testsuite, i386: fix -fhardened test
[official-gcc.git] / gcc / gimple-predicate-analysis.cc
blobad2c35524ce12987e8cf202d1446a0da1f5264d6
1 /* Support for simple predicate analysis.
3 Copyright (C) 2001-2023 Free Software Foundation, Inc.
4 Contributed by Xinliang David Li <davidxl@google.com>
5 Generalized by Martin Sebor <msebor@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #define INCLUDE_STRING
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "backend.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "gimple-pretty-print.h"
33 #include "diagnostic-core.h"
34 #include "fold-const.h"
35 #include "gimple-iterator.h"
36 #include "tree-ssa.h"
37 #include "tree-cfg.h"
38 #include "cfghooks.h"
39 #include "attribs.h"
40 #include "builtins.h"
41 #include "calls.h"
42 #include "value-query.h"
43 #include "cfganal.h"
44 #include "tree-eh.h"
45 #include "gimple-fold.h"
47 #include "gimple-predicate-analysis.h"
49 #define DEBUG_PREDICATE_ANALYZER 1
51 /* In our predicate normal form we have MAX_NUM_CHAINS or predicates
52 and in those MAX_CHAIN_LEN (inverted) and predicates. */
53 #define MAX_NUM_CHAINS (unsigned)param_uninit_max_num_chains
54 #define MAX_CHAIN_LEN (unsigned)param_uninit_max_chain_len
56 /* Return true if X1 is the negation of X2. */
58 static inline bool
59 pred_neg_p (const pred_info &x1, const pred_info &x2)
61 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
62 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
63 return false;
65 tree_code c1 = x1.cond_code, c2;
66 if (x1.invert == x2.invert)
67 c2 = invert_tree_comparison (x2.cond_code, false);
68 else
69 c2 = x2.cond_code;
71 return c1 == c2;
74 /* Return whether the condition (VAL CMPC BOUNDARY) is true. */
76 static bool
77 is_value_included_in (tree val, tree boundary, tree_code cmpc)
79 /* Only handle integer constant here. */
80 if (TREE_CODE (val) != INTEGER_CST || TREE_CODE (boundary) != INTEGER_CST)
81 return true;
83 bool inverted = false;
84 if (cmpc == GE_EXPR || cmpc == GT_EXPR || cmpc == NE_EXPR)
86 cmpc = invert_tree_comparison (cmpc, false);
87 inverted = true;
90 bool result;
91 if (cmpc == EQ_EXPR)
92 result = tree_int_cst_equal (val, boundary);
93 else if (cmpc == LT_EXPR)
94 result = tree_int_cst_lt (val, boundary);
95 else
97 gcc_assert (cmpc == LE_EXPR);
98 result = tree_int_cst_le (val, boundary);
101 if (inverted)
102 result ^= 1;
104 return result;
107 /* Format the vector of edges EV as a string. */
109 static std::string
110 format_edge_vec (const vec<edge> &ev)
112 std::string str;
114 unsigned n = ev.length ();
115 for (unsigned i = 0; i < n; ++i)
117 char es[32];
118 const_edge e = ev[i];
119 sprintf (es, "%u -> %u", e->src->index, e->dest->index);
120 str += es;
121 if (i + 1 < n)
122 str += ", ";
124 return str;
127 /* Format the first N elements of the array of vector of edges EVA as
128 a string. */
130 static std::string
131 format_edge_vecs (const vec<edge> eva[], unsigned n)
133 std::string str;
135 for (unsigned i = 0; i != n; ++i)
137 str += '{';
138 str += format_edge_vec (eva[i]);
139 str += '}';
140 if (i + 1 < n)
141 str += ", ";
143 return str;
146 /* Dump a single pred_info to F. */
148 static void
149 dump_pred_info (FILE *f, const pred_info &pred)
151 if (pred.invert)
152 fprintf (f, "NOT (");
153 print_generic_expr (f, pred.pred_lhs);
154 fprintf (f, " %s ", op_symbol_code (pred.cond_code));
155 print_generic_expr (f, pred.pred_rhs);
156 if (pred.invert)
157 fputc (')', f);
160 /* Dump a pred_chain to F. */
162 static void
163 dump_pred_chain (FILE *f, const pred_chain &chain)
165 unsigned np = chain.length ();
166 for (unsigned j = 0; j < np; j++)
168 if (j > 0)
169 fprintf (f, " AND (");
170 else
171 fputc ('(', f);
172 dump_pred_info (f, chain[j]);
173 fputc (')', f);
177 /* Return the 'normalized' conditional code with operand swapping
178 and condition inversion controlled by SWAP_COND and INVERT. */
180 static tree_code
181 get_cmp_code (tree_code orig_cmp_code, bool swap_cond, bool invert)
183 tree_code tc = orig_cmp_code;
185 if (swap_cond)
186 tc = swap_tree_comparison (orig_cmp_code);
187 if (invert)
188 tc = invert_tree_comparison (tc, false);
190 switch (tc)
192 case LT_EXPR:
193 case LE_EXPR:
194 case GT_EXPR:
195 case GE_EXPR:
196 case EQ_EXPR:
197 case NE_EXPR:
198 break;
199 default:
200 return ERROR_MARK;
202 return tc;
205 /* Return true if PRED is common among all predicate chains in PREDS
206 (and therefore can be factored out). */
208 static bool
209 find_matching_predicate_in_rest_chains (const pred_info &pred,
210 const pred_chain_union &preds)
212 /* Trival case. */
213 if (preds.length () == 1)
214 return true;
216 for (unsigned i = 1; i < preds.length (); i++)
218 bool found = false;
219 const pred_chain &chain = preds[i];
220 unsigned n = chain.length ();
221 for (unsigned j = 0; j < n; j++)
223 const pred_info &pred2 = chain[j];
224 /* Can relax the condition comparison to not use address
225 comparison. However, the most common case is that
226 multiple control dependent paths share a common path
227 prefix, so address comparison should be ok. */
228 if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
229 && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
230 && pred2.invert == pred.invert)
232 found = true;
233 break;
236 if (!found)
237 return false;
239 return true;
242 /* Find a predicate to examine against paths of interest. If there
243 is no predicate of the "FLAG_VAR CMP CONST" form, try to find one
244 of that's the form "FLAG_VAR CMP FLAG_VAR" with value range info.
245 PHI is the phi node whose incoming (interesting) paths need to be
246 examined. On success, return the comparison code, set defintion
247 gimple of FLAG_DEF and BOUNDARY_CST. Otherwise return ERROR_MARK. */
249 static tree_code
250 find_var_cmp_const (pred_chain_union preds, gphi *phi, gimple **flag_def,
251 tree *boundary_cst)
253 tree_code vrinfo_code = ERROR_MARK;
254 gimple *vrinfo_def = NULL;
255 tree vrinfo_cst = NULL;
257 gcc_assert (preds.length () > 0);
258 pred_chain chain = preds[0];
259 for (unsigned i = 0; i < chain.length (); i++)
261 bool use_vrinfo_p = false;
262 const pred_info &pred = chain[i];
263 tree cond_lhs = pred.pred_lhs;
264 tree cond_rhs = pred.pred_rhs;
265 if (cond_lhs == NULL_TREE || cond_rhs == NULL_TREE)
266 continue;
268 tree_code code = get_cmp_code (pred.cond_code, false, pred.invert);
269 if (code == ERROR_MARK)
270 continue;
272 /* Convert to the canonical form SSA_NAME CMP CONSTANT. */
273 if (TREE_CODE (cond_lhs) == SSA_NAME
274 && is_gimple_constant (cond_rhs))
276 else if (TREE_CODE (cond_rhs) == SSA_NAME
277 && is_gimple_constant (cond_lhs))
279 std::swap (cond_lhs, cond_rhs);
280 if ((code = get_cmp_code (code, true, false)) == ERROR_MARK)
281 continue;
283 /* Check if we can take advantage of FLAG_VAR COMP FLAG_VAR predicate
284 with value range info. Note only first of such case is handled. */
285 else if (vrinfo_code == ERROR_MARK
286 && TREE_CODE (cond_lhs) == SSA_NAME
287 && TREE_CODE (cond_rhs) == SSA_NAME)
289 gimple* lhs_def = SSA_NAME_DEF_STMT (cond_lhs);
290 if (!lhs_def || gimple_code (lhs_def) != GIMPLE_PHI
291 || gimple_bb (lhs_def) != gimple_bb (phi))
293 std::swap (cond_lhs, cond_rhs);
294 if ((code = get_cmp_code (code, true, false)) == ERROR_MARK)
295 continue;
298 /* Check value range info of rhs, do following transforms:
299 flag_var < [min, max] -> flag_var < max
300 flag_var > [min, max] -> flag_var > min
302 We can also transform LE_EXPR/GE_EXPR to LT_EXPR/GT_EXPR:
303 flag_var <= [min, max] -> flag_var < [min, max+1]
304 flag_var >= [min, max] -> flag_var > [min-1, max]
305 if no overflow/wrap. */
306 tree type = TREE_TYPE (cond_lhs);
307 value_range r;
308 if (!INTEGRAL_TYPE_P (type)
309 || !get_range_query (cfun)->range_of_expr (r, cond_rhs)
310 || r.undefined_p ()
311 || r.varying_p ())
312 continue;
314 wide_int min = r.lower_bound ();
315 wide_int max = r.upper_bound ();
316 if (code == LE_EXPR
317 && max != wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type)))
319 code = LT_EXPR;
320 max = max + 1;
322 if (code == GE_EXPR
323 && min != wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type)))
325 code = GT_EXPR;
326 min = min - 1;
328 if (code == LT_EXPR)
329 cond_rhs = wide_int_to_tree (type, max);
330 else if (code == GT_EXPR)
331 cond_rhs = wide_int_to_tree (type, min);
332 else
333 continue;
335 use_vrinfo_p = true;
337 else
338 continue;
340 if ((*flag_def = SSA_NAME_DEF_STMT (cond_lhs)) == NULL)
341 continue;
343 if (gimple_code (*flag_def) != GIMPLE_PHI
344 || gimple_bb (*flag_def) != gimple_bb (phi)
345 || !find_matching_predicate_in_rest_chains (pred, preds))
346 continue;
348 /* Return if any "flag_var comp const" predicate is found. */
349 if (!use_vrinfo_p)
351 *boundary_cst = cond_rhs;
352 return code;
354 /* Record if any "flag_var comp flag_var[vinfo]" predicate is found. */
355 else if (vrinfo_code == ERROR_MARK)
357 vrinfo_code = code;
358 vrinfo_def = *flag_def;
359 vrinfo_cst = cond_rhs;
362 /* Return the "flag_var cmp flag_var[vinfo]" predicate we found. */
363 if (vrinfo_code != ERROR_MARK)
365 *flag_def = vrinfo_def;
366 *boundary_cst = vrinfo_cst;
368 return vrinfo_code;
371 /* Return true if all interesting opnds are pruned, false otherwise.
372 PHI is the phi node with interesting operands, OPNDS is the bitmap
373 of the interesting operand positions, FLAG_DEF is the statement
374 defining the flag guarding the use of the PHI output, BOUNDARY_CST
375 is the const value used in the predicate associated with the flag,
376 CMP_CODE is the comparison code used in the predicate, VISITED_PHIS
377 is the pointer set of phis visited, and VISITED_FLAG_PHIS is
378 the pointer to the pointer set of flag definitions that are also
379 phis.
381 Example scenario:
383 BB1:
384 flag_1 = phi <0, 1> // (1)
385 var_1 = phi <undef, some_val>
388 BB2:
389 flag_2 = phi <0, flag_1, flag_1> // (2)
390 var_2 = phi <undef, var_1, var_1>
391 if (flag_2 == 1)
392 goto BB3;
394 BB3:
395 use of var_2 // (3)
397 Because some flag arg in (1) is not constant, if we do not look into
398 the flag phis recursively, it is conservatively treated as unknown and
399 var_1 is thought to flow into use at (3). Since var_1 is potentially
400 uninitialized a false warning will be emitted.
401 Checking recursively into (1), the compiler can find out that only
402 some_val (which is defined) can flow into (3) which is OK. */
404 bool
405 uninit_analysis::prune_phi_opnds (gphi *phi, unsigned opnds, gphi *flag_def,
406 tree boundary_cst, tree_code cmp_code,
407 hash_set<gphi *> *visited_phis,
408 bitmap *visited_flag_phis)
410 /* The Boolean predicate guarding the PHI definition. Initialized
411 lazily from PHI in the first call to is_use_guarded() and cached
412 for subsequent iterations. */
413 uninit_analysis def_preds (m_eval);
415 unsigned n = MIN (m_eval.max_phi_args, gimple_phi_num_args (flag_def));
416 for (unsigned i = 0; i < n; i++)
418 if (!MASK_TEST_BIT (opnds, i))
419 continue;
421 tree flag_arg = gimple_phi_arg_def (flag_def, i);
422 if (!is_gimple_constant (flag_arg))
424 if (TREE_CODE (flag_arg) != SSA_NAME)
425 return false;
427 gphi *flag_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (flag_arg));
428 if (!flag_arg_def)
429 return false;
431 tree phi_arg = gimple_phi_arg_def (phi, i);
432 if (TREE_CODE (phi_arg) != SSA_NAME)
433 return false;
435 gphi *phi_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (phi_arg));
436 if (!phi_arg_def)
437 return false;
439 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
440 return false;
442 if (!*visited_flag_phis)
443 *visited_flag_phis = BITMAP_ALLOC (NULL);
445 tree phi_result = gimple_phi_result (flag_arg_def);
446 if (bitmap_bit_p (*visited_flag_phis, SSA_NAME_VERSION (phi_result)))
447 return false;
449 bitmap_set_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result));
451 /* Now recursively try to prune the interesting phi args. */
452 unsigned opnds_arg_phi = m_eval.phi_arg_set (phi_arg_def);
453 if (!prune_phi_opnds (phi_arg_def, opnds_arg_phi, flag_arg_def,
454 boundary_cst, cmp_code, visited_phis,
455 visited_flag_phis))
456 return false;
458 bitmap_clear_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result));
459 continue;
462 /* Now check if the constant is in the guarded range. */
463 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
465 /* Now that we know that this undefined edge is not pruned.
466 If the operand is defined by another phi, we can further
467 prune the incoming edges of that phi by checking
468 the predicates of this operands. */
470 tree opnd = gimple_phi_arg_def (phi, i);
471 gimple *opnd_def = SSA_NAME_DEF_STMT (opnd);
472 if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
474 unsigned opnds2 = m_eval.phi_arg_set (opnd_def_phi);
475 if (!MASK_EMPTY (opnds2))
477 edge opnd_edge = gimple_phi_arg_edge (phi, i);
478 if (def_preds.is_use_guarded (phi, opnd_edge->src,
479 opnd_def_phi, opnds2,
480 visited_phis))
481 return false;
484 else
485 return false;
489 return true;
492 /* Recursively compute the set PHI's incoming edges with "uninteresting"
493 operands of a phi chain, i.e., those for which EVAL returns false.
494 CD_ROOT is the control dependence root from which edges are collected
495 up the CFG nodes that it's dominated by. *EDGES holds the result, and
496 VISITED is used for detecting cycles. */
498 void
499 uninit_analysis::collect_phi_def_edges (gphi *phi, basic_block cd_root,
500 vec<edge> *edges,
501 hash_set<gimple *> *visited)
503 if (visited->elements () == 0
504 && DEBUG_PREDICATE_ANALYZER
505 && dump_file)
507 fprintf (dump_file, "%s for cd_root %u and ",
508 __func__, cd_root->index);
509 print_gimple_stmt (dump_file, phi, 0);
513 if (visited->add (phi))
514 return;
516 unsigned n = gimple_phi_num_args (phi);
517 unsigned opnds_arg_phi = m_eval.phi_arg_set (phi);
518 for (unsigned i = 0; i < n; i++)
520 if (!MASK_TEST_BIT (opnds_arg_phi, i))
522 /* Add the edge for a not maybe-undefined edge value. */
523 edge opnd_edge = gimple_phi_arg_edge (phi, i);
524 if (dump_file && (dump_flags & TDF_DETAILS))
526 fprintf (dump_file,
527 "\tFound def edge %i -> %i for cd_root %i "
528 "and operand %u of: ",
529 opnd_edge->src->index, opnd_edge->dest->index,
530 cd_root->index, i);
531 print_gimple_stmt (dump_file, phi, 0);
533 edges->safe_push (opnd_edge);
534 continue;
536 else
538 tree opnd = gimple_phi_arg_def (phi, i);
539 if (TREE_CODE (opnd) == SSA_NAME)
541 gimple *def = SSA_NAME_DEF_STMT (opnd);
542 if (gimple_code (def) == GIMPLE_PHI
543 && dominated_by_p (CDI_DOMINATORS, gimple_bb (def), cd_root))
544 /* Process PHI defs of maybe-undefined edge values
545 recursively. */
546 collect_phi_def_edges (as_a<gphi *> (def), cd_root, edges,
547 visited);
553 /* Return a bitset of all PHI arguments or zero if there are too many. */
555 unsigned
556 uninit_analysis::func_t::phi_arg_set (gphi *phi)
558 unsigned n = gimple_phi_num_args (phi);
560 if (max_phi_args < n)
561 return 0;
563 /* Set the least significant N bits. */
564 return (1U << n) - 1;
567 /* Determine if the predicate set of the use does not overlap with that
568 of the interesting paths. The most common senario of guarded use is
569 in Example 1:
570 Example 1:
571 if (some_cond)
573 x = ...; // set x to valid
574 flag = true;
577 ... some code ...
579 if (flag)
580 use (x); // use when x is valid
582 The real world examples are usually more complicated, but similar
583 and usually result from inlining:
585 bool init_func (int * x)
587 if (some_cond)
588 return false;
589 *x = ...; // set *x to valid
590 return true;
593 void foo (..)
595 int x;
597 if (!init_func (&x))
598 return;
600 .. some_code ...
601 use (x); // use when x is valid
604 Another possible use scenario is in the following trivial example:
606 Example 2:
607 if (n > 0)
608 x = 1;
610 if (n > 0)
612 if (m < 2)
613 ... = x;
616 Predicate analysis needs to compute the composite predicate:
618 1) 'x' use predicate: (n > 0) .AND. (m < 2)
619 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
620 (the predicate chain for phi operand defs can be computed
621 starting from a bb that is control equivalent to the phi's
622 bb and is dominating the operand def.)
624 and check overlapping:
625 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
626 <==> false
628 This implementation provides a framework that can handle different
629 scenarios. (Note that many simple cases are handled properly without
630 the predicate analysis if jump threading eliminates the merge point
631 thus makes path-sensitive analysis unnecessary.)
633 PHI is the phi node whose incoming (undefined) paths need to be
634 pruned, and OPNDS is the bitmap holding interesting operand
635 positions. VISITED is the pointer set of phi stmts being
636 checked. */
638 bool
639 uninit_analysis::overlap (gphi *phi, unsigned opnds, hash_set<gphi *> *visited,
640 const predicate &use_preds)
642 gimple *flag_def = NULL;
643 tree boundary_cst = NULL_TREE;
644 bitmap visited_flag_phis = NULL;
646 /* Find within the common prefix of multiple predicate chains
647 a predicate that is a comparison of a flag variable against
648 a constant. */
649 tree_code cmp_code = find_var_cmp_const (use_preds.chain (), phi, &flag_def,
650 &boundary_cst);
651 if (cmp_code == ERROR_MARK)
652 return true;
654 /* Now check all the uninit incoming edges have a constant flag
655 value that is in conflict with the use guard/predicate. */
656 gphi *phi_def = as_a<gphi *> (flag_def);
657 bool all_pruned = prune_phi_opnds (phi, opnds, phi_def, boundary_cst,
658 cmp_code, visited,
659 &visited_flag_phis);
661 if (visited_flag_phis)
662 BITMAP_FREE (visited_flag_phis);
664 return !all_pruned;
667 /* Return true if two predicates PRED1 and X2 are equivalent. Assume
668 the expressions have already properly re-associated. */
670 static inline bool
671 pred_equal_p (const pred_info &pred1, const pred_info &pred2)
673 if (!operand_equal_p (pred1.pred_lhs, pred2.pred_lhs, 0)
674 || !operand_equal_p (pred1.pred_rhs, pred2.pred_rhs, 0))
675 return false;
677 tree_code c1 = pred1.cond_code, c2;
678 if (pred1.invert != pred2.invert
679 && TREE_CODE_CLASS (pred2.cond_code) == tcc_comparison)
680 c2 = invert_tree_comparison (pred2.cond_code, false);
681 else
682 c2 = pred2.cond_code;
684 return c1 == c2;
687 /* Return true if PRED tests inequality (i.e., X != Y). */
689 static inline bool
690 is_neq_relop_p (const pred_info &pred)
693 return ((pred.cond_code == NE_EXPR && !pred.invert)
694 || (pred.cond_code == EQ_EXPR && pred.invert));
697 /* Returns true if PRED is of the form X != 0. */
699 static inline bool
700 is_neq_zero_form_p (const pred_info &pred)
702 if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
703 || TREE_CODE (pred.pred_lhs) != SSA_NAME)
704 return false;
705 return true;
708 /* Return true if PRED is equivalent to X != 0. */
710 static inline bool
711 pred_expr_equal_p (const pred_info &pred, tree expr)
713 if (!is_neq_zero_form_p (pred))
714 return false;
716 return operand_equal_p (pred.pred_lhs, expr, 0);
719 /* Return true if VAL satisfies (x CMPC BOUNDARY) predicate. CMPC can
720 be either one of the range comparison codes ({GE,LT,EQ,NE}_EXPR and
721 the like), or BIT_AND_EXPR. EXACT_P is only meaningful for the latter.
722 Modify the question from VAL & BOUNDARY != 0 to VAL & BOUNDARY == VAL.
723 For other values of CMPC, EXACT_P is ignored. */
725 static bool
726 value_sat_pred_p (tree val, tree boundary, tree_code cmpc,
727 bool exact_p = false)
729 if (cmpc != BIT_AND_EXPR)
730 return is_value_included_in (val, boundary, cmpc);
732 widest_int andw = wi::to_widest (val) & wi::to_widest (boundary);
733 if (exact_p)
734 return andw == wi::to_widest (val);
736 return wi::ne_p (andw, 0);
739 /* Return true if the domain of single predicate expression PRED1
740 is a subset of that of PRED2, and false if it cannot be proved. */
742 static bool
743 subset_of (const pred_info &pred1, const pred_info &pred2)
745 if (pred_equal_p (pred1, pred2))
746 return true;
748 if ((TREE_CODE (pred1.pred_rhs) != INTEGER_CST)
749 || (TREE_CODE (pred2.pred_rhs) != INTEGER_CST))
750 return false;
752 if (!operand_equal_p (pred1.pred_lhs, pred2.pred_lhs, 0))
753 return false;
755 tree_code code1 = pred1.cond_code;
756 if (pred1.invert)
757 code1 = invert_tree_comparison (code1, false);
758 tree_code code2 = pred2.cond_code;
759 if (pred2.invert)
760 code2 = invert_tree_comparison (code2, false);
762 if (code2 == NE_EXPR && code1 == NE_EXPR)
763 return false;
765 if (code2 == NE_EXPR)
766 return !value_sat_pred_p (pred2.pred_rhs, pred1.pred_rhs, code1);
768 if (code1 == EQ_EXPR)
769 return value_sat_pred_p (pred1.pred_rhs, pred2.pred_rhs, code2);
771 if (code1 == code2)
772 return value_sat_pred_p (pred1.pred_rhs, pred2.pred_rhs, code2,
773 code1 == BIT_AND_EXPR);
775 return false;
778 /* Return true if the domain of CHAIN1 is a subset of that of CHAIN2.
779 Return false if it cannot be proven so. */
781 static bool
782 subset_of (const pred_chain &chain1, const pred_chain &chain2)
784 unsigned np1 = chain1.length ();
785 unsigned np2 = chain2.length ();
786 for (unsigned i2 = 0; i2 < np2; i2++)
788 bool found = false;
789 const pred_info &info2 = chain2[i2];
790 for (unsigned i1 = 0; i1 < np1; i1++)
792 const pred_info &info1 = chain1[i1];
793 if (subset_of (info1, info2))
795 found = true;
796 break;
799 if (!found)
800 return false;
802 return true;
805 /* Return true if the domain defined by the predicate chain PREDS is
806 a subset of the domain of *THIS. Return false if PREDS's domain
807 is not a subset of any of the sub-domains of *THIS (corresponding
808 to each individual chains in it), even though it may be still be
809 a subset of whole domain of *THIS which is the union (ORed) of all
810 its subdomains. In other words, the result is conservative. */
812 bool
813 predicate::includes (const pred_chain &chain) const
815 for (unsigned i = 0; i < m_preds.length (); i++)
816 if (subset_of (chain, m_preds[i]))
817 return true;
819 return false;
822 /* Return true if the domain defined by *THIS is a superset of PREDS's
823 domain.
824 Avoid building generic trees (and rely on the folding capability
825 of the compiler), and instead perform brute force comparison of
826 individual predicate chains (this won't be a computationally costly
827 since the chains are pretty short). Returning false does not
828 necessarily mean *THIS is not a superset of *PREDS, only that
829 it need not be since the analysis cannot prove it. */
831 bool
832 predicate::superset_of (const predicate &preds) const
834 for (unsigned i = 0; i < preds.m_preds.length (); i++)
835 if (!includes (preds.m_preds[i]))
836 return false;
838 return true;
841 /* Create a predicate of the form OP != 0 and push it the work list CHAIN. */
843 static void
844 push_to_worklist (tree op, pred_chain *chain, hash_set<tree> *mark_set)
846 if (mark_set->contains (op))
847 return;
848 mark_set->add (op);
850 pred_info arg_pred;
851 arg_pred.pred_lhs = op;
852 arg_pred.pred_rhs = integer_zero_node;
853 arg_pred.cond_code = NE_EXPR;
854 arg_pred.invert = false;
855 chain->safe_push (arg_pred);
858 /* Return a pred_info for a gimple assignment CMP_ASSIGN with comparison
859 rhs. */
861 static pred_info
862 get_pred_info_from_cmp (const gimple *cmp_assign)
864 pred_info pred;
865 pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
866 pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
867 pred.cond_code = gimple_assign_rhs_code (cmp_assign);
868 pred.invert = false;
869 return pred;
872 /* If PHI is a degenerate phi with all operands having the same value (relop)
873 update *PRED to that value and return true. Otherwise return false. */
875 static bool
876 is_degenerate_phi (gimple *phi, pred_info *pred)
878 tree op0 = gimple_phi_arg_def (phi, 0);
880 if (TREE_CODE (op0) != SSA_NAME)
881 return false;
883 gimple *def0 = SSA_NAME_DEF_STMT (op0);
884 if (gimple_code (def0) != GIMPLE_ASSIGN)
885 return false;
887 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0)) != tcc_comparison)
888 return false;
890 pred_info pred0 = get_pred_info_from_cmp (def0);
892 unsigned n = gimple_phi_num_args (phi);
893 for (unsigned i = 1; i < n; ++i)
895 tree op = gimple_phi_arg_def (phi, i);
896 if (TREE_CODE (op) != SSA_NAME)
897 return false;
899 gimple *def = SSA_NAME_DEF_STMT (op);
900 if (gimple_code (def) != GIMPLE_ASSIGN)
901 return false;
903 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
904 return false;
906 pred_info pred = get_pred_info_from_cmp (def);
907 if (!pred_equal_p (pred, pred0))
908 return false;
911 *pred = pred0;
912 return true;
915 /* If compute_control_dep_chain bailed out due to limits this routine
916 tries to build a partial sparse path using dominators. Returns
917 path edges whose predicates are always true when reaching E. */
919 static void
920 simple_control_dep_chain (vec<edge>& chain, basic_block from, basic_block to)
922 if (!dominated_by_p (CDI_DOMINATORS, to, from))
923 return;
925 basic_block src = to;
926 while (src != from
927 && chain.length () <= MAX_CHAIN_LEN)
929 basic_block dest = src;
930 src = get_immediate_dominator (CDI_DOMINATORS, src);
931 if (single_pred_p (dest))
933 edge pred_e = single_pred_edge (dest);
934 gcc_assert (pred_e->src == src);
935 if (!(pred_e->flags & ((EDGE_FAKE | EDGE_ABNORMAL | EDGE_DFS_BACK)))
936 && !single_succ_p (src))
937 chain.safe_push (pred_e);
942 /* Perform a DFS walk on predecessor edges to mark the region denoted
943 by the EXIT_SRC block and DOM which dominates EXIT_SRC, including DOM.
944 Blocks in the region are marked with FLAG and added to BBS. BBS is
945 filled up to its capacity only after which the walk is terminated
946 and false is returned. If the whole region was marked, true is returned. */
948 static bool
949 dfs_mark_dominating_region (basic_block exit_src, basic_block dom, int flag,
950 vec<basic_block> &bbs)
952 if (exit_src == dom || exit_src->flags & flag)
953 return true;
954 if (!bbs.space (1))
955 return false;
956 bbs.quick_push (exit_src);
957 exit_src->flags |= flag;
958 auto_vec<edge_iterator, 20> stack (bbs.allocated () - bbs.length () + 1);
959 stack.quick_push (ei_start (exit_src->preds));
960 while (!stack.is_empty ())
962 /* Look at the edge on the top of the stack. */
963 edge_iterator ei = stack.last ();
964 basic_block src = ei_edge (ei)->src;
966 /* Check if the edge source has been visited yet. */
967 if (!(src->flags & flag))
969 /* Mark the source if there's still space. If not, return early. */
970 if (!bbs.space (1))
971 return false;
972 src->flags |= flag;
973 bbs.quick_push (src);
975 /* Queue its predecessors if we didn't reach DOM. */
976 if (src != dom && EDGE_COUNT (src->preds) > 0)
977 stack.quick_push (ei_start (src->preds));
979 else
981 if (!ei_one_before_end_p (ei))
982 ei_next (&stack.last ());
983 else
984 stack.pop ();
987 return true;
990 static bool
991 compute_control_dep_chain (basic_block dom_bb, const_basic_block dep_bb,
992 vec<edge> cd_chains[], unsigned *num_chains,
993 vec<edge> &cur_cd_chain, unsigned *num_calls,
994 unsigned in_region, unsigned depth,
995 bool *complete_p);
997 /* Helper for compute_control_dep_chain that walks the post-dominator
998 chain from CD_BB up unto TARGET_BB looking for paths to DEP_BB. */
1000 static bool
1001 compute_control_dep_chain_pdom (basic_block cd_bb, const_basic_block dep_bb,
1002 basic_block target_bb,
1003 vec<edge> cd_chains[], unsigned *num_chains,
1004 vec<edge> &cur_cd_chain, unsigned *num_calls,
1005 unsigned in_region, unsigned depth,
1006 bool *complete_p)
1008 bool found_cd_chain = false;
1009 while (cd_bb != target_bb)
1011 if (cd_bb == dep_bb)
1013 /* Found a direct control dependence. */
1014 if (*num_chains < MAX_NUM_CHAINS)
1016 if (DEBUG_PREDICATE_ANALYZER && dump_file)
1017 fprintf (dump_file, "%*s pushing { %s }\n",
1018 depth, "", format_edge_vec (cur_cd_chain).c_str ());
1019 cd_chains[*num_chains] = cur_cd_chain.copy ();
1020 (*num_chains)++;
1022 found_cd_chain = true;
1023 /* Check path from next edge. */
1024 break;
1027 /* If the dominating region has been marked avoid walking outside. */
1028 if (in_region != 0 && !(cd_bb->flags & in_region))
1029 break;
1031 /* Count the number of steps we perform to limit compile-time.
1032 This should cover both recursion and the post-dominator walk. */
1033 if (*num_calls > (unsigned)param_uninit_control_dep_attempts)
1035 if (dump_file)
1036 fprintf (dump_file, "param_uninit_control_dep_attempts "
1037 "exceeded: %u\n", *num_calls);
1038 *complete_p = false;
1039 break;
1041 ++*num_calls;
1043 /* Check if DEP_BB is indirectly control-dependent on DOM_BB. */
1044 if (!single_succ_p (cd_bb)
1045 && compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
1046 num_chains, cur_cd_chain,
1047 num_calls, in_region, depth + 1,
1048 complete_p))
1050 found_cd_chain = true;
1051 break;
1054 /* The post-dominator walk will reach a backedge only
1055 from a forwarder, otherwise it should choose to exit
1056 the SCC. */
1057 if (single_succ_p (cd_bb)
1058 && single_succ_edge (cd_bb)->flags & EDGE_DFS_BACK)
1059 break;
1060 basic_block prev_cd_bb = cd_bb;
1061 cd_bb = get_immediate_dominator (CDI_POST_DOMINATORS, cd_bb);
1062 if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1063 break;
1064 /* Pick up conditions toward the post dominator such like
1065 loop exit conditions. See gcc.dg/uninit-pred-11.c and
1066 gcc.dg/unninit-pred-12.c and PR106754. */
1067 if (single_pred_p (cd_bb))
1069 edge e2 = single_pred_edge (cd_bb);
1070 gcc_assert (e2->src == prev_cd_bb);
1071 /* But avoid adding fallthru or abnormal edges. */
1072 if (!(e2->flags & (EDGE_FAKE | EDGE_ABNORMAL | EDGE_DFS_BACK))
1073 && !single_succ_p (prev_cd_bb))
1074 cur_cd_chain.safe_push (e2);
1077 return found_cd_chain;
1081 /* Recursively compute the control dependence chains (paths of edges)
1082 from the dependent basic block, DEP_BB, up to the dominating basic
1083 block, DOM_BB (the head node of a chain should be dominated by it),
1084 storing them in the CD_CHAINS array.
1085 CUR_CD_CHAIN is the current chain being computed.
1086 *NUM_CHAINS is total number of chains in the CD_CHAINS array.
1087 *NUM_CALLS is the number of recursive calls to control unbounded
1088 recursion.
1089 Return true if the information is successfully computed, false if
1090 there is no control dependence or not computed.
1091 *COMPLETE_P is set to false if we stopped walking due to limits.
1092 In this case there might be missing chains. */
1094 static bool
1095 compute_control_dep_chain (basic_block dom_bb, const_basic_block dep_bb,
1096 vec<edge> cd_chains[], unsigned *num_chains,
1097 vec<edge> &cur_cd_chain, unsigned *num_calls,
1098 unsigned in_region, unsigned depth,
1099 bool *complete_p)
1101 /* In our recursive calls this doesn't happen. */
1102 if (single_succ_p (dom_bb))
1103 return false;
1105 /* FIXME: Use a set instead. */
1106 unsigned cur_chain_len = cur_cd_chain.length ();
1107 if (cur_chain_len > MAX_CHAIN_LEN)
1109 if (dump_file)
1110 fprintf (dump_file, "MAX_CHAIN_LEN exceeded: %u\n", cur_chain_len);
1112 *complete_p = false;
1113 return false;
1116 if (cur_chain_len > 5)
1118 if (dump_file)
1119 fprintf (dump_file, "chain length exceeds 5: %u\n", cur_chain_len);
1122 if (DEBUG_PREDICATE_ANALYZER && dump_file)
1123 fprintf (dump_file,
1124 "%*s%s (dom_bb = %u, dep_bb = %u, ..., "
1125 "cur_cd_chain = { %s }, ...)\n",
1126 depth, "", __func__, dom_bb->index, dep_bb->index,
1127 format_edge_vec (cur_cd_chain).c_str ());
1129 bool found_cd_chain = false;
1131 /* Iterate over DOM_BB's successors. */
1132 edge e;
1133 edge_iterator ei;
1134 FOR_EACH_EDGE (e, ei, dom_bb->succs)
1136 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL | EDGE_DFS_BACK))
1137 continue;
1139 basic_block cd_bb = e->dest;
1140 unsigned pop_mark = cur_cd_chain.length ();
1141 cur_cd_chain.safe_push (e);
1142 basic_block target_bb
1143 = get_immediate_dominator (CDI_POST_DOMINATORS, dom_bb);
1144 /* Walk the post-dominator chain up to the CFG merge. */
1145 found_cd_chain
1146 |= compute_control_dep_chain_pdom (cd_bb, dep_bb, target_bb,
1147 cd_chains, num_chains,
1148 cur_cd_chain, num_calls,
1149 in_region, depth, complete_p);
1150 cur_cd_chain.truncate (pop_mark);
1151 gcc_assert (cur_cd_chain.length () == cur_chain_len);
1154 gcc_assert (cur_cd_chain.length () == cur_chain_len);
1155 return found_cd_chain;
1158 /* Wrapper around the compute_control_dep_chain worker above. Returns
1159 true when the collected set of chains in CD_CHAINS is complete. */
1161 static bool
1162 compute_control_dep_chain (basic_block dom_bb, const_basic_block dep_bb,
1163 vec<edge> cd_chains[], unsigned *num_chains,
1164 unsigned in_region = 0)
1166 auto_vec<edge, 10> cur_cd_chain;
1167 unsigned num_calls = 0;
1168 unsigned depth = 0;
1169 bool complete_p = true;
1170 /* Walk the post-dominator chain. */
1171 cur_cd_chain.reserve (MAX_CHAIN_LEN + 1);
1172 compute_control_dep_chain_pdom (dom_bb, dep_bb, NULL, cd_chains,
1173 num_chains, cur_cd_chain, &num_calls,
1174 in_region, depth, &complete_p);
1175 return complete_p;
1178 /* Implemented simplifications:
1180 1a) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1181 1b) [!](X rel y) AND [!](X rel y') where y == y' or both constant
1182 can possibly be simplified
1183 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1184 3) X OR (!X AND Y) is equivalent to (X OR Y);
1185 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1186 (x != 0 AND y != 0)
1187 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1188 (X AND Y) OR Z
1190 PREDS is the predicate chains, and N is the number of chains. */
1192 /* Implement rule 1a above. PREDS is the AND predicate to simplify
1193 in place. */
1195 static void
1196 simplify_1a (pred_chain &chain)
1198 bool simplified = false;
1199 pred_chain s_chain = vNULL;
1201 unsigned n = chain.length ();
1202 for (unsigned i = 0; i < n; i++)
1204 pred_info &a_pred = chain[i];
1206 if (!a_pred.pred_lhs
1207 || !is_neq_zero_form_p (a_pred))
1208 continue;
1210 gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred.pred_lhs);
1211 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1212 continue;
1214 if (gimple_assign_rhs_code (def_stmt) != BIT_IOR_EXPR)
1215 continue;
1217 for (unsigned j = 0; j < n; j++)
1219 const pred_info &b_pred = chain[j];
1221 if (!b_pred.pred_lhs
1222 || !is_neq_zero_form_p (b_pred))
1223 continue;
1225 if (pred_expr_equal_p (b_pred, gimple_assign_rhs1 (def_stmt))
1226 || pred_expr_equal_p (b_pred, gimple_assign_rhs2 (def_stmt)))
1228 /* Mark A_PRED for removal from PREDS. */
1229 a_pred.pred_lhs = NULL;
1230 a_pred.pred_rhs = NULL;
1231 simplified = true;
1232 break;
1237 if (!simplified)
1238 return;
1240 /* Remove predicates marked above. */
1241 for (unsigned i = 0; i < n; i++)
1243 pred_info &a_pred = chain[i];
1244 if (!a_pred.pred_lhs)
1245 continue;
1246 s_chain.safe_push (a_pred);
1249 chain.release ();
1250 chain = s_chain;
1253 /* Implement rule 1b above. PREDS is the AND predicate to simplify
1254 in place. Returns true if CHAIN simplifies to true or false. */
1256 static bool
1257 simplify_1b (pred_chain &chain)
1259 for (unsigned i = 0; i < chain.length (); i++)
1261 pred_info &a_pred = chain[i];
1263 for (unsigned j = i + 1; j < chain.length (); ++j)
1265 pred_info &b_pred = chain[j];
1267 if (!operand_equal_p (a_pred.pred_lhs, b_pred.pred_lhs)
1268 || (!operand_equal_p (a_pred.pred_rhs, b_pred.pred_rhs)
1269 && !(CONSTANT_CLASS_P (a_pred.pred_rhs)
1270 && CONSTANT_CLASS_P (b_pred.pred_rhs))))
1271 continue;
1273 tree_code a_code = a_pred.cond_code;
1274 if (a_pred.invert)
1275 a_code = invert_tree_comparison (a_code, false);
1276 tree_code b_code = b_pred.cond_code;
1277 if (b_pred.invert)
1278 b_code = invert_tree_comparison (b_code, false);
1279 /* Try to combine X a_code Y && X b_code Y'. */
1280 tree comb = maybe_fold_and_comparisons (boolean_type_node,
1281 a_code,
1282 a_pred.pred_lhs,
1283 a_pred.pred_rhs,
1284 b_code,
1285 b_pred.pred_lhs,
1286 b_pred.pred_rhs, NULL);
1287 if (!comb)
1289 else if (integer_zerop (comb))
1290 return true;
1291 else if (integer_truep (comb))
1293 chain.ordered_remove (j);
1294 chain.ordered_remove (i);
1295 if (chain.is_empty ())
1296 return true;
1297 i--;
1298 break;
1300 else if (COMPARISON_CLASS_P (comb)
1301 && operand_equal_p (a_pred.pred_lhs, TREE_OPERAND (comb, 0)))
1303 chain.ordered_remove (j);
1304 a_pred.cond_code = TREE_CODE (comb);
1305 a_pred.pred_rhs = TREE_OPERAND (comb, 1);
1306 a_pred.invert = false;
1307 j--;
1312 return false;
1315 /* Implements rule 2 for the OR predicate PREDS:
1317 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
1319 bool
1320 predicate::simplify_2 ()
1322 bool simplified = false;
1324 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1325 (X AND Y) OR (X AND !Y) is equivalent to X. */
1327 for (unsigned i = 0; i < m_preds.length (); i++)
1329 pred_chain &a_chain = m_preds[i];
1331 for (unsigned j = i + 1; j < m_preds.length (); j++)
1333 pred_chain &b_chain = m_preds[j];
1334 if (b_chain.length () != a_chain.length ())
1335 continue;
1337 unsigned neg_idx = -1U;
1338 for (unsigned k = 0; k < a_chain.length (); ++k)
1340 if (pred_equal_p (a_chain[k], b_chain[k]))
1341 continue;
1342 if (neg_idx != -1U)
1344 neg_idx = -1U;
1345 break;
1347 if (pred_neg_p (a_chain[k], b_chain[k]))
1348 neg_idx = k;
1349 else
1350 break;
1352 /* If we found equal chains with one negated predicate
1353 simplify. */
1354 if (neg_idx != -1U)
1356 a_chain.ordered_remove (neg_idx);
1357 m_preds.ordered_remove (j);
1358 simplified = true;
1359 if (a_chain.is_empty ())
1361 /* A && !A simplifies to true, wipe the whole predicate. */
1362 for (unsigned k = 0; k < m_preds.length (); ++k)
1363 m_preds[k].release ();
1364 m_preds.truncate (0);
1366 break;
1371 return simplified;
1374 /* Implement rule 3 for the OR predicate PREDS:
1376 3) x OR (!x AND y) is equivalent to x OR y. */
1378 bool
1379 predicate::simplify_3 ()
1381 /* Now iteratively simplify X OR (!X AND Z ..)
1382 into X OR (Z ...). */
1384 unsigned n = m_preds.length ();
1385 if (n < 2)
1386 return false;
1388 bool simplified = false;
1389 for (unsigned i = 0; i < n; i++)
1391 const pred_chain &a_chain = m_preds[i];
1393 if (a_chain.length () != 1)
1394 continue;
1396 const pred_info &x = a_chain[0];
1397 for (unsigned j = 0; j < n; j++)
1399 if (j == i)
1400 continue;
1402 pred_chain b_chain = m_preds[j];
1403 if (b_chain.length () < 2)
1404 continue;
1406 for (unsigned k = 0; k < b_chain.length (); k++)
1408 const pred_info &x2 = b_chain[k];
1409 if (pred_neg_p (x, x2))
1411 b_chain.unordered_remove (k);
1412 simplified = true;
1413 break;
1418 return simplified;
1421 /* Implement rule 4 for the OR predicate PREDS:
1423 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1424 (x != 0 AND y != 0). */
1426 bool
1427 predicate::simplify_4 ()
1429 bool simplified = false;
1430 pred_chain_union s_preds = vNULL;
1432 unsigned n = m_preds.length ();
1433 for (unsigned i = 0; i < n; i++)
1435 pred_chain a_chain = m_preds[i];
1436 if (a_chain.length () != 1)
1437 continue;
1439 const pred_info &z = a_chain[0];
1440 if (!is_neq_zero_form_p (z))
1441 continue;
1443 gimple *def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
1444 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1445 continue;
1447 if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
1448 continue;
1450 for (unsigned j = 0; j < n; j++)
1452 if (j == i)
1453 continue;
1455 pred_chain b_chain = m_preds[j];
1456 if (b_chain.length () != 2)
1457 continue;
1459 const pred_info &x2 = b_chain[0];
1460 const pred_info &y2 = b_chain[1];
1461 if (!is_neq_zero_form_p (x2) || !is_neq_zero_form_p (y2))
1462 continue;
1464 if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
1465 && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
1466 || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
1467 && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
1469 /* Kill a_chain. */
1470 a_chain.release ();
1471 simplified = true;
1472 break;
1476 /* Now clean up the chain. */
1477 if (simplified)
1479 for (unsigned i = 0; i < n; i++)
1481 if (m_preds[i].is_empty ())
1482 continue;
1483 s_preds.safe_push (m_preds[i]);
1486 m_preds.release ();
1487 m_preds = s_preds;
1488 s_preds = vNULL;
1491 return simplified;
1494 /* Simplify predicates in *THIS. */
1496 void
1497 predicate::simplify (gimple *use_or_def, bool is_use)
1499 if (dump_file && dump_flags & TDF_DETAILS)
1501 fprintf (dump_file, "Before simplication ");
1502 dump (dump_file, use_or_def, is_use ? "[USE]:\n" : "[DEF]:\n");
1505 for (unsigned i = 0; i < m_preds.length (); i++)
1507 ::simplify_1a (m_preds[i]);
1508 if (::simplify_1b (m_preds[i]))
1510 m_preds[i].release ();
1511 m_preds.ordered_remove (i);
1512 i--;
1516 if (m_preds.length () < 2)
1517 return;
1519 bool changed;
1522 changed = false;
1523 if (simplify_2 ())
1524 changed = true;
1526 if (simplify_3 ())
1527 changed = true;
1529 if (simplify_4 ())
1530 changed = true;
1532 while (changed);
1535 /* Attempt to normalize predicate chains by following UD chains by
1536 building up a big tree of either IOR operations or AND operations,
1537 and converting the IOR tree into a pred_chain_union or the BIT_AND
1538 tree into a pred_chain.
1539 Example:
1541 _3 = _2 RELOP1 _1;
1542 _6 = _5 RELOP2 _4;
1543 _9 = _8 RELOP3 _7;
1544 _10 = _3 | _6;
1545 _12 = _9 | _0;
1546 _t = _10 | _12;
1548 then _t != 0 will be normalized into a pred_chain_union
1550 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1552 Similarly given:
1554 _3 = _2 RELOP1 _1;
1555 _6 = _5 RELOP2 _4;
1556 _9 = _8 RELOP3 _7;
1557 _10 = _3 & _6;
1558 _12 = _9 & _0;
1560 then _t != 0 will be normalized into a pred_chain:
1561 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1564 /* Normalize predicate PRED:
1565 1) if PRED can no longer be normalized, append it to *THIS.
1566 2) otherwise if PRED is of the form x != 0, follow x's definition
1567 and put normalized predicates into WORK_LIST. */
1569 void
1570 predicate::normalize (pred_chain *norm_chain,
1571 pred_info pred,
1572 tree_code and_or_code,
1573 pred_chain *work_list,
1574 hash_set<tree> *mark_set)
1576 if (!is_neq_zero_form_p (pred))
1578 if (and_or_code == BIT_IOR_EXPR)
1579 push_pred (pred);
1580 else
1581 norm_chain->safe_push (pred);
1582 return;
1585 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
1587 if (gimple_code (def_stmt) == GIMPLE_PHI
1588 && is_degenerate_phi (def_stmt, &pred))
1589 /* PRED has been modified above. */
1590 work_list->safe_push (pred);
1591 else if (gimple_code (def_stmt) == GIMPLE_PHI && and_or_code == BIT_IOR_EXPR)
1593 unsigned n = gimple_phi_num_args (def_stmt);
1595 /* Punt for a nonzero constant. The predicate should be one guarding
1596 the phi edge. */
1597 for (unsigned i = 0; i < n; ++i)
1599 tree op = gimple_phi_arg_def (def_stmt, i);
1600 if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
1602 push_pred (pred);
1603 return;
1607 for (unsigned i = 0; i < n; ++i)
1609 tree op = gimple_phi_arg_def (def_stmt, i);
1610 if (integer_zerop (op))
1611 continue;
1613 push_to_worklist (op, work_list, mark_set);
1616 else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1618 if (and_or_code == BIT_IOR_EXPR)
1619 push_pred (pred);
1620 else
1621 norm_chain->safe_push (pred);
1623 else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
1625 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
1626 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
1628 /* But treat x & 3 as a condition. */
1629 if (and_or_code == BIT_AND_EXPR)
1631 pred_info n_pred;
1632 n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
1633 n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
1634 n_pred.cond_code = and_or_code;
1635 n_pred.invert = false;
1636 norm_chain->safe_push (n_pred);
1639 else
1641 push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
1642 push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
1645 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
1646 == tcc_comparison)
1648 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
1649 if (and_or_code == BIT_IOR_EXPR)
1650 push_pred (n_pred);
1651 else
1652 norm_chain->safe_push (n_pred);
1654 else
1656 if (and_or_code == BIT_IOR_EXPR)
1657 push_pred (pred);
1658 else
1659 norm_chain->safe_push (pred);
1663 /* Normalize PRED and store the normalized predicates in THIS->M_PREDS. */
1665 void
1666 predicate::normalize (const pred_info &pred)
1668 if (!is_neq_zero_form_p (pred))
1670 push_pred (pred);
1671 return;
1674 tree_code and_or_code = ERROR_MARK;
1676 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
1677 if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
1678 and_or_code = gimple_assign_rhs_code (def_stmt);
1679 if (and_or_code != BIT_IOR_EXPR && and_or_code != BIT_AND_EXPR)
1681 if (TREE_CODE_CLASS (and_or_code) == tcc_comparison)
1683 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
1684 push_pred (n_pred);
1686 else
1687 push_pred (pred);
1688 return;
1692 pred_chain norm_chain = vNULL;
1693 pred_chain work_list = vNULL;
1694 work_list.safe_push (pred);
1695 hash_set<tree> mark_set;
1697 while (!work_list.is_empty ())
1699 pred_info a_pred = work_list.pop ();
1700 normalize (&norm_chain, a_pred, and_or_code, &work_list, &mark_set);
1703 if (and_or_code == BIT_AND_EXPR)
1704 m_preds.safe_push (norm_chain);
1706 work_list.release ();
1709 /* Normalize a single predicate PRED_CHAIN and append it to *THIS. */
1711 void
1712 predicate::normalize (const pred_chain &chain)
1714 pred_chain work_list = vNULL;
1715 hash_set<tree> mark_set;
1716 for (unsigned i = 0; i < chain.length (); i++)
1718 work_list.safe_push (chain[i]);
1719 mark_set.add (chain[i].pred_lhs);
1722 /* Normalized chain of predicates built up below. */
1723 pred_chain norm_chain = vNULL;
1724 while (!work_list.is_empty ())
1726 pred_info pi = work_list.pop ();
1727 /* The predicate object is not modified here, only NORM_CHAIN and
1728 WORK_LIST are appended to. */
1729 unsigned oldlen = m_preds.length ();
1730 normalize (&norm_chain, pi, BIT_AND_EXPR, &work_list, &mark_set);
1731 gcc_assert (m_preds.length () == oldlen);
1734 m_preds.safe_push (norm_chain);
1735 work_list.release ();
1738 /* Normalize predicate chains in THIS. */
1740 void
1741 predicate::normalize (gimple *use_or_def, bool is_use)
1743 if (dump_file && dump_flags & TDF_DETAILS)
1745 fprintf (dump_file, "Before normalization ");
1746 dump (dump_file, use_or_def, is_use ? "[USE]:\n" : "[DEF]:\n");
1749 predicate norm_preds (empty_val ());
1750 for (unsigned i = 0; i < m_preds.length (); i++)
1752 if (m_preds[i].length () != 1)
1753 norm_preds.normalize (m_preds[i]);
1754 else
1755 norm_preds.normalize (m_preds[i][0]);
1758 *this = norm_preds;
1760 if (dump_file)
1762 fprintf (dump_file, "After normalization ");
1763 dump (dump_file, use_or_def, is_use ? "[USE]:\n" : "[DEF]:\n");
1767 /* Convert the chains of control dependence edges into a set of predicates.
1768 A control dependence chain is represented by a vector edges. DEP_CHAINS
1769 points to an array of NUM_CHAINS dependence chains. One edge in
1770 a dependence chain is mapped to predicate expression represented by
1771 pred_info type. One dependence chain is converted to a composite
1772 predicate that is the result of AND operation of pred_info mapped to
1773 each edge. A composite predicate is represented by a vector of
1774 pred_info. Sets M_PREDS to the resulting composite predicates. */
1776 void
1777 predicate::init_from_control_deps (const vec<edge> *dep_chains,
1778 unsigned num_chains, bool is_use)
1780 gcc_assert (is_empty ());
1782 if (num_chains == 0)
1783 return;
1785 if (DEBUG_PREDICATE_ANALYZER && dump_file)
1786 fprintf (dump_file, "init_from_control_deps [%s] {%s}:\n",
1787 is_use ? "USE" : "DEF",
1788 format_edge_vecs (dep_chains, num_chains).c_str ());
1790 /* Convert the control dependency chain into a set of predicates. */
1791 m_preds.reserve (num_chains);
1793 for (unsigned i = 0; i < num_chains; i++)
1795 /* One path through the CFG represents a logical conjunction
1796 of the predicates. */
1797 const vec<edge> &path = dep_chains[i];
1799 bool has_valid_pred = false;
1800 /* The chain of predicates guarding the definition along this path. */
1801 pred_chain t_chain{ };
1802 for (unsigned j = 0; j < path.length (); j++)
1804 edge e = path[j];
1805 basic_block guard_bb = e->src;
1807 gcc_assert (!empty_block_p (guard_bb) && !single_succ_p (guard_bb));
1809 /* Skip this edge if it is bypassing an abort - when the
1810 condition is not satisfied we are neither reaching the
1811 definition nor the use so it isn't meaningful. Note if
1812 we are processing the use predicate the condition is
1813 meaningful. See PR65244. */
1814 if (!is_use && EDGE_COUNT (e->src->succs) == 2)
1816 edge e1;
1817 edge_iterator ei1;
1818 bool skip = false;
1820 FOR_EACH_EDGE (e1, ei1, e->src->succs)
1822 if (EDGE_COUNT (e1->dest->succs) == 0)
1824 skip = true;
1825 break;
1828 if (skip)
1830 has_valid_pred = true;
1831 continue;
1834 /* Get the conditional controlling the bb exit edge. */
1835 gimple *cond_stmt = *gsi_last_bb (guard_bb);
1836 if (gimple_code (cond_stmt) == GIMPLE_COND)
1838 /* The true edge corresponds to the uninteresting condition.
1839 Add the negated predicate(s) for the edge to record
1840 the interesting condition. */
1841 pred_info one_pred;
1842 one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
1843 one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
1844 one_pred.cond_code = gimple_cond_code (cond_stmt);
1845 one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
1847 t_chain.safe_push (one_pred);
1849 if (DEBUG_PREDICATE_ANALYZER && dump_file)
1851 fprintf (dump_file, "%d -> %d: one_pred = ",
1852 e->src->index, e->dest->index);
1853 dump_pred_info (dump_file, one_pred);
1854 fputc ('\n', dump_file);
1857 has_valid_pred = true;
1859 else if (gswitch *gs = dyn_cast<gswitch *> (cond_stmt))
1861 /* Find the case label, but avoid quadratic behavior. */
1862 tree l = get_cases_for_edge (e, gs);
1863 /* If more than one label reaches this block or the case
1864 label doesn't have a contiguous range of values (like the
1865 default one) fail. */
1866 if (!l || CASE_CHAIN (l) || !CASE_LOW (l))
1867 has_valid_pred = false;
1868 else if (!CASE_HIGH (l)
1869 || operand_equal_p (CASE_LOW (l), CASE_HIGH (l)))
1871 pred_info one_pred;
1872 one_pred.pred_lhs = gimple_switch_index (gs);
1873 one_pred.pred_rhs = CASE_LOW (l);
1874 one_pred.cond_code = EQ_EXPR;
1875 one_pred.invert = false;
1876 t_chain.safe_push (one_pred);
1877 has_valid_pred = true;
1879 else
1881 /* Support a case label with a range with
1882 two predicates. We're overcommitting on
1883 the MAX_CHAIN_LEN budget by at most a factor
1884 of two here. */
1885 pred_info one_pred;
1886 one_pred.pred_lhs = gimple_switch_index (gs);
1887 one_pred.pred_rhs = CASE_LOW (l);
1888 one_pred.cond_code = GE_EXPR;
1889 one_pred.invert = false;
1890 t_chain.safe_push (one_pred);
1891 one_pred.pred_rhs = CASE_HIGH (l);
1892 one_pred.cond_code = LE_EXPR;
1893 t_chain.safe_push (one_pred);
1894 has_valid_pred = true;
1897 else if (stmt_can_throw_internal (cfun, cond_stmt)
1898 && !(e->flags & EDGE_EH))
1899 /* Ignore the exceptional control flow and proceed as if
1900 E were a fallthru without a controlling predicate for
1901 both the USE (valid) and DEF (questionable) case. */
1902 has_valid_pred = true;
1903 else
1904 has_valid_pred = false;
1906 /* For USE predicates we can drop components of the
1907 AND chain. */
1908 if (!has_valid_pred && !is_use)
1909 break;
1912 /* For DEF predicates we have to drop components of the OR chain
1913 on failure. */
1914 if (!has_valid_pred && !is_use)
1916 t_chain.release ();
1917 continue;
1920 /* When we add || 1 simply prune the chain and return. */
1921 if (t_chain.is_empty ())
1923 t_chain.release ();
1924 for (auto chain : m_preds)
1925 chain.release ();
1926 m_preds.truncate (0);
1927 break;
1930 m_preds.quick_push (t_chain);
1933 if (DEBUG_PREDICATE_ANALYZER && dump_file)
1934 dump (dump_file);
1937 /* Store a PRED in *THIS. */
1939 void
1940 predicate::push_pred (const pred_info &pred)
1942 pred_chain chain = vNULL;
1943 chain.safe_push (pred);
1944 m_preds.safe_push (chain);
1947 /* Dump predicates in *THIS to F. */
1949 void
1950 predicate::dump (FILE *f) const
1952 unsigned np = m_preds.length ();
1953 if (np == 0)
1955 fprintf (f, "\tTRUE (empty)\n");
1956 return;
1959 for (unsigned i = 0; i < np; i++)
1961 if (i > 0)
1962 fprintf (f, "\tOR (");
1963 else
1964 fprintf (f, "\t(");
1965 dump_pred_chain (f, m_preds[i]);
1966 fprintf (f, ")\n");
1970 /* Dump predicates in *THIS to stderr. */
1972 void
1973 predicate::debug () const
1975 dump (stderr);
1978 /* Dump predicates in *THIS for STMT prepended by MSG to F. */
1980 void
1981 predicate::dump (FILE *f, gimple *stmt, const char *msg) const
1983 fprintf (f, "%s", msg);
1984 if (stmt)
1986 fputc ('\t', f);
1987 print_gimple_stmt (f, stmt, 0);
1988 fprintf (f, " is conditional on:\n");
1991 dump (f);
1994 /* Initialize USE_PREDS with the predicates of the control dependence chains
1995 between the basic block DEF_BB that defines a variable of interst and
1996 USE_BB that uses the variable, respectively. */
1998 bool
1999 uninit_analysis::init_use_preds (predicate &use_preds, basic_block def_bb,
2000 basic_block use_bb)
2002 if (DEBUG_PREDICATE_ANALYZER && dump_file)
2003 fprintf (dump_file, "init_use_preds (def_bb = %u, use_bb = %u)\n",
2004 def_bb->index, use_bb->index);
2006 gcc_assert (use_preds.is_empty ()
2007 && dominated_by_p (CDI_DOMINATORS, use_bb, def_bb));
2009 /* Set CD_ROOT to the basic block closest to USE_BB that is the control
2010 equivalent of (is guarded by the same predicate as) DEF_BB that also
2011 dominates USE_BB. This mimics the inner loop in
2012 compute_control_dep_chain. */
2013 basic_block cd_root = def_bb;
2016 basic_block pdom = get_immediate_dominator (CDI_POST_DOMINATORS, cd_root);
2018 /* Stop at a loop exit which is also postdominating cd_root. */
2019 if (single_pred_p (pdom) && !single_succ_p (cd_root))
2020 break;
2022 if (!dominated_by_p (CDI_DOMINATORS, pdom, cd_root)
2023 || !dominated_by_p (CDI_DOMINATORS, use_bb, pdom))
2024 break;
2026 cd_root = pdom;
2028 while (1);
2030 auto_bb_flag in_region (cfun);
2031 auto_vec<basic_block, 20> region (MIN (n_basic_blocks_for_fn (cfun),
2032 param_uninit_control_dep_attempts));
2034 /* Set DEP_CHAINS to the set of edges between CD_ROOT and USE_BB.
2035 Each DEP_CHAINS element is a series of edges whose conditions
2036 are logical conjunctions. Together, the DEP_CHAINS vector is
2037 used below to initialize an OR expression of the conjunctions. */
2038 unsigned num_chains = 0;
2039 auto_vec<edge> *dep_chains = new auto_vec<edge>[MAX_NUM_CHAINS];
2041 if (!dfs_mark_dominating_region (use_bb, cd_root, in_region, region)
2042 || !compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
2043 in_region))
2045 /* If the info in dep_chains is not complete we need to use a
2046 conservative approximation for the use predicate. */
2047 if (DEBUG_PREDICATE_ANALYZER && dump_file)
2048 fprintf (dump_file, "init_use_preds: dep_chain incomplete, using "
2049 "conservative approximation\n");
2050 num_chains = 1;
2051 dep_chains[0].truncate (0);
2052 simple_control_dep_chain (dep_chains[0], cd_root, use_bb);
2055 /* Unmark the region. */
2056 for (auto bb : region)
2057 bb->flags &= ~in_region;
2059 /* From the set of edges computed above initialize *THIS as the OR
2060 condition under which the definition in DEF_BB is used in USE_BB.
2061 Each OR subexpression is represented by one element of DEP_CHAINS,
2062 where each element consists of a series of AND subexpressions. */
2063 use_preds.init_from_control_deps (dep_chains, num_chains, true);
2064 delete[] dep_chains;
2065 return !use_preds.is_empty ();
2068 /* Release resources in *THIS. */
2070 predicate::~predicate ()
2072 unsigned n = m_preds.length ();
2073 for (unsigned i = 0; i != n; ++i)
2074 m_preds[i].release ();
2075 m_preds.release ();
2078 /* Copy-assign RHS to *THIS. */
2080 predicate&
2081 predicate::operator= (const predicate &rhs)
2083 if (this == &rhs)
2084 return *this;
2086 m_cval = rhs.m_cval;
2088 unsigned n = m_preds.length ();
2089 for (unsigned i = 0; i != n; ++i)
2090 m_preds[i].release ();
2091 m_preds.release ();
2093 n = rhs.m_preds.length ();
2094 for (unsigned i = 0; i != n; ++i)
2096 const pred_chain &chain = rhs.m_preds[i];
2097 m_preds.safe_push (chain.copy ());
2100 return *this;
2103 /* For each use edge of PHI, compute all control dependence chains
2104 and convert those to the composite predicates in M_PREDS.
2105 Return true if a nonempty predicate has been obtained. */
2107 bool
2108 uninit_analysis::init_from_phi_def (gphi *phi)
2110 gcc_assert (m_phi_def_preds.is_empty ());
2112 basic_block phi_bb = gimple_bb (phi);
2113 /* Find the closest dominating bb to be the control dependence root. */
2114 basic_block cd_root = get_immediate_dominator (CDI_DOMINATORS, phi_bb);
2115 if (!cd_root)
2116 return false;
2118 /* Set DEF_EDGES to the edges to the PHI from the bb's that provide
2119 definitions of each of the PHI operands for which M_EVAL is false. */
2120 auto_vec<edge> def_edges;
2121 hash_set<gimple *> visited_phis;
2122 collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);
2124 unsigned nedges = def_edges.length ();
2125 if (nedges == 0)
2126 return false;
2128 auto_bb_flag in_region (cfun);
2129 auto_vec<basic_block, 20> region (MIN (n_basic_blocks_for_fn (cfun),
2130 param_uninit_control_dep_attempts));
2131 /* Pre-mark the PHI incoming edges PHI block to make sure we only walk
2132 interesting edges from there. */
2133 for (unsigned i = 0; i < nedges; i++)
2135 if (!(def_edges[i]->dest->flags & in_region))
2137 if (!region.space (1))
2138 break;
2139 def_edges[i]->dest->flags |= in_region;
2140 region.quick_push (def_edges[i]->dest);
2143 for (unsigned i = 0; i < nedges; i++)
2144 if (!dfs_mark_dominating_region (def_edges[i]->src, cd_root,
2145 in_region, region))
2146 break;
2148 unsigned num_chains = 0;
2149 auto_vec<edge> *dep_chains = new auto_vec<edge>[MAX_NUM_CHAINS];
2150 for (unsigned i = 0; i < nedges; i++)
2152 edge e = def_edges[i];
2153 unsigned prev_nc = num_chains;
2154 bool complete_p = compute_control_dep_chain (cd_root, e->src, dep_chains,
2155 &num_chains, in_region);
2157 /* Update the newly added chains with the phi operand edge. */
2158 if (EDGE_COUNT (e->src->succs) > 1)
2160 if (complete_p
2161 && prev_nc == num_chains
2162 && num_chains < MAX_NUM_CHAINS)
2163 /* We can only add a chain for the PHI operand edge when the
2164 collected info was complete, otherwise the predicate may
2165 not be conservative. */
2166 dep_chains[num_chains++] = vNULL;
2167 for (unsigned j = prev_nc; j < num_chains; j++)
2168 dep_chains[j].safe_push (e);
2172 /* Unmark the region. */
2173 for (auto bb : region)
2174 bb->flags &= ~in_region;
2176 /* Convert control dependence chains to the predicate in *THIS under
2177 which the PHI operands are defined to values for which M_EVAL is
2178 false. */
2179 m_phi_def_preds.init_from_control_deps (dep_chains, num_chains, false);
2180 delete[] dep_chains;
2181 return !m_phi_def_preds.is_empty ();
2184 /* Compute the predicates that guard the use USE_STMT and check if
2185 the incoming paths that have an empty (or possibly empty) definition
2186 can be pruned. Return true if it can be determined that the use of
2187 PHI's def in USE_STMT is guarded by a predicate set that does not
2188 overlap with the predicate sets of all runtime paths that do not
2189 have a definition.
2191 Return false if the use is not guarded or if it cannot be determined.
2192 USE_BB is the bb of the use (for phi operand use, the bb is not the bb
2193 of the phi stmt, but the source bb of the operand edge).
2195 OPNDS is a bitmap with a bit set for each PHI operand of interest.
2197 THIS->M_PREDS contains the (memoized) defining predicate chains of
2198 a PHI. If THIS->M_PREDS is empty, the PHI's defining predicate
2199 chains are computed and stored into THIS->M_PREDS as needed.
2201 VISITED_PHIS is a pointer set of phis being visited. */
2203 bool
2204 uninit_analysis::is_use_guarded (gimple *use_stmt, basic_block use_bb,
2205 gphi *phi, unsigned opnds,
2206 hash_set<gphi *> *visited)
2208 if (visited->add (phi))
2209 return false;
2211 /* The basic block where the PHI is defined. */
2212 basic_block def_bb = gimple_bb (phi);
2214 /* Try to build the predicate expression under which the PHI flows
2215 into its use. This will be empty if the PHI is defined and used
2216 in the same bb. */
2217 predicate use_preds (true);
2218 if (!init_use_preds (use_preds, def_bb, use_bb))
2219 return false;
2221 use_preds.simplify (use_stmt, /*is_use=*/true);
2222 use_preds.normalize (use_stmt, /*is_use=*/true);
2223 if (use_preds.is_false ())
2224 return true;
2225 if (use_preds.is_true ())
2226 return false;
2228 /* Try to prune the dead incoming phi edges. */
2229 if (!overlap (phi, opnds, visited, use_preds))
2231 if (DEBUG_PREDICATE_ANALYZER && dump_file)
2232 fputs ("found predicate overlap\n", dump_file);
2234 return true;
2237 if (m_phi_def_preds.is_empty ())
2239 /* Lazily initialize *THIS from PHI. */
2240 if (!init_from_phi_def (phi))
2241 return false;
2243 m_phi_def_preds.simplify (phi);
2244 m_phi_def_preds.normalize (phi);
2245 if (m_phi_def_preds.is_false ())
2246 return false;
2247 if (m_phi_def_preds.is_true ())
2248 return true;
2251 /* Return true if the predicate guarding the valid definition (i.e.,
2252 *THIS) is a superset of the predicate guarding the use (i.e.,
2253 USE_PREDS). */
2254 if (m_phi_def_preds.superset_of (use_preds))
2255 return true;
2257 return false;
2260 /* Public interface to the above. */
2262 bool
2263 uninit_analysis::is_use_guarded (gimple *stmt, basic_block use_bb, gphi *phi,
2264 unsigned opnds)
2266 hash_set<gphi *> visited;
2267 return is_use_guarded (stmt, use_bb, phi, opnds, &visited);