1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
34 #include "langhooks.h"
36 /* Set to one when set_sizetype has been called. */
37 static int sizetype_set
;
39 /* List of types created before set_sizetype has been called. We do not
40 make this a GGC root since we want these nodes to be reclaimed. */
41 static tree early_type_list
;
43 /* Data type for the expressions representing sizes of data types.
44 It is the first integer type laid out. */
45 tree sizetype_tab
[(int) TYPE_KIND_LAST
];
47 /* If nonzero, this is an upper limit on alignment of structure fields.
48 The value is measured in bits. */
49 unsigned int maximum_field_alignment
;
51 /* If non-zero, the alignment of a bitstring or (power-)set value, in bits.
52 May be overridden by front-ends. */
53 unsigned int set_alignment
= 0;
55 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
56 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
57 called only by a front end. */
58 static int reference_types_internal
= 0;
60 static void finalize_record_size
PARAMS ((record_layout_info
));
61 static void finalize_type_size
PARAMS ((tree
));
62 static void place_union_field
PARAMS ((record_layout_info
, tree
));
63 extern void debug_rli
PARAMS ((record_layout_info
));
65 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
67 static GTY(()) tree pending_sizes
;
69 /* Nonzero means cannot safely call expand_expr now,
70 so put variable sizes onto `pending_sizes' instead. */
72 int immediate_size_expand
;
74 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
78 internal_reference_types ()
80 reference_types_internal
= 1;
83 /* Get a list of all the objects put on the pending sizes list. */
88 tree chain
= pending_sizes
;
91 /* Put each SAVE_EXPR into the current function. */
92 for (t
= chain
; t
; t
= TREE_CHAIN (t
))
93 SAVE_EXPR_CONTEXT (TREE_VALUE (t
)) = current_function_decl
;
99 /* Return non-zero if EXPR is present on the pending sizes list. */
102 is_pending_size (expr
)
107 for (t
= pending_sizes
; t
; t
= TREE_CHAIN (t
))
108 if (TREE_VALUE (t
) == expr
)
113 /* Add EXPR to the pending sizes list. */
116 put_pending_size (expr
)
119 /* Strip any simple arithmetic from EXPR to see if it has an underlying
121 while (TREE_CODE_CLASS (TREE_CODE (expr
)) == '1'
122 || (TREE_CODE_CLASS (TREE_CODE (expr
)) == '2'
123 && TREE_CONSTANT (TREE_OPERAND (expr
, 1))))
124 expr
= TREE_OPERAND (expr
, 0);
126 if (TREE_CODE (expr
) == SAVE_EXPR
)
127 pending_sizes
= tree_cons (NULL_TREE
, expr
, pending_sizes
);
130 /* Put a chain of objects into the pending sizes list, which must be
134 put_pending_sizes (chain
)
140 pending_sizes
= chain
;
143 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
144 to serve as the actual size-expression for a type or decl. */
150 /* If the language-processor is to take responsibility for variable-sized
151 items (e.g., languages which have elaboration procedures like Ada),
152 just return SIZE unchanged. Likewise for self-referential sizes and
154 if (TREE_CONSTANT (size
)
155 || (*lang_hooks
.decls
.global_bindings_p
) () < 0
156 || contains_placeholder_p (size
))
159 size
= save_expr (size
);
161 /* If an array with a variable number of elements is declared, and
162 the elements require destruction, we will emit a cleanup for the
163 array. That cleanup is run both on normal exit from the block
164 and in the exception-handler for the block. Normally, when code
165 is used in both ordinary code and in an exception handler it is
166 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
167 not wish to do that here; the array-size is the same in both
169 if (TREE_CODE (size
) == SAVE_EXPR
)
170 SAVE_EXPR_PERSISTENT_P (size
) = 1;
172 if ((*lang_hooks
.decls
.global_bindings_p
) ())
174 if (TREE_CONSTANT (size
))
175 error ("type size can't be explicitly evaluated");
177 error ("variable-size type declared outside of any function");
179 return size_one_node
;
182 if (immediate_size_expand
)
183 /* NULL_RTX is not defined; neither is the rtx type.
184 Also, we would like to pass const0_rtx here, but don't have it. */
185 expand_expr (size
, expand_expr (integer_zero_node
, NULL_RTX
, VOIDmode
, 0),
187 else if (cfun
!= 0 && cfun
->x_dont_save_pending_sizes_p
)
188 /* The front-end doesn't want us to keep a list of the expressions
189 that determine sizes for variable size objects. */
192 put_pending_size (size
);
197 #ifndef MAX_FIXED_MODE_SIZE
198 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
201 /* Return the machine mode to use for a nonscalar of SIZE bits.
202 The mode must be in class CLASS, and have exactly that many bits.
203 If LIMIT is nonzero, modes of wider than MAX_FIXED_MODE_SIZE will not
207 mode_for_size (size
, class, limit
)
209 enum mode_class
class;
212 enum machine_mode mode
;
214 if (limit
&& size
> MAX_FIXED_MODE_SIZE
)
217 /* Get the first mode which has this size, in the specified class. */
218 for (mode
= GET_CLASS_NARROWEST_MODE (class); mode
!= VOIDmode
;
219 mode
= GET_MODE_WIDER_MODE (mode
))
220 if (GET_MODE_BITSIZE (mode
) == size
)
226 /* Similar, except passed a tree node. */
229 mode_for_size_tree (size
, class, limit
)
231 enum mode_class
class;
234 if (TREE_CODE (size
) != INTEGER_CST
235 /* What we really want to say here is that the size can fit in a
236 host integer, but we know there's no way we'd find a mode for
237 this many bits, so there's no point in doing the precise test. */
238 || compare_tree_int (size
, 1000) > 0)
241 return mode_for_size (TREE_INT_CST_LOW (size
), class, limit
);
244 /* Similar, but never return BLKmode; return the narrowest mode that
245 contains at least the requested number of bits. */
248 smallest_mode_for_size (size
, class)
250 enum mode_class
class;
252 enum machine_mode mode
;
254 /* Get the first mode which has at least this size, in the
256 for (mode
= GET_CLASS_NARROWEST_MODE (class); mode
!= VOIDmode
;
257 mode
= GET_MODE_WIDER_MODE (mode
))
258 if (GET_MODE_BITSIZE (mode
) >= size
)
264 /* Find an integer mode of the exact same size, or BLKmode on failure. */
267 int_mode_for_mode (mode
)
268 enum machine_mode mode
;
270 switch (GET_MODE_CLASS (mode
))
273 case MODE_PARTIAL_INT
:
276 case MODE_COMPLEX_INT
:
277 case MODE_COMPLEX_FLOAT
:
279 case MODE_VECTOR_INT
:
280 case MODE_VECTOR_FLOAT
:
281 mode
= mode_for_size (GET_MODE_BITSIZE (mode
), MODE_INT
, 0);
288 /* ... fall through ... */
298 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
299 This can only be applied to objects of a sizetype. */
302 round_up (value
, divisor
)
306 tree arg
= size_int_type (divisor
, TREE_TYPE (value
));
308 return size_binop (MULT_EXPR
, size_binop (CEIL_DIV_EXPR
, value
, arg
), arg
);
311 /* Likewise, but round down. */
314 round_down (value
, divisor
)
318 tree arg
= size_int_type (divisor
, TREE_TYPE (value
));
320 return size_binop (MULT_EXPR
, size_binop (FLOOR_DIV_EXPR
, value
, arg
), arg
);
323 /* Set the size, mode and alignment of a ..._DECL node.
324 TYPE_DECL does need this for C++.
325 Note that LABEL_DECL and CONST_DECL nodes do not need this,
326 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
327 Don't call layout_decl for them.
329 KNOWN_ALIGN is the amount of alignment we can assume this
330 decl has with no special effort. It is relevant only for FIELD_DECLs
331 and depends on the previous fields.
332 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
333 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
334 the record will be aligned to suit. */
337 layout_decl (decl
, known_align
)
339 unsigned int known_align
;
341 tree type
= TREE_TYPE (decl
);
342 enum tree_code code
= TREE_CODE (decl
);
344 if (code
== CONST_DECL
)
346 else if (code
!= VAR_DECL
&& code
!= PARM_DECL
&& code
!= RESULT_DECL
347 && code
!= TYPE_DECL
&& code
!= FIELD_DECL
)
350 if (type
== error_mark_node
)
351 type
= void_type_node
;
353 /* Usually the size and mode come from the data type without change,
354 however, the front-end may set the explicit width of the field, so its
355 size may not be the same as the size of its type. This happens with
356 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
357 also happens with other fields. For example, the C++ front-end creates
358 zero-sized fields corresponding to empty base classes, and depends on
359 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
360 size in bytes from the size in bits. If we have already set the mode,
361 don't set it again since we can be called twice for FIELD_DECLs. */
363 TREE_UNSIGNED (decl
) = TREE_UNSIGNED (type
);
364 if (DECL_MODE (decl
) == VOIDmode
)
365 DECL_MODE (decl
) = TYPE_MODE (type
);
367 if (DECL_SIZE (decl
) == 0)
369 DECL_SIZE (decl
) = TYPE_SIZE (type
);
370 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (type
);
373 DECL_SIZE_UNIT (decl
)
374 = convert (sizetype
, size_binop (CEIL_DIV_EXPR
, DECL_SIZE (decl
),
377 /* Force alignment required for the data type.
378 But if the decl itself wants greater alignment, don't override that.
379 Likewise, if the decl is packed, don't override it. */
380 if (! (code
== FIELD_DECL
&& DECL_BIT_FIELD (decl
))
381 && (DECL_ALIGN (decl
) == 0
382 || (! (code
== FIELD_DECL
&& DECL_PACKED (decl
))
383 && TYPE_ALIGN (type
) > DECL_ALIGN (decl
))))
385 DECL_ALIGN (decl
) = TYPE_ALIGN (type
);
386 DECL_USER_ALIGN (decl
) = 0;
389 /* For fields, set the bit field type and update the alignment. */
390 if (code
== FIELD_DECL
)
392 DECL_BIT_FIELD_TYPE (decl
) = DECL_BIT_FIELD (decl
) ? type
: 0;
393 if (maximum_field_alignment
!= 0)
394 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), maximum_field_alignment
);
396 /* If the field is of variable size, we can't misalign it since we
397 have no way to make a temporary to align the result. But this
398 isn't an issue if the decl is not addressable. Likewise if it
399 is of unknown size. */
400 else if (DECL_PACKED (decl
)
401 && (DECL_NONADDRESSABLE_P (decl
)
402 || DECL_SIZE_UNIT (decl
) == 0
403 || TREE_CODE (DECL_SIZE_UNIT (decl
)) == INTEGER_CST
))
405 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), BITS_PER_UNIT
);
406 DECL_USER_ALIGN (decl
) = 0;
410 /* See if we can use an ordinary integer mode for a bit-field.
411 Conditions are: a fixed size that is correct for another mode
412 and occupying a complete byte or bytes on proper boundary. */
413 if (code
== FIELD_DECL
&& DECL_BIT_FIELD (decl
)
414 && TYPE_SIZE (type
) != 0
415 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
416 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
)
418 enum machine_mode xmode
419 = mode_for_size_tree (DECL_SIZE (decl
), MODE_INT
, 1);
421 if (xmode
!= BLKmode
&& known_align
>= GET_MODE_ALIGNMENT (xmode
))
423 DECL_ALIGN (decl
) = MAX (GET_MODE_ALIGNMENT (xmode
),
425 DECL_MODE (decl
) = xmode
;
426 DECL_BIT_FIELD (decl
) = 0;
430 /* Turn off DECL_BIT_FIELD if we won't need it set. */
431 if (code
== FIELD_DECL
&& DECL_BIT_FIELD (decl
)
432 && TYPE_MODE (type
) == BLKmode
&& DECL_MODE (decl
) == BLKmode
433 && known_align
>= TYPE_ALIGN (type
)
434 && DECL_ALIGN (decl
) >= TYPE_ALIGN (type
)
435 && DECL_SIZE_UNIT (decl
) != 0)
436 DECL_BIT_FIELD (decl
) = 0;
438 /* Evaluate nonconstant size only once, either now or as soon as safe. */
439 if (DECL_SIZE (decl
) != 0 && TREE_CODE (DECL_SIZE (decl
)) != INTEGER_CST
)
440 DECL_SIZE (decl
) = variable_size (DECL_SIZE (decl
));
441 if (DECL_SIZE_UNIT (decl
) != 0
442 && TREE_CODE (DECL_SIZE_UNIT (decl
)) != INTEGER_CST
)
443 DECL_SIZE_UNIT (decl
) = variable_size (DECL_SIZE_UNIT (decl
));
445 /* If requested, warn about definitions of large data objects. */
447 && (code
== VAR_DECL
|| code
== PARM_DECL
)
448 && ! DECL_EXTERNAL (decl
))
450 tree size
= DECL_SIZE_UNIT (decl
);
452 if (size
!= 0 && TREE_CODE (size
) == INTEGER_CST
453 && compare_tree_int (size
, larger_than_size
) > 0)
455 unsigned int size_as_int
= TREE_INT_CST_LOW (size
);
457 if (compare_tree_int (size
, size_as_int
) == 0)
458 warning_with_decl (decl
, "size of `%s' is %d bytes", size_as_int
);
460 warning_with_decl (decl
, "size of `%s' is larger than %d bytes",
466 /* Hook for a front-end function that can modify the record layout as needed
467 immediately before it is finalized. */
469 void (*lang_adjust_rli
) PARAMS ((record_layout_info
)) = 0;
472 set_lang_adjust_rli (f
)
473 void (*f
) PARAMS ((record_layout_info
));
478 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
479 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
480 is to be passed to all other layout functions for this record. It is the
481 responsibility of the caller to call `free' for the storage returned.
482 Note that garbage collection is not permitted until we finish laying
486 start_record_layout (t
)
489 record_layout_info rli
490 = (record_layout_info
) xmalloc (sizeof (struct record_layout_info_s
));
494 /* If the type has a minimum specified alignment (via an attribute
495 declaration, for example) use it -- otherwise, start with a
496 one-byte alignment. */
497 rli
->record_align
= MAX (BITS_PER_UNIT
, TYPE_ALIGN (t
));
498 rli
->unpacked_align
= rli
->unpadded_align
= rli
->record_align
;
499 rli
->offset_align
= MAX (rli
->record_align
, BIGGEST_ALIGNMENT
);
501 #ifdef STRUCTURE_SIZE_BOUNDARY
502 /* Packed structures don't need to have minimum size. */
503 if (! TYPE_PACKED (t
))
504 rli
->record_align
= MAX (rli
->record_align
, STRUCTURE_SIZE_BOUNDARY
);
507 rli
->offset
= size_zero_node
;
508 rli
->bitpos
= bitsize_zero_node
;
510 rli
->pending_statics
= 0;
511 rli
->packed_maybe_necessary
= 0;
516 /* These four routines perform computations that convert between
517 the offset/bitpos forms and byte and bit offsets. */
520 bit_from_pos (offset
, bitpos
)
523 return size_binop (PLUS_EXPR
, bitpos
,
524 size_binop (MULT_EXPR
, convert (bitsizetype
, offset
),
529 byte_from_pos (offset
, bitpos
)
532 return size_binop (PLUS_EXPR
, offset
,
534 size_binop (TRUNC_DIV_EXPR
, bitpos
,
535 bitsize_unit_node
)));
539 pos_from_byte (poffset
, pbitpos
, off_align
, pos
)
540 tree
*poffset
, *pbitpos
;
541 unsigned int off_align
;
545 = size_binop (MULT_EXPR
,
547 size_binop (FLOOR_DIV_EXPR
, pos
,
548 bitsize_int (off_align
550 size_int (off_align
/ BITS_PER_UNIT
));
551 *pbitpos
= size_binop (MULT_EXPR
,
552 size_binop (FLOOR_MOD_EXPR
, pos
,
553 bitsize_int (off_align
/ BITS_PER_UNIT
)),
558 pos_from_bit (poffset
, pbitpos
, off_align
, pos
)
559 tree
*poffset
, *pbitpos
;
560 unsigned int off_align
;
563 *poffset
= size_binop (MULT_EXPR
,
565 size_binop (FLOOR_DIV_EXPR
, pos
,
566 bitsize_int (off_align
))),
567 size_int (off_align
/ BITS_PER_UNIT
));
568 *pbitpos
= size_binop (FLOOR_MOD_EXPR
, pos
, bitsize_int (off_align
));
571 /* Given a pointer to bit and byte offsets and an offset alignment,
572 normalize the offsets so they are within the alignment. */
575 normalize_offset (poffset
, pbitpos
, off_align
)
576 tree
*poffset
, *pbitpos
;
577 unsigned int off_align
;
579 /* If the bit position is now larger than it should be, adjust it
581 if (compare_tree_int (*pbitpos
, off_align
) >= 0)
583 tree extra_aligns
= size_binop (FLOOR_DIV_EXPR
, *pbitpos
,
584 bitsize_int (off_align
));
587 = size_binop (PLUS_EXPR
, *poffset
,
588 size_binop (MULT_EXPR
, convert (sizetype
, extra_aligns
),
589 size_int (off_align
/ BITS_PER_UNIT
)));
592 = size_binop (FLOOR_MOD_EXPR
, *pbitpos
, bitsize_int (off_align
));
596 /* Print debugging information about the information in RLI. */
600 record_layout_info rli
;
602 print_node_brief (stderr
, "type", rli
->t
, 0);
603 print_node_brief (stderr
, "\noffset", rli
->offset
, 0);
604 print_node_brief (stderr
, " bitpos", rli
->bitpos
, 0);
606 fprintf (stderr
, "\naligns: rec = %u, unpack = %u, unpad = %u, off = %u\n",
607 rli
->record_align
, rli
->unpacked_align
, rli
->unpadded_align
,
609 if (rli
->packed_maybe_necessary
)
610 fprintf (stderr
, "packed may be necessary\n");
612 if (rli
->pending_statics
)
614 fprintf (stderr
, "pending statics:\n");
615 debug_tree (rli
->pending_statics
);
619 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
620 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
624 record_layout_info rli
;
626 normalize_offset (&rli
->offset
, &rli
->bitpos
, rli
->offset_align
);
629 /* Returns the size in bytes allocated so far. */
632 rli_size_unit_so_far (rli
)
633 record_layout_info rli
;
635 return byte_from_pos (rli
->offset
, rli
->bitpos
);
638 /* Returns the size in bits allocated so far. */
641 rli_size_so_far (rli
)
642 record_layout_info rli
;
644 return bit_from_pos (rli
->offset
, rli
->bitpos
);
647 /* Called from place_field to handle unions. */
650 place_union_field (rli
, field
)
651 record_layout_info rli
;
654 unsigned int desired_align
;
656 layout_decl (field
, 0);
658 DECL_FIELD_OFFSET (field
) = size_zero_node
;
659 DECL_FIELD_BIT_OFFSET (field
) = bitsize_zero_node
;
660 SET_DECL_OFFSET_ALIGN (field
, BIGGEST_ALIGNMENT
);
662 desired_align
= DECL_ALIGN (field
);
664 #ifdef BIGGEST_FIELD_ALIGNMENT
665 /* Some targets (i.e. i386) limit union field alignment
666 to a lower boundary than alignment of variables unless
667 it was overridden by attribute aligned. */
668 if (! DECL_USER_ALIGN (field
))
670 MIN (desired_align
, (unsigned) BIGGEST_FIELD_ALIGNMENT
);
673 #ifdef ADJUST_FIELD_ALIGN
674 if (! DECL_USER_ALIGN (field
))
675 desired_align
= ADJUST_FIELD_ALIGN (field
, desired_align
);
678 TYPE_USER_ALIGN (rli
->t
) |= DECL_USER_ALIGN (field
);
680 /* Union must be at least as aligned as any field requires. */
681 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
682 rli
->unpadded_align
= MAX (rli
->unpadded_align
, desired_align
);
684 #ifdef PCC_BITFIELD_TYPE_MATTERS
685 /* On the m88000, a bit field of declare type `int' forces the
686 entire union to have `int' alignment. */
687 if (PCC_BITFIELD_TYPE_MATTERS
&& DECL_BIT_FIELD_TYPE (field
))
689 unsigned int type_align
= TYPE_ALIGN (TREE_TYPE (field
));
691 #ifdef ADJUST_FIELD_ALIGN
692 if (! TYPE_USER_ALIGN (TREE_TYPE (field
)))
693 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
695 rli
->record_align
= MAX (rli
->record_align
, type_align
);
696 rli
->unpadded_align
= MAX (rli
->unpadded_align
, type_align
);
697 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (TREE_TYPE (field
));
701 /* We assume the union's size will be a multiple of a byte so we don't
702 bother with BITPOS. */
703 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
704 rli
->offset
= size_binop (MAX_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
705 else if (TREE_CODE (rli
->t
) == QUAL_UNION_TYPE
)
706 rli
->offset
= fold (build (COND_EXPR
, sizetype
,
707 DECL_QUALIFIER (field
),
708 DECL_SIZE_UNIT (field
), rli
->offset
));
711 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
712 is a FIELD_DECL to be added after those fields already present in
713 T. (FIELD is not actually added to the TYPE_FIELDS list here;
714 callers that desire that behavior must manually perform that step.) */
717 place_field (rli
, field
)
718 record_layout_info rli
;
721 /* The alignment required for FIELD. */
722 unsigned int desired_align
;
723 /* The alignment FIELD would have if we just dropped it into the
724 record as it presently stands. */
725 unsigned int known_align
;
726 unsigned int actual_align
;
727 unsigned int user_align
;
728 /* The type of this field. */
729 tree type
= TREE_TYPE (field
);
731 if (TREE_CODE (field
) == ERROR_MARK
|| TREE_CODE (type
) == ERROR_MARK
)
734 /* If FIELD is static, then treat it like a separate variable, not
735 really like a structure field. If it is a FUNCTION_DECL, it's a
736 method. In both cases, all we do is lay out the decl, and we do
737 it *after* the record is laid out. */
738 if (TREE_CODE (field
) == VAR_DECL
)
740 rli
->pending_statics
= tree_cons (NULL_TREE
, field
,
741 rli
->pending_statics
);
745 /* Enumerators and enum types which are local to this class need not
746 be laid out. Likewise for initialized constant fields. */
747 else if (TREE_CODE (field
) != FIELD_DECL
)
750 /* Unions are laid out very differently than records, so split
751 that code off to another function. */
752 else if (TREE_CODE (rli
->t
) != RECORD_TYPE
)
754 place_union_field (rli
, field
);
758 /* Work out the known alignment so far. Note that A & (-A) is the
759 value of the least-significant bit in A that is one. */
760 if (! integer_zerop (rli
->bitpos
))
761 known_align
= (tree_low_cst (rli
->bitpos
, 1)
762 & - tree_low_cst (rli
->bitpos
, 1));
763 else if (integer_zerop (rli
->offset
))
764 known_align
= BIGGEST_ALIGNMENT
;
765 else if (host_integerp (rli
->offset
, 1))
766 known_align
= (BITS_PER_UNIT
767 * (tree_low_cst (rli
->offset
, 1)
768 & - tree_low_cst (rli
->offset
, 1)));
770 known_align
= rli
->offset_align
;
772 /* Lay out the field so we know what alignment it needs. For a
773 packed field, use the alignment as specified, disregarding what
774 the type would want. */
775 desired_align
= DECL_ALIGN (field
);
776 user_align
= DECL_USER_ALIGN (field
);
777 layout_decl (field
, known_align
);
778 if (! DECL_PACKED (field
))
780 desired_align
= DECL_ALIGN (field
);
781 user_align
= DECL_USER_ALIGN (field
);
784 /* Some targets (i.e. i386, VMS) limit struct field alignment
785 to a lower boundary than alignment of variables unless
786 it was overridden by attribute aligned. */
787 #ifdef BIGGEST_FIELD_ALIGNMENT
790 = MIN (desired_align
, (unsigned) BIGGEST_FIELD_ALIGNMENT
);
793 #ifdef ADJUST_FIELD_ALIGN
795 desired_align
= ADJUST_FIELD_ALIGN (field
, desired_align
);
798 /* Record must have at least as much alignment as any field.
799 Otherwise, the alignment of the field within the record is
801 if ((* targetm
.ms_bitfield_layout_p
) (rli
->t
)
802 && type
!= error_mark_node
803 && DECL_BIT_FIELD_TYPE (field
)
804 && ! integer_zerop (TYPE_SIZE (type
))
805 && integer_zerop (DECL_SIZE (field
)))
808 && DECL_BIT_FIELD_TYPE (rli
->prev_field
)
809 && ! integer_zerop (DECL_SIZE (rli
->prev_field
)))
811 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
812 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
818 #ifdef PCC_BITFIELD_TYPE_MATTERS
819 if (PCC_BITFIELD_TYPE_MATTERS
&& type
!= error_mark_node
820 && ! (* targetm
.ms_bitfield_layout_p
) (rli
->t
)
821 && DECL_BIT_FIELD_TYPE (field
)
822 && ! integer_zerop (TYPE_SIZE (type
)))
824 /* For these machines, a zero-length field does not
825 affect the alignment of the structure as a whole.
826 It does, however, affect the alignment of the next field
827 within the structure. */
828 if (! integer_zerop (DECL_SIZE (field
)))
829 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
830 else if (! DECL_PACKED (field
))
831 desired_align
= TYPE_ALIGN (type
);
833 /* A named bit field of declared type `int'
834 forces the entire structure to have `int' alignment. */
835 if (DECL_NAME (field
) != 0)
837 unsigned int type_align
= TYPE_ALIGN (type
);
839 #ifdef ADJUST_FIELD_ALIGN
840 if (! TYPE_USER_ALIGN (type
))
841 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
844 if (maximum_field_alignment
!= 0)
845 type_align
= MIN (type_align
, maximum_field_alignment
);
846 else if (DECL_PACKED (field
))
847 type_align
= MIN (type_align
, BITS_PER_UNIT
);
849 rli
->record_align
= MAX (rli
->record_align
, type_align
);
850 rli
->unpadded_align
= MAX (rli
->unpadded_align
, DECL_ALIGN (field
));
852 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
853 user_align
|= TYPE_USER_ALIGN (type
);
859 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
860 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
861 rli
->unpadded_align
= MAX (rli
->unpadded_align
, DECL_ALIGN (field
));
864 if (warn_packed
&& DECL_PACKED (field
))
866 if (known_align
> TYPE_ALIGN (type
))
868 if (TYPE_ALIGN (type
) > desired_align
)
870 if (STRICT_ALIGNMENT
)
871 warning_with_decl (field
, "packed attribute causes inefficient alignment for `%s'");
873 warning_with_decl (field
, "packed attribute is unnecessary for `%s'");
877 rli
->packed_maybe_necessary
= 1;
880 /* Does this field automatically have alignment it needs by virtue
881 of the fields that precede it and the record's own alignment? */
882 if (known_align
< desired_align
)
884 /* No, we need to skip space before this field.
885 Bump the cumulative size to multiple of field alignment. */
888 warning_with_decl (field
, "padding struct to align `%s'");
890 /* If the alignment is still within offset_align, just align
892 if (desired_align
< rli
->offset_align
)
893 rli
->bitpos
= round_up (rli
->bitpos
, desired_align
);
896 /* First adjust OFFSET by the partial bits, then align. */
898 = size_binop (PLUS_EXPR
, rli
->offset
,
900 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
901 bitsize_unit_node
)));
902 rli
->bitpos
= bitsize_zero_node
;
904 rli
->offset
= round_up (rli
->offset
, desired_align
/ BITS_PER_UNIT
);
907 if (! TREE_CONSTANT (rli
->offset
))
908 rli
->offset_align
= desired_align
;
912 /* Handle compatibility with PCC. Note that if the record has any
913 variable-sized fields, we need not worry about compatibility. */
914 #ifdef PCC_BITFIELD_TYPE_MATTERS
915 if (PCC_BITFIELD_TYPE_MATTERS
916 && ! (* targetm
.ms_bitfield_layout_p
) (rli
->t
)
917 && TREE_CODE (field
) == FIELD_DECL
918 && type
!= error_mark_node
919 && DECL_BIT_FIELD (field
)
920 && ! DECL_PACKED (field
)
921 && maximum_field_alignment
== 0
922 && ! integer_zerop (DECL_SIZE (field
))
923 && host_integerp (DECL_SIZE (field
), 1)
924 && host_integerp (rli
->offset
, 1)
925 && host_integerp (TYPE_SIZE (type
), 1))
927 unsigned int type_align
= TYPE_ALIGN (type
);
928 tree dsize
= DECL_SIZE (field
);
929 HOST_WIDE_INT field_size
= tree_low_cst (dsize
, 1);
930 HOST_WIDE_INT offset
= tree_low_cst (rli
->offset
, 0);
931 HOST_WIDE_INT bit_offset
= tree_low_cst (rli
->bitpos
, 0);
933 #ifdef ADJUST_FIELD_ALIGN
934 if (! TYPE_USER_ALIGN (type
))
935 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
938 /* A bit field may not span more units of alignment of its type
939 than its type itself. Advance to next boundary if necessary. */
940 if ((((offset
* BITS_PER_UNIT
+ bit_offset
+ field_size
+
943 - (offset
* BITS_PER_UNIT
+ bit_offset
) / type_align
)
944 > tree_low_cst (TYPE_SIZE (type
), 1) / type_align
)
945 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
947 user_align
|= TYPE_USER_ALIGN (type
);
951 #ifdef BITFIELD_NBYTES_LIMITED
952 if (BITFIELD_NBYTES_LIMITED
953 && ! (* targetm
.ms_bitfield_layout_p
) (rli
->t
)
954 && TREE_CODE (field
) == FIELD_DECL
955 && type
!= error_mark_node
956 && DECL_BIT_FIELD_TYPE (field
)
957 && ! DECL_PACKED (field
)
958 && ! integer_zerop (DECL_SIZE (field
))
959 && host_integerp (DECL_SIZE (field
), 1)
960 && host_integerp (rli
->offset
, 1)
961 && host_integerp (TYPE_SIZE (type
), 1))
963 unsigned int type_align
= TYPE_ALIGN (type
);
964 tree dsize
= DECL_SIZE (field
);
965 HOST_WIDE_INT field_size
= tree_low_cst (dsize
, 1);
966 HOST_WIDE_INT offset
= tree_low_cst (rli
->offset
, 0);
967 HOST_WIDE_INT bit_offset
= tree_low_cst (rli
->bitpos
, 0);
969 #ifdef ADJUST_FIELD_ALIGN
970 if (! TYPE_USER_ALIGN (type
))
971 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
974 if (maximum_field_alignment
!= 0)
975 type_align
= MIN (type_align
, maximum_field_alignment
);
976 /* ??? This test is opposite the test in the containing if
977 statement, so this code is unreachable currently. */
978 else if (DECL_PACKED (field
))
979 type_align
= MIN (type_align
, BITS_PER_UNIT
);
981 /* A bit field may not span the unit of alignment of its type.
982 Advance to next boundary if necessary. */
983 /* ??? This code should match the code above for the
984 PCC_BITFIELD_TYPE_MATTERS case. */
985 if ((offset
* BITS_PER_UNIT
+ bit_offset
) / type_align
986 != ((offset
* BITS_PER_UNIT
+ bit_offset
+ field_size
- 1)
988 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
990 user_align
|= TYPE_USER_ALIGN (type
);
994 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details. */
995 if ((* targetm
.ms_bitfield_layout_p
) (rli
->t
)
996 && TREE_CODE (field
) == FIELD_DECL
997 && type
!= error_mark_node
998 && ! DECL_PACKED (field
)
1000 && DECL_SIZE (field
)
1001 && host_integerp (DECL_SIZE (field
), 1)
1002 && DECL_SIZE (rli
->prev_field
)
1003 && host_integerp (DECL_SIZE (rli
->prev_field
), 1)
1004 && host_integerp (rli
->offset
, 1)
1005 && host_integerp (TYPE_SIZE (type
), 1)
1006 && host_integerp (TYPE_SIZE (TREE_TYPE (rli
->prev_field
)), 1)
1007 && ((DECL_BIT_FIELD_TYPE (rli
->prev_field
)
1008 && ! integer_zerop (DECL_SIZE (rli
->prev_field
)))
1009 || (DECL_BIT_FIELD_TYPE (field
)
1010 && ! integer_zerop (DECL_SIZE (field
))))
1011 && (! simple_cst_equal (TYPE_SIZE (type
),
1012 TYPE_SIZE (TREE_TYPE (rli
->prev_field
)))
1013 /* If the previous field was a zero-sized bit-field, either
1014 it was ignored, in which case we must ensure the proper
1015 alignment of this field here, or it already forced the
1016 alignment of this field, in which case forcing the
1017 alignment again is harmless. So, do it in both cases. */
1018 || (DECL_BIT_FIELD_TYPE (rli
->prev_field
)
1019 && integer_zerop (DECL_SIZE (rli
->prev_field
)))))
1021 unsigned int type_align
= TYPE_ALIGN (type
);
1024 && DECL_BIT_FIELD_TYPE (rli
->prev_field
)
1025 /* If the previous bit-field is zero-sized, we've already
1026 accounted for its alignment needs (or ignored it, if
1027 appropriate) while placing it. */
1028 && ! integer_zerop (DECL_SIZE (rli
->prev_field
)))
1029 type_align
= MAX (type_align
,
1030 TYPE_ALIGN (TREE_TYPE (rli
->prev_field
)));
1032 if (maximum_field_alignment
!= 0)
1033 type_align
= MIN (type_align
, maximum_field_alignment
);
1035 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1038 /* Offset so far becomes the position of this field after normalizing. */
1039 normalize_rli (rli
);
1040 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1041 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1042 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1044 TYPE_USER_ALIGN (rli
->t
) |= user_align
;
1046 /* If this field ended up more aligned than we thought it would be (we
1047 approximate this by seeing if its position changed), lay out the field
1048 again; perhaps we can use an integral mode for it now. */
1049 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field
)))
1050 actual_align
= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
1051 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1));
1052 else if (integer_zerop (DECL_FIELD_OFFSET (field
)))
1053 actual_align
= BIGGEST_ALIGNMENT
;
1054 else if (host_integerp (DECL_FIELD_OFFSET (field
), 1))
1055 actual_align
= (BITS_PER_UNIT
1056 * (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
1057 & - tree_low_cst (DECL_FIELD_OFFSET (field
), 1)));
1059 actual_align
= DECL_OFFSET_ALIGN (field
);
1061 if (known_align
!= actual_align
)
1062 layout_decl (field
, actual_align
);
1064 rli
->prev_field
= field
;
1066 /* Now add size of this field to the size of the record. If the size is
1067 not constant, treat the field as being a multiple of bytes and just
1068 adjust the offset, resetting the bit position. Otherwise, apportion the
1069 size amongst the bit position and offset. First handle the case of an
1070 unspecified size, which can happen when we have an invalid nested struct
1071 definition, such as struct j { struct j { int i; } }. The error message
1072 is printed in finish_struct. */
1073 if (DECL_SIZE (field
) == 0)
1075 else if (TREE_CODE (DECL_SIZE_UNIT (field
)) != INTEGER_CST
1076 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field
)))
1079 = size_binop (PLUS_EXPR
, rli
->offset
,
1081 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1082 bitsize_unit_node
)));
1084 = size_binop (PLUS_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1085 rli
->bitpos
= bitsize_zero_node
;
1086 rli
->offset_align
= MIN (rli
->offset_align
, DECL_ALIGN (field
));
1090 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1091 normalize_rli (rli
);
1095 /* Assuming that all the fields have been laid out, this function uses
1096 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1097 inidicated by RLI. */
1100 finalize_record_size (rli
)
1101 record_layout_info rli
;
1103 tree unpadded_size
, unpadded_size_unit
;
1105 /* Now we want just byte and bit offsets, so set the offset alignment
1106 to be a byte and then normalize. */
1107 rli
->offset_align
= BITS_PER_UNIT
;
1108 normalize_rli (rli
);
1110 /* Determine the desired alignment. */
1111 #ifdef ROUND_TYPE_ALIGN
1112 TYPE_ALIGN (rli
->t
) = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
),
1115 TYPE_ALIGN (rli
->t
) = MAX (TYPE_ALIGN (rli
->t
), rli
->record_align
);
1118 /* Compute the size so far. Be sure to allow for extra bits in the
1119 size in bytes. We have guaranteed above that it will be no more
1120 than a single byte. */
1121 unpadded_size
= rli_size_so_far (rli
);
1122 unpadded_size_unit
= rli_size_unit_so_far (rli
);
1123 if (! integer_zerop (rli
->bitpos
))
1125 = size_binop (PLUS_EXPR
, unpadded_size_unit
, size_one_node
);
1127 /* Record the un-rounded size in the binfo node. But first we check
1128 the size of TYPE_BINFO to make sure that BINFO_SIZE is available. */
1129 if (TYPE_BINFO (rli
->t
) && TREE_VEC_LENGTH (TYPE_BINFO (rli
->t
)) > 6)
1131 TYPE_BINFO_SIZE (rli
->t
) = unpadded_size
;
1132 TYPE_BINFO_SIZE_UNIT (rli
->t
) = unpadded_size_unit
;
1135 /* Round the size up to be a multiple of the required alignment */
1136 #ifdef ROUND_TYPE_SIZE
1137 TYPE_SIZE (rli
->t
) = ROUND_TYPE_SIZE (rli
->t
, unpadded_size
,
1138 TYPE_ALIGN (rli
->t
));
1139 TYPE_SIZE_UNIT (rli
->t
)
1140 = ROUND_TYPE_SIZE_UNIT (rli
->t
, unpadded_size_unit
,
1141 TYPE_ALIGN (rli
->t
) / BITS_PER_UNIT
);
1143 TYPE_SIZE (rli
->t
) = round_up (unpadded_size
, TYPE_ALIGN (rli
->t
));
1144 TYPE_SIZE_UNIT (rli
->t
) = round_up (unpadded_size_unit
,
1145 TYPE_ALIGN (rli
->t
) / BITS_PER_UNIT
);
1148 if (warn_padded
&& TREE_CONSTANT (unpadded_size
)
1149 && simple_cst_equal (unpadded_size
, TYPE_SIZE (rli
->t
)) == 0)
1150 warning ("padding struct size to alignment boundary");
1152 if (warn_packed
&& TREE_CODE (rli
->t
) == RECORD_TYPE
1153 && TYPE_PACKED (rli
->t
) && ! rli
->packed_maybe_necessary
1154 && TREE_CONSTANT (unpadded_size
))
1158 #ifdef ROUND_TYPE_ALIGN
1160 = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1162 rli
->unpacked_align
= MAX (TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1165 #ifdef ROUND_TYPE_SIZE
1166 unpacked_size
= ROUND_TYPE_SIZE (rli
->t
, TYPE_SIZE (rli
->t
),
1167 rli
->unpacked_align
);
1169 unpacked_size
= round_up (TYPE_SIZE (rli
->t
), rli
->unpacked_align
);
1172 if (simple_cst_equal (unpacked_size
, TYPE_SIZE (rli
->t
)))
1174 TYPE_PACKED (rli
->t
) = 0;
1176 if (TYPE_NAME (rli
->t
))
1180 if (TREE_CODE (TYPE_NAME (rli
->t
)) == IDENTIFIER_NODE
)
1181 name
= IDENTIFIER_POINTER (TYPE_NAME (rli
->t
));
1183 name
= IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli
->t
)));
1185 if (STRICT_ALIGNMENT
)
1186 warning ("packed attribute causes inefficient alignment for `%s'", name
);
1188 warning ("packed attribute is unnecessary for `%s'", name
);
1192 if (STRICT_ALIGNMENT
)
1193 warning ("packed attribute causes inefficient alignment");
1195 warning ("packed attribute is unnecessary");
1201 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1204 compute_record_mode (type
)
1208 enum machine_mode mode
= VOIDmode
;
1210 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1211 However, if possible, we use a mode that fits in a register
1212 instead, in order to allow for better optimization down the
1214 TYPE_MODE (type
) = BLKmode
;
1216 if (! host_integerp (TYPE_SIZE (type
), 1))
1219 /* A record which has any BLKmode members must itself be
1220 BLKmode; it can't go in a register. Unless the member is
1221 BLKmode only because it isn't aligned. */
1222 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
1224 unsigned HOST_WIDE_INT bitpos
;
1226 if (TREE_CODE (field
) != FIELD_DECL
)
1229 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
1230 || (TYPE_MODE (TREE_TYPE (field
)) == BLKmode
1231 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field
)))
1232 || ! host_integerp (bit_position (field
), 1)
1233 || DECL_SIZE (field
) == 0
1234 || ! host_integerp (DECL_SIZE (field
), 1))
1237 bitpos
= int_bit_position (field
);
1239 /* Must be BLKmode if any field crosses a word boundary,
1240 since extract_bit_field can't handle that in registers. */
1241 if (bitpos
/ BITS_PER_WORD
1242 != ((tree_low_cst (DECL_SIZE (field
), 1) + bitpos
- 1)
1244 /* But there is no problem if the field is entire words. */
1245 && tree_low_cst (DECL_SIZE (field
), 1) % BITS_PER_WORD
!= 0)
1248 /* If this field is the whole struct, remember its mode so
1249 that, say, we can put a double in a class into a DF
1250 register instead of forcing it to live in the stack. */
1251 if (simple_cst_equal (TYPE_SIZE (type
), DECL_SIZE (field
)))
1252 mode
= DECL_MODE (field
);
1254 #ifdef MEMBER_TYPE_FORCES_BLK
1255 /* With some targets, eg. c4x, it is sub-optimal
1256 to access an aligned BLKmode structure as a scalar. */
1258 if (MEMBER_TYPE_FORCES_BLK (field
, mode
))
1260 #endif /* MEMBER_TYPE_FORCES_BLK */
1263 /* If we only have one real field; use its mode. This only applies to
1264 RECORD_TYPE. This does not apply to unions. */
1265 if (TREE_CODE (type
) == RECORD_TYPE
&& mode
!= VOIDmode
)
1266 TYPE_MODE (type
) = mode
;
1268 TYPE_MODE (type
) = mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1);
1270 /* If structure's known alignment is less than what the scalar
1271 mode would need, and it matters, then stick with BLKmode. */
1272 if (TYPE_MODE (type
) != BLKmode
1274 && ! (TYPE_ALIGN (type
) >= BIGGEST_ALIGNMENT
1275 || TYPE_ALIGN (type
) >= GET_MODE_ALIGNMENT (TYPE_MODE (type
))))
1277 /* If this is the only reason this type is BLKmode, then
1278 don't force containing types to be BLKmode. */
1279 TYPE_NO_FORCE_BLK (type
) = 1;
1280 TYPE_MODE (type
) = BLKmode
;
1284 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1288 finalize_type_size (type
)
1291 /* Normally, use the alignment corresponding to the mode chosen.
1292 However, where strict alignment is not required, avoid
1293 over-aligning structures, since most compilers do not do this
1296 if (TYPE_MODE (type
) != BLKmode
&& TYPE_MODE (type
) != VOIDmode
1297 && (STRICT_ALIGNMENT
1298 || (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
1299 && TREE_CODE (type
) != QUAL_UNION_TYPE
1300 && TREE_CODE (type
) != ARRAY_TYPE
)))
1302 TYPE_ALIGN (type
) = GET_MODE_ALIGNMENT (TYPE_MODE (type
));
1303 TYPE_USER_ALIGN (type
) = 0;
1306 /* Do machine-dependent extra alignment. */
1307 #ifdef ROUND_TYPE_ALIGN
1309 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (type
), BITS_PER_UNIT
);
1312 /* If we failed to find a simple way to calculate the unit size
1313 of the type, find it by division. */
1314 if (TYPE_SIZE_UNIT (type
) == 0 && TYPE_SIZE (type
) != 0)
1315 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1316 result will fit in sizetype. We will get more efficient code using
1317 sizetype, so we force a conversion. */
1318 TYPE_SIZE_UNIT (type
)
1319 = convert (sizetype
,
1320 size_binop (FLOOR_DIV_EXPR
, TYPE_SIZE (type
),
1321 bitsize_unit_node
));
1323 if (TYPE_SIZE (type
) != 0)
1325 #ifdef ROUND_TYPE_SIZE
1327 = ROUND_TYPE_SIZE (type
, TYPE_SIZE (type
), TYPE_ALIGN (type
));
1328 TYPE_SIZE_UNIT (type
)
1329 = ROUND_TYPE_SIZE_UNIT (type
, TYPE_SIZE_UNIT (type
),
1330 TYPE_ALIGN (type
) / BITS_PER_UNIT
);
1332 TYPE_SIZE (type
) = round_up (TYPE_SIZE (type
), TYPE_ALIGN (type
));
1333 TYPE_SIZE_UNIT (type
)
1334 = round_up (TYPE_SIZE_UNIT (type
), TYPE_ALIGN (type
) / BITS_PER_UNIT
);
1338 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1339 if (TYPE_SIZE (type
) != 0 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
1340 TYPE_SIZE (type
) = variable_size (TYPE_SIZE (type
));
1341 if (TYPE_SIZE_UNIT (type
) != 0
1342 && TREE_CODE (TYPE_SIZE_UNIT (type
)) != INTEGER_CST
)
1343 TYPE_SIZE_UNIT (type
) = variable_size (TYPE_SIZE_UNIT (type
));
1345 /* Also layout any other variants of the type. */
1346 if (TYPE_NEXT_VARIANT (type
)
1347 || type
!= TYPE_MAIN_VARIANT (type
))
1350 /* Record layout info of this variant. */
1351 tree size
= TYPE_SIZE (type
);
1352 tree size_unit
= TYPE_SIZE_UNIT (type
);
1353 unsigned int align
= TYPE_ALIGN (type
);
1354 unsigned int user_align
= TYPE_USER_ALIGN (type
);
1355 enum machine_mode mode
= TYPE_MODE (type
);
1357 /* Copy it into all variants. */
1358 for (variant
= TYPE_MAIN_VARIANT (type
);
1360 variant
= TYPE_NEXT_VARIANT (variant
))
1362 TYPE_SIZE (variant
) = size
;
1363 TYPE_SIZE_UNIT (variant
) = size_unit
;
1364 TYPE_ALIGN (variant
) = align
;
1365 TYPE_USER_ALIGN (variant
) = user_align
;
1366 TYPE_MODE (variant
) = mode
;
1371 /* Do all of the work required to layout the type indicated by RLI,
1372 once the fields have been laid out. This function will call `free'
1376 finish_record_layout (rli
)
1377 record_layout_info rli
;
1379 /* Compute the final size. */
1380 finalize_record_size (rli
);
1382 /* Compute the TYPE_MODE for the record. */
1383 compute_record_mode (rli
->t
);
1385 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1386 finalize_type_size (rli
->t
);
1388 /* Lay out any static members. This is done now because their type
1389 may use the record's type. */
1390 while (rli
->pending_statics
)
1392 layout_decl (TREE_VALUE (rli
->pending_statics
), 0);
1393 rli
->pending_statics
= TREE_CHAIN (rli
->pending_statics
);
1400 /* Calculate the mode, size, and alignment for TYPE.
1401 For an array type, calculate the element separation as well.
1402 Record TYPE on the chain of permanent or temporary types
1403 so that dbxout will find out about it.
1405 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1406 layout_type does nothing on such a type.
1408 If the type is incomplete, its TYPE_SIZE remains zero. */
1417 /* Do nothing if type has been laid out before. */
1418 if (TYPE_SIZE (type
))
1421 switch (TREE_CODE (type
))
1424 /* This kind of type is the responsibility
1425 of the language-specific code. */
1428 case BOOLEAN_TYPE
: /* Used for Java, Pascal, and Chill. */
1429 if (TYPE_PRECISION (type
) == 0)
1430 TYPE_PRECISION (type
) = 1; /* default to one byte/boolean. */
1432 /* ... fall through ... */
1437 if (TREE_CODE (TYPE_MIN_VALUE (type
)) == INTEGER_CST
1438 && tree_int_cst_sgn (TYPE_MIN_VALUE (type
)) >= 0)
1439 TREE_UNSIGNED (type
) = 1;
1441 TYPE_MODE (type
) = smallest_mode_for_size (TYPE_PRECISION (type
),
1443 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
1444 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
1448 TYPE_MODE (type
) = mode_for_size (TYPE_PRECISION (type
), MODE_FLOAT
, 0);
1449 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
1450 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
1454 TREE_UNSIGNED (type
) = TREE_UNSIGNED (TREE_TYPE (type
));
1456 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type
)),
1457 (TREE_CODE (TREE_TYPE (type
)) == INTEGER_TYPE
1458 ? MODE_COMPLEX_INT
: MODE_COMPLEX_FLOAT
),
1460 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
1461 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
1468 subtype
= TREE_TYPE (type
);
1469 TREE_UNSIGNED (type
) = TREE_UNSIGNED (subtype
);
1470 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
1471 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
1476 /* This is an incomplete type and so doesn't have a size. */
1477 TYPE_ALIGN (type
) = 1;
1478 TYPE_USER_ALIGN (type
) = 0;
1479 TYPE_MODE (type
) = VOIDmode
;
1483 TYPE_SIZE (type
) = bitsize_int (POINTER_SIZE
);
1484 TYPE_SIZE_UNIT (type
) = size_int (POINTER_SIZE
/ BITS_PER_UNIT
);
1485 /* A pointer might be MODE_PARTIAL_INT,
1486 but ptrdiff_t must be integral. */
1487 TYPE_MODE (type
) = mode_for_size (POINTER_SIZE
, MODE_INT
, 0);
1492 TYPE_MODE (type
) = mode_for_size (2 * POINTER_SIZE
, MODE_INT
, 0);
1493 TYPE_SIZE (type
) = bitsize_int (2 * POINTER_SIZE
);
1494 TYPE_SIZE_UNIT (type
) = size_int ((2 * POINTER_SIZE
) / BITS_PER_UNIT
);
1498 case REFERENCE_TYPE
:
1500 int nbits
= ((TREE_CODE (type
) == REFERENCE_TYPE
1501 && reference_types_internal
)
1502 ? GET_MODE_BITSIZE (Pmode
) : POINTER_SIZE
);
1504 TYPE_MODE (type
) = nbits
== POINTER_SIZE
? ptr_mode
: Pmode
;
1505 TYPE_SIZE (type
) = bitsize_int (nbits
);
1506 TYPE_SIZE_UNIT (type
) = size_int (nbits
/ BITS_PER_UNIT
);
1507 TREE_UNSIGNED (type
) = 1;
1508 TYPE_PRECISION (type
) = nbits
;
1514 tree index
= TYPE_DOMAIN (type
);
1515 tree element
= TREE_TYPE (type
);
1517 build_pointer_type (element
);
1519 /* We need to know both bounds in order to compute the size. */
1520 if (index
&& TYPE_MAX_VALUE (index
) && TYPE_MIN_VALUE (index
)
1521 && TYPE_SIZE (element
))
1523 tree ub
= TYPE_MAX_VALUE (index
);
1524 tree lb
= TYPE_MIN_VALUE (index
);
1528 /* The initial subtraction should happen in the original type so
1529 that (possible) negative values are handled appropriately. */
1530 length
= size_binop (PLUS_EXPR
, size_one_node
,
1532 fold (build (MINUS_EXPR
,
1536 /* Special handling for arrays of bits (for Chill). */
1537 element_size
= TYPE_SIZE (element
);
1538 if (TYPE_PACKED (type
) && INTEGRAL_TYPE_P (element
)
1539 && (integer_zerop (TYPE_MAX_VALUE (element
))
1540 || integer_onep (TYPE_MAX_VALUE (element
)))
1541 && host_integerp (TYPE_MIN_VALUE (element
), 1))
1543 HOST_WIDE_INT maxvalue
1544 = tree_low_cst (TYPE_MAX_VALUE (element
), 1);
1545 HOST_WIDE_INT minvalue
1546 = tree_low_cst (TYPE_MIN_VALUE (element
), 1);
1548 if (maxvalue
- minvalue
== 1
1549 && (maxvalue
== 1 || maxvalue
== 0))
1550 element_size
= integer_one_node
;
1553 TYPE_SIZE (type
) = size_binop (MULT_EXPR
, element_size
,
1554 convert (bitsizetype
, length
));
1556 /* If we know the size of the element, calculate the total
1557 size directly, rather than do some division thing below.
1558 This optimization helps Fortran assumed-size arrays
1559 (where the size of the array is determined at runtime)
1561 Note that we can't do this in the case where the size of
1562 the elements is one bit since TYPE_SIZE_UNIT cannot be
1563 set correctly in that case. */
1564 if (TYPE_SIZE_UNIT (element
) != 0 && ! integer_onep (element_size
))
1565 TYPE_SIZE_UNIT (type
)
1566 = size_binop (MULT_EXPR
, TYPE_SIZE_UNIT (element
), length
);
1569 /* Now round the alignment and size,
1570 using machine-dependent criteria if any. */
1572 #ifdef ROUND_TYPE_ALIGN
1574 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (element
), BITS_PER_UNIT
);
1576 TYPE_ALIGN (type
) = MAX (TYPE_ALIGN (element
), BITS_PER_UNIT
);
1578 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (element
);
1580 #ifdef ROUND_TYPE_SIZE
1581 if (TYPE_SIZE (type
) != 0)
1584 = ROUND_TYPE_SIZE (type
, TYPE_SIZE (type
), TYPE_ALIGN (type
));
1586 /* If the rounding changed the size of the type, remove any
1587 pre-calculated TYPE_SIZE_UNIT. */
1588 if (simple_cst_equal (TYPE_SIZE (type
), tmp
) != 1)
1589 TYPE_SIZE_UNIT (type
) = NULL
;
1591 TYPE_SIZE (type
) = tmp
;
1595 TYPE_MODE (type
) = BLKmode
;
1596 if (TYPE_SIZE (type
) != 0
1597 #ifdef MEMBER_TYPE_FORCES_BLK
1598 && ! MEMBER_TYPE_FORCES_BLK (type
, VOIDmode
)
1600 /* BLKmode elements force BLKmode aggregate;
1601 else extract/store fields may lose. */
1602 && (TYPE_MODE (TREE_TYPE (type
)) != BLKmode
1603 || TYPE_NO_FORCE_BLK (TREE_TYPE (type
))))
1605 /* One-element arrays get the component type's mode. */
1606 if (simple_cst_equal (TYPE_SIZE (type
),
1607 TYPE_SIZE (TREE_TYPE (type
))))
1608 TYPE_MODE (type
) = TYPE_MODE (TREE_TYPE (type
));
1611 = mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1);
1613 if (TYPE_MODE (type
) != BLKmode
1614 && STRICT_ALIGNMENT
&& TYPE_ALIGN (type
) < BIGGEST_ALIGNMENT
1615 && TYPE_ALIGN (type
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
))
1616 && TYPE_MODE (type
) != BLKmode
)
1618 TYPE_NO_FORCE_BLK (type
) = 1;
1619 TYPE_MODE (type
) = BLKmode
;
1627 case QUAL_UNION_TYPE
:
1630 record_layout_info rli
;
1632 /* Initialize the layout information. */
1633 rli
= start_record_layout (type
);
1635 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1636 in the reverse order in building the COND_EXPR that denotes
1637 its size. We reverse them again later. */
1638 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
1639 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
1641 /* Place all the fields. */
1642 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
1643 place_field (rli
, field
);
1645 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
1646 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
1648 if (lang_adjust_rli
)
1649 (*lang_adjust_rli
) (rli
);
1651 /* Finish laying out the record. */
1652 finish_record_layout (rli
);
1656 case SET_TYPE
: /* Used by Chill and Pascal. */
1657 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type
))) != INTEGER_CST
1658 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type
))) != INTEGER_CST
)
1662 #ifndef SET_WORD_SIZE
1663 #define SET_WORD_SIZE BITS_PER_WORD
1665 unsigned int alignment
1666 = set_alignment
? set_alignment
: SET_WORD_SIZE
;
1668 = (TREE_INT_CST_LOW (TYPE_MAX_VALUE (TYPE_DOMAIN (type
)))
1669 - TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (type
))) + 1);
1671 = ((size_in_bits
+ alignment
- 1) / alignment
) * alignment
;
1673 if (rounded_size
> (int) alignment
)
1674 TYPE_MODE (type
) = BLKmode
;
1676 TYPE_MODE (type
) = mode_for_size (alignment
, MODE_INT
, 1);
1678 TYPE_SIZE (type
) = bitsize_int (rounded_size
);
1679 TYPE_SIZE_UNIT (type
) = size_int (rounded_size
/ BITS_PER_UNIT
);
1680 TYPE_ALIGN (type
) = alignment
;
1681 TYPE_USER_ALIGN (type
) = 0;
1682 TYPE_PRECISION (type
) = size_in_bits
;
1687 /* The size may vary in different languages, so the language front end
1688 should fill in the size. */
1689 TYPE_ALIGN (type
) = BIGGEST_ALIGNMENT
;
1690 TYPE_USER_ALIGN (type
) = 0;
1691 TYPE_MODE (type
) = BLKmode
;
1698 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1699 records and unions, finish_record_layout already called this
1701 if (TREE_CODE (type
) != RECORD_TYPE
1702 && TREE_CODE (type
) != UNION_TYPE
1703 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
1704 finalize_type_size (type
);
1706 /* If this type is created before sizetype has been permanently set,
1707 record it so set_sizetype can fix it up. */
1709 early_type_list
= tree_cons (NULL_TREE
, type
, early_type_list
);
1711 /* If an alias set has been set for this aggregate when it was incomplete,
1712 force it into alias set 0.
1713 This is too conservative, but we cannot call record_component_aliases
1714 here because some frontends still change the aggregates after
1716 if (AGGREGATE_TYPE_P (type
) && TYPE_ALIAS_SET_KNOWN_P (type
))
1717 TYPE_ALIAS_SET (type
) = 0;
1720 /* Create and return a type for signed integers of PRECISION bits. */
1723 make_signed_type (precision
)
1726 tree type
= make_node (INTEGER_TYPE
);
1728 TYPE_PRECISION (type
) = precision
;
1730 fixup_signed_type (type
);
1734 /* Create and return a type for unsigned integers of PRECISION bits. */
1737 make_unsigned_type (precision
)
1740 tree type
= make_node (INTEGER_TYPE
);
1742 TYPE_PRECISION (type
) = precision
;
1744 fixup_unsigned_type (type
);
1748 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1749 value to enable integer types to be created. */
1752 initialize_sizetypes ()
1754 tree t
= make_node (INTEGER_TYPE
);
1756 /* Set this so we do something reasonable for the build_int_2 calls
1758 integer_type_node
= t
;
1760 TYPE_MODE (t
) = SImode
;
1761 TYPE_ALIGN (t
) = GET_MODE_ALIGNMENT (SImode
);
1762 TYPE_USER_ALIGN (t
) = 0;
1763 TYPE_SIZE (t
) = build_int_2 (GET_MODE_BITSIZE (SImode
), 0);
1764 TYPE_SIZE_UNIT (t
) = build_int_2 (GET_MODE_SIZE (SImode
), 0);
1765 TREE_UNSIGNED (t
) = 1;
1766 TYPE_PRECISION (t
) = GET_MODE_BITSIZE (SImode
);
1767 TYPE_MIN_VALUE (t
) = build_int_2 (0, 0);
1768 TYPE_IS_SIZETYPE (t
) = 1;
1770 /* 1000 avoids problems with possible overflow and is certainly
1771 larger than any size value we'd want to be storing. */
1772 TYPE_MAX_VALUE (t
) = build_int_2 (1000, 0);
1774 /* These two must be different nodes because of the caching done in
1777 bitsizetype
= copy_node (t
);
1778 integer_type_node
= 0;
1781 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1782 Also update the type of any standard type's sizes made so far. */
1788 int oprecision
= TYPE_PRECISION (type
);
1789 /* The *bitsizetype types use a precision that avoids overflows when
1790 calculating signed sizes / offsets in bits. However, when
1791 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1793 int precision
= MIN (oprecision
+ BITS_PER_UNIT_LOG
+ 1,
1794 2 * HOST_BITS_PER_WIDE_INT
);
1801 /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE. */
1802 sizetype
= copy_node (type
);
1803 TYPE_DOMAIN (sizetype
) = type
;
1804 TYPE_IS_SIZETYPE (sizetype
) = 1;
1805 bitsizetype
= make_node (INTEGER_TYPE
);
1806 TYPE_NAME (bitsizetype
) = TYPE_NAME (type
);
1807 TYPE_PRECISION (bitsizetype
) = precision
;
1808 TYPE_IS_SIZETYPE (bitsizetype
) = 1;
1810 if (TREE_UNSIGNED (type
))
1811 fixup_unsigned_type (bitsizetype
);
1813 fixup_signed_type (bitsizetype
);
1815 layout_type (bitsizetype
);
1817 if (TREE_UNSIGNED (type
))
1819 usizetype
= sizetype
;
1820 ubitsizetype
= bitsizetype
;
1821 ssizetype
= copy_node (make_signed_type (oprecision
));
1822 sbitsizetype
= copy_node (make_signed_type (precision
));
1826 ssizetype
= sizetype
;
1827 sbitsizetype
= bitsizetype
;
1828 usizetype
= copy_node (make_unsigned_type (oprecision
));
1829 ubitsizetype
= copy_node (make_unsigned_type (precision
));
1832 TYPE_NAME (bitsizetype
) = get_identifier ("bit_size_type");
1834 /* Show is a sizetype, is a main type, and has no pointers to it. */
1835 for (i
= 0; i
< ARRAY_SIZE (sizetype_tab
); i
++)
1837 TYPE_IS_SIZETYPE (sizetype_tab
[i
]) = 1;
1838 TYPE_MAIN_VARIANT (sizetype_tab
[i
]) = sizetype_tab
[i
];
1839 TYPE_NEXT_VARIANT (sizetype_tab
[i
]) = 0;
1840 TYPE_POINTER_TO (sizetype_tab
[i
]) = 0;
1841 TYPE_REFERENCE_TO (sizetype_tab
[i
]) = 0;
1844 /* Go down each of the types we already made and set the proper type
1845 for the sizes in them. */
1846 for (t
= early_type_list
; t
!= 0; t
= TREE_CHAIN (t
))
1848 if (TREE_CODE (TREE_VALUE (t
)) != INTEGER_TYPE
)
1851 TREE_TYPE (TYPE_SIZE (TREE_VALUE (t
))) = bitsizetype
;
1852 TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t
))) = sizetype
;
1855 early_type_list
= 0;
1859 /* Set the extreme values of TYPE based on its precision in bits,
1860 then lay it out. Used when make_signed_type won't do
1861 because the tree code is not INTEGER_TYPE.
1862 E.g. for Pascal, when the -fsigned-char option is given. */
1865 fixup_signed_type (type
)
1868 int precision
= TYPE_PRECISION (type
);
1870 /* We can not represent properly constants greater then
1871 2 * HOST_BITS_PER_WIDE_INT, still we need the types
1872 as they are used by i386 vector extensions and friends. */
1873 if (precision
> HOST_BITS_PER_WIDE_INT
* 2)
1874 precision
= HOST_BITS_PER_WIDE_INT
* 2;
1876 TYPE_MIN_VALUE (type
)
1877 = build_int_2 ((precision
- HOST_BITS_PER_WIDE_INT
> 0
1878 ? 0 : (HOST_WIDE_INT
) (-1) << (precision
- 1)),
1879 (((HOST_WIDE_INT
) (-1)
1880 << (precision
- HOST_BITS_PER_WIDE_INT
- 1 > 0
1881 ? precision
- HOST_BITS_PER_WIDE_INT
- 1
1883 TYPE_MAX_VALUE (type
)
1884 = build_int_2 ((precision
- HOST_BITS_PER_WIDE_INT
> 0
1885 ? -1 : ((HOST_WIDE_INT
) 1 << (precision
- 1)) - 1),
1886 (precision
- HOST_BITS_PER_WIDE_INT
- 1 > 0
1887 ? (((HOST_WIDE_INT
) 1
1888 << (precision
- HOST_BITS_PER_WIDE_INT
- 1))) - 1
1891 TREE_TYPE (TYPE_MIN_VALUE (type
)) = type
;
1892 TREE_TYPE (TYPE_MAX_VALUE (type
)) = type
;
1894 /* Lay out the type: set its alignment, size, etc. */
1898 /* Set the extreme values of TYPE based on its precision in bits,
1899 then lay it out. This is used both in `make_unsigned_type'
1900 and for enumeral types. */
1903 fixup_unsigned_type (type
)
1906 int precision
= TYPE_PRECISION (type
);
1908 /* We can not represent properly constants greater then
1909 2 * HOST_BITS_PER_WIDE_INT, still we need the types
1910 as they are used by i386 vector extensions and friends. */
1911 if (precision
> HOST_BITS_PER_WIDE_INT
* 2)
1912 precision
= HOST_BITS_PER_WIDE_INT
* 2;
1914 TYPE_MIN_VALUE (type
) = build_int_2 (0, 0);
1915 TYPE_MAX_VALUE (type
)
1916 = build_int_2 (precision
- HOST_BITS_PER_WIDE_INT
>= 0
1917 ? -1 : ((HOST_WIDE_INT
) 1 << precision
) - 1,
1918 precision
- HOST_BITS_PER_WIDE_INT
> 0
1919 ? ((unsigned HOST_WIDE_INT
) ~0
1920 >> (HOST_BITS_PER_WIDE_INT
1921 - (precision
- HOST_BITS_PER_WIDE_INT
)))
1923 TREE_TYPE (TYPE_MIN_VALUE (type
)) = type
;
1924 TREE_TYPE (TYPE_MAX_VALUE (type
)) = type
;
1926 /* Lay out the type: set its alignment, size, etc. */
1930 /* Find the best machine mode to use when referencing a bit field of length
1931 BITSIZE bits starting at BITPOS.
1933 The underlying object is known to be aligned to a boundary of ALIGN bits.
1934 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
1935 larger than LARGEST_MODE (usually SImode).
1937 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
1938 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
1939 mode meeting these conditions.
1941 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
1942 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
1943 all the conditions. */
1946 get_best_mode (bitsize
, bitpos
, align
, largest_mode
, volatilep
)
1947 int bitsize
, bitpos
;
1949 enum machine_mode largest_mode
;
1952 enum machine_mode mode
;
1953 unsigned int unit
= 0;
1955 /* Find the narrowest integer mode that contains the bit field. */
1956 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1957 mode
= GET_MODE_WIDER_MODE (mode
))
1959 unit
= GET_MODE_BITSIZE (mode
);
1960 if ((bitpos
% unit
) + bitsize
<= unit
)
1964 if (mode
== VOIDmode
1965 /* It is tempting to omit the following line
1966 if STRICT_ALIGNMENT is true.
1967 But that is incorrect, since if the bitfield uses part of 3 bytes
1968 and we use a 4-byte mode, we could get a spurious segv
1969 if the extra 4th byte is past the end of memory.
1970 (Though at least one Unix compiler ignores this problem:
1971 that on the Sequent 386 machine. */
1972 || MIN (unit
, BIGGEST_ALIGNMENT
) > align
1973 || (largest_mode
!= VOIDmode
&& unit
> GET_MODE_BITSIZE (largest_mode
)))
1976 if (SLOW_BYTE_ACCESS
&& ! volatilep
)
1978 enum machine_mode wide_mode
= VOIDmode
, tmode
;
1980 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); tmode
!= VOIDmode
;
1981 tmode
= GET_MODE_WIDER_MODE (tmode
))
1983 unit
= GET_MODE_BITSIZE (tmode
);
1984 if (bitpos
/ unit
== (bitpos
+ bitsize
- 1) / unit
1985 && unit
<= BITS_PER_WORD
1986 && unit
<= MIN (align
, BIGGEST_ALIGNMENT
)
1987 && (largest_mode
== VOIDmode
1988 || unit
<= GET_MODE_BITSIZE (largest_mode
)))
1992 if (wide_mode
!= VOIDmode
)
1999 #include "gt-stor-layout.h"