
23342 case OPT_auxbase_strip:
23343 case OPT_quiet:
23344 case OPT_version:
23345 case OPT_v:
23346 case OPT_w:
23347 case OPT_L:
23348 case OPT_D:
23349 case OPT_I:
23350 case OPT_U:
23351 case OPT_SPECIAL_unknown:
23352 case OPT_SPECIAL_ignore:
23353 case OPT_SPECIAL_program_name:
23354 case OPT_SPECIAL_input_file:
23355 case OPT_grecord_gcc_switches:
23356 case OPT_gno_record_gcc_switches:
23357 case OPT__output_pch_:
23358 case OPT_fdiagnostics_show_location_:
23359 case OPT_fdiagnostics_show_option:
23360 case OPT_fdiagnostics_show_caret:
23361 case OPT_fdiagnostics_color_:
23362 case OPT_fverbose_asm:
23363 case OPT____:
23364 case OPT__sysroot_:
23365 case OPT_nostdinc:
23366 case OPT_nostdinc__:
23367 case OPT_fpreprocessed:
23368 case OPT_fltrans_output_list_:
23369 case OPT_fresolution_:
23370 case OPT_fdebug_prefix_map_:
23371 /* Ignore these. */
23372 continue;
23373 default:
23374 if (cl_options[save_decoded_options[j].opt_index].flags
23375 & CL_NO_DWARF_RECORD)
23376 continue;
23377 gcc_checking_assert (save_decoded_options[j].canonical_option[0][0]
23378 == '-');
23379 switch (save_decoded_options[j].canonical_option[0][1])
23381 case 'M':
23382 case 'i':
23383 case 'W':
23384 continue;
23385 case 'f':
23386 if (strncmp (save_decoded_options[j].canonical_option[0] + 2,
23387 "dump", 4) == 0)
23388 continue;
23389 break;
23390 default:
23391 break;
23393 switches.safe_push (save_decoded_options[j].orig_option_with_args_text);
23394 len += strlen (save_decoded_options[j].orig_option_with_args_text) + 1;
23395 break;
23398 producer = XNEWVEC (char, plen + 1 + len + 1);
23399 tail = producer;
23400 sprintf (tail, "%s %s", language_string, version_string);
23401 tail += plen;
23403 FOR_EACH_VEC_ELT (switches, j, p)
23405 len = strlen (p);
23406 *tail = ' ';
23407 memcpy (tail + 1, p, len);
23408 tail += len + 1;
23411 *tail = '\0';
23412 return producer;
23415 /* Given a C and/or C++ language/version string return the "highest".
23416 C++ is assumed to be "higher" than C in this case. Used for merging
23417 LTO translation unit languages. */
23418 static const char *
23419 highest_c_language (const char *lang1, const char *lang2)
23421 if (strcmp ("GNU C++14", lang1) == 0 || strcmp ("GNU C++14", lang2) == 0)
23422 return "GNU C++14";
23423 if (strcmp ("GNU C++11", lang1) == 0 || strcmp ("GNU C++11", lang2) == 0)
23424 return "GNU C++11";
23425 if (strcmp ("GNU C++98", lang1) == 0 || strcmp ("GNU C++98", lang2) == 0)
23426 return "GNU C++98";
23428 if (strcmp ("GNU C11", lang1) == 0 || strcmp ("GNU C11", lang2) == 0)
23429 return "GNU C11";
23430 if (strcmp ("GNU C99", lang1) == 0 || strcmp ("GNU C99", lang2) == 0)
23431 return "GNU C99";
23432 if (strcmp ("GNU C89", lang1) == 0 || strcmp ("GNU C89", lang2) == 0)
23433 return "GNU C89";
23435 gcc_unreachable ();
23439 /* Generate the DIE for the compilation unit. */
23441 static dw_die_ref
23442 gen_compile_unit_die (const char *filename)
23444 dw_die_ref die;
23445 const char *language_string = lang_hooks.name;
23446 int language;
23448 die = new_die (DW_TAG_compile_unit, NULL, NULL);
23450 if (filename)
23452 add_name_attribute (die, filename);
23453 /* Don't add cwd for <built-in>. */
23454 if (filename[0] != '<')
23455 add_comp_dir_attribute (die);
23458 add_AT_string (die, DW_AT_producer, producer_string ? producer_string : "");
23460 /* If our producer is LTO try to figure out a common language to use
23461 from the global list of translation units. */
23462 if (strcmp (language_string, "GNU GIMPLE") == 0)
23464 unsigned i;
23465 tree t;
23466 const char *common_lang = NULL;
23468 FOR_EACH_VEC_SAFE_ELT (all_translation_units, i, t)
23470 if (!TRANSLATION_UNIT_LANGUAGE (t))
23471 continue;
23472 if (!common_lang)
23473 common_lang = TRANSLATION_UNIT_LANGUAGE (t);
23474 else if (strcmp (common_lang, TRANSLATION_UNIT_LANGUAGE (t)) == 0)
23476 else if (strncmp (common_lang, "GNU C", 5) == 0
23477 && strncmp (TRANSLATION_UNIT_LANGUAGE (t), "GNU C", 5) == 0)
23478 /* Mixing C and C++ is ok, use C++ in that case. */
23479 common_lang = highest_c_language (common_lang,
23480 TRANSLATION_UNIT_LANGUAGE (t));
23481 else
23483 /* Fall back to C. */
23484 common_lang = NULL;
23485 break;
23489 if (common_lang)
23490 language_string = common_lang;
23493 language = DW_LANG_C;
23494 if (strncmp (language_string, "GNU C", 5) == 0
23495 && ISDIGIT (language_string[5]))
23497 language = DW_LANG_C89;
23498 if (dwarf_version >= 3 || !dwarf_strict)
23500 if (strcmp (language_string, "GNU C89") != 0)
23501 language = DW_LANG_C99;
23503 if (dwarf_version >= 5 /* || !dwarf_strict */)
23504 if (strcmp (language_string, "GNU C11") == 0)
23505 language = DW_LANG_C11;
23508 else if (strncmp (language_string, "GNU C++", 7) == 0)
23510 language = DW_LANG_C_plus_plus;
23511 if (dwarf_version >= 5 /* || !dwarf_strict */)
23513 if (strcmp (language_string, "GNU C++11") == 0)
23514 language = DW_LANG_C_plus_plus_11;
23515 else if (strcmp (language_string, "GNU C++14") == 0)
23516 language = DW_LANG_C_plus_plus_14;
23519 else if (strcmp (language_string, "GNU F77") == 0)
23520 language = DW_LANG_Fortran77;
23521 else if (dwarf_version >= 3 || !dwarf_strict)
23523 if (strcmp (language_string, "GNU Ada") == 0)
23524 language = DW_LANG_Ada95;
23525 else if (strncmp (language_string, "GNU Fortran", 11) == 0)
23527 language = DW_LANG_Fortran95;
23528 if (dwarf_version >= 5 /* || !dwarf_strict */)
23530 if (strcmp (language_string, "GNU Fortran2003") == 0)
23531 language = DW_LANG_Fortran03;
23532 else if (strcmp (language_string, "GNU Fortran2008") == 0)
23533 language = DW_LANG_Fortran08;
23536 else if (strcmp (language_string, "GNU Objective-C") == 0)
23537 language = DW_LANG_ObjC;
23538 else if (strcmp (language_string, "GNU Objective-C++") == 0)
23539 language = DW_LANG_ObjC_plus_plus;
23540 else if (dwarf_version >= 5 || !dwarf_strict)
23542 if (strcmp (language_string, "GNU Go") == 0)
23543 language = DW_LANG_Go;
23546 /* Use a degraded Fortran setting in strict DWARF2 so is_fortran works. */
23547 else if (strncmp (language_string, "GNU Fortran", 11) == 0)
23548 language = DW_LANG_Fortran90;
23550 add_AT_unsigned (die, DW_AT_language, language);
23552 switch (language)
23554 case DW_LANG_Fortran77:
23555 case DW_LANG_Fortran90:
23556 case DW_LANG_Fortran95:
23557 case DW_LANG_Fortran03:
23558 case DW_LANG_Fortran08:
23559 /* Fortran has case insensitive identifiers and the front-end
23560 lowercases everything. */
23561 add_AT_unsigned (die, DW_AT_identifier_case, DW_ID_down_case);
23562 break;
23563 default:
23564 /* The default DW_ID_case_sensitive doesn't need to be specified. */
23565 break;
23567 return die;
23570 /* Generate the DIE for a base class. */
23572 static void
23573 gen_inheritance_die (tree binfo, tree access, tree type,
23574 dw_die_ref context_die)
23576 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
23577 struct vlr_context ctx = { type, NULL };
23579 add_type_attribute (die, BINFO_TYPE (binfo), TYPE_UNQUALIFIED, false,
23580 context_die);
23581 add_data_member_location_attribute (die, binfo, &ctx);
23583 if (BINFO_VIRTUAL_P (binfo))
23584 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
23586 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
23587 children, otherwise the default is DW_ACCESS_public. In DWARF2
23588 the default has always been DW_ACCESS_private. */
23589 if (access == access_public_node)
23591 if (dwarf_version == 2
23592 || context_die->die_tag == DW_TAG_class_type)
23593 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
23595 else if (access == access_protected_node)
23596 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
23597 else if (dwarf_version > 2
23598 && context_die->die_tag != DW_TAG_class_type)
23599 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
23602 /* Return whether DECL is a FIELD_DECL that represents the variant part of a
23603 structure. */
23604 static bool
23605 is_variant_part (tree decl)
23607 return (TREE_CODE (decl) == FIELD_DECL
23608 && TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE);
23611 /* Check that OPERAND is a reference to a field in STRUCT_TYPE. If it is,
23612 return the FIELD_DECL. Return NULL_TREE otherwise. */
23614 static tree
23615 analyze_discr_in_predicate (tree operand, tree struct_type)
23617 bool continue_stripping = true;
23618 while (continue_stripping)
23619 switch (TREE_CODE (operand))
23621 CASE_CONVERT:
23622 operand = TREE_OPERAND (operand, 0);
23623 break;
23624 default:
23625 continue_stripping = false;
23626 break;
23629 /* Match field access to members of struct_type only. */
23630 if (TREE_CODE (operand) == COMPONENT_REF
23631 && TREE_CODE (TREE_OPERAND (operand, 0)) == PLACEHOLDER_EXPR
23632 && TREE_TYPE (TREE_OPERAND (operand, 0)) == struct_type
23633 && TREE_CODE (TREE_OPERAND (operand, 1)) == FIELD_DECL)
23634 return TREE_OPERAND (operand, 1);
23635 else
23636 return NULL_TREE;
23639 /* Check that SRC is a constant integer that can be represented as a native
23640 integer constant (either signed or unsigned). If so, store it into DEST and
23641 return true. Return false otherwise. */
23643 static bool
23644 get_discr_value (tree src, dw_discr_value *dest)
23646 tree discr_type = TREE_TYPE (src);
23648 if (lang_hooks.types.get_debug_type)
23650 tree debug_type = lang_hooks.types.get_debug_type (discr_type);
23651 if (debug_type != NULL)
23652 discr_type = debug_type;
23655 if (TREE_CODE (src) != INTEGER_CST || !INTEGRAL_TYPE_P (discr_type))
23656 return false;
23658 /* Signedness can vary between the original type and the debug type. This
23659 can happen for character types in Ada for instance: the character type
23660 used for code generation can be signed, to be compatible with the C one,
23661 but from a debugger point of view, it must be unsigned. */
23662 bool is_orig_unsigned = TYPE_UNSIGNED (TREE_TYPE (src));
23663 bool is_debug_unsigned = TYPE_UNSIGNED (discr_type);
23665 if (is_orig_unsigned != is_debug_unsigned)
23666 src = fold_convert (discr_type, src);
23668 if (!(is_debug_unsigned ? tree_fits_uhwi_p (src) : tree_fits_shwi_p (src)))
23669 return false;
23671 dest->pos = is_debug_unsigned;
23672 if (is_debug_unsigned)
23673 dest->v.uval = tree_to_uhwi (src);
23674 else
23675 dest->v.sval = tree_to_shwi (src);
23677 return true;
23680 /* Try to extract synthetic properties out of VARIANT_PART_DECL, which is a
23681 FIELD_DECL in STRUCT_TYPE that represents a variant part. If unsuccessful,
23682 store NULL_TREE in DISCR_DECL. Otherwise:
23684 - store the discriminant field in STRUCT_TYPE that controls the variant
23685 part to *DISCR_DECL
23687 - put in *DISCR_LISTS_P an array where for each variant, the item
23688 represents the corresponding matching list of discriminant values.
23690 - put in *DISCR_LISTS_LENGTH the number of variants, which is the size of
23691 the above array.
23693 Note that when the array is allocated (i.e. when the analysis is
23694 successful), it is up to the caller to free the array. */
23696 static void
23697 analyze_variants_discr (tree variant_part_decl,
23698 tree struct_type,
23699 tree *discr_decl,
23700 dw_discr_list_ref **discr_lists_p,
23701 unsigned *discr_lists_length)
23703 tree variant_part_type = TREE_TYPE (variant_part_decl);
23704 tree variant;
23705 dw_discr_list_ref *discr_lists;
23706 unsigned i;
23708 /* Compute how many variants there are in this variant part. */
23709 *discr_lists_length = 0;
23710 for (variant = TYPE_FIELDS (variant_part_type);
23711 variant != NULL_TREE;
23712 variant = DECL_CHAIN (variant))
23713 ++*discr_lists_length;
23715 *discr_decl = NULL_TREE;
23716 *discr_lists_p
23717 = (dw_discr_list_ref *) xcalloc (*discr_lists_length,
23718 sizeof (**discr_lists_p));
23719 discr_lists = *discr_lists_p;
23721 /* And then analyze all variants to extract discriminant information for all
23722 of them. This analysis is conservative: as soon as we detect something we
23723 do not support, abort everything and pretend we found nothing. */
23724 for (variant = TYPE_FIELDS (variant_part_type), i = 0;
23725 variant != NULL_TREE;
23726 variant = DECL_CHAIN (variant), ++i)
23728 tree match_expr = DECL_QUALIFIER (variant);
23730 /* Now, try to analyze the predicate and deduce a discriminant for
23731 it. */
23732 if (match_expr == boolean_true_node)
23733 /* Typically happens for the default variant: it matches all cases that
23734 previous variants rejected. Don't output any matching value for
23735 this one. */
23736 continue;
23738 /* The following loop tries to iterate over each discriminant
23739 possibility: single values or ranges. */
23740 while (match_expr != NULL_TREE)
23742 tree next_round_match_expr;
23743 tree candidate_discr = NULL_TREE;
23744 dw_discr_list_ref new_node = NULL;
23746 /* Possibilities are matched one after the other by nested
23747 TRUTH_ORIF_EXPR expressions. Process the current possibility and
23748 continue with the rest at next iteration. */
23749 if (TREE_CODE (match_expr) == TRUTH_ORIF_EXPR)
23751 next_round_match_expr = TREE_OPERAND (match_expr, 0);
23752 match_expr = TREE_OPERAND (match_expr, 1);
23754 else
23755 next_round_match_expr = NULL_TREE;
23757 if (match_expr == boolean_false_node)
23758 /* This sub-expression matches nothing: just wait for the next
23759 one. */
23762 else if (TREE_CODE (match_expr) == EQ_EXPR)
23764 /* We are matching: <discr_field> == <integer_cst>
23765 This sub-expression matches a single value. */
23766 tree integer_cst = TREE_OPERAND (match_expr, 1);
23768 candidate_discr
23769 = analyze_discr_in_predicate (TREE_OPERAND (match_expr, 0),
23770 struct_type);
23772 new_node = ggc_cleared_alloc<dw_discr_list_node> ();
23773 if (!get_discr_value (integer_cst,
23774 &new_node->dw_discr_lower_bound))
23775 goto abort;
23776 new_node->dw_discr_range = false;
23779 else if (TREE_CODE (match_expr) == TRUTH_ANDIF_EXPR)
23781 /* We are matching:
23782 <discr_field> > <integer_cst>
23783 && <discr_field> < <integer_cst>.
23784 This sub-expression matches the range of values between the
23785 two matched integer constants. Note that comparisons can be
23786 inclusive or exclusive. */
23787 tree candidate_discr_1, candidate_discr_2;
23788 tree lower_cst, upper_cst;
23789 bool lower_cst_included, upper_cst_included;
23790 tree lower_op = TREE_OPERAND (match_expr, 0);
23791 tree upper_op = TREE_OPERAND (match_expr, 1);
23793 /* When the comparison is exclusive, the integer constant is not
23794 the discriminant range bound we are looking for: we will have
23795 to increment or decrement it. */
23796 if (TREE_CODE (lower_op) == GE_EXPR)
23797 lower_cst_included = true;
23798 else if (TREE_CODE (lower_op) == GT_EXPR)
23799 lower_cst_included = false;
23800 else
23801 goto abort;
23803 if (TREE_CODE (upper_op) == LE_EXPR)
23804 upper_cst_included = true;
23805 else if (TREE_CODE (upper_op) == LT_EXPR)
23806 upper_cst_included = false;
23807 else
23808 goto abort;
23810 /* Extract the discriminant from the first operand and check it
23811 is consistant with the same analysis in the second
23812 operand. */
23813 candidate_discr_1
23814 = analyze_discr_in_predicate (TREE_OPERAND (lower_op, 0),
23815 struct_type);
23816 candidate_discr_2
23817 = analyze_discr_in_predicate (TREE_OPERAND (upper_op, 0),
23818 struct_type);
23819 if (candidate_discr_1 == candidate_discr_2)
23820 candidate_discr = candidate_discr_1;
23821 else
23822 goto abort;
23824 /* Extract bounds from both. */
23825 new_node = ggc_cleared_alloc<dw_discr_list_node> ();
23826 lower_cst = TREE_OPERAND (lower_op, 1);
23827 upper_cst = TREE_OPERAND (upper_op, 1);
23829 if (!lower_cst_included)
23830 lower_cst
23831 = fold_build2 (PLUS_EXPR, TREE_TYPE (lower_cst), lower_cst,
23832 build_int_cst (TREE_TYPE (lower_cst), 1));
23833 if (!upper_cst_included)
23834 upper_cst
23835 = fold_build2 (MINUS_EXPR, TREE_TYPE (upper_cst), upper_cst,
23836 build_int_cst (TREE_TYPE (upper_cst), 1));
23838 if (!get_discr_value (lower_cst,
23839 &new_node->dw_discr_lower_bound)
23840 || !get_discr_value (upper_cst,
23841 &new_node->dw_discr_upper_bound))
23842 goto abort;
23844 new_node->dw_discr_range = true;
23847 else
23848 /* Unsupported sub-expression: we cannot determine the set of
23849 matching discriminant values. Abort everything. */
23850 goto abort;
23852 /* If the discriminant info is not consistant with what we saw so
23853 far, consider the analysis failed and abort everything. */
23854 if (candidate_discr == NULL_TREE
23855 || (*discr_decl != NULL_TREE && candidate_discr != *discr_decl))
23856 goto abort;
23857 else
23858 *discr_decl = candidate_discr;
23860 if (new_node != NULL)
23862 new_node->dw_discr_next = discr_lists[i];
23863 discr_lists[i] = new_node;
23865 match_expr = next_round_match_expr;
23869 /* If we reach this point, we could match everything we were interested
23870 in. */
23871 return;
23873 abort:
23874 /* Clean all data structure and return no result. */
23875 free (*discr_lists_p);
23876 *discr_lists_p = NULL;
23877 *discr_decl = NULL_TREE;
23880 /* Generate a DIE to represent VARIANT_PART_DECL, a variant part that is part
23881 of STRUCT_TYPE, a record type. This new DIE is emitted as the next child
23882 under CONTEXT_DIE.
23884 Variant parts are supposed to be implemented as a FIELD_DECL whose type is a
23885 QUAL_UNION_TYPE: this is the VARIANT_PART_DECL parameter. The members for
23886 this type, which are record types, represent the available variants and each
23887 has a DECL_QUALIFIER attribute. The discriminant and the discriminant
23888 values are inferred from these attributes.
23890 In trees, the offsets for the fields inside these sub-records are relative
23891 to the variant part itself, whereas the corresponding DIEs should have
23892 offset attributes that are relative to the embedding record base address.
23893 This is why the caller must provide a VARIANT_PART_OFFSET expression: it
23894 must be an expression that computes the offset of the variant part to
23895 describe in DWARF. */
23897 static void
23898 gen_variant_part (tree variant_part_decl, struct vlr_context *vlr_ctx,
23899 dw_die_ref context_die)
23901 const tree variant_part_type = TREE_TYPE (variant_part_decl);
23902 tree variant_part_offset = vlr_ctx->variant_part_offset;
23903 struct loc_descr_context ctx = {
23904 vlr_ctx->struct_type, /* context_type */
23905 NULL_TREE, /* base_decl */
23906 NULL, /* dpi */
23907 false, /* placeholder_arg */
23908 false /* placeholder_seen */
23911 /* The FIELD_DECL node in STRUCT_TYPE that acts as the discriminant, or
23912 NULL_TREE if there is no such field. */
23913 tree discr_decl = NULL_TREE;
23914 dw_discr_list_ref *discr_lists;
23915 unsigned discr_lists_length = 0;
23916 unsigned i;
23918 dw_die_ref dwarf_proc_die = NULL;
23919 dw_die_ref variant_part_die
23920 = new_die (DW_TAG_variant_part, context_die, variant_part_type);
23922 equate_decl_number_to_die (variant_part_decl, variant_part_die);
23924 analyze_variants_discr (variant_part_decl, vlr_ctx->struct_type,
23925 &discr_decl, &discr_lists, &discr_lists_length);
23927 if (discr_decl != NULL_TREE)
23929 dw_die_ref discr_die = lookup_decl_die (discr_decl);
23931 if (discr_die)
23932 add_AT_die_ref (variant_part_die, DW_AT_discr, discr_die);
23933 else
23934 /* We have no DIE for the discriminant, so just discard all
23935 discrimimant information in the output. */
23936 discr_decl = NULL_TREE;
23939 /* If the offset for this variant part is more complex than a constant,
23940 create a DWARF procedure for it so that we will not have to generate DWARF
23941 expressions for it for each member. */
23942 if (TREE_CODE (variant_part_offset) != INTEGER_CST
23943 && (dwarf_version >= 3 || !dwarf_strict))
23945 const tree dwarf_proc_fndecl
23946 = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
23947 build_function_type (TREE_TYPE (variant_part_offset),
23948 NULL_TREE));
23949 const tree dwarf_proc_call = build_call_expr (dwarf_proc_fndecl, 0);
23950 const dw_loc_descr_ref dwarf_proc_body
23951 = loc_descriptor_from_tree (variant_part_offset, 0, &ctx);
23953 dwarf_proc_die = new_dwarf_proc_die (dwarf_proc_body,
23954 dwarf_proc_fndecl, context_die);
23955 if (dwarf_proc_die != NULL)
23956 variant_part_offset = dwarf_proc_call;
23959 /* Output DIEs for all variants. */
23960 i = 0;
23961 for (tree variant = TYPE_FIELDS (variant_part_type);
23962 variant != NULL_TREE;
23963 variant = DECL_CHAIN (variant), ++i)
23965 tree variant_type = TREE_TYPE (variant);
23966 dw_die_ref variant_die;
23968 /* All variants (i.e. members of a variant part) are supposed to be
23969 encoded as structures. Sub-variant parts are QUAL_UNION_TYPE fields
23970 under these records. */
23971 gcc_assert (TREE_CODE (variant_type) == RECORD_TYPE);
23973 variant_die = new_die (DW_TAG_variant, variant_part_die, variant_type);
23974 equate_decl_number_to_die (variant, variant_die);
23976 /* Output discriminant values this variant matches, if any. */
23977 if (discr_decl == NULL || discr_lists[i] == NULL)
23978 /* In the case we have discriminant information at all, this is
23979 probably the default variant: as the standard says, don't
23980 output any discriminant value/list attribute. */
23982 else if (discr_lists[i]->dw_discr_next == NULL
23983 && !discr_lists[i]->dw_discr_range)
23984 /* If there is only one accepted value, don't bother outputting a
23985 list. */
23986 add_discr_value (variant_die, &discr_lists[i]->dw_discr_lower_bound);
23987 else
23988 add_discr_list (variant_die, discr_lists[i]);
23990 for (tree member = TYPE_FIELDS (variant_type);
23991 member != NULL_TREE;
23992 member = DECL_CHAIN (member))
23994 struct vlr_context vlr_sub_ctx = {
23995 vlr_ctx->struct_type, /* struct_type */
23996 NULL /* variant_part_offset */
23998 if (is_variant_part (member))
24000 /* All offsets for fields inside variant parts are relative to
24001 the top-level embedding RECORD_TYPE's base address. On the
24002 other hand, offsets in GCC's types are relative to the
24003 nested-most variant part. So we have to sum offsets each time
24004 we recurse. */
24006 vlr_sub_ctx.variant_part_offset
24007 = fold_build2 (PLUS_EXPR, TREE_TYPE (variant_part_offset),
24008 variant_part_offset, byte_position (member));
24009 gen_variant_part (member, &vlr_sub_ctx, variant_die);
24011 else
24013 vlr_sub_ctx.variant_part_offset = variant_part_offset;
24014 gen_decl_die (member, NULL, &vlr_sub_ctx, variant_die);
24019 free (discr_lists);
24022 /* Generate a DIE for a class member. */
24024 static void
24025 gen_member_die (tree type, dw_die_ref context_die)
24027 tree member;
24028 tree binfo = TYPE_BINFO (type);
24030 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
24032 /* If this is not an incomplete type, output descriptions of each of its
24033 members. Note that as we output the DIEs necessary to represent the
24034 members of this record or union type, we will also be trying to output
24035 DIEs to represent the *types* of those members. However the `type'
24036 function (above) will specifically avoid generating type DIEs for member
24037 types *within* the list of member DIEs for this (containing) type except
24038 for those types (of members) which are explicitly marked as also being
24039 members of this (containing) type themselves. The g++ front- end can
24040 force any given type to be treated as a member of some other (containing)
24041 type by setting the TYPE_CONTEXT of the given (member) type to point to
24042 the TREE node representing the appropriate (containing) type. */
24044 /* First output info about the base classes. */
24045 if (binfo)
24047 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
24048 int i;
24049 tree base;
24051 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
24052 gen_inheritance_die (base,
24053 (accesses ? (*accesses)[i] : access_public_node),
24054 type,
24055 context_die);
24058 /* Now output info about the data members and type members. */
24059 for (member = TYPE_FIELDS (type); member; member = DECL_CHAIN (member))
24061 struct vlr_context vlr_ctx = { type, NULL_TREE };
24062 bool static_inline_p
24063 = (TREE_STATIC (member)
24064 && (lang_hooks.decls.decl_dwarf_attribute (member, DW_AT_inline)
24065 != -1));
24067 /* Ignore clones. */
24068 if (DECL_ABSTRACT_ORIGIN (member))
24069 continue;
24071 /* If we thought we were generating minimal debug info for TYPE
24072 and then changed our minds, some of the member declarations
24073 may have already been defined. Don't define them again, but
24074 do put them in the right order. */
24076 if (dw_die_ref child = lookup_decl_die (member))
24078 /* Handle inline static data members, which only have in-class
24079 declarations. */
24080 dw_die_ref ref = NULL;
24081 if (child->die_tag == DW_TAG_variable
24082 && child->die_parent == comp_unit_die ())
24084 ref = get_AT_ref (child, DW_AT_specification);
24085 /* For C++17 inline static data members followed by redundant
24086 out of class redeclaration, we might get here with
24087 child being the DIE created for the out of class
24088 redeclaration and with its DW_AT_specification being
24089 the DIE created for in-class definition. We want to
24090 reparent the latter, and don't want to create another
24091 DIE with DW_AT_specification in that case, because
24092 we already have one. */
24093 if (ref
24094 && static_inline_p
24095 && ref->die_tag == DW_TAG_variable
24096 && ref->die_parent == comp_unit_die ()
24097 && get_AT (ref, DW_AT_specification) == NULL)
24099 child = ref;
24100 ref = NULL;
24101 static_inline_p = false;
24105 if (child->die_tag == DW_TAG_variable
24106 && child->die_parent == comp_unit_die ()
24107 && ref == NULL)
24109 reparent_child (child, context_die);
24110 if (dwarf_version < 5)
24111 child->die_tag = DW_TAG_member;
24113 else
24114 splice_child_die (context_die, child);
24117 /* Do not generate standard DWARF for variant parts if we are generating
24118 the corresponding GNAT encodings: DIEs generated for both would
24119 conflict in our mappings. */
24120 else if (is_variant_part (member)
24121 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
24123 vlr_ctx.variant_part_offset = byte_position (member);
24124 gen_variant_part (member, &vlr_ctx, context_die);
24126 else
24128 vlr_ctx.variant_part_offset = NULL_TREE;
24129 gen_decl_die (member, NULL, &vlr_ctx, context_die);
24132 /* For C++ inline static data members emit immediately a DW_TAG_variable
24133 DIE that will refer to that DW_TAG_member/DW_TAG_variable through
24134 DW_AT_specification. */
24135 if (static_inline_p)
24137 int old_extern = DECL_EXTERNAL (member);
24138 DECL_EXTERNAL (member) = 0;
24139 gen_decl_die (member, NULL, NULL, comp_unit_die ());
24140 DECL_EXTERNAL (member) = old_extern;
24145 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
24146 is set, we pretend that the type was never defined, so we only get the
24147 member DIEs needed by later specification DIEs. */
24149 static void
24150 gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
24151 enum debug_info_usage usage)
24153 if (TREE_ASM_WRITTEN (type))
24155 /* Fill in the bound of variable-length fields in late dwarf if
24156 still incomplete. */
24157 if (!early_dwarf && variably_modified_type_p (type, NULL))
24158 for (tree member = TYPE_FIELDS (type);
24159 member;
24160 member = DECL_CHAIN (member))
24161 fill_variable_array_bounds (TREE_TYPE (member));
24162 return;
24165 dw_die_ref type_die = lookup_type_die (type);
24166 dw_die_ref scope_die = 0;
24167 int nested = 0;
24168 int complete = (TYPE_SIZE (type)
24169 && (! TYPE_STUB_DECL (type)
24170 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
24171 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
24172 complete = complete && should_emit_struct_debug (type, usage);
24174 if (type_die && ! complete)
24175 return;
24177 if (TYPE_CONTEXT (type) != NULL_TREE
24178 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
24179 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
24180 nested = 1;
24182 scope_die = scope_die_for (type, context_die);
24184 /* Generate child dies for template paramaters. */
24185 if (!type_die && debug_info_level > DINFO_LEVEL_TERSE)
24186 schedule_generic_params_dies_gen (type);
24188 if (! type_die || (nested && is_cu_die (scope_die)))
24189 /* First occurrence of type or toplevel definition of nested class. */
24191 dw_die_ref old_die = type_die;
24193 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
24194 ? record_type_tag (type) : DW_TAG_union_type,
24195 scope_die, type);
24196 equate_type_number_to_die (type, type_die);
24197 if (old_die)
24198 add_AT_specification (type_die, old_die);
24199 else
24200 add_name_attribute (type_die, type_tag (type));
24202 else
24203 remove_AT (type_die, DW_AT_declaration);
24205 /* If this type has been completed, then give it a byte_size attribute and
24206 then give a list of members. */
24207 if (complete && !ns_decl)
24209 /* Prevent infinite recursion in cases where the type of some member of
24210 this type is expressed in terms of this type itself. */
24211 TREE_ASM_WRITTEN (type) = 1;
24212 add_byte_size_attribute (type_die, type);
24213 add_alignment_attribute (type_die, type);
24214 if (TYPE_STUB_DECL (type) != NULL_TREE)
24216 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
24217 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
24220 /* If the first reference to this type was as the return type of an
24221 inline function, then it may not have a parent. Fix this now. */
24222 if (type_die->die_parent == NULL)
24223 add_child_die (scope_die, type_die);
24225 push_decl_scope (type);
24226 gen_member_die (type, type_die);
24227 pop_decl_scope ();
24229 add_gnat_descriptive_type_attribute (type_die, type, context_die);
24230 if (TYPE_ARTIFICIAL (type))
24231 add_AT_flag (type_die, DW_AT_artificial, 1);
24233 /* GNU extension: Record what type our vtable lives in. */
24234 if (TYPE_VFIELD (type))
24236 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
24238 gen_type_die (vtype, context_die);
24239 add_AT_die_ref (type_die, DW_AT_containing_type,
24240 lookup_type_die (vtype));
24243 else
24245 add_AT_flag (type_die, DW_AT_declaration, 1);
24247 /* We don't need to do this for function-local types. */
24248 if (TYPE_STUB_DECL (type)
24249 && ! decl_function_context (TYPE_STUB_DECL (type)))
24250 vec_safe_push (incomplete_types, type);
24253 if (get_AT (type_die, DW_AT_name))
24254 add_pubtype (type, type_die);
24257 /* Generate a DIE for a subroutine _type_. */
24259 static void
24260 gen_subroutine_type_die (tree type, dw_die_ref context_die)
24262 tree return_type = TREE_TYPE (type);
24263 dw_die_ref subr_die
24264 = new_die (DW_TAG_subroutine_type,
24265 scope_die_for (type, context_die), type);
24267 equate_type_number_to_die (type, subr_die);
24268 add_prototyped_attribute (subr_die, type);
24269 add_type_attribute (subr_die, return_type, TYPE_UNQUALIFIED, false,
24270 context_die);
24271 add_alignment_attribute (subr_die, type);
24272 gen_formal_types_die (type, subr_die);
24274 if (get_AT (subr_die, DW_AT_name))
24275 add_pubtype (type, subr_die);
24276 if ((dwarf_version >= 5 || !dwarf_strict)
24277 && lang_hooks.types.type_dwarf_attribute (type, DW_AT_reference) != -1)
24278 add_AT_flag (subr_die, DW_AT_reference, 1);
24279 if ((dwarf_version >= 5 || !dwarf_strict)
24280 && lang_hooks.types.type_dwarf_attribute (type,
24281 DW_AT_rvalue_reference) != -1)
24282 add_AT_flag (subr_die, DW_AT_rvalue_reference, 1);
24285 /* Generate a DIE for a type definition. */
24287 static void
24288 gen_typedef_die (tree decl, dw_die_ref context_die)
24290 dw_die_ref type_die;
24291 tree type;
24293 if (TREE_ASM_WRITTEN (decl))
24295 if (DECL_ORIGINAL_TYPE (decl))
24296 fill_variable_array_bounds (DECL_ORIGINAL_TYPE (decl));
24297 return;
24300 /* As we avoid creating DIEs for local typedefs (see decl_ultimate_origin
24301 checks in process_scope_var and modified_type_die), this should be called
24302 only for original types. */
24303 gcc_assert (decl_ultimate_origin (decl) == NULL
24304 || decl_ultimate_origin (decl) == decl);
24306 TREE_ASM_WRITTEN (decl) = 1;
24307 type_die = new_die (DW_TAG_typedef, context_die, decl);
24309 add_name_and_src_coords_attributes (type_die, decl);
24310 if (DECL_ORIGINAL_TYPE (decl))
24312 type = DECL_ORIGINAL_TYPE (decl);
24313 if (type == error_mark_node)
24314 return;
24316 gcc_assert (type != TREE_TYPE (decl));
24317 equate_type_number_to_die (TREE_TYPE (decl), type_die);
24319 else
24321 type = TREE_TYPE (decl);
24322 if (type == error_mark_node)
24323 return;
24325 if (is_naming_typedef_decl (TYPE_NAME (type)))
24327 /* Here, we are in the case of decl being a typedef naming
24328 an anonymous type, e.g:
24329 typedef struct {...} foo;
24330 In that case TREE_TYPE (decl) is not a typedef variant
24331 type and TYPE_NAME of the anonymous type is set to the
24332 TYPE_DECL of the typedef. This construct is emitted by
24333 the C++ FE.
24335 TYPE is the anonymous struct named by the typedef
24336 DECL. As we need the DW_AT_type attribute of the
24337 DW_TAG_typedef to point to the DIE of TYPE, let's
24338 generate that DIE right away. add_type_attribute
24339 called below will then pick (via lookup_type_die) that
24340 anonymous struct DIE. */
24341 if (!TREE_ASM_WRITTEN (type))
24342 gen_tagged_type_die (type, context_die, DINFO_USAGE_DIR_USE);
24344 /* This is a GNU Extension. We are adding a
24345 DW_AT_linkage_name attribute to the DIE of the
24346 anonymous struct TYPE. The value of that attribute
24347 is the name of the typedef decl naming the anonymous
24348 struct. This greatly eases the work of consumers of
24349 this debug info. */
24350 add_linkage_name_raw (lookup_type_die (type), decl);
24354 add_type_attribute (type_die, type, decl_quals (decl), false,
24355 context_die);
24357 if (is_naming_typedef_decl (decl))
24358 /* We want that all subsequent calls to lookup_type_die with
24359 TYPE in argument yield the DW_TAG_typedef we have just
24360 created. */
24361 equate_type_number_to_die (type, type_die);
24363 add_alignment_attribute (type_die, TREE_TYPE (decl));
24365 add_accessibility_attribute (type_die, decl);
24367 if (DECL_ABSTRACT_P (decl))
24368 equate_decl_number_to_die (decl, type_die);
24370 if (get_AT (type_die, DW_AT_name))
24371 add_pubtype (decl, type_die);
24374 /* Generate a DIE for a struct, class, enum or union type. */
24376 static void
24377 gen_tagged_type_die (tree type,
24378 dw_die_ref context_die,
24379 enum debug_info_usage usage)
24381 int need_pop;
24383 if (type == NULL_TREE
24384 || !is_tagged_type (type))
24385 return;
24387 if (TREE_ASM_WRITTEN (type))
24388 need_pop = 0;
24389 /* If this is a nested type whose containing class hasn't been written
24390 out yet, writing it out will cover this one, too. This does not apply
24391 to instantiations of member class templates; they need to be added to
24392 the containing class as they are generated. FIXME: This hurts the
24393 idea of combining type decls from multiple TUs, since we can't predict
24394 what set of template instantiations we'll get. */
24395 else if (TYPE_CONTEXT (type)
24396 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
24397 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
24399 gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);
24401 if (TREE_ASM_WRITTEN (type))
24402 return;
24404 /* If that failed, attach ourselves to the stub. */
24405 push_decl_scope (TYPE_CONTEXT (type));
24406 context_die = lookup_type_die (TYPE_CONTEXT (type));
24407 need_pop = 1;
24409 else if (TYPE_CONTEXT (type) != NULL_TREE
24410 && (TREE_CODE (TYPE_CONTEXT (type)) == FUNCTION_DECL))
24412 /* If this type is local to a function that hasn't been written
24413 out yet, use a NULL context for now; it will be fixed up in
24414 decls_for_scope. */
24415 context_die = lookup_decl_die (TYPE_CONTEXT (type));
24416 /* A declaration DIE doesn't count; nested types need to go in the
24417 specification. */
24418 if (context_die && is_declaration_die (context_die))
24419 context_die = NULL;
24420 need_pop = 0;
24422 else
24424 context_die = declare_in_namespace (type, context_die);
24425 need_pop = 0;
24428 if (TREE_CODE (type) == ENUMERAL_TYPE)
24430 /* This might have been written out by the call to
24431 declare_in_namespace. */
24432 if (!TREE_ASM_WRITTEN (type))
24433 gen_enumeration_type_die (type, context_die);
24435 else
24436 gen_struct_or_union_type_die (type, context_die, usage);
24438 if (need_pop)
24439 pop_decl_scope ();
24441 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
24442 it up if it is ever completed. gen_*_type_die will set it for us
24443 when appropriate. */
24446 /* Generate a type description DIE. */
24448 static void
24449 gen_type_die_with_usage (tree type, dw_die_ref context_die,
24450 enum debug_info_usage usage)
24452 struct array_descr_info info;
24454 if (type == NULL_TREE || type == error_mark_node)
24455 return;
24457 if (flag_checking && type)
24458 verify_type (type);
24460 if (TYPE_NAME (type) != NULL_TREE
24461 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
24462 && is_redundant_typedef (TYPE_NAME (type))
24463 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
24464 /* The DECL of this type is a typedef we don't want to emit debug
24465 info for but we want debug info for its underlying typedef.
24466 This can happen for e.g, the injected-class-name of a C++
24467 type. */
24468 type = DECL_ORIGINAL_TYPE (TYPE_NAME (type));
24470 /* If TYPE is a typedef type variant, let's generate debug info
24471 for the parent typedef which TYPE is a type of. */
24472 if (typedef_variant_p (type))
24474 if (TREE_ASM_WRITTEN (type))
24475 return;
24477 tree name = TYPE_NAME (type);
24478 tree origin = decl_ultimate_origin (name);
24479 if (origin != NULL && origin != name)
24481 gen_decl_die (origin, NULL, NULL, context_die);
24482 return;
24485 /* Prevent broken recursion; we can't hand off to the same type. */
24486 gcc_assert (DECL_ORIGINAL_TYPE (name) != type);
24488 /* Give typedefs the right scope. */
24489 context_die = scope_die_for (type, context_die);
24491 TREE_ASM_WRITTEN (type) = 1;
24493 gen_decl_die (name, NULL, NULL, context_die);
24494 return;
24497 /* If type is an anonymous tagged type named by a typedef, let's
24498 generate debug info for the typedef. */
24499 if (is_naming_typedef_decl (TYPE_NAME (type)))
24501 /* Use the DIE of the containing namespace as the parent DIE of
24502 the type description DIE we want to generate. */
24503 if (DECL_CONTEXT (TYPE_NAME (type))
24504 && TREE_CODE (DECL_CONTEXT (TYPE_NAME (type))) == NAMESPACE_DECL)
24505 context_die = get_context_die (DECL_CONTEXT (TYPE_NAME (type)));
24507 gen_decl_die (TYPE_NAME (type), NULL, NULL, context_die);
24508 return;
24511 if (lang_hooks.types.get_debug_type)
24513 tree debug_type = lang_hooks.types.get_debug_type (type);
24515 if (debug_type != NULL_TREE && debug_type != type)
24517 gen_type_die_with_usage (debug_type, context_die, usage);
24518 return;
24522 /* We are going to output a DIE to represent the unqualified version
24523 of this type (i.e. without any const or volatile qualifiers) so
24524 get the main variant (i.e. the unqualified version) of this type
24525 now. (Vectors and arrays are special because the debugging info is in the
24526 cloned type itself. Similarly function/method types can contain extra
24527 ref-qualification). */
24528 if (TREE_CODE (type) == FUNCTION_TYPE
24529 || TREE_CODE (type) == METHOD_TYPE)
24531 /* For function/method types, can't use type_main_variant here,
24532 because that can have different ref-qualifiers for C++,
24533 but try to canonicalize. */
24534 tree main = TYPE_MAIN_VARIANT (type);
24535 for (tree t = main; t; t = TYPE_NEXT_VARIANT (t))
24536 if (TYPE_QUALS_NO_ADDR_SPACE (t) == 0
24537 && check_base_type (t, main)
24538 && check_lang_type (t, type))
24540 type = t;
24541 break;
24544 else if (TREE_CODE (type) != VECTOR_TYPE
24545 && TREE_CODE (type) != ARRAY_TYPE)
24546 type = type_main_variant (type);
24548 /* If this is an array type with hidden descriptor, handle it first. */
24549 if (!TREE_ASM_WRITTEN (type)
24550 && lang_hooks.types.get_array_descr_info)
24552 memset (&info, 0, sizeof (info));
24553 if (lang_hooks.types.get_array_descr_info (type, &info))
24555 /* Fortran sometimes emits array types with no dimension. */
24556 gcc_assert (info.ndimensions >= 0
24557 && (info.ndimensions
24558 <= DWARF2OUT_ARRAY_DESCR_INFO_MAX_DIMEN));
24559 gen_descr_array_type_die (type, &info, context_die);
24560 TREE_ASM_WRITTEN (type) = 1;
24561 return;
24565 if (TREE_ASM_WRITTEN (type))
24567 /* Variable-length types may be incomplete even if
24568 TREE_ASM_WRITTEN. For such types, fall through to
24569 gen_array_type_die() and possibly fill in
24570 DW_AT_{upper,lower}_bound attributes. */
24571 if ((TREE_CODE (type) != ARRAY_TYPE
24572 && TREE_CODE (type) != RECORD_TYPE
24573 && TREE_CODE (type) != UNION_TYPE
24574 && TREE_CODE (type) != QUAL_UNION_TYPE)
24575 || !variably_modified_type_p (type, NULL))
24576 return;
24579 switch (TREE_CODE (type))
24581 case ERROR_MARK:
24582 break;
24584 case POINTER_TYPE:
24585 case REFERENCE_TYPE:
24586 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
24587 ensures that the gen_type_die recursion will terminate even if the
24588 type is recursive. Recursive types are possible in Ada. */
24589 /* ??? We could perhaps do this for all types before the switch
24590 statement. */
24591 TREE_ASM_WRITTEN (type) = 1;
24593 /* For these types, all that is required is that we output a DIE (or a
24594 set of DIEs) to represent the "basis" type. */
24595 gen_type_die_with_usage (TREE_TYPE (type), context_die,
24596 DINFO_USAGE_IND_USE);
24597 break;
24599 case OFFSET_TYPE:
24600 /* This code is used for C++ pointer-to-data-member types.
24601 Output a description of the relevant class type. */
24602 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
24603 DINFO_USAGE_IND_USE);
24605 /* Output a description of the type of the object pointed to. */
24606 gen_type_die_with_usage (TREE_TYPE (type), context_die,
24607 DINFO_USAGE_IND_USE);
24609 /* Now output a DIE to represent this pointer-to-data-member type
24610 itself. */
24611 gen_ptr_to_mbr_type_die (type, context_die);
24612 break;
24614 case FUNCTION_TYPE:
24615 /* Force out return type (in case it wasn't forced out already). */
24616 gen_type_die_with_usage (TREE_TYPE (type), context_die,
24617 DINFO_USAGE_DIR_USE);
24618 gen_subroutine_type_die (type, context_die);
24619 break;
24621 case METHOD_TYPE:
24622 /* Force out return type (in case it wasn't forced out already). */
24623 gen_type_die_with_usage (TREE_TYPE (type), context_die,
24624 DINFO_USAGE_DIR_USE);
24625 gen_subroutine_type_die (type, context_die);
24626 break;
24628 case ARRAY_TYPE:
24629 case VECTOR_TYPE:
24630 gen_array_type_die (type, context_die);
24631 break;
24633 case ENUMERAL_TYPE:
24634 case RECORD_TYPE:
24635 case UNION_TYPE:
24636 case QUAL_UNION_TYPE:
24637 gen_tagged_type_die (type, context_die, usage);
24638 return;
24640 case VOID_TYPE:
24641 case INTEGER_TYPE:
24642 case REAL_TYPE:
24643 case FIXED_POINT_TYPE:
24644 case COMPLEX_TYPE:
24645 case BOOLEAN_TYPE:
24646 case POINTER_BOUNDS_TYPE:
24647 /* No DIEs needed for fundamental types. */
24648 break;
24650 case NULLPTR_TYPE:
24651 case LANG_TYPE:
24652 /* Just use DW_TAG_unspecified_type. */
24654 dw_die_ref type_die = lookup_type_die (type);
24655 if (type_die == NULL)
24657 tree name = TYPE_IDENTIFIER (type);
24658 type_die = new_die (DW_TAG_unspecified_type, comp_unit_die (),
24659 type);
24660 add_name_attribute (type_die, IDENTIFIER_POINTER (name));
24661 equate_type_number_to_die (type, type_die);
24664 break;
24666 default:
24667 if (is_cxx_auto (type))
24669 tree name = TYPE_IDENTIFIER (type);
24670 dw_die_ref *die = (name == get_identifier ("auto")
24671 ? &auto_die : &decltype_auto_die);
24672 if (!*die)
24674 *die = new_die (DW_TAG_unspecified_type,
24675 comp_unit_die (), NULL_TREE);
24676 add_name_attribute (*die, IDENTIFIER_POINTER (name));
24678 equate_type_number_to_die (type, *die);
24679 break;
24681 gcc_unreachable ();
24684 TREE_ASM_WRITTEN (type) = 1;
24687 static void
24688 gen_type_die (tree type, dw_die_ref context_die)
24690 if (type != error_mark_node)
24692 gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
24693 if (flag_checking)
24695 dw_die_ref die = lookup_type_die (type);
24696 if (die)
24697 check_die (die);
24702 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
24703 things which are local to the given block. */
24705 static void
24706 gen_block_die (tree stmt, dw_die_ref context_die)
24708 int must_output_die = 0;
24709 bool inlined_func;
24711 /* Ignore blocks that are NULL. */
24712 if (stmt == NULL_TREE)
24713 return;
24715 inlined_func = inlined_function_outer_scope_p (stmt);
24717 /* If the block is one fragment of a non-contiguous block, do not
24718 process the variables, since they will have been done by the
24719 origin block. Do process subblocks. */
24720 if (BLOCK_FRAGMENT_ORIGIN (stmt))
24722 tree sub;
24724 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
24725 gen_block_die (sub, context_die);
24727 return;
24730 /* Determine if we need to output any Dwarf DIEs at all to represent this
24731 block. */
24732 if (inlined_func)
24733 /* The outer scopes for inlinings *must* always be represented. We
24734 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
24735 must_output_die = 1;
24736 else
24738 /* Determine if this block directly contains any "significant"
24739 local declarations which we will need to output DIEs for. */
24740 if (debug_info_level > DINFO_LEVEL_TERSE)
24741 /* We are not in terse mode so *any* local declaration counts
24742 as being a "significant" one. */
24743 must_output_die = ((BLOCK_VARS (stmt) != NULL
24744 || BLOCK_NUM_NONLOCALIZED_VARS (stmt))
24745 && (TREE_USED (stmt)
24746 || TREE_ASM_WRITTEN (stmt)
24747 || BLOCK_ABSTRACT (stmt)));
24748 else if ((TREE_USED (stmt)
24749 || TREE_ASM_WRITTEN (stmt)
24750 || BLOCK_ABSTRACT (stmt))
24751 && !dwarf2out_ignore_block (stmt))
24752 must_output_die = 1;
24755 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
24756 DIE for any block which contains no significant local declarations at
24757 all. Rather, in such cases we just call `decls_for_scope' so that any
24758 needed Dwarf info for any sub-blocks will get properly generated. Note
24759 that in terse mode, our definition of what constitutes a "significant"
24760 local declaration gets restricted to include only inlined function
24761 instances and local (nested) function definitions. */
24762 if (must_output_die)
24764 if (inlined_func)
24766 /* If STMT block is abstract, that means we have been called
24767 indirectly from dwarf2out_abstract_function.
24768 That function rightfully marks the descendent blocks (of
24769 the abstract function it is dealing with) as being abstract,
24770 precisely to prevent us from emitting any
24771 DW_TAG_inlined_subroutine DIE as a descendent
24772 of an abstract function instance. So in that case, we should
24773 not call gen_inlined_subroutine_die.
24775 Later though, when cgraph asks dwarf2out to emit info
24776 for the concrete instance of the function decl into which
24777 the concrete instance of STMT got inlined, the later will lead
24778 to the generation of a DW_TAG_inlined_subroutine DIE. */
24779 if (! BLOCK_ABSTRACT (stmt))
24780 gen_inlined_subroutine_die (stmt, context_die);
24782 else
24783 gen_lexical_block_die (stmt, context_die);
24785 else
24786 decls_for_scope (stmt, context_die);
24789 /* Process variable DECL (or variable with origin ORIGIN) within
24790 block STMT and add it to CONTEXT_DIE. */
24791 static void
24792 process_scope_var (tree stmt, tree decl, tree origin, dw_die_ref context_die)
24794 dw_die_ref die;
24795 tree decl_or_origin = decl ? decl : origin;
24797 if (TREE_CODE (decl_or_origin) == FUNCTION_DECL)
24798 die = lookup_decl_die (decl_or_origin);
24799 else if (TREE_CODE (decl_or_origin) == TYPE_DECL)
24801 if (TYPE_DECL_IS_STUB (decl_or_origin))
24802 die = lookup_type_die (TREE_TYPE (decl_or_origin));
24803 else
24804 die = lookup_decl_die (decl_or_origin);
24805 /* Avoid re-creating the DIE late if it was optimized as unused early. */
24806 if (! die && ! early_dwarf)
24807 return;
24809 else
24810 die = NULL;
24812 /* Avoid creating DIEs for local typedefs and concrete static variables that
24813 will only be pruned later. */
24814 if ((origin || decl_ultimate_origin (decl))
24815 && (TREE_CODE (decl_or_origin) == TYPE_DECL
24816 || (VAR_P (decl_or_origin) && TREE_STATIC (decl_or_origin))))
24818 origin = decl_ultimate_origin (decl_or_origin);
24819 if (decl && VAR_P (decl) && die != NULL)
24821 die = lookup_decl_die (origin);
24822 if (die != NULL)
24823 equate_decl_number_to_die (decl, die);
24825 return;
24828 if (die != NULL && die->die_parent == NULL)
24829 add_child_die (context_die, die);
24830 else if (TREE_CODE (decl_or_origin) == IMPORTED_DECL)
24832 if (early_dwarf)
24833 dwarf2out_imported_module_or_decl_1 (decl_or_origin, DECL_NAME (decl_or_origin),
24834 stmt, context_die);
24836 else
24838 if (decl && DECL_P (decl))
24840 die = lookup_decl_die (decl);
24842 /* Early created DIEs do not have a parent as the decls refer
24843 to the function as DECL_CONTEXT rather than the BLOCK. */
24844 if (die && die->die_parent == NULL)
24846 gcc_assert (in_lto_p);
24847 add_child_die (context_die, die);
24851 gen_decl_die (decl, origin, NULL, context_die);
24855 /* Generate all of the decls declared within a given scope and (recursively)
24856 all of its sub-blocks. */
24858 static void
24859 decls_for_scope (tree stmt, dw_die_ref context_die)
24861 tree decl;
24862 unsigned int i;
24863 tree subblocks;
24865 /* Ignore NULL blocks. */
24866 if (stmt == NULL_TREE)
24867 return;
24869 /* Output the DIEs to represent all of the data objects and typedefs
24870 declared directly within this block but not within any nested
24871 sub-blocks. Also, nested function and tag DIEs have been
24872 generated with a parent of NULL; fix that up now. We don't
24873 have to do this if we're at -g1. */
24874 if (debug_info_level > DINFO_LEVEL_TERSE)
24876 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = DECL_CHAIN (decl))
24877 process_scope_var (stmt, decl, NULL_TREE, context_die);
24878 /* BLOCK_NONLOCALIZED_VARs simply generate DIE stubs with abstract
24879 origin - avoid doing this twice as we have no good way to see
24880 if we've done it once already. */
24881 if (! early_dwarf)
24882 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
24884 decl = BLOCK_NONLOCALIZED_VAR (stmt, i);
24885 if (decl == current_function_decl)
24886 /* Ignore declarations of the current function, while they
24887 are declarations, gen_subprogram_die would treat them
24888 as definitions again, because they are equal to
24889 current_function_decl and endlessly recurse. */;
24890 else if (TREE_CODE (decl) == FUNCTION_DECL)
24891 process_scope_var (stmt, decl, NULL_TREE, context_die);
24892 else
24893 process_scope_var (stmt, NULL_TREE, decl, context_die);
24897 /* Even if we're at -g1, we need to process the subblocks in order to get
24898 inlined call information. */
24900 /* Output the DIEs to represent all sub-blocks (and the items declared
24901 therein) of this block. */
24902 for (subblocks = BLOCK_SUBBLOCKS (stmt);
24903 subblocks != NULL;
24904 subblocks = BLOCK_CHAIN (subblocks))
24905 gen_block_die (subblocks, context_die);
24908 /* Is this a typedef we can avoid emitting? */
24910 bool
24911 is_redundant_typedef (const_tree decl)
24913 if (TYPE_DECL_IS_STUB (decl))
24914 return true;
24916 if (DECL_ARTIFICIAL (decl)
24917 && DECL_CONTEXT (decl)
24918 && is_tagged_type (DECL_CONTEXT (decl))
24919 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
24920 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
24921 /* Also ignore the artificial member typedef for the class name. */
24922 return true;
24924 return false;
24927 /* Return TRUE if TYPE is a typedef that names a type for linkage
24928 purposes. This kind of typedefs is produced by the C++ FE for
24929 constructs like:
24931 typedef struct {...} foo;
24933 In that case, there is no typedef variant type produced for foo.
24934 Rather, the TREE_TYPE of the TYPE_DECL of foo is the anonymous
24935 struct type. */
24937 static bool
24938 is_naming_typedef_decl (const_tree decl)
24940 if (decl == NULL_TREE
24941 || TREE_CODE (decl) != TYPE_DECL
24942 || DECL_NAMELESS (decl)
24943 || !is_tagged_type (TREE_TYPE (decl))
24944 || DECL_IS_BUILTIN (decl)
24945 || is_redundant_typedef (decl)
24946 /* It looks like Ada produces TYPE_DECLs that are very similar
24947 to C++ naming typedefs but that have different
24948 semantics. Let's be specific to c++ for now. */
24949 || !is_cxx (decl))
24950 return FALSE;
24952 return (DECL_ORIGINAL_TYPE (decl) == NULL_TREE
24953 && TYPE_NAME (TREE_TYPE (decl)) == decl
24954 && (TYPE_STUB_DECL (TREE_TYPE (decl))
24955 != TYPE_NAME (TREE_TYPE (decl))));
24958 /* Looks up the DIE for a context. */
24960 static inline dw_die_ref
24961 lookup_context_die (tree context)
24963 if (context)
24965 /* Find die that represents this context. */
24966 if (TYPE_P (context))
24968 context = TYPE_MAIN_VARIANT (context);
24969 dw_die_ref ctx = lookup_type_die (context);
24970 if (!ctx)
24971 return NULL;
24972 return strip_naming_typedef (context, ctx);
24974 else
24975 return lookup_decl_die (context);
24977 return comp_unit_die ();
24980 /* Returns the DIE for a context. */
24982 static inline dw_die_ref
24983 get_context_die (tree context)
24985 if (context)
24987 /* Find die that represents this context. */
24988 if (TYPE_P (context))
24990 context = TYPE_MAIN_VARIANT (context);
24991 return strip_naming_typedef (context, force_type_die (context));
24993 else
24994 return force_decl_die (context);
24996 return comp_unit_die ();
24999 /* Returns the DIE for decl. A DIE will always be returned. */
25001 static dw_die_ref
25002 force_decl_die (tree decl)
25004 dw_die_ref decl_die;
25005 unsigned saved_external_flag;
25006 tree save_fn = NULL_TREE;
25007 decl_die = lookup_decl_die (decl);
25008 if (!decl_die)
25010 dw_die_ref context_die = get_context_die (DECL_CONTEXT (decl));
25012 decl_die = lookup_decl_die (decl);
25013 if (decl_die)
25014 return decl_die;
25016 switch (TREE_CODE (decl))
25018 case FUNCTION_DECL:
25019 /* Clear current_function_decl, so that gen_subprogram_die thinks
25020 that this is a declaration. At this point, we just want to force
25021 declaration die. */
25022 save_fn = current_function_decl;
25023 current_function_decl = NULL_TREE;
25024 gen_subprogram_die (decl, context_die);
25025 current_function_decl = save_fn;
25026 break;
25028 case VAR_DECL:
25029 /* Set external flag to force declaration die. Restore it after
25030 gen_decl_die() call. */
25031 saved_external_flag = DECL_EXTERNAL (decl);
25032 DECL_EXTERNAL (decl) = 1;
25033 gen_decl_die (decl, NULL, NULL, context_die);
25034 DECL_EXTERNAL (decl) = saved_external_flag;
25035 break;
25037 case NAMESPACE_DECL:
25038 if (dwarf_version >= 3 || !dwarf_strict)
25039 dwarf2out_decl (decl);
25040 else
25041 /* DWARF2 has neither DW_TAG_module, nor DW_TAG_namespace. */
25042 decl_die = comp_unit_die ();
25043 break;
25045 case TRANSLATION_UNIT_DECL:
25046 decl_die = comp_unit_die ();
25047 break;
25049 default:
25050 gcc_unreachable ();
25053 /* We should be able to find the DIE now. */
25054 if (!decl_die)
25055 decl_die = lookup_decl_die (decl);
25056 gcc_assert (decl_die);
25059 return decl_die;
25062 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
25063 always returned. */
25065 static dw_die_ref
25066 force_type_die (tree type)
25068 dw_die_ref type_die;
25070 type_die = lookup_type_die (type);
25071 if (!type_die)
25073 dw_die_ref context_die = get_context_die (TYPE_CONTEXT (type));
25075 type_die = modified_type_die (type, TYPE_QUALS_NO_ADDR_SPACE (type),
25076 false, context_die);
25077 gcc_assert (type_die);
25079 return type_die;
25082 /* Force out any required namespaces to be able to output DECL,
25083 and return the new context_die for it, if it's changed. */
25085 static dw_die_ref
25086 setup_namespace_context (tree thing, dw_die_ref context_die)
25088 tree context = (DECL_P (thing)
25089 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
25090 if (context && TREE_CODE (context) == NAMESPACE_DECL)
25091 /* Force out the namespace. */
25092 context_die = force_decl_die (context);
25094 return context_die;
25097 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
25098 type) within its namespace, if appropriate.
25100 For compatibility with older debuggers, namespace DIEs only contain
25101 declarations; all definitions are emitted at CU scope, with
25102 DW_AT_specification pointing to the declaration (like with class
25103 members). */
25105 static dw_die_ref
25106 declare_in_namespace (tree thing, dw_die_ref context_die)
25108 dw_die_ref ns_context;
25110 if (debug_info_level <= DINFO_LEVEL_TERSE)
25111 return context_die;
25113 /* External declarations in the local scope only need to be emitted
25114 once, not once in the namespace and once in the scope.
25116 This avoids declaring the `extern' below in the
25117 namespace DIE as well as in the innermost scope:
25119 namespace S
25121 int i=5;
25122 int foo()
25124 int i=8;
25125 extern int i;
25126 return i;
25130 if (DECL_P (thing) && DECL_EXTERNAL (thing) && local_scope_p (context_die))
25131 return context_die;
25133 /* If this decl is from an inlined function, then don't try to emit it in its
25134 namespace, as we will get confused. It would have already been emitted
25135 when the abstract instance of the inline function was emitted anyways. */
25136 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
25137 return context_die;
25139 ns_context = setup_namespace_context (thing, context_die);
25141 if (ns_context != context_die)
25143 if (is_fortran ())
25144 return ns_context;
25145 if (DECL_P (thing))
25146 gen_decl_die (thing, NULL, NULL, ns_context);
25147 else
25148 gen_type_die (thing, ns_context);
25150 return context_die;
25153 /* Generate a DIE for a namespace or namespace alias. */
25155 static void
25156 gen_namespace_die (tree decl, dw_die_ref context_die)
25158 dw_die_ref namespace_die;
25160 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
25161 they are an alias of. */
25162 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
25164 /* Output a real namespace or module. */
25165 context_die = setup_namespace_context (decl, comp_unit_die ());
25166 namespace_die = new_die (is_fortran ()
25167 ? DW_TAG_module : DW_TAG_namespace,
25168 context_die, decl);
25169 /* For Fortran modules defined in different CU don't add src coords. */
25170 if (namespace_die->die_tag == DW_TAG_module && DECL_EXTERNAL (decl))
25172 const char *name = dwarf2_name (decl, 0);
25173 if (name)
25174 add_name_attribute (namespace_die, name);
25176 else
25177 add_name_and_src_coords_attributes (namespace_die, decl);
25178 if (DECL_EXTERNAL (decl))
25179 add_AT_flag (namespace_die, DW_AT_declaration, 1);
25180 equate_decl_number_to_die (decl, namespace_die);
25182 else
25184 /* Output a namespace alias. */
25186 /* Force out the namespace we are an alias of, if necessary. */
25187 dw_die_ref origin_die
25188 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
25190 if (DECL_FILE_SCOPE_P (decl)
25191 || TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
25192 context_die = setup_namespace_context (decl, comp_unit_die ());
25193 /* Now create the namespace alias DIE. */
25194 namespace_die = new_die (DW_TAG_imported_declaration, context_die, decl);
25195 add_name_and_src_coords_attributes (namespace_die, decl);
25196 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
25197 equate_decl_number_to_die (decl, namespace_die);
25199 if ((dwarf_version >= 5 || !dwarf_strict)
25200 && lang_hooks.decls.decl_dwarf_attribute (decl,
25201 DW_AT_export_symbols) == 1)
25202 add_AT_flag (namespace_die, DW_AT_export_symbols, 1);
25204 /* Bypass dwarf2_name's check for DECL_NAMELESS. */
25205 if (want_pubnames ())
25206 add_pubname_string (lang_hooks.dwarf_name (decl, 1), namespace_die);
25209 /* Generate Dwarf debug information for a decl described by DECL.
25210 The return value is currently only meaningful for PARM_DECLs,
25211 for all other decls it returns NULL.
25213 If DECL is a FIELD_DECL, CTX is required: see the comment for VLR_CONTEXT.
25214 It can be NULL otherwise. */
25216 static dw_die_ref
25217 gen_decl_die (tree decl, tree origin, struct vlr_context *ctx,
25218 dw_die_ref context_die)
25220 tree decl_or_origin = decl ? decl : origin;
25221 tree class_origin = NULL, ultimate_origin;
25223 if (DECL_P (decl_or_origin) && DECL_IGNORED_P (decl_or_origin))
25224 return NULL;
25226 /* Ignore pointer bounds decls. */
25227 if (DECL_P (decl_or_origin)
25228 && TREE_TYPE (decl_or_origin)
25229 && POINTER_BOUNDS_P (decl_or_origin))
25230 return NULL;
25232 switch (TREE_CODE (decl_or_origin))
25234 case ERROR_MARK:
25235 break;
25237 case CONST_DECL:
25238 if (!is_fortran () && !is_ada ())
25240 /* The individual enumerators of an enum type get output when we output
25241 the Dwarf representation of the relevant enum type itself. */
25242 break;
25245 /* Emit its type. */
25246 gen_type_die (TREE_TYPE (decl), context_die);
25248 /* And its containing namespace. */
25249 context_die = declare_in_namespace (decl, context_die);
25251 gen_const_die (decl, context_die);
25252 break;
25254 case FUNCTION_DECL:
25255 #if 0
25256 /* FIXME */
25257 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
25258 on local redeclarations of global functions. That seems broken. */
25259 if (current_function_decl != decl)
25260 /* This is only a declaration. */;
25261 #endif
25263 /* We should have abstract copies already and should not generate
25264 stray type DIEs in late LTO dumping. */
25265 if (! early_dwarf)
25268 /* If we're emitting a clone, emit info for the abstract instance. */
25269 else if (origin || DECL_ORIGIN (decl) != decl)
25270 dwarf2out_abstract_function (origin
25271 ? DECL_ORIGIN (origin)
25272 : DECL_ABSTRACT_ORIGIN (decl));
25274 /* If we're emitting a possibly inlined function emit it as
25275 abstract instance. */
25276 else if (cgraph_function_possibly_inlined_p (decl)
25277 && ! DECL_ABSTRACT_P (decl)
25278 && ! class_or_namespace_scope_p (context_die)
25279 /* dwarf2out_abstract_function won't emit a die if this is just
25280 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
25281 that case, because that works only if we have a die. */
25282 && DECL_INITIAL (decl) != NULL_TREE)
25283 dwarf2out_abstract_function (decl);
25285 /* Otherwise we're emitting the primary DIE for this decl. */
25286 else if (debug_info_level > DINFO_LEVEL_TERSE)
25288 /* Before we describe the FUNCTION_DECL itself, make sure that we
25289 have its containing type. */
25290 if (!origin)
25291 origin = decl_class_context (decl);
25292 if (origin != NULL_TREE)
25293 gen_type_die (origin, context_die);
25295 /* And its return type. */
25296 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
25298 /* And its virtual context. */
25299 if (DECL_VINDEX (decl) != NULL_TREE)
25300 gen_type_die (DECL_CONTEXT (decl), context_die);
25302 /* Make sure we have a member DIE for decl. */
25303 if (origin != NULL_TREE)
25304 gen_type_die_for_member (origin, decl, context_die);
25306 /* And its containing namespace. */
25307 context_die = declare_in_namespace (decl, context_die);
25310 /* Now output a DIE to represent the function itself. */
25311 if (decl)
25312 gen_subprogram_die (decl, context_die);
25313 break;
25315 case TYPE_DECL:
25316 /* If we are in terse mode, don't generate any DIEs to represent any
25317 actual typedefs. */
25318 if (debug_info_level <= DINFO_LEVEL_TERSE)
25319 break;
25321 /* In the special case of a TYPE_DECL node representing the declaration
25322 of some type tag, if the given TYPE_DECL is marked as having been
25323 instantiated from some other (original) TYPE_DECL node (e.g. one which
25324 was generated within the original definition of an inline function) we
25325 used to generate a special (abbreviated) DW_TAG_structure_type,
25326 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. But nothing
25327 should be actually referencing those DIEs, as variable DIEs with that
25328 type would be emitted already in the abstract origin, so it was always
25329 removed during unused type prunning. Don't add anything in this
25330 case. */
25331 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
25332 break;
25334 if (is_redundant_typedef (decl))
25335 gen_type_die (TREE_TYPE (decl), context_die);
25336 else
25337 /* Output a DIE to represent the typedef itself. */
25338 gen_typedef_die (decl, context_die);
25339 break;
25341 case LABEL_DECL:
25342 if (debug_info_level >= DINFO_LEVEL_NORMAL)
25343 gen_label_die (decl, context_die);
25344 break;
25346 case VAR_DECL:
25347 case RESULT_DECL:
25348 /* If we are in terse mode, don't generate any DIEs to represent any
25349 variable declarations or definitions. */
25350 if (debug_info_level <= DINFO_LEVEL_TERSE)
25351 break;
25353 /* Avoid generating stray type DIEs during late dwarf dumping.
25354 All types have been dumped early. */
25355 if (early_dwarf
25356 /* ??? But in LTRANS we cannot annotate early created variably
25357 modified type DIEs without copying them and adjusting all
25358 references to them. Dump them again as happens for inlining
25359 which copies both the decl and the types. */
25360 /* ??? And even non-LTO needs to re-visit type DIEs to fill
25361 in VLA bound information for example. */
25362 || (decl && variably_modified_type_p (TREE_TYPE (decl),
25363 current_function_decl)))
25365 /* Output any DIEs that are needed to specify the type of this data
25366 object. */
25367 if (decl_by_reference_p (decl_or_origin))
25368 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
25369 else
25370 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
25373 if (early_dwarf)
25375 /* And its containing type. */
25376 class_origin = decl_class_context (decl_or_origin);
25377 if (class_origin != NULL_TREE)
25378 gen_type_die_for_member (class_origin, decl_or_origin, context_die);
25380 /* And its containing namespace. */
25381 context_die = declare_in_namespace (decl_or_origin, context_die);
25384 /* Now output the DIE to represent the data object itself. This gets
25385 complicated because of the possibility that the VAR_DECL really
25386 represents an inlined instance of a formal parameter for an inline
25387 function. */
25388 ultimate_origin = decl_ultimate_origin (decl_or_origin);
25389 if (ultimate_origin != NULL_TREE
25390 && TREE_CODE (ultimate_origin) == PARM_DECL)
25391 gen_formal_parameter_die (decl, origin,
25392 true /* Emit name attribute. */,
25393 context_die);
25394 else
25395 gen_variable_die (decl, origin, context_die);
25396 break;
25398 case FIELD_DECL:
25399 gcc_assert (ctx != NULL && ctx->struct_type != NULL);
25400 /* Ignore the nameless fields that are used to skip bits but handle C++
25401 anonymous unions and structs. */
25402 if (DECL_NAME (decl) != NULL_TREE
25403 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
25404 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
25406 gen_type_die (member_declared_type (decl), context_die);
25407 gen_field_die (decl, ctx, context_die);
25409 break;
25411 case PARM_DECL:
25412 /* Avoid generating stray type DIEs during late dwarf dumping.
25413 All types have been dumped early. */
25414 if (early_dwarf
25415 /* ??? But in LTRANS we cannot annotate early created variably
25416 modified type DIEs without copying them and adjusting all
25417 references to them. Dump them again as happens for inlining
25418 which copies both the decl and the types. */
25419 /* ??? And even non-LTO needs to re-visit type DIEs to fill
25420 in VLA bound information for example. */
25421 || (decl && variably_modified_type_p (TREE_TYPE (decl),
25422 current_function_decl)))
25424 if (DECL_BY_REFERENCE (decl_or_origin))
25425 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
25426 else
25427 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
25429 return gen_formal_parameter_die (decl, origin,
25430 true /* Emit name attribute. */,
25431 context_die);
25433 case NAMESPACE_DECL:
25434 if (dwarf_version >= 3 || !dwarf_strict)
25435 gen_namespace_die (decl, context_die);
25436 break;
25438 case IMPORTED_DECL:
25439 dwarf2out_imported_module_or_decl_1 (decl, DECL_NAME (decl),
25440 DECL_CONTEXT (decl), context_die);
25441 break;
25443 case NAMELIST_DECL:
25444 gen_namelist_decl (DECL_NAME (decl), context_die,
25445 NAMELIST_DECL_ASSOCIATED_DECL (decl));
25446 break;
25448 default:
25449 /* Probably some frontend-internal decl. Assume we don't care. */
25450 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
25451 break;
25454 return NULL;
25457 /* Output initial debug information for global DECL. Called at the
25458 end of the parsing process.
25460 This is the initial debug generation process. As such, the DIEs
25461 generated may be incomplete. A later debug generation pass
25462 (dwarf2out_late_global_decl) will augment the information generated
25463 in this pass (e.g., with complete location info). */
25465 static void
25466 dwarf2out_early_global_decl (tree decl)
25468 set_early_dwarf s;
25470 /* gen_decl_die() will set DECL_ABSTRACT because
25471 cgraph_function_possibly_inlined_p() returns true. This is in
25472 turn will cause DW_AT_inline attributes to be set.
25474 This happens because at early dwarf generation, there is no
25475 cgraph information, causing cgraph_function_possibly_inlined_p()
25476 to return true. Trick cgraph_function_possibly_inlined_p()
25477 while we generate dwarf early. */
25478 bool save = symtab->global_info_ready;
25479 symtab->global_info_ready = true;
25481 /* We don't handle TYPE_DECLs. If required, they'll be reached via
25482 other DECLs and they can point to template types or other things
25483 that dwarf2out can't handle when done via dwarf2out_decl. */
25484 if (TREE_CODE (decl) != TYPE_DECL
25485 && TREE_CODE (decl) != PARM_DECL)
25487 tree save_fndecl = current_function_decl;
25488 if (TREE_CODE (decl) == FUNCTION_DECL)
25490 /* For nested functions, make sure we have DIEs for the parents first
25491 so that all nested DIEs are generated at the proper scope in the
25492 first shot. */
25493 tree context = decl_function_context (decl);
25494 if (context != NULL && lookup_decl_die (context) == NULL)
25496 current_function_decl = context;
25497 dwarf2out_decl (context);
25500 /* Emit an abstract origin of a function first. This happens
25501 with C++ constructor clones for example and makes
25502 dwarf2out_abstract_function happy which requires the early
25503 DIE of the abstract instance to be present. */
25504 tree origin = DECL_ABSTRACT_ORIGIN (decl);
25505 dw_die_ref origin_die;
25506 if (origin != NULL
25507 /* Do not emit the DIE multiple times but make sure to
25508 process it fully here in case we just saw a declaration. */
25509 && ((origin_die = lookup_decl_die (origin)) == NULL
25510 || is_declaration_die (origin_die)))
25512 current_function_decl = origin;
25513 dwarf2out_decl (origin);
25516 current_function_decl = decl;
25518 dwarf2out_decl (decl);
25519 if (TREE_CODE (decl) == FUNCTION_DECL)
25520 current_function_decl = save_fndecl;
25522 symtab->global_info_ready = save;
25525 /* Output debug information for global decl DECL. Called from
25526 toplev.c after compilation proper has finished. */
25528 static void
25529 dwarf2out_late_global_decl (tree decl)
25531 /* Fill-in any location information we were unable to determine
25532 on the first pass. */
25533 if (VAR_P (decl) && !POINTER_BOUNDS_P (decl))
25535 dw_die_ref die = lookup_decl_die (decl);
25537 /* We may have to generate early debug late for LTO in case debug
25538 was not enabled at compile-time or the target doesn't support
25539 the LTO early debug scheme. */
25540 if (! die && in_lto_p)
25542 dwarf2out_decl (decl);
25543 die = lookup_decl_die (decl);
25546 if (die)
25548 /* We get called via the symtab code invoking late_global_decl
25549 for symbols that are optimized out. Do not add locations
25550 for those, except if they have a DECL_VALUE_EXPR, in which case
25551 they are relevant for debuggers. */
25552 varpool_node *node = varpool_node::get (decl);
25553 if ((! node || ! node->definition) && ! DECL_HAS_VALUE_EXPR_P (decl))
25554 tree_add_const_value_attribute_for_decl (die, decl);
25555 else
25556 add_location_or_const_value_attribute (die, decl, false);
25561 /* Output debug information for type decl DECL. Called from toplev.c
25562 and from language front ends (to record built-in types). */
25563 static void
25564 dwarf2out_type_decl (tree decl, int local)
25566 if (!local)
25568 set_early_dwarf s;
25569 dwarf2out_decl (decl);
25573 /* Output debug information for imported module or decl DECL.
25574 NAME is non-NULL name in the lexical block if the decl has been renamed.
25575 LEXICAL_BLOCK is the lexical block (which TREE_CODE is a BLOCK)
25576 that DECL belongs to.
25577 LEXICAL_BLOCK_DIE is the DIE of LEXICAL_BLOCK. */
25578 static void
25579 dwarf2out_imported_module_or_decl_1 (tree decl,
25580 tree name,
25581 tree lexical_block,
25582 dw_die_ref lexical_block_die)
25584 expanded_location xloc;
25585 dw_die_ref imported_die = NULL;
25586 dw_die_ref at_import_die;
25588 if (TREE_CODE (decl) == IMPORTED_DECL)
25590 xloc = expand_location (DECL_SOURCE_LOCATION (decl));
25591 decl = IMPORTED_DECL_ASSOCIATED_DECL (decl);
25592 gcc_assert (decl);
25594 else
25595 xloc = expand_location (input_location);
25597 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
25599 at_import_die = force_type_die (TREE_TYPE (decl));
25600 /* For namespace N { typedef void T; } using N::T; base_type_die
25601 returns NULL, but DW_TAG_imported_declaration requires
25602 the DW_AT_import tag. Force creation of DW_TAG_typedef. */
25603 if (!at_import_die)
25605 gcc_assert (TREE_CODE (decl) == TYPE_DECL);
25606 gen_typedef_die (decl, get_context_die (DECL_CONTEXT (decl)));
25607 at_import_die = lookup_type_die (TREE_TYPE (decl));
25608 gcc_assert (at_import_die);
25611 else
25613 at_import_die = lookup_decl_die (decl);
25614 if (!at_import_die)
25616 /* If we're trying to avoid duplicate debug info, we may not have
25617 emitted the member decl for this field. Emit it now. */
25618 if (TREE_CODE (decl) == FIELD_DECL)
25620 tree type = DECL_CONTEXT (decl);
25622 if (TYPE_CONTEXT (type)
25623 && TYPE_P (TYPE_CONTEXT (type))
25624 && !should_emit_struct_debug (TYPE_CONTEXT (type),
25625 DINFO_USAGE_DIR_USE))
25626 return;
25627 gen_type_die_for_member (type, decl,
25628 get_context_die (TYPE_CONTEXT (type)));
25630 if (TREE_CODE (decl) == NAMELIST_DECL)
25631 at_import_die = gen_namelist_decl (DECL_NAME (decl),
25632 get_context_die (DECL_CONTEXT (decl)),
25633 NULL_TREE);
25634 else
25635 at_import_die = force_decl_die (decl);
25639 if (TREE_CODE (decl) == NAMESPACE_DECL)
25641 if (dwarf_version >= 3 || !dwarf_strict)
25642 imported_die = new_die (DW_TAG_imported_module,
25643 lexical_block_die,
25644 lexical_block);
25645 else
25646 return;
25648 else
25649 imported_die = new_die (DW_TAG_imported_declaration,
25650 lexical_block_die,
25651 lexical_block);
25653 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
25654 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
25655 if (debug_column_info && xloc.column)
25656 add_AT_unsigned (imported_die, DW_AT_decl_column, xloc.column);
25657 if (name)
25658 add_AT_string (imported_die, DW_AT_name,
25659 IDENTIFIER_POINTER (name));
25660 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
25663 /* Output debug information for imported module or decl DECL.
25664 NAME is non-NULL name in context if the decl has been renamed.
25665 CHILD is true if decl is one of the renamed decls as part of
25666 importing whole module.
25667 IMPLICIT is set if this hook is called for an implicit import
25668 such as inline namespace. */
25670 static void
25671 dwarf2out_imported_module_or_decl (tree decl, tree name, tree context,
25672 bool child, bool implicit)
25674 /* dw_die_ref at_import_die; */
25675 dw_die_ref scope_die;
25677 if (debug_info_level <= DINFO_LEVEL_TERSE)
25678 return;
25680 gcc_assert (decl);
25682 /* For DWARF5, just DW_AT_export_symbols on the DW_TAG_namespace
25683 should be enough, for DWARF4 and older even if we emit as extension
25684 DW_AT_export_symbols add the implicit DW_TAG_imported_module anyway
25685 for the benefit of consumers unaware of DW_AT_export_symbols. */
25686 if (implicit
25687 && dwarf_version >= 5
25688 && lang_hooks.decls.decl_dwarf_attribute (decl,
25689 DW_AT_export_symbols) == 1)
25690 return;
25692 set_early_dwarf s;
25694 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
25695 We need decl DIE for reference and scope die. First, get DIE for the decl
25696 itself. */
25698 /* Get the scope die for decl context. Use comp_unit_die for global module
25699 or decl. If die is not found for non globals, force new die. */
25700 if (context
25701 && TYPE_P (context)
25702 && !should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
25703 return;
25705 scope_die = get_context_die (context);
25707 if (child)
25709 /* DW_TAG_imported_module was introduced in the DWARFv3 specification, so
25710 there is nothing we can do, here. */
25711 if (dwarf_version < 3 && dwarf_strict)
25712 return;
25714 gcc_assert (scope_die->die_child);
25715 gcc_assert (scope_die->die_child->die_tag == DW_TAG_imported_module);
25716 gcc_assert (TREE_CODE (decl) != NAMESPACE_DECL);
25717 scope_die = scope_die->die_child;
25720 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
25721 dwarf2out_imported_module_or_decl_1 (decl, name, context, scope_die);
25724 /* Output debug information for namelists. */
25726 static dw_die_ref
25727 gen_namelist_decl (tree name, dw_die_ref scope_die, tree item_decls)
25729 dw_die_ref nml_die, nml_item_die, nml_item_ref_die;
25730 tree value;
25731 unsigned i;
25733 if (debug_info_level <= DINFO_LEVEL_TERSE)
25734 return NULL;
25736 gcc_assert (scope_die != NULL);
25737 nml_die = new_die (DW_TAG_namelist, scope_die, NULL);
25738 add_AT_string (nml_die, DW_AT_name, IDENTIFIER_POINTER (name));
25740 /* If there are no item_decls, we have a nondefining namelist, e.g.
25741 with USE association; hence, set DW_AT_declaration. */
25742 if (item_decls == NULL_TREE)
25744 add_AT_flag (nml_die, DW_AT_declaration, 1);
25745 return nml_die;
25748 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (item_decls), i, value)
25750 nml_item_ref_die = lookup_decl_die (value);
25751 if (!nml_item_ref_die)
25752 nml_item_ref_die = force_decl_die (value);
25754 nml_item_die = new_die (DW_TAG_namelist_item, nml_die, NULL);
25755 add_AT_die_ref (nml_item_die, DW_AT_namelist_items, nml_item_ref_die);
25757 return nml_die;
25761 /* Write the debugging output for DECL and return the DIE. */
25763 static void
25764 dwarf2out_decl (tree decl)
25766 dw_die_ref context_die = comp_unit_die ();
25768 switch (TREE_CODE (decl))
25770 case ERROR_MARK:
25771 return;
25773 case FUNCTION_DECL:
25774 /* If we're a nested function, initially use a parent of NULL; if we're
25775 a plain function, this will be fixed up in decls_for_scope. If
25776 we're a method, it will be ignored, since we already have a DIE. */
25777 if (decl_function_context (decl)
25778 /* But if we're in terse mode, we don't care about scope. */
25779 && debug_info_level > DINFO_LEVEL_TERSE)
25780 context_die = NULL;
25781 break;
25783 case VAR_DECL:
25784 /* For local statics lookup proper context die. */
25785 if (local_function_static (decl))
25786 context_die = lookup_decl_die (DECL_CONTEXT (decl));
25788 /* If we are in terse mode, don't generate any DIEs to represent any
25789 variable declarations or definitions. */
25790 if (debug_info_level <= DINFO_LEVEL_TERSE)
25791 return;
25792 break;
25794 case CONST_DECL:
25795 if (debug_info_level <= DINFO_LEVEL_TERSE)
25796 return;
25797 if (!is_fortran () && !is_ada ())
25798 return;
25799 if (TREE_STATIC (decl) && decl_function_context (decl))
25800 context_die = lookup_decl_die (DECL_CONTEXT (decl));
25801 break;
25803 case NAMESPACE_DECL:
25804 case IMPORTED_DECL:
25805 if (debug_info_level <= DINFO_LEVEL_TERSE)
25806 return;
25807 if (lookup_decl_die (decl) != NULL)
25808 return;
25809 break;
25811 case TYPE_DECL:
25812 /* Don't emit stubs for types unless they are needed by other DIEs. */
25813 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
25814 return;
25816 /* Don't bother trying to generate any DIEs to represent any of the
25817 normal built-in types for the language we are compiling. */
25818 if (DECL_IS_BUILTIN (decl))
25819 return;
25821 /* If we are in terse mode, don't generate any DIEs for types. */
25822 if (debug_info_level <= DINFO_LEVEL_TERSE)
25823 return;
25825 /* If we're a function-scope tag, initially use a parent of NULL;
25826 this will be fixed up in decls_for_scope. */
25827 if (decl_function_context (decl))
25828 context_die = NULL;
25830 break;
25832 case NAMELIST_DECL:
25833 break;
25835 default:
25836 return;
25839 gen_decl_die (decl, NULL, NULL, context_die);
25841 if (flag_checking)
25843 dw_die_ref die = lookup_decl_die (decl);
25844 if (die)
25845 check_die (die);
25849 /* Write the debugging output for DECL. */
25851 static void
25852 dwarf2out_function_decl (tree decl)
25854 dwarf2out_decl (decl);
25855 call_arg_locations = NULL;
25856 call_arg_loc_last = NULL;
25857 call_site_count = -1;
25858 tail_call_site_count = -1;
25859 decl_loc_table->empty ();
25860 cached_dw_loc_list_table->empty ();
25863 /* Output a marker (i.e. a label) for the beginning of the generated code for
25864 a lexical block. */
25866 static void
25867 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
25868 unsigned int blocknum)
25870 switch_to_section (current_function_section ());
25871 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
25874 /* Output a marker (i.e. a label) for the end of the generated code for a
25875 lexical block. */
25877 static void
25878 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
25880 switch_to_section (current_function_section ());
25881 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
25884 /* Returns nonzero if it is appropriate not to emit any debugging
25885 information for BLOCK, because it doesn't contain any instructions.
25887 Don't allow this for blocks with nested functions or local classes
25888 as we would end up with orphans, and in the presence of scheduling
25889 we may end up calling them anyway. */
25891 static bool
25892 dwarf2out_ignore_block (const_tree block)
25894 tree decl;
25895 unsigned int i;
25897 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
25898 if (TREE_CODE (decl) == FUNCTION_DECL
25899 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
25900 return 0;
25901 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (block); i++)
25903 decl = BLOCK_NONLOCALIZED_VAR (block, i);
25904 if (TREE_CODE (decl) == FUNCTION_DECL
25905 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
25906 return 0;
25909 return 1;
25912 /* Hash table routines for file_hash. */
25914 bool
25915 dwarf_file_hasher::equal (dwarf_file_data *p1, const char *p2)
25917 return filename_cmp (p1->filename, p2) == 0;
25920 hashval_t
25921 dwarf_file_hasher::hash (dwarf_file_data *p)
25923 return htab_hash_string (p->filename);
25926 /* Lookup FILE_NAME (in the list of filenames that we know about here in
25927 dwarf2out.c) and return its "index". The index of each (known) filename is
25928 just a unique number which is associated with only that one filename. We
25929 need such numbers for the sake of generating labels (in the .debug_sfnames
25930 section) and references to those files numbers (in the .debug_srcinfo
25931 and .debug_macinfo sections). If the filename given as an argument is not
25932 found in our current list, add it to the list and assign it the next
25933 available unique index number. */
25935 static struct dwarf_file_data *
25936 lookup_filename (const char *file_name)
25938 struct dwarf_file_data * created;
25940 if (!file_name)
25941 return NULL;
25943 dwarf_file_data **slot
25944 = file_table->find_slot_with_hash (file_name, htab_hash_string (file_name),
25945 INSERT);
25946 if (*slot)
25947 return *slot;
25949 created = ggc_alloc<dwarf_file_data> ();
25950 created->filename = file_name;
25951 created->emitted_number = 0;
25952 *slot = created;
25953 return created;
25956 /* If the assembler will construct the file table, then translate the compiler
25957 internal file table number into the assembler file table number, and emit
25958 a .file directive if we haven't already emitted one yet. The file table
25959 numbers are different because we prune debug info for unused variables and
25960 types, which may include filenames. */
25962 static int
25963 maybe_emit_file (struct dwarf_file_data * fd)
25965 if (! fd->emitted_number)
25967 if (last_emitted_file)
25968 fd->emitted_number = last_emitted_file->emitted_number + 1;
25969 else
25970 fd->emitted_number = 1;
25971 last_emitted_file = fd;
25973 if (DWARF2_ASM_LINE_DEBUG_INFO)
25975 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
25976 output_quoted_string (asm_out_file,
25977 remap_debug_filename (fd->filename));
25978 fputc ('\n', asm_out_file);
25982 return fd->emitted_number;
25985 /* Schedule generation of a DW_AT_const_value attribute to DIE.
25986 That generation should happen after function debug info has been
25987 generated. The value of the attribute is the constant value of ARG. */
25989 static void
25990 append_entry_to_tmpl_value_parm_die_table (dw_die_ref die, tree arg)
25992 die_arg_entry entry;
25994 if (!die || !arg)
25995 return;
25997 gcc_assert (early_dwarf);
25999 if (!tmpl_value_parm_die_table)
26000 vec_alloc (tmpl_value_parm_die_table, 32);
26002 entry.die = die;
26003 entry.arg = arg;
26004 vec_safe_push (tmpl_value_parm_die_table, entry);
26007 /* Return TRUE if T is an instance of generic type, FALSE
26008 otherwise. */
26010 static bool
26011 generic_type_p (tree t)
26013 if (t == NULL_TREE || !TYPE_P (t))
26014 return false;
26015 return lang_hooks.get_innermost_generic_parms (t) != NULL_TREE;
26018 /* Schedule the generation of the generic parameter dies for the
26019 instance of generic type T. The proper generation itself is later
26020 done by gen_scheduled_generic_parms_dies. */
26022 static void
26023 schedule_generic_params_dies_gen (tree t)
26025 if (!generic_type_p (t))
26026 return;
26028 gcc_assert (early_dwarf);
26030 if (!generic_type_instances)
26031 vec_alloc (generic_type_instances, 256);
26033 vec_safe_push (generic_type_instances, t);
26036 /* Add a DW_AT_const_value attribute to DIEs that were scheduled
26037 by append_entry_to_tmpl_value_parm_die_table. This function must
26038 be called after function DIEs have been generated. */
26040 static void
26041 gen_remaining_tmpl_value_param_die_attribute (void)
26043 if (tmpl_value_parm_die_table)
26045 unsigned i, j;
26046 die_arg_entry *e;
26048 /* We do this in two phases - first get the cases we can
26049 handle during early-finish, preserving those we cannot
26050 (containing symbolic constants where we don't yet know
26051 whether we are going to output the referenced symbols).
26052 For those we try again at late-finish. */
26053 j = 0;
26054 FOR_EACH_VEC_ELT (*tmpl_value_parm_die_table, i, e)
26056 if (!e->die->removed
26057 && !tree_add_const_value_attribute (e->die, e->arg))
26059 dw_loc_descr_ref loc = NULL;
26060 if (! early_dwarf
26061 && (dwarf_version >= 5 || !dwarf_strict))
26062 loc = loc_descriptor_from_tree (e->arg, 2, NULL);
26063 if (loc)
26064 add_AT_loc (e->die, DW_AT_location, loc);
26065 else
26066 (*tmpl_value_parm_die_table)[j++] = *e;
26069 tmpl_value_parm_die_table->truncate (j);
26073 /* Generate generic parameters DIEs for instances of generic types
26074 that have been previously scheduled by
26075 schedule_generic_params_dies_gen. This function must be called
26076 after all the types of the CU have been laid out. */
26078 static void
26079 gen_scheduled_generic_parms_dies (void)
26081 unsigned i;
26082 tree t;
26084 if (!generic_type_instances)
26085 return;
26087 FOR_EACH_VEC_ELT (*generic_type_instances, i, t)
26088 if (COMPLETE_TYPE_P (t))
26089 gen_generic_params_dies (t);
26091 generic_type_instances = NULL;
26095 /* Replace DW_AT_name for the decl with name. */
26097 static void
26098 dwarf2out_set_name (tree decl, tree name)
26100 dw_die_ref die;
26101 dw_attr_node *attr;
26102 const char *dname;
26104 die = TYPE_SYMTAB_DIE (decl);
26105 if (!die)
26106 return;
26108 dname = dwarf2_name (name, 0);
26109 if (!dname)
26110 return;
26112 attr = get_AT (die, DW_AT_name);
26113 if (attr)
26115 struct indirect_string_node *node;
26117 node = find_AT_string (dname);
26118 /* replace the string. */
26119 attr->dw_attr_val.v.val_str = node;
26122 else
26123 add_name_attribute (die, dname);
26126 /* True if before or during processing of the first function being emitted. */
26127 static bool in_first_function_p = true;
26128 /* True if loc_note during dwarf2out_var_location call might still be
26129 before first real instruction at address equal to .Ltext0. */
26130 static bool maybe_at_text_label_p = true;
26131 /* One above highest N where .LVLN label might be equal to .Ltext0 label. */
26132 static unsigned int first_loclabel_num_not_at_text_label;
26134 /* Called by the final INSN scan whenever we see a var location. We
26135 use it to drop labels in the right places, and throw the location in
26136 our lookup table. */
26138 static void
26139 dwarf2out_var_location (rtx_insn *loc_note)
26141 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES + 2];
26142 struct var_loc_node *newloc;
26143 rtx_insn *next_real, *next_note;
26144 rtx_insn *call_insn = NULL;
26145 static const char *last_label;
26146 static const char *last_postcall_label;
26147 static bool last_in_cold_section_p;
26148 static rtx_insn *expected_next_loc_note;
26149 tree decl;
26150 bool var_loc_p;
26152 if (!NOTE_P (loc_note))
26154 if (CALL_P (loc_note))
26156 call_site_count++;
26157 if (SIBLING_CALL_P (loc_note))
26158 tail_call_site_count++;
26159 if (optimize == 0 && !flag_var_tracking)
26161 /* When the var-tracking pass is not running, there is no note
26162 for indirect calls whose target is compile-time known. In this
26163 case, process such calls specifically so that we generate call
26164 sites for them anyway. */
26165 rtx x = PATTERN (loc_note);
26166 if (GET_CODE (x) == PARALLEL)
26167 x = XVECEXP (x, 0, 0);
26168 if (GET_CODE (x) == SET)
26169 x = SET_SRC (x);
26170 if (GET_CODE (x) == CALL)
26171 x = XEXP (x, 0);
26172 if (!MEM_P (x)
26173 || GET_CODE (XEXP (x, 0)) != SYMBOL_REF
26174 || !SYMBOL_REF_DECL (XEXP (x, 0))
26175 || (TREE_CODE (SYMBOL_REF_DECL (XEXP (x, 0)))
26176 != FUNCTION_DECL))
26178 call_insn = loc_note;
26179 loc_note = NULL;
26180 var_loc_p = false;
26182 next_real = next_real_insn (call_insn);
26183 next_note = NULL;
26184 cached_next_real_insn = NULL;
26185 goto create_label;
26189 return;
26192 var_loc_p = NOTE_KIND (loc_note) == NOTE_INSN_VAR_LOCATION;
26193 if (var_loc_p && !DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
26194 return;
26196 /* Optimize processing a large consecutive sequence of location
26197 notes so we don't spend too much time in next_real_insn. If the
26198 next insn is another location note, remember the next_real_insn
26199 calculation for next time. */
26200 next_real = cached_next_real_insn;
26201 if (next_real)
26203 if (expected_next_loc_note != loc_note)
26204 next_real = NULL;
26207 next_note = NEXT_INSN (loc_note);
26208 if (! next_note
26209 || next_note->deleted ()
26210 || ! NOTE_P (next_note)
26211 || (NOTE_KIND (next_note) != NOTE_INSN_VAR_LOCATION
26212 && NOTE_KIND (next_note) != NOTE_INSN_CALL_ARG_LOCATION))
26213 next_note = NULL;
26215 if (! next_real)
26216 next_real = next_real_insn (loc_note);
26218 if (next_note)
26220 expected_next_loc_note = next_note;
26221 cached_next_real_insn = next_real;
26223 else
26224 cached_next_real_insn = NULL;
26226 /* If there are no instructions which would be affected by this note,
26227 don't do anything. */
26228 if (var_loc_p
26229 && next_real == NULL_RTX
26230 && !NOTE_DURING_CALL_P (loc_note))
26231 return;
26233 create_label:
26235 if (next_real == NULL_RTX)
26236 next_real = get_last_insn ();
26238 /* If there were any real insns between note we processed last time
26239 and this note (or if it is the first note), clear
26240 last_{,postcall_}label so that they are not reused this time. */
26241 if (last_var_location_insn == NULL_RTX
26242 || last_var_location_insn != next_real
26243 || last_in_cold_section_p != in_cold_section_p)
26245 last_label = NULL;
26246 last_postcall_label = NULL;
26249 if (var_loc_p)
26251 decl = NOTE_VAR_LOCATION_DECL (loc_note);
26252 newloc = add_var_loc_to_decl (decl, loc_note,
26253 NOTE_DURING_CALL_P (loc_note)
26254 ? last_postcall_label : last_label);
26255 if (newloc == NULL)
26256 return;
26258 else
26260 decl = NULL_TREE;
26261 newloc = NULL;
26264 /* If there were no real insns between note we processed last time
26265 and this note, use the label we emitted last time. Otherwise
26266 create a new label and emit it. */
26267 if (last_label == NULL)
26269 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
26270 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
26271 loclabel_num++;
26272 last_label = ggc_strdup (loclabel);
26273 /* See if loclabel might be equal to .Ltext0. If yes,
26274 bump first_loclabel_num_not_at_text_label. */
26275 if (!have_multiple_function_sections
26276 && in_first_function_p
26277 && maybe_at_text_label_p)
26279 static rtx_insn *last_start;
26280 rtx_insn *insn;
26281 for (insn = loc_note; insn; insn = previous_insn (insn))
26282 if (insn == last_start)
26283 break;
26284 else if (!NONDEBUG_INSN_P (insn))
26285 continue;
26286 else
26288 rtx body = PATTERN (insn);
26289 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
26290 continue;
26291 /* Inline asm could occupy zero bytes. */
26292 else if (GET_CODE (body) == ASM_INPUT
26293 || asm_noperands (body) >= 0)
26294 continue;
26295 #ifdef HAVE_attr_length
26296 else if (get_attr_min_length (insn) == 0)
26297 continue;
26298 #endif
26299 else
26301 /* Assume insn has non-zero length. */
26302 maybe_at_text_label_p = false;
26303 break;
26306 if (maybe_at_text_label_p)
26308 last_start = loc_note;
26309 first_loclabel_num_not_at_text_label = loclabel_num;
26314 gcc_assert ((loc_note == NULL_RTX && call_insn != NULL_RTX)
26315 || (loc_note != NULL_RTX && call_insn == NULL_RTX));
26317 if (!var_loc_p)
26319 struct call_arg_loc_node *ca_loc
26320 = ggc_cleared_alloc<call_arg_loc_node> ();
26321 rtx_insn *prev
26322 = loc_note != NULL_RTX ? prev_real_insn (loc_note) : call_insn;
26324 ca_loc->call_arg_loc_note = loc_note;
26325 ca_loc->next = NULL;
26326 ca_loc->label = last_label;
26327 gcc_assert (prev
26328 && (CALL_P (prev)
26329 || (NONJUMP_INSN_P (prev)
26330 && GET_CODE (PATTERN (prev)) == SEQUENCE
26331 && CALL_P (XVECEXP (PATTERN (prev), 0, 0)))));
26332 if (!CALL_P (prev))
26333 prev = as_a <rtx_sequence *> (PATTERN (prev))->insn (0);
26334 ca_loc->tail_call_p = SIBLING_CALL_P (prev);
26336 /* Look for a SYMBOL_REF in the "prev" instruction. */
26337 rtx x = get_call_rtx_from (PATTERN (prev));
26338 if (x)
26340 /* Try to get the call symbol, if any. */
26341 if (MEM_P (XEXP (x, 0)))
26342 x = XEXP (x, 0);
26343 /* First, look for a memory access to a symbol_ref. */
26344 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
26345 && SYMBOL_REF_DECL (XEXP (x, 0))
26346 && TREE_CODE (SYMBOL_REF_DECL (XEXP (x, 0))) == FUNCTION_DECL)
26347 ca_loc->symbol_ref = XEXP (x, 0);
26348 /* Otherwise, look at a compile-time known user-level function
26349 declaration. */
26350 else if (MEM_P (x)
26351 && MEM_EXPR (x)
26352 && TREE_CODE (MEM_EXPR (x)) == FUNCTION_DECL)
26353 ca_loc->symbol_ref = XEXP (DECL_RTL (MEM_EXPR (x)), 0);
26356 ca_loc->block = insn_scope (prev);
26357 if (call_arg_locations)
26358 call_arg_loc_last->next = ca_loc;
26359 else
26360 call_arg_locations = ca_loc;
26361 call_arg_loc_last = ca_loc;
26363 else if (loc_note != NULL_RTX && !NOTE_DURING_CALL_P (loc_note))
26364 newloc->label = last_label;
26365 else
26367 if (!last_postcall_label)
26369 sprintf (loclabel, "%s-1", last_label);
26370 last_postcall_label = ggc_strdup (loclabel);
26372 newloc->label = last_postcall_label;
26375 last_var_location_insn = next_real;
26376 last_in_cold_section_p = in_cold_section_p;
26379 /* Called from finalize_size_functions for size functions so that their body
26380 can be encoded in the debug info to describe the layout of variable-length
26381 structures. */
26383 static void
26384 dwarf2out_size_function (tree decl)
26386 function_to_dwarf_procedure (decl);
26389 /* Note in one location list that text section has changed. */
26392 var_location_switch_text_section_1 (var_loc_list **slot, void *)
26394 var_loc_list *list = *slot;
26395 if (list->first)
26396 list->last_before_switch
26397 = list->last->next ? list->last->next : list->last;
26398 return 1;
26401 /* Note in all location lists that text section has changed. */
26403 static void
26404 var_location_switch_text_section (void)
26406 if (decl_loc_table == NULL)
26407 return;
26409 decl_loc_table->traverse<void *, var_location_switch_text_section_1> (NULL);
26412 /* Create a new line number table. */
26414 static dw_line_info_table *
26415 new_line_info_table (void)
26417 dw_line_info_table *table;
26419 table = ggc_cleared_alloc<dw_line_info_table> ();
26420 table->file_num = 1;
26421 table->line_num = 1;
26422 table->is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
26424 return table;
26427 /* Lookup the "current" table into which we emit line info, so
26428 that we don't have to do it for every source line. */
26430 static void
26431 set_cur_line_info_table (section *sec)
26433 dw_line_info_table *table;
26435 if (sec == text_section)
26436 table = text_section_line_info;
26437 else if (sec == cold_text_section)
26439 table = cold_text_section_line_info;
26440 if (!table)
26442 cold_text_section_line_info = table = new_line_info_table ();
26443 table->end_label = cold_end_label;
26446 else
26448 const char *end_label;
26450 if (crtl->has_bb_partition)
26452 if (in_cold_section_p)
26453 end_label = crtl->subsections.cold_section_end_label;
26454 else
26455 end_label = crtl->subsections.hot_section_end_label;
26457 else
26459 char label[MAX_ARTIFICIAL_LABEL_BYTES];
26460 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
26461 current_function_funcdef_no);
26462 end_label = ggc_strdup (label);
26465 table = new_line_info_table ();
26466 table->end_label = end_label;
26468 vec_safe_push (separate_line_info, table);
26471 if (DWARF2_ASM_LINE_DEBUG_INFO)
26472 table->is_stmt = (cur_line_info_table
26473 ? cur_line_info_table->is_stmt
26474 : DWARF_LINE_DEFAULT_IS_STMT_START);
26475 cur_line_info_table = table;
26479 /* We need to reset the locations at the beginning of each
26480 function. We can't do this in the end_function hook, because the
26481 declarations that use the locations won't have been output when
26482 that hook is called. Also compute have_multiple_function_sections here. */
26484 static void
26485 dwarf2out_begin_function (tree fun)
26487 section *sec = function_section (fun);
26489 if (sec != text_section)
26490 have_multiple_function_sections = true;
26492 if (crtl->has_bb_partition && !cold_text_section)
26494 gcc_assert (current_function_decl == fun);
26495 cold_text_section = unlikely_text_section ();
26496 switch_to_section (cold_text_section);
26497 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
26498 switch_to_section (sec);
26501 dwarf2out_note_section_used ();
26502 call_site_count = 0;
26503 tail_call_site_count = 0;
26505 set_cur_line_info_table (sec);
26508 /* Helper function of dwarf2out_end_function, called only after emitting
26509 the very first function into assembly. Check if some .debug_loc range
26510 might end with a .LVL* label that could be equal to .Ltext0.
26511 In that case we must force using absolute addresses in .debug_loc ranges,
26512 because this range could be .LVLN-.Ltext0 .. .LVLM-.Ltext0 for
26513 .LVLN == .LVLM == .Ltext0, thus 0 .. 0, which is a .debug_loc
26514 list terminator.
26515 Set have_multiple_function_sections to true in that case and
26516 terminate htab traversal. */
26519 find_empty_loc_ranges_at_text_label (var_loc_list **slot, int)
26521 var_loc_list *entry = *slot;
26522 struct var_loc_node *node;
26524 node = entry->first;
26525 if (node && node->next && node->next->label)
26527 unsigned int i;
26528 const char *label = node->next->label;
26529 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
26531 for (i = 0; i < first_loclabel_num_not_at_text_label; i++)
26533 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", i);
26534 if (strcmp (label, loclabel) == 0)
26536 have_multiple_function_sections = true;
26537 return 0;
26541 return 1;
26544 /* Hook called after emitting a function into assembly.
26545 This does something only for the very first function emitted. */
26547 static void
26548 dwarf2out_end_function (unsigned int)
26550 if (in_first_function_p
26551 && !have_multiple_function_sections
26552 && first_loclabel_num_not_at_text_label
26553 && decl_loc_table)
26554 decl_loc_table->traverse<int, find_empty_loc_ranges_at_text_label> (0);
26555 in_first_function_p = false;
26556 maybe_at_text_label_p = false;
26559 /* Temporary holder for dwarf2out_register_main_translation_unit. Used to let
26560 front-ends register a translation unit even before dwarf2out_init is
26561 called. */
26562 static tree main_translation_unit = NULL_TREE;
26564 /* Hook called by front-ends after they built their main translation unit.
26565 Associate comp_unit_die to UNIT. */
26567 static void
26568 dwarf2out_register_main_translation_unit (tree unit)
26570 gcc_assert (TREE_CODE (unit) == TRANSLATION_UNIT_DECL
26571 && main_translation_unit == NULL_TREE);
26572 main_translation_unit = unit;
26573 /* If dwarf2out_init has not been called yet, it will perform the association
26574 itself looking at main_translation_unit. */
26575 if (decl_die_table != NULL)
26576 equate_decl_number_to_die (unit, comp_unit_die ());
26579 /* Add OPCODE+VAL as an entry at the end of the opcode array in TABLE. */
26581 static void
26582 push_dw_line_info_entry (dw_line_info_table *table,
26583 enum dw_line_info_opcode opcode, unsigned int val)
26585 dw_line_info_entry e;
26586 e.opcode = opcode;
26587 e.val = val;
26588 vec_safe_push (table->entries, e);
26591 /* Output a label to mark the beginning of a source code line entry
26592 and record information relating to this source line, in
26593 'line_info_table' for later output of the .debug_line section. */
26594 /* ??? The discriminator parameter ought to be unsigned. */
26596 static void
26597 dwarf2out_source_line (unsigned int line, unsigned int column,
26598 const char *filename,
26599 int discriminator, bool is_stmt)
26601 unsigned int file_num;
26602 dw_line_info_table *table;
26604 if (debug_info_level < DINFO_LEVEL_TERSE || line == 0)
26605 return;
26607 /* The discriminator column was added in dwarf4. Simplify the below
26608 by simply removing it if we're not supposed to output it. */
26609 if (dwarf_version < 4 && dwarf_strict)
26610 discriminator = 0;
26612 if (!debug_column_info)
26613 column = 0;
26615 table = cur_line_info_table;
26616 file_num = maybe_emit_file (lookup_filename (filename));
26618 /* ??? TODO: Elide duplicate line number entries. Traditionally,
26619 the debugger has used the second (possibly duplicate) line number
26620 at the beginning of the function to mark the end of the prologue.
26621 We could eliminate any other duplicates within the function. For
26622 Dwarf3, we ought to include the DW_LNS_set_prologue_end mark in
26623 that second line number entry. */
26624 /* Recall that this end-of-prologue indication is *not* the same thing
26625 as the end_prologue debug hook. The NOTE_INSN_PROLOGUE_END note,
26626 to which the hook corresponds, follows the last insn that was
26627 emitted by gen_prologue. What we need is to precede the first insn
26628 that had been emitted after NOTE_INSN_FUNCTION_BEG, i.e. the first
26629 insn that corresponds to something the user wrote. These may be
26630 very different locations once scheduling is enabled. */
26632 if (0 && file_num == table->file_num
26633 && line == table->line_num
26634 && column == table->column_num
26635 && discriminator == table->discrim_num
26636 && is_stmt == table->is_stmt)
26637 return;
26639 switch_to_section (current_function_section ());
26641 /* If requested, emit something human-readable. */
26642 if (flag_debug_asm)
26644 if (debug_column_info)
26645 fprintf (asm_out_file, "\t%s %s:%d:%d\n", ASM_COMMENT_START,
26646 filename, line, column);
26647 else
26648 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
26649 filename, line);
26652 if (DWARF2_ASM_LINE_DEBUG_INFO)
26654 /* Emit the .loc directive understood by GNU as. */
26655 /* "\t.loc %u %u 0 is_stmt %u discriminator %u",
26656 file_num, line, is_stmt, discriminator */
26657 fputs ("\t.loc ", asm_out_file);
26658 fprint_ul (asm_out_file, file_num);
26659 putc (' ', asm_out_file);
26660 fprint_ul (asm_out_file, line);
26661 putc (' ', asm_out_file);
26662 if (debug_column_info)
26663 fprint_ul (asm_out_file, column);
26664 else
26665 putc ('0', asm_out_file);
26667 if (is_stmt != table->is_stmt)
26669 fputs (" is_stmt ", asm_out_file);
26670 putc (is_stmt ? '1' : '0', asm_out_file);
26672 if (SUPPORTS_DISCRIMINATOR && discriminator != 0)
26674 gcc_assert (discriminator > 0);
26675 fputs (" discriminator ", asm_out_file);
26676 fprint_ul (asm_out_file, (unsigned long) discriminator);
26678 putc ('\n', asm_out_file);
26680 else
26682 unsigned int label_num = ++line_info_label_num;
26684 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL, label_num);
26686 push_dw_line_info_entry (table, LI_set_address, label_num);
26687 if (file_num != table->file_num)
26688 push_dw_line_info_entry (table, LI_set_file, file_num);
26689 if (discriminator != table->discrim_num)
26690 push_dw_line_info_entry (table, LI_set_discriminator, discriminator);
26691 if (is_stmt != table->is_stmt)
26692 push_dw_line_info_entry (table, LI_negate_stmt, 0);
26693 push_dw_line_info_entry (table, LI_set_line, line);
26694 if (debug_column_info)
26695 push_dw_line_info_entry (table, LI_set_column, column);
26698 table->file_num = file_num;
26699 table->line_num = line;
26700 table->column_num = column;
26701 table->discrim_num = discriminator;
26702 table->is_stmt = is_stmt;
26703 table->in_use = true;
26706 /* Record the beginning of a new source file. */
26708 static void
26709 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
26711 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
26713 macinfo_entry e;
26714 e.code = DW_MACINFO_start_file;
26715 e.lineno = lineno;
26716 e.info = ggc_strdup (filename);
26717 vec_safe_push (macinfo_table, e);
26721 /* Record the end of a source file. */
26723 static void
26724 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
26726 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
26728 macinfo_entry e;
26729 e.code = DW_MACINFO_end_file;
26730 e.lineno = lineno;
26731 e.info = NULL;
26732 vec_safe_push (macinfo_table, e);
26736 /* Called from debug_define in toplev.c. The `buffer' parameter contains
26737 the tail part of the directive line, i.e. the part which is past the
26738 initial whitespace, #, whitespace, directive-name, whitespace part. */
26740 static void
26741 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
26742 const char *buffer ATTRIBUTE_UNUSED)
26744 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
26746 macinfo_entry e;
26747 /* Insert a dummy first entry to be able to optimize the whole
26748 predefined macro block using DW_MACRO_import. */
26749 if (macinfo_table->is_empty () && lineno <= 1)
26751 e.code = 0;
26752 e.lineno = 0;
26753 e.info = NULL;
26754 vec_safe_push (macinfo_table, e);
26756 e.code = DW_MACINFO_define;
26757 e.lineno = lineno;
26758 e.info = ggc_strdup (buffer);
26759 vec_safe_push (macinfo_table, e);
26763 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
26764 the tail part of the directive line, i.e. the part which is past the
26765 initial whitespace, #, whitespace, directive-name, whitespace part. */
26767 static void
26768 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
26769 const char *buffer ATTRIBUTE_UNUSED)
26771 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
26773 macinfo_entry e;
26774 /* Insert a dummy first entry to be able to optimize the whole
26775 predefined macro block using DW_MACRO_import. */
26776 if (macinfo_table->is_empty () && lineno <= 1)
26778 e.code = 0;
26779 e.lineno = 0;
26780 e.info = NULL;
26781 vec_safe_push (macinfo_table, e);
26783 e.code = DW_MACINFO_undef;
26784 e.lineno = lineno;
26785 e.info = ggc_strdup (buffer);
26786 vec_safe_push (macinfo_table, e);
26790 /* Helpers to manipulate hash table of CUs. */
26792 struct macinfo_entry_hasher : nofree_ptr_hash <macinfo_entry>
26794 static inline hashval_t hash (const macinfo_entry *);
26795 static inline bool equal (const macinfo_entry *, const macinfo_entry *);
26798 inline hashval_t
26799 macinfo_entry_hasher::hash (const macinfo_entry *entry)
26801 return htab_hash_string (entry->info);
26804 inline bool
26805 macinfo_entry_hasher::equal (const macinfo_entry *entry1,
26806 const macinfo_entry *entry2)
26808 return !strcmp (entry1->info, entry2->info);
26811 typedef hash_table<macinfo_entry_hasher> macinfo_hash_type;
26813 /* Output a single .debug_macinfo entry. */
26815 static void
26816 output_macinfo_op (macinfo_entry *ref)
26818 int file_num;
26819 size_t len;
26820 struct indirect_string_node *node;
26821 char label[MAX_ARTIFICIAL_LABEL_BYTES];
26822 struct dwarf_file_data *fd;
26824 switch (ref->code)
26826 case DW_MACINFO_start_file:
26827 fd = lookup_filename (ref->info);
26828 file_num = maybe_emit_file (fd);
26829 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
26830 dw2_asm_output_data_uleb128 (ref->lineno,
26831 "Included from line number %lu",
26832 (unsigned long) ref->lineno);
26833 dw2_asm_output_data_uleb128 (file_num, "file %s", ref->info);
26834 break;
26835 case DW_MACINFO_end_file:
26836 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
26837 break;
26838 case DW_MACINFO_define:
26839 case DW_MACINFO_undef:
26840 len = strlen (ref->info) + 1;
26841 if (!dwarf_strict
26842 && len > DWARF_OFFSET_SIZE
26843 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
26844 && (debug_str_section->common.flags & SECTION_MERGE) != 0)
26846 ref->code = ref->code == DW_MACINFO_define
26847 ? DW_MACRO_define_strp : DW_MACRO_undef_strp;
26848 output_macinfo_op (ref);
26849 return;
26851 dw2_asm_output_data (1, ref->code,
26852 ref->code == DW_MACINFO_define
26853 ? "Define macro" : "Undefine macro");
26854 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
26855 (unsigned long) ref->lineno);
26856 dw2_asm_output_nstring (ref->info, -1, "The macro");
26857 break;
26858 case DW_MACRO_define_strp:
26859 case DW_MACRO_undef_strp:
26860 node = find_AT_string (ref->info);
26861 gcc_assert (node
26862 && (node->form == DW_FORM_strp
26863 || node->form == DW_FORM_GNU_str_index));
26864 dw2_asm_output_data (1, ref->code,
26865 ref->code == DW_MACRO_define_strp
26866 ? "Define macro strp"
26867 : "Undefine macro strp");
26868 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
26869 (unsigned long) ref->lineno);
26870 if (node->form == DW_FORM_strp)
26871 dw2_asm_output_offset (DWARF_OFFSET_SIZE, node->label,
26872 debug_str_section, "The macro: \"%s\"",
26873 ref->info);
26874 else
26875 dw2_asm_output_data_uleb128 (node->index, "The macro: \"%s\"",
26876 ref->info);
26877 break;
26878 case DW_MACRO_import:
26879 dw2_asm_output_data (1, ref->code, "Import");
26880 ASM_GENERATE_INTERNAL_LABEL (label,
26881 DEBUG_MACRO_SECTION_LABEL,
26882 ref->lineno + macinfo_label_base);
26883 dw2_asm_output_offset (DWARF_OFFSET_SIZE, label, NULL, NULL);
26884 break;
26885 default:
26886 fprintf (asm_out_file, "%s unrecognized macinfo code %lu\n",
26887 ASM_COMMENT_START, (unsigned long) ref->code);
26888 break;
26892 /* Attempt to make a sequence of define/undef macinfo ops shareable with
26893 other compilation unit .debug_macinfo sections. IDX is the first
26894 index of a define/undef, return the number of ops that should be
26895 emitted in a comdat .debug_macinfo section and emit
26896 a DW_MACRO_import entry referencing it.
26897 If the define/undef entry should be emitted normally, return 0. */
26899 static unsigned
26900 optimize_macinfo_range (unsigned int idx, vec<macinfo_entry, va_gc> *files,
26901 macinfo_hash_type **macinfo_htab)
26903 macinfo_entry *first, *second, *cur, *inc;
26904 char linebuf[sizeof (HOST_WIDE_INT) * 3 + 1];
26905 unsigned char checksum[16];
26906 struct md5_ctx ctx;
26907 char *grp_name, *tail;
26908 const char *base;
26909 unsigned int i, count, encoded_filename_len, linebuf_len;
26910 macinfo_entry **slot;
26912 first = &(*macinfo_table)[idx];
26913 second = &(*macinfo_table)[idx + 1];
26915 /* Optimize only if there are at least two consecutive define/undef ops,
26916 and either all of them are before first DW_MACINFO_start_file
26917 with lineno {0,1} (i.e. predefined macro block), or all of them are
26918 in some included header file. */
26919 if (second->code != DW_MACINFO_define && second->code != DW_MACINFO_undef)
26920 return 0;
26921 if (vec_safe_is_empty (files))
26923 if (first->lineno > 1 || second->lineno > 1)
26924 return 0;
26926 else if (first->lineno == 0)
26927 return 0;
26929 /* Find the last define/undef entry that can be grouped together
26930 with first and at the same time compute md5 checksum of their
26931 codes, linenumbers and strings. */
26932 md5_init_ctx (&ctx);
26933 for (i = idx; macinfo_table->iterate (i, &cur); i++)
26934 if (cur->code != DW_MACINFO_define && cur->code != DW_MACINFO_undef)
26935 break;
26936 else if (vec_safe_is_empty (files) && cur->lineno > 1)
26937 break;
26938 else
26940 unsigned char code = cur->code;
26941 md5_process_bytes (&code, 1, &ctx);
26942 checksum_uleb128 (cur->lineno, &ctx);
26943 md5_process_bytes (cur->info, strlen (cur->info) + 1, &ctx);
26945 md5_finish_ctx (&ctx, checksum);
26946 count = i - idx;
26948 /* From the containing include filename (if any) pick up just
26949 usable characters from its basename. */
26950 if (vec_safe_is_empty (files))
26951 base = "";
26952 else
26953 base = lbasename (files->last ().info);
26954 for (encoded_filename_len = 0, i = 0; base[i]; i++)
26955 if (ISIDNUM (base[i]) || base[i] == '.')
26956 encoded_filename_len++;
26957 /* Count . at the end. */
26958 if (encoded_filename_len)
26959 encoded_filename_len++;
26961 sprintf (linebuf, HOST_WIDE_INT_PRINT_UNSIGNED, first->lineno);
26962 linebuf_len = strlen (linebuf);
26964 /* The group name format is: wmN.[<encoded filename>.]<lineno>.<md5sum> */
26965 grp_name = XALLOCAVEC (char, 4 + encoded_filename_len + linebuf_len + 1
26966 + 16 * 2 + 1);
26967 memcpy (grp_name, DWARF_OFFSET_SIZE == 4 ? "wm4." : "wm8.", 4);
26968 tail = grp_name + 4;
26969 if (encoded_filename_len)
26971 for (i = 0; base[i]; i++)
26972 if (ISIDNUM (base[i]) || base[i] == '.')
26973 *tail++ = base[i];
26974 *tail++ = '.';
26976 memcpy (tail, linebuf, linebuf_len);
26977 tail += linebuf_len;
26978 *tail++ = '.';
26979 for (i = 0; i < 16; i++)
26980 sprintf (tail + i * 2, "%02x", checksum[i] & 0xff);
26982 /* Construct a macinfo_entry for DW_MACRO_import
26983 in the empty vector entry before the first define/undef. */
26984 inc = &(*macinfo_table)[idx - 1];
26985 inc->code = DW_MACRO_import;
26986 inc->lineno = 0;
26987 inc->info = ggc_strdup (grp_name);
26988 if (!*macinfo_htab)
26989 *macinfo_htab = new macinfo_hash_type (10);
26990 /* Avoid emitting duplicates. */
26991 slot = (*macinfo_htab)->find_slot (inc, INSERT);
26992 if (*slot != NULL)
26994 inc->code = 0;
26995 inc->info = NULL;
26996 /* If such an entry has been used before, just emit
26997 a DW_MACRO_import op. */
26998 inc = *slot;
26999 output_macinfo_op (inc);
27000 /* And clear all macinfo_entry in the range to avoid emitting them
27001 in the second pass. */
27002 for (i = idx; macinfo_table->iterate (i, &cur) && i < idx + count; i++)
27004 cur->code = 0;
27005 cur->info = NULL;
27008 else
27010 *slot = inc;
27011 inc->lineno = (*macinfo_htab)->elements ();
27012 output_macinfo_op (inc);
27014 return count;
27017 /* Save any strings needed by the macinfo table in the debug str
27018 table. All strings must be collected into the table by the time
27019 index_string is called. */
27021 static void
27022 save_macinfo_strings (void)
27024 unsigned len;
27025 unsigned i;
27026 macinfo_entry *ref;
27028 for (i = 0; macinfo_table && macinfo_table->iterate (i, &ref); i++)
27030 switch (ref->code)
27032 /* Match the logic in output_macinfo_op to decide on
27033 indirect strings. */
27034 case DW_MACINFO_define:
27035 case DW_MACINFO_undef:
27036 len = strlen (ref->info) + 1;
27037 if (!dwarf_strict
27038 && len > DWARF_OFFSET_SIZE
27039 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
27040 && (debug_str_section->common.flags & SECTION_MERGE) != 0)
27041 set_indirect_string (find_AT_string (ref->info));
27042 break;
27043 case DW_MACRO_define_strp:
27044 case DW_MACRO_undef_strp:
27045 set_indirect_string (find_AT_string (ref->info));
27046 break;
27047 default:
27048 break;
27053 /* Output macinfo section(s). */
27055 static void
27056 output_macinfo (const char *debug_line_label, bool early_lto_debug)
27058 unsigned i;
27059 unsigned long length = vec_safe_length (macinfo_table);
27060 macinfo_entry *ref;
27061 vec<macinfo_entry, va_gc> *files = NULL;
27062 macinfo_hash_type *macinfo_htab = NULL;
27063 char dl_section_ref[MAX_ARTIFICIAL_LABEL_BYTES];
27065 if (! length)
27066 return;
27068 /* output_macinfo* uses these interchangeably. */
27069 gcc_assert ((int) DW_MACINFO_define == (int) DW_MACRO_define
27070 && (int) DW_MACINFO_undef == (int) DW_MACRO_undef
27071 && (int) DW_MACINFO_start_file == (int) DW_MACRO_start_file
27072 && (int) DW_MACINFO_end_file == (int) DW_MACRO_end_file);
27074 /* AIX Assembler inserts the length, so adjust the reference to match the
27075 offset expected by debuggers. */
27076 strcpy (dl_section_ref, debug_line_label);
27077 if (XCOFF_DEBUGGING_INFO)
27078 strcat (dl_section_ref, DWARF_INITIAL_LENGTH_SIZE_STR);
27080 /* For .debug_macro emit the section header. */
27081 if (!dwarf_strict || dwarf_version >= 5)
27083 dw2_asm_output_data (2, dwarf_version >= 5 ? 5 : 4,
27084 "DWARF macro version number");
27085 if (DWARF_OFFSET_SIZE == 8)
27086 dw2_asm_output_data (1, 3, "Flags: 64-bit, lineptr present");
27087 else
27088 dw2_asm_output_data (1, 2, "Flags: 32-bit, lineptr present");
27089 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_line_label,
27090 debug_line_section, NULL);
27093 /* In the first loop, it emits the primary .debug_macinfo section
27094 and after each emitted op the macinfo_entry is cleared.
27095 If a longer range of define/undef ops can be optimized using
27096 DW_MACRO_import, the DW_MACRO_import op is emitted and kept in
27097 the vector before the first define/undef in the range and the
27098 whole range of define/undef ops is not emitted and kept. */
27099 for (i = 0; macinfo_table->iterate (i, &ref); i++)
27101 switch (ref->code)
27103 case DW_MACINFO_start_file:
27104 vec_safe_push (files, *ref);
27105 break;
27106 case DW_MACINFO_end_file:
27107 if (!vec_safe_is_empty (files))
27108 files->pop ();
27109 break;
27110 case DW_MACINFO_define:
27111 case DW_MACINFO_undef:
27112 if ((!dwarf_strict || dwarf_version >= 5)
27113 && HAVE_COMDAT_GROUP
27114 && vec_safe_length (files) != 1
27115 && i > 0
27116 && i + 1 < length
27117 && (*macinfo_table)[i - 1].code == 0)
27119 unsigned count = optimize_macinfo_range (i, files, &macinfo_htab);
27120 if (count)
27122 i += count - 1;
27123 continue;
27126 break;
27127 case 0:
27128 /* A dummy entry may be inserted at the beginning to be able
27129 to optimize the whole block of predefined macros. */
27130 if (i == 0)
27131 continue;
27132 default:
27133 break;
27135 output_macinfo_op (ref);
27136 ref->info = NULL;
27137 ref->code = 0;
27140 if (!macinfo_htab)
27141 return;
27143 /* Save the number of transparent includes so we can adjust the
27144 label number for the fat LTO object DWARF. */
27145 unsigned macinfo_label_base_adj = macinfo_htab->elements ();
27147 delete macinfo_htab;
27148 macinfo_htab = NULL;
27150 /* If any DW_MACRO_import were used, on those DW_MACRO_import entries
27151 terminate the current chain and switch to a new comdat .debug_macinfo
27152 section and emit the define/undef entries within it. */
27153 for (i = 0; macinfo_table->iterate (i, &ref); i++)
27154 switch (ref->code)
27156 case 0:
27157 continue;
27158 case DW_MACRO_import:
27160 char label[MAX_ARTIFICIAL_LABEL_BYTES];
27161 tree comdat_key = get_identifier (ref->info);
27162 /* Terminate the previous .debug_macinfo section. */
27163 dw2_asm_output_data (1, 0, "End compilation unit");
27164 targetm.asm_out.named_section (debug_macinfo_section_name,
27165 SECTION_DEBUG
27166 | SECTION_LINKONCE
27167 | (early_lto_debug
27168 ? SECTION_EXCLUDE : 0),
27169 comdat_key);
27170 ASM_GENERATE_INTERNAL_LABEL (label,
27171 DEBUG_MACRO_SECTION_LABEL,
27172 ref->lineno + macinfo_label_base);
27173 ASM_OUTPUT_LABEL (asm_out_file, label);
27174 ref->code = 0;
27175 ref->info = NULL;
27176 dw2_asm_output_data (2, dwarf_version >= 5 ? 5 : 4,
27177 "DWARF macro version number");
27178 if (DWARF_OFFSET_SIZE == 8)
27179 dw2_asm_output_data (1, 1, "Flags: 64-bit");
27180 else
27181 dw2_asm_output_data (1, 0, "Flags: 32-bit");
27183 break;
27184 case DW_MACINFO_define:
27185 case DW_MACINFO_undef:
27186 output_macinfo_op (ref);
27187 ref->code = 0;
27188 ref->info = NULL;
27189 break;
27190 default:
27191 gcc_unreachable ();
27194 macinfo_label_base += macinfo_label_base_adj;
27197 /* Initialize the various sections and labels for dwarf output and prefix
27198 them with PREFIX if non-NULL. */
27200 static void
27201 init_sections_and_labels (bool early_lto_debug)
27203 /* As we may get called multiple times have a generation count for labels. */
27204 static unsigned generation = 0;
27206 if (early_lto_debug)
27208 if (!dwarf_split_debug_info)
27210 debug_info_section = get_section (DEBUG_LTO_INFO_SECTION,
27211 SECTION_DEBUG | SECTION_EXCLUDE,
27212 NULL);
27213 debug_abbrev_section = get_section (DEBUG_LTO_ABBREV_SECTION,
27214 SECTION_DEBUG | SECTION_EXCLUDE,
27215 NULL);
27216 debug_macinfo_section_name = ((dwarf_strict && dwarf_version < 5)
27217 ? DEBUG_LTO_MACINFO_SECTION
27218 : DEBUG_LTO_MACRO_SECTION);
27219 debug_macinfo_section = get_section (debug_macinfo_section_name,
27220 SECTION_DEBUG
27221 | SECTION_EXCLUDE, NULL);
27222 /* For macro info we have to refer to a debug_line section, so similar
27223 to split-dwarf emit a skeleton one for early debug. */
27224 debug_skeleton_line_section
27225 = get_section (DEBUG_LTO_LINE_SECTION,
27226 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
27227 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label,
27228 DEBUG_SKELETON_LINE_SECTION_LABEL,
27229 generation);
27231 else
27233 /* ??? Which of the following do we need early? */
27234 debug_info_section = get_section (DEBUG_LTO_DWO_INFO_SECTION,
27235 SECTION_DEBUG | SECTION_EXCLUDE,
27236 NULL);
27237 debug_abbrev_section = get_section (DEBUG_LTO_DWO_ABBREV_SECTION,
27238 SECTION_DEBUG | SECTION_EXCLUDE,
27239 NULL);
27240 debug_skeleton_info_section = get_section (DEBUG_LTO_INFO_SECTION,
27241 SECTION_DEBUG
27242 | SECTION_EXCLUDE, NULL);
27243 debug_skeleton_abbrev_section = get_section (DEBUG_LTO_ABBREV_SECTION,
27244 SECTION_DEBUG
27245 | SECTION_EXCLUDE, NULL);
27246 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label,
27247 DEBUG_SKELETON_ABBREV_SECTION_LABEL,
27248 generation);
27250 /* Somewhat confusing detail: The skeleton_[abbrev|info] sections stay in
27251 the main .o, but the skeleton_line goes into the split off dwo. */
27252 debug_skeleton_line_section
27253 = get_section (DEBUG_LTO_LINE_SECTION,
27254 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
27255 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label,
27256 DEBUG_SKELETON_LINE_SECTION_LABEL,
27257 generation);
27258 debug_str_offsets_section
27259 = get_section (DEBUG_LTO_DWO_STR_OFFSETS_SECTION,
27260 SECTION_DEBUG | SECTION_EXCLUDE,
27261 NULL);
27262 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label,
27263 DEBUG_SKELETON_INFO_SECTION_LABEL,
27264 generation);
27265 debug_str_dwo_section = get_section (DEBUG_LTO_STR_DWO_SECTION,
27266 DEBUG_STR_DWO_SECTION_FLAGS, NULL);
27267 debug_macinfo_section_name
27268 = (dwarf_strict
27269 ? DEBUG_LTO_DWO_MACINFO_SECTION : DEBUG_LTO_DWO_MACRO_SECTION);
27270 debug_macinfo_section = get_section (debug_macinfo_section_name,
27271 SECTION_DEBUG | SECTION_EXCLUDE,
27272 NULL);
27274 debug_str_section = get_section (DEBUG_LTO_STR_SECTION,
27275 DEBUG_STR_SECTION_FLAGS
27276 | SECTION_EXCLUDE, NULL);
27278 else
27280 if (!dwarf_split_debug_info)
27282 debug_info_section = get_section (DEBUG_INFO_SECTION,
27283 SECTION_DEBUG, NULL);
27284 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
27285 SECTION_DEBUG, NULL);
27286 debug_loc_section = get_section (DEBUG_LOC_SECTION,
27287 SECTION_DEBUG, NULL);
27288 debug_macinfo_section_name
27289 = dwarf_strict ? DEBUG_MACINFO_SECTION : DEBUG_MACRO_SECTION;
27290 debug_macinfo_section = get_section (debug_macinfo_section_name,
27291 SECTION_DEBUG, NULL);
27293 else
27295 debug_info_section = get_section (DEBUG_DWO_INFO_SECTION,
27296 SECTION_DEBUG | SECTION_EXCLUDE,
27297 NULL);
27298 debug_abbrev_section = get_section (DEBUG_DWO_ABBREV_SECTION,
27299 SECTION_DEBUG | SECTION_EXCLUDE,
27300 NULL);
27301 debug_addr_section = get_section (DEBUG_ADDR_SECTION,
27302 SECTION_DEBUG, NULL);
27303 debug_skeleton_info_section = get_section (DEBUG_INFO_SECTION,
27304 SECTION_DEBUG, NULL);
27305 debug_skeleton_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
27306 SECTION_DEBUG, NULL);
27307 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label,
27308 DEBUG_SKELETON_ABBREV_SECTION_LABEL,
27309 generation);
27311 /* Somewhat confusing detail: The skeleton_[abbrev|info] sections
27312 stay in the main .o, but the skeleton_line goes into the
27313 split off dwo. */
27314 debug_skeleton_line_section
27315 = get_section (DEBUG_DWO_LINE_SECTION,
27316 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
27317 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label,
27318 DEBUG_SKELETON_LINE_SECTION_LABEL,
27319 generation);
27320 debug_str_offsets_section
27321 = get_section (DEBUG_DWO_STR_OFFSETS_SECTION,
27322 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
27323 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label,
27324 DEBUG_SKELETON_INFO_SECTION_LABEL,
27325 generation);
27326 debug_loc_section = get_section (DEBUG_DWO_LOC_SECTION,
27327 SECTION_DEBUG | SECTION_EXCLUDE,
27328 NULL);
27329 debug_str_dwo_section = get_section (DEBUG_STR_DWO_SECTION,
27330 DEBUG_STR_DWO_SECTION_FLAGS,
27331 NULL);
27332 debug_macinfo_section_name
27333 = (dwarf_strict && dwarf_version < 5)
27334 ? DEBUG_DWO_MACINFO_SECTION : DEBUG_DWO_MACRO_SECTION;
27335 debug_macinfo_section = get_section (debug_macinfo_section_name,
27336 SECTION_DEBUG | SECTION_EXCLUDE,
27337 NULL);
27339 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
27340 SECTION_DEBUG, NULL);
27341 debug_line_section = get_section (DEBUG_LINE_SECTION,
27342 SECTION_DEBUG, NULL);
27343 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
27344 SECTION_DEBUG, NULL);
27345 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
27346 SECTION_DEBUG, NULL);
27347 debug_str_section = get_section (DEBUG_STR_SECTION,
27348 DEBUG_STR_SECTION_FLAGS, NULL);
27349 debug_ranges_section = get_section (dwarf_version >= 5
27350 ? DEBUG_RNGLISTS_SECTION
27351 : DEBUG_RANGES_SECTION,
27352 SECTION_DEBUG, NULL);
27353 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
27354 SECTION_DEBUG, NULL);
27357 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
27358 DEBUG_ABBREV_SECTION_LABEL, generation);
27359 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
27360 DEBUG_INFO_SECTION_LABEL, generation);
27361 info_section_emitted = false;
27362 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
27363 DEBUG_LINE_SECTION_LABEL, generation);
27364 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
27365 DEBUG_RANGES_SECTION_LABEL, generation);
27366 if (dwarf_version >= 5 && dwarf_split_debug_info)
27367 ASM_GENERATE_INTERNAL_LABEL (ranges_base_label,
27368 DEBUG_RANGES_SECTION_LABEL, 2 + generation);
27369 ASM_GENERATE_INTERNAL_LABEL (debug_addr_section_label,
27370 DEBUG_ADDR_SECTION_LABEL, generation);
27371 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
27372 (dwarf_strict && dwarf_version < 5)
27373 ? DEBUG_MACINFO_SECTION_LABEL
27374 : DEBUG_MACRO_SECTION_LABEL, generation);
27375 ASM_GENERATE_INTERNAL_LABEL (loc_section_label, DEBUG_LOC_SECTION_LABEL,
27376 generation);
27378 ++generation;
27381 /* Set up for Dwarf output at the start of compilation. */
27383 static void
27384 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
27386 /* Allocate the file_table. */
27387 file_table = hash_table<dwarf_file_hasher>::create_ggc (50);
27389 #ifndef DWARF2_LINENO_DEBUGGING_INFO
27390 /* Allocate the decl_die_table. */
27391 decl_die_table = hash_table<decl_die_hasher>::create_ggc (10);
27393 /* Allocate the decl_loc_table. */
27394 decl_loc_table = hash_table<decl_loc_hasher>::create_ggc (10);
27396 /* Allocate the cached_dw_loc_list_table. */
27397 cached_dw_loc_list_table = hash_table<dw_loc_list_hasher>::create_ggc (10);
27399 /* Allocate the initial hunk of the decl_scope_table. */
27400 vec_alloc (decl_scope_table, 256);
27402 /* Allocate the initial hunk of the abbrev_die_table. */
27403 vec_alloc (abbrev_die_table, 256);
27404 /* Zero-th entry is allocated, but unused. */
27405 abbrev_die_table->quick_push (NULL);
27407 /* Allocate the dwarf_proc_stack_usage_map. */
27408 dwarf_proc_stack_usage_map = new hash_map<dw_die_ref, int>;
27410 /* Allocate the pubtypes and pubnames vectors. */
27411 vec_alloc (pubname_table, 32);
27412 vec_alloc (pubtype_table, 32);
27414 vec_alloc (incomplete_types, 64);
27416 vec_alloc (used_rtx_array, 32);
27418 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
27419 vec_alloc (macinfo_table, 64);
27420 #endif
27422 /* If front-ends already registered a main translation unit but we were not
27423 ready to perform the association, do this now. */
27424 if (main_translation_unit != NULL_TREE)
27425 equate_decl_number_to_die (main_translation_unit, comp_unit_die ());
27428 /* Called before compile () starts outputtting functions, variables
27429 and toplevel asms into assembly. */
27431 static void
27432 dwarf2out_assembly_start (void)
27434 #ifndef DWARF2_LINENO_DEBUGGING_INFO
27435 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
27436 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
27437 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
27438 COLD_TEXT_SECTION_LABEL, 0);
27439 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
27441 switch_to_section (text_section);
27442 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
27443 #endif
27445 /* Make sure the line number table for .text always exists. */
27446 text_section_line_info = new_line_info_table ();
27447 text_section_line_info->end_label = text_end_label;
27449 #ifdef DWARF2_LINENO_DEBUGGING_INFO
27450 cur_line_info_table = text_section_line_info;
27451 #endif
27453 if (HAVE_GAS_CFI_SECTIONS_DIRECTIVE
27454 && dwarf2out_do_cfi_asm ()
27455 && (!(flag_unwind_tables || flag_exceptions)
27456 || targetm_common.except_unwind_info (&global_options) != UI_DWARF2))
27457 fprintf (asm_out_file, "\t.cfi_sections\t.debug_frame\n");
27460 /* A helper function for dwarf2out_finish called through
27461 htab_traverse. Assign a string its index. All strings must be
27462 collected into the table by the time index_string is called,
27463 because the indexing code relies on htab_traverse to traverse nodes
27464 in the same order for each run. */
27467 index_string (indirect_string_node **h, unsigned int *index)
27469 indirect_string_node *node = *h;
27471 find_string_form (node);
27472 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
27474 gcc_assert (node->index == NO_INDEX_ASSIGNED);
27475 node->index = *index;
27476 *index += 1;
27478 return 1;
27481 /* A helper function for output_indirect_strings called through
27482 htab_traverse. Output the offset to a string and update the
27483 current offset. */
27486 output_index_string_offset (indirect_string_node **h, unsigned int *offset)
27488 indirect_string_node *node = *h;
27490 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
27492 /* Assert that this node has been assigned an index. */
27493 gcc_assert (node->index != NO_INDEX_ASSIGNED
27494 && node->index != NOT_INDEXED);
27495 dw2_asm_output_data (DWARF_OFFSET_SIZE, *offset,
27496 "indexed string 0x%x: %s", node->index, node->str);
27497 *offset += strlen (node->str) + 1;
27499 return 1;
27502 /* A helper function for dwarf2out_finish called through
27503 htab_traverse. Output the indexed string. */
27506 output_index_string (indirect_string_node **h, unsigned int *cur_idx)
27508 struct indirect_string_node *node = *h;
27510 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
27512 /* Assert that the strings are output in the same order as their
27513 indexes were assigned. */
27514 gcc_assert (*cur_idx == node->index);
27515 assemble_string (node->str, strlen (node->str) + 1);
27516 *cur_idx += 1;
27518 return 1;
27521 /* A helper function for dwarf2out_finish called through
27522 htab_traverse. Emit one queued .debug_str string. */
27525 output_indirect_string (indirect_string_node **h, enum dwarf_form form)
27527 struct indirect_string_node *node = *h;
27529 node->form = find_string_form (node);
27530 if (node->form == form && node->refcount > 0)
27532 ASM_OUTPUT_LABEL (asm_out_file, node->label);
27533 assemble_string (node->str, strlen (node->str) + 1);
27536 return 1;
27539 /* Output the indexed string table. */
27541 static void
27542 output_indirect_strings (void)
27544 switch_to_section (debug_str_section);
27545 if (!dwarf_split_debug_info)
27546 debug_str_hash->traverse<enum dwarf_form,
27547 output_indirect_string> (DW_FORM_strp);
27548 else
27550 unsigned int offset = 0;
27551 unsigned int cur_idx = 0;
27553 skeleton_debug_str_hash->traverse<enum dwarf_form,
27554 output_indirect_string> (DW_FORM_strp);
27556 switch_to_section (debug_str_offsets_section);
27557 debug_str_hash->traverse_noresize
27558 <unsigned int *, output_index_string_offset> (&offset);
27559 switch_to_section (debug_str_dwo_section);
27560 debug_str_hash->traverse_noresize<unsigned int *, output_index_string>
27561 (&cur_idx);
27565 /* Callback for htab_traverse to assign an index to an entry in the
27566 table, and to write that entry to the .debug_addr section. */
27569 output_addr_table_entry (addr_table_entry **slot, unsigned int *cur_index)
27571 addr_table_entry *entry = *slot;
27573 if (entry->refcount == 0)
27575 gcc_assert (entry->index == NO_INDEX_ASSIGNED
27576 || entry->index == NOT_INDEXED);
27577 return 1;
27580 gcc_assert (entry->index == *cur_index);
27581 (*cur_index)++;
27583 switch (entry->kind)
27585 case ate_kind_rtx:
27586 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, entry->addr.rtl,
27587 "0x%x", entry->index);
27588 break;
27589 case ate_kind_rtx_dtprel:
27590 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
27591 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
27592 DWARF2_ADDR_SIZE,
27593 entry->addr.rtl);
27594 fputc ('\n', asm_out_file);
27595 break;
27596 case ate_kind_label:
27597 dw2_asm_output_addr (DWARF2_ADDR_SIZE, entry->addr.label,
27598 "0x%x", entry->index);
27599 break;
27600 default:
27601 gcc_unreachable ();
27603 return 1;
27606 /* Produce the .debug_addr section. */
27608 static void
27609 output_addr_table (void)
27611 unsigned int index = 0;
27612 if (addr_index_table == NULL || addr_index_table->size () == 0)
27613 return;
27615 switch_to_section (debug_addr_section);
27616 addr_index_table
27617 ->traverse_noresize<unsigned int *, output_addr_table_entry> (&index);
27620 #if ENABLE_ASSERT_CHECKING
27621 /* Verify that all marks are clear. */
27623 static void
27624 verify_marks_clear (dw_die_ref die)
27626 dw_die_ref c;
27628 gcc_assert (! die->die_mark);
27629 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
27631 #endif /* ENABLE_ASSERT_CHECKING */
27633 /* Clear the marks for a die and its children.
27634 Be cool if the mark isn't set. */
27636 static void
27637 prune_unmark_dies (dw_die_ref die)
27639 dw_die_ref c;
27641 if (die->die_mark)
27642 die->die_mark = 0;
27643 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
27646 /* Given LOC that is referenced by a DIE we're marking as used, find all
27647 referenced DWARF procedures it references and mark them as used. */
27649 static void
27650 prune_unused_types_walk_loc_descr (dw_loc_descr_ref loc)
27652 for (; loc != NULL; loc = loc->dw_loc_next)
27653 switch (loc->dw_loc_opc)
27655 case DW_OP_implicit_pointer:
27656 case DW_OP_convert:
27657 case DW_OP_reinterpret:
27658 case DW_OP_GNU_implicit_pointer:
27659 case DW_OP_GNU_convert:
27660 case DW_OP_GNU_reinterpret:
27661 if (loc->dw_loc_oprnd1.val_class == dw_val_class_die_ref)
27662 prune_unused_types_mark (loc->dw_loc_oprnd1.v.val_die_ref.die, 1);
27663 break;
27664 case DW_OP_GNU_variable_value:
27665 if (loc->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
27667 dw_die_ref ref
27668 = lookup_decl_die (loc->dw_loc_oprnd1.v.val_decl_ref);
27669 if (ref == NULL)
27670 break;
27671 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
27672 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
27673 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
27675 /* FALLTHRU */
27676 case DW_OP_call2:
27677 case DW_OP_call4:
27678 case DW_OP_call_ref:
27679 case DW_OP_const_type:
27680 case DW_OP_GNU_const_type:
27681 case DW_OP_GNU_parameter_ref:
27682 gcc_assert (loc->dw_loc_oprnd1.val_class == dw_val_class_die_ref);
27683 prune_unused_types_mark (loc->dw_loc_oprnd1.v.val_die_ref.die, 1);
27684 break;
27685 case DW_OP_regval_type:
27686 case DW_OP_deref_type:
27687 case DW_OP_GNU_regval_type:
27688 case DW_OP_GNU_deref_type:
27689 gcc_assert (loc->dw_loc_oprnd2.val_class == dw_val_class_die_ref);
27690 prune_unused_types_mark (loc->dw_loc_oprnd2.v.val_die_ref.die, 1);
27691 break;
27692 case DW_OP_entry_value:
27693 case DW_OP_GNU_entry_value:
27694 gcc_assert (loc->dw_loc_oprnd1.val_class == dw_val_class_loc);
27695 prune_unused_types_walk_loc_descr (loc->dw_loc_oprnd1.v.val_loc);
27696 break;
27697 default:
27698 break;
27702 /* Given DIE that we're marking as used, find any other dies
27703 it references as attributes and mark them as used. */
27705 static void
27706 prune_unused_types_walk_attribs (dw_die_ref die)
27708 dw_attr_node *a;
27709 unsigned ix;
27711 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
27713 switch (AT_class (a))
27715 /* Make sure DWARF procedures referenced by location descriptions will
27716 get emitted. */
27717 case dw_val_class_loc:
27718 prune_unused_types_walk_loc_descr (AT_loc (a));
27719 break;
27720 case dw_val_class_loc_list:
27721 for (dw_loc_list_ref list = AT_loc_list (a);
27722 list != NULL;
27723 list = list->dw_loc_next)
27724 prune_unused_types_walk_loc_descr (list->expr);
27725 break;
27727 case dw_val_class_die_ref:
27728 /* A reference to another DIE.
27729 Make sure that it will get emitted.
27730 If it was broken out into a comdat group, don't follow it. */
27731 if (! AT_ref (a)->comdat_type_p
27732 || a->dw_attr == DW_AT_specification)
27733 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
27734 break;
27736 case dw_val_class_str:
27737 /* Set the string's refcount to 0 so that prune_unused_types_mark
27738 accounts properly for it. */
27739 a->dw_attr_val.v.val_str->refcount = 0;
27740 break;
27742 default:
27743 break;
27748 /* Mark the generic parameters and arguments children DIEs of DIE. */
27750 static void
27751 prune_unused_types_mark_generic_parms_dies (dw_die_ref die)
27753 dw_die_ref c;
27755 if (die == NULL || die->die_child == NULL)
27756 return;
27757 c = die->die_child;
27760 if (is_template_parameter (c))
27761 prune_unused_types_mark (c, 1);
27762 c = c->die_sib;
27763 } while (c && c != die->die_child);
27766 /* Mark DIE as being used. If DOKIDS is true, then walk down
27767 to DIE's children. */
27769 static void
27770 prune_unused_types_mark (dw_die_ref die, int dokids)
27772 dw_die_ref c;
27774 if (die->die_mark == 0)
27776 /* We haven't done this node yet. Mark it as used. */
27777 die->die_mark = 1;
27778 /* If this is the DIE of a generic type instantiation,
27779 mark the children DIEs that describe its generic parms and
27780 args. */
27781 prune_unused_types_mark_generic_parms_dies (die);
27783 /* We also have to mark its parents as used.
27784 (But we don't want to mark our parent's kids due to this,
27785 unless it is a class.) */
27786 if (die->die_parent)
27787 prune_unused_types_mark (die->die_parent,
27788 class_scope_p (die->die_parent));
27790 /* Mark any referenced nodes. */
27791 prune_unused_types_walk_attribs (die);
27793 /* If this node is a specification,
27794 also mark the definition, if it exists. */
27795 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
27796 prune_unused_types_mark (die->die_definition, 1);
27799 if (dokids && die->die_mark != 2)
27801 /* We need to walk the children, but haven't done so yet.
27802 Remember that we've walked the kids. */
27803 die->die_mark = 2;
27805 /* If this is an array type, we need to make sure our
27806 kids get marked, even if they're types. If we're
27807 breaking out types into comdat sections, do this
27808 for all type definitions. */
27809 if (die->die_tag == DW_TAG_array_type
27810 || (use_debug_types
27811 && is_type_die (die) && ! is_declaration_die (die)))
27812 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
27813 else
27814 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
27818 /* For local classes, look if any static member functions were emitted
27819 and if so, mark them. */
27821 static void
27822 prune_unused_types_walk_local_classes (dw_die_ref die)
27824 dw_die_ref c;
27826 if (die->die_mark == 2)
27827 return;
27829 switch (die->die_tag)
27831 case DW_TAG_structure_type:
27832 case DW_TAG_union_type:
27833 case DW_TAG_class_type:
27834 break;
27836 case DW_TAG_subprogram:
27837 if (!get_AT_flag (die, DW_AT_declaration)
27838 || die->die_definition != NULL)
27839 prune_unused_types_mark (die, 1);
27840 return;
27842 default:
27843 return;
27846 /* Mark children. */
27847 FOR_EACH_CHILD (die, c, prune_unused_types_walk_local_classes (c));
27850 /* Walk the tree DIE and mark types that we actually use. */
27852 static void
27853 prune_unused_types_walk (dw_die_ref die)
27855 dw_die_ref c;
27857 /* Don't do anything if this node is already marked and
27858 children have been marked as well. */
27859 if (die->die_mark == 2)
27860 return;
27862 switch (die->die_tag)
27864 case DW_TAG_structure_type:
27865 case DW_TAG_union_type:
27866 case DW_TAG_class_type:
27867 if (die->die_perennial_p)
27868 break;
27870 for (c = die->die_parent; c; c = c->die_parent)
27871 if (c->die_tag == DW_TAG_subprogram)
27872 break;
27874 /* Finding used static member functions inside of classes
27875 is needed just for local classes, because for other classes
27876 static member function DIEs with DW_AT_specification
27877 are emitted outside of the DW_TAG_*_type. If we ever change
27878 it, we'd need to call this even for non-local classes. */
27879 if (c)
27880 prune_unused_types_walk_local_classes (die);
27882 /* It's a type node --- don't mark it. */
27883 return;
27885 case DW_TAG_const_type:
27886 case DW_TAG_packed_type:
27887 case DW_TAG_pointer_type:
27888 case DW_TAG_reference_type:
27889 case DW_TAG_rvalue_reference_type:
27890 case DW_TAG_volatile_type:
27891 case DW_TAG_typedef:
27892 case DW_TAG_array_type:
27893 case DW_TAG_interface_type:
27894 case DW_TAG_friend:
27895 case DW_TAG_enumeration_type:
27896 case DW_TAG_subroutine_type:
27897 case DW_TAG_string_type:
27898 case DW_TAG_set_type:
27899 case DW_TAG_subrange_type:
27900 case DW_TAG_ptr_to_member_type:
27901 case DW_TAG_file_type:
27902 /* Type nodes are useful only when other DIEs reference them --- don't
27903 mark them. */
27904 /* FALLTHROUGH */
27906 case DW_TAG_dwarf_procedure:
27907 /* Likewise for DWARF procedures. */
27909 if (die->die_perennial_p)
27910 break;
27912 return;
27914 default:
27915 /* Mark everything else. */
27916 break;
27919 if (die->die_mark == 0)
27921 die->die_mark = 1;
27923 /* Now, mark any dies referenced from here. */
27924 prune_unused_types_walk_attribs (die);
27927 die->die_mark = 2;
27929 /* Mark children. */
27930 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
27933 /* Increment the string counts on strings referred to from DIE's
27934 attributes. */
27936 static void
27937 prune_unused_types_update_strings (dw_die_ref die)
27939 dw_attr_node *a;
27940 unsigned ix;
27942 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
27943 if (AT_class (a) == dw_val_class_str)
27945 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
27946 s->refcount++;
27947 /* Avoid unnecessarily putting strings that are used less than
27948 twice in the hash table. */
27949 if (s->refcount
27950 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
27952 indirect_string_node **slot
27953 = debug_str_hash->find_slot_with_hash (s->str,
27954 htab_hash_string (s->str),
27955 INSERT);
27956 gcc_assert (*slot == NULL);
27957 *slot = s;
27962 /* Mark DIE and its children as removed. */
27964 static void
27965 mark_removed (dw_die_ref die)
27967 dw_die_ref c;
27968 die->removed = true;
27969 FOR_EACH_CHILD (die, c, mark_removed (c));
27972 /* Remove from the tree DIE any dies that aren't marked. */
27974 static void
27975 prune_unused_types_prune (dw_die_ref die)
27977 dw_die_ref c;
27979 gcc_assert (die->die_mark);
27980 prune_unused_types_update_strings (die);
27982 if (! die->die_child)
27983 return;
27985 c = die->die_child;
27986 do {
27987 dw_die_ref prev = c, next;
27988 for (c = c->die_sib; ! c->die_mark; c = next)
27989 if (c == die->die_child)
27991 /* No marked children between 'prev' and the end of the list. */
27992 if (prev == c)
27993 /* No marked children at all. */
27994 die->die_child = NULL;
27995 else
27997 prev->die_sib = c->die_sib;
27998 die->die_child = prev;
28000 c->die_sib = NULL;
28001 mark_removed (c);
28002 return;
28004 else
28006 next = c->die_sib;
28007 c->die_sib = NULL;
28008 mark_removed (c);
28011 if (c != prev->die_sib)
28012 prev->die_sib = c;
28013 prune_unused_types_prune (c);
28014 } while (c != die->die_child);
28017 /* Remove dies representing declarations that we never use. */
28019 static void
28020 prune_unused_types (void)
28022 unsigned int i;
28023 limbo_die_node *node;
28024 comdat_type_node *ctnode;
28025 pubname_entry *pub;
28026 dw_die_ref base_type;
28028 #if ENABLE_ASSERT_CHECKING
28029 /* All the marks should already be clear. */
28030 verify_marks_clear (comp_unit_die ());
28031 for (node = limbo_die_list; node; node = node->next)
28032 verify_marks_clear (node->die);
28033 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
28034 verify_marks_clear (ctnode->root_die);
28035 #endif /* ENABLE_ASSERT_CHECKING */
28037 /* Mark types that are used in global variables. */
28038 premark_types_used_by_global_vars ();
28040 /* Set the mark on nodes that are actually used. */
28041 prune_unused_types_walk (comp_unit_die ());
28042 for (node = limbo_die_list; node; node = node->next)
28043 prune_unused_types_walk (node->die);
28044 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
28046 prune_unused_types_walk (ctnode->root_die);
28047 prune_unused_types_mark (ctnode->type_die, 1);
28050 /* Also set the mark on nodes referenced from the pubname_table. Enumerators
28051 are unusual in that they are pubnames that are the children of pubtypes.
28052 They should only be marked via their parent DW_TAG_enumeration_type die,
28053 not as roots in themselves. */
28054 FOR_EACH_VEC_ELT (*pubname_table, i, pub)
28055 if (pub->die->die_tag != DW_TAG_enumerator)
28056 prune_unused_types_mark (pub->die, 1);
28057 for (i = 0; base_types.iterate (i, &base_type); i++)
28058 prune_unused_types_mark (base_type, 1);
28060 /* For -fvar-tracking-assignments, also set the mark on nodes that could be
28061 referenced by DW_TAG_call_site DW_AT_call_origin (i.e. direct call
28062 callees). */
28063 cgraph_node *cnode;
28064 FOR_EACH_FUNCTION (cnode)
28065 if (cnode->referred_to_p (false))
28067 dw_die_ref die = lookup_decl_die (cnode->decl);
28068 if (die == NULL || die->die_mark)
28069 continue;
28070 for (cgraph_edge *e = cnode->callers; e; e = e->next_caller)
28071 if (e->caller != cnode
28072 && opt_for_fn (e->caller->decl, flag_var_tracking_assignments))
28074 prune_unused_types_mark (die, 1);
28075 break;
28079 if (debug_str_hash)
28080 debug_str_hash->empty ();
28081 if (skeleton_debug_str_hash)
28082 skeleton_debug_str_hash->empty ();
28083 prune_unused_types_prune (comp_unit_die ());
28084 for (limbo_die_node **pnode = &limbo_die_list; *pnode; )
28086 node = *pnode;
28087 if (!node->die->die_mark)
28088 *pnode = node->next;
28089 else
28091 prune_unused_types_prune (node->die);
28092 pnode = &node->next;
28095 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
28096 prune_unused_types_prune (ctnode->root_die);
28098 /* Leave the marks clear. */
28099 prune_unmark_dies (comp_unit_die ());
28100 for (node = limbo_die_list; node; node = node->next)
28101 prune_unmark_dies (node->die);
28102 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
28103 prune_unmark_dies (ctnode->root_die);
28106 /* Helpers to manipulate hash table of comdat type units. */
28108 struct comdat_type_hasher : nofree_ptr_hash <comdat_type_node>
28110 static inline hashval_t hash (const comdat_type_node *);
28111 static inline bool equal (const comdat_type_node *, const comdat_type_node *);
28114 inline hashval_t
28115 comdat_type_hasher::hash (const comdat_type_node *type_node)
28117 hashval_t h;
28118 memcpy (&h, type_node->signature, sizeof (h));
28119 return h;
28122 inline bool
28123 comdat_type_hasher::equal (const comdat_type_node *type_node_1,
28124 const comdat_type_node *type_node_2)
28126 return (! memcmp (type_node_1->signature, type_node_2->signature,
28127 DWARF_TYPE_SIGNATURE_SIZE));
28130 /* Move a DW_AT_{,MIPS_}linkage_name attribute just added to dw_die_ref
28131 to the location it would have been added, should we know its
28132 DECL_ASSEMBLER_NAME when we added other attributes. This will
28133 probably improve compactness of debug info, removing equivalent
28134 abbrevs, and hide any differences caused by deferring the
28135 computation of the assembler name, triggered by e.g. PCH. */
28137 static inline void
28138 move_linkage_attr (dw_die_ref die)
28140 unsigned ix = vec_safe_length (die->die_attr);
28141 dw_attr_node linkage = (*die->die_attr)[ix - 1];
28143 gcc_assert (linkage.dw_attr == DW_AT_linkage_name
28144 || linkage.dw_attr == DW_AT_MIPS_linkage_name);
28146 while (--ix > 0)
28148 dw_attr_node *prev = &(*die->die_attr)[ix - 1];
28150 if (prev->dw_attr == DW_AT_decl_line
28151 || prev->dw_attr == DW_AT_decl_column
28152 || prev->dw_attr == DW_AT_name)
28153 break;
28156 if (ix != vec_safe_length (die->die_attr) - 1)
28158 die->die_attr->pop ();
28159 die->die_attr->quick_insert (ix, linkage);
28163 /* Helper function for resolve_addr, mark DW_TAG_base_type nodes
28164 referenced from typed stack ops and count how often they are used. */
28166 static void
28167 mark_base_types (dw_loc_descr_ref loc)
28169 dw_die_ref base_type = NULL;
28171 for (; loc; loc = loc->dw_loc_next)
28173 switch (loc->dw_loc_opc)
28175 case DW_OP_regval_type:
28176 case DW_OP_deref_type:
28177 case DW_OP_GNU_regval_type:
28178 case DW_OP_GNU_deref_type:
28179 base_type = loc->dw_loc_oprnd2.v.val_die_ref.die;
28180 break;
28181 case DW_OP_convert:
28182 case DW_OP_reinterpret:
28183 case DW_OP_GNU_convert:
28184 case DW_OP_GNU_reinterpret:
28185 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
28186 continue;
28187 /* FALLTHRU */
28188 case DW_OP_const_type:
28189 case DW_OP_GNU_const_type:
28190 base_type = loc->dw_loc_oprnd1.v.val_die_ref.die;
28191 break;
28192 case DW_OP_entry_value:
28193 case DW_OP_GNU_entry_value:
28194 mark_base_types (loc->dw_loc_oprnd1.v.val_loc);
28195 continue;
28196 default:
28197 continue;
28199 gcc_assert (base_type->die_parent == comp_unit_die ());
28200 if (base_type->die_mark)
28201 base_type->die_mark++;
28202 else
28204 base_types.safe_push (base_type);
28205 base_type->die_mark = 1;
28210 /* Comparison function for sorting marked base types. */
28212 static int
28213 base_type_cmp (const void *x, const void *y)
28215 dw_die_ref dx = *(const dw_die_ref *) x;
28216 dw_die_ref dy = *(const dw_die_ref *) y;
28217 unsigned int byte_size1, byte_size2;
28218 unsigned int encoding1, encoding2;
28219 unsigned int align1, align2;
28220 if (dx->die_mark > dy->die_mark)
28221 return -1;
28222 if (dx->die_mark < dy->die_mark)
28223 return 1;
28224 byte_size1 = get_AT_unsigned (dx, DW_AT_byte_size);
28225 byte_size2 = get_AT_unsigned (dy, DW_AT_byte_size);
28226 if (byte_size1 < byte_size2)
28227 return 1;
28228 if (byte_size1 > byte_size2)
28229 return -1;
28230 encoding1 = get_AT_unsigned (dx, DW_AT_encoding);
28231 encoding2 = get_AT_unsigned (dy, DW_AT_encoding);
28232 if (encoding1 < encoding2)
28233 return 1;
28234 if (encoding1 > encoding2)
28235 return -1;
28236 align1 = get_AT_unsigned (dx, DW_AT_alignment);
28237 align2 = get_AT_unsigned (dy, DW_AT_alignment);
28238 if (align1 < align2)
28239 return 1;
28240 if (align1 > align2)
28241 return -1;
28242 return 0;
28245 /* Move base types marked by mark_base_types as early as possible
28246 in the CU, sorted by decreasing usage count both to make the
28247 uleb128 references as small as possible and to make sure they
28248 will have die_offset already computed by calc_die_sizes when
28249 sizes of typed stack loc ops is computed. */
28251 static void
28252 move_marked_base_types (void)
28254 unsigned int i;
28255 dw_die_ref base_type, die, c;
28257 if (base_types.is_empty ())
28258 return;
28260 /* Sort by decreasing usage count, they will be added again in that
28261 order later on. */
28262 base_types.qsort (base_type_cmp);
28263 die = comp_unit_die ();
28264 c = die->die_child;
28267 dw_die_ref prev = c;
28268 c = c->die_sib;
28269 while (c->die_mark)
28271 remove_child_with_prev (c, prev);
28272 /* As base types got marked, there must be at least
28273 one node other than DW_TAG_base_type. */
28274 gcc_assert (die->die_child != NULL);
28275 c = prev->die_sib;
28278 while (c != die->die_child);
28279 gcc_assert (die->die_child);
28280 c = die->die_child;
28281 for (i = 0; base_types.iterate (i, &base_type); i++)
28283 base_type->die_mark = 0;
28284 base_type->die_sib = c->die_sib;
28285 c->die_sib = base_type;
28286 c = base_type;
28290 /* Helper function for resolve_addr, attempt to resolve
28291 one CONST_STRING, return true if successful. Similarly verify that
28292 SYMBOL_REFs refer to variables emitted in the current CU. */
28294 static bool
28295 resolve_one_addr (rtx *addr)
28297 rtx rtl = *addr;
28299 if (GET_CODE (rtl) == CONST_STRING)
28301 size_t len = strlen (XSTR (rtl, 0)) + 1;
28302 tree t = build_string (len, XSTR (rtl, 0));
28303 tree tlen = size_int (len - 1);
28304 TREE_TYPE (t)
28305 = build_array_type (char_type_node, build_index_type (tlen));
28306 rtl = lookup_constant_def (t);
28307 if (!rtl || !MEM_P (rtl))
28308 return false;
28309 rtl = XEXP (rtl, 0);
28310 if (GET_CODE (rtl) == SYMBOL_REF
28311 && SYMBOL_REF_DECL (rtl)
28312 && !TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
28313 return false;
28314 vec_safe_push (used_rtx_array, rtl);
28315 *addr = rtl;
28316 return true;
28319 if (GET_CODE (rtl) == SYMBOL_REF
28320 && SYMBOL_REF_DECL (rtl))
28322 if (TREE_CONSTANT_POOL_ADDRESS_P (rtl))
28324 if (!TREE_ASM_WRITTEN (DECL_INITIAL (SYMBOL_REF_DECL (rtl))))
28325 return false;
28327 else if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
28328 return false;
28331 if (GET_CODE (rtl) == CONST)
28333 subrtx_ptr_iterator::array_type array;
28334 FOR_EACH_SUBRTX_PTR (iter, array, &XEXP (rtl, 0), ALL)
28335 if (!resolve_one_addr (*iter))
28336 return false;
28339 return true;
28342 /* For STRING_CST, return SYMBOL_REF of its constant pool entry,
28343 if possible, and create DW_TAG_dwarf_procedure that can be referenced
28344 from DW_OP_implicit_pointer if the string hasn't been seen yet. */
28346 static rtx
28347 string_cst_pool_decl (tree t)
28349 rtx rtl = output_constant_def (t, 1);
28350 unsigned char *array;
28351 dw_loc_descr_ref l;
28352 tree decl;
28353 size_t len;
28354 dw_die_ref ref;
28356 if (!rtl || !MEM_P (rtl))
28357 return NULL_RTX;
28358 rtl = XEXP (rtl, 0);
28359 if (GET_CODE (rtl) != SYMBOL_REF
28360 || SYMBOL_REF_DECL (rtl) == NULL_TREE)
28361 return NULL_RTX;
28363 decl = SYMBOL_REF_DECL (rtl);
28364 if (!lookup_decl_die (decl))
28366 len = TREE_STRING_LENGTH (t);
28367 vec_safe_push (used_rtx_array, rtl);
28368 ref = new_die (DW_TAG_dwarf_procedure, comp_unit_die (), decl);
28369 array = ggc_vec_alloc<unsigned char> (len);
28370 memcpy (array, TREE_STRING_POINTER (t), len);
28371 l = new_loc_descr (DW_OP_implicit_value, len, 0);
28372 l->dw_loc_oprnd2.val_class = dw_val_class_vec;
28373 l->dw_loc_oprnd2.v.val_vec.length = len;
28374 l->dw_loc_oprnd2.v.val_vec.elt_size = 1;
28375 l->dw_loc_oprnd2.v.val_vec.array = array;
28376 add_AT_loc (ref, DW_AT_location, l);
28377 equate_decl_number_to_die (decl, ref);
28379 return rtl;
28382 /* Helper function of resolve_addr_in_expr. LOC is
28383 a DW_OP_addr followed by DW_OP_stack_value, either at the start
28384 of exprloc or after DW_OP_{,bit_}piece, and val_addr can't be
28385 resolved. Replace it (both DW_OP_addr and DW_OP_stack_value)
28386 with DW_OP_implicit_pointer if possible
28387 and return true, if unsuccessful, return false. */
28389 static bool
28390 optimize_one_addr_into_implicit_ptr (dw_loc_descr_ref loc)
28392 rtx rtl = loc->dw_loc_oprnd1.v.val_addr;
28393 HOST_WIDE_INT offset = 0;
28394 dw_die_ref ref = NULL;
28395 tree decl;
28397 if (GET_CODE (rtl) == CONST
28398 && GET_CODE (XEXP (rtl, 0)) == PLUS
28399 && CONST_INT_P (XEXP (XEXP (rtl, 0), 1)))
28401 offset = INTVAL (XEXP (XEXP (rtl, 0), 1));
28402 rtl = XEXP (XEXP (rtl, 0), 0);
28404 if (GET_CODE (rtl) == CONST_STRING)
28406 size_t len = strlen (XSTR (rtl, 0)) + 1;
28407 tree t = build_string (len, XSTR (rtl, 0));
28408 tree tlen = size_int (len - 1);
28410 TREE_TYPE (t)
28411 = build_array_type (char_type_node, build_index_type (tlen));
28412 rtl = string_cst_pool_decl (t);
28413 if (!rtl)
28414 return false;
28416 if (GET_CODE (rtl) == SYMBOL_REF && SYMBOL_REF_DECL (rtl))
28418 decl = SYMBOL_REF_DECL (rtl);
28419 if (VAR_P (decl) && !DECL_EXTERNAL (decl))
28421 ref = lookup_decl_die (decl);
28422 if (ref && (get_AT (ref, DW_AT_location)
28423 || get_AT (ref, DW_AT_const_value)))
28425 loc->dw_loc_opc = dwarf_OP (DW_OP_implicit_pointer);
28426 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
28427 loc->dw_loc_oprnd1.val_entry = NULL;
28428 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
28429 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
28430 loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
28431 loc->dw_loc_oprnd2.v.val_int = offset;
28432 return true;
28436 return false;
28439 /* Helper function for resolve_addr, handle one location
28440 expression, return false if at least one CONST_STRING or SYMBOL_REF in
28441 the location list couldn't be resolved. */
28443 static bool
28444 resolve_addr_in_expr (dw_attr_node *a, dw_loc_descr_ref loc)
28446 dw_loc_descr_ref keep = NULL;
28447 for (dw_loc_descr_ref prev = NULL; loc; prev = loc, loc = loc->dw_loc_next)
28448 switch (loc->dw_loc_opc)
28450 case DW_OP_addr:
28451 if (!resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
28453 if ((prev == NULL
28454 || prev->dw_loc_opc == DW_OP_piece
28455 || prev->dw_loc_opc == DW_OP_bit_piece)
28456 && loc->dw_loc_next
28457 && loc->dw_loc_next->dw_loc_opc == DW_OP_stack_value
28458 && (!dwarf_strict || dwarf_version >= 5)
28459 && optimize_one_addr_into_implicit_ptr (loc))
28460 break;
28461 return false;
28463 break;
28464 case DW_OP_GNU_addr_index:
28465 case DW_OP_GNU_const_index:
28466 if (loc->dw_loc_opc == DW_OP_GNU_addr_index
28467 || (loc->dw_loc_opc == DW_OP_GNU_const_index && loc->dtprel))
28469 rtx rtl = loc->dw_loc_oprnd1.val_entry->addr.rtl;
28470 if (!resolve_one_addr (&rtl))
28471 return false;
28472 remove_addr_table_entry (loc->dw_loc_oprnd1.val_entry);
28473 loc->dw_loc_oprnd1.val_entry
28474 = add_addr_table_entry (rtl, ate_kind_rtx);
28476 break;
28477 case DW_OP_const4u:
28478 case DW_OP_const8u:
28479 if (loc->dtprel
28480 && !resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
28481 return false;
28482 break;
28483 case DW_OP_plus_uconst:
28484 if (size_of_loc_descr (loc)
28485 > size_of_int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned)
28487 && loc->dw_loc_oprnd1.v.val_unsigned > 0)
28489 dw_loc_descr_ref repl
28490 = int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned);
28491 add_loc_descr (&repl, new_loc_descr (DW_OP_plus, 0, 0));
28492 add_loc_descr (&repl, loc->dw_loc_next);
28493 *loc = *repl;
28495 break;
28496 case DW_OP_implicit_value:
28497 if (loc->dw_loc_oprnd2.val_class == dw_val_class_addr
28498 && !resolve_one_addr (&loc->dw_loc_oprnd2.v.val_addr))
28499 return false;
28500 break;
28501 case DW_OP_implicit_pointer:
28502 case DW_OP_GNU_implicit_pointer:
28503 case DW_OP_GNU_parameter_ref:
28504 case DW_OP_GNU_variable_value:
28505 if (loc->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
28507 dw_die_ref ref
28508 = lookup_decl_die (loc->dw_loc_oprnd1.v.val_decl_ref);
28509 if (ref == NULL)
28510 return false;
28511 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
28512 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
28513 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
28515 if (loc->dw_loc_opc == DW_OP_GNU_variable_value)
28517 if (prev == NULL
28518 && loc->dw_loc_next == NULL
28519 && AT_class (a) == dw_val_class_loc)
28520 switch (a->dw_attr)
28522 /* Following attributes allow both exprloc and reference,
28523 so if the whole expression is DW_OP_GNU_variable_value
28524 alone we could transform it into reference. */
28525 case DW_AT_byte_size:
28526 case DW_AT_bit_size:
28527 case DW_AT_lower_bound:
28528 case DW_AT_upper_bound:
28529 case DW_AT_bit_stride:
28530 case DW_AT_count:
28531 case DW_AT_allocated:
28532 case DW_AT_associated:
28533 case DW_AT_byte_stride:
28534 a->dw_attr_val.val_class = dw_val_class_die_ref;
28535 a->dw_attr_val.val_entry = NULL;
28536 a->dw_attr_val.v.val_die_ref.die
28537 = loc->dw_loc_oprnd1.v.val_die_ref.die;
28538 a->dw_attr_val.v.val_die_ref.external = 0;
28539 return true;
28540 default:
28541 break;
28543 if (dwarf_strict)
28544 return false;
28546 break;
28547 case DW_OP_const_type:
28548 case DW_OP_regval_type:
28549 case DW_OP_deref_type:
28550 case DW_OP_convert:
28551 case DW_OP_reinterpret:
28552 case DW_OP_GNU_const_type:
28553 case DW_OP_GNU_regval_type:
28554 case DW_OP_GNU_deref_type:
28555 case DW_OP_GNU_convert:
28556 case DW_OP_GNU_reinterpret:
28557 while (loc->dw_loc_next
28558 && (loc->dw_loc_next->dw_loc_opc == DW_OP_convert
28559 || loc->dw_loc_next->dw_loc_opc == DW_OP_GNU_convert))
28561 dw_die_ref base1, base2;
28562 unsigned enc1, enc2, size1, size2;
28563 if (loc->dw_loc_opc == DW_OP_regval_type
28564 || loc->dw_loc_opc == DW_OP_deref_type
28565 || loc->dw_loc_opc == DW_OP_GNU_regval_type
28566 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
28567 base1 = loc->dw_loc_oprnd2.v.val_die_ref.die;
28568 else if (loc->dw_loc_oprnd1.val_class
28569 == dw_val_class_unsigned_const)
28570 break;
28571 else
28572 base1 = loc->dw_loc_oprnd1.v.val_die_ref.die;
28573 if (loc->dw_loc_next->dw_loc_oprnd1.val_class
28574 == dw_val_class_unsigned_const)
28575 break;
28576 base2 = loc->dw_loc_next->dw_loc_oprnd1.v.val_die_ref.die;
28577 gcc_assert (base1->die_tag == DW_TAG_base_type
28578 && base2->die_tag == DW_TAG_base_type);
28579 enc1 = get_AT_unsigned (base1, DW_AT_encoding);
28580 enc2 = get_AT_unsigned (base2, DW_AT_encoding);
28581 size1 = get_AT_unsigned (base1, DW_AT_byte_size);
28582 size2 = get_AT_unsigned (base2, DW_AT_byte_size);
28583 if (size1 == size2
28584 && (((enc1 == DW_ATE_unsigned || enc1 == DW_ATE_signed)
28585 && (enc2 == DW_ATE_unsigned || enc2 == DW_ATE_signed)
28586 && loc != keep)
28587 || enc1 == enc2))
28589 /* Optimize away next DW_OP_convert after
28590 adjusting LOC's base type die reference. */
28591 if (loc->dw_loc_opc == DW_OP_regval_type
28592 || loc->dw_loc_opc == DW_OP_deref_type
28593 || loc->dw_loc_opc == DW_OP_GNU_regval_type
28594 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
28595 loc->dw_loc_oprnd2.v.val_die_ref.die = base2;
28596 else
28597 loc->dw_loc_oprnd1.v.val_die_ref.die = base2;
28598 loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
28599 continue;
28601 /* Don't change integer DW_OP_convert after e.g. floating
28602 point typed stack entry. */
28603 else if (enc1 != DW_ATE_unsigned && enc1 != DW_ATE_signed)
28604 keep = loc->dw_loc_next;
28605 break;
28607 break;
28608 default:
28609 break;
28611 return true;
28614 /* Helper function of resolve_addr. DIE had DW_AT_location of
28615 DW_OP_addr alone, which referred to DECL in DW_OP_addr's operand
28616 and DW_OP_addr couldn't be resolved. resolve_addr has already
28617 removed the DW_AT_location attribute. This function attempts to
28618 add a new DW_AT_location attribute with DW_OP_implicit_pointer
28619 to it or DW_AT_const_value attribute, if possible. */
28621 static void
28622 optimize_location_into_implicit_ptr (dw_die_ref die, tree decl)
28624 if (!VAR_P (decl)
28625 || lookup_decl_die (decl) != die
28626 || DECL_EXTERNAL (decl)
28627 || !TREE_STATIC (decl)
28628 || DECL_INITIAL (decl) == NULL_TREE
28629 || DECL_P (DECL_INITIAL (decl))
28630 || get_AT (die, DW_AT_const_value))
28631 return;
28633 tree init = DECL_INITIAL (decl);
28634 HOST_WIDE_INT offset = 0;
28635 /* For variables that have been optimized away and thus
28636 don't have a memory location, see if we can emit
28637 DW_AT_const_value instead. */
28638 if (tree_add_const_value_attribute (die, init))
28639 return;
28640 if (dwarf_strict && dwarf_version < 5)
28641 return;
28642 /* If init is ADDR_EXPR or POINTER_PLUS_EXPR of ADDR_EXPR,
28643 and ADDR_EXPR refers to a decl that has DW_AT_location or
28644 DW_AT_const_value (but isn't addressable, otherwise
28645 resolving the original DW_OP_addr wouldn't fail), see if
28646 we can add DW_OP_implicit_pointer. */
28647 STRIP_NOPS (init);
28648 if (TREE_CODE (init) == POINTER_PLUS_EXPR
28649 && tree_fits_shwi_p (TREE_OPERAND (init, 1)))
28651 offset = tree_to_shwi (TREE_OPERAND (init, 1));
28652 init = TREE_OPERAND (init, 0);
28653 STRIP_NOPS (init);
28655 if (TREE_CODE (init) != ADDR_EXPR)
28656 return;
28657 if ((TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST
28658 && !TREE_ASM_WRITTEN (TREE_OPERAND (init, 0)))
28659 || (TREE_CODE (TREE_OPERAND (init, 0)) == VAR_DECL
28660 && !DECL_EXTERNAL (TREE_OPERAND (init, 0))
28661 && TREE_OPERAND (init, 0) != decl))
28663 dw_die_ref ref;
28664 dw_loc_descr_ref l;
28666 if (TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST)
28668 rtx rtl = string_cst_pool_decl (TREE_OPERAND (init, 0));
28669 if (!rtl)
28670 return;
28671 decl = SYMBOL_REF_DECL (rtl);
28673 else
28674 decl = TREE_OPERAND (init, 0);
28675 ref = lookup_decl_die (decl);
28676 if (ref == NULL
28677 || (!get_AT (ref, DW_AT_location)
28678 && !get_AT (ref, DW_AT_const_value)))
28679 return;
28680 l = new_loc_descr (dwarf_OP (DW_OP_implicit_pointer), 0, offset);
28681 l->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
28682 l->dw_loc_oprnd1.v.val_die_ref.die = ref;
28683 l->dw_loc_oprnd1.v.val_die_ref.external = 0;
28684 add_AT_loc (die, DW_AT_location, l);
28688 /* Return NULL if l is a DWARF expression, or first op that is not
28689 valid DWARF expression. */
28691 static dw_loc_descr_ref
28692 non_dwarf_expression (dw_loc_descr_ref l)
28694 while (l)
28696 if (l->dw_loc_opc >= DW_OP_reg0 && l->dw_loc_opc <= DW_OP_reg31)
28697 return l;
28698 switch (l->dw_loc_opc)
28700 case DW_OP_regx:
28701 case DW_OP_implicit_value:
28702 case DW_OP_stack_value:
28703 case DW_OP_implicit_pointer:
28704 case DW_OP_GNU_implicit_pointer:
28705 case DW_OP_GNU_parameter_ref:
28706 case DW_OP_piece:
28707 case DW_OP_bit_piece:
28708 return l;
28709 default:
28710 break;
28712 l = l->dw_loc_next;
28714 return NULL;
28717 /* Return adjusted copy of EXPR:
28718 If it is empty DWARF expression, return it.
28719 If it is valid non-empty DWARF expression,
28720 return copy of EXPR with DW_OP_deref appended to it.
28721 If it is DWARF expression followed by DW_OP_reg{N,x}, return
28722 copy of the DWARF expression with DW_OP_breg{N,x} <0> appended.
28723 If it is DWARF expression followed by DW_OP_stack_value, return
28724 copy of the DWARF expression without anything appended.
28725 Otherwise, return NULL. */
28727 static dw_loc_descr_ref
28728 copy_deref_exprloc (dw_loc_descr_ref expr)
28730 dw_loc_descr_ref tail = NULL;
28732 if (expr == NULL)
28733 return NULL;
28735 dw_loc_descr_ref l = non_dwarf_expression (expr);
28736 if (l && l->dw_loc_next)
28737 return NULL;
28739 if (l)
28741 if (l->dw_loc_opc >= DW_OP_reg0 && l->dw_loc_opc <= DW_OP_reg31)
28742 tail = new_loc_descr ((enum dwarf_location_atom)
28743 (DW_OP_breg0 + (l->dw_loc_opc - DW_OP_reg0)),
28744 0, 0);
28745 else
28746 switch (l->dw_loc_opc)
28748 case DW_OP_regx:
28749 tail = new_loc_descr (DW_OP_bregx,
28750 l->dw_loc_oprnd1.v.val_unsigned, 0);
28751 break;
28752 case DW_OP_stack_value:
28753 break;
28754 default:
28755 return NULL;
28758 else
28759 tail = new_loc_descr (DW_OP_deref, 0, 0);
28761 dw_loc_descr_ref ret = NULL, *p = &ret;
28762 while (expr != l)
28764 *p = new_loc_descr (expr->dw_loc_opc, 0, 0);
28765 (*p)->dw_loc_oprnd1 = expr->dw_loc_oprnd1;
28766 (*p)->dw_loc_oprnd2 = expr->dw_loc_oprnd2;
28767 p = &(*p)->dw_loc_next;
28768 expr = expr->dw_loc_next;
28770 *p = tail;
28771 return ret;
28774 /* For DW_AT_string_length attribute with DW_OP_GNU_variable_value
28775 reference to a variable or argument, adjust it if needed and return:
28776 -1 if the DW_AT_string_length attribute and DW_AT_{string_length_,}byte_size
28777 attribute if present should be removed
28778 0 keep the attribute perhaps with minor modifications, no need to rescan
28779 1 if the attribute has been successfully adjusted. */
28781 static int
28782 optimize_string_length (dw_attr_node *a)
28784 dw_loc_descr_ref l = AT_loc (a), lv;
28785 dw_die_ref die;
28786 if (l->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
28788 tree decl = l->dw_loc_oprnd1.v.val_decl_ref;
28789 die = lookup_decl_die (decl);
28790 if (die)
28792 l->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
28793 l->dw_loc_oprnd1.v.val_die_ref.die = die;
28794 l->dw_loc_oprnd1.v.val_die_ref.external = 0;
28796 else
28797 return -1;
28799 else
28800 die = l->dw_loc_oprnd1.v.val_die_ref.die;
28802 /* DWARF5 allows reference class, so we can then reference the DIE.
28803 Only do this for DW_OP_GNU_variable_value DW_OP_stack_value. */
28804 if (l->dw_loc_next != NULL && dwarf_version >= 5)
28806 a->dw_attr_val.val_class = dw_val_class_die_ref;
28807 a->dw_attr_val.val_entry = NULL;
28808 a->dw_attr_val.v.val_die_ref.die = die;
28809 a->dw_attr_val.v.val_die_ref.external = 0;
28810 return 0;
28813 dw_attr_node *av = get_AT (die, DW_AT_location);
28814 dw_loc_list_ref d;
28815 bool non_dwarf_expr = false;
28817 if (av == NULL)
28818 return dwarf_strict ? -1 : 0;
28819 switch (AT_class (av))
28821 case dw_val_class_loc_list:
28822 for (d = AT_loc_list (av); d != NULL; d = d->dw_loc_next)
28823 if (d->expr && non_dwarf_expression (d->expr))
28824 non_dwarf_expr = true;
28825 break;
28826 case dw_val_class_loc:
28827 lv = AT_loc (av);
28828 if (lv == NULL)
28829 return dwarf_strict ? -1 : 0;
28830 if (non_dwarf_expression (lv))
28831 non_dwarf_expr = true;
28832 break;
28833 default:
28834 return dwarf_strict ? -1 : 0;
28837 /* If it is safe to transform DW_OP_GNU_variable_value DW_OP_stack_value
28838 into DW_OP_call4 or DW_OP_GNU_variable_value into
28839 DW_OP_call4 DW_OP_deref, do so. */
28840 if (!non_dwarf_expr
28841 && (l->dw_loc_next != NULL || AT_class (av) == dw_val_class_loc))
28843 l->dw_loc_opc = DW_OP_call4;
28844 if (l->dw_loc_next)
28845 l->dw_loc_next = NULL;
28846 else
28847 l->dw_loc_next = new_loc_descr (DW_OP_deref, 0, 0);
28848 return 0;
28851 /* For DW_OP_GNU_variable_value DW_OP_stack_value, we can just
28852 copy over the DW_AT_location attribute from die to a. */
28853 if (l->dw_loc_next != NULL)
28855 a->dw_attr_val = av->dw_attr_val;
28856 return 1;
28859 dw_loc_list_ref list, *p;
28860 switch (AT_class (av))
28862 case dw_val_class_loc_list:
28863 p = &list;
28864 list = NULL;
28865 for (d = AT_loc_list (av); d != NULL; d = d->dw_loc_next)
28867 lv = copy_deref_exprloc (d->expr);
28868 if (lv)
28870 *p = new_loc_list (lv, d->begin, d->end, d->section);
28871 p = &(*p)->dw_loc_next;
28873 else if (!dwarf_strict && d->expr)
28874 return 0;
28876 if (list == NULL)
28877 return dwarf_strict ? -1 : 0;
28878 a->dw_attr_val.val_class = dw_val_class_loc_list;
28879 gen_llsym (list);
28880 *AT_loc_list_ptr (a) = list;
28881 return 1;
28882 case dw_val_class_loc:
28883 lv = copy_deref_exprloc (AT_loc (av));
28884 if (lv == NULL)
28885 return dwarf_strict ? -1 : 0;
28886 a->dw_attr_val.v.val_loc = lv;
28887 return 1;
28888 default:
28889 gcc_unreachable ();
28893 /* Resolve DW_OP_addr and DW_AT_const_value CONST_STRING arguments to
28894 an address in .rodata section if the string literal is emitted there,
28895 or remove the containing location list or replace DW_AT_const_value
28896 with DW_AT_location and empty location expression, if it isn't found
28897 in .rodata. Similarly for SYMBOL_REFs, keep only those that refer
28898 to something that has been emitted in the current CU. */
28900 static void
28901 resolve_addr (dw_die_ref die)
28903 dw_die_ref c;
28904 dw_attr_node *a;
28905 dw_loc_list_ref *curr, *start, loc;
28906 unsigned ix;
28907 bool remove_AT_byte_size = false;
28909 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
28910 switch (AT_class (a))
28912 case dw_val_class_loc_list:
28913 start = curr = AT_loc_list_ptr (a);
28914 loc = *curr;
28915 gcc_assert (loc);
28916 /* The same list can be referenced more than once. See if we have
28917 already recorded the result from a previous pass. */
28918 if (loc->replaced)
28919 *curr = loc->dw_loc_next;
28920 else if (!loc->resolved_addr)
28922 /* As things stand, we do not expect or allow one die to
28923 reference a suffix of another die's location list chain.
28924 References must be identical or completely separate.
28925 There is therefore no need to cache the result of this
28926 pass on any list other than the first; doing so
28927 would lead to unnecessary writes. */
28928 while (*curr)
28930 gcc_assert (!(*curr)->replaced && !(*curr)->resolved_addr);
28931 if (!resolve_addr_in_expr (a, (*curr)->expr))
28933 dw_loc_list_ref next = (*curr)->dw_loc_next;
28934 dw_loc_descr_ref l = (*curr)->expr;
28936 if (next && (*curr)->ll_symbol)
28938 gcc_assert (!next->ll_symbol);
28939 next->ll_symbol = (*curr)->ll_symbol;
28941 if (dwarf_split_debug_info)
28942 remove_loc_list_addr_table_entries (l);
28943 *curr = next;
28945 else
28947 mark_base_types ((*curr)->expr);
28948 curr = &(*curr)->dw_loc_next;
28951 if (loc == *start)
28952 loc->resolved_addr = 1;
28953 else
28955 loc->replaced = 1;
28956 loc->dw_loc_next = *start;
28959 if (!*start)
28961 remove_AT (die, a->dw_attr);
28962 ix--;
28964 break;
28965 case dw_val_class_loc:
28967 dw_loc_descr_ref l = AT_loc (a);
28968 /* DW_OP_GNU_variable_value DW_OP_stack_value or
28969 DW_OP_GNU_variable_value in DW_AT_string_length can be converted
28970 into DW_OP_call4 or DW_OP_call4 DW_OP_deref, which is standard
28971 DWARF4 unlike DW_OP_GNU_variable_value. Or for DWARF5
28972 DW_OP_GNU_variable_value DW_OP_stack_value can be replaced
28973 with DW_FORM_ref referencing the same DIE as
28974 DW_OP_GNU_variable_value used to reference. */
28975 if (a->dw_attr == DW_AT_string_length
28976 && l
28977 && l->dw_loc_opc == DW_OP_GNU_variable_value
28978 && (l->dw_loc_next == NULL
28979 || (l->dw_loc_next->dw_loc_next == NULL
28980 && l->dw_loc_next->dw_loc_opc == DW_OP_stack_value)))
28982 switch (optimize_string_length (a))
28984 case -1:
28985 remove_AT (die, a->dw_attr);
28986 ix--;
28987 /* If we drop DW_AT_string_length, we need to drop also
28988 DW_AT_{string_length_,}byte_size. */
28989 remove_AT_byte_size = true;
28990 continue;
28991 default:
28992 break;
28993 case 1:
28994 /* Even if we keep the optimized DW_AT_string_length,
28995 it might have changed AT_class, so process it again. */
28996 ix--;
28997 continue;
29000 /* For -gdwarf-2 don't attempt to optimize
29001 DW_AT_data_member_location containing
29002 DW_OP_plus_uconst - older consumers might
29003 rely on it being that op instead of a more complex,
29004 but shorter, location description. */
29005 if ((dwarf_version > 2
29006 || a->dw_attr != DW_AT_data_member_location
29007 || l == NULL
29008 || l->dw_loc_opc != DW_OP_plus_uconst
29009 || l->dw_loc_next != NULL)
29010 && !resolve_addr_in_expr (a, l))
29012 if (dwarf_split_debug_info)
29013 remove_loc_list_addr_table_entries (l);
29014 if (l != NULL
29015 && l->dw_loc_next == NULL
29016 && l->dw_loc_opc == DW_OP_addr
29017 && GET_CODE (l->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF
29018 && SYMBOL_REF_DECL (l->dw_loc_oprnd1.v.val_addr)
29019 && a->dw_attr == DW_AT_location)
29021 tree decl = SYMBOL_REF_DECL (l->dw_loc_oprnd1.v.val_addr);
29022 remove_AT (die, a->dw_attr);
29023 ix--;
29024 optimize_location_into_implicit_ptr (die, decl);
29025 break;
29027 if (a->dw_attr == DW_AT_string_length)
29028 /* If we drop DW_AT_string_length, we need to drop also
29029 DW_AT_{string_length_,}byte_size. */
29030 remove_AT_byte_size = true;
29031 remove_AT (die, a->dw_attr);
29032 ix--;
29034 else
29035 mark_base_types (l);
29037 break;
29038 case dw_val_class_addr:
29039 if (a->dw_attr == DW_AT_const_value
29040 && !resolve_one_addr (&a->dw_attr_val.v.val_addr))
29042 if (AT_index (a) != NOT_INDEXED)
29043 remove_addr_table_entry (a->dw_attr_val.val_entry);
29044 remove_AT (die, a->dw_attr);
29045 ix--;
29047 if ((die->die_tag == DW_TAG_call_site
29048 && a->dw_attr == DW_AT_call_origin)
29049 || (die->die_tag == DW_TAG_GNU_call_site
29050 && a->dw_attr == DW_AT_abstract_origin))
29052 tree tdecl = SYMBOL_REF_DECL (a->dw_attr_val.v.val_addr);
29053 dw_die_ref tdie = lookup_decl_die (tdecl);
29054 dw_die_ref cdie;
29055 if (tdie == NULL
29056 && DECL_EXTERNAL (tdecl)
29057 && DECL_ABSTRACT_ORIGIN (tdecl) == NULL_TREE
29058 && (cdie = lookup_context_die (DECL_CONTEXT (tdecl))))
29060 dw_die_ref pdie = cdie;
29061 /* Make sure we don't add these DIEs into type units.
29062 We could emit skeleton DIEs for context (namespaces,
29063 outer structs/classes) and a skeleton DIE for the
29064 innermost context with DW_AT_signature pointing to the
29065 type unit. See PR78835. */
29066 while (pdie && pdie->die_tag != DW_TAG_type_unit)
29067 pdie = pdie->die_parent;
29068 if (pdie == NULL)
29070 /* Creating a full DIE for tdecl is overly expensive and
29071 at this point even wrong when in the LTO phase
29072 as it can end up generating new type DIEs we didn't
29073 output and thus optimize_external_refs will crash. */
29074 tdie = new_die (DW_TAG_subprogram, cdie, NULL_TREE);
29075 add_AT_flag (tdie, DW_AT_external, 1);
29076 add_AT_flag (tdie, DW_AT_declaration, 1);
29077 add_linkage_attr (tdie, tdecl);
29078 add_name_and_src_coords_attributes (tdie, tdecl, true);
29079 equate_decl_number_to_die (tdecl, tdie);
29082 if (tdie)
29084 a->dw_attr_val.val_class = dw_val_class_die_ref;
29085 a->dw_attr_val.v.val_die_ref.die = tdie;
29086 a->dw_attr_val.v.val_die_ref.external = 0;
29088 else
29090 if (AT_index (a) != NOT_INDEXED)
29091 remove_addr_table_entry (a->dw_attr_val.val_entry);
29092 remove_AT (die, a->dw_attr);
29093 ix--;
29096 break;
29097 default:
29098 break;
29101 if (remove_AT_byte_size)
29102 remove_AT (die, dwarf_version >= 5
29103 ? DW_AT_string_length_byte_size
29104 : DW_AT_byte_size);
29106 FOR_EACH_CHILD (die, c, resolve_addr (c));
29109 /* Helper routines for optimize_location_lists.
29110 This pass tries to share identical local lists in .debug_loc
29111 section. */
29113 /* Iteratively hash operands of LOC opcode into HSTATE. */
29115 static void
29116 hash_loc_operands (dw_loc_descr_ref loc, inchash::hash &hstate)
29118 dw_val_ref val1 = &loc->dw_loc_oprnd1;
29119 dw_val_ref val2 = &loc->dw_loc_oprnd2;
29121 switch (loc->dw_loc_opc)
29123 case DW_OP_const4u:
29124 case DW_OP_const8u:
29125 if (loc->dtprel)
29126 goto hash_addr;
29127 /* FALLTHRU */
29128 case DW_OP_const1u:
29129 case DW_OP_const1s:
29130 case DW_OP_const2u:
29131 case DW_OP_const2s:
29132 case DW_OP_const4s:
29133 case DW_OP_const8s:
29134 case DW_OP_constu:
29135 case DW_OP_consts:
29136 case DW_OP_pick:
29137 case DW_OP_plus_uconst:
29138 case DW_OP_breg0:
29139 case DW_OP_breg1:
29140 case DW_OP_breg2:
29141 case DW_OP_breg3:
29142 case DW_OP_breg4:
29143 case DW_OP_breg5:
29144 case DW_OP_breg6:
29145 case DW_OP_breg7:
29146 case DW_OP_breg8:
29147 case DW_OP_breg9:
29148 case DW_OP_breg10:
29149 case DW_OP_breg11:
29150 case DW_OP_breg12:
29151 case DW_OP_breg13:
29152 case DW_OP_breg14:
29153 case DW_OP_breg15:
29154 case DW_OP_breg16:
29155 case DW_OP_breg17:
29156 case DW_OP_breg18:
29157 case DW_OP_breg19:
29158 case DW_OP_breg20:
29159 case DW_OP_breg21:
29160 case DW_OP_breg22:
29161 case DW_OP_breg23:
29162 case DW_OP_breg24:
29163 case DW_OP_breg25:
29164 case DW_OP_breg26:
29165 case DW_OP_breg27:
29166 case DW_OP_breg28:
29167 case DW_OP_breg29:
29168 case DW_OP_breg30:
29169 case DW_OP_breg31:
29170 case DW_OP_regx:
29171 case DW_OP_fbreg:
29172 case DW_OP_piece:
29173 case DW_OP_deref_size:
29174 case DW_OP_xderef_size:
29175 hstate.add_object (val1->v.val_int);
29176 break;
29177 case DW_OP_skip:
29178 case DW_OP_bra:
29180 int offset;
29182 gcc_assert (val1->val_class == dw_val_class_loc);
29183 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
29184 hstate.add_object (offset);
29186 break;
29187 case DW_OP_implicit_value:
29188 hstate.add_object (val1->v.val_unsigned);
29189 switch (val2->val_class)
29191 case dw_val_class_const:
29192 hstate.add_object (val2->v.val_int);
29193 break;
29194 case dw_val_class_vec:
29196 unsigned int elt_size = val2->v.val_vec.elt_size;
29197 unsigned int len = val2->v.val_vec.length;
29199 hstate.add_int (elt_size);
29200 hstate.add_int (len);
29201 hstate.add (val2->v.val_vec.array, len * elt_size);
29203 break;
29204 case dw_val_class_const_double:
29205 hstate.add_object (val2->v.val_double.low);
29206 hstate.add_object (val2->v.val_double.high);
29207 break;
29208 case dw_val_class_wide_int:
29209 hstate.add (val2->v.val_wide->get_val (),
29210 get_full_len (*val2->v.val_wide)
29211 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
29212 break;
29213 case dw_val_class_addr:
29214 inchash::add_rtx (val2->v.val_addr, hstate);
29215 break;
29216 default:
29217 gcc_unreachable ();
29219 break;
29220 case DW_OP_bregx:
29221 case DW_OP_bit_piece:
29222 hstate.add_object (val1->v.val_int);
29223 hstate.add_object (val2->v.val_int);
29224 break;
29225 case DW_OP_addr:
29226 hash_addr:
29227 if (loc->dtprel)
29229 unsigned char dtprel = 0xd1;
29230 hstate.add_object (dtprel);
29232 inchash::add_rtx (val1->v.val_addr, hstate);
29233 break;
29234 case DW_OP_GNU_addr_index:
29235 case DW_OP_GNU_const_index:
29237 if (loc->dtprel)
29239 unsigned char dtprel = 0xd1;
29240 hstate.add_object (dtprel);
29242 inchash::add_rtx (val1->val_entry->addr.rtl, hstate);
29244 break;
29245 case DW_OP_implicit_pointer:
29246 case DW_OP_GNU_implicit_pointer:
29247 hstate.add_int (val2->v.val_int);
29248 break;
29249 case DW_OP_entry_value:
29250 case DW_OP_GNU_entry_value:
29251 hstate.add_object (val1->v.val_loc);
29252 break;
29253 case DW_OP_regval_type:
29254 case DW_OP_deref_type:
29255 case DW_OP_GNU_regval_type:
29256 case DW_OP_GNU_deref_type:
29258 unsigned int byte_size
29259 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_byte_size);
29260 unsigned int encoding
29261 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_encoding);
29262 hstate.add_object (val1->v.val_int);
29263 hstate.add_object (byte_size);
29264 hstate.add_object (encoding);
29266 break;
29267 case DW_OP_convert:
29268 case DW_OP_reinterpret:
29269 case DW_OP_GNU_convert:
29270 case DW_OP_GNU_reinterpret:
29271 if (val1->val_class == dw_val_class_unsigned_const)
29273 hstate.add_object (val1->v.val_unsigned);
29274 break;
29276 /* FALLTHRU */
29277 case DW_OP_const_type:
29278 case DW_OP_GNU_const_type:
29280 unsigned int byte_size
29281 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_byte_size);
29282 unsigned int encoding
29283 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_encoding);
29284 hstate.add_object (byte_size);
29285 hstate.add_object (encoding);
29286 if (loc->dw_loc_opc != DW_OP_const_type
29287 && loc->dw_loc_opc != DW_OP_GNU_const_type)
29288 break;
29289 hstate.add_object (val2->val_class);
29290 switch (val2->val_class)
29292 case dw_val_class_const:
29293 hstate.add_object (val2->v.val_int);
29294 break;
29295 case dw_val_class_vec:
29297 unsigned int elt_size = val2->v.val_vec.elt_size;
29298 unsigned int len = val2->v.val_vec.length;
29300 hstate.add_object (elt_size);
29301 hstate.add_object (len);
29302 hstate.add (val2->v.val_vec.array, len * elt_size);
29304 break;
29305 case dw_val_class_const_double:
29306 hstate.add_object (val2->v.val_double.low);
29307 hstate.add_object (val2->v.val_double.high);
29308 break;
29309 case dw_val_class_wide_int:
29310 hstate.add (val2->v.val_wide->get_val (),
29311 get_full_len (*val2->v.val_wide)
29312 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
29313 break;
29314 default:
29315 gcc_unreachable ();
29318 break;
29320 default:
29321 /* Other codes have no operands. */
29322 break;
29326 /* Iteratively hash the whole DWARF location expression LOC into HSTATE. */
29328 static inline void
29329 hash_locs (dw_loc_descr_ref loc, inchash::hash &hstate)
29331 dw_loc_descr_ref l;
29332 bool sizes_computed = false;
29333 /* Compute sizes, so that DW_OP_skip/DW_OP_bra can be checksummed. */
29334 size_of_locs (loc);
29336 for (l = loc; l != NULL; l = l->dw_loc_next)
29338 enum dwarf_location_atom opc = l->dw_loc_opc;
29339 hstate.add_object (opc);
29340 if ((opc == DW_OP_skip || opc == DW_OP_bra) && !sizes_computed)
29342 size_of_locs (loc);
29343 sizes_computed = true;
29345 hash_loc_operands (l, hstate);
29349 /* Compute hash of the whole location list LIST_HEAD. */
29351 static inline void
29352 hash_loc_list (dw_loc_list_ref list_head)
29354 dw_loc_list_ref curr = list_head;
29355 inchash::hash hstate;
29357 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
29359 hstate.add (curr->begin, strlen (curr->begin) + 1);
29360 hstate.add (curr->end, strlen (curr->end) + 1);
29361 if (curr->section)
29362 hstate.add (curr->section, strlen (curr->section) + 1);
29363 hash_locs (curr->expr, hstate);
29365 list_head->hash = hstate.end ();
29368 /* Return true if X and Y opcodes have the same operands. */
29370 static inline bool
29371 compare_loc_operands (dw_loc_descr_ref x, dw_loc_descr_ref y)
29373 dw_val_ref valx1 = &x->dw_loc_oprnd1;
29374 dw_val_ref valx2 = &x->dw_loc_oprnd2;
29375 dw_val_ref valy1 = &y->dw_loc_oprnd1;
29376 dw_val_ref valy2 = &y->dw_loc_oprnd2;
29378 switch (x->dw_loc_opc)
29380 case DW_OP_const4u:
29381 case DW_OP_const8u:
29382 if (x->dtprel)
29383 goto hash_addr;
29384 /* FALLTHRU */
29385 case DW_OP_const1u:
29386 case DW_OP_const1s:
29387 case DW_OP_const2u:
29388 case DW_OP_const2s:
29389 case DW_OP_const4s:
29390 case DW_OP_const8s:
29391 case DW_OP_constu:
29392 case DW_OP_consts:
29393 case DW_OP_pick:
29394 case DW_OP_plus_uconst:
29395 case DW_OP_breg0:
29396 case DW_OP_breg1:
29397 case DW_OP_breg2:
29398 case DW_OP_breg3:
29399 case DW_OP_breg4:
29400 case DW_OP_breg5:
29401 case DW_OP_breg6:
29402 case DW_OP_breg7:
29403 case DW_OP_breg8:
29404 case DW_OP_breg9:
29405 case DW_OP_breg10:
29406 case DW_OP_breg11:
29407 case DW_OP_breg12:
29408 case DW_OP_breg13:
29409 case DW_OP_breg14:
29410 case DW_OP_breg15:
29411 case DW_OP_breg16:
29412 case DW_OP_breg17:
29413 case DW_OP_breg18:
29414 case DW_OP_breg19:
29415 case DW_OP_breg20:
29416 case DW_OP_breg21:
29417 case DW_OP_breg22:
29418 case DW_OP_breg23:
29419 case DW_OP_breg24:
29420 case DW_OP_breg25:
29421 case DW_OP_breg26:
29422 case DW_OP_breg27:
29423 case DW_OP_breg28:
29424 case DW_OP_breg29:
29425 case DW_OP_breg30:
29426 case DW_OP_breg31:
29427 case DW_OP_regx:
29428 case DW_OP_fbreg:
29429 case DW_OP_piece:
29430 case DW_OP_deref_size:
29431 case DW_OP_xderef_size:
29432 return valx1->v.val_int == valy1->v.val_int;
29433 case DW_OP_skip:
29434 case DW_OP_bra:
29435 /* If splitting debug info, the use of DW_OP_GNU_addr_index
29436 can cause irrelevant differences in dw_loc_addr. */
29437 gcc_assert (valx1->val_class == dw_val_class_loc
29438 && valy1->val_class == dw_val_class_loc
29439 && (dwarf_split_debug_info
29440 || x->dw_loc_addr == y->dw_loc_addr));
29441 return valx1->v.val_loc->dw_loc_addr == valy1->v.val_loc->dw_loc_addr;
29442 case DW_OP_implicit_value:
29443 if (valx1->v.val_unsigned != valy1->v.val_unsigned
29444 || valx2->val_class != valy2->val_class)
29445 return false;
29446 switch (valx2->val_class)
29448 case dw_val_class_const:
29449 return valx2->v.val_int == valy2->v.val_int;
29450 case dw_val_class_vec:
29451 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
29452 && valx2->v.val_vec.length == valy2->v.val_vec.length
29453 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
29454 valx2->v.val_vec.elt_size
29455 * valx2->v.val_vec.length) == 0;
29456 case dw_val_class_const_double:
29457 return valx2->v.val_double.low == valy2->v.val_double.low
29458 && valx2->v.val_double.high == valy2->v.val_double.high;
29459 case dw_val_class_wide_int:
29460 return *valx2->v.val_wide == *valy2->v.val_wide;
29461 case dw_val_class_addr:
29462 return rtx_equal_p (valx2->v.val_addr, valy2->v.val_addr);
29463 default:
29464 gcc_unreachable ();
29466 case DW_OP_bregx:
29467 case DW_OP_bit_piece:
29468 return valx1->v.val_int == valy1->v.val_int
29469 && valx2->v.val_int == valy2->v.val_int;
29470 case DW_OP_addr:
29471 hash_addr:
29472 return rtx_equal_p (valx1->v.val_addr, valy1->v.val_addr);
29473 case DW_OP_GNU_addr_index:
29474 case DW_OP_GNU_const_index:
29476 rtx ax1 = valx1->val_entry->addr.rtl;
29477 rtx ay1 = valy1->val_entry->addr.rtl;
29478 return rtx_equal_p (ax1, ay1);
29480 case DW_OP_implicit_pointer:
29481 case DW_OP_GNU_implicit_pointer:
29482 return valx1->val_class == dw_val_class_die_ref
29483 && valx1->val_class == valy1->val_class
29484 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die
29485 && valx2->v.val_int == valy2->v.val_int;
29486 case DW_OP_entry_value:
29487 case DW_OP_GNU_entry_value:
29488 return compare_loc_operands (valx1->v.val_loc, valy1->v.val_loc);
29489 case DW_OP_const_type:
29490 case DW_OP_GNU_const_type:
29491 if (valx1->v.val_die_ref.die != valy1->v.val_die_ref.die
29492 || valx2->val_class != valy2->val_class)
29493 return false;
29494 switch (valx2->val_class)
29496 case dw_val_class_const:
29497 return valx2->v.val_int == valy2->v.val_int;
29498 case dw_val_class_vec:
29499 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
29500 && valx2->v.val_vec.length == valy2->v.val_vec.length
29501 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
29502 valx2->v.val_vec.elt_size
29503 * valx2->v.val_vec.length) == 0;
29504 case dw_val_class_const_double:
29505 return valx2->v.val_double.low == valy2->v.val_double.low
29506 && valx2->v.val_double.high == valy2->v.val_double.high;
29507 case dw_val_class_wide_int:
29508 return *valx2->v.val_wide == *valy2->v.val_wide;
29509 default:
29510 gcc_unreachable ();
29512 case DW_OP_regval_type:
29513 case DW_OP_deref_type:
29514 case DW_OP_GNU_regval_type:
29515 case DW_OP_GNU_deref_type:
29516 return valx1->v.val_int == valy1->v.val_int
29517 && valx2->v.val_die_ref.die == valy2->v.val_die_ref.die;
29518 case DW_OP_convert:
29519 case DW_OP_reinterpret:
29520 case DW_OP_GNU_convert:
29521 case DW_OP_GNU_reinterpret:
29522 if (valx1->val_class != valy1->val_class)
29523 return false;
29524 if (valx1->val_class == dw_val_class_unsigned_const)
29525 return valx1->v.val_unsigned == valy1->v.val_unsigned;
29526 return valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
29527 case DW_OP_GNU_parameter_ref:
29528 return valx1->val_class == dw_val_class_die_ref
29529 && valx1->val_class == valy1->val_class
29530 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
29531 default:
29532 /* Other codes have no operands. */
29533 return true;
29537 /* Return true if DWARF location expressions X and Y are the same. */
29539 static inline bool
29540 compare_locs (dw_loc_descr_ref x, dw_loc_descr_ref y)
29542 for (; x != NULL && y != NULL; x = x->dw_loc_next, y = y->dw_loc_next)
29543 if (x->dw_loc_opc != y->dw_loc_opc
29544 || x->dtprel != y->dtprel
29545 || !compare_loc_operands (x, y))
29546 break;
29547 return x == NULL && y == NULL;
29550 /* Hashtable helpers. */
29552 struct loc_list_hasher : nofree_ptr_hash <dw_loc_list_struct>
29554 static inline hashval_t hash (const dw_loc_list_struct *);
29555 static inline bool equal (const dw_loc_list_struct *,
29556 const dw_loc_list_struct *);
29559 /* Return precomputed hash of location list X. */
29561 inline hashval_t
29562 loc_list_hasher::hash (const dw_loc_list_struct *x)
29564 return x->hash;
29567 /* Return true if location lists A and B are the same. */
29569 inline bool
29570 loc_list_hasher::equal (const dw_loc_list_struct *a,
29571 const dw_loc_list_struct *b)
29573 if (a == b)
29574 return 1;
29575 if (a->hash != b->hash)
29576 return 0;
29577 for (; a != NULL && b != NULL; a = a->dw_loc_next, b = b->dw_loc_next)
29578 if (strcmp (a->begin, b->begin) != 0
29579 || strcmp (a->end, b->end) != 0
29580 || (a->section == NULL) != (b->section == NULL)
29581 || (a->section && strcmp (a->section, b->section) != 0)
29582 || !compare_locs (a->expr, b->expr))
29583 break;
29584 return a == NULL && b == NULL;
29587 typedef hash_table<loc_list_hasher> loc_list_hash_type;
29590 /* Recursively optimize location lists referenced from DIE
29591 children and share them whenever possible. */
29593 static void
29594 optimize_location_lists_1 (dw_die_ref die, loc_list_hash_type *htab)
29596 dw_die_ref c;
29597 dw_attr_node *a;
29598 unsigned ix;
29599 dw_loc_list_struct **slot;
29601 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
29602 if (AT_class (a) == dw_val_class_loc_list)
29604 dw_loc_list_ref list = AT_loc_list (a);
29605 /* TODO: perform some optimizations here, before hashing
29606 it and storing into the hash table. */
29607 hash_loc_list (list);
29608 slot = htab->find_slot_with_hash (list, list->hash, INSERT);
29609 if (*slot == NULL)
29610 *slot = list;
29611 else
29612 a->dw_attr_val.v.val_loc_list = *slot;
29615 FOR_EACH_CHILD (die, c, optimize_location_lists_1 (c, htab));
29619 /* Recursively assign each location list a unique index into the debug_addr
29620 section. */
29622 static void
29623 index_location_lists (dw_die_ref die)
29625 dw_die_ref c;
29626 dw_attr_node *a;
29627 unsigned ix;
29629 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
29630 if (AT_class (a) == dw_val_class_loc_list)
29632 dw_loc_list_ref list = AT_loc_list (a);
29633 dw_loc_list_ref curr;
29634 for (curr = list; curr != NULL; curr = curr->dw_loc_next)
29636 /* Don't index an entry that has already been indexed
29637 or won't be output. */
29638 if (curr->begin_entry != NULL
29639 || (strcmp (curr->begin, curr->end) == 0 && !curr->force))
29640 continue;
29642 curr->begin_entry
29643 = add_addr_table_entry (xstrdup (curr->begin), ate_kind_label);
29647 FOR_EACH_CHILD (die, c, index_location_lists (c));
29650 /* Optimize location lists referenced from DIE
29651 children and share them whenever possible. */
29653 static void
29654 optimize_location_lists (dw_die_ref die)
29656 loc_list_hash_type htab (500);
29657 optimize_location_lists_1 (die, &htab);
29660 /* Traverse the limbo die list, and add parent/child links. The only
29661 dies without parents that should be here are concrete instances of
29662 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
29663 For concrete instances, we can get the parent die from the abstract
29664 instance. */
29666 static void
29667 flush_limbo_die_list (void)
29669 limbo_die_node *node;
29671 /* get_context_die calls force_decl_die, which can put new DIEs on the
29672 limbo list in LTO mode when nested functions are put in a different
29673 partition than that of their parent function. */
29674 while ((node = limbo_die_list))
29676 dw_die_ref die = node->die;
29677 limbo_die_list = node->next;
29679 if (die->die_parent == NULL)
29681 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
29683 if (origin && origin->die_parent)
29684 add_child_die (origin->die_parent, die);
29685 else if (is_cu_die (die))
29687 else if (seen_error ())
29688 /* It's OK to be confused by errors in the input. */
29689 add_child_die (comp_unit_die (), die);
29690 else
29692 /* In certain situations, the lexical block containing a
29693 nested function can be optimized away, which results
29694 in the nested function die being orphaned. Likewise
29695 with the return type of that nested function. Force
29696 this to be a child of the containing function.
29698 It may happen that even the containing function got fully
29699 inlined and optimized out. In that case we are lost and
29700 assign the empty child. This should not be big issue as
29701 the function is likely unreachable too. */
29702 gcc_assert (node->created_for);
29704 if (DECL_P (node->created_for))
29705 origin = get_context_die (DECL_CONTEXT (node->created_for));
29706 else if (TYPE_P (node->created_for))
29707 origin = scope_die_for (node->created_for, comp_unit_die ());
29708 else
29709 origin = comp_unit_die ();
29711 add_child_die (origin, die);
29717 /* Reset DIEs so we can output them again. */
29719 static void
29720 reset_dies (dw_die_ref die)
29722 dw_die_ref c;
29724 /* Remove stuff we re-generate. */
29725 die->die_mark = 0;
29726 die->die_offset = 0;
29727 die->die_abbrev = 0;
29728 remove_AT (die, DW_AT_sibling);
29730 FOR_EACH_CHILD (die, c, reset_dies (c));
29733 /* Output stuff that dwarf requires at the end of every file,
29734 and generate the DWARF-2 debugging info. */
29736 static void
29737 dwarf2out_finish (const char *)
29739 comdat_type_node *ctnode;
29740 dw_die_ref main_comp_unit_die;
29741 unsigned char checksum[16];
29742 char dl_section_ref[MAX_ARTIFICIAL_LABEL_BYTES];
29744 /* Flush out any latecomers to the limbo party. */
29745 flush_limbo_die_list ();
29747 if (flag_checking)
29749 verify_die (comp_unit_die ());
29750 for (limbo_die_node *node = cu_die_list; node; node = node->next)
29751 verify_die (node->die);
29754 /* We shouldn't have any symbols with delayed asm names for
29755 DIEs generated after early finish. */
29756 gcc_assert (deferred_asm_name == NULL);
29758 gen_remaining_tmpl_value_param_die_attribute ();
29760 if (flag_generate_lto || flag_generate_offload)
29762 gcc_assert (flag_fat_lto_objects || flag_generate_offload);
29764 /* Prune stuff so that dwarf2out_finish runs successfully
29765 for the fat part of the object. */
29766 reset_dies (comp_unit_die ());
29767 for (limbo_die_node *node = cu_die_list; node; node = node->next)
29768 reset_dies (node->die);
29770 hash_table<comdat_type_hasher> comdat_type_table (100);
29771 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
29773 comdat_type_node **slot
29774 = comdat_type_table.find_slot (ctnode, INSERT);
29776 /* Don't reset types twice. */
29777 if (*slot != HTAB_EMPTY_ENTRY)
29778 continue;
29780 /* Add a pointer to the line table for the main compilation unit
29781 so that the debugger can make sense of DW_AT_decl_file
29782 attributes. */
29783 if (debug_info_level >= DINFO_LEVEL_TERSE)
29784 reset_dies (ctnode->root_die);
29786 *slot = ctnode;
29789 /* Reset die CU symbol so we don't output it twice. */
29790 comp_unit_die ()->die_id.die_symbol = NULL;
29792 /* Remove DW_AT_macro from the early output. */
29793 if (have_macinfo)
29794 remove_AT (comp_unit_die (), DEBUG_MACRO_ATTRIBUTE);
29796 /* Remove indirect string decisions. */
29797 debug_str_hash->traverse<void *, reset_indirect_string> (NULL);
29800 #if ENABLE_ASSERT_CHECKING
29802 dw_die_ref die = comp_unit_die (), c;
29803 FOR_EACH_CHILD (die, c, gcc_assert (! c->die_mark));
29805 #endif
29806 resolve_addr (comp_unit_die ());
29807 move_marked_base_types ();
29809 /* Initialize sections and labels used for actual assembler output. */
29810 init_sections_and_labels (false);
29812 /* Traverse the DIE's and add sibling attributes to those DIE's that
29813 have children. */
29814 add_sibling_attributes (comp_unit_die ());
29815 limbo_die_node *node;
29816 for (node = cu_die_list; node; node = node->next)
29817 add_sibling_attributes (node->die);
29818 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
29819 add_sibling_attributes (ctnode->root_die);
29821 /* When splitting DWARF info, we put some attributes in the
29822 skeleton compile_unit DIE that remains in the .o, while
29823 most attributes go in the DWO compile_unit_die. */
29824 if (dwarf_split_debug_info)
29826 limbo_die_node *cu;
29827 main_comp_unit_die = gen_compile_unit_die (NULL);
29828 if (dwarf_version >= 5)
29829 main_comp_unit_die->die_tag = DW_TAG_skeleton_unit;
29830 cu = limbo_die_list;
29831 gcc_assert (cu->die == main_comp_unit_die);
29832 limbo_die_list = limbo_die_list->next;
29833 cu->next = cu_die_list;
29834 cu_die_list = cu;
29836 else
29837 main_comp_unit_die = comp_unit_die ();
29839 /* Output a terminator label for the .text section. */
29840 switch_to_section (text_section);
29841 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
29842 if (cold_text_section)
29844 switch_to_section (cold_text_section);
29845 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
29848 /* We can only use the low/high_pc attributes if all of the code was
29849 in .text. */
29850 if (!have_multiple_function_sections
29851 || (dwarf_version < 3 && dwarf_strict))
29853 /* Don't add if the CU has no associated code. */
29854 if (text_section_used)
29855 add_AT_low_high_pc (main_comp_unit_die, text_section_label,
29856 text_end_label, true);
29858 else
29860 unsigned fde_idx;
29861 dw_fde_ref fde;
29862 bool range_list_added = false;
29864 if (text_section_used)
29865 add_ranges_by_labels (main_comp_unit_die, text_section_label,
29866 text_end_label, &range_list_added, true);
29867 if (cold_text_section_used)
29868 add_ranges_by_labels (main_comp_unit_die, cold_text_section_label,
29869 cold_end_label, &range_list_added, true);
29871 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
29873 if (DECL_IGNORED_P (fde->decl))
29874 continue;
29875 if (!fde->in_std_section)
29876 add_ranges_by_labels (main_comp_unit_die, fde->dw_fde_begin,
29877 fde->dw_fde_end, &range_list_added,
29878 true);
29879 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
29880 add_ranges_by_labels (main_comp_unit_die, fde->dw_fde_second_begin,
29881 fde->dw_fde_second_end, &range_list_added,
29882 true);
29885 if (range_list_added)
29887 /* We need to give .debug_loc and .debug_ranges an appropriate
29888 "base address". Use zero so that these addresses become
29889 absolute. Historically, we've emitted the unexpected
29890 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
29891 Emit both to give time for other tools to adapt. */
29892 add_AT_addr (main_comp_unit_die, DW_AT_low_pc, const0_rtx, true);
29893 if (! dwarf_strict && dwarf_version < 4)
29894 add_AT_addr (main_comp_unit_die, DW_AT_entry_pc, const0_rtx, true);
29896 add_ranges (NULL);
29900 /* AIX Assembler inserts the length, so adjust the reference to match the
29901 offset expected by debuggers. */
29902 strcpy (dl_section_ref, debug_line_section_label);
29903 if (XCOFF_DEBUGGING_INFO)
29904 strcat (dl_section_ref, DWARF_INITIAL_LENGTH_SIZE_STR);
29906 if (debug_info_level >= DINFO_LEVEL_TERSE)
29907 add_AT_lineptr (main_comp_unit_die, DW_AT_stmt_list,
29908 dl_section_ref);
29910 if (have_macinfo)
29911 add_AT_macptr (comp_unit_die (), DEBUG_MACRO_ATTRIBUTE,
29912 macinfo_section_label);
29914 if (dwarf_split_debug_info)
29916 if (have_location_lists)
29918 if (dwarf_version >= 5)
29919 add_AT_loclistsptr (comp_unit_die (), DW_AT_loclists_base,
29920 loc_section_label);
29921 /* optimize_location_lists calculates the size of the lists,
29922 so index them first, and assign indices to the entries.
29923 Although optimize_location_lists will remove entries from
29924 the table, it only does so for duplicates, and therefore
29925 only reduces ref_counts to 1. */
29926 index_location_lists (comp_unit_die ());
29929 if (addr_index_table != NULL)
29931 unsigned int index = 0;
29932 addr_index_table
29933 ->traverse_noresize<unsigned int *, index_addr_table_entry>
29934 (&index);
29938 loc_list_idx = 0;
29939 if (have_location_lists)
29941 optimize_location_lists (comp_unit_die ());
29942 /* And finally assign indexes to the entries for -gsplit-dwarf. */
29943 if (dwarf_version >= 5 && dwarf_split_debug_info)
29944 assign_location_list_indexes (comp_unit_die ());
29947 save_macinfo_strings ();
29949 if (dwarf_split_debug_info)
29951 unsigned int index = 0;
29953 /* Add attributes common to skeleton compile_units and
29954 type_units. Because these attributes include strings, it
29955 must be done before freezing the string table. Top-level
29956 skeleton die attrs are added when the skeleton type unit is
29957 created, so ensure it is created by this point. */
29958 add_top_level_skeleton_die_attrs (main_comp_unit_die);
29959 debug_str_hash->traverse_noresize<unsigned int *, index_string> (&index);
29962 /* Output all of the compilation units. We put the main one last so that
29963 the offsets are available to output_pubnames. */
29964 for (node = cu_die_list; node; node = node->next)
29965 output_comp_unit (node->die, 0, NULL);
29967 hash_table<comdat_type_hasher> comdat_type_table (100);
29968 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
29970 comdat_type_node **slot = comdat_type_table.find_slot (ctnode, INSERT);
29972 /* Don't output duplicate types. */
29973 if (*slot != HTAB_EMPTY_ENTRY)
29974 continue;
29976 /* Add a pointer to the line table for the main compilation unit
29977 so that the debugger can make sense of DW_AT_decl_file
29978 attributes. */
29979 if (debug_info_level >= DINFO_LEVEL_TERSE)
29980 add_AT_lineptr (ctnode->root_die, DW_AT_stmt_list,
29981 (!dwarf_split_debug_info
29982 ? dl_section_ref
29983 : debug_skeleton_line_section_label));
29985 output_comdat_type_unit (ctnode);
29986 *slot = ctnode;
29989 if (dwarf_split_debug_info)
29991 int mark;
29992 struct md5_ctx ctx;
29994 if (dwarf_version >= 5 && !vec_safe_is_empty (ranges_table))
29995 index_rnglists ();
29997 /* Compute a checksum of the comp_unit to use as the dwo_id. */
29998 md5_init_ctx (&ctx);
29999 mark = 0;
30000 die_checksum (comp_unit_die (), &ctx, &mark);
30001 unmark_all_dies (comp_unit_die ());
30002 md5_finish_ctx (&ctx, checksum);
30004 if (dwarf_version < 5)
30006 /* Use the first 8 bytes of the checksum as the dwo_id,
30007 and add it to both comp-unit DIEs. */
30008 add_AT_data8 (main_comp_unit_die, DW_AT_GNU_dwo_id, checksum);
30009 add_AT_data8 (comp_unit_die (), DW_AT_GNU_dwo_id, checksum);
30012 /* Add the base offset of the ranges table to the skeleton
30013 comp-unit DIE. */
30014 if (!vec_safe_is_empty (ranges_table))
30016 if (dwarf_version >= 5)
30017 add_AT_lineptr (main_comp_unit_die, DW_AT_rnglists_base,
30018 ranges_base_label);
30019 else
30020 add_AT_lineptr (main_comp_unit_die, DW_AT_GNU_ranges_base,
30021 ranges_section_label);
30024 switch_to_section (debug_addr_section);
30025 ASM_OUTPUT_LABEL (asm_out_file, debug_addr_section_label);
30026 output_addr_table ();
30029 /* Output the main compilation unit if non-empty or if .debug_macinfo
30030 or .debug_macro will be emitted. */
30031 output_comp_unit (comp_unit_die (), have_macinfo,
30032 dwarf_split_debug_info ? checksum : NULL);
30034 if (dwarf_split_debug_info && info_section_emitted)
30035 output_skeleton_debug_sections (main_comp_unit_die, checksum);
30037 /* Output the abbreviation table. */
30038 if (vec_safe_length (abbrev_die_table) != 1)
30040 switch_to_section (debug_abbrev_section);
30041 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
30042 output_abbrev_section ();
30045 /* Output location list section if necessary. */
30046 if (have_location_lists)
30048 char l1[MAX_ARTIFICIAL_LABEL_BYTES];
30049 char l2[MAX_ARTIFICIAL_LABEL_BYTES];
30050 /* Output the location lists info. */
30051 switch_to_section (debug_loc_section);
30052 if (dwarf_version >= 5)
30054 ASM_GENERATE_INTERNAL_LABEL (l1, DEBUG_LOC_SECTION_LABEL, 1);
30055 ASM_GENERATE_INTERNAL_LABEL (l2, DEBUG_LOC_SECTION_LABEL, 2);
30056 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
30057 dw2_asm_output_data (4, 0xffffffff,
30058 "Initial length escape value indicating "
30059 "64-bit DWARF extension");
30060 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
30061 "Length of Location Lists");
30062 ASM_OUTPUT_LABEL (asm_out_file, l1);
30063 dw2_asm_output_data (2, dwarf_version, "DWARF Version");
30064 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Address Size");
30065 dw2_asm_output_data (1, 0, "Segment Size");
30066 dw2_asm_output_data (4, dwarf_split_debug_info ? loc_list_idx : 0,
30067 "Offset Entry Count");
30069 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
30070 if (dwarf_version >= 5 && dwarf_split_debug_info)
30072 unsigned int save_loc_list_idx = loc_list_idx;
30073 loc_list_idx = 0;
30074 output_loclists_offsets (comp_unit_die ());
30075 gcc_assert (save_loc_list_idx == loc_list_idx);
30077 output_location_lists (comp_unit_die ());
30078 if (dwarf_version >= 5)
30079 ASM_OUTPUT_LABEL (asm_out_file, l2);
30082 output_pubtables ();
30084 /* Output the address range information if a CU (.debug_info section)
30085 was emitted. We output an empty table even if we had no functions
30086 to put in it. This because the consumer has no way to tell the
30087 difference between an empty table that we omitted and failure to
30088 generate a table that would have contained data. */
30089 if (info_section_emitted)
30091 switch_to_section (debug_aranges_section);
30092 output_aranges ();
30095 /* Output ranges section if necessary. */
30096 if (!vec_safe_is_empty (ranges_table))
30098 if (dwarf_version >= 5)
30099 output_rnglists ();
30100 else
30101 output_ranges ();
30104 /* Have to end the macro section. */
30105 if (have_macinfo)
30107 switch_to_section (debug_macinfo_section);
30108 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
30109 output_macinfo (!dwarf_split_debug_info ? debug_line_section_label
30110 : debug_skeleton_line_section_label, false);
30111 dw2_asm_output_data (1, 0, "End compilation unit");
30114 /* Output the source line correspondence table. We must do this
30115 even if there is no line information. Otherwise, on an empty
30116 translation unit, we will generate a present, but empty,
30117 .debug_info section. IRIX 6.5 `nm' will then complain when
30118 examining the file. This is done late so that any filenames
30119 used by the debug_info section are marked as 'used'. */
30120 switch_to_section (debug_line_section);
30121 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
30122 if (! DWARF2_ASM_LINE_DEBUG_INFO)
30123 output_line_info (false);
30125 if (dwarf_split_debug_info && info_section_emitted)
30127 switch_to_section (debug_skeleton_line_section);
30128 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_line_section_label);
30129 output_line_info (true);
30132 /* If we emitted any indirect strings, output the string table too. */
30133 if (debug_str_hash || skeleton_debug_str_hash)
30134 output_indirect_strings ();
30135 if (debug_line_str_hash)
30137 switch_to_section (debug_line_str_section);
30138 const enum dwarf_form form = DW_FORM_line_strp;
30139 debug_line_str_hash->traverse<enum dwarf_form,
30140 output_indirect_string> (form);
30144 /* Returns a hash value for X (which really is a variable_value_struct). */
30146 inline hashval_t
30147 variable_value_hasher::hash (variable_value_struct *x)
30149 return (hashval_t) x->decl_id;
30152 /* Return nonzero if decl_id of variable_value_struct X is the same as
30153 UID of decl Y. */
30155 inline bool
30156 variable_value_hasher::equal (variable_value_struct *x, tree y)
30158 return x->decl_id == DECL_UID (y);
30161 /* Helper function for resolve_variable_value, handle
30162 DW_OP_GNU_variable_value in one location expression.
30163 Return true if exprloc has been changed into loclist. */
30165 static bool
30166 resolve_variable_value_in_expr (dw_attr_node *a, dw_loc_descr_ref loc)
30168 dw_loc_descr_ref next;
30169 for (dw_loc_descr_ref prev = NULL; loc; prev = loc, loc = next)
30171 next = loc->dw_loc_next;
30172 if (loc->dw_loc_opc != DW_OP_GNU_variable_value
30173 || loc->dw_loc_oprnd1.val_class != dw_val_class_decl_ref)
30174 continue;
30176 tree decl = loc->dw_loc_oprnd1.v.val_decl_ref;
30177 if (DECL_CONTEXT (decl) != current_function_decl)
30178 continue;
30180 dw_die_ref ref = lookup_decl_die (decl);
30181 if (ref)
30183 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
30184 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
30185 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
30186 continue;
30188 dw_loc_list_ref l = loc_list_from_tree (decl, 0, NULL);
30189 if (l == NULL)
30190 continue;
30191 if (l->dw_loc_next)
30193 if (AT_class (a) != dw_val_class_loc)
30194 continue;
30195 switch (a->dw_attr)
30197 /* Following attributes allow both exprloc and loclist
30198 classes, so we can change them into a loclist. */
30199 case DW_AT_location:
30200 case DW_AT_string_length:
30201 case DW_AT_return_addr:
30202 case DW_AT_data_member_location:
30203 case DW_AT_frame_base:
30204 case DW_AT_segment:
30205 case DW_AT_static_link:
30206 case DW_AT_use_location:
30207 case DW_AT_vtable_elem_location:
30208 if (prev)
30210 prev->dw_loc_next = NULL;
30211 prepend_loc_descr_to_each (l, AT_loc (a));
30213 if (next)
30214 add_loc_descr_to_each (l, next);
30215 a->dw_attr_val.val_class = dw_val_class_loc_list;
30216 a->dw_attr_val.val_entry = NULL;
30217 a->dw_attr_val.v.val_loc_list = l;
30218 have_location_lists = true;
30219 return true;
30220 /* Following attributes allow both exprloc and reference,
30221 so if the whole expression is DW_OP_GNU_variable_value alone
30222 we could transform it into reference. */
30223 case DW_AT_byte_size:
30224 case DW_AT_bit_size:
30225 case DW_AT_lower_bound:
30226 case DW_AT_upper_bound:
30227 case DW_AT_bit_stride:
30228 case DW_AT_count:
30229 case DW_AT_allocated:
30230 case DW_AT_associated:
30231 case DW_AT_byte_stride:
30232 if (prev == NULL && next == NULL)
30233 break;
30234 /* FALLTHRU */
30235 default:
30236 if (dwarf_strict)
30237 continue;
30238 break;
30240 /* Create DW_TAG_variable that we can refer to. */
30241 gen_decl_die (decl, NULL_TREE, NULL,
30242 lookup_decl_die (current_function_decl));
30243 ref = lookup_decl_die (decl);
30244 if (ref)
30246 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
30247 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
30248 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
30250 continue;
30252 if (prev)
30254 prev->dw_loc_next = l->expr;
30255 add_loc_descr (&prev->dw_loc_next, next);
30256 free_loc_descr (loc, NULL);
30257 next = prev->dw_loc_next;
30259 else
30261 memcpy (loc, l->expr, sizeof (dw_loc_descr_node));
30262 add_loc_descr (&loc, next);
30263 next = loc;
30265 loc = prev;
30267 return false;
30270 /* Attempt to resolve DW_OP_GNU_variable_value using loc_list_from_tree. */
30272 static void
30273 resolve_variable_value (dw_die_ref die)
30275 dw_attr_node *a;
30276 dw_loc_list_ref loc;
30277 unsigned ix;
30279 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
30280 switch (AT_class (a))
30282 case dw_val_class_loc:
30283 if (!resolve_variable_value_in_expr (a, AT_loc (a)))
30284 break;
30285 /* FALLTHRU */
30286 case dw_val_class_loc_list:
30287 loc = AT_loc_list (a);
30288 gcc_assert (loc);
30289 for (; loc; loc = loc->dw_loc_next)
30290 resolve_variable_value_in_expr (a, loc->expr);
30291 break;
30292 default:
30293 break;
30297 /* Attempt to optimize DW_OP_GNU_variable_value refering to
30298 temporaries in the current function. */
30300 static void
30301 resolve_variable_values (void)
30303 if (!variable_value_hash || !current_function_decl)
30304 return;
30306 struct variable_value_struct *node
30307 = variable_value_hash->find_with_hash (current_function_decl,
30308 DECL_UID (current_function_decl));
30310 if (node == NULL)
30311 return;
30313 unsigned int i;
30314 dw_die_ref die;
30315 FOR_EACH_VEC_SAFE_ELT (node->dies, i, die)
30316 resolve_variable_value (die);
30319 /* Helper function for note_variable_value, handle one location
30320 expression. */
30322 static void
30323 note_variable_value_in_expr (dw_die_ref die, dw_loc_descr_ref loc)
30325 for (; loc; loc = loc->dw_loc_next)
30326 if (loc->dw_loc_opc == DW_OP_GNU_variable_value
30327 && loc->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
30329 tree decl = loc->dw_loc_oprnd1.v.val_decl_ref;
30330 dw_die_ref ref = lookup_decl_die (decl);
30331 if (! ref && (flag_generate_lto || flag_generate_offload))
30333 /* ??? This is somewhat a hack because we do not create DIEs
30334 for variables not in BLOCK trees early but when generating
30335 early LTO output we need the dw_val_class_decl_ref to be
30336 fully resolved. For fat LTO objects we'd also like to
30337 undo this after LTO dwarf output. */
30338 gcc_assert (DECL_CONTEXT (decl));
30339 dw_die_ref ctx = lookup_decl_die (DECL_CONTEXT (decl));
30340 gcc_assert (ctx != NULL);
30341 gen_decl_die (decl, NULL_TREE, NULL, ctx);
30342 ref = lookup_decl_die (decl);
30343 gcc_assert (ref != NULL);
30345 if (ref)
30347 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
30348 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
30349 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
30350 continue;
30352 if (VAR_P (decl)
30353 && DECL_CONTEXT (decl)
30354 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
30355 && lookup_decl_die (DECL_CONTEXT (decl)))
30357 if (!variable_value_hash)
30358 variable_value_hash
30359 = hash_table<variable_value_hasher>::create_ggc (10);
30361 tree fndecl = DECL_CONTEXT (decl);
30362 struct variable_value_struct *node;
30363 struct variable_value_struct **slot
30364 = variable_value_hash->find_slot_with_hash (fndecl,
30365 DECL_UID (fndecl),
30366 INSERT);
30367 if (*slot == NULL)
30369 node = ggc_cleared_alloc<variable_value_struct> ();
30370 node->decl_id = DECL_UID (fndecl);
30371 *slot = node;
30373 else
30374 node = *slot;
30376 vec_safe_push (node->dies, die);
30381 /* Walk the tree DIE and note DIEs with DW_OP_GNU_variable_value still
30382 with dw_val_class_decl_ref operand. */
30384 static void
30385 note_variable_value (dw_die_ref die)
30387 dw_die_ref c;
30388 dw_attr_node *a;
30389 dw_loc_list_ref loc;
30390 unsigned ix;
30392 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
30393 switch (AT_class (a))
30395 case dw_val_class_loc_list:
30396 loc = AT_loc_list (a);
30397 gcc_assert (loc);
30398 if (!loc->noted_variable_value)
30400 loc->noted_variable_value = 1;
30401 for (; loc; loc = loc->dw_loc_next)
30402 note_variable_value_in_expr (die, loc->expr);
30404 break;
30405 case dw_val_class_loc:
30406 note_variable_value_in_expr (die, AT_loc (a));
30407 break;
30408 default:
30409 break;
30412 /* Mark children. */
30413 FOR_EACH_CHILD (die, c, note_variable_value (c));
30416 /* Perform any cleanups needed after the early debug generation pass
30417 has run. */
30419 static void
30420 dwarf2out_early_finish (const char *filename)
30422 set_early_dwarf s;
30424 /* PCH might result in DW_AT_producer string being restored from the
30425 header compilation, so always fill it with empty string initially
30426 and overwrite only here. */
30427 dw_attr_node *producer = get_AT (comp_unit_die (), DW_AT_producer);
30428 producer_string = gen_producer_string ();
30429 producer->dw_attr_val.v.val_str->refcount--;
30430 producer->dw_attr_val.v.val_str = find_AT_string (producer_string);
30432 /* Add the name for the main input file now. We delayed this from
30433 dwarf2out_init to avoid complications with PCH. */
30434 add_name_attribute (comp_unit_die (), remap_debug_filename (filename));
30435 add_comp_dir_attribute (comp_unit_die ());
30437 /* When emitting DWARF5 .debug_line_str, move DW_AT_name and
30438 DW_AT_comp_dir into .debug_line_str section. */
30439 if (!DWARF2_ASM_LINE_DEBUG_INFO
30440 && dwarf_version >= 5
30441 && DWARF5_USE_DEBUG_LINE_STR)
30443 for (int i = 0; i < 2; i++)
30445 dw_attr_node *a = get_AT (comp_unit_die (),
30446 i ? DW_AT_comp_dir : DW_AT_name);
30447 if (a == NULL
30448 || AT_class (a) != dw_val_class_str
30449 || strlen (AT_string (a)) + 1 <= DWARF_OFFSET_SIZE)
30450 continue;
30452 if (! debug_line_str_hash)
30453 debug_line_str_hash
30454 = hash_table<indirect_string_hasher>::create_ggc (10);
30456 struct indirect_string_node *node
30457 = find_AT_string_in_table (AT_string (a), debug_line_str_hash);
30458 set_indirect_string (node);
30459 node->form = DW_FORM_line_strp;
30460 a->dw_attr_val.v.val_str->refcount--;
30461 a->dw_attr_val.v.val_str = node;
30465 /* With LTO early dwarf was really finished at compile-time, so make
30466 sure to adjust the phase after annotating the LTRANS CU DIE. */
30467 if (in_lto_p)
30469 early_dwarf_finished = true;
30470 return;
30473 /* Walk through the list of incomplete types again, trying once more to
30474 emit full debugging info for them. */
30475 retry_incomplete_types ();
30477 /* The point here is to flush out the limbo list so that it is empty
30478 and we don't need to stream it for LTO. */
30479 flush_limbo_die_list ();
30481 gen_scheduled_generic_parms_dies ();
30482 gen_remaining_tmpl_value_param_die_attribute ();
30484 /* Add DW_AT_linkage_name for all deferred DIEs. */
30485 for (limbo_die_node *node = deferred_asm_name; node; node = node->next)
30487 tree decl = node->created_for;
30488 if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
30489 /* A missing DECL_ASSEMBLER_NAME can be a constant DIE that
30490 ended up in deferred_asm_name before we knew it was
30491 constant and never written to disk. */
30492 && DECL_ASSEMBLER_NAME (decl))
30494 add_linkage_attr (node->die, decl);
30495 move_linkage_attr (node->die);
30498 deferred_asm_name = NULL;
30500 if (flag_eliminate_unused_debug_types)
30501 prune_unused_types ();
30503 /* Generate separate COMDAT sections for type DIEs. */
30504 if (use_debug_types)
30506 break_out_comdat_types (comp_unit_die ());
30508 /* Each new type_unit DIE was added to the limbo die list when created.
30509 Since these have all been added to comdat_type_list, clear the
30510 limbo die list. */
30511 limbo_die_list = NULL;
30513 /* For each new comdat type unit, copy declarations for incomplete
30514 types to make the new unit self-contained (i.e., no direct
30515 references to the main compile unit). */
30516 for (comdat_type_node *ctnode = comdat_type_list;
30517 ctnode != NULL; ctnode = ctnode->next)
30518 copy_decls_for_unworthy_types (ctnode->root_die);
30519 copy_decls_for_unworthy_types (comp_unit_die ());
30521 /* In the process of copying declarations from one unit to another,
30522 we may have left some declarations behind that are no longer
30523 referenced. Prune them. */
30524 prune_unused_types ();
30527 /* Traverse the DIE's and note DIEs with DW_OP_GNU_variable_value still
30528 with dw_val_class_decl_ref operand. */
30529 note_variable_value (comp_unit_die ());
30530 for (limbo_die_node *node = cu_die_list; node; node = node->next)
30531 note_variable_value (node->die);
30532 for (comdat_type_node *ctnode = comdat_type_list; ctnode != NULL;
30533 ctnode = ctnode->next)
30534 note_variable_value (ctnode->root_die);
30535 for (limbo_die_node *node = limbo_die_list; node; node = node->next)
30536 note_variable_value (node->die);
30538 /* The AT_pubnames attribute needs to go in all skeleton dies, including
30539 both the main_cu and all skeleton TUs. Making this call unconditional
30540 would end up either adding a second copy of the AT_pubnames attribute, or
30541 requiring a special case in add_top_level_skeleton_die_attrs. */
30542 if (!dwarf_split_debug_info)
30543 add_AT_pubnames (comp_unit_die ());
30545 /* The early debug phase is now finished. */
30546 early_dwarf_finished = true;
30548 /* Do not generate DWARF assembler now when not producing LTO bytecode. */
30549 if (!flag_generate_lto && !flag_generate_offload)
30550 return;
30552 /* Now as we are going to output for LTO initialize sections and labels
30553 to the LTO variants. We don't need a random-seed postfix as other
30554 LTO sections as linking the LTO debug sections into one in a partial
30555 link is fine. */
30556 init_sections_and_labels (true);
30558 /* The output below is modeled after dwarf2out_finish with all
30559 location related output removed and some LTO specific changes.
30560 Some refactoring might make both smaller and easier to match up. */
30562 /* Traverse the DIE's and add add sibling attributes to those DIE's
30563 that have children. */
30564 add_sibling_attributes (comp_unit_die ());
30565 for (limbo_die_node *node = limbo_die_list; node; node = node->next)
30566 add_sibling_attributes (node->die);
30567 for (comdat_type_node *ctnode = comdat_type_list;
30568 ctnode != NULL; ctnode = ctnode->next)
30569 add_sibling_attributes (ctnode->root_die);
30571 if (have_macinfo)
30572 add_AT_macptr (comp_unit_die (), DEBUG_MACRO_ATTRIBUTE,
30573 macinfo_section_label);
30575 save_macinfo_strings ();
30577 /* Output all of the compilation units. We put the main one last so that
30578 the offsets are available to output_pubnames. */
30579 for (limbo_die_node *node = limbo_die_list; node; node = node->next)
30580 output_comp_unit (node->die, 0, NULL);
30582 hash_table<comdat_type_hasher> comdat_type_table (100);
30583 for (comdat_type_node *ctnode = comdat_type_list;
30584 ctnode != NULL; ctnode = ctnode->next)
30586 comdat_type_node **slot = comdat_type_table.find_slot (ctnode, INSERT);
30588 /* Don't output duplicate types. */
30589 if (*slot != HTAB_EMPTY_ENTRY)
30590 continue;
30592 /* Add a pointer to the line table for the main compilation unit
30593 so that the debugger can make sense of DW_AT_decl_file
30594 attributes. */
30595 if (debug_info_level >= DINFO_LEVEL_TERSE)
30596 add_AT_lineptr (ctnode->root_die, DW_AT_stmt_list,
30597 (!dwarf_split_debug_info
30598 ? debug_line_section_label
30599 : debug_skeleton_line_section_label));
30601 output_comdat_type_unit (ctnode);
30602 *slot = ctnode;
30605 /* Stick a unique symbol to the main debuginfo section. */
30606 compute_comp_unit_symbol (comp_unit_die ());
30608 /* Output the main compilation unit. We always need it if only for
30609 the CU symbol. */
30610 output_comp_unit (comp_unit_die (), true, NULL);
30612 /* Output the abbreviation table. */
30613 if (vec_safe_length (abbrev_die_table) != 1)
30615 switch_to_section (debug_abbrev_section);
30616 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
30617 output_abbrev_section ();
30620 /* Have to end the macro section. */
30621 if (have_macinfo)
30623 /* We have to save macinfo state if we need to output it again
30624 for the FAT part of the object. */
30625 vec<macinfo_entry, va_gc> *saved_macinfo_table = macinfo_table;
30626 if (flag_fat_lto_objects)
30627 macinfo_table = macinfo_table->copy ();
30629 switch_to_section (debug_macinfo_section);
30630 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
30631 output_macinfo (debug_skeleton_line_section_label, true);
30632 dw2_asm_output_data (1, 0, "End compilation unit");
30634 /* Emit a skeleton debug_line section. */
30635 switch_to_section (debug_skeleton_line_section);
30636 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_line_section_label);
30637 output_line_info (true);
30639 if (flag_fat_lto_objects)
30641 vec_free (macinfo_table);
30642 macinfo_table = saved_macinfo_table;
30647 /* If we emitted any indirect strings, output the string table too. */
30648 if (debug_str_hash || skeleton_debug_str_hash)
30649 output_indirect_strings ();
30651 /* Switch back to the text section. */
30652 switch_to_section (text_section);
30655 /* Reset all state within dwarf2out.c so that we can rerun the compiler
30656 within the same process. For use by toplev::finalize. */
30658 void
30659 dwarf2out_c_finalize (void)
30661 last_var_location_insn = NULL;
30662 cached_next_real_insn = NULL;
30663 used_rtx_array = NULL;
30664 incomplete_types = NULL;
30665 decl_scope_table = NULL;
30666 debug_info_section = NULL;
30667 debug_skeleton_info_section = NULL;
30668 debug_abbrev_section = NULL;
30669 debug_skeleton_abbrev_section = NULL;
30670 debug_aranges_section = NULL;
30671 debug_addr_section = NULL;
30672 debug_macinfo_section = NULL;
30673 debug_line_section = NULL;
30674 debug_skeleton_line_section = NULL;
30675 debug_loc_section = NULL;
30676 debug_pubnames_section = NULL;
30677 debug_pubtypes_section = NULL;
30678 debug_str_section = NULL;
30679 debug_line_str_section = NULL;
30680 debug_str_dwo_section = NULL;
30681 debug_str_offsets_section = NULL;
30682 debug_ranges_section = NULL;
30683 debug_frame_section = NULL;
30684 fde_vec = NULL;
30685 debug_str_hash = NULL;
30686 debug_line_str_hash = NULL;
30687 skeleton_debug_str_hash = NULL;
30688 dw2_string_counter = 0;
30689 have_multiple_function_sections = false;
30690 text_section_used = false;
30691 cold_text_section_used = false;
30692 cold_text_section = NULL;
30693 current_unit_personality = NULL;
30695 early_dwarf = false;
30696 early_dwarf_finished = false;
30698 next_die_offset = 0;
30699 single_comp_unit_die = NULL;
30700 comdat_type_list = NULL;
30701 limbo_die_list = NULL;
30702 file_table = NULL;
30703 decl_die_table = NULL;
30704 common_block_die_table = NULL;
30705 decl_loc_table = NULL;
30706 call_arg_locations = NULL;
30707 call_arg_loc_last = NULL;
30708 call_site_count = -1;
30709 tail_call_site_count = -1;
30710 cached_dw_loc_list_table = NULL;
30711 abbrev_die_table = NULL;
30712 delete dwarf_proc_stack_usage_map;
30713 dwarf_proc_stack_usage_map = NULL;
30714 line_info_label_num = 0;
30715 cur_line_info_table = NULL;
30716 text_section_line_info = NULL;
30717 cold_text_section_line_info = NULL;
30718 separate_line_info = NULL;
30719 info_section_emitted = false;
30720 pubname_table = NULL;
30721 pubtype_table = NULL;
30722 macinfo_table = NULL;
30723 ranges_table = NULL;
30724 ranges_by_label = NULL;
30725 rnglist_idx = 0;
30726 have_location_lists = false;
30727 loclabel_num = 0;
30728 poc_label_num = 0;
30729 last_emitted_file = NULL;
30730 label_num = 0;
30731 tmpl_value_parm_die_table = NULL;
30732 generic_type_instances = NULL;
30733 frame_pointer_fb_offset = 0;
30734 frame_pointer_fb_offset_valid = false;
30735 base_types.release ();
30736 XDELETEVEC (producer_string);
30737 producer_string = NULL;
30740 #include "gt-dwarf2out.h"