* config/alpha/alpha.c: Follow spelling conventions.
[official-gcc.git] / gcc / cse.c
blobadaf20d32b4f0574bae72b685881f4e741130267
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "timevar.h"
42 /* The basic idea of common subexpression elimination is to go
43 through the code, keeping a record of expressions that would
44 have the same value at the current scan point, and replacing
45 expressions encountered with the cheapest equivalent expression.
47 It is too complicated to keep track of the different possibilities
48 when control paths merge in this code; so, at each label, we forget all
49 that is known and start fresh. This can be described as processing each
50 extended basic block separately. We have a separate pass to perform
51 global CSE.
53 Note CSE can turn a conditional or computed jump into a nop or
54 an unconditional jump. When this occurs we arrange to run the jump
55 optimizer after CSE to delete the unreachable code.
57 We use two data structures to record the equivalent expressions:
58 a hash table for most expressions, and a vector of "quantity
59 numbers" to record equivalent (pseudo) registers.
61 The use of the special data structure for registers is desirable
62 because it is faster. It is possible because registers references
63 contain a fairly small number, the register number, taken from
64 a contiguously allocated series, and two register references are
65 identical if they have the same number. General expressions
66 do not have any such thing, so the only way to retrieve the
67 information recorded on an expression other than a register
68 is to keep it in a hash table.
70 Registers and "quantity numbers":
72 At the start of each basic block, all of the (hardware and pseudo)
73 registers used in the function are given distinct quantity
74 numbers to indicate their contents. During scan, when the code
75 copies one register into another, we copy the quantity number.
76 When a register is loaded in any other way, we allocate a new
77 quantity number to describe the value generated by this operation.
78 `reg_qty' records what quantity a register is currently thought
79 of as containing.
81 All real quantity numbers are greater than or equal to `max_reg'.
82 If register N has not been assigned a quantity, reg_qty[N] will equal N.
84 Quantity numbers below `max_reg' do not exist and none of the `qty_table'
85 entries should be referenced with an index below `max_reg'.
87 We also maintain a bidirectional chain of registers for each
88 quantity number. The `qty_table` members `first_reg' and `last_reg',
89 and `reg_eqv_table' members `next' and `prev' hold these chains.
91 The first register in a chain is the one whose lifespan is least local.
92 Among equals, it is the one that was seen first.
93 We replace any equivalent register with that one.
95 If two registers have the same quantity number, it must be true that
96 REG expressions with qty_table `mode' must be in the hash table for both
97 registers and must be in the same class.
99 The converse is not true. Since hard registers may be referenced in
100 any mode, two REG expressions might be equivalent in the hash table
101 but not have the same quantity number if the quantity number of one
102 of the registers is not the same mode as those expressions.
104 Constants and quantity numbers
106 When a quantity has a known constant value, that value is stored
107 in the appropriate qty_table `const_rtx'. This is in addition to
108 putting the constant in the hash table as is usual for non-regs.
110 Whether a reg or a constant is preferred is determined by the configuration
111 macro CONST_COSTS and will often depend on the constant value. In any
112 event, expressions containing constants can be simplified, by fold_rtx.
114 When a quantity has a known nearly constant value (such as an address
115 of a stack slot), that value is stored in the appropriate qty_table
116 `const_rtx'.
118 Integer constants don't have a machine mode. However, cse
119 determines the intended machine mode from the destination
120 of the instruction that moves the constant. The machine mode
121 is recorded in the hash table along with the actual RTL
122 constant expression so that different modes are kept separate.
124 Other expressions:
126 To record known equivalences among expressions in general
127 we use a hash table called `table'. It has a fixed number of buckets
128 that contain chains of `struct table_elt' elements for expressions.
129 These chains connect the elements whose expressions have the same
130 hash codes.
132 Other chains through the same elements connect the elements which
133 currently have equivalent values.
135 Register references in an expression are canonicalized before hashing
136 the expression. This is done using `reg_qty' and qty_table `first_reg'.
137 The hash code of a register reference is computed using the quantity
138 number, not the register number.
140 When the value of an expression changes, it is necessary to remove from the
141 hash table not just that expression but all expressions whose values
142 could be different as a result.
144 1. If the value changing is in memory, except in special cases
145 ANYTHING referring to memory could be changed. That is because
146 nobody knows where a pointer does not point.
147 The function `invalidate_memory' removes what is necessary.
149 The special cases are when the address is constant or is
150 a constant plus a fixed register such as the frame pointer
151 or a static chain pointer. When such addresses are stored in,
152 we can tell exactly which other such addresses must be invalidated
153 due to overlap. `invalidate' does this.
154 All expressions that refer to non-constant
155 memory addresses are also invalidated. `invalidate_memory' does this.
157 2. If the value changing is a register, all expressions
158 containing references to that register, and only those,
159 must be removed.
161 Because searching the entire hash table for expressions that contain
162 a register is very slow, we try to figure out when it isn't necessary.
163 Precisely, this is necessary only when expressions have been
164 entered in the hash table using this register, and then the value has
165 changed, and then another expression wants to be added to refer to
166 the register's new value. This sequence of circumstances is rare
167 within any one basic block.
169 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
170 reg_tick[i] is incremented whenever a value is stored in register i.
171 reg_in_table[i] holds -1 if no references to register i have been
172 entered in the table; otherwise, it contains the value reg_tick[i] had
173 when the references were entered. If we want to enter a reference
174 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
175 Until we want to enter a new entry, the mere fact that the two vectors
176 don't match makes the entries be ignored if anyone tries to match them.
178 Registers themselves are entered in the hash table as well as in
179 the equivalent-register chains. However, the vectors `reg_tick'
180 and `reg_in_table' do not apply to expressions which are simple
181 register references. These expressions are removed from the table
182 immediately when they become invalid, and this can be done even if
183 we do not immediately search for all the expressions that refer to
184 the register.
186 A CLOBBER rtx in an instruction invalidates its operand for further
187 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
188 invalidates everything that resides in memory.
190 Related expressions:
192 Constant expressions that differ only by an additive integer
193 are called related. When a constant expression is put in
194 the table, the related expression with no constant term
195 is also entered. These are made to point at each other
196 so that it is possible to find out if there exists any
197 register equivalent to an expression related to a given expression. */
199 /* One plus largest register number used in this function. */
201 static int max_reg;
203 /* One plus largest instruction UID used in this function at time of
204 cse_main call. */
206 static int max_insn_uid;
208 /* Length of qty_table vector. We know in advance we will not need
209 a quantity number this big. */
211 static int max_qty;
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
216 static int next_qty;
218 /* Per-qty information tracking.
220 `first_reg' and `last_reg' track the head and tail of the
221 chain of registers which currently contain this quantity.
223 `mode' contains the machine mode of this quantity.
225 `const_rtx' holds the rtx of the constant value of this
226 quantity, if known. A summations of the frame/arg pointer
227 and a constant can also be entered here. When this holds
228 a known value, `const_insn' is the insn which stored the
229 constant value.
231 `comparison_{code,const,qty}' are used to track when a
232 comparison between a quantity and some constant or register has
233 been passed. In such a case, we know the results of the comparison
234 in case we see it again. These members record a comparison that
235 is known to be true. `comparison_code' holds the rtx code of such
236 a comparison, else it is set to UNKNOWN and the other two
237 comparison members are undefined. `comparison_const' holds
238 the constant being compared against, or zero if the comparison
239 is not against a constant. `comparison_qty' holds the quantity
240 being compared against when the result is known. If the comparison
241 is not with a register, `comparison_qty' is -1. */
243 struct qty_table_elem
245 rtx const_rtx;
246 rtx const_insn;
247 rtx comparison_const;
248 int comparison_qty;
249 unsigned int first_reg, last_reg;
250 enum machine_mode mode;
251 enum rtx_code comparison_code;
254 /* The table of all qtys, indexed by qty number. */
255 static struct qty_table_elem *qty_table;
257 #ifdef HAVE_cc0
258 /* For machines that have a CC0, we do not record its value in the hash
259 table since its use is guaranteed to be the insn immediately following
260 its definition and any other insn is presumed to invalidate it.
262 Instead, we store below the value last assigned to CC0. If it should
263 happen to be a constant, it is stored in preference to the actual
264 assigned value. In case it is a constant, we store the mode in which
265 the constant should be interpreted. */
267 static rtx prev_insn_cc0;
268 static enum machine_mode prev_insn_cc0_mode;
269 #endif
271 /* Previous actual insn. 0 if at first insn of basic block. */
273 static rtx prev_insn;
275 /* Insn being scanned. */
277 static rtx this_insn;
279 /* Index by register number, gives the number of the next (or
280 previous) register in the chain of registers sharing the same
281 value.
283 Or -1 if this register is at the end of the chain.
285 If reg_qty[N] == N, reg_eqv_table[N].next is undefined. */
287 /* Per-register equivalence chain. */
288 struct reg_eqv_elem
290 int next, prev;
293 /* The table of all register equivalence chains. */
294 static struct reg_eqv_elem *reg_eqv_table;
296 struct cse_reg_info
298 /* Next in hash chain. */
299 struct cse_reg_info *hash_next;
301 /* The next cse_reg_info structure in the free or used list. */
302 struct cse_reg_info *next;
304 /* Search key */
305 unsigned int regno;
307 /* The quantity number of the register's current contents. */
308 int reg_qty;
310 /* The number of times the register has been altered in the current
311 basic block. */
312 int reg_tick;
314 /* The REG_TICK value at which rtx's containing this register are
315 valid in the hash table. If this does not equal the current
316 reg_tick value, such expressions existing in the hash table are
317 invalid. */
318 int reg_in_table;
321 /* A free list of cse_reg_info entries. */
322 static struct cse_reg_info *cse_reg_info_free_list;
324 /* A used list of cse_reg_info entries. */
325 static struct cse_reg_info *cse_reg_info_used_list;
326 static struct cse_reg_info *cse_reg_info_used_list_end;
328 /* A mapping from registers to cse_reg_info data structures. */
329 #define REGHASH_SHIFT 7
330 #define REGHASH_SIZE (1 << REGHASH_SHIFT)
331 #define REGHASH_MASK (REGHASH_SIZE - 1)
332 static struct cse_reg_info *reg_hash[REGHASH_SIZE];
334 #define REGHASH_FN(REGNO) \
335 (((REGNO) ^ ((REGNO) >> REGHASH_SHIFT)) & REGHASH_MASK)
337 /* The last lookup we did into the cse_reg_info_tree. This allows us
338 to cache repeated lookups. */
339 static unsigned int cached_regno;
340 static struct cse_reg_info *cached_cse_reg_info;
342 /* A HARD_REG_SET containing all the hard registers for which there is
343 currently a REG expression in the hash table. Note the difference
344 from the above variables, which indicate if the REG is mentioned in some
345 expression in the table. */
347 static HARD_REG_SET hard_regs_in_table;
349 /* CUID of insn that starts the basic block currently being cse-processed. */
351 static int cse_basic_block_start;
353 /* CUID of insn that ends the basic block currently being cse-processed. */
355 static int cse_basic_block_end;
357 /* Vector mapping INSN_UIDs to cuids.
358 The cuids are like uids but increase monotonically always.
359 We use them to see whether a reg is used outside a given basic block. */
361 static int *uid_cuid;
363 /* Highest UID in UID_CUID. */
364 static int max_uid;
366 /* Get the cuid of an insn. */
368 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
370 /* Nonzero if this pass has made changes, and therefore it's
371 worthwhile to run the garbage collector. */
373 static int cse_altered;
375 /* Nonzero if cse has altered conditional jump insns
376 in such a way that jump optimization should be redone. */
378 static int cse_jumps_altered;
380 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
381 REG_LABEL, we have to rerun jump after CSE to put in the note. */
382 static int recorded_label_ref;
384 /* canon_hash stores 1 in do_not_record
385 if it notices a reference to CC0, PC, or some other volatile
386 subexpression. */
388 static int do_not_record;
390 #ifdef LOAD_EXTEND_OP
392 /* Scratch rtl used when looking for load-extended copy of a MEM. */
393 static rtx memory_extend_rtx;
394 #endif
396 /* canon_hash stores 1 in hash_arg_in_memory
397 if it notices a reference to memory within the expression being hashed. */
399 static int hash_arg_in_memory;
401 /* The hash table contains buckets which are chains of `struct table_elt's,
402 each recording one expression's information.
403 That expression is in the `exp' field.
405 The canon_exp field contains a canonical (from the point of view of
406 alias analysis) version of the `exp' field.
408 Those elements with the same hash code are chained in both directions
409 through the `next_same_hash' and `prev_same_hash' fields.
411 Each set of expressions with equivalent values
412 are on a two-way chain through the `next_same_value'
413 and `prev_same_value' fields, and all point with
414 the `first_same_value' field at the first element in
415 that chain. The chain is in order of increasing cost.
416 Each element's cost value is in its `cost' field.
418 The `in_memory' field is nonzero for elements that
419 involve any reference to memory. These elements are removed
420 whenever a write is done to an unidentified location in memory.
421 To be safe, we assume that a memory address is unidentified unless
422 the address is either a symbol constant or a constant plus
423 the frame pointer or argument pointer.
425 The `related_value' field is used to connect related expressions
426 (that differ by adding an integer).
427 The related expressions are chained in a circular fashion.
428 `related_value' is zero for expressions for which this
429 chain is not useful.
431 The `cost' field stores the cost of this element's expression.
432 The `regcost' field stores the value returned by approx_reg_cost for
433 this element's expression.
435 The `is_const' flag is set if the element is a constant (including
436 a fixed address).
438 The `flag' field is used as a temporary during some search routines.
440 The `mode' field is usually the same as GET_MODE (`exp'), but
441 if `exp' is a CONST_INT and has no machine mode then the `mode'
442 field is the mode it was being used as. Each constant is
443 recorded separately for each mode it is used with. */
445 struct table_elt
447 rtx exp;
448 rtx canon_exp;
449 struct table_elt *next_same_hash;
450 struct table_elt *prev_same_hash;
451 struct table_elt *next_same_value;
452 struct table_elt *prev_same_value;
453 struct table_elt *first_same_value;
454 struct table_elt *related_value;
455 int cost;
456 int regcost;
457 enum machine_mode mode;
458 char in_memory;
459 char is_const;
460 char flag;
463 /* We don't want a lot of buckets, because we rarely have very many
464 things stored in the hash table, and a lot of buckets slows
465 down a lot of loops that happen frequently. */
466 #define HASH_SHIFT 5
467 #define HASH_SIZE (1 << HASH_SHIFT)
468 #define HASH_MASK (HASH_SIZE - 1)
470 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
471 register (hard registers may require `do_not_record' to be set). */
473 #define HASH(X, M) \
474 ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
475 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
476 : canon_hash (X, M)) & HASH_MASK)
478 /* Determine whether register number N is considered a fixed register for the
479 purpose of approximating register costs.
480 It is desirable to replace other regs with fixed regs, to reduce need for
481 non-fixed hard regs.
482 A reg wins if it is either the frame pointer or designated as fixed. */
483 #define FIXED_REGNO_P(N) \
484 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
485 || fixed_regs[N] || global_regs[N])
487 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
488 hard registers and pointers into the frame are the cheapest with a cost
489 of 0. Next come pseudos with a cost of one and other hard registers with
490 a cost of 2. Aside from these special cases, call `rtx_cost'. */
492 #define CHEAP_REGNO(N) \
493 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
494 || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM \
495 || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) \
496 || ((N) < FIRST_PSEUDO_REGISTER \
497 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
499 #define COST(X) (GET_CODE (X) == REG ? 0 : notreg_cost (X, SET))
500 #define COST_IN(X,OUTER) (GET_CODE (X) == REG ? 0 : notreg_cost (X, OUTER))
502 /* Get the info associated with register N. */
504 #define GET_CSE_REG_INFO(N) \
505 (((N) == cached_regno && cached_cse_reg_info) \
506 ? cached_cse_reg_info : get_cse_reg_info ((N)))
508 /* Get the number of times this register has been updated in this
509 basic block. */
511 #define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)
513 /* Get the point at which REG was recorded in the table. */
515 #define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)
517 /* Get the quantity number for REG. */
519 #define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)
521 /* Determine if the quantity number for register X represents a valid index
522 into the qty_table. */
524 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (int) (N))
526 static struct table_elt *table[HASH_SIZE];
528 /* Chain of `struct table_elt's made so far for this function
529 but currently removed from the table. */
531 static struct table_elt *free_element_chain;
533 /* Number of `struct table_elt' structures made so far for this function. */
535 static int n_elements_made;
537 /* Maximum value `n_elements_made' has had so far in this compilation
538 for functions previously processed. */
540 static int max_elements_made;
542 /* Surviving equivalence class when two equivalence classes are merged
543 by recording the effects of a jump in the last insn. Zero if the
544 last insn was not a conditional jump. */
546 static struct table_elt *last_jump_equiv_class;
548 /* Set to the cost of a constant pool reference if one was found for a
549 symbolic constant. If this was found, it means we should try to
550 convert constants into constant pool entries if they don't fit in
551 the insn. */
553 static int constant_pool_entries_cost;
555 /* Define maximum length of a branch path. */
557 #define PATHLENGTH 10
559 /* This data describes a block that will be processed by cse_basic_block. */
561 struct cse_basic_block_data
563 /* Lowest CUID value of insns in block. */
564 int low_cuid;
565 /* Highest CUID value of insns in block. */
566 int high_cuid;
567 /* Total number of SETs in block. */
568 int nsets;
569 /* Last insn in the block. */
570 rtx last;
571 /* Size of current branch path, if any. */
572 int path_size;
573 /* Current branch path, indicating which branches will be taken. */
574 struct branch_path
576 /* The branch insn. */
577 rtx branch;
578 /* Whether it should be taken or not. AROUND is the same as taken
579 except that it is used when the destination label is not preceded
580 by a BARRIER. */
581 enum taken {TAKEN, NOT_TAKEN, AROUND} status;
582 } path[PATHLENGTH];
585 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
586 virtual regs here because the simplify_*_operation routines are called
587 by integrate.c, which is called before virtual register instantiation.
589 ?!? FIXED_BASE_PLUS_P and NONZERO_BASE_PLUS_P need to move into
590 a header file so that their definitions can be shared with the
591 simplification routines in simplify-rtx.c. Until then, do not
592 change these macros without also changing the copy in simplify-rtx.c. */
594 #define FIXED_BASE_PLUS_P(X) \
595 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
596 || ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
597 || (X) == virtual_stack_vars_rtx \
598 || (X) == virtual_incoming_args_rtx \
599 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
600 && (XEXP (X, 0) == frame_pointer_rtx \
601 || XEXP (X, 0) == hard_frame_pointer_rtx \
602 || ((X) == arg_pointer_rtx \
603 && fixed_regs[ARG_POINTER_REGNUM]) \
604 || XEXP (X, 0) == virtual_stack_vars_rtx \
605 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
606 || GET_CODE (X) == ADDRESSOF)
608 /* Similar, but also allows reference to the stack pointer.
610 This used to include FIXED_BASE_PLUS_P, however, we can't assume that
611 arg_pointer_rtx by itself is nonzero, because on at least one machine,
612 the i960, the arg pointer is zero when it is unused. */
614 #define NONZERO_BASE_PLUS_P(X) \
615 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
616 || (X) == virtual_stack_vars_rtx \
617 || (X) == virtual_incoming_args_rtx \
618 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
619 && (XEXP (X, 0) == frame_pointer_rtx \
620 || XEXP (X, 0) == hard_frame_pointer_rtx \
621 || ((X) == arg_pointer_rtx \
622 && fixed_regs[ARG_POINTER_REGNUM]) \
623 || XEXP (X, 0) == virtual_stack_vars_rtx \
624 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
625 || (X) == stack_pointer_rtx \
626 || (X) == virtual_stack_dynamic_rtx \
627 || (X) == virtual_outgoing_args_rtx \
628 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
629 && (XEXP (X, 0) == stack_pointer_rtx \
630 || XEXP (X, 0) == virtual_stack_dynamic_rtx \
631 || XEXP (X, 0) == virtual_outgoing_args_rtx)) \
632 || GET_CODE (X) == ADDRESSOF)
634 static int notreg_cost PARAMS ((rtx, enum rtx_code));
635 static int approx_reg_cost_1 PARAMS ((rtx *, void *));
636 static int approx_reg_cost PARAMS ((rtx));
637 static int preferrable PARAMS ((int, int, int, int));
638 static void new_basic_block PARAMS ((void));
639 static void make_new_qty PARAMS ((unsigned int, enum machine_mode));
640 static void make_regs_eqv PARAMS ((unsigned int, unsigned int));
641 static void delete_reg_equiv PARAMS ((unsigned int));
642 static int mention_regs PARAMS ((rtx));
643 static int insert_regs PARAMS ((rtx, struct table_elt *, int));
644 static void remove_from_table PARAMS ((struct table_elt *, unsigned));
645 static struct table_elt *lookup PARAMS ((rtx, unsigned, enum machine_mode)),
646 *lookup_for_remove PARAMS ((rtx, unsigned, enum machine_mode));
647 static rtx lookup_as_function PARAMS ((rtx, enum rtx_code));
648 static struct table_elt *insert PARAMS ((rtx, struct table_elt *, unsigned,
649 enum machine_mode));
650 static void merge_equiv_classes PARAMS ((struct table_elt *,
651 struct table_elt *));
652 static void invalidate PARAMS ((rtx, enum machine_mode));
653 static int cse_rtx_varies_p PARAMS ((rtx, int));
654 static void remove_invalid_refs PARAMS ((unsigned int));
655 static void remove_invalid_subreg_refs PARAMS ((unsigned int, unsigned int,
656 enum machine_mode));
657 static void rehash_using_reg PARAMS ((rtx));
658 static void invalidate_memory PARAMS ((void));
659 static void invalidate_for_call PARAMS ((void));
660 static rtx use_related_value PARAMS ((rtx, struct table_elt *));
661 static unsigned canon_hash PARAMS ((rtx, enum machine_mode));
662 static unsigned canon_hash_string PARAMS ((const char *));
663 static unsigned safe_hash PARAMS ((rtx, enum machine_mode));
664 static int exp_equiv_p PARAMS ((rtx, rtx, int, int));
665 static rtx canon_reg PARAMS ((rtx, rtx));
666 static void find_best_addr PARAMS ((rtx, rtx *, enum machine_mode));
667 static enum rtx_code find_comparison_args PARAMS ((enum rtx_code, rtx *, rtx *,
668 enum machine_mode *,
669 enum machine_mode *));
670 static rtx fold_rtx PARAMS ((rtx, rtx));
671 static rtx equiv_constant PARAMS ((rtx));
672 static void record_jump_equiv PARAMS ((rtx, int));
673 static void record_jump_cond PARAMS ((enum rtx_code, enum machine_mode,
674 rtx, rtx, int));
675 static void cse_insn PARAMS ((rtx, rtx));
676 static int addr_affects_sp_p PARAMS ((rtx));
677 static void invalidate_from_clobbers PARAMS ((rtx));
678 static rtx cse_process_notes PARAMS ((rtx, rtx));
679 static void cse_around_loop PARAMS ((rtx));
680 static void invalidate_skipped_set PARAMS ((rtx, rtx, void *));
681 static void invalidate_skipped_block PARAMS ((rtx));
682 static void cse_check_loop_start PARAMS ((rtx, rtx, void *));
683 static void cse_set_around_loop PARAMS ((rtx, rtx, rtx));
684 static rtx cse_basic_block PARAMS ((rtx, rtx, struct branch_path *, int));
685 static void count_reg_usage PARAMS ((rtx, int *, rtx, int));
686 static int check_for_label_ref PARAMS ((rtx *, void *));
687 extern void dump_class PARAMS ((struct table_elt*));
688 static struct cse_reg_info * get_cse_reg_info PARAMS ((unsigned int));
689 static int check_dependence PARAMS ((rtx *, void *));
691 static void flush_hash_table PARAMS ((void));
692 static bool insn_live_p PARAMS ((rtx, int *));
693 static bool set_live_p PARAMS ((rtx, rtx, int *));
694 static bool dead_libcall_p PARAMS ((rtx, int *));
696 /* Dump the expressions in the equivalence class indicated by CLASSP.
697 This function is used only for debugging. */
698 void
699 dump_class (classp)
700 struct table_elt *classp;
702 struct table_elt *elt;
704 fprintf (stderr, "Equivalence chain for ");
705 print_rtl (stderr, classp->exp);
706 fprintf (stderr, ": \n");
708 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
710 print_rtl (stderr, elt->exp);
711 fprintf (stderr, "\n");
715 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
717 static int
718 approx_reg_cost_1 (xp, data)
719 rtx *xp;
720 void *data;
722 rtx x = *xp;
723 int *cost_p = data;
725 if (x && GET_CODE (x) == REG)
727 unsigned int regno = REGNO (x);
729 if (! CHEAP_REGNO (regno))
731 if (regno < FIRST_PSEUDO_REGISTER)
733 if (SMALL_REGISTER_CLASSES)
734 return 1;
735 *cost_p += 2;
737 else
738 *cost_p += 1;
742 return 0;
745 /* Return an estimate of the cost of the registers used in an rtx.
746 This is mostly the number of different REG expressions in the rtx;
747 however for some exceptions like fixed registers we use a cost of
748 0. If any other hard register reference occurs, return MAX_COST. */
750 static int
751 approx_reg_cost (x)
752 rtx x;
754 int cost = 0;
756 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
757 return MAX_COST;
759 return cost;
762 /* Return a negative value if an rtx A, whose costs are given by COST_A
763 and REGCOST_A, is more desirable than an rtx B.
764 Return a positive value if A is less desirable, or 0 if the two are
765 equally good. */
766 static int
767 preferrable (cost_a, regcost_a, cost_b, regcost_b)
768 int cost_a, regcost_a, cost_b, regcost_b;
770 /* First, get rid of a cases involving expressions that are entirely
771 unwanted. */
772 if (cost_a != cost_b)
774 if (cost_a == MAX_COST)
775 return 1;
776 if (cost_b == MAX_COST)
777 return -1;
780 /* Avoid extending lifetimes of hardregs. */
781 if (regcost_a != regcost_b)
783 if (regcost_a == MAX_COST)
784 return 1;
785 if (regcost_b == MAX_COST)
786 return -1;
789 /* Normal operation costs take precedence. */
790 if (cost_a != cost_b)
791 return cost_a - cost_b;
792 /* Only if these are identical consider effects on register pressure. */
793 if (regcost_a != regcost_b)
794 return regcost_a - regcost_b;
795 return 0;
798 /* Internal function, to compute cost when X is not a register; called
799 from COST macro to keep it simple. */
801 static int
802 notreg_cost (x, outer)
803 rtx x;
804 enum rtx_code outer;
806 return ((GET_CODE (x) == SUBREG
807 && GET_CODE (SUBREG_REG (x)) == REG
808 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
809 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
810 && (GET_MODE_SIZE (GET_MODE (x))
811 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
812 && subreg_lowpart_p (x)
813 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
814 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
816 : rtx_cost (x, outer) * 2);
819 /* Return an estimate of the cost of computing rtx X.
820 One use is in cse, to decide which expression to keep in the hash table.
821 Another is in rtl generation, to pick the cheapest way to multiply.
822 Other uses like the latter are expected in the future. */
825 rtx_cost (x, outer_code)
826 rtx x;
827 enum rtx_code outer_code ATTRIBUTE_UNUSED;
829 int i, j;
830 enum rtx_code code;
831 const char *fmt;
832 int total;
834 if (x == 0)
835 return 0;
837 /* Compute the default costs of certain things.
838 Note that RTX_COSTS can override the defaults. */
840 code = GET_CODE (x);
841 switch (code)
843 case MULT:
844 total = COSTS_N_INSNS (5);
845 break;
846 case DIV:
847 case UDIV:
848 case MOD:
849 case UMOD:
850 total = COSTS_N_INSNS (7);
851 break;
852 case USE:
853 /* Used in loop.c and combine.c as a marker. */
854 total = 0;
855 break;
856 default:
857 total = COSTS_N_INSNS (1);
860 switch (code)
862 case REG:
863 return 0;
865 case SUBREG:
866 /* If we can't tie these modes, make this expensive. The larger
867 the mode, the more expensive it is. */
868 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
869 return COSTS_N_INSNS (2
870 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
871 break;
873 #ifdef RTX_COSTS
874 RTX_COSTS (x, code, outer_code);
875 #endif
876 #ifdef CONST_COSTS
877 CONST_COSTS (x, code, outer_code);
878 #endif
880 default:
881 #ifdef DEFAULT_RTX_COSTS
882 DEFAULT_RTX_COSTS (x, code, outer_code);
883 #endif
884 break;
887 /* Sum the costs of the sub-rtx's, plus cost of this operation,
888 which is already in total. */
890 fmt = GET_RTX_FORMAT (code);
891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
892 if (fmt[i] == 'e')
893 total += rtx_cost (XEXP (x, i), code);
894 else if (fmt[i] == 'E')
895 for (j = 0; j < XVECLEN (x, i); j++)
896 total += rtx_cost (XVECEXP (x, i, j), code);
898 return total;
901 /* Return cost of address expression X.
902 Expect that X is properly formed address reference. */
905 address_cost (x, mode)
906 rtx x;
907 enum machine_mode mode;
909 /* The ADDRESS_COST macro does not deal with ADDRESSOF nodes. But,
910 during CSE, such nodes are present. Using an ADDRESSOF node which
911 refers to the address of a REG is a good thing because we can then
912 turn (MEM (ADDRESSSOF (REG))) into just plain REG. */
914 if (GET_CODE (x) == ADDRESSOF && REG_P (XEXP ((x), 0)))
915 return -1;
917 /* We may be asked for cost of various unusual addresses, such as operands
918 of push instruction. It is not worthwhile to complicate writing
919 of ADDRESS_COST macro by such cases. */
921 if (!memory_address_p (mode, x))
922 return 1000;
923 #ifdef ADDRESS_COST
924 return ADDRESS_COST (x);
925 #else
926 return rtx_cost (x, MEM);
927 #endif
931 static struct cse_reg_info *
932 get_cse_reg_info (regno)
933 unsigned int regno;
935 struct cse_reg_info **hash_head = &reg_hash[REGHASH_FN (regno)];
936 struct cse_reg_info *p;
938 for (p = *hash_head; p != NULL; p = p->hash_next)
939 if (p->regno == regno)
940 break;
942 if (p == NULL)
944 /* Get a new cse_reg_info structure. */
945 if (cse_reg_info_free_list)
947 p = cse_reg_info_free_list;
948 cse_reg_info_free_list = p->next;
950 else
951 p = (struct cse_reg_info *) xmalloc (sizeof (struct cse_reg_info));
953 /* Insert into hash table. */
954 p->hash_next = *hash_head;
955 *hash_head = p;
957 /* Initialize it. */
958 p->reg_tick = 1;
959 p->reg_in_table = -1;
960 p->reg_qty = regno;
961 p->regno = regno;
962 p->next = cse_reg_info_used_list;
963 cse_reg_info_used_list = p;
964 if (!cse_reg_info_used_list_end)
965 cse_reg_info_used_list_end = p;
968 /* Cache this lookup; we tend to be looking up information about the
969 same register several times in a row. */
970 cached_regno = regno;
971 cached_cse_reg_info = p;
973 return p;
976 /* Clear the hash table and initialize each register with its own quantity,
977 for a new basic block. */
979 static void
980 new_basic_block ()
982 int i;
984 next_qty = max_reg;
986 /* Clear out hash table state for this pass. */
988 memset ((char *) reg_hash, 0, sizeof reg_hash);
990 if (cse_reg_info_used_list)
992 cse_reg_info_used_list_end->next = cse_reg_info_free_list;
993 cse_reg_info_free_list = cse_reg_info_used_list;
994 cse_reg_info_used_list = cse_reg_info_used_list_end = 0;
996 cached_cse_reg_info = 0;
998 CLEAR_HARD_REG_SET (hard_regs_in_table);
1000 /* The per-quantity values used to be initialized here, but it is
1001 much faster to initialize each as it is made in `make_new_qty'. */
1003 for (i = 0; i < HASH_SIZE; i++)
1005 struct table_elt *first;
1007 first = table[i];
1008 if (first != NULL)
1010 struct table_elt *last = first;
1012 table[i] = NULL;
1014 while (last->next_same_hash != NULL)
1015 last = last->next_same_hash;
1017 /* Now relink this hash entire chain into
1018 the free element list. */
1020 last->next_same_hash = free_element_chain;
1021 free_element_chain = first;
1025 prev_insn = 0;
1027 #ifdef HAVE_cc0
1028 prev_insn_cc0 = 0;
1029 #endif
1032 /* Say that register REG contains a quantity in mode MODE not in any
1033 register before and initialize that quantity. */
1035 static void
1036 make_new_qty (reg, mode)
1037 unsigned int reg;
1038 enum machine_mode mode;
1040 int q;
1041 struct qty_table_elem *ent;
1042 struct reg_eqv_elem *eqv;
1044 if (next_qty >= max_qty)
1045 abort ();
1047 q = REG_QTY (reg) = next_qty++;
1048 ent = &qty_table[q];
1049 ent->first_reg = reg;
1050 ent->last_reg = reg;
1051 ent->mode = mode;
1052 ent->const_rtx = ent->const_insn = NULL_RTX;
1053 ent->comparison_code = UNKNOWN;
1055 eqv = &reg_eqv_table[reg];
1056 eqv->next = eqv->prev = -1;
1059 /* Make reg NEW equivalent to reg OLD.
1060 OLD is not changing; NEW is. */
1062 static void
1063 make_regs_eqv (new, old)
1064 unsigned int new, old;
1066 unsigned int lastr, firstr;
1067 int q = REG_QTY (old);
1068 struct qty_table_elem *ent;
1070 ent = &qty_table[q];
1072 /* Nothing should become eqv until it has a "non-invalid" qty number. */
1073 if (! REGNO_QTY_VALID_P (old))
1074 abort ();
1076 REG_QTY (new) = q;
1077 firstr = ent->first_reg;
1078 lastr = ent->last_reg;
1080 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1081 hard regs. Among pseudos, if NEW will live longer than any other reg
1082 of the same qty, and that is beyond the current basic block,
1083 make it the new canonical replacement for this qty. */
1084 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1085 /* Certain fixed registers might be of the class NO_REGS. This means
1086 that not only can they not be allocated by the compiler, but
1087 they cannot be used in substitutions or canonicalizations
1088 either. */
1089 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1090 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1091 || (new >= FIRST_PSEUDO_REGISTER
1092 && (firstr < FIRST_PSEUDO_REGISTER
1093 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1094 || (uid_cuid[REGNO_FIRST_UID (new)]
1095 < cse_basic_block_start))
1096 && (uid_cuid[REGNO_LAST_UID (new)]
1097 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
1099 reg_eqv_table[firstr].prev = new;
1100 reg_eqv_table[new].next = firstr;
1101 reg_eqv_table[new].prev = -1;
1102 ent->first_reg = new;
1104 else
1106 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1107 Otherwise, insert before any non-fixed hard regs that are at the
1108 end. Registers of class NO_REGS cannot be used as an
1109 equivalent for anything. */
1110 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
1111 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1112 && new >= FIRST_PSEUDO_REGISTER)
1113 lastr = reg_eqv_table[lastr].prev;
1114 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1115 if (reg_eqv_table[lastr].next >= 0)
1116 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
1117 else
1118 qty_table[q].last_reg = new;
1119 reg_eqv_table[lastr].next = new;
1120 reg_eqv_table[new].prev = lastr;
1124 /* Remove REG from its equivalence class. */
1126 static void
1127 delete_reg_equiv (reg)
1128 unsigned int reg;
1130 struct qty_table_elem *ent;
1131 int q = REG_QTY (reg);
1132 int p, n;
1134 /* If invalid, do nothing. */
1135 if (q == (int) reg)
1136 return;
1138 ent = &qty_table[q];
1140 p = reg_eqv_table[reg].prev;
1141 n = reg_eqv_table[reg].next;
1143 if (n != -1)
1144 reg_eqv_table[n].prev = p;
1145 else
1146 ent->last_reg = p;
1147 if (p != -1)
1148 reg_eqv_table[p].next = n;
1149 else
1150 ent->first_reg = n;
1152 REG_QTY (reg) = reg;
1155 /* Remove any invalid expressions from the hash table
1156 that refer to any of the registers contained in expression X.
1158 Make sure that newly inserted references to those registers
1159 as subexpressions will be considered valid.
1161 mention_regs is not called when a register itself
1162 is being stored in the table.
1164 Return 1 if we have done something that may have changed the hash code
1165 of X. */
1167 static int
1168 mention_regs (x)
1169 rtx x;
1171 enum rtx_code code;
1172 int i, j;
1173 const char *fmt;
1174 int changed = 0;
1176 if (x == 0)
1177 return 0;
1179 code = GET_CODE (x);
1180 if (code == REG)
1182 unsigned int regno = REGNO (x);
1183 unsigned int endregno
1184 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1185 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
1186 unsigned int i;
1188 for (i = regno; i < endregno; i++)
1190 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1191 remove_invalid_refs (i);
1193 REG_IN_TABLE (i) = REG_TICK (i);
1196 return 0;
1199 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1200 pseudo if they don't use overlapping words. We handle only pseudos
1201 here for simplicity. */
1202 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1203 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1205 unsigned int i = REGNO (SUBREG_REG (x));
1207 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1209 /* If reg_tick has been incremented more than once since
1210 reg_in_table was last set, that means that the entire
1211 register has been set before, so discard anything memorized
1212 for the entire register, including all SUBREG expressions. */
1213 if (REG_IN_TABLE (i) != REG_TICK (i) - 1)
1214 remove_invalid_refs (i);
1215 else
1216 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1219 REG_IN_TABLE (i) = REG_TICK (i);
1220 return 0;
1223 /* If X is a comparison or a COMPARE and either operand is a register
1224 that does not have a quantity, give it one. This is so that a later
1225 call to record_jump_equiv won't cause X to be assigned a different
1226 hash code and not found in the table after that call.
1228 It is not necessary to do this here, since rehash_using_reg can
1229 fix up the table later, but doing this here eliminates the need to
1230 call that expensive function in the most common case where the only
1231 use of the register is in the comparison. */
1233 if (code == COMPARE || GET_RTX_CLASS (code) == '<')
1235 if (GET_CODE (XEXP (x, 0)) == REG
1236 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1237 if (insert_regs (XEXP (x, 0), NULL, 0))
1239 rehash_using_reg (XEXP (x, 0));
1240 changed = 1;
1243 if (GET_CODE (XEXP (x, 1)) == REG
1244 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1245 if (insert_regs (XEXP (x, 1), NULL, 0))
1247 rehash_using_reg (XEXP (x, 1));
1248 changed = 1;
1252 fmt = GET_RTX_FORMAT (code);
1253 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1254 if (fmt[i] == 'e')
1255 changed |= mention_regs (XEXP (x, i));
1256 else if (fmt[i] == 'E')
1257 for (j = 0; j < XVECLEN (x, i); j++)
1258 changed |= mention_regs (XVECEXP (x, i, j));
1260 return changed;
1263 /* Update the register quantities for inserting X into the hash table
1264 with a value equivalent to CLASSP.
1265 (If the class does not contain a REG, it is irrelevant.)
1266 If MODIFIED is nonzero, X is a destination; it is being modified.
1267 Note that delete_reg_equiv should be called on a register
1268 before insert_regs is done on that register with MODIFIED != 0.
1270 Nonzero value means that elements of reg_qty have changed
1271 so X's hash code may be different. */
1273 static int
1274 insert_regs (x, classp, modified)
1275 rtx x;
1276 struct table_elt *classp;
1277 int modified;
1279 if (GET_CODE (x) == REG)
1281 unsigned int regno = REGNO (x);
1282 int qty_valid;
1284 /* If REGNO is in the equivalence table already but is of the
1285 wrong mode for that equivalence, don't do anything here. */
1287 qty_valid = REGNO_QTY_VALID_P (regno);
1288 if (qty_valid)
1290 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1292 if (ent->mode != GET_MODE (x))
1293 return 0;
1296 if (modified || ! qty_valid)
1298 if (classp)
1299 for (classp = classp->first_same_value;
1300 classp != 0;
1301 classp = classp->next_same_value)
1302 if (GET_CODE (classp->exp) == REG
1303 && GET_MODE (classp->exp) == GET_MODE (x))
1305 make_regs_eqv (regno, REGNO (classp->exp));
1306 return 1;
1309 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1310 than REG_IN_TABLE to find out if there was only a single preceding
1311 invalidation - for the SUBREG - or another one, which would be
1312 for the full register. However, if we find here that REG_TICK
1313 indicates that the register is invalid, it means that it has
1314 been invalidated in a separate operation. The SUBREG might be used
1315 now (then this is a recursive call), or we might use the full REG
1316 now and a SUBREG of it later. So bump up REG_TICK so that
1317 mention_regs will do the right thing. */
1318 if (! modified
1319 && REG_IN_TABLE (regno) >= 0
1320 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1321 REG_TICK (regno)++;
1322 make_new_qty (regno, GET_MODE (x));
1323 return 1;
1326 return 0;
1329 /* If X is a SUBREG, we will likely be inserting the inner register in the
1330 table. If that register doesn't have an assigned quantity number at
1331 this point but does later, the insertion that we will be doing now will
1332 not be accessible because its hash code will have changed. So assign
1333 a quantity number now. */
1335 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1336 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1338 insert_regs (SUBREG_REG (x), NULL, 0);
1339 mention_regs (x);
1340 return 1;
1342 else
1343 return mention_regs (x);
1346 /* Look in or update the hash table. */
1348 /* Remove table element ELT from use in the table.
1349 HASH is its hash code, made using the HASH macro.
1350 It's an argument because often that is known in advance
1351 and we save much time not recomputing it. */
1353 static void
1354 remove_from_table (elt, hash)
1355 struct table_elt *elt;
1356 unsigned hash;
1358 if (elt == 0)
1359 return;
1361 /* Mark this element as removed. See cse_insn. */
1362 elt->first_same_value = 0;
1364 /* Remove the table element from its equivalence class. */
1367 struct table_elt *prev = elt->prev_same_value;
1368 struct table_elt *next = elt->next_same_value;
1370 if (next)
1371 next->prev_same_value = prev;
1373 if (prev)
1374 prev->next_same_value = next;
1375 else
1377 struct table_elt *newfirst = next;
1378 while (next)
1380 next->first_same_value = newfirst;
1381 next = next->next_same_value;
1386 /* Remove the table element from its hash bucket. */
1389 struct table_elt *prev = elt->prev_same_hash;
1390 struct table_elt *next = elt->next_same_hash;
1392 if (next)
1393 next->prev_same_hash = prev;
1395 if (prev)
1396 prev->next_same_hash = next;
1397 else if (table[hash] == elt)
1398 table[hash] = next;
1399 else
1401 /* This entry is not in the proper hash bucket. This can happen
1402 when two classes were merged by `merge_equiv_classes'. Search
1403 for the hash bucket that it heads. This happens only very
1404 rarely, so the cost is acceptable. */
1405 for (hash = 0; hash < HASH_SIZE; hash++)
1406 if (table[hash] == elt)
1407 table[hash] = next;
1411 /* Remove the table element from its related-value circular chain. */
1413 if (elt->related_value != 0 && elt->related_value != elt)
1415 struct table_elt *p = elt->related_value;
1417 while (p->related_value != elt)
1418 p = p->related_value;
1419 p->related_value = elt->related_value;
1420 if (p->related_value == p)
1421 p->related_value = 0;
1424 /* Now add it to the free element chain. */
1425 elt->next_same_hash = free_element_chain;
1426 free_element_chain = elt;
1429 /* Look up X in the hash table and return its table element,
1430 or 0 if X is not in the table.
1432 MODE is the machine-mode of X, or if X is an integer constant
1433 with VOIDmode then MODE is the mode with which X will be used.
1435 Here we are satisfied to find an expression whose tree structure
1436 looks like X. */
1438 static struct table_elt *
1439 lookup (x, hash, mode)
1440 rtx x;
1441 unsigned hash;
1442 enum machine_mode mode;
1444 struct table_elt *p;
1446 for (p = table[hash]; p; p = p->next_same_hash)
1447 if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
1448 || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
1449 return p;
1451 return 0;
1454 /* Like `lookup' but don't care whether the table element uses invalid regs.
1455 Also ignore discrepancies in the machine mode of a register. */
1457 static struct table_elt *
1458 lookup_for_remove (x, hash, mode)
1459 rtx x;
1460 unsigned hash;
1461 enum machine_mode mode;
1463 struct table_elt *p;
1465 if (GET_CODE (x) == REG)
1467 unsigned int regno = REGNO (x);
1469 /* Don't check the machine mode when comparing registers;
1470 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1471 for (p = table[hash]; p; p = p->next_same_hash)
1472 if (GET_CODE (p->exp) == REG
1473 && REGNO (p->exp) == regno)
1474 return p;
1476 else
1478 for (p = table[hash]; p; p = p->next_same_hash)
1479 if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
1480 return p;
1483 return 0;
1486 /* Look for an expression equivalent to X and with code CODE.
1487 If one is found, return that expression. */
1489 static rtx
1490 lookup_as_function (x, code)
1491 rtx x;
1492 enum rtx_code code;
1494 struct table_elt *p
1495 = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, GET_MODE (x));
1497 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1498 long as we are narrowing. So if we looked in vain for a mode narrower
1499 than word_mode before, look for word_mode now. */
1500 if (p == 0 && code == CONST_INT
1501 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1503 x = copy_rtx (x);
1504 PUT_MODE (x, word_mode);
1505 p = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, word_mode);
1508 if (p == 0)
1509 return 0;
1511 for (p = p->first_same_value; p; p = p->next_same_value)
1512 if (GET_CODE (p->exp) == code
1513 /* Make sure this is a valid entry in the table. */
1514 && exp_equiv_p (p->exp, p->exp, 1, 0))
1515 return p->exp;
1517 return 0;
1520 /* Insert X in the hash table, assuming HASH is its hash code
1521 and CLASSP is an element of the class it should go in
1522 (or 0 if a new class should be made).
1523 It is inserted at the proper position to keep the class in
1524 the order cheapest first.
1526 MODE is the machine-mode of X, or if X is an integer constant
1527 with VOIDmode then MODE is the mode with which X will be used.
1529 For elements of equal cheapness, the most recent one
1530 goes in front, except that the first element in the list
1531 remains first unless a cheaper element is added. The order of
1532 pseudo-registers does not matter, as canon_reg will be called to
1533 find the cheapest when a register is retrieved from the table.
1535 The in_memory field in the hash table element is set to 0.
1536 The caller must set it nonzero if appropriate.
1538 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1539 and if insert_regs returns a nonzero value
1540 you must then recompute its hash code before calling here.
1542 If necessary, update table showing constant values of quantities. */
1544 #define CHEAPER(X, Y) \
1545 (preferrable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1547 static struct table_elt *
1548 insert (x, classp, hash, mode)
1549 rtx x;
1550 struct table_elt *classp;
1551 unsigned hash;
1552 enum machine_mode mode;
1554 struct table_elt *elt;
1556 /* If X is a register and we haven't made a quantity for it,
1557 something is wrong. */
1558 if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
1559 abort ();
1561 /* If X is a hard register, show it is being put in the table. */
1562 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
1564 unsigned int regno = REGNO (x);
1565 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1566 unsigned int i;
1568 for (i = regno; i < endregno; i++)
1569 SET_HARD_REG_BIT (hard_regs_in_table, i);
1572 /* Put an element for X into the right hash bucket. */
1574 elt = free_element_chain;
1575 if (elt)
1576 free_element_chain = elt->next_same_hash;
1577 else
1579 n_elements_made++;
1580 elt = (struct table_elt *) xmalloc (sizeof (struct table_elt));
1583 elt->exp = x;
1584 elt->canon_exp = NULL_RTX;
1585 elt->cost = COST (x);
1586 elt->regcost = approx_reg_cost (x);
1587 elt->next_same_value = 0;
1588 elt->prev_same_value = 0;
1589 elt->next_same_hash = table[hash];
1590 elt->prev_same_hash = 0;
1591 elt->related_value = 0;
1592 elt->in_memory = 0;
1593 elt->mode = mode;
1594 elt->is_const = (CONSTANT_P (x)
1595 /* GNU C++ takes advantage of this for `this'
1596 (and other const values). */
1597 || (GET_CODE (x) == REG
1598 && RTX_UNCHANGING_P (x)
1599 && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1600 || FIXED_BASE_PLUS_P (x));
1602 if (table[hash])
1603 table[hash]->prev_same_hash = elt;
1604 table[hash] = elt;
1606 /* Put it into the proper value-class. */
1607 if (classp)
1609 classp = classp->first_same_value;
1610 if (CHEAPER (elt, classp))
1611 /* Insert at the head of the class */
1613 struct table_elt *p;
1614 elt->next_same_value = classp;
1615 classp->prev_same_value = elt;
1616 elt->first_same_value = elt;
1618 for (p = classp; p; p = p->next_same_value)
1619 p->first_same_value = elt;
1621 else
1623 /* Insert not at head of the class. */
1624 /* Put it after the last element cheaper than X. */
1625 struct table_elt *p, *next;
1627 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1628 p = next);
1630 /* Put it after P and before NEXT. */
1631 elt->next_same_value = next;
1632 if (next)
1633 next->prev_same_value = elt;
1635 elt->prev_same_value = p;
1636 p->next_same_value = elt;
1637 elt->first_same_value = classp;
1640 else
1641 elt->first_same_value = elt;
1643 /* If this is a constant being set equivalent to a register or a register
1644 being set equivalent to a constant, note the constant equivalence.
1646 If this is a constant, it cannot be equivalent to a different constant,
1647 and a constant is the only thing that can be cheaper than a register. So
1648 we know the register is the head of the class (before the constant was
1649 inserted).
1651 If this is a register that is not already known equivalent to a
1652 constant, we must check the entire class.
1654 If this is a register that is already known equivalent to an insn,
1655 update the qtys `const_insn' to show that `this_insn' is the latest
1656 insn making that quantity equivalent to the constant. */
1658 if (elt->is_const && classp && GET_CODE (classp->exp) == REG
1659 && GET_CODE (x) != REG)
1661 int exp_q = REG_QTY (REGNO (classp->exp));
1662 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1664 exp_ent->const_rtx = gen_lowpart_if_possible (exp_ent->mode, x);
1665 exp_ent->const_insn = this_insn;
1668 else if (GET_CODE (x) == REG
1669 && classp
1670 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1671 && ! elt->is_const)
1673 struct table_elt *p;
1675 for (p = classp; p != 0; p = p->next_same_value)
1677 if (p->is_const && GET_CODE (p->exp) != REG)
1679 int x_q = REG_QTY (REGNO (x));
1680 struct qty_table_elem *x_ent = &qty_table[x_q];
1682 x_ent->const_rtx
1683 = gen_lowpart_if_possible (GET_MODE (x), p->exp);
1684 x_ent->const_insn = this_insn;
1685 break;
1690 else if (GET_CODE (x) == REG
1691 && qty_table[REG_QTY (REGNO (x))].const_rtx
1692 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1693 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1695 /* If this is a constant with symbolic value,
1696 and it has a term with an explicit integer value,
1697 link it up with related expressions. */
1698 if (GET_CODE (x) == CONST)
1700 rtx subexp = get_related_value (x);
1701 unsigned subhash;
1702 struct table_elt *subelt, *subelt_prev;
1704 if (subexp != 0)
1706 /* Get the integer-free subexpression in the hash table. */
1707 subhash = safe_hash (subexp, mode) & HASH_MASK;
1708 subelt = lookup (subexp, subhash, mode);
1709 if (subelt == 0)
1710 subelt = insert (subexp, NULL, subhash, mode);
1711 /* Initialize SUBELT's circular chain if it has none. */
1712 if (subelt->related_value == 0)
1713 subelt->related_value = subelt;
1714 /* Find the element in the circular chain that precedes SUBELT. */
1715 subelt_prev = subelt;
1716 while (subelt_prev->related_value != subelt)
1717 subelt_prev = subelt_prev->related_value;
1718 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1719 This way the element that follows SUBELT is the oldest one. */
1720 elt->related_value = subelt_prev->related_value;
1721 subelt_prev->related_value = elt;
1725 return elt;
1728 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1729 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1730 the two classes equivalent.
1732 CLASS1 will be the surviving class; CLASS2 should not be used after this
1733 call.
1735 Any invalid entries in CLASS2 will not be copied. */
1737 static void
1738 merge_equiv_classes (class1, class2)
1739 struct table_elt *class1, *class2;
1741 struct table_elt *elt, *next, *new;
1743 /* Ensure we start with the head of the classes. */
1744 class1 = class1->first_same_value;
1745 class2 = class2->first_same_value;
1747 /* If they were already equal, forget it. */
1748 if (class1 == class2)
1749 return;
1751 for (elt = class2; elt; elt = next)
1753 unsigned int hash;
1754 rtx exp = elt->exp;
1755 enum machine_mode mode = elt->mode;
1757 next = elt->next_same_value;
1759 /* Remove old entry, make a new one in CLASS1's class.
1760 Don't do this for invalid entries as we cannot find their
1761 hash code (it also isn't necessary). */
1762 if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
1764 hash_arg_in_memory = 0;
1765 hash = HASH (exp, mode);
1767 if (GET_CODE (exp) == REG)
1768 delete_reg_equiv (REGNO (exp));
1770 remove_from_table (elt, hash);
1772 if (insert_regs (exp, class1, 0))
1774 rehash_using_reg (exp);
1775 hash = HASH (exp, mode);
1777 new = insert (exp, class1, hash, mode);
1778 new->in_memory = hash_arg_in_memory;
1783 /* Flush the entire hash table. */
1785 static void
1786 flush_hash_table ()
1788 int i;
1789 struct table_elt *p;
1791 for (i = 0; i < HASH_SIZE; i++)
1792 for (p = table[i]; p; p = table[i])
1794 /* Note that invalidate can remove elements
1795 after P in the current hash chain. */
1796 if (GET_CODE (p->exp) == REG)
1797 invalidate (p->exp, p->mode);
1798 else
1799 remove_from_table (p, i);
1803 /* Function called for each rtx to check whether true dependence exist. */
1804 struct check_dependence_data
1806 enum machine_mode mode;
1807 rtx exp;
1810 static int
1811 check_dependence (x, data)
1812 rtx *x;
1813 void *data;
1815 struct check_dependence_data *d = (struct check_dependence_data *) data;
1816 if (*x && GET_CODE (*x) == MEM)
1817 return true_dependence (d->exp, d->mode, *x, cse_rtx_varies_p);
1818 else
1819 return 0;
1822 /* Remove from the hash table, or mark as invalid, all expressions whose
1823 values could be altered by storing in X. X is a register, a subreg, or
1824 a memory reference with nonvarying address (because, when a memory
1825 reference with a varying address is stored in, all memory references are
1826 removed by invalidate_memory so specific invalidation is superfluous).
1827 FULL_MODE, if not VOIDmode, indicates that this much should be
1828 invalidated instead of just the amount indicated by the mode of X. This
1829 is only used for bitfield stores into memory.
1831 A nonvarying address may be just a register or just a symbol reference,
1832 or it may be either of those plus a numeric offset. */
1834 static void
1835 invalidate (x, full_mode)
1836 rtx x;
1837 enum machine_mode full_mode;
1839 int i;
1840 struct table_elt *p;
1842 switch (GET_CODE (x))
1844 case REG:
1846 /* If X is a register, dependencies on its contents are recorded
1847 through the qty number mechanism. Just change the qty number of
1848 the register, mark it as invalid for expressions that refer to it,
1849 and remove it itself. */
1850 unsigned int regno = REGNO (x);
1851 unsigned int hash = HASH (x, GET_MODE (x));
1853 /* Remove REGNO from any quantity list it might be on and indicate
1854 that its value might have changed. If it is a pseudo, remove its
1855 entry from the hash table.
1857 For a hard register, we do the first two actions above for any
1858 additional hard registers corresponding to X. Then, if any of these
1859 registers are in the table, we must remove any REG entries that
1860 overlap these registers. */
1862 delete_reg_equiv (regno);
1863 REG_TICK (regno)++;
1865 if (regno >= FIRST_PSEUDO_REGISTER)
1867 /* Because a register can be referenced in more than one mode,
1868 we might have to remove more than one table entry. */
1869 struct table_elt *elt;
1871 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1872 remove_from_table (elt, hash);
1874 else
1876 HOST_WIDE_INT in_table
1877 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1878 unsigned int endregno
1879 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1880 unsigned int tregno, tendregno, rn;
1881 struct table_elt *p, *next;
1883 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1885 for (rn = regno + 1; rn < endregno; rn++)
1887 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1888 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1889 delete_reg_equiv (rn);
1890 REG_TICK (rn)++;
1893 if (in_table)
1894 for (hash = 0; hash < HASH_SIZE; hash++)
1895 for (p = table[hash]; p; p = next)
1897 next = p->next_same_hash;
1899 if (GET_CODE (p->exp) != REG
1900 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1901 continue;
1903 tregno = REGNO (p->exp);
1904 tendregno
1905 = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
1906 if (tendregno > regno && tregno < endregno)
1907 remove_from_table (p, hash);
1911 return;
1913 case SUBREG:
1914 invalidate (SUBREG_REG (x), VOIDmode);
1915 return;
1917 case PARALLEL:
1918 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1919 invalidate (XVECEXP (x, 0, i), VOIDmode);
1920 return;
1922 case EXPR_LIST:
1923 /* This is part of a disjoint return value; extract the location in
1924 question ignoring the offset. */
1925 invalidate (XEXP (x, 0), VOIDmode);
1926 return;
1928 case MEM:
1929 /* Calculate the canonical version of X here so that
1930 true_dependence doesn't generate new RTL for X on each call. */
1931 x = canon_rtx (x);
1933 /* Remove all hash table elements that refer to overlapping pieces of
1934 memory. */
1935 if (full_mode == VOIDmode)
1936 full_mode = GET_MODE (x);
1938 for (i = 0; i < HASH_SIZE; i++)
1940 struct table_elt *next;
1942 for (p = table[i]; p; p = next)
1944 next = p->next_same_hash;
1945 if (p->in_memory)
1947 struct check_dependence_data d;
1949 /* Just canonicalize the expression once;
1950 otherwise each time we call invalidate
1951 true_dependence will canonicalize the
1952 expression again. */
1953 if (!p->canon_exp)
1954 p->canon_exp = canon_rtx (p->exp);
1955 d.exp = x;
1956 d.mode = full_mode;
1957 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1958 remove_from_table (p, i);
1962 return;
1964 default:
1965 abort ();
1969 /* Remove all expressions that refer to register REGNO,
1970 since they are already invalid, and we are about to
1971 mark that register valid again and don't want the old
1972 expressions to reappear as valid. */
1974 static void
1975 remove_invalid_refs (regno)
1976 unsigned int regno;
1978 unsigned int i;
1979 struct table_elt *p, *next;
1981 for (i = 0; i < HASH_SIZE; i++)
1982 for (p = table[i]; p; p = next)
1984 next = p->next_same_hash;
1985 if (GET_CODE (p->exp) != REG
1986 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1987 remove_from_table (p, i);
1991 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1992 and mode MODE. */
1993 static void
1994 remove_invalid_subreg_refs (regno, offset, mode)
1995 unsigned int regno;
1996 unsigned int offset;
1997 enum machine_mode mode;
1999 unsigned int i;
2000 struct table_elt *p, *next;
2001 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2003 for (i = 0; i < HASH_SIZE; i++)
2004 for (p = table[i]; p; p = next)
2006 rtx exp = p->exp;
2007 next = p->next_same_hash;
2009 if (GET_CODE (exp) != REG
2010 && (GET_CODE (exp) != SUBREG
2011 || GET_CODE (SUBREG_REG (exp)) != REG
2012 || REGNO (SUBREG_REG (exp)) != regno
2013 || (((SUBREG_BYTE (exp)
2014 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2015 && SUBREG_BYTE (exp) <= end))
2016 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2017 remove_from_table (p, i);
2021 /* Recompute the hash codes of any valid entries in the hash table that
2022 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2024 This is called when we make a jump equivalence. */
2026 static void
2027 rehash_using_reg (x)
2028 rtx x;
2030 unsigned int i;
2031 struct table_elt *p, *next;
2032 unsigned hash;
2034 if (GET_CODE (x) == SUBREG)
2035 x = SUBREG_REG (x);
2037 /* If X is not a register or if the register is known not to be in any
2038 valid entries in the table, we have no work to do. */
2040 if (GET_CODE (x) != REG
2041 || REG_IN_TABLE (REGNO (x)) < 0
2042 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2043 return;
2045 /* Scan all hash chains looking for valid entries that mention X.
2046 If we find one and it is in the wrong hash chain, move it. We can skip
2047 objects that are registers, since they are handled specially. */
2049 for (i = 0; i < HASH_SIZE; i++)
2050 for (p = table[i]; p; p = next)
2052 next = p->next_same_hash;
2053 if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
2054 && exp_equiv_p (p->exp, p->exp, 1, 0)
2055 && i != (hash = safe_hash (p->exp, p->mode) & HASH_MASK))
2057 if (p->next_same_hash)
2058 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2060 if (p->prev_same_hash)
2061 p->prev_same_hash->next_same_hash = p->next_same_hash;
2062 else
2063 table[i] = p->next_same_hash;
2065 p->next_same_hash = table[hash];
2066 p->prev_same_hash = 0;
2067 if (table[hash])
2068 table[hash]->prev_same_hash = p;
2069 table[hash] = p;
2074 /* Remove from the hash table any expression that is a call-clobbered
2075 register. Also update their TICK values. */
2077 static void
2078 invalidate_for_call ()
2080 unsigned int regno, endregno;
2081 unsigned int i;
2082 unsigned hash;
2083 struct table_elt *p, *next;
2084 int in_table = 0;
2086 /* Go through all the hard registers. For each that is clobbered in
2087 a CALL_INSN, remove the register from quantity chains and update
2088 reg_tick if defined. Also see if any of these registers is currently
2089 in the table. */
2091 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2092 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2094 delete_reg_equiv (regno);
2095 if (REG_TICK (regno) >= 0)
2096 REG_TICK (regno)++;
2098 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2101 /* In the case where we have no call-clobbered hard registers in the
2102 table, we are done. Otherwise, scan the table and remove any
2103 entry that overlaps a call-clobbered register. */
2105 if (in_table)
2106 for (hash = 0; hash < HASH_SIZE; hash++)
2107 for (p = table[hash]; p; p = next)
2109 next = p->next_same_hash;
2111 if (GET_CODE (p->exp) != REG
2112 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2113 continue;
2115 regno = REGNO (p->exp);
2116 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));
2118 for (i = regno; i < endregno; i++)
2119 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2121 remove_from_table (p, hash);
2122 break;
2127 /* Given an expression X of type CONST,
2128 and ELT which is its table entry (or 0 if it
2129 is not in the hash table),
2130 return an alternate expression for X as a register plus integer.
2131 If none can be found, return 0. */
2133 static rtx
2134 use_related_value (x, elt)
2135 rtx x;
2136 struct table_elt *elt;
2138 struct table_elt *relt = 0;
2139 struct table_elt *p, *q;
2140 HOST_WIDE_INT offset;
2142 /* First, is there anything related known?
2143 If we have a table element, we can tell from that.
2144 Otherwise, must look it up. */
2146 if (elt != 0 && elt->related_value != 0)
2147 relt = elt;
2148 else if (elt == 0 && GET_CODE (x) == CONST)
2150 rtx subexp = get_related_value (x);
2151 if (subexp != 0)
2152 relt = lookup (subexp,
2153 safe_hash (subexp, GET_MODE (subexp)) & HASH_MASK,
2154 GET_MODE (subexp));
2157 if (relt == 0)
2158 return 0;
2160 /* Search all related table entries for one that has an
2161 equivalent register. */
2163 p = relt;
2164 while (1)
2166 /* This loop is strange in that it is executed in two different cases.
2167 The first is when X is already in the table. Then it is searching
2168 the RELATED_VALUE list of X's class (RELT). The second case is when
2169 X is not in the table. Then RELT points to a class for the related
2170 value.
2172 Ensure that, whatever case we are in, that we ignore classes that have
2173 the same value as X. */
2175 if (rtx_equal_p (x, p->exp))
2176 q = 0;
2177 else
2178 for (q = p->first_same_value; q; q = q->next_same_value)
2179 if (GET_CODE (q->exp) == REG)
2180 break;
2182 if (q)
2183 break;
2185 p = p->related_value;
2187 /* We went all the way around, so there is nothing to be found.
2188 Alternatively, perhaps RELT was in the table for some other reason
2189 and it has no related values recorded. */
2190 if (p == relt || p == 0)
2191 break;
2194 if (q == 0)
2195 return 0;
2197 offset = (get_integer_term (x) - get_integer_term (p->exp));
2198 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2199 return plus_constant (q->exp, offset);
2202 /* Hash a string. Just add its bytes up. */
2203 static inline unsigned
2204 canon_hash_string (ps)
2205 const char *ps;
2207 unsigned hash = 0;
2208 const unsigned char *p = (const unsigned char *) ps;
2210 if (p)
2211 while (*p)
2212 hash += *p++;
2214 return hash;
2217 /* Hash an rtx. We are careful to make sure the value is never negative.
2218 Equivalent registers hash identically.
2219 MODE is used in hashing for CONST_INTs only;
2220 otherwise the mode of X is used.
2222 Store 1 in do_not_record if any subexpression is volatile.
2224 Store 1 in hash_arg_in_memory if X contains a MEM rtx
2225 which does not have the RTX_UNCHANGING_P bit set.
2227 Note that cse_insn knows that the hash code of a MEM expression
2228 is just (int) MEM plus the hash code of the address. */
2230 static unsigned
2231 canon_hash (x, mode)
2232 rtx x;
2233 enum machine_mode mode;
2235 int i, j;
2236 unsigned hash = 0;
2237 enum rtx_code code;
2238 const char *fmt;
2240 /* repeat is used to turn tail-recursion into iteration. */
2241 repeat:
2242 if (x == 0)
2243 return hash;
2245 code = GET_CODE (x);
2246 switch (code)
2248 case REG:
2250 unsigned int regno = REGNO (x);
2251 bool record;
2253 /* On some machines, we can't record any non-fixed hard register,
2254 because extending its life will cause reload problems. We
2255 consider ap, fp, sp, gp to be fixed for this purpose.
2257 We also consider CCmode registers to be fixed for this purpose;
2258 failure to do so leads to failure to simplify 0<100 type of
2259 conditionals.
2261 On all machines, we can't record any global registers.
2262 Nor should we record any register that is in a small
2263 class, as defined by CLASS_LIKELY_SPILLED_P. */
2265 if (regno >= FIRST_PSEUDO_REGISTER)
2266 record = true;
2267 else if (x == frame_pointer_rtx
2268 || x == hard_frame_pointer_rtx
2269 || x == arg_pointer_rtx
2270 || x == stack_pointer_rtx
2271 || x == pic_offset_table_rtx)
2272 record = true;
2273 else if (global_regs[regno])
2274 record = false;
2275 else if (fixed_regs[regno])
2276 record = true;
2277 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2278 record = true;
2279 else if (SMALL_REGISTER_CLASSES)
2280 record = false;
2281 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2282 record = false;
2283 else
2284 record = true;
2286 if (!record)
2288 do_not_record = 1;
2289 return 0;
2292 hash += ((unsigned) REG << 7) + (unsigned) REG_QTY (regno);
2293 return hash;
2296 /* We handle SUBREG of a REG specially because the underlying
2297 reg changes its hash value with every value change; we don't
2298 want to have to forget unrelated subregs when one subreg changes. */
2299 case SUBREG:
2301 if (GET_CODE (SUBREG_REG (x)) == REG)
2303 hash += (((unsigned) SUBREG << 7)
2304 + REGNO (SUBREG_REG (x))
2305 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2306 return hash;
2308 break;
2311 case CONST_INT:
2313 unsigned HOST_WIDE_INT tem = INTVAL (x);
2314 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
2315 return hash;
2318 case CONST_DOUBLE:
2319 /* This is like the general case, except that it only counts
2320 the integers representing the constant. */
2321 hash += (unsigned) code + (unsigned) GET_MODE (x);
2322 if (GET_MODE (x) != VOIDmode)
2323 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
2325 unsigned HOST_WIDE_INT tem = XWINT (x, i);
2326 hash += tem;
2328 else
2329 hash += ((unsigned) CONST_DOUBLE_LOW (x)
2330 + (unsigned) CONST_DOUBLE_HIGH (x));
2331 return hash;
2333 case CONST_VECTOR:
2335 int units;
2336 rtx elt;
2338 units = CONST_VECTOR_NUNITS (x);
2340 for (i = 0; i < units; ++i)
2342 elt = CONST_VECTOR_ELT (x, i);
2343 hash += canon_hash (elt, GET_MODE (elt));
2346 return hash;
2349 /* Assume there is only one rtx object for any given label. */
2350 case LABEL_REF:
2351 hash += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
2352 return hash;
2354 case SYMBOL_REF:
2355 hash += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
2356 return hash;
2358 case MEM:
2359 /* We don't record if marked volatile or if BLKmode since we don't
2360 know the size of the move. */
2361 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2363 do_not_record = 1;
2364 return 0;
2366 if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
2368 hash_arg_in_memory = 1;
2370 /* Now that we have already found this special case,
2371 might as well speed it up as much as possible. */
2372 hash += (unsigned) MEM;
2373 x = XEXP (x, 0);
2374 goto repeat;
2376 case USE:
2377 /* A USE that mentions non-volatile memory needs special
2378 handling since the MEM may be BLKmode which normally
2379 prevents an entry from being made. Pure calls are
2380 marked by a USE which mentions BLKmode memory. */
2381 if (GET_CODE (XEXP (x, 0)) == MEM
2382 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2384 hash += (unsigned) USE;
2385 x = XEXP (x, 0);
2387 if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
2388 hash_arg_in_memory = 1;
2390 /* Now that we have already found this special case,
2391 might as well speed it up as much as possible. */
2392 hash += (unsigned) MEM;
2393 x = XEXP (x, 0);
2394 goto repeat;
2396 break;
2398 case PRE_DEC:
2399 case PRE_INC:
2400 case POST_DEC:
2401 case POST_INC:
2402 case PRE_MODIFY:
2403 case POST_MODIFY:
2404 case PC:
2405 case CC0:
2406 case CALL:
2407 case UNSPEC_VOLATILE:
2408 do_not_record = 1;
2409 return 0;
2411 case ASM_OPERANDS:
2412 if (MEM_VOLATILE_P (x))
2414 do_not_record = 1;
2415 return 0;
2417 else
2419 /* We don't want to take the filename and line into account. */
2420 hash += (unsigned) code + (unsigned) GET_MODE (x)
2421 + canon_hash_string (ASM_OPERANDS_TEMPLATE (x))
2422 + canon_hash_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2423 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2425 if (ASM_OPERANDS_INPUT_LENGTH (x))
2427 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2429 hash += (canon_hash (ASM_OPERANDS_INPUT (x, i),
2430 GET_MODE (ASM_OPERANDS_INPUT (x, i)))
2431 + canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT
2432 (x, i)));
2435 hash += canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2436 x = ASM_OPERANDS_INPUT (x, 0);
2437 mode = GET_MODE (x);
2438 goto repeat;
2441 return hash;
2443 break;
2445 default:
2446 break;
2449 i = GET_RTX_LENGTH (code) - 1;
2450 hash += (unsigned) code + (unsigned) GET_MODE (x);
2451 fmt = GET_RTX_FORMAT (code);
2452 for (; i >= 0; i--)
2454 if (fmt[i] == 'e')
2456 rtx tem = XEXP (x, i);
2458 /* If we are about to do the last recursive call
2459 needed at this level, change it into iteration.
2460 This function is called enough to be worth it. */
2461 if (i == 0)
2463 x = tem;
2464 goto repeat;
2466 hash += canon_hash (tem, 0);
2468 else if (fmt[i] == 'E')
2469 for (j = 0; j < XVECLEN (x, i); j++)
2470 hash += canon_hash (XVECEXP (x, i, j), 0);
2471 else if (fmt[i] == 's')
2472 hash += canon_hash_string (XSTR (x, i));
2473 else if (fmt[i] == 'i')
2475 unsigned tem = XINT (x, i);
2476 hash += tem;
2478 else if (fmt[i] == '0' || fmt[i] == 't')
2479 /* Unused. */
2481 else
2482 abort ();
2484 return hash;
2487 /* Like canon_hash but with no side effects. */
2489 static unsigned
2490 safe_hash (x, mode)
2491 rtx x;
2492 enum machine_mode mode;
2494 int save_do_not_record = do_not_record;
2495 int save_hash_arg_in_memory = hash_arg_in_memory;
2496 unsigned hash = canon_hash (x, mode);
2497 hash_arg_in_memory = save_hash_arg_in_memory;
2498 do_not_record = save_do_not_record;
2499 return hash;
2502 /* Return 1 iff X and Y would canonicalize into the same thing,
2503 without actually constructing the canonicalization of either one.
2504 If VALIDATE is nonzero,
2505 we assume X is an expression being processed from the rtl
2506 and Y was found in the hash table. We check register refs
2507 in Y for being marked as valid.
2509 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
2510 that is known to be in the register. Ordinarily, we don't allow them
2511 to match, because letting them match would cause unpredictable results
2512 in all the places that search a hash table chain for an equivalent
2513 for a given value. A possible equivalent that has different structure
2514 has its hash code computed from different data. Whether the hash code
2515 is the same as that of the given value is pure luck. */
2517 static int
2518 exp_equiv_p (x, y, validate, equal_values)
2519 rtx x, y;
2520 int validate;
2521 int equal_values;
2523 int i, j;
2524 enum rtx_code code;
2525 const char *fmt;
2527 /* Note: it is incorrect to assume an expression is equivalent to itself
2528 if VALIDATE is nonzero. */
2529 if (x == y && !validate)
2530 return 1;
2531 if (x == 0 || y == 0)
2532 return x == y;
2534 code = GET_CODE (x);
2535 if (code != GET_CODE (y))
2537 if (!equal_values)
2538 return 0;
2540 /* If X is a constant and Y is a register or vice versa, they may be
2541 equivalent. We only have to validate if Y is a register. */
2542 if (CONSTANT_P (x) && GET_CODE (y) == REG
2543 && REGNO_QTY_VALID_P (REGNO (y)))
2545 int y_q = REG_QTY (REGNO (y));
2546 struct qty_table_elem *y_ent = &qty_table[y_q];
2548 if (GET_MODE (y) == y_ent->mode
2549 && rtx_equal_p (x, y_ent->const_rtx)
2550 && (! validate || REG_IN_TABLE (REGNO (y)) == REG_TICK (REGNO (y))))
2551 return 1;
2554 if (CONSTANT_P (y) && code == REG
2555 && REGNO_QTY_VALID_P (REGNO (x)))
2557 int x_q = REG_QTY (REGNO (x));
2558 struct qty_table_elem *x_ent = &qty_table[x_q];
2560 if (GET_MODE (x) == x_ent->mode
2561 && rtx_equal_p (y, x_ent->const_rtx))
2562 return 1;
2565 return 0;
2568 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2569 if (GET_MODE (x) != GET_MODE (y))
2570 return 0;
2572 switch (code)
2574 case PC:
2575 case CC0:
2576 case CONST_INT:
2577 return x == y;
2579 case LABEL_REF:
2580 return XEXP (x, 0) == XEXP (y, 0);
2582 case SYMBOL_REF:
2583 return XSTR (x, 0) == XSTR (y, 0);
2585 case REG:
2587 unsigned int regno = REGNO (y);
2588 unsigned int endregno
2589 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2590 : HARD_REGNO_NREGS (regno, GET_MODE (y)));
2591 unsigned int i;
2593 /* If the quantities are not the same, the expressions are not
2594 equivalent. If there are and we are not to validate, they
2595 are equivalent. Otherwise, ensure all regs are up-to-date. */
2597 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2598 return 0;
2600 if (! validate)
2601 return 1;
2603 for (i = regno; i < endregno; i++)
2604 if (REG_IN_TABLE (i) != REG_TICK (i))
2605 return 0;
2607 return 1;
2610 /* For commutative operations, check both orders. */
2611 case PLUS:
2612 case MULT:
2613 case AND:
2614 case IOR:
2615 case XOR:
2616 case NE:
2617 case EQ:
2618 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
2619 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2620 validate, equal_values))
2621 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2622 validate, equal_values)
2623 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2624 validate, equal_values)));
2626 case ASM_OPERANDS:
2627 /* We don't use the generic code below because we want to
2628 disregard filename and line numbers. */
2630 /* A volatile asm isn't equivalent to any other. */
2631 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2632 return 0;
2634 if (GET_MODE (x) != GET_MODE (y)
2635 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2636 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2637 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2638 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2639 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2640 return 0;
2642 if (ASM_OPERANDS_INPUT_LENGTH (x))
2644 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2645 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2646 ASM_OPERANDS_INPUT (y, i),
2647 validate, equal_values)
2648 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2649 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2650 return 0;
2653 return 1;
2655 default:
2656 break;
2659 /* Compare the elements. If any pair of corresponding elements
2660 fail to match, return 0 for the whole things. */
2662 fmt = GET_RTX_FORMAT (code);
2663 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2665 switch (fmt[i])
2667 case 'e':
2668 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
2669 return 0;
2670 break;
2672 case 'E':
2673 if (XVECLEN (x, i) != XVECLEN (y, i))
2674 return 0;
2675 for (j = 0; j < XVECLEN (x, i); j++)
2676 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2677 validate, equal_values))
2678 return 0;
2679 break;
2681 case 's':
2682 if (strcmp (XSTR (x, i), XSTR (y, i)))
2683 return 0;
2684 break;
2686 case 'i':
2687 if (XINT (x, i) != XINT (y, i))
2688 return 0;
2689 break;
2691 case 'w':
2692 if (XWINT (x, i) != XWINT (y, i))
2693 return 0;
2694 break;
2696 case '0':
2697 case 't':
2698 break;
2700 default:
2701 abort ();
2705 return 1;
2708 /* Return 1 if X has a value that can vary even between two
2709 executions of the program. 0 means X can be compared reliably
2710 against certain constants or near-constants. */
2712 static int
2713 cse_rtx_varies_p (x, from_alias)
2714 rtx x;
2715 int from_alias;
2717 /* We need not check for X and the equivalence class being of the same
2718 mode because if X is equivalent to a constant in some mode, it
2719 doesn't vary in any mode. */
2721 if (GET_CODE (x) == REG
2722 && REGNO_QTY_VALID_P (REGNO (x)))
2724 int x_q = REG_QTY (REGNO (x));
2725 struct qty_table_elem *x_ent = &qty_table[x_q];
2727 if (GET_MODE (x) == x_ent->mode
2728 && x_ent->const_rtx != NULL_RTX)
2729 return 0;
2732 if (GET_CODE (x) == PLUS
2733 && GET_CODE (XEXP (x, 1)) == CONST_INT
2734 && GET_CODE (XEXP (x, 0)) == REG
2735 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2737 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2738 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2740 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2741 && x0_ent->const_rtx != NULL_RTX)
2742 return 0;
2745 /* This can happen as the result of virtual register instantiation, if
2746 the initial constant is too large to be a valid address. This gives
2747 us a three instruction sequence, load large offset into a register,
2748 load fp minus a constant into a register, then a MEM which is the
2749 sum of the two `constant' registers. */
2750 if (GET_CODE (x) == PLUS
2751 && GET_CODE (XEXP (x, 0)) == REG
2752 && GET_CODE (XEXP (x, 1)) == REG
2753 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2754 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2756 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2757 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2758 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2759 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2761 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2762 && x0_ent->const_rtx != NULL_RTX
2763 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2764 && x1_ent->const_rtx != NULL_RTX)
2765 return 0;
2768 return rtx_varies_p (x, from_alias);
2771 /* Canonicalize an expression:
2772 replace each register reference inside it
2773 with the "oldest" equivalent register.
2775 If INSN is non-zero and we are replacing a pseudo with a hard register
2776 or vice versa, validate_change is used to ensure that INSN remains valid
2777 after we make our substitution. The calls are made with IN_GROUP non-zero
2778 so apply_change_group must be called upon the outermost return from this
2779 function (unless INSN is zero). The result of apply_change_group can
2780 generally be discarded since the changes we are making are optional. */
2782 static rtx
2783 canon_reg (x, insn)
2784 rtx x;
2785 rtx insn;
2787 int i;
2788 enum rtx_code code;
2789 const char *fmt;
2791 if (x == 0)
2792 return x;
2794 code = GET_CODE (x);
2795 switch (code)
2797 case PC:
2798 case CC0:
2799 case CONST:
2800 case CONST_INT:
2801 case CONST_DOUBLE:
2802 case CONST_VECTOR:
2803 case SYMBOL_REF:
2804 case LABEL_REF:
2805 case ADDR_VEC:
2806 case ADDR_DIFF_VEC:
2807 return x;
2809 case REG:
2811 int first;
2812 int q;
2813 struct qty_table_elem *ent;
2815 /* Never replace a hard reg, because hard regs can appear
2816 in more than one machine mode, and we must preserve the mode
2817 of each occurrence. Also, some hard regs appear in
2818 MEMs that are shared and mustn't be altered. Don't try to
2819 replace any reg that maps to a reg of class NO_REGS. */
2820 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2821 || ! REGNO_QTY_VALID_P (REGNO (x)))
2822 return x;
2824 q = REG_QTY (REGNO (x));
2825 ent = &qty_table[q];
2826 first = ent->first_reg;
2827 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2828 : REGNO_REG_CLASS (first) == NO_REGS ? x
2829 : gen_rtx_REG (ent->mode, first));
2832 default:
2833 break;
2836 fmt = GET_RTX_FORMAT (code);
2837 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2839 int j;
2841 if (fmt[i] == 'e')
2843 rtx new = canon_reg (XEXP (x, i), insn);
2844 int insn_code;
2846 /* If replacing pseudo with hard reg or vice versa, ensure the
2847 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2848 if (insn != 0 && new != 0
2849 && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
2850 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2851 != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
2852 || (insn_code = recog_memoized (insn)) < 0
2853 || insn_data[insn_code].n_dups > 0))
2854 validate_change (insn, &XEXP (x, i), new, 1);
2855 else
2856 XEXP (x, i) = new;
2858 else if (fmt[i] == 'E')
2859 for (j = 0; j < XVECLEN (x, i); j++)
2860 XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
2863 return x;
2866 /* LOC is a location within INSN that is an operand address (the contents of
2867 a MEM). Find the best equivalent address to use that is valid for this
2868 insn.
2870 On most CISC machines, complicated address modes are costly, and rtx_cost
2871 is a good approximation for that cost. However, most RISC machines have
2872 only a few (usually only one) memory reference formats. If an address is
2873 valid at all, it is often just as cheap as any other address. Hence, for
2874 RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
2875 costs of various addresses. For two addresses of equal cost, choose the one
2876 with the highest `rtx_cost' value as that has the potential of eliminating
2877 the most insns. For equal costs, we choose the first in the equivalence
2878 class. Note that we ignore the fact that pseudo registers are cheaper
2879 than hard registers here because we would also prefer the pseudo registers.
2882 static void
2883 find_best_addr (insn, loc, mode)
2884 rtx insn;
2885 rtx *loc;
2886 enum machine_mode mode;
2888 struct table_elt *elt;
2889 rtx addr = *loc;
2890 #ifdef ADDRESS_COST
2891 struct table_elt *p;
2892 int found_better = 1;
2893 #endif
2894 int save_do_not_record = do_not_record;
2895 int save_hash_arg_in_memory = hash_arg_in_memory;
2896 int addr_volatile;
2897 int regno;
2898 unsigned hash;
2900 /* Do not try to replace constant addresses or addresses of local and
2901 argument slots. These MEM expressions are made only once and inserted
2902 in many instructions, as well as being used to control symbol table
2903 output. It is not safe to clobber them.
2905 There are some uncommon cases where the address is already in a register
2906 for some reason, but we cannot take advantage of that because we have
2907 no easy way to unshare the MEM. In addition, looking up all stack
2908 addresses is costly. */
2909 if ((GET_CODE (addr) == PLUS
2910 && GET_CODE (XEXP (addr, 0)) == REG
2911 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2912 && (regno = REGNO (XEXP (addr, 0)),
2913 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2914 || regno == ARG_POINTER_REGNUM))
2915 || (GET_CODE (addr) == REG
2916 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2917 || regno == HARD_FRAME_POINTER_REGNUM
2918 || regno == ARG_POINTER_REGNUM))
2919 || GET_CODE (addr) == ADDRESSOF
2920 || CONSTANT_ADDRESS_P (addr))
2921 return;
2923 /* If this address is not simply a register, try to fold it. This will
2924 sometimes simplify the expression. Many simplifications
2925 will not be valid, but some, usually applying the associative rule, will
2926 be valid and produce better code. */
2927 if (GET_CODE (addr) != REG)
2929 rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);
2930 int addr_folded_cost = address_cost (folded, mode);
2931 int addr_cost = address_cost (addr, mode);
2933 if ((addr_folded_cost < addr_cost
2934 || (addr_folded_cost == addr_cost
2935 /* ??? The rtx_cost comparison is left over from an older
2936 version of this code. It is probably no longer helpful. */
2937 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2938 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2939 && validate_change (insn, loc, folded, 0))
2940 addr = folded;
2943 /* If this address is not in the hash table, we can't look for equivalences
2944 of the whole address. Also, ignore if volatile. */
2946 do_not_record = 0;
2947 hash = HASH (addr, Pmode);
2948 addr_volatile = do_not_record;
2949 do_not_record = save_do_not_record;
2950 hash_arg_in_memory = save_hash_arg_in_memory;
2952 if (addr_volatile)
2953 return;
2955 elt = lookup (addr, hash, Pmode);
2957 #ifndef ADDRESS_COST
2958 if (elt)
2960 int our_cost = elt->cost;
2962 /* Find the lowest cost below ours that works. */
2963 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
2964 if (elt->cost < our_cost
2965 && (GET_CODE (elt->exp) == REG
2966 || exp_equiv_p (elt->exp, elt->exp, 1, 0))
2967 && validate_change (insn, loc,
2968 canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
2969 return;
2971 #else
2973 if (elt)
2975 /* We need to find the best (under the criteria documented above) entry
2976 in the class that is valid. We use the `flag' field to indicate
2977 choices that were invalid and iterate until we can't find a better
2978 one that hasn't already been tried. */
2980 for (p = elt->first_same_value; p; p = p->next_same_value)
2981 p->flag = 0;
2983 while (found_better)
2985 int best_addr_cost = address_cost (*loc, mode);
2986 int best_rtx_cost = (elt->cost + 1) >> 1;
2987 int exp_cost;
2988 struct table_elt *best_elt = elt;
2990 found_better = 0;
2991 for (p = elt->first_same_value; p; p = p->next_same_value)
2992 if (! p->flag)
2994 if ((GET_CODE (p->exp) == REG
2995 || exp_equiv_p (p->exp, p->exp, 1, 0))
2996 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2997 || (exp_cost == best_addr_cost
2998 && ((p->cost + 1) >> 1) > best_rtx_cost)))
3000 found_better = 1;
3001 best_addr_cost = exp_cost;
3002 best_rtx_cost = (p->cost + 1) >> 1;
3003 best_elt = p;
3007 if (found_better)
3009 if (validate_change (insn, loc,
3010 canon_reg (copy_rtx (best_elt->exp),
3011 NULL_RTX), 0))
3012 return;
3013 else
3014 best_elt->flag = 1;
3019 /* If the address is a binary operation with the first operand a register
3020 and the second a constant, do the same as above, but looking for
3021 equivalences of the register. Then try to simplify before checking for
3022 the best address to use. This catches a few cases: First is when we
3023 have REG+const and the register is another REG+const. We can often merge
3024 the constants and eliminate one insn and one register. It may also be
3025 that a machine has a cheap REG+REG+const. Finally, this improves the
3026 code on the Alpha for unaligned byte stores. */
3028 if (flag_expensive_optimizations
3029 && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
3030 || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
3031 && GET_CODE (XEXP (*loc, 0)) == REG
3032 && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
3034 rtx c = XEXP (*loc, 1);
3036 do_not_record = 0;
3037 hash = HASH (XEXP (*loc, 0), Pmode);
3038 do_not_record = save_do_not_record;
3039 hash_arg_in_memory = save_hash_arg_in_memory;
3041 elt = lookup (XEXP (*loc, 0), hash, Pmode);
3042 if (elt == 0)
3043 return;
3045 /* We need to find the best (under the criteria documented above) entry
3046 in the class that is valid. We use the `flag' field to indicate
3047 choices that were invalid and iterate until we can't find a better
3048 one that hasn't already been tried. */
3050 for (p = elt->first_same_value; p; p = p->next_same_value)
3051 p->flag = 0;
3053 while (found_better)
3055 int best_addr_cost = address_cost (*loc, mode);
3056 int best_rtx_cost = (COST (*loc) + 1) >> 1;
3057 struct table_elt *best_elt = elt;
3058 rtx best_rtx = *loc;
3059 int count;
3061 /* This is at worst case an O(n^2) algorithm, so limit our search
3062 to the first 32 elements on the list. This avoids trouble
3063 compiling code with very long basic blocks that can easily
3064 call simplify_gen_binary so many times that we run out of
3065 memory. */
3067 found_better = 0;
3068 for (p = elt->first_same_value, count = 0;
3069 p && count < 32;
3070 p = p->next_same_value, count++)
3071 if (! p->flag
3072 && (GET_CODE (p->exp) == REG
3073 || exp_equiv_p (p->exp, p->exp, 1, 0)))
3075 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
3076 p->exp, c);
3077 int new_cost;
3078 new_cost = address_cost (new, mode);
3080 if (new_cost < best_addr_cost
3081 || (new_cost == best_addr_cost
3082 && (COST (new) + 1) >> 1 > best_rtx_cost))
3084 found_better = 1;
3085 best_addr_cost = new_cost;
3086 best_rtx_cost = (COST (new) + 1) >> 1;
3087 best_elt = p;
3088 best_rtx = new;
3092 if (found_better)
3094 if (validate_change (insn, loc,
3095 canon_reg (copy_rtx (best_rtx),
3096 NULL_RTX), 0))
3097 return;
3098 else
3099 best_elt->flag = 1;
3103 #endif
3106 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3107 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3108 what values are being compared.
3110 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3111 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3112 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3113 compared to produce cc0.
3115 The return value is the comparison operator and is either the code of
3116 A or the code corresponding to the inverse of the comparison. */
3118 static enum rtx_code
3119 find_comparison_args (code, parg1, parg2, pmode1, pmode2)
3120 enum rtx_code code;
3121 rtx *parg1, *parg2;
3122 enum machine_mode *pmode1, *pmode2;
3124 rtx arg1, arg2;
3126 arg1 = *parg1, arg2 = *parg2;
3128 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3130 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3132 /* Set non-zero when we find something of interest. */
3133 rtx x = 0;
3134 int reverse_code = 0;
3135 struct table_elt *p = 0;
3137 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3138 On machines with CC0, this is the only case that can occur, since
3139 fold_rtx will return the COMPARE or item being compared with zero
3140 when given CC0. */
3142 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3143 x = arg1;
3145 /* If ARG1 is a comparison operator and CODE is testing for
3146 STORE_FLAG_VALUE, get the inner arguments. */
3148 else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
3150 #ifdef FLOAT_STORE_FLAG_VALUE
3151 REAL_VALUE_TYPE fsfv;
3152 #endif
3154 if (code == NE
3155 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3156 && code == LT && STORE_FLAG_VALUE == -1)
3157 #ifdef FLOAT_STORE_FLAG_VALUE
3158 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3159 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3160 REAL_VALUE_NEGATIVE (fsfv)))
3161 #endif
3163 x = arg1;
3164 else if (code == EQ
3165 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3166 && code == GE && STORE_FLAG_VALUE == -1)
3167 #ifdef FLOAT_STORE_FLAG_VALUE
3168 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3169 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3170 REAL_VALUE_NEGATIVE (fsfv)))
3171 #endif
3173 x = arg1, reverse_code = 1;
3176 /* ??? We could also check for
3178 (ne (and (eq (...) (const_int 1))) (const_int 0))
3180 and related forms, but let's wait until we see them occurring. */
3182 if (x == 0)
3183 /* Look up ARG1 in the hash table and see if it has an equivalence
3184 that lets us see what is being compared. */
3185 p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) & HASH_MASK,
3186 GET_MODE (arg1));
3187 if (p)
3189 p = p->first_same_value;
3191 /* If what we compare is already known to be constant, that is as
3192 good as it gets.
3193 We need to break the loop in this case, because otherwise we
3194 can have an infinite loop when looking at a reg that is known
3195 to be a constant which is the same as a comparison of a reg
3196 against zero which appears later in the insn stream, which in
3197 turn is constant and the same as the comparison of the first reg
3198 against zero... */
3199 if (p->is_const)
3200 break;
3203 for (; p; p = p->next_same_value)
3205 enum machine_mode inner_mode = GET_MODE (p->exp);
3206 #ifdef FLOAT_STORE_FLAG_VALUE
3207 REAL_VALUE_TYPE fsfv;
3208 #endif
3210 /* If the entry isn't valid, skip it. */
3211 if (! exp_equiv_p (p->exp, p->exp, 1, 0))
3212 continue;
3214 if (GET_CODE (p->exp) == COMPARE
3215 /* Another possibility is that this machine has a compare insn
3216 that includes the comparison code. In that case, ARG1 would
3217 be equivalent to a comparison operation that would set ARG1 to
3218 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3219 ORIG_CODE is the actual comparison being done; if it is an EQ,
3220 we must reverse ORIG_CODE. On machine with a negative value
3221 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3222 || ((code == NE
3223 || (code == LT
3224 && GET_MODE_CLASS (inner_mode) == MODE_INT
3225 && (GET_MODE_BITSIZE (inner_mode)
3226 <= HOST_BITS_PER_WIDE_INT)
3227 && (STORE_FLAG_VALUE
3228 & ((HOST_WIDE_INT) 1
3229 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3230 #ifdef FLOAT_STORE_FLAG_VALUE
3231 || (code == LT
3232 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3233 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3234 REAL_VALUE_NEGATIVE (fsfv)))
3235 #endif
3237 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
3239 x = p->exp;
3240 break;
3242 else if ((code == EQ
3243 || (code == GE
3244 && GET_MODE_CLASS (inner_mode) == MODE_INT
3245 && (GET_MODE_BITSIZE (inner_mode)
3246 <= HOST_BITS_PER_WIDE_INT)
3247 && (STORE_FLAG_VALUE
3248 & ((HOST_WIDE_INT) 1
3249 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3250 #ifdef FLOAT_STORE_FLAG_VALUE
3251 || (code == GE
3252 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3253 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3254 REAL_VALUE_NEGATIVE (fsfv)))
3255 #endif
3257 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
3259 reverse_code = 1;
3260 x = p->exp;
3261 break;
3264 /* If this is fp + constant, the equivalent is a better operand since
3265 it may let us predict the value of the comparison. */
3266 else if (NONZERO_BASE_PLUS_P (p->exp))
3268 arg1 = p->exp;
3269 continue;
3273 /* If we didn't find a useful equivalence for ARG1, we are done.
3274 Otherwise, set up for the next iteration. */
3275 if (x == 0)
3276 break;
3278 /* If we need to reverse the comparison, make sure that that is
3279 possible -- we can't necessarily infer the value of GE from LT
3280 with floating-point operands. */
3281 if (reverse_code)
3283 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3284 if (reversed == UNKNOWN)
3285 break;
3286 else
3287 code = reversed;
3289 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3290 code = GET_CODE (x);
3291 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3294 /* Return our results. Return the modes from before fold_rtx
3295 because fold_rtx might produce const_int, and then it's too late. */
3296 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3297 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3299 return code;
3302 /* If X is a nontrivial arithmetic operation on an argument
3303 for which a constant value can be determined, return
3304 the result of operating on that value, as a constant.
3305 Otherwise, return X, possibly with one or more operands
3306 modified by recursive calls to this function.
3308 If X is a register whose contents are known, we do NOT
3309 return those contents here. equiv_constant is called to
3310 perform that task.
3312 INSN is the insn that we may be modifying. If it is 0, make a copy
3313 of X before modifying it. */
3315 static rtx
3316 fold_rtx (x, insn)
3317 rtx x;
3318 rtx insn;
3320 enum rtx_code code;
3321 enum machine_mode mode;
3322 const char *fmt;
3323 int i;
3324 rtx new = 0;
3325 int copied = 0;
3326 int must_swap = 0;
3328 /* Folded equivalents of first two operands of X. */
3329 rtx folded_arg0;
3330 rtx folded_arg1;
3332 /* Constant equivalents of first three operands of X;
3333 0 when no such equivalent is known. */
3334 rtx const_arg0;
3335 rtx const_arg1;
3336 rtx const_arg2;
3338 /* The mode of the first operand of X. We need this for sign and zero
3339 extends. */
3340 enum machine_mode mode_arg0;
3342 if (x == 0)
3343 return x;
3345 mode = GET_MODE (x);
3346 code = GET_CODE (x);
3347 switch (code)
3349 case CONST:
3350 case CONST_INT:
3351 case CONST_DOUBLE:
3352 case CONST_VECTOR:
3353 case SYMBOL_REF:
3354 case LABEL_REF:
3355 case REG:
3356 /* No use simplifying an EXPR_LIST
3357 since they are used only for lists of args
3358 in a function call's REG_EQUAL note. */
3359 case EXPR_LIST:
3360 /* Changing anything inside an ADDRESSOF is incorrect; we don't
3361 want to (e.g.,) make (addressof (const_int 0)) just because
3362 the location is known to be zero. */
3363 case ADDRESSOF:
3364 return x;
3366 #ifdef HAVE_cc0
3367 case CC0:
3368 return prev_insn_cc0;
3369 #endif
3371 case PC:
3372 /* If the next insn is a CODE_LABEL followed by a jump table,
3373 PC's value is a LABEL_REF pointing to that label. That
3374 lets us fold switch statements on the VAX. */
3375 if (insn && GET_CODE (insn) == JUMP_INSN)
3377 rtx next = next_nonnote_insn (insn);
3379 if (next && GET_CODE (next) == CODE_LABEL
3380 && NEXT_INSN (next) != 0
3381 && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
3382 && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
3383 || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
3384 return gen_rtx_LABEL_REF (Pmode, next);
3386 break;
3388 case SUBREG:
3389 /* See if we previously assigned a constant value to this SUBREG. */
3390 if ((new = lookup_as_function (x, CONST_INT)) != 0
3391 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3392 return new;
3394 /* If this is a paradoxical SUBREG, we have no idea what value the
3395 extra bits would have. However, if the operand is equivalent
3396 to a SUBREG whose operand is the same as our mode, and all the
3397 modes are within a word, we can just use the inner operand
3398 because these SUBREGs just say how to treat the register.
3400 Similarly if we find an integer constant. */
3402 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3404 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3405 struct table_elt *elt;
3407 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3408 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3409 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3410 imode)) != 0)
3411 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3413 if (CONSTANT_P (elt->exp)
3414 && GET_MODE (elt->exp) == VOIDmode)
3415 return elt->exp;
3417 if (GET_CODE (elt->exp) == SUBREG
3418 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3419 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3420 return copy_rtx (SUBREG_REG (elt->exp));
3423 return x;
3426 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
3427 We might be able to if the SUBREG is extracting a single word in an
3428 integral mode or extracting the low part. */
3430 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3431 const_arg0 = equiv_constant (folded_arg0);
3432 if (const_arg0)
3433 folded_arg0 = const_arg0;
3435 if (folded_arg0 != SUBREG_REG (x))
3437 new = simplify_subreg (mode, folded_arg0,
3438 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3439 if (new)
3440 return new;
3443 /* If this is a narrowing SUBREG and our operand is a REG, see if
3444 we can find an equivalence for REG that is an arithmetic operation
3445 in a wider mode where both operands are paradoxical SUBREGs
3446 from objects of our result mode. In that case, we couldn't report
3447 an equivalent value for that operation, since we don't know what the
3448 extra bits will be. But we can find an equivalence for this SUBREG
3449 by folding that operation is the narrow mode. This allows us to
3450 fold arithmetic in narrow modes when the machine only supports
3451 word-sized arithmetic.
3453 Also look for a case where we have a SUBREG whose operand is the
3454 same as our result. If both modes are smaller than a word, we
3455 are simply interpreting a register in different modes and we
3456 can use the inner value. */
3458 if (GET_CODE (folded_arg0) == REG
3459 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
3460 && subreg_lowpart_p (x))
3462 struct table_elt *elt;
3464 /* We can use HASH here since we know that canon_hash won't be
3465 called. */
3466 elt = lookup (folded_arg0,
3467 HASH (folded_arg0, GET_MODE (folded_arg0)),
3468 GET_MODE (folded_arg0));
3470 if (elt)
3471 elt = elt->first_same_value;
3473 for (; elt; elt = elt->next_same_value)
3475 enum rtx_code eltcode = GET_CODE (elt->exp);
3477 /* Just check for unary and binary operations. */
3478 if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
3479 && GET_CODE (elt->exp) != SIGN_EXTEND
3480 && GET_CODE (elt->exp) != ZERO_EXTEND
3481 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3482 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
3483 && (GET_MODE_CLASS (mode)
3484 == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3486 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3488 if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3489 op0 = fold_rtx (op0, NULL_RTX);
3491 op0 = equiv_constant (op0);
3492 if (op0)
3493 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3494 op0, mode);
3496 else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
3497 || GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
3498 && eltcode != DIV && eltcode != MOD
3499 && eltcode != UDIV && eltcode != UMOD
3500 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3501 && eltcode != ROTATE && eltcode != ROTATERT
3502 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3503 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3504 == mode))
3505 || CONSTANT_P (XEXP (elt->exp, 0)))
3506 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3507 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3508 == mode))
3509 || CONSTANT_P (XEXP (elt->exp, 1))))
3511 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3512 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3514 if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3515 op0 = fold_rtx (op0, NULL_RTX);
3517 if (op0)
3518 op0 = equiv_constant (op0);
3520 if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
3521 op1 = fold_rtx (op1, NULL_RTX);
3523 if (op1)
3524 op1 = equiv_constant (op1);
3526 /* If we are looking for the low SImode part of
3527 (ashift:DI c (const_int 32)), it doesn't work
3528 to compute that in SImode, because a 32-bit shift
3529 in SImode is unpredictable. We know the value is 0. */
3530 if (op0 && op1
3531 && GET_CODE (elt->exp) == ASHIFT
3532 && GET_CODE (op1) == CONST_INT
3533 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3535 if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3537 /* If the count fits in the inner mode's width,
3538 but exceeds the outer mode's width,
3539 the value will get truncated to 0
3540 by the subreg. */
3541 new = const0_rtx;
3542 else
3543 /* If the count exceeds even the inner mode's width,
3544 don't fold this expression. */
3545 new = 0;
3547 else if (op0 && op1)
3548 new = simplify_binary_operation (GET_CODE (elt->exp), mode,
3549 op0, op1);
3552 else if (GET_CODE (elt->exp) == SUBREG
3553 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3554 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3555 <= UNITS_PER_WORD)
3556 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3557 new = copy_rtx (SUBREG_REG (elt->exp));
3559 if (new)
3560 return new;
3564 return x;
3566 case NOT:
3567 case NEG:
3568 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3569 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3570 new = lookup_as_function (XEXP (x, 0), code);
3571 if (new)
3572 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3573 break;
3575 case MEM:
3576 /* If we are not actually processing an insn, don't try to find the
3577 best address. Not only don't we care, but we could modify the
3578 MEM in an invalid way since we have no insn to validate against. */
3579 if (insn != 0)
3580 find_best_addr (insn, &XEXP (x, 0), GET_MODE (x));
3583 /* Even if we don't fold in the insn itself,
3584 we can safely do so here, in hopes of getting a constant. */
3585 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3586 rtx base = 0;
3587 HOST_WIDE_INT offset = 0;
3589 if (GET_CODE (addr) == REG
3590 && REGNO_QTY_VALID_P (REGNO (addr)))
3592 int addr_q = REG_QTY (REGNO (addr));
3593 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3595 if (GET_MODE (addr) == addr_ent->mode
3596 && addr_ent->const_rtx != NULL_RTX)
3597 addr = addr_ent->const_rtx;
3600 /* If address is constant, split it into a base and integer offset. */
3601 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3602 base = addr;
3603 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3604 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3606 base = XEXP (XEXP (addr, 0), 0);
3607 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3609 else if (GET_CODE (addr) == LO_SUM
3610 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3611 base = XEXP (addr, 1);
3612 else if (GET_CODE (addr) == ADDRESSOF)
3613 return change_address (x, VOIDmode, addr);
3615 /* If this is a constant pool reference, we can fold it into its
3616 constant to allow better value tracking. */
3617 if (base && GET_CODE (base) == SYMBOL_REF
3618 && CONSTANT_POOL_ADDRESS_P (base))
3620 rtx constant = get_pool_constant (base);
3621 enum machine_mode const_mode = get_pool_mode (base);
3622 rtx new;
3624 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3625 constant_pool_entries_cost = COST (constant);
3627 /* If we are loading the full constant, we have an equivalence. */
3628 if (offset == 0 && mode == const_mode)
3629 return constant;
3631 /* If this actually isn't a constant (weird!), we can't do
3632 anything. Otherwise, handle the two most common cases:
3633 extracting a word from a multi-word constant, and extracting
3634 the low-order bits. Other cases don't seem common enough to
3635 worry about. */
3636 if (! CONSTANT_P (constant))
3637 return x;
3639 if (GET_MODE_CLASS (mode) == MODE_INT
3640 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3641 && offset % UNITS_PER_WORD == 0
3642 && (new = operand_subword (constant,
3643 offset / UNITS_PER_WORD,
3644 0, const_mode)) != 0)
3645 return new;
3647 if (((BYTES_BIG_ENDIAN
3648 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3649 || (! BYTES_BIG_ENDIAN && offset == 0))
3650 && (new = gen_lowpart_if_possible (mode, constant)) != 0)
3651 return new;
3654 /* If this is a reference to a label at a known position in a jump
3655 table, we also know its value. */
3656 if (base && GET_CODE (base) == LABEL_REF)
3658 rtx label = XEXP (base, 0);
3659 rtx table_insn = NEXT_INSN (label);
3661 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
3662 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3664 rtx table = PATTERN (table_insn);
3666 if (offset >= 0
3667 && (offset / GET_MODE_SIZE (GET_MODE (table))
3668 < XVECLEN (table, 0)))
3669 return XVECEXP (table, 0,
3670 offset / GET_MODE_SIZE (GET_MODE (table)));
3672 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
3673 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3675 rtx table = PATTERN (table_insn);
3677 if (offset >= 0
3678 && (offset / GET_MODE_SIZE (GET_MODE (table))
3679 < XVECLEN (table, 1)))
3681 offset /= GET_MODE_SIZE (GET_MODE (table));
3682 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3683 XEXP (table, 0));
3685 if (GET_MODE (table) != Pmode)
3686 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3688 /* Indicate this is a constant. This isn't a
3689 valid form of CONST, but it will only be used
3690 to fold the next insns and then discarded, so
3691 it should be safe.
3693 Note this expression must be explicitly discarded,
3694 by cse_insn, else it may end up in a REG_EQUAL note
3695 and "escape" to cause problems elsewhere. */
3696 return gen_rtx_CONST (GET_MODE (new), new);
3701 return x;
3704 #ifdef NO_FUNCTION_CSE
3705 case CALL:
3706 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3707 return x;
3708 break;
3709 #endif
3711 case ASM_OPERANDS:
3712 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3713 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3714 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3715 break;
3717 default:
3718 break;
3721 const_arg0 = 0;
3722 const_arg1 = 0;
3723 const_arg2 = 0;
3724 mode_arg0 = VOIDmode;
3726 /* Try folding our operands.
3727 Then see which ones have constant values known. */
3729 fmt = GET_RTX_FORMAT (code);
3730 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3731 if (fmt[i] == 'e')
3733 rtx arg = XEXP (x, i);
3734 rtx folded_arg = arg, const_arg = 0;
3735 enum machine_mode mode_arg = GET_MODE (arg);
3736 rtx cheap_arg, expensive_arg;
3737 rtx replacements[2];
3738 int j;
3740 /* Most arguments are cheap, so handle them specially. */
3741 switch (GET_CODE (arg))
3743 case REG:
3744 /* This is the same as calling equiv_constant; it is duplicated
3745 here for speed. */
3746 if (REGNO_QTY_VALID_P (REGNO (arg)))
3748 int arg_q = REG_QTY (REGNO (arg));
3749 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3751 if (arg_ent->const_rtx != NULL_RTX
3752 && GET_CODE (arg_ent->const_rtx) != REG
3753 && GET_CODE (arg_ent->const_rtx) != PLUS)
3754 const_arg
3755 = gen_lowpart_if_possible (GET_MODE (arg),
3756 arg_ent->const_rtx);
3758 break;
3760 case CONST:
3761 case CONST_INT:
3762 case SYMBOL_REF:
3763 case LABEL_REF:
3764 case CONST_DOUBLE:
3765 case CONST_VECTOR:
3766 const_arg = arg;
3767 break;
3769 #ifdef HAVE_cc0
3770 case CC0:
3771 folded_arg = prev_insn_cc0;
3772 mode_arg = prev_insn_cc0_mode;
3773 const_arg = equiv_constant (folded_arg);
3774 break;
3775 #endif
3777 default:
3778 folded_arg = fold_rtx (arg, insn);
3779 const_arg = equiv_constant (folded_arg);
3782 /* For the first three operands, see if the operand
3783 is constant or equivalent to a constant. */
3784 switch (i)
3786 case 0:
3787 folded_arg0 = folded_arg;
3788 const_arg0 = const_arg;
3789 mode_arg0 = mode_arg;
3790 break;
3791 case 1:
3792 folded_arg1 = folded_arg;
3793 const_arg1 = const_arg;
3794 break;
3795 case 2:
3796 const_arg2 = const_arg;
3797 break;
3800 /* Pick the least expensive of the folded argument and an
3801 equivalent constant argument. */
3802 if (const_arg == 0 || const_arg == folded_arg
3803 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
3804 cheap_arg = folded_arg, expensive_arg = const_arg;
3805 else
3806 cheap_arg = const_arg, expensive_arg = folded_arg;
3808 /* Try to replace the operand with the cheapest of the two
3809 possibilities. If it doesn't work and this is either of the first
3810 two operands of a commutative operation, try swapping them.
3811 If THAT fails, try the more expensive, provided it is cheaper
3812 than what is already there. */
3814 if (cheap_arg == XEXP (x, i))
3815 continue;
3817 if (insn == 0 && ! copied)
3819 x = copy_rtx (x);
3820 copied = 1;
3823 /* Order the replacements from cheapest to most expensive. */
3824 replacements[0] = cheap_arg;
3825 replacements[1] = expensive_arg;
3827 for (j = 0; j < 2 && replacements[j]; j++)
3829 int old_cost = COST_IN (XEXP (x, i), code);
3830 int new_cost = COST_IN (replacements[j], code);
3832 /* Stop if what existed before was cheaper. Prefer constants
3833 in the case of a tie. */
3834 if (new_cost > old_cost
3835 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3836 break;
3838 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3839 break;
3841 if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c'
3842 || code == LTGT || code == UNEQ || code == ORDERED
3843 || code == UNORDERED)
3845 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3846 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3848 if (apply_change_group ())
3850 /* Swap them back to be invalid so that this loop can
3851 continue and flag them to be swapped back later. */
3852 rtx tem;
3854 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3855 XEXP (x, 1) = tem;
3856 must_swap = 1;
3857 break;
3863 else
3865 if (fmt[i] == 'E')
3866 /* Don't try to fold inside of a vector of expressions.
3867 Doing nothing is harmless. */
3871 /* If a commutative operation, place a constant integer as the second
3872 operand unless the first operand is also a constant integer. Otherwise,
3873 place any constant second unless the first operand is also a constant. */
3875 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c'
3876 || code == LTGT || code == UNEQ || code == ORDERED
3877 || code == UNORDERED)
3879 if (must_swap || (const_arg0
3880 && (const_arg1 == 0
3881 || (GET_CODE (const_arg0) == CONST_INT
3882 && GET_CODE (const_arg1) != CONST_INT))))
3884 rtx tem = XEXP (x, 0);
3886 if (insn == 0 && ! copied)
3888 x = copy_rtx (x);
3889 copied = 1;
3892 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3893 validate_change (insn, &XEXP (x, 1), tem, 1);
3894 if (apply_change_group ())
3896 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3897 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3902 /* If X is an arithmetic operation, see if we can simplify it. */
3904 switch (GET_RTX_CLASS (code))
3906 case '1':
3908 int is_const = 0;
3910 /* We can't simplify extension ops unless we know the
3911 original mode. */
3912 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3913 && mode_arg0 == VOIDmode)
3914 break;
3916 /* If we had a CONST, strip it off and put it back later if we
3917 fold. */
3918 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3919 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3921 new = simplify_unary_operation (code, mode,
3922 const_arg0 ? const_arg0 : folded_arg0,
3923 mode_arg0);
3924 if (new != 0 && is_const)
3925 new = gen_rtx_CONST (mode, new);
3927 break;
3929 case '<':
3930 /* See what items are actually being compared and set FOLDED_ARG[01]
3931 to those values and CODE to the actual comparison code. If any are
3932 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3933 do anything if both operands are already known to be constant. */
3935 if (const_arg0 == 0 || const_arg1 == 0)
3937 struct table_elt *p0, *p1;
3938 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3939 enum machine_mode mode_arg1;
3941 #ifdef FLOAT_STORE_FLAG_VALUE
3942 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3944 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3945 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3946 false_rtx = CONST0_RTX (mode);
3948 #endif
3950 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3951 &mode_arg0, &mode_arg1);
3952 const_arg0 = equiv_constant (folded_arg0);
3953 const_arg1 = equiv_constant (folded_arg1);
3955 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3956 what kinds of things are being compared, so we can't do
3957 anything with this comparison. */
3959 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3960 break;
3962 /* If we do not now have two constants being compared, see
3963 if we can nevertheless deduce some things about the
3964 comparison. */
3965 if (const_arg0 == 0 || const_arg1 == 0)
3967 /* Is FOLDED_ARG0 frame-pointer plus a constant? Or
3968 non-explicit constant? These aren't zero, but we
3969 don't know their sign. */
3970 if (const_arg1 == const0_rtx
3971 && (NONZERO_BASE_PLUS_P (folded_arg0)
3972 #if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
3973 come out as 0. */
3974 || GET_CODE (folded_arg0) == SYMBOL_REF
3975 #endif
3976 || GET_CODE (folded_arg0) == LABEL_REF
3977 || GET_CODE (folded_arg0) == CONST))
3979 if (code == EQ)
3980 return false_rtx;
3981 else if (code == NE)
3982 return true_rtx;
3985 /* See if the two operands are the same. */
3987 if (folded_arg0 == folded_arg1
3988 || (GET_CODE (folded_arg0) == REG
3989 && GET_CODE (folded_arg1) == REG
3990 && (REG_QTY (REGNO (folded_arg0))
3991 == REG_QTY (REGNO (folded_arg1))))
3992 || ((p0 = lookup (folded_arg0,
3993 (safe_hash (folded_arg0, mode_arg0)
3994 & HASH_MASK), mode_arg0))
3995 && (p1 = lookup (folded_arg1,
3996 (safe_hash (folded_arg1, mode_arg0)
3997 & HASH_MASK), mode_arg0))
3998 && p0->first_same_value == p1->first_same_value))
4000 /* Sadly two equal NaNs are not equivalent. */
4001 if (!HONOR_NANS (mode_arg0))
4002 return ((code == EQ || code == LE || code == GE
4003 || code == LEU || code == GEU || code == UNEQ
4004 || code == UNLE || code == UNGE
4005 || code == ORDERED)
4006 ? true_rtx : false_rtx);
4007 /* Take care for the FP compares we can resolve. */
4008 if (code == UNEQ || code == UNLE || code == UNGE)
4009 return true_rtx;
4010 if (code == LTGT || code == LT || code == GT)
4011 return false_rtx;
4014 /* If FOLDED_ARG0 is a register, see if the comparison we are
4015 doing now is either the same as we did before or the reverse
4016 (we only check the reverse if not floating-point). */
4017 else if (GET_CODE (folded_arg0) == REG)
4019 int qty = REG_QTY (REGNO (folded_arg0));
4021 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
4023 struct qty_table_elem *ent = &qty_table[qty];
4025 if ((comparison_dominates_p (ent->comparison_code, code)
4026 || (! FLOAT_MODE_P (mode_arg0)
4027 && comparison_dominates_p (ent->comparison_code,
4028 reverse_condition (code))))
4029 && (rtx_equal_p (ent->comparison_const, folded_arg1)
4030 || (const_arg1
4031 && rtx_equal_p (ent->comparison_const,
4032 const_arg1))
4033 || (GET_CODE (folded_arg1) == REG
4034 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
4035 return (comparison_dominates_p (ent->comparison_code, code)
4036 ? true_rtx : false_rtx);
4042 /* If we are comparing against zero, see if the first operand is
4043 equivalent to an IOR with a constant. If so, we may be able to
4044 determine the result of this comparison. */
4046 if (const_arg1 == const0_rtx)
4048 rtx y = lookup_as_function (folded_arg0, IOR);
4049 rtx inner_const;
4051 if (y != 0
4052 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
4053 && GET_CODE (inner_const) == CONST_INT
4054 && INTVAL (inner_const) != 0)
4056 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
4057 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4058 && (INTVAL (inner_const)
4059 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4060 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
4062 #ifdef FLOAT_STORE_FLAG_VALUE
4063 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4065 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
4066 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4067 false_rtx = CONST0_RTX (mode);
4069 #endif
4071 switch (code)
4073 case EQ:
4074 return false_rtx;
4075 case NE:
4076 return true_rtx;
4077 case LT: case LE:
4078 if (has_sign)
4079 return true_rtx;
4080 break;
4081 case GT: case GE:
4082 if (has_sign)
4083 return false_rtx;
4084 break;
4085 default:
4086 break;
4091 new = simplify_relational_operation (code,
4092 (mode_arg0 != VOIDmode
4093 ? mode_arg0
4094 : (GET_MODE (const_arg0
4095 ? const_arg0
4096 : folded_arg0)
4097 != VOIDmode)
4098 ? GET_MODE (const_arg0
4099 ? const_arg0
4100 : folded_arg0)
4101 : GET_MODE (const_arg1
4102 ? const_arg1
4103 : folded_arg1)),
4104 const_arg0 ? const_arg0 : folded_arg0,
4105 const_arg1 ? const_arg1 : folded_arg1);
4106 #ifdef FLOAT_STORE_FLAG_VALUE
4107 if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
4109 if (new == const0_rtx)
4110 new = CONST0_RTX (mode);
4111 else
4112 new = (CONST_DOUBLE_FROM_REAL_VALUE
4113 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4115 #endif
4116 break;
4118 case '2':
4119 case 'c':
4120 switch (code)
4122 case PLUS:
4123 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4124 with that LABEL_REF as its second operand. If so, the result is
4125 the first operand of that MINUS. This handles switches with an
4126 ADDR_DIFF_VEC table. */
4127 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4129 rtx y
4130 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
4131 : lookup_as_function (folded_arg0, MINUS);
4133 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4134 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4135 return XEXP (y, 0);
4137 /* Now try for a CONST of a MINUS like the above. */
4138 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4139 : lookup_as_function (folded_arg0, CONST))) != 0
4140 && GET_CODE (XEXP (y, 0)) == MINUS
4141 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4142 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4143 return XEXP (XEXP (y, 0), 0);
4146 /* Likewise if the operands are in the other order. */
4147 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4149 rtx y
4150 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
4151 : lookup_as_function (folded_arg1, MINUS);
4153 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4154 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4155 return XEXP (y, 0);
4157 /* Now try for a CONST of a MINUS like the above. */
4158 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4159 : lookup_as_function (folded_arg1, CONST))) != 0
4160 && GET_CODE (XEXP (y, 0)) == MINUS
4161 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4162 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4163 return XEXP (XEXP (y, 0), 0);
4166 /* If second operand is a register equivalent to a negative
4167 CONST_INT, see if we can find a register equivalent to the
4168 positive constant. Make a MINUS if so. Don't do this for
4169 a non-negative constant since we might then alternate between
4170 choosing positive and negative constants. Having the positive
4171 constant previously-used is the more common case. Be sure
4172 the resulting constant is non-negative; if const_arg1 were
4173 the smallest negative number this would overflow: depending
4174 on the mode, this would either just be the same value (and
4175 hence not save anything) or be incorrect. */
4176 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4177 && INTVAL (const_arg1) < 0
4178 /* This used to test
4180 -INTVAL (const_arg1) >= 0
4182 But The Sun V5.0 compilers mis-compiled that test. So
4183 instead we test for the problematic value in a more direct
4184 manner and hope the Sun compilers get it correct. */
4185 && INTVAL (const_arg1) !=
4186 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4187 && GET_CODE (folded_arg1) == REG)
4189 rtx new_const = GEN_INT (-INTVAL (const_arg1));
4190 struct table_elt *p
4191 = lookup (new_const, safe_hash (new_const, mode) & HASH_MASK,
4192 mode);
4194 if (p)
4195 for (p = p->first_same_value; p; p = p->next_same_value)
4196 if (GET_CODE (p->exp) == REG)
4197 return simplify_gen_binary (MINUS, mode, folded_arg0,
4198 canon_reg (p->exp, NULL_RTX));
4200 goto from_plus;
4202 case MINUS:
4203 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4204 If so, produce (PLUS Z C2-C). */
4205 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4207 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4208 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4209 return fold_rtx (plus_constant (copy_rtx (y),
4210 -INTVAL (const_arg1)),
4211 NULL_RTX);
4214 /* Fall through. */
4216 from_plus:
4217 case SMIN: case SMAX: case UMIN: case UMAX:
4218 case IOR: case AND: case XOR:
4219 case MULT: case DIV: case UDIV:
4220 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4221 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4222 is known to be of similar form, we may be able to replace the
4223 operation with a combined operation. This may eliminate the
4224 intermediate operation if every use is simplified in this way.
4225 Note that the similar optimization done by combine.c only works
4226 if the intermediate operation's result has only one reference. */
4228 if (GET_CODE (folded_arg0) == REG
4229 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4231 int is_shift
4232 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4233 rtx y = lookup_as_function (folded_arg0, code);
4234 rtx inner_const;
4235 enum rtx_code associate_code;
4236 rtx new_const;
4238 if (y == 0
4239 || 0 == (inner_const
4240 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4241 || GET_CODE (inner_const) != CONST_INT
4242 /* If we have compiled a statement like
4243 "if (x == (x & mask1))", and now are looking at
4244 "x & mask2", we will have a case where the first operand
4245 of Y is the same as our first operand. Unless we detect
4246 this case, an infinite loop will result. */
4247 || XEXP (y, 0) == folded_arg0)
4248 break;
4250 /* Don't associate these operations if they are a PLUS with the
4251 same constant and it is a power of two. These might be doable
4252 with a pre- or post-increment. Similarly for two subtracts of
4253 identical powers of two with post decrement. */
4255 if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
4256 && ((HAVE_PRE_INCREMENT
4257 && exact_log2 (INTVAL (const_arg1)) >= 0)
4258 || (HAVE_POST_INCREMENT
4259 && exact_log2 (INTVAL (const_arg1)) >= 0)
4260 || (HAVE_PRE_DECREMENT
4261 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4262 || (HAVE_POST_DECREMENT
4263 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
4264 break;
4266 /* Compute the code used to compose the constants. For example,
4267 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
4269 associate_code
4270 = (code == MULT || code == DIV || code == UDIV ? MULT
4271 : is_shift || code == PLUS || code == MINUS ? PLUS : code);
4273 new_const = simplify_binary_operation (associate_code, mode,
4274 const_arg1, inner_const);
4276 if (new_const == 0)
4277 break;
4279 /* If we are associating shift operations, don't let this
4280 produce a shift of the size of the object or larger.
4281 This could occur when we follow a sign-extend by a right
4282 shift on a machine that does a sign-extend as a pair
4283 of shifts. */
4285 if (is_shift && GET_CODE (new_const) == CONST_INT
4286 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4288 /* As an exception, we can turn an ASHIFTRT of this
4289 form into a shift of the number of bits - 1. */
4290 if (code == ASHIFTRT)
4291 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4292 else
4293 break;
4296 y = copy_rtx (XEXP (y, 0));
4298 /* If Y contains our first operand (the most common way this
4299 can happen is if Y is a MEM), we would do into an infinite
4300 loop if we tried to fold it. So don't in that case. */
4302 if (! reg_mentioned_p (folded_arg0, y))
4303 y = fold_rtx (y, insn);
4305 return simplify_gen_binary (code, mode, y, new_const);
4307 break;
4309 default:
4310 break;
4313 new = simplify_binary_operation (code, mode,
4314 const_arg0 ? const_arg0 : folded_arg0,
4315 const_arg1 ? const_arg1 : folded_arg1);
4316 break;
4318 case 'o':
4319 /* (lo_sum (high X) X) is simply X. */
4320 if (code == LO_SUM && const_arg0 != 0
4321 && GET_CODE (const_arg0) == HIGH
4322 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4323 return const_arg1;
4324 break;
4326 case '3':
4327 case 'b':
4328 new = simplify_ternary_operation (code, mode, mode_arg0,
4329 const_arg0 ? const_arg0 : folded_arg0,
4330 const_arg1 ? const_arg1 : folded_arg1,
4331 const_arg2 ? const_arg2 : XEXP (x, 2));
4332 break;
4334 case 'x':
4335 /* Always eliminate CONSTANT_P_RTX at this stage. */
4336 if (code == CONSTANT_P_RTX)
4337 return (const_arg0 ? const1_rtx : const0_rtx);
4338 break;
4341 return new ? new : x;
4344 /* Return a constant value currently equivalent to X.
4345 Return 0 if we don't know one. */
4347 static rtx
4348 equiv_constant (x)
4349 rtx x;
4351 if (GET_CODE (x) == REG
4352 && REGNO_QTY_VALID_P (REGNO (x)))
4354 int x_q = REG_QTY (REGNO (x));
4355 struct qty_table_elem *x_ent = &qty_table[x_q];
4357 if (x_ent->const_rtx)
4358 x = gen_lowpart_if_possible (GET_MODE (x), x_ent->const_rtx);
4361 if (x == 0 || CONSTANT_P (x))
4362 return x;
4364 /* If X is a MEM, try to fold it outside the context of any insn to see if
4365 it might be equivalent to a constant. That handles the case where it
4366 is a constant-pool reference. Then try to look it up in the hash table
4367 in case it is something whose value we have seen before. */
4369 if (GET_CODE (x) == MEM)
4371 struct table_elt *elt;
4373 x = fold_rtx (x, NULL_RTX);
4374 if (CONSTANT_P (x))
4375 return x;
4377 elt = lookup (x, safe_hash (x, GET_MODE (x)) & HASH_MASK, GET_MODE (x));
4378 if (elt == 0)
4379 return 0;
4381 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4382 if (elt->is_const && CONSTANT_P (elt->exp))
4383 return elt->exp;
4386 return 0;
4389 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4390 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4391 least-significant part of X.
4392 MODE specifies how big a part of X to return.
4394 If the requested operation cannot be done, 0 is returned.
4396 This is similar to gen_lowpart in emit-rtl.c. */
4399 gen_lowpart_if_possible (mode, x)
4400 enum machine_mode mode;
4401 rtx x;
4403 rtx result = gen_lowpart_common (mode, x);
4405 if (result)
4406 return result;
4407 else if (GET_CODE (x) == MEM)
4409 /* This is the only other case we handle. */
4410 int offset = 0;
4411 rtx new;
4413 if (WORDS_BIG_ENDIAN)
4414 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
4415 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4416 if (BYTES_BIG_ENDIAN)
4417 /* Adjust the address so that the address-after-the-data is
4418 unchanged. */
4419 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
4420 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4422 new = adjust_address_nv (x, mode, offset);
4423 if (! memory_address_p (mode, XEXP (new, 0)))
4424 return 0;
4426 return new;
4428 else
4429 return 0;
4432 /* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
4433 branch. It will be zero if not.
4435 In certain cases, this can cause us to add an equivalence. For example,
4436 if we are following the taken case of
4437 if (i == 2)
4438 we can add the fact that `i' and '2' are now equivalent.
4440 In any case, we can record that this comparison was passed. If the same
4441 comparison is seen later, we will know its value. */
4443 static void
4444 record_jump_equiv (insn, taken)
4445 rtx insn;
4446 int taken;
4448 int cond_known_true;
4449 rtx op0, op1;
4450 rtx set;
4451 enum machine_mode mode, mode0, mode1;
4452 int reversed_nonequality = 0;
4453 enum rtx_code code;
4455 /* Ensure this is the right kind of insn. */
4456 if (! any_condjump_p (insn))
4457 return;
4458 set = pc_set (insn);
4460 /* See if this jump condition is known true or false. */
4461 if (taken)
4462 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
4463 else
4464 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
4466 /* Get the type of comparison being done and the operands being compared.
4467 If we had to reverse a non-equality condition, record that fact so we
4468 know that it isn't valid for floating-point. */
4469 code = GET_CODE (XEXP (SET_SRC (set), 0));
4470 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4471 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
4473 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
4474 if (! cond_known_true)
4476 code = reversed_comparison_code_parts (code, op0, op1, insn);
4478 /* Don't remember if we can't find the inverse. */
4479 if (code == UNKNOWN)
4480 return;
4483 /* The mode is the mode of the non-constant. */
4484 mode = mode0;
4485 if (mode1 != VOIDmode)
4486 mode = mode1;
4488 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4491 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4492 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4493 Make any useful entries we can with that information. Called from
4494 above function and called recursively. */
4496 static void
4497 record_jump_cond (code, mode, op0, op1, reversed_nonequality)
4498 enum rtx_code code;
4499 enum machine_mode mode;
4500 rtx op0, op1;
4501 int reversed_nonequality;
4503 unsigned op0_hash, op1_hash;
4504 int op0_in_memory, op1_in_memory;
4505 struct table_elt *op0_elt, *op1_elt;
4507 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4508 we know that they are also equal in the smaller mode (this is also
4509 true for all smaller modes whether or not there is a SUBREG, but
4510 is not worth testing for with no SUBREG). */
4512 /* Note that GET_MODE (op0) may not equal MODE. */
4513 if (code == EQ && GET_CODE (op0) == SUBREG
4514 && (GET_MODE_SIZE (GET_MODE (op0))
4515 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4517 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4518 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
4520 record_jump_cond (code, mode, SUBREG_REG (op0),
4521 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
4522 reversed_nonequality);
4525 if (code == EQ && GET_CODE (op1) == SUBREG
4526 && (GET_MODE_SIZE (GET_MODE (op1))
4527 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4529 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4530 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
4532 record_jump_cond (code, mode, SUBREG_REG (op1),
4533 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
4534 reversed_nonequality);
4537 /* Similarly, if this is an NE comparison, and either is a SUBREG
4538 making a smaller mode, we know the whole thing is also NE. */
4540 /* Note that GET_MODE (op0) may not equal MODE;
4541 if we test MODE instead, we can get an infinite recursion
4542 alternating between two modes each wider than MODE. */
4544 if (code == NE && GET_CODE (op0) == SUBREG
4545 && subreg_lowpart_p (op0)
4546 && (GET_MODE_SIZE (GET_MODE (op0))
4547 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4549 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4550 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
4552 record_jump_cond (code, mode, SUBREG_REG (op0),
4553 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
4554 reversed_nonequality);
4557 if (code == NE && GET_CODE (op1) == SUBREG
4558 && subreg_lowpart_p (op1)
4559 && (GET_MODE_SIZE (GET_MODE (op1))
4560 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4562 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4563 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
4565 record_jump_cond (code, mode, SUBREG_REG (op1),
4566 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
4567 reversed_nonequality);
4570 /* Hash both operands. */
4572 do_not_record = 0;
4573 hash_arg_in_memory = 0;
4574 op0_hash = HASH (op0, mode);
4575 op0_in_memory = hash_arg_in_memory;
4577 if (do_not_record)
4578 return;
4580 do_not_record = 0;
4581 hash_arg_in_memory = 0;
4582 op1_hash = HASH (op1, mode);
4583 op1_in_memory = hash_arg_in_memory;
4585 if (do_not_record)
4586 return;
4588 /* Look up both operands. */
4589 op0_elt = lookup (op0, op0_hash, mode);
4590 op1_elt = lookup (op1, op1_hash, mode);
4592 /* If both operands are already equivalent or if they are not in the
4593 table but are identical, do nothing. */
4594 if ((op0_elt != 0 && op1_elt != 0
4595 && op0_elt->first_same_value == op1_elt->first_same_value)
4596 || op0 == op1 || rtx_equal_p (op0, op1))
4597 return;
4599 /* If we aren't setting two things equal all we can do is save this
4600 comparison. Similarly if this is floating-point. In the latter
4601 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4602 If we record the equality, we might inadvertently delete code
4603 whose intent was to change -0 to +0. */
4605 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4607 struct qty_table_elem *ent;
4608 int qty;
4610 /* If we reversed a floating-point comparison, if OP0 is not a
4611 register, or if OP1 is neither a register or constant, we can't
4612 do anything. */
4614 if (GET_CODE (op1) != REG)
4615 op1 = equiv_constant (op1);
4617 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4618 || GET_CODE (op0) != REG || op1 == 0)
4619 return;
4621 /* Put OP0 in the hash table if it isn't already. This gives it a
4622 new quantity number. */
4623 if (op0_elt == 0)
4625 if (insert_regs (op0, NULL, 0))
4627 rehash_using_reg (op0);
4628 op0_hash = HASH (op0, mode);
4630 /* If OP0 is contained in OP1, this changes its hash code
4631 as well. Faster to rehash than to check, except
4632 for the simple case of a constant. */
4633 if (! CONSTANT_P (op1))
4634 op1_hash = HASH (op1,mode);
4637 op0_elt = insert (op0, NULL, op0_hash, mode);
4638 op0_elt->in_memory = op0_in_memory;
4641 qty = REG_QTY (REGNO (op0));
4642 ent = &qty_table[qty];
4644 ent->comparison_code = code;
4645 if (GET_CODE (op1) == REG)
4647 /* Look it up again--in case op0 and op1 are the same. */
4648 op1_elt = lookup (op1, op1_hash, mode);
4650 /* Put OP1 in the hash table so it gets a new quantity number. */
4651 if (op1_elt == 0)
4653 if (insert_regs (op1, NULL, 0))
4655 rehash_using_reg (op1);
4656 op1_hash = HASH (op1, mode);
4659 op1_elt = insert (op1, NULL, op1_hash, mode);
4660 op1_elt->in_memory = op1_in_memory;
4663 ent->comparison_const = NULL_RTX;
4664 ent->comparison_qty = REG_QTY (REGNO (op1));
4666 else
4668 ent->comparison_const = op1;
4669 ent->comparison_qty = -1;
4672 return;
4675 /* If either side is still missing an equivalence, make it now,
4676 then merge the equivalences. */
4678 if (op0_elt == 0)
4680 if (insert_regs (op0, NULL, 0))
4682 rehash_using_reg (op0);
4683 op0_hash = HASH (op0, mode);
4686 op0_elt = insert (op0, NULL, op0_hash, mode);
4687 op0_elt->in_memory = op0_in_memory;
4690 if (op1_elt == 0)
4692 if (insert_regs (op1, NULL, 0))
4694 rehash_using_reg (op1);
4695 op1_hash = HASH (op1, mode);
4698 op1_elt = insert (op1, NULL, op1_hash, mode);
4699 op1_elt->in_memory = op1_in_memory;
4702 merge_equiv_classes (op0_elt, op1_elt);
4703 last_jump_equiv_class = op0_elt;
4706 /* CSE processing for one instruction.
4707 First simplify sources and addresses of all assignments
4708 in the instruction, using previously-computed equivalents values.
4709 Then install the new sources and destinations in the table
4710 of available values.
4712 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4713 the insn. It means that INSN is inside libcall block. In this
4714 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4716 /* Data on one SET contained in the instruction. */
4718 struct set
4720 /* The SET rtx itself. */
4721 rtx rtl;
4722 /* The SET_SRC of the rtx (the original value, if it is changing). */
4723 rtx src;
4724 /* The hash-table element for the SET_SRC of the SET. */
4725 struct table_elt *src_elt;
4726 /* Hash value for the SET_SRC. */
4727 unsigned src_hash;
4728 /* Hash value for the SET_DEST. */
4729 unsigned dest_hash;
4730 /* The SET_DEST, with SUBREG, etc., stripped. */
4731 rtx inner_dest;
4732 /* Nonzero if the SET_SRC is in memory. */
4733 char src_in_memory;
4734 /* Nonzero if the SET_SRC contains something
4735 whose value cannot be predicted and understood. */
4736 char src_volatile;
4737 /* Original machine mode, in case it becomes a CONST_INT. */
4738 enum machine_mode mode;
4739 /* A constant equivalent for SET_SRC, if any. */
4740 rtx src_const;
4741 /* Original SET_SRC value used for libcall notes. */
4742 rtx orig_src;
4743 /* Hash value of constant equivalent for SET_SRC. */
4744 unsigned src_const_hash;
4745 /* Table entry for constant equivalent for SET_SRC, if any. */
4746 struct table_elt *src_const_elt;
4749 static void
4750 cse_insn (insn, libcall_insn)
4751 rtx insn;
4752 rtx libcall_insn;
4754 rtx x = PATTERN (insn);
4755 int i;
4756 rtx tem;
4757 int n_sets = 0;
4759 #ifdef HAVE_cc0
4760 /* Records what this insn does to set CC0. */
4761 rtx this_insn_cc0 = 0;
4762 enum machine_mode this_insn_cc0_mode = VOIDmode;
4763 #endif
4765 rtx src_eqv = 0;
4766 struct table_elt *src_eqv_elt = 0;
4767 int src_eqv_volatile = 0;
4768 int src_eqv_in_memory = 0;
4769 unsigned src_eqv_hash = 0;
4771 struct set *sets = (struct set *) 0;
4773 this_insn = insn;
4775 /* Find all the SETs and CLOBBERs in this instruction.
4776 Record all the SETs in the array `set' and count them.
4777 Also determine whether there is a CLOBBER that invalidates
4778 all memory references, or all references at varying addresses. */
4780 if (GET_CODE (insn) == CALL_INSN)
4782 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4784 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4785 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4786 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4790 if (GET_CODE (x) == SET)
4792 sets = (struct set *) alloca (sizeof (struct set));
4793 sets[0].rtl = x;
4795 /* Ignore SETs that are unconditional jumps.
4796 They never need cse processing, so this does not hurt.
4797 The reason is not efficiency but rather
4798 so that we can test at the end for instructions
4799 that have been simplified to unconditional jumps
4800 and not be misled by unchanged instructions
4801 that were unconditional jumps to begin with. */
4802 if (SET_DEST (x) == pc_rtx
4803 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4806 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4807 The hard function value register is used only once, to copy to
4808 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4809 Ensure we invalidate the destination register. On the 80386 no
4810 other code would invalidate it since it is a fixed_reg.
4811 We need not check the return of apply_change_group; see canon_reg. */
4813 else if (GET_CODE (SET_SRC (x)) == CALL)
4815 canon_reg (SET_SRC (x), insn);
4816 apply_change_group ();
4817 fold_rtx (SET_SRC (x), insn);
4818 invalidate (SET_DEST (x), VOIDmode);
4820 else
4821 n_sets = 1;
4823 else if (GET_CODE (x) == PARALLEL)
4825 int lim = XVECLEN (x, 0);
4827 sets = (struct set *) alloca (lim * sizeof (struct set));
4829 /* Find all regs explicitly clobbered in this insn,
4830 and ensure they are not replaced with any other regs
4831 elsewhere in this insn.
4832 When a reg that is clobbered is also used for input,
4833 we should presume that that is for a reason,
4834 and we should not substitute some other register
4835 which is not supposed to be clobbered.
4836 Therefore, this loop cannot be merged into the one below
4837 because a CALL may precede a CLOBBER and refer to the
4838 value clobbered. We must not let a canonicalization do
4839 anything in that case. */
4840 for (i = 0; i < lim; i++)
4842 rtx y = XVECEXP (x, 0, i);
4843 if (GET_CODE (y) == CLOBBER)
4845 rtx clobbered = XEXP (y, 0);
4847 if (GET_CODE (clobbered) == REG
4848 || GET_CODE (clobbered) == SUBREG)
4849 invalidate (clobbered, VOIDmode);
4850 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4851 || GET_CODE (clobbered) == ZERO_EXTRACT)
4852 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4856 for (i = 0; i < lim; i++)
4858 rtx y = XVECEXP (x, 0, i);
4859 if (GET_CODE (y) == SET)
4861 /* As above, we ignore unconditional jumps and call-insns and
4862 ignore the result of apply_change_group. */
4863 if (GET_CODE (SET_SRC (y)) == CALL)
4865 canon_reg (SET_SRC (y), insn);
4866 apply_change_group ();
4867 fold_rtx (SET_SRC (y), insn);
4868 invalidate (SET_DEST (y), VOIDmode);
4870 else if (SET_DEST (y) == pc_rtx
4871 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4873 else
4874 sets[n_sets++].rtl = y;
4876 else if (GET_CODE (y) == CLOBBER)
4878 /* If we clobber memory, canon the address.
4879 This does nothing when a register is clobbered
4880 because we have already invalidated the reg. */
4881 if (GET_CODE (XEXP (y, 0)) == MEM)
4882 canon_reg (XEXP (y, 0), NULL_RTX);
4884 else if (GET_CODE (y) == USE
4885 && ! (GET_CODE (XEXP (y, 0)) == REG
4886 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4887 canon_reg (y, NULL_RTX);
4888 else if (GET_CODE (y) == CALL)
4890 /* The result of apply_change_group can be ignored; see
4891 canon_reg. */
4892 canon_reg (y, insn);
4893 apply_change_group ();
4894 fold_rtx (y, insn);
4898 else if (GET_CODE (x) == CLOBBER)
4900 if (GET_CODE (XEXP (x, 0)) == MEM)
4901 canon_reg (XEXP (x, 0), NULL_RTX);
4904 /* Canonicalize a USE of a pseudo register or memory location. */
4905 else if (GET_CODE (x) == USE
4906 && ! (GET_CODE (XEXP (x, 0)) == REG
4907 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4908 canon_reg (XEXP (x, 0), NULL_RTX);
4909 else if (GET_CODE (x) == CALL)
4911 /* The result of apply_change_group can be ignored; see canon_reg. */
4912 canon_reg (x, insn);
4913 apply_change_group ();
4914 fold_rtx (x, insn);
4917 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4918 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4919 is handled specially for this case, and if it isn't set, then there will
4920 be no equivalence for the destination. */
4921 if (n_sets == 1 && REG_NOTES (insn) != 0
4922 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4923 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4924 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4926 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4927 XEXP (tem, 0) = src_eqv;
4930 /* Canonicalize sources and addresses of destinations.
4931 We do this in a separate pass to avoid problems when a MATCH_DUP is
4932 present in the insn pattern. In that case, we want to ensure that
4933 we don't break the duplicate nature of the pattern. So we will replace
4934 both operands at the same time. Otherwise, we would fail to find an
4935 equivalent substitution in the loop calling validate_change below.
4937 We used to suppress canonicalization of DEST if it appears in SRC,
4938 but we don't do this any more. */
4940 for (i = 0; i < n_sets; i++)
4942 rtx dest = SET_DEST (sets[i].rtl);
4943 rtx src = SET_SRC (sets[i].rtl);
4944 rtx new = canon_reg (src, insn);
4945 int insn_code;
4947 sets[i].orig_src = src;
4948 if ((GET_CODE (new) == REG && GET_CODE (src) == REG
4949 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4950 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4951 || (insn_code = recog_memoized (insn)) < 0
4952 || insn_data[insn_code].n_dups > 0)
4953 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4954 else
4955 SET_SRC (sets[i].rtl) = new;
4957 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
4959 validate_change (insn, &XEXP (dest, 1),
4960 canon_reg (XEXP (dest, 1), insn), 1);
4961 validate_change (insn, &XEXP (dest, 2),
4962 canon_reg (XEXP (dest, 2), insn), 1);
4965 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
4966 || GET_CODE (dest) == ZERO_EXTRACT
4967 || GET_CODE (dest) == SIGN_EXTRACT)
4968 dest = XEXP (dest, 0);
4970 if (GET_CODE (dest) == MEM)
4971 canon_reg (dest, insn);
4974 /* Now that we have done all the replacements, we can apply the change
4975 group and see if they all work. Note that this will cause some
4976 canonicalizations that would have worked individually not to be applied
4977 because some other canonicalization didn't work, but this should not
4978 occur often.
4980 The result of apply_change_group can be ignored; see canon_reg. */
4982 apply_change_group ();
4984 /* Set sets[i].src_elt to the class each source belongs to.
4985 Detect assignments from or to volatile things
4986 and set set[i] to zero so they will be ignored
4987 in the rest of this function.
4989 Nothing in this loop changes the hash table or the register chains. */
4991 for (i = 0; i < n_sets; i++)
4993 rtx src, dest;
4994 rtx src_folded;
4995 struct table_elt *elt = 0, *p;
4996 enum machine_mode mode;
4997 rtx src_eqv_here;
4998 rtx src_const = 0;
4999 rtx src_related = 0;
5000 struct table_elt *src_const_elt = 0;
5001 int src_cost = MAX_COST;
5002 int src_eqv_cost = MAX_COST;
5003 int src_folded_cost = MAX_COST;
5004 int src_related_cost = MAX_COST;
5005 int src_elt_cost = MAX_COST;
5006 int src_regcost = MAX_COST;
5007 int src_eqv_regcost = MAX_COST;
5008 int src_folded_regcost = MAX_COST;
5009 int src_related_regcost = MAX_COST;
5010 int src_elt_regcost = MAX_COST;
5011 /* Set non-zero if we need to call force_const_mem on with the
5012 contents of src_folded before using it. */
5013 int src_folded_force_flag = 0;
5015 dest = SET_DEST (sets[i].rtl);
5016 src = SET_SRC (sets[i].rtl);
5018 /* If SRC is a constant that has no machine mode,
5019 hash it with the destination's machine mode.
5020 This way we can keep different modes separate. */
5022 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5023 sets[i].mode = mode;
5025 if (src_eqv)
5027 enum machine_mode eqvmode = mode;
5028 if (GET_CODE (dest) == STRICT_LOW_PART)
5029 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5030 do_not_record = 0;
5031 hash_arg_in_memory = 0;
5032 src_eqv_hash = HASH (src_eqv, eqvmode);
5034 /* Find the equivalence class for the equivalent expression. */
5036 if (!do_not_record)
5037 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
5039 src_eqv_volatile = do_not_record;
5040 src_eqv_in_memory = hash_arg_in_memory;
5043 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
5044 value of the INNER register, not the destination. So it is not
5045 a valid substitution for the source. But save it for later. */
5046 if (GET_CODE (dest) == STRICT_LOW_PART)
5047 src_eqv_here = 0;
5048 else
5049 src_eqv_here = src_eqv;
5051 /* Simplify and foldable subexpressions in SRC. Then get the fully-
5052 simplified result, which may not necessarily be valid. */
5053 src_folded = fold_rtx (src, insn);
5055 #if 0
5056 /* ??? This caused bad code to be generated for the m68k port with -O2.
5057 Suppose src is (CONST_INT -1), and that after truncation src_folded
5058 is (CONST_INT 3). Suppose src_folded is then used for src_const.
5059 At the end we will add src and src_const to the same equivalence
5060 class. We now have 3 and -1 on the same equivalence class. This
5061 causes later instructions to be mis-optimized. */
5062 /* If storing a constant in a bitfield, pre-truncate the constant
5063 so we will be able to record it later. */
5064 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5065 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
5067 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5069 if (GET_CODE (src) == CONST_INT
5070 && GET_CODE (width) == CONST_INT
5071 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5072 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5073 src_folded
5074 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
5075 << INTVAL (width)) - 1));
5077 #endif
5079 /* Compute SRC's hash code, and also notice if it
5080 should not be recorded at all. In that case,
5081 prevent any further processing of this assignment. */
5082 do_not_record = 0;
5083 hash_arg_in_memory = 0;
5085 sets[i].src = src;
5086 sets[i].src_hash = HASH (src, mode);
5087 sets[i].src_volatile = do_not_record;
5088 sets[i].src_in_memory = hash_arg_in_memory;
5090 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
5091 a pseudo, do not record SRC. Using SRC as a replacement for
5092 anything else will be incorrect in that situation. Note that
5093 this usually occurs only for stack slots, in which case all the
5094 RTL would be referring to SRC, so we don't lose any optimization
5095 opportunities by not having SRC in the hash table. */
5097 if (GET_CODE (src) == MEM
5098 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
5099 && GET_CODE (dest) == REG
5100 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5101 sets[i].src_volatile = 1;
5103 #if 0
5104 /* It is no longer clear why we used to do this, but it doesn't
5105 appear to still be needed. So let's try without it since this
5106 code hurts cse'ing widened ops. */
5107 /* If source is a perverse subreg (such as QI treated as an SI),
5108 treat it as volatile. It may do the work of an SI in one context
5109 where the extra bits are not being used, but cannot replace an SI
5110 in general. */
5111 if (GET_CODE (src) == SUBREG
5112 && (GET_MODE_SIZE (GET_MODE (src))
5113 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5114 sets[i].src_volatile = 1;
5115 #endif
5117 /* Locate all possible equivalent forms for SRC. Try to replace
5118 SRC in the insn with each cheaper equivalent.
5120 We have the following types of equivalents: SRC itself, a folded
5121 version, a value given in a REG_EQUAL note, or a value related
5122 to a constant.
5124 Each of these equivalents may be part of an additional class
5125 of equivalents (if more than one is in the table, they must be in
5126 the same class; we check for this).
5128 If the source is volatile, we don't do any table lookups.
5130 We note any constant equivalent for possible later use in a
5131 REG_NOTE. */
5133 if (!sets[i].src_volatile)
5134 elt = lookup (src, sets[i].src_hash, mode);
5136 sets[i].src_elt = elt;
5138 if (elt && src_eqv_here && src_eqv_elt)
5140 if (elt->first_same_value != src_eqv_elt->first_same_value)
5142 /* The REG_EQUAL is indicating that two formerly distinct
5143 classes are now equivalent. So merge them. */
5144 merge_equiv_classes (elt, src_eqv_elt);
5145 src_eqv_hash = HASH (src_eqv, elt->mode);
5146 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
5149 src_eqv_here = 0;
5152 else if (src_eqv_elt)
5153 elt = src_eqv_elt;
5155 /* Try to find a constant somewhere and record it in `src_const'.
5156 Record its table element, if any, in `src_const_elt'. Look in
5157 any known equivalences first. (If the constant is not in the
5158 table, also set `sets[i].src_const_hash'). */
5159 if (elt)
5160 for (p = elt->first_same_value; p; p = p->next_same_value)
5161 if (p->is_const)
5163 src_const = p->exp;
5164 src_const_elt = elt;
5165 break;
5168 if (src_const == 0
5169 && (CONSTANT_P (src_folded)
5170 /* Consider (minus (label_ref L1) (label_ref L2)) as
5171 "constant" here so we will record it. This allows us
5172 to fold switch statements when an ADDR_DIFF_VEC is used. */
5173 || (GET_CODE (src_folded) == MINUS
5174 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5175 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5176 src_const = src_folded, src_const_elt = elt;
5177 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5178 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5180 /* If we don't know if the constant is in the table, get its
5181 hash code and look it up. */
5182 if (src_const && src_const_elt == 0)
5184 sets[i].src_const_hash = HASH (src_const, mode);
5185 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
5188 sets[i].src_const = src_const;
5189 sets[i].src_const_elt = src_const_elt;
5191 /* If the constant and our source are both in the table, mark them as
5192 equivalent. Otherwise, if a constant is in the table but the source
5193 isn't, set ELT to it. */
5194 if (src_const_elt && elt
5195 && src_const_elt->first_same_value != elt->first_same_value)
5196 merge_equiv_classes (elt, src_const_elt);
5197 else if (src_const_elt && elt == 0)
5198 elt = src_const_elt;
5200 /* See if there is a register linearly related to a constant
5201 equivalent of SRC. */
5202 if (src_const
5203 && (GET_CODE (src_const) == CONST
5204 || (src_const_elt && src_const_elt->related_value != 0)))
5206 src_related = use_related_value (src_const, src_const_elt);
5207 if (src_related)
5209 struct table_elt *src_related_elt
5210 = lookup (src_related, HASH (src_related, mode), mode);
5211 if (src_related_elt && elt)
5213 if (elt->first_same_value
5214 != src_related_elt->first_same_value)
5215 /* This can occur when we previously saw a CONST
5216 involving a SYMBOL_REF and then see the SYMBOL_REF
5217 twice. Merge the involved classes. */
5218 merge_equiv_classes (elt, src_related_elt);
5220 src_related = 0;
5221 src_related_elt = 0;
5223 else if (src_related_elt && elt == 0)
5224 elt = src_related_elt;
5228 /* See if we have a CONST_INT that is already in a register in a
5229 wider mode. */
5231 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5232 && GET_MODE_CLASS (mode) == MODE_INT
5233 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5235 enum machine_mode wider_mode;
5237 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5238 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5239 && src_related == 0;
5240 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5242 struct table_elt *const_elt
5243 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5245 if (const_elt == 0)
5246 continue;
5248 for (const_elt = const_elt->first_same_value;
5249 const_elt; const_elt = const_elt->next_same_value)
5250 if (GET_CODE (const_elt->exp) == REG)
5252 src_related = gen_lowpart_if_possible (mode,
5253 const_elt->exp);
5254 break;
5259 /* Another possibility is that we have an AND with a constant in
5260 a mode narrower than a word. If so, it might have been generated
5261 as part of an "if" which would narrow the AND. If we already
5262 have done the AND in a wider mode, we can use a SUBREG of that
5263 value. */
5265 if (flag_expensive_optimizations && ! src_related
5266 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5267 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5269 enum machine_mode tmode;
5270 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5272 for (tmode = GET_MODE_WIDER_MODE (mode);
5273 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5274 tmode = GET_MODE_WIDER_MODE (tmode))
5276 rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
5277 struct table_elt *larger_elt;
5279 if (inner)
5281 PUT_MODE (new_and, tmode);
5282 XEXP (new_and, 0) = inner;
5283 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5284 if (larger_elt == 0)
5285 continue;
5287 for (larger_elt = larger_elt->first_same_value;
5288 larger_elt; larger_elt = larger_elt->next_same_value)
5289 if (GET_CODE (larger_elt->exp) == REG)
5291 src_related
5292 = gen_lowpart_if_possible (mode, larger_elt->exp);
5293 break;
5296 if (src_related)
5297 break;
5302 #ifdef LOAD_EXTEND_OP
5303 /* See if a MEM has already been loaded with a widening operation;
5304 if it has, we can use a subreg of that. Many CISC machines
5305 also have such operations, but this is only likely to be
5306 beneficial these machines. */
5308 if (flag_expensive_optimizations && src_related == 0
5309 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5310 && GET_MODE_CLASS (mode) == MODE_INT
5311 && GET_CODE (src) == MEM && ! do_not_record
5312 && LOAD_EXTEND_OP (mode) != NIL)
5314 enum machine_mode tmode;
5316 /* Set what we are trying to extend and the operation it might
5317 have been extended with. */
5318 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5319 XEXP (memory_extend_rtx, 0) = src;
5321 for (tmode = GET_MODE_WIDER_MODE (mode);
5322 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5323 tmode = GET_MODE_WIDER_MODE (tmode))
5325 struct table_elt *larger_elt;
5327 PUT_MODE (memory_extend_rtx, tmode);
5328 larger_elt = lookup (memory_extend_rtx,
5329 HASH (memory_extend_rtx, tmode), tmode);
5330 if (larger_elt == 0)
5331 continue;
5333 for (larger_elt = larger_elt->first_same_value;
5334 larger_elt; larger_elt = larger_elt->next_same_value)
5335 if (GET_CODE (larger_elt->exp) == REG)
5337 src_related = gen_lowpart_if_possible (mode,
5338 larger_elt->exp);
5339 break;
5342 if (src_related)
5343 break;
5346 #endif /* LOAD_EXTEND_OP */
5348 if (src == src_folded)
5349 src_folded = 0;
5351 /* At this point, ELT, if non-zero, points to a class of expressions
5352 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5353 and SRC_RELATED, if non-zero, each contain additional equivalent
5354 expressions. Prune these latter expressions by deleting expressions
5355 already in the equivalence class.
5357 Check for an equivalent identical to the destination. If found,
5358 this is the preferred equivalent since it will likely lead to
5359 elimination of the insn. Indicate this by placing it in
5360 `src_related'. */
5362 if (elt)
5363 elt = elt->first_same_value;
5364 for (p = elt; p; p = p->next_same_value)
5366 enum rtx_code code = GET_CODE (p->exp);
5368 /* If the expression is not valid, ignore it. Then we do not
5369 have to check for validity below. In most cases, we can use
5370 `rtx_equal_p', since canonicalization has already been done. */
5371 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
5372 continue;
5374 /* Also skip paradoxical subregs, unless that's what we're
5375 looking for. */
5376 if (code == SUBREG
5377 && (GET_MODE_SIZE (GET_MODE (p->exp))
5378 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5379 && ! (src != 0
5380 && GET_CODE (src) == SUBREG
5381 && GET_MODE (src) == GET_MODE (p->exp)
5382 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5383 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5384 continue;
5386 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5387 src = 0;
5388 else if (src_folded && GET_CODE (src_folded) == code
5389 && rtx_equal_p (src_folded, p->exp))
5390 src_folded = 0;
5391 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5392 && rtx_equal_p (src_eqv_here, p->exp))
5393 src_eqv_here = 0;
5394 else if (src_related && GET_CODE (src_related) == code
5395 && rtx_equal_p (src_related, p->exp))
5396 src_related = 0;
5398 /* This is the same as the destination of the insns, we want
5399 to prefer it. Copy it to src_related. The code below will
5400 then give it a negative cost. */
5401 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5402 src_related = dest;
5405 /* Find the cheapest valid equivalent, trying all the available
5406 possibilities. Prefer items not in the hash table to ones
5407 that are when they are equal cost. Note that we can never
5408 worsen an insn as the current contents will also succeed.
5409 If we find an equivalent identical to the destination, use it as best,
5410 since this insn will probably be eliminated in that case. */
5411 if (src)
5413 if (rtx_equal_p (src, dest))
5414 src_cost = src_regcost = -1;
5415 else
5417 src_cost = COST (src);
5418 src_regcost = approx_reg_cost (src);
5422 if (src_eqv_here)
5424 if (rtx_equal_p (src_eqv_here, dest))
5425 src_eqv_cost = src_eqv_regcost = -1;
5426 else
5428 src_eqv_cost = COST (src_eqv_here);
5429 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5433 if (src_folded)
5435 if (rtx_equal_p (src_folded, dest))
5436 src_folded_cost = src_folded_regcost = -1;
5437 else
5439 src_folded_cost = COST (src_folded);
5440 src_folded_regcost = approx_reg_cost (src_folded);
5444 if (src_related)
5446 if (rtx_equal_p (src_related, dest))
5447 src_related_cost = src_related_regcost = -1;
5448 else
5450 src_related_cost = COST (src_related);
5451 src_related_regcost = approx_reg_cost (src_related);
5455 /* If this was an indirect jump insn, a known label will really be
5456 cheaper even though it looks more expensive. */
5457 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5458 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5460 /* Terminate loop when replacement made. This must terminate since
5461 the current contents will be tested and will always be valid. */
5462 while (1)
5464 rtx trial;
5466 /* Skip invalid entries. */
5467 while (elt && GET_CODE (elt->exp) != REG
5468 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
5469 elt = elt->next_same_value;
5471 /* A paradoxical subreg would be bad here: it'll be the right
5472 size, but later may be adjusted so that the upper bits aren't
5473 what we want. So reject it. */
5474 if (elt != 0
5475 && GET_CODE (elt->exp) == SUBREG
5476 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5477 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5478 /* It is okay, though, if the rtx we're trying to match
5479 will ignore any of the bits we can't predict. */
5480 && ! (src != 0
5481 && GET_CODE (src) == SUBREG
5482 && GET_MODE (src) == GET_MODE (elt->exp)
5483 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5484 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5486 elt = elt->next_same_value;
5487 continue;
5490 if (elt)
5492 src_elt_cost = elt->cost;
5493 src_elt_regcost = elt->regcost;
5496 /* Find cheapest and skip it for the next time. For items
5497 of equal cost, use this order:
5498 src_folded, src, src_eqv, src_related and hash table entry. */
5499 if (src_folded
5500 && preferrable (src_folded_cost, src_folded_regcost,
5501 src_cost, src_regcost) <= 0
5502 && preferrable (src_folded_cost, src_folded_regcost,
5503 src_eqv_cost, src_eqv_regcost) <= 0
5504 && preferrable (src_folded_cost, src_folded_regcost,
5505 src_related_cost, src_related_regcost) <= 0
5506 && preferrable (src_folded_cost, src_folded_regcost,
5507 src_elt_cost, src_elt_regcost) <= 0)
5509 trial = src_folded, src_folded_cost = MAX_COST;
5510 if (src_folded_force_flag)
5511 trial = force_const_mem (mode, trial);
5513 else if (src
5514 && preferrable (src_cost, src_regcost,
5515 src_eqv_cost, src_eqv_regcost) <= 0
5516 && preferrable (src_cost, src_regcost,
5517 src_related_cost, src_related_regcost) <= 0
5518 && preferrable (src_cost, src_regcost,
5519 src_elt_cost, src_elt_regcost) <= 0)
5520 trial = src, src_cost = MAX_COST;
5521 else if (src_eqv_here
5522 && preferrable (src_eqv_cost, src_eqv_regcost,
5523 src_related_cost, src_related_regcost) <= 0
5524 && preferrable (src_eqv_cost, src_eqv_regcost,
5525 src_elt_cost, src_elt_regcost) <= 0)
5526 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5527 else if (src_related
5528 && preferrable (src_related_cost, src_related_regcost,
5529 src_elt_cost, src_elt_regcost) <= 0)
5530 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5531 else
5533 trial = copy_rtx (elt->exp);
5534 elt = elt->next_same_value;
5535 src_elt_cost = MAX_COST;
5538 /* We don't normally have an insn matching (set (pc) (pc)), so
5539 check for this separately here. We will delete such an
5540 insn below.
5542 For other cases such as a table jump or conditional jump
5543 where we know the ultimate target, go ahead and replace the
5544 operand. While that may not make a valid insn, we will
5545 reemit the jump below (and also insert any necessary
5546 barriers). */
5547 if (n_sets == 1 && dest == pc_rtx
5548 && (trial == pc_rtx
5549 || (GET_CODE (trial) == LABEL_REF
5550 && ! condjump_p (insn))))
5552 SET_SRC (sets[i].rtl) = trial;
5553 cse_jumps_altered = 1;
5554 break;
5557 /* Look for a substitution that makes a valid insn. */
5558 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5560 /* If we just made a substitution inside a libcall, then we
5561 need to make the same substitution in any notes attached
5562 to the RETVAL insn. */
5563 if (libcall_insn
5564 && (GET_CODE (sets[i].orig_src) == REG
5565 || GET_CODE (sets[i].orig_src) == SUBREG
5566 || GET_CODE (sets[i].orig_src) == MEM))
5567 replace_rtx (REG_NOTES (libcall_insn), sets[i].orig_src,
5568 canon_reg (SET_SRC (sets[i].rtl), insn));
5570 /* The result of apply_change_group can be ignored; see
5571 canon_reg. */
5573 validate_change (insn, &SET_SRC (sets[i].rtl),
5574 canon_reg (SET_SRC (sets[i].rtl), insn),
5576 apply_change_group ();
5577 break;
5580 /* If we previously found constant pool entries for
5581 constants and this is a constant, try making a
5582 pool entry. Put it in src_folded unless we already have done
5583 this since that is where it likely came from. */
5585 else if (constant_pool_entries_cost
5586 && CONSTANT_P (trial)
5587 /* Reject cases that will abort in decode_rtx_const.
5588 On the alpha when simplifying a switch, we get
5589 (const (truncate (minus (label_ref) (label_ref)))). */
5590 && ! (GET_CODE (trial) == CONST
5591 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5592 /* Likewise on IA-64, except without the truncate. */
5593 && ! (GET_CODE (trial) == CONST
5594 && GET_CODE (XEXP (trial, 0)) == MINUS
5595 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5596 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
5597 && (src_folded == 0
5598 || (GET_CODE (src_folded) != MEM
5599 && ! src_folded_force_flag))
5600 && GET_MODE_CLASS (mode) != MODE_CC
5601 && mode != VOIDmode)
5603 src_folded_force_flag = 1;
5604 src_folded = trial;
5605 src_folded_cost = constant_pool_entries_cost;
5609 src = SET_SRC (sets[i].rtl);
5611 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5612 However, there is an important exception: If both are registers
5613 that are not the head of their equivalence class, replace SET_SRC
5614 with the head of the class. If we do not do this, we will have
5615 both registers live over a portion of the basic block. This way,
5616 their lifetimes will likely abut instead of overlapping. */
5617 if (GET_CODE (dest) == REG
5618 && REGNO_QTY_VALID_P (REGNO (dest)))
5620 int dest_q = REG_QTY (REGNO (dest));
5621 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5623 if (dest_ent->mode == GET_MODE (dest)
5624 && dest_ent->first_reg != REGNO (dest)
5625 && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
5626 /* Don't do this if the original insn had a hard reg as
5627 SET_SRC or SET_DEST. */
5628 && (GET_CODE (sets[i].src) != REG
5629 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5630 && (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5631 /* We can't call canon_reg here because it won't do anything if
5632 SRC is a hard register. */
5634 int src_q = REG_QTY (REGNO (src));
5635 struct qty_table_elem *src_ent = &qty_table[src_q];
5636 int first = src_ent->first_reg;
5637 rtx new_src
5638 = (first >= FIRST_PSEUDO_REGISTER
5639 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5641 /* We must use validate-change even for this, because this
5642 might be a special no-op instruction, suitable only to
5643 tag notes onto. */
5644 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5646 src = new_src;
5647 /* If we had a constant that is cheaper than what we are now
5648 setting SRC to, use that constant. We ignored it when we
5649 thought we could make this into a no-op. */
5650 if (src_const && COST (src_const) < COST (src)
5651 && validate_change (insn, &SET_SRC (sets[i].rtl),
5652 src_const, 0))
5653 src = src_const;
5658 /* If we made a change, recompute SRC values. */
5659 if (src != sets[i].src)
5661 cse_altered = 1;
5662 do_not_record = 0;
5663 hash_arg_in_memory = 0;
5664 sets[i].src = src;
5665 sets[i].src_hash = HASH (src, mode);
5666 sets[i].src_volatile = do_not_record;
5667 sets[i].src_in_memory = hash_arg_in_memory;
5668 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5671 /* If this is a single SET, we are setting a register, and we have an
5672 equivalent constant, we want to add a REG_NOTE. We don't want
5673 to write a REG_EQUAL note for a constant pseudo since verifying that
5674 that pseudo hasn't been eliminated is a pain. Such a note also
5675 won't help anything.
5677 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5678 which can be created for a reference to a compile time computable
5679 entry in a jump table. */
5681 if (n_sets == 1 && src_const && GET_CODE (dest) == REG
5682 && GET_CODE (src_const) != REG
5683 && ! (GET_CODE (src_const) == CONST
5684 && GET_CODE (XEXP (src_const, 0)) == MINUS
5685 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5686 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5688 /* Make sure that the rtx is not shared with any other insn. */
5689 src_const = copy_rtx (src_const);
5691 /* Record the actual constant value in a REG_EQUAL note, making
5692 a new one if one does not already exist. */
5693 set_unique_reg_note (insn, REG_EQUAL, src_const);
5695 /* If storing a constant value in a register that
5696 previously held the constant value 0,
5697 record this fact with a REG_WAS_0 note on this insn.
5699 Note that the *register* is required to have previously held 0,
5700 not just any register in the quantity and we must point to the
5701 insn that set that register to zero.
5703 Rather than track each register individually, we just see if
5704 the last set for this quantity was for this register. */
5706 if (REGNO_QTY_VALID_P (REGNO (dest)))
5708 int dest_q = REG_QTY (REGNO (dest));
5709 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5711 if (dest_ent->const_rtx == const0_rtx)
5713 /* See if we previously had a REG_WAS_0 note. */
5714 rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
5715 rtx const_insn = dest_ent->const_insn;
5717 if ((tem = single_set (const_insn)) != 0
5718 && rtx_equal_p (SET_DEST (tem), dest))
5720 if (note)
5721 XEXP (note, 0) = const_insn;
5722 else
5723 REG_NOTES (insn)
5724 = gen_rtx_INSN_LIST (REG_WAS_0, const_insn,
5725 REG_NOTES (insn));
5731 /* Now deal with the destination. */
5732 do_not_record = 0;
5734 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
5735 to the MEM or REG within it. */
5736 while (GET_CODE (dest) == SIGN_EXTRACT
5737 || GET_CODE (dest) == ZERO_EXTRACT
5738 || GET_CODE (dest) == SUBREG
5739 || GET_CODE (dest) == STRICT_LOW_PART)
5740 dest = XEXP (dest, 0);
5742 sets[i].inner_dest = dest;
5744 if (GET_CODE (dest) == MEM)
5746 #ifdef PUSH_ROUNDING
5747 /* Stack pushes invalidate the stack pointer. */
5748 rtx addr = XEXP (dest, 0);
5749 if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
5750 && XEXP (addr, 0) == stack_pointer_rtx)
5751 invalidate (stack_pointer_rtx, Pmode);
5752 #endif
5753 dest = fold_rtx (dest, insn);
5756 /* Compute the hash code of the destination now,
5757 before the effects of this instruction are recorded,
5758 since the register values used in the address computation
5759 are those before this instruction. */
5760 sets[i].dest_hash = HASH (dest, mode);
5762 /* Don't enter a bit-field in the hash table
5763 because the value in it after the store
5764 may not equal what was stored, due to truncation. */
5766 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5767 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
5769 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5771 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5772 && GET_CODE (width) == CONST_INT
5773 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5774 && ! (INTVAL (src_const)
5775 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5776 /* Exception: if the value is constant,
5777 and it won't be truncated, record it. */
5779 else
5781 /* This is chosen so that the destination will be invalidated
5782 but no new value will be recorded.
5783 We must invalidate because sometimes constant
5784 values can be recorded for bitfields. */
5785 sets[i].src_elt = 0;
5786 sets[i].src_volatile = 1;
5787 src_eqv = 0;
5788 src_eqv_elt = 0;
5792 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5793 the insn. */
5794 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5796 /* One less use of the label this insn used to jump to. */
5797 delete_insn (insn);
5798 cse_jumps_altered = 1;
5799 /* No more processing for this set. */
5800 sets[i].rtl = 0;
5803 /* If this SET is now setting PC to a label, we know it used to
5804 be a conditional or computed branch. */
5805 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
5807 /* Now emit a BARRIER after the unconditional jump. */
5808 if (NEXT_INSN (insn) == 0
5809 || GET_CODE (NEXT_INSN (insn)) != BARRIER)
5810 emit_barrier_after (insn);
5812 /* We reemit the jump in as many cases as possible just in
5813 case the form of an unconditional jump is significantly
5814 different than a computed jump or conditional jump.
5816 If this insn has multiple sets, then reemitting the
5817 jump is nontrivial. So instead we just force rerecognition
5818 and hope for the best. */
5819 if (n_sets == 1)
5821 rtx new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
5823 JUMP_LABEL (new) = XEXP (src, 0);
5824 LABEL_NUSES (XEXP (src, 0))++;
5825 delete_insn (insn);
5826 insn = new;
5828 /* Now emit a BARRIER after the unconditional jump. */
5829 if (NEXT_INSN (insn) == 0
5830 || GET_CODE (NEXT_INSN (insn)) != BARRIER)
5831 emit_barrier_after (insn);
5833 else
5834 INSN_CODE (insn) = -1;
5836 never_reached_warning (insn, NULL);
5838 /* Do not bother deleting any unreachable code,
5839 let jump/flow do that. */
5841 cse_jumps_altered = 1;
5842 sets[i].rtl = 0;
5845 /* If destination is volatile, invalidate it and then do no further
5846 processing for this assignment. */
5848 else if (do_not_record)
5850 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
5851 invalidate (dest, VOIDmode);
5852 else if (GET_CODE (dest) == MEM)
5854 /* Outgoing arguments for a libcall don't
5855 affect any recorded expressions. */
5856 if (! libcall_insn || insn == libcall_insn)
5857 invalidate (dest, VOIDmode);
5859 else if (GET_CODE (dest) == STRICT_LOW_PART
5860 || GET_CODE (dest) == ZERO_EXTRACT)
5861 invalidate (XEXP (dest, 0), GET_MODE (dest));
5862 sets[i].rtl = 0;
5865 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5866 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5868 #ifdef HAVE_cc0
5869 /* If setting CC0, record what it was set to, or a constant, if it
5870 is equivalent to a constant. If it is being set to a floating-point
5871 value, make a COMPARE with the appropriate constant of 0. If we
5872 don't do this, later code can interpret this as a test against
5873 const0_rtx, which can cause problems if we try to put it into an
5874 insn as a floating-point operand. */
5875 if (dest == cc0_rtx)
5877 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5878 this_insn_cc0_mode = mode;
5879 if (FLOAT_MODE_P (mode))
5880 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5881 CONST0_RTX (mode));
5883 #endif
5886 /* Now enter all non-volatile source expressions in the hash table
5887 if they are not already present.
5888 Record their equivalence classes in src_elt.
5889 This way we can insert the corresponding destinations into
5890 the same classes even if the actual sources are no longer in them
5891 (having been invalidated). */
5893 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5894 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5896 struct table_elt *elt;
5897 struct table_elt *classp = sets[0].src_elt;
5898 rtx dest = SET_DEST (sets[0].rtl);
5899 enum machine_mode eqvmode = GET_MODE (dest);
5901 if (GET_CODE (dest) == STRICT_LOW_PART)
5903 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5904 classp = 0;
5906 if (insert_regs (src_eqv, classp, 0))
5908 rehash_using_reg (src_eqv);
5909 src_eqv_hash = HASH (src_eqv, eqvmode);
5911 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5912 elt->in_memory = src_eqv_in_memory;
5913 src_eqv_elt = elt;
5915 /* Check to see if src_eqv_elt is the same as a set source which
5916 does not yet have an elt, and if so set the elt of the set source
5917 to src_eqv_elt. */
5918 for (i = 0; i < n_sets; i++)
5919 if (sets[i].rtl && sets[i].src_elt == 0
5920 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5921 sets[i].src_elt = src_eqv_elt;
5924 for (i = 0; i < n_sets; i++)
5925 if (sets[i].rtl && ! sets[i].src_volatile
5926 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5928 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5930 /* REG_EQUAL in setting a STRICT_LOW_PART
5931 gives an equivalent for the entire destination register,
5932 not just for the subreg being stored in now.
5933 This is a more interesting equivalence, so we arrange later
5934 to treat the entire reg as the destination. */
5935 sets[i].src_elt = src_eqv_elt;
5936 sets[i].src_hash = src_eqv_hash;
5938 else
5940 /* Insert source and constant equivalent into hash table, if not
5941 already present. */
5942 struct table_elt *classp = src_eqv_elt;
5943 rtx src = sets[i].src;
5944 rtx dest = SET_DEST (sets[i].rtl);
5945 enum machine_mode mode
5946 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5948 if (sets[i].src_elt == 0)
5950 /* Don't put a hard register source into the table if this is
5951 the last insn of a libcall. In this case, we only need
5952 to put src_eqv_elt in src_elt. */
5953 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5955 struct table_elt *elt;
5957 /* Note that these insert_regs calls cannot remove
5958 any of the src_elt's, because they would have failed to
5959 match if not still valid. */
5960 if (insert_regs (src, classp, 0))
5962 rehash_using_reg (src);
5963 sets[i].src_hash = HASH (src, mode);
5965 elt = insert (src, classp, sets[i].src_hash, mode);
5966 elt->in_memory = sets[i].src_in_memory;
5967 sets[i].src_elt = classp = elt;
5969 else
5970 sets[i].src_elt = classp;
5972 if (sets[i].src_const && sets[i].src_const_elt == 0
5973 && src != sets[i].src_const
5974 && ! rtx_equal_p (sets[i].src_const, src))
5975 sets[i].src_elt = insert (sets[i].src_const, classp,
5976 sets[i].src_const_hash, mode);
5979 else if (sets[i].src_elt == 0)
5980 /* If we did not insert the source into the hash table (e.g., it was
5981 volatile), note the equivalence class for the REG_EQUAL value, if any,
5982 so that the destination goes into that class. */
5983 sets[i].src_elt = src_eqv_elt;
5985 invalidate_from_clobbers (x);
5987 /* Some registers are invalidated by subroutine calls. Memory is
5988 invalidated by non-constant calls. */
5990 if (GET_CODE (insn) == CALL_INSN)
5992 if (! CONST_OR_PURE_CALL_P (insn))
5993 invalidate_memory ();
5994 invalidate_for_call ();
5997 /* Now invalidate everything set by this instruction.
5998 If a SUBREG or other funny destination is being set,
5999 sets[i].rtl is still nonzero, so here we invalidate the reg
6000 a part of which is being set. */
6002 for (i = 0; i < n_sets; i++)
6003 if (sets[i].rtl)
6005 /* We can't use the inner dest, because the mode associated with
6006 a ZERO_EXTRACT is significant. */
6007 rtx dest = SET_DEST (sets[i].rtl);
6009 /* Needed for registers to remove the register from its
6010 previous quantity's chain.
6011 Needed for memory if this is a nonvarying address, unless
6012 we have just done an invalidate_memory that covers even those. */
6013 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
6014 invalidate (dest, VOIDmode);
6015 else if (GET_CODE (dest) == MEM)
6017 /* Outgoing arguments for a libcall don't
6018 affect any recorded expressions. */
6019 if (! libcall_insn || insn == libcall_insn)
6020 invalidate (dest, VOIDmode);
6022 else if (GET_CODE (dest) == STRICT_LOW_PART
6023 || GET_CODE (dest) == ZERO_EXTRACT)
6024 invalidate (XEXP (dest, 0), GET_MODE (dest));
6027 /* A volatile ASM invalidates everything. */
6028 if (GET_CODE (insn) == INSN
6029 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
6030 && MEM_VOLATILE_P (PATTERN (insn)))
6031 flush_hash_table ();
6033 /* Make sure registers mentioned in destinations
6034 are safe for use in an expression to be inserted.
6035 This removes from the hash table
6036 any invalid entry that refers to one of these registers.
6038 We don't care about the return value from mention_regs because
6039 we are going to hash the SET_DEST values unconditionally. */
6041 for (i = 0; i < n_sets; i++)
6043 if (sets[i].rtl)
6045 rtx x = SET_DEST (sets[i].rtl);
6047 if (GET_CODE (x) != REG)
6048 mention_regs (x);
6049 else
6051 /* We used to rely on all references to a register becoming
6052 inaccessible when a register changes to a new quantity,
6053 since that changes the hash code. However, that is not
6054 safe, since after HASH_SIZE new quantities we get a
6055 hash 'collision' of a register with its own invalid
6056 entries. And since SUBREGs have been changed not to
6057 change their hash code with the hash code of the register,
6058 it wouldn't work any longer at all. So we have to check
6059 for any invalid references lying around now.
6060 This code is similar to the REG case in mention_regs,
6061 but it knows that reg_tick has been incremented, and
6062 it leaves reg_in_table as -1 . */
6063 unsigned int regno = REGNO (x);
6064 unsigned int endregno
6065 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
6066 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
6067 unsigned int i;
6069 for (i = regno; i < endregno; i++)
6071 if (REG_IN_TABLE (i) >= 0)
6073 remove_invalid_refs (i);
6074 REG_IN_TABLE (i) = -1;
6081 /* We may have just removed some of the src_elt's from the hash table.
6082 So replace each one with the current head of the same class. */
6084 for (i = 0; i < n_sets; i++)
6085 if (sets[i].rtl)
6087 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
6088 /* If elt was removed, find current head of same class,
6089 or 0 if nothing remains of that class. */
6091 struct table_elt *elt = sets[i].src_elt;
6093 while (elt && elt->prev_same_value)
6094 elt = elt->prev_same_value;
6096 while (elt && elt->first_same_value == 0)
6097 elt = elt->next_same_value;
6098 sets[i].src_elt = elt ? elt->first_same_value : 0;
6102 /* Now insert the destinations into their equivalence classes. */
6104 for (i = 0; i < n_sets; i++)
6105 if (sets[i].rtl)
6107 rtx dest = SET_DEST (sets[i].rtl);
6108 rtx inner_dest = sets[i].inner_dest;
6109 struct table_elt *elt;
6111 /* Don't record value if we are not supposed to risk allocating
6112 floating-point values in registers that might be wider than
6113 memory. */
6114 if ((flag_float_store
6115 && GET_CODE (dest) == MEM
6116 && FLOAT_MODE_P (GET_MODE (dest)))
6117 /* Don't record BLKmode values, because we don't know the
6118 size of it, and can't be sure that other BLKmode values
6119 have the same or smaller size. */
6120 || GET_MODE (dest) == BLKmode
6121 /* Don't record values of destinations set inside a libcall block
6122 since we might delete the libcall. Things should have been set
6123 up so we won't want to reuse such a value, but we play it safe
6124 here. */
6125 || libcall_insn
6126 /* If we didn't put a REG_EQUAL value or a source into the hash
6127 table, there is no point is recording DEST. */
6128 || sets[i].src_elt == 0
6129 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6130 or SIGN_EXTEND, don't record DEST since it can cause
6131 some tracking to be wrong.
6133 ??? Think about this more later. */
6134 || (GET_CODE (dest) == SUBREG
6135 && (GET_MODE_SIZE (GET_MODE (dest))
6136 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6137 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6138 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
6139 continue;
6141 /* STRICT_LOW_PART isn't part of the value BEING set,
6142 and neither is the SUBREG inside it.
6143 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6144 if (GET_CODE (dest) == STRICT_LOW_PART)
6145 dest = SUBREG_REG (XEXP (dest, 0));
6147 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
6148 /* Registers must also be inserted into chains for quantities. */
6149 if (insert_regs (dest, sets[i].src_elt, 1))
6151 /* If `insert_regs' changes something, the hash code must be
6152 recalculated. */
6153 rehash_using_reg (dest);
6154 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6157 if (GET_CODE (inner_dest) == MEM
6158 && GET_CODE (XEXP (inner_dest, 0)) == ADDRESSOF)
6159 /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
6160 that (MEM (ADDRESSOF (X))) is equivalent to Y.
6161 Consider the case in which the address of the MEM is
6162 passed to a function, which alters the MEM. Then, if we
6163 later use Y instead of the MEM we'll miss the update. */
6164 elt = insert (dest, 0, sets[i].dest_hash, GET_MODE (dest));
6165 else
6166 elt = insert (dest, sets[i].src_elt,
6167 sets[i].dest_hash, GET_MODE (dest));
6169 elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
6170 && (! RTX_UNCHANGING_P (sets[i].inner_dest)
6171 || FIXED_BASE_PLUS_P (XEXP (sets[i].inner_dest,
6172 0))));
6174 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6175 narrower than M2, and both M1 and M2 are the same number of words,
6176 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6177 make that equivalence as well.
6179 However, BAR may have equivalences for which gen_lowpart_if_possible
6180 will produce a simpler value than gen_lowpart_if_possible applied to
6181 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6182 BAR's equivalences. If we don't get a simplified form, make
6183 the SUBREG. It will not be used in an equivalence, but will
6184 cause two similar assignments to be detected.
6186 Note the loop below will find SUBREG_REG (DEST) since we have
6187 already entered SRC and DEST of the SET in the table. */
6189 if (GET_CODE (dest) == SUBREG
6190 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6191 / UNITS_PER_WORD)
6192 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
6193 && (GET_MODE_SIZE (GET_MODE (dest))
6194 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6195 && sets[i].src_elt != 0)
6197 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6198 struct table_elt *elt, *classp = 0;
6200 for (elt = sets[i].src_elt->first_same_value; elt;
6201 elt = elt->next_same_value)
6203 rtx new_src = 0;
6204 unsigned src_hash;
6205 struct table_elt *src_elt;
6206 int byte = 0;
6208 /* Ignore invalid entries. */
6209 if (GET_CODE (elt->exp) != REG
6210 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
6211 continue;
6213 /* We may have already been playing subreg games. If the
6214 mode is already correct for the destination, use it. */
6215 if (GET_MODE (elt->exp) == new_mode)
6216 new_src = elt->exp;
6217 else
6219 /* Calculate big endian correction for the SUBREG_BYTE.
6220 We have already checked that M1 (GET_MODE (dest))
6221 is not narrower than M2 (new_mode). */
6222 if (BYTES_BIG_ENDIAN)
6223 byte = (GET_MODE_SIZE (GET_MODE (dest))
6224 - GET_MODE_SIZE (new_mode));
6226 new_src = simplify_gen_subreg (new_mode, elt->exp,
6227 GET_MODE (dest), byte);
6230 /* The call to simplify_gen_subreg fails if the value
6231 is VOIDmode, yet we can't do any simplification, e.g.
6232 for EXPR_LISTs denoting function call results.
6233 It is invalid to construct a SUBREG with a VOIDmode
6234 SUBREG_REG, hence a zero new_src means we can't do
6235 this substitution. */
6236 if (! new_src)
6237 continue;
6239 src_hash = HASH (new_src, new_mode);
6240 src_elt = lookup (new_src, src_hash, new_mode);
6242 /* Put the new source in the hash table is if isn't
6243 already. */
6244 if (src_elt == 0)
6246 if (insert_regs (new_src, classp, 0))
6248 rehash_using_reg (new_src);
6249 src_hash = HASH (new_src, new_mode);
6251 src_elt = insert (new_src, classp, src_hash, new_mode);
6252 src_elt->in_memory = elt->in_memory;
6254 else if (classp && classp != src_elt->first_same_value)
6255 /* Show that two things that we've seen before are
6256 actually the same. */
6257 merge_equiv_classes (src_elt, classp);
6259 classp = src_elt->first_same_value;
6260 /* Ignore invalid entries. */
6261 while (classp
6262 && GET_CODE (classp->exp) != REG
6263 && ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
6264 classp = classp->next_same_value;
6269 /* Special handling for (set REG0 REG1) where REG0 is the
6270 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6271 be used in the sequel, so (if easily done) change this insn to
6272 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6273 that computed their value. Then REG1 will become a dead store
6274 and won't cloud the situation for later optimizations.
6276 Do not make this change if REG1 is a hard register, because it will
6277 then be used in the sequel and we may be changing a two-operand insn
6278 into a three-operand insn.
6280 Also do not do this if we are operating on a copy of INSN.
6282 Also don't do this if INSN ends a libcall; this would cause an unrelated
6283 register to be set in the middle of a libcall, and we then get bad code
6284 if the libcall is deleted. */
6286 if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
6287 && NEXT_INSN (PREV_INSN (insn)) == insn
6288 && GET_CODE (SET_SRC (sets[0].rtl)) == REG
6289 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6290 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
6292 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6293 struct qty_table_elem *src_ent = &qty_table[src_q];
6295 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6296 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
6298 rtx prev = prev_nonnote_insn (insn);
6300 /* Do not swap the registers around if the previous instruction
6301 attaches a REG_EQUIV note to REG1.
6303 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6304 from the pseudo that originally shadowed an incoming argument
6305 to another register. Some uses of REG_EQUIV might rely on it
6306 being attached to REG1 rather than REG2.
6308 This section previously turned the REG_EQUIV into a REG_EQUAL
6309 note. We cannot do that because REG_EQUIV may provide an
6310 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
6312 if (prev != 0 && GET_CODE (prev) == INSN
6313 && GET_CODE (PATTERN (prev)) == SET
6314 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6315 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6317 rtx dest = SET_DEST (sets[0].rtl);
6318 rtx src = SET_SRC (sets[0].rtl);
6319 rtx note;
6321 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6322 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6323 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6324 apply_change_group ();
6326 /* If there was a REG_WAS_0 note on PREV, remove it. Move
6327 any REG_WAS_0 note on INSN to PREV. */
6328 note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
6329 if (note)
6330 remove_note (prev, note);
6332 note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
6333 if (note)
6335 remove_note (insn, note);
6336 XEXP (note, 1) = REG_NOTES (prev);
6337 REG_NOTES (prev) = note;
6340 /* If INSN has a REG_EQUAL note, and this note mentions
6341 REG0, then we must delete it, because the value in
6342 REG0 has changed. If the note's value is REG1, we must
6343 also delete it because that is now this insn's dest. */
6344 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6345 if (note != 0
6346 && (reg_mentioned_p (dest, XEXP (note, 0))
6347 || rtx_equal_p (src, XEXP (note, 0))))
6348 remove_note (insn, note);
6353 /* If this is a conditional jump insn, record any known equivalences due to
6354 the condition being tested. */
6356 last_jump_equiv_class = 0;
6357 if (GET_CODE (insn) == JUMP_INSN
6358 && n_sets == 1 && GET_CODE (x) == SET
6359 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6360 record_jump_equiv (insn, 0);
6362 #ifdef HAVE_cc0
6363 /* If the previous insn set CC0 and this insn no longer references CC0,
6364 delete the previous insn. Here we use the fact that nothing expects CC0
6365 to be valid over an insn, which is true until the final pass. */
6366 if (prev_insn && GET_CODE (prev_insn) == INSN
6367 && (tem = single_set (prev_insn)) != 0
6368 && SET_DEST (tem) == cc0_rtx
6369 && ! reg_mentioned_p (cc0_rtx, x))
6370 delete_insn (prev_insn);
6372 prev_insn_cc0 = this_insn_cc0;
6373 prev_insn_cc0_mode = this_insn_cc0_mode;
6374 #endif
6376 prev_insn = insn;
6379 /* Remove from the hash table all expressions that reference memory. */
6381 static void
6382 invalidate_memory ()
6384 int i;
6385 struct table_elt *p, *next;
6387 for (i = 0; i < HASH_SIZE; i++)
6388 for (p = table[i]; p; p = next)
6390 next = p->next_same_hash;
6391 if (p->in_memory)
6392 remove_from_table (p, i);
6396 /* If ADDR is an address that implicitly affects the stack pointer, return
6397 1 and update the register tables to show the effect. Else, return 0. */
6399 static int
6400 addr_affects_sp_p (addr)
6401 rtx addr;
6403 if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
6404 && GET_CODE (XEXP (addr, 0)) == REG
6405 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6407 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6408 REG_TICK (STACK_POINTER_REGNUM)++;
6410 /* This should be *very* rare. */
6411 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6412 invalidate (stack_pointer_rtx, VOIDmode);
6414 return 1;
6417 return 0;
6420 /* Perform invalidation on the basis of everything about an insn
6421 except for invalidating the actual places that are SET in it.
6422 This includes the places CLOBBERed, and anything that might
6423 alias with something that is SET or CLOBBERed.
6425 X is the pattern of the insn. */
6427 static void
6428 invalidate_from_clobbers (x)
6429 rtx x;
6431 if (GET_CODE (x) == CLOBBER)
6433 rtx ref = XEXP (x, 0);
6434 if (ref)
6436 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
6437 || GET_CODE (ref) == MEM)
6438 invalidate (ref, VOIDmode);
6439 else if (GET_CODE (ref) == STRICT_LOW_PART
6440 || GET_CODE (ref) == ZERO_EXTRACT)
6441 invalidate (XEXP (ref, 0), GET_MODE (ref));
6444 else if (GET_CODE (x) == PARALLEL)
6446 int i;
6447 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6449 rtx y = XVECEXP (x, 0, i);
6450 if (GET_CODE (y) == CLOBBER)
6452 rtx ref = XEXP (y, 0);
6453 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
6454 || GET_CODE (ref) == MEM)
6455 invalidate (ref, VOIDmode);
6456 else if (GET_CODE (ref) == STRICT_LOW_PART
6457 || GET_CODE (ref) == ZERO_EXTRACT)
6458 invalidate (XEXP (ref, 0), GET_MODE (ref));
6464 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6465 and replace any registers in them with either an equivalent constant
6466 or the canonical form of the register. If we are inside an address,
6467 only do this if the address remains valid.
6469 OBJECT is 0 except when within a MEM in which case it is the MEM.
6471 Return the replacement for X. */
6473 static rtx
6474 cse_process_notes (x, object)
6475 rtx x;
6476 rtx object;
6478 enum rtx_code code = GET_CODE (x);
6479 const char *fmt = GET_RTX_FORMAT (code);
6480 int i;
6482 switch (code)
6484 case CONST_INT:
6485 case CONST:
6486 case SYMBOL_REF:
6487 case LABEL_REF:
6488 case CONST_DOUBLE:
6489 case CONST_VECTOR:
6490 case PC:
6491 case CC0:
6492 case LO_SUM:
6493 return x;
6495 case MEM:
6496 validate_change (x, &XEXP (x, 0),
6497 cse_process_notes (XEXP (x, 0), x), 0);
6498 return x;
6500 case EXPR_LIST:
6501 case INSN_LIST:
6502 if (REG_NOTE_KIND (x) == REG_EQUAL)
6503 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6504 if (XEXP (x, 1))
6505 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6506 return x;
6508 case SIGN_EXTEND:
6509 case ZERO_EXTEND:
6510 case SUBREG:
6512 rtx new = cse_process_notes (XEXP (x, 0), object);
6513 /* We don't substitute VOIDmode constants into these rtx,
6514 since they would impede folding. */
6515 if (GET_MODE (new) != VOIDmode)
6516 validate_change (object, &XEXP (x, 0), new, 0);
6517 return x;
6520 case REG:
6521 i = REG_QTY (REGNO (x));
6523 /* Return a constant or a constant register. */
6524 if (REGNO_QTY_VALID_P (REGNO (x)))
6526 struct qty_table_elem *ent = &qty_table[i];
6528 if (ent->const_rtx != NULL_RTX
6529 && (CONSTANT_P (ent->const_rtx)
6530 || GET_CODE (ent->const_rtx) == REG))
6532 rtx new = gen_lowpart_if_possible (GET_MODE (x), ent->const_rtx);
6533 if (new)
6534 return new;
6538 /* Otherwise, canonicalize this register. */
6539 return canon_reg (x, NULL_RTX);
6541 default:
6542 break;
6545 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6546 if (fmt[i] == 'e')
6547 validate_change (object, &XEXP (x, i),
6548 cse_process_notes (XEXP (x, i), object), 0);
6550 return x;
6553 /* Find common subexpressions between the end test of a loop and the beginning
6554 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
6556 Often we have a loop where an expression in the exit test is used
6557 in the body of the loop. For example "while (*p) *q++ = *p++;".
6558 Because of the way we duplicate the loop exit test in front of the loop,
6559 however, we don't detect that common subexpression. This will be caught
6560 when global cse is implemented, but this is a quite common case.
6562 This function handles the most common cases of these common expressions.
6563 It is called after we have processed the basic block ending with the
6564 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
6565 jumps to a label used only once. */
6567 static void
6568 cse_around_loop (loop_start)
6569 rtx loop_start;
6571 rtx insn;
6572 int i;
6573 struct table_elt *p;
6575 /* If the jump at the end of the loop doesn't go to the start, we don't
6576 do anything. */
6577 for (insn = PREV_INSN (loop_start);
6578 insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
6579 insn = PREV_INSN (insn))
6582 if (insn == 0
6583 || GET_CODE (insn) != NOTE
6584 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
6585 return;
6587 /* If the last insn of the loop (the end test) was an NE comparison,
6588 we will interpret it as an EQ comparison, since we fell through
6589 the loop. Any equivalences resulting from that comparison are
6590 therefore not valid and must be invalidated. */
6591 if (last_jump_equiv_class)
6592 for (p = last_jump_equiv_class->first_same_value; p;
6593 p = p->next_same_value)
6595 if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
6596 || (GET_CODE (p->exp) == SUBREG
6597 && GET_CODE (SUBREG_REG (p->exp)) == REG))
6598 invalidate (p->exp, VOIDmode);
6599 else if (GET_CODE (p->exp) == STRICT_LOW_PART
6600 || GET_CODE (p->exp) == ZERO_EXTRACT)
6601 invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
6604 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
6605 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
6607 The only thing we do with SET_DEST is invalidate entries, so we
6608 can safely process each SET in order. It is slightly less efficient
6609 to do so, but we only want to handle the most common cases.
6611 The gen_move_insn call in cse_set_around_loop may create new pseudos.
6612 These pseudos won't have valid entries in any of the tables indexed
6613 by register number, such as reg_qty. We avoid out-of-range array
6614 accesses by not processing any instructions created after cse started. */
6616 for (insn = NEXT_INSN (loop_start);
6617 GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
6618 && INSN_UID (insn) < max_insn_uid
6619 && ! (GET_CODE (insn) == NOTE
6620 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
6621 insn = NEXT_INSN (insn))
6623 if (INSN_P (insn)
6624 && (GET_CODE (PATTERN (insn)) == SET
6625 || GET_CODE (PATTERN (insn)) == CLOBBER))
6626 cse_set_around_loop (PATTERN (insn), insn, loop_start);
6627 else if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == PARALLEL)
6628 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6629 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
6630 || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
6631 cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
6632 loop_start);
6636 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6637 since they are done elsewhere. This function is called via note_stores. */
6639 static void
6640 invalidate_skipped_set (dest, set, data)
6641 rtx set;
6642 rtx dest;
6643 void *data ATTRIBUTE_UNUSED;
6645 enum rtx_code code = GET_CODE (dest);
6647 if (code == MEM
6648 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
6649 /* There are times when an address can appear varying and be a PLUS
6650 during this scan when it would be a fixed address were we to know
6651 the proper equivalences. So invalidate all memory if there is
6652 a BLKmode or nonscalar memory reference or a reference to a
6653 variable address. */
6654 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6655 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6657 invalidate_memory ();
6658 return;
6661 if (GET_CODE (set) == CLOBBER
6662 #ifdef HAVE_cc0
6663 || dest == cc0_rtx
6664 #endif
6665 || dest == pc_rtx)
6666 return;
6668 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6669 invalidate (XEXP (dest, 0), GET_MODE (dest));
6670 else if (code == REG || code == SUBREG || code == MEM)
6671 invalidate (dest, VOIDmode);
6674 /* Invalidate all insns from START up to the end of the function or the
6675 next label. This called when we wish to CSE around a block that is
6676 conditionally executed. */
6678 static void
6679 invalidate_skipped_block (start)
6680 rtx start;
6682 rtx insn;
6684 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
6685 insn = NEXT_INSN (insn))
6687 if (! INSN_P (insn))
6688 continue;
6690 if (GET_CODE (insn) == CALL_INSN)
6692 if (! CONST_OR_PURE_CALL_P (insn))
6693 invalidate_memory ();
6694 invalidate_for_call ();
6697 invalidate_from_clobbers (PATTERN (insn));
6698 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6702 /* If modifying X will modify the value in *DATA (which is really an
6703 `rtx *'), indicate that fact by setting the pointed to value to
6704 NULL_RTX. */
6706 static void
6707 cse_check_loop_start (x, set, data)
6708 rtx x;
6709 rtx set ATTRIBUTE_UNUSED;
6710 void *data;
6712 rtx *cse_check_loop_start_value = (rtx *) data;
6714 if (*cse_check_loop_start_value == NULL_RTX
6715 || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
6716 return;
6718 if ((GET_CODE (x) == MEM && GET_CODE (*cse_check_loop_start_value) == MEM)
6719 || reg_overlap_mentioned_p (x, *cse_check_loop_start_value))
6720 *cse_check_loop_start_value = NULL_RTX;
6723 /* X is a SET or CLOBBER contained in INSN that was found near the start of
6724 a loop that starts with the label at LOOP_START.
6726 If X is a SET, we see if its SET_SRC is currently in our hash table.
6727 If so, we see if it has a value equal to some register used only in the
6728 loop exit code (as marked by jump.c).
6730 If those two conditions are true, we search backwards from the start of
6731 the loop to see if that same value was loaded into a register that still
6732 retains its value at the start of the loop.
6734 If so, we insert an insn after the load to copy the destination of that
6735 load into the equivalent register and (try to) replace our SET_SRC with that
6736 register.
6738 In any event, we invalidate whatever this SET or CLOBBER modifies. */
6740 static void
6741 cse_set_around_loop (x, insn, loop_start)
6742 rtx x;
6743 rtx insn;
6744 rtx loop_start;
6746 struct table_elt *src_elt;
6748 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
6749 are setting PC or CC0 or whose SET_SRC is already a register. */
6750 if (GET_CODE (x) == SET
6751 && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
6752 && GET_CODE (SET_SRC (x)) != REG)
6754 src_elt = lookup (SET_SRC (x),
6755 HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
6756 GET_MODE (SET_DEST (x)));
6758 if (src_elt)
6759 for (src_elt = src_elt->first_same_value; src_elt;
6760 src_elt = src_elt->next_same_value)
6761 if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
6762 && COST (src_elt->exp) < COST (SET_SRC (x)))
6764 rtx p, set;
6766 /* Look for an insn in front of LOOP_START that sets
6767 something in the desired mode to SET_SRC (x) before we hit
6768 a label or CALL_INSN. */
6770 for (p = prev_nonnote_insn (loop_start);
6771 p && GET_CODE (p) != CALL_INSN
6772 && GET_CODE (p) != CODE_LABEL;
6773 p = prev_nonnote_insn (p))
6774 if ((set = single_set (p)) != 0
6775 && GET_CODE (SET_DEST (set)) == REG
6776 && GET_MODE (SET_DEST (set)) == src_elt->mode
6777 && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
6779 /* We now have to ensure that nothing between P
6780 and LOOP_START modified anything referenced in
6781 SET_SRC (x). We know that nothing within the loop
6782 can modify it, or we would have invalidated it in
6783 the hash table. */
6784 rtx q;
6785 rtx cse_check_loop_start_value = SET_SRC (x);
6786 for (q = p; q != loop_start; q = NEXT_INSN (q))
6787 if (INSN_P (q))
6788 note_stores (PATTERN (q),
6789 cse_check_loop_start,
6790 &cse_check_loop_start_value);
6792 /* If nothing was changed and we can replace our
6793 SET_SRC, add an insn after P to copy its destination
6794 to what we will be replacing SET_SRC with. */
6795 if (cse_check_loop_start_value
6796 && validate_change (insn, &SET_SRC (x),
6797 src_elt->exp, 0))
6799 /* If this creates new pseudos, this is unsafe,
6800 because the regno of new pseudo is unsuitable
6801 to index into reg_qty when cse_insn processes
6802 the new insn. Therefore, if a new pseudo was
6803 created, discard this optimization. */
6804 int nregs = max_reg_num ();
6805 rtx move
6806 = gen_move_insn (src_elt->exp, SET_DEST (set));
6807 if (nregs != max_reg_num ())
6809 if (! validate_change (insn, &SET_SRC (x),
6810 SET_SRC (set), 0))
6811 abort ();
6813 else
6814 emit_insn_after (move, p);
6816 break;
6821 /* Deal with the destination of X affecting the stack pointer. */
6822 addr_affects_sp_p (SET_DEST (x));
6824 /* See comment on similar code in cse_insn for explanation of these
6825 tests. */
6826 if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
6827 || GET_CODE (SET_DEST (x)) == MEM)
6828 invalidate (SET_DEST (x), VOIDmode);
6829 else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6830 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
6831 invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
6834 /* Find the end of INSN's basic block and return its range,
6835 the total number of SETs in all the insns of the block, the last insn of the
6836 block, and the branch path.
6838 The branch path indicates which branches should be followed. If a non-zero
6839 path size is specified, the block should be rescanned and a different set
6840 of branches will be taken. The branch path is only used if
6841 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
6843 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6844 used to describe the block. It is filled in with the information about
6845 the current block. The incoming structure's branch path, if any, is used
6846 to construct the output branch path. */
6848 void
6849 cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
6850 rtx insn;
6851 struct cse_basic_block_data *data;
6852 int follow_jumps;
6853 int after_loop;
6854 int skip_blocks;
6856 rtx p = insn, q;
6857 int nsets = 0;
6858 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6859 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
6860 int path_size = data->path_size;
6861 int path_entry = 0;
6862 int i;
6864 /* Update the previous branch path, if any. If the last branch was
6865 previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
6866 shorten the path by one and look at the previous branch. We know that
6867 at least one branch must have been taken if PATH_SIZE is non-zero. */
6868 while (path_size > 0)
6870 if (data->path[path_size - 1].status != NOT_TAKEN)
6872 data->path[path_size - 1].status = NOT_TAKEN;
6873 break;
6875 else
6876 path_size--;
6879 /* If the first instruction is marked with QImode, that means we've
6880 already processed this block. Our caller will look at DATA->LAST
6881 to figure out where to go next. We want to return the next block
6882 in the instruction stream, not some branched-to block somewhere
6883 else. We accomplish this by pretending our called forbid us to
6884 follow jumps, or skip blocks. */
6885 if (GET_MODE (insn) == QImode)
6886 follow_jumps = skip_blocks = 0;
6888 /* Scan to end of this basic block. */
6889 while (p && GET_CODE (p) != CODE_LABEL)
6891 /* Don't cse out the end of a loop. This makes a difference
6892 only for the unusual loops that always execute at least once;
6893 all other loops have labels there so we will stop in any case.
6894 Cse'ing out the end of the loop is dangerous because it
6895 might cause an invariant expression inside the loop
6896 to be reused after the end of the loop. This would make it
6897 hard to move the expression out of the loop in loop.c,
6898 especially if it is one of several equivalent expressions
6899 and loop.c would like to eliminate it.
6901 If we are running after loop.c has finished, we can ignore
6902 the NOTE_INSN_LOOP_END. */
6904 if (! after_loop && GET_CODE (p) == NOTE
6905 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
6906 break;
6908 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6909 the regs restored by the longjmp come from
6910 a later time than the setjmp. */
6911 if (PREV_INSN (p) && GET_CODE (PREV_INSN (p)) == CALL_INSN
6912 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
6913 break;
6915 /* A PARALLEL can have lots of SETs in it,
6916 especially if it is really an ASM_OPERANDS. */
6917 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
6918 nsets += XVECLEN (PATTERN (p), 0);
6919 else if (GET_CODE (p) != NOTE)
6920 nsets += 1;
6922 /* Ignore insns made by CSE; they cannot affect the boundaries of
6923 the basic block. */
6925 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6926 high_cuid = INSN_CUID (p);
6927 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6928 low_cuid = INSN_CUID (p);
6930 /* See if this insn is in our branch path. If it is and we are to
6931 take it, do so. */
6932 if (path_entry < path_size && data->path[path_entry].branch == p)
6934 if (data->path[path_entry].status != NOT_TAKEN)
6935 p = JUMP_LABEL (p);
6937 /* Point to next entry in path, if any. */
6938 path_entry++;
6941 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6942 was specified, we haven't reached our maximum path length, there are
6943 insns following the target of the jump, this is the only use of the
6944 jump label, and the target label is preceded by a BARRIER.
6946 Alternatively, we can follow the jump if it branches around a
6947 block of code and there are no other branches into the block.
6948 In this case invalidate_skipped_block will be called to invalidate any
6949 registers set in the block when following the jump. */
6951 else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
6952 && GET_CODE (p) == JUMP_INSN
6953 && GET_CODE (PATTERN (p)) == SET
6954 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6955 && JUMP_LABEL (p) != 0
6956 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6957 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6959 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6960 if ((GET_CODE (q) != NOTE
6961 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
6962 || (PREV_INSN (q) && GET_CODE (PREV_INSN (q)) == CALL_INSN
6963 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6964 && (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
6965 break;
6967 /* If we ran into a BARRIER, this code is an extension of the
6968 basic block when the branch is taken. */
6969 if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
6971 /* Don't allow ourself to keep walking around an
6972 always-executed loop. */
6973 if (next_real_insn (q) == next)
6975 p = NEXT_INSN (p);
6976 continue;
6979 /* Similarly, don't put a branch in our path more than once. */
6980 for (i = 0; i < path_entry; i++)
6981 if (data->path[i].branch == p)
6982 break;
6984 if (i != path_entry)
6985 break;
6987 data->path[path_entry].branch = p;
6988 data->path[path_entry++].status = TAKEN;
6990 /* This branch now ends our path. It was possible that we
6991 didn't see this branch the last time around (when the
6992 insn in front of the target was a JUMP_INSN that was
6993 turned into a no-op). */
6994 path_size = path_entry;
6996 p = JUMP_LABEL (p);
6997 /* Mark block so we won't scan it again later. */
6998 PUT_MODE (NEXT_INSN (p), QImode);
7000 /* Detect a branch around a block of code. */
7001 else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
7003 rtx tmp;
7005 if (next_real_insn (q) == next)
7007 p = NEXT_INSN (p);
7008 continue;
7011 for (i = 0; i < path_entry; i++)
7012 if (data->path[i].branch == p)
7013 break;
7015 if (i != path_entry)
7016 break;
7018 /* This is no_labels_between_p (p, q) with an added check for
7019 reaching the end of a function (in case Q precedes P). */
7020 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
7021 if (GET_CODE (tmp) == CODE_LABEL)
7022 break;
7024 if (tmp == q)
7026 data->path[path_entry].branch = p;
7027 data->path[path_entry++].status = AROUND;
7029 path_size = path_entry;
7031 p = JUMP_LABEL (p);
7032 /* Mark block so we won't scan it again later. */
7033 PUT_MODE (NEXT_INSN (p), QImode);
7037 p = NEXT_INSN (p);
7040 data->low_cuid = low_cuid;
7041 data->high_cuid = high_cuid;
7042 data->nsets = nsets;
7043 data->last = p;
7045 /* If all jumps in the path are not taken, set our path length to zero
7046 so a rescan won't be done. */
7047 for (i = path_size - 1; i >= 0; i--)
7048 if (data->path[i].status != NOT_TAKEN)
7049 break;
7051 if (i == -1)
7052 data->path_size = 0;
7053 else
7054 data->path_size = path_size;
7056 /* End the current branch path. */
7057 data->path[path_size].branch = 0;
7060 /* Perform cse on the instructions of a function.
7061 F is the first instruction.
7062 NREGS is one plus the highest pseudo-reg number used in the instruction.
7064 AFTER_LOOP is 1 if this is the cse call done after loop optimization
7065 (only if -frerun-cse-after-loop).
7067 Returns 1 if jump_optimize should be redone due to simplifications
7068 in conditional jump instructions. */
7071 cse_main (f, nregs, after_loop, file)
7072 rtx f;
7073 int nregs;
7074 int after_loop;
7075 FILE *file;
7077 struct cse_basic_block_data val;
7078 rtx insn = f;
7079 int i;
7081 cse_jumps_altered = 0;
7082 recorded_label_ref = 0;
7083 constant_pool_entries_cost = 0;
7084 val.path_size = 0;
7086 init_recog ();
7087 init_alias_analysis ();
7089 max_reg = nregs;
7091 max_insn_uid = get_max_uid ();
7093 reg_eqv_table = (struct reg_eqv_elem *)
7094 xmalloc (nregs * sizeof (struct reg_eqv_elem));
7096 #ifdef LOAD_EXTEND_OP
7098 /* Allocate scratch rtl here. cse_insn will fill in the memory reference
7099 and change the code and mode as appropriate. */
7100 memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
7101 #endif
7103 /* Reset the counter indicating how many elements have been made
7104 thus far. */
7105 n_elements_made = 0;
7107 /* Find the largest uid. */
7109 max_uid = get_max_uid ();
7110 uid_cuid = (int *) xcalloc (max_uid + 1, sizeof (int));
7112 /* Compute the mapping from uids to cuids.
7113 CUIDs are numbers assigned to insns, like uids,
7114 except that cuids increase monotonically through the code.
7115 Don't assign cuids to line-number NOTEs, so that the distance in cuids
7116 between two insns is not affected by -g. */
7118 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
7120 if (GET_CODE (insn) != NOTE
7121 || NOTE_LINE_NUMBER (insn) < 0)
7122 INSN_CUID (insn) = ++i;
7123 else
7124 /* Give a line number note the same cuid as preceding insn. */
7125 INSN_CUID (insn) = i;
7128 ggc_push_context ();
7130 /* Loop over basic blocks.
7131 Compute the maximum number of qty's needed for each basic block
7132 (which is 2 for each SET). */
7133 insn = f;
7134 while (insn)
7136 cse_altered = 0;
7137 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
7138 flag_cse_skip_blocks);
7140 /* If this basic block was already processed or has no sets, skip it. */
7141 if (val.nsets == 0 || GET_MODE (insn) == QImode)
7143 PUT_MODE (insn, VOIDmode);
7144 insn = (val.last ? NEXT_INSN (val.last) : 0);
7145 val.path_size = 0;
7146 continue;
7149 cse_basic_block_start = val.low_cuid;
7150 cse_basic_block_end = val.high_cuid;
7151 max_qty = val.nsets * 2;
7153 if (file)
7154 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
7155 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
7156 val.nsets);
7158 /* Make MAX_QTY bigger to give us room to optimize
7159 past the end of this basic block, if that should prove useful. */
7160 if (max_qty < 500)
7161 max_qty = 500;
7163 max_qty += max_reg;
7165 /* If this basic block is being extended by following certain jumps,
7166 (see `cse_end_of_basic_block'), we reprocess the code from the start.
7167 Otherwise, we start after this basic block. */
7168 if (val.path_size > 0)
7169 cse_basic_block (insn, val.last, val.path, 0);
7170 else
7172 int old_cse_jumps_altered = cse_jumps_altered;
7173 rtx temp;
7175 /* When cse changes a conditional jump to an unconditional
7176 jump, we want to reprocess the block, since it will give
7177 us a new branch path to investigate. */
7178 cse_jumps_altered = 0;
7179 temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
7180 if (cse_jumps_altered == 0
7181 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7182 insn = temp;
7184 cse_jumps_altered |= old_cse_jumps_altered;
7187 if (cse_altered)
7188 ggc_collect ();
7190 #ifdef USE_C_ALLOCA
7191 alloca (0);
7192 #endif
7195 ggc_pop_context ();
7197 if (max_elements_made < n_elements_made)
7198 max_elements_made = n_elements_made;
7200 /* Clean up. */
7201 end_alias_analysis ();
7202 free (uid_cuid);
7203 free (reg_eqv_table);
7205 return cse_jumps_altered || recorded_label_ref;
7208 /* Process a single basic block. FROM and TO and the limits of the basic
7209 block. NEXT_BRANCH points to the branch path when following jumps or
7210 a null path when not following jumps.
7212 AROUND_LOOP is non-zero if we are to try to cse around to the start of a
7213 loop. This is true when we are being called for the last time on a
7214 block and this CSE pass is before loop.c. */
7216 static rtx
7217 cse_basic_block (from, to, next_branch, around_loop)
7218 rtx from, to;
7219 struct branch_path *next_branch;
7220 int around_loop;
7222 rtx insn;
7223 int to_usage = 0;
7224 rtx libcall_insn = NULL_RTX;
7225 int num_insns = 0;
7227 /* This array is undefined before max_reg, so only allocate
7228 the space actually needed and adjust the start. */
7230 qty_table
7231 = (struct qty_table_elem *) xmalloc ((max_qty - max_reg)
7232 * sizeof (struct qty_table_elem));
7233 qty_table -= max_reg;
7235 new_basic_block ();
7237 /* TO might be a label. If so, protect it from being deleted. */
7238 if (to != 0 && GET_CODE (to) == CODE_LABEL)
7239 ++LABEL_NUSES (to);
7241 for (insn = from; insn != to; insn = NEXT_INSN (insn))
7243 enum rtx_code code = GET_CODE (insn);
7245 /* If we have processed 1,000 insns, flush the hash table to
7246 avoid extreme quadratic behavior. We must not include NOTEs
7247 in the count since there may be more of them when generating
7248 debugging information. If we clear the table at different
7249 times, code generated with -g -O might be different than code
7250 generated with -O but not -g.
7252 ??? This is a real kludge and needs to be done some other way.
7253 Perhaps for 2.9. */
7254 if (code != NOTE && num_insns++ > 1000)
7256 flush_hash_table ();
7257 num_insns = 0;
7260 /* See if this is a branch that is part of the path. If so, and it is
7261 to be taken, do so. */
7262 if (next_branch->branch == insn)
7264 enum taken status = next_branch++->status;
7265 if (status != NOT_TAKEN)
7267 if (status == TAKEN)
7268 record_jump_equiv (insn, 1);
7269 else
7270 invalidate_skipped_block (NEXT_INSN (insn));
7272 /* Set the last insn as the jump insn; it doesn't affect cc0.
7273 Then follow this branch. */
7274 #ifdef HAVE_cc0
7275 prev_insn_cc0 = 0;
7276 #endif
7277 prev_insn = insn;
7278 insn = JUMP_LABEL (insn);
7279 continue;
7283 if (GET_MODE (insn) == QImode)
7284 PUT_MODE (insn, VOIDmode);
7286 if (GET_RTX_CLASS (code) == 'i')
7288 rtx p;
7290 /* Process notes first so we have all notes in canonical forms when
7291 looking for duplicate operations. */
7293 if (REG_NOTES (insn))
7294 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
7296 /* Track when we are inside in LIBCALL block. Inside such a block,
7297 we do not want to record destinations. The last insn of a
7298 LIBCALL block is not considered to be part of the block, since
7299 its destination is the result of the block and hence should be
7300 recorded. */
7302 if (REG_NOTES (insn) != 0)
7304 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
7305 libcall_insn = XEXP (p, 0);
7306 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7307 libcall_insn = 0;
7310 cse_insn (insn, libcall_insn);
7312 /* If we haven't already found an insn where we added a LABEL_REF,
7313 check this one. */
7314 if (GET_CODE (insn) == INSN && ! recorded_label_ref
7315 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
7316 (void *) insn))
7317 recorded_label_ref = 1;
7320 /* If INSN is now an unconditional jump, skip to the end of our
7321 basic block by pretending that we just did the last insn in the
7322 basic block. If we are jumping to the end of our block, show
7323 that we can have one usage of TO. */
7325 if (any_uncondjump_p (insn))
7327 if (to == 0)
7329 free (qty_table + max_reg);
7330 return 0;
7333 if (JUMP_LABEL (insn) == to)
7334 to_usage = 1;
7336 /* Maybe TO was deleted because the jump is unconditional.
7337 If so, there is nothing left in this basic block. */
7338 /* ??? Perhaps it would be smarter to set TO
7339 to whatever follows this insn,
7340 and pretend the basic block had always ended here. */
7341 if (INSN_DELETED_P (to))
7342 break;
7344 insn = PREV_INSN (to);
7347 /* See if it is ok to keep on going past the label
7348 which used to end our basic block. Remember that we incremented
7349 the count of that label, so we decrement it here. If we made
7350 a jump unconditional, TO_USAGE will be one; in that case, we don't
7351 want to count the use in that jump. */
7353 if (to != 0 && NEXT_INSN (insn) == to
7354 && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
7356 struct cse_basic_block_data val;
7357 rtx prev;
7359 insn = NEXT_INSN (to);
7361 /* If TO was the last insn in the function, we are done. */
7362 if (insn == 0)
7364 free (qty_table + max_reg);
7365 return 0;
7368 /* If TO was preceded by a BARRIER we are done with this block
7369 because it has no continuation. */
7370 prev = prev_nonnote_insn (to);
7371 if (prev && GET_CODE (prev) == BARRIER)
7373 free (qty_table + max_reg);
7374 return insn;
7377 /* Find the end of the following block. Note that we won't be
7378 following branches in this case. */
7379 to_usage = 0;
7380 val.path_size = 0;
7381 cse_end_of_basic_block (insn, &val, 0, 0, 0);
7383 /* If the tables we allocated have enough space left
7384 to handle all the SETs in the next basic block,
7385 continue through it. Otherwise, return,
7386 and that block will be scanned individually. */
7387 if (val.nsets * 2 + next_qty > max_qty)
7388 break;
7390 cse_basic_block_start = val.low_cuid;
7391 cse_basic_block_end = val.high_cuid;
7392 to = val.last;
7394 /* Prevent TO from being deleted if it is a label. */
7395 if (to != 0 && GET_CODE (to) == CODE_LABEL)
7396 ++LABEL_NUSES (to);
7398 /* Back up so we process the first insn in the extension. */
7399 insn = PREV_INSN (insn);
7403 if (next_qty > max_qty)
7404 abort ();
7406 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
7407 the previous insn is the only insn that branches to the head of a loop,
7408 we can cse into the loop. Don't do this if we changed the jump
7409 structure of a loop unless we aren't going to be following jumps. */
7411 insn = prev_nonnote_insn (to);
7412 if ((cse_jumps_altered == 0
7413 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7414 && around_loop && to != 0
7415 && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
7416 && GET_CODE (insn) == JUMP_INSN
7417 && JUMP_LABEL (insn) != 0
7418 && LABEL_NUSES (JUMP_LABEL (insn)) == 1)
7419 cse_around_loop (JUMP_LABEL (insn));
7421 free (qty_table + max_reg);
7423 return to ? NEXT_INSN (to) : 0;
7426 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7427 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7429 static int
7430 check_for_label_ref (rtl, data)
7431 rtx *rtl;
7432 void *data;
7434 rtx insn = (rtx) data;
7436 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7437 we must rerun jump since it needs to place the note. If this is a
7438 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7439 since no REG_LABEL will be added. */
7440 return (GET_CODE (*rtl) == LABEL_REF
7441 && ! LABEL_REF_NONLOCAL_P (*rtl)
7442 && LABEL_P (XEXP (*rtl, 0))
7443 && INSN_UID (XEXP (*rtl, 0)) != 0
7444 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7447 /* Count the number of times registers are used (not set) in X.
7448 COUNTS is an array in which we accumulate the count, INCR is how much
7449 we count each register usage.
7451 Don't count a usage of DEST, which is the SET_DEST of a SET which
7452 contains X in its SET_SRC. This is because such a SET does not
7453 modify the liveness of DEST. */
7455 static void
7456 count_reg_usage (x, counts, dest, incr)
7457 rtx x;
7458 int *counts;
7459 rtx dest;
7460 int incr;
7462 enum rtx_code code;
7463 const char *fmt;
7464 int i, j;
7466 if (x == 0)
7467 return;
7469 switch (code = GET_CODE (x))
7471 case REG:
7472 if (x != dest)
7473 counts[REGNO (x)] += incr;
7474 return;
7476 case PC:
7477 case CC0:
7478 case CONST:
7479 case CONST_INT:
7480 case CONST_DOUBLE:
7481 case CONST_VECTOR:
7482 case SYMBOL_REF:
7483 case LABEL_REF:
7484 return;
7486 case CLOBBER:
7487 /* If we are clobbering a MEM, mark any registers inside the address
7488 as being used. */
7489 if (GET_CODE (XEXP (x, 0)) == MEM)
7490 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
7491 return;
7493 case SET:
7494 /* Unless we are setting a REG, count everything in SET_DEST. */
7495 if (GET_CODE (SET_DEST (x)) != REG)
7496 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
7498 /* If SRC has side-effects, then we can't delete this insn, so the
7499 usage of SET_DEST inside SRC counts.
7501 ??? Strictly-speaking, we might be preserving this insn
7502 because some other SET has side-effects, but that's hard
7503 to do and can't happen now. */
7504 count_reg_usage (SET_SRC (x), counts,
7505 side_effects_p (SET_SRC (x)) ? NULL_RTX : SET_DEST (x),
7506 incr);
7507 return;
7509 case CALL_INSN:
7510 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);
7511 /* Fall through. */
7513 case INSN:
7514 case JUMP_INSN:
7515 count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);
7517 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7518 use them. */
7520 count_reg_usage (REG_NOTES (x), counts, NULL_RTX, incr);
7521 return;
7523 case EXPR_LIST:
7524 case INSN_LIST:
7525 if (REG_NOTE_KIND (x) == REG_EQUAL
7526 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE))
7527 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
7528 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
7529 return;
7531 default:
7532 break;
7535 fmt = GET_RTX_FORMAT (code);
7536 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7538 if (fmt[i] == 'e')
7539 count_reg_usage (XEXP (x, i), counts, dest, incr);
7540 else if (fmt[i] == 'E')
7541 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7542 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
7546 /* Return true if set is live. */
7547 static bool
7548 set_live_p (set, insn, counts)
7549 rtx set;
7550 rtx insn ATTRIBUTE_UNUSED; /* Only used with HAVE_cc0. */
7551 int *counts;
7553 #ifdef HAVE_cc0
7554 rtx tem;
7555 #endif
7557 if (set_noop_p (set))
7560 #ifdef HAVE_cc0
7561 else if (GET_CODE (SET_DEST (set)) == CC0
7562 && !side_effects_p (SET_SRC (set))
7563 && ((tem = next_nonnote_insn (insn)) == 0
7564 || !INSN_P (tem)
7565 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7566 return false;
7567 #endif
7568 else if (GET_CODE (SET_DEST (set)) != REG
7569 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7570 || counts[REGNO (SET_DEST (set))] != 0
7571 || side_effects_p (SET_SRC (set))
7572 /* An ADDRESSOF expression can turn into a use of the
7573 internal arg pointer, so always consider the
7574 internal arg pointer live. If it is truly dead,
7575 flow will delete the initializing insn. */
7576 || (SET_DEST (set) == current_function_internal_arg_pointer))
7577 return true;
7578 return false;
7581 /* Return true if insn is live. */
7583 static bool
7584 insn_live_p (insn, counts)
7585 rtx insn;
7586 int *counts;
7588 int i;
7589 if (GET_CODE (PATTERN (insn)) == SET)
7590 return set_live_p (PATTERN (insn), insn, counts);
7591 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7593 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7595 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7597 if (GET_CODE (elt) == SET)
7599 if (set_live_p (elt, insn, counts))
7600 return true;
7602 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7603 return true;
7605 return false;
7607 else
7608 return true;
7611 /* Return true if libcall is dead as a whole. */
7613 static bool
7614 dead_libcall_p (insn, counts)
7615 rtx insn;
7616 int *counts;
7618 rtx note;
7619 /* See if there's a REG_EQUAL note on this insn and try to
7620 replace the source with the REG_EQUAL expression.
7622 We assume that insns with REG_RETVALs can only be reg->reg
7623 copies at this point. */
7624 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7625 if (note)
7627 rtx set = single_set (insn);
7628 rtx new = simplify_rtx (XEXP (note, 0));
7630 if (!new)
7631 new = XEXP (note, 0);
7633 /* While changing insn, we must update the counts accordingly. */
7634 count_reg_usage (insn, counts, NULL_RTX, -1);
7636 if (set && validate_change (insn, &SET_SRC (set), new, 0))
7638 count_reg_usage (insn, counts, NULL_RTX, 1);
7639 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7640 remove_note (insn, note);
7641 return true;
7643 count_reg_usage (insn, counts, NULL_RTX, 1);
7645 return false;
7648 /* Scan all the insns and delete any that are dead; i.e., they store a register
7649 that is never used or they copy a register to itself.
7651 This is used to remove insns made obviously dead by cse, loop or other
7652 optimizations. It improves the heuristics in loop since it won't try to
7653 move dead invariants out of loops or make givs for dead quantities. The
7654 remaining passes of the compilation are also sped up. */
7657 delete_trivially_dead_insns (insns, nreg)
7658 rtx insns;
7659 int nreg;
7661 int *counts;
7662 rtx insn, prev;
7663 int in_libcall = 0, dead_libcall = 0;
7664 int ndead = 0, nlastdead, niterations = 0;
7666 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7667 /* First count the number of times each register is used. */
7668 counts = (int *) xcalloc (nreg, sizeof (int));
7669 for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
7670 count_reg_usage (insn, counts, NULL_RTX, 1);
7674 nlastdead = ndead;
7675 niterations++;
7676 /* Go from the last insn to the first and delete insns that only set unused
7677 registers or copy a register to itself. As we delete an insn, remove
7678 usage counts for registers it uses.
7680 The first jump optimization pass may leave a real insn as the last
7681 insn in the function. We must not skip that insn or we may end
7682 up deleting code that is not really dead. */
7683 insn = get_last_insn ();
7684 if (! INSN_P (insn))
7685 insn = prev_real_insn (insn);
7687 for (; insn; insn = prev)
7689 int live_insn = 0;
7691 prev = prev_real_insn (insn);
7693 /* Don't delete any insns that are part of a libcall block unless
7694 we can delete the whole libcall block.
7696 Flow or loop might get confused if we did that. Remember
7697 that we are scanning backwards. */
7698 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7700 in_libcall = 1;
7701 live_insn = 1;
7702 dead_libcall = dead_libcall_p (insn, counts);
7704 else if (in_libcall)
7705 live_insn = ! dead_libcall;
7706 else
7707 live_insn = insn_live_p (insn, counts);
7709 /* If this is a dead insn, delete it and show registers in it aren't
7710 being used. */
7712 if (! live_insn)
7714 count_reg_usage (insn, counts, NULL_RTX, -1);
7715 delete_insn_and_edges (insn);
7716 ndead++;
7719 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7721 in_libcall = 0;
7722 dead_libcall = 0;
7726 while (ndead != nlastdead);
7728 if (rtl_dump_file && ndead)
7729 fprintf (rtl_dump_file, "Deleted %i trivially dead insns; %i iterations\n",
7730 ndead, niterations);
7731 /* Clean up. */
7732 free (counts);
7733 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7734 return ndead;