* config/alpha/alpha.c: Follow spelling conventions.
[official-gcc.git] / gcc / combine.c
blobe1518817ca629017f883d80ab20b76e46e461e6b
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras;
110 /* Number of instructions combined in this function. */
112 static int combine_successes;
114 /* Totals over entire compilation. */
116 static int total_attempts, total_merges, total_extras, total_successes;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid;
127 static int max_uid_cuid;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
140 /* Maximum register number, which is the size of the tables below. */
142 static unsigned int combine_max_regno;
144 /* Record last point of death of (hard or pseudo) register n. */
146 static rtx *reg_last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
150 static rtx *reg_last_set;
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
155 static int mem_last_set;
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
160 static int last_call_cuid;
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
168 static rtx subst_insn;
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
173 static rtx subst_prev_insn;
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
182 static int subst_low_cuid;
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
187 static HARD_REG_SET newpat_used_regs;
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
193 static rtx added_links_insn;
195 /* Basic block in which we are performing combines. */
196 static basic_block this_basic_block;
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx *reg_last_set_value;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick;
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
265 static char *reg_last_set_invalid;
267 /* Incremented for each label. */
269 static int label_tick;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static unsigned char *reg_sign_bit_copies;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
313 struct undo
315 struct undo *next;
316 int is_int;
317 union {rtx r; int i;} old_contents;
318 union {rtx *r; int *i;} where;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
327 struct undobuf
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
334 static struct undobuf undobuf;
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
339 static int n_occurrences;
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((int *, int));
343 static void init_reg_last_arrays PARAMS ((void));
344 static void setup_incoming_promotions PARAMS ((void));
345 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
346 static int cant_combine_insn_p PARAMS ((rtx));
347 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
348 static int sets_function_arg_p PARAMS ((rtx));
349 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
350 static int contains_muldiv PARAMS ((rtx));
351 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
352 static void undo_all PARAMS ((void));
353 static void undo_commit PARAMS ((void));
354 static rtx *find_split_point PARAMS ((rtx *, rtx));
355 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
356 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
357 static rtx simplify_if_then_else PARAMS ((rtx));
358 static rtx simplify_set PARAMS ((rtx));
359 static rtx simplify_logical PARAMS ((rtx, int));
360 static rtx expand_compound_operation PARAMS ((rtx));
361 static rtx expand_field_assignment PARAMS ((rtx));
362 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
363 rtx, unsigned HOST_WIDE_INT, int,
364 int, int));
365 static rtx extract_left_shift PARAMS ((rtx, int));
366 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
367 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
368 unsigned HOST_WIDE_INT *));
369 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
370 unsigned HOST_WIDE_INT, rtx, int));
371 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
372 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
373 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
374 static rtx make_field_assignment PARAMS ((rtx));
375 static rtx apply_distributive_law PARAMS ((rtx));
376 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
377 unsigned HOST_WIDE_INT));
378 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
379 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
380 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
381 enum rtx_code, HOST_WIDE_INT,
382 enum machine_mode, int *));
383 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
384 rtx, int));
385 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
386 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
387 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
388 rtx, rtx));
389 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
390 static void update_table_tick PARAMS ((rtx));
391 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
392 static void check_promoted_subreg PARAMS ((rtx, rtx));
393 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
394 static void record_dead_and_set_regs PARAMS ((rtx));
395 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
396 static rtx get_last_value PARAMS ((rtx));
397 static int use_crosses_set_p PARAMS ((rtx, int));
398 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
399 static int reg_dead_at_p PARAMS ((rtx, rtx));
400 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
401 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
402 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
403 static void distribute_links PARAMS ((rtx));
404 static void mark_used_regs_combine PARAMS ((rtx));
405 static int insn_cuid PARAMS ((rtx));
406 static void record_promoted_value PARAMS ((rtx, rtx));
407 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
408 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
410 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
411 insn. The substitution can be undone by undo_all. If INTO is already
412 set to NEWVAL, do not record this change. Because computing NEWVAL might
413 also call SUBST, we have to compute it before we put anything into
414 the undo table. */
416 static void
417 do_SUBST (into, newval)
418 rtx *into, newval;
420 struct undo *buf;
421 rtx oldval = *into;
423 if (oldval == newval)
424 return;
426 /* We'd like to catch as many invalid transformations here as
427 possible. Unfortunately, there are way too many mode changes
428 that are perfectly valid, so we'd waste too much effort for
429 little gain doing the checks here. Focus on catching invalid
430 transformations involving integer constants. */
431 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
432 && GET_CODE (newval) == CONST_INT)
434 /* Sanity check that we're replacing oldval with a CONST_INT
435 that is a valid sign-extension for the original mode. */
436 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
437 GET_MODE (oldval)))
438 abort ();
440 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
441 CONST_INT is not valid, because after the replacement, the
442 original mode would be gone. Unfortunately, we can't tell
443 when do_SUBST is called to replace the operand thereof, so we
444 perform this test on oldval instead, checking whether an
445 invalid replacement took place before we got here. */
446 if ((GET_CODE (oldval) == SUBREG
447 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
448 || (GET_CODE (oldval) == ZERO_EXTEND
449 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
450 abort ();
453 if (undobuf.frees)
454 buf = undobuf.frees, undobuf.frees = buf->next;
455 else
456 buf = (struct undo *) xmalloc (sizeof (struct undo));
458 buf->is_int = 0;
459 buf->where.r = into;
460 buf->old_contents.r = oldval;
461 *into = newval;
463 buf->next = undobuf.undos, undobuf.undos = buf;
466 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
468 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
469 for the value of a HOST_WIDE_INT value (including CONST_INT) is
470 not safe. */
472 static void
473 do_SUBST_INT (into, newval)
474 int *into, newval;
476 struct undo *buf;
477 int oldval = *into;
479 if (oldval == newval)
480 return;
482 if (undobuf.frees)
483 buf = undobuf.frees, undobuf.frees = buf->next;
484 else
485 buf = (struct undo *) xmalloc (sizeof (struct undo));
487 buf->is_int = 1;
488 buf->where.i = into;
489 buf->old_contents.i = oldval;
490 *into = newval;
492 buf->next = undobuf.undos, undobuf.undos = buf;
495 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
497 /* Main entry point for combiner. F is the first insn of the function.
498 NREGS is the first unused pseudo-reg number.
500 Return non-zero if the combiner has turned an indirect jump
501 instruction into a direct jump. */
503 combine_instructions (f, nregs)
504 rtx f;
505 unsigned int nregs;
507 rtx insn, next;
508 #ifdef HAVE_cc0
509 rtx prev;
510 #endif
511 int i;
512 rtx links, nextlinks;
514 int new_direct_jump_p = 0;
516 combine_attempts = 0;
517 combine_merges = 0;
518 combine_extras = 0;
519 combine_successes = 0;
521 combine_max_regno = nregs;
523 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
524 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
525 reg_sign_bit_copies
526 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
528 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
529 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
530 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
531 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
532 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
533 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
534 reg_last_set_mode
535 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
536 reg_last_set_nonzero_bits
537 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
538 reg_last_set_sign_bit_copies
539 = (char *) xmalloc (nregs * sizeof (char));
541 init_reg_last_arrays ();
543 init_recog_no_volatile ();
545 /* Compute maximum uid value so uid_cuid can be allocated. */
547 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
548 if (INSN_UID (insn) > i)
549 i = INSN_UID (insn);
551 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
552 max_uid_cuid = i;
554 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
556 /* Don't use reg_nonzero_bits when computing it. This can cause problems
557 when, for example, we have j <<= 1 in a loop. */
559 nonzero_sign_valid = 0;
561 /* Compute the mapping from uids to cuids.
562 Cuids are numbers assigned to insns, like uids,
563 except that cuids increase monotonically through the code.
565 Scan all SETs and see if we can deduce anything about what
566 bits are known to be zero for some registers and how many copies
567 of the sign bit are known to exist for those registers.
569 Also set any known values so that we can use it while searching
570 for what bits are known to be set. */
572 label_tick = 1;
574 /* We need to initialize it here, because record_dead_and_set_regs may call
575 get_last_value. */
576 subst_prev_insn = NULL_RTX;
578 setup_incoming_promotions ();
580 refresh_blocks = sbitmap_alloc (last_basic_block);
581 sbitmap_zero (refresh_blocks);
582 need_refresh = 0;
584 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
586 uid_cuid[INSN_UID (insn)] = ++i;
587 subst_low_cuid = i;
588 subst_insn = insn;
590 if (INSN_P (insn))
592 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
593 NULL);
594 record_dead_and_set_regs (insn);
596 #ifdef AUTO_INC_DEC
597 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
598 if (REG_NOTE_KIND (links) == REG_INC)
599 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
600 NULL);
601 #endif
604 if (GET_CODE (insn) == CODE_LABEL)
605 label_tick++;
608 nonzero_sign_valid = 1;
610 /* Now scan all the insns in forward order. */
612 label_tick = 1;
613 last_call_cuid = 0;
614 mem_last_set = 0;
615 init_reg_last_arrays ();
616 setup_incoming_promotions ();
618 FOR_EACH_BB (this_basic_block)
620 for (insn = this_basic_block->head;
621 insn != NEXT_INSN (this_basic_block->end);
622 insn = next ? next : NEXT_INSN (insn))
624 next = 0;
626 if (GET_CODE (insn) == CODE_LABEL)
627 label_tick++;
629 else if (INSN_P (insn))
631 /* See if we know about function return values before this
632 insn based upon SUBREG flags. */
633 check_promoted_subreg (insn, PATTERN (insn));
635 /* Try this insn with each insn it links back to. */
637 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
638 if ((next = try_combine (insn, XEXP (links, 0),
639 NULL_RTX, &new_direct_jump_p)) != 0)
640 goto retry;
642 /* Try each sequence of three linked insns ending with this one. */
644 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
646 rtx link = XEXP (links, 0);
648 /* If the linked insn has been replaced by a note, then there
649 is no point in pursuing this chain any further. */
650 if (GET_CODE (link) == NOTE)
651 continue;
653 for (nextlinks = LOG_LINKS (link);
654 nextlinks;
655 nextlinks = XEXP (nextlinks, 1))
656 if ((next = try_combine (insn, link,
657 XEXP (nextlinks, 0),
658 &new_direct_jump_p)) != 0)
659 goto retry;
662 #ifdef HAVE_cc0
663 /* Try to combine a jump insn that uses CC0
664 with a preceding insn that sets CC0, and maybe with its
665 logical predecessor as well.
666 This is how we make decrement-and-branch insns.
667 We need this special code because data flow connections
668 via CC0 do not get entered in LOG_LINKS. */
670 if (GET_CODE (insn) == JUMP_INSN
671 && (prev = prev_nonnote_insn (insn)) != 0
672 && GET_CODE (prev) == INSN
673 && sets_cc0_p (PATTERN (prev)))
675 if ((next = try_combine (insn, prev,
676 NULL_RTX, &new_direct_jump_p)) != 0)
677 goto retry;
679 for (nextlinks = LOG_LINKS (prev); nextlinks;
680 nextlinks = XEXP (nextlinks, 1))
681 if ((next = try_combine (insn, prev,
682 XEXP (nextlinks, 0),
683 &new_direct_jump_p)) != 0)
684 goto retry;
687 /* Do the same for an insn that explicitly references CC0. */
688 if (GET_CODE (insn) == INSN
689 && (prev = prev_nonnote_insn (insn)) != 0
690 && GET_CODE (prev) == INSN
691 && sets_cc0_p (PATTERN (prev))
692 && GET_CODE (PATTERN (insn)) == SET
693 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
695 if ((next = try_combine (insn, prev,
696 NULL_RTX, &new_direct_jump_p)) != 0)
697 goto retry;
699 for (nextlinks = LOG_LINKS (prev); nextlinks;
700 nextlinks = XEXP (nextlinks, 1))
701 if ((next = try_combine (insn, prev,
702 XEXP (nextlinks, 0),
703 &new_direct_jump_p)) != 0)
704 goto retry;
707 /* Finally, see if any of the insns that this insn links to
708 explicitly references CC0. If so, try this insn, that insn,
709 and its predecessor if it sets CC0. */
710 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
711 if (GET_CODE (XEXP (links, 0)) == INSN
712 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
713 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
714 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
715 && GET_CODE (prev) == INSN
716 && sets_cc0_p (PATTERN (prev))
717 && (next = try_combine (insn, XEXP (links, 0),
718 prev, &new_direct_jump_p)) != 0)
719 goto retry;
720 #endif
722 /* Try combining an insn with two different insns whose results it
723 uses. */
724 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
725 for (nextlinks = XEXP (links, 1); nextlinks;
726 nextlinks = XEXP (nextlinks, 1))
727 if ((next = try_combine (insn, XEXP (links, 0),
728 XEXP (nextlinks, 0),
729 &new_direct_jump_p)) != 0)
730 goto retry;
732 if (GET_CODE (insn) != NOTE)
733 record_dead_and_set_regs (insn);
735 retry:
740 clear_bb_flags ();
742 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
743 BASIC_BLOCK (i)->flags |= BB_DIRTY);
744 new_direct_jump_p |= purge_all_dead_edges (0);
745 delete_noop_moves (f);
747 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
748 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
749 | PROP_KILL_DEAD_CODE);
751 /* Clean up. */
752 sbitmap_free (refresh_blocks);
753 free (reg_nonzero_bits);
754 free (reg_sign_bit_copies);
755 free (reg_last_death);
756 free (reg_last_set);
757 free (reg_last_set_value);
758 free (reg_last_set_table_tick);
759 free (reg_last_set_label);
760 free (reg_last_set_invalid);
761 free (reg_last_set_mode);
762 free (reg_last_set_nonzero_bits);
763 free (reg_last_set_sign_bit_copies);
764 free (uid_cuid);
767 struct undo *undo, *next;
768 for (undo = undobuf.frees; undo; undo = next)
770 next = undo->next;
771 free (undo);
773 undobuf.frees = 0;
776 total_attempts += combine_attempts;
777 total_merges += combine_merges;
778 total_extras += combine_extras;
779 total_successes += combine_successes;
781 nonzero_sign_valid = 0;
783 /* Make recognizer allow volatile MEMs again. */
784 init_recog ();
786 return new_direct_jump_p;
789 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
791 static void
792 init_reg_last_arrays ()
794 unsigned int nregs = combine_max_regno;
796 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
797 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
798 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
799 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
800 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
801 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
802 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
803 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
804 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
807 /* Set up any promoted values for incoming argument registers. */
809 static void
810 setup_incoming_promotions ()
812 #ifdef PROMOTE_FUNCTION_ARGS
813 unsigned int regno;
814 rtx reg;
815 enum machine_mode mode;
816 int unsignedp;
817 rtx first = get_insns ();
819 #ifndef OUTGOING_REGNO
820 #define OUTGOING_REGNO(N) N
821 #endif
822 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
823 /* Check whether this register can hold an incoming pointer
824 argument. FUNCTION_ARG_REGNO_P tests outgoing register
825 numbers, so translate if necessary due to register windows. */
826 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
827 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
829 record_value_for_reg
830 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
831 : SIGN_EXTEND),
832 GET_MODE (reg),
833 gen_rtx_CLOBBER (mode, const0_rtx)));
835 #endif
838 /* Called via note_stores. If X is a pseudo that is narrower than
839 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
841 If we are setting only a portion of X and we can't figure out what
842 portion, assume all bits will be used since we don't know what will
843 be happening.
845 Similarly, set how many bits of X are known to be copies of the sign bit
846 at all locations in the function. This is the smallest number implied
847 by any set of X. */
849 static void
850 set_nonzero_bits_and_sign_copies (x, set, data)
851 rtx x;
852 rtx set;
853 void *data ATTRIBUTE_UNUSED;
855 unsigned int num;
857 if (GET_CODE (x) == REG
858 && REGNO (x) >= FIRST_PSEUDO_REGISTER
859 /* If this register is undefined at the start of the file, we can't
860 say what its contents were. */
861 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
862 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
864 if (set == 0 || GET_CODE (set) == CLOBBER)
866 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
867 reg_sign_bit_copies[REGNO (x)] = 1;
868 return;
871 /* If this is a complex assignment, see if we can convert it into a
872 simple assignment. */
873 set = expand_field_assignment (set);
875 /* If this is a simple assignment, or we have a paradoxical SUBREG,
876 set what we know about X. */
878 if (SET_DEST (set) == x
879 || (GET_CODE (SET_DEST (set)) == SUBREG
880 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
881 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
882 && SUBREG_REG (SET_DEST (set)) == x))
884 rtx src = SET_SRC (set);
886 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
887 /* If X is narrower than a word and SRC is a non-negative
888 constant that would appear negative in the mode of X,
889 sign-extend it for use in reg_nonzero_bits because some
890 machines (maybe most) will actually do the sign-extension
891 and this is the conservative approach.
893 ??? For 2.5, try to tighten up the MD files in this regard
894 instead of this kludge. */
896 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
897 && GET_CODE (src) == CONST_INT
898 && INTVAL (src) > 0
899 && 0 != (INTVAL (src)
900 & ((HOST_WIDE_INT) 1
901 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
902 src = GEN_INT (INTVAL (src)
903 | ((HOST_WIDE_INT) (-1)
904 << GET_MODE_BITSIZE (GET_MODE (x))));
905 #endif
907 /* Don't call nonzero_bits if it cannot change anything. */
908 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
909 reg_nonzero_bits[REGNO (x)]
910 |= nonzero_bits (src, nonzero_bits_mode);
911 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
912 if (reg_sign_bit_copies[REGNO (x)] == 0
913 || reg_sign_bit_copies[REGNO (x)] > num)
914 reg_sign_bit_copies[REGNO (x)] = num;
916 else
918 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
919 reg_sign_bit_copies[REGNO (x)] = 1;
924 /* See if INSN can be combined into I3. PRED and SUCC are optionally
925 insns that were previously combined into I3 or that will be combined
926 into the merger of INSN and I3.
928 Return 0 if the combination is not allowed for any reason.
930 If the combination is allowed, *PDEST will be set to the single
931 destination of INSN and *PSRC to the single source, and this function
932 will return 1. */
934 static int
935 can_combine_p (insn, i3, pred, succ, pdest, psrc)
936 rtx insn;
937 rtx i3;
938 rtx pred ATTRIBUTE_UNUSED;
939 rtx succ;
940 rtx *pdest, *psrc;
942 int i;
943 rtx set = 0, src, dest;
944 rtx p;
945 #ifdef AUTO_INC_DEC
946 rtx link;
947 #endif
948 int all_adjacent = (succ ? (next_active_insn (insn) == succ
949 && next_active_insn (succ) == i3)
950 : next_active_insn (insn) == i3);
952 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
953 or a PARALLEL consisting of such a SET and CLOBBERs.
955 If INSN has CLOBBER parallel parts, ignore them for our processing.
956 By definition, these happen during the execution of the insn. When it
957 is merged with another insn, all bets are off. If they are, in fact,
958 needed and aren't also supplied in I3, they may be added by
959 recog_for_combine. Otherwise, it won't match.
961 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
962 note.
964 Get the source and destination of INSN. If more than one, can't
965 combine. */
967 if (GET_CODE (PATTERN (insn)) == SET)
968 set = PATTERN (insn);
969 else if (GET_CODE (PATTERN (insn)) == PARALLEL
970 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
972 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
974 rtx elt = XVECEXP (PATTERN (insn), 0, i);
976 switch (GET_CODE (elt))
978 /* This is important to combine floating point insns
979 for the SH4 port. */
980 case USE:
981 /* Combining an isolated USE doesn't make sense.
982 We depend here on combinable_i3pat to reject them. */
983 /* The code below this loop only verifies that the inputs of
984 the SET in INSN do not change. We call reg_set_between_p
985 to verify that the REG in the USE does not change between
986 I3 and INSN.
987 If the USE in INSN was for a pseudo register, the matching
988 insn pattern will likely match any register; combining this
989 with any other USE would only be safe if we knew that the
990 used registers have identical values, or if there was
991 something to tell them apart, e.g. different modes. For
992 now, we forgo such complicated tests and simply disallow
993 combining of USES of pseudo registers with any other USE. */
994 if (GET_CODE (XEXP (elt, 0)) == REG
995 && GET_CODE (PATTERN (i3)) == PARALLEL)
997 rtx i3pat = PATTERN (i3);
998 int i = XVECLEN (i3pat, 0) - 1;
999 unsigned int regno = REGNO (XEXP (elt, 0));
1003 rtx i3elt = XVECEXP (i3pat, 0, i);
1005 if (GET_CODE (i3elt) == USE
1006 && GET_CODE (XEXP (i3elt, 0)) == REG
1007 && (REGNO (XEXP (i3elt, 0)) == regno
1008 ? reg_set_between_p (XEXP (elt, 0),
1009 PREV_INSN (insn), i3)
1010 : regno >= FIRST_PSEUDO_REGISTER))
1011 return 0;
1013 while (--i >= 0);
1015 break;
1017 /* We can ignore CLOBBERs. */
1018 case CLOBBER:
1019 break;
1021 case SET:
1022 /* Ignore SETs whose result isn't used but not those that
1023 have side-effects. */
1024 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1025 && ! side_effects_p (elt))
1026 break;
1028 /* If we have already found a SET, this is a second one and
1029 so we cannot combine with this insn. */
1030 if (set)
1031 return 0;
1033 set = elt;
1034 break;
1036 default:
1037 /* Anything else means we can't combine. */
1038 return 0;
1042 if (set == 0
1043 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1044 so don't do anything with it. */
1045 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1046 return 0;
1048 else
1049 return 0;
1051 if (set == 0)
1052 return 0;
1054 set = expand_field_assignment (set);
1055 src = SET_SRC (set), dest = SET_DEST (set);
1057 /* Don't eliminate a store in the stack pointer. */
1058 if (dest == stack_pointer_rtx
1059 /* If we couldn't eliminate a field assignment, we can't combine. */
1060 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1061 /* Don't combine with an insn that sets a register to itself if it has
1062 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1063 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1064 /* Can't merge an ASM_OPERANDS. */
1065 || GET_CODE (src) == ASM_OPERANDS
1066 /* Can't merge a function call. */
1067 || GET_CODE (src) == CALL
1068 /* Don't eliminate a function call argument. */
1069 || (GET_CODE (i3) == CALL_INSN
1070 && (find_reg_fusage (i3, USE, dest)
1071 || (GET_CODE (dest) == REG
1072 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1073 && global_regs[REGNO (dest)])))
1074 /* Don't substitute into an incremented register. */
1075 || FIND_REG_INC_NOTE (i3, dest)
1076 || (succ && FIND_REG_INC_NOTE (succ, dest))
1077 #if 0
1078 /* Don't combine the end of a libcall into anything. */
1079 /* ??? This gives worse code, and appears to be unnecessary, since no
1080 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1081 use REG_RETVAL notes for noconflict blocks, but other code here
1082 makes sure that those insns don't disappear. */
1083 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1084 #endif
1085 /* Make sure that DEST is not used after SUCC but before I3. */
1086 || (succ && ! all_adjacent
1087 && reg_used_between_p (dest, succ, i3))
1088 /* Make sure that the value that is to be substituted for the register
1089 does not use any registers whose values alter in between. However,
1090 If the insns are adjacent, a use can't cross a set even though we
1091 think it might (this can happen for a sequence of insns each setting
1092 the same destination; reg_last_set of that register might point to
1093 a NOTE). If INSN has a REG_EQUIV note, the register is always
1094 equivalent to the memory so the substitution is valid even if there
1095 are intervening stores. Also, don't move a volatile asm or
1096 UNSPEC_VOLATILE across any other insns. */
1097 || (! all_adjacent
1098 && (((GET_CODE (src) != MEM
1099 || ! find_reg_note (insn, REG_EQUIV, src))
1100 && use_crosses_set_p (src, INSN_CUID (insn)))
1101 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1102 || GET_CODE (src) == UNSPEC_VOLATILE))
1103 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1104 better register allocation by not doing the combine. */
1105 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1106 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1107 /* Don't combine across a CALL_INSN, because that would possibly
1108 change whether the life span of some REGs crosses calls or not,
1109 and it is a pain to update that information.
1110 Exception: if source is a constant, moving it later can't hurt.
1111 Accept that special case, because it helps -fforce-addr a lot. */
1112 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1113 return 0;
1115 /* DEST must either be a REG or CC0. */
1116 if (GET_CODE (dest) == REG)
1118 /* If register alignment is being enforced for multi-word items in all
1119 cases except for parameters, it is possible to have a register copy
1120 insn referencing a hard register that is not allowed to contain the
1121 mode being copied and which would not be valid as an operand of most
1122 insns. Eliminate this problem by not combining with such an insn.
1124 Also, on some machines we don't want to extend the life of a hard
1125 register. */
1127 if (GET_CODE (src) == REG
1128 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1129 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1130 /* Don't extend the life of a hard register unless it is
1131 user variable (if we have few registers) or it can't
1132 fit into the desired register (meaning something special
1133 is going on).
1134 Also avoid substituting a return register into I3, because
1135 reload can't handle a conflict with constraints of other
1136 inputs. */
1137 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1138 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1139 return 0;
1141 else if (GET_CODE (dest) != CC0)
1142 return 0;
1144 /* Don't substitute for a register intended as a clobberable operand.
1145 Similarly, don't substitute an expression containing a register that
1146 will be clobbered in I3. */
1147 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1148 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1149 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1150 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1151 src)
1152 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1153 return 0;
1155 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1156 or not), reject, unless nothing volatile comes between it and I3 */
1158 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1160 /* Make sure succ doesn't contain a volatile reference. */
1161 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1162 return 0;
1164 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1165 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1166 return 0;
1169 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1170 to be an explicit register variable, and was chosen for a reason. */
1172 if (GET_CODE (src) == ASM_OPERANDS
1173 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1174 return 0;
1176 /* If there are any volatile insns between INSN and I3, reject, because
1177 they might affect machine state. */
1179 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1180 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1181 return 0;
1183 /* If INSN or I2 contains an autoincrement or autodecrement,
1184 make sure that register is not used between there and I3,
1185 and not already used in I3 either.
1186 Also insist that I3 not be a jump; if it were one
1187 and the incremented register were spilled, we would lose. */
1189 #ifdef AUTO_INC_DEC
1190 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1191 if (REG_NOTE_KIND (link) == REG_INC
1192 && (GET_CODE (i3) == JUMP_INSN
1193 || reg_used_between_p (XEXP (link, 0), insn, i3)
1194 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1195 return 0;
1196 #endif
1198 #ifdef HAVE_cc0
1199 /* Don't combine an insn that follows a CC0-setting insn.
1200 An insn that uses CC0 must not be separated from the one that sets it.
1201 We do, however, allow I2 to follow a CC0-setting insn if that insn
1202 is passed as I1; in that case it will be deleted also.
1203 We also allow combining in this case if all the insns are adjacent
1204 because that would leave the two CC0 insns adjacent as well.
1205 It would be more logical to test whether CC0 occurs inside I1 or I2,
1206 but that would be much slower, and this ought to be equivalent. */
1208 p = prev_nonnote_insn (insn);
1209 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1210 && ! all_adjacent)
1211 return 0;
1212 #endif
1214 /* If we get here, we have passed all the tests and the combination is
1215 to be allowed. */
1217 *pdest = dest;
1218 *psrc = src;
1220 return 1;
1223 /* Check if PAT is an insn - or a part of it - used to set up an
1224 argument for a function in a hard register. */
1226 static int
1227 sets_function_arg_p (pat)
1228 rtx pat;
1230 int i;
1231 rtx inner_dest;
1233 switch (GET_CODE (pat))
1235 case INSN:
1236 return sets_function_arg_p (PATTERN (pat));
1238 case PARALLEL:
1239 for (i = XVECLEN (pat, 0); --i >= 0;)
1240 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1241 return 1;
1243 break;
1245 case SET:
1246 inner_dest = SET_DEST (pat);
1247 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1248 || GET_CODE (inner_dest) == SUBREG
1249 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1250 inner_dest = XEXP (inner_dest, 0);
1252 return (GET_CODE (inner_dest) == REG
1253 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1254 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1256 default:
1257 break;
1260 return 0;
1263 /* LOC is the location within I3 that contains its pattern or the component
1264 of a PARALLEL of the pattern. We validate that it is valid for combining.
1266 One problem is if I3 modifies its output, as opposed to replacing it
1267 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1268 so would produce an insn that is not equivalent to the original insns.
1270 Consider:
1272 (set (reg:DI 101) (reg:DI 100))
1273 (set (subreg:SI (reg:DI 101) 0) <foo>)
1275 This is NOT equivalent to:
1277 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1278 (set (reg:DI 101) (reg:DI 100))])
1280 Not only does this modify 100 (in which case it might still be valid
1281 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1283 We can also run into a problem if I2 sets a register that I1
1284 uses and I1 gets directly substituted into I3 (not via I2). In that
1285 case, we would be getting the wrong value of I2DEST into I3, so we
1286 must reject the combination. This case occurs when I2 and I1 both
1287 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1288 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1289 of a SET must prevent combination from occurring.
1291 Before doing the above check, we first try to expand a field assignment
1292 into a set of logical operations.
1294 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1295 we place a register that is both set and used within I3. If more than one
1296 such register is detected, we fail.
1298 Return 1 if the combination is valid, zero otherwise. */
1300 static int
1301 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1302 rtx i3;
1303 rtx *loc;
1304 rtx i2dest;
1305 rtx i1dest;
1306 int i1_not_in_src;
1307 rtx *pi3dest_killed;
1309 rtx x = *loc;
1311 if (GET_CODE (x) == SET)
1313 rtx set = expand_field_assignment (x);
1314 rtx dest = SET_DEST (set);
1315 rtx src = SET_SRC (set);
1316 rtx inner_dest = dest;
1318 #if 0
1319 rtx inner_src = src;
1320 #endif
1322 SUBST (*loc, set);
1324 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1325 || GET_CODE (inner_dest) == SUBREG
1326 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1327 inner_dest = XEXP (inner_dest, 0);
1329 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1330 was added. */
1331 #if 0
1332 while (GET_CODE (inner_src) == STRICT_LOW_PART
1333 || GET_CODE (inner_src) == SUBREG
1334 || GET_CODE (inner_src) == ZERO_EXTRACT)
1335 inner_src = XEXP (inner_src, 0);
1337 /* If it is better that two different modes keep two different pseudos,
1338 avoid combining them. This avoids producing the following pattern
1339 on a 386:
1340 (set (subreg:SI (reg/v:QI 21) 0)
1341 (lshiftrt:SI (reg/v:SI 20)
1342 (const_int 24)))
1343 If that were made, reload could not handle the pair of
1344 reg 20/21, since it would try to get any GENERAL_REGS
1345 but some of them don't handle QImode. */
1347 if (rtx_equal_p (inner_src, i2dest)
1348 && GET_CODE (inner_dest) == REG
1349 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1350 return 0;
1351 #endif
1353 /* Check for the case where I3 modifies its output, as
1354 discussed above. */
1355 if ((inner_dest != dest
1356 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1357 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1359 /* This is the same test done in can_combine_p except we can't test
1360 all_adjacent; we don't have to, since this instruction will stay
1361 in place, thus we are not considering increasing the lifetime of
1362 INNER_DEST.
1364 Also, if this insn sets a function argument, combining it with
1365 something that might need a spill could clobber a previous
1366 function argument; the all_adjacent test in can_combine_p also
1367 checks this; here, we do a more specific test for this case. */
1369 || (GET_CODE (inner_dest) == REG
1370 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1371 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1372 GET_MODE (inner_dest))))
1373 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1374 return 0;
1376 /* If DEST is used in I3, it is being killed in this insn,
1377 so record that for later.
1378 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1379 STACK_POINTER_REGNUM, since these are always considered to be
1380 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1381 if (pi3dest_killed && GET_CODE (dest) == REG
1382 && reg_referenced_p (dest, PATTERN (i3))
1383 && REGNO (dest) != FRAME_POINTER_REGNUM
1384 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1385 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1386 #endif
1387 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1388 && (REGNO (dest) != ARG_POINTER_REGNUM
1389 || ! fixed_regs [REGNO (dest)])
1390 #endif
1391 && REGNO (dest) != STACK_POINTER_REGNUM)
1393 if (*pi3dest_killed)
1394 return 0;
1396 *pi3dest_killed = dest;
1400 else if (GET_CODE (x) == PARALLEL)
1402 int i;
1404 for (i = 0; i < XVECLEN (x, 0); i++)
1405 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1406 i1_not_in_src, pi3dest_killed))
1407 return 0;
1410 return 1;
1413 /* Return 1 if X is an arithmetic expression that contains a multiplication
1414 and division. We don't count multiplications by powers of two here. */
1416 static int
1417 contains_muldiv (x)
1418 rtx x;
1420 switch (GET_CODE (x))
1422 case MOD: case DIV: case UMOD: case UDIV:
1423 return 1;
1425 case MULT:
1426 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1427 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1428 default:
1429 switch (GET_RTX_CLASS (GET_CODE (x)))
1431 case 'c': case '<': case '2':
1432 return contains_muldiv (XEXP (x, 0))
1433 || contains_muldiv (XEXP (x, 1));
1435 case '1':
1436 return contains_muldiv (XEXP (x, 0));
1438 default:
1439 return 0;
1444 /* Determine whether INSN can be used in a combination. Return nonzero if
1445 not. This is used in try_combine to detect early some cases where we
1446 can't perform combinations. */
1448 static int
1449 cant_combine_insn_p (insn)
1450 rtx insn;
1452 rtx set;
1453 rtx src, dest;
1455 /* If this isn't really an insn, we can't do anything.
1456 This can occur when flow deletes an insn that it has merged into an
1457 auto-increment address. */
1458 if (! INSN_P (insn))
1459 return 1;
1461 /* Never combine loads and stores involving hard regs. The register
1462 allocator can usually handle such reg-reg moves by tying. If we allow
1463 the combiner to make substitutions of hard regs, we risk aborting in
1464 reload on machines that have SMALL_REGISTER_CLASSES.
1465 As an exception, we allow combinations involving fixed regs; these are
1466 not available to the register allocator so there's no risk involved. */
1468 set = single_set (insn);
1469 if (! set)
1470 return 0;
1471 src = SET_SRC (set);
1472 dest = SET_DEST (set);
1473 if (GET_CODE (src) == SUBREG)
1474 src = SUBREG_REG (src);
1475 if (GET_CODE (dest) == SUBREG)
1476 dest = SUBREG_REG (dest);
1477 if (REG_P (src) && REG_P (dest)
1478 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1479 && ! fixed_regs[REGNO (src)])
1480 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1481 && ! fixed_regs[REGNO (dest)])))
1482 return 1;
1484 return 0;
1487 /* Try to combine the insns I1 and I2 into I3.
1488 Here I1 and I2 appear earlier than I3.
1489 I1 can be zero; then we combine just I2 into I3.
1491 If we are combining three insns and the resulting insn is not recognized,
1492 try splitting it into two insns. If that happens, I2 and I3 are retained
1493 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1494 are pseudo-deleted.
1496 Return 0 if the combination does not work. Then nothing is changed.
1497 If we did the combination, return the insn at which combine should
1498 resume scanning.
1500 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1501 new direct jump instruction. */
1503 static rtx
1504 try_combine (i3, i2, i1, new_direct_jump_p)
1505 rtx i3, i2, i1;
1506 int *new_direct_jump_p;
1508 /* New patterns for I3 and I2, respectively. */
1509 rtx newpat, newi2pat = 0;
1510 int substed_i2 = 0, substed_i1 = 0;
1511 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1512 int added_sets_1, added_sets_2;
1513 /* Total number of SETs to put into I3. */
1514 int total_sets;
1515 /* Nonzero is I2's body now appears in I3. */
1516 int i2_is_used;
1517 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1518 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1519 /* Contains I3 if the destination of I3 is used in its source, which means
1520 that the old life of I3 is being killed. If that usage is placed into
1521 I2 and not in I3, a REG_DEAD note must be made. */
1522 rtx i3dest_killed = 0;
1523 /* SET_DEST and SET_SRC of I2 and I1. */
1524 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1525 /* PATTERN (I2), or a copy of it in certain cases. */
1526 rtx i2pat;
1527 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1528 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1529 int i1_feeds_i3 = 0;
1530 /* Notes that must be added to REG_NOTES in I3 and I2. */
1531 rtx new_i3_notes, new_i2_notes;
1532 /* Notes that we substituted I3 into I2 instead of the normal case. */
1533 int i3_subst_into_i2 = 0;
1534 /* Notes that I1, I2 or I3 is a MULT operation. */
1535 int have_mult = 0;
1537 int maxreg;
1538 rtx temp;
1539 rtx link;
1540 int i;
1542 /* Exit early if one of the insns involved can't be used for
1543 combinations. */
1544 if (cant_combine_insn_p (i3)
1545 || cant_combine_insn_p (i2)
1546 || (i1 && cant_combine_insn_p (i1))
1547 /* We also can't do anything if I3 has a
1548 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1549 libcall. */
1550 #if 0
1551 /* ??? This gives worse code, and appears to be unnecessary, since no
1552 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1553 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1554 #endif
1556 return 0;
1558 combine_attempts++;
1559 undobuf.other_insn = 0;
1561 /* Reset the hard register usage information. */
1562 CLEAR_HARD_REG_SET (newpat_used_regs);
1564 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1565 code below, set I1 to be the earlier of the two insns. */
1566 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1567 temp = i1, i1 = i2, i2 = temp;
1569 added_links_insn = 0;
1571 /* First check for one important special-case that the code below will
1572 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1573 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1574 we may be able to replace that destination with the destination of I3.
1575 This occurs in the common code where we compute both a quotient and
1576 remainder into a structure, in which case we want to do the computation
1577 directly into the structure to avoid register-register copies.
1579 Note that this case handles both multiple sets in I2 and also
1580 cases where I2 has a number of CLOBBER or PARALLELs.
1582 We make very conservative checks below and only try to handle the
1583 most common cases of this. For example, we only handle the case
1584 where I2 and I3 are adjacent to avoid making difficult register
1585 usage tests. */
1587 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1588 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1589 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1590 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1591 && GET_CODE (PATTERN (i2)) == PARALLEL
1592 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1593 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1594 below would need to check what is inside (and reg_overlap_mentioned_p
1595 doesn't support those codes anyway). Don't allow those destinations;
1596 the resulting insn isn't likely to be recognized anyway. */
1597 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1598 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1599 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1600 SET_DEST (PATTERN (i3)))
1601 && next_real_insn (i2) == i3)
1603 rtx p2 = PATTERN (i2);
1605 /* Make sure that the destination of I3,
1606 which we are going to substitute into one output of I2,
1607 is not used within another output of I2. We must avoid making this:
1608 (parallel [(set (mem (reg 69)) ...)
1609 (set (reg 69) ...)])
1610 which is not well-defined as to order of actions.
1611 (Besides, reload can't handle output reloads for this.)
1613 The problem can also happen if the dest of I3 is a memory ref,
1614 if another dest in I2 is an indirect memory ref. */
1615 for (i = 0; i < XVECLEN (p2, 0); i++)
1616 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1617 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1618 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1619 SET_DEST (XVECEXP (p2, 0, i))))
1620 break;
1622 if (i == XVECLEN (p2, 0))
1623 for (i = 0; i < XVECLEN (p2, 0); i++)
1624 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1625 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1626 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1628 combine_merges++;
1630 subst_insn = i3;
1631 subst_low_cuid = INSN_CUID (i2);
1633 added_sets_2 = added_sets_1 = 0;
1634 i2dest = SET_SRC (PATTERN (i3));
1636 /* Replace the dest in I2 with our dest and make the resulting
1637 insn the new pattern for I3. Then skip to where we
1638 validate the pattern. Everything was set up above. */
1639 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1640 SET_DEST (PATTERN (i3)));
1642 newpat = p2;
1643 i3_subst_into_i2 = 1;
1644 goto validate_replacement;
1648 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1649 one of those words to another constant, merge them by making a new
1650 constant. */
1651 if (i1 == 0
1652 && (temp = single_set (i2)) != 0
1653 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1654 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1655 && GET_CODE (SET_DEST (temp)) == REG
1656 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1657 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1658 && GET_CODE (PATTERN (i3)) == SET
1659 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1660 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1661 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1662 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1663 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1665 HOST_WIDE_INT lo, hi;
1667 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1668 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1669 else
1671 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1672 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1675 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1677 /* We don't handle the case of the target word being wider
1678 than a host wide int. */
1679 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1680 abort ();
1682 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1683 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1684 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1686 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1687 hi = INTVAL (SET_SRC (PATTERN (i3)));
1688 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1690 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1691 >> (HOST_BITS_PER_WIDE_INT - 1));
1693 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1694 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1695 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1696 (INTVAL (SET_SRC (PATTERN (i3)))));
1697 if (hi == sign)
1698 hi = lo < 0 ? -1 : 0;
1700 else
1701 /* We don't handle the case of the higher word not fitting
1702 entirely in either hi or lo. */
1703 abort ();
1705 combine_merges++;
1706 subst_insn = i3;
1707 subst_low_cuid = INSN_CUID (i2);
1708 added_sets_2 = added_sets_1 = 0;
1709 i2dest = SET_DEST (temp);
1711 SUBST (SET_SRC (temp),
1712 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1714 newpat = PATTERN (i2);
1715 goto validate_replacement;
1718 #ifndef HAVE_cc0
1719 /* If we have no I1 and I2 looks like:
1720 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1721 (set Y OP)])
1722 make up a dummy I1 that is
1723 (set Y OP)
1724 and change I2 to be
1725 (set (reg:CC X) (compare:CC Y (const_int 0)))
1727 (We can ignore any trailing CLOBBERs.)
1729 This undoes a previous combination and allows us to match a branch-and-
1730 decrement insn. */
1732 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1733 && XVECLEN (PATTERN (i2), 0) >= 2
1734 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1735 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1736 == MODE_CC)
1737 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1738 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1739 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1740 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1741 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1742 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1744 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1745 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1746 break;
1748 if (i == 1)
1750 /* We make I1 with the same INSN_UID as I2. This gives it
1751 the same INSN_CUID for value tracking. Our fake I1 will
1752 never appear in the insn stream so giving it the same INSN_UID
1753 as I2 will not cause a problem. */
1755 subst_prev_insn = i1
1756 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1757 BLOCK_FOR_INSN (i2), INSN_SCOPE (i2),
1758 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1759 NULL_RTX);
1761 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1762 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1763 SET_DEST (PATTERN (i1)));
1766 #endif
1768 /* Verify that I2 and I1 are valid for combining. */
1769 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1770 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1772 undo_all ();
1773 return 0;
1776 /* Record whether I2DEST is used in I2SRC and similarly for the other
1777 cases. Knowing this will help in register status updating below. */
1778 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1779 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1780 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1782 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1783 in I2SRC. */
1784 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1786 /* Ensure that I3's pattern can be the destination of combines. */
1787 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1788 i1 && i2dest_in_i1src && i1_feeds_i3,
1789 &i3dest_killed))
1791 undo_all ();
1792 return 0;
1795 /* See if any of the insns is a MULT operation. Unless one is, we will
1796 reject a combination that is, since it must be slower. Be conservative
1797 here. */
1798 if (GET_CODE (i2src) == MULT
1799 || (i1 != 0 && GET_CODE (i1src) == MULT)
1800 || (GET_CODE (PATTERN (i3)) == SET
1801 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1802 have_mult = 1;
1804 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1805 We used to do this EXCEPT in one case: I3 has a post-inc in an
1806 output operand. However, that exception can give rise to insns like
1807 mov r3,(r3)+
1808 which is a famous insn on the PDP-11 where the value of r3 used as the
1809 source was model-dependent. Avoid this sort of thing. */
1811 #if 0
1812 if (!(GET_CODE (PATTERN (i3)) == SET
1813 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1814 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1815 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1816 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1817 /* It's not the exception. */
1818 #endif
1819 #ifdef AUTO_INC_DEC
1820 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1821 if (REG_NOTE_KIND (link) == REG_INC
1822 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1823 || (i1 != 0
1824 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1826 undo_all ();
1827 return 0;
1829 #endif
1831 /* See if the SETs in I1 or I2 need to be kept around in the merged
1832 instruction: whenever the value set there is still needed past I3.
1833 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1835 For the SET in I1, we have two cases: If I1 and I2 independently
1836 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1837 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1838 in I1 needs to be kept around unless I1DEST dies or is set in either
1839 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1840 I1DEST. If so, we know I1 feeds into I2. */
1842 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1844 added_sets_1
1845 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1846 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1848 /* If the set in I2 needs to be kept around, we must make a copy of
1849 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1850 PATTERN (I2), we are only substituting for the original I1DEST, not into
1851 an already-substituted copy. This also prevents making self-referential
1852 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1853 I2DEST. */
1855 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1856 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1857 : PATTERN (i2));
1859 if (added_sets_2)
1860 i2pat = copy_rtx (i2pat);
1862 combine_merges++;
1864 /* Substitute in the latest insn for the regs set by the earlier ones. */
1866 maxreg = max_reg_num ();
1868 subst_insn = i3;
1870 /* It is possible that the source of I2 or I1 may be performing an
1871 unneeded operation, such as a ZERO_EXTEND of something that is known
1872 to have the high part zero. Handle that case by letting subst look at
1873 the innermost one of them.
1875 Another way to do this would be to have a function that tries to
1876 simplify a single insn instead of merging two or more insns. We don't
1877 do this because of the potential of infinite loops and because
1878 of the potential extra memory required. However, doing it the way
1879 we are is a bit of a kludge and doesn't catch all cases.
1881 But only do this if -fexpensive-optimizations since it slows things down
1882 and doesn't usually win. */
1884 if (flag_expensive_optimizations)
1886 /* Pass pc_rtx so no substitutions are done, just simplifications.
1887 The cases that we are interested in here do not involve the few
1888 cases were is_replaced is checked. */
1889 if (i1)
1891 subst_low_cuid = INSN_CUID (i1);
1892 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1894 else
1896 subst_low_cuid = INSN_CUID (i2);
1897 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1901 #ifndef HAVE_cc0
1902 /* Many machines that don't use CC0 have insns that can both perform an
1903 arithmetic operation and set the condition code. These operations will
1904 be represented as a PARALLEL with the first element of the vector
1905 being a COMPARE of an arithmetic operation with the constant zero.
1906 The second element of the vector will set some pseudo to the result
1907 of the same arithmetic operation. If we simplify the COMPARE, we won't
1908 match such a pattern and so will generate an extra insn. Here we test
1909 for this case, where both the comparison and the operation result are
1910 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1911 I2SRC. Later we will make the PARALLEL that contains I2. */
1913 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1914 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1915 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1916 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1918 #ifdef EXTRA_CC_MODES
1919 rtx *cc_use;
1920 enum machine_mode compare_mode;
1921 #endif
1923 newpat = PATTERN (i3);
1924 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1926 i2_is_used = 1;
1928 #ifdef EXTRA_CC_MODES
1929 /* See if a COMPARE with the operand we substituted in should be done
1930 with the mode that is currently being used. If not, do the same
1931 processing we do in `subst' for a SET; namely, if the destination
1932 is used only once, try to replace it with a register of the proper
1933 mode and also replace the COMPARE. */
1934 if (undobuf.other_insn == 0
1935 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1936 &undobuf.other_insn))
1937 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1938 i2src, const0_rtx))
1939 != GET_MODE (SET_DEST (newpat))))
1941 unsigned int regno = REGNO (SET_DEST (newpat));
1942 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1944 if (regno < FIRST_PSEUDO_REGISTER
1945 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1946 && ! REG_USERVAR_P (SET_DEST (newpat))))
1948 if (regno >= FIRST_PSEUDO_REGISTER)
1949 SUBST (regno_reg_rtx[regno], new_dest);
1951 SUBST (SET_DEST (newpat), new_dest);
1952 SUBST (XEXP (*cc_use, 0), new_dest);
1953 SUBST (SET_SRC (newpat),
1954 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1956 else
1957 undobuf.other_insn = 0;
1959 #endif
1961 else
1962 #endif
1964 n_occurrences = 0; /* `subst' counts here */
1966 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1967 need to make a unique copy of I2SRC each time we substitute it
1968 to avoid self-referential rtl. */
1970 subst_low_cuid = INSN_CUID (i2);
1971 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1972 ! i1_feeds_i3 && i1dest_in_i1src);
1973 substed_i2 = 1;
1975 /* Record whether i2's body now appears within i3's body. */
1976 i2_is_used = n_occurrences;
1979 /* If we already got a failure, don't try to do more. Otherwise,
1980 try to substitute in I1 if we have it. */
1982 if (i1 && GET_CODE (newpat) != CLOBBER)
1984 /* Before we can do this substitution, we must redo the test done
1985 above (see detailed comments there) that ensures that I1DEST
1986 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1988 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1989 0, (rtx*) 0))
1991 undo_all ();
1992 return 0;
1995 n_occurrences = 0;
1996 subst_low_cuid = INSN_CUID (i1);
1997 newpat = subst (newpat, i1dest, i1src, 0, 0);
1998 substed_i1 = 1;
2001 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2002 to count all the ways that I2SRC and I1SRC can be used. */
2003 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2004 && i2_is_used + added_sets_2 > 1)
2005 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2006 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2007 > 1))
2008 /* Fail if we tried to make a new register (we used to abort, but there's
2009 really no reason to). */
2010 || max_reg_num () != maxreg
2011 /* Fail if we couldn't do something and have a CLOBBER. */
2012 || GET_CODE (newpat) == CLOBBER
2013 /* Fail if this new pattern is a MULT and we didn't have one before
2014 at the outer level. */
2015 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2016 && ! have_mult))
2018 undo_all ();
2019 return 0;
2022 /* If the actions of the earlier insns must be kept
2023 in addition to substituting them into the latest one,
2024 we must make a new PARALLEL for the latest insn
2025 to hold additional the SETs. */
2027 if (added_sets_1 || added_sets_2)
2029 combine_extras++;
2031 if (GET_CODE (newpat) == PARALLEL)
2033 rtvec old = XVEC (newpat, 0);
2034 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2035 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2036 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2037 sizeof (old->elem[0]) * old->num_elem);
2039 else
2041 rtx old = newpat;
2042 total_sets = 1 + added_sets_1 + added_sets_2;
2043 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2044 XVECEXP (newpat, 0, 0) = old;
2047 if (added_sets_1)
2048 XVECEXP (newpat, 0, --total_sets)
2049 = (GET_CODE (PATTERN (i1)) == PARALLEL
2050 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2052 if (added_sets_2)
2054 /* If there is no I1, use I2's body as is. We used to also not do
2055 the subst call below if I2 was substituted into I3,
2056 but that could lose a simplification. */
2057 if (i1 == 0)
2058 XVECEXP (newpat, 0, --total_sets) = i2pat;
2059 else
2060 /* See comment where i2pat is assigned. */
2061 XVECEXP (newpat, 0, --total_sets)
2062 = subst (i2pat, i1dest, i1src, 0, 0);
2066 /* We come here when we are replacing a destination in I2 with the
2067 destination of I3. */
2068 validate_replacement:
2070 /* Note which hard regs this insn has as inputs. */
2071 mark_used_regs_combine (newpat);
2073 /* Is the result of combination a valid instruction? */
2074 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2076 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2077 the second SET's destination is a register that is unused. In that case,
2078 we just need the first SET. This can occur when simplifying a divmod
2079 insn. We *must* test for this case here because the code below that
2080 splits two independent SETs doesn't handle this case correctly when it
2081 updates the register status. Also check the case where the first
2082 SET's destination is unused. That would not cause incorrect code, but
2083 does cause an unneeded insn to remain. */
2085 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2086 && XVECLEN (newpat, 0) == 2
2087 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2088 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2089 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2090 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2091 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2092 && asm_noperands (newpat) < 0)
2094 newpat = XVECEXP (newpat, 0, 0);
2095 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2098 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2099 && XVECLEN (newpat, 0) == 2
2100 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2101 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2102 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2103 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2104 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2105 && asm_noperands (newpat) < 0)
2107 newpat = XVECEXP (newpat, 0, 1);
2108 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2111 /* If we were combining three insns and the result is a simple SET
2112 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2113 insns. There are two ways to do this. It can be split using a
2114 machine-specific method (like when you have an addition of a large
2115 constant) or by combine in the function find_split_point. */
2117 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2118 && asm_noperands (newpat) < 0)
2120 rtx m_split, *split;
2121 rtx ni2dest = i2dest;
2123 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2124 use I2DEST as a scratch register will help. In the latter case,
2125 convert I2DEST to the mode of the source of NEWPAT if we can. */
2127 m_split = split_insns (newpat, i3);
2129 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2130 inputs of NEWPAT. */
2132 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2133 possible to try that as a scratch reg. This would require adding
2134 more code to make it work though. */
2136 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2138 /* If I2DEST is a hard register or the only use of a pseudo,
2139 we can change its mode. */
2140 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2141 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2142 && GET_CODE (i2dest) == REG
2143 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2144 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2145 && ! REG_USERVAR_P (i2dest))))
2146 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2147 REGNO (i2dest));
2149 m_split = split_insns (gen_rtx_PARALLEL
2150 (VOIDmode,
2151 gen_rtvec (2, newpat,
2152 gen_rtx_CLOBBER (VOIDmode,
2153 ni2dest))),
2154 i3);
2155 /* If the split with the mode-changed register didn't work, try
2156 the original register. */
2157 if (! m_split && ni2dest != i2dest)
2159 ni2dest = i2dest;
2160 m_split = split_insns (gen_rtx_PARALLEL
2161 (VOIDmode,
2162 gen_rtvec (2, newpat,
2163 gen_rtx_CLOBBER (VOIDmode,
2164 i2dest))),
2165 i3);
2169 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2171 m_split = PATTERN (m_split);
2172 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2173 if (insn_code_number >= 0)
2174 newpat = m_split;
2176 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2177 && (next_real_insn (i2) == i3
2178 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2180 rtx i2set, i3set;
2181 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2182 newi2pat = PATTERN (m_split);
2184 i3set = single_set (NEXT_INSN (m_split));
2185 i2set = single_set (m_split);
2187 /* In case we changed the mode of I2DEST, replace it in the
2188 pseudo-register table here. We can't do it above in case this
2189 code doesn't get executed and we do a split the other way. */
2191 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2192 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2194 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2196 /* If I2 or I3 has multiple SETs, we won't know how to track
2197 register status, so don't use these insns. If I2's destination
2198 is used between I2 and I3, we also can't use these insns. */
2200 if (i2_code_number >= 0 && i2set && i3set
2201 && (next_real_insn (i2) == i3
2202 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2203 insn_code_number = recog_for_combine (&newi3pat, i3,
2204 &new_i3_notes);
2205 if (insn_code_number >= 0)
2206 newpat = newi3pat;
2208 /* It is possible that both insns now set the destination of I3.
2209 If so, we must show an extra use of it. */
2211 if (insn_code_number >= 0)
2213 rtx new_i3_dest = SET_DEST (i3set);
2214 rtx new_i2_dest = SET_DEST (i2set);
2216 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2217 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2218 || GET_CODE (new_i3_dest) == SUBREG)
2219 new_i3_dest = XEXP (new_i3_dest, 0);
2221 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2222 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2223 || GET_CODE (new_i2_dest) == SUBREG)
2224 new_i2_dest = XEXP (new_i2_dest, 0);
2226 if (GET_CODE (new_i3_dest) == REG
2227 && GET_CODE (new_i2_dest) == REG
2228 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2229 REG_N_SETS (REGNO (new_i2_dest))++;
2233 /* If we can split it and use I2DEST, go ahead and see if that
2234 helps things be recognized. Verify that none of the registers
2235 are set between I2 and I3. */
2236 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2237 #ifdef HAVE_cc0
2238 && GET_CODE (i2dest) == REG
2239 #endif
2240 /* We need I2DEST in the proper mode. If it is a hard register
2241 or the only use of a pseudo, we can change its mode. */
2242 && (GET_MODE (*split) == GET_MODE (i2dest)
2243 || GET_MODE (*split) == VOIDmode
2244 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2245 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2246 && ! REG_USERVAR_P (i2dest)))
2247 && (next_real_insn (i2) == i3
2248 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2249 /* We can't overwrite I2DEST if its value is still used by
2250 NEWPAT. */
2251 && ! reg_referenced_p (i2dest, newpat))
2253 rtx newdest = i2dest;
2254 enum rtx_code split_code = GET_CODE (*split);
2255 enum machine_mode split_mode = GET_MODE (*split);
2257 /* Get NEWDEST as a register in the proper mode. We have already
2258 validated that we can do this. */
2259 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2261 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2263 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2264 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2267 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2268 an ASHIFT. This can occur if it was inside a PLUS and hence
2269 appeared to be a memory address. This is a kludge. */
2270 if (split_code == MULT
2271 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2272 && INTVAL (XEXP (*split, 1)) > 0
2273 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2275 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2276 XEXP (*split, 0), GEN_INT (i)));
2277 /* Update split_code because we may not have a multiply
2278 anymore. */
2279 split_code = GET_CODE (*split);
2282 #ifdef INSN_SCHEDULING
2283 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2284 be written as a ZERO_EXTEND. */
2285 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2287 #ifdef LOAD_EXTEND_OP
2288 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2289 what it really is. */
2290 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2291 == SIGN_EXTEND)
2292 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2293 SUBREG_REG (*split)));
2294 else
2295 #endif
2296 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2297 SUBREG_REG (*split)));
2299 #endif
2301 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2302 SUBST (*split, newdest);
2303 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2305 /* If the split point was a MULT and we didn't have one before,
2306 don't use one now. */
2307 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2308 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2312 /* Check for a case where we loaded from memory in a narrow mode and
2313 then sign extended it, but we need both registers. In that case,
2314 we have a PARALLEL with both loads from the same memory location.
2315 We can split this into a load from memory followed by a register-register
2316 copy. This saves at least one insn, more if register allocation can
2317 eliminate the copy.
2319 We cannot do this if the destination of the second assignment is
2320 a register that we have already assumed is zero-extended. Similarly
2321 for a SUBREG of such a register. */
2323 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2324 && GET_CODE (newpat) == PARALLEL
2325 && XVECLEN (newpat, 0) == 2
2326 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2327 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2328 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2329 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2330 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2331 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2332 INSN_CUID (i2))
2333 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2334 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2335 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2336 (GET_CODE (temp) == REG
2337 && reg_nonzero_bits[REGNO (temp)] != 0
2338 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2339 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2340 && (reg_nonzero_bits[REGNO (temp)]
2341 != GET_MODE_MASK (word_mode))))
2342 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2343 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2344 (GET_CODE (temp) == REG
2345 && reg_nonzero_bits[REGNO (temp)] != 0
2346 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2347 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2348 && (reg_nonzero_bits[REGNO (temp)]
2349 != GET_MODE_MASK (word_mode)))))
2350 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2351 SET_SRC (XVECEXP (newpat, 0, 1)))
2352 && ! find_reg_note (i3, REG_UNUSED,
2353 SET_DEST (XVECEXP (newpat, 0, 0))))
2355 rtx ni2dest;
2357 newi2pat = XVECEXP (newpat, 0, 0);
2358 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2359 newpat = XVECEXP (newpat, 0, 1);
2360 SUBST (SET_SRC (newpat),
2361 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2362 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2364 if (i2_code_number >= 0)
2365 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2367 if (insn_code_number >= 0)
2369 rtx insn;
2370 rtx link;
2372 /* If we will be able to accept this, we have made a change to the
2373 destination of I3. This can invalidate a LOG_LINKS pointing
2374 to I3. No other part of combine.c makes such a transformation.
2376 The new I3 will have a destination that was previously the
2377 destination of I1 or I2 and which was used in i2 or I3. Call
2378 distribute_links to make a LOG_LINK from the next use of
2379 that destination. */
2381 PATTERN (i3) = newpat;
2382 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2384 /* I3 now uses what used to be its destination and which is
2385 now I2's destination. That means we need a LOG_LINK from
2386 I3 to I2. But we used to have one, so we still will.
2388 However, some later insn might be using I2's dest and have
2389 a LOG_LINK pointing at I3. We must remove this link.
2390 The simplest way to remove the link is to point it at I1,
2391 which we know will be a NOTE. */
2393 for (insn = NEXT_INSN (i3);
2394 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2395 || insn != this_basic_block->next_bb->head);
2396 insn = NEXT_INSN (insn))
2398 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2400 for (link = LOG_LINKS (insn); link;
2401 link = XEXP (link, 1))
2402 if (XEXP (link, 0) == i3)
2403 XEXP (link, 0) = i1;
2405 break;
2411 /* Similarly, check for a case where we have a PARALLEL of two independent
2412 SETs but we started with three insns. In this case, we can do the sets
2413 as two separate insns. This case occurs when some SET allows two
2414 other insns to combine, but the destination of that SET is still live. */
2416 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2417 && GET_CODE (newpat) == PARALLEL
2418 && XVECLEN (newpat, 0) == 2
2419 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2420 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2421 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2422 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2423 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2424 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2425 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2426 INSN_CUID (i2))
2427 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2428 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2429 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2430 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2431 XVECEXP (newpat, 0, 0))
2432 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2433 XVECEXP (newpat, 0, 1))
2434 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2435 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2437 /* Normally, it doesn't matter which of the two is done first,
2438 but it does if one references cc0. In that case, it has to
2439 be first. */
2440 #ifdef HAVE_cc0
2441 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2443 newi2pat = XVECEXP (newpat, 0, 0);
2444 newpat = XVECEXP (newpat, 0, 1);
2446 else
2447 #endif
2449 newi2pat = XVECEXP (newpat, 0, 1);
2450 newpat = XVECEXP (newpat, 0, 0);
2453 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2455 if (i2_code_number >= 0)
2456 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2459 /* If it still isn't recognized, fail and change things back the way they
2460 were. */
2461 if ((insn_code_number < 0
2462 /* Is the result a reasonable ASM_OPERANDS? */
2463 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2465 undo_all ();
2466 return 0;
2469 /* If we had to change another insn, make sure it is valid also. */
2470 if (undobuf.other_insn)
2472 rtx other_pat = PATTERN (undobuf.other_insn);
2473 rtx new_other_notes;
2474 rtx note, next;
2476 CLEAR_HARD_REG_SET (newpat_used_regs);
2478 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2479 &new_other_notes);
2481 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2483 undo_all ();
2484 return 0;
2487 PATTERN (undobuf.other_insn) = other_pat;
2489 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2490 are still valid. Then add any non-duplicate notes added by
2491 recog_for_combine. */
2492 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2494 next = XEXP (note, 1);
2496 if (REG_NOTE_KIND (note) == REG_UNUSED
2497 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2499 if (GET_CODE (XEXP (note, 0)) == REG)
2500 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2502 remove_note (undobuf.other_insn, note);
2506 for (note = new_other_notes; note; note = XEXP (note, 1))
2507 if (GET_CODE (XEXP (note, 0)) == REG)
2508 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2510 distribute_notes (new_other_notes, undobuf.other_insn,
2511 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2513 #ifdef HAVE_cc0
2514 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2515 they are adjacent to each other or not. */
2517 rtx p = prev_nonnote_insn (i3);
2518 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2519 && sets_cc0_p (newi2pat))
2521 undo_all ();
2522 return 0;
2525 #endif
2527 /* We now know that we can do this combination. Merge the insns and
2528 update the status of registers and LOG_LINKS. */
2531 rtx i3notes, i2notes, i1notes = 0;
2532 rtx i3links, i2links, i1links = 0;
2533 rtx midnotes = 0;
2534 unsigned int regno;
2535 /* Compute which registers we expect to eliminate. newi2pat may be setting
2536 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2537 same as i3dest, in which case newi2pat may be setting i1dest. */
2538 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2539 || i2dest_in_i2src || i2dest_in_i1src
2540 ? 0 : i2dest);
2541 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2542 || (newi2pat && reg_set_p (i1dest, newi2pat))
2543 ? 0 : i1dest);
2545 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2546 clear them. */
2547 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2548 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2549 if (i1)
2550 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2552 /* Ensure that we do not have something that should not be shared but
2553 occurs multiple times in the new insns. Check this by first
2554 resetting all the `used' flags and then copying anything is shared. */
2556 reset_used_flags (i3notes);
2557 reset_used_flags (i2notes);
2558 reset_used_flags (i1notes);
2559 reset_used_flags (newpat);
2560 reset_used_flags (newi2pat);
2561 if (undobuf.other_insn)
2562 reset_used_flags (PATTERN (undobuf.other_insn));
2564 i3notes = copy_rtx_if_shared (i3notes);
2565 i2notes = copy_rtx_if_shared (i2notes);
2566 i1notes = copy_rtx_if_shared (i1notes);
2567 newpat = copy_rtx_if_shared (newpat);
2568 newi2pat = copy_rtx_if_shared (newi2pat);
2569 if (undobuf.other_insn)
2570 reset_used_flags (PATTERN (undobuf.other_insn));
2572 INSN_CODE (i3) = insn_code_number;
2573 PATTERN (i3) = newpat;
2575 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2577 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2579 reset_used_flags (call_usage);
2580 call_usage = copy_rtx (call_usage);
2582 if (substed_i2)
2583 replace_rtx (call_usage, i2dest, i2src);
2585 if (substed_i1)
2586 replace_rtx (call_usage, i1dest, i1src);
2588 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2591 if (undobuf.other_insn)
2592 INSN_CODE (undobuf.other_insn) = other_code_number;
2594 /* We had one special case above where I2 had more than one set and
2595 we replaced a destination of one of those sets with the destination
2596 of I3. In that case, we have to update LOG_LINKS of insns later
2597 in this basic block. Note that this (expensive) case is rare.
2599 Also, in this case, we must pretend that all REG_NOTEs for I2
2600 actually came from I3, so that REG_UNUSED notes from I2 will be
2601 properly handled. */
2603 if (i3_subst_into_i2)
2605 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2606 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2607 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2608 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2609 && ! find_reg_note (i2, REG_UNUSED,
2610 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2611 for (temp = NEXT_INSN (i2);
2612 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2613 || this_basic_block->head != temp);
2614 temp = NEXT_INSN (temp))
2615 if (temp != i3 && INSN_P (temp))
2616 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2617 if (XEXP (link, 0) == i2)
2618 XEXP (link, 0) = i3;
2620 if (i3notes)
2622 rtx link = i3notes;
2623 while (XEXP (link, 1))
2624 link = XEXP (link, 1);
2625 XEXP (link, 1) = i2notes;
2627 else
2628 i3notes = i2notes;
2629 i2notes = 0;
2632 LOG_LINKS (i3) = 0;
2633 REG_NOTES (i3) = 0;
2634 LOG_LINKS (i2) = 0;
2635 REG_NOTES (i2) = 0;
2637 if (newi2pat)
2639 INSN_CODE (i2) = i2_code_number;
2640 PATTERN (i2) = newi2pat;
2642 else
2644 PUT_CODE (i2, NOTE);
2645 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2646 NOTE_SOURCE_FILE (i2) = 0;
2649 if (i1)
2651 LOG_LINKS (i1) = 0;
2652 REG_NOTES (i1) = 0;
2653 PUT_CODE (i1, NOTE);
2654 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2655 NOTE_SOURCE_FILE (i1) = 0;
2658 /* Get death notes for everything that is now used in either I3 or
2659 I2 and used to die in a previous insn. If we built two new
2660 patterns, move from I1 to I2 then I2 to I3 so that we get the
2661 proper movement on registers that I2 modifies. */
2663 if (newi2pat)
2665 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2666 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2668 else
2669 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2670 i3, &midnotes);
2672 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2673 if (i3notes)
2674 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2675 elim_i2, elim_i1);
2676 if (i2notes)
2677 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2678 elim_i2, elim_i1);
2679 if (i1notes)
2680 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2681 elim_i2, elim_i1);
2682 if (midnotes)
2683 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2684 elim_i2, elim_i1);
2686 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2687 know these are REG_UNUSED and want them to go to the desired insn,
2688 so we always pass it as i3. We have not counted the notes in
2689 reg_n_deaths yet, so we need to do so now. */
2691 if (newi2pat && new_i2_notes)
2693 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2694 if (GET_CODE (XEXP (temp, 0)) == REG)
2695 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2697 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2700 if (new_i3_notes)
2702 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2703 if (GET_CODE (XEXP (temp, 0)) == REG)
2704 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2706 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2709 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2710 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2711 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2712 in that case, it might delete I2. Similarly for I2 and I1.
2713 Show an additional death due to the REG_DEAD note we make here. If
2714 we discard it in distribute_notes, we will decrement it again. */
2716 if (i3dest_killed)
2718 if (GET_CODE (i3dest_killed) == REG)
2719 REG_N_DEATHS (REGNO (i3dest_killed))++;
2721 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2722 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2723 NULL_RTX),
2724 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2725 else
2726 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2727 NULL_RTX),
2728 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2729 elim_i2, elim_i1);
2732 if (i2dest_in_i2src)
2734 if (GET_CODE (i2dest) == REG)
2735 REG_N_DEATHS (REGNO (i2dest))++;
2737 if (newi2pat && reg_set_p (i2dest, newi2pat))
2738 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2739 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2740 else
2741 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2742 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2743 NULL_RTX, NULL_RTX);
2746 if (i1dest_in_i1src)
2748 if (GET_CODE (i1dest) == REG)
2749 REG_N_DEATHS (REGNO (i1dest))++;
2751 if (newi2pat && reg_set_p (i1dest, newi2pat))
2752 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2753 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2754 else
2755 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2756 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2757 NULL_RTX, NULL_RTX);
2760 distribute_links (i3links);
2761 distribute_links (i2links);
2762 distribute_links (i1links);
2764 if (GET_CODE (i2dest) == REG)
2766 rtx link;
2767 rtx i2_insn = 0, i2_val = 0, set;
2769 /* The insn that used to set this register doesn't exist, and
2770 this life of the register may not exist either. See if one of
2771 I3's links points to an insn that sets I2DEST. If it does,
2772 that is now the last known value for I2DEST. If we don't update
2773 this and I2 set the register to a value that depended on its old
2774 contents, we will get confused. If this insn is used, thing
2775 will be set correctly in combine_instructions. */
2777 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2778 if ((set = single_set (XEXP (link, 0))) != 0
2779 && rtx_equal_p (i2dest, SET_DEST (set)))
2780 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2782 record_value_for_reg (i2dest, i2_insn, i2_val);
2784 /* If the reg formerly set in I2 died only once and that was in I3,
2785 zero its use count so it won't make `reload' do any work. */
2786 if (! added_sets_2
2787 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2788 && ! i2dest_in_i2src)
2790 regno = REGNO (i2dest);
2791 REG_N_SETS (regno)--;
2795 if (i1 && GET_CODE (i1dest) == REG)
2797 rtx link;
2798 rtx i1_insn = 0, i1_val = 0, set;
2800 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2801 if ((set = single_set (XEXP (link, 0))) != 0
2802 && rtx_equal_p (i1dest, SET_DEST (set)))
2803 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2805 record_value_for_reg (i1dest, i1_insn, i1_val);
2807 regno = REGNO (i1dest);
2808 if (! added_sets_1 && ! i1dest_in_i1src)
2809 REG_N_SETS (regno)--;
2812 /* Update reg_nonzero_bits et al for any changes that may have been made
2813 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2814 important. Because newi2pat can affect nonzero_bits of newpat */
2815 if (newi2pat)
2816 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2817 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2819 /* Set new_direct_jump_p if a new return or simple jump instruction
2820 has been created.
2822 If I3 is now an unconditional jump, ensure that it has a
2823 BARRIER following it since it may have initially been a
2824 conditional jump. It may also be the last nonnote insn. */
2826 if (returnjump_p (i3) || any_uncondjump_p (i3))
2828 *new_direct_jump_p = 1;
2830 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2831 || GET_CODE (temp) != BARRIER)
2832 emit_barrier_after (i3);
2835 if (undobuf.other_insn != NULL_RTX
2836 && (returnjump_p (undobuf.other_insn)
2837 || any_uncondjump_p (undobuf.other_insn)))
2839 *new_direct_jump_p = 1;
2841 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2842 || GET_CODE (temp) != BARRIER)
2843 emit_barrier_after (undobuf.other_insn);
2846 /* An NOOP jump does not need barrier, but it does need cleaning up
2847 of CFG. */
2848 if (GET_CODE (newpat) == SET
2849 && SET_SRC (newpat) == pc_rtx
2850 && SET_DEST (newpat) == pc_rtx)
2851 *new_direct_jump_p = 1;
2854 combine_successes++;
2855 undo_commit ();
2857 /* Clear this here, so that subsequent get_last_value calls are not
2858 affected. */
2859 subst_prev_insn = NULL_RTX;
2861 if (added_links_insn
2862 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2863 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2864 return added_links_insn;
2865 else
2866 return newi2pat ? i2 : i3;
2869 /* Undo all the modifications recorded in undobuf. */
2871 static void
2872 undo_all ()
2874 struct undo *undo, *next;
2876 for (undo = undobuf.undos; undo; undo = next)
2878 next = undo->next;
2879 if (undo->is_int)
2880 *undo->where.i = undo->old_contents.i;
2881 else
2882 *undo->where.r = undo->old_contents.r;
2884 undo->next = undobuf.frees;
2885 undobuf.frees = undo;
2888 undobuf.undos = 0;
2890 /* Clear this here, so that subsequent get_last_value calls are not
2891 affected. */
2892 subst_prev_insn = NULL_RTX;
2895 /* We've committed to accepting the changes we made. Move all
2896 of the undos to the free list. */
2898 static void
2899 undo_commit ()
2901 struct undo *undo, *next;
2903 for (undo = undobuf.undos; undo; undo = next)
2905 next = undo->next;
2906 undo->next = undobuf.frees;
2907 undobuf.frees = undo;
2909 undobuf.undos = 0;
2913 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2914 where we have an arithmetic expression and return that point. LOC will
2915 be inside INSN.
2917 try_combine will call this function to see if an insn can be split into
2918 two insns. */
2920 static rtx *
2921 find_split_point (loc, insn)
2922 rtx *loc;
2923 rtx insn;
2925 rtx x = *loc;
2926 enum rtx_code code = GET_CODE (x);
2927 rtx *split;
2928 unsigned HOST_WIDE_INT len = 0;
2929 HOST_WIDE_INT pos = 0;
2930 int unsignedp = 0;
2931 rtx inner = NULL_RTX;
2933 /* First special-case some codes. */
2934 switch (code)
2936 case SUBREG:
2937 #ifdef INSN_SCHEDULING
2938 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2939 point. */
2940 if (GET_CODE (SUBREG_REG (x)) == MEM)
2941 return loc;
2942 #endif
2943 return find_split_point (&SUBREG_REG (x), insn);
2945 case MEM:
2946 #ifdef HAVE_lo_sum
2947 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2948 using LO_SUM and HIGH. */
2949 if (GET_CODE (XEXP (x, 0)) == CONST
2950 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2952 SUBST (XEXP (x, 0),
2953 gen_rtx_LO_SUM (Pmode,
2954 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2955 XEXP (x, 0)));
2956 return &XEXP (XEXP (x, 0), 0);
2958 #endif
2960 /* If we have a PLUS whose second operand is a constant and the
2961 address is not valid, perhaps will can split it up using
2962 the machine-specific way to split large constants. We use
2963 the first pseudo-reg (one of the virtual regs) as a placeholder;
2964 it will not remain in the result. */
2965 if (GET_CODE (XEXP (x, 0)) == PLUS
2966 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2967 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2969 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2970 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2971 subst_insn);
2973 /* This should have produced two insns, each of which sets our
2974 placeholder. If the source of the second is a valid address,
2975 we can make put both sources together and make a split point
2976 in the middle. */
2978 if (seq
2979 && NEXT_INSN (seq) != NULL_RTX
2980 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2981 && GET_CODE (seq) == INSN
2982 && GET_CODE (PATTERN (seq)) == SET
2983 && SET_DEST (PATTERN (seq)) == reg
2984 && ! reg_mentioned_p (reg,
2985 SET_SRC (PATTERN (seq)))
2986 && GET_CODE (NEXT_INSN (seq)) == INSN
2987 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2988 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2989 && memory_address_p (GET_MODE (x),
2990 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2992 rtx src1 = SET_SRC (PATTERN (seq));
2993 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2995 /* Replace the placeholder in SRC2 with SRC1. If we can
2996 find where in SRC2 it was placed, that can become our
2997 split point and we can replace this address with SRC2.
2998 Just try two obvious places. */
3000 src2 = replace_rtx (src2, reg, src1);
3001 split = 0;
3002 if (XEXP (src2, 0) == src1)
3003 split = &XEXP (src2, 0);
3004 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3005 && XEXP (XEXP (src2, 0), 0) == src1)
3006 split = &XEXP (XEXP (src2, 0), 0);
3008 if (split)
3010 SUBST (XEXP (x, 0), src2);
3011 return split;
3015 /* If that didn't work, perhaps the first operand is complex and
3016 needs to be computed separately, so make a split point there.
3017 This will occur on machines that just support REG + CONST
3018 and have a constant moved through some previous computation. */
3020 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3021 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3022 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3023 == 'o')))
3024 return &XEXP (XEXP (x, 0), 0);
3026 break;
3028 case SET:
3029 #ifdef HAVE_cc0
3030 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3031 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3032 we need to put the operand into a register. So split at that
3033 point. */
3035 if (SET_DEST (x) == cc0_rtx
3036 && GET_CODE (SET_SRC (x)) != COMPARE
3037 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3038 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3039 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3040 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3041 return &SET_SRC (x);
3042 #endif
3044 /* See if we can split SET_SRC as it stands. */
3045 split = find_split_point (&SET_SRC (x), insn);
3046 if (split && split != &SET_SRC (x))
3047 return split;
3049 /* See if we can split SET_DEST as it stands. */
3050 split = find_split_point (&SET_DEST (x), insn);
3051 if (split && split != &SET_DEST (x))
3052 return split;
3054 /* See if this is a bitfield assignment with everything constant. If
3055 so, this is an IOR of an AND, so split it into that. */
3056 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3057 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3058 <= HOST_BITS_PER_WIDE_INT)
3059 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3060 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3061 && GET_CODE (SET_SRC (x)) == CONST_INT
3062 && ((INTVAL (XEXP (SET_DEST (x), 1))
3063 + INTVAL (XEXP (SET_DEST (x), 2)))
3064 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3065 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3067 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3068 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3069 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3070 rtx dest = XEXP (SET_DEST (x), 0);
3071 enum machine_mode mode = GET_MODE (dest);
3072 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3074 if (BITS_BIG_ENDIAN)
3075 pos = GET_MODE_BITSIZE (mode) - len - pos;
3077 if (src == mask)
3078 SUBST (SET_SRC (x),
3079 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3080 else
3081 SUBST (SET_SRC (x),
3082 gen_binary (IOR, mode,
3083 gen_binary (AND, mode, dest,
3084 gen_int_mode (~(mask << pos),
3085 mode)),
3086 GEN_INT (src << pos)));
3088 SUBST (SET_DEST (x), dest);
3090 split = find_split_point (&SET_SRC (x), insn);
3091 if (split && split != &SET_SRC (x))
3092 return split;
3095 /* Otherwise, see if this is an operation that we can split into two.
3096 If so, try to split that. */
3097 code = GET_CODE (SET_SRC (x));
3099 switch (code)
3101 case AND:
3102 /* If we are AND'ing with a large constant that is only a single
3103 bit and the result is only being used in a context where we
3104 need to know if it is zero or non-zero, replace it with a bit
3105 extraction. This will avoid the large constant, which might
3106 have taken more than one insn to make. If the constant were
3107 not a valid argument to the AND but took only one insn to make,
3108 this is no worse, but if it took more than one insn, it will
3109 be better. */
3111 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3112 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3113 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3114 && GET_CODE (SET_DEST (x)) == REG
3115 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3116 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3117 && XEXP (*split, 0) == SET_DEST (x)
3118 && XEXP (*split, 1) == const0_rtx)
3120 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3121 XEXP (SET_SRC (x), 0),
3122 pos, NULL_RTX, 1, 1, 0, 0);
3123 if (extraction != 0)
3125 SUBST (SET_SRC (x), extraction);
3126 return find_split_point (loc, insn);
3129 break;
3131 case NE:
3132 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3133 is known to be on, this can be converted into a NEG of a shift. */
3134 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3135 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3136 && 1 <= (pos = exact_log2
3137 (nonzero_bits (XEXP (SET_SRC (x), 0),
3138 GET_MODE (XEXP (SET_SRC (x), 0))))))
3140 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3142 SUBST (SET_SRC (x),
3143 gen_rtx_NEG (mode,
3144 gen_rtx_LSHIFTRT (mode,
3145 XEXP (SET_SRC (x), 0),
3146 GEN_INT (pos))));
3148 split = find_split_point (&SET_SRC (x), insn);
3149 if (split && split != &SET_SRC (x))
3150 return split;
3152 break;
3154 case SIGN_EXTEND:
3155 inner = XEXP (SET_SRC (x), 0);
3157 /* We can't optimize if either mode is a partial integer
3158 mode as we don't know how many bits are significant
3159 in those modes. */
3160 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3161 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3162 break;
3164 pos = 0;
3165 len = GET_MODE_BITSIZE (GET_MODE (inner));
3166 unsignedp = 0;
3167 break;
3169 case SIGN_EXTRACT:
3170 case ZERO_EXTRACT:
3171 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3172 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3174 inner = XEXP (SET_SRC (x), 0);
3175 len = INTVAL (XEXP (SET_SRC (x), 1));
3176 pos = INTVAL (XEXP (SET_SRC (x), 2));
3178 if (BITS_BIG_ENDIAN)
3179 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3180 unsignedp = (code == ZERO_EXTRACT);
3182 break;
3184 default:
3185 break;
3188 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3190 enum machine_mode mode = GET_MODE (SET_SRC (x));
3192 /* For unsigned, we have a choice of a shift followed by an
3193 AND or two shifts. Use two shifts for field sizes where the
3194 constant might be too large. We assume here that we can
3195 always at least get 8-bit constants in an AND insn, which is
3196 true for every current RISC. */
3198 if (unsignedp && len <= 8)
3200 SUBST (SET_SRC (x),
3201 gen_rtx_AND (mode,
3202 gen_rtx_LSHIFTRT
3203 (mode, gen_lowpart_for_combine (mode, inner),
3204 GEN_INT (pos)),
3205 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3207 split = find_split_point (&SET_SRC (x), insn);
3208 if (split && split != &SET_SRC (x))
3209 return split;
3211 else
3213 SUBST (SET_SRC (x),
3214 gen_rtx_fmt_ee
3215 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3216 gen_rtx_ASHIFT (mode,
3217 gen_lowpart_for_combine (mode, inner),
3218 GEN_INT (GET_MODE_BITSIZE (mode)
3219 - len - pos)),
3220 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3222 split = find_split_point (&SET_SRC (x), insn);
3223 if (split && split != &SET_SRC (x))
3224 return split;
3228 /* See if this is a simple operation with a constant as the second
3229 operand. It might be that this constant is out of range and hence
3230 could be used as a split point. */
3231 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3232 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3233 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3234 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3235 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3236 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3237 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3238 == 'o'))))
3239 return &XEXP (SET_SRC (x), 1);
3241 /* Finally, see if this is a simple operation with its first operand
3242 not in a register. The operation might require this operand in a
3243 register, so return it as a split point. We can always do this
3244 because if the first operand were another operation, we would have
3245 already found it as a split point. */
3246 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3247 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3248 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3249 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3250 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3251 return &XEXP (SET_SRC (x), 0);
3253 return 0;
3255 case AND:
3256 case IOR:
3257 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3258 it is better to write this as (not (ior A B)) so we can split it.
3259 Similarly for IOR. */
3260 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3262 SUBST (*loc,
3263 gen_rtx_NOT (GET_MODE (x),
3264 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3265 GET_MODE (x),
3266 XEXP (XEXP (x, 0), 0),
3267 XEXP (XEXP (x, 1), 0))));
3268 return find_split_point (loc, insn);
3271 /* Many RISC machines have a large set of logical insns. If the
3272 second operand is a NOT, put it first so we will try to split the
3273 other operand first. */
3274 if (GET_CODE (XEXP (x, 1)) == NOT)
3276 rtx tem = XEXP (x, 0);
3277 SUBST (XEXP (x, 0), XEXP (x, 1));
3278 SUBST (XEXP (x, 1), tem);
3280 break;
3282 default:
3283 break;
3286 /* Otherwise, select our actions depending on our rtx class. */
3287 switch (GET_RTX_CLASS (code))
3289 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3290 case '3':
3291 split = find_split_point (&XEXP (x, 2), insn);
3292 if (split)
3293 return split;
3294 /* ... fall through ... */
3295 case '2':
3296 case 'c':
3297 case '<':
3298 split = find_split_point (&XEXP (x, 1), insn);
3299 if (split)
3300 return split;
3301 /* ... fall through ... */
3302 case '1':
3303 /* Some machines have (and (shift ...) ...) insns. If X is not
3304 an AND, but XEXP (X, 0) is, use it as our split point. */
3305 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3306 return &XEXP (x, 0);
3308 split = find_split_point (&XEXP (x, 0), insn);
3309 if (split)
3310 return split;
3311 return loc;
3314 /* Otherwise, we don't have a split point. */
3315 return 0;
3318 /* Throughout X, replace FROM with TO, and return the result.
3319 The result is TO if X is FROM;
3320 otherwise the result is X, but its contents may have been modified.
3321 If they were modified, a record was made in undobuf so that
3322 undo_all will (among other things) return X to its original state.
3324 If the number of changes necessary is too much to record to undo,
3325 the excess changes are not made, so the result is invalid.
3326 The changes already made can still be undone.
3327 undobuf.num_undo is incremented for such changes, so by testing that
3328 the caller can tell whether the result is valid.
3330 `n_occurrences' is incremented each time FROM is replaced.
3332 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3334 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3335 by copying if `n_occurrences' is non-zero. */
3337 static rtx
3338 subst (x, from, to, in_dest, unique_copy)
3339 rtx x, from, to;
3340 int in_dest;
3341 int unique_copy;
3343 enum rtx_code code = GET_CODE (x);
3344 enum machine_mode op0_mode = VOIDmode;
3345 const char *fmt;
3346 int len, i;
3347 rtx new;
3349 /* Two expressions are equal if they are identical copies of a shared
3350 RTX or if they are both registers with the same register number
3351 and mode. */
3353 #define COMBINE_RTX_EQUAL_P(X,Y) \
3354 ((X) == (Y) \
3355 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3356 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3358 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3360 n_occurrences++;
3361 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3364 /* If X and FROM are the same register but different modes, they will
3365 not have been seen as equal above. However, flow.c will make a
3366 LOG_LINKS entry for that case. If we do nothing, we will try to
3367 rerecognize our original insn and, when it succeeds, we will
3368 delete the feeding insn, which is incorrect.
3370 So force this insn not to match in this (rare) case. */
3371 if (! in_dest && code == REG && GET_CODE (from) == REG
3372 && REGNO (x) == REGNO (from))
3373 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3375 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3376 of which may contain things that can be combined. */
3377 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3378 return x;
3380 /* It is possible to have a subexpression appear twice in the insn.
3381 Suppose that FROM is a register that appears within TO.
3382 Then, after that subexpression has been scanned once by `subst',
3383 the second time it is scanned, TO may be found. If we were
3384 to scan TO here, we would find FROM within it and create a
3385 self-referent rtl structure which is completely wrong. */
3386 if (COMBINE_RTX_EQUAL_P (x, to))
3387 return to;
3389 /* Parallel asm_operands need special attention because all of the
3390 inputs are shared across the arms. Furthermore, unsharing the
3391 rtl results in recognition failures. Failure to handle this case
3392 specially can result in circular rtl.
3394 Solve this by doing a normal pass across the first entry of the
3395 parallel, and only processing the SET_DESTs of the subsequent
3396 entries. Ug. */
3398 if (code == PARALLEL
3399 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3400 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3402 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3404 /* If this substitution failed, this whole thing fails. */
3405 if (GET_CODE (new) == CLOBBER
3406 && XEXP (new, 0) == const0_rtx)
3407 return new;
3409 SUBST (XVECEXP (x, 0, 0), new);
3411 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3413 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3415 if (GET_CODE (dest) != REG
3416 && GET_CODE (dest) != CC0
3417 && GET_CODE (dest) != PC)
3419 new = subst (dest, from, to, 0, unique_copy);
3421 /* If this substitution failed, this whole thing fails. */
3422 if (GET_CODE (new) == CLOBBER
3423 && XEXP (new, 0) == const0_rtx)
3424 return new;
3426 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3430 else
3432 len = GET_RTX_LENGTH (code);
3433 fmt = GET_RTX_FORMAT (code);
3435 /* We don't need to process a SET_DEST that is a register, CC0,
3436 or PC, so set up to skip this common case. All other cases
3437 where we want to suppress replacing something inside a
3438 SET_SRC are handled via the IN_DEST operand. */
3439 if (code == SET
3440 && (GET_CODE (SET_DEST (x)) == REG
3441 || GET_CODE (SET_DEST (x)) == CC0
3442 || GET_CODE (SET_DEST (x)) == PC))
3443 fmt = "ie";
3445 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3446 constant. */
3447 if (fmt[0] == 'e')
3448 op0_mode = GET_MODE (XEXP (x, 0));
3450 for (i = 0; i < len; i++)
3452 if (fmt[i] == 'E')
3454 int j;
3455 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3457 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3459 new = (unique_copy && n_occurrences
3460 ? copy_rtx (to) : to);
3461 n_occurrences++;
3463 else
3465 new = subst (XVECEXP (x, i, j), from, to, 0,
3466 unique_copy);
3468 /* If this substitution failed, this whole thing
3469 fails. */
3470 if (GET_CODE (new) == CLOBBER
3471 && XEXP (new, 0) == const0_rtx)
3472 return new;
3475 SUBST (XVECEXP (x, i, j), new);
3478 else if (fmt[i] == 'e')
3480 /* If this is a register being set, ignore it. */
3481 new = XEXP (x, i);
3482 if (in_dest
3483 && (code == SUBREG || code == STRICT_LOW_PART
3484 || code == ZERO_EXTRACT)
3485 && i == 0
3486 && GET_CODE (new) == REG)
3489 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3491 /* In general, don't install a subreg involving two
3492 modes not tieable. It can worsen register
3493 allocation, and can even make invalid reload
3494 insns, since the reg inside may need to be copied
3495 from in the outside mode, and that may be invalid
3496 if it is an fp reg copied in integer mode.
3498 We allow two exceptions to this: It is valid if
3499 it is inside another SUBREG and the mode of that
3500 SUBREG and the mode of the inside of TO is
3501 tieable and it is valid if X is a SET that copies
3502 FROM to CC0. */
3504 if (GET_CODE (to) == SUBREG
3505 && ! MODES_TIEABLE_P (GET_MODE (to),
3506 GET_MODE (SUBREG_REG (to)))
3507 && ! (code == SUBREG
3508 && MODES_TIEABLE_P (GET_MODE (x),
3509 GET_MODE (SUBREG_REG (to))))
3510 #ifdef HAVE_cc0
3511 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3512 #endif
3514 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3516 #ifdef CLASS_CANNOT_CHANGE_MODE
3517 if (code == SUBREG
3518 && GET_CODE (to) == REG
3519 && REGNO (to) < FIRST_PSEUDO_REGISTER
3520 && (TEST_HARD_REG_BIT
3521 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3522 REGNO (to)))
3523 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3524 GET_MODE (x)))
3525 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3526 #endif
3528 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3529 n_occurrences++;
3531 else
3532 /* If we are in a SET_DEST, suppress most cases unless we
3533 have gone inside a MEM, in which case we want to
3534 simplify the address. We assume here that things that
3535 are actually part of the destination have their inner
3536 parts in the first expression. This is true for SUBREG,
3537 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3538 things aside from REG and MEM that should appear in a
3539 SET_DEST. */
3540 new = subst (XEXP (x, i), from, to,
3541 (((in_dest
3542 && (code == SUBREG || code == STRICT_LOW_PART
3543 || code == ZERO_EXTRACT))
3544 || code == SET)
3545 && i == 0), unique_copy);
3547 /* If we found that we will have to reject this combination,
3548 indicate that by returning the CLOBBER ourselves, rather than
3549 an expression containing it. This will speed things up as
3550 well as prevent accidents where two CLOBBERs are considered
3551 to be equal, thus producing an incorrect simplification. */
3553 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3554 return new;
3556 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3558 enum machine_mode mode = GET_MODE (x);
3560 x = simplify_subreg (GET_MODE (x), new,
3561 GET_MODE (SUBREG_REG (x)),
3562 SUBREG_BYTE (x));
3563 if (! x)
3564 x = gen_rtx_CLOBBER (mode, const0_rtx);
3566 else if (GET_CODE (new) == CONST_INT
3567 && GET_CODE (x) == ZERO_EXTEND)
3569 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3570 new, GET_MODE (XEXP (x, 0)));
3571 if (! x)
3572 abort ();
3574 else
3575 SUBST (XEXP (x, i), new);
3580 /* Try to simplify X. If the simplification changed the code, it is likely
3581 that further simplification will help, so loop, but limit the number
3582 of repetitions that will be performed. */
3584 for (i = 0; i < 4; i++)
3586 /* If X is sufficiently simple, don't bother trying to do anything
3587 with it. */
3588 if (code != CONST_INT && code != REG && code != CLOBBER)
3589 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3591 if (GET_CODE (x) == code)
3592 break;
3594 code = GET_CODE (x);
3596 /* We no longer know the original mode of operand 0 since we
3597 have changed the form of X) */
3598 op0_mode = VOIDmode;
3601 return x;
3604 /* Simplify X, a piece of RTL. We just operate on the expression at the
3605 outer level; call `subst' to simplify recursively. Return the new
3606 expression.
3608 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3609 will be the iteration even if an expression with a code different from
3610 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3612 static rtx
3613 combine_simplify_rtx (x, op0_mode, last, in_dest)
3614 rtx x;
3615 enum machine_mode op0_mode;
3616 int last;
3617 int in_dest;
3619 enum rtx_code code = GET_CODE (x);
3620 enum machine_mode mode = GET_MODE (x);
3621 rtx temp;
3622 rtx reversed;
3623 int i;
3625 /* If this is a commutative operation, put a constant last and a complex
3626 expression first. We don't need to do this for comparisons here. */
3627 if (GET_RTX_CLASS (code) == 'c'
3628 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3630 temp = XEXP (x, 0);
3631 SUBST (XEXP (x, 0), XEXP (x, 1));
3632 SUBST (XEXP (x, 1), temp);
3635 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3636 sign extension of a PLUS with a constant, reverse the order of the sign
3637 extension and the addition. Note that this not the same as the original
3638 code, but overflow is undefined for signed values. Also note that the
3639 PLUS will have been partially moved "inside" the sign-extension, so that
3640 the first operand of X will really look like:
3641 (ashiftrt (plus (ashift A C4) C5) C4).
3642 We convert this to
3643 (plus (ashiftrt (ashift A C4) C2) C4)
3644 and replace the first operand of X with that expression. Later parts
3645 of this function may simplify the expression further.
3647 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3648 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3649 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3651 We do this to simplify address expressions. */
3653 if ((code == PLUS || code == MINUS || code == MULT)
3654 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3655 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3656 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3657 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3658 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3659 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3660 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3661 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3662 XEXP (XEXP (XEXP (x, 0), 0), 1),
3663 XEXP (XEXP (x, 0), 1))) != 0)
3665 rtx new
3666 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3667 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3668 INTVAL (XEXP (XEXP (x, 0), 1)));
3670 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3671 INTVAL (XEXP (XEXP (x, 0), 1)));
3673 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3676 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3677 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3678 things. Check for cases where both arms are testing the same
3679 condition.
3681 Don't do anything if all operands are very simple. */
3683 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3684 || GET_RTX_CLASS (code) == '<')
3685 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3686 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3687 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3688 == 'o')))
3689 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3690 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3691 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3692 == 'o')))))
3693 || (GET_RTX_CLASS (code) == '1'
3694 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3695 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3696 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3697 == 'o'))))))
3699 rtx cond, true_rtx, false_rtx;
3701 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3702 if (cond != 0
3703 /* If everything is a comparison, what we have is highly unlikely
3704 to be simpler, so don't use it. */
3705 && ! (GET_RTX_CLASS (code) == '<'
3706 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3707 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3709 rtx cop1 = const0_rtx;
3710 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3712 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3713 return x;
3715 /* Simplify the alternative arms; this may collapse the true and
3716 false arms to store-flag values. */
3717 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3718 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3720 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3721 is unlikely to be simpler. */
3722 if (general_operand (true_rtx, VOIDmode)
3723 && general_operand (false_rtx, VOIDmode))
3725 /* Restarting if we generate a store-flag expression will cause
3726 us to loop. Just drop through in this case. */
3728 /* If the result values are STORE_FLAG_VALUE and zero, we can
3729 just make the comparison operation. */
3730 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3731 x = gen_binary (cond_code, mode, cond, cop1);
3732 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3733 && reverse_condition (cond_code) != UNKNOWN)
3734 x = gen_binary (reverse_condition (cond_code),
3735 mode, cond, cop1);
3737 /* Likewise, we can make the negate of a comparison operation
3738 if the result values are - STORE_FLAG_VALUE and zero. */
3739 else if (GET_CODE (true_rtx) == CONST_INT
3740 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3741 && false_rtx == const0_rtx)
3742 x = simplify_gen_unary (NEG, mode,
3743 gen_binary (cond_code, mode, cond,
3744 cop1),
3745 mode);
3746 else if (GET_CODE (false_rtx) == CONST_INT
3747 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3748 && true_rtx == const0_rtx)
3749 x = simplify_gen_unary (NEG, mode,
3750 gen_binary (reverse_condition
3751 (cond_code),
3752 mode, cond, cop1),
3753 mode);
3754 else
3755 return gen_rtx_IF_THEN_ELSE (mode,
3756 gen_binary (cond_code, VOIDmode,
3757 cond, cop1),
3758 true_rtx, false_rtx);
3760 code = GET_CODE (x);
3761 op0_mode = VOIDmode;
3766 /* Try to fold this expression in case we have constants that weren't
3767 present before. */
3768 temp = 0;
3769 switch (GET_RTX_CLASS (code))
3771 case '1':
3772 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3773 break;
3774 case '<':
3776 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3777 if (cmp_mode == VOIDmode)
3779 cmp_mode = GET_MODE (XEXP (x, 1));
3780 if (cmp_mode == VOIDmode)
3781 cmp_mode = op0_mode;
3783 temp = simplify_relational_operation (code, cmp_mode,
3784 XEXP (x, 0), XEXP (x, 1));
3786 #ifdef FLOAT_STORE_FLAG_VALUE
3787 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3789 if (temp == const0_rtx)
3790 temp = CONST0_RTX (mode);
3791 else
3792 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3793 mode);
3795 #endif
3796 break;
3797 case 'c':
3798 case '2':
3799 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3800 break;
3801 case 'b':
3802 case '3':
3803 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3804 XEXP (x, 1), XEXP (x, 2));
3805 break;
3808 if (temp)
3810 x = temp;
3811 code = GET_CODE (temp);
3812 op0_mode = VOIDmode;
3813 mode = GET_MODE (temp);
3816 /* First see if we can apply the inverse distributive law. */
3817 if (code == PLUS || code == MINUS
3818 || code == AND || code == IOR || code == XOR)
3820 x = apply_distributive_law (x);
3821 code = GET_CODE (x);
3822 op0_mode = VOIDmode;
3825 /* If CODE is an associative operation not otherwise handled, see if we
3826 can associate some operands. This can win if they are constants or
3827 if they are logically related (i.e. (a & b) & a). */
3828 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3829 || code == AND || code == IOR || code == XOR
3830 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3831 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3832 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3834 if (GET_CODE (XEXP (x, 0)) == code)
3836 rtx other = XEXP (XEXP (x, 0), 0);
3837 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3838 rtx inner_op1 = XEXP (x, 1);
3839 rtx inner;
3841 /* Make sure we pass the constant operand if any as the second
3842 one if this is a commutative operation. */
3843 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3845 rtx tem = inner_op0;
3846 inner_op0 = inner_op1;
3847 inner_op1 = tem;
3849 inner = simplify_binary_operation (code == MINUS ? PLUS
3850 : code == DIV ? MULT
3851 : code,
3852 mode, inner_op0, inner_op1);
3854 /* For commutative operations, try the other pair if that one
3855 didn't simplify. */
3856 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3858 other = XEXP (XEXP (x, 0), 1);
3859 inner = simplify_binary_operation (code, mode,
3860 XEXP (XEXP (x, 0), 0),
3861 XEXP (x, 1));
3864 if (inner)
3865 return gen_binary (code, mode, other, inner);
3869 /* A little bit of algebraic simplification here. */
3870 switch (code)
3872 case MEM:
3873 /* Ensure that our address has any ASHIFTs converted to MULT in case
3874 address-recognizing predicates are called later. */
3875 temp = make_compound_operation (XEXP (x, 0), MEM);
3876 SUBST (XEXP (x, 0), temp);
3877 break;
3879 case SUBREG:
3880 if (op0_mode == VOIDmode)
3881 op0_mode = GET_MODE (SUBREG_REG (x));
3883 /* simplify_subreg can't use gen_lowpart_for_combine. */
3884 if (CONSTANT_P (SUBREG_REG (x))
3885 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3886 /* Don't call gen_lowpart_for_combine if the inner mode
3887 is VOIDmode and we cannot simplify it, as SUBREG without
3888 inner mode is invalid. */
3889 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3890 || gen_lowpart_common (mode, SUBREG_REG (x))))
3891 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3893 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3894 break;
3896 rtx temp;
3897 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3898 SUBREG_BYTE (x));
3899 if (temp)
3900 return temp;
3903 /* Don't change the mode of the MEM if that would change the meaning
3904 of the address. */
3905 if (GET_CODE (SUBREG_REG (x)) == MEM
3906 && (MEM_VOLATILE_P (SUBREG_REG (x))
3907 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3908 return gen_rtx_CLOBBER (mode, const0_rtx);
3910 /* Note that we cannot do any narrowing for non-constants since
3911 we might have been counting on using the fact that some bits were
3912 zero. We now do this in the SET. */
3914 break;
3916 case NOT:
3917 /* (not (plus X -1)) can become (neg X). */
3918 if (GET_CODE (XEXP (x, 0)) == PLUS
3919 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3920 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3922 /* Similarly, (not (neg X)) is (plus X -1). */
3923 if (GET_CODE (XEXP (x, 0)) == NEG)
3924 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3926 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3927 if (GET_CODE (XEXP (x, 0)) == XOR
3928 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3929 && (temp = simplify_unary_operation (NOT, mode,
3930 XEXP (XEXP (x, 0), 1),
3931 mode)) != 0)
3932 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3934 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3935 other than 1, but that is not valid. We could do a similar
3936 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3937 but this doesn't seem common enough to bother with. */
3938 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3939 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3940 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3941 const1_rtx, mode),
3942 XEXP (XEXP (x, 0), 1));
3944 if (GET_CODE (XEXP (x, 0)) == SUBREG
3945 && subreg_lowpart_p (XEXP (x, 0))
3946 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3947 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3948 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3949 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3951 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3953 x = gen_rtx_ROTATE (inner_mode,
3954 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3955 inner_mode),
3956 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3957 return gen_lowpart_for_combine (mode, x);
3960 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3961 reversing the comparison code if valid. */
3962 if (STORE_FLAG_VALUE == -1
3963 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3964 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3965 XEXP (XEXP (x, 0), 1))))
3966 return reversed;
3968 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3969 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3970 perform the above simplification. */
3972 if (STORE_FLAG_VALUE == -1
3973 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3974 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3975 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3976 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3978 /* Apply De Morgan's laws to reduce number of patterns for machines
3979 with negating logical insns (and-not, nand, etc.). If result has
3980 only one NOT, put it first, since that is how the patterns are
3981 coded. */
3983 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3985 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3986 enum machine_mode op_mode;
3988 op_mode = GET_MODE (in1);
3989 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3991 op_mode = GET_MODE (in2);
3992 if (op_mode == VOIDmode)
3993 op_mode = mode;
3994 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3996 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3998 rtx tem = in2;
3999 in2 = in1; in1 = tem;
4002 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4003 mode, in1, in2);
4005 break;
4007 case NEG:
4008 /* (neg (plus X 1)) can become (not X). */
4009 if (GET_CODE (XEXP (x, 0)) == PLUS
4010 && XEXP (XEXP (x, 0), 1) == const1_rtx)
4011 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
4013 /* Similarly, (neg (not X)) is (plus X 1). */
4014 if (GET_CODE (XEXP (x, 0)) == NOT)
4015 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
4017 /* (neg (minus X Y)) can become (minus Y X). This transformation
4018 isn't safe for modes with signed zeros, since if X and Y are
4019 both +0, (minus Y X) is the same as (minus X Y). If the rounding
4020 mode is towards +infinity (or -infinity) then the two expressions
4021 will be rounded differently. */
4022 if (GET_CODE (XEXP (x, 0)) == MINUS
4023 && !HONOR_SIGNED_ZEROS (mode)
4024 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4025 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4026 XEXP (XEXP (x, 0), 0));
4028 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4029 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4030 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4031 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4033 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4034 if we can then eliminate the NEG (e.g.,
4035 if the operand is a constant). */
4037 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4039 temp = simplify_unary_operation (NEG, mode,
4040 XEXP (XEXP (x, 0), 0), mode);
4041 if (temp)
4042 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4045 temp = expand_compound_operation (XEXP (x, 0));
4047 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4048 replaced by (lshiftrt X C). This will convert
4049 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4051 if (GET_CODE (temp) == ASHIFTRT
4052 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4053 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4054 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4055 INTVAL (XEXP (temp, 1)));
4057 /* If X has only a single bit that might be nonzero, say, bit I, convert
4058 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4059 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4060 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4061 or a SUBREG of one since we'd be making the expression more
4062 complex if it was just a register. */
4064 if (GET_CODE (temp) != REG
4065 && ! (GET_CODE (temp) == SUBREG
4066 && GET_CODE (SUBREG_REG (temp)) == REG)
4067 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4069 rtx temp1 = simplify_shift_const
4070 (NULL_RTX, ASHIFTRT, mode,
4071 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4072 GET_MODE_BITSIZE (mode) - 1 - i),
4073 GET_MODE_BITSIZE (mode) - 1 - i);
4075 /* If all we did was surround TEMP with the two shifts, we
4076 haven't improved anything, so don't use it. Otherwise,
4077 we are better off with TEMP1. */
4078 if (GET_CODE (temp1) != ASHIFTRT
4079 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4080 || XEXP (XEXP (temp1, 0), 0) != temp)
4081 return temp1;
4083 break;
4085 case TRUNCATE:
4086 /* We can't handle truncation to a partial integer mode here
4087 because we don't know the real bitsize of the partial
4088 integer mode. */
4089 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4090 break;
4092 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4093 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4094 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4095 SUBST (XEXP (x, 0),
4096 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4097 GET_MODE_MASK (mode), NULL_RTX, 0));
4099 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4100 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4101 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4102 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4103 return XEXP (XEXP (x, 0), 0);
4105 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4106 (OP:SI foo:SI) if OP is NEG or ABS. */
4107 if ((GET_CODE (XEXP (x, 0)) == ABS
4108 || GET_CODE (XEXP (x, 0)) == NEG)
4109 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4110 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4111 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4112 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4113 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4115 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4116 (truncate:SI x). */
4117 if (GET_CODE (XEXP (x, 0)) == SUBREG
4118 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4119 && subreg_lowpart_p (XEXP (x, 0)))
4120 return SUBREG_REG (XEXP (x, 0));
4122 /* If we know that the value is already truncated, we can
4123 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4124 is nonzero for the corresponding modes. But don't do this
4125 for an (LSHIFTRT (MULT ...)) since this will cause problems
4126 with the umulXi3_highpart patterns. */
4127 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4128 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4129 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4130 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4131 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4132 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4133 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4135 /* A truncate of a comparison can be replaced with a subreg if
4136 STORE_FLAG_VALUE permits. This is like the previous test,
4137 but it works even if the comparison is done in a mode larger
4138 than HOST_BITS_PER_WIDE_INT. */
4139 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4140 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4141 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4142 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4144 /* Similarly, a truncate of a register whose value is a
4145 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4146 permits. */
4147 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4148 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4149 && (temp = get_last_value (XEXP (x, 0)))
4150 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4151 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4153 break;
4155 case FLOAT_TRUNCATE:
4156 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4157 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4158 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4159 return XEXP (XEXP (x, 0), 0);
4161 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4162 (OP:SF foo:SF) if OP is NEG or ABS. */
4163 if ((GET_CODE (XEXP (x, 0)) == ABS
4164 || GET_CODE (XEXP (x, 0)) == NEG)
4165 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4166 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4167 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4168 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4170 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4171 is (float_truncate:SF x). */
4172 if (GET_CODE (XEXP (x, 0)) == SUBREG
4173 && subreg_lowpart_p (XEXP (x, 0))
4174 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4175 return SUBREG_REG (XEXP (x, 0));
4176 break;
4178 #ifdef HAVE_cc0
4179 case COMPARE:
4180 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4181 using cc0, in which case we want to leave it as a COMPARE
4182 so we can distinguish it from a register-register-copy. */
4183 if (XEXP (x, 1) == const0_rtx)
4184 return XEXP (x, 0);
4186 /* x - 0 is the same as x unless x's mode has signed zeros and
4187 allows rounding towards -infinity. Under those conditions,
4188 0 - 0 is -0. */
4189 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4190 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4191 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4192 return XEXP (x, 0);
4193 break;
4194 #endif
4196 case CONST:
4197 /* (const (const X)) can become (const X). Do it this way rather than
4198 returning the inner CONST since CONST can be shared with a
4199 REG_EQUAL note. */
4200 if (GET_CODE (XEXP (x, 0)) == CONST)
4201 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4202 break;
4204 #ifdef HAVE_lo_sum
4205 case LO_SUM:
4206 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4207 can add in an offset. find_split_point will split this address up
4208 again if it doesn't match. */
4209 if (GET_CODE (XEXP (x, 0)) == HIGH
4210 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4211 return XEXP (x, 1);
4212 break;
4213 #endif
4215 case PLUS:
4216 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4217 outermost. That's because that's the way indexed addresses are
4218 supposed to appear. This code used to check many more cases, but
4219 they are now checked elsewhere. */
4220 if (GET_CODE (XEXP (x, 0)) == PLUS
4221 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4222 return gen_binary (PLUS, mode,
4223 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4224 XEXP (x, 1)),
4225 XEXP (XEXP (x, 0), 1));
4227 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4228 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4229 bit-field and can be replaced by either a sign_extend or a
4230 sign_extract. The `and' may be a zero_extend and the two
4231 <c>, -<c> constants may be reversed. */
4232 if (GET_CODE (XEXP (x, 0)) == XOR
4233 && GET_CODE (XEXP (x, 1)) == CONST_INT
4234 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4235 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4236 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4237 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4238 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4239 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4240 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4241 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4242 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4243 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4244 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4245 == (unsigned int) i + 1))))
4246 return simplify_shift_const
4247 (NULL_RTX, ASHIFTRT, mode,
4248 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4249 XEXP (XEXP (XEXP (x, 0), 0), 0),
4250 GET_MODE_BITSIZE (mode) - (i + 1)),
4251 GET_MODE_BITSIZE (mode) - (i + 1));
4253 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4254 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4255 is 1. This produces better code than the alternative immediately
4256 below. */
4257 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4258 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4259 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4260 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4261 XEXP (XEXP (x, 0), 0),
4262 XEXP (XEXP (x, 0), 1))))
4263 return
4264 simplify_gen_unary (NEG, mode, reversed, mode);
4266 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4267 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4268 the bitsize of the mode - 1. This allows simplification of
4269 "a = (b & 8) == 0;" */
4270 if (XEXP (x, 1) == constm1_rtx
4271 && GET_CODE (XEXP (x, 0)) != REG
4272 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4273 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4274 && nonzero_bits (XEXP (x, 0), mode) == 1)
4275 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4276 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4277 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4278 GET_MODE_BITSIZE (mode) - 1),
4279 GET_MODE_BITSIZE (mode) - 1);
4281 /* If we are adding two things that have no bits in common, convert
4282 the addition into an IOR. This will often be further simplified,
4283 for example in cases like ((a & 1) + (a & 2)), which can
4284 become a & 3. */
4286 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4287 && (nonzero_bits (XEXP (x, 0), mode)
4288 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4290 /* Try to simplify the expression further. */
4291 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4292 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4294 /* If we could, great. If not, do not go ahead with the IOR
4295 replacement, since PLUS appears in many special purpose
4296 address arithmetic instructions. */
4297 if (GET_CODE (temp) != CLOBBER && temp != tor)
4298 return temp;
4300 break;
4302 case MINUS:
4303 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4304 by reversing the comparison code if valid. */
4305 if (STORE_FLAG_VALUE == 1
4306 && XEXP (x, 0) == const1_rtx
4307 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4308 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4309 XEXP (XEXP (x, 1), 0),
4310 XEXP (XEXP (x, 1), 1))))
4311 return reversed;
4313 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4314 (and <foo> (const_int pow2-1)) */
4315 if (GET_CODE (XEXP (x, 1)) == AND
4316 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4317 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4318 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4319 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4320 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4322 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4323 integers. */
4324 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4325 return gen_binary (MINUS, mode,
4326 gen_binary (MINUS, mode, XEXP (x, 0),
4327 XEXP (XEXP (x, 1), 0)),
4328 XEXP (XEXP (x, 1), 1));
4329 break;
4331 case MULT:
4332 /* If we have (mult (plus A B) C), apply the distributive law and then
4333 the inverse distributive law to see if things simplify. This
4334 occurs mostly in addresses, often when unrolling loops. */
4336 if (GET_CODE (XEXP (x, 0)) == PLUS)
4338 x = apply_distributive_law
4339 (gen_binary (PLUS, mode,
4340 gen_binary (MULT, mode,
4341 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4342 gen_binary (MULT, mode,
4343 XEXP (XEXP (x, 0), 1),
4344 copy_rtx (XEXP (x, 1)))));
4346 if (GET_CODE (x) != MULT)
4347 return x;
4349 /* Try simplify a*(b/c) as (a*b)/c. */
4350 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4351 && GET_CODE (XEXP (x, 0)) == DIV)
4353 rtx tem = simplify_binary_operation (MULT, mode,
4354 XEXP (XEXP (x, 0), 0),
4355 XEXP (x, 1));
4356 if (tem)
4357 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4359 break;
4361 case UDIV:
4362 /* If this is a divide by a power of two, treat it as a shift if
4363 its first operand is a shift. */
4364 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4365 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4366 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4367 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4368 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4369 || GET_CODE (XEXP (x, 0)) == ROTATE
4370 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4371 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4372 break;
4374 case EQ: case NE:
4375 case GT: case GTU: case GE: case GEU:
4376 case LT: case LTU: case LE: case LEU:
4377 case UNEQ: case LTGT:
4378 case UNGT: case UNGE:
4379 case UNLT: case UNLE:
4380 case UNORDERED: case ORDERED:
4381 /* If the first operand is a condition code, we can't do anything
4382 with it. */
4383 if (GET_CODE (XEXP (x, 0)) == COMPARE
4384 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4385 #ifdef HAVE_cc0
4386 && XEXP (x, 0) != cc0_rtx
4387 #endif
4390 rtx op0 = XEXP (x, 0);
4391 rtx op1 = XEXP (x, 1);
4392 enum rtx_code new_code;
4394 if (GET_CODE (op0) == COMPARE)
4395 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4397 /* Simplify our comparison, if possible. */
4398 new_code = simplify_comparison (code, &op0, &op1);
4400 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4401 if only the low-order bit is possibly nonzero in X (such as when
4402 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4403 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4404 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4405 (plus X 1).
4407 Remove any ZERO_EXTRACT we made when thinking this was a
4408 comparison. It may now be simpler to use, e.g., an AND. If a
4409 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4410 the call to make_compound_operation in the SET case. */
4412 if (STORE_FLAG_VALUE == 1
4413 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4414 && op1 == const0_rtx
4415 && mode == GET_MODE (op0)
4416 && nonzero_bits (op0, mode) == 1)
4417 return gen_lowpart_for_combine (mode,
4418 expand_compound_operation (op0));
4420 else if (STORE_FLAG_VALUE == 1
4421 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4422 && op1 == const0_rtx
4423 && mode == GET_MODE (op0)
4424 && (num_sign_bit_copies (op0, mode)
4425 == GET_MODE_BITSIZE (mode)))
4427 op0 = expand_compound_operation (op0);
4428 return simplify_gen_unary (NEG, mode,
4429 gen_lowpart_for_combine (mode, op0),
4430 mode);
4433 else if (STORE_FLAG_VALUE == 1
4434 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4435 && op1 == const0_rtx
4436 && mode == GET_MODE (op0)
4437 && nonzero_bits (op0, mode) == 1)
4439 op0 = expand_compound_operation (op0);
4440 return gen_binary (XOR, mode,
4441 gen_lowpart_for_combine (mode, op0),
4442 const1_rtx);
4445 else if (STORE_FLAG_VALUE == 1
4446 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4447 && op1 == const0_rtx
4448 && mode == GET_MODE (op0)
4449 && (num_sign_bit_copies (op0, mode)
4450 == GET_MODE_BITSIZE (mode)))
4452 op0 = expand_compound_operation (op0);
4453 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4456 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4457 those above. */
4458 if (STORE_FLAG_VALUE == -1
4459 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4460 && op1 == const0_rtx
4461 && (num_sign_bit_copies (op0, mode)
4462 == GET_MODE_BITSIZE (mode)))
4463 return gen_lowpart_for_combine (mode,
4464 expand_compound_operation (op0));
4466 else if (STORE_FLAG_VALUE == -1
4467 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4468 && op1 == const0_rtx
4469 && mode == GET_MODE (op0)
4470 && nonzero_bits (op0, mode) == 1)
4472 op0 = expand_compound_operation (op0);
4473 return simplify_gen_unary (NEG, mode,
4474 gen_lowpart_for_combine (mode, op0),
4475 mode);
4478 else if (STORE_FLAG_VALUE == -1
4479 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4480 && op1 == const0_rtx
4481 && mode == GET_MODE (op0)
4482 && (num_sign_bit_copies (op0, mode)
4483 == GET_MODE_BITSIZE (mode)))
4485 op0 = expand_compound_operation (op0);
4486 return simplify_gen_unary (NOT, mode,
4487 gen_lowpart_for_combine (mode, op0),
4488 mode);
4491 /* If X is 0/1, (eq X 0) is X-1. */
4492 else if (STORE_FLAG_VALUE == -1
4493 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4494 && op1 == const0_rtx
4495 && mode == GET_MODE (op0)
4496 && nonzero_bits (op0, mode) == 1)
4498 op0 = expand_compound_operation (op0);
4499 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4502 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4503 one bit that might be nonzero, we can convert (ne x 0) to
4504 (ashift x c) where C puts the bit in the sign bit. Remove any
4505 AND with STORE_FLAG_VALUE when we are done, since we are only
4506 going to test the sign bit. */
4507 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4508 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4509 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4510 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4511 && op1 == const0_rtx
4512 && mode == GET_MODE (op0)
4513 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4515 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4516 expand_compound_operation (op0),
4517 GET_MODE_BITSIZE (mode) - 1 - i);
4518 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4519 return XEXP (x, 0);
4520 else
4521 return x;
4524 /* If the code changed, return a whole new comparison. */
4525 if (new_code != code)
4526 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4528 /* Otherwise, keep this operation, but maybe change its operands.
4529 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4530 SUBST (XEXP (x, 0), op0);
4531 SUBST (XEXP (x, 1), op1);
4533 break;
4535 case IF_THEN_ELSE:
4536 return simplify_if_then_else (x);
4538 case ZERO_EXTRACT:
4539 case SIGN_EXTRACT:
4540 case ZERO_EXTEND:
4541 case SIGN_EXTEND:
4542 /* If we are processing SET_DEST, we are done. */
4543 if (in_dest)
4544 return x;
4546 return expand_compound_operation (x);
4548 case SET:
4549 return simplify_set (x);
4551 case AND:
4552 case IOR:
4553 case XOR:
4554 return simplify_logical (x, last);
4556 case ABS:
4557 /* (abs (neg <foo>)) -> (abs <foo>) */
4558 if (GET_CODE (XEXP (x, 0)) == NEG)
4559 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4561 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4562 do nothing. */
4563 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4564 break;
4566 /* If operand is something known to be positive, ignore the ABS. */
4567 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4568 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4569 <= HOST_BITS_PER_WIDE_INT)
4570 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4571 & ((HOST_WIDE_INT) 1
4572 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4573 == 0)))
4574 return XEXP (x, 0);
4576 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4577 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4578 return gen_rtx_NEG (mode, XEXP (x, 0));
4580 break;
4582 case FFS:
4583 /* (ffs (*_extend <X>)) = (ffs <X>) */
4584 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4585 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4586 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4587 break;
4589 case FLOAT:
4590 /* (float (sign_extend <X>)) = (float <X>). */
4591 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4592 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4593 break;
4595 case ASHIFT:
4596 case LSHIFTRT:
4597 case ASHIFTRT:
4598 case ROTATE:
4599 case ROTATERT:
4600 /* If this is a shift by a constant amount, simplify it. */
4601 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4602 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4603 INTVAL (XEXP (x, 1)));
4605 #ifdef SHIFT_COUNT_TRUNCATED
4606 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4607 SUBST (XEXP (x, 1),
4608 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4609 ((HOST_WIDE_INT) 1
4610 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4611 - 1,
4612 NULL_RTX, 0));
4613 #endif
4615 break;
4617 case VEC_SELECT:
4619 rtx op0 = XEXP (x, 0);
4620 rtx op1 = XEXP (x, 1);
4621 int len;
4623 if (GET_CODE (op1) != PARALLEL)
4624 abort ();
4625 len = XVECLEN (op1, 0);
4626 if (len == 1
4627 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4628 && GET_CODE (op0) == VEC_CONCAT)
4630 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4632 /* Try to find the element in the VEC_CONCAT. */
4633 for (;;)
4635 if (GET_MODE (op0) == GET_MODE (x))
4636 return op0;
4637 if (GET_CODE (op0) == VEC_CONCAT)
4639 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4640 if (op0_size < offset)
4641 op0 = XEXP (op0, 0);
4642 else
4644 offset -= op0_size;
4645 op0 = XEXP (op0, 1);
4648 else
4649 break;
4654 break;
4656 default:
4657 break;
4660 return x;
4663 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4665 static rtx
4666 simplify_if_then_else (x)
4667 rtx x;
4669 enum machine_mode mode = GET_MODE (x);
4670 rtx cond = XEXP (x, 0);
4671 rtx true_rtx = XEXP (x, 1);
4672 rtx false_rtx = XEXP (x, 2);
4673 enum rtx_code true_code = GET_CODE (cond);
4674 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4675 rtx temp;
4676 int i;
4677 enum rtx_code false_code;
4678 rtx reversed;
4680 /* Simplify storing of the truth value. */
4681 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4682 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4684 /* Also when the truth value has to be reversed. */
4685 if (comparison_p
4686 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4687 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4688 XEXP (cond, 1))))
4689 return reversed;
4691 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4692 in it is being compared against certain values. Get the true and false
4693 comparisons and see if that says anything about the value of each arm. */
4695 if (comparison_p
4696 && ((false_code = combine_reversed_comparison_code (cond))
4697 != UNKNOWN)
4698 && GET_CODE (XEXP (cond, 0)) == REG)
4700 HOST_WIDE_INT nzb;
4701 rtx from = XEXP (cond, 0);
4702 rtx true_val = XEXP (cond, 1);
4703 rtx false_val = true_val;
4704 int swapped = 0;
4706 /* If FALSE_CODE is EQ, swap the codes and arms. */
4708 if (false_code == EQ)
4710 swapped = 1, true_code = EQ, false_code = NE;
4711 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4714 /* If we are comparing against zero and the expression being tested has
4715 only a single bit that might be nonzero, that is its value when it is
4716 not equal to zero. Similarly if it is known to be -1 or 0. */
4718 if (true_code == EQ && true_val == const0_rtx
4719 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4720 false_code = EQ, false_val = GEN_INT (nzb);
4721 else if (true_code == EQ && true_val == const0_rtx
4722 && (num_sign_bit_copies (from, GET_MODE (from))
4723 == GET_MODE_BITSIZE (GET_MODE (from))))
4724 false_code = EQ, false_val = constm1_rtx;
4726 /* Now simplify an arm if we know the value of the register in the
4727 branch and it is used in the arm. Be careful due to the potential
4728 of locally-shared RTL. */
4730 if (reg_mentioned_p (from, true_rtx))
4731 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4732 from, true_val),
4733 pc_rtx, pc_rtx, 0, 0);
4734 if (reg_mentioned_p (from, false_rtx))
4735 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4736 from, false_val),
4737 pc_rtx, pc_rtx, 0, 0);
4739 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4740 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4742 true_rtx = XEXP (x, 1);
4743 false_rtx = XEXP (x, 2);
4744 true_code = GET_CODE (cond);
4747 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4748 reversed, do so to avoid needing two sets of patterns for
4749 subtract-and-branch insns. Similarly if we have a constant in the true
4750 arm, the false arm is the same as the first operand of the comparison, or
4751 the false arm is more complicated than the true arm. */
4753 if (comparison_p
4754 && combine_reversed_comparison_code (cond) != UNKNOWN
4755 && (true_rtx == pc_rtx
4756 || (CONSTANT_P (true_rtx)
4757 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4758 || true_rtx == const0_rtx
4759 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4760 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4761 || (GET_CODE (true_rtx) == SUBREG
4762 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4763 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4764 || reg_mentioned_p (true_rtx, false_rtx)
4765 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4767 true_code = reversed_comparison_code (cond, NULL);
4768 SUBST (XEXP (x, 0),
4769 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4770 XEXP (cond, 1)));
4772 SUBST (XEXP (x, 1), false_rtx);
4773 SUBST (XEXP (x, 2), true_rtx);
4775 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4776 cond = XEXP (x, 0);
4778 /* It is possible that the conditional has been simplified out. */
4779 true_code = GET_CODE (cond);
4780 comparison_p = GET_RTX_CLASS (true_code) == '<';
4783 /* If the two arms are identical, we don't need the comparison. */
4785 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4786 return true_rtx;
4788 /* Convert a == b ? b : a to "a". */
4789 if (true_code == EQ && ! side_effects_p (cond)
4790 && !HONOR_NANS (mode)
4791 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4792 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4793 return false_rtx;
4794 else if (true_code == NE && ! side_effects_p (cond)
4795 && !HONOR_NANS (mode)
4796 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4797 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4798 return true_rtx;
4800 /* Look for cases where we have (abs x) or (neg (abs X)). */
4802 if (GET_MODE_CLASS (mode) == MODE_INT
4803 && GET_CODE (false_rtx) == NEG
4804 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4805 && comparison_p
4806 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4807 && ! side_effects_p (true_rtx))
4808 switch (true_code)
4810 case GT:
4811 case GE:
4812 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4813 case LT:
4814 case LE:
4815 return
4816 simplify_gen_unary (NEG, mode,
4817 simplify_gen_unary (ABS, mode, true_rtx, mode),
4818 mode);
4819 default:
4820 break;
4823 /* Look for MIN or MAX. */
4825 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4826 && comparison_p
4827 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4828 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4829 && ! side_effects_p (cond))
4830 switch (true_code)
4832 case GE:
4833 case GT:
4834 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4835 case LE:
4836 case LT:
4837 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4838 case GEU:
4839 case GTU:
4840 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4841 case LEU:
4842 case LTU:
4843 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4844 default:
4845 break;
4848 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4849 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4850 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4851 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4852 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4853 neither 1 or -1, but it isn't worth checking for. */
4855 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4856 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4858 rtx t = make_compound_operation (true_rtx, SET);
4859 rtx f = make_compound_operation (false_rtx, SET);
4860 rtx cond_op0 = XEXP (cond, 0);
4861 rtx cond_op1 = XEXP (cond, 1);
4862 enum rtx_code op = NIL, extend_op = NIL;
4863 enum machine_mode m = mode;
4864 rtx z = 0, c1 = NULL_RTX;
4866 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4867 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4868 || GET_CODE (t) == ASHIFT
4869 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4870 && rtx_equal_p (XEXP (t, 0), f))
4871 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4873 /* If an identity-zero op is commutative, check whether there
4874 would be a match if we swapped the operands. */
4875 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4876 || GET_CODE (t) == XOR)
4877 && rtx_equal_p (XEXP (t, 1), f))
4878 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4879 else if (GET_CODE (t) == SIGN_EXTEND
4880 && (GET_CODE (XEXP (t, 0)) == PLUS
4881 || GET_CODE (XEXP (t, 0)) == MINUS
4882 || GET_CODE (XEXP (t, 0)) == IOR
4883 || GET_CODE (XEXP (t, 0)) == XOR
4884 || GET_CODE (XEXP (t, 0)) == ASHIFT
4885 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4886 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4887 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4888 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4889 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4890 && (num_sign_bit_copies (f, GET_MODE (f))
4891 > (unsigned int)
4892 (GET_MODE_BITSIZE (mode)
4893 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4895 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4896 extend_op = SIGN_EXTEND;
4897 m = GET_MODE (XEXP (t, 0));
4899 else if (GET_CODE (t) == SIGN_EXTEND
4900 && (GET_CODE (XEXP (t, 0)) == PLUS
4901 || GET_CODE (XEXP (t, 0)) == IOR
4902 || GET_CODE (XEXP (t, 0)) == XOR)
4903 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4904 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4905 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4906 && (num_sign_bit_copies (f, GET_MODE (f))
4907 > (unsigned int)
4908 (GET_MODE_BITSIZE (mode)
4909 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4911 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4912 extend_op = SIGN_EXTEND;
4913 m = GET_MODE (XEXP (t, 0));
4915 else if (GET_CODE (t) == ZERO_EXTEND
4916 && (GET_CODE (XEXP (t, 0)) == PLUS
4917 || GET_CODE (XEXP (t, 0)) == MINUS
4918 || GET_CODE (XEXP (t, 0)) == IOR
4919 || GET_CODE (XEXP (t, 0)) == XOR
4920 || GET_CODE (XEXP (t, 0)) == ASHIFT
4921 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4922 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4923 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4924 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4925 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4926 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4927 && ((nonzero_bits (f, GET_MODE (f))
4928 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4929 == 0))
4931 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4932 extend_op = ZERO_EXTEND;
4933 m = GET_MODE (XEXP (t, 0));
4935 else if (GET_CODE (t) == ZERO_EXTEND
4936 && (GET_CODE (XEXP (t, 0)) == PLUS
4937 || GET_CODE (XEXP (t, 0)) == IOR
4938 || GET_CODE (XEXP (t, 0)) == XOR)
4939 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4940 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4941 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4942 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4943 && ((nonzero_bits (f, GET_MODE (f))
4944 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4945 == 0))
4947 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4948 extend_op = ZERO_EXTEND;
4949 m = GET_MODE (XEXP (t, 0));
4952 if (z)
4954 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4955 pc_rtx, pc_rtx, 0, 0);
4956 temp = gen_binary (MULT, m, temp,
4957 gen_binary (MULT, m, c1, const_true_rtx));
4958 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4959 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4961 if (extend_op != NIL)
4962 temp = simplify_gen_unary (extend_op, mode, temp, m);
4964 return temp;
4968 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4969 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4970 negation of a single bit, we can convert this operation to a shift. We
4971 can actually do this more generally, but it doesn't seem worth it. */
4973 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4974 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4975 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4976 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4977 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4978 == GET_MODE_BITSIZE (mode))
4979 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4980 return
4981 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4982 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4984 return x;
4987 /* Simplify X, a SET expression. Return the new expression. */
4989 static rtx
4990 simplify_set (x)
4991 rtx x;
4993 rtx src = SET_SRC (x);
4994 rtx dest = SET_DEST (x);
4995 enum machine_mode mode
4996 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4997 rtx other_insn;
4998 rtx *cc_use;
5000 /* (set (pc) (return)) gets written as (return). */
5001 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5002 return src;
5004 /* Now that we know for sure which bits of SRC we are using, see if we can
5005 simplify the expression for the object knowing that we only need the
5006 low-order bits. */
5008 if (GET_MODE_CLASS (mode) == MODE_INT)
5010 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5011 SUBST (SET_SRC (x), src);
5014 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5015 the comparison result and try to simplify it unless we already have used
5016 undobuf.other_insn. */
5017 if ((GET_CODE (src) == COMPARE
5018 #ifdef HAVE_cc0
5019 || dest == cc0_rtx
5020 #endif
5022 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5023 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5024 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5025 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5027 enum rtx_code old_code = GET_CODE (*cc_use);
5028 enum rtx_code new_code;
5029 rtx op0, op1, tmp;
5030 int other_changed = 0;
5031 enum machine_mode compare_mode = GET_MODE (dest);
5032 enum machine_mode tmp_mode;
5034 if (GET_CODE (src) == COMPARE)
5035 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5036 else
5037 op0 = src, op1 = const0_rtx;
5039 /* Check whether the comparison is known at compile time. */
5040 if (GET_MODE (op0) != VOIDmode)
5041 tmp_mode = GET_MODE (op0);
5042 else if (GET_MODE (op1) != VOIDmode)
5043 tmp_mode = GET_MODE (op1);
5044 else
5045 tmp_mode = compare_mode;
5046 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
5047 if (tmp != NULL_RTX)
5049 rtx pat = PATTERN (other_insn);
5050 undobuf.other_insn = other_insn;
5051 SUBST (*cc_use, tmp);
5053 /* Attempt to simplify CC user. */
5054 if (GET_CODE (pat) == SET)
5056 rtx new = simplify_rtx (SET_SRC (pat));
5057 if (new != NULL_RTX)
5058 SUBST (SET_SRC (pat), new);
5061 /* Convert X into a no-op move. */
5062 SUBST (SET_DEST (x), pc_rtx);
5063 SUBST (SET_SRC (x), pc_rtx);
5064 return x;
5067 /* Simplify our comparison, if possible. */
5068 new_code = simplify_comparison (old_code, &op0, &op1);
5070 #ifdef EXTRA_CC_MODES
5071 /* If this machine has CC modes other than CCmode, check to see if we
5072 need to use a different CC mode here. */
5073 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5074 #endif /* EXTRA_CC_MODES */
5076 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5077 /* If the mode changed, we have to change SET_DEST, the mode in the
5078 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5079 a hard register, just build new versions with the proper mode. If it
5080 is a pseudo, we lose unless it is only time we set the pseudo, in
5081 which case we can safely change its mode. */
5082 if (compare_mode != GET_MODE (dest))
5084 unsigned int regno = REGNO (dest);
5085 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5087 if (regno < FIRST_PSEUDO_REGISTER
5088 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5090 if (regno >= FIRST_PSEUDO_REGISTER)
5091 SUBST (regno_reg_rtx[regno], new_dest);
5093 SUBST (SET_DEST (x), new_dest);
5094 SUBST (XEXP (*cc_use, 0), new_dest);
5095 other_changed = 1;
5097 dest = new_dest;
5100 #endif
5102 /* If the code changed, we have to build a new comparison in
5103 undobuf.other_insn. */
5104 if (new_code != old_code)
5106 unsigned HOST_WIDE_INT mask;
5108 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5109 dest, const0_rtx));
5111 /* If the only change we made was to change an EQ into an NE or
5112 vice versa, OP0 has only one bit that might be nonzero, and OP1
5113 is zero, check if changing the user of the condition code will
5114 produce a valid insn. If it won't, we can keep the original code
5115 in that insn by surrounding our operation with an XOR. */
5117 if (((old_code == NE && new_code == EQ)
5118 || (old_code == EQ && new_code == NE))
5119 && ! other_changed && op1 == const0_rtx
5120 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5121 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5123 rtx pat = PATTERN (other_insn), note = 0;
5125 if ((recog_for_combine (&pat, other_insn, &note) < 0
5126 && ! check_asm_operands (pat)))
5128 PUT_CODE (*cc_use, old_code);
5129 other_insn = 0;
5131 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5135 other_changed = 1;
5138 if (other_changed)
5139 undobuf.other_insn = other_insn;
5141 #ifdef HAVE_cc0
5142 /* If we are now comparing against zero, change our source if
5143 needed. If we do not use cc0, we always have a COMPARE. */
5144 if (op1 == const0_rtx && dest == cc0_rtx)
5146 SUBST (SET_SRC (x), op0);
5147 src = op0;
5149 else
5150 #endif
5152 /* Otherwise, if we didn't previously have a COMPARE in the
5153 correct mode, we need one. */
5154 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5156 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5157 src = SET_SRC (x);
5159 else
5161 /* Otherwise, update the COMPARE if needed. */
5162 SUBST (XEXP (src, 0), op0);
5163 SUBST (XEXP (src, 1), op1);
5166 else
5168 /* Get SET_SRC in a form where we have placed back any
5169 compound expressions. Then do the checks below. */
5170 src = make_compound_operation (src, SET);
5171 SUBST (SET_SRC (x), src);
5174 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5175 and X being a REG or (subreg (reg)), we may be able to convert this to
5176 (set (subreg:m2 x) (op)).
5178 We can always do this if M1 is narrower than M2 because that means that
5179 we only care about the low bits of the result.
5181 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5182 perform a narrower operation than requested since the high-order bits will
5183 be undefined. On machine where it is defined, this transformation is safe
5184 as long as M1 and M2 have the same number of words. */
5186 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5187 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5188 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5189 / UNITS_PER_WORD)
5190 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5191 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5192 #ifndef WORD_REGISTER_OPERATIONS
5193 && (GET_MODE_SIZE (GET_MODE (src))
5194 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5195 #endif
5196 #ifdef CLASS_CANNOT_CHANGE_MODE
5197 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5198 && (TEST_HARD_REG_BIT
5199 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5200 REGNO (dest)))
5201 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5202 GET_MODE (SUBREG_REG (src))))
5203 #endif
5204 && (GET_CODE (dest) == REG
5205 || (GET_CODE (dest) == SUBREG
5206 && GET_CODE (SUBREG_REG (dest)) == REG)))
5208 SUBST (SET_DEST (x),
5209 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5210 dest));
5211 SUBST (SET_SRC (x), SUBREG_REG (src));
5213 src = SET_SRC (x), dest = SET_DEST (x);
5216 #ifdef HAVE_cc0
5217 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5218 in SRC. */
5219 if (dest == cc0_rtx
5220 && GET_CODE (src) == SUBREG
5221 && subreg_lowpart_p (src)
5222 && (GET_MODE_BITSIZE (GET_MODE (src))
5223 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5225 rtx inner = SUBREG_REG (src);
5226 enum machine_mode inner_mode = GET_MODE (inner);
5228 /* Here we make sure that we don't have a sign bit on. */
5229 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5230 && (nonzero_bits (inner, inner_mode)
5231 < ((unsigned HOST_WIDE_INT) 1
5232 << (GET_MODE_BITSIZE (inner_mode) - 1))))
5234 SUBST (SET_SRC (x), inner);
5235 src = SET_SRC (x);
5238 #endif
5240 #ifdef LOAD_EXTEND_OP
5241 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5242 would require a paradoxical subreg. Replace the subreg with a
5243 zero_extend to avoid the reload that would otherwise be required. */
5245 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5246 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5247 && SUBREG_BYTE (src) == 0
5248 && (GET_MODE_SIZE (GET_MODE (src))
5249 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5250 && GET_CODE (SUBREG_REG (src)) == MEM)
5252 SUBST (SET_SRC (x),
5253 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5254 GET_MODE (src), SUBREG_REG (src)));
5256 src = SET_SRC (x);
5258 #endif
5260 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5261 are comparing an item known to be 0 or -1 against 0, use a logical
5262 operation instead. Check for one of the arms being an IOR of the other
5263 arm with some value. We compute three terms to be IOR'ed together. In
5264 practice, at most two will be nonzero. Then we do the IOR's. */
5266 if (GET_CODE (dest) != PC
5267 && GET_CODE (src) == IF_THEN_ELSE
5268 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5269 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5270 && XEXP (XEXP (src, 0), 1) == const0_rtx
5271 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5272 #ifdef HAVE_conditional_move
5273 && ! can_conditionally_move_p (GET_MODE (src))
5274 #endif
5275 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5276 GET_MODE (XEXP (XEXP (src, 0), 0)))
5277 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5278 && ! side_effects_p (src))
5280 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5281 ? XEXP (src, 1) : XEXP (src, 2));
5282 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5283 ? XEXP (src, 2) : XEXP (src, 1));
5284 rtx term1 = const0_rtx, term2, term3;
5286 if (GET_CODE (true_rtx) == IOR
5287 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5288 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5289 else if (GET_CODE (true_rtx) == IOR
5290 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5291 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5292 else if (GET_CODE (false_rtx) == IOR
5293 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5294 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5295 else if (GET_CODE (false_rtx) == IOR
5296 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5297 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5299 term2 = gen_binary (AND, GET_MODE (src),
5300 XEXP (XEXP (src, 0), 0), true_rtx);
5301 term3 = gen_binary (AND, GET_MODE (src),
5302 simplify_gen_unary (NOT, GET_MODE (src),
5303 XEXP (XEXP (src, 0), 0),
5304 GET_MODE (src)),
5305 false_rtx);
5307 SUBST (SET_SRC (x),
5308 gen_binary (IOR, GET_MODE (src),
5309 gen_binary (IOR, GET_MODE (src), term1, term2),
5310 term3));
5312 src = SET_SRC (x);
5315 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5316 whole thing fail. */
5317 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5318 return src;
5319 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5320 return dest;
5321 else
5322 /* Convert this into a field assignment operation, if possible. */
5323 return make_field_assignment (x);
5326 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5327 result. LAST is nonzero if this is the last retry. */
5329 static rtx
5330 simplify_logical (x, last)
5331 rtx x;
5332 int last;
5334 enum machine_mode mode = GET_MODE (x);
5335 rtx op0 = XEXP (x, 0);
5336 rtx op1 = XEXP (x, 1);
5337 rtx reversed;
5339 switch (GET_CODE (x))
5341 case AND:
5342 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5343 insn (and may simplify more). */
5344 if (GET_CODE (op0) == XOR
5345 && rtx_equal_p (XEXP (op0, 0), op1)
5346 && ! side_effects_p (op1))
5347 x = gen_binary (AND, mode,
5348 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5349 op1);
5351 if (GET_CODE (op0) == XOR
5352 && rtx_equal_p (XEXP (op0, 1), op1)
5353 && ! side_effects_p (op1))
5354 x = gen_binary (AND, mode,
5355 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5356 op1);
5358 /* Similarly for (~(A ^ B)) & A. */
5359 if (GET_CODE (op0) == NOT
5360 && GET_CODE (XEXP (op0, 0)) == XOR
5361 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5362 && ! side_effects_p (op1))
5363 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5365 if (GET_CODE (op0) == NOT
5366 && GET_CODE (XEXP (op0, 0)) == XOR
5367 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5368 && ! side_effects_p (op1))
5369 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5371 /* We can call simplify_and_const_int only if we don't lose
5372 any (sign) bits when converting INTVAL (op1) to
5373 "unsigned HOST_WIDE_INT". */
5374 if (GET_CODE (op1) == CONST_INT
5375 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5376 || INTVAL (op1) > 0))
5378 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5380 /* If we have (ior (and (X C1) C2)) and the next restart would be
5381 the last, simplify this by making C1 as small as possible
5382 and then exit. */
5383 if (last
5384 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5385 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5386 && GET_CODE (op1) == CONST_INT)
5387 return gen_binary (IOR, mode,
5388 gen_binary (AND, mode, XEXP (op0, 0),
5389 GEN_INT (INTVAL (XEXP (op0, 1))
5390 & ~INTVAL (op1))), op1);
5392 if (GET_CODE (x) != AND)
5393 return x;
5395 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5396 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5397 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5400 /* Convert (A | B) & A to A. */
5401 if (GET_CODE (op0) == IOR
5402 && (rtx_equal_p (XEXP (op0, 0), op1)
5403 || rtx_equal_p (XEXP (op0, 1), op1))
5404 && ! side_effects_p (XEXP (op0, 0))
5405 && ! side_effects_p (XEXP (op0, 1)))
5406 return op1;
5408 /* In the following group of tests (and those in case IOR below),
5409 we start with some combination of logical operations and apply
5410 the distributive law followed by the inverse distributive law.
5411 Most of the time, this results in no change. However, if some of
5412 the operands are the same or inverses of each other, simplifications
5413 will result.
5415 For example, (and (ior A B) (not B)) can occur as the result of
5416 expanding a bit field assignment. When we apply the distributive
5417 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5418 which then simplifies to (and (A (not B))).
5420 If we have (and (ior A B) C), apply the distributive law and then
5421 the inverse distributive law to see if things simplify. */
5423 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5425 x = apply_distributive_law
5426 (gen_binary (GET_CODE (op0), mode,
5427 gen_binary (AND, mode, XEXP (op0, 0), op1),
5428 gen_binary (AND, mode, XEXP (op0, 1),
5429 copy_rtx (op1))));
5430 if (GET_CODE (x) != AND)
5431 return x;
5434 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5435 return apply_distributive_law
5436 (gen_binary (GET_CODE (op1), mode,
5437 gen_binary (AND, mode, XEXP (op1, 0), op0),
5438 gen_binary (AND, mode, XEXP (op1, 1),
5439 copy_rtx (op0))));
5441 /* Similarly, taking advantage of the fact that
5442 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5444 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5445 return apply_distributive_law
5446 (gen_binary (XOR, mode,
5447 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5448 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5449 XEXP (op1, 1))));
5451 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5452 return apply_distributive_law
5453 (gen_binary (XOR, mode,
5454 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5455 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5456 break;
5458 case IOR:
5459 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5460 if (GET_CODE (op1) == CONST_INT
5461 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5462 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5463 return op1;
5465 /* Convert (A & B) | A to A. */
5466 if (GET_CODE (op0) == AND
5467 && (rtx_equal_p (XEXP (op0, 0), op1)
5468 || rtx_equal_p (XEXP (op0, 1), op1))
5469 && ! side_effects_p (XEXP (op0, 0))
5470 && ! side_effects_p (XEXP (op0, 1)))
5471 return op1;
5473 /* If we have (ior (and A B) C), apply the distributive law and then
5474 the inverse distributive law to see if things simplify. */
5476 if (GET_CODE (op0) == AND)
5478 x = apply_distributive_law
5479 (gen_binary (AND, mode,
5480 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5481 gen_binary (IOR, mode, XEXP (op0, 1),
5482 copy_rtx (op1))));
5484 if (GET_CODE (x) != IOR)
5485 return x;
5488 if (GET_CODE (op1) == AND)
5490 x = apply_distributive_law
5491 (gen_binary (AND, mode,
5492 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5493 gen_binary (IOR, mode, XEXP (op1, 1),
5494 copy_rtx (op0))));
5496 if (GET_CODE (x) != IOR)
5497 return x;
5500 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5501 mode size to (rotate A CX). */
5503 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5504 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5505 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5506 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5507 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5508 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5509 == GET_MODE_BITSIZE (mode)))
5510 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5511 (GET_CODE (op0) == ASHIFT
5512 ? XEXP (op0, 1) : XEXP (op1, 1)));
5514 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5515 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5516 does not affect any of the bits in OP1, it can really be done
5517 as a PLUS and we can associate. We do this by seeing if OP1
5518 can be safely shifted left C bits. */
5519 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5520 && GET_CODE (XEXP (op0, 0)) == PLUS
5521 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5522 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5523 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5525 int count = INTVAL (XEXP (op0, 1));
5526 HOST_WIDE_INT mask = INTVAL (op1) << count;
5528 if (mask >> count == INTVAL (op1)
5529 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5531 SUBST (XEXP (XEXP (op0, 0), 1),
5532 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5533 return op0;
5536 break;
5538 case XOR:
5539 /* If we are XORing two things that have no bits in common,
5540 convert them into an IOR. This helps to detect rotation encoded
5541 using those methods and possibly other simplifications. */
5543 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5544 && (nonzero_bits (op0, mode)
5545 & nonzero_bits (op1, mode)) == 0)
5546 return (gen_binary (IOR, mode, op0, op1));
5548 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5549 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5550 (NOT y). */
5552 int num_negated = 0;
5554 if (GET_CODE (op0) == NOT)
5555 num_negated++, op0 = XEXP (op0, 0);
5556 if (GET_CODE (op1) == NOT)
5557 num_negated++, op1 = XEXP (op1, 0);
5559 if (num_negated == 2)
5561 SUBST (XEXP (x, 0), op0);
5562 SUBST (XEXP (x, 1), op1);
5564 else if (num_negated == 1)
5565 return
5566 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5567 mode);
5570 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5571 correspond to a machine insn or result in further simplifications
5572 if B is a constant. */
5574 if (GET_CODE (op0) == AND
5575 && rtx_equal_p (XEXP (op0, 1), op1)
5576 && ! side_effects_p (op1))
5577 return gen_binary (AND, mode,
5578 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5579 op1);
5581 else if (GET_CODE (op0) == AND
5582 && rtx_equal_p (XEXP (op0, 0), op1)
5583 && ! side_effects_p (op1))
5584 return gen_binary (AND, mode,
5585 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5586 op1);
5588 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5589 comparison if STORE_FLAG_VALUE is 1. */
5590 if (STORE_FLAG_VALUE == 1
5591 && op1 == const1_rtx
5592 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5593 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5594 XEXP (op0, 1))))
5595 return reversed;
5597 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5598 is (lt foo (const_int 0)), so we can perform the above
5599 simplification if STORE_FLAG_VALUE is 1. */
5601 if (STORE_FLAG_VALUE == 1
5602 && op1 == const1_rtx
5603 && GET_CODE (op0) == LSHIFTRT
5604 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5605 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5606 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5608 /* (xor (comparison foo bar) (const_int sign-bit))
5609 when STORE_FLAG_VALUE is the sign bit. */
5610 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5611 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5612 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5613 && op1 == const_true_rtx
5614 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5615 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5616 XEXP (op0, 1))))
5617 return reversed;
5619 break;
5621 default:
5622 abort ();
5625 return x;
5628 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5629 operations" because they can be replaced with two more basic operations.
5630 ZERO_EXTEND is also considered "compound" because it can be replaced with
5631 an AND operation, which is simpler, though only one operation.
5633 The function expand_compound_operation is called with an rtx expression
5634 and will convert it to the appropriate shifts and AND operations,
5635 simplifying at each stage.
5637 The function make_compound_operation is called to convert an expression
5638 consisting of shifts and ANDs into the equivalent compound expression.
5639 It is the inverse of this function, loosely speaking. */
5641 static rtx
5642 expand_compound_operation (x)
5643 rtx x;
5645 unsigned HOST_WIDE_INT pos = 0, len;
5646 int unsignedp = 0;
5647 unsigned int modewidth;
5648 rtx tem;
5650 switch (GET_CODE (x))
5652 case ZERO_EXTEND:
5653 unsignedp = 1;
5654 case SIGN_EXTEND:
5655 /* We can't necessarily use a const_int for a multiword mode;
5656 it depends on implicitly extending the value.
5657 Since we don't know the right way to extend it,
5658 we can't tell whether the implicit way is right.
5660 Even for a mode that is no wider than a const_int,
5661 we can't win, because we need to sign extend one of its bits through
5662 the rest of it, and we don't know which bit. */
5663 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5664 return x;
5666 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5667 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5668 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5669 reloaded. If not for that, MEM's would very rarely be safe.
5671 Reject MODEs bigger than a word, because we might not be able
5672 to reference a two-register group starting with an arbitrary register
5673 (and currently gen_lowpart might crash for a SUBREG). */
5675 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5676 return x;
5678 /* Reject MODEs that aren't scalar integers because turning vector
5679 or complex modes into shifts causes problems. */
5681 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5682 return x;
5684 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5685 /* If the inner object has VOIDmode (the only way this can happen
5686 is if it is an ASM_OPERANDS), we can't do anything since we don't
5687 know how much masking to do. */
5688 if (len == 0)
5689 return x;
5691 break;
5693 case ZERO_EXTRACT:
5694 unsignedp = 1;
5695 case SIGN_EXTRACT:
5696 /* If the operand is a CLOBBER, just return it. */
5697 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5698 return XEXP (x, 0);
5700 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5701 || GET_CODE (XEXP (x, 2)) != CONST_INT
5702 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5703 return x;
5705 /* Reject MODEs that aren't scalar integers because turning vector
5706 or complex modes into shifts causes problems. */
5708 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5709 return x;
5711 len = INTVAL (XEXP (x, 1));
5712 pos = INTVAL (XEXP (x, 2));
5714 /* If this goes outside the object being extracted, replace the object
5715 with a (use (mem ...)) construct that only combine understands
5716 and is used only for this purpose. */
5717 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5718 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5720 if (BITS_BIG_ENDIAN)
5721 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5723 break;
5725 default:
5726 return x;
5728 /* Convert sign extension to zero extension, if we know that the high
5729 bit is not set, as this is easier to optimize. It will be converted
5730 back to cheaper alternative in make_extraction. */
5731 if (GET_CODE (x) == SIGN_EXTEND
5732 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5733 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5734 & ~(((unsigned HOST_WIDE_INT)
5735 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5736 >> 1))
5737 == 0)))
5739 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5740 return expand_compound_operation (temp);
5743 /* We can optimize some special cases of ZERO_EXTEND. */
5744 if (GET_CODE (x) == ZERO_EXTEND)
5746 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5747 know that the last value didn't have any inappropriate bits
5748 set. */
5749 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5750 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5751 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5752 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5753 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5754 return XEXP (XEXP (x, 0), 0);
5756 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5757 if (GET_CODE (XEXP (x, 0)) == SUBREG
5758 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5759 && subreg_lowpart_p (XEXP (x, 0))
5760 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5761 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5762 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5763 return SUBREG_REG (XEXP (x, 0));
5765 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5766 is a comparison and STORE_FLAG_VALUE permits. This is like
5767 the first case, but it works even when GET_MODE (x) is larger
5768 than HOST_WIDE_INT. */
5769 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5770 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5771 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5772 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5773 <= HOST_BITS_PER_WIDE_INT)
5774 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5775 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5776 return XEXP (XEXP (x, 0), 0);
5778 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5779 if (GET_CODE (XEXP (x, 0)) == SUBREG
5780 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5781 && subreg_lowpart_p (XEXP (x, 0))
5782 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5783 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5784 <= HOST_BITS_PER_WIDE_INT)
5785 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5786 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5787 return SUBREG_REG (XEXP (x, 0));
5791 /* If we reach here, we want to return a pair of shifts. The inner
5792 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5793 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5794 logical depending on the value of UNSIGNEDP.
5796 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5797 converted into an AND of a shift.
5799 We must check for the case where the left shift would have a negative
5800 count. This can happen in a case like (x >> 31) & 255 on machines
5801 that can't shift by a constant. On those machines, we would first
5802 combine the shift with the AND to produce a variable-position
5803 extraction. Then the constant of 31 would be substituted in to produce
5804 a such a position. */
5806 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5807 if (modewidth + len >= pos)
5808 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5809 GET_MODE (x),
5810 simplify_shift_const (NULL_RTX, ASHIFT,
5811 GET_MODE (x),
5812 XEXP (x, 0),
5813 modewidth - pos - len),
5814 modewidth - len);
5816 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5817 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5818 simplify_shift_const (NULL_RTX, LSHIFTRT,
5819 GET_MODE (x),
5820 XEXP (x, 0), pos),
5821 ((HOST_WIDE_INT) 1 << len) - 1);
5822 else
5823 /* Any other cases we can't handle. */
5824 return x;
5826 /* If we couldn't do this for some reason, return the original
5827 expression. */
5828 if (GET_CODE (tem) == CLOBBER)
5829 return x;
5831 return tem;
5834 /* X is a SET which contains an assignment of one object into
5835 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5836 or certain SUBREGS). If possible, convert it into a series of
5837 logical operations.
5839 We half-heartedly support variable positions, but do not at all
5840 support variable lengths. */
5842 static rtx
5843 expand_field_assignment (x)
5844 rtx x;
5846 rtx inner;
5847 rtx pos; /* Always counts from low bit. */
5848 int len;
5849 rtx mask;
5850 enum machine_mode compute_mode;
5852 /* Loop until we find something we can't simplify. */
5853 while (1)
5855 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5856 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5858 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5859 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5860 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5862 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5863 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5865 inner = XEXP (SET_DEST (x), 0);
5866 len = INTVAL (XEXP (SET_DEST (x), 1));
5867 pos = XEXP (SET_DEST (x), 2);
5869 /* If the position is constant and spans the width of INNER,
5870 surround INNER with a USE to indicate this. */
5871 if (GET_CODE (pos) == CONST_INT
5872 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5873 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5875 if (BITS_BIG_ENDIAN)
5877 if (GET_CODE (pos) == CONST_INT)
5878 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5879 - INTVAL (pos));
5880 else if (GET_CODE (pos) == MINUS
5881 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5882 && (INTVAL (XEXP (pos, 1))
5883 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5884 /* If position is ADJUST - X, new position is X. */
5885 pos = XEXP (pos, 0);
5886 else
5887 pos = gen_binary (MINUS, GET_MODE (pos),
5888 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5889 - len),
5890 pos);
5894 /* A SUBREG between two modes that occupy the same numbers of words
5895 can be done by moving the SUBREG to the source. */
5896 else if (GET_CODE (SET_DEST (x)) == SUBREG
5897 /* We need SUBREGs to compute nonzero_bits properly. */
5898 && nonzero_sign_valid
5899 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5900 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5901 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5902 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5904 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5905 gen_lowpart_for_combine
5906 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5907 SET_SRC (x)));
5908 continue;
5910 else
5911 break;
5913 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5914 inner = SUBREG_REG (inner);
5916 compute_mode = GET_MODE (inner);
5918 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5919 if (! SCALAR_INT_MODE_P (compute_mode))
5921 enum machine_mode imode;
5923 /* Don't do anything for vector or complex integral types. */
5924 if (! FLOAT_MODE_P (compute_mode))
5925 break;
5927 /* Try to find an integral mode to pun with. */
5928 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5929 if (imode == BLKmode)
5930 break;
5932 compute_mode = imode;
5933 inner = gen_lowpart_for_combine (imode, inner);
5936 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5937 if (len < HOST_BITS_PER_WIDE_INT)
5938 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5939 else
5940 break;
5942 /* Now compute the equivalent expression. Make a copy of INNER
5943 for the SET_DEST in case it is a MEM into which we will substitute;
5944 we don't want shared RTL in that case. */
5945 x = gen_rtx_SET
5946 (VOIDmode, copy_rtx (inner),
5947 gen_binary (IOR, compute_mode,
5948 gen_binary (AND, compute_mode,
5949 simplify_gen_unary (NOT, compute_mode,
5950 gen_binary (ASHIFT,
5951 compute_mode,
5952 mask, pos),
5953 compute_mode),
5954 inner),
5955 gen_binary (ASHIFT, compute_mode,
5956 gen_binary (AND, compute_mode,
5957 gen_lowpart_for_combine
5958 (compute_mode, SET_SRC (x)),
5959 mask),
5960 pos)));
5963 return x;
5966 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5967 it is an RTX that represents a variable starting position; otherwise,
5968 POS is the (constant) starting bit position (counted from the LSB).
5970 INNER may be a USE. This will occur when we started with a bitfield
5971 that went outside the boundary of the object in memory, which is
5972 allowed on most machines. To isolate this case, we produce a USE
5973 whose mode is wide enough and surround the MEM with it. The only
5974 code that understands the USE is this routine. If it is not removed,
5975 it will cause the resulting insn not to match.
5977 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5978 signed reference.
5980 IN_DEST is non-zero if this is a reference in the destination of a
5981 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5982 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5983 be used.
5985 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5986 ZERO_EXTRACT should be built even for bits starting at bit 0.
5988 MODE is the desired mode of the result (if IN_DEST == 0).
5990 The result is an RTX for the extraction or NULL_RTX if the target
5991 can't handle it. */
5993 static rtx
5994 make_extraction (mode, inner, pos, pos_rtx, len,
5995 unsignedp, in_dest, in_compare)
5996 enum machine_mode mode;
5997 rtx inner;
5998 HOST_WIDE_INT pos;
5999 rtx pos_rtx;
6000 unsigned HOST_WIDE_INT len;
6001 int unsignedp;
6002 int in_dest, in_compare;
6004 /* This mode describes the size of the storage area
6005 to fetch the overall value from. Within that, we
6006 ignore the POS lowest bits, etc. */
6007 enum machine_mode is_mode = GET_MODE (inner);
6008 enum machine_mode inner_mode;
6009 enum machine_mode wanted_inner_mode = byte_mode;
6010 enum machine_mode wanted_inner_reg_mode = word_mode;
6011 enum machine_mode pos_mode = word_mode;
6012 enum machine_mode extraction_mode = word_mode;
6013 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6014 int spans_byte = 0;
6015 rtx new = 0;
6016 rtx orig_pos_rtx = pos_rtx;
6017 HOST_WIDE_INT orig_pos;
6019 /* Get some information about INNER and get the innermost object. */
6020 if (GET_CODE (inner) == USE)
6021 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6022 /* We don't need to adjust the position because we set up the USE
6023 to pretend that it was a full-word object. */
6024 spans_byte = 1, inner = XEXP (inner, 0);
6025 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6027 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6028 consider just the QI as the memory to extract from.
6029 The subreg adds or removes high bits; its mode is
6030 irrelevant to the meaning of this extraction,
6031 since POS and LEN count from the lsb. */
6032 if (GET_CODE (SUBREG_REG (inner)) == MEM)
6033 is_mode = GET_MODE (SUBREG_REG (inner));
6034 inner = SUBREG_REG (inner);
6036 else if (GET_CODE (inner) == ASHIFT
6037 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6038 && pos_rtx == 0 && pos == 0
6039 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6041 /* We're extracting the least significant bits of an rtx
6042 (ashift X (const_int C)), where LEN > C. Extract the
6043 least significant (LEN - C) bits of X, giving an rtx
6044 whose mode is MODE, then shift it left C times. */
6045 new = make_extraction (mode, XEXP (inner, 0),
6046 0, 0, len - INTVAL (XEXP (inner, 1)),
6047 unsignedp, in_dest, in_compare);
6048 if (new != 0)
6049 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6052 inner_mode = GET_MODE (inner);
6054 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6055 pos = INTVAL (pos_rtx), pos_rtx = 0;
6057 /* See if this can be done without an extraction. We never can if the
6058 width of the field is not the same as that of some integer mode. For
6059 registers, we can only avoid the extraction if the position is at the
6060 low-order bit and this is either not in the destination or we have the
6061 appropriate STRICT_LOW_PART operation available.
6063 For MEM, we can avoid an extract if the field starts on an appropriate
6064 boundary and we can change the mode of the memory reference. However,
6065 we cannot directly access the MEM if we have a USE and the underlying
6066 MEM is not TMODE. This combination means that MEM was being used in a
6067 context where bits outside its mode were being referenced; that is only
6068 valid in bit-field insns. */
6070 if (tmode != BLKmode
6071 && ! (spans_byte && inner_mode != tmode)
6072 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6073 && GET_CODE (inner) != MEM
6074 && (! in_dest
6075 || (GET_CODE (inner) == REG
6076 && have_insn_for (STRICT_LOW_PART, tmode))))
6077 || (GET_CODE (inner) == MEM && pos_rtx == 0
6078 && (pos
6079 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6080 : BITS_PER_UNIT)) == 0
6081 /* We can't do this if we are widening INNER_MODE (it
6082 may not be aligned, for one thing). */
6083 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6084 && (inner_mode == tmode
6085 || (! mode_dependent_address_p (XEXP (inner, 0))
6086 && ! MEM_VOLATILE_P (inner))))))
6088 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6089 field. If the original and current mode are the same, we need not
6090 adjust the offset. Otherwise, we do if bytes big endian.
6092 If INNER is not a MEM, get a piece consisting of just the field
6093 of interest (in this case POS % BITS_PER_WORD must be 0). */
6095 if (GET_CODE (inner) == MEM)
6097 HOST_WIDE_INT offset;
6099 /* POS counts from lsb, but make OFFSET count in memory order. */
6100 if (BYTES_BIG_ENDIAN)
6101 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6102 else
6103 offset = pos / BITS_PER_UNIT;
6105 new = adjust_address_nv (inner, tmode, offset);
6107 else if (GET_CODE (inner) == REG)
6109 /* We can't call gen_lowpart_for_combine here since we always want
6110 a SUBREG and it would sometimes return a new hard register. */
6111 if (tmode != inner_mode)
6113 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6115 if (WORDS_BIG_ENDIAN
6116 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6117 final_word = ((GET_MODE_SIZE (inner_mode)
6118 - GET_MODE_SIZE (tmode))
6119 / UNITS_PER_WORD) - final_word;
6121 final_word *= UNITS_PER_WORD;
6122 if (BYTES_BIG_ENDIAN &&
6123 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6124 final_word += (GET_MODE_SIZE (inner_mode)
6125 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6127 new = gen_rtx_SUBREG (tmode, inner, final_word);
6129 else
6130 new = inner;
6132 else
6133 new = force_to_mode (inner, tmode,
6134 len >= HOST_BITS_PER_WIDE_INT
6135 ? ~(unsigned HOST_WIDE_INT) 0
6136 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6137 NULL_RTX, 0);
6139 /* If this extraction is going into the destination of a SET,
6140 make a STRICT_LOW_PART unless we made a MEM. */
6142 if (in_dest)
6143 return (GET_CODE (new) == MEM ? new
6144 : (GET_CODE (new) != SUBREG
6145 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6146 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6148 if (mode == tmode)
6149 return new;
6151 if (GET_CODE (new) == CONST_INT)
6152 return gen_int_mode (INTVAL (new), mode);
6154 /* If we know that no extraneous bits are set, and that the high
6155 bit is not set, convert the extraction to the cheaper of
6156 sign and zero extension, that are equivalent in these cases. */
6157 if (flag_expensive_optimizations
6158 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6159 && ((nonzero_bits (new, tmode)
6160 & ~(((unsigned HOST_WIDE_INT)
6161 GET_MODE_MASK (tmode))
6162 >> 1))
6163 == 0)))
6165 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6166 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6168 /* Prefer ZERO_EXTENSION, since it gives more information to
6169 backends. */
6170 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6171 return temp;
6172 return temp1;
6175 /* Otherwise, sign- or zero-extend unless we already are in the
6176 proper mode. */
6178 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6179 mode, new));
6182 /* Unless this is a COMPARE or we have a funny memory reference,
6183 don't do anything with zero-extending field extracts starting at
6184 the low-order bit since they are simple AND operations. */
6185 if (pos_rtx == 0 && pos == 0 && ! in_dest
6186 && ! in_compare && ! spans_byte && unsignedp)
6187 return 0;
6189 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6190 we would be spanning bytes or if the position is not a constant and the
6191 length is not 1. In all other cases, we would only be going outside
6192 our object in cases when an original shift would have been
6193 undefined. */
6194 if (! spans_byte && GET_CODE (inner) == MEM
6195 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6196 || (pos_rtx != 0 && len != 1)))
6197 return 0;
6199 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6200 and the mode for the result. */
6201 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6203 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6204 pos_mode = mode_for_extraction (EP_insv, 2);
6205 extraction_mode = mode_for_extraction (EP_insv, 3);
6208 if (! in_dest && unsignedp
6209 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6211 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6212 pos_mode = mode_for_extraction (EP_extzv, 3);
6213 extraction_mode = mode_for_extraction (EP_extzv, 0);
6216 if (! in_dest && ! unsignedp
6217 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6219 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6220 pos_mode = mode_for_extraction (EP_extv, 3);
6221 extraction_mode = mode_for_extraction (EP_extv, 0);
6224 /* Never narrow an object, since that might not be safe. */
6226 if (mode != VOIDmode
6227 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6228 extraction_mode = mode;
6230 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6231 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6232 pos_mode = GET_MODE (pos_rtx);
6234 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6235 if we have to change the mode of memory and cannot, the desired mode is
6236 EXTRACTION_MODE. */
6237 if (GET_CODE (inner) != MEM)
6238 wanted_inner_mode = wanted_inner_reg_mode;
6239 else if (inner_mode != wanted_inner_mode
6240 && (mode_dependent_address_p (XEXP (inner, 0))
6241 || MEM_VOLATILE_P (inner)))
6242 wanted_inner_mode = extraction_mode;
6244 orig_pos = pos;
6246 if (BITS_BIG_ENDIAN)
6248 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6249 BITS_BIG_ENDIAN style. If position is constant, compute new
6250 position. Otherwise, build subtraction.
6251 Note that POS is relative to the mode of the original argument.
6252 If it's a MEM we need to recompute POS relative to that.
6253 However, if we're extracting from (or inserting into) a register,
6254 we want to recompute POS relative to wanted_inner_mode. */
6255 int width = (GET_CODE (inner) == MEM
6256 ? GET_MODE_BITSIZE (is_mode)
6257 : GET_MODE_BITSIZE (wanted_inner_mode));
6259 if (pos_rtx == 0)
6260 pos = width - len - pos;
6261 else
6262 pos_rtx
6263 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6264 /* POS may be less than 0 now, but we check for that below.
6265 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6268 /* If INNER has a wider mode, make it smaller. If this is a constant
6269 extract, try to adjust the byte to point to the byte containing
6270 the value. */
6271 if (wanted_inner_mode != VOIDmode
6272 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6273 && ((GET_CODE (inner) == MEM
6274 && (inner_mode == wanted_inner_mode
6275 || (! mode_dependent_address_p (XEXP (inner, 0))
6276 && ! MEM_VOLATILE_P (inner))))))
6278 int offset = 0;
6280 /* The computations below will be correct if the machine is big
6281 endian in both bits and bytes or little endian in bits and bytes.
6282 If it is mixed, we must adjust. */
6284 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6285 adjust OFFSET to compensate. */
6286 if (BYTES_BIG_ENDIAN
6287 && ! spans_byte
6288 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6289 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6291 /* If this is a constant position, we can move to the desired byte. */
6292 if (pos_rtx == 0)
6294 offset += pos / BITS_PER_UNIT;
6295 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6298 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6299 && ! spans_byte
6300 && is_mode != wanted_inner_mode)
6301 offset = (GET_MODE_SIZE (is_mode)
6302 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6304 if (offset != 0 || inner_mode != wanted_inner_mode)
6305 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6308 /* If INNER is not memory, we can always get it into the proper mode. If we
6309 are changing its mode, POS must be a constant and smaller than the size
6310 of the new mode. */
6311 else if (GET_CODE (inner) != MEM)
6313 if (GET_MODE (inner) != wanted_inner_mode
6314 && (pos_rtx != 0
6315 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6316 return 0;
6318 inner = force_to_mode (inner, wanted_inner_mode,
6319 pos_rtx
6320 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6321 ? ~(unsigned HOST_WIDE_INT) 0
6322 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6323 << orig_pos),
6324 NULL_RTX, 0);
6327 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6328 have to zero extend. Otherwise, we can just use a SUBREG. */
6329 if (pos_rtx != 0
6330 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6332 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6334 /* If we know that no extraneous bits are set, and that the high
6335 bit is not set, convert extraction to cheaper one - either
6336 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6337 cases. */
6338 if (flag_expensive_optimizations
6339 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6340 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6341 & ~(((unsigned HOST_WIDE_INT)
6342 GET_MODE_MASK (GET_MODE (pos_rtx)))
6343 >> 1))
6344 == 0)))
6346 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6348 /* Prefer ZERO_EXTENSION, since it gives more information to
6349 backends. */
6350 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6351 temp = temp1;
6353 pos_rtx = temp;
6355 else if (pos_rtx != 0
6356 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6357 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6359 /* Make POS_RTX unless we already have it and it is correct. If we don't
6360 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6361 be a CONST_INT. */
6362 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6363 pos_rtx = orig_pos_rtx;
6365 else if (pos_rtx == 0)
6366 pos_rtx = GEN_INT (pos);
6368 /* Make the required operation. See if we can use existing rtx. */
6369 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6370 extraction_mode, inner, GEN_INT (len), pos_rtx);
6371 if (! in_dest)
6372 new = gen_lowpart_for_combine (mode, new);
6374 return new;
6377 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6378 with any other operations in X. Return X without that shift if so. */
6380 static rtx
6381 extract_left_shift (x, count)
6382 rtx x;
6383 int count;
6385 enum rtx_code code = GET_CODE (x);
6386 enum machine_mode mode = GET_MODE (x);
6387 rtx tem;
6389 switch (code)
6391 case ASHIFT:
6392 /* This is the shift itself. If it is wide enough, we will return
6393 either the value being shifted if the shift count is equal to
6394 COUNT or a shift for the difference. */
6395 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6396 && INTVAL (XEXP (x, 1)) >= count)
6397 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6398 INTVAL (XEXP (x, 1)) - count);
6399 break;
6401 case NEG: case NOT:
6402 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6403 return simplify_gen_unary (code, mode, tem, mode);
6405 break;
6407 case PLUS: case IOR: case XOR: case AND:
6408 /* If we can safely shift this constant and we find the inner shift,
6409 make a new operation. */
6410 if (GET_CODE (XEXP (x,1)) == CONST_INT
6411 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6412 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6413 return gen_binary (code, mode, tem,
6414 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6416 break;
6418 default:
6419 break;
6422 return 0;
6425 /* Look at the expression rooted at X. Look for expressions
6426 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6427 Form these expressions.
6429 Return the new rtx, usually just X.
6431 Also, for machines like the VAX that don't have logical shift insns,
6432 try to convert logical to arithmetic shift operations in cases where
6433 they are equivalent. This undoes the canonicalizations to logical
6434 shifts done elsewhere.
6436 We try, as much as possible, to re-use rtl expressions to save memory.
6438 IN_CODE says what kind of expression we are processing. Normally, it is
6439 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6440 being kludges), it is MEM. When processing the arguments of a comparison
6441 or a COMPARE against zero, it is COMPARE. */
6443 static rtx
6444 make_compound_operation (x, in_code)
6445 rtx x;
6446 enum rtx_code in_code;
6448 enum rtx_code code = GET_CODE (x);
6449 enum machine_mode mode = GET_MODE (x);
6450 int mode_width = GET_MODE_BITSIZE (mode);
6451 rtx rhs, lhs;
6452 enum rtx_code next_code;
6453 int i;
6454 rtx new = 0;
6455 rtx tem;
6456 const char *fmt;
6458 /* Select the code to be used in recursive calls. Once we are inside an
6459 address, we stay there. If we have a comparison, set to COMPARE,
6460 but once inside, go back to our default of SET. */
6462 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6463 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6464 && XEXP (x, 1) == const0_rtx) ? COMPARE
6465 : in_code == COMPARE ? SET : in_code);
6467 /* Process depending on the code of this operation. If NEW is set
6468 non-zero, it will be returned. */
6470 switch (code)
6472 case ASHIFT:
6473 /* Convert shifts by constants into multiplications if inside
6474 an address. */
6475 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6476 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6477 && INTVAL (XEXP (x, 1)) >= 0)
6479 new = make_compound_operation (XEXP (x, 0), next_code);
6480 new = gen_rtx_MULT (mode, new,
6481 GEN_INT ((HOST_WIDE_INT) 1
6482 << INTVAL (XEXP (x, 1))));
6484 break;
6486 case AND:
6487 /* If the second operand is not a constant, we can't do anything
6488 with it. */
6489 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6490 break;
6492 /* If the constant is a power of two minus one and the first operand
6493 is a logical right shift, make an extraction. */
6494 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6495 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6497 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6498 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6499 0, in_code == COMPARE);
6502 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6503 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6504 && subreg_lowpart_p (XEXP (x, 0))
6505 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6506 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6508 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6509 next_code);
6510 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6511 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6512 0, in_code == COMPARE);
6514 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6515 else if ((GET_CODE (XEXP (x, 0)) == XOR
6516 || GET_CODE (XEXP (x, 0)) == IOR)
6517 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6518 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6519 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6521 /* Apply the distributive law, and then try to make extractions. */
6522 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6523 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6524 XEXP (x, 1)),
6525 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6526 XEXP (x, 1)));
6527 new = make_compound_operation (new, in_code);
6530 /* If we are have (and (rotate X C) M) and C is larger than the number
6531 of bits in M, this is an extraction. */
6533 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6534 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6535 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6536 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6538 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6539 new = make_extraction (mode, new,
6540 (GET_MODE_BITSIZE (mode)
6541 - INTVAL (XEXP (XEXP (x, 0), 1))),
6542 NULL_RTX, i, 1, 0, in_code == COMPARE);
6545 /* On machines without logical shifts, if the operand of the AND is
6546 a logical shift and our mask turns off all the propagated sign
6547 bits, we can replace the logical shift with an arithmetic shift. */
6548 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6549 && !have_insn_for (LSHIFTRT, mode)
6550 && have_insn_for (ASHIFTRT, mode)
6551 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6552 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6553 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6554 && mode_width <= HOST_BITS_PER_WIDE_INT)
6556 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6558 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6559 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6560 SUBST (XEXP (x, 0),
6561 gen_rtx_ASHIFTRT (mode,
6562 make_compound_operation
6563 (XEXP (XEXP (x, 0), 0), next_code),
6564 XEXP (XEXP (x, 0), 1)));
6567 /* If the constant is one less than a power of two, this might be
6568 representable by an extraction even if no shift is present.
6569 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6570 we are in a COMPARE. */
6571 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6572 new = make_extraction (mode,
6573 make_compound_operation (XEXP (x, 0),
6574 next_code),
6575 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6577 /* If we are in a comparison and this is an AND with a power of two,
6578 convert this into the appropriate bit extract. */
6579 else if (in_code == COMPARE
6580 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6581 new = make_extraction (mode,
6582 make_compound_operation (XEXP (x, 0),
6583 next_code),
6584 i, NULL_RTX, 1, 1, 0, 1);
6586 break;
6588 case LSHIFTRT:
6589 /* If the sign bit is known to be zero, replace this with an
6590 arithmetic shift. */
6591 if (have_insn_for (ASHIFTRT, mode)
6592 && ! have_insn_for (LSHIFTRT, mode)
6593 && mode_width <= HOST_BITS_PER_WIDE_INT
6594 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6596 new = gen_rtx_ASHIFTRT (mode,
6597 make_compound_operation (XEXP (x, 0),
6598 next_code),
6599 XEXP (x, 1));
6600 break;
6603 /* ... fall through ... */
6605 case ASHIFTRT:
6606 lhs = XEXP (x, 0);
6607 rhs = XEXP (x, 1);
6609 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6610 this is a SIGN_EXTRACT. */
6611 if (GET_CODE (rhs) == CONST_INT
6612 && GET_CODE (lhs) == ASHIFT
6613 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6614 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6616 new = make_compound_operation (XEXP (lhs, 0), next_code);
6617 new = make_extraction (mode, new,
6618 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6619 NULL_RTX, mode_width - INTVAL (rhs),
6620 code == LSHIFTRT, 0, in_code == COMPARE);
6621 break;
6624 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6625 If so, try to merge the shifts into a SIGN_EXTEND. We could
6626 also do this for some cases of SIGN_EXTRACT, but it doesn't
6627 seem worth the effort; the case checked for occurs on Alpha. */
6629 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6630 && ! (GET_CODE (lhs) == SUBREG
6631 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6632 && GET_CODE (rhs) == CONST_INT
6633 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6634 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6635 new = make_extraction (mode, make_compound_operation (new, next_code),
6636 0, NULL_RTX, mode_width - INTVAL (rhs),
6637 code == LSHIFTRT, 0, in_code == COMPARE);
6639 break;
6641 case SUBREG:
6642 /* Call ourselves recursively on the inner expression. If we are
6643 narrowing the object and it has a different RTL code from
6644 what it originally did, do this SUBREG as a force_to_mode. */
6646 tem = make_compound_operation (SUBREG_REG (x), in_code);
6647 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6648 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6649 && subreg_lowpart_p (x))
6651 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6652 NULL_RTX, 0);
6654 /* If we have something other than a SUBREG, we might have
6655 done an expansion, so rerun ourselves. */
6656 if (GET_CODE (newer) != SUBREG)
6657 newer = make_compound_operation (newer, in_code);
6659 return newer;
6662 /* If this is a paradoxical subreg, and the new code is a sign or
6663 zero extension, omit the subreg and widen the extension. If it
6664 is a regular subreg, we can still get rid of the subreg by not
6665 widening so much, or in fact removing the extension entirely. */
6666 if ((GET_CODE (tem) == SIGN_EXTEND
6667 || GET_CODE (tem) == ZERO_EXTEND)
6668 && subreg_lowpart_p (x))
6670 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6671 || (GET_MODE_SIZE (mode) >
6672 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6674 if (! INTEGRAL_MODE_P (mode))
6675 break;
6676 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6678 else
6679 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6680 return tem;
6682 break;
6684 default:
6685 break;
6688 if (new)
6690 x = gen_lowpart_for_combine (mode, new);
6691 code = GET_CODE (x);
6694 /* Now recursively process each operand of this operation. */
6695 fmt = GET_RTX_FORMAT (code);
6696 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6697 if (fmt[i] == 'e')
6699 new = make_compound_operation (XEXP (x, i), next_code);
6700 SUBST (XEXP (x, i), new);
6703 return x;
6706 /* Given M see if it is a value that would select a field of bits
6707 within an item, but not the entire word. Return -1 if not.
6708 Otherwise, return the starting position of the field, where 0 is the
6709 low-order bit.
6711 *PLEN is set to the length of the field. */
6713 static int
6714 get_pos_from_mask (m, plen)
6715 unsigned HOST_WIDE_INT m;
6716 unsigned HOST_WIDE_INT *plen;
6718 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6719 int pos = exact_log2 (m & -m);
6720 int len;
6722 if (pos < 0)
6723 return -1;
6725 /* Now shift off the low-order zero bits and see if we have a power of
6726 two minus 1. */
6727 len = exact_log2 ((m >> pos) + 1);
6729 if (len <= 0)
6730 return -1;
6732 *plen = len;
6733 return pos;
6736 /* See if X can be simplified knowing that we will only refer to it in
6737 MODE and will only refer to those bits that are nonzero in MASK.
6738 If other bits are being computed or if masking operations are done
6739 that select a superset of the bits in MASK, they can sometimes be
6740 ignored.
6742 Return a possibly simplified expression, but always convert X to
6743 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6745 Also, if REG is non-zero and X is a register equal in value to REG,
6746 replace X with REG.
6748 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6749 are all off in X. This is used when X will be complemented, by either
6750 NOT, NEG, or XOR. */
6752 static rtx
6753 force_to_mode (x, mode, mask, reg, just_select)
6754 rtx x;
6755 enum machine_mode mode;
6756 unsigned HOST_WIDE_INT mask;
6757 rtx reg;
6758 int just_select;
6760 enum rtx_code code = GET_CODE (x);
6761 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6762 enum machine_mode op_mode;
6763 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6764 rtx op0, op1, temp;
6766 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6767 code below will do the wrong thing since the mode of such an
6768 expression is VOIDmode.
6770 Also do nothing if X is a CLOBBER; this can happen if X was
6771 the return value from a call to gen_lowpart_for_combine. */
6772 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6773 return x;
6775 /* We want to perform the operation is its present mode unless we know
6776 that the operation is valid in MODE, in which case we do the operation
6777 in MODE. */
6778 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6779 && have_insn_for (code, mode))
6780 ? mode : GET_MODE (x));
6782 /* It is not valid to do a right-shift in a narrower mode
6783 than the one it came in with. */
6784 if ((code == LSHIFTRT || code == ASHIFTRT)
6785 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6786 op_mode = GET_MODE (x);
6788 /* Truncate MASK to fit OP_MODE. */
6789 if (op_mode)
6790 mask &= GET_MODE_MASK (op_mode);
6792 /* When we have an arithmetic operation, or a shift whose count we
6793 do not know, we need to assume that all bit the up to the highest-order
6794 bit in MASK will be needed. This is how we form such a mask. */
6795 if (op_mode)
6796 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6797 ? GET_MODE_MASK (op_mode)
6798 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6799 - 1));
6800 else
6801 fuller_mask = ~(HOST_WIDE_INT) 0;
6803 /* Determine what bits of X are guaranteed to be (non)zero. */
6804 nonzero = nonzero_bits (x, mode);
6806 /* If none of the bits in X are needed, return a zero. */
6807 if (! just_select && (nonzero & mask) == 0)
6808 return const0_rtx;
6810 /* If X is a CONST_INT, return a new one. Do this here since the
6811 test below will fail. */
6812 if (GET_CODE (x) == CONST_INT)
6813 return gen_int_mode (INTVAL (x) & mask, mode);
6815 /* If X is narrower than MODE and we want all the bits in X's mode, just
6816 get X in the proper mode. */
6817 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6818 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6819 return gen_lowpart_for_combine (mode, x);
6821 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6822 MASK are already known to be zero in X, we need not do anything. */
6823 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6824 return x;
6826 switch (code)
6828 case CLOBBER:
6829 /* If X is a (clobber (const_int)), return it since we know we are
6830 generating something that won't match. */
6831 return x;
6833 case USE:
6834 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6835 spanned the boundary of the MEM. If we are now masking so it is
6836 within that boundary, we don't need the USE any more. */
6837 if (! BITS_BIG_ENDIAN
6838 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6839 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6840 break;
6842 case SIGN_EXTEND:
6843 case ZERO_EXTEND:
6844 case ZERO_EXTRACT:
6845 case SIGN_EXTRACT:
6846 x = expand_compound_operation (x);
6847 if (GET_CODE (x) != code)
6848 return force_to_mode (x, mode, mask, reg, next_select);
6849 break;
6851 case REG:
6852 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6853 || rtx_equal_p (reg, get_last_value (x))))
6854 x = reg;
6855 break;
6857 case SUBREG:
6858 if (subreg_lowpart_p (x)
6859 /* We can ignore the effect of this SUBREG if it narrows the mode or
6860 if the constant masks to zero all the bits the mode doesn't
6861 have. */
6862 && ((GET_MODE_SIZE (GET_MODE (x))
6863 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6864 || (0 == (mask
6865 & GET_MODE_MASK (GET_MODE (x))
6866 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6867 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6868 break;
6870 case AND:
6871 /* If this is an AND with a constant, convert it into an AND
6872 whose constant is the AND of that constant with MASK. If it
6873 remains an AND of MASK, delete it since it is redundant. */
6875 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6877 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6878 mask & INTVAL (XEXP (x, 1)));
6880 /* If X is still an AND, see if it is an AND with a mask that
6881 is just some low-order bits. If so, and it is MASK, we don't
6882 need it. */
6884 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6885 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6886 == mask))
6887 x = XEXP (x, 0);
6889 /* If it remains an AND, try making another AND with the bits
6890 in the mode mask that aren't in MASK turned on. If the
6891 constant in the AND is wide enough, this might make a
6892 cheaper constant. */
6894 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6895 && GET_MODE_MASK (GET_MODE (x)) != mask
6896 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6898 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6899 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6900 int width = GET_MODE_BITSIZE (GET_MODE (x));
6901 rtx y;
6903 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6904 number, sign extend it. */
6905 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6906 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6907 cval |= (HOST_WIDE_INT) -1 << width;
6909 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6910 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6911 x = y;
6914 break;
6917 goto binop;
6919 case PLUS:
6920 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6921 low-order bits (as in an alignment operation) and FOO is already
6922 aligned to that boundary, mask C1 to that boundary as well.
6923 This may eliminate that PLUS and, later, the AND. */
6926 unsigned int width = GET_MODE_BITSIZE (mode);
6927 unsigned HOST_WIDE_INT smask = mask;
6929 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6930 number, sign extend it. */
6932 if (width < HOST_BITS_PER_WIDE_INT
6933 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6934 smask |= (HOST_WIDE_INT) -1 << width;
6936 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6937 && exact_log2 (- smask) >= 0
6938 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6939 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6940 return force_to_mode (plus_constant (XEXP (x, 0),
6941 (INTVAL (XEXP (x, 1)) & smask)),
6942 mode, smask, reg, next_select);
6945 /* ... fall through ... */
6947 case MULT:
6948 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6949 most significant bit in MASK since carries from those bits will
6950 affect the bits we are interested in. */
6951 mask = fuller_mask;
6952 goto binop;
6954 case MINUS:
6955 /* If X is (minus C Y) where C's least set bit is larger than any bit
6956 in the mask, then we may replace with (neg Y). */
6957 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6958 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6959 & -INTVAL (XEXP (x, 0))))
6960 > mask))
6962 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6963 GET_MODE (x));
6964 return force_to_mode (x, mode, mask, reg, next_select);
6967 /* Similarly, if C contains every bit in the mask, then we may
6968 replace with (not Y). */
6969 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6970 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6971 == INTVAL (XEXP (x, 0))))
6973 x = simplify_gen_unary (NOT, GET_MODE (x),
6974 XEXP (x, 1), GET_MODE (x));
6975 return force_to_mode (x, mode, mask, reg, next_select);
6978 mask = fuller_mask;
6979 goto binop;
6981 case IOR:
6982 case XOR:
6983 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6984 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6985 operation which may be a bitfield extraction. Ensure that the
6986 constant we form is not wider than the mode of X. */
6988 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6989 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6990 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6991 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6992 && GET_CODE (XEXP (x, 1)) == CONST_INT
6993 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6994 + floor_log2 (INTVAL (XEXP (x, 1))))
6995 < GET_MODE_BITSIZE (GET_MODE (x)))
6996 && (INTVAL (XEXP (x, 1))
6997 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6999 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7000 << INTVAL (XEXP (XEXP (x, 0), 1)));
7001 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7002 XEXP (XEXP (x, 0), 0), temp);
7003 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7004 XEXP (XEXP (x, 0), 1));
7005 return force_to_mode (x, mode, mask, reg, next_select);
7008 binop:
7009 /* For most binary operations, just propagate into the operation and
7010 change the mode if we have an operation of that mode. */
7012 op0 = gen_lowpart_for_combine (op_mode,
7013 force_to_mode (XEXP (x, 0), mode, mask,
7014 reg, next_select));
7015 op1 = gen_lowpart_for_combine (op_mode,
7016 force_to_mode (XEXP (x, 1), mode, mask,
7017 reg, next_select));
7019 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7020 x = gen_binary (code, op_mode, op0, op1);
7021 break;
7023 case ASHIFT:
7024 /* For left shifts, do the same, but just for the first operand.
7025 However, we cannot do anything with shifts where we cannot
7026 guarantee that the counts are smaller than the size of the mode
7027 because such a count will have a different meaning in a
7028 wider mode. */
7030 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7031 && INTVAL (XEXP (x, 1)) >= 0
7032 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7033 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7034 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7035 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7036 break;
7038 /* If the shift count is a constant and we can do arithmetic in
7039 the mode of the shift, refine which bits we need. Otherwise, use the
7040 conservative form of the mask. */
7041 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7042 && INTVAL (XEXP (x, 1)) >= 0
7043 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7044 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7045 mask >>= INTVAL (XEXP (x, 1));
7046 else
7047 mask = fuller_mask;
7049 op0 = gen_lowpart_for_combine (op_mode,
7050 force_to_mode (XEXP (x, 0), op_mode,
7051 mask, reg, next_select));
7053 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7054 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7055 break;
7057 case LSHIFTRT:
7058 /* Here we can only do something if the shift count is a constant,
7059 this shift constant is valid for the host, and we can do arithmetic
7060 in OP_MODE. */
7062 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7063 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7064 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7066 rtx inner = XEXP (x, 0);
7067 unsigned HOST_WIDE_INT inner_mask;
7069 /* Select the mask of the bits we need for the shift operand. */
7070 inner_mask = mask << INTVAL (XEXP (x, 1));
7072 /* We can only change the mode of the shift if we can do arithmetic
7073 in the mode of the shift and INNER_MASK is no wider than the
7074 width of OP_MODE. */
7075 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7076 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7077 op_mode = GET_MODE (x);
7079 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7081 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7082 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7085 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7086 shift and AND produces only copies of the sign bit (C2 is one less
7087 than a power of two), we can do this with just a shift. */
7089 if (GET_CODE (x) == LSHIFTRT
7090 && GET_CODE (XEXP (x, 1)) == CONST_INT
7091 /* The shift puts one of the sign bit copies in the least significant
7092 bit. */
7093 && ((INTVAL (XEXP (x, 1))
7094 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7095 >= GET_MODE_BITSIZE (GET_MODE (x)))
7096 && exact_log2 (mask + 1) >= 0
7097 /* Number of bits left after the shift must be more than the mask
7098 needs. */
7099 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7100 <= GET_MODE_BITSIZE (GET_MODE (x)))
7101 /* Must be more sign bit copies than the mask needs. */
7102 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7103 >= exact_log2 (mask + 1)))
7104 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7105 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7106 - exact_log2 (mask + 1)));
7108 goto shiftrt;
7110 case ASHIFTRT:
7111 /* If we are just looking for the sign bit, we don't need this shift at
7112 all, even if it has a variable count. */
7113 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7114 && (mask == ((unsigned HOST_WIDE_INT) 1
7115 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7116 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7118 /* If this is a shift by a constant, get a mask that contains those bits
7119 that are not copies of the sign bit. We then have two cases: If
7120 MASK only includes those bits, this can be a logical shift, which may
7121 allow simplifications. If MASK is a single-bit field not within
7122 those bits, we are requesting a copy of the sign bit and hence can
7123 shift the sign bit to the appropriate location. */
7125 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7126 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7128 int i = -1;
7130 /* If the considered data is wider than HOST_WIDE_INT, we can't
7131 represent a mask for all its bits in a single scalar.
7132 But we only care about the lower bits, so calculate these. */
7134 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7136 nonzero = ~(HOST_WIDE_INT) 0;
7138 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7139 is the number of bits a full-width mask would have set.
7140 We need only shift if these are fewer than nonzero can
7141 hold. If not, we must keep all bits set in nonzero. */
7143 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7144 < HOST_BITS_PER_WIDE_INT)
7145 nonzero >>= INTVAL (XEXP (x, 1))
7146 + HOST_BITS_PER_WIDE_INT
7147 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7149 else
7151 nonzero = GET_MODE_MASK (GET_MODE (x));
7152 nonzero >>= INTVAL (XEXP (x, 1));
7155 if ((mask & ~nonzero) == 0
7156 || (i = exact_log2 (mask)) >= 0)
7158 x = simplify_shift_const
7159 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7160 i < 0 ? INTVAL (XEXP (x, 1))
7161 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7163 if (GET_CODE (x) != ASHIFTRT)
7164 return force_to_mode (x, mode, mask, reg, next_select);
7168 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7169 even if the shift count isn't a constant. */
7170 if (mask == 1)
7171 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7173 shiftrt:
7175 /* If this is a zero- or sign-extension operation that just affects bits
7176 we don't care about, remove it. Be sure the call above returned
7177 something that is still a shift. */
7179 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7180 && GET_CODE (XEXP (x, 1)) == CONST_INT
7181 && INTVAL (XEXP (x, 1)) >= 0
7182 && (INTVAL (XEXP (x, 1))
7183 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7184 && GET_CODE (XEXP (x, 0)) == ASHIFT
7185 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7186 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7187 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7188 reg, next_select);
7190 break;
7192 case ROTATE:
7193 case ROTATERT:
7194 /* If the shift count is constant and we can do computations
7195 in the mode of X, compute where the bits we care about are.
7196 Otherwise, we can't do anything. Don't change the mode of
7197 the shift or propagate MODE into the shift, though. */
7198 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7199 && INTVAL (XEXP (x, 1)) >= 0)
7201 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7202 GET_MODE (x), GEN_INT (mask),
7203 XEXP (x, 1));
7204 if (temp && GET_CODE(temp) == CONST_INT)
7205 SUBST (XEXP (x, 0),
7206 force_to_mode (XEXP (x, 0), GET_MODE (x),
7207 INTVAL (temp), reg, next_select));
7209 break;
7211 case NEG:
7212 /* If we just want the low-order bit, the NEG isn't needed since it
7213 won't change the low-order bit. */
7214 if (mask == 1)
7215 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7217 /* We need any bits less significant than the most significant bit in
7218 MASK since carries from those bits will affect the bits we are
7219 interested in. */
7220 mask = fuller_mask;
7221 goto unop;
7223 case NOT:
7224 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7225 same as the XOR case above. Ensure that the constant we form is not
7226 wider than the mode of X. */
7228 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7229 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7230 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7231 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7232 < GET_MODE_BITSIZE (GET_MODE (x)))
7233 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7235 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7236 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7237 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7239 return force_to_mode (x, mode, mask, reg, next_select);
7242 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7243 use the full mask inside the NOT. */
7244 mask = fuller_mask;
7246 unop:
7247 op0 = gen_lowpart_for_combine (op_mode,
7248 force_to_mode (XEXP (x, 0), mode, mask,
7249 reg, next_select));
7250 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7251 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7252 break;
7254 case NE:
7255 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7256 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7257 which is equal to STORE_FLAG_VALUE. */
7258 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7259 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7260 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7261 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7263 break;
7265 case IF_THEN_ELSE:
7266 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7267 written in a narrower mode. We play it safe and do not do so. */
7269 SUBST (XEXP (x, 1),
7270 gen_lowpart_for_combine (GET_MODE (x),
7271 force_to_mode (XEXP (x, 1), mode,
7272 mask, reg, next_select)));
7273 SUBST (XEXP (x, 2),
7274 gen_lowpart_for_combine (GET_MODE (x),
7275 force_to_mode (XEXP (x, 2), mode,
7276 mask, reg,next_select)));
7277 break;
7279 default:
7280 break;
7283 /* Ensure we return a value of the proper mode. */
7284 return gen_lowpart_for_combine (mode, x);
7287 /* Return nonzero if X is an expression that has one of two values depending on
7288 whether some other value is zero or nonzero. In that case, we return the
7289 value that is being tested, *PTRUE is set to the value if the rtx being
7290 returned has a nonzero value, and *PFALSE is set to the other alternative.
7292 If we return zero, we set *PTRUE and *PFALSE to X. */
7294 static rtx
7295 if_then_else_cond (x, ptrue, pfalse)
7296 rtx x;
7297 rtx *ptrue, *pfalse;
7299 enum machine_mode mode = GET_MODE (x);
7300 enum rtx_code code = GET_CODE (x);
7301 rtx cond0, cond1, true0, true1, false0, false1;
7302 unsigned HOST_WIDE_INT nz;
7304 /* If we are comparing a value against zero, we are done. */
7305 if ((code == NE || code == EQ)
7306 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7308 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7309 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7310 return XEXP (x, 0);
7313 /* If this is a unary operation whose operand has one of two values, apply
7314 our opcode to compute those values. */
7315 else if (GET_RTX_CLASS (code) == '1'
7316 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7318 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7319 *pfalse = simplify_gen_unary (code, mode, false0,
7320 GET_MODE (XEXP (x, 0)));
7321 return cond0;
7324 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7325 make can't possibly match and would suppress other optimizations. */
7326 else if (code == COMPARE)
7329 /* If this is a binary operation, see if either side has only one of two
7330 values. If either one does or if both do and they are conditional on
7331 the same value, compute the new true and false values. */
7332 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7333 || GET_RTX_CLASS (code) == '<')
7335 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7336 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7338 if ((cond0 != 0 || cond1 != 0)
7339 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7341 /* If if_then_else_cond returned zero, then true/false are the
7342 same rtl. We must copy one of them to prevent invalid rtl
7343 sharing. */
7344 if (cond0 == 0)
7345 true0 = copy_rtx (true0);
7346 else if (cond1 == 0)
7347 true1 = copy_rtx (true1);
7349 *ptrue = gen_binary (code, mode, true0, true1);
7350 *pfalse = gen_binary (code, mode, false0, false1);
7351 return cond0 ? cond0 : cond1;
7354 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7355 operands is zero when the other is non-zero, and vice-versa,
7356 and STORE_FLAG_VALUE is 1 or -1. */
7358 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7359 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7360 || code == UMAX)
7361 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7363 rtx op0 = XEXP (XEXP (x, 0), 1);
7364 rtx op1 = XEXP (XEXP (x, 1), 1);
7366 cond0 = XEXP (XEXP (x, 0), 0);
7367 cond1 = XEXP (XEXP (x, 1), 0);
7369 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7370 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7371 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7372 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7373 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7374 || ((swap_condition (GET_CODE (cond0))
7375 == combine_reversed_comparison_code (cond1))
7376 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7377 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7378 && ! side_effects_p (x))
7380 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7381 *pfalse = gen_binary (MULT, mode,
7382 (code == MINUS
7383 ? simplify_gen_unary (NEG, mode, op1,
7384 mode)
7385 : op1),
7386 const_true_rtx);
7387 return cond0;
7391 /* Similarly for MULT, AND and UMIN, except that for these the result
7392 is always zero. */
7393 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7394 && (code == MULT || code == AND || code == UMIN)
7395 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7397 cond0 = XEXP (XEXP (x, 0), 0);
7398 cond1 = XEXP (XEXP (x, 1), 0);
7400 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7401 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7402 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7403 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7404 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7405 || ((swap_condition (GET_CODE (cond0))
7406 == combine_reversed_comparison_code (cond1))
7407 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7408 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7409 && ! side_effects_p (x))
7411 *ptrue = *pfalse = const0_rtx;
7412 return cond0;
7417 else if (code == IF_THEN_ELSE)
7419 /* If we have IF_THEN_ELSE already, extract the condition and
7420 canonicalize it if it is NE or EQ. */
7421 cond0 = XEXP (x, 0);
7422 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7423 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7424 return XEXP (cond0, 0);
7425 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7427 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7428 return XEXP (cond0, 0);
7430 else
7431 return cond0;
7434 /* If X is a SUBREG, we can narrow both the true and false values
7435 if the inner expression, if there is a condition. */
7436 else if (code == SUBREG
7437 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7438 &true0, &false0)))
7440 *ptrue = simplify_gen_subreg (mode, true0,
7441 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7442 *pfalse = simplify_gen_subreg (mode, false0,
7443 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7445 return cond0;
7448 /* If X is a constant, this isn't special and will cause confusions
7449 if we treat it as such. Likewise if it is equivalent to a constant. */
7450 else if (CONSTANT_P (x)
7451 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7454 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7455 will be least confusing to the rest of the compiler. */
7456 else if (mode == BImode)
7458 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7459 return x;
7462 /* If X is known to be either 0 or -1, those are the true and
7463 false values when testing X. */
7464 else if (x == constm1_rtx || x == const0_rtx
7465 || (mode != VOIDmode
7466 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7468 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7469 return x;
7472 /* Likewise for 0 or a single bit. */
7473 else if (mode != VOIDmode
7474 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7475 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7477 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7478 return x;
7481 /* Otherwise fail; show no condition with true and false values the same. */
7482 *ptrue = *pfalse = x;
7483 return 0;
7486 /* Return the value of expression X given the fact that condition COND
7487 is known to be true when applied to REG as its first operand and VAL
7488 as its second. X is known to not be shared and so can be modified in
7489 place.
7491 We only handle the simplest cases, and specifically those cases that
7492 arise with IF_THEN_ELSE expressions. */
7494 static rtx
7495 known_cond (x, cond, reg, val)
7496 rtx x;
7497 enum rtx_code cond;
7498 rtx reg, val;
7500 enum rtx_code code = GET_CODE (x);
7501 rtx temp;
7502 const char *fmt;
7503 int i, j;
7505 if (side_effects_p (x))
7506 return x;
7508 /* If either operand of the condition is a floating point value,
7509 then we have to avoid collapsing an EQ comparison. */
7510 if (cond == EQ
7511 && rtx_equal_p (x, reg)
7512 && ! FLOAT_MODE_P (GET_MODE (x))
7513 && ! FLOAT_MODE_P (GET_MODE (val)))
7514 return val;
7516 if (cond == UNEQ && rtx_equal_p (x, reg))
7517 return val;
7519 /* If X is (abs REG) and we know something about REG's relationship
7520 with zero, we may be able to simplify this. */
7522 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7523 switch (cond)
7525 case GE: case GT: case EQ:
7526 return XEXP (x, 0);
7527 case LT: case LE:
7528 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7529 XEXP (x, 0),
7530 GET_MODE (XEXP (x, 0)));
7531 default:
7532 break;
7535 /* The only other cases we handle are MIN, MAX, and comparisons if the
7536 operands are the same as REG and VAL. */
7538 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7540 if (rtx_equal_p (XEXP (x, 0), val))
7541 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7543 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7545 if (GET_RTX_CLASS (code) == '<')
7547 if (comparison_dominates_p (cond, code))
7548 return const_true_rtx;
7550 code = combine_reversed_comparison_code (x);
7551 if (code != UNKNOWN
7552 && comparison_dominates_p (cond, code))
7553 return const0_rtx;
7554 else
7555 return x;
7557 else if (code == SMAX || code == SMIN
7558 || code == UMIN || code == UMAX)
7560 int unsignedp = (code == UMIN || code == UMAX);
7562 /* Do not reverse the condition when it is NE or EQ.
7563 This is because we cannot conclude anything about
7564 the value of 'SMAX (x, y)' when x is not equal to y,
7565 but we can when x equals y. */
7566 if ((code == SMAX || code == UMAX)
7567 && ! (cond == EQ || cond == NE))
7568 cond = reverse_condition (cond);
7570 switch (cond)
7572 case GE: case GT:
7573 return unsignedp ? x : XEXP (x, 1);
7574 case LE: case LT:
7575 return unsignedp ? x : XEXP (x, 0);
7576 case GEU: case GTU:
7577 return unsignedp ? XEXP (x, 1) : x;
7578 case LEU: case LTU:
7579 return unsignedp ? XEXP (x, 0) : x;
7580 default:
7581 break;
7586 else if (code == SUBREG)
7588 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7589 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7591 if (SUBREG_REG (x) != r)
7593 /* We must simplify subreg here, before we lose track of the
7594 original inner_mode. */
7595 new = simplify_subreg (GET_MODE (x), r,
7596 inner_mode, SUBREG_BYTE (x));
7597 if (new)
7598 return new;
7599 else
7600 SUBST (SUBREG_REG (x), r);
7603 return x;
7605 /* We don't have to handle SIGN_EXTEND here, because even in the
7606 case of replacing something with a modeless CONST_INT, a
7607 CONST_INT is already (supposed to be) a valid sign extension for
7608 its narrower mode, which implies it's already properly
7609 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7610 story is different. */
7611 else if (code == ZERO_EXTEND)
7613 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7614 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7616 if (XEXP (x, 0) != r)
7618 /* We must simplify the zero_extend here, before we lose
7619 track of the original inner_mode. */
7620 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7621 r, inner_mode);
7622 if (new)
7623 return new;
7624 else
7625 SUBST (XEXP (x, 0), r);
7628 return x;
7631 fmt = GET_RTX_FORMAT (code);
7632 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7634 if (fmt[i] == 'e')
7635 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7636 else if (fmt[i] == 'E')
7637 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7638 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7639 cond, reg, val));
7642 return x;
7645 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7646 assignment as a field assignment. */
7648 static int
7649 rtx_equal_for_field_assignment_p (x, y)
7650 rtx x;
7651 rtx y;
7653 if (x == y || rtx_equal_p (x, y))
7654 return 1;
7656 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7657 return 0;
7659 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7660 Note that all SUBREGs of MEM are paradoxical; otherwise they
7661 would have been rewritten. */
7662 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7663 && GET_CODE (SUBREG_REG (y)) == MEM
7664 && rtx_equal_p (SUBREG_REG (y),
7665 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7666 return 1;
7668 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7669 && GET_CODE (SUBREG_REG (x)) == MEM
7670 && rtx_equal_p (SUBREG_REG (x),
7671 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7672 return 1;
7674 /* We used to see if get_last_value of X and Y were the same but that's
7675 not correct. In one direction, we'll cause the assignment to have
7676 the wrong destination and in the case, we'll import a register into this
7677 insn that might have already have been dead. So fail if none of the
7678 above cases are true. */
7679 return 0;
7682 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7683 Return that assignment if so.
7685 We only handle the most common cases. */
7687 static rtx
7688 make_field_assignment (x)
7689 rtx x;
7691 rtx dest = SET_DEST (x);
7692 rtx src = SET_SRC (x);
7693 rtx assign;
7694 rtx rhs, lhs;
7695 HOST_WIDE_INT c1;
7696 HOST_WIDE_INT pos;
7697 unsigned HOST_WIDE_INT len;
7698 rtx other;
7699 enum machine_mode mode;
7701 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7702 a clear of a one-bit field. We will have changed it to
7703 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7704 for a SUBREG. */
7706 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7707 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7708 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7709 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7711 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7712 1, 1, 1, 0);
7713 if (assign != 0)
7714 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7715 return x;
7718 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7719 && subreg_lowpart_p (XEXP (src, 0))
7720 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7721 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7722 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7723 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7724 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7726 assign = make_extraction (VOIDmode, dest, 0,
7727 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7728 1, 1, 1, 0);
7729 if (assign != 0)
7730 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7731 return x;
7734 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7735 one-bit field. */
7736 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7737 && XEXP (XEXP (src, 0), 0) == const1_rtx
7738 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7740 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7741 1, 1, 1, 0);
7742 if (assign != 0)
7743 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7744 return x;
7747 /* The other case we handle is assignments into a constant-position
7748 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7749 a mask that has all one bits except for a group of zero bits and
7750 OTHER is known to have zeros where C1 has ones, this is such an
7751 assignment. Compute the position and length from C1. Shift OTHER
7752 to the appropriate position, force it to the required mode, and
7753 make the extraction. Check for the AND in both operands. */
7755 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7756 return x;
7758 rhs = expand_compound_operation (XEXP (src, 0));
7759 lhs = expand_compound_operation (XEXP (src, 1));
7761 if (GET_CODE (rhs) == AND
7762 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7763 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7764 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7765 else if (GET_CODE (lhs) == AND
7766 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7767 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7768 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7769 else
7770 return x;
7772 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7773 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7774 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7775 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7776 return x;
7778 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7779 if (assign == 0)
7780 return x;
7782 /* The mode to use for the source is the mode of the assignment, or of
7783 what is inside a possible STRICT_LOW_PART. */
7784 mode = (GET_CODE (assign) == STRICT_LOW_PART
7785 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7787 /* Shift OTHER right POS places and make it the source, restricting it
7788 to the proper length and mode. */
7790 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7791 GET_MODE (src), other, pos),
7792 mode,
7793 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7794 ? ~(unsigned HOST_WIDE_INT) 0
7795 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7796 dest, 0);
7798 return gen_rtx_SET (VOIDmode, assign, src);
7801 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7802 if so. */
7804 static rtx
7805 apply_distributive_law (x)
7806 rtx x;
7808 enum rtx_code code = GET_CODE (x);
7809 rtx lhs, rhs, other;
7810 rtx tem;
7811 enum rtx_code inner_code;
7813 /* Distributivity is not true for floating point.
7814 It can change the value. So don't do it.
7815 -- rms and moshier@world.std.com. */
7816 if (FLOAT_MODE_P (GET_MODE (x)))
7817 return x;
7819 /* The outer operation can only be one of the following: */
7820 if (code != IOR && code != AND && code != XOR
7821 && code != PLUS && code != MINUS)
7822 return x;
7824 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7826 /* If either operand is a primitive we can't do anything, so get out
7827 fast. */
7828 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7829 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7830 return x;
7832 lhs = expand_compound_operation (lhs);
7833 rhs = expand_compound_operation (rhs);
7834 inner_code = GET_CODE (lhs);
7835 if (inner_code != GET_CODE (rhs))
7836 return x;
7838 /* See if the inner and outer operations distribute. */
7839 switch (inner_code)
7841 case LSHIFTRT:
7842 case ASHIFTRT:
7843 case AND:
7844 case IOR:
7845 /* These all distribute except over PLUS. */
7846 if (code == PLUS || code == MINUS)
7847 return x;
7848 break;
7850 case MULT:
7851 if (code != PLUS && code != MINUS)
7852 return x;
7853 break;
7855 case ASHIFT:
7856 /* This is also a multiply, so it distributes over everything. */
7857 break;
7859 case SUBREG:
7860 /* Non-paradoxical SUBREGs distributes over all operations, provided
7861 the inner modes and byte offsets are the same, this is an extraction
7862 of a low-order part, we don't convert an fp operation to int or
7863 vice versa, and we would not be converting a single-word
7864 operation into a multi-word operation. The latter test is not
7865 required, but it prevents generating unneeded multi-word operations.
7866 Some of the previous tests are redundant given the latter test, but
7867 are retained because they are required for correctness.
7869 We produce the result slightly differently in this case. */
7871 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7872 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7873 || ! subreg_lowpart_p (lhs)
7874 || (GET_MODE_CLASS (GET_MODE (lhs))
7875 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7876 || (GET_MODE_SIZE (GET_MODE (lhs))
7877 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7878 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7879 return x;
7881 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7882 SUBREG_REG (lhs), SUBREG_REG (rhs));
7883 return gen_lowpart_for_combine (GET_MODE (x), tem);
7885 default:
7886 return x;
7889 /* Set LHS and RHS to the inner operands (A and B in the example
7890 above) and set OTHER to the common operand (C in the example).
7891 These is only one way to do this unless the inner operation is
7892 commutative. */
7893 if (GET_RTX_CLASS (inner_code) == 'c'
7894 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7895 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7896 else if (GET_RTX_CLASS (inner_code) == 'c'
7897 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7898 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7899 else if (GET_RTX_CLASS (inner_code) == 'c'
7900 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7901 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7902 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7903 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7904 else
7905 return x;
7907 /* Form the new inner operation, seeing if it simplifies first. */
7908 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7910 /* There is one exception to the general way of distributing:
7911 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7912 if (code == XOR && inner_code == IOR)
7914 inner_code = AND;
7915 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7918 /* We may be able to continuing distributing the result, so call
7919 ourselves recursively on the inner operation before forming the
7920 outer operation, which we return. */
7921 return gen_binary (inner_code, GET_MODE (x),
7922 apply_distributive_law (tem), other);
7925 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7926 in MODE.
7928 Return an equivalent form, if different from X. Otherwise, return X. If
7929 X is zero, we are to always construct the equivalent form. */
7931 static rtx
7932 simplify_and_const_int (x, mode, varop, constop)
7933 rtx x;
7934 enum machine_mode mode;
7935 rtx varop;
7936 unsigned HOST_WIDE_INT constop;
7938 unsigned HOST_WIDE_INT nonzero;
7939 int i;
7941 /* Simplify VAROP knowing that we will be only looking at some of the
7942 bits in it.
7944 Note by passing in CONSTOP, we guarantee that the bits not set in
7945 CONSTOP are not significant and will never be examined. We must
7946 ensure that is the case by explicitly masking out those bits
7947 before returning. */
7948 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7950 /* If VAROP is a CLOBBER, we will fail so return it. */
7951 if (GET_CODE (varop) == CLOBBER)
7952 return varop;
7954 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7955 to VAROP and return the new constant. */
7956 if (GET_CODE (varop) == CONST_INT)
7957 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7959 /* See what bits may be nonzero in VAROP. Unlike the general case of
7960 a call to nonzero_bits, here we don't care about bits outside
7961 MODE. */
7963 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7965 /* Turn off all bits in the constant that are known to already be zero.
7966 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7967 which is tested below. */
7969 constop &= nonzero;
7971 /* If we don't have any bits left, return zero. */
7972 if (constop == 0)
7973 return const0_rtx;
7975 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7976 a power of two, we can replace this with an ASHIFT. */
7977 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7978 && (i = exact_log2 (constop)) >= 0)
7979 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7981 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7982 or XOR, then try to apply the distributive law. This may eliminate
7983 operations if either branch can be simplified because of the AND.
7984 It may also make some cases more complex, but those cases probably
7985 won't match a pattern either with or without this. */
7987 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7988 return
7989 gen_lowpart_for_combine
7990 (mode,
7991 apply_distributive_law
7992 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7993 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7994 XEXP (varop, 0), constop),
7995 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7996 XEXP (varop, 1), constop))));
7998 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7999 the AND and see if one of the operands simplifies to zero. If so, we
8000 may eliminate it. */
8002 if (GET_CODE (varop) == PLUS
8003 && exact_log2 (constop + 1) >= 0)
8005 rtx o0, o1;
8007 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8008 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8009 if (o0 == const0_rtx)
8010 return o1;
8011 if (o1 == const0_rtx)
8012 return o0;
8015 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8016 if we already had one (just check for the simplest cases). */
8017 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8018 && GET_MODE (XEXP (x, 0)) == mode
8019 && SUBREG_REG (XEXP (x, 0)) == varop)
8020 varop = XEXP (x, 0);
8021 else
8022 varop = gen_lowpart_for_combine (mode, varop);
8024 /* If we can't make the SUBREG, try to return what we were given. */
8025 if (GET_CODE (varop) == CLOBBER)
8026 return x ? x : varop;
8028 /* If we are only masking insignificant bits, return VAROP. */
8029 if (constop == nonzero)
8030 x = varop;
8031 else
8033 /* Otherwise, return an AND. */
8034 constop = trunc_int_for_mode (constop, mode);
8035 /* See how much, if any, of X we can use. */
8036 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8037 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8039 else
8041 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8042 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8043 SUBST (XEXP (x, 1), GEN_INT (constop));
8045 SUBST (XEXP (x, 0), varop);
8049 return x;
8052 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8053 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8054 is less useful. We can't allow both, because that results in exponential
8055 run time recursion. There is a nullstone testcase that triggered
8056 this. This macro avoids accidental uses of num_sign_bit_copies. */
8057 #define num_sign_bit_copies()
8059 /* Given an expression, X, compute which bits in X can be non-zero.
8060 We don't care about bits outside of those defined in MODE.
8062 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8063 a shift, AND, or zero_extract, we can do better. */
8065 static unsigned HOST_WIDE_INT
8066 nonzero_bits (x, mode)
8067 rtx x;
8068 enum machine_mode mode;
8070 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8071 unsigned HOST_WIDE_INT inner_nz;
8072 enum rtx_code code;
8073 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8074 rtx tem;
8076 /* For floating-point values, assume all bits are needed. */
8077 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8078 return nonzero;
8080 /* If X is wider than MODE, use its mode instead. */
8081 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8083 mode = GET_MODE (x);
8084 nonzero = GET_MODE_MASK (mode);
8085 mode_width = GET_MODE_BITSIZE (mode);
8088 if (mode_width > HOST_BITS_PER_WIDE_INT)
8089 /* Our only callers in this case look for single bit values. So
8090 just return the mode mask. Those tests will then be false. */
8091 return nonzero;
8093 #ifndef WORD_REGISTER_OPERATIONS
8094 /* If MODE is wider than X, but both are a single word for both the host
8095 and target machines, we can compute this from which bits of the
8096 object might be nonzero in its own mode, taking into account the fact
8097 that on many CISC machines, accessing an object in a wider mode
8098 causes the high-order bits to become undefined. So they are
8099 not known to be zero. */
8101 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8102 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8103 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8104 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8106 nonzero &= nonzero_bits (x, GET_MODE (x));
8107 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8108 return nonzero;
8110 #endif
8112 code = GET_CODE (x);
8113 switch (code)
8115 case REG:
8116 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8117 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8118 all the bits above ptr_mode are known to be zero. */
8119 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8120 && REG_POINTER (x))
8121 nonzero &= GET_MODE_MASK (ptr_mode);
8122 #endif
8124 /* Include declared information about alignment of pointers. */
8125 /* ??? We don't properly preserve REG_POINTER changes across
8126 pointer-to-integer casts, so we can't trust it except for
8127 things that we know must be pointers. See execute/960116-1.c. */
8128 if ((x == stack_pointer_rtx
8129 || x == frame_pointer_rtx
8130 || x == arg_pointer_rtx)
8131 && REGNO_POINTER_ALIGN (REGNO (x)))
8133 unsigned HOST_WIDE_INT alignment
8134 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8136 #ifdef PUSH_ROUNDING
8137 /* If PUSH_ROUNDING is defined, it is possible for the
8138 stack to be momentarily aligned only to that amount,
8139 so we pick the least alignment. */
8140 if (x == stack_pointer_rtx && PUSH_ARGS)
8141 alignment = MIN (PUSH_ROUNDING (1), alignment);
8142 #endif
8144 nonzero &= ~(alignment - 1);
8147 /* If X is a register whose nonzero bits value is current, use it.
8148 Otherwise, if X is a register whose value we can find, use that
8149 value. Otherwise, use the previously-computed global nonzero bits
8150 for this register. */
8152 if (reg_last_set_value[REGNO (x)] != 0
8153 && (reg_last_set_mode[REGNO (x)] == mode
8154 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8155 && GET_MODE_CLASS (mode) == MODE_INT))
8156 && (reg_last_set_label[REGNO (x)] == label_tick
8157 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8158 && REG_N_SETS (REGNO (x)) == 1
8159 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8160 REGNO (x))))
8161 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8162 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8164 tem = get_last_value (x);
8166 if (tem)
8168 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8169 /* If X is narrower than MODE and TEM is a non-negative
8170 constant that would appear negative in the mode of X,
8171 sign-extend it for use in reg_nonzero_bits because some
8172 machines (maybe most) will actually do the sign-extension
8173 and this is the conservative approach.
8175 ??? For 2.5, try to tighten up the MD files in this regard
8176 instead of this kludge. */
8178 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8179 && GET_CODE (tem) == CONST_INT
8180 && INTVAL (tem) > 0
8181 && 0 != (INTVAL (tem)
8182 & ((HOST_WIDE_INT) 1
8183 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8184 tem = GEN_INT (INTVAL (tem)
8185 | ((HOST_WIDE_INT) (-1)
8186 << GET_MODE_BITSIZE (GET_MODE (x))));
8187 #endif
8188 return nonzero_bits (tem, mode) & nonzero;
8190 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8192 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8194 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8195 /* We don't know anything about the upper bits. */
8196 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8197 return nonzero & mask;
8199 else
8200 return nonzero;
8202 case CONST_INT:
8203 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8204 /* If X is negative in MODE, sign-extend the value. */
8205 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8206 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8207 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8208 #endif
8210 return INTVAL (x);
8212 case MEM:
8213 #ifdef LOAD_EXTEND_OP
8214 /* In many, if not most, RISC machines, reading a byte from memory
8215 zeros the rest of the register. Noticing that fact saves a lot
8216 of extra zero-extends. */
8217 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8218 nonzero &= GET_MODE_MASK (GET_MODE (x));
8219 #endif
8220 break;
8222 case EQ: case NE:
8223 case UNEQ: case LTGT:
8224 case GT: case GTU: case UNGT:
8225 case LT: case LTU: case UNLT:
8226 case GE: case GEU: case UNGE:
8227 case LE: case LEU: case UNLE:
8228 case UNORDERED: case ORDERED:
8230 /* If this produces an integer result, we know which bits are set.
8231 Code here used to clear bits outside the mode of X, but that is
8232 now done above. */
8234 if (GET_MODE_CLASS (mode) == MODE_INT
8235 && mode_width <= HOST_BITS_PER_WIDE_INT)
8236 nonzero = STORE_FLAG_VALUE;
8237 break;
8239 case NEG:
8240 #if 0
8241 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8242 and num_sign_bit_copies. */
8243 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8244 == GET_MODE_BITSIZE (GET_MODE (x)))
8245 nonzero = 1;
8246 #endif
8248 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8249 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8250 break;
8252 case ABS:
8253 #if 0
8254 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8255 and num_sign_bit_copies. */
8256 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8257 == GET_MODE_BITSIZE (GET_MODE (x)))
8258 nonzero = 1;
8259 #endif
8260 break;
8262 case TRUNCATE:
8263 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8264 break;
8266 case ZERO_EXTEND:
8267 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8268 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8269 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8270 break;
8272 case SIGN_EXTEND:
8273 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8274 Otherwise, show all the bits in the outer mode but not the inner
8275 may be non-zero. */
8276 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8277 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8279 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8280 if (inner_nz
8281 & (((HOST_WIDE_INT) 1
8282 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8283 inner_nz |= (GET_MODE_MASK (mode)
8284 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8287 nonzero &= inner_nz;
8288 break;
8290 case AND:
8291 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8292 & nonzero_bits (XEXP (x, 1), mode));
8293 break;
8295 case XOR: case IOR:
8296 case UMIN: case UMAX: case SMIN: case SMAX:
8298 unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8300 /* Don't call nonzero_bits for the second time if it cannot change
8301 anything. */
8302 if ((nonzero & nonzero0) != nonzero)
8303 nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8305 break;
8307 case PLUS: case MINUS:
8308 case MULT:
8309 case DIV: case UDIV:
8310 case MOD: case UMOD:
8311 /* We can apply the rules of arithmetic to compute the number of
8312 high- and low-order zero bits of these operations. We start by
8313 computing the width (position of the highest-order non-zero bit)
8314 and the number of low-order zero bits for each value. */
8316 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8317 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8318 int width0 = floor_log2 (nz0) + 1;
8319 int width1 = floor_log2 (nz1) + 1;
8320 int low0 = floor_log2 (nz0 & -nz0);
8321 int low1 = floor_log2 (nz1 & -nz1);
8322 HOST_WIDE_INT op0_maybe_minusp
8323 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8324 HOST_WIDE_INT op1_maybe_minusp
8325 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8326 unsigned int result_width = mode_width;
8327 int result_low = 0;
8329 switch (code)
8331 case PLUS:
8332 result_width = MAX (width0, width1) + 1;
8333 result_low = MIN (low0, low1);
8334 break;
8335 case MINUS:
8336 result_low = MIN (low0, low1);
8337 break;
8338 case MULT:
8339 result_width = width0 + width1;
8340 result_low = low0 + low1;
8341 break;
8342 case DIV:
8343 if (width1 == 0)
8344 break;
8345 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8346 result_width = width0;
8347 break;
8348 case UDIV:
8349 if (width1 == 0)
8350 break;
8351 result_width = width0;
8352 break;
8353 case MOD:
8354 if (width1 == 0)
8355 break;
8356 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8357 result_width = MIN (width0, width1);
8358 result_low = MIN (low0, low1);
8359 break;
8360 case UMOD:
8361 if (width1 == 0)
8362 break;
8363 result_width = MIN (width0, width1);
8364 result_low = MIN (low0, low1);
8365 break;
8366 default:
8367 abort ();
8370 if (result_width < mode_width)
8371 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8373 if (result_low > 0)
8374 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8376 #ifdef POINTERS_EXTEND_UNSIGNED
8377 /* If pointers extend unsigned and this is an addition or subtraction
8378 to a pointer in Pmode, all the bits above ptr_mode are known to be
8379 zero. */
8380 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8381 && (code == PLUS || code == MINUS)
8382 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8383 nonzero &= GET_MODE_MASK (ptr_mode);
8384 #endif
8386 break;
8388 case ZERO_EXTRACT:
8389 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8390 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8391 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8392 break;
8394 case SUBREG:
8395 /* If this is a SUBREG formed for a promoted variable that has
8396 been zero-extended, we know that at least the high-order bits
8397 are zero, though others might be too. */
8399 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8400 nonzero = (GET_MODE_MASK (GET_MODE (x))
8401 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8403 /* If the inner mode is a single word for both the host and target
8404 machines, we can compute this from which bits of the inner
8405 object might be nonzero. */
8406 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8407 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8408 <= HOST_BITS_PER_WIDE_INT))
8410 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8412 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8413 /* If this is a typical RISC machine, we only have to worry
8414 about the way loads are extended. */
8415 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8416 ? (((nonzero
8417 & (((unsigned HOST_WIDE_INT) 1
8418 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8419 != 0))
8420 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8421 || GET_CODE (SUBREG_REG (x)) != MEM)
8422 #endif
8424 /* On many CISC machines, accessing an object in a wider mode
8425 causes the high-order bits to become undefined. So they are
8426 not known to be zero. */
8427 if (GET_MODE_SIZE (GET_MODE (x))
8428 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8429 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8430 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8433 break;
8435 case ASHIFTRT:
8436 case LSHIFTRT:
8437 case ASHIFT:
8438 case ROTATE:
8439 /* The nonzero bits are in two classes: any bits within MODE
8440 that aren't in GET_MODE (x) are always significant. The rest of the
8441 nonzero bits are those that are significant in the operand of
8442 the shift when shifted the appropriate number of bits. This
8443 shows that high-order bits are cleared by the right shift and
8444 low-order bits by left shifts. */
8445 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8446 && INTVAL (XEXP (x, 1)) >= 0
8447 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8449 enum machine_mode inner_mode = GET_MODE (x);
8450 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8451 int count = INTVAL (XEXP (x, 1));
8452 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8453 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8454 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8455 unsigned HOST_WIDE_INT outer = 0;
8457 if (mode_width > width)
8458 outer = (op_nonzero & nonzero & ~mode_mask);
8460 if (code == LSHIFTRT)
8461 inner >>= count;
8462 else if (code == ASHIFTRT)
8464 inner >>= count;
8466 /* If the sign bit may have been nonzero before the shift, we
8467 need to mark all the places it could have been copied to
8468 by the shift as possibly nonzero. */
8469 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8470 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8472 else if (code == ASHIFT)
8473 inner <<= count;
8474 else
8475 inner = ((inner << (count % width)
8476 | (inner >> (width - (count % width)))) & mode_mask);
8478 nonzero &= (outer | inner);
8480 break;
8482 case FFS:
8483 /* This is at most the number of bits in the mode. */
8484 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8485 break;
8487 case IF_THEN_ELSE:
8488 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8489 | nonzero_bits (XEXP (x, 2), mode));
8490 break;
8492 default:
8493 break;
8496 return nonzero;
8499 /* See the macro definition above. */
8500 #undef num_sign_bit_copies
8502 /* Return the number of bits at the high-order end of X that are known to
8503 be equal to the sign bit. X will be used in mode MODE; if MODE is
8504 VOIDmode, X will be used in its own mode. The returned value will always
8505 be between 1 and the number of bits in MODE. */
8507 static unsigned int
8508 num_sign_bit_copies (x, mode)
8509 rtx x;
8510 enum machine_mode mode;
8512 enum rtx_code code = GET_CODE (x);
8513 unsigned int bitwidth;
8514 int num0, num1, result;
8515 unsigned HOST_WIDE_INT nonzero;
8516 rtx tem;
8518 /* If we weren't given a mode, use the mode of X. If the mode is still
8519 VOIDmode, we don't know anything. Likewise if one of the modes is
8520 floating-point. */
8522 if (mode == VOIDmode)
8523 mode = GET_MODE (x);
8525 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8526 return 1;
8528 bitwidth = GET_MODE_BITSIZE (mode);
8530 /* For a smaller object, just ignore the high bits. */
8531 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8533 num0 = num_sign_bit_copies (x, GET_MODE (x));
8534 return MAX (1,
8535 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8538 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8540 #ifndef WORD_REGISTER_OPERATIONS
8541 /* If this machine does not do all register operations on the entire
8542 register and MODE is wider than the mode of X, we can say nothing
8543 at all about the high-order bits. */
8544 return 1;
8545 #else
8546 /* Likewise on machines that do, if the mode of the object is smaller
8547 than a word and loads of that size don't sign extend, we can say
8548 nothing about the high order bits. */
8549 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8550 #ifdef LOAD_EXTEND_OP
8551 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8552 #endif
8554 return 1;
8555 #endif
8558 switch (code)
8560 case REG:
8562 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8563 /* If pointers extend signed and this is a pointer in Pmode, say that
8564 all the bits above ptr_mode are known to be sign bit copies. */
8565 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8566 && REG_POINTER (x))
8567 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8568 #endif
8570 if (reg_last_set_value[REGNO (x)] != 0
8571 && reg_last_set_mode[REGNO (x)] == mode
8572 && (reg_last_set_label[REGNO (x)] == label_tick
8573 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8574 && REG_N_SETS (REGNO (x)) == 1
8575 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8576 REGNO (x))))
8577 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8578 return reg_last_set_sign_bit_copies[REGNO (x)];
8580 tem = get_last_value (x);
8581 if (tem != 0)
8582 return num_sign_bit_copies (tem, mode);
8584 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8585 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8586 return reg_sign_bit_copies[REGNO (x)];
8587 break;
8589 case MEM:
8590 #ifdef LOAD_EXTEND_OP
8591 /* Some RISC machines sign-extend all loads of smaller than a word. */
8592 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8593 return MAX (1, ((int) bitwidth
8594 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8595 #endif
8596 break;
8598 case CONST_INT:
8599 /* If the constant is negative, take its 1's complement and remask.
8600 Then see how many zero bits we have. */
8601 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8602 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8603 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8604 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8606 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8608 case SUBREG:
8609 /* If this is a SUBREG for a promoted object that is sign-extended
8610 and we are looking at it in a wider mode, we know that at least the
8611 high-order bits are known to be sign bit copies. */
8613 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8615 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8616 return MAX ((int) bitwidth
8617 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8618 num0);
8621 /* For a smaller object, just ignore the high bits. */
8622 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8624 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8625 return MAX (1, (num0
8626 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8627 - bitwidth)));
8630 #ifdef WORD_REGISTER_OPERATIONS
8631 #ifdef LOAD_EXTEND_OP
8632 /* For paradoxical SUBREGs on machines where all register operations
8633 affect the entire register, just look inside. Note that we are
8634 passing MODE to the recursive call, so the number of sign bit copies
8635 will remain relative to that mode, not the inner mode. */
8637 /* This works only if loads sign extend. Otherwise, if we get a
8638 reload for the inner part, it may be loaded from the stack, and
8639 then we lose all sign bit copies that existed before the store
8640 to the stack. */
8642 if ((GET_MODE_SIZE (GET_MODE (x))
8643 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8644 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8645 && GET_CODE (SUBREG_REG (x)) == MEM)
8646 return num_sign_bit_copies (SUBREG_REG (x), mode);
8647 #endif
8648 #endif
8649 break;
8651 case SIGN_EXTRACT:
8652 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8653 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8654 break;
8656 case SIGN_EXTEND:
8657 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8658 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8660 case TRUNCATE:
8661 /* For a smaller object, just ignore the high bits. */
8662 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8663 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8664 - bitwidth)));
8666 case NOT:
8667 return num_sign_bit_copies (XEXP (x, 0), mode);
8669 case ROTATE: case ROTATERT:
8670 /* If we are rotating left by a number of bits less than the number
8671 of sign bit copies, we can just subtract that amount from the
8672 number. */
8673 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8674 && INTVAL (XEXP (x, 1)) >= 0
8675 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8677 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8678 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8679 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8681 break;
8683 case NEG:
8684 /* In general, this subtracts one sign bit copy. But if the value
8685 is known to be positive, the number of sign bit copies is the
8686 same as that of the input. Finally, if the input has just one bit
8687 that might be nonzero, all the bits are copies of the sign bit. */
8688 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8689 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8690 return num0 > 1 ? num0 - 1 : 1;
8692 nonzero = nonzero_bits (XEXP (x, 0), mode);
8693 if (nonzero == 1)
8694 return bitwidth;
8696 if (num0 > 1
8697 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8698 num0--;
8700 return num0;
8702 case IOR: case AND: case XOR:
8703 case SMIN: case SMAX: case UMIN: case UMAX:
8704 /* Logical operations will preserve the number of sign-bit copies.
8705 MIN and MAX operations always return one of the operands. */
8706 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8707 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8708 return MIN (num0, num1);
8710 case PLUS: case MINUS:
8711 /* For addition and subtraction, we can have a 1-bit carry. However,
8712 if we are subtracting 1 from a positive number, there will not
8713 be such a carry. Furthermore, if the positive number is known to
8714 be 0 or 1, we know the result is either -1 or 0. */
8716 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8717 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8719 nonzero = nonzero_bits (XEXP (x, 0), mode);
8720 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8721 return (nonzero == 1 || nonzero == 0 ? bitwidth
8722 : bitwidth - floor_log2 (nonzero) - 1);
8725 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8726 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8727 result = MAX (1, MIN (num0, num1) - 1);
8729 #ifdef POINTERS_EXTEND_UNSIGNED
8730 /* If pointers extend signed and this is an addition or subtraction
8731 to a pointer in Pmode, all the bits above ptr_mode are known to be
8732 sign bit copies. */
8733 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8734 && (code == PLUS || code == MINUS)
8735 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8736 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8737 - GET_MODE_BITSIZE (ptr_mode) + 1),
8738 result);
8739 #endif
8740 return result;
8742 case MULT:
8743 /* The number of bits of the product is the sum of the number of
8744 bits of both terms. However, unless one of the terms if known
8745 to be positive, we must allow for an additional bit since negating
8746 a negative number can remove one sign bit copy. */
8748 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8749 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8751 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8752 if (result > 0
8753 && (bitwidth > HOST_BITS_PER_WIDE_INT
8754 || (((nonzero_bits (XEXP (x, 0), mode)
8755 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8756 && ((nonzero_bits (XEXP (x, 1), mode)
8757 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8758 result--;
8760 return MAX (1, result);
8762 case UDIV:
8763 /* The result must be <= the first operand. If the first operand
8764 has the high bit set, we know nothing about the number of sign
8765 bit copies. */
8766 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8767 return 1;
8768 else if ((nonzero_bits (XEXP (x, 0), mode)
8769 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8770 return 1;
8771 else
8772 return num_sign_bit_copies (XEXP (x, 0), mode);
8774 case UMOD:
8775 /* The result must be <= the second operand. */
8776 return num_sign_bit_copies (XEXP (x, 1), mode);
8778 case DIV:
8779 /* Similar to unsigned division, except that we have to worry about
8780 the case where the divisor is negative, in which case we have
8781 to add 1. */
8782 result = num_sign_bit_copies (XEXP (x, 0), mode);
8783 if (result > 1
8784 && (bitwidth > HOST_BITS_PER_WIDE_INT
8785 || (nonzero_bits (XEXP (x, 1), mode)
8786 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8787 result--;
8789 return result;
8791 case MOD:
8792 result = num_sign_bit_copies (XEXP (x, 1), mode);
8793 if (result > 1
8794 && (bitwidth > HOST_BITS_PER_WIDE_INT
8795 || (nonzero_bits (XEXP (x, 1), mode)
8796 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8797 result--;
8799 return result;
8801 case ASHIFTRT:
8802 /* Shifts by a constant add to the number of bits equal to the
8803 sign bit. */
8804 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8805 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8806 && INTVAL (XEXP (x, 1)) > 0)
8807 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8809 return num0;
8811 case ASHIFT:
8812 /* Left shifts destroy copies. */
8813 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8814 || INTVAL (XEXP (x, 1)) < 0
8815 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8816 return 1;
8818 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8819 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8821 case IF_THEN_ELSE:
8822 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8823 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8824 return MIN (num0, num1);
8826 case EQ: case NE: case GE: case GT: case LE: case LT:
8827 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8828 case GEU: case GTU: case LEU: case LTU:
8829 case UNORDERED: case ORDERED:
8830 /* If the constant is negative, take its 1's complement and remask.
8831 Then see how many zero bits we have. */
8832 nonzero = STORE_FLAG_VALUE;
8833 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8834 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8835 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8837 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8838 break;
8840 default:
8841 break;
8844 /* If we haven't been able to figure it out by one of the above rules,
8845 see if some of the high-order bits are known to be zero. If so,
8846 count those bits and return one less than that amount. If we can't
8847 safely compute the mask for this mode, always return BITWIDTH. */
8849 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8850 return 1;
8852 nonzero = nonzero_bits (x, mode);
8853 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8854 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8857 /* Return the number of "extended" bits there are in X, when interpreted
8858 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8859 unsigned quantities, this is the number of high-order zero bits.
8860 For signed quantities, this is the number of copies of the sign bit
8861 minus 1. In both case, this function returns the number of "spare"
8862 bits. For example, if two quantities for which this function returns
8863 at least 1 are added, the addition is known not to overflow.
8865 This function will always return 0 unless called during combine, which
8866 implies that it must be called from a define_split. */
8868 unsigned int
8869 extended_count (x, mode, unsignedp)
8870 rtx x;
8871 enum machine_mode mode;
8872 int unsignedp;
8874 if (nonzero_sign_valid == 0)
8875 return 0;
8877 return (unsignedp
8878 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8879 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8880 - floor_log2 (nonzero_bits (x, mode)))
8881 : 0)
8882 : num_sign_bit_copies (x, mode) - 1);
8885 /* This function is called from `simplify_shift_const' to merge two
8886 outer operations. Specifically, we have already found that we need
8887 to perform operation *POP0 with constant *PCONST0 at the outermost
8888 position. We would now like to also perform OP1 with constant CONST1
8889 (with *POP0 being done last).
8891 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8892 the resulting operation. *PCOMP_P is set to 1 if we would need to
8893 complement the innermost operand, otherwise it is unchanged.
8895 MODE is the mode in which the operation will be done. No bits outside
8896 the width of this mode matter. It is assumed that the width of this mode
8897 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8899 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8900 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8901 result is simply *PCONST0.
8903 If the resulting operation cannot be expressed as one operation, we
8904 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8906 static int
8907 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8908 enum rtx_code *pop0;
8909 HOST_WIDE_INT *pconst0;
8910 enum rtx_code op1;
8911 HOST_WIDE_INT const1;
8912 enum machine_mode mode;
8913 int *pcomp_p;
8915 enum rtx_code op0 = *pop0;
8916 HOST_WIDE_INT const0 = *pconst0;
8918 const0 &= GET_MODE_MASK (mode);
8919 const1 &= GET_MODE_MASK (mode);
8921 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8922 if (op0 == AND)
8923 const1 &= const0;
8925 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8926 if OP0 is SET. */
8928 if (op1 == NIL || op0 == SET)
8929 return 1;
8931 else if (op0 == NIL)
8932 op0 = op1, const0 = const1;
8934 else if (op0 == op1)
8936 switch (op0)
8938 case AND:
8939 const0 &= const1;
8940 break;
8941 case IOR:
8942 const0 |= const1;
8943 break;
8944 case XOR:
8945 const0 ^= const1;
8946 break;
8947 case PLUS:
8948 const0 += const1;
8949 break;
8950 case NEG:
8951 op0 = NIL;
8952 break;
8953 default:
8954 break;
8958 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8959 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8960 return 0;
8962 /* If the two constants aren't the same, we can't do anything. The
8963 remaining six cases can all be done. */
8964 else if (const0 != const1)
8965 return 0;
8967 else
8968 switch (op0)
8970 case IOR:
8971 if (op1 == AND)
8972 /* (a & b) | b == b */
8973 op0 = SET;
8974 else /* op1 == XOR */
8975 /* (a ^ b) | b == a | b */
8977 break;
8979 case XOR:
8980 if (op1 == AND)
8981 /* (a & b) ^ b == (~a) & b */
8982 op0 = AND, *pcomp_p = 1;
8983 else /* op1 == IOR */
8984 /* (a | b) ^ b == a & ~b */
8985 op0 = AND, *pconst0 = ~const0;
8986 break;
8988 case AND:
8989 if (op1 == IOR)
8990 /* (a | b) & b == b */
8991 op0 = SET;
8992 else /* op1 == XOR */
8993 /* (a ^ b) & b) == (~a) & b */
8994 *pcomp_p = 1;
8995 break;
8996 default:
8997 break;
9000 /* Check for NO-OP cases. */
9001 const0 &= GET_MODE_MASK (mode);
9002 if (const0 == 0
9003 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9004 op0 = NIL;
9005 else if (const0 == 0 && op0 == AND)
9006 op0 = SET;
9007 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9008 && op0 == AND)
9009 op0 = NIL;
9011 /* ??? Slightly redundant with the above mask, but not entirely.
9012 Moving this above means we'd have to sign-extend the mode mask
9013 for the final test. */
9014 const0 = trunc_int_for_mode (const0, mode);
9016 *pop0 = op0;
9017 *pconst0 = const0;
9019 return 1;
9022 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9023 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
9024 that we started with.
9026 The shift is normally computed in the widest mode we find in VAROP, as
9027 long as it isn't a different number of words than RESULT_MODE. Exceptions
9028 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9030 static rtx
9031 simplify_shift_const (x, code, result_mode, varop, orig_count)
9032 rtx x;
9033 enum rtx_code code;
9034 enum machine_mode result_mode;
9035 rtx varop;
9036 int orig_count;
9038 enum rtx_code orig_code = code;
9039 unsigned int count;
9040 int signed_count;
9041 enum machine_mode mode = result_mode;
9042 enum machine_mode shift_mode, tmode;
9043 unsigned int mode_words
9044 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9045 /* We form (outer_op (code varop count) (outer_const)). */
9046 enum rtx_code outer_op = NIL;
9047 HOST_WIDE_INT outer_const = 0;
9048 rtx const_rtx;
9049 int complement_p = 0;
9050 rtx new;
9052 /* Make sure and truncate the "natural" shift on the way in. We don't
9053 want to do this inside the loop as it makes it more difficult to
9054 combine shifts. */
9055 #ifdef SHIFT_COUNT_TRUNCATED
9056 if (SHIFT_COUNT_TRUNCATED)
9057 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9058 #endif
9060 /* If we were given an invalid count, don't do anything except exactly
9061 what was requested. */
9063 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9065 if (x)
9066 return x;
9068 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9071 count = orig_count;
9073 /* Unless one of the branches of the `if' in this loop does a `continue',
9074 we will `break' the loop after the `if'. */
9076 while (count != 0)
9078 /* If we have an operand of (clobber (const_int 0)), just return that
9079 value. */
9080 if (GET_CODE (varop) == CLOBBER)
9081 return varop;
9083 /* If we discovered we had to complement VAROP, leave. Making a NOT
9084 here would cause an infinite loop. */
9085 if (complement_p)
9086 break;
9088 /* Convert ROTATERT to ROTATE. */
9089 if (code == ROTATERT)
9091 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9092 code = ROTATE;
9093 if (VECTOR_MODE_P (result_mode))
9094 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9095 else
9096 count = bitsize - count;
9099 /* We need to determine what mode we will do the shift in. If the
9100 shift is a right shift or a ROTATE, we must always do it in the mode
9101 it was originally done in. Otherwise, we can do it in MODE, the
9102 widest mode encountered. */
9103 shift_mode
9104 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9105 ? result_mode : mode);
9107 /* Handle cases where the count is greater than the size of the mode
9108 minus 1. For ASHIFT, use the size minus one as the count (this can
9109 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9110 take the count modulo the size. For other shifts, the result is
9111 zero.
9113 Since these shifts are being produced by the compiler by combining
9114 multiple operations, each of which are defined, we know what the
9115 result is supposed to be. */
9117 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9119 if (code == ASHIFTRT)
9120 count = GET_MODE_BITSIZE (shift_mode) - 1;
9121 else if (code == ROTATE || code == ROTATERT)
9122 count %= GET_MODE_BITSIZE (shift_mode);
9123 else
9125 /* We can't simply return zero because there may be an
9126 outer op. */
9127 varop = const0_rtx;
9128 count = 0;
9129 break;
9133 /* An arithmetic right shift of a quantity known to be -1 or 0
9134 is a no-op. */
9135 if (code == ASHIFTRT
9136 && (num_sign_bit_copies (varop, shift_mode)
9137 == GET_MODE_BITSIZE (shift_mode)))
9139 count = 0;
9140 break;
9143 /* If we are doing an arithmetic right shift and discarding all but
9144 the sign bit copies, this is equivalent to doing a shift by the
9145 bitsize minus one. Convert it into that shift because it will often
9146 allow other simplifications. */
9148 if (code == ASHIFTRT
9149 && (count + num_sign_bit_copies (varop, shift_mode)
9150 >= GET_MODE_BITSIZE (shift_mode)))
9151 count = GET_MODE_BITSIZE (shift_mode) - 1;
9153 /* We simplify the tests below and elsewhere by converting
9154 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9155 `make_compound_operation' will convert it to an ASHIFTRT for
9156 those machines (such as VAX) that don't have an LSHIFTRT. */
9157 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9158 && code == ASHIFTRT
9159 && ((nonzero_bits (varop, shift_mode)
9160 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9161 == 0))
9162 code = LSHIFTRT;
9164 switch (GET_CODE (varop))
9166 case SIGN_EXTEND:
9167 case ZERO_EXTEND:
9168 case SIGN_EXTRACT:
9169 case ZERO_EXTRACT:
9170 new = expand_compound_operation (varop);
9171 if (new != varop)
9173 varop = new;
9174 continue;
9176 break;
9178 case MEM:
9179 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9180 minus the width of a smaller mode, we can do this with a
9181 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9182 if ((code == ASHIFTRT || code == LSHIFTRT)
9183 && ! mode_dependent_address_p (XEXP (varop, 0))
9184 && ! MEM_VOLATILE_P (varop)
9185 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9186 MODE_INT, 1)) != BLKmode)
9188 new = adjust_address_nv (varop, tmode,
9189 BYTES_BIG_ENDIAN ? 0
9190 : count / BITS_PER_UNIT);
9192 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9193 : ZERO_EXTEND, mode, new);
9194 count = 0;
9195 continue;
9197 break;
9199 case USE:
9200 /* Similar to the case above, except that we can only do this if
9201 the resulting mode is the same as that of the underlying
9202 MEM and adjust the address depending on the *bits* endianness
9203 because of the way that bit-field extract insns are defined. */
9204 if ((code == ASHIFTRT || code == LSHIFTRT)
9205 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9206 MODE_INT, 1)) != BLKmode
9207 && tmode == GET_MODE (XEXP (varop, 0)))
9209 if (BITS_BIG_ENDIAN)
9210 new = XEXP (varop, 0);
9211 else
9213 new = copy_rtx (XEXP (varop, 0));
9214 SUBST (XEXP (new, 0),
9215 plus_constant (XEXP (new, 0),
9216 count / BITS_PER_UNIT));
9219 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9220 : ZERO_EXTEND, mode, new);
9221 count = 0;
9222 continue;
9224 break;
9226 case SUBREG:
9227 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9228 the same number of words as what we've seen so far. Then store
9229 the widest mode in MODE. */
9230 if (subreg_lowpart_p (varop)
9231 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9232 > GET_MODE_SIZE (GET_MODE (varop)))
9233 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9234 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9235 == mode_words)
9237 varop = SUBREG_REG (varop);
9238 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9239 mode = GET_MODE (varop);
9240 continue;
9242 break;
9244 case MULT:
9245 /* Some machines use MULT instead of ASHIFT because MULT
9246 is cheaper. But it is still better on those machines to
9247 merge two shifts into one. */
9248 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9249 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9251 varop
9252 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9253 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9254 continue;
9256 break;
9258 case UDIV:
9259 /* Similar, for when divides are cheaper. */
9260 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9261 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9263 varop
9264 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9265 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9266 continue;
9268 break;
9270 case ASHIFTRT:
9271 /* If we are extracting just the sign bit of an arithmetic
9272 right shift, that shift is not needed. However, the sign
9273 bit of a wider mode may be different from what would be
9274 interpreted as the sign bit in a narrower mode, so, if
9275 the result is narrower, don't discard the shift. */
9276 if (code == LSHIFTRT
9277 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9278 && (GET_MODE_BITSIZE (result_mode)
9279 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9281 varop = XEXP (varop, 0);
9282 continue;
9285 /* ... fall through ... */
9287 case LSHIFTRT:
9288 case ASHIFT:
9289 case ROTATE:
9290 /* Here we have two nested shifts. The result is usually the
9291 AND of a new shift with a mask. We compute the result below. */
9292 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9293 && INTVAL (XEXP (varop, 1)) >= 0
9294 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9295 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9296 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9298 enum rtx_code first_code = GET_CODE (varop);
9299 unsigned int first_count = INTVAL (XEXP (varop, 1));
9300 unsigned HOST_WIDE_INT mask;
9301 rtx mask_rtx;
9303 /* We have one common special case. We can't do any merging if
9304 the inner code is an ASHIFTRT of a smaller mode. However, if
9305 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9306 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9307 we can convert it to
9308 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9309 This simplifies certain SIGN_EXTEND operations. */
9310 if (code == ASHIFT && first_code == ASHIFTRT
9311 && count == (unsigned int)
9312 (GET_MODE_BITSIZE (result_mode)
9313 - GET_MODE_BITSIZE (GET_MODE (varop))))
9315 /* C3 has the low-order C1 bits zero. */
9317 mask = (GET_MODE_MASK (mode)
9318 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9320 varop = simplify_and_const_int (NULL_RTX, result_mode,
9321 XEXP (varop, 0), mask);
9322 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9323 varop, count);
9324 count = first_count;
9325 code = ASHIFTRT;
9326 continue;
9329 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9330 than C1 high-order bits equal to the sign bit, we can convert
9331 this to either an ASHIFT or an ASHIFTRT depending on the
9332 two counts.
9334 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9336 if (code == ASHIFTRT && first_code == ASHIFT
9337 && GET_MODE (varop) == shift_mode
9338 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9339 > first_count))
9341 varop = XEXP (varop, 0);
9343 signed_count = count - first_count;
9344 if (signed_count < 0)
9345 count = -signed_count, code = ASHIFT;
9346 else
9347 count = signed_count;
9349 continue;
9352 /* There are some cases we can't do. If CODE is ASHIFTRT,
9353 we can only do this if FIRST_CODE is also ASHIFTRT.
9355 We can't do the case when CODE is ROTATE and FIRST_CODE is
9356 ASHIFTRT.
9358 If the mode of this shift is not the mode of the outer shift,
9359 we can't do this if either shift is a right shift or ROTATE.
9361 Finally, we can't do any of these if the mode is too wide
9362 unless the codes are the same.
9364 Handle the case where the shift codes are the same
9365 first. */
9367 if (code == first_code)
9369 if (GET_MODE (varop) != result_mode
9370 && (code == ASHIFTRT || code == LSHIFTRT
9371 || code == ROTATE))
9372 break;
9374 count += first_count;
9375 varop = XEXP (varop, 0);
9376 continue;
9379 if (code == ASHIFTRT
9380 || (code == ROTATE && first_code == ASHIFTRT)
9381 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9382 || (GET_MODE (varop) != result_mode
9383 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9384 || first_code == ROTATE
9385 || code == ROTATE)))
9386 break;
9388 /* To compute the mask to apply after the shift, shift the
9389 nonzero bits of the inner shift the same way the
9390 outer shift will. */
9392 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9394 mask_rtx
9395 = simplify_binary_operation (code, result_mode, mask_rtx,
9396 GEN_INT (count));
9398 /* Give up if we can't compute an outer operation to use. */
9399 if (mask_rtx == 0
9400 || GET_CODE (mask_rtx) != CONST_INT
9401 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9402 INTVAL (mask_rtx),
9403 result_mode, &complement_p))
9404 break;
9406 /* If the shifts are in the same direction, we add the
9407 counts. Otherwise, we subtract them. */
9408 signed_count = count;
9409 if ((code == ASHIFTRT || code == LSHIFTRT)
9410 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9411 signed_count += first_count;
9412 else
9413 signed_count -= first_count;
9415 /* If COUNT is positive, the new shift is usually CODE,
9416 except for the two exceptions below, in which case it is
9417 FIRST_CODE. If the count is negative, FIRST_CODE should
9418 always be used */
9419 if (signed_count > 0
9420 && ((first_code == ROTATE && code == ASHIFT)
9421 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9422 code = first_code, count = signed_count;
9423 else if (signed_count < 0)
9424 code = first_code, count = -signed_count;
9425 else
9426 count = signed_count;
9428 varop = XEXP (varop, 0);
9429 continue;
9432 /* If we have (A << B << C) for any shift, we can convert this to
9433 (A << C << B). This wins if A is a constant. Only try this if
9434 B is not a constant. */
9436 else if (GET_CODE (varop) == code
9437 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9438 && 0 != (new
9439 = simplify_binary_operation (code, mode,
9440 XEXP (varop, 0),
9441 GEN_INT (count))))
9443 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9444 count = 0;
9445 continue;
9447 break;
9449 case NOT:
9450 /* Make this fit the case below. */
9451 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9452 GEN_INT (GET_MODE_MASK (mode)));
9453 continue;
9455 case IOR:
9456 case AND:
9457 case XOR:
9458 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9459 with C the size of VAROP - 1 and the shift is logical if
9460 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9461 we have an (le X 0) operation. If we have an arithmetic shift
9462 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9463 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9465 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9466 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9467 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9468 && (code == LSHIFTRT || code == ASHIFTRT)
9469 && count == (unsigned int)
9470 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9471 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9473 count = 0;
9474 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9475 const0_rtx);
9477 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9478 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9480 continue;
9483 /* If we have (shift (logical)), move the logical to the outside
9484 to allow it to possibly combine with another logical and the
9485 shift to combine with another shift. This also canonicalizes to
9486 what a ZERO_EXTRACT looks like. Also, some machines have
9487 (and (shift)) insns. */
9489 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9490 && (new = simplify_binary_operation (code, result_mode,
9491 XEXP (varop, 1),
9492 GEN_INT (count))) != 0
9493 && GET_CODE (new) == CONST_INT
9494 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9495 INTVAL (new), result_mode, &complement_p))
9497 varop = XEXP (varop, 0);
9498 continue;
9501 /* If we can't do that, try to simplify the shift in each arm of the
9502 logical expression, make a new logical expression, and apply
9503 the inverse distributive law. */
9505 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9506 XEXP (varop, 0), count);
9507 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9508 XEXP (varop, 1), count);
9510 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9511 varop = apply_distributive_law (varop);
9513 count = 0;
9515 break;
9517 case EQ:
9518 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9519 says that the sign bit can be tested, FOO has mode MODE, C is
9520 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9521 that may be nonzero. */
9522 if (code == LSHIFTRT
9523 && XEXP (varop, 1) == const0_rtx
9524 && GET_MODE (XEXP (varop, 0)) == result_mode
9525 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9526 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9527 && ((STORE_FLAG_VALUE
9528 & ((HOST_WIDE_INT) 1
9529 < (GET_MODE_BITSIZE (result_mode) - 1))))
9530 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9531 && merge_outer_ops (&outer_op, &outer_const, XOR,
9532 (HOST_WIDE_INT) 1, result_mode,
9533 &complement_p))
9535 varop = XEXP (varop, 0);
9536 count = 0;
9537 continue;
9539 break;
9541 case NEG:
9542 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9543 than the number of bits in the mode is equivalent to A. */
9544 if (code == LSHIFTRT
9545 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9546 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9548 varop = XEXP (varop, 0);
9549 count = 0;
9550 continue;
9553 /* NEG commutes with ASHIFT since it is multiplication. Move the
9554 NEG outside to allow shifts to combine. */
9555 if (code == ASHIFT
9556 && merge_outer_ops (&outer_op, &outer_const, NEG,
9557 (HOST_WIDE_INT) 0, result_mode,
9558 &complement_p))
9560 varop = XEXP (varop, 0);
9561 continue;
9563 break;
9565 case PLUS:
9566 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9567 is one less than the number of bits in the mode is
9568 equivalent to (xor A 1). */
9569 if (code == LSHIFTRT
9570 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9571 && XEXP (varop, 1) == constm1_rtx
9572 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9573 && merge_outer_ops (&outer_op, &outer_const, XOR,
9574 (HOST_WIDE_INT) 1, result_mode,
9575 &complement_p))
9577 count = 0;
9578 varop = XEXP (varop, 0);
9579 continue;
9582 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9583 that might be nonzero in BAR are those being shifted out and those
9584 bits are known zero in FOO, we can replace the PLUS with FOO.
9585 Similarly in the other operand order. This code occurs when
9586 we are computing the size of a variable-size array. */
9588 if ((code == ASHIFTRT || code == LSHIFTRT)
9589 && count < HOST_BITS_PER_WIDE_INT
9590 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9591 && (nonzero_bits (XEXP (varop, 1), result_mode)
9592 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9594 varop = XEXP (varop, 0);
9595 continue;
9597 else if ((code == ASHIFTRT || code == LSHIFTRT)
9598 && count < HOST_BITS_PER_WIDE_INT
9599 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9600 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9601 >> count)
9602 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9603 & nonzero_bits (XEXP (varop, 1),
9604 result_mode)))
9606 varop = XEXP (varop, 1);
9607 continue;
9610 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9611 if (code == ASHIFT
9612 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9613 && (new = simplify_binary_operation (ASHIFT, result_mode,
9614 XEXP (varop, 1),
9615 GEN_INT (count))) != 0
9616 && GET_CODE (new) == CONST_INT
9617 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9618 INTVAL (new), result_mode, &complement_p))
9620 varop = XEXP (varop, 0);
9621 continue;
9623 break;
9625 case MINUS:
9626 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9627 with C the size of VAROP - 1 and the shift is logical if
9628 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9629 we have a (gt X 0) operation. If the shift is arithmetic with
9630 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9631 we have a (neg (gt X 0)) operation. */
9633 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9634 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9635 && count == (unsigned int)
9636 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9637 && (code == LSHIFTRT || code == ASHIFTRT)
9638 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9639 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9640 == count
9641 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9643 count = 0;
9644 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9645 const0_rtx);
9647 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9648 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9650 continue;
9652 break;
9654 case TRUNCATE:
9655 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9656 if the truncate does not affect the value. */
9657 if (code == LSHIFTRT
9658 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9659 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9660 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9661 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9662 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9664 rtx varop_inner = XEXP (varop, 0);
9666 varop_inner
9667 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9668 XEXP (varop_inner, 0),
9669 GEN_INT
9670 (count + INTVAL (XEXP (varop_inner, 1))));
9671 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9672 count = 0;
9673 continue;
9675 break;
9677 default:
9678 break;
9681 break;
9684 /* We need to determine what mode to do the shift in. If the shift is
9685 a right shift or ROTATE, we must always do it in the mode it was
9686 originally done in. Otherwise, we can do it in MODE, the widest mode
9687 encountered. The code we care about is that of the shift that will
9688 actually be done, not the shift that was originally requested. */
9689 shift_mode
9690 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9691 ? result_mode : mode);
9693 /* We have now finished analyzing the shift. The result should be
9694 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9695 OUTER_OP is non-NIL, it is an operation that needs to be applied
9696 to the result of the shift. OUTER_CONST is the relevant constant,
9697 but we must turn off all bits turned off in the shift.
9699 If we were passed a value for X, see if we can use any pieces of
9700 it. If not, make new rtx. */
9702 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9703 && GET_CODE (XEXP (x, 1)) == CONST_INT
9704 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9705 const_rtx = XEXP (x, 1);
9706 else
9707 const_rtx = GEN_INT (count);
9709 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9710 && GET_MODE (XEXP (x, 0)) == shift_mode
9711 && SUBREG_REG (XEXP (x, 0)) == varop)
9712 varop = XEXP (x, 0);
9713 else if (GET_MODE (varop) != shift_mode)
9714 varop = gen_lowpart_for_combine (shift_mode, varop);
9716 /* If we can't make the SUBREG, try to return what we were given. */
9717 if (GET_CODE (varop) == CLOBBER)
9718 return x ? x : varop;
9720 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9721 if (new != 0)
9722 x = new;
9723 else
9724 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9726 /* If we have an outer operation and we just made a shift, it is
9727 possible that we could have simplified the shift were it not
9728 for the outer operation. So try to do the simplification
9729 recursively. */
9731 if (outer_op != NIL && GET_CODE (x) == code
9732 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9733 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9734 INTVAL (XEXP (x, 1)));
9736 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9737 turn off all the bits that the shift would have turned off. */
9738 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9739 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9740 GET_MODE_MASK (result_mode) >> orig_count);
9742 /* Do the remainder of the processing in RESULT_MODE. */
9743 x = gen_lowpart_for_combine (result_mode, x);
9745 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9746 operation. */
9747 if (complement_p)
9748 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9750 if (outer_op != NIL)
9752 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9753 outer_const = trunc_int_for_mode (outer_const, result_mode);
9755 if (outer_op == AND)
9756 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9757 else if (outer_op == SET)
9758 /* This means that we have determined that the result is
9759 equivalent to a constant. This should be rare. */
9760 x = GEN_INT (outer_const);
9761 else if (GET_RTX_CLASS (outer_op) == '1')
9762 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9763 else
9764 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9767 return x;
9770 /* Like recog, but we receive the address of a pointer to a new pattern.
9771 We try to match the rtx that the pointer points to.
9772 If that fails, we may try to modify or replace the pattern,
9773 storing the replacement into the same pointer object.
9775 Modifications include deletion or addition of CLOBBERs.
9777 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9778 the CLOBBERs are placed.
9780 The value is the final insn code from the pattern ultimately matched,
9781 or -1. */
9783 static int
9784 recog_for_combine (pnewpat, insn, pnotes)
9785 rtx *pnewpat;
9786 rtx insn;
9787 rtx *pnotes;
9789 rtx pat = *pnewpat;
9790 int insn_code_number;
9791 int num_clobbers_to_add = 0;
9792 int i;
9793 rtx notes = 0;
9794 rtx dummy_insn;
9796 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9797 we use to indicate that something didn't match. If we find such a
9798 thing, force rejection. */
9799 if (GET_CODE (pat) == PARALLEL)
9800 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9801 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9802 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9803 return -1;
9805 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9806 instruction for pattern recognition. */
9807 dummy_insn = shallow_copy_rtx (insn);
9808 PATTERN (dummy_insn) = pat;
9809 REG_NOTES (dummy_insn) = 0;
9811 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9813 /* If it isn't, there is the possibility that we previously had an insn
9814 that clobbered some register as a side effect, but the combined
9815 insn doesn't need to do that. So try once more without the clobbers
9816 unless this represents an ASM insn. */
9818 if (insn_code_number < 0 && ! check_asm_operands (pat)
9819 && GET_CODE (pat) == PARALLEL)
9821 int pos;
9823 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9824 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9826 if (i != pos)
9827 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9828 pos++;
9831 SUBST_INT (XVECLEN (pat, 0), pos);
9833 if (pos == 1)
9834 pat = XVECEXP (pat, 0, 0);
9836 PATTERN (dummy_insn) = pat;
9837 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9840 /* Recognize all noop sets, these will be killed by followup pass. */
9841 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9842 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9844 /* If we had any clobbers to add, make a new pattern than contains
9845 them. Then check to make sure that all of them are dead. */
9846 if (num_clobbers_to_add)
9848 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9849 rtvec_alloc (GET_CODE (pat) == PARALLEL
9850 ? (XVECLEN (pat, 0)
9851 + num_clobbers_to_add)
9852 : num_clobbers_to_add + 1));
9854 if (GET_CODE (pat) == PARALLEL)
9855 for (i = 0; i < XVECLEN (pat, 0); i++)
9856 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9857 else
9858 XVECEXP (newpat, 0, 0) = pat;
9860 add_clobbers (newpat, insn_code_number);
9862 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9863 i < XVECLEN (newpat, 0); i++)
9865 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9866 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9867 return -1;
9868 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9869 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9871 pat = newpat;
9874 *pnewpat = pat;
9875 *pnotes = notes;
9877 return insn_code_number;
9880 /* Like gen_lowpart but for use by combine. In combine it is not possible
9881 to create any new pseudoregs. However, it is safe to create
9882 invalid memory addresses, because combine will try to recognize
9883 them and all they will do is make the combine attempt fail.
9885 If for some reason this cannot do its job, an rtx
9886 (clobber (const_int 0)) is returned.
9887 An insn containing that will not be recognized. */
9889 #undef gen_lowpart
9891 static rtx
9892 gen_lowpart_for_combine (mode, x)
9893 enum machine_mode mode;
9894 rtx x;
9896 rtx result;
9898 if (GET_MODE (x) == mode)
9899 return x;
9901 /* We can only support MODE being wider than a word if X is a
9902 constant integer or has a mode the same size. */
9904 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9905 && ! ((GET_MODE (x) == VOIDmode
9906 && (GET_CODE (x) == CONST_INT
9907 || GET_CODE (x) == CONST_DOUBLE))
9908 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9909 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9911 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9912 won't know what to do. So we will strip off the SUBREG here and
9913 process normally. */
9914 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9916 x = SUBREG_REG (x);
9917 if (GET_MODE (x) == mode)
9918 return x;
9921 result = gen_lowpart_common (mode, x);
9922 #ifdef CLASS_CANNOT_CHANGE_MODE
9923 if (result != 0
9924 && GET_CODE (result) == SUBREG
9925 && GET_CODE (SUBREG_REG (result)) == REG
9926 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9927 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9928 GET_MODE (SUBREG_REG (result))))
9929 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9930 #endif
9932 if (result)
9933 return result;
9935 if (GET_CODE (x) == MEM)
9937 int offset = 0;
9939 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9940 address. */
9941 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9942 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9944 /* If we want to refer to something bigger than the original memref,
9945 generate a perverse subreg instead. That will force a reload
9946 of the original memref X. */
9947 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9948 return gen_rtx_SUBREG (mode, x, 0);
9950 if (WORDS_BIG_ENDIAN)
9951 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9952 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9954 if (BYTES_BIG_ENDIAN)
9956 /* Adjust the address so that the address-after-the-data is
9957 unchanged. */
9958 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9959 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9962 return adjust_address_nv (x, mode, offset);
9965 /* If X is a comparison operator, rewrite it in a new mode. This
9966 probably won't match, but may allow further simplifications. */
9967 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9968 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9970 /* If we couldn't simplify X any other way, just enclose it in a
9971 SUBREG. Normally, this SUBREG won't match, but some patterns may
9972 include an explicit SUBREG or we may simplify it further in combine. */
9973 else
9975 int offset = 0;
9976 rtx res;
9977 enum machine_mode sub_mode = GET_MODE (x);
9979 offset = subreg_lowpart_offset (mode, sub_mode);
9980 if (sub_mode == VOIDmode)
9982 sub_mode = int_mode_for_mode (mode);
9983 x = gen_lowpart_common (sub_mode, x);
9985 res = simplify_gen_subreg (mode, x, sub_mode, offset);
9986 if (res)
9987 return res;
9988 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9992 /* These routines make binary and unary operations by first seeing if they
9993 fold; if not, a new expression is allocated. */
9995 static rtx
9996 gen_binary (code, mode, op0, op1)
9997 enum rtx_code code;
9998 enum machine_mode mode;
9999 rtx op0, op1;
10001 rtx result;
10002 rtx tem;
10004 if (GET_RTX_CLASS (code) == 'c'
10005 && swap_commutative_operands_p (op0, op1))
10006 tem = op0, op0 = op1, op1 = tem;
10008 if (GET_RTX_CLASS (code) == '<')
10010 enum machine_mode op_mode = GET_MODE (op0);
10012 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10013 just (REL_OP X Y). */
10014 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10016 op1 = XEXP (op0, 1);
10017 op0 = XEXP (op0, 0);
10018 op_mode = GET_MODE (op0);
10021 if (op_mode == VOIDmode)
10022 op_mode = GET_MODE (op1);
10023 result = simplify_relational_operation (code, op_mode, op0, op1);
10025 else
10026 result = simplify_binary_operation (code, mode, op0, op1);
10028 if (result)
10029 return result;
10031 /* Put complex operands first and constants second. */
10032 if (GET_RTX_CLASS (code) == 'c'
10033 && swap_commutative_operands_p (op0, op1))
10034 return gen_rtx_fmt_ee (code, mode, op1, op0);
10036 /* If we are turning off bits already known off in OP0, we need not do
10037 an AND. */
10038 else if (code == AND && GET_CODE (op1) == CONST_INT
10039 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10040 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10041 return op0;
10043 return gen_rtx_fmt_ee (code, mode, op0, op1);
10046 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10047 comparison code that will be tested.
10049 The result is a possibly different comparison code to use. *POP0 and
10050 *POP1 may be updated.
10052 It is possible that we might detect that a comparison is either always
10053 true or always false. However, we do not perform general constant
10054 folding in combine, so this knowledge isn't useful. Such tautologies
10055 should have been detected earlier. Hence we ignore all such cases. */
10057 static enum rtx_code
10058 simplify_comparison (code, pop0, pop1)
10059 enum rtx_code code;
10060 rtx *pop0;
10061 rtx *pop1;
10063 rtx op0 = *pop0;
10064 rtx op1 = *pop1;
10065 rtx tem, tem1;
10066 int i;
10067 enum machine_mode mode, tmode;
10069 /* Try a few ways of applying the same transformation to both operands. */
10070 while (1)
10072 #ifndef WORD_REGISTER_OPERATIONS
10073 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10074 so check specially. */
10075 if (code != GTU && code != GEU && code != LTU && code != LEU
10076 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10077 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10078 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10079 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10080 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10081 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10082 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10083 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10084 && GET_CODE (XEXP (op1, 1)) == CONST_INT
10085 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10086 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
10087 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
10088 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
10089 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
10090 && (INTVAL (XEXP (op0, 1))
10091 == (GET_MODE_BITSIZE (GET_MODE (op0))
10092 - (GET_MODE_BITSIZE
10093 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10095 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10096 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10098 #endif
10100 /* If both operands are the same constant shift, see if we can ignore the
10101 shift. We can if the shift is a rotate or if the bits shifted out of
10102 this shift are known to be zero for both inputs and if the type of
10103 comparison is compatible with the shift. */
10104 if (GET_CODE (op0) == GET_CODE (op1)
10105 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10106 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10107 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10108 && (code != GT && code != LT && code != GE && code != LE))
10109 || (GET_CODE (op0) == ASHIFTRT
10110 && (code != GTU && code != LTU
10111 && code != GEU && code != LEU)))
10112 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10113 && INTVAL (XEXP (op0, 1)) >= 0
10114 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10115 && XEXP (op0, 1) == XEXP (op1, 1))
10117 enum machine_mode mode = GET_MODE (op0);
10118 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10119 int shift_count = INTVAL (XEXP (op0, 1));
10121 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10122 mask &= (mask >> shift_count) << shift_count;
10123 else if (GET_CODE (op0) == ASHIFT)
10124 mask = (mask & (mask << shift_count)) >> shift_count;
10126 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10127 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10128 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10129 else
10130 break;
10133 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10134 SUBREGs are of the same mode, and, in both cases, the AND would
10135 be redundant if the comparison was done in the narrower mode,
10136 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10137 and the operand's possibly nonzero bits are 0xffffff01; in that case
10138 if we only care about QImode, we don't need the AND). This case
10139 occurs if the output mode of an scc insn is not SImode and
10140 STORE_FLAG_VALUE == 1 (e.g., the 386).
10142 Similarly, check for a case where the AND's are ZERO_EXTEND
10143 operations from some narrower mode even though a SUBREG is not
10144 present. */
10146 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10147 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10148 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10150 rtx inner_op0 = XEXP (op0, 0);
10151 rtx inner_op1 = XEXP (op1, 0);
10152 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10153 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10154 int changed = 0;
10156 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10157 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10158 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10159 && (GET_MODE (SUBREG_REG (inner_op0))
10160 == GET_MODE (SUBREG_REG (inner_op1)))
10161 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10162 <= HOST_BITS_PER_WIDE_INT)
10163 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10164 GET_MODE (SUBREG_REG (inner_op0)))))
10165 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10166 GET_MODE (SUBREG_REG (inner_op1))))))
10168 op0 = SUBREG_REG (inner_op0);
10169 op1 = SUBREG_REG (inner_op1);
10171 /* The resulting comparison is always unsigned since we masked
10172 off the original sign bit. */
10173 code = unsigned_condition (code);
10175 changed = 1;
10178 else if (c0 == c1)
10179 for (tmode = GET_CLASS_NARROWEST_MODE
10180 (GET_MODE_CLASS (GET_MODE (op0)));
10181 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10182 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10184 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10185 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10186 code = unsigned_condition (code);
10187 changed = 1;
10188 break;
10191 if (! changed)
10192 break;
10195 /* If both operands are NOT, we can strip off the outer operation
10196 and adjust the comparison code for swapped operands; similarly for
10197 NEG, except that this must be an equality comparison. */
10198 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10199 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10200 && (code == EQ || code == NE)))
10201 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10203 else
10204 break;
10207 /* If the first operand is a constant, swap the operands and adjust the
10208 comparison code appropriately, but don't do this if the second operand
10209 is already a constant integer. */
10210 if (swap_commutative_operands_p (op0, op1))
10212 tem = op0, op0 = op1, op1 = tem;
10213 code = swap_condition (code);
10216 /* We now enter a loop during which we will try to simplify the comparison.
10217 For the most part, we only are concerned with comparisons with zero,
10218 but some things may really be comparisons with zero but not start
10219 out looking that way. */
10221 while (GET_CODE (op1) == CONST_INT)
10223 enum machine_mode mode = GET_MODE (op0);
10224 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10225 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10226 int equality_comparison_p;
10227 int sign_bit_comparison_p;
10228 int unsigned_comparison_p;
10229 HOST_WIDE_INT const_op;
10231 /* We only want to handle integral modes. This catches VOIDmode,
10232 CCmode, and the floating-point modes. An exception is that we
10233 can handle VOIDmode if OP0 is a COMPARE or a comparison
10234 operation. */
10236 if (GET_MODE_CLASS (mode) != MODE_INT
10237 && ! (mode == VOIDmode
10238 && (GET_CODE (op0) == COMPARE
10239 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10240 break;
10242 /* Get the constant we are comparing against and turn off all bits
10243 not on in our mode. */
10244 const_op = INTVAL (op1);
10245 if (mode != VOIDmode)
10246 const_op = trunc_int_for_mode (const_op, mode);
10247 op1 = GEN_INT (const_op);
10249 /* If we are comparing against a constant power of two and the value
10250 being compared can only have that single bit nonzero (e.g., it was
10251 `and'ed with that bit), we can replace this with a comparison
10252 with zero. */
10253 if (const_op
10254 && (code == EQ || code == NE || code == GE || code == GEU
10255 || code == LT || code == LTU)
10256 && mode_width <= HOST_BITS_PER_WIDE_INT
10257 && exact_log2 (const_op) >= 0
10258 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10260 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10261 op1 = const0_rtx, const_op = 0;
10264 /* Similarly, if we are comparing a value known to be either -1 or
10265 0 with -1, change it to the opposite comparison against zero. */
10267 if (const_op == -1
10268 && (code == EQ || code == NE || code == GT || code == LE
10269 || code == GEU || code == LTU)
10270 && num_sign_bit_copies (op0, mode) == mode_width)
10272 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10273 op1 = const0_rtx, const_op = 0;
10276 /* Do some canonicalizations based on the comparison code. We prefer
10277 comparisons against zero and then prefer equality comparisons.
10278 If we can reduce the size of a constant, we will do that too. */
10280 switch (code)
10282 case LT:
10283 /* < C is equivalent to <= (C - 1) */
10284 if (const_op > 0)
10286 const_op -= 1;
10287 op1 = GEN_INT (const_op);
10288 code = LE;
10289 /* ... fall through to LE case below. */
10291 else
10292 break;
10294 case LE:
10295 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10296 if (const_op < 0)
10298 const_op += 1;
10299 op1 = GEN_INT (const_op);
10300 code = LT;
10303 /* If we are doing a <= 0 comparison on a value known to have
10304 a zero sign bit, we can replace this with == 0. */
10305 else if (const_op == 0
10306 && mode_width <= HOST_BITS_PER_WIDE_INT
10307 && (nonzero_bits (op0, mode)
10308 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10309 code = EQ;
10310 break;
10312 case GE:
10313 /* >= C is equivalent to > (C - 1). */
10314 if (const_op > 0)
10316 const_op -= 1;
10317 op1 = GEN_INT (const_op);
10318 code = GT;
10319 /* ... fall through to GT below. */
10321 else
10322 break;
10324 case GT:
10325 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10326 if (const_op < 0)
10328 const_op += 1;
10329 op1 = GEN_INT (const_op);
10330 code = GE;
10333 /* If we are doing a > 0 comparison on a value known to have
10334 a zero sign bit, we can replace this with != 0. */
10335 else if (const_op == 0
10336 && mode_width <= HOST_BITS_PER_WIDE_INT
10337 && (nonzero_bits (op0, mode)
10338 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10339 code = NE;
10340 break;
10342 case LTU:
10343 /* < C is equivalent to <= (C - 1). */
10344 if (const_op > 0)
10346 const_op -= 1;
10347 op1 = GEN_INT (const_op);
10348 code = LEU;
10349 /* ... fall through ... */
10352 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10353 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10354 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10356 const_op = 0, op1 = const0_rtx;
10357 code = GE;
10358 break;
10360 else
10361 break;
10363 case LEU:
10364 /* unsigned <= 0 is equivalent to == 0 */
10365 if (const_op == 0)
10366 code = EQ;
10368 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10369 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10370 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10372 const_op = 0, op1 = const0_rtx;
10373 code = GE;
10375 break;
10377 case GEU:
10378 /* >= C is equivalent to < (C - 1). */
10379 if (const_op > 1)
10381 const_op -= 1;
10382 op1 = GEN_INT (const_op);
10383 code = GTU;
10384 /* ... fall through ... */
10387 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10388 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10389 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10391 const_op = 0, op1 = const0_rtx;
10392 code = LT;
10393 break;
10395 else
10396 break;
10398 case GTU:
10399 /* unsigned > 0 is equivalent to != 0 */
10400 if (const_op == 0)
10401 code = NE;
10403 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10404 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10405 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10407 const_op = 0, op1 = const0_rtx;
10408 code = LT;
10410 break;
10412 default:
10413 break;
10416 /* Compute some predicates to simplify code below. */
10418 equality_comparison_p = (code == EQ || code == NE);
10419 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10420 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10421 || code == GEU);
10423 /* If this is a sign bit comparison and we can do arithmetic in
10424 MODE, say that we will only be needing the sign bit of OP0. */
10425 if (sign_bit_comparison_p
10426 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10427 op0 = force_to_mode (op0, mode,
10428 ((HOST_WIDE_INT) 1
10429 << (GET_MODE_BITSIZE (mode) - 1)),
10430 NULL_RTX, 0);
10432 /* Now try cases based on the opcode of OP0. If none of the cases
10433 does a "continue", we exit this loop immediately after the
10434 switch. */
10436 switch (GET_CODE (op0))
10438 case ZERO_EXTRACT:
10439 /* If we are extracting a single bit from a variable position in
10440 a constant that has only a single bit set and are comparing it
10441 with zero, we can convert this into an equality comparison
10442 between the position and the location of the single bit. */
10444 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10445 && XEXP (op0, 1) == const1_rtx
10446 && equality_comparison_p && const_op == 0
10447 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10449 if (BITS_BIG_ENDIAN)
10451 enum machine_mode new_mode
10452 = mode_for_extraction (EP_extzv, 1);
10453 if (new_mode == MAX_MACHINE_MODE)
10454 i = BITS_PER_WORD - 1 - i;
10455 else
10457 mode = new_mode;
10458 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10462 op0 = XEXP (op0, 2);
10463 op1 = GEN_INT (i);
10464 const_op = i;
10466 /* Result is nonzero iff shift count is equal to I. */
10467 code = reverse_condition (code);
10468 continue;
10471 /* ... fall through ... */
10473 case SIGN_EXTRACT:
10474 tem = expand_compound_operation (op0);
10475 if (tem != op0)
10477 op0 = tem;
10478 continue;
10480 break;
10482 case NOT:
10483 /* If testing for equality, we can take the NOT of the constant. */
10484 if (equality_comparison_p
10485 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10487 op0 = XEXP (op0, 0);
10488 op1 = tem;
10489 continue;
10492 /* If just looking at the sign bit, reverse the sense of the
10493 comparison. */
10494 if (sign_bit_comparison_p)
10496 op0 = XEXP (op0, 0);
10497 code = (code == GE ? LT : GE);
10498 continue;
10500 break;
10502 case NEG:
10503 /* If testing for equality, we can take the NEG of the constant. */
10504 if (equality_comparison_p
10505 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10507 op0 = XEXP (op0, 0);
10508 op1 = tem;
10509 continue;
10512 /* The remaining cases only apply to comparisons with zero. */
10513 if (const_op != 0)
10514 break;
10516 /* When X is ABS or is known positive,
10517 (neg X) is < 0 if and only if X != 0. */
10519 if (sign_bit_comparison_p
10520 && (GET_CODE (XEXP (op0, 0)) == ABS
10521 || (mode_width <= HOST_BITS_PER_WIDE_INT
10522 && (nonzero_bits (XEXP (op0, 0), mode)
10523 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10525 op0 = XEXP (op0, 0);
10526 code = (code == LT ? NE : EQ);
10527 continue;
10530 /* If we have NEG of something whose two high-order bits are the
10531 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10532 if (num_sign_bit_copies (op0, mode) >= 2)
10534 op0 = XEXP (op0, 0);
10535 code = swap_condition (code);
10536 continue;
10538 break;
10540 case ROTATE:
10541 /* If we are testing equality and our count is a constant, we
10542 can perform the inverse operation on our RHS. */
10543 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10544 && (tem = simplify_binary_operation (ROTATERT, mode,
10545 op1, XEXP (op0, 1))) != 0)
10547 op0 = XEXP (op0, 0);
10548 op1 = tem;
10549 continue;
10552 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10553 a particular bit. Convert it to an AND of a constant of that
10554 bit. This will be converted into a ZERO_EXTRACT. */
10555 if (const_op == 0 && sign_bit_comparison_p
10556 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10557 && mode_width <= HOST_BITS_PER_WIDE_INT)
10559 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10560 ((HOST_WIDE_INT) 1
10561 << (mode_width - 1
10562 - INTVAL (XEXP (op0, 1)))));
10563 code = (code == LT ? NE : EQ);
10564 continue;
10567 /* Fall through. */
10569 case ABS:
10570 /* ABS is ignorable inside an equality comparison with zero. */
10571 if (const_op == 0 && equality_comparison_p)
10573 op0 = XEXP (op0, 0);
10574 continue;
10576 break;
10578 case SIGN_EXTEND:
10579 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10580 to (compare FOO CONST) if CONST fits in FOO's mode and we
10581 are either testing inequality or have an unsigned comparison
10582 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10583 if (! unsigned_comparison_p
10584 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10585 <= HOST_BITS_PER_WIDE_INT)
10586 && ((unsigned HOST_WIDE_INT) const_op
10587 < (((unsigned HOST_WIDE_INT) 1
10588 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10590 op0 = XEXP (op0, 0);
10591 continue;
10593 break;
10595 case SUBREG:
10596 /* Check for the case where we are comparing A - C1 with C2,
10597 both constants are smaller than 1/2 the maximum positive
10598 value in MODE, and the comparison is equality or unsigned.
10599 In that case, if A is either zero-extended to MODE or has
10600 sufficient sign bits so that the high-order bit in MODE
10601 is a copy of the sign in the inner mode, we can prove that it is
10602 safe to do the operation in the wider mode. This simplifies
10603 many range checks. */
10605 if (mode_width <= HOST_BITS_PER_WIDE_INT
10606 && subreg_lowpart_p (op0)
10607 && GET_CODE (SUBREG_REG (op0)) == PLUS
10608 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10609 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10610 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10611 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10612 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10613 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10614 GET_MODE (SUBREG_REG (op0)))
10615 & ~GET_MODE_MASK (mode))
10616 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10617 GET_MODE (SUBREG_REG (op0)))
10618 > (unsigned int)
10619 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10620 - GET_MODE_BITSIZE (mode)))))
10622 op0 = SUBREG_REG (op0);
10623 continue;
10626 /* If the inner mode is narrower and we are extracting the low part,
10627 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10628 if (subreg_lowpart_p (op0)
10629 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10630 /* Fall through */ ;
10631 else
10632 break;
10634 /* ... fall through ... */
10636 case ZERO_EXTEND:
10637 if ((unsigned_comparison_p || equality_comparison_p)
10638 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10639 <= HOST_BITS_PER_WIDE_INT)
10640 && ((unsigned HOST_WIDE_INT) const_op
10641 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10643 op0 = XEXP (op0, 0);
10644 continue;
10646 break;
10648 case PLUS:
10649 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10650 this for equality comparisons due to pathological cases involving
10651 overflows. */
10652 if (equality_comparison_p
10653 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10654 op1, XEXP (op0, 1))))
10656 op0 = XEXP (op0, 0);
10657 op1 = tem;
10658 continue;
10661 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10662 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10663 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10665 op0 = XEXP (XEXP (op0, 0), 0);
10666 code = (code == LT ? EQ : NE);
10667 continue;
10669 break;
10671 case MINUS:
10672 /* We used to optimize signed comparisons against zero, but that
10673 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10674 arrive here as equality comparisons, or (GEU, LTU) are
10675 optimized away. No need to special-case them. */
10677 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10678 (eq B (minus A C)), whichever simplifies. We can only do
10679 this for equality comparisons due to pathological cases involving
10680 overflows. */
10681 if (equality_comparison_p
10682 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10683 XEXP (op0, 1), op1)))
10685 op0 = XEXP (op0, 0);
10686 op1 = tem;
10687 continue;
10690 if (equality_comparison_p
10691 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10692 XEXP (op0, 0), op1)))
10694 op0 = XEXP (op0, 1);
10695 op1 = tem;
10696 continue;
10699 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10700 of bits in X minus 1, is one iff X > 0. */
10701 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10702 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10703 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10704 == mode_width - 1
10705 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10707 op0 = XEXP (op0, 1);
10708 code = (code == GE ? LE : GT);
10709 continue;
10711 break;
10713 case XOR:
10714 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10715 if C is zero or B is a constant. */
10716 if (equality_comparison_p
10717 && 0 != (tem = simplify_binary_operation (XOR, mode,
10718 XEXP (op0, 1), op1)))
10720 op0 = XEXP (op0, 0);
10721 op1 = tem;
10722 continue;
10724 break;
10726 case EQ: case NE:
10727 case UNEQ: case LTGT:
10728 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10729 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10730 case UNORDERED: case ORDERED:
10731 /* We can't do anything if OP0 is a condition code value, rather
10732 than an actual data value. */
10733 if (const_op != 0
10734 #ifdef HAVE_cc0
10735 || XEXP (op0, 0) == cc0_rtx
10736 #endif
10737 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10738 break;
10740 /* Get the two operands being compared. */
10741 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10742 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10743 else
10744 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10746 /* Check for the cases where we simply want the result of the
10747 earlier test or the opposite of that result. */
10748 if (code == NE || code == EQ
10749 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10750 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10751 && (STORE_FLAG_VALUE
10752 & (((HOST_WIDE_INT) 1
10753 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10754 && (code == LT || code == GE)))
10756 enum rtx_code new_code;
10757 if (code == LT || code == NE)
10758 new_code = GET_CODE (op0);
10759 else
10760 new_code = combine_reversed_comparison_code (op0);
10762 if (new_code != UNKNOWN)
10764 code = new_code;
10765 op0 = tem;
10766 op1 = tem1;
10767 continue;
10770 break;
10772 case IOR:
10773 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10774 iff X <= 0. */
10775 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10776 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10777 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10779 op0 = XEXP (op0, 1);
10780 code = (code == GE ? GT : LE);
10781 continue;
10783 break;
10785 case AND:
10786 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10787 will be converted to a ZERO_EXTRACT later. */
10788 if (const_op == 0 && equality_comparison_p
10789 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10790 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10792 op0 = simplify_and_const_int
10793 (op0, mode, gen_rtx_LSHIFTRT (mode,
10794 XEXP (op0, 1),
10795 XEXP (XEXP (op0, 0), 1)),
10796 (HOST_WIDE_INT) 1);
10797 continue;
10800 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10801 zero and X is a comparison and C1 and C2 describe only bits set
10802 in STORE_FLAG_VALUE, we can compare with X. */
10803 if (const_op == 0 && equality_comparison_p
10804 && mode_width <= HOST_BITS_PER_WIDE_INT
10805 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10806 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10807 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10808 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10809 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10811 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10812 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10813 if ((~STORE_FLAG_VALUE & mask) == 0
10814 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10815 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10816 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10818 op0 = XEXP (XEXP (op0, 0), 0);
10819 continue;
10823 /* If we are doing an equality comparison of an AND of a bit equal
10824 to the sign bit, replace this with a LT or GE comparison of
10825 the underlying value. */
10826 if (equality_comparison_p
10827 && const_op == 0
10828 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10829 && mode_width <= HOST_BITS_PER_WIDE_INT
10830 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10831 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10833 op0 = XEXP (op0, 0);
10834 code = (code == EQ ? GE : LT);
10835 continue;
10838 /* If this AND operation is really a ZERO_EXTEND from a narrower
10839 mode, the constant fits within that mode, and this is either an
10840 equality or unsigned comparison, try to do this comparison in
10841 the narrower mode. */
10842 if ((equality_comparison_p || unsigned_comparison_p)
10843 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10844 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10845 & GET_MODE_MASK (mode))
10846 + 1)) >= 0
10847 && const_op >> i == 0
10848 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10850 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10851 continue;
10854 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10855 in both M1 and M2 and the SUBREG is either paradoxical or
10856 represents the low part, permute the SUBREG and the AND and
10857 try again. */
10858 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10859 && (0
10860 #ifdef WORD_REGISTER_OPERATIONS
10861 || ((mode_width
10862 > (GET_MODE_BITSIZE
10863 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10864 && mode_width <= BITS_PER_WORD)
10865 #endif
10866 || ((mode_width
10867 <= (GET_MODE_BITSIZE
10868 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10869 && subreg_lowpart_p (XEXP (op0, 0))))
10870 #ifndef WORD_REGISTER_OPERATIONS
10871 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10872 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10873 As originally written the upper bits have a defined value
10874 due to the AND operation. However, if we commute the AND
10875 inside the SUBREG then they no longer have defined values
10876 and the meaning of the code has been changed. */
10877 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10878 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10879 #endif
10880 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10881 && mode_width <= HOST_BITS_PER_WIDE_INT
10882 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10883 <= HOST_BITS_PER_WIDE_INT)
10884 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10885 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10886 & INTVAL (XEXP (op0, 1)))
10887 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10888 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10889 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10893 = gen_lowpart_for_combine
10894 (mode,
10895 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10896 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10897 continue;
10900 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10901 (eq (and (lshiftrt X) 1) 0). */
10902 if (const_op == 0 && equality_comparison_p
10903 && XEXP (op0, 1) == const1_rtx
10904 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10905 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10907 op0 = simplify_and_const_int
10908 (op0, mode,
10909 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10910 XEXP (XEXP (op0, 0), 1)),
10911 (HOST_WIDE_INT) 1);
10912 code = (code == NE ? EQ : NE);
10913 continue;
10915 break;
10917 case ASHIFT:
10918 /* If we have (compare (ashift FOO N) (const_int C)) and
10919 the high order N bits of FOO (N+1 if an inequality comparison)
10920 are known to be zero, we can do this by comparing FOO with C
10921 shifted right N bits so long as the low-order N bits of C are
10922 zero. */
10923 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10924 && INTVAL (XEXP (op0, 1)) >= 0
10925 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10926 < HOST_BITS_PER_WIDE_INT)
10927 && ((const_op
10928 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10929 && mode_width <= HOST_BITS_PER_WIDE_INT
10930 && (nonzero_bits (XEXP (op0, 0), mode)
10931 & ~(mask >> (INTVAL (XEXP (op0, 1))
10932 + ! equality_comparison_p))) == 0)
10934 /* We must perform a logical shift, not an arithmetic one,
10935 as we want the top N bits of C to be zero. */
10936 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10938 temp >>= INTVAL (XEXP (op0, 1));
10939 op1 = gen_int_mode (temp, mode);
10940 op0 = XEXP (op0, 0);
10941 continue;
10944 /* If we are doing a sign bit comparison, it means we are testing
10945 a particular bit. Convert it to the appropriate AND. */
10946 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10947 && mode_width <= HOST_BITS_PER_WIDE_INT)
10949 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10950 ((HOST_WIDE_INT) 1
10951 << (mode_width - 1
10952 - INTVAL (XEXP (op0, 1)))));
10953 code = (code == LT ? NE : EQ);
10954 continue;
10957 /* If this an equality comparison with zero and we are shifting
10958 the low bit to the sign bit, we can convert this to an AND of the
10959 low-order bit. */
10960 if (const_op == 0 && equality_comparison_p
10961 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10962 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10963 == mode_width - 1)
10965 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10966 (HOST_WIDE_INT) 1);
10967 continue;
10969 break;
10971 case ASHIFTRT:
10972 /* If this is an equality comparison with zero, we can do this
10973 as a logical shift, which might be much simpler. */
10974 if (equality_comparison_p && const_op == 0
10975 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10977 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10978 XEXP (op0, 0),
10979 INTVAL (XEXP (op0, 1)));
10980 continue;
10983 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10984 do the comparison in a narrower mode. */
10985 if (! unsigned_comparison_p
10986 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10987 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10988 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10989 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10990 MODE_INT, 1)) != BLKmode
10991 && (((unsigned HOST_WIDE_INT) const_op
10992 + (GET_MODE_MASK (tmode) >> 1) + 1)
10993 <= GET_MODE_MASK (tmode)))
10995 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10996 continue;
10999 /* Likewise if OP0 is a PLUS of a sign extension with a
11000 constant, which is usually represented with the PLUS
11001 between the shifts. */
11002 if (! unsigned_comparison_p
11003 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11004 && GET_CODE (XEXP (op0, 0)) == PLUS
11005 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11006 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11007 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11008 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11009 MODE_INT, 1)) != BLKmode
11010 && (((unsigned HOST_WIDE_INT) const_op
11011 + (GET_MODE_MASK (tmode) >> 1) + 1)
11012 <= GET_MODE_MASK (tmode)))
11014 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11015 rtx add_const = XEXP (XEXP (op0, 0), 1);
11016 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11017 XEXP (op0, 1));
11019 op0 = gen_binary (PLUS, tmode,
11020 gen_lowpart_for_combine (tmode, inner),
11021 new_const);
11022 continue;
11025 /* ... fall through ... */
11026 case LSHIFTRT:
11027 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11028 the low order N bits of FOO are known to be zero, we can do this
11029 by comparing FOO with C shifted left N bits so long as no
11030 overflow occurs. */
11031 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11032 && INTVAL (XEXP (op0, 1)) >= 0
11033 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11034 && mode_width <= HOST_BITS_PER_WIDE_INT
11035 && (nonzero_bits (XEXP (op0, 0), mode)
11036 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11037 && (((unsigned HOST_WIDE_INT) const_op
11038 + (GET_CODE (op0) != LSHIFTRT
11039 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11040 + 1)
11041 : 0))
11042 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11044 /* If the shift was logical, then we must make the condition
11045 unsigned. */
11046 if (GET_CODE (op0) == LSHIFTRT)
11047 code = unsigned_condition (code);
11049 const_op <<= INTVAL (XEXP (op0, 1));
11050 op1 = GEN_INT (const_op);
11051 op0 = XEXP (op0, 0);
11052 continue;
11055 /* If we are using this shift to extract just the sign bit, we
11056 can replace this with an LT or GE comparison. */
11057 if (const_op == 0
11058 && (equality_comparison_p || sign_bit_comparison_p)
11059 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11060 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11061 == mode_width - 1)
11063 op0 = XEXP (op0, 0);
11064 code = (code == NE || code == GT ? LT : GE);
11065 continue;
11067 break;
11069 default:
11070 break;
11073 break;
11076 /* Now make any compound operations involved in this comparison. Then,
11077 check for an outmost SUBREG on OP0 that is not doing anything or is
11078 paradoxical. The latter transformation must only be performed when
11079 it is known that the "extra" bits will be the same in op0 and op1 or
11080 that they don't matter. There are three cases to consider:
11082 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11083 care bits and we can assume they have any convenient value. So
11084 making the transformation is safe.
11086 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11087 In this case the upper bits of op0 are undefined. We should not make
11088 the simplification in that case as we do not know the contents of
11089 those bits.
11091 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11092 NIL. In that case we know those bits are zeros or ones. We must
11093 also be sure that they are the same as the upper bits of op1.
11095 We can never remove a SUBREG for a non-equality comparison because
11096 the sign bit is in a different place in the underlying object. */
11098 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11099 op1 = make_compound_operation (op1, SET);
11101 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11102 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
11103 implemented. */
11104 && GET_CODE (SUBREG_REG (op0)) == REG
11105 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11106 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11107 && (code == NE || code == EQ))
11109 if (GET_MODE_SIZE (GET_MODE (op0))
11110 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11112 op0 = SUBREG_REG (op0);
11113 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11115 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11116 <= HOST_BITS_PER_WIDE_INT)
11117 && (nonzero_bits (SUBREG_REG (op0),
11118 GET_MODE (SUBREG_REG (op0)))
11119 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11121 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11123 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11124 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11125 op0 = SUBREG_REG (op0), op1 = tem;
11129 /* We now do the opposite procedure: Some machines don't have compare
11130 insns in all modes. If OP0's mode is an integer mode smaller than a
11131 word and we can't do a compare in that mode, see if there is a larger
11132 mode for which we can do the compare. There are a number of cases in
11133 which we can use the wider mode. */
11135 mode = GET_MODE (op0);
11136 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11137 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11138 && ! have_insn_for (COMPARE, mode))
11139 for (tmode = GET_MODE_WIDER_MODE (mode);
11140 (tmode != VOIDmode
11141 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11142 tmode = GET_MODE_WIDER_MODE (tmode))
11143 if (have_insn_for (COMPARE, tmode))
11145 int zero_extended;
11147 /* If the only nonzero bits in OP0 and OP1 are those in the
11148 narrower mode and this is an equality or unsigned comparison,
11149 we can use the wider mode. Similarly for sign-extended
11150 values, in which case it is true for all comparisons. */
11151 zero_extended = ((code == EQ || code == NE
11152 || code == GEU || code == GTU
11153 || code == LEU || code == LTU)
11154 && (nonzero_bits (op0, tmode)
11155 & ~GET_MODE_MASK (mode)) == 0
11156 && ((GET_CODE (op1) == CONST_INT
11157 || (nonzero_bits (op1, tmode)
11158 & ~GET_MODE_MASK (mode)) == 0)));
11160 if (zero_extended
11161 || ((num_sign_bit_copies (op0, tmode)
11162 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11163 - GET_MODE_BITSIZE (mode)))
11164 && (num_sign_bit_copies (op1, tmode)
11165 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11166 - GET_MODE_BITSIZE (mode)))))
11168 /* If OP0 is an AND and we don't have an AND in MODE either,
11169 make a new AND in the proper mode. */
11170 if (GET_CODE (op0) == AND
11171 && !have_insn_for (AND, mode))
11172 op0 = gen_binary (AND, tmode,
11173 gen_lowpart_for_combine (tmode,
11174 XEXP (op0, 0)),
11175 gen_lowpart_for_combine (tmode,
11176 XEXP (op0, 1)));
11178 op0 = gen_lowpart_for_combine (tmode, op0);
11179 if (zero_extended && GET_CODE (op1) == CONST_INT)
11180 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11181 op1 = gen_lowpart_for_combine (tmode, op1);
11182 break;
11185 /* If this is a test for negative, we can make an explicit
11186 test of the sign bit. */
11188 if (op1 == const0_rtx && (code == LT || code == GE)
11189 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11191 op0 = gen_binary (AND, tmode,
11192 gen_lowpart_for_combine (tmode, op0),
11193 GEN_INT ((HOST_WIDE_INT) 1
11194 << (GET_MODE_BITSIZE (mode) - 1)));
11195 code = (code == LT) ? NE : EQ;
11196 break;
11200 #ifdef CANONICALIZE_COMPARISON
11201 /* If this machine only supports a subset of valid comparisons, see if we
11202 can convert an unsupported one into a supported one. */
11203 CANONICALIZE_COMPARISON (code, op0, op1);
11204 #endif
11206 *pop0 = op0;
11207 *pop1 = op1;
11209 return code;
11212 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11213 searching backward. */
11214 static enum rtx_code
11215 combine_reversed_comparison_code (exp)
11216 rtx exp;
11218 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11219 rtx x;
11221 if (code1 != UNKNOWN
11222 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11223 return code1;
11224 /* Otherwise try and find where the condition codes were last set and
11225 use that. */
11226 x = get_last_value (XEXP (exp, 0));
11227 if (!x || GET_CODE (x) != COMPARE)
11228 return UNKNOWN;
11229 return reversed_comparison_code_parts (GET_CODE (exp),
11230 XEXP (x, 0), XEXP (x, 1), NULL);
11232 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11233 Return NULL_RTX in case we fail to do the reversal. */
11234 static rtx
11235 reversed_comparison (exp, mode, op0, op1)
11236 rtx exp, op0, op1;
11237 enum machine_mode mode;
11239 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11240 if (reversed_code == UNKNOWN)
11241 return NULL_RTX;
11242 else
11243 return gen_binary (reversed_code, mode, op0, op1);
11246 /* Utility function for following routine. Called when X is part of a value
11247 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11248 for each register mentioned. Similar to mention_regs in cse.c */
11250 static void
11251 update_table_tick (x)
11252 rtx x;
11254 enum rtx_code code = GET_CODE (x);
11255 const char *fmt = GET_RTX_FORMAT (code);
11256 int i;
11258 if (code == REG)
11260 unsigned int regno = REGNO (x);
11261 unsigned int endregno
11262 = regno + (regno < FIRST_PSEUDO_REGISTER
11263 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11264 unsigned int r;
11266 for (r = regno; r < endregno; r++)
11267 reg_last_set_table_tick[r] = label_tick;
11269 return;
11272 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11273 /* Note that we can't have an "E" in values stored; see
11274 get_last_value_validate. */
11275 if (fmt[i] == 'e')
11276 update_table_tick (XEXP (x, i));
11279 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11280 are saying that the register is clobbered and we no longer know its
11281 value. If INSN is zero, don't update reg_last_set; this is only permitted
11282 with VALUE also zero and is used to invalidate the register. */
11284 static void
11285 record_value_for_reg (reg, insn, value)
11286 rtx reg;
11287 rtx insn;
11288 rtx value;
11290 unsigned int regno = REGNO (reg);
11291 unsigned int endregno
11292 = regno + (regno < FIRST_PSEUDO_REGISTER
11293 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11294 unsigned int i;
11296 /* If VALUE contains REG and we have a previous value for REG, substitute
11297 the previous value. */
11298 if (value && insn && reg_overlap_mentioned_p (reg, value))
11300 rtx tem;
11302 /* Set things up so get_last_value is allowed to see anything set up to
11303 our insn. */
11304 subst_low_cuid = INSN_CUID (insn);
11305 tem = get_last_value (reg);
11307 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11308 it isn't going to be useful and will take a lot of time to process,
11309 so just use the CLOBBER. */
11311 if (tem)
11313 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11314 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11315 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11316 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11317 tem = XEXP (tem, 0);
11319 value = replace_rtx (copy_rtx (value), reg, tem);
11323 /* For each register modified, show we don't know its value, that
11324 we don't know about its bitwise content, that its value has been
11325 updated, and that we don't know the location of the death of the
11326 register. */
11327 for (i = regno; i < endregno; i++)
11329 if (insn)
11330 reg_last_set[i] = insn;
11332 reg_last_set_value[i] = 0;
11333 reg_last_set_mode[i] = 0;
11334 reg_last_set_nonzero_bits[i] = 0;
11335 reg_last_set_sign_bit_copies[i] = 0;
11336 reg_last_death[i] = 0;
11339 /* Mark registers that are being referenced in this value. */
11340 if (value)
11341 update_table_tick (value);
11343 /* Now update the status of each register being set.
11344 If someone is using this register in this block, set this register
11345 to invalid since we will get confused between the two lives in this
11346 basic block. This makes using this register always invalid. In cse, we
11347 scan the table to invalidate all entries using this register, but this
11348 is too much work for us. */
11350 for (i = regno; i < endregno; i++)
11352 reg_last_set_label[i] = label_tick;
11353 if (value && reg_last_set_table_tick[i] == label_tick)
11354 reg_last_set_invalid[i] = 1;
11355 else
11356 reg_last_set_invalid[i] = 0;
11359 /* The value being assigned might refer to X (like in "x++;"). In that
11360 case, we must replace it with (clobber (const_int 0)) to prevent
11361 infinite loops. */
11362 if (value && ! get_last_value_validate (&value, insn,
11363 reg_last_set_label[regno], 0))
11365 value = copy_rtx (value);
11366 if (! get_last_value_validate (&value, insn,
11367 reg_last_set_label[regno], 1))
11368 value = 0;
11371 /* For the main register being modified, update the value, the mode, the
11372 nonzero bits, and the number of sign bit copies. */
11374 reg_last_set_value[regno] = value;
11376 if (value)
11378 enum machine_mode mode = GET_MODE (reg);
11379 subst_low_cuid = INSN_CUID (insn);
11380 reg_last_set_mode[regno] = mode;
11381 if (GET_MODE_CLASS (mode) == MODE_INT
11382 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11383 mode = nonzero_bits_mode;
11384 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11385 reg_last_set_sign_bit_copies[regno]
11386 = num_sign_bit_copies (value, GET_MODE (reg));
11390 /* Called via note_stores from record_dead_and_set_regs to handle one
11391 SET or CLOBBER in an insn. DATA is the instruction in which the
11392 set is occurring. */
11394 static void
11395 record_dead_and_set_regs_1 (dest, setter, data)
11396 rtx dest, setter;
11397 void *data;
11399 rtx record_dead_insn = (rtx) data;
11401 if (GET_CODE (dest) == SUBREG)
11402 dest = SUBREG_REG (dest);
11404 if (GET_CODE (dest) == REG)
11406 /* If we are setting the whole register, we know its value. Otherwise
11407 show that we don't know the value. We can handle SUBREG in
11408 some cases. */
11409 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11410 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11411 else if (GET_CODE (setter) == SET
11412 && GET_CODE (SET_DEST (setter)) == SUBREG
11413 && SUBREG_REG (SET_DEST (setter)) == dest
11414 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11415 && subreg_lowpart_p (SET_DEST (setter)))
11416 record_value_for_reg (dest, record_dead_insn,
11417 gen_lowpart_for_combine (GET_MODE (dest),
11418 SET_SRC (setter)));
11419 else
11420 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11422 else if (GET_CODE (dest) == MEM
11423 /* Ignore pushes, they clobber nothing. */
11424 && ! push_operand (dest, GET_MODE (dest)))
11425 mem_last_set = INSN_CUID (record_dead_insn);
11428 /* Update the records of when each REG was most recently set or killed
11429 for the things done by INSN. This is the last thing done in processing
11430 INSN in the combiner loop.
11432 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11433 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11434 and also the similar information mem_last_set (which insn most recently
11435 modified memory) and last_call_cuid (which insn was the most recent
11436 subroutine call). */
11438 static void
11439 record_dead_and_set_regs (insn)
11440 rtx insn;
11442 rtx link;
11443 unsigned int i;
11445 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11447 if (REG_NOTE_KIND (link) == REG_DEAD
11448 && GET_CODE (XEXP (link, 0)) == REG)
11450 unsigned int regno = REGNO (XEXP (link, 0));
11451 unsigned int endregno
11452 = regno + (regno < FIRST_PSEUDO_REGISTER
11453 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11454 : 1);
11456 for (i = regno; i < endregno; i++)
11457 reg_last_death[i] = insn;
11459 else if (REG_NOTE_KIND (link) == REG_INC)
11460 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11463 if (GET_CODE (insn) == CALL_INSN)
11465 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11466 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11468 reg_last_set_value[i] = 0;
11469 reg_last_set_mode[i] = 0;
11470 reg_last_set_nonzero_bits[i] = 0;
11471 reg_last_set_sign_bit_copies[i] = 0;
11472 reg_last_death[i] = 0;
11475 last_call_cuid = mem_last_set = INSN_CUID (insn);
11477 /* Don't bother recording what this insn does. It might set the
11478 return value register, but we can't combine into a call
11479 pattern anyway, so there's no point trying (and it may cause
11480 a crash, if e.g. we wind up asking for last_set_value of a
11481 SUBREG of the return value register). */
11482 return;
11485 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11488 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11489 register present in the SUBREG, so for each such SUBREG go back and
11490 adjust nonzero and sign bit information of the registers that are
11491 known to have some zero/sign bits set.
11493 This is needed because when combine blows the SUBREGs away, the
11494 information on zero/sign bits is lost and further combines can be
11495 missed because of that. */
11497 static void
11498 record_promoted_value (insn, subreg)
11499 rtx insn;
11500 rtx subreg;
11502 rtx links, set;
11503 unsigned int regno = REGNO (SUBREG_REG (subreg));
11504 enum machine_mode mode = GET_MODE (subreg);
11506 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11507 return;
11509 for (links = LOG_LINKS (insn); links;)
11511 insn = XEXP (links, 0);
11512 set = single_set (insn);
11514 if (! set || GET_CODE (SET_DEST (set)) != REG
11515 || REGNO (SET_DEST (set)) != regno
11516 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11518 links = XEXP (links, 1);
11519 continue;
11522 if (reg_last_set[regno] == insn)
11524 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11525 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11528 if (GET_CODE (SET_SRC (set)) == REG)
11530 regno = REGNO (SET_SRC (set));
11531 links = LOG_LINKS (insn);
11533 else
11534 break;
11538 /* Scan X for promoted SUBREGs. For each one found,
11539 note what it implies to the registers used in it. */
11541 static void
11542 check_promoted_subreg (insn, x)
11543 rtx insn;
11544 rtx x;
11546 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11547 && GET_CODE (SUBREG_REG (x)) == REG)
11548 record_promoted_value (insn, x);
11549 else
11551 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11552 int i, j;
11554 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11555 switch (format[i])
11557 case 'e':
11558 check_promoted_subreg (insn, XEXP (x, i));
11559 break;
11560 case 'V':
11561 case 'E':
11562 if (XVEC (x, i) != 0)
11563 for (j = 0; j < XVECLEN (x, i); j++)
11564 check_promoted_subreg (insn, XVECEXP (x, i, j));
11565 break;
11570 /* Utility routine for the following function. Verify that all the registers
11571 mentioned in *LOC are valid when *LOC was part of a value set when
11572 label_tick == TICK. Return 0 if some are not.
11574 If REPLACE is non-zero, replace the invalid reference with
11575 (clobber (const_int 0)) and return 1. This replacement is useful because
11576 we often can get useful information about the form of a value (e.g., if
11577 it was produced by a shift that always produces -1 or 0) even though
11578 we don't know exactly what registers it was produced from. */
11580 static int
11581 get_last_value_validate (loc, insn, tick, replace)
11582 rtx *loc;
11583 rtx insn;
11584 int tick;
11585 int replace;
11587 rtx x = *loc;
11588 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11589 int len = GET_RTX_LENGTH (GET_CODE (x));
11590 int i;
11592 if (GET_CODE (x) == REG)
11594 unsigned int regno = REGNO (x);
11595 unsigned int endregno
11596 = regno + (regno < FIRST_PSEUDO_REGISTER
11597 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11598 unsigned int j;
11600 for (j = regno; j < endregno; j++)
11601 if (reg_last_set_invalid[j]
11602 /* If this is a pseudo-register that was only set once and not
11603 live at the beginning of the function, it is always valid. */
11604 || (! (regno >= FIRST_PSEUDO_REGISTER
11605 && REG_N_SETS (regno) == 1
11606 && (! REGNO_REG_SET_P
11607 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11608 && reg_last_set_label[j] > tick))
11610 if (replace)
11611 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11612 return replace;
11615 return 1;
11617 /* If this is a memory reference, make sure that there were
11618 no stores after it that might have clobbered the value. We don't
11619 have alias info, so we assume any store invalidates it. */
11620 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11621 && INSN_CUID (insn) <= mem_last_set)
11623 if (replace)
11624 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11625 return replace;
11628 for (i = 0; i < len; i++)
11629 if ((fmt[i] == 'e'
11630 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11631 /* Don't bother with these. They shouldn't occur anyway. */
11632 || fmt[i] == 'E')
11633 return 0;
11635 /* If we haven't found a reason for it to be invalid, it is valid. */
11636 return 1;
11639 /* Get the last value assigned to X, if known. Some registers
11640 in the value may be replaced with (clobber (const_int 0)) if their value
11641 is known longer known reliably. */
11643 static rtx
11644 get_last_value (x)
11645 rtx x;
11647 unsigned int regno;
11648 rtx value;
11650 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11651 then convert it to the desired mode. If this is a paradoxical SUBREG,
11652 we cannot predict what values the "extra" bits might have. */
11653 if (GET_CODE (x) == SUBREG
11654 && subreg_lowpart_p (x)
11655 && (GET_MODE_SIZE (GET_MODE (x))
11656 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11657 && (value = get_last_value (SUBREG_REG (x))) != 0)
11658 return gen_lowpart_for_combine (GET_MODE (x), value);
11660 if (GET_CODE (x) != REG)
11661 return 0;
11663 regno = REGNO (x);
11664 value = reg_last_set_value[regno];
11666 /* If we don't have a value, or if it isn't for this basic block and
11667 it's either a hard register, set more than once, or it's a live
11668 at the beginning of the function, return 0.
11670 Because if it's not live at the beginning of the function then the reg
11671 is always set before being used (is never used without being set).
11672 And, if it's set only once, and it's always set before use, then all
11673 uses must have the same last value, even if it's not from this basic
11674 block. */
11676 if (value == 0
11677 || (reg_last_set_label[regno] != label_tick
11678 && (regno < FIRST_PSEUDO_REGISTER
11679 || REG_N_SETS (regno) != 1
11680 || (REGNO_REG_SET_P
11681 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11682 return 0;
11684 /* If the value was set in a later insn than the ones we are processing,
11685 we can't use it even if the register was only set once. */
11686 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11687 return 0;
11689 /* If the value has all its registers valid, return it. */
11690 if (get_last_value_validate (&value, reg_last_set[regno],
11691 reg_last_set_label[regno], 0))
11692 return value;
11694 /* Otherwise, make a copy and replace any invalid register with
11695 (clobber (const_int 0)). If that fails for some reason, return 0. */
11697 value = copy_rtx (value);
11698 if (get_last_value_validate (&value, reg_last_set[regno],
11699 reg_last_set_label[regno], 1))
11700 return value;
11702 return 0;
11705 /* Return nonzero if expression X refers to a REG or to memory
11706 that is set in an instruction more recent than FROM_CUID. */
11708 static int
11709 use_crosses_set_p (x, from_cuid)
11710 rtx x;
11711 int from_cuid;
11713 const char *fmt;
11714 int i;
11715 enum rtx_code code = GET_CODE (x);
11717 if (code == REG)
11719 unsigned int regno = REGNO (x);
11720 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11721 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11723 #ifdef PUSH_ROUNDING
11724 /* Don't allow uses of the stack pointer to be moved,
11725 because we don't know whether the move crosses a push insn. */
11726 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11727 return 1;
11728 #endif
11729 for (; regno < endreg; regno++)
11730 if (reg_last_set[regno]
11731 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11732 return 1;
11733 return 0;
11736 if (code == MEM && mem_last_set > from_cuid)
11737 return 1;
11739 fmt = GET_RTX_FORMAT (code);
11741 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11743 if (fmt[i] == 'E')
11745 int j;
11746 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11747 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11748 return 1;
11750 else if (fmt[i] == 'e'
11751 && use_crosses_set_p (XEXP (x, i), from_cuid))
11752 return 1;
11754 return 0;
11757 /* Define three variables used for communication between the following
11758 routines. */
11760 static unsigned int reg_dead_regno, reg_dead_endregno;
11761 static int reg_dead_flag;
11763 /* Function called via note_stores from reg_dead_at_p.
11765 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11766 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11768 static void
11769 reg_dead_at_p_1 (dest, x, data)
11770 rtx dest;
11771 rtx x;
11772 void *data ATTRIBUTE_UNUSED;
11774 unsigned int regno, endregno;
11776 if (GET_CODE (dest) != REG)
11777 return;
11779 regno = REGNO (dest);
11780 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11781 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11783 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11784 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11787 /* Return non-zero if REG is known to be dead at INSN.
11789 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11790 referencing REG, it is dead. If we hit a SET referencing REG, it is
11791 live. Otherwise, see if it is live or dead at the start of the basic
11792 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11793 must be assumed to be always live. */
11795 static int
11796 reg_dead_at_p (reg, insn)
11797 rtx reg;
11798 rtx insn;
11800 basic_block block;
11801 unsigned int i;
11803 /* Set variables for reg_dead_at_p_1. */
11804 reg_dead_regno = REGNO (reg);
11805 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11806 ? HARD_REGNO_NREGS (reg_dead_regno,
11807 GET_MODE (reg))
11808 : 1);
11810 reg_dead_flag = 0;
11812 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11813 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11815 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11816 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11817 return 0;
11820 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11821 beginning of function. */
11822 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11823 insn = prev_nonnote_insn (insn))
11825 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11826 if (reg_dead_flag)
11827 return reg_dead_flag == 1 ? 1 : 0;
11829 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11830 return 1;
11833 /* Get the basic block that we were in. */
11834 if (insn == 0)
11835 block = ENTRY_BLOCK_PTR->next_bb;
11836 else
11838 FOR_EACH_BB (block)
11839 if (insn == block->head)
11840 break;
11842 if (block == EXIT_BLOCK_PTR)
11843 return 0;
11846 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11847 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11848 return 0;
11850 return 1;
11853 /* Note hard registers in X that are used. This code is similar to
11854 that in flow.c, but much simpler since we don't care about pseudos. */
11856 static void
11857 mark_used_regs_combine (x)
11858 rtx x;
11860 RTX_CODE code = GET_CODE (x);
11861 unsigned int regno;
11862 int i;
11864 switch (code)
11866 case LABEL_REF:
11867 case SYMBOL_REF:
11868 case CONST_INT:
11869 case CONST:
11870 case CONST_DOUBLE:
11871 case CONST_VECTOR:
11872 case PC:
11873 case ADDR_VEC:
11874 case ADDR_DIFF_VEC:
11875 case ASM_INPUT:
11876 #ifdef HAVE_cc0
11877 /* CC0 must die in the insn after it is set, so we don't need to take
11878 special note of it here. */
11879 case CC0:
11880 #endif
11881 return;
11883 case CLOBBER:
11884 /* If we are clobbering a MEM, mark any hard registers inside the
11885 address as used. */
11886 if (GET_CODE (XEXP (x, 0)) == MEM)
11887 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11888 return;
11890 case REG:
11891 regno = REGNO (x);
11892 /* A hard reg in a wide mode may really be multiple registers.
11893 If so, mark all of them just like the first. */
11894 if (regno < FIRST_PSEUDO_REGISTER)
11896 unsigned int endregno, r;
11898 /* None of this applies to the stack, frame or arg pointers */
11899 if (regno == STACK_POINTER_REGNUM
11900 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11901 || regno == HARD_FRAME_POINTER_REGNUM
11902 #endif
11903 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11904 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11905 #endif
11906 || regno == FRAME_POINTER_REGNUM)
11907 return;
11909 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11910 for (r = regno; r < endregno; r++)
11911 SET_HARD_REG_BIT (newpat_used_regs, r);
11913 return;
11915 case SET:
11917 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11918 the address. */
11919 rtx testreg = SET_DEST (x);
11921 while (GET_CODE (testreg) == SUBREG
11922 || GET_CODE (testreg) == ZERO_EXTRACT
11923 || GET_CODE (testreg) == SIGN_EXTRACT
11924 || GET_CODE (testreg) == STRICT_LOW_PART)
11925 testreg = XEXP (testreg, 0);
11927 if (GET_CODE (testreg) == MEM)
11928 mark_used_regs_combine (XEXP (testreg, 0));
11930 mark_used_regs_combine (SET_SRC (x));
11932 return;
11934 default:
11935 break;
11938 /* Recursively scan the operands of this expression. */
11941 const char *fmt = GET_RTX_FORMAT (code);
11943 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11945 if (fmt[i] == 'e')
11946 mark_used_regs_combine (XEXP (x, i));
11947 else if (fmt[i] == 'E')
11949 int j;
11951 for (j = 0; j < XVECLEN (x, i); j++)
11952 mark_used_regs_combine (XVECEXP (x, i, j));
11958 /* Remove register number REGNO from the dead registers list of INSN.
11960 Return the note used to record the death, if there was one. */
11963 remove_death (regno, insn)
11964 unsigned int regno;
11965 rtx insn;
11967 rtx note = find_regno_note (insn, REG_DEAD, regno);
11969 if (note)
11971 REG_N_DEATHS (regno)--;
11972 remove_note (insn, note);
11975 return note;
11978 /* For each register (hardware or pseudo) used within expression X, if its
11979 death is in an instruction with cuid between FROM_CUID (inclusive) and
11980 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11981 list headed by PNOTES.
11983 That said, don't move registers killed by maybe_kill_insn.
11985 This is done when X is being merged by combination into TO_INSN. These
11986 notes will then be distributed as needed. */
11988 static void
11989 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11990 rtx x;
11991 rtx maybe_kill_insn;
11992 int from_cuid;
11993 rtx to_insn;
11994 rtx *pnotes;
11996 const char *fmt;
11997 int len, i;
11998 enum rtx_code code = GET_CODE (x);
12000 if (code == REG)
12002 unsigned int regno = REGNO (x);
12003 rtx where_dead = reg_last_death[regno];
12004 rtx before_dead, after_dead;
12006 /* Don't move the register if it gets killed in between from and to */
12007 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12008 && ! reg_referenced_p (x, maybe_kill_insn))
12009 return;
12011 /* WHERE_DEAD could be a USE insn made by combine, so first we
12012 make sure that we have insns with valid INSN_CUID values. */
12013 before_dead = where_dead;
12014 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12015 before_dead = PREV_INSN (before_dead);
12017 after_dead = where_dead;
12018 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12019 after_dead = NEXT_INSN (after_dead);
12021 if (before_dead && after_dead
12022 && INSN_CUID (before_dead) >= from_cuid
12023 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12024 || (where_dead != after_dead
12025 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12027 rtx note = remove_death (regno, where_dead);
12029 /* It is possible for the call above to return 0. This can occur
12030 when reg_last_death points to I2 or I1 that we combined with.
12031 In that case make a new note.
12033 We must also check for the case where X is a hard register
12034 and NOTE is a death note for a range of hard registers
12035 including X. In that case, we must put REG_DEAD notes for
12036 the remaining registers in place of NOTE. */
12038 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12039 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12040 > GET_MODE_SIZE (GET_MODE (x))))
12042 unsigned int deadregno = REGNO (XEXP (note, 0));
12043 unsigned int deadend
12044 = (deadregno + HARD_REGNO_NREGS (deadregno,
12045 GET_MODE (XEXP (note, 0))));
12046 unsigned int ourend
12047 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12048 unsigned int i;
12050 for (i = deadregno; i < deadend; i++)
12051 if (i < regno || i >= ourend)
12052 REG_NOTES (where_dead)
12053 = gen_rtx_EXPR_LIST (REG_DEAD,
12054 regno_reg_rtx[i],
12055 REG_NOTES (where_dead));
12058 /* If we didn't find any note, or if we found a REG_DEAD note that
12059 covers only part of the given reg, and we have a multi-reg hard
12060 register, then to be safe we must check for REG_DEAD notes
12061 for each register other than the first. They could have
12062 their own REG_DEAD notes lying around. */
12063 else if ((note == 0
12064 || (note != 0
12065 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12066 < GET_MODE_SIZE (GET_MODE (x)))))
12067 && regno < FIRST_PSEUDO_REGISTER
12068 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12070 unsigned int ourend
12071 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12072 unsigned int i, offset;
12073 rtx oldnotes = 0;
12075 if (note)
12076 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12077 else
12078 offset = 1;
12080 for (i = regno + offset; i < ourend; i++)
12081 move_deaths (regno_reg_rtx[i],
12082 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12085 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12087 XEXP (note, 1) = *pnotes;
12088 *pnotes = note;
12090 else
12091 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12093 REG_N_DEATHS (regno)++;
12096 return;
12099 else if (GET_CODE (x) == SET)
12101 rtx dest = SET_DEST (x);
12103 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12105 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12106 that accesses one word of a multi-word item, some
12107 piece of everything register in the expression is used by
12108 this insn, so remove any old death. */
12109 /* ??? So why do we test for equality of the sizes? */
12111 if (GET_CODE (dest) == ZERO_EXTRACT
12112 || GET_CODE (dest) == STRICT_LOW_PART
12113 || (GET_CODE (dest) == SUBREG
12114 && (((GET_MODE_SIZE (GET_MODE (dest))
12115 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12116 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12117 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12119 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12120 return;
12123 /* If this is some other SUBREG, we know it replaces the entire
12124 value, so use that as the destination. */
12125 if (GET_CODE (dest) == SUBREG)
12126 dest = SUBREG_REG (dest);
12128 /* If this is a MEM, adjust deaths of anything used in the address.
12129 For a REG (the only other possibility), the entire value is
12130 being replaced so the old value is not used in this insn. */
12132 if (GET_CODE (dest) == MEM)
12133 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12134 to_insn, pnotes);
12135 return;
12138 else if (GET_CODE (x) == CLOBBER)
12139 return;
12141 len = GET_RTX_LENGTH (code);
12142 fmt = GET_RTX_FORMAT (code);
12144 for (i = 0; i < len; i++)
12146 if (fmt[i] == 'E')
12148 int j;
12149 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12150 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12151 to_insn, pnotes);
12153 else if (fmt[i] == 'e')
12154 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12158 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12159 pattern of an insn. X must be a REG. */
12161 static int
12162 reg_bitfield_target_p (x, body)
12163 rtx x;
12164 rtx body;
12166 int i;
12168 if (GET_CODE (body) == SET)
12170 rtx dest = SET_DEST (body);
12171 rtx target;
12172 unsigned int regno, tregno, endregno, endtregno;
12174 if (GET_CODE (dest) == ZERO_EXTRACT)
12175 target = XEXP (dest, 0);
12176 else if (GET_CODE (dest) == STRICT_LOW_PART)
12177 target = SUBREG_REG (XEXP (dest, 0));
12178 else
12179 return 0;
12181 if (GET_CODE (target) == SUBREG)
12182 target = SUBREG_REG (target);
12184 if (GET_CODE (target) != REG)
12185 return 0;
12187 tregno = REGNO (target), regno = REGNO (x);
12188 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12189 return target == x;
12191 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12192 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12194 return endregno > tregno && regno < endtregno;
12197 else if (GET_CODE (body) == PARALLEL)
12198 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12199 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12200 return 1;
12202 return 0;
12205 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12206 as appropriate. I3 and I2 are the insns resulting from the combination
12207 insns including FROM (I2 may be zero).
12209 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12210 not need REG_DEAD notes because they are being substituted for. This
12211 saves searching in the most common cases.
12213 Each note in the list is either ignored or placed on some insns, depending
12214 on the type of note. */
12216 static void
12217 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12218 rtx notes;
12219 rtx from_insn;
12220 rtx i3, i2;
12221 rtx elim_i2, elim_i1;
12223 rtx note, next_note;
12224 rtx tem;
12226 for (note = notes; note; note = next_note)
12228 rtx place = 0, place2 = 0;
12230 /* If this NOTE references a pseudo register, ensure it references
12231 the latest copy of that register. */
12232 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12233 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12234 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12236 next_note = XEXP (note, 1);
12237 switch (REG_NOTE_KIND (note))
12239 case REG_BR_PROB:
12240 case REG_BR_PRED:
12241 case REG_EXEC_COUNT:
12242 /* Doesn't matter much where we put this, as long as it's somewhere.
12243 It is preferable to keep these notes on branches, which is most
12244 likely to be i3. */
12245 place = i3;
12246 break;
12248 case REG_VTABLE_REF:
12249 /* ??? Should remain with *a particular* memory load. Given the
12250 nature of vtable data, the last insn seems relatively safe. */
12251 place = i3;
12252 break;
12254 case REG_NON_LOCAL_GOTO:
12255 if (GET_CODE (i3) == JUMP_INSN)
12256 place = i3;
12257 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12258 place = i2;
12259 else
12260 abort ();
12261 break;
12263 case REG_EH_REGION:
12264 /* These notes must remain with the call or trapping instruction. */
12265 if (GET_CODE (i3) == CALL_INSN)
12266 place = i3;
12267 else if (i2 && GET_CODE (i2) == CALL_INSN)
12268 place = i2;
12269 else if (flag_non_call_exceptions)
12271 if (may_trap_p (i3))
12272 place = i3;
12273 else if (i2 && may_trap_p (i2))
12274 place = i2;
12275 /* ??? Otherwise assume we've combined things such that we
12276 can now prove that the instructions can't trap. Drop the
12277 note in this case. */
12279 else
12280 abort ();
12281 break;
12283 case REG_NORETURN:
12284 case REG_SETJMP:
12285 /* These notes must remain with the call. It should not be
12286 possible for both I2 and I3 to be a call. */
12287 if (GET_CODE (i3) == CALL_INSN)
12288 place = i3;
12289 else if (i2 && GET_CODE (i2) == CALL_INSN)
12290 place = i2;
12291 else
12292 abort ();
12293 break;
12295 case REG_UNUSED:
12296 /* Any clobbers for i3 may still exist, and so we must process
12297 REG_UNUSED notes from that insn.
12299 Any clobbers from i2 or i1 can only exist if they were added by
12300 recog_for_combine. In that case, recog_for_combine created the
12301 necessary REG_UNUSED notes. Trying to keep any original
12302 REG_UNUSED notes from these insns can cause incorrect output
12303 if it is for the same register as the original i3 dest.
12304 In that case, we will notice that the register is set in i3,
12305 and then add a REG_UNUSED note for the destination of i3, which
12306 is wrong. However, it is possible to have REG_UNUSED notes from
12307 i2 or i1 for register which were both used and clobbered, so
12308 we keep notes from i2 or i1 if they will turn into REG_DEAD
12309 notes. */
12311 /* If this register is set or clobbered in I3, put the note there
12312 unless there is one already. */
12313 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12315 if (from_insn != i3)
12316 break;
12318 if (! (GET_CODE (XEXP (note, 0)) == REG
12319 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12320 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12321 place = i3;
12323 /* Otherwise, if this register is used by I3, then this register
12324 now dies here, so we must put a REG_DEAD note here unless there
12325 is one already. */
12326 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12327 && ! (GET_CODE (XEXP (note, 0)) == REG
12328 ? find_regno_note (i3, REG_DEAD,
12329 REGNO (XEXP (note, 0)))
12330 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12332 PUT_REG_NOTE_KIND (note, REG_DEAD);
12333 place = i3;
12335 break;
12337 case REG_EQUAL:
12338 case REG_EQUIV:
12339 case REG_NOALIAS:
12340 /* These notes say something about results of an insn. We can
12341 only support them if they used to be on I3 in which case they
12342 remain on I3. Otherwise they are ignored.
12344 If the note refers to an expression that is not a constant, we
12345 must also ignore the note since we cannot tell whether the
12346 equivalence is still true. It might be possible to do
12347 slightly better than this (we only have a problem if I2DEST
12348 or I1DEST is present in the expression), but it doesn't
12349 seem worth the trouble. */
12351 if (from_insn == i3
12352 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12353 place = i3;
12354 break;
12356 case REG_INC:
12357 case REG_NO_CONFLICT:
12358 /* These notes say something about how a register is used. They must
12359 be present on any use of the register in I2 or I3. */
12360 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12361 place = i3;
12363 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12365 if (place)
12366 place2 = i2;
12367 else
12368 place = i2;
12370 break;
12372 case REG_LABEL:
12373 /* This can show up in several ways -- either directly in the
12374 pattern, or hidden off in the constant pool with (or without?)
12375 a REG_EQUAL note. */
12376 /* ??? Ignore the without-reg_equal-note problem for now. */
12377 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12378 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12379 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12380 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12381 place = i3;
12383 if (i2
12384 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12385 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12386 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12387 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12389 if (place)
12390 place2 = i2;
12391 else
12392 place = i2;
12395 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12396 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12397 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12399 if (JUMP_LABEL (place) != XEXP (note, 0))
12400 abort ();
12401 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12402 LABEL_NUSES (JUMP_LABEL (place))--;
12403 place = 0;
12405 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12407 if (JUMP_LABEL (place2) != XEXP (note, 0))
12408 abort ();
12409 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12410 LABEL_NUSES (JUMP_LABEL (place2))--;
12411 place2 = 0;
12413 break;
12415 case REG_NONNEG:
12416 case REG_WAS_0:
12417 /* These notes say something about the value of a register prior
12418 to the execution of an insn. It is too much trouble to see
12419 if the note is still correct in all situations. It is better
12420 to simply delete it. */
12421 break;
12423 case REG_RETVAL:
12424 /* If the insn previously containing this note still exists,
12425 put it back where it was. Otherwise move it to the previous
12426 insn. Adjust the corresponding REG_LIBCALL note. */
12427 if (GET_CODE (from_insn) != NOTE)
12428 place = from_insn;
12429 else
12431 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12432 place = prev_real_insn (from_insn);
12433 if (tem && place)
12434 XEXP (tem, 0) = place;
12435 /* If we're deleting the last remaining instruction of a
12436 libcall sequence, don't add the notes. */
12437 else if (XEXP (note, 0) == from_insn)
12438 tem = place = 0;
12440 break;
12442 case REG_LIBCALL:
12443 /* This is handled similarly to REG_RETVAL. */
12444 if (GET_CODE (from_insn) != NOTE)
12445 place = from_insn;
12446 else
12448 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12449 place = next_real_insn (from_insn);
12450 if (tem && place)
12451 XEXP (tem, 0) = place;
12452 /* If we're deleting the last remaining instruction of a
12453 libcall sequence, don't add the notes. */
12454 else if (XEXP (note, 0) == from_insn)
12455 tem = place = 0;
12457 break;
12459 case REG_DEAD:
12460 /* If the register is used as an input in I3, it dies there.
12461 Similarly for I2, if it is non-zero and adjacent to I3.
12463 If the register is not used as an input in either I3 or I2
12464 and it is not one of the registers we were supposed to eliminate,
12465 there are two possibilities. We might have a non-adjacent I2
12466 or we might have somehow eliminated an additional register
12467 from a computation. For example, we might have had A & B where
12468 we discover that B will always be zero. In this case we will
12469 eliminate the reference to A.
12471 In both cases, we must search to see if we can find a previous
12472 use of A and put the death note there. */
12474 if (from_insn
12475 && GET_CODE (from_insn) == CALL_INSN
12476 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12477 place = from_insn;
12478 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12479 place = i3;
12480 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12481 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12482 place = i2;
12484 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12485 || rtx_equal_p (XEXP (note, 0), elim_i1))
12486 break;
12488 if (place == 0)
12490 basic_block bb = this_basic_block;
12492 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12494 if (! INSN_P (tem))
12496 if (tem == bb->head)
12497 break;
12498 continue;
12501 /* If the register is being set at TEM, see if that is all
12502 TEM is doing. If so, delete TEM. Otherwise, make this
12503 into a REG_UNUSED note instead. */
12504 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12506 rtx set = single_set (tem);
12507 rtx inner_dest = 0;
12508 #ifdef HAVE_cc0
12509 rtx cc0_setter = NULL_RTX;
12510 #endif
12512 if (set != 0)
12513 for (inner_dest = SET_DEST (set);
12514 (GET_CODE (inner_dest) == STRICT_LOW_PART
12515 || GET_CODE (inner_dest) == SUBREG
12516 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12517 inner_dest = XEXP (inner_dest, 0))
12520 /* Verify that it was the set, and not a clobber that
12521 modified the register.
12523 CC0 targets must be careful to maintain setter/user
12524 pairs. If we cannot delete the setter due to side
12525 effects, mark the user with an UNUSED note instead
12526 of deleting it. */
12528 if (set != 0 && ! side_effects_p (SET_SRC (set))
12529 && rtx_equal_p (XEXP (note, 0), inner_dest)
12530 #ifdef HAVE_cc0
12531 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12532 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12533 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12534 #endif
12537 /* Move the notes and links of TEM elsewhere.
12538 This might delete other dead insns recursively.
12539 First set the pattern to something that won't use
12540 any register. */
12542 PATTERN (tem) = pc_rtx;
12544 distribute_notes (REG_NOTES (tem), tem, tem,
12545 NULL_RTX, NULL_RTX, NULL_RTX);
12546 distribute_links (LOG_LINKS (tem));
12548 PUT_CODE (tem, NOTE);
12549 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12550 NOTE_SOURCE_FILE (tem) = 0;
12552 #ifdef HAVE_cc0
12553 /* Delete the setter too. */
12554 if (cc0_setter)
12556 PATTERN (cc0_setter) = pc_rtx;
12558 distribute_notes (REG_NOTES (cc0_setter),
12559 cc0_setter, cc0_setter,
12560 NULL_RTX, NULL_RTX, NULL_RTX);
12561 distribute_links (LOG_LINKS (cc0_setter));
12563 PUT_CODE (cc0_setter, NOTE);
12564 NOTE_LINE_NUMBER (cc0_setter)
12565 = NOTE_INSN_DELETED;
12566 NOTE_SOURCE_FILE (cc0_setter) = 0;
12568 #endif
12570 /* If the register is both set and used here, put the
12571 REG_DEAD note here, but place a REG_UNUSED note
12572 here too unless there already is one. */
12573 else if (reg_referenced_p (XEXP (note, 0),
12574 PATTERN (tem)))
12576 place = tem;
12578 if (! find_regno_note (tem, REG_UNUSED,
12579 REGNO (XEXP (note, 0))))
12580 REG_NOTES (tem)
12581 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12582 REG_NOTES (tem));
12584 else
12586 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12588 /* If there isn't already a REG_UNUSED note, put one
12589 here. */
12590 if (! find_regno_note (tem, REG_UNUSED,
12591 REGNO (XEXP (note, 0))))
12592 place = tem;
12593 break;
12596 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12597 || (GET_CODE (tem) == CALL_INSN
12598 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12600 place = tem;
12602 /* If we are doing a 3->2 combination, and we have a
12603 register which formerly died in i3 and was not used
12604 by i2, which now no longer dies in i3 and is used in
12605 i2 but does not die in i2, and place is between i2
12606 and i3, then we may need to move a link from place to
12607 i2. */
12608 if (i2 && INSN_UID (place) <= max_uid_cuid
12609 && INSN_CUID (place) > INSN_CUID (i2)
12610 && from_insn
12611 && INSN_CUID (from_insn) > INSN_CUID (i2)
12612 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12614 rtx links = LOG_LINKS (place);
12615 LOG_LINKS (place) = 0;
12616 distribute_links (links);
12618 break;
12621 if (tem == bb->head)
12622 break;
12625 /* We haven't found an insn for the death note and it
12626 is still a REG_DEAD note, but we have hit the beginning
12627 of the block. If the existing life info says the reg
12628 was dead, there's nothing left to do. Otherwise, we'll
12629 need to do a global life update after combine. */
12630 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12631 && REGNO_REG_SET_P (bb->global_live_at_start,
12632 REGNO (XEXP (note, 0))))
12634 SET_BIT (refresh_blocks, this_basic_block->index);
12635 need_refresh = 1;
12639 /* If the register is set or already dead at PLACE, we needn't do
12640 anything with this note if it is still a REG_DEAD note.
12641 We can here if it is set at all, not if is it totally replace,
12642 which is what `dead_or_set_p' checks, so also check for it being
12643 set partially. */
12645 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12647 unsigned int regno = REGNO (XEXP (note, 0));
12649 /* Similarly, if the instruction on which we want to place
12650 the note is a noop, we'll need do a global live update
12651 after we remove them in delete_noop_moves. */
12652 if (noop_move_p (place))
12654 SET_BIT (refresh_blocks, this_basic_block->index);
12655 need_refresh = 1;
12658 if (dead_or_set_p (place, XEXP (note, 0))
12659 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12661 /* Unless the register previously died in PLACE, clear
12662 reg_last_death. [I no longer understand why this is
12663 being done.] */
12664 if (reg_last_death[regno] != place)
12665 reg_last_death[regno] = 0;
12666 place = 0;
12668 else
12669 reg_last_death[regno] = place;
12671 /* If this is a death note for a hard reg that is occupying
12672 multiple registers, ensure that we are still using all
12673 parts of the object. If we find a piece of the object
12674 that is unused, we must arrange for an appropriate REG_DEAD
12675 note to be added for it. However, we can't just emit a USE
12676 and tag the note to it, since the register might actually
12677 be dead; so we recourse, and the recursive call then finds
12678 the previous insn that used this register. */
12680 if (place && regno < FIRST_PSEUDO_REGISTER
12681 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12683 unsigned int endregno
12684 = regno + HARD_REGNO_NREGS (regno,
12685 GET_MODE (XEXP (note, 0)));
12686 int all_used = 1;
12687 unsigned int i;
12689 for (i = regno; i < endregno; i++)
12690 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12691 && ! find_regno_fusage (place, USE, i))
12692 || dead_or_set_regno_p (place, i))
12693 all_used = 0;
12695 if (! all_used)
12697 /* Put only REG_DEAD notes for pieces that are
12698 not already dead or set. */
12700 for (i = regno; i < endregno;
12701 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12703 rtx piece = regno_reg_rtx[i];
12704 basic_block bb = this_basic_block;
12706 if (! dead_or_set_p (place, piece)
12707 && ! reg_bitfield_target_p (piece,
12708 PATTERN (place)))
12710 rtx new_note
12711 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12713 distribute_notes (new_note, place, place,
12714 NULL_RTX, NULL_RTX, NULL_RTX);
12716 else if (! refers_to_regno_p (i, i + 1,
12717 PATTERN (place), 0)
12718 && ! find_regno_fusage (place, USE, i))
12719 for (tem = PREV_INSN (place); ;
12720 tem = PREV_INSN (tem))
12722 if (! INSN_P (tem))
12724 if (tem == bb->head)
12726 SET_BIT (refresh_blocks,
12727 this_basic_block->index);
12728 need_refresh = 1;
12729 break;
12731 continue;
12733 if (dead_or_set_p (tem, piece)
12734 || reg_bitfield_target_p (piece,
12735 PATTERN (tem)))
12737 REG_NOTES (tem)
12738 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12739 REG_NOTES (tem));
12740 break;
12746 place = 0;
12750 break;
12752 default:
12753 /* Any other notes should not be present at this point in the
12754 compilation. */
12755 abort ();
12758 if (place)
12760 XEXP (note, 1) = REG_NOTES (place);
12761 REG_NOTES (place) = note;
12763 else if ((REG_NOTE_KIND (note) == REG_DEAD
12764 || REG_NOTE_KIND (note) == REG_UNUSED)
12765 && GET_CODE (XEXP (note, 0)) == REG)
12766 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12768 if (place2)
12770 if ((REG_NOTE_KIND (note) == REG_DEAD
12771 || REG_NOTE_KIND (note) == REG_UNUSED)
12772 && GET_CODE (XEXP (note, 0)) == REG)
12773 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12775 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12776 REG_NOTE_KIND (note),
12777 XEXP (note, 0),
12778 REG_NOTES (place2));
12783 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12784 I3, I2, and I1 to new locations. This is also called in one case to
12785 add a link pointing at I3 when I3's destination is changed. */
12787 static void
12788 distribute_links (links)
12789 rtx links;
12791 rtx link, next_link;
12793 for (link = links; link; link = next_link)
12795 rtx place = 0;
12796 rtx insn;
12797 rtx set, reg;
12799 next_link = XEXP (link, 1);
12801 /* If the insn that this link points to is a NOTE or isn't a single
12802 set, ignore it. In the latter case, it isn't clear what we
12803 can do other than ignore the link, since we can't tell which
12804 register it was for. Such links wouldn't be used by combine
12805 anyway.
12807 It is not possible for the destination of the target of the link to
12808 have been changed by combine. The only potential of this is if we
12809 replace I3, I2, and I1 by I3 and I2. But in that case the
12810 destination of I2 also remains unchanged. */
12812 if (GET_CODE (XEXP (link, 0)) == NOTE
12813 || (set = single_set (XEXP (link, 0))) == 0)
12814 continue;
12816 reg = SET_DEST (set);
12817 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12818 || GET_CODE (reg) == SIGN_EXTRACT
12819 || GET_CODE (reg) == STRICT_LOW_PART)
12820 reg = XEXP (reg, 0);
12822 /* A LOG_LINK is defined as being placed on the first insn that uses
12823 a register and points to the insn that sets the register. Start
12824 searching at the next insn after the target of the link and stop
12825 when we reach a set of the register or the end of the basic block.
12827 Note that this correctly handles the link that used to point from
12828 I3 to I2. Also note that not much searching is typically done here
12829 since most links don't point very far away. */
12831 for (insn = NEXT_INSN (XEXP (link, 0));
12832 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12833 || this_basic_block->next_bb->head != insn));
12834 insn = NEXT_INSN (insn))
12835 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12837 if (reg_referenced_p (reg, PATTERN (insn)))
12838 place = insn;
12839 break;
12841 else if (GET_CODE (insn) == CALL_INSN
12842 && find_reg_fusage (insn, USE, reg))
12844 place = insn;
12845 break;
12848 /* If we found a place to put the link, place it there unless there
12849 is already a link to the same insn as LINK at that point. */
12851 if (place)
12853 rtx link2;
12855 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12856 if (XEXP (link2, 0) == XEXP (link, 0))
12857 break;
12859 if (link2 == 0)
12861 XEXP (link, 1) = LOG_LINKS (place);
12862 LOG_LINKS (place) = link;
12864 /* Set added_links_insn to the earliest insn we added a
12865 link to. */
12866 if (added_links_insn == 0
12867 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12868 added_links_insn = place;
12874 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12876 static int
12877 insn_cuid (insn)
12878 rtx insn;
12880 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12881 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12882 insn = NEXT_INSN (insn);
12884 if (INSN_UID (insn) > max_uid_cuid)
12885 abort ();
12887 return INSN_CUID (insn);
12890 void
12891 dump_combine_stats (file)
12892 FILE *file;
12894 fnotice
12895 (file,
12896 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12897 combine_attempts, combine_merges, combine_extras, combine_successes);
12900 void
12901 dump_combine_total_stats (file)
12902 FILE *file;
12904 fnotice
12905 (file,
12906 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12907 total_attempts, total_merges, total_extras, total_successes);