1 /* Support for simple predicate analysis.
3 Copyright (C) 2001-2023 Free Software Foundation, Inc.
4 Contributed by Xinliang David Li <davidxl@google.com>
5 Generalized by Martin Sebor <msebor@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #define INCLUDE_STRING
26 #include "coretypes.h"
30 #include "tree-pass.h"
32 #include "gimple-pretty-print.h"
33 #include "diagnostic-core.h"
34 #include "fold-const.h"
35 #include "gimple-iterator.h"
42 #include "value-query.h"
45 #include "gimple-fold.h"
47 #include "gimple-predicate-analysis.h"
49 #define DEBUG_PREDICATE_ANALYZER 1
51 /* In our predicate normal form we have MAX_NUM_CHAINS or predicates
52 and in those MAX_CHAIN_LEN (inverted) and predicates. */
53 #define MAX_NUM_CHAINS (unsigned)param_uninit_max_num_chains
54 #define MAX_CHAIN_LEN (unsigned)param_uninit_max_chain_len
56 /* Return true if X1 is the negation of X2. */
59 pred_neg_p (const pred_info
&x1
, const pred_info
&x2
)
61 if (!operand_equal_p (x1
.pred_lhs
, x2
.pred_lhs
, 0)
62 || !operand_equal_p (x1
.pred_rhs
, x2
.pred_rhs
, 0))
65 tree_code c1
= x1
.cond_code
, c2
;
66 if (x1
.invert
== x2
.invert
)
67 c2
= invert_tree_comparison (x2
.cond_code
, false);
74 /* Return whether the condition (VAL CMPC BOUNDARY) is true. */
77 is_value_included_in (tree val
, tree boundary
, tree_code cmpc
)
79 /* Only handle integer constant here. */
80 if (TREE_CODE (val
) != INTEGER_CST
|| TREE_CODE (boundary
) != INTEGER_CST
)
83 bool inverted
= false;
84 if (cmpc
== GE_EXPR
|| cmpc
== GT_EXPR
|| cmpc
== NE_EXPR
)
86 cmpc
= invert_tree_comparison (cmpc
, false);
92 result
= tree_int_cst_equal (val
, boundary
);
93 else if (cmpc
== LT_EXPR
)
94 result
= tree_int_cst_lt (val
, boundary
);
97 gcc_assert (cmpc
== LE_EXPR
);
98 result
= tree_int_cst_le (val
, boundary
);
107 /* Format the vector of edges EV as a string. */
110 format_edge_vec (const vec
<edge
> &ev
)
114 unsigned n
= ev
.length ();
115 for (unsigned i
= 0; i
< n
; ++i
)
118 const_edge e
= ev
[i
];
119 sprintf (es
, "%u -> %u", e
->src
->index
, e
->dest
->index
);
127 /* Format the first N elements of the array of vector of edges EVA as
131 format_edge_vecs (const vec
<edge
> eva
[], unsigned n
)
135 for (unsigned i
= 0; i
!= n
; ++i
)
138 str
+= format_edge_vec (eva
[i
]);
146 /* Dump a single pred_info to F. */
149 dump_pred_info (FILE *f
, const pred_info
&pred
)
152 fprintf (f
, "NOT (");
153 print_generic_expr (f
, pred
.pred_lhs
);
154 fprintf (f
, " %s ", op_symbol_code (pred
.cond_code
));
155 print_generic_expr (f
, pred
.pred_rhs
);
160 /* Dump a pred_chain to F. */
163 dump_pred_chain (FILE *f
, const pred_chain
&chain
)
165 unsigned np
= chain
.length ();
166 for (unsigned j
= 0; j
< np
; j
++)
169 fprintf (f
, " AND (");
172 dump_pred_info (f
, chain
[j
]);
177 /* Return the 'normalized' conditional code with operand swapping
178 and condition inversion controlled by SWAP_COND and INVERT. */
181 get_cmp_code (tree_code orig_cmp_code
, bool swap_cond
, bool invert
)
183 tree_code tc
= orig_cmp_code
;
186 tc
= swap_tree_comparison (orig_cmp_code
);
188 tc
= invert_tree_comparison (tc
, false);
205 /* Return true if PRED is common among all predicate chains in PREDS
206 (and therefore can be factored out). */
209 find_matching_predicate_in_rest_chains (const pred_info
&pred
,
210 const pred_chain_union
&preds
)
213 if (preds
.length () == 1)
216 for (unsigned i
= 1; i
< preds
.length (); i
++)
219 const pred_chain
&chain
= preds
[i
];
220 unsigned n
= chain
.length ();
221 for (unsigned j
= 0; j
< n
; j
++)
223 const pred_info
&pred2
= chain
[j
];
224 /* Can relax the condition comparison to not use address
225 comparison. However, the most common case is that
226 multiple control dependent paths share a common path
227 prefix, so address comparison should be ok. */
228 if (operand_equal_p (pred2
.pred_lhs
, pred
.pred_lhs
, 0)
229 && operand_equal_p (pred2
.pred_rhs
, pred
.pred_rhs
, 0)
230 && pred2
.invert
== pred
.invert
)
242 /* Find a predicate to examine against paths of interest. If there
243 is no predicate of the "FLAG_VAR CMP CONST" form, try to find one
244 of that's the form "FLAG_VAR CMP FLAG_VAR" with value range info.
245 PHI is the phi node whose incoming (interesting) paths need to be
246 examined. On success, return the comparison code, set defintion
247 gimple of FLAG_DEF and BOUNDARY_CST. Otherwise return ERROR_MARK. */
250 find_var_cmp_const (pred_chain_union preds
, gphi
*phi
, gimple
**flag_def
,
253 tree_code vrinfo_code
= ERROR_MARK
;
254 gimple
*vrinfo_def
= NULL
;
255 tree vrinfo_cst
= NULL
;
257 gcc_assert (preds
.length () > 0);
258 pred_chain chain
= preds
[0];
259 for (unsigned i
= 0; i
< chain
.length (); i
++)
261 bool use_vrinfo_p
= false;
262 const pred_info
&pred
= chain
[i
];
263 tree cond_lhs
= pred
.pred_lhs
;
264 tree cond_rhs
= pred
.pred_rhs
;
265 if (cond_lhs
== NULL_TREE
|| cond_rhs
== NULL_TREE
)
268 tree_code code
= get_cmp_code (pred
.cond_code
, false, pred
.invert
);
269 if (code
== ERROR_MARK
)
272 /* Convert to the canonical form SSA_NAME CMP CONSTANT. */
273 if (TREE_CODE (cond_lhs
) == SSA_NAME
274 && is_gimple_constant (cond_rhs
))
276 else if (TREE_CODE (cond_rhs
) == SSA_NAME
277 && is_gimple_constant (cond_lhs
))
279 std::swap (cond_lhs
, cond_rhs
);
280 if ((code
= get_cmp_code (code
, true, false)) == ERROR_MARK
)
283 /* Check if we can take advantage of FLAG_VAR COMP FLAG_VAR predicate
284 with value range info. Note only first of such case is handled. */
285 else if (vrinfo_code
== ERROR_MARK
286 && TREE_CODE (cond_lhs
) == SSA_NAME
287 && TREE_CODE (cond_rhs
) == SSA_NAME
)
289 gimple
* lhs_def
= SSA_NAME_DEF_STMT (cond_lhs
);
290 if (!lhs_def
|| gimple_code (lhs_def
) != GIMPLE_PHI
291 || gimple_bb (lhs_def
) != gimple_bb (phi
))
293 std::swap (cond_lhs
, cond_rhs
);
294 if ((code
= get_cmp_code (code
, true, false)) == ERROR_MARK
)
298 /* Check value range info of rhs, do following transforms:
299 flag_var < [min, max] -> flag_var < max
300 flag_var > [min, max] -> flag_var > min
302 We can also transform LE_EXPR/GE_EXPR to LT_EXPR/GT_EXPR:
303 flag_var <= [min, max] -> flag_var < [min, max+1]
304 flag_var >= [min, max] -> flag_var > [min-1, max]
305 if no overflow/wrap. */
306 tree type
= TREE_TYPE (cond_lhs
);
308 if (!INTEGRAL_TYPE_P (type
)
309 || !get_range_query (cfun
)->range_of_expr (r
, cond_rhs
)
314 wide_int min
= r
.lower_bound ();
315 wide_int max
= r
.upper_bound ();
317 && max
!= wi::max_value (TYPE_PRECISION (type
), TYPE_SIGN (type
)))
323 && min
!= wi::min_value (TYPE_PRECISION (type
), TYPE_SIGN (type
)))
329 cond_rhs
= wide_int_to_tree (type
, max
);
330 else if (code
== GT_EXPR
)
331 cond_rhs
= wide_int_to_tree (type
, min
);
340 if ((*flag_def
= SSA_NAME_DEF_STMT (cond_lhs
)) == NULL
)
343 if (gimple_code (*flag_def
) != GIMPLE_PHI
344 || gimple_bb (*flag_def
) != gimple_bb (phi
)
345 || !find_matching_predicate_in_rest_chains (pred
, preds
))
348 /* Return if any "flag_var comp const" predicate is found. */
351 *boundary_cst
= cond_rhs
;
354 /* Record if any "flag_var comp flag_var[vinfo]" predicate is found. */
355 else if (vrinfo_code
== ERROR_MARK
)
358 vrinfo_def
= *flag_def
;
359 vrinfo_cst
= cond_rhs
;
362 /* Return the "flag_var cmp flag_var[vinfo]" predicate we found. */
363 if (vrinfo_code
!= ERROR_MARK
)
365 *flag_def
= vrinfo_def
;
366 *boundary_cst
= vrinfo_cst
;
371 /* Return true if all interesting opnds are pruned, false otherwise.
372 PHI is the phi node with interesting operands, OPNDS is the bitmap
373 of the interesting operand positions, FLAG_DEF is the statement
374 defining the flag guarding the use of the PHI output, BOUNDARY_CST
375 is the const value used in the predicate associated with the flag,
376 CMP_CODE is the comparison code used in the predicate, VISITED_PHIS
377 is the pointer set of phis visited, and VISITED_FLAG_PHIS is
378 the pointer to the pointer set of flag definitions that are also
384 flag_1 = phi <0, 1> // (1)
385 var_1 = phi <undef, some_val>
389 flag_2 = phi <0, flag_1, flag_1> // (2)
390 var_2 = phi <undef, var_1, var_1>
397 Because some flag arg in (1) is not constant, if we do not look into
398 the flag phis recursively, it is conservatively treated as unknown and
399 var_1 is thought to flow into use at (3). Since var_1 is potentially
400 uninitialized a false warning will be emitted.
401 Checking recursively into (1), the compiler can find out that only
402 some_val (which is defined) can flow into (3) which is OK. */
405 uninit_analysis::prune_phi_opnds (gphi
*phi
, unsigned opnds
, gphi
*flag_def
,
406 tree boundary_cst
, tree_code cmp_code
,
407 hash_set
<gphi
*> *visited_phis
,
408 bitmap
*visited_flag_phis
)
410 /* The Boolean predicate guarding the PHI definition. Initialized
411 lazily from PHI in the first call to is_use_guarded() and cached
412 for subsequent iterations. */
413 uninit_analysis
def_preds (m_eval
);
415 unsigned n
= MIN (m_eval
.max_phi_args
, gimple_phi_num_args (flag_def
));
416 for (unsigned i
= 0; i
< n
; i
++)
418 if (!MASK_TEST_BIT (opnds
, i
))
421 tree flag_arg
= gimple_phi_arg_def (flag_def
, i
);
422 if (!is_gimple_constant (flag_arg
))
424 if (TREE_CODE (flag_arg
) != SSA_NAME
)
427 gphi
*flag_arg_def
= dyn_cast
<gphi
*> (SSA_NAME_DEF_STMT (flag_arg
));
431 tree phi_arg
= gimple_phi_arg_def (phi
, i
);
432 if (TREE_CODE (phi_arg
) != SSA_NAME
)
435 gphi
*phi_arg_def
= dyn_cast
<gphi
*> (SSA_NAME_DEF_STMT (phi_arg
));
439 if (gimple_bb (phi_arg_def
) != gimple_bb (flag_arg_def
))
442 if (!*visited_flag_phis
)
443 *visited_flag_phis
= BITMAP_ALLOC (NULL
);
445 tree phi_result
= gimple_phi_result (flag_arg_def
);
446 if (bitmap_bit_p (*visited_flag_phis
, SSA_NAME_VERSION (phi_result
)))
449 bitmap_set_bit (*visited_flag_phis
, SSA_NAME_VERSION (phi_result
));
451 /* Now recursively try to prune the interesting phi args. */
452 unsigned opnds_arg_phi
= m_eval
.phi_arg_set (phi_arg_def
);
453 if (!prune_phi_opnds (phi_arg_def
, opnds_arg_phi
, flag_arg_def
,
454 boundary_cst
, cmp_code
, visited_phis
,
458 bitmap_clear_bit (*visited_flag_phis
, SSA_NAME_VERSION (phi_result
));
462 /* Now check if the constant is in the guarded range. */
463 if (is_value_included_in (flag_arg
, boundary_cst
, cmp_code
))
465 /* Now that we know that this undefined edge is not pruned.
466 If the operand is defined by another phi, we can further
467 prune the incoming edges of that phi by checking
468 the predicates of this operands. */
470 tree opnd
= gimple_phi_arg_def (phi
, i
);
471 gimple
*opnd_def
= SSA_NAME_DEF_STMT (opnd
);
472 if (gphi
*opnd_def_phi
= dyn_cast
<gphi
*> (opnd_def
))
474 unsigned opnds2
= m_eval
.phi_arg_set (opnd_def_phi
);
475 if (!MASK_EMPTY (opnds2
))
477 edge opnd_edge
= gimple_phi_arg_edge (phi
, i
);
478 if (def_preds
.is_use_guarded (phi
, opnd_edge
->src
,
479 opnd_def_phi
, opnds2
,
492 /* Recursively compute the set PHI's incoming edges with "uninteresting"
493 operands of a phi chain, i.e., those for which EVAL returns false.
494 CD_ROOT is the control dependence root from which edges are collected
495 up the CFG nodes that it's dominated by. *EDGES holds the result, and
496 VISITED is used for detecting cycles. */
499 uninit_analysis::collect_phi_def_edges (gphi
*phi
, basic_block cd_root
,
501 hash_set
<gimple
*> *visited
)
503 if (visited
->elements () == 0
504 && DEBUG_PREDICATE_ANALYZER
507 fprintf (dump_file
, "%s for cd_root %u and ",
508 __func__
, cd_root
->index
);
509 print_gimple_stmt (dump_file
, phi
, 0);
513 if (visited
->add (phi
))
516 unsigned n
= gimple_phi_num_args (phi
);
517 unsigned opnds_arg_phi
= m_eval
.phi_arg_set (phi
);
518 for (unsigned i
= 0; i
< n
; i
++)
520 if (!MASK_TEST_BIT (opnds_arg_phi
, i
))
522 /* Add the edge for a not maybe-undefined edge value. */
523 edge opnd_edge
= gimple_phi_arg_edge (phi
, i
);
524 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
527 "\tFound def edge %i -> %i for cd_root %i "
528 "and operand %u of: ",
529 opnd_edge
->src
->index
, opnd_edge
->dest
->index
,
531 print_gimple_stmt (dump_file
, phi
, 0);
533 edges
->safe_push (opnd_edge
);
538 tree opnd
= gimple_phi_arg_def (phi
, i
);
539 if (TREE_CODE (opnd
) == SSA_NAME
)
541 gimple
*def
= SSA_NAME_DEF_STMT (opnd
);
542 if (gimple_code (def
) == GIMPLE_PHI
543 && dominated_by_p (CDI_DOMINATORS
, gimple_bb (def
), cd_root
))
544 /* Process PHI defs of maybe-undefined edge values
546 collect_phi_def_edges (as_a
<gphi
*> (def
), cd_root
, edges
,
553 /* Return a bitset of all PHI arguments or zero if there are too many. */
556 uninit_analysis::func_t::phi_arg_set (gphi
*phi
)
558 unsigned n
= gimple_phi_num_args (phi
);
560 if (max_phi_args
< n
)
563 /* Set the least significant N bits. */
564 return (1U << n
) - 1;
567 /* Determine if the predicate set of the use does not overlap with that
568 of the interesting paths. The most common senario of guarded use is
573 x = ...; // set x to valid
580 use (x); // use when x is valid
582 The real world examples are usually more complicated, but similar
583 and usually result from inlining:
585 bool init_func (int * x)
589 *x = ...; // set *x to valid
601 use (x); // use when x is valid
604 Another possible use scenario is in the following trivial example:
616 Predicate analysis needs to compute the composite predicate:
618 1) 'x' use predicate: (n > 0) .AND. (m < 2)
619 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
620 (the predicate chain for phi operand defs can be computed
621 starting from a bb that is control equivalent to the phi's
622 bb and is dominating the operand def.)
624 and check overlapping:
625 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
628 This implementation provides a framework that can handle different
629 scenarios. (Note that many simple cases are handled properly without
630 the predicate analysis if jump threading eliminates the merge point
631 thus makes path-sensitive analysis unnecessary.)
633 PHI is the phi node whose incoming (undefined) paths need to be
634 pruned, and OPNDS is the bitmap holding interesting operand
635 positions. VISITED is the pointer set of phi stmts being
639 uninit_analysis::overlap (gphi
*phi
, unsigned opnds
, hash_set
<gphi
*> *visited
,
640 const predicate
&use_preds
)
642 gimple
*flag_def
= NULL
;
643 tree boundary_cst
= NULL_TREE
;
644 bitmap visited_flag_phis
= NULL
;
646 /* Find within the common prefix of multiple predicate chains
647 a predicate that is a comparison of a flag variable against
649 tree_code cmp_code
= find_var_cmp_const (use_preds
.chain (), phi
, &flag_def
,
651 if (cmp_code
== ERROR_MARK
)
654 /* Now check all the uninit incoming edges have a constant flag
655 value that is in conflict with the use guard/predicate. */
656 gphi
*phi_def
= as_a
<gphi
*> (flag_def
);
657 bool all_pruned
= prune_phi_opnds (phi
, opnds
, phi_def
, boundary_cst
,
661 if (visited_flag_phis
)
662 BITMAP_FREE (visited_flag_phis
);
667 /* Return true if two predicates PRED1 and X2 are equivalent. Assume
668 the expressions have already properly re-associated. */
671 pred_equal_p (const pred_info
&pred1
, const pred_info
&pred2
)
673 if (!operand_equal_p (pred1
.pred_lhs
, pred2
.pred_lhs
, 0)
674 || !operand_equal_p (pred1
.pred_rhs
, pred2
.pred_rhs
, 0))
677 tree_code c1
= pred1
.cond_code
, c2
;
678 if (pred1
.invert
!= pred2
.invert
679 && TREE_CODE_CLASS (pred2
.cond_code
) == tcc_comparison
)
680 c2
= invert_tree_comparison (pred2
.cond_code
, false);
682 c2
= pred2
.cond_code
;
687 /* Return true if PRED tests inequality (i.e., X != Y). */
690 is_neq_relop_p (const pred_info
&pred
)
693 return ((pred
.cond_code
== NE_EXPR
&& !pred
.invert
)
694 || (pred
.cond_code
== EQ_EXPR
&& pred
.invert
));
697 /* Returns true if PRED is of the form X != 0. */
700 is_neq_zero_form_p (const pred_info
&pred
)
702 if (!is_neq_relop_p (pred
) || !integer_zerop (pred
.pred_rhs
)
703 || TREE_CODE (pred
.pred_lhs
) != SSA_NAME
)
708 /* Return true if PRED is equivalent to X != 0. */
711 pred_expr_equal_p (const pred_info
&pred
, tree expr
)
713 if (!is_neq_zero_form_p (pred
))
716 return operand_equal_p (pred
.pred_lhs
, expr
, 0);
719 /* Return true if VAL satisfies (x CMPC BOUNDARY) predicate. CMPC can
720 be either one of the range comparison codes ({GE,LT,EQ,NE}_EXPR and
721 the like), or BIT_AND_EXPR. EXACT_P is only meaningful for the latter.
722 Modify the question from VAL & BOUNDARY != 0 to VAL & BOUNDARY == VAL.
723 For other values of CMPC, EXACT_P is ignored. */
726 value_sat_pred_p (tree val
, tree boundary
, tree_code cmpc
,
727 bool exact_p
= false)
729 if (cmpc
!= BIT_AND_EXPR
)
730 return is_value_included_in (val
, boundary
, cmpc
);
732 widest_int andw
= wi::to_widest (val
) & wi::to_widest (boundary
);
734 return andw
== wi::to_widest (val
);
736 return wi::ne_p (andw
, 0);
739 /* Return true if the domain of single predicate expression PRED1
740 is a subset of that of PRED2, and false if it cannot be proved. */
743 subset_of (const pred_info
&pred1
, const pred_info
&pred2
)
745 if (pred_equal_p (pred1
, pred2
))
748 if ((TREE_CODE (pred1
.pred_rhs
) != INTEGER_CST
)
749 || (TREE_CODE (pred2
.pred_rhs
) != INTEGER_CST
))
752 if (!operand_equal_p (pred1
.pred_lhs
, pred2
.pred_lhs
, 0))
755 tree_code code1
= pred1
.cond_code
;
757 code1
= invert_tree_comparison (code1
, false);
758 tree_code code2
= pred2
.cond_code
;
760 code2
= invert_tree_comparison (code2
, false);
762 if (code2
== NE_EXPR
&& code1
== NE_EXPR
)
765 if (code2
== NE_EXPR
)
766 return !value_sat_pred_p (pred2
.pred_rhs
, pred1
.pred_rhs
, code1
);
768 if (code1
== EQ_EXPR
)
769 return value_sat_pred_p (pred1
.pred_rhs
, pred2
.pred_rhs
, code2
);
772 return value_sat_pred_p (pred1
.pred_rhs
, pred2
.pred_rhs
, code2
,
773 code1
== BIT_AND_EXPR
);
778 /* Return true if the domain of CHAIN1 is a subset of that of CHAIN2.
779 Return false if it cannot be proven so. */
782 subset_of (const pred_chain
&chain1
, const pred_chain
&chain2
)
784 unsigned np1
= chain1
.length ();
785 unsigned np2
= chain2
.length ();
786 for (unsigned i2
= 0; i2
< np2
; i2
++)
789 const pred_info
&info2
= chain2
[i2
];
790 for (unsigned i1
= 0; i1
< np1
; i1
++)
792 const pred_info
&info1
= chain1
[i1
];
793 if (subset_of (info1
, info2
))
805 /* Return true if the domain defined by the predicate chain PREDS is
806 a subset of the domain of *THIS. Return false if PREDS's domain
807 is not a subset of any of the sub-domains of *THIS (corresponding
808 to each individual chains in it), even though it may be still be
809 a subset of whole domain of *THIS which is the union (ORed) of all
810 its subdomains. In other words, the result is conservative. */
813 predicate::includes (const pred_chain
&chain
) const
815 for (unsigned i
= 0; i
< m_preds
.length (); i
++)
816 if (subset_of (chain
, m_preds
[i
]))
822 /* Return true if the domain defined by *THIS is a superset of PREDS's
824 Avoid building generic trees (and rely on the folding capability
825 of the compiler), and instead perform brute force comparison of
826 individual predicate chains (this won't be a computationally costly
827 since the chains are pretty short). Returning false does not
828 necessarily mean *THIS is not a superset of *PREDS, only that
829 it need not be since the analysis cannot prove it. */
832 predicate::superset_of (const predicate
&preds
) const
834 for (unsigned i
= 0; i
< preds
.m_preds
.length (); i
++)
835 if (!includes (preds
.m_preds
[i
]))
841 /* Create a predicate of the form OP != 0 and push it the work list CHAIN. */
844 push_to_worklist (tree op
, pred_chain
*chain
, hash_set
<tree
> *mark_set
)
846 if (mark_set
->contains (op
))
851 arg_pred
.pred_lhs
= op
;
852 arg_pred
.pred_rhs
= integer_zero_node
;
853 arg_pred
.cond_code
= NE_EXPR
;
854 arg_pred
.invert
= false;
855 chain
->safe_push (arg_pred
);
858 /* Return a pred_info for a gimple assignment CMP_ASSIGN with comparison
862 get_pred_info_from_cmp (const gimple
*cmp_assign
)
865 pred
.pred_lhs
= gimple_assign_rhs1 (cmp_assign
);
866 pred
.pred_rhs
= gimple_assign_rhs2 (cmp_assign
);
867 pred
.cond_code
= gimple_assign_rhs_code (cmp_assign
);
872 /* If PHI is a degenerate phi with all operands having the same value (relop)
873 update *PRED to that value and return true. Otherwise return false. */
876 is_degenerate_phi (gimple
*phi
, pred_info
*pred
)
878 tree op0
= gimple_phi_arg_def (phi
, 0);
880 if (TREE_CODE (op0
) != SSA_NAME
)
883 gimple
*def0
= SSA_NAME_DEF_STMT (op0
);
884 if (gimple_code (def0
) != GIMPLE_ASSIGN
)
887 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0
)) != tcc_comparison
)
890 pred_info pred0
= get_pred_info_from_cmp (def0
);
892 unsigned n
= gimple_phi_num_args (phi
);
893 for (unsigned i
= 1; i
< n
; ++i
)
895 tree op
= gimple_phi_arg_def (phi
, i
);
896 if (TREE_CODE (op
) != SSA_NAME
)
899 gimple
*def
= SSA_NAME_DEF_STMT (op
);
900 if (gimple_code (def
) != GIMPLE_ASSIGN
)
903 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def
)) != tcc_comparison
)
906 pred_info pred
= get_pred_info_from_cmp (def
);
907 if (!pred_equal_p (pred
, pred0
))
915 /* If compute_control_dep_chain bailed out due to limits this routine
916 tries to build a partial sparse path using dominators. Returns
917 path edges whose predicates are always true when reaching E. */
920 simple_control_dep_chain (vec
<edge
>& chain
, basic_block from
, basic_block to
)
922 if (!dominated_by_p (CDI_DOMINATORS
, to
, from
))
925 basic_block src
= to
;
927 && chain
.length () <= MAX_CHAIN_LEN
)
929 basic_block dest
= src
;
930 src
= get_immediate_dominator (CDI_DOMINATORS
, src
);
931 if (single_pred_p (dest
))
933 edge pred_e
= single_pred_edge (dest
);
934 gcc_assert (pred_e
->src
== src
);
935 if (!(pred_e
->flags
& ((EDGE_FAKE
| EDGE_ABNORMAL
| EDGE_DFS_BACK
)))
936 && !single_succ_p (src
))
937 chain
.safe_push (pred_e
);
942 /* Perform a DFS walk on predecessor edges to mark the region denoted
943 by the EXIT_SRC block and DOM which dominates EXIT_SRC, including DOM.
944 Blocks in the region are marked with FLAG and added to BBS. BBS is
945 filled up to its capacity only after which the walk is terminated
946 and false is returned. If the whole region was marked, true is returned. */
949 dfs_mark_dominating_region (basic_block exit_src
, basic_block dom
, int flag
,
950 vec
<basic_block
> &bbs
)
952 if (exit_src
== dom
|| exit_src
->flags
& flag
)
956 bbs
.quick_push (exit_src
);
957 exit_src
->flags
|= flag
;
958 auto_vec
<edge_iterator
, 20> stack (bbs
.allocated () - bbs
.length () + 1);
959 stack
.quick_push (ei_start (exit_src
->preds
));
960 while (!stack
.is_empty ())
962 /* Look at the edge on the top of the stack. */
963 edge_iterator ei
= stack
.last ();
964 basic_block src
= ei_edge (ei
)->src
;
966 /* Check if the edge source has been visited yet. */
967 if (!(src
->flags
& flag
))
969 /* Mark the source if there's still space. If not, return early. */
973 bbs
.quick_push (src
);
975 /* Queue its predecessors if we didn't reach DOM. */
976 if (src
!= dom
&& EDGE_COUNT (src
->preds
) > 0)
977 stack
.quick_push (ei_start (src
->preds
));
981 if (!ei_one_before_end_p (ei
))
982 ei_next (&stack
.last ());
991 compute_control_dep_chain (basic_block dom_bb
, const_basic_block dep_bb
,
992 vec
<edge
> cd_chains
[], unsigned *num_chains
,
993 vec
<edge
> &cur_cd_chain
, unsigned *num_calls
,
994 unsigned in_region
, unsigned depth
,
997 /* Helper for compute_control_dep_chain that walks the post-dominator
998 chain from CD_BB up unto TARGET_BB looking for paths to DEP_BB. */
1001 compute_control_dep_chain_pdom (basic_block cd_bb
, const_basic_block dep_bb
,
1002 basic_block target_bb
,
1003 vec
<edge
> cd_chains
[], unsigned *num_chains
,
1004 vec
<edge
> &cur_cd_chain
, unsigned *num_calls
,
1005 unsigned in_region
, unsigned depth
,
1008 bool found_cd_chain
= false;
1009 while (cd_bb
!= target_bb
)
1011 if (cd_bb
== dep_bb
)
1013 /* Found a direct control dependence. */
1014 if (*num_chains
< MAX_NUM_CHAINS
)
1016 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
1017 fprintf (dump_file
, "%*s pushing { %s }\n",
1018 depth
, "", format_edge_vec (cur_cd_chain
).c_str ());
1019 cd_chains
[*num_chains
] = cur_cd_chain
.copy ();
1022 found_cd_chain
= true;
1023 /* Check path from next edge. */
1027 /* If the dominating region has been marked avoid walking outside. */
1028 if (in_region
!= 0 && !(cd_bb
->flags
& in_region
))
1031 /* Count the number of steps we perform to limit compile-time.
1032 This should cover both recursion and the post-dominator walk. */
1033 if (*num_calls
> (unsigned)param_uninit_control_dep_attempts
)
1036 fprintf (dump_file
, "param_uninit_control_dep_attempts "
1037 "exceeded: %u\n", *num_calls
);
1038 *complete_p
= false;
1043 /* Check if DEP_BB is indirectly control-dependent on DOM_BB. */
1044 if (!single_succ_p (cd_bb
)
1045 && compute_control_dep_chain (cd_bb
, dep_bb
, cd_chains
,
1046 num_chains
, cur_cd_chain
,
1047 num_calls
, in_region
, depth
+ 1,
1050 found_cd_chain
= true;
1054 /* The post-dominator walk will reach a backedge only
1055 from a forwarder, otherwise it should choose to exit
1057 if (single_succ_p (cd_bb
)
1058 && single_succ_edge (cd_bb
)->flags
& EDGE_DFS_BACK
)
1060 basic_block prev_cd_bb
= cd_bb
;
1061 cd_bb
= get_immediate_dominator (CDI_POST_DOMINATORS
, cd_bb
);
1062 if (cd_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1064 /* Pick up conditions toward the post dominator such like
1065 loop exit conditions. See gcc.dg/uninit-pred-11.c and
1066 gcc.dg/unninit-pred-12.c and PR106754. */
1067 if (single_pred_p (cd_bb
))
1069 edge e2
= single_pred_edge (cd_bb
);
1070 gcc_assert (e2
->src
== prev_cd_bb
);
1071 /* But avoid adding fallthru or abnormal edges. */
1072 if (!(e2
->flags
& (EDGE_FAKE
| EDGE_ABNORMAL
| EDGE_DFS_BACK
))
1073 && !single_succ_p (prev_cd_bb
))
1074 cur_cd_chain
.safe_push (e2
);
1077 return found_cd_chain
;
1081 /* Recursively compute the control dependence chains (paths of edges)
1082 from the dependent basic block, DEP_BB, up to the dominating basic
1083 block, DOM_BB (the head node of a chain should be dominated by it),
1084 storing them in the CD_CHAINS array.
1085 CUR_CD_CHAIN is the current chain being computed.
1086 *NUM_CHAINS is total number of chains in the CD_CHAINS array.
1087 *NUM_CALLS is the number of recursive calls to control unbounded
1089 Return true if the information is successfully computed, false if
1090 there is no control dependence or not computed.
1091 *COMPLETE_P is set to false if we stopped walking due to limits.
1092 In this case there might be missing chains. */
1095 compute_control_dep_chain (basic_block dom_bb
, const_basic_block dep_bb
,
1096 vec
<edge
> cd_chains
[], unsigned *num_chains
,
1097 vec
<edge
> &cur_cd_chain
, unsigned *num_calls
,
1098 unsigned in_region
, unsigned depth
,
1101 /* In our recursive calls this doesn't happen. */
1102 if (single_succ_p (dom_bb
))
1105 /* FIXME: Use a set instead. */
1106 unsigned cur_chain_len
= cur_cd_chain
.length ();
1107 if (cur_chain_len
> MAX_CHAIN_LEN
)
1110 fprintf (dump_file
, "MAX_CHAIN_LEN exceeded: %u\n", cur_chain_len
);
1112 *complete_p
= false;
1116 if (cur_chain_len
> 5)
1119 fprintf (dump_file
, "chain length exceeds 5: %u\n", cur_chain_len
);
1122 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
1124 "%*s%s (dom_bb = %u, dep_bb = %u, ..., "
1125 "cur_cd_chain = { %s }, ...)\n",
1126 depth
, "", __func__
, dom_bb
->index
, dep_bb
->index
,
1127 format_edge_vec (cur_cd_chain
).c_str ());
1129 bool found_cd_chain
= false;
1131 /* Iterate over DOM_BB's successors. */
1134 FOR_EACH_EDGE (e
, ei
, dom_bb
->succs
)
1136 if (e
->flags
& (EDGE_FAKE
| EDGE_ABNORMAL
| EDGE_DFS_BACK
))
1139 basic_block cd_bb
= e
->dest
;
1140 unsigned pop_mark
= cur_cd_chain
.length ();
1141 cur_cd_chain
.safe_push (e
);
1142 basic_block target_bb
1143 = get_immediate_dominator (CDI_POST_DOMINATORS
, dom_bb
);
1144 /* Walk the post-dominator chain up to the CFG merge. */
1146 |= compute_control_dep_chain_pdom (cd_bb
, dep_bb
, target_bb
,
1147 cd_chains
, num_chains
,
1148 cur_cd_chain
, num_calls
,
1149 in_region
, depth
, complete_p
);
1150 cur_cd_chain
.truncate (pop_mark
);
1151 gcc_assert (cur_cd_chain
.length () == cur_chain_len
);
1154 gcc_assert (cur_cd_chain
.length () == cur_chain_len
);
1155 return found_cd_chain
;
1158 /* Wrapper around the compute_control_dep_chain worker above. Returns
1159 true when the collected set of chains in CD_CHAINS is complete. */
1162 compute_control_dep_chain (basic_block dom_bb
, const_basic_block dep_bb
,
1163 vec
<edge
> cd_chains
[], unsigned *num_chains
,
1164 unsigned in_region
= 0)
1166 auto_vec
<edge
, 10> cur_cd_chain
;
1167 unsigned num_calls
= 0;
1169 bool complete_p
= true;
1170 /* Walk the post-dominator chain. */
1171 cur_cd_chain
.reserve (MAX_CHAIN_LEN
+ 1);
1172 compute_control_dep_chain_pdom (dom_bb
, dep_bb
, NULL
, cd_chains
,
1173 num_chains
, cur_cd_chain
, &num_calls
,
1174 in_region
, depth
, &complete_p
);
1178 /* Implemented simplifications:
1180 1a) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1181 1b) [!](X rel y) AND [!](X rel y') where y == y' or both constant
1182 can possibly be simplified
1183 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1184 3) X OR (!X AND Y) is equivalent to (X OR Y);
1185 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1187 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1190 PREDS is the predicate chains, and N is the number of chains. */
1192 /* Implement rule 1a above. PREDS is the AND predicate to simplify
1196 simplify_1a (pred_chain
&chain
)
1198 bool simplified
= false;
1199 pred_chain s_chain
= vNULL
;
1201 unsigned n
= chain
.length ();
1202 for (unsigned i
= 0; i
< n
; i
++)
1204 pred_info
&a_pred
= chain
[i
];
1206 if (!a_pred
.pred_lhs
1207 || !is_neq_zero_form_p (a_pred
))
1210 gimple
*def_stmt
= SSA_NAME_DEF_STMT (a_pred
.pred_lhs
);
1211 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
1214 if (gimple_assign_rhs_code (def_stmt
) != BIT_IOR_EXPR
)
1217 for (unsigned j
= 0; j
< n
; j
++)
1219 const pred_info
&b_pred
= chain
[j
];
1221 if (!b_pred
.pred_lhs
1222 || !is_neq_zero_form_p (b_pred
))
1225 if (pred_expr_equal_p (b_pred
, gimple_assign_rhs1 (def_stmt
))
1226 || pred_expr_equal_p (b_pred
, gimple_assign_rhs2 (def_stmt
)))
1228 /* Mark A_PRED for removal from PREDS. */
1229 a_pred
.pred_lhs
= NULL
;
1230 a_pred
.pred_rhs
= NULL
;
1240 /* Remove predicates marked above. */
1241 for (unsigned i
= 0; i
< n
; i
++)
1243 pred_info
&a_pred
= chain
[i
];
1244 if (!a_pred
.pred_lhs
)
1246 s_chain
.safe_push (a_pred
);
1253 /* Implement rule 1b above. PREDS is the AND predicate to simplify
1254 in place. Returns true if CHAIN simplifies to true or false. */
1257 simplify_1b (pred_chain
&chain
)
1259 for (unsigned i
= 0; i
< chain
.length (); i
++)
1261 pred_info
&a_pred
= chain
[i
];
1263 for (unsigned j
= i
+ 1; j
< chain
.length (); ++j
)
1265 pred_info
&b_pred
= chain
[j
];
1267 if (!operand_equal_p (a_pred
.pred_lhs
, b_pred
.pred_lhs
)
1268 || (!operand_equal_p (a_pred
.pred_rhs
, b_pred
.pred_rhs
)
1269 && !(CONSTANT_CLASS_P (a_pred
.pred_rhs
)
1270 && CONSTANT_CLASS_P (b_pred
.pred_rhs
))))
1273 tree_code a_code
= a_pred
.cond_code
;
1275 a_code
= invert_tree_comparison (a_code
, false);
1276 tree_code b_code
= b_pred
.cond_code
;
1278 b_code
= invert_tree_comparison (b_code
, false);
1279 /* Try to combine X a_code Y && X b_code Y'. */
1280 tree comb
= maybe_fold_and_comparisons (boolean_type_node
,
1286 b_pred
.pred_rhs
, NULL
);
1289 else if (integer_zerop (comb
))
1291 else if (integer_truep (comb
))
1293 chain
.ordered_remove (j
);
1294 chain
.ordered_remove (i
);
1295 if (chain
.is_empty ())
1300 else if (COMPARISON_CLASS_P (comb
)
1301 && operand_equal_p (a_pred
.pred_lhs
, TREE_OPERAND (comb
, 0)))
1303 chain
.ordered_remove (j
);
1304 a_pred
.cond_code
= TREE_CODE (comb
);
1305 a_pred
.pred_rhs
= TREE_OPERAND (comb
, 1);
1306 a_pred
.invert
= false;
1315 /* Implements rule 2 for the OR predicate PREDS:
1317 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
1320 predicate::simplify_2 ()
1322 bool simplified
= false;
1324 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1325 (X AND Y) OR (X AND !Y) is equivalent to X. */
1327 for (unsigned i
= 0; i
< m_preds
.length (); i
++)
1329 pred_chain
&a_chain
= m_preds
[i
];
1331 for (unsigned j
= i
+ 1; j
< m_preds
.length (); j
++)
1333 pred_chain
&b_chain
= m_preds
[j
];
1334 if (b_chain
.length () != a_chain
.length ())
1337 unsigned neg_idx
= -1U;
1338 for (unsigned k
= 0; k
< a_chain
.length (); ++k
)
1340 if (pred_equal_p (a_chain
[k
], b_chain
[k
]))
1347 if (pred_neg_p (a_chain
[k
], b_chain
[k
]))
1352 /* If we found equal chains with one negated predicate
1356 a_chain
.ordered_remove (neg_idx
);
1357 m_preds
.ordered_remove (j
);
1359 if (a_chain
.is_empty ())
1361 /* A && !A simplifies to true, wipe the whole predicate. */
1362 for (unsigned k
= 0; k
< m_preds
.length (); ++k
)
1363 m_preds
[k
].release ();
1364 m_preds
.truncate (0);
1374 /* Implement rule 3 for the OR predicate PREDS:
1376 3) x OR (!x AND y) is equivalent to x OR y. */
1379 predicate::simplify_3 ()
1381 /* Now iteratively simplify X OR (!X AND Z ..)
1382 into X OR (Z ...). */
1384 unsigned n
= m_preds
.length ();
1388 bool simplified
= false;
1389 for (unsigned i
= 0; i
< n
; i
++)
1391 const pred_chain
&a_chain
= m_preds
[i
];
1393 if (a_chain
.length () != 1)
1396 const pred_info
&x
= a_chain
[0];
1397 for (unsigned j
= 0; j
< n
; j
++)
1402 pred_chain b_chain
= m_preds
[j
];
1403 if (b_chain
.length () < 2)
1406 for (unsigned k
= 0; k
< b_chain
.length (); k
++)
1408 const pred_info
&x2
= b_chain
[k
];
1409 if (pred_neg_p (x
, x2
))
1411 b_chain
.unordered_remove (k
);
1421 /* Implement rule 4 for the OR predicate PREDS:
1423 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1424 (x != 0 AND y != 0). */
1427 predicate::simplify_4 ()
1429 bool simplified
= false;
1430 pred_chain_union s_preds
= vNULL
;
1432 unsigned n
= m_preds
.length ();
1433 for (unsigned i
= 0; i
< n
; i
++)
1435 pred_chain a_chain
= m_preds
[i
];
1436 if (a_chain
.length () != 1)
1439 const pred_info
&z
= a_chain
[0];
1440 if (!is_neq_zero_form_p (z
))
1443 gimple
*def_stmt
= SSA_NAME_DEF_STMT (z
.pred_lhs
);
1444 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
1447 if (gimple_assign_rhs_code (def_stmt
) != BIT_AND_EXPR
)
1450 for (unsigned j
= 0; j
< n
; j
++)
1455 pred_chain b_chain
= m_preds
[j
];
1456 if (b_chain
.length () != 2)
1459 const pred_info
&x2
= b_chain
[0];
1460 const pred_info
&y2
= b_chain
[1];
1461 if (!is_neq_zero_form_p (x2
) || !is_neq_zero_form_p (y2
))
1464 if ((pred_expr_equal_p (x2
, gimple_assign_rhs1 (def_stmt
))
1465 && pred_expr_equal_p (y2
, gimple_assign_rhs2 (def_stmt
)))
1466 || (pred_expr_equal_p (x2
, gimple_assign_rhs2 (def_stmt
))
1467 && pred_expr_equal_p (y2
, gimple_assign_rhs1 (def_stmt
))))
1476 /* Now clean up the chain. */
1479 for (unsigned i
= 0; i
< n
; i
++)
1481 if (m_preds
[i
].is_empty ())
1483 s_preds
.safe_push (m_preds
[i
]);
1494 /* Simplify predicates in *THIS. */
1497 predicate::simplify (gimple
*use_or_def
, bool is_use
)
1499 if (dump_file
&& dump_flags
& TDF_DETAILS
)
1501 fprintf (dump_file
, "Before simplication ");
1502 dump (dump_file
, use_or_def
, is_use
? "[USE]:\n" : "[DEF]:\n");
1505 for (unsigned i
= 0; i
< m_preds
.length (); i
++)
1507 ::simplify_1a (m_preds
[i
]);
1508 if (::simplify_1b (m_preds
[i
]))
1510 m_preds
[i
].release ();
1511 m_preds
.ordered_remove (i
);
1516 if (m_preds
.length () < 2)
1535 /* Attempt to normalize predicate chains by following UD chains by
1536 building up a big tree of either IOR operations or AND operations,
1537 and converting the IOR tree into a pred_chain_union or the BIT_AND
1538 tree into a pred_chain.
1548 then _t != 0 will be normalized into a pred_chain_union
1550 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1560 then _t != 0 will be normalized into a pred_chain:
1561 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1564 /* Normalize predicate PRED:
1565 1) if PRED can no longer be normalized, append it to *THIS.
1566 2) otherwise if PRED is of the form x != 0, follow x's definition
1567 and put normalized predicates into WORK_LIST. */
1570 predicate::normalize (pred_chain
*norm_chain
,
1572 tree_code and_or_code
,
1573 pred_chain
*work_list
,
1574 hash_set
<tree
> *mark_set
)
1576 if (!is_neq_zero_form_p (pred
))
1578 if (and_or_code
== BIT_IOR_EXPR
)
1581 norm_chain
->safe_push (pred
);
1585 gimple
*def_stmt
= SSA_NAME_DEF_STMT (pred
.pred_lhs
);
1587 if (gimple_code (def_stmt
) == GIMPLE_PHI
1588 && is_degenerate_phi (def_stmt
, &pred
))
1589 /* PRED has been modified above. */
1590 work_list
->safe_push (pred
);
1591 else if (gimple_code (def_stmt
) == GIMPLE_PHI
&& and_or_code
== BIT_IOR_EXPR
)
1593 unsigned n
= gimple_phi_num_args (def_stmt
);
1595 /* Punt for a nonzero constant. The predicate should be one guarding
1597 for (unsigned i
= 0; i
< n
; ++i
)
1599 tree op
= gimple_phi_arg_def (def_stmt
, i
);
1600 if (TREE_CODE (op
) == INTEGER_CST
&& !integer_zerop (op
))
1607 for (unsigned i
= 0; i
< n
; ++i
)
1609 tree op
= gimple_phi_arg_def (def_stmt
, i
);
1610 if (integer_zerop (op
))
1613 push_to_worklist (op
, work_list
, mark_set
);
1616 else if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
1618 if (and_or_code
== BIT_IOR_EXPR
)
1621 norm_chain
->safe_push (pred
);
1623 else if (gimple_assign_rhs_code (def_stmt
) == and_or_code
)
1625 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
1626 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt
)))
1628 /* But treat x & 3 as a condition. */
1629 if (and_or_code
== BIT_AND_EXPR
)
1632 n_pred
.pred_lhs
= gimple_assign_rhs1 (def_stmt
);
1633 n_pred
.pred_rhs
= gimple_assign_rhs2 (def_stmt
);
1634 n_pred
.cond_code
= and_or_code
;
1635 n_pred
.invert
= false;
1636 norm_chain
->safe_push (n_pred
);
1641 push_to_worklist (gimple_assign_rhs1 (def_stmt
), work_list
, mark_set
);
1642 push_to_worklist (gimple_assign_rhs2 (def_stmt
), work_list
, mark_set
);
1645 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
))
1648 pred_info n_pred
= get_pred_info_from_cmp (def_stmt
);
1649 if (and_or_code
== BIT_IOR_EXPR
)
1652 norm_chain
->safe_push (n_pred
);
1656 if (and_or_code
== BIT_IOR_EXPR
)
1659 norm_chain
->safe_push (pred
);
1663 /* Normalize PRED and store the normalized predicates in THIS->M_PREDS. */
1666 predicate::normalize (const pred_info
&pred
)
1668 if (!is_neq_zero_form_p (pred
))
1674 tree_code and_or_code
= ERROR_MARK
;
1676 gimple
*def_stmt
= SSA_NAME_DEF_STMT (pred
.pred_lhs
);
1677 if (gimple_code (def_stmt
) == GIMPLE_ASSIGN
)
1678 and_or_code
= gimple_assign_rhs_code (def_stmt
);
1679 if (and_or_code
!= BIT_IOR_EXPR
&& and_or_code
!= BIT_AND_EXPR
)
1681 if (TREE_CODE_CLASS (and_or_code
) == tcc_comparison
)
1683 pred_info n_pred
= get_pred_info_from_cmp (def_stmt
);
1692 pred_chain norm_chain
= vNULL
;
1693 pred_chain work_list
= vNULL
;
1694 work_list
.safe_push (pred
);
1695 hash_set
<tree
> mark_set
;
1697 while (!work_list
.is_empty ())
1699 pred_info a_pred
= work_list
.pop ();
1700 normalize (&norm_chain
, a_pred
, and_or_code
, &work_list
, &mark_set
);
1703 if (and_or_code
== BIT_AND_EXPR
)
1704 m_preds
.safe_push (norm_chain
);
1706 work_list
.release ();
1709 /* Normalize a single predicate PRED_CHAIN and append it to *THIS. */
1712 predicate::normalize (const pred_chain
&chain
)
1714 pred_chain work_list
= vNULL
;
1715 hash_set
<tree
> mark_set
;
1716 for (unsigned i
= 0; i
< chain
.length (); i
++)
1718 work_list
.safe_push (chain
[i
]);
1719 mark_set
.add (chain
[i
].pred_lhs
);
1722 /* Normalized chain of predicates built up below. */
1723 pred_chain norm_chain
= vNULL
;
1724 while (!work_list
.is_empty ())
1726 pred_info pi
= work_list
.pop ();
1727 /* The predicate object is not modified here, only NORM_CHAIN and
1728 WORK_LIST are appended to. */
1729 unsigned oldlen
= m_preds
.length ();
1730 normalize (&norm_chain
, pi
, BIT_AND_EXPR
, &work_list
, &mark_set
);
1731 gcc_assert (m_preds
.length () == oldlen
);
1734 m_preds
.safe_push (norm_chain
);
1735 work_list
.release ();
1738 /* Normalize predicate chains in THIS. */
1741 predicate::normalize (gimple
*use_or_def
, bool is_use
)
1743 if (dump_file
&& dump_flags
& TDF_DETAILS
)
1745 fprintf (dump_file
, "Before normalization ");
1746 dump (dump_file
, use_or_def
, is_use
? "[USE]:\n" : "[DEF]:\n");
1749 predicate
norm_preds (empty_val ());
1750 for (unsigned i
= 0; i
< m_preds
.length (); i
++)
1752 if (m_preds
[i
].length () != 1)
1753 norm_preds
.normalize (m_preds
[i
]);
1755 norm_preds
.normalize (m_preds
[i
][0]);
1762 fprintf (dump_file
, "After normalization ");
1763 dump (dump_file
, use_or_def
, is_use
? "[USE]:\n" : "[DEF]:\n");
1767 /* Convert the chains of control dependence edges into a set of predicates.
1768 A control dependence chain is represented by a vector edges. DEP_CHAINS
1769 points to an array of NUM_CHAINS dependence chains. One edge in
1770 a dependence chain is mapped to predicate expression represented by
1771 pred_info type. One dependence chain is converted to a composite
1772 predicate that is the result of AND operation of pred_info mapped to
1773 each edge. A composite predicate is represented by a vector of
1774 pred_info. Sets M_PREDS to the resulting composite predicates. */
1777 predicate::init_from_control_deps (const vec
<edge
> *dep_chains
,
1778 unsigned num_chains
, bool is_use
)
1780 gcc_assert (is_empty ());
1782 if (num_chains
== 0)
1785 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
1786 fprintf (dump_file
, "init_from_control_deps [%s] {%s}:\n",
1787 is_use
? "USE" : "DEF",
1788 format_edge_vecs (dep_chains
, num_chains
).c_str ());
1790 /* Convert the control dependency chain into a set of predicates. */
1791 m_preds
.reserve (num_chains
);
1793 for (unsigned i
= 0; i
< num_chains
; i
++)
1795 /* One path through the CFG represents a logical conjunction
1796 of the predicates. */
1797 const vec
<edge
> &path
= dep_chains
[i
];
1799 bool has_valid_pred
= false;
1800 /* The chain of predicates guarding the definition along this path. */
1801 pred_chain t_chain
{ };
1802 for (unsigned j
= 0; j
< path
.length (); j
++)
1805 basic_block guard_bb
= e
->src
;
1807 gcc_assert (!empty_block_p (guard_bb
) && !single_succ_p (guard_bb
));
1809 /* Skip this edge if it is bypassing an abort - when the
1810 condition is not satisfied we are neither reaching the
1811 definition nor the use so it isn't meaningful. Note if
1812 we are processing the use predicate the condition is
1813 meaningful. See PR65244. */
1814 if (!is_use
&& EDGE_COUNT (e
->src
->succs
) == 2)
1820 FOR_EACH_EDGE (e1
, ei1
, e
->src
->succs
)
1822 if (EDGE_COUNT (e1
->dest
->succs
) == 0)
1830 has_valid_pred
= true;
1834 /* Get the conditional controlling the bb exit edge. */
1835 gimple
*cond_stmt
= *gsi_last_bb (guard_bb
);
1836 if (gimple_code (cond_stmt
) == GIMPLE_COND
)
1838 /* The true edge corresponds to the uninteresting condition.
1839 Add the negated predicate(s) for the edge to record
1840 the interesting condition. */
1842 one_pred
.pred_lhs
= gimple_cond_lhs (cond_stmt
);
1843 one_pred
.pred_rhs
= gimple_cond_rhs (cond_stmt
);
1844 one_pred
.cond_code
= gimple_cond_code (cond_stmt
);
1845 one_pred
.invert
= !!(e
->flags
& EDGE_FALSE_VALUE
);
1847 t_chain
.safe_push (one_pred
);
1849 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
1851 fprintf (dump_file
, "%d -> %d: one_pred = ",
1852 e
->src
->index
, e
->dest
->index
);
1853 dump_pred_info (dump_file
, one_pred
);
1854 fputc ('\n', dump_file
);
1857 has_valid_pred
= true;
1859 else if (gswitch
*gs
= dyn_cast
<gswitch
*> (cond_stmt
))
1861 /* Find the case label, but avoid quadratic behavior. */
1862 tree l
= get_cases_for_edge (e
, gs
);
1863 /* If more than one label reaches this block or the case
1864 label doesn't have a contiguous range of values (like the
1865 default one) fail. */
1866 if (!l
|| CASE_CHAIN (l
) || !CASE_LOW (l
))
1867 has_valid_pred
= false;
1868 else if (!CASE_HIGH (l
)
1869 || operand_equal_p (CASE_LOW (l
), CASE_HIGH (l
)))
1872 one_pred
.pred_lhs
= gimple_switch_index (gs
);
1873 one_pred
.pred_rhs
= CASE_LOW (l
);
1874 one_pred
.cond_code
= EQ_EXPR
;
1875 one_pred
.invert
= false;
1876 t_chain
.safe_push (one_pred
);
1877 has_valid_pred
= true;
1881 /* Support a case label with a range with
1882 two predicates. We're overcommitting on
1883 the MAX_CHAIN_LEN budget by at most a factor
1886 one_pred
.pred_lhs
= gimple_switch_index (gs
);
1887 one_pred
.pred_rhs
= CASE_LOW (l
);
1888 one_pred
.cond_code
= GE_EXPR
;
1889 one_pred
.invert
= false;
1890 t_chain
.safe_push (one_pred
);
1891 one_pred
.pred_rhs
= CASE_HIGH (l
);
1892 one_pred
.cond_code
= LE_EXPR
;
1893 t_chain
.safe_push (one_pred
);
1894 has_valid_pred
= true;
1897 else if (stmt_can_throw_internal (cfun
, cond_stmt
)
1898 && !(e
->flags
& EDGE_EH
))
1899 /* Ignore the exceptional control flow and proceed as if
1900 E were a fallthru without a controlling predicate for
1901 both the USE (valid) and DEF (questionable) case. */
1902 has_valid_pred
= true;
1904 has_valid_pred
= false;
1906 /* For USE predicates we can drop components of the
1908 if (!has_valid_pred
&& !is_use
)
1912 /* For DEF predicates we have to drop components of the OR chain
1914 if (!has_valid_pred
&& !is_use
)
1920 /* When we add || 1 simply prune the chain and return. */
1921 if (t_chain
.is_empty ())
1924 for (auto chain
: m_preds
)
1926 m_preds
.truncate (0);
1930 m_preds
.quick_push (t_chain
);
1933 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
1937 /* Store a PRED in *THIS. */
1940 predicate::push_pred (const pred_info
&pred
)
1942 pred_chain chain
= vNULL
;
1943 chain
.safe_push (pred
);
1944 m_preds
.safe_push (chain
);
1947 /* Dump predicates in *THIS to F. */
1950 predicate::dump (FILE *f
) const
1952 unsigned np
= m_preds
.length ();
1955 fprintf (f
, "\tTRUE (empty)\n");
1959 for (unsigned i
= 0; i
< np
; i
++)
1962 fprintf (f
, "\tOR (");
1965 dump_pred_chain (f
, m_preds
[i
]);
1970 /* Dump predicates in *THIS to stderr. */
1973 predicate::debug () const
1978 /* Dump predicates in *THIS for STMT prepended by MSG to F. */
1981 predicate::dump (FILE *f
, gimple
*stmt
, const char *msg
) const
1983 fprintf (f
, "%s", msg
);
1987 print_gimple_stmt (f
, stmt
, 0);
1988 fprintf (f
, " is conditional on:\n");
1994 /* Initialize USE_PREDS with the predicates of the control dependence chains
1995 between the basic block DEF_BB that defines a variable of interst and
1996 USE_BB that uses the variable, respectively. */
1999 uninit_analysis::init_use_preds (predicate
&use_preds
, basic_block def_bb
,
2002 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
2003 fprintf (dump_file
, "init_use_preds (def_bb = %u, use_bb = %u)\n",
2004 def_bb
->index
, use_bb
->index
);
2006 gcc_assert (use_preds
.is_empty ()
2007 && dominated_by_p (CDI_DOMINATORS
, use_bb
, def_bb
));
2009 /* Set CD_ROOT to the basic block closest to USE_BB that is the control
2010 equivalent of (is guarded by the same predicate as) DEF_BB that also
2011 dominates USE_BB. This mimics the inner loop in
2012 compute_control_dep_chain. */
2013 basic_block cd_root
= def_bb
;
2016 basic_block pdom
= get_immediate_dominator (CDI_POST_DOMINATORS
, cd_root
);
2018 /* Stop at a loop exit which is also postdominating cd_root. */
2019 if (single_pred_p (pdom
) && !single_succ_p (cd_root
))
2022 if (!dominated_by_p (CDI_DOMINATORS
, pdom
, cd_root
)
2023 || !dominated_by_p (CDI_DOMINATORS
, use_bb
, pdom
))
2030 auto_bb_flag
in_region (cfun
);
2031 auto_vec
<basic_block
, 20> region (MIN (n_basic_blocks_for_fn (cfun
),
2032 param_uninit_control_dep_attempts
));
2034 /* Set DEP_CHAINS to the set of edges between CD_ROOT and USE_BB.
2035 Each DEP_CHAINS element is a series of edges whose conditions
2036 are logical conjunctions. Together, the DEP_CHAINS vector is
2037 used below to initialize an OR expression of the conjunctions. */
2038 unsigned num_chains
= 0;
2039 auto_vec
<edge
> *dep_chains
= new auto_vec
<edge
>[MAX_NUM_CHAINS
];
2041 if (!dfs_mark_dominating_region (use_bb
, cd_root
, in_region
, region
)
2042 || !compute_control_dep_chain (cd_root
, use_bb
, dep_chains
, &num_chains
,
2045 /* If the info in dep_chains is not complete we need to use a
2046 conservative approximation for the use predicate. */
2047 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
2048 fprintf (dump_file
, "init_use_preds: dep_chain incomplete, using "
2049 "conservative approximation\n");
2051 dep_chains
[0].truncate (0);
2052 simple_control_dep_chain (dep_chains
[0], cd_root
, use_bb
);
2055 /* Unmark the region. */
2056 for (auto bb
: region
)
2057 bb
->flags
&= ~in_region
;
2059 /* From the set of edges computed above initialize *THIS as the OR
2060 condition under which the definition in DEF_BB is used in USE_BB.
2061 Each OR subexpression is represented by one element of DEP_CHAINS,
2062 where each element consists of a series of AND subexpressions. */
2063 use_preds
.init_from_control_deps (dep_chains
, num_chains
, true);
2064 delete[] dep_chains
;
2065 return !use_preds
.is_empty ();
2068 /* Release resources in *THIS. */
2070 predicate::~predicate ()
2072 unsigned n
= m_preds
.length ();
2073 for (unsigned i
= 0; i
!= n
; ++i
)
2074 m_preds
[i
].release ();
2078 /* Copy-assign RHS to *THIS. */
2081 predicate::operator= (const predicate
&rhs
)
2086 m_cval
= rhs
.m_cval
;
2088 unsigned n
= m_preds
.length ();
2089 for (unsigned i
= 0; i
!= n
; ++i
)
2090 m_preds
[i
].release ();
2093 n
= rhs
.m_preds
.length ();
2094 for (unsigned i
= 0; i
!= n
; ++i
)
2096 const pred_chain
&chain
= rhs
.m_preds
[i
];
2097 m_preds
.safe_push (chain
.copy ());
2103 /* For each use edge of PHI, compute all control dependence chains
2104 and convert those to the composite predicates in M_PREDS.
2105 Return true if a nonempty predicate has been obtained. */
2108 uninit_analysis::init_from_phi_def (gphi
*phi
)
2110 gcc_assert (m_phi_def_preds
.is_empty ());
2112 basic_block phi_bb
= gimple_bb (phi
);
2113 /* Find the closest dominating bb to be the control dependence root. */
2114 basic_block cd_root
= get_immediate_dominator (CDI_DOMINATORS
, phi_bb
);
2118 /* Set DEF_EDGES to the edges to the PHI from the bb's that provide
2119 definitions of each of the PHI operands for which M_EVAL is false. */
2120 auto_vec
<edge
> def_edges
;
2121 hash_set
<gimple
*> visited_phis
;
2122 collect_phi_def_edges (phi
, cd_root
, &def_edges
, &visited_phis
);
2124 unsigned nedges
= def_edges
.length ();
2128 auto_bb_flag
in_region (cfun
);
2129 auto_vec
<basic_block
, 20> region (MIN (n_basic_blocks_for_fn (cfun
),
2130 param_uninit_control_dep_attempts
));
2131 /* Pre-mark the PHI incoming edges PHI block to make sure we only walk
2132 interesting edges from there. */
2133 for (unsigned i
= 0; i
< nedges
; i
++)
2135 if (!(def_edges
[i
]->dest
->flags
& in_region
))
2137 if (!region
.space (1))
2139 def_edges
[i
]->dest
->flags
|= in_region
;
2140 region
.quick_push (def_edges
[i
]->dest
);
2143 for (unsigned i
= 0; i
< nedges
; i
++)
2144 if (!dfs_mark_dominating_region (def_edges
[i
]->src
, cd_root
,
2148 unsigned num_chains
= 0;
2149 auto_vec
<edge
> *dep_chains
= new auto_vec
<edge
>[MAX_NUM_CHAINS
];
2150 for (unsigned i
= 0; i
< nedges
; i
++)
2152 edge e
= def_edges
[i
];
2153 unsigned prev_nc
= num_chains
;
2154 bool complete_p
= compute_control_dep_chain (cd_root
, e
->src
, dep_chains
,
2155 &num_chains
, in_region
);
2157 /* Update the newly added chains with the phi operand edge. */
2158 if (EDGE_COUNT (e
->src
->succs
) > 1)
2161 && prev_nc
== num_chains
2162 && num_chains
< MAX_NUM_CHAINS
)
2163 /* We can only add a chain for the PHI operand edge when the
2164 collected info was complete, otherwise the predicate may
2165 not be conservative. */
2166 dep_chains
[num_chains
++] = vNULL
;
2167 for (unsigned j
= prev_nc
; j
< num_chains
; j
++)
2168 dep_chains
[j
].safe_push (e
);
2172 /* Unmark the region. */
2173 for (auto bb
: region
)
2174 bb
->flags
&= ~in_region
;
2176 /* Convert control dependence chains to the predicate in *THIS under
2177 which the PHI operands are defined to values for which M_EVAL is
2179 m_phi_def_preds
.init_from_control_deps (dep_chains
, num_chains
, false);
2180 delete[] dep_chains
;
2181 return !m_phi_def_preds
.is_empty ();
2184 /* Compute the predicates that guard the use USE_STMT and check if
2185 the incoming paths that have an empty (or possibly empty) definition
2186 can be pruned. Return true if it can be determined that the use of
2187 PHI's def in USE_STMT is guarded by a predicate set that does not
2188 overlap with the predicate sets of all runtime paths that do not
2191 Return false if the use is not guarded or if it cannot be determined.
2192 USE_BB is the bb of the use (for phi operand use, the bb is not the bb
2193 of the phi stmt, but the source bb of the operand edge).
2195 OPNDS is a bitmap with a bit set for each PHI operand of interest.
2197 THIS->M_PREDS contains the (memoized) defining predicate chains of
2198 a PHI. If THIS->M_PREDS is empty, the PHI's defining predicate
2199 chains are computed and stored into THIS->M_PREDS as needed.
2201 VISITED_PHIS is a pointer set of phis being visited. */
2204 uninit_analysis::is_use_guarded (gimple
*use_stmt
, basic_block use_bb
,
2205 gphi
*phi
, unsigned opnds
,
2206 hash_set
<gphi
*> *visited
)
2208 if (visited
->add (phi
))
2211 /* The basic block where the PHI is defined. */
2212 basic_block def_bb
= gimple_bb (phi
);
2214 /* Try to build the predicate expression under which the PHI flows
2215 into its use. This will be empty if the PHI is defined and used
2217 predicate
use_preds (true);
2218 if (!init_use_preds (use_preds
, def_bb
, use_bb
))
2221 use_preds
.simplify (use_stmt
, /*is_use=*/true);
2222 use_preds
.normalize (use_stmt
, /*is_use=*/true);
2223 if (use_preds
.is_false ())
2225 if (use_preds
.is_true ())
2228 /* Try to prune the dead incoming phi edges. */
2229 if (!overlap (phi
, opnds
, visited
, use_preds
))
2231 if (DEBUG_PREDICATE_ANALYZER
&& dump_file
)
2232 fputs ("found predicate overlap\n", dump_file
);
2237 if (m_phi_def_preds
.is_empty ())
2239 /* Lazily initialize *THIS from PHI. */
2240 if (!init_from_phi_def (phi
))
2243 m_phi_def_preds
.simplify (phi
);
2244 m_phi_def_preds
.normalize (phi
);
2245 if (m_phi_def_preds
.is_false ())
2247 if (m_phi_def_preds
.is_true ())
2251 /* Return true if the predicate guarding the valid definition (i.e.,
2252 *THIS) is a superset of the predicate guarding the use (i.e.,
2254 if (m_phi_def_preds
.superset_of (use_preds
))
2260 /* Public interface to the above. */
2263 uninit_analysis::is_use_guarded (gimple
*stmt
, basic_block use_bb
, gphi
*phi
,
2266 hash_set
<gphi
*> visited
;
2267 return is_use_guarded (stmt
, use_bb
, phi
, opnds
, &visited
);