1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
38 #include "coretypes.h"
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
54 #include "basic-block.h"
57 #include "langhooks.h"
59 /* Commonly used modes. */
61 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
70 static GTY(()) int label_num
= 1;
72 /* Nonzero means do not generate NOTEs for source line numbers. */
74 static int no_line_numbers
;
76 /* Commonly used rtx's, so that we only need space for one copy.
77 These are initialized once for the entire compilation.
78 All of these are unique; no other rtx-object will be equal to any
81 rtx global_rtl
[GR_MAX
];
83 /* Commonly used RTL for hard registers. These objects are not necessarily
84 unique, so we allocate them separately from global_rtl. They are
85 initialized once per compilation unit, then copied into regno_reg_rtx
86 at the beginning of each function. */
87 static GTY(()) rtx static_regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx. */
93 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
97 REAL_VALUE_TYPE dconst0
;
98 REAL_VALUE_TYPE dconst1
;
99 REAL_VALUE_TYPE dconst2
;
100 REAL_VALUE_TYPE dconst3
;
101 REAL_VALUE_TYPE dconst10
;
102 REAL_VALUE_TYPE dconstm1
;
103 REAL_VALUE_TYPE dconstm2
;
104 REAL_VALUE_TYPE dconsthalf
;
105 REAL_VALUE_TYPE dconstthird
;
106 REAL_VALUE_TYPE dconstpi
;
107 REAL_VALUE_TYPE dconste
;
109 /* All references to the following fixed hard registers go through
110 these unique rtl objects. On machines where the frame-pointer and
111 arg-pointer are the same register, they use the same unique object.
113 After register allocation, other rtl objects which used to be pseudo-regs
114 may be clobbered to refer to the frame-pointer register.
115 But references that were originally to the frame-pointer can be
116 distinguished from the others because they contain frame_pointer_rtx.
118 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
119 tricky: until register elimination has taken place hard_frame_pointer_rtx
120 should be used if it is being set, and frame_pointer_rtx otherwise. After
121 register elimination hard_frame_pointer_rtx should always be used.
122 On machines where the two registers are same (most) then these are the
125 In an inline procedure, the stack and frame pointer rtxs may not be
126 used for anything else. */
127 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
140 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
145 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
146 htab_t const_int_htab
;
148 /* A hash table storing memory attribute structures. */
149 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
150 htab_t mem_attrs_htab
;
152 /* A hash table storing register attribute structures. */
153 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
154 htab_t reg_attrs_htab
;
156 /* A hash table storing all CONST_DOUBLEs. */
157 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
158 htab_t const_double_htab
;
160 #define first_insn (cfun->emit->x_first_insn)
161 #define last_insn (cfun->emit->x_last_insn)
162 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
163 #define last_location (cfun->emit->x_last_location)
164 #define first_label_num (cfun->emit->x_first_label_num)
166 static rtx
make_jump_insn_raw (rtx
);
167 static rtx
make_call_insn_raw (rtx
);
168 static rtx
find_line_note (rtx
);
169 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
170 static void unshare_all_decls (tree
);
171 static void reset_used_decls (tree
);
172 static void mark_label_nuses (rtx
);
173 static hashval_t
const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t
const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx
lookup_const_double (rtx
);
178 static hashval_t
mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs
*get_mem_attrs (HOST_WIDE_INT
, tree
, rtx
, rtx
, unsigned int,
182 static hashval_t
reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs
*get_reg_attrs (tree
, int);
185 static tree
component_ref_for_mem_expr (tree
);
186 static rtx
gen_const_vector (enum machine_mode
, int);
187 static void copy_rtx_if_shared_1 (rtx
*orig
);
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability
= -1;
193 /* Returns a hash code for X (which is a really a CONST_INT). */
196 const_int_htab_hash (const void *x
)
198 return (hashval_t
) INTVAL ((rtx
) x
);
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
206 const_int_htab_eq (const void *x
, const void *y
)
208 return (INTVAL ((rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
213 const_double_htab_hash (const void *x
)
218 if (GET_MODE (value
) == VOIDmode
)
219 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
222 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h
^= GET_MODE (value
);
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
232 const_double_htab_eq (const void *x
, const void *y
)
234 rtx a
= (rtx
)x
, b
= (rtx
)y
;
236 if (GET_MODE (a
) != GET_MODE (b
))
238 if (GET_MODE (a
) == VOIDmode
)
239 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
240 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
243 CONST_DOUBLE_REAL_VALUE (b
));
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
249 mem_attrs_htab_hash (const void *x
)
251 mem_attrs
*p
= (mem_attrs
*) x
;
253 return (p
->alias
^ (p
->align
* 1000)
254 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
255 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
264 mem_attrs_htab_eq (const void *x
, const void *y
)
266 mem_attrs
*p
= (mem_attrs
*) x
;
267 mem_attrs
*q
= (mem_attrs
*) y
;
269 return (p
->alias
== q
->alias
&& p
->expr
== q
->expr
&& p
->offset
== q
->offset
270 && p
->size
== q
->size
&& p
->align
== q
->align
);
273 /* Allocate a new mem_attrs structure and insert it into the hash table if
274 one identical to it is not already in the table. We are doing this for
278 get_mem_attrs (HOST_WIDE_INT alias
, tree expr
, rtx offset
, rtx size
,
279 unsigned int align
, enum machine_mode mode
)
284 /* If everything is the default, we can just return zero.
285 This must match what the corresponding MEM_* macros return when the
286 field is not present. */
287 if (alias
== 0 && expr
== 0 && offset
== 0
289 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
290 && (STRICT_ALIGNMENT
&& mode
!= BLKmode
291 ? align
== GET_MODE_ALIGNMENT (mode
) : align
== BITS_PER_UNIT
))
296 attrs
.offset
= offset
;
300 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
303 *slot
= ggc_alloc (sizeof (mem_attrs
));
304 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
310 /* Returns a hash code for X (which is a really a reg_attrs *). */
313 reg_attrs_htab_hash (const void *x
)
315 reg_attrs
*p
= (reg_attrs
*) x
;
317 return ((p
->offset
* 1000) ^ (long) p
->decl
);
320 /* Returns nonzero if the value represented by X (which is really a
321 reg_attrs *) is the same as that given by Y (which is also really a
325 reg_attrs_htab_eq (const void *x
, const void *y
)
327 reg_attrs
*p
= (reg_attrs
*) x
;
328 reg_attrs
*q
= (reg_attrs
*) y
;
330 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
332 /* Allocate a new reg_attrs structure and insert it into the hash table if
333 one identical to it is not already in the table. We are doing this for
337 get_reg_attrs (tree decl
, int offset
)
342 /* If everything is the default, we can just return zero. */
343 if (decl
== 0 && offset
== 0)
347 attrs
.offset
= offset
;
349 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
352 *slot
= ggc_alloc (sizeof (reg_attrs
));
353 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
359 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
360 don't attempt to share with the various global pieces of rtl (such as
361 frame_pointer_rtx). */
364 gen_raw_REG (enum machine_mode mode
, int regno
)
366 rtx x
= gen_rtx_raw_REG (mode
, regno
);
367 ORIGINAL_REGNO (x
) = regno
;
371 /* There are some RTL codes that require special attention; the generation
372 functions do the raw handling. If you add to this list, modify
373 special_rtx in gengenrtl.c as well. */
376 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
380 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
381 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
383 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
384 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
385 return const_true_rtx
;
388 /* Look up the CONST_INT in the hash table. */
389 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
390 (hashval_t
) arg
, INSERT
);
392 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
398 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
400 return GEN_INT (trunc_int_for_mode (c
, mode
));
403 /* CONST_DOUBLEs might be created from pairs of integers, or from
404 REAL_VALUE_TYPEs. Also, their length is known only at run time,
405 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
407 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
408 hash table. If so, return its counterpart; otherwise add it
409 to the hash table and return it. */
411 lookup_const_double (rtx real
)
413 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
420 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
421 VALUE in mode MODE. */
423 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
425 rtx real
= rtx_alloc (CONST_DOUBLE
);
426 PUT_MODE (real
, mode
);
428 memcpy (&CONST_DOUBLE_LOW (real
), &value
, sizeof (REAL_VALUE_TYPE
));
430 return lookup_const_double (real
);
433 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
434 of ints: I0 is the low-order word and I1 is the high-order word.
435 Do not use this routine for non-integer modes; convert to
436 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
439 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
444 if (mode
!= VOIDmode
)
448 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
449 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
450 /* We can get a 0 for an error mark. */
451 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
452 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
454 /* We clear out all bits that don't belong in MODE, unless they and
455 our sign bit are all one. So we get either a reasonable negative
456 value or a reasonable unsigned value for this mode. */
457 width
= GET_MODE_BITSIZE (mode
);
458 if (width
< HOST_BITS_PER_WIDE_INT
459 && ((i0
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
460 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
461 i0
&= ((HOST_WIDE_INT
) 1 << width
) - 1, i1
= 0;
462 else if (width
== HOST_BITS_PER_WIDE_INT
463 && ! (i1
== ~0 && i0
< 0))
466 /* We should be able to represent this value as a constant. */
467 gcc_assert (width
<= 2 * HOST_BITS_PER_WIDE_INT
);
469 /* If this would be an entire word for the target, but is not for
470 the host, then sign-extend on the host so that the number will
471 look the same way on the host that it would on the target.
473 For example, when building a 64 bit alpha hosted 32 bit sparc
474 targeted compiler, then we want the 32 bit unsigned value -1 to be
475 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
476 The latter confuses the sparc backend. */
478 if (width
< HOST_BITS_PER_WIDE_INT
479 && (i0
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
480 i0
|= ((HOST_WIDE_INT
) (-1) << width
);
482 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
485 ??? Strictly speaking, this is wrong if we create a CONST_INT for
486 a large unsigned constant with the size of MODE being
487 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
488 in a wider mode. In that case we will mis-interpret it as a
491 Unfortunately, the only alternative is to make a CONST_DOUBLE for
492 any constant in any mode if it is an unsigned constant larger
493 than the maximum signed integer in an int on the host. However,
494 doing this will break everyone that always expects to see a
495 CONST_INT for SImode and smaller.
497 We have always been making CONST_INTs in this case, so nothing
498 new is being broken. */
500 if (width
<= HOST_BITS_PER_WIDE_INT
)
501 i1
= (i0
< 0) ? ~(HOST_WIDE_INT
) 0 : 0;
504 /* If this integer fits in one word, return a CONST_INT. */
505 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
508 /* We use VOIDmode for integers. */
509 value
= rtx_alloc (CONST_DOUBLE
);
510 PUT_MODE (value
, VOIDmode
);
512 CONST_DOUBLE_LOW (value
) = i0
;
513 CONST_DOUBLE_HIGH (value
) = i1
;
515 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
516 XWINT (value
, i
) = 0;
518 return lookup_const_double (value
);
522 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
524 /* In case the MD file explicitly references the frame pointer, have
525 all such references point to the same frame pointer. This is
526 used during frame pointer elimination to distinguish the explicit
527 references to these registers from pseudos that happened to be
530 If we have eliminated the frame pointer or arg pointer, we will
531 be using it as a normal register, for example as a spill
532 register. In such cases, we might be accessing it in a mode that
533 is not Pmode and therefore cannot use the pre-allocated rtx.
535 Also don't do this when we are making new REGs in reload, since
536 we don't want to get confused with the real pointers. */
538 if (mode
== Pmode
&& !reload_in_progress
)
540 if (regno
== FRAME_POINTER_REGNUM
541 && (!reload_completed
|| frame_pointer_needed
))
542 return frame_pointer_rtx
;
543 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
544 if (regno
== HARD_FRAME_POINTER_REGNUM
545 && (!reload_completed
|| frame_pointer_needed
))
546 return hard_frame_pointer_rtx
;
548 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
549 if (regno
== ARG_POINTER_REGNUM
)
550 return arg_pointer_rtx
;
552 #ifdef RETURN_ADDRESS_POINTER_REGNUM
553 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
554 return return_address_pointer_rtx
;
556 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
557 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
558 return pic_offset_table_rtx
;
559 if (regno
== STACK_POINTER_REGNUM
)
560 return stack_pointer_rtx
;
564 /* If the per-function register table has been set up, try to re-use
565 an existing entry in that table to avoid useless generation of RTL.
567 This code is disabled for now until we can fix the various backends
568 which depend on having non-shared hard registers in some cases. Long
569 term we want to re-enable this code as it can significantly cut down
570 on the amount of useless RTL that gets generated.
572 We'll also need to fix some code that runs after reload that wants to
573 set ORIGINAL_REGNO. */
578 && regno
< FIRST_PSEUDO_REGISTER
579 && reg_raw_mode
[regno
] == mode
)
580 return regno_reg_rtx
[regno
];
583 return gen_raw_REG (mode
, regno
);
587 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
589 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
591 /* This field is not cleared by the mere allocation of the rtx, so
598 /* Generate a memory referring to non-trapping constant memory. */
601 gen_const_mem (enum machine_mode mode
, rtx addr
)
603 rtx mem
= gen_rtx_MEM (mode
, addr
);
604 MEM_READONLY_P (mem
) = 1;
605 MEM_NOTRAP_P (mem
) = 1;
609 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
610 this construct would be valid, and false otherwise. */
613 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
614 rtx reg
, unsigned int offset
)
616 unsigned int isize
= GET_MODE_SIZE (imode
);
617 unsigned int osize
= GET_MODE_SIZE (omode
);
619 /* All subregs must be aligned. */
620 if (offset
% osize
!= 0)
623 /* The subreg offset cannot be outside the inner object. */
627 /* ??? This should not be here. Temporarily continue to allow word_mode
628 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
629 Generally, backends are doing something sketchy but it'll take time to
631 if (omode
== word_mode
)
633 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
634 is the culprit here, and not the backends. */
635 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
637 /* Allow component subregs of complex and vector. Though given the below
638 extraction rules, it's not always clear what that means. */
639 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
640 && GET_MODE_INNER (imode
) == omode
)
642 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
643 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
644 represent this. It's questionable if this ought to be represented at
645 all -- why can't this all be hidden in post-reload splitters that make
646 arbitrarily mode changes to the registers themselves. */
647 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
649 /* Subregs involving floating point modes are not allowed to
650 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
651 (subreg:SI (reg:DF) 0) isn't. */
652 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
658 /* Paradoxical subregs must have offset zero. */
662 /* This is a normal subreg. Verify that the offset is representable. */
664 /* For hard registers, we already have most of these rules collected in
665 subreg_offset_representable_p. */
666 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
668 unsigned int regno
= REGNO (reg
);
670 #ifdef CANNOT_CHANGE_MODE_CLASS
671 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
672 && GET_MODE_INNER (imode
) == omode
)
674 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
678 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
681 /* For pseudo registers, we want most of the same checks. Namely:
682 If the register no larger than a word, the subreg must be lowpart.
683 If the register is larger than a word, the subreg must be the lowpart
684 of a subword. A subreg does *not* perform arbitrary bit extraction.
685 Given that we've already checked mode/offset alignment, we only have
686 to check subword subregs here. */
687 if (osize
< UNITS_PER_WORD
)
689 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
690 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
691 if (offset
% UNITS_PER_WORD
!= low_off
)
698 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
700 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
701 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
704 /* Generate a SUBREG representing the least-significant part of REG if MODE
705 is smaller than mode of REG, otherwise paradoxical SUBREG. */
708 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
710 enum machine_mode inmode
;
712 inmode
= GET_MODE (reg
);
713 if (inmode
== VOIDmode
)
715 return gen_rtx_SUBREG (mode
, reg
,
716 subreg_lowpart_offset (mode
, inmode
));
719 /* gen_rtvec (n, [rt1, ..., rtn])
721 ** This routine creates an rtvec and stores within it the
722 ** pointers to rtx's which are its arguments.
727 gen_rtvec (int n
, ...)
736 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
738 vector
= alloca (n
* sizeof (rtx
));
740 for (i
= 0; i
< n
; i
++)
741 vector
[i
] = va_arg (p
, rtx
);
743 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
747 return gen_rtvec_v (save_n
, vector
);
751 gen_rtvec_v (int n
, rtx
*argp
)
757 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
759 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
761 for (i
= 0; i
< n
; i
++)
762 rt_val
->elem
[i
] = *argp
++;
767 /* Generate a REG rtx for a new pseudo register of mode MODE.
768 This pseudo is assigned the next sequential register number. */
771 gen_reg_rtx (enum machine_mode mode
)
773 struct function
*f
= cfun
;
776 /* Don't let anything called after initial flow analysis create new
778 gcc_assert (!no_new_pseudos
);
780 if (generating_concat_p
781 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
782 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
784 /* For complex modes, don't make a single pseudo.
785 Instead, make a CONCAT of two pseudos.
786 This allows noncontiguous allocation of the real and imaginary parts,
787 which makes much better code. Besides, allocating DCmode
788 pseudos overstrains reload on some machines like the 386. */
789 rtx realpart
, imagpart
;
790 enum machine_mode partmode
= GET_MODE_INNER (mode
);
792 realpart
= gen_reg_rtx (partmode
);
793 imagpart
= gen_reg_rtx (partmode
);
794 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
797 /* Make sure regno_pointer_align, and regno_reg_rtx are large
798 enough to have an element for this pseudo reg number. */
800 if (reg_rtx_no
== f
->emit
->regno_pointer_align_length
)
802 int old_size
= f
->emit
->regno_pointer_align_length
;
806 new = ggc_realloc (f
->emit
->regno_pointer_align
, old_size
* 2);
807 memset (new + old_size
, 0, old_size
);
808 f
->emit
->regno_pointer_align
= (unsigned char *) new;
810 new1
= ggc_realloc (f
->emit
->x_regno_reg_rtx
,
811 old_size
* 2 * sizeof (rtx
));
812 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
813 regno_reg_rtx
= new1
;
815 f
->emit
->regno_pointer_align_length
= old_size
* 2;
818 val
= gen_raw_REG (mode
, reg_rtx_no
);
819 regno_reg_rtx
[reg_rtx_no
++] = val
;
823 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
824 Do the big endian correction if needed. */
827 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
, int offset
)
829 rtx
new = gen_rtx_REG (mode
, regno
);
831 HOST_WIDE_INT var_size
;
833 /* PR middle-end/14084
834 The problem appears when a variable is stored in a larger register
835 and later it is used in the original mode or some mode in between
836 or some part of variable is accessed.
838 On little endian machines there is no problem because
839 the REG_OFFSET of the start of the variable is the same when
840 accessed in any mode (it is 0).
842 However, this is not true on big endian machines.
843 The offset of the start of the variable is different when accessed
845 When we are taking a part of the REG we have to change the OFFSET
846 from offset WRT size of mode of REG to offset WRT size of variable.
848 If we would not do the big endian correction the resulting REG_OFFSET
849 would be larger than the size of the DECL.
851 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
853 REG.mode MODE DECL size old offset new offset description
854 DI SI 4 4 0 int32 in SImode
855 DI SI 1 4 0 char in SImode
856 DI QI 1 7 0 char in QImode
857 DI QI 4 5 1 1st element in QImode
859 DI HI 4 6 2 1st element in HImode
862 If the size of DECL is equal or greater than the size of REG
863 we can't do this correction because the register holds the
864 whole variable or a part of the variable and thus the REG_OFFSET
865 is already correct. */
867 decl
= REG_EXPR (reg
);
868 if ((BYTES_BIG_ENDIAN
|| WORDS_BIG_ENDIAN
)
871 && GET_MODE_SIZE (GET_MODE (reg
)) > GET_MODE_SIZE (mode
)
872 && ((var_size
= int_size_in_bytes (TREE_TYPE (decl
))) > 0
873 && var_size
< GET_MODE_SIZE (GET_MODE (reg
))))
877 /* Convert machine endian to little endian WRT size of mode of REG. */
878 if (WORDS_BIG_ENDIAN
)
879 offset_le
= ((GET_MODE_SIZE (GET_MODE (reg
)) - 1 - offset
)
880 / UNITS_PER_WORD
) * UNITS_PER_WORD
;
882 offset_le
= (offset
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
884 if (BYTES_BIG_ENDIAN
)
885 offset_le
+= ((GET_MODE_SIZE (GET_MODE (reg
)) - 1 - offset
)
888 offset_le
+= offset
% UNITS_PER_WORD
;
890 if (offset_le
>= var_size
)
892 /* MODE is wider than the variable so the new reg will cover
893 the whole variable so the resulting OFFSET should be 0. */
898 /* Convert little endian to machine endian WRT size of variable. */
899 if (WORDS_BIG_ENDIAN
)
900 offset
= ((var_size
- 1 - offset_le
)
901 / UNITS_PER_WORD
) * UNITS_PER_WORD
;
903 offset
= (offset_le
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
905 if (BYTES_BIG_ENDIAN
)
906 offset
+= ((var_size
- 1 - offset_le
)
909 offset
+= offset_le
% UNITS_PER_WORD
;
913 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg
),
914 REG_OFFSET (reg
) + offset
);
918 /* Set the decl for MEM to DECL. */
921 set_reg_attrs_from_mem (rtx reg
, rtx mem
)
923 if (MEM_OFFSET (mem
) && GET_CODE (MEM_OFFSET (mem
)) == CONST_INT
)
925 = get_reg_attrs (MEM_EXPR (mem
), INTVAL (MEM_OFFSET (mem
)));
928 /* Set the register attributes for registers contained in PARM_RTX.
929 Use needed values from memory attributes of MEM. */
932 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
934 if (REG_P (parm_rtx
))
935 set_reg_attrs_from_mem (parm_rtx
, mem
);
936 else if (GET_CODE (parm_rtx
) == PARALLEL
)
938 /* Check for a NULL entry in the first slot, used to indicate that the
939 parameter goes both on the stack and in registers. */
940 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
941 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
943 rtx x
= XVECEXP (parm_rtx
, 0, i
);
944 if (REG_P (XEXP (x
, 0)))
945 REG_ATTRS (XEXP (x
, 0))
946 = get_reg_attrs (MEM_EXPR (mem
),
947 INTVAL (XEXP (x
, 1)));
952 /* Assign the RTX X to declaration T. */
954 set_decl_rtl (tree t
, rtx x
)
956 DECL_CHECK (t
)->decl
.rtl
= x
;
960 /* For register, we maintain the reverse information too. */
962 REG_ATTRS (x
) = get_reg_attrs (t
, 0);
963 else if (GET_CODE (x
) == SUBREG
)
964 REG_ATTRS (SUBREG_REG (x
))
965 = get_reg_attrs (t
, -SUBREG_BYTE (x
));
966 if (GET_CODE (x
) == CONCAT
)
968 if (REG_P (XEXP (x
, 0)))
969 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
970 if (REG_P (XEXP (x
, 1)))
971 REG_ATTRS (XEXP (x
, 1))
972 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
974 if (GET_CODE (x
) == PARALLEL
)
977 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
979 rtx y
= XVECEXP (x
, 0, i
);
980 if (REG_P (XEXP (y
, 0)))
981 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
986 /* Assign the RTX X to parameter declaration T. */
988 set_decl_incoming_rtl (tree t
, rtx x
)
990 DECL_INCOMING_RTL (t
) = x
;
994 /* For register, we maintain the reverse information too. */
996 REG_ATTRS (x
) = get_reg_attrs (t
, 0);
997 else if (GET_CODE (x
) == SUBREG
)
998 REG_ATTRS (SUBREG_REG (x
))
999 = get_reg_attrs (t
, -SUBREG_BYTE (x
));
1000 if (GET_CODE (x
) == CONCAT
)
1002 if (REG_P (XEXP (x
, 0)))
1003 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1004 if (REG_P (XEXP (x
, 1)))
1005 REG_ATTRS (XEXP (x
, 1))
1006 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1008 if (GET_CODE (x
) == PARALLEL
)
1012 /* Check for a NULL entry, used to indicate that the parameter goes
1013 both on the stack and in registers. */
1014 if (XEXP (XVECEXP (x
, 0, 0), 0))
1019 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1021 rtx y
= XVECEXP (x
, 0, i
);
1022 if (REG_P (XEXP (y
, 0)))
1023 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1028 /* Identify REG (which may be a CONCAT) as a user register. */
1031 mark_user_reg (rtx reg
)
1033 if (GET_CODE (reg
) == CONCAT
)
1035 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1036 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1040 gcc_assert (REG_P (reg
));
1041 REG_USERVAR_P (reg
) = 1;
1045 /* Identify REG as a probable pointer register and show its alignment
1046 as ALIGN, if nonzero. */
1049 mark_reg_pointer (rtx reg
, int align
)
1051 if (! REG_POINTER (reg
))
1053 REG_POINTER (reg
) = 1;
1056 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1058 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1059 /* We can no-longer be sure just how aligned this pointer is. */
1060 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1063 /* Return 1 plus largest pseudo reg number used in the current function. */
1071 /* Return 1 + the largest label number used so far in the current function. */
1074 max_label_num (void)
1079 /* Return first label number used in this function (if any were used). */
1082 get_first_label_num (void)
1084 return first_label_num
;
1087 /* If the rtx for label was created during the expansion of a nested
1088 function, then first_label_num won't include this label number.
1089 Fix this now so that array indicies work later. */
1092 maybe_set_first_label_num (rtx x
)
1094 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1095 first_label_num
= CODE_LABEL_NUMBER (x
);
1098 /* Return a value representing some low-order bits of X, where the number
1099 of low-order bits is given by MODE. Note that no conversion is done
1100 between floating-point and fixed-point values, rather, the bit
1101 representation is returned.
1103 This function handles the cases in common between gen_lowpart, below,
1104 and two variants in cse.c and combine.c. These are the cases that can
1105 be safely handled at all points in the compilation.
1107 If this is not a case we can handle, return 0. */
1110 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1112 int msize
= GET_MODE_SIZE (mode
);
1115 enum machine_mode innermode
;
1117 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1118 so we have to make one up. Yuk. */
1119 innermode
= GET_MODE (x
);
1120 if (GET_CODE (x
) == CONST_INT
&& msize
<= HOST_BITS_PER_WIDE_INT
)
1121 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1122 else if (innermode
== VOIDmode
)
1123 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
* 2, MODE_INT
, 0);
1125 xsize
= GET_MODE_SIZE (innermode
);
1127 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1129 if (innermode
== mode
)
1132 /* MODE must occupy no more words than the mode of X. */
1133 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1134 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1137 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1138 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
&& msize
> xsize
)
1141 offset
= subreg_lowpart_offset (mode
, innermode
);
1143 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1144 && (GET_MODE_CLASS (mode
) == MODE_INT
1145 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1147 /* If we are getting the low-order part of something that has been
1148 sign- or zero-extended, we can either just use the object being
1149 extended or make a narrower extension. If we want an even smaller
1150 piece than the size of the object being extended, call ourselves
1153 This case is used mostly by combine and cse. */
1155 if (GET_MODE (XEXP (x
, 0)) == mode
)
1157 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1158 return gen_lowpart_common (mode
, XEXP (x
, 0));
1159 else if (msize
< xsize
)
1160 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1162 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1163 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1164 || GET_CODE (x
) == CONST_DOUBLE
|| GET_CODE (x
) == CONST_INT
)
1165 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1167 /* Otherwise, we can't do this. */
1172 gen_highpart (enum machine_mode mode
, rtx x
)
1174 unsigned int msize
= GET_MODE_SIZE (mode
);
1177 /* This case loses if X is a subreg. To catch bugs early,
1178 complain if an invalid MODE is used even in other cases. */
1179 gcc_assert (msize
<= UNITS_PER_WORD
1180 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1182 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1183 subreg_highpart_offset (mode
, GET_MODE (x
)));
1184 gcc_assert (result
);
1186 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1187 the target if we have a MEM. gen_highpart must return a valid operand,
1188 emitting code if necessary to do so. */
1191 result
= validize_mem (result
);
1192 gcc_assert (result
);
1198 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1199 be VOIDmode constant. */
1201 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1203 if (GET_MODE (exp
) != VOIDmode
)
1205 gcc_assert (GET_MODE (exp
) == innermode
);
1206 return gen_highpart (outermode
, exp
);
1208 return simplify_gen_subreg (outermode
, exp
, innermode
,
1209 subreg_highpart_offset (outermode
, innermode
));
1212 /* Return offset in bytes to get OUTERMODE low part
1213 of the value in mode INNERMODE stored in memory in target format. */
1216 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1218 unsigned int offset
= 0;
1219 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1223 if (WORDS_BIG_ENDIAN
)
1224 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1225 if (BYTES_BIG_ENDIAN
)
1226 offset
+= difference
% UNITS_PER_WORD
;
1232 /* Return offset in bytes to get OUTERMODE high part
1233 of the value in mode INNERMODE stored in memory in target format. */
1235 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1237 unsigned int offset
= 0;
1238 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1240 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1244 if (! WORDS_BIG_ENDIAN
)
1245 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1246 if (! BYTES_BIG_ENDIAN
)
1247 offset
+= difference
% UNITS_PER_WORD
;
1253 /* Return 1 iff X, assumed to be a SUBREG,
1254 refers to the least significant part of its containing reg.
1255 If X is not a SUBREG, always return 1 (it is its own low part!). */
1258 subreg_lowpart_p (rtx x
)
1260 if (GET_CODE (x
) != SUBREG
)
1262 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1265 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1266 == SUBREG_BYTE (x
));
1269 /* Return subword OFFSET of operand OP.
1270 The word number, OFFSET, is interpreted as the word number starting
1271 at the low-order address. OFFSET 0 is the low-order word if not
1272 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1274 If we cannot extract the required word, we return zero. Otherwise,
1275 an rtx corresponding to the requested word will be returned.
1277 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1278 reload has completed, a valid address will always be returned. After
1279 reload, if a valid address cannot be returned, we return zero.
1281 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1282 it is the responsibility of the caller.
1284 MODE is the mode of OP in case it is a CONST_INT.
1286 ??? This is still rather broken for some cases. The problem for the
1287 moment is that all callers of this thing provide no 'goal mode' to
1288 tell us to work with. This exists because all callers were written
1289 in a word based SUBREG world.
1290 Now use of this function can be deprecated by simplify_subreg in most
1295 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1297 if (mode
== VOIDmode
)
1298 mode
= GET_MODE (op
);
1300 gcc_assert (mode
!= VOIDmode
);
1302 /* If OP is narrower than a word, fail. */
1304 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1307 /* If we want a word outside OP, return zero. */
1309 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1312 /* Form a new MEM at the requested address. */
1315 rtx
new = adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1317 if (! validate_address
)
1320 else if (reload_completed
)
1322 if (! strict_memory_address_p (word_mode
, XEXP (new, 0)))
1326 return replace_equiv_address (new, XEXP (new, 0));
1329 /* Rest can be handled by simplify_subreg. */
1330 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1333 /* Similar to `operand_subword', but never return 0. If we can't extract
1334 the required subword, put OP into a register and try again. If that fails,
1335 abort. We always validate the address in this case.
1337 MODE is the mode of OP, in case it is CONST_INT. */
1340 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1342 rtx result
= operand_subword (op
, offset
, 1, mode
);
1347 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1349 /* If this is a register which can not be accessed by words, copy it
1350 to a pseudo register. */
1352 op
= copy_to_reg (op
);
1354 op
= force_reg (mode
, op
);
1357 result
= operand_subword (op
, offset
, 1, mode
);
1358 gcc_assert (result
);
1363 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1364 or (2) a component ref of something variable. Represent the later with
1365 a NULL expression. */
1368 component_ref_for_mem_expr (tree ref
)
1370 tree inner
= TREE_OPERAND (ref
, 0);
1372 if (TREE_CODE (inner
) == COMPONENT_REF
)
1373 inner
= component_ref_for_mem_expr (inner
);
1376 /* Now remove any conversions: they don't change what the underlying
1377 object is. Likewise for SAVE_EXPR. */
1378 while (TREE_CODE (inner
) == NOP_EXPR
|| TREE_CODE (inner
) == CONVERT_EXPR
1379 || TREE_CODE (inner
) == NON_LVALUE_EXPR
1380 || TREE_CODE (inner
) == VIEW_CONVERT_EXPR
1381 || TREE_CODE (inner
) == SAVE_EXPR
)
1382 inner
= TREE_OPERAND (inner
, 0);
1384 if (! DECL_P (inner
))
1388 if (inner
== TREE_OPERAND (ref
, 0))
1391 return build3 (COMPONENT_REF
, TREE_TYPE (ref
), inner
,
1392 TREE_OPERAND (ref
, 1), NULL_TREE
);
1395 /* Returns 1 if both MEM_EXPR can be considered equal
1399 mem_expr_equal_p (tree expr1
, tree expr2
)
1404 if (! expr1
|| ! expr2
)
1407 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1410 if (TREE_CODE (expr1
) == COMPONENT_REF
)
1412 mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1413 TREE_OPERAND (expr2
, 0))
1414 && mem_expr_equal_p (TREE_OPERAND (expr1
, 1), /* field decl */
1415 TREE_OPERAND (expr2
, 1));
1417 if (INDIRECT_REF_P (expr1
))
1418 return mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1419 TREE_OPERAND (expr2
, 0));
1421 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1422 have been resolved here. */
1423 gcc_assert (DECL_P (expr1
));
1425 /* Decls with different pointers can't be equal. */
1429 /* Given REF, a MEM, and T, either the type of X or the expression
1430 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1431 if we are making a new object of this type. BITPOS is nonzero if
1432 there is an offset outstanding on T that will be applied later. */
1435 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1436 HOST_WIDE_INT bitpos
)
1438 HOST_WIDE_INT alias
= MEM_ALIAS_SET (ref
);
1439 tree expr
= MEM_EXPR (ref
);
1440 rtx offset
= MEM_OFFSET (ref
);
1441 rtx size
= MEM_SIZE (ref
);
1442 unsigned int align
= MEM_ALIGN (ref
);
1443 HOST_WIDE_INT apply_bitpos
= 0;
1446 /* It can happen that type_for_mode was given a mode for which there
1447 is no language-level type. In which case it returns NULL, which
1452 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1453 if (type
== error_mark_node
)
1456 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1457 wrong answer, as it assumes that DECL_RTL already has the right alias
1458 info. Callers should not set DECL_RTL until after the call to
1459 set_mem_attributes. */
1460 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1462 /* Get the alias set from the expression or type (perhaps using a
1463 front-end routine) and use it. */
1464 alias
= get_alias_set (t
);
1466 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1467 MEM_IN_STRUCT_P (ref
) = AGGREGATE_TYPE_P (type
);
1468 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1469 MEM_NOTRAP_P (ref
) = TREE_THIS_NOTRAP (t
);
1471 /* If we are making an object of this type, or if this is a DECL, we know
1472 that it is a scalar if the type is not an aggregate. */
1473 if ((objectp
|| DECL_P (t
)) && ! AGGREGATE_TYPE_P (type
))
1474 MEM_SCALAR_P (ref
) = 1;
1476 /* We can set the alignment from the type if we are making an object,
1477 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1478 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
1479 || TREE_CODE (t
) == ALIGN_INDIRECT_REF
1480 || TYPE_ALIGN_OK (type
))
1481 align
= MAX (align
, TYPE_ALIGN (type
));
1483 if (TREE_CODE (t
) == MISALIGNED_INDIRECT_REF
)
1485 if (integer_zerop (TREE_OPERAND (t
, 1)))
1486 /* We don't know anything about the alignment. */
1487 align
= BITS_PER_UNIT
;
1489 align
= tree_low_cst (TREE_OPERAND (t
, 1), 1);
1492 /* If the size is known, we can set that. */
1493 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1494 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1496 /* If T is not a type, we may be able to deduce some more information about
1500 tree base
= get_base_address (t
);
1501 if (base
&& DECL_P (base
)
1502 && TREE_READONLY (base
)
1503 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
)))
1505 tree base_type
= TREE_TYPE (base
);
1506 gcc_assert (!(base_type
&& TYPE_NEEDS_CONSTRUCTING (base_type
))
1507 || DECL_ARTIFICIAL (base
));
1508 MEM_READONLY_P (ref
) = 1;
1511 if (TREE_THIS_VOLATILE (t
))
1512 MEM_VOLATILE_P (ref
) = 1;
1514 /* Now remove any conversions: they don't change what the underlying
1515 object is. Likewise for SAVE_EXPR. */
1516 while (TREE_CODE (t
) == NOP_EXPR
|| TREE_CODE (t
) == CONVERT_EXPR
1517 || TREE_CODE (t
) == NON_LVALUE_EXPR
1518 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1519 || TREE_CODE (t
) == SAVE_EXPR
)
1520 t
= TREE_OPERAND (t
, 0);
1522 /* If this expression uses it's parent's alias set, mark it such
1523 that we won't change it. */
1524 if (component_uses_parent_alias_set (t
))
1525 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1527 /* If this is a decl, set the attributes of the MEM from it. */
1531 offset
= const0_rtx
;
1532 apply_bitpos
= bitpos
;
1533 size
= (DECL_SIZE_UNIT (t
)
1534 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1535 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1536 align
= DECL_ALIGN (t
);
1539 /* If this is a constant, we know the alignment. */
1540 else if (CONSTANT_CLASS_P (t
))
1542 align
= TYPE_ALIGN (type
);
1543 #ifdef CONSTANT_ALIGNMENT
1544 align
= CONSTANT_ALIGNMENT (t
, align
);
1548 /* If this is a field reference and not a bit-field, record it. */
1549 /* ??? There is some information that can be gleened from bit-fields,
1550 such as the word offset in the structure that might be modified.
1551 But skip it for now. */
1552 else if (TREE_CODE (t
) == COMPONENT_REF
1553 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1555 expr
= component_ref_for_mem_expr (t
);
1556 offset
= const0_rtx
;
1557 apply_bitpos
= bitpos
;
1558 /* ??? Any reason the field size would be different than
1559 the size we got from the type? */
1562 /* If this is an array reference, look for an outer field reference. */
1563 else if (TREE_CODE (t
) == ARRAY_REF
)
1565 tree off_tree
= size_zero_node
;
1566 /* We can't modify t, because we use it at the end of the
1572 tree index
= TREE_OPERAND (t2
, 1);
1573 tree low_bound
= array_ref_low_bound (t2
);
1574 tree unit_size
= array_ref_element_size (t2
);
1576 /* We assume all arrays have sizes that are a multiple of a byte.
1577 First subtract the lower bound, if any, in the type of the
1578 index, then convert to sizetype and multiply by the size of
1579 the array element. */
1580 if (! integer_zerop (low_bound
))
1581 index
= fold (build2 (MINUS_EXPR
, TREE_TYPE (index
),
1584 off_tree
= size_binop (PLUS_EXPR
,
1585 size_binop (MULT_EXPR
, convert (sizetype
,
1589 t2
= TREE_OPERAND (t2
, 0);
1591 while (TREE_CODE (t2
) == ARRAY_REF
);
1597 if (host_integerp (off_tree
, 1))
1599 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1600 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1601 align
= DECL_ALIGN (t2
);
1602 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< align
)
1604 offset
= GEN_INT (ioff
);
1605 apply_bitpos
= bitpos
;
1608 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1610 expr
= component_ref_for_mem_expr (t2
);
1611 if (host_integerp (off_tree
, 1))
1613 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1614 apply_bitpos
= bitpos
;
1616 /* ??? Any reason the field size would be different than
1617 the size we got from the type? */
1619 else if (flag_argument_noalias
> 1
1620 && (INDIRECT_REF_P (t2
))
1621 && TREE_CODE (TREE_OPERAND (t2
, 0)) == PARM_DECL
)
1628 /* If this is a Fortran indirect argument reference, record the
1630 else if (flag_argument_noalias
> 1
1631 && (INDIRECT_REF_P (t
))
1632 && TREE_CODE (TREE_OPERAND (t
, 0)) == PARM_DECL
)
1639 /* If we modified OFFSET based on T, then subtract the outstanding
1640 bit position offset. Similarly, increase the size of the accessed
1641 object to contain the negative offset. */
1644 offset
= plus_constant (offset
, -(apply_bitpos
/ BITS_PER_UNIT
));
1646 size
= plus_constant (size
, apply_bitpos
/ BITS_PER_UNIT
);
1649 if (TREE_CODE (t
) == ALIGN_INDIRECT_REF
)
1651 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1652 we're overlapping. */
1657 /* Now set the attributes we computed above. */
1659 = get_mem_attrs (alias
, expr
, offset
, size
, align
, GET_MODE (ref
));
1661 /* If this is already known to be a scalar or aggregate, we are done. */
1662 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1665 /* If it is a reference into an aggregate, this is part of an aggregate.
1666 Otherwise we don't know. */
1667 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1668 || TREE_CODE (t
) == ARRAY_RANGE_REF
1669 || TREE_CODE (t
) == BIT_FIELD_REF
)
1670 MEM_IN_STRUCT_P (ref
) = 1;
1674 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1676 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1679 /* Set the decl for MEM to DECL. */
1682 set_mem_attrs_from_reg (rtx mem
, rtx reg
)
1685 = get_mem_attrs (MEM_ALIAS_SET (mem
), REG_EXPR (reg
),
1686 GEN_INT (REG_OFFSET (reg
)),
1687 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1690 /* Set the alias set of MEM to SET. */
1693 set_mem_alias_set (rtx mem
, HOST_WIDE_INT set
)
1695 #ifdef ENABLE_CHECKING
1696 /* If the new and old alias sets don't conflict, something is wrong. */
1697 gcc_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1700 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1701 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1705 /* Set the alignment of MEM to ALIGN bits. */
1708 set_mem_align (rtx mem
, unsigned int align
)
1710 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1711 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1715 /* Set the expr for MEM to EXPR. */
1718 set_mem_expr (rtx mem
, tree expr
)
1721 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1722 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1725 /* Set the offset of MEM to OFFSET. */
1728 set_mem_offset (rtx mem
, rtx offset
)
1730 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1731 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1735 /* Set the size of MEM to SIZE. */
1738 set_mem_size (rtx mem
, rtx size
)
1740 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1741 MEM_OFFSET (mem
), size
, MEM_ALIGN (mem
),
1745 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1746 and its address changed to ADDR. (VOIDmode means don't change the mode.
1747 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1748 returned memory location is required to be valid. The memory
1749 attributes are not changed. */
1752 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1756 gcc_assert (MEM_P (memref
));
1757 if (mode
== VOIDmode
)
1758 mode
= GET_MODE (memref
);
1760 addr
= XEXP (memref
, 0);
1761 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1762 && (!validate
|| memory_address_p (mode
, addr
)))
1767 if (reload_in_progress
|| reload_completed
)
1768 gcc_assert (memory_address_p (mode
, addr
));
1770 addr
= memory_address (mode
, addr
);
1773 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1776 new = gen_rtx_MEM (mode
, addr
);
1777 MEM_COPY_ATTRIBUTES (new, memref
);
1781 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1782 way we are changing MEMREF, so we only preserve the alias set. */
1785 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1787 rtx
new = change_address_1 (memref
, mode
, addr
, 1), size
;
1788 enum machine_mode mmode
= GET_MODE (new);
1791 size
= mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
));
1792 align
= mmode
== BLKmode
? BITS_PER_UNIT
: GET_MODE_ALIGNMENT (mmode
);
1794 /* If there are no changes, just return the original memory reference. */
1797 if (MEM_ATTRS (memref
) == 0
1798 || (MEM_EXPR (memref
) == NULL
1799 && MEM_OFFSET (memref
) == NULL
1800 && MEM_SIZE (memref
) == size
1801 && MEM_ALIGN (memref
) == align
))
1804 new = gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1805 MEM_COPY_ATTRIBUTES (new, memref
);
1809 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0, size
, align
, mmode
);
1814 /* Return a memory reference like MEMREF, but with its mode changed
1815 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1816 nonzero, the memory address is forced to be valid.
1817 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1818 and caller is responsible for adjusting MEMREF base register. */
1821 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
1822 int validate
, int adjust
)
1824 rtx addr
= XEXP (memref
, 0);
1826 rtx memoffset
= MEM_OFFSET (memref
);
1828 unsigned int memalign
= MEM_ALIGN (memref
);
1830 /* If there are no changes, just return the original memory reference. */
1831 if (mode
== GET_MODE (memref
) && !offset
1832 && (!validate
|| memory_address_p (mode
, addr
)))
1835 /* ??? Prefer to create garbage instead of creating shared rtl.
1836 This may happen even if offset is nonzero -- consider
1837 (plus (plus reg reg) const_int) -- so do this always. */
1838 addr
= copy_rtx (addr
);
1842 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1843 object, we can merge it into the LO_SUM. */
1844 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
1846 && (unsigned HOST_WIDE_INT
) offset
1847 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
1848 addr
= gen_rtx_LO_SUM (Pmode
, XEXP (addr
, 0),
1849 plus_constant (XEXP (addr
, 1), offset
));
1851 addr
= plus_constant (addr
, offset
);
1854 new = change_address_1 (memref
, mode
, addr
, validate
);
1856 /* Compute the new values of the memory attributes due to this adjustment.
1857 We add the offsets and update the alignment. */
1859 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
1861 /* Compute the new alignment by taking the MIN of the alignment and the
1862 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1867 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
1869 /* We can compute the size in a number of ways. */
1870 if (GET_MODE (new) != BLKmode
)
1871 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1872 else if (MEM_SIZE (memref
))
1873 size
= plus_constant (MEM_SIZE (memref
), -offset
);
1875 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
1876 memoffset
, size
, memalign
, GET_MODE (new));
1878 /* At some point, we should validate that this offset is within the object,
1879 if all the appropriate values are known. */
1883 /* Return a memory reference like MEMREF, but with its mode changed
1884 to MODE and its address changed to ADDR, which is assumed to be
1885 MEMREF offseted by OFFSET bytes. If VALIDATE is
1886 nonzero, the memory address is forced to be valid. */
1889 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
1890 HOST_WIDE_INT offset
, int validate
)
1892 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
1893 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
1896 /* Return a memory reference like MEMREF, but whose address is changed by
1897 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1898 known to be in OFFSET (possibly 1). */
1901 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
1903 rtx
new, addr
= XEXP (memref
, 0);
1905 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
1907 /* At this point we don't know _why_ the address is invalid. It
1908 could have secondary memory references, multiplies or anything.
1910 However, if we did go and rearrange things, we can wind up not
1911 being able to recognize the magic around pic_offset_table_rtx.
1912 This stuff is fragile, and is yet another example of why it is
1913 bad to expose PIC machinery too early. */
1914 if (! memory_address_p (GET_MODE (memref
), new)
1915 && GET_CODE (addr
) == PLUS
1916 && XEXP (addr
, 0) == pic_offset_table_rtx
)
1918 addr
= force_reg (GET_MODE (addr
), addr
);
1919 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
1922 update_temp_slot_address (XEXP (memref
, 0), new);
1923 new = change_address_1 (memref
, VOIDmode
, new, 1);
1925 /* If there are no changes, just return the original memory reference. */
1929 /* Update the alignment to reflect the offset. Reset the offset, which
1932 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
1933 MIN (MEM_ALIGN (memref
), pow2
* BITS_PER_UNIT
),
1938 /* Return a memory reference like MEMREF, but with its address changed to
1939 ADDR. The caller is asserting that the actual piece of memory pointed
1940 to is the same, just the form of the address is being changed, such as
1941 by putting something into a register. */
1944 replace_equiv_address (rtx memref
, rtx addr
)
1946 /* change_address_1 copies the memory attribute structure without change
1947 and that's exactly what we want here. */
1948 update_temp_slot_address (XEXP (memref
, 0), addr
);
1949 return change_address_1 (memref
, VOIDmode
, addr
, 1);
1952 /* Likewise, but the reference is not required to be valid. */
1955 replace_equiv_address_nv (rtx memref
, rtx addr
)
1957 return change_address_1 (memref
, VOIDmode
, addr
, 0);
1960 /* Return a memory reference like MEMREF, but with its mode widened to
1961 MODE and offset by OFFSET. This would be used by targets that e.g.
1962 cannot issue QImode memory operations and have to use SImode memory
1963 operations plus masking logic. */
1966 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
1968 rtx
new = adjust_address_1 (memref
, mode
, offset
, 1, 1);
1969 tree expr
= MEM_EXPR (new);
1970 rtx memoffset
= MEM_OFFSET (new);
1971 unsigned int size
= GET_MODE_SIZE (mode
);
1973 /* If there are no changes, just return the original memory reference. */
1977 /* If we don't know what offset we were at within the expression, then
1978 we can't know if we've overstepped the bounds. */
1984 if (TREE_CODE (expr
) == COMPONENT_REF
)
1986 tree field
= TREE_OPERAND (expr
, 1);
1987 tree offset
= component_ref_field_offset (expr
);
1989 if (! DECL_SIZE_UNIT (field
))
1995 /* Is the field at least as large as the access? If so, ok,
1996 otherwise strip back to the containing structure. */
1997 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
1998 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
1999 && INTVAL (memoffset
) >= 0)
2002 if (! host_integerp (offset
, 1))
2008 expr
= TREE_OPERAND (expr
, 0);
2010 = (GEN_INT (INTVAL (memoffset
)
2011 + tree_low_cst (offset
, 1)
2012 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2015 /* Similarly for the decl. */
2016 else if (DECL_P (expr
)
2017 && DECL_SIZE_UNIT (expr
)
2018 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2019 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2020 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2024 /* The widened memory access overflows the expression, which means
2025 that it could alias another expression. Zap it. */
2032 memoffset
= NULL_RTX
;
2034 /* The widened memory may alias other stuff, so zap the alias set. */
2035 /* ??? Maybe use get_alias_set on any remaining expression. */
2037 MEM_ATTRS (new) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2038 MEM_ALIGN (new), mode
);
2043 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2046 gen_label_rtx (void)
2048 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2049 NULL
, label_num
++, NULL
);
2052 /* For procedure integration. */
2054 /* Install new pointers to the first and last insns in the chain.
2055 Also, set cur_insn_uid to one higher than the last in use.
2056 Used for an inline-procedure after copying the insn chain. */
2059 set_new_first_and_last_insn (rtx first
, rtx last
)
2067 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2068 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2073 /* Go through all the RTL insn bodies and copy any invalid shared
2074 structure. This routine should only be called once. */
2077 unshare_all_rtl_1 (tree fndecl
, rtx insn
)
2081 /* Make sure that virtual parameters are not shared. */
2082 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
2083 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
2085 /* Make sure that virtual stack slots are not shared. */
2086 unshare_all_decls (DECL_INITIAL (fndecl
));
2088 /* Unshare just about everything else. */
2089 unshare_all_rtl_in_chain (insn
);
2091 /* Make sure the addresses of stack slots found outside the insn chain
2092 (such as, in DECL_RTL of a variable) are not shared
2093 with the insn chain.
2095 This special care is necessary when the stack slot MEM does not
2096 actually appear in the insn chain. If it does appear, its address
2097 is unshared from all else at that point. */
2098 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2101 /* Go through all the RTL insn bodies and copy any invalid shared
2102 structure, again. This is a fairly expensive thing to do so it
2103 should be done sparingly. */
2106 unshare_all_rtl_again (rtx insn
)
2111 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2114 reset_used_flags (PATTERN (p
));
2115 reset_used_flags (REG_NOTES (p
));
2116 reset_used_flags (LOG_LINKS (p
));
2119 /* Make sure that virtual stack slots are not shared. */
2120 reset_used_decls (DECL_INITIAL (cfun
->decl
));
2122 /* Make sure that virtual parameters are not shared. */
2123 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
2124 reset_used_flags (DECL_RTL (decl
));
2126 reset_used_flags (stack_slot_list
);
2128 unshare_all_rtl_1 (cfun
->decl
, insn
);
2132 unshare_all_rtl (void)
2134 unshare_all_rtl_1 (current_function_decl
, get_insns ());
2137 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2138 Recursively does the same for subexpressions. */
2141 verify_rtx_sharing (rtx orig
, rtx insn
)
2146 const char *format_ptr
;
2151 code
= GET_CODE (x
);
2153 /* These types may be freely shared. */
2168 /* SCRATCH must be shared because they represent distinct values. */
2170 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2175 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2176 a LABEL_REF, it isn't sharable. */
2177 if (GET_CODE (XEXP (x
, 0)) == PLUS
2178 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
2179 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
2184 /* A MEM is allowed to be shared if its address is constant. */
2185 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2186 || reload_completed
|| reload_in_progress
)
2195 /* This rtx may not be shared. If it has already been seen,
2196 replace it with a copy of itself. */
2197 #ifdef ENABLE_CHECKING
2198 if (RTX_FLAG (x
, used
))
2200 error ("Invalid rtl sharing found in the insn");
2202 error ("Shared rtx");
2204 internal_error ("Internal consistency failure");
2207 gcc_assert (!RTX_FLAG (x
, used
));
2209 RTX_FLAG (x
, used
) = 1;
2211 /* Now scan the subexpressions recursively. */
2213 format_ptr
= GET_RTX_FORMAT (code
);
2215 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2217 switch (*format_ptr
++)
2220 verify_rtx_sharing (XEXP (x
, i
), insn
);
2224 if (XVEC (x
, i
) != NULL
)
2227 int len
= XVECLEN (x
, i
);
2229 for (j
= 0; j
< len
; j
++)
2231 /* We allow sharing of ASM_OPERANDS inside single
2233 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2234 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2236 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2238 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2247 /* Go through all the RTL insn bodies and check that there is no unexpected
2248 sharing in between the subexpressions. */
2251 verify_rtl_sharing (void)
2255 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2258 reset_used_flags (PATTERN (p
));
2259 reset_used_flags (REG_NOTES (p
));
2260 reset_used_flags (LOG_LINKS (p
));
2263 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2266 verify_rtx_sharing (PATTERN (p
), p
);
2267 verify_rtx_sharing (REG_NOTES (p
), p
);
2268 verify_rtx_sharing (LOG_LINKS (p
), p
);
2272 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2273 Assumes the mark bits are cleared at entry. */
2276 unshare_all_rtl_in_chain (rtx insn
)
2278 for (; insn
; insn
= NEXT_INSN (insn
))
2281 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2282 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2283 LOG_LINKS (insn
) = copy_rtx_if_shared (LOG_LINKS (insn
));
2287 /* Go through all virtual stack slots of a function and copy any
2288 shared structure. */
2290 unshare_all_decls (tree blk
)
2294 /* Copy shared decls. */
2295 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2296 if (DECL_RTL_SET_P (t
))
2297 SET_DECL_RTL (t
, copy_rtx_if_shared (DECL_RTL (t
)));
2299 /* Now process sub-blocks. */
2300 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2301 unshare_all_decls (t
);
2304 /* Go through all virtual stack slots of a function and mark them as
2307 reset_used_decls (tree blk
)
2312 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2313 if (DECL_RTL_SET_P (t
))
2314 reset_used_flags (DECL_RTL (t
));
2316 /* Now process sub-blocks. */
2317 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2318 reset_used_decls (t
);
2321 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2322 Recursively does the same for subexpressions. Uses
2323 copy_rtx_if_shared_1 to reduce stack space. */
2326 copy_rtx_if_shared (rtx orig
)
2328 copy_rtx_if_shared_1 (&orig
);
2332 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2333 use. Recursively does the same for subexpressions. */
2336 copy_rtx_if_shared_1 (rtx
*orig1
)
2342 const char *format_ptr
;
2346 /* Repeat is used to turn tail-recursion into iteration. */
2353 code
= GET_CODE (x
);
2355 /* These types may be freely shared. */
2369 /* SCRATCH must be shared because they represent distinct values. */
2372 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2377 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2378 a LABEL_REF, it isn't sharable. */
2379 if (GET_CODE (XEXP (x
, 0)) == PLUS
2380 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
2381 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
2390 /* The chain of insns is not being copied. */
2397 /* This rtx may not be shared. If it has already been seen,
2398 replace it with a copy of itself. */
2400 if (RTX_FLAG (x
, used
))
2404 copy
= rtx_alloc (code
);
2405 memcpy (copy
, x
, RTX_SIZE (code
));
2409 RTX_FLAG (x
, used
) = 1;
2411 /* Now scan the subexpressions recursively.
2412 We can store any replaced subexpressions directly into X
2413 since we know X is not shared! Any vectors in X
2414 must be copied if X was copied. */
2416 format_ptr
= GET_RTX_FORMAT (code
);
2417 length
= GET_RTX_LENGTH (code
);
2420 for (i
= 0; i
< length
; i
++)
2422 switch (*format_ptr
++)
2426 copy_rtx_if_shared_1 (last_ptr
);
2427 last_ptr
= &XEXP (x
, i
);
2431 if (XVEC (x
, i
) != NULL
)
2434 int len
= XVECLEN (x
, i
);
2436 /* Copy the vector iff I copied the rtx and the length
2438 if (copied
&& len
> 0)
2439 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2441 /* Call recursively on all inside the vector. */
2442 for (j
= 0; j
< len
; j
++)
2445 copy_rtx_if_shared_1 (last_ptr
);
2446 last_ptr
= &XVECEXP (x
, i
, j
);
2461 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2462 to look for shared sub-parts. */
2465 reset_used_flags (rtx x
)
2469 const char *format_ptr
;
2472 /* Repeat is used to turn tail-recursion into iteration. */
2477 code
= GET_CODE (x
);
2479 /* These types may be freely shared so we needn't do any resetting
2500 /* The chain of insns is not being copied. */
2507 RTX_FLAG (x
, used
) = 0;
2509 format_ptr
= GET_RTX_FORMAT (code
);
2510 length
= GET_RTX_LENGTH (code
);
2512 for (i
= 0; i
< length
; i
++)
2514 switch (*format_ptr
++)
2522 reset_used_flags (XEXP (x
, i
));
2526 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2527 reset_used_flags (XVECEXP (x
, i
, j
));
2533 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2534 to look for shared sub-parts. */
2537 set_used_flags (rtx x
)
2541 const char *format_ptr
;
2546 code
= GET_CODE (x
);
2548 /* These types may be freely shared so we needn't do any resetting
2569 /* The chain of insns is not being copied. */
2576 RTX_FLAG (x
, used
) = 1;
2578 format_ptr
= GET_RTX_FORMAT (code
);
2579 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2581 switch (*format_ptr
++)
2584 set_used_flags (XEXP (x
, i
));
2588 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2589 set_used_flags (XVECEXP (x
, i
, j
));
2595 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2596 Return X or the rtx for the pseudo reg the value of X was copied into.
2597 OTHER must be valid as a SET_DEST. */
2600 make_safe_from (rtx x
, rtx other
)
2603 switch (GET_CODE (other
))
2606 other
= SUBREG_REG (other
);
2608 case STRICT_LOW_PART
:
2611 other
= XEXP (other
, 0);
2620 && GET_CODE (x
) != SUBREG
)
2622 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2623 || reg_mentioned_p (other
, x
))))
2625 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2626 emit_move_insn (temp
, x
);
2632 /* Emission of insns (adding them to the doubly-linked list). */
2634 /* Return the first insn of the current sequence or current function. */
2642 /* Specify a new insn as the first in the chain. */
2645 set_first_insn (rtx insn
)
2647 gcc_assert (!PREV_INSN (insn
));
2651 /* Return the last insn emitted in current sequence or current function. */
2654 get_last_insn (void)
2659 /* Specify a new insn as the last in the chain. */
2662 set_last_insn (rtx insn
)
2664 gcc_assert (!NEXT_INSN (insn
));
2668 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2671 get_last_insn_anywhere (void)
2673 struct sequence_stack
*stack
;
2676 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2677 if (stack
->last
!= 0)
2682 /* Return the first nonnote insn emitted in current sequence or current
2683 function. This routine looks inside SEQUENCEs. */
2686 get_first_nonnote_insn (void)
2688 rtx insn
= first_insn
;
2693 for (insn
= next_insn (insn
);
2694 insn
&& NOTE_P (insn
);
2695 insn
= next_insn (insn
))
2699 if (GET_CODE (insn
) == INSN
2700 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2701 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2708 /* Return the last nonnote insn emitted in current sequence or current
2709 function. This routine looks inside SEQUENCEs. */
2712 get_last_nonnote_insn (void)
2714 rtx insn
= last_insn
;
2719 for (insn
= previous_insn (insn
);
2720 insn
&& NOTE_P (insn
);
2721 insn
= previous_insn (insn
))
2725 if (GET_CODE (insn
) == INSN
2726 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2727 insn
= XVECEXP (PATTERN (insn
), 0,
2728 XVECLEN (PATTERN (insn
), 0) - 1);
2735 /* Return a number larger than any instruction's uid in this function. */
2740 return cur_insn_uid
;
2743 /* Renumber instructions so that no instruction UIDs are wasted. */
2746 renumber_insns (FILE *stream
)
2750 /* If we're not supposed to renumber instructions, don't. */
2751 if (!flag_renumber_insns
)
2754 /* If there aren't that many instructions, then it's not really
2755 worth renumbering them. */
2756 if (flag_renumber_insns
== 1 && get_max_uid () < 25000)
2761 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2764 fprintf (stream
, "Renumbering insn %d to %d\n",
2765 INSN_UID (insn
), cur_insn_uid
);
2766 INSN_UID (insn
) = cur_insn_uid
++;
2770 /* Return the next insn. If it is a SEQUENCE, return the first insn
2774 next_insn (rtx insn
)
2778 insn
= NEXT_INSN (insn
);
2779 if (insn
&& NONJUMP_INSN_P (insn
)
2780 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2781 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2787 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2791 previous_insn (rtx insn
)
2795 insn
= PREV_INSN (insn
);
2796 if (insn
&& NONJUMP_INSN_P (insn
)
2797 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2798 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2804 /* Return the next insn after INSN that is not a NOTE. This routine does not
2805 look inside SEQUENCEs. */
2808 next_nonnote_insn (rtx insn
)
2812 insn
= NEXT_INSN (insn
);
2813 if (insn
== 0 || !NOTE_P (insn
))
2820 /* Return the previous insn before INSN that is not a NOTE. This routine does
2821 not look inside SEQUENCEs. */
2824 prev_nonnote_insn (rtx insn
)
2828 insn
= PREV_INSN (insn
);
2829 if (insn
== 0 || !NOTE_P (insn
))
2836 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2837 or 0, if there is none. This routine does not look inside
2841 next_real_insn (rtx insn
)
2845 insn
= NEXT_INSN (insn
);
2846 if (insn
== 0 || INSN_P (insn
))
2853 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2854 or 0, if there is none. This routine does not look inside
2858 prev_real_insn (rtx insn
)
2862 insn
= PREV_INSN (insn
);
2863 if (insn
== 0 || INSN_P (insn
))
2870 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2871 This routine does not look inside SEQUENCEs. */
2874 last_call_insn (void)
2878 for (insn
= get_last_insn ();
2879 insn
&& !CALL_P (insn
);
2880 insn
= PREV_INSN (insn
))
2886 /* Find the next insn after INSN that really does something. This routine
2887 does not look inside SEQUENCEs. Until reload has completed, this is the
2888 same as next_real_insn. */
2891 active_insn_p (rtx insn
)
2893 return (CALL_P (insn
) || JUMP_P (insn
)
2894 || (NONJUMP_INSN_P (insn
)
2895 && (! reload_completed
2896 || (GET_CODE (PATTERN (insn
)) != USE
2897 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
2901 next_active_insn (rtx insn
)
2905 insn
= NEXT_INSN (insn
);
2906 if (insn
== 0 || active_insn_p (insn
))
2913 /* Find the last insn before INSN that really does something. This routine
2914 does not look inside SEQUENCEs. Until reload has completed, this is the
2915 same as prev_real_insn. */
2918 prev_active_insn (rtx insn
)
2922 insn
= PREV_INSN (insn
);
2923 if (insn
== 0 || active_insn_p (insn
))
2930 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2933 next_label (rtx insn
)
2937 insn
= NEXT_INSN (insn
);
2938 if (insn
== 0 || LABEL_P (insn
))
2945 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2948 prev_label (rtx insn
)
2952 insn
= PREV_INSN (insn
);
2953 if (insn
== 0 || LABEL_P (insn
))
2960 /* Return the last label to mark the same position as LABEL. Return null
2961 if LABEL itself is null. */
2964 skip_consecutive_labels (rtx label
)
2968 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
2976 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2977 and REG_CC_USER notes so we can find it. */
2980 link_cc0_insns (rtx insn
)
2982 rtx user
= next_nonnote_insn (insn
);
2984 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
2985 user
= XVECEXP (PATTERN (user
), 0, 0);
2987 REG_NOTES (user
) = gen_rtx_INSN_LIST (REG_CC_SETTER
, insn
,
2989 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_CC_USER
, user
, REG_NOTES (insn
));
2992 /* Return the next insn that uses CC0 after INSN, which is assumed to
2993 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2994 applied to the result of this function should yield INSN).
2996 Normally, this is simply the next insn. However, if a REG_CC_USER note
2997 is present, it contains the insn that uses CC0.
2999 Return 0 if we can't find the insn. */
3002 next_cc0_user (rtx insn
)
3004 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3007 return XEXP (note
, 0);
3009 insn
= next_nonnote_insn (insn
);
3010 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3011 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3013 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3019 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3020 note, it is the previous insn. */
3023 prev_cc0_setter (rtx insn
)
3025 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3028 return XEXP (note
, 0);
3030 insn
= prev_nonnote_insn (insn
);
3031 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3037 /* Increment the label uses for all labels present in rtx. */
3040 mark_label_nuses (rtx x
)
3046 code
= GET_CODE (x
);
3047 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3048 LABEL_NUSES (XEXP (x
, 0))++;
3050 fmt
= GET_RTX_FORMAT (code
);
3051 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3054 mark_label_nuses (XEXP (x
, i
));
3055 else if (fmt
[i
] == 'E')
3056 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3057 mark_label_nuses (XVECEXP (x
, i
, j
));
3062 /* Try splitting insns that can be split for better scheduling.
3063 PAT is the pattern which might split.
3064 TRIAL is the insn providing PAT.
3065 LAST is nonzero if we should return the last insn of the sequence produced.
3067 If this routine succeeds in splitting, it returns the first or last
3068 replacement insn depending on the value of LAST. Otherwise, it
3069 returns TRIAL. If the insn to be returned can be split, it will be. */
3072 try_split (rtx pat
, rtx trial
, int last
)
3074 rtx before
= PREV_INSN (trial
);
3075 rtx after
= NEXT_INSN (trial
);
3076 int has_barrier
= 0;
3080 rtx insn_last
, insn
;
3083 if (any_condjump_p (trial
)
3084 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3085 split_branch_probability
= INTVAL (XEXP (note
, 0));
3086 probability
= split_branch_probability
;
3088 seq
= split_insns (pat
, trial
);
3090 split_branch_probability
= -1;
3092 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3093 We may need to handle this specially. */
3094 if (after
&& BARRIER_P (after
))
3097 after
= NEXT_INSN (after
);
3103 /* Avoid infinite loop if any insn of the result matches
3104 the original pattern. */
3108 if (INSN_P (insn_last
)
3109 && rtx_equal_p (PATTERN (insn_last
), pat
))
3111 if (!NEXT_INSN (insn_last
))
3113 insn_last
= NEXT_INSN (insn_last
);
3117 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3121 mark_jump_label (PATTERN (insn
), insn
, 0);
3123 if (probability
!= -1
3124 && any_condjump_p (insn
)
3125 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3127 /* We can preserve the REG_BR_PROB notes only if exactly
3128 one jump is created, otherwise the machine description
3129 is responsible for this step using
3130 split_branch_probability variable. */
3131 gcc_assert (njumps
== 1);
3133 = gen_rtx_EXPR_LIST (REG_BR_PROB
,
3134 GEN_INT (probability
),
3140 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3141 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3144 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3147 rtx
*p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3150 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3151 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3155 /* Copy notes, particularly those related to the CFG. */
3156 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3158 switch (REG_NOTE_KIND (note
))
3162 while (insn
!= NULL_RTX
)
3165 || (flag_non_call_exceptions
&& INSN_P (insn
)
3166 && may_trap_p (PATTERN (insn
))))
3168 = gen_rtx_EXPR_LIST (REG_EH_REGION
,
3171 insn
= PREV_INSN (insn
);
3178 while (insn
!= NULL_RTX
)
3182 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3185 insn
= PREV_INSN (insn
);
3189 case REG_NON_LOCAL_GOTO
:
3191 while (insn
!= NULL_RTX
)
3195 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3198 insn
= PREV_INSN (insn
);
3207 /* If there are LABELS inside the split insns increment the
3208 usage count so we don't delete the label. */
3209 if (NONJUMP_INSN_P (trial
))
3212 while (insn
!= NULL_RTX
)
3214 if (NONJUMP_INSN_P (insn
))
3215 mark_label_nuses (PATTERN (insn
));
3217 insn
= PREV_INSN (insn
);
3221 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATOR (trial
));
3223 delete_insn (trial
);
3225 emit_barrier_after (tem
);
3227 /* Recursively call try_split for each new insn created; by the
3228 time control returns here that insn will be fully split, so
3229 set LAST and continue from the insn after the one returned.
3230 We can't use next_active_insn here since AFTER may be a note.
3231 Ignore deleted insns, which can be occur if not optimizing. */
3232 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3233 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3234 tem
= try_split (PATTERN (tem
), tem
, 1);
3236 /* Return either the first or the last insn, depending on which was
3239 ? (after
? PREV_INSN (after
) : last_insn
)
3240 : NEXT_INSN (before
);
3243 /* Make and return an INSN rtx, initializing all its slots.
3244 Store PATTERN in the pattern slots. */
3247 make_insn_raw (rtx pattern
)
3251 insn
= rtx_alloc (INSN
);
3253 INSN_UID (insn
) = cur_insn_uid
++;
3254 PATTERN (insn
) = pattern
;
3255 INSN_CODE (insn
) = -1;
3256 LOG_LINKS (insn
) = NULL
;
3257 REG_NOTES (insn
) = NULL
;
3258 INSN_LOCATOR (insn
) = 0;
3259 BLOCK_FOR_INSN (insn
) = NULL
;
3261 #ifdef ENABLE_RTL_CHECKING
3264 && (returnjump_p (insn
)
3265 || (GET_CODE (insn
) == SET
3266 && SET_DEST (insn
) == pc_rtx
)))
3268 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3276 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3279 make_jump_insn_raw (rtx pattern
)
3283 insn
= rtx_alloc (JUMP_INSN
);
3284 INSN_UID (insn
) = cur_insn_uid
++;
3286 PATTERN (insn
) = pattern
;
3287 INSN_CODE (insn
) = -1;
3288 LOG_LINKS (insn
) = NULL
;
3289 REG_NOTES (insn
) = NULL
;
3290 JUMP_LABEL (insn
) = NULL
;
3291 INSN_LOCATOR (insn
) = 0;
3292 BLOCK_FOR_INSN (insn
) = NULL
;
3297 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3300 make_call_insn_raw (rtx pattern
)
3304 insn
= rtx_alloc (CALL_INSN
);
3305 INSN_UID (insn
) = cur_insn_uid
++;
3307 PATTERN (insn
) = pattern
;
3308 INSN_CODE (insn
) = -1;
3309 LOG_LINKS (insn
) = NULL
;
3310 REG_NOTES (insn
) = NULL
;
3311 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3312 INSN_LOCATOR (insn
) = 0;
3313 BLOCK_FOR_INSN (insn
) = NULL
;
3318 /* Add INSN to the end of the doubly-linked list.
3319 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3324 PREV_INSN (insn
) = last_insn
;
3325 NEXT_INSN (insn
) = 0;
3327 if (NULL
!= last_insn
)
3328 NEXT_INSN (last_insn
) = insn
;
3330 if (NULL
== first_insn
)
3336 /* Add INSN into the doubly-linked list after insn AFTER. This and
3337 the next should be the only functions called to insert an insn once
3338 delay slots have been filled since only they know how to update a
3342 add_insn_after (rtx insn
, rtx after
)
3344 rtx next
= NEXT_INSN (after
);
3347 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3349 NEXT_INSN (insn
) = next
;
3350 PREV_INSN (insn
) = after
;
3354 PREV_INSN (next
) = insn
;
3355 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3356 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3358 else if (last_insn
== after
)
3362 struct sequence_stack
*stack
= seq_stack
;
3363 /* Scan all pending sequences too. */
3364 for (; stack
; stack
= stack
->next
)
3365 if (after
== stack
->last
)
3374 if (!BARRIER_P (after
)
3375 && !BARRIER_P (insn
)
3376 && (bb
= BLOCK_FOR_INSN (after
)))
3378 set_block_for_insn (insn
, bb
);
3380 bb
->flags
|= BB_DIRTY
;
3381 /* Should not happen as first in the BB is always
3382 either NOTE or LABEL. */
3383 if (BB_END (bb
) == after
3384 /* Avoid clobbering of structure when creating new BB. */
3385 && !BARRIER_P (insn
)
3387 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BASIC_BLOCK
))
3391 NEXT_INSN (after
) = insn
;
3392 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3394 rtx sequence
= PATTERN (after
);
3395 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3399 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3400 the previous should be the only functions called to insert an insn once
3401 delay slots have been filled since only they know how to update a
3405 add_insn_before (rtx insn
, rtx before
)
3407 rtx prev
= PREV_INSN (before
);
3410 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3412 PREV_INSN (insn
) = prev
;
3413 NEXT_INSN (insn
) = before
;
3417 NEXT_INSN (prev
) = insn
;
3418 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3420 rtx sequence
= PATTERN (prev
);
3421 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3424 else if (first_insn
== before
)
3428 struct sequence_stack
*stack
= seq_stack
;
3429 /* Scan all pending sequences too. */
3430 for (; stack
; stack
= stack
->next
)
3431 if (before
== stack
->first
)
3433 stack
->first
= insn
;
3440 if (!BARRIER_P (before
)
3441 && !BARRIER_P (insn
)
3442 && (bb
= BLOCK_FOR_INSN (before
)))
3444 set_block_for_insn (insn
, bb
);
3446 bb
->flags
|= BB_DIRTY
;
3447 /* Should not happen as first in the BB is always either NOTE or
3449 gcc_assert (BB_HEAD (bb
) != insn
3450 /* Avoid clobbering of structure when creating new BB. */
3453 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BASIC_BLOCK
));
3456 PREV_INSN (before
) = insn
;
3457 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3458 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3461 /* Remove an insn from its doubly-linked list. This function knows how
3462 to handle sequences. */
3464 remove_insn (rtx insn
)
3466 rtx next
= NEXT_INSN (insn
);
3467 rtx prev
= PREV_INSN (insn
);
3472 NEXT_INSN (prev
) = next
;
3473 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3475 rtx sequence
= PATTERN (prev
);
3476 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3479 else if (first_insn
== insn
)
3483 struct sequence_stack
*stack
= seq_stack
;
3484 /* Scan all pending sequences too. */
3485 for (; stack
; stack
= stack
->next
)
3486 if (insn
== stack
->first
)
3488 stack
->first
= next
;
3497 PREV_INSN (next
) = prev
;
3498 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3499 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3501 else if (last_insn
== insn
)
3505 struct sequence_stack
*stack
= seq_stack
;
3506 /* Scan all pending sequences too. */
3507 for (; stack
; stack
= stack
->next
)
3508 if (insn
== stack
->last
)
3516 if (!BARRIER_P (insn
)
3517 && (bb
= BLOCK_FOR_INSN (insn
)))
3520 bb
->flags
|= BB_DIRTY
;
3521 if (BB_HEAD (bb
) == insn
)
3523 /* Never ever delete the basic block note without deleting whole
3525 gcc_assert (!NOTE_P (insn
));
3526 BB_HEAD (bb
) = next
;
3528 if (BB_END (bb
) == insn
)
3533 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3536 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3538 gcc_assert (call_insn
&& CALL_P (call_insn
));
3540 /* Put the register usage information on the CALL. If there is already
3541 some usage information, put ours at the end. */
3542 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
3546 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
3547 link
= XEXP (link
, 1))
3550 XEXP (link
, 1) = call_fusage
;
3553 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
3556 /* Delete all insns made since FROM.
3557 FROM becomes the new last instruction. */
3560 delete_insns_since (rtx from
)
3565 NEXT_INSN (from
) = 0;
3569 /* This function is deprecated, please use sequences instead.
3571 Move a consecutive bunch of insns to a different place in the chain.
3572 The insns to be moved are those between FROM and TO.
3573 They are moved to a new position after the insn AFTER.
3574 AFTER must not be FROM or TO or any insn in between.
3576 This function does not know about SEQUENCEs and hence should not be
3577 called after delay-slot filling has been done. */
3580 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
3582 /* Splice this bunch out of where it is now. */
3583 if (PREV_INSN (from
))
3584 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3586 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3587 if (last_insn
== to
)
3588 last_insn
= PREV_INSN (from
);
3589 if (first_insn
== from
)
3590 first_insn
= NEXT_INSN (to
);
3592 /* Make the new neighbors point to it and it to them. */
3593 if (NEXT_INSN (after
))
3594 PREV_INSN (NEXT_INSN (after
)) = to
;
3596 NEXT_INSN (to
) = NEXT_INSN (after
);
3597 PREV_INSN (from
) = after
;
3598 NEXT_INSN (after
) = from
;
3599 if (after
== last_insn
)
3603 /* Same as function above, but take care to update BB boundaries. */
3605 reorder_insns (rtx from
, rtx to
, rtx after
)
3607 rtx prev
= PREV_INSN (from
);
3608 basic_block bb
, bb2
;
3610 reorder_insns_nobb (from
, to
, after
);
3612 if (!BARRIER_P (after
)
3613 && (bb
= BLOCK_FOR_INSN (after
)))
3616 bb
->flags
|= BB_DIRTY
;
3618 if (!BARRIER_P (from
)
3619 && (bb2
= BLOCK_FOR_INSN (from
)))
3621 if (BB_END (bb2
) == to
)
3622 BB_END (bb2
) = prev
;
3623 bb2
->flags
|= BB_DIRTY
;
3626 if (BB_END (bb
) == after
)
3629 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
3631 set_block_for_insn (x
, bb
);
3635 /* Return the line note insn preceding INSN. */
3638 find_line_note (rtx insn
)
3640 if (no_line_numbers
)
3643 for (; insn
; insn
= PREV_INSN (insn
))
3645 && NOTE_LINE_NUMBER (insn
) >= 0)
3651 /* Remove unnecessary notes from the instruction stream. */
3654 remove_unnecessary_notes (void)
3656 rtx eh_stack
= NULL_RTX
;
3661 /* We must not remove the first instruction in the function because
3662 the compiler depends on the first instruction being a note. */
3663 for (insn
= NEXT_INSN (get_insns ()); insn
; insn
= next
)
3665 /* Remember what's next. */
3666 next
= NEXT_INSN (insn
);
3668 /* We're only interested in notes. */
3672 switch (NOTE_LINE_NUMBER (insn
))
3674 case NOTE_INSN_DELETED
:
3678 case NOTE_INSN_EH_REGION_BEG
:
3679 eh_stack
= alloc_INSN_LIST (insn
, eh_stack
);
3682 case NOTE_INSN_EH_REGION_END
:
3683 /* Too many end notes. */
3684 gcc_assert (eh_stack
);
3685 /* Mismatched nesting. */
3686 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack
, 0))
3687 == NOTE_EH_HANDLER (insn
));
3689 eh_stack
= XEXP (eh_stack
, 1);
3690 free_INSN_LIST_node (tmp
);
3693 case NOTE_INSN_BLOCK_BEG
:
3694 case NOTE_INSN_BLOCK_END
:
3695 /* BLOCK_END and BLOCK_BEG notes only exist in the `final' pass. */
3703 /* Too many EH_REGION_BEG notes. */
3704 gcc_assert (!eh_stack
);
3708 /* Emit insn(s) of given code and pattern
3709 at a specified place within the doubly-linked list.
3711 All of the emit_foo global entry points accept an object
3712 X which is either an insn list or a PATTERN of a single
3715 There are thus a few canonical ways to generate code and
3716 emit it at a specific place in the instruction stream. For
3717 example, consider the instruction named SPOT and the fact that
3718 we would like to emit some instructions before SPOT. We might
3722 ... emit the new instructions ...
3723 insns_head = get_insns ();
3726 emit_insn_before (insns_head, SPOT);
3728 It used to be common to generate SEQUENCE rtl instead, but that
3729 is a relic of the past which no longer occurs. The reason is that
3730 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3731 generated would almost certainly die right after it was created. */
3733 /* Make X be output before the instruction BEFORE. */
3736 emit_insn_before_noloc (rtx x
, rtx before
)
3741 gcc_assert (before
);
3746 switch (GET_CODE (x
))
3757 rtx next
= NEXT_INSN (insn
);
3758 add_insn_before (insn
, before
);
3764 #ifdef ENABLE_RTL_CHECKING
3771 last
= make_insn_raw (x
);
3772 add_insn_before (last
, before
);
3779 /* Make an instruction with body X and code JUMP_INSN
3780 and output it before the instruction BEFORE. */
3783 emit_jump_insn_before_noloc (rtx x
, rtx before
)
3785 rtx insn
, last
= NULL_RTX
;
3787 gcc_assert (before
);
3789 switch (GET_CODE (x
))
3800 rtx next
= NEXT_INSN (insn
);
3801 add_insn_before (insn
, before
);
3807 #ifdef ENABLE_RTL_CHECKING
3814 last
= make_jump_insn_raw (x
);
3815 add_insn_before (last
, before
);
3822 /* Make an instruction with body X and code CALL_INSN
3823 and output it before the instruction BEFORE. */
3826 emit_call_insn_before_noloc (rtx x
, rtx before
)
3828 rtx last
= NULL_RTX
, insn
;
3830 gcc_assert (before
);
3832 switch (GET_CODE (x
))
3843 rtx next
= NEXT_INSN (insn
);
3844 add_insn_before (insn
, before
);
3850 #ifdef ENABLE_RTL_CHECKING
3857 last
= make_call_insn_raw (x
);
3858 add_insn_before (last
, before
);
3865 /* Make an insn of code BARRIER
3866 and output it before the insn BEFORE. */
3869 emit_barrier_before (rtx before
)
3871 rtx insn
= rtx_alloc (BARRIER
);
3873 INSN_UID (insn
) = cur_insn_uid
++;
3875 add_insn_before (insn
, before
);
3879 /* Emit the label LABEL before the insn BEFORE. */
3882 emit_label_before (rtx label
, rtx before
)
3884 /* This can be called twice for the same label as a result of the
3885 confusion that follows a syntax error! So make it harmless. */
3886 if (INSN_UID (label
) == 0)
3888 INSN_UID (label
) = cur_insn_uid
++;
3889 add_insn_before (label
, before
);
3895 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3898 emit_note_before (int subtype
, rtx before
)
3900 rtx note
= rtx_alloc (NOTE
);
3901 INSN_UID (note
) = cur_insn_uid
++;
3902 #ifndef USE_MAPPED_LOCATION
3903 NOTE_SOURCE_FILE (note
) = 0;
3905 NOTE_LINE_NUMBER (note
) = subtype
;
3906 BLOCK_FOR_INSN (note
) = NULL
;
3908 add_insn_before (note
, before
);
3912 /* Helper for emit_insn_after, handles lists of instructions
3915 static rtx
emit_insn_after_1 (rtx
, rtx
);
3918 emit_insn_after_1 (rtx first
, rtx after
)
3924 if (!BARRIER_P (after
)
3925 && (bb
= BLOCK_FOR_INSN (after
)))
3927 bb
->flags
|= BB_DIRTY
;
3928 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3929 if (!BARRIER_P (last
))
3930 set_block_for_insn (last
, bb
);
3931 if (!BARRIER_P (last
))
3932 set_block_for_insn (last
, bb
);
3933 if (BB_END (bb
) == after
)
3937 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3940 after_after
= NEXT_INSN (after
);
3942 NEXT_INSN (after
) = first
;
3943 PREV_INSN (first
) = after
;
3944 NEXT_INSN (last
) = after_after
;
3946 PREV_INSN (after_after
) = last
;
3948 if (after
== last_insn
)
3953 /* Make X be output after the insn AFTER. */
3956 emit_insn_after_noloc (rtx x
, rtx after
)
3965 switch (GET_CODE (x
))
3973 last
= emit_insn_after_1 (x
, after
);
3976 #ifdef ENABLE_RTL_CHECKING
3983 last
= make_insn_raw (x
);
3984 add_insn_after (last
, after
);
3991 /* Similar to emit_insn_after, except that line notes are to be inserted so
3992 as to act as if this insn were at FROM. */
3995 emit_insn_after_with_line_notes (rtx x
, rtx after
, rtx from
)
3997 rtx from_line
= find_line_note (from
);
3998 rtx after_line
= find_line_note (after
);
3999 rtx insn
= emit_insn_after (x
, after
);
4002 emit_note_copy_after (from_line
, after
);
4005 emit_note_copy_after (after_line
, insn
);
4008 /* Make an insn of code JUMP_INSN with body X
4009 and output it after the insn AFTER. */
4012 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4018 switch (GET_CODE (x
))
4026 last
= emit_insn_after_1 (x
, after
);
4029 #ifdef ENABLE_RTL_CHECKING
4036 last
= make_jump_insn_raw (x
);
4037 add_insn_after (last
, after
);
4044 /* Make an instruction with body X and code CALL_INSN
4045 and output it after the instruction AFTER. */
4048 emit_call_insn_after_noloc (rtx x
, rtx after
)
4054 switch (GET_CODE (x
))
4062 last
= emit_insn_after_1 (x
, after
);
4065 #ifdef ENABLE_RTL_CHECKING
4072 last
= make_call_insn_raw (x
);
4073 add_insn_after (last
, after
);
4080 /* Make an insn of code BARRIER
4081 and output it after the insn AFTER. */
4084 emit_barrier_after (rtx after
)
4086 rtx insn
= rtx_alloc (BARRIER
);
4088 INSN_UID (insn
) = cur_insn_uid
++;
4090 add_insn_after (insn
, after
);
4094 /* Emit the label LABEL after the insn AFTER. */
4097 emit_label_after (rtx label
, rtx after
)
4099 /* This can be called twice for the same label
4100 as a result of the confusion that follows a syntax error!
4101 So make it harmless. */
4102 if (INSN_UID (label
) == 0)
4104 INSN_UID (label
) = cur_insn_uid
++;
4105 add_insn_after (label
, after
);
4111 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4114 emit_note_after (int subtype
, rtx after
)
4116 rtx note
= rtx_alloc (NOTE
);
4117 INSN_UID (note
) = cur_insn_uid
++;
4118 #ifndef USE_MAPPED_LOCATION
4119 NOTE_SOURCE_FILE (note
) = 0;
4121 NOTE_LINE_NUMBER (note
) = subtype
;
4122 BLOCK_FOR_INSN (note
) = NULL
;
4123 add_insn_after (note
, after
);
4127 /* Emit a copy of note ORIG after the insn AFTER. */
4130 emit_note_copy_after (rtx orig
, rtx after
)
4134 if (NOTE_LINE_NUMBER (orig
) >= 0 && no_line_numbers
)
4140 note
= rtx_alloc (NOTE
);
4141 INSN_UID (note
) = cur_insn_uid
++;
4142 NOTE_LINE_NUMBER (note
) = NOTE_LINE_NUMBER (orig
);
4143 NOTE_DATA (note
) = NOTE_DATA (orig
);
4144 BLOCK_FOR_INSN (note
) = NULL
;
4145 add_insn_after (note
, after
);
4149 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4151 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4153 rtx last
= emit_insn_after_noloc (pattern
, after
);
4155 if (pattern
== NULL_RTX
|| !loc
)
4158 after
= NEXT_INSN (after
);
4161 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4162 INSN_LOCATOR (after
) = loc
;
4165 after
= NEXT_INSN (after
);
4170 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4172 emit_insn_after (rtx pattern
, rtx after
)
4175 return emit_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4177 return emit_insn_after_noloc (pattern
, after
);
4180 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4182 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4184 rtx last
= emit_jump_insn_after_noloc (pattern
, after
);
4186 if (pattern
== NULL_RTX
|| !loc
)
4189 after
= NEXT_INSN (after
);
4192 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4193 INSN_LOCATOR (after
) = loc
;
4196 after
= NEXT_INSN (after
);
4201 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4203 emit_jump_insn_after (rtx pattern
, rtx after
)
4206 return emit_jump_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4208 return emit_jump_insn_after_noloc (pattern
, after
);
4211 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4213 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4215 rtx last
= emit_call_insn_after_noloc (pattern
, after
);
4217 if (pattern
== NULL_RTX
|| !loc
)
4220 after
= NEXT_INSN (after
);
4223 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4224 INSN_LOCATOR (after
) = loc
;
4227 after
= NEXT_INSN (after
);
4232 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4234 emit_call_insn_after (rtx pattern
, rtx after
)
4237 return emit_call_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4239 return emit_call_insn_after_noloc (pattern
, after
);
4242 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4244 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4246 rtx first
= PREV_INSN (before
);
4247 rtx last
= emit_insn_before_noloc (pattern
, before
);
4249 if (pattern
== NULL_RTX
|| !loc
)
4252 first
= NEXT_INSN (first
);
4255 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4256 INSN_LOCATOR (first
) = loc
;
4259 first
= NEXT_INSN (first
);
4264 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4266 emit_insn_before (rtx pattern
, rtx before
)
4268 if (INSN_P (before
))
4269 return emit_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4271 return emit_insn_before_noloc (pattern
, before
);
4274 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4276 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4278 rtx first
= PREV_INSN (before
);
4279 rtx last
= emit_jump_insn_before_noloc (pattern
, before
);
4281 if (pattern
== NULL_RTX
)
4284 first
= NEXT_INSN (first
);
4287 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4288 INSN_LOCATOR (first
) = loc
;
4291 first
= NEXT_INSN (first
);
4296 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4298 emit_jump_insn_before (rtx pattern
, rtx before
)
4300 if (INSN_P (before
))
4301 return emit_jump_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4303 return emit_jump_insn_before_noloc (pattern
, before
);
4306 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4308 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4310 rtx first
= PREV_INSN (before
);
4311 rtx last
= emit_call_insn_before_noloc (pattern
, before
);
4313 if (pattern
== NULL_RTX
)
4316 first
= NEXT_INSN (first
);
4319 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4320 INSN_LOCATOR (first
) = loc
;
4323 first
= NEXT_INSN (first
);
4328 /* like emit_call_insn_before_noloc,
4329 but set insn_locator according to before. */
4331 emit_call_insn_before (rtx pattern
, rtx before
)
4333 if (INSN_P (before
))
4334 return emit_call_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4336 return emit_call_insn_before_noloc (pattern
, before
);
4339 /* Take X and emit it at the end of the doubly-linked
4342 Returns the last insn emitted. */
4347 rtx last
= last_insn
;
4353 switch (GET_CODE (x
))
4364 rtx next
= NEXT_INSN (insn
);
4371 #ifdef ENABLE_RTL_CHECKING
4378 last
= make_insn_raw (x
);
4386 /* Make an insn of code JUMP_INSN with pattern X
4387 and add it to the end of the doubly-linked list. */
4390 emit_jump_insn (rtx x
)
4392 rtx last
= NULL_RTX
, insn
;
4394 switch (GET_CODE (x
))
4405 rtx next
= NEXT_INSN (insn
);
4412 #ifdef ENABLE_RTL_CHECKING
4419 last
= make_jump_insn_raw (x
);
4427 /* Make an insn of code CALL_INSN with pattern X
4428 and add it to the end of the doubly-linked list. */
4431 emit_call_insn (rtx x
)
4435 switch (GET_CODE (x
))
4443 insn
= emit_insn (x
);
4446 #ifdef ENABLE_RTL_CHECKING
4453 insn
= make_call_insn_raw (x
);
4461 /* Add the label LABEL to the end of the doubly-linked list. */
4464 emit_label (rtx label
)
4466 /* This can be called twice for the same label
4467 as a result of the confusion that follows a syntax error!
4468 So make it harmless. */
4469 if (INSN_UID (label
) == 0)
4471 INSN_UID (label
) = cur_insn_uid
++;
4477 /* Make an insn of code BARRIER
4478 and add it to the end of the doubly-linked list. */
4483 rtx barrier
= rtx_alloc (BARRIER
);
4484 INSN_UID (barrier
) = cur_insn_uid
++;
4489 /* Make line numbering NOTE insn for LOCATION add it to the end
4490 of the doubly-linked list, but only if line-numbers are desired for
4491 debugging info and it doesn't match the previous one. */
4494 emit_line_note (location_t location
)
4498 #ifdef USE_MAPPED_LOCATION
4499 if (location
== last_location
)
4502 if (location
.file
&& last_location
.file
4503 && !strcmp (location
.file
, last_location
.file
)
4504 && location
.line
== last_location
.line
)
4507 last_location
= location
;
4509 if (no_line_numbers
)
4515 #ifdef USE_MAPPED_LOCATION
4516 note
= emit_note ((int) location
);
4518 note
= emit_note (location
.line
);
4519 NOTE_SOURCE_FILE (note
) = location
.file
;
4525 /* Emit a copy of note ORIG. */
4528 emit_note_copy (rtx orig
)
4532 if (NOTE_LINE_NUMBER (orig
) >= 0 && no_line_numbers
)
4538 note
= rtx_alloc (NOTE
);
4540 INSN_UID (note
) = cur_insn_uid
++;
4541 NOTE_DATA (note
) = NOTE_DATA (orig
);
4542 NOTE_LINE_NUMBER (note
) = NOTE_LINE_NUMBER (orig
);
4543 BLOCK_FOR_INSN (note
) = NULL
;
4549 /* Make an insn of code NOTE or type NOTE_NO
4550 and add it to the end of the doubly-linked list. */
4553 emit_note (int note_no
)
4557 note
= rtx_alloc (NOTE
);
4558 INSN_UID (note
) = cur_insn_uid
++;
4559 NOTE_LINE_NUMBER (note
) = note_no
;
4560 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4561 BLOCK_FOR_INSN (note
) = NULL
;
4566 /* Cause next statement to emit a line note even if the line number
4570 force_next_line_note (void)
4572 #ifdef USE_MAPPED_LOCATION
4575 last_location
.line
= -1;
4579 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4580 note of this type already exists, remove it first. */
4583 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4585 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4591 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4592 has multiple sets (some callers assume single_set
4593 means the insn only has one set, when in fact it
4594 means the insn only has one * useful * set). */
4595 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4601 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4602 It serves no useful purpose and breaks eliminate_regs. */
4603 if (GET_CODE (datum
) == ASM_OPERANDS
)
4613 XEXP (note
, 0) = datum
;
4617 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (kind
, datum
, REG_NOTES (insn
));
4618 return REG_NOTES (insn
);
4621 /* Return an indication of which type of insn should have X as a body.
4622 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4624 static enum rtx_code
4625 classify_insn (rtx x
)
4629 if (GET_CODE (x
) == CALL
)
4631 if (GET_CODE (x
) == RETURN
)
4633 if (GET_CODE (x
) == SET
)
4635 if (SET_DEST (x
) == pc_rtx
)
4637 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4642 if (GET_CODE (x
) == PARALLEL
)
4645 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
4646 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
4648 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4649 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
4651 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4652 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
4658 /* Emit the rtl pattern X as an appropriate kind of insn.
4659 If X is a label, it is simply added into the insn chain. */
4664 enum rtx_code code
= classify_insn (x
);
4669 return emit_label (x
);
4671 return emit_insn (x
);
4674 rtx insn
= emit_jump_insn (x
);
4675 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
4676 return emit_barrier ();
4680 return emit_call_insn (x
);
4686 /* Space for free sequence stack entries. */
4687 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
4689 /* Begin emitting insns to a sequence. If this sequence will contain
4690 something that might cause the compiler to pop arguments to function
4691 calls (because those pops have previously been deferred; see
4692 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4693 before calling this function. That will ensure that the deferred
4694 pops are not accidentally emitted in the middle of this sequence. */
4697 start_sequence (void)
4699 struct sequence_stack
*tem
;
4701 if (free_sequence_stack
!= NULL
)
4703 tem
= free_sequence_stack
;
4704 free_sequence_stack
= tem
->next
;
4707 tem
= ggc_alloc (sizeof (struct sequence_stack
));
4709 tem
->next
= seq_stack
;
4710 tem
->first
= first_insn
;
4711 tem
->last
= last_insn
;
4719 /* Set up the insn chain starting with FIRST as the current sequence,
4720 saving the previously current one. See the documentation for
4721 start_sequence for more information about how to use this function. */
4724 push_to_sequence (rtx first
)
4730 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
4736 /* Set up the outer-level insn chain
4737 as the current sequence, saving the previously current one. */
4740 push_topmost_sequence (void)
4742 struct sequence_stack
*stack
, *top
= NULL
;
4746 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4749 first_insn
= top
->first
;
4750 last_insn
= top
->last
;
4753 /* After emitting to the outer-level insn chain, update the outer-level
4754 insn chain, and restore the previous saved state. */
4757 pop_topmost_sequence (void)
4759 struct sequence_stack
*stack
, *top
= NULL
;
4761 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4764 top
->first
= first_insn
;
4765 top
->last
= last_insn
;
4770 /* After emitting to a sequence, restore previous saved state.
4772 To get the contents of the sequence just made, you must call
4773 `get_insns' *before* calling here.
4775 If the compiler might have deferred popping arguments while
4776 generating this sequence, and this sequence will not be immediately
4777 inserted into the instruction stream, use do_pending_stack_adjust
4778 before calling get_insns. That will ensure that the deferred
4779 pops are inserted into this sequence, and not into some random
4780 location in the instruction stream. See INHIBIT_DEFER_POP for more
4781 information about deferred popping of arguments. */
4786 struct sequence_stack
*tem
= seq_stack
;
4788 first_insn
= tem
->first
;
4789 last_insn
= tem
->last
;
4790 seq_stack
= tem
->next
;
4792 memset (tem
, 0, sizeof (*tem
));
4793 tem
->next
= free_sequence_stack
;
4794 free_sequence_stack
= tem
;
4797 /* Return 1 if currently emitting into a sequence. */
4800 in_sequence_p (void)
4802 return seq_stack
!= 0;
4805 /* Put the various virtual registers into REGNO_REG_RTX. */
4808 init_virtual_regs (struct emit_status
*es
)
4810 rtx
*ptr
= es
->x_regno_reg_rtx
;
4811 ptr
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
4812 ptr
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
4813 ptr
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
4814 ptr
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
4815 ptr
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
4819 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4820 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
4821 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
4822 static int copy_insn_n_scratches
;
4824 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4825 copied an ASM_OPERANDS.
4826 In that case, it is the original input-operand vector. */
4827 static rtvec orig_asm_operands_vector
;
4829 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4830 copied an ASM_OPERANDS.
4831 In that case, it is the copied input-operand vector. */
4832 static rtvec copy_asm_operands_vector
;
4834 /* Likewise for the constraints vector. */
4835 static rtvec orig_asm_constraints_vector
;
4836 static rtvec copy_asm_constraints_vector
;
4838 /* Recursively create a new copy of an rtx for copy_insn.
4839 This function differs from copy_rtx in that it handles SCRATCHes and
4840 ASM_OPERANDs properly.
4841 Normally, this function is not used directly; use copy_insn as front end.
4842 However, you could first copy an insn pattern with copy_insn and then use
4843 this function afterwards to properly copy any REG_NOTEs containing
4847 copy_insn_1 (rtx orig
)
4852 const char *format_ptr
;
4854 code
= GET_CODE (orig
);
4868 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
4873 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
4874 if (copy_insn_scratch_in
[i
] == orig
)
4875 return copy_insn_scratch_out
[i
];
4879 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4880 a LABEL_REF, it isn't sharable. */
4881 if (GET_CODE (XEXP (orig
, 0)) == PLUS
4882 && GET_CODE (XEXP (XEXP (orig
, 0), 0)) == SYMBOL_REF
4883 && GET_CODE (XEXP (XEXP (orig
, 0), 1)) == CONST_INT
)
4887 /* A MEM with a constant address is not sharable. The problem is that
4888 the constant address may need to be reloaded. If the mem is shared,
4889 then reloading one copy of this mem will cause all copies to appear
4890 to have been reloaded. */
4896 copy
= rtx_alloc (code
);
4898 /* Copy the various flags, and other information. We assume that
4899 all fields need copying, and then clear the fields that should
4900 not be copied. That is the sensible default behavior, and forces
4901 us to explicitly document why we are *not* copying a flag. */
4902 memcpy (copy
, orig
, RTX_HDR_SIZE
);
4904 /* We do not copy the USED flag, which is used as a mark bit during
4905 walks over the RTL. */
4906 RTX_FLAG (copy
, used
) = 0;
4908 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4911 RTX_FLAG (copy
, jump
) = 0;
4912 RTX_FLAG (copy
, call
) = 0;
4913 RTX_FLAG (copy
, frame_related
) = 0;
4916 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
4918 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
4920 copy
->u
.fld
[i
] = orig
->u
.fld
[i
];
4921 switch (*format_ptr
++)
4924 if (XEXP (orig
, i
) != NULL
)
4925 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
4930 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
4931 XVEC (copy
, i
) = copy_asm_constraints_vector
;
4932 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
4933 XVEC (copy
, i
) = copy_asm_operands_vector
;
4934 else if (XVEC (orig
, i
) != NULL
)
4936 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
4937 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
4938 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
4949 /* These are left unchanged. */
4957 if (code
== SCRATCH
)
4959 i
= copy_insn_n_scratches
++;
4960 gcc_assert (i
< MAX_RECOG_OPERANDS
);
4961 copy_insn_scratch_in
[i
] = orig
;
4962 copy_insn_scratch_out
[i
] = copy
;
4964 else if (code
== ASM_OPERANDS
)
4966 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
4967 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
4968 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
4969 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
4975 /* Create a new copy of an rtx.
4976 This function differs from copy_rtx in that it handles SCRATCHes and
4977 ASM_OPERANDs properly.
4978 INSN doesn't really have to be a full INSN; it could be just the
4981 copy_insn (rtx insn
)
4983 copy_insn_n_scratches
= 0;
4984 orig_asm_operands_vector
= 0;
4985 orig_asm_constraints_vector
= 0;
4986 copy_asm_operands_vector
= 0;
4987 copy_asm_constraints_vector
= 0;
4988 return copy_insn_1 (insn
);
4991 /* Initialize data structures and variables in this file
4992 before generating rtl for each function. */
4997 struct function
*f
= cfun
;
4999 f
->emit
= ggc_alloc (sizeof (struct emit_status
));
5003 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5004 last_location
= UNKNOWN_LOCATION
;
5005 first_label_num
= label_num
;
5008 /* Init the tables that describe all the pseudo regs. */
5010 f
->emit
->regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5012 f
->emit
->regno_pointer_align
5013 = ggc_alloc_cleared (f
->emit
->regno_pointer_align_length
5014 * sizeof (unsigned char));
5017 = ggc_alloc (f
->emit
->regno_pointer_align_length
* sizeof (rtx
));
5019 /* Put copies of all the hard registers into regno_reg_rtx. */
5020 memcpy (regno_reg_rtx
,
5021 static_regno_reg_rtx
,
5022 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5024 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5025 init_virtual_regs (f
->emit
);
5027 /* Indicate that the virtual registers and stack locations are
5029 REG_POINTER (stack_pointer_rtx
) = 1;
5030 REG_POINTER (frame_pointer_rtx
) = 1;
5031 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5032 REG_POINTER (arg_pointer_rtx
) = 1;
5034 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5035 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5036 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5037 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5038 REG_POINTER (virtual_cfa_rtx
) = 1;
5040 #ifdef STACK_BOUNDARY
5041 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5042 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5043 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5044 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5046 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5047 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5048 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5049 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5050 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5053 #ifdef INIT_EXPANDERS
5058 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5061 gen_const_vector (enum machine_mode mode
, int constant
)
5066 enum machine_mode inner
;
5068 units
= GET_MODE_NUNITS (mode
);
5069 inner
= GET_MODE_INNER (mode
);
5071 v
= rtvec_alloc (units
);
5073 /* We need to call this function after we set the scalar const_tiny_rtx
5075 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5077 for (i
= 0; i
< units
; ++i
)
5078 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5080 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5084 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5085 all elements are zero, and the one vector when all elements are one. */
5087 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5089 enum machine_mode inner
= GET_MODE_INNER (mode
);
5090 int nunits
= GET_MODE_NUNITS (mode
);
5094 /* Check to see if all of the elements have the same value. */
5095 x
= RTVEC_ELT (v
, nunits
- 1);
5096 for (i
= nunits
- 2; i
>= 0; i
--)
5097 if (RTVEC_ELT (v
, i
) != x
)
5100 /* If the values are all the same, check to see if we can use one of the
5101 standard constant vectors. */
5104 if (x
== CONST0_RTX (inner
))
5105 return CONST0_RTX (mode
);
5106 else if (x
== CONST1_RTX (inner
))
5107 return CONST1_RTX (mode
);
5110 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5113 /* Create some permanent unique rtl objects shared between all functions.
5114 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5117 init_emit_once (int line_numbers
)
5120 enum machine_mode mode
;
5121 enum machine_mode double_mode
;
5123 /* We need reg_raw_mode, so initialize the modes now. */
5124 init_reg_modes_once ();
5126 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5128 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5129 const_int_htab_eq
, NULL
);
5131 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5132 const_double_htab_eq
, NULL
);
5134 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5135 mem_attrs_htab_eq
, NULL
);
5136 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5137 reg_attrs_htab_eq
, NULL
);
5139 no_line_numbers
= ! line_numbers
;
5141 /* Compute the word and byte modes. */
5143 byte_mode
= VOIDmode
;
5144 word_mode
= VOIDmode
;
5145 double_mode
= VOIDmode
;
5147 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
5148 mode
= GET_MODE_WIDER_MODE (mode
))
5150 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5151 && byte_mode
== VOIDmode
)
5154 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5155 && word_mode
== VOIDmode
)
5159 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
5160 mode
= GET_MODE_WIDER_MODE (mode
))
5162 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5163 && double_mode
== VOIDmode
)
5167 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5169 /* Assign register numbers to the globally defined register rtx.
5170 This must be done at runtime because the register number field
5171 is in a union and some compilers can't initialize unions. */
5173 pc_rtx
= gen_rtx_PC (VOIDmode
);
5174 cc0_rtx
= gen_rtx_CC0 (VOIDmode
);
5175 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5176 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5177 if (hard_frame_pointer_rtx
== 0)
5178 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
,
5179 HARD_FRAME_POINTER_REGNUM
);
5180 if (arg_pointer_rtx
== 0)
5181 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5182 virtual_incoming_args_rtx
=
5183 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5184 virtual_stack_vars_rtx
=
5185 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5186 virtual_stack_dynamic_rtx
=
5187 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5188 virtual_outgoing_args_rtx
=
5189 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5190 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5192 /* Initialize RTL for commonly used hard registers. These are
5193 copied into regno_reg_rtx as we begin to compile each function. */
5194 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5195 static_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5197 #ifdef INIT_EXPANDERS
5198 /* This is to initialize {init|mark|free}_machine_status before the first
5199 call to push_function_context_to. This is needed by the Chill front
5200 end which calls push_function_context_to before the first call to
5201 init_function_start. */
5205 /* Create the unique rtx's for certain rtx codes and operand values. */
5207 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5208 tries to use these variables. */
5209 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5210 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5211 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5213 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5214 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5215 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5217 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5219 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5220 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5221 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5222 REAL_VALUE_FROM_INT (dconst3
, 3, 0, double_mode
);
5223 REAL_VALUE_FROM_INT (dconst10
, 10, 0, double_mode
);
5224 REAL_VALUE_FROM_INT (dconstm1
, -1, -1, double_mode
);
5225 REAL_VALUE_FROM_INT (dconstm2
, -2, -1, double_mode
);
5227 dconsthalf
= dconst1
;
5228 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5230 real_arithmetic (&dconstthird
, RDIV_EXPR
, &dconst1
, &dconst3
);
5232 /* Initialize mathematical constants for constant folding builtins.
5233 These constants need to be given to at least 160 bits precision. */
5234 real_from_string (&dconstpi
,
5235 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5236 real_from_string (&dconste
,
5237 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5239 for (i
= 0; i
< (int) ARRAY_SIZE (const_tiny_rtx
); i
++)
5241 REAL_VALUE_TYPE
*r
=
5242 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5244 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
5245 mode
= GET_MODE_WIDER_MODE (mode
))
5246 const_tiny_rtx
[i
][(int) mode
] =
5247 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5249 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5251 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
5252 mode
= GET_MODE_WIDER_MODE (mode
))
5253 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5255 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5257 mode
= GET_MODE_WIDER_MODE (mode
))
5258 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5261 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5263 mode
= GET_MODE_WIDER_MODE (mode
))
5265 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5266 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5269 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5271 mode
= GET_MODE_WIDER_MODE (mode
))
5273 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5274 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5277 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5278 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5279 const_tiny_rtx
[0][i
] = const0_rtx
;
5281 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5282 if (STORE_FLAG_VALUE
== 1)
5283 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5285 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5286 return_address_pointer_rtx
5287 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5290 #ifdef STATIC_CHAIN_REGNUM
5291 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
5293 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5294 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
5295 static_chain_incoming_rtx
5296 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
5299 static_chain_incoming_rtx
= static_chain_rtx
;
5303 static_chain_rtx
= STATIC_CHAIN
;
5305 #ifdef STATIC_CHAIN_INCOMING
5306 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
5308 static_chain_incoming_rtx
= static_chain_rtx
;
5312 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5313 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5316 /* Produce exact duplicate of insn INSN after AFTER.
5317 Care updating of libcall regions if present. */
5320 emit_copy_of_insn_after (rtx insn
, rtx after
)
5323 rtx note1
, note2
, link
;
5325 switch (GET_CODE (insn
))
5328 new = emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5332 new = emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5336 new = emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5337 if (CALL_INSN_FUNCTION_USAGE (insn
))
5338 CALL_INSN_FUNCTION_USAGE (new)
5339 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5340 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn
);
5341 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn
);
5348 /* Update LABEL_NUSES. */
5349 mark_jump_label (PATTERN (new), new, 0);
5351 INSN_LOCATOR (new) = INSN_LOCATOR (insn
);
5353 /* If the old insn is frame related, then so is the new one. This is
5354 primarily needed for IA-64 unwind info which marks epilogue insns,
5355 which may be duplicated by the basic block reordering code. */
5356 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn
);
5358 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5360 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5361 if (REG_NOTE_KIND (link
) != REG_LABEL
)
5363 if (GET_CODE (link
) == EXPR_LIST
)
5365 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link
),
5370 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link
),
5375 /* Fix the libcall sequences. */
5376 if ((note1
= find_reg_note (new, REG_RETVAL
, NULL_RTX
)) != NULL
)
5379 while ((note2
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)) == NULL
)
5381 XEXP (note1
, 0) = p
;
5382 XEXP (note2
, 0) = new;
5384 INSN_CODE (new) = INSN_CODE (insn
);
5388 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5390 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5392 if (hard_reg_clobbers
[mode
][regno
])
5393 return hard_reg_clobbers
[mode
][regno
];
5395 return (hard_reg_clobbers
[mode
][regno
] =
5396 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5399 #include "gt-emit-rtl.h"