Allow overriding the libiberty used for building the LTO plugin.
[official-gcc.git] / gcc / ira-costs.c
blob5716c2a22d95368910c1583789ff42b3943834e3
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-table.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "reload.h"
37 #include "diagnostic-core.h"
38 #include "target.h"
39 #include "params.h"
40 #include "ira-int.h"
42 /* The flags is set up every time when we calculate pseudo register
43 classes through function ira_set_pseudo_classes. */
44 static bool pseudo_classes_defined_p = false;
46 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
47 static bool allocno_p;
49 /* Number of elements in array `costs'. */
50 static int cost_elements_num;
52 /* The `costs' struct records the cost of using hard registers of each
53 class considered for the calculation and of using memory for each
54 allocno or pseudo. */
55 struct costs
57 int mem_cost;
58 /* Costs for register classes start here. We process only some
59 allocno classes. */
60 int cost[1];
63 #define max_struct_costs_size \
64 (this_target_ira_int->x_max_struct_costs_size)
65 #define init_cost \
66 (this_target_ira_int->x_init_cost)
67 #define temp_costs \
68 (this_target_ira_int->x_temp_costs)
69 #define op_costs \
70 (this_target_ira_int->x_op_costs)
71 #define this_op_costs \
72 (this_target_ira_int->x_this_op_costs)
74 /* Costs of each class for each allocno or pseudo. */
75 static struct costs *costs;
77 /* Accumulated costs of each class for each allocno. */
78 static struct costs *total_allocno_costs;
80 /* It is the current size of struct costs. */
81 static int struct_costs_size;
83 /* Return pointer to structure containing costs of allocno or pseudo
84 with given NUM in array ARR. */
85 #define COSTS(arr, num) \
86 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
88 /* Return index in COSTS when processing reg with REGNO. */
89 #define COST_INDEX(regno) (allocno_p \
90 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
91 : (int) regno)
93 /* Record register class preferences of each allocno or pseudo. Null
94 value means no preferences. It happens on the 1st iteration of the
95 cost calculation. */
96 static enum reg_class *pref;
98 /* Allocated buffers for pref. */
99 static enum reg_class *pref_buffer;
101 /* Record allocno class of each allocno with the same regno. */
102 static enum reg_class *regno_aclass;
104 /* Record cost gains for not allocating a register with an invariant
105 equivalence. */
106 static int *regno_equiv_gains;
108 /* Execution frequency of the current insn. */
109 static int frequency;
113 /* Info about reg classes whose costs are calculated for a pseudo. */
114 struct cost_classes
116 /* Number of the cost classes in the subsequent array. */
117 int num;
118 /* Container of the cost classes. */
119 enum reg_class classes[N_REG_CLASSES];
120 /* Map reg class -> index of the reg class in the previous array.
121 -1 if it is not a cost classe. */
122 int index[N_REG_CLASSES];
123 /* Map hard regno index of first class in array CLASSES containing
124 the hard regno, -1 otherwise. */
125 int hard_regno_index[FIRST_PSEUDO_REGISTER];
128 /* Types of pointers to the structure above. */
129 typedef struct cost_classes *cost_classes_t;
130 typedef const struct cost_classes *const_cost_classes_t;
132 /* Info about cost classes for each pseudo. */
133 static cost_classes_t *regno_cost_classes;
135 /* Helper for cost_classes hashing. */
137 struct cost_classes_hasher
139 typedef cost_classes value_type;
140 typedef cost_classes compare_type;
141 static inline hashval_t hash (const value_type *);
142 static inline bool equal (const value_type *, const compare_type *);
143 static inline void remove (value_type *);
146 /* Returns hash value for cost classes info HV. */
147 inline hashval_t
148 cost_classes_hasher::hash (const value_type *hv)
150 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
153 /* Compares cost classes info HV1 and HV2. */
154 inline bool
155 cost_classes_hasher::equal (const value_type *hv1, const compare_type *hv2)
157 return (hv1->num == hv2->num
158 && memcmp (hv1->classes, hv2->classes,
159 sizeof (enum reg_class) * hv1->num) == 0);
162 /* Delete cost classes info V from the hash table. */
163 inline void
164 cost_classes_hasher::remove (value_type *v)
166 ira_free (v);
169 /* Hash table of unique cost classes. */
170 static hash_table <cost_classes_hasher> cost_classes_htab;
172 /* Map allocno class -> cost classes for pseudo of given allocno
173 class. */
174 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
176 /* Map mode -> cost classes for pseudo of give mode. */
177 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
179 /* Initialize info about the cost classes for each pseudo. */
180 static void
181 initiate_regno_cost_classes (void)
183 int size = sizeof (cost_classes_t) * max_reg_num ();
185 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
186 memset (regno_cost_classes, 0, size);
187 memset (cost_classes_aclass_cache, 0,
188 sizeof (cost_classes_t) * N_REG_CLASSES);
189 memset (cost_classes_mode_cache, 0,
190 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
191 cost_classes_htab.create (200);
194 /* Create new cost classes from cost classes FROM and set up members
195 index and hard_regno_index. Return the new classes. The function
196 implements some common code of two functions
197 setup_regno_cost_classes_by_aclass and
198 setup_regno_cost_classes_by_mode. */
199 static cost_classes_t
200 setup_cost_classes (cost_classes_t from)
202 cost_classes_t classes_ptr;
203 enum reg_class cl;
204 int i, j, hard_regno;
206 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
207 classes_ptr->num = from->num;
208 for (i = 0; i < N_REG_CLASSES; i++)
209 classes_ptr->index[i] = -1;
210 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
211 classes_ptr->hard_regno_index[i] = -1;
212 for (i = 0; i < from->num; i++)
214 cl = classes_ptr->classes[i] = from->classes[i];
215 classes_ptr->index[cl] = i;
216 for (j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
218 hard_regno = ira_class_hard_regs[cl][j];
219 if (classes_ptr->hard_regno_index[hard_regno] < 0)
220 classes_ptr->hard_regno_index[hard_regno] = i;
223 return classes_ptr;
226 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
227 This function is used when we know an initial approximation of
228 allocno class of the pseudo already, e.g. on the second iteration
229 of class cost calculation or after class cost calculation in
230 register-pressure sensitive insn scheduling or register-pressure
231 sensitive loop-invariant motion. */
232 static void
233 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
235 static struct cost_classes classes;
236 cost_classes_t classes_ptr;
237 enum reg_class cl;
238 int i;
239 cost_classes **slot;
240 HARD_REG_SET temp, temp2;
241 bool exclude_p;
243 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
245 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
246 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
247 /* We exclude classes from consideration which are subsets of
248 ACLASS only if ACLASS is an uniform class. */
249 exclude_p = ira_uniform_class_p[aclass];
250 classes.num = 0;
251 for (i = 0; i < ira_important_classes_num; i++)
253 cl = ira_important_classes[i];
254 if (exclude_p)
256 /* Exclude non-uniform classes which are subsets of
257 ACLASS. */
258 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
259 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
260 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
261 continue;
263 classes.classes[classes.num++] = cl;
265 slot = cost_classes_htab.find_slot (&classes, INSERT);
266 if (*slot == NULL)
268 classes_ptr = setup_cost_classes (&classes);
269 *slot = classes_ptr;
271 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
273 regno_cost_classes[regno] = classes_ptr;
276 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
277 decrease number of cost classes for the pseudo, if hard registers
278 of some important classes can not hold a value of MODE. So the
279 pseudo can not get hard register of some important classes and cost
280 calculation for such important classes is only waisting CPU
281 time. */
282 static void
283 setup_regno_cost_classes_by_mode (int regno, enum machine_mode mode)
285 static struct cost_classes classes;
286 cost_classes_t classes_ptr;
287 enum reg_class cl;
288 int i;
289 cost_classes **slot;
290 HARD_REG_SET temp;
292 if ((classes_ptr = cost_classes_mode_cache[mode]) == NULL)
294 classes.num = 0;
295 for (i = 0; i < ira_important_classes_num; i++)
297 cl = ira_important_classes[i];
298 COPY_HARD_REG_SET (temp, ira_prohibited_class_mode_regs[cl][mode]);
299 IOR_HARD_REG_SET (temp, ira_no_alloc_regs);
300 if (hard_reg_set_subset_p (reg_class_contents[cl], temp))
301 continue;
302 classes.classes[classes.num++] = cl;
304 slot = cost_classes_htab.find_slot (&classes, INSERT);
305 if (*slot == NULL)
307 classes_ptr = setup_cost_classes (&classes);
308 *slot = classes_ptr;
310 else
311 classes_ptr = (cost_classes_t) *slot;
312 cost_classes_mode_cache[mode] = (cost_classes_t) *slot;
314 regno_cost_classes[regno] = classes_ptr;
317 /* Finilize info about the cost classes for each pseudo. */
318 static void
319 finish_regno_cost_classes (void)
321 ira_free (regno_cost_classes);
322 cost_classes_htab.dispose ();
327 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
328 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
329 be a pseudo register. */
330 static int
331 copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
332 secondary_reload_info *prev_sri)
334 secondary_reload_info sri;
335 reg_class_t secondary_class = NO_REGS;
337 /* If X is a SCRATCH, there is actually nothing to move since we are
338 assuming optimal allocation. */
339 if (GET_CODE (x) == SCRATCH)
340 return 0;
342 /* Get the class we will actually use for a reload. */
343 rclass = targetm.preferred_reload_class (x, rclass);
345 /* If we need a secondary reload for an intermediate, the cost is
346 that to load the input into the intermediate register, then to
347 copy it. */
348 sri.prev_sri = prev_sri;
349 sri.extra_cost = 0;
350 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
352 if (secondary_class != NO_REGS)
354 ira_init_register_move_cost_if_necessary (mode);
355 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
356 + sri.extra_cost
357 + copy_cost (x, mode, secondary_class, to_p, &sri));
360 /* For memory, use the memory move cost, for (hard) registers, use
361 the cost to move between the register classes, and use 2 for
362 everything else (constants). */
363 if (MEM_P (x) || rclass == NO_REGS)
364 return sri.extra_cost
365 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
366 else if (REG_P (x))
368 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
370 ira_init_register_move_cost_if_necessary (mode);
371 return (sri.extra_cost
372 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
374 else
375 /* If this is a constant, we may eventually want to call rtx_cost
376 here. */
377 return sri.extra_cost + COSTS_N_INSNS (1);
382 /* Record the cost of using memory or hard registers of various
383 classes for the operands in INSN.
385 N_ALTS is the number of alternatives.
386 N_OPS is the number of operands.
387 OPS is an array of the operands.
388 MODES are the modes of the operands, in case any are VOIDmode.
389 CONSTRAINTS are the constraints to use for the operands. This array
390 is modified by this procedure.
392 This procedure works alternative by alternative. For each
393 alternative we assume that we will be able to allocate all allocnos
394 to their ideal register class and calculate the cost of using that
395 alternative. Then we compute, for each operand that is a
396 pseudo-register, the cost of having the allocno allocated to each
397 register class and using it in that alternative. To this cost is
398 added the cost of the alternative.
400 The cost of each class for this insn is its lowest cost among all
401 the alternatives. */
402 static void
403 record_reg_classes (int n_alts, int n_ops, rtx *ops,
404 enum machine_mode *modes, const char **constraints,
405 rtx insn, enum reg_class *pref)
407 int alt;
408 int i, j, k;
409 int insn_allows_mem[MAX_RECOG_OPERANDS];
410 move_table *move_in_cost, *move_out_cost;
411 short (*mem_cost)[2];
413 for (i = 0; i < n_ops; i++)
414 insn_allows_mem[i] = 0;
416 /* Process each alternative, each time minimizing an operand's cost
417 with the cost for each operand in that alternative. */
418 for (alt = 0; alt < n_alts; alt++)
420 enum reg_class classes[MAX_RECOG_OPERANDS];
421 int allows_mem[MAX_RECOG_OPERANDS];
422 enum reg_class rclass;
423 int alt_fail = 0;
424 int alt_cost = 0, op_cost_add;
426 if (!TEST_BIT (recog_data.enabled_alternatives, alt))
428 for (i = 0; i < recog_data.n_operands; i++)
429 constraints[i] = skip_alternative (constraints[i]);
431 continue;
434 for (i = 0; i < n_ops; i++)
436 unsigned char c;
437 const char *p = constraints[i];
438 rtx op = ops[i];
439 enum machine_mode mode = modes[i];
440 int allows_addr = 0;
441 int win = 0;
443 /* Initially show we know nothing about the register class. */
444 classes[i] = NO_REGS;
445 allows_mem[i] = 0;
447 /* If this operand has no constraints at all, we can
448 conclude nothing about it since anything is valid. */
449 if (*p == 0)
451 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
452 memset (this_op_costs[i], 0, struct_costs_size);
453 continue;
456 /* If this alternative is only relevant when this operand
457 matches a previous operand, we do different things
458 depending on whether this operand is a allocno-reg or not.
459 We must process any modifiers for the operand before we
460 can make this test. */
461 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
462 p++;
464 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
466 /* Copy class and whether memory is allowed from the
467 matching alternative. Then perform any needed cost
468 computations and/or adjustments. */
469 j = p[0] - '0';
470 classes[i] = classes[j];
471 allows_mem[i] = allows_mem[j];
472 if (allows_mem[i])
473 insn_allows_mem[i] = 1;
475 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
477 /* If this matches the other operand, we have no
478 added cost and we win. */
479 if (rtx_equal_p (ops[j], op))
480 win = 1;
481 /* If we can put the other operand into a register,
482 add to the cost of this alternative the cost to
483 copy this operand to the register used for the
484 other operand. */
485 else if (classes[j] != NO_REGS)
487 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
488 win = 1;
491 else if (! REG_P (ops[j])
492 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
494 /* This op is an allocno but the one it matches is
495 not. */
497 /* If we can't put the other operand into a
498 register, this alternative can't be used. */
500 if (classes[j] == NO_REGS)
501 alt_fail = 1;
502 /* Otherwise, add to the cost of this alternative
503 the cost to copy the other operand to the hard
504 register used for this operand. */
505 else
506 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
508 else
510 /* The costs of this operand are not the same as the
511 other operand since move costs are not symmetric.
512 Moreover, if we cannot tie them, this alternative
513 needs to do a copy, which is one insn. */
514 struct costs *pp = this_op_costs[i];
515 int *pp_costs = pp->cost;
516 cost_classes_t cost_classes_ptr
517 = regno_cost_classes[REGNO (op)];
518 enum reg_class *cost_classes = cost_classes_ptr->classes;
519 bool in_p = recog_data.operand_type[i] != OP_OUT;
520 bool out_p = recog_data.operand_type[i] != OP_IN;
521 enum reg_class op_class = classes[i];
523 ira_init_register_move_cost_if_necessary (mode);
524 if (! in_p)
526 ira_assert (out_p);
527 if (op_class == NO_REGS)
529 mem_cost = ira_memory_move_cost[mode];
530 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
532 rclass = cost_classes[k];
533 pp_costs[k] = mem_cost[rclass][0] * frequency;
536 else
538 move_out_cost = ira_may_move_out_cost[mode];
539 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
541 rclass = cost_classes[k];
542 pp_costs[k]
543 = move_out_cost[op_class][rclass] * frequency;
547 else if (! out_p)
549 ira_assert (in_p);
550 if (op_class == NO_REGS)
552 mem_cost = ira_memory_move_cost[mode];
553 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
555 rclass = cost_classes[k];
556 pp_costs[k] = mem_cost[rclass][1] * frequency;
559 else
561 move_in_cost = ira_may_move_in_cost[mode];
562 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
564 rclass = cost_classes[k];
565 pp_costs[k]
566 = move_in_cost[rclass][op_class] * frequency;
570 else
572 if (op_class == NO_REGS)
574 mem_cost = ira_memory_move_cost[mode];
575 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
577 rclass = cost_classes[k];
578 pp_costs[k] = ((mem_cost[rclass][0]
579 + mem_cost[rclass][1])
580 * frequency);
583 else
585 move_in_cost = ira_may_move_in_cost[mode];
586 move_out_cost = ira_may_move_out_cost[mode];
587 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
589 rclass = cost_classes[k];
590 pp_costs[k] = ((move_in_cost[rclass][op_class]
591 + move_out_cost[op_class][rclass])
592 * frequency);
597 /* If the alternative actually allows memory, make
598 things a bit cheaper since we won't need an extra
599 insn to load it. */
600 pp->mem_cost
601 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
602 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
603 - allows_mem[i]) * frequency;
605 /* If we have assigned a class to this allocno in
606 our first pass, add a cost to this alternative
607 corresponding to what we would add if this
608 allocno were not in the appropriate class. */
609 if (pref)
611 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
613 if (pref_class == NO_REGS)
614 alt_cost
615 += ((out_p
616 ? ira_memory_move_cost[mode][op_class][0] : 0)
617 + (in_p
618 ? ira_memory_move_cost[mode][op_class][1]
619 : 0));
620 else if (ira_reg_class_intersect
621 [pref_class][op_class] == NO_REGS)
622 alt_cost
623 += ira_register_move_cost[mode][pref_class][op_class];
625 if (REGNO (ops[i]) != REGNO (ops[j])
626 && ! find_reg_note (insn, REG_DEAD, op))
627 alt_cost += 2;
629 /* This is in place of ordinary cost computation for
630 this operand, so skip to the end of the
631 alternative (should be just one character). */
632 while (*p && *p++ != ',')
635 constraints[i] = p;
636 continue;
640 /* Scan all the constraint letters. See if the operand
641 matches any of the constraints. Collect the valid
642 register classes and see if this operand accepts
643 memory. */
644 while ((c = *p))
646 switch (c)
648 case '*':
649 /* Ignore the next letter for this pass. */
650 c = *++p;
651 break;
653 case '?':
654 alt_cost += 2;
655 break;
657 case 'g':
658 if (MEM_P (op)
659 || (CONSTANT_P (op)
660 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
661 win = 1;
662 insn_allows_mem[i] = allows_mem[i] = 1;
663 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
664 break;
666 default:
667 enum constraint_num cn = lookup_constraint (p);
668 enum reg_class cl;
669 switch (get_constraint_type (cn))
671 case CT_REGISTER:
672 cl = reg_class_for_constraint (cn);
673 if (cl != NO_REGS)
674 classes[i] = ira_reg_class_subunion[classes[i]][cl];
675 break;
677 case CT_CONST_INT:
678 if (CONST_INT_P (op)
679 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
680 win = 1;
681 break;
683 case CT_MEMORY:
684 /* Every MEM can be reloaded to fit. */
685 insn_allows_mem[i] = allows_mem[i] = 1;
686 if (MEM_P (op))
687 win = 1;
688 break;
690 case CT_ADDRESS:
691 /* Every address can be reloaded to fit. */
692 allows_addr = 1;
693 if (address_operand (op, GET_MODE (op))
694 || constraint_satisfied_p (op, cn))
695 win = 1;
696 /* We know this operand is an address, so we
697 want it to be allocated to a hard register
698 that can be the base of an address,
699 i.e. BASE_REG_CLASS. */
700 classes[i]
701 = ira_reg_class_subunion[classes[i]]
702 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
703 ADDRESS, SCRATCH)];
704 break;
706 case CT_FIXED_FORM:
707 if (constraint_satisfied_p (op, cn))
708 win = 1;
709 break;
711 break;
713 p += CONSTRAINT_LEN (c, p);
714 if (c == ',')
715 break;
718 constraints[i] = p;
720 /* How we account for this operand now depends on whether it
721 is a pseudo register or not. If it is, we first check if
722 any register classes are valid. If not, we ignore this
723 alternative, since we want to assume that all allocnos get
724 allocated for register preferencing. If some register
725 class is valid, compute the costs of moving the allocno
726 into that class. */
727 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
729 if (classes[i] == NO_REGS && ! allows_mem[i])
731 /* We must always fail if the operand is a REG, but
732 we did not find a suitable class and memory is
733 not allowed.
735 Otherwise we may perform an uninitialized read
736 from this_op_costs after the `continue' statement
737 below. */
738 alt_fail = 1;
740 else
742 unsigned int regno = REGNO (op);
743 struct costs *pp = this_op_costs[i];
744 int *pp_costs = pp->cost;
745 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
746 enum reg_class *cost_classes = cost_classes_ptr->classes;
747 bool in_p = recog_data.operand_type[i] != OP_OUT;
748 bool out_p = recog_data.operand_type[i] != OP_IN;
749 enum reg_class op_class = classes[i];
751 ira_init_register_move_cost_if_necessary (mode);
752 if (! in_p)
754 ira_assert (out_p);
755 if (op_class == NO_REGS)
757 mem_cost = ira_memory_move_cost[mode];
758 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
760 rclass = cost_classes[k];
761 pp_costs[k] = mem_cost[rclass][0] * frequency;
764 else
766 move_out_cost = ira_may_move_out_cost[mode];
767 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
769 rclass = cost_classes[k];
770 pp_costs[k]
771 = move_out_cost[op_class][rclass] * frequency;
775 else if (! out_p)
777 ira_assert (in_p);
778 if (op_class == NO_REGS)
780 mem_cost = ira_memory_move_cost[mode];
781 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
783 rclass = cost_classes[k];
784 pp_costs[k] = mem_cost[rclass][1] * frequency;
787 else
789 move_in_cost = ira_may_move_in_cost[mode];
790 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
792 rclass = cost_classes[k];
793 pp_costs[k]
794 = move_in_cost[rclass][op_class] * frequency;
798 else
800 if (op_class == NO_REGS)
802 mem_cost = ira_memory_move_cost[mode];
803 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
805 rclass = cost_classes[k];
806 pp_costs[k] = ((mem_cost[rclass][0]
807 + mem_cost[rclass][1])
808 * frequency);
811 else
813 move_in_cost = ira_may_move_in_cost[mode];
814 move_out_cost = ira_may_move_out_cost[mode];
815 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
817 rclass = cost_classes[k];
818 pp_costs[k] = ((move_in_cost[rclass][op_class]
819 + move_out_cost[op_class][rclass])
820 * frequency);
825 if (op_class == NO_REGS)
826 /* Although we don't need insn to reload from
827 memory, still accessing memory is usually more
828 expensive than a register. */
829 pp->mem_cost = frequency;
830 else
831 /* If the alternative actually allows memory, make
832 things a bit cheaper since we won't need an
833 extra insn to load it. */
834 pp->mem_cost
835 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
836 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
837 - allows_mem[i]) * frequency;
838 /* If we have assigned a class to this allocno in
839 our first pass, add a cost to this alternative
840 corresponding to what we would add if this
841 allocno were not in the appropriate class. */
842 if (pref)
844 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
846 if (pref_class == NO_REGS)
848 if (op_class != NO_REGS)
849 alt_cost
850 += ((out_p
851 ? ira_memory_move_cost[mode][op_class][0]
852 : 0)
853 + (in_p
854 ? ira_memory_move_cost[mode][op_class][1]
855 : 0));
857 else if (op_class == NO_REGS)
858 alt_cost
859 += ((out_p
860 ? ira_memory_move_cost[mode][pref_class][1]
861 : 0)
862 + (in_p
863 ? ira_memory_move_cost[mode][pref_class][0]
864 : 0));
865 else if (ira_reg_class_intersect[pref_class][op_class]
866 == NO_REGS)
867 alt_cost += (ira_register_move_cost
868 [mode][pref_class][op_class]);
873 /* Otherwise, if this alternative wins, either because we
874 have already determined that or if we have a hard
875 register of the proper class, there is no cost for this
876 alternative. */
877 else if (win || (REG_P (op)
878 && reg_fits_class_p (op, classes[i],
879 0, GET_MODE (op))))
882 /* If registers are valid, the cost of this alternative
883 includes copying the object to and/or from a
884 register. */
885 else if (classes[i] != NO_REGS)
887 if (recog_data.operand_type[i] != OP_OUT)
888 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
890 if (recog_data.operand_type[i] != OP_IN)
891 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
893 /* The only other way this alternative can be used is if
894 this is a constant that could be placed into memory. */
895 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
896 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
897 else
898 alt_fail = 1;
901 if (alt_fail)
902 continue;
904 op_cost_add = alt_cost * frequency;
905 /* Finally, update the costs with the information we've
906 calculated about this alternative. */
907 for (i = 0; i < n_ops; i++)
908 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
910 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
911 int *pp_costs = pp->cost, *qq_costs = qq->cost;
912 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
913 cost_classes_t cost_classes_ptr
914 = regno_cost_classes[REGNO (ops[i])];
916 pp->mem_cost = MIN (pp->mem_cost,
917 (qq->mem_cost + op_cost_add) * scale);
919 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
920 pp_costs[k]
921 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
925 if (allocno_p)
926 for (i = 0; i < n_ops; i++)
928 ira_allocno_t a;
929 rtx op = ops[i];
931 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
932 continue;
933 a = ira_curr_regno_allocno_map [REGNO (op)];
934 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
935 ALLOCNO_BAD_SPILL_P (a) = true;
942 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
943 static inline bool
944 ok_for_index_p_nonstrict (rtx reg)
946 unsigned regno = REGNO (reg);
948 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
951 /* A version of regno_ok_for_base_p for use here, when all
952 pseudo-registers should count as OK. Arguments as for
953 regno_ok_for_base_p. */
954 static inline bool
955 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
956 enum rtx_code outer_code, enum rtx_code index_code)
958 unsigned regno = REGNO (reg);
960 if (regno >= FIRST_PSEUDO_REGISTER)
961 return true;
962 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
965 /* Record the pseudo registers we must reload into hard registers in a
966 subexpression of a memory address, X.
968 If CONTEXT is 0, we are looking at the base part of an address,
969 otherwise we are looking at the index part.
971 MODE and AS are the mode and address space of the memory reference;
972 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
973 These four arguments are passed down to base_reg_class.
975 SCALE is twice the amount to multiply the cost by (it is twice so
976 we can represent half-cost adjustments). */
977 static void
978 record_address_regs (enum machine_mode mode, addr_space_t as, rtx x,
979 int context, enum rtx_code outer_code,
980 enum rtx_code index_code, int scale)
982 enum rtx_code code = GET_CODE (x);
983 enum reg_class rclass;
985 if (context == 1)
986 rclass = INDEX_REG_CLASS;
987 else
988 rclass = base_reg_class (mode, as, outer_code, index_code);
990 switch (code)
992 case CONST_INT:
993 case CONST:
994 case CC0:
995 case PC:
996 case SYMBOL_REF:
997 case LABEL_REF:
998 return;
1000 case PLUS:
1001 /* When we have an address that is a sum, we must determine
1002 whether registers are "base" or "index" regs. If there is a
1003 sum of two registers, we must choose one to be the "base".
1004 Luckily, we can use the REG_POINTER to make a good choice
1005 most of the time. We only need to do this on machines that
1006 can have two registers in an address and where the base and
1007 index register classes are different.
1009 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1010 but that seems bogus since it should only be set when we are
1011 sure the register is being used as a pointer. */
1013 rtx arg0 = XEXP (x, 0);
1014 rtx arg1 = XEXP (x, 1);
1015 enum rtx_code code0 = GET_CODE (arg0);
1016 enum rtx_code code1 = GET_CODE (arg1);
1018 /* Look inside subregs. */
1019 if (code0 == SUBREG)
1020 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1021 if (code1 == SUBREG)
1022 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1024 /* If this machine only allows one register per address, it
1025 must be in the first operand. */
1026 if (MAX_REGS_PER_ADDRESS == 1)
1027 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1029 /* If index and base registers are the same on this machine,
1030 just record registers in any non-constant operands. We
1031 assume here, as well as in the tests below, that all
1032 addresses are in canonical form. */
1033 else if (INDEX_REG_CLASS
1034 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1036 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1037 if (! CONSTANT_P (arg1))
1038 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1041 /* If the second operand is a constant integer, it doesn't
1042 change what class the first operand must be. */
1043 else if (CONST_SCALAR_INT_P (arg1))
1044 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1045 /* If the second operand is a symbolic constant, the first
1046 operand must be an index register. */
1047 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1048 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1049 /* If both operands are registers but one is already a hard
1050 register of index or reg-base class, give the other the
1051 class that the hard register is not. */
1052 else if (code0 == REG && code1 == REG
1053 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1054 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1055 || ok_for_index_p_nonstrict (arg0)))
1056 record_address_regs (mode, as, arg1,
1057 ok_for_base_p_nonstrict (arg0, mode, as,
1058 PLUS, REG) ? 1 : 0,
1059 PLUS, REG, scale);
1060 else if (code0 == REG && code1 == REG
1061 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1062 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1063 || ok_for_index_p_nonstrict (arg1)))
1064 record_address_regs (mode, as, arg0,
1065 ok_for_base_p_nonstrict (arg1, mode, as,
1066 PLUS, REG) ? 1 : 0,
1067 PLUS, REG, scale);
1068 /* If one operand is known to be a pointer, it must be the
1069 base with the other operand the index. Likewise if the
1070 other operand is a MULT. */
1071 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1073 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1074 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1076 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1078 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1079 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1081 /* Otherwise, count equal chances that each might be a base or
1082 index register. This case should be rare. */
1083 else
1085 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1086 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1087 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1088 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1091 break;
1093 /* Double the importance of an allocno that is incremented or
1094 decremented, since it would take two extra insns if it ends
1095 up in the wrong place. */
1096 case POST_MODIFY:
1097 case PRE_MODIFY:
1098 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1099 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1100 if (REG_P (XEXP (XEXP (x, 1), 1)))
1101 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1102 2 * scale);
1103 break;
1105 case POST_INC:
1106 case PRE_INC:
1107 case POST_DEC:
1108 case PRE_DEC:
1109 /* Double the importance of an allocno that is incremented or
1110 decremented, since it would take two extra insns if it ends
1111 up in the wrong place. */
1112 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1113 break;
1115 case REG:
1117 struct costs *pp;
1118 int *pp_costs;
1119 enum reg_class i;
1120 int k, regno, add_cost;
1121 cost_classes_t cost_classes_ptr;
1122 enum reg_class *cost_classes;
1123 move_table *move_in_cost;
1125 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1126 break;
1128 regno = REGNO (x);
1129 if (allocno_p)
1130 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1131 pp = COSTS (costs, COST_INDEX (regno));
1132 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1133 if (INT_MAX - add_cost < pp->mem_cost)
1134 pp->mem_cost = INT_MAX;
1135 else
1136 pp->mem_cost += add_cost;
1137 cost_classes_ptr = regno_cost_classes[regno];
1138 cost_classes = cost_classes_ptr->classes;
1139 pp_costs = pp->cost;
1140 ira_init_register_move_cost_if_necessary (Pmode);
1141 move_in_cost = ira_may_move_in_cost[Pmode];
1142 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1144 i = cost_classes[k];
1145 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1146 if (INT_MAX - add_cost < pp_costs[k])
1147 pp_costs[k] = INT_MAX;
1148 else
1149 pp_costs[k] += add_cost;
1152 break;
1154 default:
1156 const char *fmt = GET_RTX_FORMAT (code);
1157 int i;
1158 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1159 if (fmt[i] == 'e')
1160 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1161 scale);
1168 /* Calculate the costs of insn operands. */
1169 static void
1170 record_operand_costs (rtx insn, enum reg_class *pref)
1172 const char *constraints[MAX_RECOG_OPERANDS];
1173 enum machine_mode modes[MAX_RECOG_OPERANDS];
1174 rtx ops[MAX_RECOG_OPERANDS];
1175 rtx set;
1176 int i;
1178 for (i = 0; i < recog_data.n_operands; i++)
1180 constraints[i] = recog_data.constraints[i];
1181 modes[i] = recog_data.operand_mode[i];
1184 /* If we get here, we are set up to record the costs of all the
1185 operands for this insn. Start by initializing the costs. Then
1186 handle any address registers. Finally record the desired classes
1187 for any allocnos, doing it twice if some pair of operands are
1188 commutative. */
1189 for (i = 0; i < recog_data.n_operands; i++)
1191 memcpy (op_costs[i], init_cost, struct_costs_size);
1193 ops[i] = recog_data.operand[i];
1194 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1195 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1197 if (MEM_P (recog_data.operand[i]))
1198 record_address_regs (GET_MODE (recog_data.operand[i]),
1199 MEM_ADDR_SPACE (recog_data.operand[i]),
1200 XEXP (recog_data.operand[i], 0),
1201 0, MEM, SCRATCH, frequency * 2);
1202 else if (constraints[i][0] == 'p'
1203 || (insn_extra_address_constraint
1204 (lookup_constraint (constraints[i]))))
1205 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1206 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1207 frequency * 2);
1210 /* Check for commutative in a separate loop so everything will have
1211 been initialized. We must do this even if one operand is a
1212 constant--see addsi3 in m68k.md. */
1213 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1214 if (constraints[i][0] == '%')
1216 const char *xconstraints[MAX_RECOG_OPERANDS];
1217 int j;
1219 /* Handle commutative operands by swapping the constraints.
1220 We assume the modes are the same. */
1221 for (j = 0; j < recog_data.n_operands; j++)
1222 xconstraints[j] = constraints[j];
1224 xconstraints[i] = constraints[i+1];
1225 xconstraints[i+1] = constraints[i];
1226 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1227 recog_data.operand, modes,
1228 xconstraints, insn, pref);
1230 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1231 recog_data.operand, modes,
1232 constraints, insn, pref);
1234 /* If this insn is a single set copying operand 1 to operand 0 and
1235 one operand is an allocno with the other a hard reg or an allocno
1236 that prefers a hard register that is in its own register class
1237 then we may want to adjust the cost of that register class to -1.
1239 Avoid the adjustment if the source does not die to avoid
1240 stressing of register allocator by preferrencing two colliding
1241 registers into single class.
1243 Also avoid the adjustment if a copy between hard registers of the
1244 class is expensive (ten times the cost of a default copy is
1245 considered arbitrarily expensive). This avoids losing when the
1246 preferred class is very expensive as the source of a copy
1247 instruction. */
1248 if ((set = single_set (insn)) != NULL_RTX
1249 /* In rare cases the single set insn might have less 2 operands
1250 as the source can be a fixed special reg. */
1251 && recog_data.n_operands > 1
1252 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set))
1254 int regno, other_regno;
1255 rtx dest = SET_DEST (set);
1256 rtx src = SET_SRC (set);
1258 dest = SET_DEST (set);
1259 src = SET_SRC (set);
1260 if (GET_CODE (dest) == SUBREG
1261 && (GET_MODE_SIZE (GET_MODE (dest))
1262 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1263 dest = SUBREG_REG (dest);
1264 if (GET_CODE (src) == SUBREG
1265 && (GET_MODE_SIZE (GET_MODE (src))
1266 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1267 src = SUBREG_REG (src);
1268 if (REG_P (src) && REG_P (dest)
1269 && find_regno_note (insn, REG_DEAD, REGNO (src))
1270 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1271 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1272 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1273 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1275 enum machine_mode mode = GET_MODE (src);
1276 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1277 enum reg_class *cost_classes = cost_classes_ptr->classes;
1278 reg_class_t rclass;
1279 int k, nr;
1281 i = regno == (int) REGNO (src) ? 1 : 0;
1282 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1284 rclass = cost_classes[k];
1285 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1286 && (reg_class_size[(int) rclass]
1287 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
1289 if (reg_class_size[rclass] == 1)
1290 op_costs[i]->cost[k] = -frequency;
1291 else
1293 for (nr = 0;
1294 nr < hard_regno_nregs[other_regno][mode];
1295 nr++)
1296 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
1297 other_regno + nr))
1298 break;
1300 if (nr == hard_regno_nregs[other_regno][mode])
1301 op_costs[i]->cost[k] = -frequency;
1311 /* Process one insn INSN. Scan it and record each time it would save
1312 code to put a certain allocnos in a certain class. Return the last
1313 insn processed, so that the scan can be continued from there. */
1314 static rtx
1315 scan_one_insn (rtx insn)
1317 enum rtx_code pat_code;
1318 rtx set, note;
1319 int i, k;
1320 bool counted_mem;
1322 if (!NONDEBUG_INSN_P (insn))
1323 return insn;
1325 pat_code = GET_CODE (PATTERN (insn));
1326 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT)
1327 return insn;
1329 counted_mem = false;
1330 set = single_set (insn);
1331 extract_insn (insn);
1333 /* If this insn loads a parameter from its stack slot, then it
1334 represents a savings, rather than a cost, if the parameter is
1335 stored in memory. Record this fact.
1337 Similarly if we're loading other constants from memory (constant
1338 pool, TOC references, small data areas, etc) and this is the only
1339 assignment to the destination pseudo.
1341 Don't do this if SET_SRC (set) isn't a general operand, if it is
1342 a memory requiring special instructions to load it, decreasing
1343 mem_cost might result in it being loaded using the specialized
1344 instruction into a register, then stored into stack and loaded
1345 again from the stack. See PR52208.
1347 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1348 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1349 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1350 && ((MEM_P (XEXP (note, 0))
1351 && !side_effects_p (SET_SRC (set)))
1352 || (CONSTANT_P (XEXP (note, 0))
1353 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1354 XEXP (note, 0))
1355 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1356 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1358 enum reg_class cl = GENERAL_REGS;
1359 rtx reg = SET_DEST (set);
1360 int num = COST_INDEX (REGNO (reg));
1362 COSTS (costs, num)->mem_cost
1363 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1364 record_address_regs (GET_MODE (SET_SRC (set)),
1365 MEM_ADDR_SPACE (SET_SRC (set)),
1366 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1367 frequency * 2);
1368 counted_mem = true;
1371 record_operand_costs (insn, pref);
1373 /* Now add the cost for each operand to the total costs for its
1374 allocno. */
1375 for (i = 0; i < recog_data.n_operands; i++)
1376 if (REG_P (recog_data.operand[i])
1377 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1379 int regno = REGNO (recog_data.operand[i]);
1380 struct costs *p = COSTS (costs, COST_INDEX (regno));
1381 struct costs *q = op_costs[i];
1382 int *p_costs = p->cost, *q_costs = q->cost;
1383 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1384 int add_cost;
1386 /* If the already accounted for the memory "cost" above, don't
1387 do so again. */
1388 if (!counted_mem)
1390 add_cost = q->mem_cost;
1391 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1392 p->mem_cost = INT_MAX;
1393 else
1394 p->mem_cost += add_cost;
1396 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1398 add_cost = q_costs[k];
1399 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1400 p_costs[k] = INT_MAX;
1401 else
1402 p_costs[k] += add_cost;
1406 return insn;
1411 /* Print allocnos costs to file F. */
1412 static void
1413 print_allocno_costs (FILE *f)
1415 int k;
1416 ira_allocno_t a;
1417 ira_allocno_iterator ai;
1419 ira_assert (allocno_p);
1420 fprintf (f, "\n");
1421 FOR_EACH_ALLOCNO (a, ai)
1423 int i, rclass;
1424 basic_block bb;
1425 int regno = ALLOCNO_REGNO (a);
1426 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1427 enum reg_class *cost_classes = cost_classes_ptr->classes;
1429 i = ALLOCNO_NUM (a);
1430 fprintf (f, " a%d(r%d,", i, regno);
1431 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1432 fprintf (f, "b%d", bb->index);
1433 else
1434 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1435 fprintf (f, ") costs:");
1436 for (k = 0; k < cost_classes_ptr->num; k++)
1438 rclass = cost_classes[k];
1439 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1440 #ifdef CANNOT_CHANGE_MODE_CLASS
1441 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1442 #endif
1445 fprintf (f, " %s:%d", reg_class_names[rclass],
1446 COSTS (costs, i)->cost[k]);
1447 if (flag_ira_region == IRA_REGION_ALL
1448 || flag_ira_region == IRA_REGION_MIXED)
1449 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1452 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1453 if (flag_ira_region == IRA_REGION_ALL
1454 || flag_ira_region == IRA_REGION_MIXED)
1455 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1456 fprintf (f, "\n");
1460 /* Print pseudo costs to file F. */
1461 static void
1462 print_pseudo_costs (FILE *f)
1464 int regno, k;
1465 int rclass;
1466 cost_classes_t cost_classes_ptr;
1467 enum reg_class *cost_classes;
1469 ira_assert (! allocno_p);
1470 fprintf (f, "\n");
1471 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1473 if (REG_N_REFS (regno) <= 0)
1474 continue;
1475 cost_classes_ptr = regno_cost_classes[regno];
1476 cost_classes = cost_classes_ptr->classes;
1477 fprintf (f, " r%d costs:", regno);
1478 for (k = 0; k < cost_classes_ptr->num; k++)
1480 rclass = cost_classes[k];
1481 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1482 #ifdef CANNOT_CHANGE_MODE_CLASS
1483 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1484 #endif
1486 fprintf (f, " %s:%d", reg_class_names[rclass],
1487 COSTS (costs, regno)->cost[k]);
1489 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1493 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1494 costs. */
1495 static void
1496 process_bb_for_costs (basic_block bb)
1498 rtx insn;
1500 frequency = REG_FREQ_FROM_BB (bb);
1501 if (frequency == 0)
1502 frequency = 1;
1503 FOR_BB_INSNS (bb, insn)
1504 insn = scan_one_insn (insn);
1507 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1508 costs. */
1509 static void
1510 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1512 basic_block bb;
1514 bb = loop_tree_node->bb;
1515 if (bb != NULL)
1516 process_bb_for_costs (bb);
1519 /* Find costs of register classes and memory for allocnos or pseudos
1520 and their best costs. Set up preferred, alternative and allocno
1521 classes for pseudos. */
1522 static void
1523 find_costs_and_classes (FILE *dump_file)
1525 int i, k, start, max_cost_classes_num;
1526 int pass;
1527 basic_block bb;
1528 enum reg_class *regno_best_class;
1530 init_recog ();
1531 regno_best_class
1532 = (enum reg_class *) ira_allocate (max_reg_num ()
1533 * sizeof (enum reg_class));
1534 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1535 regno_best_class[i] = NO_REGS;
1536 if (!resize_reg_info () && allocno_p
1537 && pseudo_classes_defined_p && flag_expensive_optimizations)
1539 ira_allocno_t a;
1540 ira_allocno_iterator ai;
1542 pref = pref_buffer;
1543 max_cost_classes_num = 1;
1544 FOR_EACH_ALLOCNO (a, ai)
1546 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1547 setup_regno_cost_classes_by_aclass
1548 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1549 max_cost_classes_num
1550 = MAX (max_cost_classes_num,
1551 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1553 start = 1;
1555 else
1557 pref = NULL;
1558 max_cost_classes_num = ira_important_classes_num;
1559 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1560 if (regno_reg_rtx[i] != NULL_RTX)
1561 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1562 else
1563 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1564 start = 0;
1566 if (allocno_p)
1567 /* Clear the flag for the next compiled function. */
1568 pseudo_classes_defined_p = false;
1569 /* Normally we scan the insns once and determine the best class to
1570 use for each allocno. However, if -fexpensive-optimizations are
1571 on, we do so twice, the second time using the tentative best
1572 classes to guide the selection. */
1573 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1575 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1576 fprintf (dump_file,
1577 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1579 if (pass != start)
1581 max_cost_classes_num = 1;
1582 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1584 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1585 max_cost_classes_num
1586 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1590 struct_costs_size
1591 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1592 /* Zero out our accumulation of the cost of each class for each
1593 allocno. */
1594 memset (costs, 0, cost_elements_num * struct_costs_size);
1596 if (allocno_p)
1598 /* Scan the instructions and record each time it would save code
1599 to put a certain allocno in a certain class. */
1600 ira_traverse_loop_tree (true, ira_loop_tree_root,
1601 process_bb_node_for_costs, NULL);
1603 memcpy (total_allocno_costs, costs,
1604 max_struct_costs_size * ira_allocnos_num);
1606 else
1608 basic_block bb;
1610 FOR_EACH_BB_FN (bb, cfun)
1611 process_bb_for_costs (bb);
1614 if (pass == 0)
1615 pref = pref_buffer;
1617 /* Now for each allocno look at how desirable each class is and
1618 find which class is preferred. */
1619 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1621 ira_allocno_t a, parent_a;
1622 int rclass, a_num, parent_a_num, add_cost;
1623 ira_loop_tree_node_t parent;
1624 int best_cost, allocno_cost;
1625 enum reg_class best, alt_class;
1626 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1627 enum reg_class *cost_classes = cost_classes_ptr->classes;
1628 int *i_costs = temp_costs->cost;
1629 int i_mem_cost;
1630 int equiv_savings = regno_equiv_gains[i];
1632 if (! allocno_p)
1634 if (regno_reg_rtx[i] == NULL_RTX)
1635 continue;
1636 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1637 i_mem_cost = temp_costs->mem_cost;
1639 else
1641 if (ira_regno_allocno_map[i] == NULL)
1642 continue;
1643 memset (temp_costs, 0, struct_costs_size);
1644 i_mem_cost = 0;
1645 /* Find cost of all allocnos with the same regno. */
1646 for (a = ira_regno_allocno_map[i];
1647 a != NULL;
1648 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1650 int *a_costs, *p_costs;
1652 a_num = ALLOCNO_NUM (a);
1653 if ((flag_ira_region == IRA_REGION_ALL
1654 || flag_ira_region == IRA_REGION_MIXED)
1655 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1656 && (parent_a = parent->regno_allocno_map[i]) != NULL
1657 /* There are no caps yet. */
1658 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1659 (a)->border_allocnos,
1660 ALLOCNO_NUM (a)))
1662 /* Propagate costs to upper levels in the region
1663 tree. */
1664 parent_a_num = ALLOCNO_NUM (parent_a);
1665 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1666 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1667 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1669 add_cost = a_costs[k];
1670 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1671 p_costs[k] = INT_MAX;
1672 else
1673 p_costs[k] += add_cost;
1675 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1676 if (add_cost > 0
1677 && (INT_MAX - add_cost
1678 < COSTS (total_allocno_costs,
1679 parent_a_num)->mem_cost))
1680 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1681 = INT_MAX;
1682 else
1683 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1684 += add_cost;
1686 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1687 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1689 a_costs = COSTS (costs, a_num)->cost;
1690 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1692 add_cost = a_costs[k];
1693 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1694 i_costs[k] = INT_MAX;
1695 else
1696 i_costs[k] += add_cost;
1698 add_cost = COSTS (costs, a_num)->mem_cost;
1699 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1700 i_mem_cost = INT_MAX;
1701 else
1702 i_mem_cost += add_cost;
1705 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1706 i_mem_cost = 0;
1707 else if (equiv_savings < 0)
1708 i_mem_cost = -equiv_savings;
1709 else if (equiv_savings > 0)
1711 i_mem_cost = 0;
1712 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1713 i_costs[k] += equiv_savings;
1716 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1717 best = ALL_REGS;
1718 alt_class = NO_REGS;
1719 /* Find best common class for all allocnos with the same
1720 regno. */
1721 for (k = 0; k < cost_classes_ptr->num; k++)
1723 rclass = cost_classes[k];
1724 /* Ignore classes that are too small or invalid for this
1725 operand. */
1726 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1727 #ifdef CANNOT_CHANGE_MODE_CLASS
1728 || invalid_mode_change_p (i, (enum reg_class) rclass)
1729 #endif
1731 continue;
1732 if (i_costs[k] < best_cost)
1734 best_cost = i_costs[k];
1735 best = (enum reg_class) rclass;
1737 else if (i_costs[k] == best_cost)
1738 best = ira_reg_class_subunion[best][rclass];
1739 if (pass == flag_expensive_optimizations
1740 /* We still prefer registers to memory even at this
1741 stage if their costs are the same. We will make
1742 a final decision during assigning hard registers
1743 when we have all info including more accurate
1744 costs which might be affected by assigning hard
1745 registers to other pseudos because the pseudos
1746 involved in moves can be coalesced. */
1747 && i_costs[k] <= i_mem_cost
1748 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1749 > reg_class_size[alt_class]))
1750 alt_class = reg_class_subunion[alt_class][rclass];
1752 alt_class = ira_allocno_class_translate[alt_class];
1753 if (best_cost > i_mem_cost)
1754 regno_aclass[i] = NO_REGS;
1755 else
1757 /* Make the common class the biggest class of best and
1758 alt_class. */
1759 regno_aclass[i]
1760 = ira_reg_class_superunion[best][alt_class];
1761 ira_assert (regno_aclass[i] != NO_REGS
1762 && ira_reg_allocno_class_p[regno_aclass[i]]);
1764 if (pass == flag_expensive_optimizations)
1766 if (best_cost > i_mem_cost)
1767 best = alt_class = NO_REGS;
1768 else if (best == alt_class)
1769 alt_class = NO_REGS;
1770 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1771 if ((!allocno_p || internal_flag_ira_verbose > 2)
1772 && dump_file != NULL)
1773 fprintf (dump_file,
1774 " r%d: preferred %s, alternative %s, allocno %s\n",
1775 i, reg_class_names[best], reg_class_names[alt_class],
1776 reg_class_names[regno_aclass[i]]);
1778 regno_best_class[i] = best;
1779 if (! allocno_p)
1781 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1782 continue;
1784 for (a = ira_regno_allocno_map[i];
1785 a != NULL;
1786 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1788 enum reg_class aclass = regno_aclass[i];
1789 int a_num = ALLOCNO_NUM (a);
1790 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1791 int *a_costs = COSTS (costs, a_num)->cost;
1793 if (aclass == NO_REGS)
1794 best = NO_REGS;
1795 else
1797 /* Finding best class which is subset of the common
1798 class. */
1799 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1800 allocno_cost = best_cost;
1801 best = ALL_REGS;
1802 for (k = 0; k < cost_classes_ptr->num; k++)
1804 rclass = cost_classes[k];
1805 if (! ira_class_subset_p[rclass][aclass])
1806 continue;
1807 /* Ignore classes that are too small or invalid
1808 for this operand. */
1809 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1810 #ifdef CANNOT_CHANGE_MODE_CLASS
1811 || invalid_mode_change_p (i, (enum reg_class) rclass)
1812 #endif
1815 else if (total_a_costs[k] < best_cost)
1817 best_cost = total_a_costs[k];
1818 allocno_cost = a_costs[k];
1819 best = (enum reg_class) rclass;
1821 else if (total_a_costs[k] == best_cost)
1823 best = ira_reg_class_subunion[best][rclass];
1824 allocno_cost = MAX (allocno_cost, a_costs[k]);
1827 ALLOCNO_CLASS_COST (a) = allocno_cost;
1829 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1830 && (pass == 0 || pref[a_num] != best))
1832 fprintf (dump_file, " a%d (r%d,", a_num, i);
1833 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1834 fprintf (dump_file, "b%d", bb->index);
1835 else
1836 fprintf (dump_file, "l%d",
1837 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1838 fprintf (dump_file, ") best %s, allocno %s\n",
1839 reg_class_names[best],
1840 reg_class_names[aclass]);
1842 pref[a_num] = best;
1843 if (pass == flag_expensive_optimizations && best != aclass
1844 && ira_class_hard_regs_num[best] > 0
1845 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1846 >= ira_class_hard_regs_num[best]))
1848 int ind = cost_classes_ptr->index[aclass];
1850 ira_assert (ind >= 0);
1851 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
1852 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
1853 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
1854 / (ira_register_move_cost
1855 [ALLOCNO_MODE (a)][best][aclass]));
1856 for (k = 0; k < cost_classes_ptr->num; k++)
1857 if (ira_class_subset_p[cost_classes[k]][best])
1858 a_costs[k] = a_costs[ind];
1863 if (internal_flag_ira_verbose > 4 && dump_file)
1865 if (allocno_p)
1866 print_allocno_costs (dump_file);
1867 else
1868 print_pseudo_costs (dump_file);
1869 fprintf (dump_file,"\n");
1872 ira_free (regno_best_class);
1877 /* Process moves involving hard regs to modify allocno hard register
1878 costs. We can do this only after determining allocno class. If a
1879 hard register forms a register class, then moves with the hard
1880 register are already taken into account in class costs for the
1881 allocno. */
1882 static void
1883 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1885 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
1886 bool to_p;
1887 ira_allocno_t a, curr_a;
1888 ira_loop_tree_node_t curr_loop_tree_node;
1889 enum reg_class rclass;
1890 basic_block bb;
1891 rtx insn, set, src, dst;
1893 bb = loop_tree_node->bb;
1894 if (bb == NULL)
1895 return;
1896 freq = REG_FREQ_FROM_BB (bb);
1897 if (freq == 0)
1898 freq = 1;
1899 FOR_BB_INSNS (bb, insn)
1901 if (!NONDEBUG_INSN_P (insn))
1902 continue;
1903 set = single_set (insn);
1904 if (set == NULL_RTX)
1905 continue;
1906 dst = SET_DEST (set);
1907 src = SET_SRC (set);
1908 if (! REG_P (dst) || ! REG_P (src))
1909 continue;
1910 dst_regno = REGNO (dst);
1911 src_regno = REGNO (src);
1912 if (dst_regno >= FIRST_PSEUDO_REGISTER
1913 && src_regno < FIRST_PSEUDO_REGISTER)
1915 hard_regno = src_regno;
1916 a = ira_curr_regno_allocno_map[dst_regno];
1917 to_p = true;
1919 else if (src_regno >= FIRST_PSEUDO_REGISTER
1920 && dst_regno < FIRST_PSEUDO_REGISTER)
1922 hard_regno = dst_regno;
1923 a = ira_curr_regno_allocno_map[src_regno];
1924 to_p = false;
1926 else
1927 continue;
1928 rclass = ALLOCNO_CLASS (a);
1929 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1930 continue;
1931 i = ira_class_hard_reg_index[rclass][hard_regno];
1932 if (i < 0)
1933 continue;
1934 a_regno = ALLOCNO_REGNO (a);
1935 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
1936 curr_loop_tree_node != NULL;
1937 curr_loop_tree_node = curr_loop_tree_node->parent)
1938 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
1939 ira_add_allocno_pref (curr_a, hard_regno, freq);
1941 int cost;
1942 enum reg_class hard_reg_class;
1943 enum machine_mode mode;
1945 mode = ALLOCNO_MODE (a);
1946 hard_reg_class = REGNO_REG_CLASS (hard_regno);
1947 ira_init_register_move_cost_if_necessary (mode);
1948 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
1949 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
1950 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1951 ALLOCNO_CLASS_COST (a));
1952 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1953 rclass, 0);
1954 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1955 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1956 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
1957 ALLOCNO_HARD_REG_COSTS (a)[i]);
1962 /* After we find hard register and memory costs for allocnos, define
1963 its class and modify hard register cost because insns moving
1964 allocno to/from hard registers. */
1965 static void
1966 setup_allocno_class_and_costs (void)
1968 int i, j, n, regno, hard_regno, num;
1969 int *reg_costs;
1970 enum reg_class aclass, rclass;
1971 ira_allocno_t a;
1972 ira_allocno_iterator ai;
1973 cost_classes_t cost_classes_ptr;
1975 ira_assert (allocno_p);
1976 FOR_EACH_ALLOCNO (a, ai)
1978 i = ALLOCNO_NUM (a);
1979 regno = ALLOCNO_REGNO (a);
1980 aclass = regno_aclass[regno];
1981 cost_classes_ptr = regno_cost_classes[regno];
1982 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
1983 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
1984 ira_set_allocno_class (a, aclass);
1985 if (aclass == NO_REGS)
1986 continue;
1987 if (optimize && ALLOCNO_CLASS (a) != pref[i])
1989 n = ira_class_hard_regs_num[aclass];
1990 ALLOCNO_HARD_REG_COSTS (a)
1991 = reg_costs = ira_allocate_cost_vector (aclass);
1992 for (j = n - 1; j >= 0; j--)
1994 hard_regno = ira_class_hard_regs[aclass][j];
1995 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
1996 reg_costs[j] = ALLOCNO_CLASS_COST (a);
1997 else
1999 rclass = REGNO_REG_CLASS (hard_regno);
2000 num = cost_classes_ptr->index[rclass];
2001 if (num < 0)
2003 num = cost_classes_ptr->hard_regno_index[hard_regno];
2004 ira_assert (num >= 0);
2006 reg_costs[j] = COSTS (costs, i)->cost[num];
2011 if (optimize)
2012 ira_traverse_loop_tree (true, ira_loop_tree_root,
2013 process_bb_node_for_hard_reg_moves, NULL);
2018 /* Function called once during compiler work. */
2019 void
2020 ira_init_costs_once (void)
2022 int i;
2024 init_cost = NULL;
2025 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2027 op_costs[i] = NULL;
2028 this_op_costs[i] = NULL;
2030 temp_costs = NULL;
2033 /* Free allocated temporary cost vectors. */
2034 static void
2035 free_ira_costs (void)
2037 int i;
2039 free (init_cost);
2040 init_cost = NULL;
2041 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2043 free (op_costs[i]);
2044 free (this_op_costs[i]);
2045 op_costs[i] = this_op_costs[i] = NULL;
2047 free (temp_costs);
2048 temp_costs = NULL;
2051 /* This is called each time register related information is
2052 changed. */
2053 void
2054 ira_init_costs (void)
2056 int i;
2058 free_ira_costs ();
2059 max_struct_costs_size
2060 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2061 /* Don't use ira_allocate because vectors live through several IRA
2062 calls. */
2063 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2064 init_cost->mem_cost = 1000000;
2065 for (i = 0; i < ira_important_classes_num; i++)
2066 init_cost->cost[i] = 1000000;
2067 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2069 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2070 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2072 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2075 /* Function called once at the end of compiler work. */
2076 void
2077 ira_finish_costs_once (void)
2079 free_ira_costs ();
2084 /* Common initialization function for ira_costs and
2085 ira_set_pseudo_classes. */
2086 static void
2087 init_costs (void)
2089 init_subregs_of_mode ();
2090 costs = (struct costs *) ira_allocate (max_struct_costs_size
2091 * cost_elements_num);
2092 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2093 * cost_elements_num);
2094 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2095 * max_reg_num ());
2096 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2097 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2100 /* Common finalization function for ira_costs and
2101 ira_set_pseudo_classes. */
2102 static void
2103 finish_costs (void)
2105 finish_subregs_of_mode ();
2106 ira_free (regno_equiv_gains);
2107 ira_free (regno_aclass);
2108 ira_free (pref_buffer);
2109 ira_free (costs);
2112 /* Entry function which defines register class, memory and hard
2113 register costs for each allocno. */
2114 void
2115 ira_costs (void)
2117 allocno_p = true;
2118 cost_elements_num = ira_allocnos_num;
2119 init_costs ();
2120 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2121 * ira_allocnos_num);
2122 initiate_regno_cost_classes ();
2123 calculate_elim_costs_all_insns ();
2124 find_costs_and_classes (ira_dump_file);
2125 setup_allocno_class_and_costs ();
2126 finish_regno_cost_classes ();
2127 finish_costs ();
2128 ira_free (total_allocno_costs);
2131 /* Entry function which defines classes for pseudos.
2132 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2133 void
2134 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2136 allocno_p = false;
2137 internal_flag_ira_verbose = flag_ira_verbose;
2138 cost_elements_num = max_reg_num ();
2139 init_costs ();
2140 initiate_regno_cost_classes ();
2141 find_costs_and_classes (dump_file);
2142 finish_regno_cost_classes ();
2143 if (define_pseudo_classes)
2144 pseudo_classes_defined_p = true;
2146 finish_costs ();
2151 /* Change hard register costs for allocnos which lives through
2152 function calls. This is called only when we found all intersected
2153 calls during building allocno live ranges. */
2154 void
2155 ira_tune_allocno_costs (void)
2157 int j, n, regno;
2158 int cost, min_cost, *reg_costs;
2159 enum reg_class aclass, rclass;
2160 enum machine_mode mode;
2161 ira_allocno_t a;
2162 ira_allocno_iterator ai;
2163 ira_allocno_object_iterator oi;
2164 ira_object_t obj;
2165 bool skip_p;
2166 HARD_REG_SET *crossed_calls_clobber_regs;
2168 FOR_EACH_ALLOCNO (a, ai)
2170 aclass = ALLOCNO_CLASS (a);
2171 if (aclass == NO_REGS)
2172 continue;
2173 mode = ALLOCNO_MODE (a);
2174 n = ira_class_hard_regs_num[aclass];
2175 min_cost = INT_MAX;
2176 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2177 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2179 ira_allocate_and_set_costs
2180 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2181 ALLOCNO_CLASS_COST (a));
2182 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2183 for (j = n - 1; j >= 0; j--)
2185 regno = ira_class_hard_regs[aclass][j];
2186 skip_p = false;
2187 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2189 if (ira_hard_reg_set_intersection_p (regno, mode,
2190 OBJECT_CONFLICT_HARD_REGS
2191 (obj)))
2193 skip_p = true;
2194 break;
2197 if (skip_p)
2198 continue;
2199 rclass = REGNO_REG_CLASS (regno);
2200 cost = 0;
2201 crossed_calls_clobber_regs
2202 = &(ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2203 if (ira_hard_reg_set_intersection_p (regno, mode,
2204 *crossed_calls_clobber_regs))
2206 if (ira_hard_reg_set_intersection_p (regno, mode,
2207 call_used_reg_set)
2208 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
2209 cost += (ALLOCNO_CALL_FREQ (a)
2210 * (ira_memory_move_cost[mode][rclass][0]
2211 + ira_memory_move_cost[mode][rclass][1]));
2212 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2213 cost += ((ira_memory_move_cost[mode][rclass][0]
2214 + ira_memory_move_cost[mode][rclass][1])
2215 * ALLOCNO_FREQ (a)
2216 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2217 #endif
2219 if (INT_MAX - cost < reg_costs[j])
2220 reg_costs[j] = INT_MAX;
2221 else
2222 reg_costs[j] += cost;
2223 if (min_cost > reg_costs[j])
2224 min_cost = reg_costs[j];
2227 if (min_cost != INT_MAX)
2228 ALLOCNO_CLASS_COST (a) = min_cost;
2230 /* Some targets allow pseudos to be allocated to unaligned sequences
2231 of hard registers. However, selecting an unaligned sequence can
2232 unnecessarily restrict later allocations. So increase the cost of
2233 unaligned hard regs to encourage the use of aligned hard regs. */
2235 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2237 if (nregs > 1)
2239 ira_allocate_and_set_costs
2240 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2241 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2242 for (j = n - 1; j >= 0; j--)
2244 regno = ira_non_ordered_class_hard_regs[aclass][j];
2245 if ((regno % nregs) != 0)
2247 int index = ira_class_hard_reg_index[aclass][regno];
2248 ira_assert (index != -1);
2249 reg_costs[index] += ALLOCNO_FREQ (a);
2257 /* Add COST to the estimated gain for eliminating REGNO with its
2258 equivalence. If COST is zero, record that no such elimination is
2259 possible. */
2261 void
2262 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2264 if (cost == 0)
2265 regno_equiv_gains[regno] = 0;
2266 else
2267 regno_equiv_gains[regno] += cost;