1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.cc
3 and generic-match.cc from it.
5 Copyright (C) 2014-2023 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
32 initializer_each_zero_or_onep
34 tree_expr_nonnegative_p
42 bitmask_inv_cst_vector_p)
45 (define_operator_list tcc_comparison
46 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
47 (define_operator_list inverted_tcc_comparison
48 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list inverted_tcc_comparison_with_nans
50 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
51 (define_operator_list swapped_tcc_comparison
52 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
53 (define_operator_list simple_comparison lt le eq ne ge gt)
54 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
56 #include "cfn-operators.pd"
58 /* Define operand lists for math rounding functions {,i,l,ll}FN,
59 where the versions prefixed with "i" return an int, those prefixed with
60 "l" return a long and those prefixed with "ll" return a long long.
62 Also define operand lists:
64 X<FN>F for all float functions, in the order i, l, ll
65 X<FN> for all double functions, in the same order
66 X<FN>L for all long double functions, in the same order. */
67 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
68 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
71 (define_operator_list X##FN BUILT_IN_I##FN \
74 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
78 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
80 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
81 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
83 /* Unary operations and their associated IFN_COND_* function. */
84 (define_operator_list UNCOND_UNARY
86 (define_operator_list COND_UNARY
89 /* Binary operations and their associated IFN_COND_* function. */
90 (define_operator_list UNCOND_BINARY
92 mult trunc_div trunc_mod rdiv
95 bit_and bit_ior bit_xor
97 (define_operator_list COND_BINARY
98 IFN_COND_ADD IFN_COND_SUB
99 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
100 IFN_COND_MIN IFN_COND_MAX
101 IFN_COND_FMIN IFN_COND_FMAX
102 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
103 IFN_COND_SHL IFN_COND_SHR)
105 /* Same for ternary operations. */
106 (define_operator_list UNCOND_TERNARY
107 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
108 (define_operator_list COND_TERNARY
109 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
111 /* __atomic_fetch_or_*, __atomic_fetch_xor_*, __atomic_xor_fetch_* */
112 (define_operator_list ATOMIC_FETCH_OR_XOR_N
113 BUILT_IN_ATOMIC_FETCH_OR_1 BUILT_IN_ATOMIC_FETCH_OR_2
114 BUILT_IN_ATOMIC_FETCH_OR_4 BUILT_IN_ATOMIC_FETCH_OR_8
115 BUILT_IN_ATOMIC_FETCH_OR_16
116 BUILT_IN_ATOMIC_FETCH_XOR_1 BUILT_IN_ATOMIC_FETCH_XOR_2
117 BUILT_IN_ATOMIC_FETCH_XOR_4 BUILT_IN_ATOMIC_FETCH_XOR_8
118 BUILT_IN_ATOMIC_FETCH_XOR_16
119 BUILT_IN_ATOMIC_XOR_FETCH_1 BUILT_IN_ATOMIC_XOR_FETCH_2
120 BUILT_IN_ATOMIC_XOR_FETCH_4 BUILT_IN_ATOMIC_XOR_FETCH_8
121 BUILT_IN_ATOMIC_XOR_FETCH_16)
122 /* __sync_fetch_and_or_*, __sync_fetch_and_xor_*, __sync_xor_and_fetch_* */
123 (define_operator_list SYNC_FETCH_OR_XOR_N
124 BUILT_IN_SYNC_FETCH_AND_OR_1 BUILT_IN_SYNC_FETCH_AND_OR_2
125 BUILT_IN_SYNC_FETCH_AND_OR_4 BUILT_IN_SYNC_FETCH_AND_OR_8
126 BUILT_IN_SYNC_FETCH_AND_OR_16
127 BUILT_IN_SYNC_FETCH_AND_XOR_1 BUILT_IN_SYNC_FETCH_AND_XOR_2
128 BUILT_IN_SYNC_FETCH_AND_XOR_4 BUILT_IN_SYNC_FETCH_AND_XOR_8
129 BUILT_IN_SYNC_FETCH_AND_XOR_16
130 BUILT_IN_SYNC_XOR_AND_FETCH_1 BUILT_IN_SYNC_XOR_AND_FETCH_2
131 BUILT_IN_SYNC_XOR_AND_FETCH_4 BUILT_IN_SYNC_XOR_AND_FETCH_8
132 BUILT_IN_SYNC_XOR_AND_FETCH_16)
133 /* __atomic_fetch_and_*. */
134 (define_operator_list ATOMIC_FETCH_AND_N
135 BUILT_IN_ATOMIC_FETCH_AND_1 BUILT_IN_ATOMIC_FETCH_AND_2
136 BUILT_IN_ATOMIC_FETCH_AND_4 BUILT_IN_ATOMIC_FETCH_AND_8
137 BUILT_IN_ATOMIC_FETCH_AND_16)
138 /* __sync_fetch_and_and_*. */
139 (define_operator_list SYNC_FETCH_AND_AND_N
140 BUILT_IN_SYNC_FETCH_AND_AND_1 BUILT_IN_SYNC_FETCH_AND_AND_2
141 BUILT_IN_SYNC_FETCH_AND_AND_4 BUILT_IN_SYNC_FETCH_AND_AND_8
142 BUILT_IN_SYNC_FETCH_AND_AND_16)
144 /* With nop_convert? combine convert? and view_convert? in one pattern
145 plus conditionalize on tree_nop_conversion_p conversions. */
146 (match (nop_convert @0)
148 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
149 (match (nop_convert @0)
151 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
152 && known_eq (TYPE_VECTOR_SUBPARTS (type),
153 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
154 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
156 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
157 ABSU_EXPR returns unsigned absolute value of the operand and the operand
158 of the ABSU_EXPR will have the corresponding signed type. */
159 (simplify (abs (convert @0))
160 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
161 && !TYPE_UNSIGNED (TREE_TYPE (@0))
162 && element_precision (type) > element_precision (TREE_TYPE (@0)))
163 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
164 (convert (absu:utype @0)))))
167 /* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X). */
169 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
170 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
171 && !TYPE_UNSIGNED (TREE_TYPE (@0))
172 && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
176 /* Simplifications of operations with one constant operand and
177 simplifications to constants or single values. */
179 (for op (plus pointer_plus minus bit_ior bit_xor)
181 (op @0 integer_zerop)
184 /* 0 +p index -> (type)index */
186 (pointer_plus integer_zerop @1)
187 (non_lvalue (convert @1)))
189 /* ptr - 0 -> (type)ptr */
191 (pointer_diff @0 integer_zerop)
194 /* See if ARG1 is zero and X + ARG1 reduces to X.
195 Likewise if the operands are reversed. */
197 (plus:c @0 real_zerop@1)
198 (if (fold_real_zero_addition_p (type, @0, @1, 0))
201 /* See if ARG1 is zero and X - ARG1 reduces to X. */
203 (minus @0 real_zerop@1)
204 (if (fold_real_zero_addition_p (type, @0, @1, 1))
207 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
208 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
209 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
210 if not -frounding-math. For sNaNs the first operation would raise
211 exceptions but turn the result into qNan, so the second operation
212 would not raise it. */
213 (for inner_op (plus minus)
214 (for outer_op (plus minus)
216 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
219 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
220 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
221 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
223 = ((outer_op == PLUS_EXPR)
224 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
225 (if (outer_plus && !inner_plus)
230 This is unsafe for certain floats even in non-IEEE formats.
231 In IEEE, it is unsafe because it does wrong for NaNs.
232 PR middle-end/98420: x - x may be -0.0 with FE_DOWNWARD.
233 Also note that operand_equal_p is always false if an operand
237 (if (!FLOAT_TYPE_P (type)
238 || (!tree_expr_maybe_nan_p (@0)
239 && !tree_expr_maybe_infinite_p (@0)
240 && (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
241 || !HONOR_SIGNED_ZEROS (type))))
242 { build_zero_cst (type); }))
244 (pointer_diff @@0 @0)
245 { build_zero_cst (type); })
248 (mult @0 integer_zerop@1)
251 /* -x == x -> x == 0 */
254 (cmp:c @0 (negate @0))
255 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
256 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE(@0)))
257 (cmp @0 { build_zero_cst (TREE_TYPE(@0)); }))))
259 /* Maybe fold x * 0 to 0. The expressions aren't the same
260 when x is NaN, since x * 0 is also NaN. Nor are they the
261 same in modes with signed zeros, since multiplying a
262 negative value by 0 gives -0, not +0. Nor when x is +-Inf,
263 since x * 0 is NaN. */
265 (mult @0 real_zerop@1)
266 (if (!tree_expr_maybe_nan_p (@0)
267 && (!HONOR_NANS (type) || !tree_expr_maybe_infinite_p (@0))
268 && (!HONOR_SIGNED_ZEROS (type) || tree_expr_nonnegative_p (@0)))
271 /* In IEEE floating point, x*1 is not equivalent to x for snans.
272 Likewise for complex arithmetic with signed zeros. */
275 (if (!tree_expr_maybe_signaling_nan_p (@0)
276 && (!HONOR_SIGNED_ZEROS (type)
277 || !COMPLEX_FLOAT_TYPE_P (type)))
280 /* Transform x * -1.0 into -x. */
282 (mult @0 real_minus_onep)
283 (if (!tree_expr_maybe_signaling_nan_p (@0)
284 && (!HONOR_SIGNED_ZEROS (type)
285 || !COMPLEX_FLOAT_TYPE_P (type)))
288 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
289 unless the target has native support for the former but not the latter. */
291 (mult @0 VECTOR_CST@1)
292 (if (initializer_each_zero_or_onep (@1)
293 && !HONOR_SNANS (type)
294 && !HONOR_SIGNED_ZEROS (type))
295 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
297 && (!VECTOR_MODE_P (TYPE_MODE (type))
298 || (VECTOR_MODE_P (TYPE_MODE (itype))
299 && optab_handler (and_optab,
300 TYPE_MODE (itype)) != CODE_FOR_nothing)))
301 (view_convert (bit_and:itype (view_convert @0)
302 (ne @1 { build_zero_cst (type); })))))))
304 (for cmp (gt ge lt le)
305 outp (convert convert negate negate)
306 outn (negate negate convert convert)
307 /* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */
308 /* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */
309 /* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */
310 /* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */
312 (mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep))
313 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
315 /* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */
316 /* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */
317 /* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */
318 /* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */
320 (mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1))
321 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
324 /* Transform X * copysign (1.0, X) into abs(X). */
326 (mult:c @0 (COPYSIGN_ALL real_onep @0))
327 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
330 /* Transform X * copysign (1.0, -X) into -abs(X). */
332 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
333 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
336 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
338 (COPYSIGN_ALL REAL_CST@0 @1)
339 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
340 (COPYSIGN_ALL (negate @0) @1)))
342 /* Transform c ? x * copysign (1, y) : z to c ? x ^ signs(y) : z.
343 tree-ssa-math-opts.cc does the corresponding optimization for
344 unconditional multiplications (via xorsign). */
346 (IFN_COND_MUL:c @0 @1 (IFN_COPYSIGN real_onep @2) @3)
347 (with { tree signs = sign_mask_for (type); }
349 (with { tree inttype = TREE_TYPE (signs); }
351 (IFN_COND_XOR:inttype @0
352 (view_convert:inttype @1)
353 (bit_and (view_convert:inttype @2) { signs; })
354 (view_convert:inttype @3)))))))
356 /* (x >= 0 ? x : 0) + (x <= 0 ? -x : 0) -> abs x. */
358 (plus:c (max @0 integer_zerop) (max (negate @0) integer_zerop))
361 /* X * 1, X / 1 -> X. */
362 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
367 /* (A / (1 << B)) -> (A >> B).
368 Only for unsigned A. For signed A, this would not preserve rounding
370 For example: (-1 / ( 1 << B)) != -1 >> B.
371 Also handle widening conversions, like:
372 (A / (unsigned long long) (1U << B)) -> (A >> B)
374 (A / (unsigned long long) (1 << B)) -> (A >> B).
375 If the left shift is signed, it can be done only if the upper bits
376 of A starting from shift's type sign bit are zero, as
377 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
378 so it is valid only if A >> 31 is zero. */
380 (trunc_div (convert?@0 @3) (convert2? (lshift integer_onep@1 @2)))
381 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
382 && (!VECTOR_TYPE_P (type)
383 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
384 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
385 && (useless_type_conversion_p (type, TREE_TYPE (@1))
386 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
387 && (TYPE_UNSIGNED (TREE_TYPE (@1))
388 || (element_precision (type)
389 == element_precision (TREE_TYPE (@1)))
390 || (INTEGRAL_TYPE_P (type)
391 && (tree_nonzero_bits (@0)
392 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
394 element_precision (type))) == 0)))))
395 (if (!VECTOR_TYPE_P (type)
396 && useless_type_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1))
397 && element_precision (TREE_TYPE (@3)) < element_precision (type))
398 (convert (rshift @3 @2))
401 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
402 undefined behavior in constexpr evaluation, and assuming that the division
403 traps enables better optimizations than these anyway. */
404 (for div (trunc_div ceil_div floor_div round_div exact_div)
405 /* 0 / X is always zero. */
407 (div integer_zerop@0 @1)
408 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
409 (if (!integer_zerop (@1))
413 (div @0 integer_minus_onep@1)
414 (if (!TYPE_UNSIGNED (type))
416 /* X / bool_range_Y is X. */
419 (if (INTEGRAL_TYPE_P (type)
420 && ssa_name_has_boolean_range (@1)
421 && !flag_non_call_exceptions)
426 /* But not for 0 / 0 so that we can get the proper warnings and errors.
427 And not for _Fract types where we can't build 1. */
428 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type))
429 && !integer_zerop (@0)
430 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
431 { build_one_cst (type); }))
432 /* X / abs (X) is X < 0 ? -1 : 1. */
435 (if (INTEGRAL_TYPE_P (type)
436 && TYPE_OVERFLOW_UNDEFINED (type)
437 && !integer_zerop (@0)
438 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
439 (cond (lt @0 { build_zero_cst (type); })
440 { build_minus_one_cst (type); } { build_one_cst (type); })))
443 (div:C @0 (negate @0))
444 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
445 && TYPE_OVERFLOW_UNDEFINED (type)
446 && !integer_zerop (@0)
447 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
448 { build_minus_one_cst (type); })))
450 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
451 TRUNC_DIV_EXPR. Rewrite into the latter in this case. Similarly
452 for MOD instead of DIV. */
453 (for floor_divmod (floor_div floor_mod)
454 trunc_divmod (trunc_div trunc_mod)
457 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
458 && TYPE_UNSIGNED (type))
459 (trunc_divmod @0 @1))))
461 /* 1 / X -> X == 1 for unsigned integer X.
462 1 / X -> X >= -1 && X <= 1 ? X : 0 for signed integer X.
463 But not for 1 / 0 so that we can get proper warnings and errors,
464 and not for 1-bit integers as they are edge cases better handled
467 (trunc_div integer_onep@0 @1)
468 (if (INTEGRAL_TYPE_P (type)
469 && TYPE_PRECISION (type) > 1
470 && !integer_zerop (@1)
471 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@1)))
472 (if (TYPE_UNSIGNED (type))
473 (convert (eq:boolean_type_node @1 { build_one_cst (type); }))
474 (with { tree utype = unsigned_type_for (type); }
475 (cond (le (plus (convert:utype @1) { build_one_cst (utype); })
476 { build_int_cst (utype, 2); })
477 @1 { build_zero_cst (type); })))))
479 /* Combine two successive divisions. Note that combining ceil_div
480 and floor_div is trickier and combining round_div even more so. */
481 (for div (trunc_div exact_div)
483 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
485 wi::overflow_type overflow;
486 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
487 TYPE_SIGN (type), &overflow);
489 (if (div == EXACT_DIV_EXPR
490 || optimize_successive_divisions_p (@2, @3))
492 (div @0 { wide_int_to_tree (type, mul); })
493 (if (TYPE_UNSIGNED (type)
494 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
495 { build_zero_cst (type); }))))))
497 /* Combine successive multiplications. Similar to above, but handling
498 overflow is different. */
500 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
502 wi::overflow_type overflow;
503 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
504 TYPE_SIGN (type), &overflow);
506 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
507 otherwise undefined overflow implies that @0 must be zero. */
508 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
509 (mult @0 { wide_int_to_tree (type, mul); }))))
511 /* Similar to above, but there could be an extra add/sub between
512 successive multuiplications. */
514 (mult (plus:s (mult:s@4 @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
516 bool overflowed = true;
517 wi::overflow_type ovf1, ovf2;
518 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@3),
519 TYPE_SIGN (type), &ovf1);
520 wide_int add = wi::mul (wi::to_wide (@2), wi::to_wide (@3),
521 TYPE_SIGN (type), &ovf2);
522 if (TYPE_OVERFLOW_UNDEFINED (type))
526 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE
527 && get_global_range_query ()->range_of_expr (vr0, @4)
528 && vr0.kind () == VR_RANGE)
530 wide_int wmin0 = vr0.lower_bound ();
531 wide_int wmax0 = vr0.upper_bound ();
532 wmin0 = wi::mul (wmin0, wi::to_wide (@3), TYPE_SIGN (type), &ovf1);
533 wmax0 = wi::mul (wmax0, wi::to_wide (@3), TYPE_SIGN (type), &ovf2);
534 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
536 wi::add (wmin0, add, TYPE_SIGN (type), &ovf1);
537 wi::add (wmax0, add, TYPE_SIGN (type), &ovf2);
538 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
547 /* Skip folding on overflow. */
549 (plus (mult @0 { wide_int_to_tree (type, mul); })
550 { wide_int_to_tree (type, add); }))))
552 /* Similar to above, but a multiplication between successive additions. */
554 (plus (mult:s (plus:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
556 bool overflowed = true;
557 wi::overflow_type ovf1;
558 wi::overflow_type ovf2;
559 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
560 TYPE_SIGN (type), &ovf1);
561 wide_int add = wi::add (mul, wi::to_wide (@3),
562 TYPE_SIGN (type), &ovf2);
563 if (TYPE_OVERFLOW_UNDEFINED (type))
567 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE
568 && get_global_range_query ()->range_of_expr (vr0, @0)
569 && vr0.kind () == VR_RANGE)
571 wide_int wmin0 = vr0.lower_bound ();
572 wide_int wmax0 = vr0.upper_bound ();
573 wmin0 = wi::mul (wmin0, wi::to_wide (@2), TYPE_SIGN (type), &ovf1);
574 wmax0 = wi::mul (wmax0, wi::to_wide (@2), TYPE_SIGN (type), &ovf2);
575 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
577 wi::add (wmin0, mul, TYPE_SIGN (type), &ovf1);
578 wi::add (wmax0, mul, TYPE_SIGN (type), &ovf2);
579 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
588 /* Skip folding on overflow. */
590 (plus (mult @0 @2) { wide_int_to_tree (type, add); }))))
592 /* Optimize A / A to 1.0 if we don't care about
593 NaNs or Infinities. */
596 (if (FLOAT_TYPE_P (type)
597 && ! HONOR_NANS (type)
598 && ! HONOR_INFINITIES (type))
599 { build_one_cst (type); }))
601 /* Optimize -A / A to -1.0 if we don't care about
602 NaNs or Infinities. */
604 (rdiv:C @0 (negate @0))
605 (if (FLOAT_TYPE_P (type)
606 && ! HONOR_NANS (type)
607 && ! HONOR_INFINITIES (type))
608 { build_minus_one_cst (type); }))
610 /* PR71078: x / abs(x) -> copysign (1.0, x) */
612 (rdiv:C (convert? @0) (convert? (abs @0)))
613 (if (SCALAR_FLOAT_TYPE_P (type)
614 && ! HONOR_NANS (type)
615 && ! HONOR_INFINITIES (type))
617 (if (types_match (type, float_type_node))
618 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
619 (if (types_match (type, double_type_node))
620 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
621 (if (types_match (type, long_double_type_node))
622 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
624 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
627 (if (!tree_expr_maybe_signaling_nan_p (@0))
630 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
632 (rdiv @0 real_minus_onep)
633 (if (!tree_expr_maybe_signaling_nan_p (@0))
636 (if (flag_reciprocal_math)
637 /* Convert (A/B)/C to A/(B*C). */
639 (rdiv (rdiv:s @0 @1) @2)
640 (rdiv @0 (mult @1 @2)))
642 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
644 (rdiv @0 (mult:s @1 REAL_CST@2))
646 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
648 (rdiv (mult @0 { tem; } ) @1))))
650 /* Convert A/(B/C) to (A/B)*C */
652 (rdiv @0 (rdiv:s @1 @2))
653 (mult (rdiv @0 @1) @2)))
655 /* Simplify x / (- y) to -x / y. */
657 (rdiv @0 (negate @1))
658 (rdiv (negate @0) @1))
660 (if (flag_unsafe_math_optimizations)
661 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
662 Since C / x may underflow to zero, do this only for unsafe math. */
663 (for op (lt le gt ge)
666 (op (rdiv REAL_CST@0 @1) real_zerop@2)
667 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
669 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
671 /* For C < 0, use the inverted operator. */
672 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
675 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
676 (for div (trunc_div ceil_div floor_div round_div exact_div)
678 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
679 (if (integer_pow2p (@2)
680 && tree_int_cst_sgn (@2) > 0
681 && tree_nop_conversion_p (type, TREE_TYPE (@0))
682 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
684 { build_int_cst (integer_type_node,
685 wi::exact_log2 (wi::to_wide (@2))); }))))
687 /* If ARG1 is a constant, we can convert this to a multiply by the
688 reciprocal. This does not have the same rounding properties,
689 so only do this if -freciprocal-math. We can actually
690 always safely do it if ARG1 is a power of two, but it's hard to
691 tell if it is or not in a portable manner. */
692 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
696 (if (flag_reciprocal_math
699 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
701 (mult @0 { tem; } )))
702 (if (cst != COMPLEX_CST)
703 (with { tree inverse = exact_inverse (type, @1); }
705 (mult @0 { inverse; } ))))))))
707 (for mod (ceil_mod floor_mod round_mod trunc_mod)
708 /* 0 % X is always zero. */
710 (mod integer_zerop@0 @1)
711 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
712 (if (!integer_zerop (@1))
714 /* X % 1 is always zero. */
716 (mod @0 integer_onep)
717 { build_zero_cst (type); })
718 /* X % -1 is zero. */
720 (mod @0 integer_minus_onep@1)
721 (if (!TYPE_UNSIGNED (type))
722 { build_zero_cst (type); }))
726 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
727 (if (!integer_zerop (@0))
728 { build_zero_cst (type); }))
729 /* (X % Y) % Y is just X % Y. */
731 (mod (mod@2 @0 @1) @1)
733 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
735 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
736 (if (ANY_INTEGRAL_TYPE_P (type)
737 && TYPE_OVERFLOW_UNDEFINED (type)
738 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
740 { build_zero_cst (type); }))
741 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
742 modulo and comparison, since it is simpler and equivalent. */
745 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
746 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
747 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
748 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
750 /* X % -C is the same as X % C. */
752 (trunc_mod @0 INTEGER_CST@1)
753 (if (TYPE_SIGN (type) == SIGNED
754 && !TREE_OVERFLOW (@1)
755 && wi::neg_p (wi::to_wide (@1))
756 && !TYPE_OVERFLOW_TRAPS (type)
757 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
758 && !sign_bit_p (@1, @1))
759 (trunc_mod @0 (negate @1))))
761 /* X % -Y is the same as X % Y. */
763 (trunc_mod @0 (convert? (negate @1)))
764 (if (INTEGRAL_TYPE_P (type)
765 && !TYPE_UNSIGNED (type)
766 && !TYPE_OVERFLOW_TRAPS (type)
767 && tree_nop_conversion_p (type, TREE_TYPE (@1))
768 /* Avoid this transformation if X might be INT_MIN or
769 Y might be -1, because we would then change valid
770 INT_MIN % -(-1) into invalid INT_MIN % -1. */
771 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
772 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
774 (trunc_mod @0 (convert @1))))
776 /* X - (X / Y) * Y is the same as X % Y. */
778 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
779 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
780 (convert (trunc_mod @0 @1))))
782 /* x * (1 + y / x) - y -> x - y % x */
784 (minus (mult:cs @0 (plus:s (trunc_div:s @1 @0) integer_onep)) @1)
785 (if (INTEGRAL_TYPE_P (type))
786 (minus @0 (trunc_mod @1 @0))))
788 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
789 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
790 Also optimize A % (C << N) where C is a power of 2,
791 to A & ((C << N) - 1).
792 Also optimize "A shift (B % C)", if C is a power of 2, to
793 "A shift (B & (C - 1))". SHIFT operation include "<<" and ">>"
794 and assume (B % C) is nonnegative as shifts negative values would
796 (match (power_of_two_cand @1)
798 (match (power_of_two_cand @1)
799 (lshift INTEGER_CST@1 @2))
800 (for mod (trunc_mod floor_mod)
801 (for shift (lshift rshift)
803 (shift @0 (mod @1 (power_of_two_cand@2 @3)))
804 (if (integer_pow2p (@3) && tree_int_cst_sgn (@3) > 0)
805 (shift @0 (bit_and @1 (minus @2 { build_int_cst (TREE_TYPE (@2),
808 (mod @0 (convert? (power_of_two_cand@1 @2)))
809 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
810 /* Allow any integral conversions of the divisor, except
811 conversion from narrower signed to wider unsigned type
812 where if @1 would be negative power of two, the divisor
813 would not be a power of two. */
814 && INTEGRAL_TYPE_P (type)
815 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
816 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
817 || TYPE_UNSIGNED (TREE_TYPE (@1))
818 || !TYPE_UNSIGNED (type))
819 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
820 (with { tree utype = TREE_TYPE (@1);
821 if (!TYPE_OVERFLOW_WRAPS (utype))
822 utype = unsigned_type_for (utype); }
823 (bit_and @0 (convert (minus (convert:utype @1)
824 { build_one_cst (utype); })))))))
826 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
828 (trunc_div (mult @0 integer_pow2p@1) @1)
829 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
830 (bit_and @0 { wide_int_to_tree
831 (type, wi::mask (TYPE_PRECISION (type)
832 - wi::exact_log2 (wi::to_wide (@1)),
833 false, TYPE_PRECISION (type))); })))
835 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
837 (mult (trunc_div @0 integer_pow2p@1) @1)
838 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
839 (bit_and @0 (negate @1))))
841 /* Simplify (t * 2) / 2) -> t. */
842 (for div (trunc_div ceil_div floor_div round_div exact_div)
844 (div (mult:c @0 @1) @1)
845 (if (ANY_INTEGRAL_TYPE_P (type))
846 (if (TYPE_OVERFLOW_UNDEFINED (type))
851 bool overflowed = true;
852 value_range vr0, vr1;
853 if (INTEGRAL_TYPE_P (type)
854 && get_global_range_query ()->range_of_expr (vr0, @0)
855 && get_global_range_query ()->range_of_expr (vr1, @1)
856 && vr0.kind () == VR_RANGE
857 && vr1.kind () == VR_RANGE)
859 wide_int wmin0 = vr0.lower_bound ();
860 wide_int wmax0 = vr0.upper_bound ();
861 wide_int wmin1 = vr1.lower_bound ();
862 wide_int wmax1 = vr1.upper_bound ();
863 /* If the multiplication can't overflow/wrap around, then
864 it can be optimized too. */
865 wi::overflow_type min_ovf, max_ovf;
866 wi::mul (wmin0, wmin1, TYPE_SIGN (type), &min_ovf);
867 wi::mul (wmax0, wmax1, TYPE_SIGN (type), &max_ovf);
868 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
870 wi::mul (wmin0, wmax1, TYPE_SIGN (type), &min_ovf);
871 wi::mul (wmax0, wmin1, TYPE_SIGN (type), &max_ovf);
872 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
883 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
888 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
891 (pows (op @0) REAL_CST@1)
892 (with { HOST_WIDE_INT n; }
893 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
895 /* Likewise for powi. */
898 (pows (op @0) INTEGER_CST@1)
899 (if ((wi::to_wide (@1) & 1) == 0)
901 /* Strip negate and abs from both operands of hypot. */
909 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
910 (for copysigns (COPYSIGN_ALL)
912 (copysigns (op @0) @1)
915 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
920 /* Convert absu(x)*absu(x) -> x*x. */
922 (mult (absu@1 @0) @1)
923 (mult (convert@2 @0) @2))
925 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
929 (coss (copysigns @0 @1))
932 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
936 (pows (copysigns @0 @2) REAL_CST@1)
937 (with { HOST_WIDE_INT n; }
938 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
940 /* Likewise for powi. */
944 (pows (copysigns @0 @2) INTEGER_CST@1)
945 (if ((wi::to_wide (@1) & 1) == 0)
950 /* hypot(copysign(x, y), z) -> hypot(x, z). */
952 (hypots (copysigns @0 @1) @2)
954 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
956 (hypots @0 (copysigns @1 @2))
959 /* copysign(x, CST) -> [-]abs (x). */
960 (for copysigns (COPYSIGN_ALL)
962 (copysigns @0 REAL_CST@1)
963 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
967 /* copysign(copysign(x, y), z) -> copysign(x, z). */
968 (for copysigns (COPYSIGN_ALL)
970 (copysigns (copysigns @0 @1) @2)
973 /* copysign(x,y)*copysign(x,y) -> x*x. */
974 (for copysigns (COPYSIGN_ALL)
976 (mult (copysigns@2 @0 @1) @2)
979 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
980 (for ccoss (CCOS CCOSH)
985 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
986 (for ops (conj negate)
992 /* Fold (a * (1 << b)) into (a << b) */
994 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
995 (if (! FLOAT_TYPE_P (type)
996 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
999 /* Shifts by constants distribute over several binary operations,
1000 hence (X << C) + (Y << C) can be simplified to (X + Y) << C. */
1001 (for op (plus minus)
1003 (op (lshift:s @0 @1) (lshift:s @2 @1))
1004 (if (INTEGRAL_TYPE_P (type)
1005 && TYPE_OVERFLOW_WRAPS (type)
1006 && !TYPE_SATURATING (type))
1007 (lshift (op @0 @2) @1))))
1009 (for op (bit_and bit_ior bit_xor)
1011 (op (lshift:s @0 @1) (lshift:s @2 @1))
1012 (if (INTEGRAL_TYPE_P (type))
1013 (lshift (op @0 @2) @1)))
1015 (op (rshift:s @0 @1) (rshift:s @2 @1))
1016 (if (INTEGRAL_TYPE_P (type))
1017 (rshift (op @0 @2) @1))))
1019 /* Fold (1 << (C - x)) where C = precision(type) - 1
1020 into ((1 << C) >> x). */
1022 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
1023 (if (INTEGRAL_TYPE_P (type)
1024 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
1026 (if (TYPE_UNSIGNED (type))
1027 (rshift (lshift @0 @2) @3)
1029 { tree utype = unsigned_type_for (type); }
1030 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
1032 /* Fold ((type)(a<0)) << SIGNBITOFA into ((type)a) & signbit. */
1034 (lshift (convert (lt @0 integer_zerop@1)) INTEGER_CST@2)
1035 (if (TYPE_SIGN (TREE_TYPE (@0)) == SIGNED
1036 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0)) - 1))
1037 (with { wide_int wone = wi::one (TYPE_PRECISION (type)); }
1038 (bit_and (convert @0)
1039 { wide_int_to_tree (type,
1040 wi::lshift (wone, wi::to_wide (@2))); }))))
1042 /* Fold (-x >> C) into -(x > 0) where C = precision(type) - 1. */
1043 (for cst (INTEGER_CST VECTOR_CST)
1045 (rshift (negate:s @0) cst@1)
1046 (if (!TYPE_UNSIGNED (type)
1047 && TYPE_OVERFLOW_UNDEFINED (type))
1048 (with { tree stype = TREE_TYPE (@1);
1049 tree bt = truth_type_for (type);
1050 tree zeros = build_zero_cst (type);
1051 tree cst = NULL_TREE; }
1053 /* Handle scalar case. */
1054 (if (INTEGRAL_TYPE_P (type)
1055 /* If we apply the rule to the scalar type before vectorization
1056 we will enforce the result of the comparison being a bool
1057 which will require an extra AND on the result that will be
1058 indistinguishable from when the user did actually want 0
1059 or 1 as the result so it can't be removed. */
1060 && canonicalize_math_after_vectorization_p ()
1061 && wi::eq_p (wi::to_wide (@1), TYPE_PRECISION (type) - 1))
1062 (negate (convert (gt @0 { zeros; }))))
1063 /* Handle vector case. */
1064 (if (VECTOR_INTEGER_TYPE_P (type)
1065 /* First check whether the target has the same mode for vector
1066 comparison results as it's operands do. */
1067 && TYPE_MODE (bt) == TYPE_MODE (type)
1068 /* Then check to see if the target is able to expand the comparison
1069 with the given type later on, otherwise we may ICE. */
1070 && expand_vec_cmp_expr_p (type, bt, GT_EXPR)
1071 && (cst = uniform_integer_cst_p (@1)) != NULL
1072 && wi::eq_p (wi::to_wide (cst), element_precision (type) - 1))
1073 (view_convert (gt:bt @0 { zeros; }))))))))
1075 /* Fold (C1/X)*C2 into (C1*C2)/X. */
1077 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
1078 (if (flag_associative_math
1081 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
1083 (rdiv { tem; } @1)))))
1085 /* Simplify ~X & X as zero. */
1087 (bit_and:c (convert? @0) (convert? (bit_not @0)))
1088 { build_zero_cst (type); })
1090 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
1092 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
1093 (if (TYPE_UNSIGNED (type))
1094 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
1096 (for bitop (bit_and bit_ior)
1098 /* PR35691: Transform
1099 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
1100 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
1102 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
1103 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1104 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
1105 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1106 (cmp (bit_ior @0 (convert @1)) @2)))
1108 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
1109 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
1111 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
1112 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1113 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
1114 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1115 (cmp (bit_and @0 (convert @1)) @2))))
1117 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
1119 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
1120 (minus (bit_xor @0 @1) @1))
1122 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
1123 (if (~wi::to_wide (@2) == wi::to_wide (@1))
1124 (minus (bit_xor @0 @1) @1)))
1126 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
1128 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
1129 (minus @1 (bit_xor @0 @1)))
1131 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
1132 (for op (bit_ior bit_xor plus)
1134 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
1137 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
1138 (if (~wi::to_wide (@2) == wi::to_wide (@1))
1141 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
1143 (bit_ior:c (bit_xor:c @0 @1) @0)
1146 /* (a & ~b) | (a ^ b) --> a ^ b */
1148 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
1151 /* (a & ~b) ^ ~a --> ~(a & b) */
1153 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
1154 (bit_not (bit_and @0 @1)))
1156 /* (~a & b) ^ a --> (a | b) */
1158 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
1161 /* (a | b) & ~(a ^ b) --> a & b */
1163 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
1166 /* a | ~(a ^ b) --> a | ~b */
1168 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
1169 (bit_ior @0 (bit_not @1)))
1171 /* (a | b) | (a &^ b) --> a | b */
1172 (for op (bit_and bit_xor)
1174 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
1177 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
1179 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
1182 /* ~(~a & b) --> a | ~b */
1184 (bit_not (bit_and:cs (bit_not @0) @1))
1185 (bit_ior @0 (bit_not @1)))
1187 /* ~(~a | b) --> a & ~b */
1189 (bit_not (bit_ior:cs (bit_not @0) @1))
1190 (bit_and @0 (bit_not @1)))
1192 /* (a ^ b) & ((b ^ c) ^ a) --> (a ^ b) & ~c */
1194 (bit_and:c (bit_xor:c@3 @0 @1) (bit_xor:cs (bit_xor:cs @1 @2) @0))
1195 (bit_and @3 (bit_not @2)))
1197 /* (a ^ b) | ((b ^ c) ^ a) --> (a ^ b) | c */
1199 (bit_ior:c (bit_xor:c@3 @0 @1) (bit_xor:c (bit_xor:c @1 @2) @0))
1202 /* (~X | C) ^ D -> (X | C) ^ (~D ^ C) if (~D ^ C) can be simplified. */
1204 (bit_xor:c (bit_ior:cs (bit_not:s @0) @1) @2)
1205 (bit_xor (bit_ior @0 @1) (bit_xor! (bit_not! @2) @1)))
1207 /* (~X & C) ^ D -> (X & C) ^ (D ^ C) if (D ^ C) can be simplified. */
1209 (bit_xor:c (bit_and:cs (bit_not:s @0) @1) @2)
1210 (bit_xor (bit_and @0 @1) (bit_xor! @2 @1)))
1212 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
1214 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
1215 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1216 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1219 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
1220 ((A & N) + B) & M -> (A + B) & M
1221 Similarly if (N & M) == 0,
1222 ((A | N) + B) & M -> (A + B) & M
1223 and for - instead of + (or unary - instead of +)
1224 and/or ^ instead of |.
1225 If B is constant and (B & M) == 0, fold into A & M. */
1226 (for op (plus minus)
1227 (for bitop (bit_and bit_ior bit_xor)
1229 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
1232 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
1233 @3, @4, @1, ERROR_MARK, NULL_TREE,
1236 (convert (bit_and (op (convert:utype { pmop[0]; })
1237 (convert:utype { pmop[1]; }))
1238 (convert:utype @2))))))
1240 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
1243 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1244 NULL_TREE, NULL_TREE, @1, bitop, @3,
1247 (convert (bit_and (op (convert:utype { pmop[0]; })
1248 (convert:utype { pmop[1]; }))
1249 (convert:utype @2)))))))
1251 (bit_and (op:s @0 @1) INTEGER_CST@2)
1254 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1255 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
1256 NULL_TREE, NULL_TREE, pmop); }
1258 (convert (bit_and (op (convert:utype { pmop[0]; })
1259 (convert:utype { pmop[1]; }))
1260 (convert:utype @2)))))))
1261 (for bitop (bit_and bit_ior bit_xor)
1263 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
1266 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
1267 bitop, @2, @3, NULL_TREE, ERROR_MARK,
1268 NULL_TREE, NULL_TREE, pmop); }
1270 (convert (bit_and (negate (convert:utype { pmop[0]; }))
1271 (convert:utype @1)))))))
1273 /* X % Y is smaller than Y. */
1276 (cmp (trunc_mod @0 @1) @1)
1277 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1278 { constant_boolean_node (cmp == LT_EXPR, type); })))
1281 (cmp @1 (trunc_mod @0 @1))
1282 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1283 { constant_boolean_node (cmp == GT_EXPR, type); })))
1287 (bit_ior @0 integer_all_onesp@1)
1292 (bit_ior @0 integer_zerop)
1297 (bit_and @0 integer_zerop@1)
1302 (for op (bit_ior bit_xor)
1304 (op:c (convert? @0) (convert? (bit_not @0)))
1305 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
1310 { build_zero_cst (type); })
1312 /* Canonicalize X ^ ~0 to ~X. */
1314 (bit_xor @0 integer_all_onesp@1)
1319 (bit_and @0 integer_all_onesp)
1322 /* x & x -> x, x | x -> x */
1323 (for bitop (bit_and bit_ior)
1328 /* x & C -> x if we know that x & ~C == 0. */
1331 (bit_and SSA_NAME@0 INTEGER_CST@1)
1332 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1333 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1337 /* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y. */
1339 (bit_not (minus (bit_not @0) @1))
1342 (bit_not (plus:c (bit_not @0) @1))
1344 /* (~X - ~Y) -> Y - X. */
1346 (minus (bit_not @0) (bit_not @1))
1347 (if (!TYPE_OVERFLOW_SANITIZED (type))
1348 (with { tree utype = unsigned_type_for (type); }
1349 (convert (minus (convert:utype @1) (convert:utype @0))))))
1351 /* ~(X - Y) -> ~X + Y. */
1353 (bit_not (minus:s @0 @1))
1354 (plus (bit_not @0) @1))
1356 (bit_not (plus:s @0 INTEGER_CST@1))
1357 (if ((INTEGRAL_TYPE_P (type)
1358 && TYPE_UNSIGNED (type))
1359 || (!TYPE_OVERFLOW_SANITIZED (type)
1360 && may_negate_without_overflow_p (@1)))
1361 (plus (bit_not @0) { const_unop (NEGATE_EXPR, type, @1); })))
1364 /* ~X + Y -> (Y - X) - 1. */
1366 (plus:c (bit_not @0) @1)
1367 (if (ANY_INTEGRAL_TYPE_P (type)
1368 && TYPE_OVERFLOW_WRAPS (type)
1369 /* -1 - X is folded to ~X, so we'd recurse endlessly. */
1370 && !integer_all_onesp (@1))
1371 (plus (minus @1 @0) { build_minus_one_cst (type); })
1372 (if (INTEGRAL_TYPE_P (type)
1373 && TREE_CODE (@1) == INTEGER_CST
1374 && wi::to_wide (@1) != wi::min_value (TYPE_PRECISION (type),
1376 (minus (plus @1 { build_minus_one_cst (type); }) @0))))
1379 /* ~(X >> Y) -> ~X >> Y if ~X can be simplified. */
1381 (bit_not (rshift:s @0 @1))
1382 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
1383 (rshift (bit_not! @0) @1)
1384 /* For logical right shifts, this is possible only if @0 doesn't
1385 have MSB set and the logical right shift is changed into
1386 arithmetic shift. */
1387 (if (INTEGRAL_TYPE_P (type)
1388 && !wi::neg_p (tree_nonzero_bits (@0)))
1389 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1390 (convert (rshift (bit_not! (convert:stype @0)) @1))))))
1392 /* x + (x & 1) -> (x + 1) & ~1 */
1394 (plus:c @0 (bit_and:s @0 integer_onep@1))
1395 (bit_and (plus @0 @1) (bit_not @1)))
1397 /* x & ~(x & y) -> x & ~y */
1398 /* x | ~(x | y) -> x | ~y */
1399 (for bitop (bit_and bit_ior)
1401 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1402 (bitop @0 (bit_not @1))))
1404 /* (~x & y) | ~(x | y) -> ~x */
1406 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1409 /* (x | y) ^ (x | ~y) -> ~x */
1411 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1414 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1416 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1417 (bit_not (bit_xor @0 @1)))
1419 /* (~x | y) ^ (x ^ y) -> x | ~y */
1421 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1422 (bit_ior @0 (bit_not @1)))
1424 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1426 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1427 (bit_not (bit_and @0 @1)))
1429 /* (x | y) & ~x -> y & ~x */
1430 /* (x & y) | ~x -> y | ~x */
1431 (for bitop (bit_and bit_ior)
1432 rbitop (bit_ior bit_and)
1434 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1437 /* (x & y) ^ (x | y) -> x ^ y */
1439 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1442 /* (x ^ y) ^ (x | y) -> x & y */
1444 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1447 /* (x & y) + (x ^ y) -> x | y */
1448 /* (x & y) | (x ^ y) -> x | y */
1449 /* (x & y) ^ (x ^ y) -> x | y */
1450 (for op (plus bit_ior bit_xor)
1452 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1455 /* (x & y) + (x | y) -> x + y */
1457 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1460 /* (x + y) - (x | y) -> x & y */
1462 (minus (plus @0 @1) (bit_ior @0 @1))
1463 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1464 && !TYPE_SATURATING (type))
1467 /* (x + y) - (x & y) -> x | y */
1469 (minus (plus @0 @1) (bit_and @0 @1))
1470 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1471 && !TYPE_SATURATING (type))
1474 /* (x | y) - y -> (x & ~y) */
1476 (minus (bit_ior:cs @0 @1) @1)
1477 (bit_and @0 (bit_not @1)))
1479 /* (x | y) - (x ^ y) -> x & y */
1481 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1484 /* (x | y) - (x & y) -> x ^ y */
1486 (minus (bit_ior @0 @1) (bit_and @0 @1))
1489 /* (x | y) & ~(x & y) -> x ^ y */
1491 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1494 /* (x | y) & (~x ^ y) -> x & y */
1496 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1499 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1501 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1502 (bit_not (bit_xor @0 @1)))
1504 /* (~x | y) ^ (x | ~y) -> x ^ y */
1506 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1509 /* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */
1511 (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1))
1512 (nop_convert2? (bit_ior @0 @1))))
1514 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1515 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1516 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1517 && !TYPE_SATURATING (TREE_TYPE (@2)))
1518 (bit_not (convert (bit_xor @0 @1)))))
1520 (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1))
1522 (nop_convert3? (bit_ior @0 @1)))
1523 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1524 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1525 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1526 && !TYPE_SATURATING (TREE_TYPE (@2)))
1527 (bit_not (convert (bit_xor @0 @1)))))
1529 (minus (nop_convert1? (bit_and @0 @1))
1530 (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1))
1532 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1533 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1534 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1535 && !TYPE_SATURATING (TREE_TYPE (@2)))
1536 (bit_not (convert (bit_xor @0 @1)))))
1538 /* ~x & ~y -> ~(x | y)
1539 ~x | ~y -> ~(x & y) */
1540 (for op (bit_and bit_ior)
1541 rop (bit_ior bit_and)
1543 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1544 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1545 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1546 (bit_not (rop (convert @0) (convert @1))))))
1548 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1549 with a constant, and the two constants have no bits in common,
1550 we should treat this as a BIT_IOR_EXPR since this may produce more
1552 (for op (bit_xor plus)
1554 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1555 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1556 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1557 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1558 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1559 (bit_ior (convert @4) (convert @5)))))
1561 /* (X | Y) ^ X -> Y & ~ X*/
1563 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1564 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1565 (convert (bit_and @1 (bit_not @0)))))
1567 /* Convert ~X ^ ~Y to X ^ Y. */
1569 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1570 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1571 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1572 (bit_xor (convert @0) (convert @1))))
1574 /* Convert ~X ^ C to X ^ ~C. */
1576 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1577 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1578 (bit_xor (convert @0) (bit_not @1))))
1580 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1581 (for opo (bit_and bit_xor)
1582 opi (bit_xor bit_and)
1584 (opo:c (opi:cs @0 @1) @1)
1585 (bit_and (bit_not @0) @1)))
1587 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1588 operands are another bit-wise operation with a common input. If so,
1589 distribute the bit operations to save an operation and possibly two if
1590 constants are involved. For example, convert
1591 (A | B) & (A | C) into A | (B & C)
1592 Further simplification will occur if B and C are constants. */
1593 (for op (bit_and bit_ior bit_xor)
1594 rop (bit_ior bit_and bit_and)
1596 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1597 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1598 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1599 (rop (convert @0) (op (convert @1) (convert @2))))))
1601 /* Some simple reassociation for bit operations, also handled in reassoc. */
1602 /* (X & Y) & Y -> X & Y
1603 (X | Y) | Y -> X | Y */
1604 (for op (bit_and bit_ior)
1606 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1608 /* (X ^ Y) ^ Y -> X */
1610 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1612 /* (X & Y) & (X & Z) -> (X & Y) & Z
1613 (X | Y) | (X | Z) -> (X | Y) | Z */
1614 (for op (bit_and bit_ior)
1616 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1617 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1618 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1619 (if (single_use (@5) && single_use (@6))
1620 (op @3 (convert @2))
1621 (if (single_use (@3) && single_use (@4))
1622 (op (convert @1) @5))))))
1623 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1625 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1626 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1627 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1628 (bit_xor (convert @1) (convert @2))))
1630 /* Convert abs (abs (X)) into abs (X).
1631 also absu (absu (X)) into absu (X). */
1637 (absu (convert@2 (absu@1 @0)))
1638 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1641 /* Convert abs[u] (-X) -> abs[u] (X). */
1650 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1652 (abs tree_expr_nonnegative_p@0)
1656 (absu tree_expr_nonnegative_p@0)
1659 /* Simplify (-(X < 0) | 1) * X into abs (X) or absu(X). */
1661 (mult:c (nop_convert1?
1662 (bit_ior (nop_convert2? (negate (convert? (lt @0 integer_zerop))))
1665 (if (INTEGRAL_TYPE_P (type)
1666 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1667 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1668 (if (TYPE_UNSIGNED (type))
1675 /* A few cases of fold-const.cc negate_expr_p predicate. */
1676 (match negate_expr_p
1678 (if ((INTEGRAL_TYPE_P (type)
1679 && TYPE_UNSIGNED (type))
1680 || (!TYPE_OVERFLOW_SANITIZED (type)
1681 && may_negate_without_overflow_p (t)))))
1682 (match negate_expr_p
1684 (match negate_expr_p
1686 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1687 (match negate_expr_p
1689 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1690 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1692 (match negate_expr_p
1694 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1695 (match negate_expr_p
1697 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1698 || (FLOAT_TYPE_P (type)
1699 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1700 && !HONOR_SIGNED_ZEROS (type)))))
1702 /* (-A) * (-B) -> A * B */
1704 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1705 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1706 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1707 (mult (convert @0) (convert (negate @1)))))
1709 /* -(A + B) -> (-B) - A. */
1711 (negate (plus:c @0 negate_expr_p@1))
1712 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
1713 && !HONOR_SIGNED_ZEROS (type))
1714 (minus (negate @1) @0)))
1716 /* -(A - B) -> B - A. */
1718 (negate (minus @0 @1))
1719 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1720 || (FLOAT_TYPE_P (type)
1721 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1722 && !HONOR_SIGNED_ZEROS (type)))
1725 (negate (pointer_diff @0 @1))
1726 (if (TYPE_OVERFLOW_UNDEFINED (type))
1727 (pointer_diff @1 @0)))
1729 /* A - B -> A + (-B) if B is easily negatable. */
1731 (minus @0 negate_expr_p@1)
1732 (if (!FIXED_POINT_TYPE_P (type))
1733 (plus @0 (negate @1))))
1735 /* 1 - a is a ^ 1 if a had a bool range. */
1736 /* This is only enabled for gimple as sometimes
1737 cfun is not set for the function which contains
1738 the SSA_NAME (e.g. while IPA passes are happening,
1739 fold might be called). */
1741 (minus integer_onep@0 SSA_NAME@1)
1742 (if (INTEGRAL_TYPE_P (type)
1743 && ssa_name_has_boolean_range (@1))
1746 /* Other simplifications of negation (c.f. fold_negate_expr_1). */
1748 (negate (mult:c@0 @1 negate_expr_p@2))
1749 (if (! TYPE_UNSIGNED (type)
1750 && ! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1752 (mult @1 (negate @2))))
1755 (negate (rdiv@0 @1 negate_expr_p@2))
1756 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1758 (rdiv @1 (negate @2))))
1761 (negate (rdiv@0 negate_expr_p@1 @2))
1762 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1764 (rdiv (negate @1) @2)))
1766 /* Fold -((int)x >> (prec - 1)) into (unsigned)x >> (prec - 1). */
1768 (negate (convert? (rshift @0 INTEGER_CST@1)))
1769 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1770 && wi::to_wide (@1) == element_precision (type) - 1)
1771 (with { tree stype = TREE_TYPE (@0);
1772 tree ntype = TYPE_UNSIGNED (stype) ? signed_type_for (stype)
1773 : unsigned_type_for (stype); }
1774 (if (VECTOR_TYPE_P (type))
1775 (view_convert (rshift (view_convert:ntype @0) @1))
1776 (convert (rshift (convert:ntype @0) @1))))))
1778 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1780 For bitwise binary operations apply operand conversions to the
1781 binary operation result instead of to the operands. This allows
1782 to combine successive conversions and bitwise binary operations.
1783 We combine the above two cases by using a conditional convert. */
1784 (for bitop (bit_and bit_ior bit_xor)
1786 (bitop (convert@2 @0) (convert?@3 @1))
1787 (if (((TREE_CODE (@1) == INTEGER_CST
1788 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1789 && (int_fits_type_p (@1, TREE_TYPE (@0))
1790 || tree_nop_conversion_p (TREE_TYPE (@0), type)))
1791 || types_match (@0, @1))
1792 && !POINTER_TYPE_P (TREE_TYPE (@0))
1793 && TREE_CODE (TREE_TYPE (@0)) != OFFSET_TYPE
1794 /* ??? This transform conflicts with fold-const.cc doing
1795 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1796 constants (if x has signed type, the sign bit cannot be set
1797 in c). This folds extension into the BIT_AND_EXPR.
1798 Restrict it to GIMPLE to avoid endless recursions. */
1799 && (bitop != BIT_AND_EXPR || GIMPLE)
1800 && (/* That's a good idea if the conversion widens the operand, thus
1801 after hoisting the conversion the operation will be narrower.
1802 It is also a good if the conversion is a nop as moves the
1803 conversion to one side; allowing for combining of the conversions. */
1804 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1805 /* The conversion check for being a nop can only be done at the gimple
1806 level as fold_binary has some re-association code which can conflict
1807 with this if there is a "constant" which is not a full INTEGER_CST. */
1808 || (GIMPLE && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
1809 /* It's also a good idea if the conversion is to a non-integer
1811 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1812 /* Or if the precision of TO is not the same as the precision
1814 || !type_has_mode_precision_p (type)
1815 /* In GIMPLE, getting rid of 2 conversions for one new results
1818 && TREE_CODE (@1) != INTEGER_CST
1819 && tree_nop_conversion_p (type, TREE_TYPE (@0))
1821 && single_use (@3))))
1822 (convert (bitop @0 (convert @1)))))
1823 /* In GIMPLE, getting rid of 2 conversions for one new results
1826 (convert (bitop:cs@2 (nop_convert:s @0) @1))
1828 && TREE_CODE (@1) != INTEGER_CST
1829 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1830 && types_match (type, @0)
1831 && !POINTER_TYPE_P (TREE_TYPE (@0))
1832 && TREE_CODE (TREE_TYPE (@0)) != OFFSET_TYPE)
1833 (bitop @0 (convert @1)))))
1835 (for bitop (bit_and bit_ior)
1836 rbitop (bit_ior bit_and)
1837 /* (x | y) & x -> x */
1838 /* (x & y) | x -> x */
1840 (bitop:c (rbitop:c @0 @1) @0)
1842 /* (~x | y) & x -> x & y */
1843 /* (~x & y) | x -> x | y */
1845 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1848 /* ((x | y) & z) | x -> (z & y) | x */
1850 (bit_ior:c (bit_and:cs (bit_ior:cs @0 @1) @2) @0)
1851 (bit_ior (bit_and @2 @1) @0))
1853 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1855 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1856 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1858 /* Combine successive equal operations with constants. */
1859 (for bitop (bit_and bit_ior bit_xor)
1861 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1862 (if (!CONSTANT_CLASS_P (@0))
1863 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1864 folded to a constant. */
1865 (bitop @0 (bitop @1 @2))
1866 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1867 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1868 the values involved are such that the operation can't be decided at
1869 compile time. Try folding one of @0 or @1 with @2 to see whether
1870 that combination can be decided at compile time.
1872 Keep the existing form if both folds fail, to avoid endless
1874 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1876 (bitop @1 { cst1; })
1877 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1879 (bitop @0 { cst2; }))))))))
1881 /* Try simple folding for X op !X, and X op X with the help
1882 of the truth_valued_p and logical_inverted_value predicates. */
1883 (match truth_valued_p
1885 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1886 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1887 (match truth_valued_p
1889 (match truth_valued_p
1892 (match (logical_inverted_value @0)
1894 (match (logical_inverted_value @0)
1895 (bit_not truth_valued_p@0))
1896 (match (logical_inverted_value @0)
1897 (eq @0 integer_zerop))
1898 (match (logical_inverted_value @0)
1899 (ne truth_valued_p@0 integer_truep))
1900 (match (logical_inverted_value @0)
1901 (bit_xor truth_valued_p@0 integer_truep))
1905 (bit_and:c @0 (logical_inverted_value @0))
1906 { build_zero_cst (type); })
1907 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1908 (for op (bit_ior bit_xor)
1910 (op:c truth_valued_p@0 (logical_inverted_value @0))
1911 { constant_boolean_node (true, type); }))
1912 /* X ==/!= !X is false/true. */
1915 (op:c truth_valued_p@0 (logical_inverted_value @0))
1916 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1920 (bit_not (bit_not @0))
1923 (match zero_one_valued_p
1925 (if (INTEGRAL_TYPE_P (type) && tree_nonzero_bits (@0) == 1)))
1926 (match zero_one_valued_p
1929 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 }. */
1931 (mult zero_one_valued_p@0 zero_one_valued_p@1)
1932 (if (INTEGRAL_TYPE_P (type))
1935 (for cmp (tcc_comparison)
1936 icmp (inverted_tcc_comparison)
1937 /* Fold (((a < b) & c) | ((a >= b) & d)) into (a < b ? c : d) & 1. */
1940 (bit_and:c (convert? (cmp@0 @01 @02)) @3)
1941 (bit_and:c (convert? (icmp@4 @01 @02)) @5))
1942 (if (INTEGRAL_TYPE_P (type)
1943 /* The scalar version has to be canonicalized after vectorization
1944 because it makes unconditional loads conditional ones, which
1945 means we lose vectorization because the loads may trap. */
1946 && canonicalize_math_after_vectorization_p ())
1947 (bit_and (cond @0 @3 @5) { build_one_cst (type); })))
1949 /* Fold ((-(a < b) & c) | (-(a >= b) & d)) into a < b ? c : d. This is
1950 canonicalized further and we recognize the conditional form:
1951 (a < b ? c : 0) | (a >= b ? d : 0) into a < b ? c : d. */
1954 (cond (cmp@0 @01 @02) @3 zerop)
1955 (cond (icmp@4 @01 @02) @5 zerop))
1956 (if (INTEGRAL_TYPE_P (type)
1957 /* The scalar version has to be canonicalized after vectorization
1958 because it makes unconditional loads conditional ones, which
1959 means we lose vectorization because the loads may trap. */
1960 && canonicalize_math_after_vectorization_p ())
1963 /* Vector Fold (((a < b) & c) | ((a >= b) & d)) into a < b ? c : d.
1964 and ((~(a < b) & c) | (~(a >= b) & d)) into a < b ? c : d. */
1967 (bit_and:c (vec_cond:s (cmp@0 @6 @7) @4 @5) @2)
1968 (bit_and:c (vec_cond:s (icmp@1 @6 @7) @4 @5) @3))
1969 (if (integer_zerop (@5))
1971 (if (integer_onep (@4))
1972 (bit_and (vec_cond @0 @2 @3) @4))
1973 (if (integer_minus_onep (@4))
1974 (vec_cond @0 @2 @3)))
1975 (if (integer_zerop (@4))
1977 (if (integer_onep (@5))
1978 (bit_and (vec_cond @0 @3 @2) @5))
1979 (if (integer_minus_onep (@5))
1980 (vec_cond @0 @3 @2))))))
1982 /* Scalar Vectorized Fold ((-(a < b) & c) | (-(a >= b) & d))
1983 into a < b ? d : c. */
1986 (vec_cond:s (cmp@0 @4 @5) @2 integer_zerop)
1987 (vec_cond:s (icmp@1 @4 @5) @3 integer_zerop))
1988 (vec_cond @0 @2 @3)))
1990 /* Transform X & -Y into X * Y when Y is { 0 or 1 }. */
1992 (bit_and:c (convert? (negate zero_one_valued_p@0)) @1)
1993 (if (INTEGRAL_TYPE_P (type)
1994 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1995 && TREE_CODE (TREE_TYPE (@0)) != BOOLEAN_TYPE
1996 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1997 (mult (convert @0) @1)))
1999 /* Narrow integer multiplication by a zero_one_valued_p operand.
2000 Multiplication by [0,1] is guaranteed not to overflow. */
2002 (convert (mult@0 zero_one_valued_p@1 INTEGER_CST@2))
2003 (if (INTEGRAL_TYPE_P (type)
2004 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2005 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@0)))
2006 (mult (convert @1) (convert @2))))
2008 /* (X << C) != 0 can be simplified to X, when C is zero_one_valued_p.
2009 Check that the shift is well-defined (C is less than TYPE_PRECISION)
2010 as some targets (such as x86's SSE) may return zero for larger C. */
2012 (ne (lshift zero_one_valued_p@0 INTEGER_CST@1) integer_zerop@2)
2013 (if (tree_fits_shwi_p (@1)
2014 && tree_to_shwi (@1) > 0
2015 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
2018 /* (X << C) == 0 can be simplified to X == 0, when C is zero_one_valued_p.
2019 Check that the shift is well-defined (C is less than TYPE_PRECISION)
2020 as some targets (such as x86's SSE) may return zero for larger C. */
2022 (eq (lshift zero_one_valued_p@0 INTEGER_CST@1) integer_zerop@2)
2023 (if (tree_fits_shwi_p (@1)
2024 && tree_to_shwi (@1) > 0
2025 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
2028 /* Convert ~ (-A) to A - 1. */
2030 (bit_not (convert? (negate @0)))
2031 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
2032 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
2033 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
2035 /* Convert - (~A) to A + 1. */
2037 (negate (nop_convert? (bit_not @0)))
2038 (plus (view_convert @0) { build_each_one_cst (type); }))
2040 /* (a & b) ^ (a == b) -> !(a | b) */
2041 /* (a & b) == (a ^ b) -> !(a | b) */
2042 (for first_op (bit_xor eq)
2043 second_op (eq bit_xor)
2045 (first_op:c (bit_and:c truth_valued_p@0 truth_valued_p@1) (second_op:c @0 @1))
2046 (bit_not (bit_ior @0 @1))))
2048 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
2050 (bit_not (convert? (minus @0 integer_each_onep)))
2051 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
2052 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
2053 (convert (negate @0))))
2055 (bit_not (convert? (plus @0 integer_all_onesp)))
2056 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
2057 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
2058 (convert (negate @0))))
2060 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
2062 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
2063 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2064 (convert (bit_xor @0 (bit_not @1)))))
2066 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
2067 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2068 (convert (bit_xor @0 @1))))
2070 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
2072 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
2073 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2074 (bit_not (bit_xor (view_convert @0) @1))))
2076 /* ~(a ^ b) is a == b for truth valued a and b. */
2078 (bit_not (bit_xor:s truth_valued_p@0 truth_valued_p@1))
2079 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2080 && TYPE_PRECISION (TREE_TYPE (@0)) == 1)
2081 (convert (eq @0 @1))))
2083 /* (~a) == b is a ^ b for truth valued a and b. */
2085 (eq:c (bit_not:s truth_valued_p@0) truth_valued_p@1)
2086 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2087 && TYPE_PRECISION (TREE_TYPE (@0)) == 1)
2088 (convert (bit_xor @0 @1))))
2090 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
2092 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
2093 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
2095 /* Fold A - (A & B) into ~B & A. */
2097 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
2098 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2099 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
2100 (convert (bit_and (bit_not @1) @0))))
2102 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
2103 (if (!canonicalize_math_p ())
2104 (for cmp (tcc_comparison)
2106 (mult:c (convert (cmp@0 @1 @2)) @3)
2107 (if (INTEGRAL_TYPE_P (type)
2108 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2109 (cond @0 @3 { build_zero_cst (type); })))
2110 /* (-(m1 CMP m2)) & d -> (m1 CMP m2) ? d : 0 */
2112 (bit_and:c (negate (convert (cmp@0 @1 @2))) @3)
2113 (if (INTEGRAL_TYPE_P (type)
2114 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2115 (cond @0 @3 { build_zero_cst (type); })))
2119 /* For integral types with undefined overflow and C != 0 fold
2120 x * C EQ/NE y * C into x EQ/NE y. */
2123 (cmp (mult:c @0 @1) (mult:c @2 @1))
2124 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2125 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2126 && tree_expr_nonzero_p (@1))
2129 /* For integral types with wrapping overflow and C odd fold
2130 x * C EQ/NE y * C into x EQ/NE y. */
2133 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
2134 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2135 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
2136 && (TREE_INT_CST_LOW (@1) & 1) != 0)
2139 /* For integral types with undefined overflow and C != 0 fold
2140 x * C RELOP y * C into:
2142 x RELOP y for nonnegative C
2143 y RELOP x for negative C */
2144 (for cmp (lt gt le ge)
2146 (cmp (mult:c @0 @1) (mult:c @2 @1))
2147 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2148 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2149 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
2151 (if (TREE_CODE (@1) == INTEGER_CST
2152 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
2155 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
2159 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
2160 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2161 && TYPE_UNSIGNED (TREE_TYPE (@0))
2162 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
2163 && (wi::to_wide (@2)
2164 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
2165 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2166 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
2168 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
2169 (for cmp (simple_comparison)
2171 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
2172 (if (element_precision (@3) >= element_precision (@0)
2173 && types_match (@0, @1))
2174 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
2175 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
2177 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
2180 tree utype = unsigned_type_for (TREE_TYPE (@0));
2182 (cmp (convert:utype @1) (convert:utype @0)))))
2183 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
2184 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
2188 tree utype = unsigned_type_for (TREE_TYPE (@0));
2190 (cmp (convert:utype @0) (convert:utype @1)))))))))
2192 /* X / C1 op C2 into a simple range test. */
2193 (for cmp (simple_comparison)
2195 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
2196 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2197 && integer_nonzerop (@1)
2198 && !TREE_OVERFLOW (@1)
2199 && !TREE_OVERFLOW (@2))
2200 (with { tree lo, hi; bool neg_overflow;
2201 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
2204 (if (code == LT_EXPR || code == GE_EXPR)
2205 (if (TREE_OVERFLOW (lo))
2206 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
2207 (if (code == LT_EXPR)
2210 (if (code == LE_EXPR || code == GT_EXPR)
2211 (if (TREE_OVERFLOW (hi))
2212 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
2213 (if (code == LE_EXPR)
2217 { build_int_cst (type, code == NE_EXPR); })
2218 (if (code == EQ_EXPR && !hi)
2220 (if (code == EQ_EXPR && !lo)
2222 (if (code == NE_EXPR && !hi)
2224 (if (code == NE_EXPR && !lo)
2227 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
2231 tree etype = range_check_type (TREE_TYPE (@0));
2234 hi = fold_convert (etype, hi);
2235 lo = fold_convert (etype, lo);
2236 hi = const_binop (MINUS_EXPR, etype, hi, lo);
2239 (if (etype && hi && !TREE_OVERFLOW (hi))
2240 (if (code == EQ_EXPR)
2241 (le (minus (convert:etype @0) { lo; }) { hi; })
2242 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
2244 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
2245 (for op (lt le ge gt)
2247 (op (plus:c @0 @2) (plus:c @1 @2))
2248 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2249 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2252 /* As a special case, X + C < Y + C is the same as (signed) X < (signed) Y
2253 when C is an unsigned integer constant with only the MSB set, and X and
2254 Y have types of equal or lower integer conversion rank than C's. */
2255 (for op (lt le ge gt)
2257 (op (plus @1 INTEGER_CST@0) (plus @2 @0))
2258 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2259 && TYPE_UNSIGNED (TREE_TYPE (@0))
2260 && wi::only_sign_bit_p (wi::to_wide (@0)))
2261 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2262 (op (convert:stype @1) (convert:stype @2))))))
2264 /* For equality and subtraction, this is also true with wrapping overflow. */
2265 (for op (eq ne minus)
2267 (op (plus:c @0 @2) (plus:c @1 @2))
2268 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2269 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2270 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2273 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
2274 (for op (lt le ge gt)
2276 (op (minus @0 @2) (minus @1 @2))
2277 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2278 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2280 /* For equality and subtraction, this is also true with wrapping overflow. */
2281 (for op (eq ne minus)
2283 (op (minus @0 @2) (minus @1 @2))
2284 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2285 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2286 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2288 /* And for pointers... */
2289 (for op (simple_comparison)
2291 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
2292 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2295 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
2296 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2297 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2298 (pointer_diff @0 @1)))
2300 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
2301 (for op (lt le ge gt)
2303 (op (minus @2 @0) (minus @2 @1))
2304 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2305 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2307 /* For equality and subtraction, this is also true with wrapping overflow. */
2308 (for op (eq ne minus)
2310 (op (minus @2 @0) (minus @2 @1))
2311 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2312 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2313 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2315 /* And for pointers... */
2316 (for op (simple_comparison)
2318 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2319 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2322 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2323 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2324 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2325 (pointer_diff @1 @0)))
2327 /* X + Y < Y is the same as X < 0 when there is no overflow. */
2328 (for op (lt le gt ge)
2330 (op:c (plus:c@2 @0 @1) @1)
2331 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2332 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2333 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2334 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
2335 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
2336 /* For equality, this is also true with wrapping overflow. */
2339 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
2340 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2341 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2342 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2343 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
2344 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
2345 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
2346 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
2348 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
2349 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
2350 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2351 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
2352 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2354 /* (&a + b) !=/== (&a[1] + c) -> (&a[0] - &a[1]) + b !=/== c */
2357 (neeq:c ADDR_EXPR@0 (pointer_plus @2 @3))
2358 (with { poly_int64 diff; tree inner_type = TREE_TYPE (@3);}
2359 (if (ptr_difference_const (@0, @2, &diff))
2360 (neeq { build_int_cst_type (inner_type, diff); } @3))))
2362 (neeq (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2363 (with { poly_int64 diff; tree inner_type = TREE_TYPE (@1);}
2364 (if (ptr_difference_const (@0, @2, &diff))
2365 (neeq (plus { build_int_cst_type (inner_type, diff); } @1) @3)))))
2367 /* X - Y < X is the same as Y > 0 when there is no overflow.
2368 For equality, this is also true with wrapping overflow. */
2369 (for op (simple_comparison)
2371 (op:c @0 (minus@2 @0 @1))
2372 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2373 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2374 || ((op == EQ_EXPR || op == NE_EXPR)
2375 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2376 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
2377 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2380 (X / Y) == 0 -> X < Y if X, Y are unsigned.
2381 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
2385 (cmp (trunc_div @0 @1) integer_zerop)
2386 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2387 /* Complex ==/!= is allowed, but not </>=. */
2388 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
2389 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
2392 /* X == C - X can never be true if C is odd. */
2395 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
2396 (if (TREE_INT_CST_LOW (@1) & 1)
2397 { constant_boolean_node (cmp == NE_EXPR, type); })))
2399 /* Arguments on which one can call get_nonzero_bits to get the bits
2401 (match with_possible_nonzero_bits
2403 (match with_possible_nonzero_bits
2405 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
2406 /* Slightly extended version, do not make it recursive to keep it cheap. */
2407 (match (with_possible_nonzero_bits2 @0)
2408 with_possible_nonzero_bits@0)
2409 (match (with_possible_nonzero_bits2 @0)
2410 (bit_and:c with_possible_nonzero_bits@0 @2))
2412 /* Same for bits that are known to be set, but we do not have
2413 an equivalent to get_nonzero_bits yet. */
2414 (match (with_certain_nonzero_bits2 @0)
2416 (match (with_certain_nonzero_bits2 @0)
2417 (bit_ior @1 INTEGER_CST@0))
2419 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
2422 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
2423 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
2424 { constant_boolean_node (cmp == NE_EXPR, type); })))
2426 /* ((X inner_op C0) outer_op C1)
2427 With X being a tree where value_range has reasoned certain bits to always be
2428 zero throughout its computed value range,
2429 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
2430 where zero_mask has 1's for all bits that are sure to be 0 in
2432 if (inner_op == '^') C0 &= ~C1;
2433 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
2434 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
2436 (for inner_op (bit_ior bit_xor)
2437 outer_op (bit_xor bit_ior)
2440 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
2444 wide_int zero_mask_not;
2448 if (TREE_CODE (@2) == SSA_NAME)
2449 zero_mask_not = get_nonzero_bits (@2);
2453 if (inner_op == BIT_XOR_EXPR)
2455 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
2456 cst_emit = C0 | wi::to_wide (@1);
2460 C0 = wi::to_wide (@0);
2461 cst_emit = C0 ^ wi::to_wide (@1);
2464 (if (!fail && (C0 & zero_mask_not) == 0)
2465 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
2466 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
2467 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
2469 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
2471 (pointer_plus (pointer_plus:s @0 @1) @3)
2472 (pointer_plus @0 (plus @1 @3)))
2475 (pointer_plus (convert:s (pointer_plus:s @0 @1)) @3)
2476 (convert:type (pointer_plus @0 (plus @1 @3))))
2483 tem4 = (unsigned long) tem3;
2488 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
2489 /* Conditionally look through a sign-changing conversion. */
2490 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
2491 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
2492 || (GENERIC && type == TREE_TYPE (@1))))
2495 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
2496 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
2500 tem = (sizetype) ptr;
2504 and produce the simpler and easier to analyze with respect to alignment
2505 ... = ptr & ~algn; */
2507 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
2508 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
2509 (bit_and @0 { algn; })))
2511 /* Try folding difference of addresses. */
2513 (minus (convert ADDR_EXPR@0) (convert @1))
2514 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2515 (with { poly_int64 diff; }
2516 (if (ptr_difference_const (@0, @1, &diff))
2517 { build_int_cst_type (type, diff); }))))
2519 (minus (convert @0) (convert ADDR_EXPR@1))
2520 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2521 (with { poly_int64 diff; }
2522 (if (ptr_difference_const (@0, @1, &diff))
2523 { build_int_cst_type (type, diff); }))))
2525 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
2526 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2527 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2528 (with { poly_int64 diff; }
2529 (if (ptr_difference_const (@0, @1, &diff))
2530 { build_int_cst_type (type, diff); }))))
2532 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
2533 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2534 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2535 (with { poly_int64 diff; }
2536 (if (ptr_difference_const (@0, @1, &diff))
2537 { build_int_cst_type (type, diff); }))))
2539 /* (&a+b) - (&a[1] + c) -> sizeof(a[0]) + (b - c) */
2541 (pointer_diff (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2542 (with { poly_int64 diff; }
2543 (if (ptr_difference_const (@0, @2, &diff))
2544 (plus { build_int_cst_type (type, diff); } (convert (minus @1 @3))))))
2545 /* (p + b) - &p->d -> offsetof (*p, d) + b */
2547 (pointer_diff (pointer_plus @0 @1) ADDR_EXPR@2)
2548 (with { poly_int64 diff; }
2549 (if (ptr_difference_const (@0, @2, &diff))
2550 (plus { build_int_cst_type (type, diff); } (convert @1)))))
2552 (pointer_diff ADDR_EXPR@0 (pointer_plus @1 @2))
2553 (with { poly_int64 diff; }
2554 (if (ptr_difference_const (@0, @1, &diff))
2555 (minus { build_int_cst_type (type, diff); } (convert @2)))))
2557 /* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
2559 (convert (pointer_diff @0 INTEGER_CST@1))
2560 (if (POINTER_TYPE_P (type))
2561 { build_fold_addr_expr_with_type
2562 (build2 (MEM_REF, char_type_node, @0,
2563 wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
2566 /* If arg0 is derived from the address of an object or function, we may
2567 be able to fold this expression using the object or function's
2570 (bit_and (convert? @0) INTEGER_CST@1)
2571 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2572 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2576 unsigned HOST_WIDE_INT bitpos;
2577 get_pointer_alignment_1 (@0, &align, &bitpos);
2579 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
2580 { wide_int_to_tree (type, (wi::to_wide (@1)
2581 & (bitpos / BITS_PER_UNIT))); }))))
2585 (if (INTEGRAL_TYPE_P (type)
2586 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
2590 (if (INTEGRAL_TYPE_P (type)
2591 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
2593 /* x > y && x != XXX_MIN --> x > y
2594 x > y && x == XXX_MIN --> false . */
2597 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
2599 (if (eqne == EQ_EXPR)
2600 { constant_boolean_node (false, type); })
2601 (if (eqne == NE_EXPR)
2605 /* x < y && x != XXX_MAX --> x < y
2606 x < y && x == XXX_MAX --> false. */
2609 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
2611 (if (eqne == EQ_EXPR)
2612 { constant_boolean_node (false, type); })
2613 (if (eqne == NE_EXPR)
2617 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
2619 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
2622 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
2624 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
2627 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
2629 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
2632 /* x <= y || x != XXX_MIN --> true. */
2634 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
2635 { constant_boolean_node (true, type); })
2637 /* x <= y || x == XXX_MIN --> x <= y. */
2639 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
2642 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
2644 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
2647 /* x >= y || x != XXX_MAX --> true
2648 x >= y || x == XXX_MAX --> x >= y. */
2651 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
2653 (if (eqne == EQ_EXPR)
2655 (if (eqne == NE_EXPR)
2656 { constant_boolean_node (true, type); }))))
2658 /* y == XXX_MIN || x < y --> x <= y - 1 */
2660 (bit_ior:c (eq:s @1 min_value) (lt:cs @0 @1))
2661 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2662 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2663 (le @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2665 /* y != XXX_MIN && x >= y --> x > y - 1 */
2667 (bit_and:c (ne:s @1 min_value) (ge:cs @0 @1))
2668 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2669 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2670 (gt @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2672 /* Convert (X == CST1) && (X OP2 CST2) to a known value
2673 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2676 (for code2 (eq ne lt gt le ge)
2678 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2681 int cmp = tree_int_cst_compare (@1, @2);
2685 case EQ_EXPR: val = (cmp == 0); break;
2686 case NE_EXPR: val = (cmp != 0); break;
2687 case LT_EXPR: val = (cmp < 0); break;
2688 case GT_EXPR: val = (cmp > 0); break;
2689 case LE_EXPR: val = (cmp <= 0); break;
2690 case GE_EXPR: val = (cmp >= 0); break;
2691 default: gcc_unreachable ();
2695 (if (code1 == EQ_EXPR && val) @3)
2696 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2697 (if (code1 == NE_EXPR && !val) @4))))))
2699 /* Convert (X OP1 CST1) && (X OP2 CST2). */
2701 (for code1 (lt le gt ge)
2702 (for code2 (lt le gt ge)
2704 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2707 int cmp = tree_int_cst_compare (@1, @2);
2710 /* Choose the more restrictive of two < or <= comparisons. */
2711 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2712 && (code2 == LT_EXPR || code2 == LE_EXPR))
2713 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2716 /* Likewise chose the more restrictive of two > or >= comparisons. */
2717 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2718 && (code2 == GT_EXPR || code2 == GE_EXPR))
2719 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2722 /* Check for singleton ranges. */
2724 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2725 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2727 /* Check for disjoint ranges. */
2729 && (code1 == LT_EXPR || code1 == LE_EXPR)
2730 && (code2 == GT_EXPR || code2 == GE_EXPR))
2731 { constant_boolean_node (false, type); })
2733 && (code1 == GT_EXPR || code1 == GE_EXPR)
2734 && (code2 == LT_EXPR || code2 == LE_EXPR))
2735 { constant_boolean_node (false, type); })
2738 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2739 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2742 (for code2 (eq ne lt gt le ge)
2744 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2747 int cmp = tree_int_cst_compare (@1, @2);
2751 case EQ_EXPR: val = (cmp == 0); break;
2752 case NE_EXPR: val = (cmp != 0); break;
2753 case LT_EXPR: val = (cmp < 0); break;
2754 case GT_EXPR: val = (cmp > 0); break;
2755 case LE_EXPR: val = (cmp <= 0); break;
2756 case GE_EXPR: val = (cmp >= 0); break;
2757 default: gcc_unreachable ();
2761 (if (code1 == EQ_EXPR && val) @4)
2762 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2763 (if (code1 == NE_EXPR && !val) @3))))))
2765 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2767 (for code1 (lt le gt ge)
2768 (for code2 (lt le gt ge)
2770 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2773 int cmp = tree_int_cst_compare (@1, @2);
2776 /* Choose the more restrictive of two < or <= comparisons. */
2777 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2778 && (code2 == LT_EXPR || code2 == LE_EXPR))
2779 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2782 /* Likewise chose the more restrictive of two > or >= comparisons. */
2783 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2784 && (code2 == GT_EXPR || code2 == GE_EXPR))
2785 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2788 /* Check for singleton ranges. */
2790 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2791 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2793 /* Check for disjoint ranges. */
2795 && (code1 == LT_EXPR || code1 == LE_EXPR)
2796 && (code2 == GT_EXPR || code2 == GE_EXPR))
2797 { constant_boolean_node (true, type); })
2799 && (code1 == GT_EXPR || code1 == GE_EXPR)
2800 && (code2 == LT_EXPR || code2 == LE_EXPR))
2801 { constant_boolean_node (true, type); })
2804 /* We can't reassociate at all for saturating types. */
2805 (if (!TYPE_SATURATING (type))
2807 /* Contract negates. */
2808 /* A + (-B) -> A - B */
2810 (plus:c @0 (convert? (negate @1)))
2811 /* Apply STRIP_NOPS on the negate. */
2812 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2813 && !TYPE_OVERFLOW_SANITIZED (type))
2817 if (INTEGRAL_TYPE_P (type)
2818 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2819 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2821 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2822 /* A - (-B) -> A + B */
2824 (minus @0 (convert? (negate @1)))
2825 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2826 && !TYPE_OVERFLOW_SANITIZED (type))
2830 if (INTEGRAL_TYPE_P (type)
2831 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2832 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2834 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2836 Sign-extension is ok except for INT_MIN, which thankfully cannot
2837 happen without overflow. */
2839 (negate (convert (negate @1)))
2840 (if (INTEGRAL_TYPE_P (type)
2841 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2842 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2843 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2844 && !TYPE_OVERFLOW_SANITIZED (type)
2845 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2848 (negate (convert negate_expr_p@1))
2849 (if (SCALAR_FLOAT_TYPE_P (type)
2850 && ((DECIMAL_FLOAT_TYPE_P (type)
2851 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2852 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2853 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2854 (convert (negate @1))))
2856 (negate (nop_convert? (negate @1)))
2857 (if (!TYPE_OVERFLOW_SANITIZED (type)
2858 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2861 /* We can't reassociate floating-point unless -fassociative-math
2862 or fixed-point plus or minus because of saturation to +-Inf. */
2863 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2864 && !FIXED_POINT_TYPE_P (type))
2866 /* Match patterns that allow contracting a plus-minus pair
2867 irrespective of overflow issues. */
2868 /* (A +- B) - A -> +- B */
2869 /* (A +- B) -+ B -> A */
2870 /* A - (A +- B) -> -+ B */
2871 /* A +- (B -+ A) -> +- B */
2873 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2876 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2877 (if (!ANY_INTEGRAL_TYPE_P (type)
2878 || TYPE_OVERFLOW_WRAPS (type))
2879 (negate (view_convert @1))
2880 (view_convert (negate @1))))
2882 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2885 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2886 (if (!ANY_INTEGRAL_TYPE_P (type)
2887 || TYPE_OVERFLOW_WRAPS (type))
2888 (negate (view_convert @1))
2889 (view_convert (negate @1))))
2891 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2893 /* (A +- B) + (C - A) -> C +- B */
2894 /* (A + B) - (A - C) -> B + C */
2895 /* More cases are handled with comparisons. */
2897 (plus:c (plus:c @0 @1) (minus @2 @0))
2900 (plus:c (minus @0 @1) (minus @2 @0))
2903 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2904 (if (TYPE_OVERFLOW_UNDEFINED (type)
2905 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2906 (pointer_diff @2 @1)))
2908 (minus (plus:c @0 @1) (minus @0 @2))
2911 /* (A +- CST1) +- CST2 -> A + CST3
2912 Use view_convert because it is safe for vectors and equivalent for
2914 (for outer_op (plus minus)
2915 (for inner_op (plus minus)
2916 neg_inner_op (minus plus)
2918 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2920 /* If one of the types wraps, use that one. */
2921 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2922 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2923 forever if something doesn't simplify into a constant. */
2924 (if (!CONSTANT_CLASS_P (@0))
2925 (if (outer_op == PLUS_EXPR)
2926 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2927 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2928 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2929 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2930 (if (outer_op == PLUS_EXPR)
2931 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2932 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2933 /* If the constant operation overflows we cannot do the transform
2934 directly as we would introduce undefined overflow, for example
2935 with (a - 1) + INT_MIN. */
2936 (if (types_match (type, @0))
2937 (with { tree cst = const_binop (outer_op == inner_op
2938 ? PLUS_EXPR : MINUS_EXPR,
2940 (if (cst && !TREE_OVERFLOW (cst))
2941 (inner_op @0 { cst; } )
2942 /* X+INT_MAX+1 is X-INT_MIN. */
2943 (if (INTEGRAL_TYPE_P (type) && cst
2944 && wi::to_wide (cst) == wi::min_value (type))
2945 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2946 /* Last resort, use some unsigned type. */
2947 (with { tree utype = unsigned_type_for (type); }
2949 (view_convert (inner_op
2950 (view_convert:utype @0)
2952 { drop_tree_overflow (cst); }))))))))))))))
2954 /* (CST1 - A) +- CST2 -> CST3 - A */
2955 (for outer_op (plus minus)
2957 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2958 /* If one of the types wraps, use that one. */
2959 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2960 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2961 forever if something doesn't simplify into a constant. */
2962 (if (!CONSTANT_CLASS_P (@0))
2963 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2964 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2965 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2966 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2967 (if (types_match (type, @0))
2968 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2969 (if (cst && !TREE_OVERFLOW (cst))
2970 (minus { cst; } @0))))))))
2972 /* CST1 - (CST2 - A) -> CST3 + A
2973 Use view_convert because it is safe for vectors and equivalent for
2976 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2977 /* If one of the types wraps, use that one. */
2978 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2979 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2980 forever if something doesn't simplify into a constant. */
2981 (if (!CONSTANT_CLASS_P (@0))
2982 (plus (view_convert @0) (minus @1 (view_convert @2))))
2983 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2984 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2985 (view_convert (plus @0 (minus (view_convert @1) @2)))
2986 (if (types_match (type, @0))
2987 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2988 (if (cst && !TREE_OVERFLOW (cst))
2989 (plus { cst; } @0)))))))
2991 /* ((T)(A)) + CST -> (T)(A + CST) */
2994 (plus (convert:s SSA_NAME@0) INTEGER_CST@1)
2995 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2996 && TREE_CODE (type) == INTEGER_TYPE
2997 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2998 && int_fits_type_p (@1, TREE_TYPE (@0)))
2999 /* Perform binary operation inside the cast if the constant fits
3000 and (A + CST)'s range does not overflow. */
3003 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
3004 max_ovf = wi::OVF_OVERFLOW;
3005 tree inner_type = TREE_TYPE (@0);
3008 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
3009 TYPE_SIGN (inner_type));
3012 if (get_global_range_query ()->range_of_expr (vr, @0)
3013 && vr.kind () == VR_RANGE)
3015 wide_int wmin0 = vr.lower_bound ();
3016 wide_int wmax0 = vr.upper_bound ();
3017 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
3018 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
3021 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
3022 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
3026 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
3028 (for op (plus minus)
3030 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
3031 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
3032 && TREE_CODE (type) == INTEGER_TYPE
3033 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
3034 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3035 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
3036 && TYPE_OVERFLOW_WRAPS (type))
3037 (plus (convert @0) (op @2 (convert @1))))))
3040 /* (T)(A) +- (T)(B) -> (T)(A +- B) only when (A +- B) could be simplified
3041 to a simple value. */
3042 (for op (plus minus)
3044 (op (convert @0) (convert @1))
3045 (if (INTEGRAL_TYPE_P (type)
3046 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3047 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3048 && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
3049 && !TYPE_OVERFLOW_TRAPS (type)
3050 && !TYPE_OVERFLOW_SANITIZED (type))
3051 (convert (op! @0 @1)))))
3055 (plus:c (convert? (bit_not @0)) (convert? @0))
3056 (if (!TYPE_OVERFLOW_TRAPS (type))
3057 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
3061 (plus (convert? (bit_not @0)) integer_each_onep)
3062 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3063 (negate (convert @0))))
3067 (minus (convert? (negate @0)) integer_each_onep)
3068 (if (!TYPE_OVERFLOW_TRAPS (type)
3069 && TREE_CODE (type) != COMPLEX_TYPE
3070 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
3071 (bit_not (convert @0))))
3075 (minus integer_all_onesp @0)
3076 (if (TREE_CODE (type) != COMPLEX_TYPE)
3079 /* (T)(P + A) - (T)P -> (T) A */
3081 (minus (convert (plus:c @@0 @1))
3083 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3084 /* For integer types, if A has a smaller type
3085 than T the result depends on the possible
3087 E.g. T=size_t, A=(unsigned)429497295, P>0.
3088 However, if an overflow in P + A would cause
3089 undefined behavior, we can assume that there
3091 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3092 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
3095 (minus (convert (pointer_plus @@0 @1))
3097 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3098 /* For pointer types, if the conversion of A to the
3099 final type requires a sign- or zero-extension,
3100 then we have to punt - it is not defined which
3102 || (POINTER_TYPE_P (TREE_TYPE (@0))
3103 && TREE_CODE (@1) == INTEGER_CST
3104 && tree_int_cst_sign_bit (@1) == 0))
3107 (pointer_diff (pointer_plus @@0 @1) @0)
3108 /* The second argument of pointer_plus must be interpreted as signed, and
3109 thus sign-extended if necessary. */
3110 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
3111 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3112 second arg is unsigned even when we need to consider it as signed,
3113 we don't want to diagnose overflow here. */
3114 (convert (view_convert:stype @1))))
3116 /* (T)P - (T)(P + A) -> -(T) A */
3118 (minus (convert? @0)
3119 (convert (plus:c @@0 @1)))
3120 (if (INTEGRAL_TYPE_P (type)
3121 && TYPE_OVERFLOW_UNDEFINED (type)
3122 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3123 (with { tree utype = unsigned_type_for (type); }
3124 (convert (negate (convert:utype @1))))
3125 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3126 /* For integer types, if A has a smaller type
3127 than T the result depends on the possible
3129 E.g. T=size_t, A=(unsigned)429497295, P>0.
3130 However, if an overflow in P + A would cause
3131 undefined behavior, we can assume that there
3133 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3134 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
3135 (negate (convert @1)))))
3138 (convert (pointer_plus @@0 @1)))
3139 (if (INTEGRAL_TYPE_P (type)
3140 && TYPE_OVERFLOW_UNDEFINED (type)
3141 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3142 (with { tree utype = unsigned_type_for (type); }
3143 (convert (negate (convert:utype @1))))
3144 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3145 /* For pointer types, if the conversion of A to the
3146 final type requires a sign- or zero-extension,
3147 then we have to punt - it is not defined which
3149 || (POINTER_TYPE_P (TREE_TYPE (@0))
3150 && TREE_CODE (@1) == INTEGER_CST
3151 && tree_int_cst_sign_bit (@1) == 0))
3152 (negate (convert @1)))))
3154 (pointer_diff @0 (pointer_plus @@0 @1))
3155 /* The second argument of pointer_plus must be interpreted as signed, and
3156 thus sign-extended if necessary. */
3157 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
3158 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3159 second arg is unsigned even when we need to consider it as signed,
3160 we don't want to diagnose overflow here. */
3161 (negate (convert (view_convert:stype @1)))))
3163 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
3165 (minus (convert (plus:c @@0 @1))
3166 (convert (plus:c @0 @2)))
3167 (if (INTEGRAL_TYPE_P (type)
3168 && TYPE_OVERFLOW_UNDEFINED (type)
3169 && element_precision (type) <= element_precision (TREE_TYPE (@1))
3170 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
3171 (with { tree utype = unsigned_type_for (type); }
3172 (convert (minus (convert:utype @1) (convert:utype @2))))
3173 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
3174 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
3175 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
3176 /* For integer types, if A has a smaller type
3177 than T the result depends on the possible
3179 E.g. T=size_t, A=(unsigned)429497295, P>0.
3180 However, if an overflow in P + A would cause
3181 undefined behavior, we can assume that there
3183 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3184 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3185 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
3186 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
3187 (minus (convert @1) (convert @2)))))
3189 (minus (convert (pointer_plus @@0 @1))
3190 (convert (pointer_plus @0 @2)))
3191 (if (INTEGRAL_TYPE_P (type)
3192 && TYPE_OVERFLOW_UNDEFINED (type)
3193 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3194 (with { tree utype = unsigned_type_for (type); }
3195 (convert (minus (convert:utype @1) (convert:utype @2))))
3196 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3197 /* For pointer types, if the conversion of A to the
3198 final type requires a sign- or zero-extension,
3199 then we have to punt - it is not defined which
3201 || (POINTER_TYPE_P (TREE_TYPE (@0))
3202 && TREE_CODE (@1) == INTEGER_CST
3203 && tree_int_cst_sign_bit (@1) == 0
3204 && TREE_CODE (@2) == INTEGER_CST
3205 && tree_int_cst_sign_bit (@2) == 0))
3206 (minus (convert @1) (convert @2)))))
3208 (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2))
3209 (pointer_diff @0 @1))
3211 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
3212 /* The second argument of pointer_plus must be interpreted as signed, and
3213 thus sign-extended if necessary. */
3214 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
3215 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3216 second arg is unsigned even when we need to consider it as signed,
3217 we don't want to diagnose overflow here. */
3218 (minus (convert (view_convert:stype @1))
3219 (convert (view_convert:stype @2)))))))
3221 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
3222 Modeled after fold_plusminus_mult_expr. */
3223 (if (!TYPE_SATURATING (type)
3224 && (!FLOAT_TYPE_P (type) || flag_associative_math))
3225 (for plusminus (plus minus)
3227 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
3228 (if (!ANY_INTEGRAL_TYPE_P (type)
3229 || TYPE_OVERFLOW_WRAPS (type)
3230 || (INTEGRAL_TYPE_P (type)
3231 && tree_expr_nonzero_p (@0)
3232 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
3233 (if (single_use (@3) || single_use (@4))
3234 /* If @1 +- @2 is constant require a hard single-use on either
3235 original operand (but not on both). */
3236 (mult (plusminus @1 @2) @0)
3237 (mult! (plusminus @1 @2) @0)
3239 /* We cannot generate constant 1 for fract. */
3240 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
3242 (plusminus @0 (mult:c@3 @0 @2))
3243 (if ((!ANY_INTEGRAL_TYPE_P (type)
3244 || TYPE_OVERFLOW_WRAPS (type)
3245 /* For @0 + @0*@2 this transformation would introduce UB
3246 (where there was none before) for @0 in [-1,0] and @2 max.
3247 For @0 - @0*@2 this transformation would introduce UB
3248 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
3249 || (INTEGRAL_TYPE_P (type)
3250 && ((tree_expr_nonzero_p (@0)
3251 && expr_not_equal_to (@0,
3252 wi::minus_one (TYPE_PRECISION (type))))
3253 || (plusminus == PLUS_EXPR
3254 ? expr_not_equal_to (@2,
3255 wi::max_value (TYPE_PRECISION (type), SIGNED))
3256 /* Let's ignore the @0 -1 and @2 min case. */
3257 : (expr_not_equal_to (@2,
3258 wi::min_value (TYPE_PRECISION (type), SIGNED))
3259 && expr_not_equal_to (@2,
3260 wi::min_value (TYPE_PRECISION (type), SIGNED)
3263 (mult (plusminus { build_one_cst (type); } @2) @0)))
3265 (plusminus (mult:c@3 @0 @2) @0)
3266 (if ((!ANY_INTEGRAL_TYPE_P (type)
3267 || TYPE_OVERFLOW_WRAPS (type)
3268 /* For @0*@2 + @0 this transformation would introduce UB
3269 (where there was none before) for @0 in [-1,0] and @2 max.
3270 For @0*@2 - @0 this transformation would introduce UB
3271 for @0 0 and @2 min. */
3272 || (INTEGRAL_TYPE_P (type)
3273 && ((tree_expr_nonzero_p (@0)
3274 && (plusminus == MINUS_EXPR
3275 || expr_not_equal_to (@0,
3276 wi::minus_one (TYPE_PRECISION (type)))))
3277 || expr_not_equal_to (@2,
3278 (plusminus == PLUS_EXPR
3279 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
3280 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
3282 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
3285 /* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
3286 (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)). */
3288 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
3289 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3290 && tree_fits_uhwi_p (@1)
3291 && tree_to_uhwi (@1) < element_precision (type)
3292 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3293 || optab_handler (smul_optab,
3294 TYPE_MODE (type)) != CODE_FOR_nothing))
3295 (with { tree t = type;
3296 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
3297 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
3298 element_precision (type));
3300 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
3302 cst = build_uniform_cst (t, cst); }
3303 (convert (mult (convert:t @0) { cst; })))))
3305 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
3306 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3307 && tree_fits_uhwi_p (@1)
3308 && tree_to_uhwi (@1) < element_precision (type)
3309 && tree_fits_uhwi_p (@2)
3310 && tree_to_uhwi (@2) < element_precision (type)
3311 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3312 || optab_handler (smul_optab,
3313 TYPE_MODE (type)) != CODE_FOR_nothing))
3314 (with { tree t = type;
3315 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
3316 unsigned int prec = element_precision (type);
3317 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
3318 w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
3319 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
3321 cst = build_uniform_cst (t, cst); }
3322 (convert (mult (convert:t @0) { cst; })))))
3325 /* Canonicalize (X*C1)|(X*C2) and (X*C1)^(X*C2) to (C1+C2)*X when
3326 tree_nonzero_bits allows IOR and XOR to be treated like PLUS.
3327 Likewise, handle (X<<C3) and X as legitimate variants of X*C. */
3328 (for op (bit_ior bit_xor)
3330 (op (mult:s@0 @1 INTEGER_CST@2)
3331 (mult:s@3 @1 INTEGER_CST@4))
3332 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3333 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3335 { wide_int_to_tree (type, wi::to_wide (@2) + wi::to_wide (@4)); })))
3337 (op:c (mult:s@0 @1 INTEGER_CST@2)
3338 (lshift:s@3 @1 INTEGER_CST@4))
3339 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3340 && tree_int_cst_sgn (@4) > 0
3341 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3342 (with { wide_int wone = wi::one (TYPE_PRECISION (type));
3343 wide_int c = wi::add (wi::to_wide (@2),
3344 wi::lshift (wone, wi::to_wide (@4))); }
3345 (mult @1 { wide_int_to_tree (type, c); }))))
3347 (op:c (mult:s@0 @1 INTEGER_CST@2)
3349 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3350 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3352 { wide_int_to_tree (type,
3353 wi::add (wi::to_wide (@2), 1)); })))
3355 (op (lshift:s@0 @1 INTEGER_CST@2)
3356 (lshift:s@3 @1 INTEGER_CST@4))
3357 (if (INTEGRAL_TYPE_P (type)
3358 && tree_int_cst_sgn (@2) > 0
3359 && tree_int_cst_sgn (@4) > 0
3360 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3361 (with { tree t = type;
3362 if (!TYPE_OVERFLOW_WRAPS (t))
3363 t = unsigned_type_for (t);
3364 wide_int wone = wi::one (TYPE_PRECISION (t));
3365 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)),
3366 wi::lshift (wone, wi::to_wide (@4))); }
3367 (convert (mult:t (convert:t @1) { wide_int_to_tree (t,c); })))))
3369 (op:c (lshift:s@0 @1 INTEGER_CST@2)
3371 (if (INTEGRAL_TYPE_P (type)
3372 && tree_int_cst_sgn (@2) > 0
3373 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3374 (with { tree t = type;
3375 if (!TYPE_OVERFLOW_WRAPS (t))
3376 t = unsigned_type_for (t);
3377 wide_int wone = wi::one (TYPE_PRECISION (t));
3378 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)), wone); }
3379 (convert (mult:t (convert:t @1) { wide_int_to_tree (t, c); }))))))
3381 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
3383 (for minmax (min max)
3387 /* For fmin() and fmax(), skip folding when both are sNaN. */
3388 (for minmax (FMIN_ALL FMAX_ALL)
3391 (if (!tree_expr_maybe_signaling_nan_p (@0))
3393 /* min(max(x,y),y) -> y. */
3395 (min:c (max:c @0 @1) @1)
3397 /* max(min(x,y),y) -> y. */
3399 (max:c (min:c @0 @1) @1)
3401 /* max(a,-a) -> abs(a). */
3403 (max:c @0 (negate @0))
3404 (if (TREE_CODE (type) != COMPLEX_TYPE
3405 && (! ANY_INTEGRAL_TYPE_P (type)
3406 || TYPE_OVERFLOW_UNDEFINED (type)))
3408 /* min(a,-a) -> -abs(a). */
3410 (min:c @0 (negate @0))
3411 (if (TREE_CODE (type) != COMPLEX_TYPE
3412 && (! ANY_INTEGRAL_TYPE_P (type)
3413 || TYPE_OVERFLOW_UNDEFINED (type)))
3418 (if (INTEGRAL_TYPE_P (type)
3419 && TYPE_MIN_VALUE (type)
3420 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3422 (if (INTEGRAL_TYPE_P (type)
3423 && TYPE_MAX_VALUE (type)
3424 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3429 (if (INTEGRAL_TYPE_P (type)
3430 && TYPE_MAX_VALUE (type)
3431 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3433 (if (INTEGRAL_TYPE_P (type)
3434 && TYPE_MIN_VALUE (type)
3435 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3438 /* max (a, a + CST) -> a + CST where CST is positive. */
3439 /* max (a, a + CST) -> a where CST is negative. */
3441 (max:c @0 (plus@2 @0 INTEGER_CST@1))
3442 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3443 (if (tree_int_cst_sgn (@1) > 0)
3447 /* min (a, a + CST) -> a where CST is positive. */
3448 /* min (a, a + CST) -> a + CST where CST is negative. */
3450 (min:c @0 (plus@2 @0 INTEGER_CST@1))
3451 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3452 (if (tree_int_cst_sgn (@1) > 0)
3456 /* Simplify min (&var[off0], &var[off1]) etc. depending on whether
3457 the addresses are known to be less, equal or greater. */
3458 (for minmax (min max)
3461 (minmax (convert1?@2 addr@0) (convert2?@3 addr@1))
3464 poly_int64 off0, off1;
3466 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
3467 off0, off1, GENERIC);
3470 (if (minmax == MIN_EXPR)
3471 (if (known_le (off0, off1))
3473 (if (known_gt (off0, off1))
3475 (if (known_ge (off0, off1))
3477 (if (known_lt (off0, off1))
3480 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
3481 and the outer convert demotes the expression back to x's type. */
3482 (for minmax (min max)
3484 (convert (minmax@0 (convert @1) INTEGER_CST@2))
3485 (if (INTEGRAL_TYPE_P (type)
3486 && types_match (@1, type) && int_fits_type_p (@2, type)
3487 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
3488 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
3489 (minmax @1 (convert @2)))))
3491 (for minmax (FMIN_ALL FMAX_ALL)
3492 /* If either argument is NaN and other one is not sNaN, return the other
3493 one. Avoid the transformation if we get (and honor) a signalling NaN. */
3495 (minmax:c @0 REAL_CST@1)
3496 (if (real_isnan (TREE_REAL_CST_PTR (@1))
3497 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling)
3498 && !tree_expr_maybe_signaling_nan_p (@0))
3500 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
3501 functions to return the numeric arg if the other one is NaN.
3502 MIN and MAX don't honor that, so only transform if -ffinite-math-only
3503 is set. C99 doesn't require -0.0 to be handled, so we don't have to
3504 worry about it either. */
3505 (if (flag_finite_math_only)
3512 /* min (-A, -B) -> -max (A, B) */
3513 (for minmax (min max FMIN_ALL FMAX_ALL)
3514 maxmin (max min FMAX_ALL FMIN_ALL)
3516 (minmax (negate:s@2 @0) (negate:s@3 @1))
3517 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3518 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3519 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3520 (negate (maxmin @0 @1)))))
3521 /* MIN (~X, ~Y) -> ~MAX (X, Y)
3522 MAX (~X, ~Y) -> ~MIN (X, Y) */
3523 (for minmax (min max)
3526 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
3527 (bit_not (maxmin @0 @1))))
3529 /* MIN (X, Y) == X -> X <= Y */
3530 (for minmax (min min max max)
3534 (cmp:c (minmax:c @0 @1) @0)
3535 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3537 /* MIN (X, 5) == 0 -> X == 0
3538 MIN (X, 5) == 7 -> false */
3541 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
3542 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3543 TYPE_SIGN (TREE_TYPE (@0))))
3544 { constant_boolean_node (cmp == NE_EXPR, type); }
3545 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3546 TYPE_SIGN (TREE_TYPE (@0))))
3550 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
3551 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3552 TYPE_SIGN (TREE_TYPE (@0))))
3553 { constant_boolean_node (cmp == NE_EXPR, type); }
3554 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3555 TYPE_SIGN (TREE_TYPE (@0))))
3557 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
3558 (for minmax (min min max max min min max max )
3559 cmp (lt le gt ge gt ge lt le )
3560 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
3562 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
3563 (comb (cmp @0 @2) (cmp @1 @2))))
3565 /* X <= MAX(X, Y) -> true
3566 X > MAX(X, Y) -> false
3567 X >= MIN(X, Y) -> true
3568 X < MIN(X, Y) -> false */
3569 (for minmax (min min max max )
3572 (cmp @0 (minmax:c @0 @1))
3573 { constant_boolean_node (cmp == GE_EXPR || cmp == LE_EXPR, type); } ))
3575 /* Undo fancy ways of writing max/min or other ?: expressions, like
3576 a - ((a - b) & -(a < b)) and a - (a - b) * (a < b) into (a < b) ? b : a.
3577 People normally use ?: and that is what we actually try to optimize. */
3578 /* Transform A + (B-A)*cmp into cmp ? B : A. */
3580 (plus:c @0 (mult:c (minus @1 @0) zero_one_valued_p@2))
3581 (if (INTEGRAL_TYPE_P (type)
3582 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3583 (cond (convert:boolean_type_node @2) @1 @0)))
3584 /* Transform A - (A-B)*cmp into cmp ? B : A. */
3586 (minus @0 (mult:c (minus @0 @1) zero_one_valued_p@2))
3587 (if (INTEGRAL_TYPE_P (type)
3588 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3589 (cond (convert:boolean_type_node @2) @1 @0)))
3590 /* Transform A ^ (A^B)*cmp into cmp ? B : A. */
3592 (bit_xor:c @0 (mult:c (bit_xor:c @0 @1) zero_one_valued_p@2))
3593 (if (INTEGRAL_TYPE_P (type)
3594 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3595 (cond (convert:boolean_type_node @2) @1 @0)))
3597 /* (x <= 0 ? -x : 0) -> max(-x, 0). */
3599 (cond (le @0 integer_zerop@1) (negate@2 @0) integer_zerop@1)
3602 /* ((x & 0x1) == 0) ? y : z <op> y -> (-(typeof(y))(x & 0x1) & z) <op> y */
3603 (for op (bit_xor bit_ior)
3605 (cond (eq zero_one_valued_p@0
3609 (if (INTEGRAL_TYPE_P (type)
3610 && TYPE_PRECISION (type) > 1
3611 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))))
3612 (op (bit_and (negate (convert:type @0)) @2) @1))))
3614 /* ((x & 0x1) == 0) ? z <op> y : y -> (-(typeof(y))(x & 0x1) & z) <op> y */
3615 (for op (bit_xor bit_ior)
3617 (cond (ne zero_one_valued_p@0
3621 (if (INTEGRAL_TYPE_P (type)
3622 && TYPE_PRECISION (type) > 1
3623 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))))
3624 (op (bit_and (negate (convert:type @0)) @2) @1))))
3626 /* Simplifications of shift and rotates. */
3628 (for rotate (lrotate rrotate)
3630 (rotate integer_all_onesp@0 @1)
3633 /* Optimize -1 >> x for arithmetic right shifts. */
3635 (rshift integer_all_onesp@0 @1)
3636 (if (!TYPE_UNSIGNED (type))
3639 /* Optimize (x >> c) << c into x & (-1<<c). */
3641 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
3642 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
3643 /* It doesn't matter if the right shift is arithmetic or logical. */
3644 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
3647 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
3648 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
3649 /* Allow intermediate conversion to integral type with whatever sign, as
3650 long as the low TYPE_PRECISION (type)
3651 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
3652 && INTEGRAL_TYPE_P (type)
3653 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3654 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3655 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3656 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
3657 || wi::geu_p (wi::to_wide (@1),
3658 TYPE_PRECISION (type)
3659 - TYPE_PRECISION (TREE_TYPE (@2)))))
3660 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
3662 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
3665 (rshift (lshift @0 INTEGER_CST@1) @1)
3666 (if (TYPE_UNSIGNED (type)
3667 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
3668 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
3670 /* Optimize x >> x into 0 */
3673 { build_zero_cst (type); })
3675 (for shiftrotate (lrotate rrotate lshift rshift)
3677 (shiftrotate @0 integer_zerop)
3680 (shiftrotate integer_zerop@0 @1)
3682 /* Prefer vector1 << scalar to vector1 << vector2
3683 if vector2 is uniform. */
3684 (for vec (VECTOR_CST CONSTRUCTOR)
3686 (shiftrotate @0 vec@1)
3687 (with { tree tem = uniform_vector_p (@1); }
3689 (shiftrotate @0 { tem; }))))))
3691 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
3692 Y is 0. Similarly for X >> Y. */
3694 (for shift (lshift rshift)
3696 (shift @0 SSA_NAME@1)
3697 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3699 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
3700 int prec = TYPE_PRECISION (TREE_TYPE (@1));
3702 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
3706 /* Rewrite an LROTATE_EXPR by a constant into an
3707 RROTATE_EXPR by a new constant. */
3709 (lrotate @0 INTEGER_CST@1)
3710 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
3711 build_int_cst (TREE_TYPE (@1),
3712 element_precision (type)), @1); }))
3714 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
3715 (for op (lrotate rrotate rshift lshift)
3717 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
3718 (with { unsigned int prec = element_precision (type); }
3719 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
3720 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
3721 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
3722 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
3723 (with { unsigned int low = (tree_to_uhwi (@1)
3724 + tree_to_uhwi (@2)); }
3725 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
3726 being well defined. */
3728 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
3729 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
3730 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
3731 { build_zero_cst (type); }
3732 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
3733 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
3736 /* Simplify (CST << x) & 1 to 0 if CST is even or to x == 0 if it is odd. */
3738 (bit_and (lshift INTEGER_CST@1 @0) integer_onep)
3739 (if ((wi::to_wide (@1) & 1) != 0)
3740 (convert (eq:boolean_type_node @0 { build_zero_cst (TREE_TYPE (@0)); }))
3741 { build_zero_cst (type); }))
3743 /* Simplify ((C << x) & D) != 0 where C and D are power of two constants,
3744 either to false if D is smaller (unsigned comparison) than C, or to
3745 x == log2 (D) - log2 (C). Similarly for right shifts. */
3749 (cmp (bit_and (lshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3750 (with { int c1 = wi::clz (wi::to_wide (@1));
3751 int c2 = wi::clz (wi::to_wide (@2)); }
3753 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3754 (icmp @0 { build_int_cst (TREE_TYPE (@0), c1 - c2); }))))
3756 (cmp (bit_and (rshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3757 (if (tree_int_cst_sgn (@1) > 0)
3758 (with { int c1 = wi::clz (wi::to_wide (@1));
3759 int c2 = wi::clz (wi::to_wide (@2)); }
3761 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3762 (icmp @0 { build_int_cst (TREE_TYPE (@0), c2 - c1); }))))))
3764 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
3765 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
3769 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
3770 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
3772 || (!integer_zerop (@2)
3773 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
3774 { constant_boolean_node (cmp == NE_EXPR, type); }
3775 (if (!integer_zerop (@2)
3776 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
3777 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
3779 /* Fold ((X << C1) & C2) cmp C3 into (X & (C2 >> C1)) cmp (C3 >> C1)
3780 ((X >> C1) & C2) cmp C3 into (X & (C2 << C1)) cmp (C3 << C1). */
3783 (cmp (bit_and:s (lshift:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
3784 (if (tree_fits_shwi_p (@1)
3785 && tree_to_shwi (@1) > 0
3786 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
3787 (if (tree_to_shwi (@1) > wi::ctz (wi::to_wide (@3)))
3788 { constant_boolean_node (cmp == NE_EXPR, type); }
3789 (with { wide_int c1 = wi::to_wide (@1);
3790 wide_int c2 = wi::lrshift (wi::to_wide (@2), c1);
3791 wide_int c3 = wi::lrshift (wi::to_wide (@3), c1); }
3792 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0), c2); })
3793 { wide_int_to_tree (TREE_TYPE (@0), c3); })))))
3795 (cmp (bit_and:s (rshift:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
3796 (if (tree_fits_shwi_p (@1)
3797 && tree_to_shwi (@1) > 0
3798 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
3799 (with { tree t0 = TREE_TYPE (@0);
3800 unsigned int prec = TYPE_PRECISION (t0);
3801 wide_int c1 = wi::to_wide (@1);
3802 wide_int c2 = wi::to_wide (@2);
3803 wide_int c3 = wi::to_wide (@3);
3804 wide_int sb = wi::set_bit_in_zero (prec - 1, prec); }
3805 (if ((c2 & c3) != c3)
3806 { constant_boolean_node (cmp == NE_EXPR, type); }
3807 (if (TYPE_UNSIGNED (t0))
3808 (if ((c3 & wi::arshift (sb, c1 - 1)) != 0)
3809 { constant_boolean_node (cmp == NE_EXPR, type); }
3810 (cmp (bit_and @0 { wide_int_to_tree (t0, c2 << c1); })
3811 { wide_int_to_tree (t0, c3 << c1); }))
3812 (with { wide_int smask = wi::arshift (sb, c1); }
3814 (if ((c2 & smask) == 0)
3815 (cmp (bit_and @0 { wide_int_to_tree (t0, c2 << c1); })
3816 { wide_int_to_tree (t0, c3 << c1); }))
3817 (if ((c3 & smask) == 0)
3818 (cmp (bit_and @0 { wide_int_to_tree (t0, (c2 << c1) | sb); })
3819 { wide_int_to_tree (t0, c3 << c1); }))
3820 (if ((c2 & smask) != (c3 & smask))
3821 { constant_boolean_node (cmp == NE_EXPR, type); })
3822 (cmp (bit_and @0 { wide_int_to_tree (t0, (c2 << c1) | sb); })
3823 { wide_int_to_tree (t0, (c3 << c1) | sb); })))))))))
3825 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
3826 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
3827 if the new mask might be further optimized. */
3828 (for shift (lshift rshift)
3830 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
3832 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
3833 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
3834 && tree_fits_uhwi_p (@1)
3835 && tree_to_uhwi (@1) > 0
3836 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
3839 unsigned int shiftc = tree_to_uhwi (@1);
3840 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
3841 unsigned HOST_WIDE_INT newmask, zerobits = 0;
3842 tree shift_type = TREE_TYPE (@3);
3845 if (shift == LSHIFT_EXPR)
3846 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
3847 else if (shift == RSHIFT_EXPR
3848 && type_has_mode_precision_p (shift_type))
3850 prec = TYPE_PRECISION (TREE_TYPE (@3));
3852 /* See if more bits can be proven as zero because of
3855 && TYPE_UNSIGNED (TREE_TYPE (@0)))
3857 tree inner_type = TREE_TYPE (@0);
3858 if (type_has_mode_precision_p (inner_type)
3859 && TYPE_PRECISION (inner_type) < prec)
3861 prec = TYPE_PRECISION (inner_type);
3862 /* See if we can shorten the right shift. */
3864 shift_type = inner_type;
3865 /* Otherwise X >> C1 is all zeros, so we'll optimize
3866 it into (X, 0) later on by making sure zerobits
3870 zerobits = HOST_WIDE_INT_M1U;
3873 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
3874 zerobits <<= prec - shiftc;
3876 /* For arithmetic shift if sign bit could be set, zerobits
3877 can contain actually sign bits, so no transformation is
3878 possible, unless MASK masks them all away. In that
3879 case the shift needs to be converted into logical shift. */
3880 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
3881 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
3883 if ((mask & zerobits) == 0)
3884 shift_type = unsigned_type_for (TREE_TYPE (@3));
3890 /* ((X << 16) & 0xff00) is (X, 0). */
3891 (if ((mask & zerobits) == mask)
3892 { build_int_cst (type, 0); }
3893 (with { newmask = mask | zerobits; }
3894 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
3897 /* Only do the transformation if NEWMASK is some integer
3899 for (prec = BITS_PER_UNIT;
3900 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
3901 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
3904 (if (prec < HOST_BITS_PER_WIDE_INT
3905 || newmask == HOST_WIDE_INT_M1U)
3907 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
3908 (if (!tree_int_cst_equal (newmaskt, @2))
3909 (if (shift_type != TREE_TYPE (@3))
3910 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
3911 (bit_and @4 { newmaskt; })))))))))))))
3913 /* ((1 << n) & M) != 0 -> n == log2 (M) */
3919 (nop_convert? (lshift integer_onep @0)) integer_pow2p@1) integer_zerop)
3920 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3921 (icmp @0 { wide_int_to_tree (TREE_TYPE (@0),
3922 wi::exact_log2 (wi::to_wide (@1))); }))))
3924 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
3925 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
3926 (for shift (lshift rshift)
3927 (for bit_op (bit_and bit_xor bit_ior)
3929 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
3930 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3931 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
3933 (bit_op (shift (convert @0) @1) { mask; })))))))
3935 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
3937 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
3938 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
3939 && (element_precision (TREE_TYPE (@0))
3940 <= element_precision (TREE_TYPE (@1))
3941 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
3943 { tree shift_type = TREE_TYPE (@0); }
3944 (convert (rshift (convert:shift_type @1) @2)))))
3946 /* ~(~X >>r Y) -> X >>r Y
3947 ~(~X <<r Y) -> X <<r Y */
3948 (for rotate (lrotate rrotate)
3950 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
3951 (if ((element_precision (TREE_TYPE (@0))
3952 <= element_precision (TREE_TYPE (@1))
3953 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
3954 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3955 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
3957 { tree rotate_type = TREE_TYPE (@0); }
3958 (convert (rotate (convert:rotate_type @1) @2))))))
3961 (for rotate (lrotate rrotate)
3962 invrot (rrotate lrotate)
3963 /* (X >>r Y) cmp (Z >>r Y) may simplify to X cmp Y. */
3965 (cmp (rotate @1 @0) (rotate @2 @0))
3967 /* (X >>r C1) cmp C2 may simplify to X cmp C3. */
3969 (cmp (rotate @0 INTEGER_CST@1) INTEGER_CST@2)
3970 (cmp @0 { const_binop (invrot, TREE_TYPE (@0), @2, @1); }))
3971 /* (X >>r Y) cmp C where C is 0 or ~0, may simplify to X cmp C. */
3973 (cmp (rotate @0 @1) INTEGER_CST@2)
3974 (if (integer_zerop (@2) || integer_all_onesp (@2))
3977 /* Narrow a lshift by constant. */
3979 (convert (lshift:s@0 @1 INTEGER_CST@2))
3980 (if (INTEGRAL_TYPE_P (type)
3981 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3982 && !integer_zerop (@2)
3983 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))
3984 (if (TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3985 || wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (type)))
3986 (lshift (convert @1) @2)
3987 (if (wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0))))
3988 { build_zero_cst (type); }))))
3990 /* Simplifications of conversions. */
3992 /* Basic strip-useless-type-conversions / strip_nops. */
3993 (for cvt (convert view_convert float fix_trunc)
3996 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3997 || (GENERIC && type == TREE_TYPE (@0)))
4000 /* Contract view-conversions. */
4002 (view_convert (view_convert @0))
4005 /* For integral conversions with the same precision or pointer
4006 conversions use a NOP_EXPR instead. */
4009 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
4010 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
4011 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
4014 /* Strip inner integral conversions that do not change precision or size, or
4015 zero-extend while keeping the same size (for bool-to-char). */
4017 (view_convert (convert@0 @1))
4018 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
4019 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
4020 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
4021 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
4022 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
4023 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
4026 /* Simplify a view-converted empty or single-element constructor. */
4028 (view_convert CONSTRUCTOR@0)
4030 { tree ctor = (TREE_CODE (@0) == SSA_NAME
4031 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0); }
4033 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4034 { build_zero_cst (type); })
4035 (if (CONSTRUCTOR_NELTS (ctor) == 1
4036 && VECTOR_TYPE_P (TREE_TYPE (ctor))
4037 && operand_equal_p (TYPE_SIZE (type),
4038 TYPE_SIZE (TREE_TYPE
4039 (CONSTRUCTOR_ELT (ctor, 0)->value))))
4040 (view_convert { CONSTRUCTOR_ELT (ctor, 0)->value; })))))
4042 /* Re-association barriers around constants and other re-association
4043 barriers can be removed. */
4045 (paren CONSTANT_CLASS_P@0)
4048 (paren (paren@1 @0))
4051 /* Handle cases of two conversions in a row. */
4052 (for ocvt (convert float fix_trunc)
4053 (for icvt (convert float)
4058 tree inside_type = TREE_TYPE (@0);
4059 tree inter_type = TREE_TYPE (@1);
4060 int inside_int = INTEGRAL_TYPE_P (inside_type);
4061 int inside_ptr = POINTER_TYPE_P (inside_type);
4062 int inside_float = FLOAT_TYPE_P (inside_type);
4063 int inside_vec = VECTOR_TYPE_P (inside_type);
4064 unsigned int inside_prec = TYPE_PRECISION (inside_type);
4065 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
4066 int inter_int = INTEGRAL_TYPE_P (inter_type);
4067 int inter_ptr = POINTER_TYPE_P (inter_type);
4068 int inter_float = FLOAT_TYPE_P (inter_type);
4069 int inter_vec = VECTOR_TYPE_P (inter_type);
4070 unsigned int inter_prec = TYPE_PRECISION (inter_type);
4071 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
4072 int final_int = INTEGRAL_TYPE_P (type);
4073 int final_ptr = POINTER_TYPE_P (type);
4074 int final_float = FLOAT_TYPE_P (type);
4075 int final_vec = VECTOR_TYPE_P (type);
4076 unsigned int final_prec = TYPE_PRECISION (type);
4077 int final_unsignedp = TYPE_UNSIGNED (type);
4080 /* In addition to the cases of two conversions in a row
4081 handled below, if we are converting something to its own
4082 type via an object of identical or wider precision, neither
4083 conversion is needed. */
4084 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
4086 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
4087 && (((inter_int || inter_ptr) && final_int)
4088 || (inter_float && final_float))
4089 && inter_prec >= final_prec)
4092 /* Likewise, if the intermediate and initial types are either both
4093 float or both integer, we don't need the middle conversion if the
4094 former is wider than the latter and doesn't change the signedness
4095 (for integers). Avoid this if the final type is a pointer since
4096 then we sometimes need the middle conversion. */
4097 (if (((inter_int && inside_int) || (inter_float && inside_float))
4098 && (final_int || final_float)
4099 && inter_prec >= inside_prec
4100 && (inter_float || inter_unsignedp == inside_unsignedp))
4103 /* If we have a sign-extension of a zero-extended value, we can
4104 replace that by a single zero-extension. Likewise if the
4105 final conversion does not change precision we can drop the
4106 intermediate conversion. */
4107 (if (inside_int && inter_int && final_int
4108 && ((inside_prec < inter_prec && inter_prec < final_prec
4109 && inside_unsignedp && !inter_unsignedp)
4110 || final_prec == inter_prec))
4113 /* Two conversions in a row are not needed unless:
4114 - some conversion is floating-point (overstrict for now), or
4115 - some conversion is a vector (overstrict for now), or
4116 - the intermediate type is narrower than both initial and
4118 - the intermediate type and innermost type differ in signedness,
4119 and the outermost type is wider than the intermediate, or
4120 - the initial type is a pointer type and the precisions of the
4121 intermediate and final types differ, or
4122 - the final type is a pointer type and the precisions of the
4123 initial and intermediate types differ. */
4124 (if (! inside_float && ! inter_float && ! final_float
4125 && ! inside_vec && ! inter_vec && ! final_vec
4126 && (inter_prec >= inside_prec || inter_prec >= final_prec)
4127 && ! (inside_int && inter_int
4128 && inter_unsignedp != inside_unsignedp
4129 && inter_prec < final_prec)
4130 && ((inter_unsignedp && inter_prec > inside_prec)
4131 == (final_unsignedp && final_prec > inter_prec))
4132 && ! (inside_ptr && inter_prec != final_prec)
4133 && ! (final_ptr && inside_prec != inter_prec))
4136 /* A truncation to an unsigned type (a zero-extension) should be
4137 canonicalized as bitwise and of a mask. */
4138 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
4139 && final_int && inter_int && inside_int
4140 && final_prec == inside_prec
4141 && final_prec > inter_prec
4143 (convert (bit_and @0 { wide_int_to_tree
4145 wi::mask (inter_prec, false,
4146 TYPE_PRECISION (inside_type))); })))
4148 /* If we are converting an integer to a floating-point that can
4149 represent it exactly and back to an integer, we can skip the
4150 floating-point conversion. */
4151 (if (GIMPLE /* PR66211 */
4152 && inside_int && inter_float && final_int &&
4153 (unsigned) significand_size (TYPE_MODE (inter_type))
4154 >= inside_prec - !inside_unsignedp)
4157 /* (float_type)(integer_type) x -> trunc (x) if the type of x matches
4158 float_type. Only do the transformation if we do not need to preserve
4159 trapping behaviour, so require !flag_trapping_math. */
4162 (float (fix_trunc @0))
4163 (if (!flag_trapping_math
4164 && types_match (type, TREE_TYPE (@0))
4165 && direct_internal_fn_supported_p (IFN_TRUNC, type,
4170 /* If we have a narrowing conversion to an integral type that is fed by a
4171 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
4172 masks off bits outside the final type (and nothing else). */
4174 (convert (bit_and @0 INTEGER_CST@1))
4175 (if (INTEGRAL_TYPE_P (type)
4176 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4177 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
4178 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
4179 TYPE_PRECISION (type)), 0))
4183 /* (X /[ex] A) * A -> X. */
4185 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
4188 /* Simplify (A / B) * B + (A % B) -> A. */
4189 (for div (trunc_div ceil_div floor_div round_div)
4190 mod (trunc_mod ceil_mod floor_mod round_mod)
4192 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
4195 /* x / y * y == x -> x % y == 0. */
4197 (eq:c (mult:c (trunc_div:s @0 @1) @1) @0)
4198 (if (TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE)
4199 (eq (trunc_mod @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
4201 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
4202 (for op (plus minus)
4204 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
4205 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
4206 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
4209 wi::overflow_type overflow;
4210 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
4211 TYPE_SIGN (type), &overflow);
4213 (if (types_match (type, TREE_TYPE (@2))
4214 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
4215 (op @0 { wide_int_to_tree (type, mul); })
4216 (with { tree utype = unsigned_type_for (type); }
4217 (convert (op (convert:utype @0)
4218 (mult (convert:utype @1) (convert:utype @2))))))))))
4220 /* Canonicalization of binary operations. */
4222 /* Convert X + -C into X - C. */
4224 (plus @0 REAL_CST@1)
4225 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
4226 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
4227 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
4228 (minus @0 { tem; })))))
4230 /* Convert x+x into x*2. */
4233 (if (SCALAR_FLOAT_TYPE_P (type))
4234 (mult @0 { build_real (type, dconst2); })
4235 (if (INTEGRAL_TYPE_P (type))
4236 (mult @0 { build_int_cst (type, 2); }))))
4240 (minus integer_zerop @1)
4243 (pointer_diff integer_zerop @1)
4244 (negate (convert @1)))
4246 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
4247 ARG0 is zero and X + ARG0 reduces to X, since that would mean
4248 (-ARG1 + ARG0) reduces to -ARG1. */
4250 (minus real_zerop@0 @1)
4251 (if (fold_real_zero_addition_p (type, @1, @0, 0))
4254 /* Transform x * -1 into -x. */
4256 (mult @0 integer_minus_onep)
4259 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
4260 signed overflow for CST != 0 && CST != -1. */
4262 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
4263 (if (TREE_CODE (@2) != INTEGER_CST
4265 && !integer_zerop (@1) && !integer_minus_onep (@1))
4266 (mult (mult @0 @2) @1)))
4268 /* True if we can easily extract the real and imaginary parts of a complex
4270 (match compositional_complex
4271 (convert? (complex @0 @1)))
4273 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
4275 (complex (realpart @0) (imagpart @0))
4278 (realpart (complex @0 @1))
4281 (imagpart (complex @0 @1))
4284 /* Sometimes we only care about half of a complex expression. */
4286 (realpart (convert?:s (conj:s @0)))
4287 (convert (realpart @0)))
4289 (imagpart (convert?:s (conj:s @0)))
4290 (convert (negate (imagpart @0))))
4291 (for part (realpart imagpart)
4292 (for op (plus minus)
4294 (part (convert?:s@2 (op:s @0 @1)))
4295 (convert (op (part @0) (part @1))))))
4297 (realpart (convert?:s (CEXPI:s @0)))
4300 (imagpart (convert?:s (CEXPI:s @0)))
4303 /* conj(conj(x)) -> x */
4305 (conj (convert? (conj @0)))
4306 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
4309 /* conj({x,y}) -> {x,-y} */
4311 (conj (convert?:s (complex:s @0 @1)))
4312 (with { tree itype = TREE_TYPE (type); }
4313 (complex (convert:itype @0) (negate (convert:itype @1)))))
4315 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
4316 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32
4317 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128)
4322 (bswap (bit_not (bswap @0)))
4324 (for bitop (bit_xor bit_ior bit_and)
4326 (bswap (bitop:c (bswap @0) @1))
4327 (bitop @0 (bswap @1))))
4330 (cmp (bswap@2 @0) (bswap @1))
4331 (with { tree ctype = TREE_TYPE (@2); }
4332 (cmp (convert:ctype @0) (convert:ctype @1))))
4334 (cmp (bswap @0) INTEGER_CST@1)
4335 (with { tree ctype = TREE_TYPE (@1); }
4336 (cmp (convert:ctype @0) (bswap! @1)))))
4337 /* (bswap(x) >> C1) & C2 can sometimes be simplified to (x >> C3) & C2. */
4339 (bit_and (convert1? (rshift@0 (convert2? (bswap@4 @1)) INTEGER_CST@2))
4341 (if (BITS_PER_UNIT == 8
4342 && tree_fits_uhwi_p (@2)
4343 && tree_fits_uhwi_p (@3))
4346 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@4));
4347 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@2);
4348 unsigned HOST_WIDE_INT mask = tree_to_uhwi (@3);
4349 unsigned HOST_WIDE_INT lo = bits & 7;
4350 unsigned HOST_WIDE_INT hi = bits - lo;
4353 && mask < (256u>>lo)
4354 && bits < TYPE_PRECISION (TREE_TYPE(@0)))
4355 (with { unsigned HOST_WIDE_INT ns = (prec - (hi + 8)) + lo; }
4357 (bit_and (convert @1) @3)
4360 tree utype = unsigned_type_for (TREE_TYPE (@1));
4361 tree nst = build_int_cst (integer_type_node, ns);
4363 (bit_and (convert (rshift:utype (convert:utype @1) {nst;})) @3))))))))
4364 /* bswap(x) >> C1 can sometimes be simplified to (T)x >> C2. */
4366 (rshift (convert? (bswap@2 @0)) INTEGER_CST@1)
4367 (if (BITS_PER_UNIT == 8
4368 && CHAR_TYPE_SIZE == 8
4369 && tree_fits_uhwi_p (@1))
4372 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
4373 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@1);
4374 /* If the bswap was extended before the original shift, this
4375 byte (shift) has the sign of the extension, not the sign of
4376 the original shift. */
4377 tree st = TYPE_PRECISION (type) > prec ? TREE_TYPE (@2) : type;
4379 /* Special case: logical right shift of sign-extended bswap.
4380 (unsigned)(short)bswap16(x)>>12 is (unsigned)((short)x<<8)>>12. */
4381 (if (TYPE_PRECISION (type) > prec
4382 && !TYPE_UNSIGNED (TREE_TYPE (@2))
4383 && TYPE_UNSIGNED (type)
4384 && bits < prec && bits + 8 >= prec)
4385 (with { tree nst = build_int_cst (integer_type_node, prec - 8); }
4386 (rshift (convert (lshift:st (convert:st @0) {nst;})) @1))
4387 (if (bits + 8 == prec)
4388 (if (TYPE_UNSIGNED (st))
4389 (convert (convert:unsigned_char_type_node @0))
4390 (convert (convert:signed_char_type_node @0)))
4391 (if (bits < prec && bits + 8 > prec)
4394 tree nst = build_int_cst (integer_type_node, bits & 7);
4395 tree bt = TYPE_UNSIGNED (st) ? unsigned_char_type_node
4396 : signed_char_type_node;
4398 (convert (rshift:bt (convert:bt @0) {nst;})))))))))
4399 /* bswap(x) & C1 can sometimes be simplified to (x >> C2) & C1. */
4401 (bit_and (convert? (bswap@2 @0)) INTEGER_CST@1)
4402 (if (BITS_PER_UNIT == 8
4403 && tree_fits_uhwi_p (@1)
4404 && tree_to_uhwi (@1) < 256)
4407 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
4408 tree utype = unsigned_type_for (TREE_TYPE (@0));
4409 tree nst = build_int_cst (integer_type_node, prec - 8);
4411 (bit_and (convert (rshift:utype (convert:utype @0) {nst;})) @1)))))
4414 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
4416 /* Simplify constant conditions.
4417 Only optimize constant conditions when the selected branch
4418 has the same type as the COND_EXPR. This avoids optimizing
4419 away "c ? x : throw", where the throw has a void type.
4420 Note that we cannot throw away the fold-const.cc variant nor
4421 this one as we depend on doing this transform before possibly
4422 A ? B : B -> B triggers and the fold-const.cc one can optimize
4423 0 ? A : B to B even if A has side-effects. Something
4424 genmatch cannot handle. */
4426 (cond INTEGER_CST@0 @1 @2)
4427 (if (integer_zerop (@0))
4428 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
4430 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
4433 (vec_cond VECTOR_CST@0 @1 @2)
4434 (if (integer_all_onesp (@0))
4436 (if (integer_zerop (@0))
4439 /* Sink unary operations to branches, but only if we do fold both. */
4440 (for op (negate bit_not abs absu)
4442 (op (vec_cond:s @0 @1 @2))
4443 (vec_cond @0 (op! @1) (op! @2))))
4445 /* Sink binary operation to branches, but only if we can fold it. */
4446 (for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor
4447 lshift rshift rdiv trunc_div ceil_div floor_div round_div
4448 trunc_mod ceil_mod floor_mod round_mod min max)
4449 /* (c ? a : b) op (c ? d : e) --> c ? (a op d) : (b op e) */
4451 (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4))
4452 (vec_cond @0 (op! @1 @3) (op! @2 @4)))
4454 /* (c ? a : b) op d --> c ? (a op d) : (b op d) */
4456 (op (vec_cond:s @0 @1 @2) @3)
4457 (vec_cond @0 (op! @1 @3) (op! @2 @3)))
4459 (op @3 (vec_cond:s @0 @1 @2))
4460 (vec_cond @0 (op! @3 @1) (op! @3 @2))))
4463 (match (nop_atomic_bit_test_and_p @0 @1 @4)
4464 (bit_and (convert?@4 (ATOMIC_FETCH_OR_XOR_N @2 INTEGER_CST@0 @3))
4467 int ibit = tree_log2 (@0);
4468 int ibit2 = tree_log2 (@1);
4472 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4474 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4475 (bit_and (convert?@3 (SYNC_FETCH_OR_XOR_N @2 INTEGER_CST@0))
4478 int ibit = tree_log2 (@0);
4479 int ibit2 = tree_log2 (@1);
4483 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4485 (match (nop_atomic_bit_test_and_p @0 @0 @4)
4488 (ATOMIC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@5 @6)) @3))
4490 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4492 (match (nop_atomic_bit_test_and_p @0 @0 @4)
4495 (SYNC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@3 @5))))
4497 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4499 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4500 (bit_and@4 (convert?@3 (ATOMIC_FETCH_AND_N @2 INTEGER_CST@0 @5))
4503 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4504 TYPE_PRECISION(type)));
4505 int ibit2 = tree_log2 (@1);
4509 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4511 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4513 (convert?@3 (SYNC_FETCH_AND_AND_N @2 INTEGER_CST@0))
4516 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4517 TYPE_PRECISION(type)));
4518 int ibit2 = tree_log2 (@1);
4522 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4524 (match (nop_atomic_bit_test_and_p @4 @0 @3)
4527 (ATOMIC_FETCH_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7))) @5))
4529 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4531 (match (nop_atomic_bit_test_and_p @4 @0 @3)
4534 (SYNC_FETCH_AND_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7)))))
4536 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4540 /* (v ? w : 0) ? a : b is just (v & w) ? a : b
4541 Currently disabled after pass lvec because ARM understands
4542 VEC_COND_EXPR<v==w,-1,0> but not a plain v==w fed to BIT_IOR_EXPR. */
4544 (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2)
4545 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4546 (vec_cond (bit_and @0 @3) @1 @2)))
4548 (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2)
4549 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4550 (vec_cond (bit_ior @0 @3) @1 @2)))
4552 (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2)
4553 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4554 (vec_cond (bit_ior @0 (bit_not @3)) @2 @1)))
4556 (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2)
4557 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4558 (vec_cond (bit_and @0 (bit_not @3)) @2 @1)))
4560 /* c1 ? c2 ? a : b : b --> (c1 & c2) ? a : b */
4562 (vec_cond @0 (vec_cond:s @1 @2 @3) @3)
4563 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4564 (vec_cond (bit_and @0 @1) @2 @3)))
4566 (vec_cond @0 @2 (vec_cond:s @1 @2 @3))
4567 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4568 (vec_cond (bit_ior @0 @1) @2 @3)))
4570 (vec_cond @0 (vec_cond:s @1 @2 @3) @2)
4571 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4572 (vec_cond (bit_ior (bit_not @0) @1) @2 @3)))
4574 (vec_cond @0 @3 (vec_cond:s @1 @2 @3))
4575 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4576 (vec_cond (bit_and (bit_not @0) @1) @2 @3)))
4578 /* Canonicalize mask ? { 0, ... } : { -1, ...} to ~mask if the mask
4579 types are compatible. */
4581 (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2)
4582 (if (VECTOR_BOOLEAN_TYPE_P (type)
4583 && types_match (type, TREE_TYPE (@0)))
4584 (if (integer_zerop (@1) && integer_all_onesp (@2))
4586 (if (integer_all_onesp (@1) && integer_zerop (@2))
4589 /* A few simplifications of "a ? CST1 : CST2". */
4590 /* NOTE: Only do this on gimple as the if-chain-to-switch
4591 optimization depends on the gimple to have if statements in it. */
4594 (cond @0 INTEGER_CST@1 INTEGER_CST@2)
4596 (if (integer_zerop (@2))
4598 /* a ? 1 : 0 -> a if 0 and 1 are integral types. */
4599 (if (integer_onep (@1))
4600 (convert (convert:boolean_type_node @0)))
4601 /* a ? powerof2cst : 0 -> a << (log2(powerof2cst)) */
4602 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@1))
4604 tree shift = build_int_cst (integer_type_node, tree_log2 (@1));
4606 (lshift (convert (convert:boolean_type_node @0)) { shift; })))
4607 /* a ? -1 : 0 -> -a. No need to check the TYPE_PRECISION not being 1
4608 here as the powerof2cst case above will handle that case correctly. */
4609 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@1))
4610 (negate (convert (convert:boolean_type_node @0))))))
4611 (if (integer_zerop (@1))
4613 tree booltrue = constant_boolean_node (true, boolean_type_node);
4616 /* a ? 0 : 1 -> !a. */
4617 (if (integer_onep (@2))
4618 (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } )))
4619 /* a ? powerof2cst : 0 -> (!a) << (log2(powerof2cst)) */
4620 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@2))
4622 tree shift = build_int_cst (integer_type_node, tree_log2 (@2));
4624 (lshift (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))
4626 /* a ? -1 : 0 -> -(!a). No need to check the TYPE_PRECISION not being 1
4627 here as the powerof2cst case above will handle that case correctly. */
4628 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@2))
4629 (negate (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))))
4638 (convert (cond@0 @1 INTEGER_CST@2 INTEGER_CST@3))
4639 (if (INTEGRAL_TYPE_P (type)
4640 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4641 (cond @1 (convert @2) (convert @3))))
4643 /* Simplification moved from fold_cond_expr_with_comparison. It may also
4645 /* This pattern implements two kinds simplification:
4648 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
4649 1) Conversions are type widening from smaller type.
4650 2) Const c1 equals to c2 after canonicalizing comparison.
4651 3) Comparison has tree code LT, LE, GT or GE.
4652 This specific pattern is needed when (cmp (convert x) c) may not
4653 be simplified by comparison patterns because of multiple uses of
4654 x. It also makes sense here because simplifying across multiple
4655 referred var is always benefitial for complicated cases.
4658 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
4659 (for cmp (lt le gt ge eq)
4661 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
4664 tree from_type = TREE_TYPE (@1);
4665 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
4666 enum tree_code code = ERROR_MARK;
4668 if (INTEGRAL_TYPE_P (from_type)
4669 && int_fits_type_p (@2, from_type)
4670 && (types_match (c1_type, from_type)
4671 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
4672 && (TYPE_UNSIGNED (from_type)
4673 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
4674 && (types_match (c2_type, from_type)
4675 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
4676 && (TYPE_UNSIGNED (from_type)
4677 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
4681 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
4683 /* X <= Y - 1 equals to X < Y. */
4686 /* X > Y - 1 equals to X >= Y. */
4690 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
4692 /* X < Y + 1 equals to X <= Y. */
4695 /* X >= Y + 1 equals to X > Y. */
4699 if (code != ERROR_MARK
4700 || wi::to_widest (@2) == wi::to_widest (@3))
4702 if (cmp == LT_EXPR || cmp == LE_EXPR)
4704 if (cmp == GT_EXPR || cmp == GE_EXPR)
4708 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
4709 else if (int_fits_type_p (@3, from_type))
4713 (if (code == MAX_EXPR)
4714 (convert (max @1 (convert @2)))
4715 (if (code == MIN_EXPR)
4716 (convert (min @1 (convert @2)))
4717 (if (code == EQ_EXPR)
4718 (convert (cond (eq @1 (convert @3))
4719 (convert:from_type @3) (convert:from_type @2)))))))))
4721 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
4723 1) OP is PLUS or MINUS.
4724 2) CMP is LT, LE, GT or GE.
4725 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
4727 This pattern also handles special cases like:
4729 A) Operand x is a unsigned to signed type conversion and c1 is
4730 integer zero. In this case,
4731 (signed type)x < 0 <=> x > MAX_VAL(signed type)
4732 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
4733 B) Const c1 may not equal to (C3 op' C2). In this case we also
4734 check equality for (c1+1) and (c1-1) by adjusting comparison
4737 TODO: Though signed type is handled by this pattern, it cannot be
4738 simplified at the moment because C standard requires additional
4739 type promotion. In order to match&simplify it here, the IR needs
4740 to be cleaned up by other optimizers, i.e, VRP. */
4741 (for op (plus minus)
4742 (for cmp (lt le gt ge)
4744 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
4745 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
4746 (if (types_match (from_type, to_type)
4747 /* Check if it is special case A). */
4748 || (TYPE_UNSIGNED (from_type)
4749 && !TYPE_UNSIGNED (to_type)
4750 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
4751 && integer_zerop (@1)
4752 && (cmp == LT_EXPR || cmp == GE_EXPR)))
4755 wi::overflow_type overflow = wi::OVF_NONE;
4756 enum tree_code code, cmp_code = cmp;
4758 wide_int c1 = wi::to_wide (@1);
4759 wide_int c2 = wi::to_wide (@2);
4760 wide_int c3 = wi::to_wide (@3);
4761 signop sgn = TYPE_SIGN (from_type);
4763 /* Handle special case A), given x of unsigned type:
4764 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
4765 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
4766 if (!types_match (from_type, to_type))
4768 if (cmp_code == LT_EXPR)
4770 if (cmp_code == GE_EXPR)
4772 c1 = wi::max_value (to_type);
4774 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
4775 compute (c3 op' c2) and check if it equals to c1 with op' being
4776 the inverted operator of op. Make sure overflow doesn't happen
4777 if it is undefined. */
4778 if (op == PLUS_EXPR)
4779 real_c1 = wi::sub (c3, c2, sgn, &overflow);
4781 real_c1 = wi::add (c3, c2, sgn, &overflow);
4784 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
4786 /* Check if c1 equals to real_c1. Boundary condition is handled
4787 by adjusting comparison operation if necessary. */
4788 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
4791 /* X <= Y - 1 equals to X < Y. */
4792 if (cmp_code == LE_EXPR)
4794 /* X > Y - 1 equals to X >= Y. */
4795 if (cmp_code == GT_EXPR)
4798 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
4801 /* X < Y + 1 equals to X <= Y. */
4802 if (cmp_code == LT_EXPR)
4804 /* X >= Y + 1 equals to X > Y. */
4805 if (cmp_code == GE_EXPR)
4808 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
4810 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
4812 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
4817 (if (code == MAX_EXPR)
4818 (op (max @X { wide_int_to_tree (from_type, real_c1); })
4819 { wide_int_to_tree (from_type, c2); })
4820 (if (code == MIN_EXPR)
4821 (op (min @X { wide_int_to_tree (from_type, real_c1); })
4822 { wide_int_to_tree (from_type, c2); })))))))))
4825 /* A >= B ? A : B -> max (A, B) and friends. The code is still
4826 in fold_cond_expr_with_comparison for GENERIC folding with
4827 some extra constraints. */
4828 (for cmp (eq ne le lt unle unlt ge gt unge ungt uneq ltgt)
4830 (cond (cmp:c (nop_convert1?@c0 @0) (nop_convert2?@c1 @1))
4831 (convert3? @0) (convert4? @1))
4832 (if (!HONOR_SIGNED_ZEROS (type)
4833 && (/* Allow widening conversions of the compare operands as data. */
4834 (INTEGRAL_TYPE_P (type)
4835 && types_match (TREE_TYPE (@c0), TREE_TYPE (@0))
4836 && types_match (TREE_TYPE (@c1), TREE_TYPE (@1))
4837 && TYPE_PRECISION (TREE_TYPE (@0)) <= TYPE_PRECISION (type)
4838 && TYPE_PRECISION (TREE_TYPE (@1)) <= TYPE_PRECISION (type))
4839 /* Or sign conversions for the comparison. */
4840 || (types_match (type, TREE_TYPE (@0))
4841 && types_match (type, TREE_TYPE (@1)))))
4843 (if (cmp == EQ_EXPR)
4844 (if (VECTOR_TYPE_P (type))
4847 (if (cmp == NE_EXPR)
4848 (if (VECTOR_TYPE_P (type))
4851 (if (cmp == LE_EXPR || cmp == UNLE_EXPR || cmp == LT_EXPR || cmp == UNLT_EXPR)
4852 (if (!HONOR_NANS (type))
4853 (if (VECTOR_TYPE_P (type))
4854 (view_convert (min @c0 @c1))
4855 (convert (min @c0 @c1)))))
4856 (if (cmp == GE_EXPR || cmp == UNGE_EXPR || cmp == GT_EXPR || cmp == UNGT_EXPR)
4857 (if (!HONOR_NANS (type))
4858 (if (VECTOR_TYPE_P (type))
4859 (view_convert (max @c0 @c1))
4860 (convert (max @c0 @c1)))))
4861 (if (cmp == UNEQ_EXPR)
4862 (if (!HONOR_NANS (type))
4863 (if (VECTOR_TYPE_P (type))
4866 (if (cmp == LTGT_EXPR)
4867 (if (!HONOR_NANS (type))
4868 (if (VECTOR_TYPE_P (type))
4870 (convert @c0))))))))
4873 /* X != C1 ? -X : C2 simplifies to -X when -C1 == C2. */
4875 (cond (ne @0 INTEGER_CST@1) (negate@3 @0) INTEGER_CST@2)
4876 (if (!TYPE_SATURATING (type)
4877 && (TYPE_OVERFLOW_WRAPS (type)
4878 || !wi::only_sign_bit_p (wi::to_wide (@1)))
4879 && wi::eq_p (wi::neg (wi::to_wide (@1)), wi::to_wide (@2)))
4882 /* X != C1 ? ~X : C2 simplifies to ~X when ~C1 == C2. */
4884 (cond (ne @0 INTEGER_CST@1) (bit_not@3 @0) INTEGER_CST@2)
4885 (if (wi::eq_p (wi::bit_not (wi::to_wide (@1)), wi::to_wide (@2)))
4888 /* (X + 1) > Y ? -X : 1 simplifies to X >= Y ? -X : 1 when
4889 X is unsigned, as when X + 1 overflows, X is -1, so -X == 1. */
4891 (cond (gt (plus @0 integer_onep) @1) (negate @0) integer_onep@2)
4892 (if (TYPE_UNSIGNED (type))
4893 (cond (ge @0 @1) (negate @0) @2)))
4895 (for cnd (cond vec_cond)
4896 /* A ? B : (A ? X : C) -> A ? B : C. */
4898 (cnd @0 (cnd @0 @1 @2) @3)
4901 (cnd @0 @1 (cnd @0 @2 @3))
4903 /* A ? B : (!A ? C : X) -> A ? B : C. */
4904 /* ??? This matches embedded conditions open-coded because genmatch
4905 would generate matching code for conditions in separate stmts only.
4906 The following is still important to merge then and else arm cases
4907 from if-conversion. */
4909 (cnd @0 @1 (cnd @2 @3 @4))
4910 (if (inverse_conditions_p (@0, @2))
4913 (cnd @0 (cnd @1 @2 @3) @4)
4914 (if (inverse_conditions_p (@0, @1))
4917 /* A ? B : B -> B. */
4922 /* !A ? B : C -> A ? C : B. */
4924 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
4927 /* abs/negative simplifications moved from fold_cond_expr_with_comparison,
4928 Need to handle (A - B) case as fold_cond_expr_with_comparison does.
4929 Need to handle UN* comparisons.
4931 None of these transformations work for modes with signed
4932 zeros. If A is +/-0, the first two transformations will
4933 change the sign of the result (from +0 to -0, or vice
4934 versa). The last four will fix the sign of the result,
4935 even though the original expressions could be positive or
4936 negative, depending on the sign of A.
4938 Note that all these transformations are correct if A is
4939 NaN, since the two alternatives (A and -A) are also NaNs. */
4941 (for cnd (cond vec_cond)
4942 /* A == 0 ? A : -A same as -A */
4945 (cnd (cmp @0 zerop) @0 (negate@1 @0))
4946 (if (!HONOR_SIGNED_ZEROS (type))
4949 (cnd (cmp @0 zerop) zerop (negate@1 @0))
4950 (if (!HONOR_SIGNED_ZEROS (type))
4953 /* A != 0 ? A : -A same as A */
4956 (cnd (cmp @0 zerop) @0 (negate @0))
4957 (if (!HONOR_SIGNED_ZEROS (type))
4960 (cnd (cmp @0 zerop) @0 integer_zerop)
4961 (if (!HONOR_SIGNED_ZEROS (type))
4964 /* A >=/> 0 ? A : -A same as abs (A) */
4967 (cnd (cmp @0 zerop) @0 (negate @0))
4968 (if (!HONOR_SIGNED_ZEROS (type)
4969 && !TYPE_UNSIGNED (type))
4971 /* A <=/< 0 ? A : -A same as -abs (A) */
4974 (cnd (cmp @0 zerop) @0 (negate @0))
4975 (if (!HONOR_SIGNED_ZEROS (type)
4976 && !TYPE_UNSIGNED (type))
4977 (if (ANY_INTEGRAL_TYPE_P (type)
4978 && !TYPE_OVERFLOW_WRAPS (type))
4980 tree utype = unsigned_type_for (type);
4982 (convert (negate (absu:utype @0))))
4983 (negate (abs @0)))))
4987 /* -(type)!A -> (type)A - 1. */
4989 (negate (convert?:s (logical_inverted_value:s @0)))
4990 (if (INTEGRAL_TYPE_P (type)
4991 && TREE_CODE (type) != BOOLEAN_TYPE
4992 && TYPE_PRECISION (type) > 1
4993 && TREE_CODE (@0) == SSA_NAME
4994 && ssa_name_has_boolean_range (@0))
4995 (plus (convert:type @0) { build_all_ones_cst (type); })))
4997 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
4998 return all -1 or all 0 results. */
4999 /* ??? We could instead convert all instances of the vec_cond to negate,
5000 but that isn't necessarily a win on its own. */
5002 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
5003 (if (VECTOR_TYPE_P (type)
5004 && known_eq (TYPE_VECTOR_SUBPARTS (type),
5005 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
5006 && (TYPE_MODE (TREE_TYPE (type))
5007 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
5008 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
5010 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
5012 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
5013 (if (VECTOR_TYPE_P (type)
5014 && known_eq (TYPE_VECTOR_SUBPARTS (type),
5015 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
5016 && (TYPE_MODE (TREE_TYPE (type))
5017 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
5018 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
5021 /* Simplifications of comparisons. */
5023 /* See if we can reduce the magnitude of a constant involved in a
5024 comparison by changing the comparison code. This is a canonicalization
5025 formerly done by maybe_canonicalize_comparison_1. */
5029 (cmp @0 uniform_integer_cst_p@1)
5030 (with { tree cst = uniform_integer_cst_p (@1); }
5031 (if (tree_int_cst_sgn (cst) == -1)
5032 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
5033 wide_int_to_tree (TREE_TYPE (cst),
5039 (cmp @0 uniform_integer_cst_p@1)
5040 (with { tree cst = uniform_integer_cst_p (@1); }
5041 (if (tree_int_cst_sgn (cst) == 1)
5042 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
5043 wide_int_to_tree (TREE_TYPE (cst),
5044 wi::to_wide (cst) - 1)); })))))
5046 /* We can simplify a logical negation of a comparison to the
5047 inverted comparison. As we cannot compute an expression
5048 operator using invert_tree_comparison we have to simulate
5049 that with expression code iteration. */
5050 (for cmp (tcc_comparison)
5051 icmp (inverted_tcc_comparison)
5052 ncmp (inverted_tcc_comparison_with_nans)
5053 /* Ideally we'd like to combine the following two patterns
5054 and handle some more cases by using
5055 (logical_inverted_value (cmp @0 @1))
5056 here but for that genmatch would need to "inline" that.
5057 For now implement what forward_propagate_comparison did. */
5059 (bit_not (cmp @0 @1))
5060 (if (VECTOR_TYPE_P (type)
5061 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
5062 /* Comparison inversion may be impossible for trapping math,
5063 invert_tree_comparison will tell us. But we can't use
5064 a computed operator in the replacement tree thus we have
5065 to play the trick below. */
5066 (with { enum tree_code ic = invert_tree_comparison
5067 (cmp, HONOR_NANS (@0)); }
5073 (bit_xor (cmp @0 @1) integer_truep)
5074 (with { enum tree_code ic = invert_tree_comparison
5075 (cmp, HONOR_NANS (@0)); }
5080 /* The following bits are handled by fold_binary_op_with_conditional_arg. */
5082 (ne (cmp@2 @0 @1) integer_zerop)
5083 (if (types_match (type, TREE_TYPE (@2)))
5086 (eq (cmp@2 @0 @1) integer_truep)
5087 (if (types_match (type, TREE_TYPE (@2)))
5090 (ne (cmp@2 @0 @1) integer_truep)
5091 (if (types_match (type, TREE_TYPE (@2)))
5092 (with { enum tree_code ic = invert_tree_comparison
5093 (cmp, HONOR_NANS (@0)); }
5099 (eq (cmp@2 @0 @1) integer_zerop)
5100 (if (types_match (type, TREE_TYPE (@2)))
5101 (with { enum tree_code ic = invert_tree_comparison
5102 (cmp, HONOR_NANS (@0)); }
5108 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
5109 ??? The transformation is valid for the other operators if overflow
5110 is undefined for the type, but performing it here badly interacts
5111 with the transformation in fold_cond_expr_with_comparison which
5112 attempts to synthetize ABS_EXPR. */
5114 (for sub (minus pointer_diff)
5116 (cmp (sub@2 @0 @1) integer_zerop)
5117 (if (single_use (@2))
5120 /* Simplify (x < 0) ^ (y < 0) to (x ^ y) < 0 and
5121 (x >= 0) ^ (y >= 0) to (x ^ y) < 0. */
5124 (bit_xor (cmp:s @0 integer_zerop) (cmp:s @1 integer_zerop))
5125 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5126 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5127 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5128 (lt (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); }))))
5129 /* Simplify (x < 0) ^ (y >= 0) to (x ^ y) >= 0 and
5130 (x >= 0) ^ (y < 0) to (x ^ y) >= 0. */
5132 (bit_xor:c (lt:s @0 integer_zerop) (ge:s @1 integer_zerop))
5133 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5134 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5135 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5136 (ge (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
5138 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
5139 signed arithmetic case. That form is created by the compiler
5140 often enough for folding it to be of value. One example is in
5141 computing loop trip counts after Operator Strength Reduction. */
5142 (for cmp (simple_comparison)
5143 scmp (swapped_simple_comparison)
5145 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
5146 /* Handle unfolded multiplication by zero. */
5147 (if (integer_zerop (@1))
5149 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5150 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5152 /* If @1 is negative we swap the sense of the comparison. */
5153 (if (tree_int_cst_sgn (@1) < 0)
5157 /* For integral types with undefined overflow fold
5158 x * C1 == C2 into x == C2 / C1 or false.
5159 If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring
5163 (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2)
5164 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5165 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5166 && wi::to_wide (@1) != 0)
5167 (with { widest_int quot; }
5168 (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1),
5169 TYPE_SIGN (TREE_TYPE (@0)), "))
5170 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); })
5171 { constant_boolean_node (cmp == NE_EXPR, type); }))
5172 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5173 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
5174 && (wi::bit_and (wi::to_wide (@1), 1) == 1))
5177 tree itype = TREE_TYPE (@0);
5178 int p = TYPE_PRECISION (itype);
5179 wide_int m = wi::one (p + 1) << p;
5180 wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED);
5181 wide_int i = wide_int::from (wi::mod_inv (a, m),
5182 p, TYPE_SIGN (itype));
5183 wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2)));
5186 /* Simplify comparison of something with itself. For IEEE
5187 floating-point, we can only do some of these simplifications. */
5191 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
5192 || ! tree_expr_maybe_nan_p (@0))
5193 { constant_boolean_node (true, type); }
5195 /* With -ftrapping-math conversion to EQ loses an exception. */
5196 && (! FLOAT_TYPE_P (TREE_TYPE (@0))
5197 || ! flag_trapping_math))
5203 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
5204 || ! tree_expr_maybe_nan_p (@0))
5205 { constant_boolean_node (false, type); })))
5206 (for cmp (unle unge uneq)
5209 { constant_boolean_node (true, type); }))
5210 (for cmp (unlt ungt)
5216 (if (!flag_trapping_math || !tree_expr_maybe_nan_p (@0))
5217 { constant_boolean_node (false, type); }))
5219 /* x == ~x -> false */
5220 /* x != ~x -> true */
5223 (cmp:c @0 (bit_not @0))
5224 { constant_boolean_node (cmp == NE_EXPR, type); }))
5226 /* Fold ~X op ~Y as Y op X. */
5227 (for cmp (simple_comparison)
5229 (cmp (bit_not@2 @0) (bit_not@3 @1))
5230 (if (single_use (@2) && single_use (@3))
5233 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
5234 (for cmp (simple_comparison)
5235 scmp (swapped_simple_comparison)
5237 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
5238 (if (single_use (@2)
5239 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
5240 (scmp @0 (bit_not @1)))))
5242 (for cmp (simple_comparison)
5245 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
5247 /* a CMP (-0) -> a CMP 0 */
5248 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
5249 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
5250 /* (-0) CMP b -> 0 CMP b. */
5251 (if (TREE_CODE (@0) == REAL_CST
5252 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@0)))
5253 (cmp { build_real (TREE_TYPE (@0), dconst0); } @1))
5254 /* x != NaN is always true, other ops are always false. */
5255 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5256 && (cmp == EQ_EXPR || cmp == NE_EXPR || !flag_trapping_math)
5257 && !tree_expr_signaling_nan_p (@1)
5258 && !tree_expr_maybe_signaling_nan_p (@0))
5259 { constant_boolean_node (cmp == NE_EXPR, type); })
5260 /* NaN != y is always true, other ops are always false. */
5261 (if (TREE_CODE (@0) == REAL_CST
5262 && REAL_VALUE_ISNAN (TREE_REAL_CST (@0))
5263 && (cmp == EQ_EXPR || cmp == NE_EXPR || !flag_trapping_math)
5264 && !tree_expr_signaling_nan_p (@0)
5265 && !tree_expr_signaling_nan_p (@1))
5266 { constant_boolean_node (cmp == NE_EXPR, type); })
5267 /* Fold comparisons against infinity. */
5268 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
5269 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
5272 REAL_VALUE_TYPE max;
5273 enum tree_code code = cmp;
5274 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
5276 code = swap_tree_comparison (code);
5279 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
5280 (if (code == GT_EXPR
5281 && !(HONOR_NANS (@0) && flag_trapping_math))
5282 { constant_boolean_node (false, type); })
5283 (if (code == LE_EXPR)
5284 /* x <= +Inf is always true, if we don't care about NaNs. */
5285 (if (! HONOR_NANS (@0))
5286 { constant_boolean_node (true, type); }
5287 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
5288 an "invalid" exception. */
5289 (if (!flag_trapping_math)
5291 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
5292 for == this introduces an exception for x a NaN. */
5293 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
5295 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5297 (lt @0 { build_real (TREE_TYPE (@0), max); })
5298 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
5299 /* x < +Inf is always equal to x <= DBL_MAX. */
5300 (if (code == LT_EXPR)
5301 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5303 (ge @0 { build_real (TREE_TYPE (@0), max); })
5304 (le @0 { build_real (TREE_TYPE (@0), max); }))))
5305 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
5306 an exception for x a NaN so use an unordered comparison. */
5307 (if (code == NE_EXPR)
5308 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5309 (if (! HONOR_NANS (@0))
5311 (ge @0 { build_real (TREE_TYPE (@0), max); })
5312 (le @0 { build_real (TREE_TYPE (@0), max); }))
5314 (unge @0 { build_real (TREE_TYPE (@0), max); })
5315 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
5317 /* If this is a comparison of a real constant with a PLUS_EXPR
5318 or a MINUS_EXPR of a real constant, we can convert it into a
5319 comparison with a revised real constant as long as no overflow
5320 occurs when unsafe_math_optimizations are enabled. */
5321 (if (flag_unsafe_math_optimizations)
5322 (for op (plus minus)
5324 (cmp (op @0 REAL_CST@1) REAL_CST@2)
5327 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
5328 TREE_TYPE (@1), @2, @1);
5330 (if (tem && !TREE_OVERFLOW (tem))
5331 (cmp @0 { tem; }))))))
5333 /* Likewise, we can simplify a comparison of a real constant with
5334 a MINUS_EXPR whose first operand is also a real constant, i.e.
5335 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
5336 floating-point types only if -fassociative-math is set. */
5337 (if (flag_associative_math)
5339 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
5340 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
5341 (if (tem && !TREE_OVERFLOW (tem))
5342 (cmp { tem; } @1)))))
5344 /* Fold comparisons against built-in math functions. */
5345 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
5348 (cmp (sq @0) REAL_CST@1)
5350 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
5352 /* sqrt(x) < y is always false, if y is negative. */
5353 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
5354 { constant_boolean_node (false, type); })
5355 /* sqrt(x) > y is always true, if y is negative and we
5356 don't care about NaNs, i.e. negative values of x. */
5357 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
5358 { constant_boolean_node (true, type); })
5359 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
5360 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
5361 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
5363 /* sqrt(x) < 0 is always false. */
5364 (if (cmp == LT_EXPR)
5365 { constant_boolean_node (false, type); })
5366 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
5367 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
5368 { constant_boolean_node (true, type); })
5369 /* sqrt(x) <= 0 -> x == 0. */
5370 (if (cmp == LE_EXPR)
5372 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
5373 == or !=. In the last case:
5375 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
5377 if x is negative or NaN. Due to -funsafe-math-optimizations,
5378 the results for other x follow from natural arithmetic. */
5380 (if ((cmp == LT_EXPR
5384 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5385 /* Give up for -frounding-math. */
5386 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
5390 enum tree_code ncmp = cmp;
5391 const real_format *fmt
5392 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
5393 real_arithmetic (&c2, MULT_EXPR,
5394 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
5395 real_convert (&c2, fmt, &c2);
5396 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
5397 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
5398 if (!REAL_VALUE_ISINF (c2))
5400 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
5401 build_real (TREE_TYPE (@0), c2));
5402 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
5404 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
5405 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
5406 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
5407 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
5408 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
5409 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
5412 /* With rounding to even, sqrt of up to 3 different values
5413 gives the same normal result, so in some cases c2 needs
5415 REAL_VALUE_TYPE c2alt, tow;
5416 if (cmp == LT_EXPR || cmp == GE_EXPR)
5420 real_nextafter (&c2alt, fmt, &c2, &tow);
5421 real_convert (&c2alt, fmt, &c2alt);
5422 if (REAL_VALUE_ISINF (c2alt))
5426 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
5427 build_real (TREE_TYPE (@0), c2alt));
5428 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
5430 else if (real_equal (&TREE_REAL_CST (c3),
5431 &TREE_REAL_CST (@1)))
5437 (if (cmp == GT_EXPR || cmp == GE_EXPR)
5438 (if (REAL_VALUE_ISINF (c2))
5439 /* sqrt(x) > y is x == +Inf, when y is very large. */
5440 (if (HONOR_INFINITIES (@0))
5441 (eq @0 { build_real (TREE_TYPE (@0), c2); })
5442 { constant_boolean_node (false, type); })
5443 /* sqrt(x) > c is the same as x > c*c. */
5444 (if (ncmp != ERROR_MARK)
5445 (if (ncmp == GE_EXPR)
5446 (ge @0 { build_real (TREE_TYPE (@0), c2); })
5447 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
5448 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
5449 (if (REAL_VALUE_ISINF (c2))
5451 /* sqrt(x) < y is always true, when y is a very large
5452 value and we don't care about NaNs or Infinities. */
5453 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
5454 { constant_boolean_node (true, type); })
5455 /* sqrt(x) < y is x != +Inf when y is very large and we
5456 don't care about NaNs. */
5457 (if (! HONOR_NANS (@0))
5458 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
5459 /* sqrt(x) < y is x >= 0 when y is very large and we
5460 don't care about Infinities. */
5461 (if (! HONOR_INFINITIES (@0))
5462 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
5463 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
5466 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5467 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
5468 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
5469 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
5470 (if (ncmp == LT_EXPR)
5471 (lt @0 { build_real (TREE_TYPE (@0), c2); })
5472 (le @0 { build_real (TREE_TYPE (@0), c2); }))
5473 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
5474 (if (ncmp != ERROR_MARK && GENERIC)
5475 (if (ncmp == LT_EXPR)
5477 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5478 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
5480 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5481 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
5482 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
5484 (cmp (sq @0) (sq @1))
5485 (if (! HONOR_NANS (@0))
5488 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
5489 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
5490 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
5492 (cmp (float@0 @1) (float @2))
5493 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
5494 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
5497 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
5498 tree type1 = TREE_TYPE (@1);
5499 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
5500 tree type2 = TREE_TYPE (@2);
5501 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
5503 (if (fmt.can_represent_integral_type_p (type1)
5504 && fmt.can_represent_integral_type_p (type2))
5505 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
5506 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
5507 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
5508 && type1_signed_p >= type2_signed_p)
5509 (icmp @1 (convert @2))
5510 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
5511 && type1_signed_p <= type2_signed_p)
5512 (icmp (convert:type2 @1) @2)
5513 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
5514 && type1_signed_p == type2_signed_p)
5515 (icmp @1 @2))))))))))
5517 /* Optimize various special cases of (FTYPE) N CMP CST. */
5518 (for cmp (lt le eq ne ge gt)
5519 icmp (le le eq ne ge ge)
5521 (cmp (float @0) REAL_CST@1)
5522 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
5523 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
5526 tree itype = TREE_TYPE (@0);
5527 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
5528 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
5529 /* Be careful to preserve any potential exceptions due to
5530 NaNs. qNaNs are ok in == or != context.
5531 TODO: relax under -fno-trapping-math or
5532 -fno-signaling-nans. */
5534 = real_isnan (cst) && (cst->signalling
5535 || (cmp != EQ_EXPR && cmp != NE_EXPR));
5537 /* TODO: allow non-fitting itype and SNaNs when
5538 -fno-trapping-math. */
5539 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
5542 signop isign = TYPE_SIGN (itype);
5543 REAL_VALUE_TYPE imin, imax;
5544 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
5545 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
5547 REAL_VALUE_TYPE icst;
5548 if (cmp == GT_EXPR || cmp == GE_EXPR)
5549 real_ceil (&icst, fmt, cst);
5550 else if (cmp == LT_EXPR || cmp == LE_EXPR)
5551 real_floor (&icst, fmt, cst);
5553 real_trunc (&icst, fmt, cst);
5555 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
5557 bool overflow_p = false;
5559 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
5562 /* Optimize cases when CST is outside of ITYPE's range. */
5563 (if (real_compare (LT_EXPR, cst, &imin))
5564 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
5566 (if (real_compare (GT_EXPR, cst, &imax))
5567 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
5569 /* Remove cast if CST is an integer representable by ITYPE. */
5571 (cmp @0 { gcc_assert (!overflow_p);
5572 wide_int_to_tree (itype, icst_val); })
5574 /* When CST is fractional, optimize
5575 (FTYPE) N == CST -> 0
5576 (FTYPE) N != CST -> 1. */
5577 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5578 { constant_boolean_node (cmp == NE_EXPR, type); })
5579 /* Otherwise replace with sensible integer constant. */
5582 gcc_checking_assert (!overflow_p);
5584 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
5586 /* Fold A /[ex] B CMP C to A CMP B * C. */
5589 (cmp (exact_div @0 @1) INTEGER_CST@2)
5590 (if (!integer_zerop (@1))
5591 (if (wi::to_wide (@2) == 0)
5593 (if (TREE_CODE (@1) == INTEGER_CST)
5596 wi::overflow_type ovf;
5597 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5598 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5601 { constant_boolean_node (cmp == NE_EXPR, type); }
5602 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
5603 (for cmp (lt le gt ge)
5605 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
5606 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5609 wi::overflow_type ovf;
5610 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5611 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5614 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
5615 TYPE_SIGN (TREE_TYPE (@2)))
5616 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
5617 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
5619 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
5621 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
5622 For large C (more than min/B+2^size), this is also true, with the
5623 multiplication computed modulo 2^size.
5624 For intermediate C, this just tests the sign of A. */
5625 (for cmp (lt le gt ge)
5628 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
5629 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
5630 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
5631 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5634 tree utype = TREE_TYPE (@2);
5635 wide_int denom = wi::to_wide (@1);
5636 wide_int right = wi::to_wide (@2);
5637 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
5638 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
5639 bool small = wi::leu_p (right, smax);
5640 bool large = wi::geu_p (right, smin);
5642 (if (small || large)
5643 (cmp (convert:utype @0) (mult @2 (convert @1)))
5644 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
5646 /* Unordered tests if either argument is a NaN. */
5648 (bit_ior (unordered @0 @0) (unordered @1 @1))
5649 (if (types_match (@0, @1))
5652 (bit_and (ordered @0 @0) (ordered @1 @1))
5653 (if (types_match (@0, @1))
5656 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
5659 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
5662 /* Simple range test simplifications. */
5663 /* A < B || A >= B -> true. */
5664 (for test1 (lt le le le ne ge)
5665 test2 (ge gt ge ne eq ne)
5667 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
5668 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5669 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5670 { constant_boolean_node (true, type); })))
5671 /* A < B && A >= B -> false. */
5672 (for test1 (lt lt lt le ne eq)
5673 test2 (ge gt eq gt eq gt)
5675 (bit_and:c (test1 @0 @1) (test2 @0 @1))
5676 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5677 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5678 { constant_boolean_node (false, type); })))
5680 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
5681 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
5683 Note that comparisons
5684 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
5685 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
5686 will be canonicalized to above so there's no need to
5693 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
5694 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
5697 tree ty = TREE_TYPE (@0);
5698 unsigned prec = TYPE_PRECISION (ty);
5699 wide_int mask = wi::to_wide (@2, prec);
5700 wide_int rhs = wi::to_wide (@3, prec);
5701 signop sgn = TYPE_SIGN (ty);
5703 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
5704 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
5705 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
5706 { build_zero_cst (ty); }))))))
5708 /* -A CMP -B -> B CMP A. */
5709 (for cmp (tcc_comparison)
5710 scmp (swapped_tcc_comparison)
5712 (cmp (negate @0) (negate @1))
5713 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5714 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5715 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5718 (cmp (negate @0) CONSTANT_CLASS_P@1)
5719 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5720 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5721 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5722 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
5723 (if (tem && !TREE_OVERFLOW (tem))
5724 (scmp @0 { tem; }))))))
5726 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
5729 (op (abs @0) zerop@1)
5732 /* From fold_sign_changed_comparison and fold_widened_comparison.
5733 FIXME: the lack of symmetry is disturbing. */
5734 (for cmp (simple_comparison)
5736 (cmp (convert@0 @00) (convert?@1 @10))
5737 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5738 /* Disable this optimization if we're casting a function pointer
5739 type on targets that require function pointer canonicalization. */
5740 && !(targetm.have_canonicalize_funcptr_for_compare ()
5741 && ((POINTER_TYPE_P (TREE_TYPE (@00))
5742 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
5743 || (POINTER_TYPE_P (TREE_TYPE (@10))
5744 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
5746 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
5747 && (TREE_CODE (@10) == INTEGER_CST
5749 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
5752 && !POINTER_TYPE_P (TREE_TYPE (@00))
5753 /* (int)bool:32 != (int)uint is not the same as
5754 bool:32 != (bool:32)uint since boolean types only have two valid
5755 values independent of their precision. */
5756 && (TREE_CODE (TREE_TYPE (@00)) != BOOLEAN_TYPE
5757 || TREE_CODE (TREE_TYPE (@10)) == BOOLEAN_TYPE))
5758 /* ??? The special-casing of INTEGER_CST conversion was in the original
5759 code and here to avoid a spurious overflow flag on the resulting
5760 constant which fold_convert produces. */
5761 (if (TREE_CODE (@1) == INTEGER_CST)
5762 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
5763 TREE_OVERFLOW (@1)); })
5764 (cmp @00 (convert @1)))
5766 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
5767 /* If possible, express the comparison in the shorter mode. */
5768 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
5769 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
5770 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
5771 && TYPE_UNSIGNED (TREE_TYPE (@00))))
5772 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
5773 || ((TYPE_PRECISION (TREE_TYPE (@00))
5774 >= TYPE_PRECISION (TREE_TYPE (@10)))
5775 && (TYPE_UNSIGNED (TREE_TYPE (@00))
5776 == TYPE_UNSIGNED (TREE_TYPE (@10))))
5777 || (TREE_CODE (@10) == INTEGER_CST
5778 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5779 && int_fits_type_p (@10, TREE_TYPE (@00)))))
5780 (cmp @00 (convert @10))
5781 (if (TREE_CODE (@10) == INTEGER_CST
5782 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5783 && !int_fits_type_p (@10, TREE_TYPE (@00)))
5786 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5787 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5788 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
5789 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
5791 (if (above || below)
5792 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5793 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
5794 (if (cmp == LT_EXPR || cmp == LE_EXPR)
5795 { constant_boolean_node (above ? true : false, type); }
5796 (if (cmp == GT_EXPR || cmp == GE_EXPR)
5797 { constant_boolean_node (above ? false : true, type); })))))))))
5798 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
5799 (if (FLOAT_TYPE_P (TREE_TYPE (@00))
5800 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5801 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@00)))
5802 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5803 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@10))))
5806 tree type1 = TREE_TYPE (@10);
5807 if (TREE_CODE (@10) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
5809 REAL_VALUE_TYPE orig = TREE_REAL_CST (@10);
5810 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
5811 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
5812 type1 = float_type_node;
5813 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
5814 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
5815 type1 = double_type_node;
5818 = (TYPE_PRECISION (TREE_TYPE (@00)) > TYPE_PRECISION (type1)
5819 ? TREE_TYPE (@00) : type1);
5821 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (newtype))
5822 (cmp (convert:newtype @00) (convert:newtype @10))))))))
5827 /* SSA names are canonicalized to 2nd place. */
5828 (cmp addr@0 SSA_NAME@1)
5831 poly_int64 off; tree base;
5832 tree addr = (TREE_CODE (@0) == SSA_NAME
5833 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5835 /* A local variable can never be pointed to by
5836 the default SSA name of an incoming parameter. */
5837 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
5838 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
5839 && (base = get_base_address (TREE_OPERAND (addr, 0)))
5840 && TREE_CODE (base) == VAR_DECL
5841 && auto_var_in_fn_p (base, current_function_decl))
5842 (if (cmp == NE_EXPR)
5843 { constant_boolean_node (true, type); }
5844 { constant_boolean_node (false, type); })
5845 /* If the address is based on @1 decide using the offset. */
5846 (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (addr, 0), &off))
5847 && TREE_CODE (base) == MEM_REF
5848 && TREE_OPERAND (base, 0) == @1)
5849 (with { off += mem_ref_offset (base).force_shwi (); }
5850 (if (known_ne (off, 0))
5851 { constant_boolean_node (cmp == NE_EXPR, type); }
5852 (if (known_eq (off, 0))
5853 { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
5855 /* Equality compare simplifications from fold_binary */
5858 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
5859 Similarly for NE_EXPR. */
5861 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
5862 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
5863 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
5864 { constant_boolean_node (cmp == NE_EXPR, type); }))
5866 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
5868 (cmp (bit_xor @0 @1) integer_zerop)
5871 /* (X ^ Y) == Y becomes X == 0.
5872 Likewise (X ^ Y) == X becomes Y == 0. */
5874 (cmp:c (bit_xor:c @0 @1) @0)
5875 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
5877 /* (X & Y) == X becomes (X & ~Y) == 0. */
5879 (cmp:c (bit_and:c @0 @1) @0)
5880 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5882 (cmp:c (convert@3 (bit_and (convert@2 @0) INTEGER_CST@1)) (convert @0))
5883 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5884 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5885 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5886 && TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@0))
5887 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@2))
5888 && !wi::neg_p (wi::to_wide (@1)))
5889 (cmp (bit_and @0 (convert (bit_not @1)))
5890 { build_zero_cst (TREE_TYPE (@0)); })))
5892 /* (X | Y) == Y becomes (X & ~Y) == 0. */
5894 (cmp:c (bit_ior:c @0 @1) @1)
5895 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5897 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
5899 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
5900 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
5901 (cmp @0 (bit_xor @1 (convert @2)))))
5904 (cmp (convert? addr@0) integer_zerop)
5905 (if (tree_single_nonzero_warnv_p (@0, NULL))
5906 { constant_boolean_node (cmp == NE_EXPR, type); }))
5908 /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */
5910 (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
5911 (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
5913 /* (X < 0) != (Y < 0) into (X ^ Y) < 0.
5914 (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
5915 (X < 0) == (Y < 0) into (X ^ Y) >= 0.
5916 (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */
5921 (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
5922 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5923 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5924 && types_match (@0, @1))
5925 (ncmp (bit_xor @0 @1) @2)))))
5926 /* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
5927 (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */
5931 (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
5932 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5933 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5934 && types_match (@0, @1))
5935 (ncmp (bit_xor @0 @1) @2))))
5937 /* If we have (A & C) == C where C is a power of 2, convert this into
5938 (A & C) != 0. Similarly for NE_EXPR. */
5942 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
5943 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
5946 /* From fold_binary_op_with_conditional_arg handle the case of
5947 rewriting (a ? b : c) > d to a ? (b > d) : (c > d) when the
5948 compares simplify. */
5949 (for cmp (simple_comparison)
5951 (cmp:c (cond @0 @1 @2) @3)
5952 /* Do not move possibly trapping operations into the conditional as this
5953 pessimizes code and causes gimplification issues when applied late. */
5954 (if (!FLOAT_TYPE_P (TREE_TYPE (@3))
5955 || !operation_could_trap_p (cmp, true, false, @3))
5956 (cond @0 (cmp! @1 @3) (cmp! @2 @3)))))
5960 /* x < 0 ? ~y : y into (x >> (prec-1)) ^ y. */
5961 /* x >= 0 ? ~y : y into ~((x >> (prec-1)) ^ y). */
5963 (cond (cmp @0 integer_zerop) (bit_not @1) @1)
5964 (if (INTEGRAL_TYPE_P (type)
5965 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5966 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5967 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5970 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5972 (if (cmp == LT_EXPR)
5973 (bit_xor (convert (rshift @0 {shifter;})) @1)
5974 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1))))))
5975 /* x < 0 ? y : ~y into ~((x >> (prec-1)) ^ y). */
5976 /* x >= 0 ? y : ~y into (x >> (prec-1)) ^ y. */
5978 (cond (cmp @0 integer_zerop) @1 (bit_not @1))
5979 (if (INTEGRAL_TYPE_P (type)
5980 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5981 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5982 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5985 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5987 (if (cmp == GE_EXPR)
5988 (bit_xor (convert (rshift @0 {shifter;})) @1)
5989 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1)))))))
5991 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
5992 convert this into a shift followed by ANDing with D. */
5995 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
5996 INTEGER_CST@2 integer_zerop)
5997 (if (!POINTER_TYPE_P (type) && integer_pow2p (@2))
5999 int shift = (wi::exact_log2 (wi::to_wide (@2))
6000 - wi::exact_log2 (wi::to_wide (@1)));
6004 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
6006 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
6009 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6010 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6014 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
6015 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6016 && type_has_mode_precision_p (TREE_TYPE (@0))
6017 && element_precision (@2) >= element_precision (@0)
6018 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
6019 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
6020 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
6022 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
6023 this into a right shift or sign extension followed by ANDing with C. */
6026 (lt @0 integer_zerop)
6027 INTEGER_CST@1 integer_zerop)
6028 (if (integer_pow2p (@1)
6029 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
6031 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
6035 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
6037 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
6038 sign extension followed by AND with C will achieve the effect. */
6039 (bit_and (convert @0) @1)))))
6041 /* When the addresses are not directly of decls compare base and offset.
6042 This implements some remaining parts of fold_comparison address
6043 comparisons but still no complete part of it. Still it is good
6044 enough to make fold_stmt not regress when not dispatching to fold_binary. */
6045 (for cmp (simple_comparison)
6047 (cmp (convert1?@2 addr@0) (convert2? addr@1))
6050 poly_int64 off0, off1;
6052 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
6053 off0, off1, GENERIC);
6057 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
6058 { constant_boolean_node (known_eq (off0, off1), type); })
6059 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
6060 { constant_boolean_node (known_ne (off0, off1), type); })
6061 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
6062 { constant_boolean_node (known_lt (off0, off1), type); })
6063 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
6064 { constant_boolean_node (known_le (off0, off1), type); })
6065 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
6066 { constant_boolean_node (known_ge (off0, off1), type); })
6067 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
6068 { constant_boolean_node (known_gt (off0, off1), type); }))
6071 (if (cmp == EQ_EXPR)
6072 { constant_boolean_node (false, type); })
6073 (if (cmp == NE_EXPR)
6074 { constant_boolean_node (true, type); })))))))
6076 /* Simplify pointer equality compares using PTA. */
6080 (if (POINTER_TYPE_P (TREE_TYPE (@0))
6081 && ptrs_compare_unequal (@0, @1))
6082 { constant_boolean_node (neeq != EQ_EXPR, type); })))
6084 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
6085 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
6086 Disable the transform if either operand is pointer to function.
6087 This broke pr22051-2.c for arm where function pointer
6088 canonicalizaion is not wanted. */
6092 (cmp (convert @0) INTEGER_CST@1)
6093 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
6094 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
6095 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
6096 /* Don't perform this optimization in GENERIC if @0 has reference
6097 type when sanitizing. See PR101210. */
6099 && TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE
6100 && (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT))))
6101 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6102 && POINTER_TYPE_P (TREE_TYPE (@1))
6103 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
6104 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
6105 (cmp @0 (convert @1)))))
6107 /* Non-equality compare simplifications from fold_binary */
6108 (for cmp (lt gt le ge)
6109 /* Comparisons with the highest or lowest possible integer of
6110 the specified precision will have known values. */
6112 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
6113 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
6114 || POINTER_TYPE_P (TREE_TYPE (@1))
6115 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
6116 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
6119 tree cst = uniform_integer_cst_p (@1);
6120 tree arg1_type = TREE_TYPE (cst);
6121 unsigned int prec = TYPE_PRECISION (arg1_type);
6122 wide_int max = wi::max_value (arg1_type);
6123 wide_int signed_max = wi::max_value (prec, SIGNED);
6124 wide_int min = wi::min_value (arg1_type);
6127 (if (wi::to_wide (cst) == max)
6129 (if (cmp == GT_EXPR)
6130 { constant_boolean_node (false, type); })
6131 (if (cmp == GE_EXPR)
6133 (if (cmp == LE_EXPR)
6134 { constant_boolean_node (true, type); })
6135 (if (cmp == LT_EXPR)
6137 (if (wi::to_wide (cst) == min)
6139 (if (cmp == LT_EXPR)
6140 { constant_boolean_node (false, type); })
6141 (if (cmp == LE_EXPR)
6143 (if (cmp == GE_EXPR)
6144 { constant_boolean_node (true, type); })
6145 (if (cmp == GT_EXPR)
6147 (if (wi::to_wide (cst) == max - 1)
6149 (if (cmp == GT_EXPR)
6150 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
6151 wide_int_to_tree (TREE_TYPE (cst),
6154 (if (cmp == LE_EXPR)
6155 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
6156 wide_int_to_tree (TREE_TYPE (cst),
6159 (if (wi::to_wide (cst) == min + 1)
6161 (if (cmp == GE_EXPR)
6162 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
6163 wide_int_to_tree (TREE_TYPE (cst),
6166 (if (cmp == LT_EXPR)
6167 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
6168 wide_int_to_tree (TREE_TYPE (cst),
6171 (if (wi::to_wide (cst) == signed_max
6172 && TYPE_UNSIGNED (arg1_type)
6173 /* We will flip the signedness of the comparison operator
6174 associated with the mode of @1, so the sign bit is
6175 specified by this mode. Check that @1 is the signed
6176 max associated with this sign bit. */
6177 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
6178 /* signed_type does not work on pointer types. */
6179 && INTEGRAL_TYPE_P (arg1_type))
6180 /* The following case also applies to X < signed_max+1
6181 and X >= signed_max+1 because previous transformations. */
6182 (if (cmp == LE_EXPR || cmp == GT_EXPR)
6183 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
6185 (if (cst == @1 && cmp == LE_EXPR)
6186 (ge (convert:st @0) { build_zero_cst (st); }))
6187 (if (cst == @1 && cmp == GT_EXPR)
6188 (lt (convert:st @0) { build_zero_cst (st); }))
6189 (if (cmp == LE_EXPR)
6190 (ge (view_convert:st @0) { build_zero_cst (st); }))
6191 (if (cmp == GT_EXPR)
6192 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
6194 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
6195 /* If the second operand is NaN, the result is constant. */
6198 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
6199 && (cmp != LTGT_EXPR || ! flag_trapping_math))
6200 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
6201 ? false : true, type); })))
6203 /* Fold UNORDERED if either operand must be NaN, or neither can be. */
6207 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
6208 { constant_boolean_node (true, type); })
6209 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
6210 { constant_boolean_node (false, type); })))
6212 /* Fold ORDERED if either operand must be NaN, or neither can be. */
6216 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
6217 { constant_boolean_node (false, type); })
6218 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
6219 { constant_boolean_node (true, type); })))
6221 /* bool_var != 0 becomes bool_var. */
6223 (ne @0 integer_zerop)
6224 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
6225 && types_match (type, TREE_TYPE (@0)))
6227 /* bool_var == 1 becomes bool_var. */
6229 (eq @0 integer_onep)
6230 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
6231 && types_match (type, TREE_TYPE (@0)))
6234 bool_var == 0 becomes !bool_var or
6235 bool_var != 1 becomes !bool_var
6236 here because that only is good in assignment context as long
6237 as we require a tcc_comparison in GIMPLE_CONDs where we'd
6238 replace if (x == 0) with tem = ~x; if (tem != 0) which is
6239 clearly less optimal and which we'll transform again in forwprop. */
6241 /* Transform comparisons of the form (X & Y) CMP 0 to X CMP2 Z
6242 where ~Y + 1 == pow2 and Z = ~Y. */
6243 (for cst (VECTOR_CST INTEGER_CST)
6247 (cmp (bit_and:c@2 @0 cst@1) integer_zerop)
6248 (with { tree csts = bitmask_inv_cst_vector_p (@1); }
6249 (if (csts && (VECTOR_TYPE_P (TREE_TYPE (@1)) || single_use (@2)))
6250 (with { auto optab = VECTOR_TYPE_P (TREE_TYPE (@1))
6251 ? optab_vector : optab_default;
6252 tree utype = unsigned_type_for (TREE_TYPE (@1)); }
6253 (if (target_supports_op_p (utype, icmp, optab)
6254 || (optimize_vectors_before_lowering_p ()
6255 && (!target_supports_op_p (type, cmp, optab)
6256 || !target_supports_op_p (type, BIT_AND_EXPR, optab))))
6257 (if (TYPE_UNSIGNED (TREE_TYPE (@1)))
6259 (icmp (view_convert:utype @0) { csts; })))))))))
6261 /* When one argument is a constant, overflow detection can be simplified.
6262 Currently restricted to single use so as not to interfere too much with
6263 ADD_OVERFLOW detection in tree-ssa-math-opts.cc.
6264 CONVERT?(CONVERT?(A) + CST) CMP A -> A CMP' CST' */
6265 (for cmp (lt le ge gt)
6268 (cmp:c (convert?@3 (plus@2 (convert?@4 @0) INTEGER_CST@1)) @0)
6269 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@2))
6270 && types_match (TREE_TYPE (@0), TREE_TYPE (@3))
6271 && tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@0))
6272 && wi::to_wide (@1) != 0
6275 unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0));
6276 signop sign = TYPE_SIGN (TREE_TYPE (@0));
6278 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
6279 wi::max_value (prec, sign)
6280 - wi::to_wide (@1)); })))))
6282 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
6283 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.cc
6284 expects the long form, so we restrict the transformation for now. */
6287 (cmp:c (minus@2 @0 @1) @0)
6288 (if (single_use (@2)
6289 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6290 && TYPE_UNSIGNED (TREE_TYPE (@0)))
6293 /* Optimize A - B + -1 >= A into B >= A for unsigned comparisons. */
6296 (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
6297 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6298 && TYPE_UNSIGNED (TREE_TYPE (@0)))
6301 /* Testing for overflow is unnecessary if we already know the result. */
6306 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
6307 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
6308 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
6309 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
6314 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
6315 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
6316 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
6317 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
6319 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
6320 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
6324 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
6325 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
6326 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
6327 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
6329 /* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
6330 is at least twice as wide as type of A and B, simplify to
6331 __builtin_mul_overflow (A, B, <unused>). */
6334 (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
6336 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6337 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
6338 && TYPE_UNSIGNED (TREE_TYPE (@0))
6339 && (TYPE_PRECISION (TREE_TYPE (@3))
6340 >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
6341 && tree_fits_uhwi_p (@2)
6342 && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
6343 && types_match (@0, @1)
6344 && type_has_mode_precision_p (TREE_TYPE (@0))
6345 && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
6346 != CODE_FOR_nothing))
6347 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
6348 (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
6350 /* Demote operands of IFN_{ADD,SUB,MUL}_OVERFLOW. */
6351 (for ovf (IFN_ADD_OVERFLOW IFN_SUB_OVERFLOW IFN_MUL_OVERFLOW)
6353 (ovf (convert@2 @0) @1)
6354 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6355 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6356 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6357 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
6360 (ovf @1 (convert@2 @0))
6361 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6362 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6363 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6364 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
6367 /* Optimize __builtin_mul_overflow_p (x, cst, (utype) 0) if all 3 types
6368 are unsigned to x > (umax / cst). Similarly for signed type, but
6369 in that case it needs to be outside of a range. */
6371 (imagpart (IFN_MUL_OVERFLOW:cs@2 @0 integer_nonzerop@1))
6372 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6373 && TYPE_MAX_VALUE (TREE_TYPE (@0))
6374 && types_match (TREE_TYPE (@0), TREE_TYPE (TREE_TYPE (@2)))
6375 && int_fits_type_p (@1, TREE_TYPE (@0)))
6376 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
6377 (convert (gt @0 (trunc_div! { TYPE_MAX_VALUE (TREE_TYPE (@0)); } @1)))
6378 (if (TYPE_MIN_VALUE (TREE_TYPE (@0)))
6379 (if (integer_minus_onep (@1))
6380 (convert (eq @0 { TYPE_MIN_VALUE (TREE_TYPE (@0)); }))
6383 tree div = fold_convert (TREE_TYPE (@0), @1);
6384 tree lo = int_const_binop (TRUNC_DIV_EXPR,
6385 TYPE_MIN_VALUE (TREE_TYPE (@0)), div);
6386 tree hi = int_const_binop (TRUNC_DIV_EXPR,
6387 TYPE_MAX_VALUE (TREE_TYPE (@0)), div);
6388 tree etype = range_check_type (TREE_TYPE (@0));
6391 if (wi::neg_p (wi::to_wide (div)))
6393 lo = fold_convert (etype, lo);
6394 hi = fold_convert (etype, hi);
6395 hi = int_const_binop (MINUS_EXPR, hi, lo);
6399 (convert (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
6401 /* Simplification of math builtins. These rules must all be optimizations
6402 as well as IL simplifications. If there is a possibility that the new
6403 form could be a pessimization, the rule should go in the canonicalization
6404 section that follows this one.
6406 Rules can generally go in this section if they satisfy one of
6409 - the rule describes an identity
6411 - the rule replaces calls with something as simple as addition or
6414 - the rule contains unary calls only and simplifies the surrounding
6415 arithmetic. (The idea here is to exclude non-unary calls in which
6416 one operand is constant and in which the call is known to be cheap
6417 when the operand has that value.) */
6419 (if (flag_unsafe_math_optimizations)
6420 /* Simplify sqrt(x) * sqrt(x) -> x. */
6422 (mult (SQRT_ALL@1 @0) @1)
6423 (if (!tree_expr_maybe_signaling_nan_p (@0))
6426 (for op (plus minus)
6427 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
6431 (rdiv (op @0 @2) @1)))
6433 (for cmp (lt le gt ge)
6434 neg_cmp (gt ge lt le)
6435 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
6437 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
6439 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
6441 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
6442 || (real_zerop (tem) && !real_zerop (@1))))
6444 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
6446 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
6447 (neg_cmp @0 { tem; })))))))
6449 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
6450 (for root (SQRT CBRT)
6452 (mult (root:s @0) (root:s @1))
6453 (root (mult @0 @1))))
6455 /* Simplify expN(x) * expN(y) -> expN(x+y). */
6456 (for exps (EXP EXP2 EXP10 POW10)
6458 (mult (exps:s @0) (exps:s @1))
6459 (exps (plus @0 @1))))
6461 /* Simplify a/root(b/c) into a*root(c/b). */
6462 (for root (SQRT CBRT)
6464 (rdiv @0 (root:s (rdiv:s @1 @2)))
6465 (mult @0 (root (rdiv @2 @1)))))
6467 /* Simplify x/expN(y) into x*expN(-y). */
6468 (for exps (EXP EXP2 EXP10 POW10)
6470 (rdiv @0 (exps:s @1))
6471 (mult @0 (exps (negate @1)))))
6473 (for logs (LOG LOG2 LOG10 LOG10)
6474 exps (EXP EXP2 EXP10 POW10)
6475 /* logN(expN(x)) -> x. */
6479 /* expN(logN(x)) -> x. */
6484 /* Optimize logN(func()) for various exponential functions. We
6485 want to determine the value "x" and the power "exponent" in
6486 order to transform logN(x**exponent) into exponent*logN(x). */
6487 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
6488 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
6491 (if (SCALAR_FLOAT_TYPE_P (type))
6497 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
6498 x = build_real_truncate (type, dconst_e ());
6501 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
6502 x = build_real (type, dconst2);
6506 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
6508 REAL_VALUE_TYPE dconst10;
6509 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
6510 x = build_real (type, dconst10);
6517 (mult (logs { x; }) @0)))))
6525 (if (SCALAR_FLOAT_TYPE_P (type))
6531 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
6532 x = build_real (type, dconsthalf);
6535 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
6536 x = build_real_truncate (type, dconst_third ());
6542 (mult { x; } (logs @0))))))
6544 /* logN(pow(x,exponent)) -> exponent*logN(x). */
6545 (for logs (LOG LOG2 LOG10)
6549 (mult @1 (logs @0))))
6551 /* pow(C,x) -> exp(log(C)*x) if C > 0,
6552 or if C is a positive power of 2,
6553 pow(C,x) -> exp2(log2(C)*x). */
6561 (pows REAL_CST@0 @1)
6562 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6563 && real_isfinite (TREE_REAL_CST_PTR (@0))
6564 /* As libmvec doesn't have a vectorized exp2, defer optimizing
6565 the use_exp2 case until after vectorization. It seems actually
6566 beneficial for all constants to postpone this until later,
6567 because exp(log(C)*x), while faster, will have worse precision
6568 and if x folds into a constant too, that is unnecessary
6570 && canonicalize_math_after_vectorization_p ())
6572 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
6573 bool use_exp2 = false;
6574 if (targetm.libc_has_function (function_c99_misc, TREE_TYPE (@0))
6575 && value->cl == rvc_normal)
6577 REAL_VALUE_TYPE frac_rvt = *value;
6578 SET_REAL_EXP (&frac_rvt, 1);
6579 if (real_equal (&frac_rvt, &dconst1))
6584 (if (optimize_pow_to_exp (@0, @1))
6585 (exps (mult (logs @0) @1)))
6586 (exp2s (mult (log2s @0) @1)))))))
6589 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
6591 exps (EXP EXP2 EXP10 POW10)
6592 logs (LOG LOG2 LOG10 LOG10)
6594 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
6595 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6596 && real_isfinite (TREE_REAL_CST_PTR (@0)))
6597 (exps (plus (mult (logs @0) @1) @2)))))
6602 exps (EXP EXP2 EXP10 POW10)
6603 /* sqrt(expN(x)) -> expN(x*0.5). */
6606 (exps (mult @0 { build_real (type, dconsthalf); })))
6607 /* cbrt(expN(x)) -> expN(x/3). */
6610 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
6611 /* pow(expN(x), y) -> expN(x*y). */
6614 (exps (mult @0 @1))))
6616 /* tan(atan(x)) -> x. */
6623 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
6627 copysigns (COPYSIGN)
6632 REAL_VALUE_TYPE r_cst;
6633 build_sinatan_real (&r_cst, type);
6634 tree t_cst = build_real (type, r_cst);
6635 tree t_one = build_one_cst (type);
6637 (if (SCALAR_FLOAT_TYPE_P (type))
6638 (cond (lt (abs @0) { t_cst; })
6639 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
6640 (copysigns { t_one; } @0))))))
6642 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
6646 copysigns (COPYSIGN)
6651 REAL_VALUE_TYPE r_cst;
6652 build_sinatan_real (&r_cst, type);
6653 tree t_cst = build_real (type, r_cst);
6654 tree t_one = build_one_cst (type);
6655 tree t_zero = build_zero_cst (type);
6657 (if (SCALAR_FLOAT_TYPE_P (type))
6658 (cond (lt (abs @0) { t_cst; })
6659 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
6660 (copysigns { t_zero; } @0))))))
6662 (if (!flag_errno_math)
6663 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
6668 (sinhs (atanhs:s @0))
6669 (with { tree t_one = build_one_cst (type); }
6670 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
6672 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
6677 (coshs (atanhs:s @0))
6678 (with { tree t_one = build_one_cst (type); }
6679 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
6681 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
6683 (CABS (complex:C @0 real_zerop@1))
6686 /* trunc(trunc(x)) -> trunc(x), etc. */
6687 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6691 /* f(x) -> x if x is integer valued and f does nothing for such values. */
6692 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6694 (fns integer_valued_real_p@0)
6697 /* hypot(x,0) and hypot(0,x) -> abs(x). */
6699 (HYPOT:c @0 real_zerop@1)
6702 /* pow(1,x) -> 1. */
6704 (POW real_onep@0 @1)
6708 /* copysign(x,x) -> x. */
6709 (COPYSIGN_ALL @0 @0)
6713 /* copysign(x,-x) -> -x. */
6714 (COPYSIGN_ALL @0 (negate@1 @0))
6718 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
6719 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
6722 (for scale (LDEXP SCALBN SCALBLN)
6723 /* ldexp(0, x) -> 0. */
6725 (scale real_zerop@0 @1)
6727 /* ldexp(x, 0) -> x. */
6729 (scale @0 integer_zerop@1)
6731 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
6733 (scale REAL_CST@0 @1)
6734 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
6737 /* Canonicalization of sequences of math builtins. These rules represent
6738 IL simplifications but are not necessarily optimizations.
6740 The sincos pass is responsible for picking "optimal" implementations
6741 of math builtins, which may be more complicated and can sometimes go
6742 the other way, e.g. converting pow into a sequence of sqrts.
6743 We only want to do these canonicalizations before the pass has run. */
6745 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
6746 /* Simplify tan(x) * cos(x) -> sin(x). */
6748 (mult:c (TAN:s @0) (COS:s @0))
6751 /* Simplify x * pow(x,c) -> pow(x,c+1). */
6753 (mult:c @0 (POW:s @0 REAL_CST@1))
6754 (if (!TREE_OVERFLOW (@1))
6755 (POW @0 (plus @1 { build_one_cst (type); }))))
6757 /* Simplify sin(x) / cos(x) -> tan(x). */
6759 (rdiv (SIN:s @0) (COS:s @0))
6762 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
6764 (rdiv (SINH:s @0) (COSH:s @0))
6767 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
6769 (rdiv (TANH:s @0) (SINH:s @0))
6770 (rdiv {build_one_cst (type);} (COSH @0)))
6772 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
6774 (rdiv (COS:s @0) (SIN:s @0))
6775 (rdiv { build_one_cst (type); } (TAN @0)))
6777 /* Simplify sin(x) / tan(x) -> cos(x). */
6779 (rdiv (SIN:s @0) (TAN:s @0))
6780 (if (! HONOR_NANS (@0)
6781 && ! HONOR_INFINITIES (@0))
6784 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
6786 (rdiv (TAN:s @0) (SIN:s @0))
6787 (if (! HONOR_NANS (@0)
6788 && ! HONOR_INFINITIES (@0))
6789 (rdiv { build_one_cst (type); } (COS @0))))
6791 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
6793 (mult (POW:s @0 @1) (POW:s @0 @2))
6794 (POW @0 (plus @1 @2)))
6796 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
6798 (mult (POW:s @0 @1) (POW:s @2 @1))
6799 (POW (mult @0 @2) @1))
6801 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
6803 (mult (POWI:s @0 @1) (POWI:s @2 @1))
6804 (POWI (mult @0 @2) @1))
6806 /* Simplify pow(x,c) / x -> pow(x,c-1). */
6808 (rdiv (POW:s @0 REAL_CST@1) @0)
6809 (if (!TREE_OVERFLOW (@1))
6810 (POW @0 (minus @1 { build_one_cst (type); }))))
6812 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
6814 (rdiv @0 (POW:s @1 @2))
6815 (mult @0 (POW @1 (negate @2))))
6820 /* sqrt(sqrt(x)) -> pow(x,1/4). */
6823 (pows @0 { build_real (type, dconst_quarter ()); }))
6824 /* sqrt(cbrt(x)) -> pow(x,1/6). */
6827 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6828 /* cbrt(sqrt(x)) -> pow(x,1/6). */
6831 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6832 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
6834 (cbrts (cbrts tree_expr_nonnegative_p@0))
6835 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
6836 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
6838 (sqrts (pows @0 @1))
6839 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
6840 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
6842 (cbrts (pows tree_expr_nonnegative_p@0 @1))
6843 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6844 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
6846 (pows (sqrts @0) @1)
6847 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
6848 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
6850 (pows (cbrts tree_expr_nonnegative_p@0) @1)
6851 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6852 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
6854 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
6855 (pows @0 (mult @1 @2))))
6857 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
6859 (CABS (complex @0 @0))
6860 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6862 /* hypot(x,x) -> fabs(x)*sqrt(2). */
6865 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6867 /* cexp(x+yi) -> exp(x)*cexpi(y). */
6872 (cexps compositional_complex@0)
6873 (if (targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (@0)))
6875 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
6876 (mult @1 (imagpart @2)))))))
6878 (if (canonicalize_math_p ())
6879 /* floor(x) -> trunc(x) if x is nonnegative. */
6880 (for floors (FLOOR_ALL)
6883 (floors tree_expr_nonnegative_p@0)
6886 (match double_value_p
6888 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
6889 (for froms (BUILT_IN_TRUNCL
6901 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
6902 (if (optimize && canonicalize_math_p ())
6904 (froms (convert double_value_p@0))
6905 (convert (tos @0)))))
6907 (match float_value_p
6909 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
6910 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
6911 BUILT_IN_FLOORL BUILT_IN_FLOOR
6912 BUILT_IN_CEILL BUILT_IN_CEIL
6913 BUILT_IN_ROUNDL BUILT_IN_ROUND
6914 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
6915 BUILT_IN_RINTL BUILT_IN_RINT)
6916 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
6917 BUILT_IN_FLOORF BUILT_IN_FLOORF
6918 BUILT_IN_CEILF BUILT_IN_CEILF
6919 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
6920 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
6921 BUILT_IN_RINTF BUILT_IN_RINTF)
6922 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
6924 (if (optimize && canonicalize_math_p ()
6925 && targetm.libc_has_function (function_c99_misc, NULL_TREE))
6927 (froms (convert float_value_p@0))
6928 (convert (tos @0)))))
6931 (match float16_value_p
6933 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float16_type_node)))
6934 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC BUILT_IN_TRUNCF
6935 BUILT_IN_FLOORL BUILT_IN_FLOOR BUILT_IN_FLOORF
6936 BUILT_IN_CEILL BUILT_IN_CEIL BUILT_IN_CEILF
6937 BUILT_IN_ROUNDEVENL BUILT_IN_ROUNDEVEN BUILT_IN_ROUNDEVENF
6938 BUILT_IN_ROUNDL BUILT_IN_ROUND BUILT_IN_ROUNDF
6939 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT BUILT_IN_NEARBYINTF
6940 BUILT_IN_RINTL BUILT_IN_RINT BUILT_IN_RINTF
6941 BUILT_IN_SQRTL BUILT_IN_SQRT BUILT_IN_SQRTF)
6942 tos (IFN_TRUNC IFN_TRUNC IFN_TRUNC
6943 IFN_FLOOR IFN_FLOOR IFN_FLOOR
6944 IFN_CEIL IFN_CEIL IFN_CEIL
6945 IFN_ROUNDEVEN IFN_ROUNDEVEN IFN_ROUNDEVEN
6946 IFN_ROUND IFN_ROUND IFN_ROUND
6947 IFN_NEARBYINT IFN_NEARBYINT IFN_NEARBYINT
6948 IFN_RINT IFN_RINT IFN_RINT
6949 IFN_SQRT IFN_SQRT IFN_SQRT)
6950 /* (_Float16) round ((doube) x) -> __built_in_roundf16 (x), etc.,
6951 if x is a _Float16. */
6953 (convert (froms (convert float16_value_p@0)))
6955 && types_match (type, TREE_TYPE (@0))
6956 && direct_internal_fn_supported_p (as_internal_fn (tos),
6957 type, OPTIMIZE_FOR_BOTH))
6960 /* Simplify (trunc)copysign ((extend)x, (extend)y) to copysignf (x, y),
6961 x,y is float value, similar for _Float16/double. */
6962 (for copysigns (COPYSIGN_ALL)
6964 (convert (copysigns (convert@2 @0) (convert @1)))
6966 && !HONOR_SNANS (@2)
6967 && types_match (type, TREE_TYPE (@0))
6968 && types_match (type, TREE_TYPE (@1))
6969 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@2))
6970 && direct_internal_fn_supported_p (IFN_COPYSIGN,
6971 type, OPTIMIZE_FOR_BOTH))
6972 (IFN_COPYSIGN @0 @1))))
6974 (for froms (BUILT_IN_FMAF BUILT_IN_FMA BUILT_IN_FMAL)
6975 tos (IFN_FMA IFN_FMA IFN_FMA)
6977 (convert (froms (convert@3 @0) (convert @1) (convert @2)))
6978 (if (flag_unsafe_math_optimizations
6980 && FLOAT_TYPE_P (type)
6981 && FLOAT_TYPE_P (TREE_TYPE (@3))
6982 && types_match (type, TREE_TYPE (@0))
6983 && types_match (type, TREE_TYPE (@1))
6984 && types_match (type, TREE_TYPE (@2))
6985 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@3))
6986 && direct_internal_fn_supported_p (as_internal_fn (tos),
6987 type, OPTIMIZE_FOR_BOTH))
6990 (for maxmin (max min)
6992 (convert (maxmin (convert@2 @0) (convert @1)))
6994 && FLOAT_TYPE_P (type)
6995 && FLOAT_TYPE_P (TREE_TYPE (@2))
6996 && types_match (type, TREE_TYPE (@0))
6997 && types_match (type, TREE_TYPE (@1))
6998 && element_precision (type) < element_precision (TREE_TYPE (@2)))
7002 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
7003 tos (XFLOOR XCEIL XROUND XRINT)
7004 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
7005 (if (optimize && canonicalize_math_p ())
7007 (froms (convert double_value_p@0))
7010 (for froms (XFLOORL XCEILL XROUNDL XRINTL
7011 XFLOOR XCEIL XROUND XRINT)
7012 tos (XFLOORF XCEILF XROUNDF XRINTF)
7013 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
7015 (if (optimize && canonicalize_math_p ())
7017 (froms (convert float_value_p@0))
7020 (if (canonicalize_math_p ())
7021 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
7022 (for floors (IFLOOR LFLOOR LLFLOOR)
7024 (floors tree_expr_nonnegative_p@0)
7027 (if (canonicalize_math_p ())
7028 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
7029 (for fns (IFLOOR LFLOOR LLFLOOR
7031 IROUND LROUND LLROUND)
7033 (fns integer_valued_real_p@0)
7035 (if (!flag_errno_math)
7036 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
7037 (for rints (IRINT LRINT LLRINT)
7039 (rints integer_valued_real_p@0)
7042 (if (canonicalize_math_p ())
7043 (for ifn (IFLOOR ICEIL IROUND IRINT)
7044 lfn (LFLOOR LCEIL LROUND LRINT)
7045 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
7046 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
7047 sizeof (int) == sizeof (long). */
7048 (if (TYPE_PRECISION (integer_type_node)
7049 == TYPE_PRECISION (long_integer_type_node))
7052 (lfn:long_integer_type_node @0)))
7053 /* Canonicalize llround (x) to lround (x) on LP64 targets where
7054 sizeof (long long) == sizeof (long). */
7055 (if (TYPE_PRECISION (long_long_integer_type_node)
7056 == TYPE_PRECISION (long_integer_type_node))
7059 (lfn:long_integer_type_node @0)))))
7061 /* cproj(x) -> x if we're ignoring infinities. */
7064 (if (!HONOR_INFINITIES (type))
7067 /* If the real part is inf and the imag part is known to be
7068 nonnegative, return (inf + 0i). */
7070 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
7071 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
7072 { build_complex_inf (type, false); }))
7074 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
7076 (CPROJ (complex @0 REAL_CST@1))
7077 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
7078 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
7084 (pows @0 REAL_CST@1)
7086 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
7087 REAL_VALUE_TYPE tmp;
7090 /* pow(x,0) -> 1. */
7091 (if (real_equal (value, &dconst0))
7092 { build_real (type, dconst1); })
7093 /* pow(x,1) -> x. */
7094 (if (real_equal (value, &dconst1))
7096 /* pow(x,-1) -> 1/x. */
7097 (if (real_equal (value, &dconstm1))
7098 (rdiv { build_real (type, dconst1); } @0))
7099 /* pow(x,0.5) -> sqrt(x). */
7100 (if (flag_unsafe_math_optimizations
7101 && canonicalize_math_p ()
7102 && real_equal (value, &dconsthalf))
7104 /* pow(x,1/3) -> cbrt(x). */
7105 (if (flag_unsafe_math_optimizations
7106 && canonicalize_math_p ()
7107 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
7108 real_equal (value, &tmp)))
7111 /* powi(1,x) -> 1. */
7113 (POWI real_onep@0 @1)
7117 (POWI @0 INTEGER_CST@1)
7119 /* powi(x,0) -> 1. */
7120 (if (wi::to_wide (@1) == 0)
7121 { build_real (type, dconst1); })
7122 /* powi(x,1) -> x. */
7123 (if (wi::to_wide (@1) == 1)
7125 /* powi(x,-1) -> 1/x. */
7126 (if (wi::to_wide (@1) == -1)
7127 (rdiv { build_real (type, dconst1); } @0))))
7129 /* Narrowing of arithmetic and logical operations.
7131 These are conceptually similar to the transformations performed for
7132 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
7133 term we want to move all that code out of the front-ends into here. */
7135 /* Convert (outertype)((innertype0)a+(innertype1)b)
7136 into ((newtype)a+(newtype)b) where newtype
7137 is the widest mode from all of these. */
7138 (for op (plus minus mult rdiv)
7140 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
7141 /* If we have a narrowing conversion of an arithmetic operation where
7142 both operands are widening conversions from the same type as the outer
7143 narrowing conversion. Then convert the innermost operands to a
7144 suitable unsigned type (to avoid introducing undefined behavior),
7145 perform the operation and convert the result to the desired type. */
7146 (if (INTEGRAL_TYPE_P (type)
7149 /* We check for type compatibility between @0 and @1 below,
7150 so there's no need to check that @2/@4 are integral types. */
7151 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
7152 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
7153 /* The precision of the type of each operand must match the
7154 precision of the mode of each operand, similarly for the
7156 && type_has_mode_precision_p (TREE_TYPE (@1))
7157 && type_has_mode_precision_p (TREE_TYPE (@2))
7158 && type_has_mode_precision_p (type)
7159 /* The inner conversion must be a widening conversion. */
7160 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
7161 && types_match (@1, type)
7162 && (types_match (@1, @2)
7163 /* Or the second operand is const integer or converted const
7164 integer from valueize. */
7165 || poly_int_tree_p (@4)))
7166 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
7167 (op @1 (convert @2))
7168 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
7169 (convert (op (convert:utype @1)
7170 (convert:utype @2)))))
7171 (if (FLOAT_TYPE_P (type)
7172 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
7173 == DECIMAL_FLOAT_TYPE_P (type))
7174 (with { tree arg0 = strip_float_extensions (@1);
7175 tree arg1 = strip_float_extensions (@2);
7176 tree itype = TREE_TYPE (@0);
7177 tree ty1 = TREE_TYPE (arg0);
7178 tree ty2 = TREE_TYPE (arg1);
7179 enum tree_code code = TREE_CODE (itype); }
7180 (if (FLOAT_TYPE_P (ty1)
7181 && FLOAT_TYPE_P (ty2))
7182 (with { tree newtype = type;
7183 if (TYPE_MODE (ty1) == SDmode
7184 || TYPE_MODE (ty2) == SDmode
7185 || TYPE_MODE (type) == SDmode)
7186 newtype = dfloat32_type_node;
7187 if (TYPE_MODE (ty1) == DDmode
7188 || TYPE_MODE (ty2) == DDmode
7189 || TYPE_MODE (type) == DDmode)
7190 newtype = dfloat64_type_node;
7191 if (TYPE_MODE (ty1) == TDmode
7192 || TYPE_MODE (ty2) == TDmode
7193 || TYPE_MODE (type) == TDmode)
7194 newtype = dfloat128_type_node; }
7195 (if ((newtype == dfloat32_type_node
7196 || newtype == dfloat64_type_node
7197 || newtype == dfloat128_type_node)
7199 && types_match (newtype, type))
7200 (op (convert:newtype @1) (convert:newtype @2))
7201 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
7203 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
7205 /* Sometimes this transformation is safe (cannot
7206 change results through affecting double rounding
7207 cases) and sometimes it is not. If NEWTYPE is
7208 wider than TYPE, e.g. (float)((long double)double
7209 + (long double)double) converted to
7210 (float)(double + double), the transformation is
7211 unsafe regardless of the details of the types
7212 involved; double rounding can arise if the result
7213 of NEWTYPE arithmetic is a NEWTYPE value half way
7214 between two representable TYPE values but the
7215 exact value is sufficiently different (in the
7216 right direction) for this difference to be
7217 visible in ITYPE arithmetic. If NEWTYPE is the
7218 same as TYPE, however, the transformation may be
7219 safe depending on the types involved: it is safe
7220 if the ITYPE has strictly more than twice as many
7221 mantissa bits as TYPE, can represent infinities
7222 and NaNs if the TYPE can, and has sufficient
7223 exponent range for the product or ratio of two
7224 values representable in the TYPE to be within the
7225 range of normal values of ITYPE. */
7226 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
7227 && (flag_unsafe_math_optimizations
7228 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
7229 && real_can_shorten_arithmetic (TYPE_MODE (itype),
7231 && !excess_precision_type (newtype)))
7232 && !types_match (itype, newtype))
7233 (convert:type (op (convert:newtype @1)
7234 (convert:newtype @2)))
7239 /* This is another case of narrowing, specifically when there's an outer
7240 BIT_AND_EXPR which masks off bits outside the type of the innermost
7241 operands. Like the previous case we have to convert the operands
7242 to unsigned types to avoid introducing undefined behavior for the
7243 arithmetic operation. */
7244 (for op (minus plus)
7246 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
7247 (if (INTEGRAL_TYPE_P (type)
7248 /* We check for type compatibility between @0 and @1 below,
7249 so there's no need to check that @1/@3 are integral types. */
7250 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
7251 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
7252 /* The precision of the type of each operand must match the
7253 precision of the mode of each operand, similarly for the
7255 && type_has_mode_precision_p (TREE_TYPE (@0))
7256 && type_has_mode_precision_p (TREE_TYPE (@1))
7257 && type_has_mode_precision_p (type)
7258 /* The inner conversion must be a widening conversion. */
7259 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
7260 && types_match (@0, @1)
7261 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
7262 <= TYPE_PRECISION (TREE_TYPE (@0)))
7263 && (wi::to_wide (@4)
7264 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
7265 true, TYPE_PRECISION (type))) == 0)
7266 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
7267 (with { tree ntype = TREE_TYPE (@0); }
7268 (convert (bit_and (op @0 @1) (convert:ntype @4))))
7269 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7270 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
7271 (convert:utype @4))))))))
7273 /* Transform (@0 < @1 and @0 < @2) to use min,
7274 (@0 > @1 and @0 > @2) to use max */
7275 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
7276 op (lt le gt ge lt le gt ge )
7277 ext (min min max max max max min min )
7279 (logic (op:cs @0 @1) (op:cs @0 @2))
7280 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7281 && TREE_CODE (@0) != INTEGER_CST)
7282 (op @0 (ext @1 @2)))))
7285 /* signbit(x) -> 0 if x is nonnegative. */
7286 (SIGNBIT tree_expr_nonnegative_p@0)
7287 { integer_zero_node; })
7290 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
7292 (if (!HONOR_SIGNED_ZEROS (@0))
7293 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
7295 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
7297 (for op (plus minus)
7300 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
7301 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
7302 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
7303 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
7304 && !TYPE_SATURATING (TREE_TYPE (@0)))
7305 (with { tree res = int_const_binop (rop, @2, @1); }
7306 (if (TREE_OVERFLOW (res)
7307 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
7308 { constant_boolean_node (cmp == NE_EXPR, type); }
7309 (if (single_use (@3))
7310 (cmp @0 { TREE_OVERFLOW (res)
7311 ? drop_tree_overflow (res) : res; }))))))))
7312 (for cmp (lt le gt ge)
7313 (for op (plus minus)
7316 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
7317 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
7318 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
7319 (with { tree res = int_const_binop (rop, @2, @1); }
7320 (if (TREE_OVERFLOW (res))
7322 fold_overflow_warning (("assuming signed overflow does not occur "
7323 "when simplifying conditional to constant"),
7324 WARN_STRICT_OVERFLOW_CONDITIONAL);
7325 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
7326 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
7327 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
7328 TYPE_SIGN (TREE_TYPE (@1)))
7329 != (op == MINUS_EXPR);
7330 constant_boolean_node (less == ovf_high, type);
7332 (if (single_use (@3))
7335 fold_overflow_warning (("assuming signed overflow does not occur "
7336 "when changing X +- C1 cmp C2 to "
7338 WARN_STRICT_OVERFLOW_COMPARISON);
7340 (cmp @0 { res; })))))))))
7342 /* Canonicalizations of BIT_FIELD_REFs. */
7345 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
7346 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
7349 (BIT_FIELD_REF (view_convert @0) @1 @2)
7350 (BIT_FIELD_REF @0 @1 @2))
7353 (BIT_FIELD_REF @0 @1 integer_zerop)
7354 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
7358 (BIT_FIELD_REF @0 @1 @2)
7360 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
7361 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7363 (if (integer_zerop (@2))
7364 (view_convert (realpart @0)))
7365 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7366 (view_convert (imagpart @0)))))
7367 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7368 && INTEGRAL_TYPE_P (type)
7369 /* On GIMPLE this should only apply to register arguments. */
7370 && (! GIMPLE || is_gimple_reg (@0))
7371 /* A bit-field-ref that referenced the full argument can be stripped. */
7372 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
7373 && integer_zerop (@2))
7374 /* Low-parts can be reduced to integral conversions.
7375 ??? The following doesn't work for PDP endian. */
7376 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
7377 /* But only do this after vectorization. */
7378 && canonicalize_math_after_vectorization_p ()
7379 /* Don't even think about BITS_BIG_ENDIAN. */
7380 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
7381 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
7382 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
7383 ? (TYPE_PRECISION (TREE_TYPE (@0))
7384 - TYPE_PRECISION (type))
7388 /* Simplify vector extracts. */
7391 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
7392 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
7393 && tree_fits_uhwi_p (TYPE_SIZE (type))
7394 && ((tree_to_uhwi (TYPE_SIZE (type))
7395 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7396 || (VECTOR_TYPE_P (type)
7397 && (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))
7398 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0))))))))
7401 tree ctor = (TREE_CODE (@0) == SSA_NAME
7402 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
7403 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
7404 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
7405 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
7406 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
7409 && (idx % width) == 0
7411 && known_le ((idx + n) / width,
7412 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
7417 /* Constructor elements can be subvectors. */
7419 if (CONSTRUCTOR_NELTS (ctor) != 0)
7421 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
7422 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
7423 k = TYPE_VECTOR_SUBPARTS (cons_elem);
7425 unsigned HOST_WIDE_INT elt, count, const_k;
7428 /* We keep an exact subset of the constructor elements. */
7429 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
7430 (if (CONSTRUCTOR_NELTS (ctor) == 0)
7431 { build_zero_cst (type); }
7433 (if (elt < CONSTRUCTOR_NELTS (ctor))
7434 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
7435 { build_zero_cst (type); })
7436 /* We don't want to emit new CTORs unless the old one goes away.
7437 ??? Eventually allow this if the CTOR ends up constant or
7439 (if (single_use (@0))
7442 vec<constructor_elt, va_gc> *vals;
7443 vec_alloc (vals, count);
7444 bool constant_p = true;
7446 for (unsigned i = 0;
7447 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
7449 tree e = CONSTRUCTOR_ELT (ctor, elt + i)->value;
7450 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE, e);
7451 if (!CONSTANT_CLASS_P (e))
7454 tree evtype = (types_match (TREE_TYPE (type),
7455 TREE_TYPE (TREE_TYPE (ctor)))
7457 : build_vector_type (TREE_TYPE (TREE_TYPE (ctor)),
7459 res = (constant_p ? build_vector_from_ctor (evtype, vals)
7460 : build_constructor (evtype, vals));
7462 (view_convert { res; }))))))
7463 /* The bitfield references a single constructor element. */
7464 (if (k.is_constant (&const_k)
7465 && idx + n <= (idx / const_k + 1) * const_k)
7467 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
7468 { build_zero_cst (type); })
7470 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
7471 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
7472 @1 { bitsize_int ((idx % const_k) * width); })))))))))
7474 /* Simplify a bit extraction from a bit insertion for the cases with
7475 the inserted element fully covering the extraction or the insertion
7476 not touching the extraction. */
7478 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
7481 unsigned HOST_WIDE_INT isize;
7482 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
7483 isize = TYPE_PRECISION (TREE_TYPE (@1));
7485 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
7488 (if ((!INTEGRAL_TYPE_P (TREE_TYPE (@1))
7489 || type_has_mode_precision_p (TREE_TYPE (@1)))
7490 && wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
7491 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
7492 wi::to_wide (@ipos) + isize))
7493 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
7495 - wi::to_wide (@ipos)); }))
7496 (if (wi::eq_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
7497 && compare_tree_int (@rsize, isize) == 0)
7499 (if (wi::geu_p (wi::to_wide (@ipos),
7500 wi::to_wide (@rpos) + wi::to_wide (@rsize))
7501 || wi::geu_p (wi::to_wide (@rpos),
7502 wi::to_wide (@ipos) + isize))
7503 (BIT_FIELD_REF @0 @rsize @rpos)))))
7505 (if (canonicalize_math_after_vectorization_p ())
7508 (fmas:c (negate @0) @1 @2)
7509 (IFN_FNMA @0 @1 @2))
7511 (fmas @0 @1 (negate @2))
7514 (fmas:c (negate @0) @1 (negate @2))
7515 (IFN_FNMS @0 @1 @2))
7517 (negate (fmas@3 @0 @1 @2))
7518 (if (single_use (@3))
7519 (IFN_FNMS @0 @1 @2))))
7522 (IFN_FMS:c (negate @0) @1 @2)
7523 (IFN_FNMS @0 @1 @2))
7525 (IFN_FMS @0 @1 (negate @2))
7528 (IFN_FMS:c (negate @0) @1 (negate @2))
7529 (IFN_FNMA @0 @1 @2))
7531 (negate (IFN_FMS@3 @0 @1 @2))
7532 (if (single_use (@3))
7533 (IFN_FNMA @0 @1 @2)))
7536 (IFN_FNMA:c (negate @0) @1 @2)
7539 (IFN_FNMA @0 @1 (negate @2))
7540 (IFN_FNMS @0 @1 @2))
7542 (IFN_FNMA:c (negate @0) @1 (negate @2))
7545 (negate (IFN_FNMA@3 @0 @1 @2))
7546 (if (single_use (@3))
7547 (IFN_FMS @0 @1 @2)))
7550 (IFN_FNMS:c (negate @0) @1 @2)
7553 (IFN_FNMS @0 @1 (negate @2))
7554 (IFN_FNMA @0 @1 @2))
7556 (IFN_FNMS:c (negate @0) @1 (negate @2))
7559 (negate (IFN_FNMS@3 @0 @1 @2))
7560 (if (single_use (@3))
7561 (IFN_FMA @0 @1 @2))))
7563 /* CLZ simplifications. */
7568 (op (clz:s@2 @0) INTEGER_CST@1)
7569 (if (integer_zerop (@1) && single_use (@2))
7570 /* clz(X) == 0 is (int)X < 0 and clz(X) != 0 is (int)X >= 0. */
7571 (with { tree type0 = TREE_TYPE (@0);
7572 tree stype = signed_type_for (type0);
7573 HOST_WIDE_INT val = 0;
7574 /* Punt on hypothetical weird targets. */
7576 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7582 (cmp (convert:stype @0) { build_zero_cst (stype); })))
7583 /* clz(X) == (prec-1) is X == 1 and clz(X) != (prec-1) is X != 1. */
7584 (with { bool ok = true;
7585 HOST_WIDE_INT val = 0;
7586 tree type0 = TREE_TYPE (@0);
7587 /* Punt on hypothetical weird targets. */
7589 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7591 && val == TYPE_PRECISION (type0) - 1)
7594 (if (ok && wi::to_wide (@1) == (TYPE_PRECISION (type0) - 1))
7595 (op @0 { build_one_cst (type0); })))))))
7597 /* CTZ simplifications. */
7599 (for op (ge gt le lt)
7602 /* __builtin_ctz (x) >= C -> (x & ((1 << C) - 1)) == 0. */
7603 (op (ctz:s @0) INTEGER_CST@1)
7604 (with { bool ok = true;
7605 HOST_WIDE_INT val = 0;
7606 if (!tree_fits_shwi_p (@1))
7610 val = tree_to_shwi (@1);
7611 /* Canonicalize to >= or <. */
7612 if (op == GT_EXPR || op == LE_EXPR)
7614 if (val == HOST_WIDE_INT_MAX)
7620 bool zero_res = false;
7621 HOST_WIDE_INT zero_val = 0;
7622 tree type0 = TREE_TYPE (@0);
7623 int prec = TYPE_PRECISION (type0);
7625 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7630 (if (ok && (!zero_res || zero_val >= val))
7631 { constant_boolean_node (cmp == EQ_EXPR ? true : false, type); })
7633 (if (ok && (!zero_res || zero_val < val))
7634 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); })
7635 (if (ok && (!zero_res || zero_val < 0 || zero_val >= prec))
7636 (cmp (bit_and @0 { wide_int_to_tree (type0,
7637 wi::mask (val, false, prec)); })
7638 { build_zero_cst (type0); })))))))
7641 /* __builtin_ctz (x) == C -> (x & ((1 << (C + 1)) - 1)) == (1 << C). */
7642 (op (ctz:s @0) INTEGER_CST@1)
7643 (with { bool zero_res = false;
7644 HOST_WIDE_INT zero_val = 0;
7645 tree type0 = TREE_TYPE (@0);
7646 int prec = TYPE_PRECISION (type0);
7648 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7652 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) >= prec)
7653 (if (!zero_res || zero_val != wi::to_widest (@1))
7654 { constant_boolean_node (op == EQ_EXPR ? false : true, type); })
7655 (if (!zero_res || zero_val < 0 || zero_val >= prec)
7656 (op (bit_and @0 { wide_int_to_tree (type0,
7657 wi::mask (tree_to_uhwi (@1) + 1,
7659 { wide_int_to_tree (type0,
7660 wi::shifted_mask (tree_to_uhwi (@1), 1,
7661 false, prec)); })))))))
7663 /* POPCOUNT simplifications. */
7664 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
7666 (plus (POPCOUNT:s @0) (POPCOUNT:s @1))
7667 (if (INTEGRAL_TYPE_P (type)
7668 && wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
7669 (POPCOUNT (bit_ior @0 @1))))
7671 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
7672 (for popcount (POPCOUNT)
7673 (for cmp (le eq ne gt)
7676 (cmp (popcount @0) integer_zerop)
7677 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
7679 /* Canonicalize POPCOUNT(x)&1 as PARITY(X). */
7681 (bit_and (POPCOUNT @0) integer_onep)
7684 /* PARITY simplifications. */
7685 /* parity(~X) is parity(X). */
7687 (PARITY (bit_not @0))
7690 /* parity(X)^parity(Y) is parity(X^Y). */
7692 (bit_xor (PARITY:s @0) (PARITY:s @1))
7693 (PARITY (bit_xor @0 @1)))
7695 /* Common POPCOUNT/PARITY simplifications. */
7696 /* popcount(X&C1) is (X>>C2)&1 when C1 == 1<<C2. Same for parity(X&C1). */
7697 (for pfun (POPCOUNT PARITY)
7700 (if (INTEGRAL_TYPE_P (type))
7701 (with { wide_int nz = tree_nonzero_bits (@0); }
7705 (if (wi::popcount (nz) == 1)
7706 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7707 (convert (rshift:utype (convert:utype @0)
7708 { build_int_cst (integer_type_node,
7709 wi::ctz (nz)); })))))))))
7712 /* 64- and 32-bits branchless implementations of popcount are detected:
7714 int popcount64c (uint64_t x)
7716 x -= (x >> 1) & 0x5555555555555555ULL;
7717 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
7718 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
7719 return (x * 0x0101010101010101ULL) >> 56;
7722 int popcount32c (uint32_t x)
7724 x -= (x >> 1) & 0x55555555;
7725 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
7726 x = (x + (x >> 4)) & 0x0f0f0f0f;
7727 return (x * 0x01010101) >> 24;
7734 (rshift @8 INTEGER_CST@5)
7736 (bit_and @6 INTEGER_CST@7)
7740 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
7746 /* Check constants and optab. */
7747 (with { unsigned prec = TYPE_PRECISION (type);
7748 int shift = (64 - prec) & 63;
7749 unsigned HOST_WIDE_INT c1
7750 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
7751 unsigned HOST_WIDE_INT c2
7752 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
7753 unsigned HOST_WIDE_INT c3
7754 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
7755 unsigned HOST_WIDE_INT c4
7756 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
7761 && TYPE_UNSIGNED (type)
7762 && integer_onep (@4)
7763 && wi::to_widest (@10) == 2
7764 && wi::to_widest (@5) == 4
7765 && wi::to_widest (@1) == prec - 8
7766 && tree_to_uhwi (@2) == c1
7767 && tree_to_uhwi (@3) == c2
7768 && tree_to_uhwi (@9) == c3
7769 && tree_to_uhwi (@7) == c3
7770 && tree_to_uhwi (@11) == c4)
7771 (if (direct_internal_fn_supported_p (IFN_POPCOUNT, type,
7773 (convert (IFN_POPCOUNT:type @0))
7774 /* Try to do popcount in two halves. PREC must be at least
7775 five bits for this to work without extension before adding. */
7777 tree half_type = NULL_TREE;
7778 opt_machine_mode m = mode_for_size ((prec + 1) / 2, MODE_INT, 1);
7781 && m.require () != TYPE_MODE (type))
7783 half_prec = GET_MODE_PRECISION (as_a <scalar_int_mode> (m));
7784 half_type = build_nonstandard_integer_type (half_prec, 1);
7786 gcc_assert (half_prec > 2);
7788 (if (half_type != NULL_TREE
7789 && direct_internal_fn_supported_p (IFN_POPCOUNT, half_type,
7792 (IFN_POPCOUNT:half_type (convert @0))
7793 (IFN_POPCOUNT:half_type (convert (rshift @0
7794 { build_int_cst (integer_type_node, half_prec); } )))))))))))
7796 /* __builtin_ffs needs to deal on many targets with the possible zero
7797 argument. If we know the argument is always non-zero, __builtin_ctz + 1
7798 should lead to better code. */
7800 (FFS tree_expr_nonzero_p@0)
7801 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7802 && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
7803 OPTIMIZE_FOR_SPEED))
7804 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7805 (plus (CTZ:type (convert:utype @0)) { build_one_cst (type); }))))
7808 (for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL
7810 /* __builtin_ffs (X) == 0 -> X == 0.
7811 __builtin_ffs (X) == 6 -> (X & 63) == 32. */
7814 (cmp (ffs@2 @0) INTEGER_CST@1)
7815 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7817 (if (integer_zerop (@1))
7818 (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
7819 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
7820 { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
7821 (if (single_use (@2))
7822 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
7823 wi::mask (tree_to_uhwi (@1),
7825 { wide_int_to_tree (TREE_TYPE (@0),
7826 wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
7827 false, prec)); }))))))
7829 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0. */
7833 bit_op (bit_and bit_ior)
7835 (cmp (ffs@2 @0) INTEGER_CST@1)
7836 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7838 (if (integer_zerop (@1))
7839 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
7840 (if (tree_int_cst_sgn (@1) < 0)
7841 { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
7842 (if (wi::to_widest (@1) >= prec)
7843 { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
7844 (if (wi::to_widest (@1) == prec - 1)
7845 (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
7846 wi::shifted_mask (prec - 1, 1,
7848 (if (single_use (@2))
7849 (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
7851 { wide_int_to_tree (TREE_TYPE (@0),
7852 wi::mask (tree_to_uhwi (@1),
7854 { build_zero_cst (TREE_TYPE (@0)); }))))))))
7861 --> r = .COND_FN (cond, a, b)
7865 --> r = .COND_FN (~cond, b, a). */
7867 (for uncond_op (UNCOND_UNARY)
7868 cond_op (COND_UNARY)
7870 (vec_cond @0 (view_convert? (uncond_op@3 @1)) @2)
7871 (with { tree op_type = TREE_TYPE (@3); }
7872 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7873 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7874 (cond_op @0 @1 @2))))
7876 (vec_cond @0 @1 (view_convert? (uncond_op@3 @2)))
7877 (with { tree op_type = TREE_TYPE (@3); }
7878 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7879 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7880 (cond_op (bit_not @0) @2 @1)))))
7889 r = c ? a1 op a2 : b;
7891 if the target can do it in one go. This makes the operation conditional
7892 on c, so could drop potentially-trapping arithmetic, but that's a valid
7893 simplification if the result of the operation isn't needed.
7895 Avoid speculatively generating a stand-alone vector comparison
7896 on targets that might not support them. Any target implementing
7897 conditional internal functions must support the same comparisons
7898 inside and outside a VEC_COND_EXPR. */
7900 (for uncond_op (UNCOND_BINARY)
7901 cond_op (COND_BINARY)
7903 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
7904 (with { tree op_type = TREE_TYPE (@4); }
7905 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7906 && is_truth_type_for (op_type, TREE_TYPE (@0))
7908 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
7910 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
7911 (with { tree op_type = TREE_TYPE (@4); }
7912 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7913 && is_truth_type_for (op_type, TREE_TYPE (@0))
7915 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
7917 /* Same for ternary operations. */
7918 (for uncond_op (UNCOND_TERNARY)
7919 cond_op (COND_TERNARY)
7921 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
7922 (with { tree op_type = TREE_TYPE (@5); }
7923 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7924 && is_truth_type_for (op_type, TREE_TYPE (@0))
7926 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
7928 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
7929 (with { tree op_type = TREE_TYPE (@5); }
7930 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7931 && is_truth_type_for (op_type, TREE_TYPE (@0))
7933 (view_convert (cond_op (bit_not @0) @2 @3 @4
7934 (view_convert:op_type @1)))))))
7937 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
7938 "else" value of an IFN_COND_*. */
7939 (for cond_op (COND_BINARY)
7941 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
7942 (with { tree op_type = TREE_TYPE (@3); }
7943 (if (element_precision (type) == element_precision (op_type))
7944 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
7946 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
7947 (with { tree op_type = TREE_TYPE (@5); }
7948 (if (inverse_conditions_p (@0, @2)
7949 && element_precision (type) == element_precision (op_type))
7950 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
7952 /* Same for ternary operations. */
7953 (for cond_op (COND_TERNARY)
7955 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
7956 (with { tree op_type = TREE_TYPE (@4); }
7957 (if (element_precision (type) == element_precision (op_type))
7958 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
7960 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
7961 (with { tree op_type = TREE_TYPE (@6); }
7962 (if (inverse_conditions_p (@0, @2)
7963 && element_precision (type) == element_precision (op_type))
7964 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
7966 /* Detect simplication for a conditional reduction where
7969 c = mask2 ? d + a : d
7973 c = mask1 && mask2 ? d + b : d. */
7975 (IFN_COND_ADD @0 @1 (vec_cond @2 @3 integer_zerop) @1)
7976 (IFN_COND_ADD (bit_and @0 @2) @1 @3 @1))
7978 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
7981 A: (@0 + @1 < @2) | (@2 + @1 < @0)
7982 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
7984 If pointers are known not to wrap, B checks whether @1 bytes starting
7985 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
7986 bytes. A is more efficiently tested as:
7988 A: (sizetype) (@0 + @1 - @2) > @1 * 2
7990 The equivalent expression for B is given by replacing @1 with @1 - 1:
7992 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
7994 @0 and @2 can be swapped in both expressions without changing the result.
7996 The folds rely on sizetype's being unsigned (which is always true)
7997 and on its being the same width as the pointer (which we have to check).
7999 The fold replaces two pointer_plus expressions, two comparisons and
8000 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
8001 the best case it's a saving of two operations. The A fold retains one
8002 of the original pointer_pluses, so is a win even if both pointer_pluses
8003 are used elsewhere. The B fold is a wash if both pointer_pluses are
8004 used elsewhere, since all we end up doing is replacing a comparison with
8005 a pointer_plus. We do still apply the fold under those circumstances
8006 though, in case applying it to other conditions eventually makes one of the
8007 pointer_pluses dead. */
8008 (for ior (truth_orif truth_or bit_ior)
8011 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
8012 (cmp:cs (pointer_plus@4 @2 @1) @0))
8013 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
8014 && TYPE_OVERFLOW_WRAPS (sizetype)
8015 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
8016 /* Calculate the rhs constant. */
8017 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
8018 offset_int rhs = off * 2; }
8019 /* Always fails for negative values. */
8020 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
8021 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
8022 pick a canonical order. This increases the chances of using the
8023 same pointer_plus in multiple checks. */
8024 (with { bool swap_p = tree_swap_operands_p (@0, @2);
8025 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
8026 (if (cmp == LT_EXPR)
8027 (gt (convert:sizetype
8028 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
8029 { swap_p ? @0 : @2; }))
8031 (gt (convert:sizetype
8032 (pointer_diff:ssizetype
8033 (pointer_plus { swap_p ? @2 : @0; }
8034 { wide_int_to_tree (sizetype, off); })
8035 { swap_p ? @0 : @2; }))
8036 { rhs_tree; })))))))))
8038 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
8040 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
8041 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
8042 (with { int i = single_nonzero_element (@1); }
8044 (with { tree elt = vector_cst_elt (@1, i);
8045 tree elt_type = TREE_TYPE (elt);
8046 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
8047 tree size = bitsize_int (elt_bits);
8048 tree pos = bitsize_int (elt_bits * i); }
8051 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
8054 /* Fold reduction of a single nonzero element constructor. */
8055 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
8056 (simplify (reduc (CONSTRUCTOR@0))
8057 (with { tree ctor = (TREE_CODE (@0) == SSA_NAME
8058 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
8059 tree elt = ctor_single_nonzero_element (ctor); }
8061 && !HONOR_SNANS (type)
8062 && !HONOR_SIGNED_ZEROS (type))
8065 /* Fold REDUC (@0 op VECTOR_CST) as REDUC (@0) op REDUC (VECTOR_CST). */
8066 (for reduc (IFN_REDUC_PLUS IFN_REDUC_MAX IFN_REDUC_MIN IFN_REDUC_FMAX
8067 IFN_REDUC_FMIN IFN_REDUC_AND IFN_REDUC_IOR IFN_REDUC_XOR)
8068 op (plus max min IFN_FMAX IFN_FMIN bit_and bit_ior bit_xor)
8069 (simplify (reduc (op @0 VECTOR_CST@1))
8070 (op (reduc:type @0) (reduc:type @1))))
8072 /* Simplify vector floating point operations of alternating sub/add pairs
8073 into using an fneg of a wider element type followed by a normal add.
8074 under IEEE 754 the fneg of the wider type will negate every even entry
8075 and when doing an add we get a sub of the even and add of every odd
8078 (vec_perm (plus:c @0 @1) (minus @0 @1) VECTOR_CST@2)
8079 (if (!VECTOR_INTEGER_TYPE_P (type)
8080 && !FLOAT_WORDS_BIG_ENDIAN)
8083 /* Build a vector of integers from the tree mask. */
8084 vec_perm_builder builder;
8086 (if (tree_to_vec_perm_builder (&builder, @2))
8089 /* Create a vec_perm_indices for the integer vector. */
8090 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
8091 vec_perm_indices sel (builder, 2, nelts);
8092 machine_mode vec_mode = TYPE_MODE (type);
8093 machine_mode wide_mode;
8094 scalar_mode wide_elt_mode;
8095 poly_uint64 wide_nunits;
8096 scalar_mode inner_mode = GET_MODE_INNER (vec_mode);
8098 (if (sel.series_p (0, 2, 0, 2)
8099 && GET_MODE_2XWIDER_MODE (inner_mode).exists (&wide_elt_mode)
8100 && multiple_p (GET_MODE_NUNITS (vec_mode), 2, &wide_nunits)
8101 && related_vector_mode (vec_mode, wide_elt_mode,
8102 wide_nunits).exists (&wide_mode))
8106 = lang_hooks.types.type_for_mode (GET_MODE_INNER (wide_mode),
8107 TYPE_UNSIGNED (type));
8108 tree ntype = build_vector_type_for_mode (stype, wide_mode);
8110 /* The format has to be a non-extended ieee format. */
8111 const struct real_format *fmt_old = FLOAT_MODE_FORMAT (vec_mode);
8112 const struct real_format *fmt_new = FLOAT_MODE_FORMAT (wide_mode);
8114 (if (TYPE_MODE (stype) != BLKmode
8115 && VECTOR_TYPE_P (ntype)
8120 /* If the target doesn't support v1xx vectors, try using
8121 scalar mode xx instead. */
8122 if (known_eq (GET_MODE_NUNITS (wide_mode), 1)
8123 && !target_supports_op_p (ntype, NEGATE_EXPR, optab_vector))
8126 (if (fmt_new->signbit_rw
8127 == fmt_old->signbit_rw + GET_MODE_UNIT_BITSIZE (vec_mode)
8128 && fmt_new->signbit_rw == fmt_new->signbit_ro
8129 && targetm.can_change_mode_class (TYPE_MODE (ntype), TYPE_MODE (type), ALL_REGS)
8130 && ((optimize_vectors_before_lowering_p () && VECTOR_TYPE_P (ntype))
8131 || target_supports_op_p (ntype, NEGATE_EXPR, optab_vector)))
8132 (plus (view_convert:type (negate (view_convert:ntype @1))) @0)))))))))))
8135 (vec_perm @0 @1 VECTOR_CST@2)
8138 tree op0 = @0, op1 = @1, op2 = @2;
8139 machine_mode result_mode = TYPE_MODE (type);
8140 machine_mode op_mode = TYPE_MODE (TREE_TYPE (op0));
8142 /* Build a vector of integers from the tree mask. */
8143 vec_perm_builder builder;
8145 (if (tree_to_vec_perm_builder (&builder, op2))
8148 /* Create a vec_perm_indices for the integer vector. */
8149 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
8150 bool single_arg = (op0 == op1);
8151 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
8153 (if (sel.series_p (0, 1, 0, 1))
8155 (if (sel.series_p (0, 1, nelts, 1))
8161 if (sel.all_from_input_p (0))
8163 else if (sel.all_from_input_p (1))
8166 sel.rotate_inputs (1);
8168 else if (known_ge (poly_uint64 (sel[0]), nelts))
8170 std::swap (op0, op1);
8171 sel.rotate_inputs (1);
8175 tree cop0 = op0, cop1 = op1;
8176 if (TREE_CODE (op0) == SSA_NAME
8177 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
8178 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
8179 cop0 = gimple_assign_rhs1 (def);
8180 if (TREE_CODE (op1) == SSA_NAME
8181 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
8182 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
8183 cop1 = gimple_assign_rhs1 (def);
8186 (if ((TREE_CODE (cop0) == VECTOR_CST
8187 || TREE_CODE (cop0) == CONSTRUCTOR)
8188 && (TREE_CODE (cop1) == VECTOR_CST
8189 || TREE_CODE (cop1) == CONSTRUCTOR)
8190 && (t = fold_vec_perm (type, cop0, cop1, sel)))
8194 bool changed = (op0 == op1 && !single_arg);
8195 tree ins = NULL_TREE;
8198 /* See if the permutation is performing a single element
8199 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
8200 in that case. But only if the vector mode is supported,
8201 otherwise this is invalid GIMPLE. */
8202 if (op_mode != BLKmode
8203 && (TREE_CODE (cop0) == VECTOR_CST
8204 || TREE_CODE (cop0) == CONSTRUCTOR
8205 || TREE_CODE (cop1) == VECTOR_CST
8206 || TREE_CODE (cop1) == CONSTRUCTOR))
8208 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
8211 /* After canonicalizing the first elt to come from the
8212 first vector we only can insert the first elt from
8213 the first vector. */
8215 if ((ins = fold_read_from_vector (cop0, sel[0])))
8218 /* The above can fail for two-element vectors which always
8219 appear to insert the first element, so try inserting
8220 into the second lane as well. For more than two
8221 elements that's wasted time. */
8222 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
8224 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
8225 for (at = 0; at < encoded_nelts; ++at)
8226 if (maybe_ne (sel[at], at))
8228 if (at < encoded_nelts
8229 && (known_eq (at + 1, nelts)
8230 || sel.series_p (at + 1, 1, at + 1, 1)))
8232 if (known_lt (poly_uint64 (sel[at]), nelts))
8233 ins = fold_read_from_vector (cop0, sel[at]);
8235 ins = fold_read_from_vector (cop1, sel[at] - nelts);
8240 /* Generate a canonical form of the selector. */
8241 if (!ins && sel.encoding () != builder)
8243 /* Some targets are deficient and fail to expand a single
8244 argument permutation while still allowing an equivalent
8245 2-argument version. */
8247 if (sel.ninputs () == 2
8248 || can_vec_perm_const_p (result_mode, op_mode, sel, false))
8249 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
8252 vec_perm_indices sel2 (builder, 2, nelts);
8253 if (can_vec_perm_const_p (result_mode, op_mode, sel2, false))
8254 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
8256 /* Not directly supported with either encoding,
8257 so use the preferred form. */
8258 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
8260 if (!operand_equal_p (op2, oldop2, 0))
8265 (bit_insert { op0; } { ins; }
8266 { bitsize_int (at * vector_element_bits (type)); })
8268 (vec_perm { op0; } { op1; } { op2; }))))))))))))
8270 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
8272 (match vec_same_elem_p
8275 (match vec_same_elem_p
8277 (if (TREE_CODE (@0) == SSA_NAME
8278 && uniform_vector_p (gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0))))))
8280 (match vec_same_elem_p
8282 (if (uniform_vector_p (@0))))
8286 (vec_perm vec_same_elem_p@0 @0 @1)
8289 /* Push VEC_PERM earlier if that may help FMA perception (PR101895). */
8291 (plus:c (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4)
8292 (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2)
8293 (plus (mult (vec_perm @1 @1 @3) @2) @4)))
8295 (minus (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4)
8296 (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2)
8297 (minus (mult (vec_perm @1 @1 @3) @2) @4)))
8301 c = VEC_PERM_EXPR <a, b, VCST0>;
8302 d = VEC_PERM_EXPR <c, c, VCST1>;
8304 d = VEC_PERM_EXPR <a, b, NEW_VCST>; */
8307 (vec_perm (vec_perm@0 @1 @2 VECTOR_CST@3) @0 VECTOR_CST@4)
8308 (if (TYPE_VECTOR_SUBPARTS (type).is_constant ())
8311 machine_mode result_mode = TYPE_MODE (type);
8312 machine_mode op_mode = TYPE_MODE (TREE_TYPE (@1));
8313 int nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
8314 vec_perm_builder builder0;
8315 vec_perm_builder builder1;
8316 vec_perm_builder builder2 (nelts, nelts, 1);
8318 (if (tree_to_vec_perm_builder (&builder0, @3)
8319 && tree_to_vec_perm_builder (&builder1, @4))
8322 vec_perm_indices sel0 (builder0, 2, nelts);
8323 vec_perm_indices sel1 (builder1, 1, nelts);
8325 for (int i = 0; i < nelts; i++)
8326 builder2.quick_push (sel0[sel1[i].to_constant ()]);
8328 vec_perm_indices sel2 (builder2, 2, nelts);
8330 tree op0 = NULL_TREE;
8331 /* If the new VEC_PERM_EXPR can't be handled but both
8332 original VEC_PERM_EXPRs can, punt.
8333 If one or both of the original VEC_PERM_EXPRs can't be
8334 handled and the new one can't be either, don't increase
8335 number of VEC_PERM_EXPRs that can't be handled. */
8336 if (can_vec_perm_const_p (result_mode, op_mode, sel2, false)
8338 ? (!can_vec_perm_const_p (result_mode, op_mode, sel0, false)
8339 || !can_vec_perm_const_p (result_mode, op_mode, sel1, false))
8340 : !can_vec_perm_const_p (result_mode, op_mode, sel1, false)))
8341 op0 = vec_perm_indices_to_tree (TREE_TYPE (@4), sel2);
8344 (vec_perm @1 @2 { op0; })))))))
8347 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
8348 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
8349 constant which when multiplied by a power of 2 contains a unique value
8350 in the top 5 or 6 bits. This is then indexed into a table which maps it
8351 to the number of trailing zeroes. */
8352 (match (ctz_table_index @1 @2 @3)
8353 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))
8355 (match (cond_expr_convert_p @0 @2 @3 @6)
8356 (cond (simple_comparison@6 @0 @1) (convert@4 @2) (convert@5 @3))
8357 (if (INTEGRAL_TYPE_P (type)
8358 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
8359 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
8360 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
8361 && TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (@0))
8362 && TYPE_PRECISION (TREE_TYPE (@0))
8363 == TYPE_PRECISION (TREE_TYPE (@2))
8364 && TYPE_PRECISION (TREE_TYPE (@0))
8365 == TYPE_PRECISION (TREE_TYPE (@3))
8366 /* For vect_recog_cond_expr_convert_pattern, @2 and @3 can differ in
8367 signess when convert is truncation, but not ok for extension since
8368 it's sign_extend vs zero_extend. */
8369 && (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type)
8370 || (TYPE_UNSIGNED (TREE_TYPE (@2))
8371 == TYPE_UNSIGNED (TREE_TYPE (@3))))
8373 && single_use (@5))))
8375 (for bit_op (bit_and bit_ior bit_xor)
8376 (match (bitwise_induction_p @0 @2 @3)
8378 (nop_convert1? (bit_not2?@0 (convert3? (lshift integer_onep@1 @2))))
8381 (match (bitwise_induction_p @0 @2 @3)
8383 (nop_convert1? (bit_xor@0 (convert2? (lshift integer_onep@1 @2)) @3))))
8385 /* n - (((n > C1) ? n : C1) & -C2) -> n & C1 for unsigned case.
8386 n - (((n > C1) ? n : C1) & -C2) -> (n <= C1) ? n : (n & C1) for signed case. */
8388 (minus @0 (bit_and (max @0 INTEGER_CST@1) INTEGER_CST@2))
8389 (with { auto i = wi::neg (wi::to_wide (@2)); }
8390 /* Check if -C2 is a power of 2 and C1 = -C2 - 1. */
8391 (if (wi::popcount (i) == 1
8392 && (wi::to_wide (@1)) == (i - 1))
8393 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
8395 (cond (le @0 @1) @0 (bit_and @0 @1))))))
8397 /* -x & 1 -> x & 1. */
8399 (bit_and (negate @0) integer_onep@1)
8400 (if (!TYPE_OVERFLOW_SANITIZED (type))
8404 c1 = VEC_PERM_EXPR (a, a, mask)
8405 c2 = VEC_PERM_EXPR (b, b, mask)
8409 c3 = VEC_PERM_EXPR (c, c, mask)
8410 For all integer non-div operations. */
8411 (for op (plus minus mult bit_and bit_ior bit_xor
8414 (op (vec_perm @0 @0 @2) (vec_perm @1 @1 @2))
8415 (if (VECTOR_INTEGER_TYPE_P (type))
8416 (vec_perm (op@3 @0 @1) @3 @2))))
8418 /* Similar for float arithmetic when permutation constant covers
8419 all vector elements. */
8420 (for op (plus minus mult)
8422 (op (vec_perm @0 @0 VECTOR_CST@2) (vec_perm @1 @1 VECTOR_CST@2))
8423 (if (VECTOR_FLOAT_TYPE_P (type)
8424 && TYPE_VECTOR_SUBPARTS (type).is_constant ())
8428 vec_perm_builder builder;
8429 bool full_perm_p = false;
8430 if (tree_to_vec_perm_builder (&builder, perm_cst))
8432 unsigned HOST_WIDE_INT nelts;
8434 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
8435 /* Create a vec_perm_indices for the VECTOR_CST. */
8436 vec_perm_indices sel (builder, 1, nelts);
8438 /* Check if perm indices covers all vector elements. */
8439 if (sel.encoding ().encoded_full_vector_p ())
8441 auto_sbitmap seen (nelts);
8442 bitmap_clear (seen);
8444 unsigned HOST_WIDE_INT count = 0, i;
8446 for (i = 0; i < nelts; i++)
8448 if (!bitmap_set_bit (seen, sel[i].to_constant ()))
8452 full_perm_p = count == nelts;
8457 (vec_perm (op@3 @0 @1) @3 @2))))))