1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
34 #include "addresses.h"
40 #include "basic-block.h"
45 #include "tree-pass.h"
48 #ifndef STACK_PUSH_CODE
49 #ifdef STACK_GROWS_DOWNWARD
50 #define STACK_PUSH_CODE PRE_DEC
52 #define STACK_PUSH_CODE PRE_INC
56 #ifndef STACK_POP_CODE
57 #ifdef STACK_GROWS_DOWNWARD
58 #define STACK_POP_CODE POST_INC
60 #define STACK_POP_CODE POST_DEC
64 #ifndef HAVE_ATTR_enabled
66 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED
)
72 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx
, bool);
73 static void validate_replace_src_1 (rtx
*, void *);
74 static rtx
split_insn (rtx
);
76 /* Nonzero means allow operands to be volatile.
77 This should be 0 if you are generating rtl, such as if you are calling
78 the functions in optabs.c and expmed.c (most of the time).
79 This should be 1 if all valid insns need to be recognized,
80 such as in regclass.c and final.c and reload.c.
82 init_recog and init_recog_no_volatile are responsible for setting this. */
86 struct recog_data recog_data
;
88 /* Contains a vector of operand_alternative structures for every operand.
89 Set up by preprocess_constraints. */
90 struct operand_alternative recog_op_alt
[MAX_RECOG_OPERANDS
][MAX_RECOG_ALTERNATIVES
];
92 /* On return from `constrain_operands', indicate which alternative
95 int which_alternative
;
97 /* Nonzero after end of reload pass.
98 Set to 1 or 0 by toplev.c.
99 Controls the significance of (SUBREG (MEM)). */
101 int reload_completed
;
103 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
104 int epilogue_completed
;
106 /* Initialize data used by the function `recog'.
107 This must be called once in the compilation of a function
108 before any insn recognition may be done in the function. */
111 init_recog_no_volatile (void)
123 /* Check that X is an insn-body for an `asm' with operands
124 and that the operands mentioned in it are legitimate. */
127 check_asm_operands (rtx x
)
131 const char **constraints
;
134 /* Post-reload, be more strict with things. */
135 if (reload_completed
)
137 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
138 extract_insn (make_insn_raw (x
));
139 constrain_operands (1);
140 return which_alternative
>= 0;
143 noperands
= asm_noperands (x
);
149 operands
= XALLOCAVEC (rtx
, noperands
);
150 constraints
= XALLOCAVEC (const char *, noperands
);
152 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
, NULL
);
154 for (i
= 0; i
< noperands
; i
++)
156 const char *c
= constraints
[i
];
159 if (! asm_operand_ok (operands
[i
], c
, constraints
))
166 /* Static data for the next two routines. */
168 typedef struct change_t
177 static change_t
*changes
;
178 static int changes_allocated
;
180 static int num_changes
= 0;
182 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
183 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
184 the change is simply made.
186 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
187 will be called with the address and mode as parameters. If OBJECT is
188 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
191 IN_GROUP is nonzero if this is part of a group of changes that must be
192 performed as a group. In that case, the changes will be stored. The
193 function `apply_change_group' will validate and apply the changes.
195 If IN_GROUP is zero, this is a single change. Try to recognize the insn
196 or validate the memory reference with the change applied. If the result
197 is not valid for the machine, suppress the change and return zero.
198 Otherwise, perform the change and return 1. */
201 validate_change_1 (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
, bool unshare
)
205 if (old
== new_rtx
|| rtx_equal_p (old
, new_rtx
))
208 gcc_assert (in_group
!= 0 || num_changes
== 0);
212 /* Save the information describing this change. */
213 if (num_changes
>= changes_allocated
)
215 if (changes_allocated
== 0)
216 /* This value allows for repeated substitutions inside complex
217 indexed addresses, or changes in up to 5 insns. */
218 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
220 changes_allocated
*= 2;
222 changes
= XRESIZEVEC (change_t
, changes
, changes_allocated
);
225 changes
[num_changes
].object
= object
;
226 changes
[num_changes
].loc
= loc
;
227 changes
[num_changes
].old
= old
;
228 changes
[num_changes
].unshare
= unshare
;
230 if (object
&& !MEM_P (object
))
232 /* Set INSN_CODE to force rerecognition of insn. Save old code in
234 changes
[num_changes
].old_code
= INSN_CODE (object
);
235 INSN_CODE (object
) = -1;
240 /* If we are making a group of changes, return 1. Otherwise, validate the
241 change group we made. */
246 return apply_change_group ();
249 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
253 validate_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
255 return validate_change_1 (object
, loc
, new_rtx
, in_group
, false);
258 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
262 validate_unshare_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
264 return validate_change_1 (object
, loc
, new_rtx
, in_group
, true);
268 /* Keep X canonicalized if some changes have made it non-canonical; only
269 modifies the operands of X, not (for example) its code. Simplifications
270 are not the job of this routine.
272 Return true if anything was changed. */
274 canonicalize_change_group (rtx insn
, rtx x
)
276 if (COMMUTATIVE_P (x
)
277 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
279 /* Oops, the caller has made X no longer canonical.
280 Let's redo the changes in the correct order. */
281 rtx tem
= XEXP (x
, 0);
282 validate_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
283 validate_change (insn
, &XEXP (x
, 1), tem
, 1);
291 /* This subroutine of apply_change_group verifies whether the changes to INSN
292 were valid; i.e. whether INSN can still be recognized. */
295 insn_invalid_p (rtx insn
)
297 rtx pat
= PATTERN (insn
);
298 int num_clobbers
= 0;
299 /* If we are before reload and the pattern is a SET, see if we can add
301 int icode
= recog (pat
, insn
,
302 (GET_CODE (pat
) == SET
303 && ! reload_completed
&& ! reload_in_progress
)
304 ? &num_clobbers
: 0);
305 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
308 /* If this is an asm and the operand aren't legal, then fail. Likewise if
309 this is not an asm and the insn wasn't recognized. */
310 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
311 || (!is_asm
&& icode
< 0))
314 /* If we have to add CLOBBERs, fail if we have to add ones that reference
315 hard registers since our callers can't know if they are live or not.
316 Otherwise, add them. */
317 if (num_clobbers
> 0)
321 if (added_clobbers_hard_reg_p (icode
))
324 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
325 XVECEXP (newpat
, 0, 0) = pat
;
326 add_clobbers (newpat
, icode
);
327 PATTERN (insn
) = pat
= newpat
;
330 /* After reload, verify that all constraints are satisfied. */
331 if (reload_completed
)
335 if (! constrain_operands (1))
339 INSN_CODE (insn
) = icode
;
343 /* Return number of changes made and not validated yet. */
345 num_changes_pending (void)
350 /* Tentatively apply the changes numbered NUM and up.
351 Return 1 if all changes are valid, zero otherwise. */
354 verify_changes (int num
)
357 rtx last_validated
= NULL_RTX
;
359 /* The changes have been applied and all INSN_CODEs have been reset to force
362 The changes are valid if we aren't given an object, or if we are
363 given a MEM and it still is a valid address, or if this is in insn
364 and it is recognized. In the latter case, if reload has completed,
365 we also require that the operands meet the constraints for
368 for (i
= num
; i
< num_changes
; i
++)
370 rtx object
= changes
[i
].object
;
372 /* If there is no object to test or if it is the same as the one we
373 already tested, ignore it. */
374 if (object
== 0 || object
== last_validated
)
379 if (! memory_address_p (GET_MODE (object
), XEXP (object
, 0)))
382 else if (insn_invalid_p (object
))
384 rtx pat
= PATTERN (object
);
386 /* Perhaps we couldn't recognize the insn because there were
387 extra CLOBBERs at the end. If so, try to re-recognize
388 without the last CLOBBER (later iterations will cause each of
389 them to be eliminated, in turn). But don't do this if we
390 have an ASM_OPERAND. */
391 if (GET_CODE (pat
) == PARALLEL
392 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
393 && asm_noperands (PATTERN (object
)) < 0)
397 if (XVECLEN (pat
, 0) == 2)
398 newpat
= XVECEXP (pat
, 0, 0);
404 = gen_rtx_PARALLEL (VOIDmode
,
405 rtvec_alloc (XVECLEN (pat
, 0) - 1));
406 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
407 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
410 /* Add a new change to this group to replace the pattern
411 with this new pattern. Then consider this change
412 as having succeeded. The change we added will
413 cause the entire call to fail if things remain invalid.
415 Note that this can lose if a later change than the one
416 we are processing specified &XVECEXP (PATTERN (object), 0, X)
417 but this shouldn't occur. */
419 validate_change (object
, &PATTERN (object
), newpat
, 1);
422 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
423 /* If this insn is a CLOBBER or USE, it is always valid, but is
429 last_validated
= object
;
432 return (i
== num_changes
);
435 /* A group of changes has previously been issued with validate_change
436 and verified with verify_changes. Call df_insn_rescan for each of
437 the insn changed and clear num_changes. */
440 confirm_change_group (void)
443 rtx last_object
= NULL
;
445 for (i
= 0; i
< num_changes
; i
++)
447 rtx object
= changes
[i
].object
;
449 if (changes
[i
].unshare
)
450 *changes
[i
].loc
= copy_rtx (*changes
[i
].loc
);
452 /* Avoid unnecessary rescanning when multiple changes to same instruction
456 if (object
!= last_object
&& last_object
&& INSN_P (last_object
))
457 df_insn_rescan (last_object
);
458 last_object
= object
;
462 if (last_object
&& INSN_P (last_object
))
463 df_insn_rescan (last_object
);
467 /* Apply a group of changes previously issued with `validate_change'.
468 If all changes are valid, call confirm_change_group and return 1,
469 otherwise, call cancel_changes and return 0. */
472 apply_change_group (void)
474 if (verify_changes (0))
476 confirm_change_group ();
487 /* Return the number of changes so far in the current group. */
490 num_validated_changes (void)
495 /* Retract the changes numbered NUM and up. */
498 cancel_changes (int num
)
502 /* Back out all the changes. Do this in the opposite order in which
504 for (i
= num_changes
- 1; i
>= num
; i
--)
506 *changes
[i
].loc
= changes
[i
].old
;
507 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
508 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
513 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
517 simplify_while_replacing (rtx
*loc
, rtx to
, rtx object
,
518 enum machine_mode op0_mode
)
521 enum rtx_code code
= GET_CODE (x
);
524 if (SWAPPABLE_OPERANDS_P (x
)
525 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
527 validate_unshare_change (object
, loc
,
528 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
529 : swap_condition (code
),
530 GET_MODE (x
), XEXP (x
, 1),
539 /* If we have a PLUS whose second operand is now a CONST_INT, use
540 simplify_gen_binary to try to simplify it.
541 ??? We may want later to remove this, once simplification is
542 separated from this function. */
543 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& XEXP (x
, 1) == to
)
544 validate_change (object
, loc
,
546 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
549 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
550 || GET_CODE (XEXP (x
, 1)) == CONST_DOUBLE
)
551 validate_change (object
, loc
,
553 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
554 simplify_gen_unary (NEG
,
555 GET_MODE (x
), XEXP (x
, 1),
560 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
562 new_rtx
= simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
564 /* If any of the above failed, substitute in something that
565 we know won't be recognized. */
567 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
568 validate_change (object
, loc
, new_rtx
, 1);
572 /* All subregs possible to simplify should be simplified. */
573 new_rtx
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
576 /* Subregs of VOIDmode operands are incorrect. */
577 if (!new_rtx
&& GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
578 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
580 validate_change (object
, loc
, new_rtx
, 1);
584 /* If we are replacing a register with memory, try to change the memory
585 to be the mode required for memory in extract operations (this isn't
586 likely to be an insertion operation; if it was, nothing bad will
587 happen, we might just fail in some cases). */
589 if (MEM_P (XEXP (x
, 0))
590 && GET_CODE (XEXP (x
, 1)) == CONST_INT
591 && GET_CODE (XEXP (x
, 2)) == CONST_INT
592 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0))
593 && !MEM_VOLATILE_P (XEXP (x
, 0)))
595 enum machine_mode wanted_mode
= VOIDmode
;
596 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
597 int pos
= INTVAL (XEXP (x
, 2));
599 if (GET_CODE (x
) == ZERO_EXTRACT
)
601 enum machine_mode new_mode
602 = mode_for_extraction (EP_extzv
, 1);
603 if (new_mode
!= MAX_MACHINE_MODE
)
604 wanted_mode
= new_mode
;
606 else if (GET_CODE (x
) == SIGN_EXTRACT
)
608 enum machine_mode new_mode
609 = mode_for_extraction (EP_extv
, 1);
610 if (new_mode
!= MAX_MACHINE_MODE
)
611 wanted_mode
= new_mode
;
614 /* If we have a narrower mode, we can do something. */
615 if (wanted_mode
!= VOIDmode
616 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
618 int offset
= pos
/ BITS_PER_UNIT
;
621 /* If the bytes and bits are counted differently, we
622 must adjust the offset. */
623 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
625 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
628 pos
%= GET_MODE_BITSIZE (wanted_mode
);
630 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
632 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
633 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
644 /* Replace every occurrence of FROM in X with TO. Mark each change with
645 validate_change passing OBJECT. */
648 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx object
,
655 enum machine_mode op0_mode
= VOIDmode
;
656 int prev_changes
= num_changes
;
662 fmt
= GET_RTX_FORMAT (code
);
664 op0_mode
= GET_MODE (XEXP (x
, 0));
666 /* X matches FROM if it is the same rtx or they are both referring to the
667 same register in the same mode. Avoid calling rtx_equal_p unless the
668 operands look similar. */
671 || (REG_P (x
) && REG_P (from
)
672 && GET_MODE (x
) == GET_MODE (from
)
673 && REGNO (x
) == REGNO (from
))
674 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
675 && rtx_equal_p (x
, from
)))
677 validate_unshare_change (object
, loc
, to
, 1);
681 /* Call ourself recursively to perform the replacements.
682 We must not replace inside already replaced expression, otherwise we
683 get infinite recursion for replacements like (reg X)->(subreg (reg X))
684 done by regmove, so we must special case shared ASM_OPERANDS. */
686 if (GET_CODE (x
) == PARALLEL
)
688 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
690 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
691 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
693 /* Verify that operands are really shared. */
694 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0)))
695 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
697 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
698 from
, to
, object
, simplify
);
701 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
,
706 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
709 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
, simplify
);
710 else if (fmt
[i
] == 'E')
711 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
712 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
,
716 /* If we didn't substitute, there is nothing more to do. */
717 if (num_changes
== prev_changes
)
720 /* Allow substituted expression to have different mode. This is used by
721 regmove to change mode of pseudo register. */
722 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
723 op0_mode
= GET_MODE (XEXP (x
, 0));
725 /* Do changes needed to keep rtx consistent. Don't do any other
726 simplifications, as it is not our job. */
728 simplify_while_replacing (loc
, to
, object
, op0_mode
);
731 /* Try replacing every occurrence of FROM in INSN with TO. After all
732 changes have been made, validate by seeing if INSN is still valid. */
735 validate_replace_rtx (rtx from
, rtx to
, rtx insn
)
737 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
738 return apply_change_group ();
741 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
742 is a part of INSN. After all changes have been made, validate by seeing if
744 validate_replace_rtx (from, to, insn) is equivalent to
745 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
748 validate_replace_rtx_part (rtx from
, rtx to
, rtx
*where
, rtx insn
)
750 validate_replace_rtx_1 (where
, from
, to
, insn
, true);
751 return apply_change_group ();
754 /* Same as above, but do not simplify rtx afterwards. */
756 validate_replace_rtx_part_nosimplify (rtx from
, rtx to
, rtx
*where
,
759 validate_replace_rtx_1 (where
, from
, to
, insn
, false);
760 return apply_change_group ();
764 /* Try replacing every occurrence of FROM in INSN with TO. */
767 validate_replace_rtx_group (rtx from
, rtx to
, rtx insn
)
769 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
772 /* Function called by note_uses to replace used subexpressions. */
773 struct validate_replace_src_data
775 rtx from
; /* Old RTX */
776 rtx to
; /* New RTX */
777 rtx insn
; /* Insn in which substitution is occurring. */
781 validate_replace_src_1 (rtx
*x
, void *data
)
783 struct validate_replace_src_data
*d
784 = (struct validate_replace_src_data
*) data
;
786 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
, true);
789 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
793 validate_replace_src_group (rtx from
, rtx to
, rtx insn
)
795 struct validate_replace_src_data d
;
800 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
803 /* Try simplify INSN.
804 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
805 pattern and return true if something was simplified. */
808 validate_simplify_insn (rtx insn
)
814 pat
= PATTERN (insn
);
816 if (GET_CODE (pat
) == SET
)
818 newpat
= simplify_rtx (SET_SRC (pat
));
819 if (newpat
&& !rtx_equal_p (SET_SRC (pat
), newpat
))
820 validate_change (insn
, &SET_SRC (pat
), newpat
, 1);
821 newpat
= simplify_rtx (SET_DEST (pat
));
822 if (newpat
&& !rtx_equal_p (SET_DEST (pat
), newpat
))
823 validate_change (insn
, &SET_DEST (pat
), newpat
, 1);
825 else if (GET_CODE (pat
) == PARALLEL
)
826 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
828 rtx s
= XVECEXP (pat
, 0, i
);
830 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
)
832 newpat
= simplify_rtx (SET_SRC (s
));
833 if (newpat
&& !rtx_equal_p (SET_SRC (s
), newpat
))
834 validate_change (insn
, &SET_SRC (s
), newpat
, 1);
835 newpat
= simplify_rtx (SET_DEST (s
));
836 if (newpat
&& !rtx_equal_p (SET_DEST (s
), newpat
))
837 validate_change (insn
, &SET_DEST (s
), newpat
, 1);
840 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
844 /* Return 1 if the insn using CC0 set by INSN does not contain
845 any ordered tests applied to the condition codes.
846 EQ and NE tests do not count. */
849 next_insn_tests_no_inequality (rtx insn
)
851 rtx next
= next_cc0_user (insn
);
853 /* If there is no next insn, we have to take the conservative choice. */
857 return (INSN_P (next
)
858 && ! inequality_comparisons_p (PATTERN (next
)));
862 /* Return 1 if OP is a valid general operand for machine mode MODE.
863 This is either a register reference, a memory reference,
864 or a constant. In the case of a memory reference, the address
865 is checked for general validity for the target machine.
867 Register and memory references must have mode MODE in order to be valid,
868 but some constants have no machine mode and are valid for any mode.
870 If MODE is VOIDmode, OP is checked for validity for whatever mode
873 The main use of this function is as a predicate in match_operand
874 expressions in the machine description.
876 For an explanation of this function's behavior for registers of
877 class NO_REGS, see the comment for `register_operand'. */
880 general_operand (rtx op
, enum machine_mode mode
)
882 enum rtx_code code
= GET_CODE (op
);
884 if (mode
== VOIDmode
)
885 mode
= GET_MODE (op
);
887 /* Don't accept CONST_INT or anything similar
888 if the caller wants something floating. */
889 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
890 && GET_MODE_CLASS (mode
) != MODE_INT
891 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
894 if (GET_CODE (op
) == CONST_INT
896 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
900 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
902 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
903 && LEGITIMATE_CONSTANT_P (op
));
905 /* Except for certain constants with VOIDmode, already checked for,
906 OP's mode must match MODE if MODE specifies a mode. */
908 if (GET_MODE (op
) != mode
)
913 rtx sub
= SUBREG_REG (op
);
915 #ifdef INSN_SCHEDULING
916 /* On machines that have insn scheduling, we want all memory
917 reference to be explicit, so outlaw paradoxical SUBREGs.
918 However, we must allow them after reload so that they can
919 get cleaned up by cleanup_subreg_operands. */
920 if (!reload_completed
&& MEM_P (sub
)
921 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (sub
)))
924 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
925 may result in incorrect reference. We should simplify all valid
926 subregs of MEM anyway. But allow this after reload because we
927 might be called from cleanup_subreg_operands.
929 ??? This is a kludge. */
930 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
934 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
935 create such rtl, and we must reject it. */
936 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
937 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
941 code
= GET_CODE (op
);
945 /* A register whose class is NO_REGS is not a general operand. */
946 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
947 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
);
951 rtx y
= XEXP (op
, 0);
953 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
956 /* Use the mem's mode, since it will be reloaded thus. */
957 if (memory_address_p (GET_MODE (op
), y
))
964 /* Return 1 if OP is a valid memory address for a memory reference
967 The main use of this function is as a predicate in match_operand
968 expressions in the machine description. */
971 address_operand (rtx op
, enum machine_mode mode
)
973 return memory_address_p (mode
, op
);
976 /* Return 1 if OP is a register reference of mode MODE.
977 If MODE is VOIDmode, accept a register in any mode.
979 The main use of this function is as a predicate in match_operand
980 expressions in the machine description.
982 As a special exception, registers whose class is NO_REGS are
983 not accepted by `register_operand'. The reason for this change
984 is to allow the representation of special architecture artifacts
985 (such as a condition code register) without extending the rtl
986 definitions. Since registers of class NO_REGS cannot be used
987 as registers in any case where register classes are examined,
988 it is most consistent to keep this function from accepting them. */
991 register_operand (rtx op
, enum machine_mode mode
)
993 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
996 if (GET_CODE (op
) == SUBREG
)
998 rtx sub
= SUBREG_REG (op
);
1000 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1001 because it is guaranteed to be reloaded into one.
1002 Just make sure the MEM is valid in itself.
1003 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1004 but currently it does result from (SUBREG (REG)...) where the
1005 reg went on the stack.) */
1006 if (! reload_completed
&& MEM_P (sub
))
1007 return general_operand (op
, mode
);
1009 #ifdef CANNOT_CHANGE_MODE_CLASS
1011 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1012 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1013 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1014 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
)
1018 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1019 create such rtl, and we must reject it. */
1020 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1021 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1027 /* We don't consider registers whose class is NO_REGS
1028 to be a register operand. */
1030 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1031 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1034 /* Return 1 for a register in Pmode; ignore the tested mode. */
1037 pmode_register_operand (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
1039 return register_operand (op
, Pmode
);
1042 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1043 or a hard register. */
1046 scratch_operand (rtx op
, enum machine_mode mode
)
1048 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1051 return (GET_CODE (op
) == SCRATCH
1053 && REGNO (op
) < FIRST_PSEUDO_REGISTER
));
1056 /* Return 1 if OP is a valid immediate operand for mode MODE.
1058 The main use of this function is as a predicate in match_operand
1059 expressions in the machine description. */
1062 immediate_operand (rtx op
, enum machine_mode mode
)
1064 /* Don't accept CONST_INT or anything similar
1065 if the caller wants something floating. */
1066 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1067 && GET_MODE_CLASS (mode
) != MODE_INT
1068 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1071 if (GET_CODE (op
) == CONST_INT
1073 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1076 return (CONSTANT_P (op
)
1077 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1078 || GET_MODE (op
) == VOIDmode
)
1079 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1080 && LEGITIMATE_CONSTANT_P (op
));
1083 /* Returns 1 if OP is an operand that is a CONST_INT. */
1086 const_int_operand (rtx op
, enum machine_mode mode
)
1088 if (GET_CODE (op
) != CONST_INT
)
1091 if (mode
!= VOIDmode
1092 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1098 /* Returns 1 if OP is an operand that is a constant integer or constant
1099 floating-point number. */
1102 const_double_operand (rtx op
, enum machine_mode mode
)
1104 /* Don't accept CONST_INT or anything similar
1105 if the caller wants something floating. */
1106 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1107 && GET_MODE_CLASS (mode
) != MODE_INT
1108 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1111 return ((GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
)
1112 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1113 || GET_MODE (op
) == VOIDmode
));
1116 /* Return 1 if OP is a general operand that is not an immediate operand. */
1119 nonimmediate_operand (rtx op
, enum machine_mode mode
)
1121 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1124 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1127 nonmemory_operand (rtx op
, enum machine_mode mode
)
1129 if (CONSTANT_P (op
))
1131 /* Don't accept CONST_INT or anything similar
1132 if the caller wants something floating. */
1133 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1134 && GET_MODE_CLASS (mode
) != MODE_INT
1135 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1138 if (GET_CODE (op
) == CONST_INT
1140 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1143 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
1144 || mode
== VOIDmode
)
1145 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1146 && LEGITIMATE_CONSTANT_P (op
));
1149 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1152 if (GET_CODE (op
) == SUBREG
)
1154 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1155 because it is guaranteed to be reloaded into one.
1156 Just make sure the MEM is valid in itself.
1157 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1158 but currently it does result from (SUBREG (REG)...) where the
1159 reg went on the stack.) */
1160 if (! reload_completed
&& MEM_P (SUBREG_REG (op
)))
1161 return general_operand (op
, mode
);
1162 op
= SUBREG_REG (op
);
1165 /* We don't consider registers whose class is NO_REGS
1166 to be a register operand. */
1168 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1169 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1172 /* Return 1 if OP is a valid operand that stands for pushing a
1173 value of mode MODE onto the stack.
1175 The main use of this function is as a predicate in match_operand
1176 expressions in the machine description. */
1179 push_operand (rtx op
, enum machine_mode mode
)
1181 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1183 #ifdef PUSH_ROUNDING
1184 rounded_size
= PUSH_ROUNDING (rounded_size
);
1190 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1195 if (rounded_size
== GET_MODE_SIZE (mode
))
1197 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1202 if (GET_CODE (op
) != PRE_MODIFY
1203 || GET_CODE (XEXP (op
, 1)) != PLUS
1204 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1205 || GET_CODE (XEXP (XEXP (op
, 1), 1)) != CONST_INT
1206 #ifdef STACK_GROWS_DOWNWARD
1207 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1209 || INTVAL (XEXP (XEXP (op
, 1), 1)) != (int) rounded_size
1215 return XEXP (op
, 0) == stack_pointer_rtx
;
1218 /* Return 1 if OP is a valid operand that stands for popping a
1219 value of mode MODE off the stack.
1221 The main use of this function is as a predicate in match_operand
1222 expressions in the machine description. */
1225 pop_operand (rtx op
, enum machine_mode mode
)
1230 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1235 if (GET_CODE (op
) != STACK_POP_CODE
)
1238 return XEXP (op
, 0) == stack_pointer_rtx
;
1241 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1244 memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED
, rtx addr
)
1246 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1253 /* Return 1 if OP is a valid memory reference with mode MODE,
1254 including a valid address.
1256 The main use of this function is as a predicate in match_operand
1257 expressions in the machine description. */
1260 memory_operand (rtx op
, enum machine_mode mode
)
1264 if (! reload_completed
)
1265 /* Note that no SUBREG is a memory operand before end of reload pass,
1266 because (SUBREG (MEM...)) forces reloading into a register. */
1267 return MEM_P (op
) && general_operand (op
, mode
);
1269 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1273 if (GET_CODE (inner
) == SUBREG
)
1274 inner
= SUBREG_REG (inner
);
1276 return (MEM_P (inner
) && general_operand (op
, mode
));
1279 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1280 that is, a memory reference whose address is a general_operand. */
1283 indirect_operand (rtx op
, enum machine_mode mode
)
1285 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1286 if (! reload_completed
1287 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1289 int offset
= SUBREG_BYTE (op
);
1290 rtx inner
= SUBREG_REG (op
);
1292 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1295 /* The only way that we can have a general_operand as the resulting
1296 address is if OFFSET is zero and the address already is an operand
1297 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1300 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1301 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1302 && GET_CODE (XEXP (XEXP (inner
, 0), 1)) == CONST_INT
1303 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1304 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1308 && memory_operand (op
, mode
)
1309 && general_operand (XEXP (op
, 0), Pmode
));
1312 /* Return 1 if this is a comparison operator. This allows the use of
1313 MATCH_OPERATOR to recognize all the branch insns. */
1316 comparison_operator (rtx op
, enum machine_mode mode
)
1318 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1319 && COMPARISON_P (op
));
1322 /* If BODY is an insn body that uses ASM_OPERANDS,
1323 return the number of operands (both input and output) in the insn.
1324 Otherwise return -1. */
1327 asm_noperands (const_rtx body
)
1329 switch (GET_CODE (body
))
1332 /* No output operands: return number of input operands. */
1333 return ASM_OPERANDS_INPUT_LENGTH (body
);
1335 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1336 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1337 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
)) + 1;
1341 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
1342 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1344 /* Multiple output operands, or 1 output plus some clobbers:
1345 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1349 /* Count backwards through CLOBBERs to determine number of SETs. */
1350 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1352 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1354 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1358 /* N_SETS is now number of output operands. */
1361 /* Verify that all the SETs we have
1362 came from a single original asm_operands insn
1363 (so that invalid combinations are blocked). */
1364 for (i
= 0; i
< n_sets
; i
++)
1366 rtx elt
= XVECEXP (body
, 0, i
);
1367 if (GET_CODE (elt
) != SET
)
1369 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1371 /* If these ASM_OPERANDS rtx's came from different original insns
1372 then they aren't allowed together. */
1373 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1374 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body
, 0, 0))))
1377 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body
, 0, 0)))
1380 else if (GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1382 /* 0 outputs, but some clobbers:
1383 body is [(asm_operands ...) (clobber (reg ...))...]. */
1386 /* Make sure all the other parallel things really are clobbers. */
1387 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1388 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1391 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body
, 0, 0));
1400 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1401 copy its operands (both input and output) into the vector OPERANDS,
1402 the locations of the operands within the insn into the vector OPERAND_LOCS,
1403 and the constraints for the operands into CONSTRAINTS.
1404 Write the modes of the operands into MODES.
1405 Return the assembler-template.
1407 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1408 we don't store that info. */
1411 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1412 const char **constraints
, enum machine_mode
*modes
,
1419 if (GET_CODE (body
) == SET
&& GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1421 asmop
= SET_SRC (body
);
1422 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1424 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
) + 1;
1426 for (i
= 1; i
< noperands
; i
++)
1429 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
- 1);
1431 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
- 1);
1433 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
- 1);
1435 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
- 1);
1438 /* The output is in the SET.
1439 Its constraint is in the ASM_OPERANDS itself. */
1441 operands
[0] = SET_DEST (body
);
1443 operand_locs
[0] = &SET_DEST (body
);
1445 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1447 modes
[0] = GET_MODE (SET_DEST (body
));
1449 else if (GET_CODE (body
) == ASM_OPERANDS
)
1452 /* No output operands: BODY is (asm_operands ....). */
1454 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1456 /* The input operands are found in the 1st element vector. */
1457 /* Constraints for inputs are in the 2nd element vector. */
1458 for (i
= 0; i
< noperands
; i
++)
1461 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1463 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1465 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1467 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1470 else if (GET_CODE (body
) == PARALLEL
1471 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
1472 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1474 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1476 int nout
= 0; /* Does not include CLOBBERs. */
1478 asmop
= SET_SRC (XVECEXP (body
, 0, 0));
1479 nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1481 /* At least one output, plus some CLOBBERs. */
1483 /* The outputs are in the SETs.
1484 Their constraints are in the ASM_OPERANDS itself. */
1485 for (i
= 0; i
< nparallel
; i
++)
1487 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1488 break; /* Past last SET */
1491 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1493 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1495 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1497 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1501 for (i
= 0; i
< nin
; i
++)
1504 operand_locs
[i
+ nout
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1506 operands
[i
+ nout
] = ASM_OPERANDS_INPUT (asmop
, i
);
1508 constraints
[i
+ nout
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1510 modes
[i
+ nout
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1513 else if (GET_CODE (body
) == PARALLEL
1514 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1516 /* No outputs, but some CLOBBERs. */
1520 asmop
= XVECEXP (body
, 0, 0);
1521 nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1523 for (i
= 0; i
< nin
; i
++)
1526 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1528 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1530 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1532 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1538 *loc
= ASM_OPERANDS_SOURCE_LOCATION (asmop
);
1540 return ASM_OPERANDS_TEMPLATE (asmop
);
1543 /* Check if an asm_operand matches its constraints.
1544 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1547 asm_operand_ok (rtx op
, const char *constraint
, const char **constraints
)
1551 /* Use constrain_operands after reload. */
1552 gcc_assert (!reload_completed
);
1556 char c
= *constraint
;
1573 case '0': case '1': case '2': case '3': case '4':
1574 case '5': case '6': case '7': case '8': case '9':
1575 /* If caller provided constraints pointer, look up
1576 the maching constraint. Otherwise, our caller should have
1577 given us the proper matching constraint, but we can't
1578 actually fail the check if they didn't. Indicate that
1579 results are inconclusive. */
1583 unsigned long match
;
1585 match
= strtoul (constraint
, &end
, 10);
1587 result
= asm_operand_ok (op
, constraints
[match
], NULL
);
1588 constraint
= (const char *) end
;
1594 while (ISDIGIT (*constraint
));
1601 if (address_operand (op
, VOIDmode
))
1605 case TARGET_MEM_CONSTRAINT
:
1606 case 'V': /* non-offsettable */
1607 if (memory_operand (op
, VOIDmode
))
1611 case 'o': /* offsettable */
1612 if (offsettable_nonstrict_memref_p (op
))
1617 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1618 excepting those that expand_call created. Further, on some
1619 machines which do not have generalized auto inc/dec, an inc/dec
1620 is not a memory_operand.
1622 Match any memory and hope things are resolved after reload. */
1626 || GET_CODE (XEXP (op
, 0)) == PRE_DEC
1627 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1634 || GET_CODE (XEXP (op
, 0)) == PRE_INC
1635 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1641 if (GET_CODE (op
) == CONST_DOUBLE
1642 || (GET_CODE (op
) == CONST_VECTOR
1643 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
1648 if (GET_CODE (op
) == CONST_DOUBLE
1649 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'G', constraint
))
1653 if (GET_CODE (op
) == CONST_DOUBLE
1654 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'H', constraint
))
1659 if (GET_CODE (op
) == CONST_INT
1660 || (GET_CODE (op
) == CONST_DOUBLE
1661 && GET_MODE (op
) == VOIDmode
))
1666 if (CONSTANT_P (op
) && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
)))
1671 if (GET_CODE (op
) == CONST_INT
1672 || (GET_CODE (op
) == CONST_DOUBLE
1673 && GET_MODE (op
) == VOIDmode
))
1678 if (GET_CODE (op
) == CONST_INT
1679 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'I', constraint
))
1683 if (GET_CODE (op
) == CONST_INT
1684 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'J', constraint
))
1688 if (GET_CODE (op
) == CONST_INT
1689 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'K', constraint
))
1693 if (GET_CODE (op
) == CONST_INT
1694 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'L', constraint
))
1698 if (GET_CODE (op
) == CONST_INT
1699 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'M', constraint
))
1703 if (GET_CODE (op
) == CONST_INT
1704 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'N', constraint
))
1708 if (GET_CODE (op
) == CONST_INT
1709 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'O', constraint
))
1713 if (GET_CODE (op
) == CONST_INT
1714 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'P', constraint
))
1723 if (general_operand (op
, VOIDmode
))
1728 /* For all other letters, we first check for a register class,
1729 otherwise it is an EXTRA_CONSTRAINT. */
1730 if (REG_CLASS_FROM_CONSTRAINT (c
, constraint
) != NO_REGS
)
1733 if (GET_MODE (op
) == BLKmode
)
1735 if (register_operand (op
, VOIDmode
))
1738 #ifdef EXTRA_CONSTRAINT_STR
1739 else if (EXTRA_MEMORY_CONSTRAINT (c
, constraint
))
1740 /* Every memory operand can be reloaded to fit. */
1741 result
= result
|| memory_operand (op
, VOIDmode
);
1742 else if (EXTRA_ADDRESS_CONSTRAINT (c
, constraint
))
1743 /* Every address operand can be reloaded to fit. */
1744 result
= result
|| address_operand (op
, VOIDmode
);
1745 else if (EXTRA_CONSTRAINT_STR (op
, c
, constraint
))
1750 len
= CONSTRAINT_LEN (c
, constraint
);
1753 while (--len
&& *constraint
);
1761 /* Given an rtx *P, if it is a sum containing an integer constant term,
1762 return the location (type rtx *) of the pointer to that constant term.
1763 Otherwise, return a null pointer. */
1766 find_constant_term_loc (rtx
*p
)
1769 enum rtx_code code
= GET_CODE (*p
);
1771 /* If *P IS such a constant term, P is its location. */
1773 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1777 /* Otherwise, if not a sum, it has no constant term. */
1779 if (GET_CODE (*p
) != PLUS
)
1782 /* If one of the summands is constant, return its location. */
1784 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1785 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1788 /* Otherwise, check each summand for containing a constant term. */
1790 if (XEXP (*p
, 0) != 0)
1792 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1797 if (XEXP (*p
, 1) != 0)
1799 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1807 /* Return 1 if OP is a memory reference
1808 whose address contains no side effects
1809 and remains valid after the addition
1810 of a positive integer less than the
1811 size of the object being referenced.
1813 We assume that the original address is valid and do not check it.
1815 This uses strict_memory_address_p as a subroutine, so
1816 don't use it before reload. */
1819 offsettable_memref_p (rtx op
)
1821 return ((MEM_P (op
))
1822 && offsettable_address_p (1, GET_MODE (op
), XEXP (op
, 0)));
1825 /* Similar, but don't require a strictly valid mem ref:
1826 consider pseudo-regs valid as index or base regs. */
1829 offsettable_nonstrict_memref_p (rtx op
)
1831 return ((MEM_P (op
))
1832 && offsettable_address_p (0, GET_MODE (op
), XEXP (op
, 0)));
1835 /* Return 1 if Y is a memory address which contains no side effects
1836 and would remain valid after the addition of a positive integer
1837 less than the size of that mode.
1839 We assume that the original address is valid and do not check it.
1840 We do check that it is valid for narrower modes.
1842 If STRICTP is nonzero, we require a strictly valid address,
1843 for the sake of use in reload.c. */
1846 offsettable_address_p (int strictp
, enum machine_mode mode
, rtx y
)
1848 enum rtx_code ycode
= GET_CODE (y
);
1852 int (*addressp
) (enum machine_mode
, rtx
) =
1853 (strictp
? strict_memory_address_p
: memory_address_p
);
1854 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1856 if (CONSTANT_ADDRESS_P (y
))
1859 /* Adjusting an offsettable address involves changing to a narrower mode.
1860 Make sure that's OK. */
1862 if (mode_dependent_address_p (y
))
1865 /* ??? How much offset does an offsettable BLKmode reference need?
1866 Clearly that depends on the situation in which it's being used.
1867 However, the current situation in which we test 0xffffffff is
1868 less than ideal. Caveat user. */
1870 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1872 /* If the expression contains a constant term,
1873 see if it remains valid when max possible offset is added. */
1875 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1880 *y2
= plus_constant (*y2
, mode_sz
- 1);
1881 /* Use QImode because an odd displacement may be automatically invalid
1882 for any wider mode. But it should be valid for a single byte. */
1883 good
= (*addressp
) (QImode
, y
);
1885 /* In any case, restore old contents of memory. */
1890 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
1893 /* The offset added here is chosen as the maximum offset that
1894 any instruction could need to add when operating on something
1895 of the specified mode. We assume that if Y and Y+c are
1896 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1897 go inside a LO_SUM here, so we do so as well. */
1898 if (GET_CODE (y
) == LO_SUM
1900 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
1901 z
= gen_rtx_LO_SUM (GET_MODE (y
), XEXP (y
, 0),
1902 plus_constant (XEXP (y
, 1), mode_sz
- 1));
1904 z
= plus_constant (y
, mode_sz
- 1);
1906 /* Use QImode because an odd displacement may be automatically invalid
1907 for any wider mode. But it should be valid for a single byte. */
1908 return (*addressp
) (QImode
, z
);
1911 /* Return 1 if ADDR is an address-expression whose effect depends
1912 on the mode of the memory reference it is used in.
1914 Autoincrement addressing is a typical example of mode-dependence
1915 because the amount of the increment depends on the mode. */
1918 mode_dependent_address_p (rtx addr
)
1920 /* Auto-increment addressing with anything other than post_modify
1921 or pre_modify always introduces a mode dependency. Catch such
1922 cases now instead of deferring to the target. */
1923 if (GET_CODE (addr
) == PRE_INC
1924 || GET_CODE (addr
) == POST_INC
1925 || GET_CODE (addr
) == PRE_DEC
1926 || GET_CODE (addr
) == POST_DEC
)
1929 GO_IF_MODE_DEPENDENT_ADDRESS (addr
, win
);
1931 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1932 win
: ATTRIBUTE_UNUSED_LABEL
1936 /* Like extract_insn, but save insn extracted and don't extract again, when
1937 called again for the same insn expecting that recog_data still contain the
1938 valid information. This is used primary by gen_attr infrastructure that
1939 often does extract insn again and again. */
1941 extract_insn_cached (rtx insn
)
1943 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
1945 extract_insn (insn
);
1946 recog_data
.insn
= insn
;
1949 /* Do cached extract_insn, constrain_operands and complain about failures.
1950 Used by insn_attrtab. */
1952 extract_constrain_insn_cached (rtx insn
)
1954 extract_insn_cached (insn
);
1955 if (which_alternative
== -1
1956 && !constrain_operands (reload_completed
))
1957 fatal_insn_not_found (insn
);
1960 /* Do cached constrain_operands and complain about failures. */
1962 constrain_operands_cached (int strict
)
1964 if (which_alternative
== -1)
1965 return constrain_operands (strict
);
1970 /* Analyze INSN and fill in recog_data. */
1973 extract_insn (rtx insn
)
1978 rtx body
= PATTERN (insn
);
1980 recog_data
.n_operands
= 0;
1981 recog_data
.n_alternatives
= 0;
1982 recog_data
.n_dups
= 0;
1984 switch (GET_CODE (body
))
1994 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1999 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2000 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2001 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2007 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2010 /* This insn is an `asm' with operands. */
2012 /* expand_asm_operands makes sure there aren't too many operands. */
2013 gcc_assert (noperands
<= MAX_RECOG_OPERANDS
);
2015 /* Now get the operand values and constraints out of the insn. */
2016 decode_asm_operands (body
, recog_data
.operand
,
2017 recog_data
.operand_loc
,
2018 recog_data
.constraints
,
2019 recog_data
.operand_mode
, NULL
);
2022 const char *p
= recog_data
.constraints
[0];
2023 recog_data
.n_alternatives
= 1;
2025 recog_data
.n_alternatives
+= (*p
++ == ',');
2029 fatal_insn_not_found (insn
);
2033 /* Ordinary insn: recognize it, get the operands via insn_extract
2034 and get the constraints. */
2036 icode
= recog_memoized (insn
);
2038 fatal_insn_not_found (insn
);
2040 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2041 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2042 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2044 insn_extract (insn
);
2046 for (i
= 0; i
< noperands
; i
++)
2048 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2049 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2050 /* VOIDmode match_operands gets mode from their real operand. */
2051 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2052 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2055 for (i
= 0; i
< noperands
; i
++)
2056 recog_data
.operand_type
[i
]
2057 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2058 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2061 gcc_assert (recog_data
.n_alternatives
<= MAX_RECOG_ALTERNATIVES
);
2063 if (INSN_CODE (insn
) < 0)
2064 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2065 recog_data
.alternative_enabled_p
[i
] = true;
2068 recog_data
.insn
= insn
;
2069 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2071 which_alternative
= i
;
2072 recog_data
.alternative_enabled_p
[i
] = get_attr_enabled (insn
);
2076 recog_data
.insn
= NULL
;
2077 which_alternative
= -1;
2080 /* After calling extract_insn, you can use this function to extract some
2081 information from the constraint strings into a more usable form.
2082 The collected data is stored in recog_op_alt. */
2084 preprocess_constraints (void)
2088 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2089 memset (recog_op_alt
[i
], 0, (recog_data
.n_alternatives
2090 * sizeof (struct operand_alternative
)));
2092 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2095 struct operand_alternative
*op_alt
;
2096 const char *p
= recog_data
.constraints
[i
];
2098 op_alt
= recog_op_alt
[i
];
2100 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
2102 op_alt
[j
].cl
= NO_REGS
;
2103 op_alt
[j
].constraint
= p
;
2104 op_alt
[j
].matches
= -1;
2105 op_alt
[j
].matched
= -1;
2107 if (!recog_data
.alternative_enabled_p
[j
])
2109 p
= skip_alternative (p
);
2113 if (*p
== '\0' || *p
== ',')
2115 op_alt
[j
].anything_ok
= 1;
2125 while (c
!= ',' && c
!= '\0');
2126 if (c
== ',' || c
== '\0')
2134 case '=': case '+': case '*': case '%':
2135 case 'E': case 'F': case 'G': case 'H':
2136 case 's': case 'i': case 'n':
2137 case 'I': case 'J': case 'K': case 'L':
2138 case 'M': case 'N': case 'O': case 'P':
2139 /* These don't say anything we care about. */
2143 op_alt
[j
].reject
+= 6;
2146 op_alt
[j
].reject
+= 600;
2149 op_alt
[j
].earlyclobber
= 1;
2152 case '0': case '1': case '2': case '3': case '4':
2153 case '5': case '6': case '7': case '8': case '9':
2156 op_alt
[j
].matches
= strtoul (p
, &end
, 10);
2157 recog_op_alt
[op_alt
[j
].matches
][j
].matched
= i
;
2162 case TARGET_MEM_CONSTRAINT
:
2163 op_alt
[j
].memory_ok
= 1;
2166 op_alt
[j
].decmem_ok
= 1;
2169 op_alt
[j
].incmem_ok
= 1;
2172 op_alt
[j
].nonoffmem_ok
= 1;
2175 op_alt
[j
].offmem_ok
= 1;
2178 op_alt
[j
].anything_ok
= 1;
2182 op_alt
[j
].is_address
= 1;
2183 op_alt
[j
].cl
= reg_class_subunion
[(int) op_alt
[j
].cl
]
2184 [(int) base_reg_class (VOIDmode
, ADDRESS
, SCRATCH
)];
2190 reg_class_subunion
[(int) op_alt
[j
].cl
][(int) GENERAL_REGS
];
2194 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
2196 op_alt
[j
].memory_ok
= 1;
2199 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
2201 op_alt
[j
].is_address
= 1;
2203 = (reg_class_subunion
2204 [(int) op_alt
[j
].cl
]
2205 [(int) base_reg_class (VOIDmode
, ADDRESS
,
2211 = (reg_class_subunion
2212 [(int) op_alt
[j
].cl
]
2213 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
2216 p
+= CONSTRAINT_LEN (c
, p
);
2222 /* Check the operands of an insn against the insn's operand constraints
2223 and return 1 if they are valid.
2224 The information about the insn's operands, constraints, operand modes
2225 etc. is obtained from the global variables set up by extract_insn.
2227 WHICH_ALTERNATIVE is set to a number which indicates which
2228 alternative of constraints was matched: 0 for the first alternative,
2229 1 for the next, etc.
2231 In addition, when two operands are required to match
2232 and it happens that the output operand is (reg) while the
2233 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2234 make the output operand look like the input.
2235 This is because the output operand is the one the template will print.
2237 This is used in final, just before printing the assembler code and by
2238 the routines that determine an insn's attribute.
2240 If STRICT is a positive nonzero value, it means that we have been
2241 called after reload has been completed. In that case, we must
2242 do all checks strictly. If it is zero, it means that we have been called
2243 before reload has completed. In that case, we first try to see if we can
2244 find an alternative that matches strictly. If not, we try again, this
2245 time assuming that reload will fix up the insn. This provides a "best
2246 guess" for the alternative and is used to compute attributes of insns prior
2247 to reload. A negative value of STRICT is used for this internal call. */
2255 constrain_operands (int strict
)
2257 const char *constraints
[MAX_RECOG_OPERANDS
];
2258 int matching_operands
[MAX_RECOG_OPERANDS
];
2259 int earlyclobber
[MAX_RECOG_OPERANDS
];
2262 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2263 int funny_match_index
;
2265 which_alternative
= 0;
2266 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2269 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2271 constraints
[c
] = recog_data
.constraints
[c
];
2272 matching_operands
[c
] = -1;
2277 int seen_earlyclobber_at
= -1;
2280 funny_match_index
= 0;
2282 if (!recog_data
.alternative_enabled_p
[which_alternative
])
2286 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2287 constraints
[i
] = skip_alternative (constraints
[i
]);
2289 which_alternative
++;
2293 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2295 rtx op
= recog_data
.operand
[opno
];
2296 enum machine_mode mode
= GET_MODE (op
);
2297 const char *p
= constraints
[opno
];
2303 earlyclobber
[opno
] = 0;
2305 /* A unary operator may be accepted by the predicate, but it
2306 is irrelevant for matching constraints. */
2310 if (GET_CODE (op
) == SUBREG
)
2312 if (REG_P (SUBREG_REG (op
))
2313 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2314 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2315 GET_MODE (SUBREG_REG (op
)),
2318 op
= SUBREG_REG (op
);
2321 /* An empty constraint or empty alternative
2322 allows anything which matched the pattern. */
2323 if (*p
== 0 || *p
== ',')
2327 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2336 case '?': case '!': case '*': case '%':
2341 /* Ignore rest of this alternative as far as
2342 constraint checking is concerned. */
2345 while (*p
&& *p
!= ',');
2350 earlyclobber
[opno
] = 1;
2351 if (seen_earlyclobber_at
< 0)
2352 seen_earlyclobber_at
= opno
;
2355 case '0': case '1': case '2': case '3': case '4':
2356 case '5': case '6': case '7': case '8': case '9':
2358 /* This operand must be the same as a previous one.
2359 This kind of constraint is used for instructions such
2360 as add when they take only two operands.
2362 Note that the lower-numbered operand is passed first.
2364 If we are not testing strictly, assume that this
2365 constraint will be satisfied. */
2370 match
= strtoul (p
, &end
, 10);
2377 rtx op1
= recog_data
.operand
[match
];
2378 rtx op2
= recog_data
.operand
[opno
];
2380 /* A unary operator may be accepted by the predicate,
2381 but it is irrelevant for matching constraints. */
2383 op1
= XEXP (op1
, 0);
2385 op2
= XEXP (op2
, 0);
2387 val
= operands_match_p (op1
, op2
);
2390 matching_operands
[opno
] = match
;
2391 matching_operands
[match
] = opno
;
2396 /* If output is *x and input is *--x, arrange later
2397 to change the output to *--x as well, since the
2398 output op is the one that will be printed. */
2399 if (val
== 2 && strict
> 0)
2401 funny_match
[funny_match_index
].this_op
= opno
;
2402 funny_match
[funny_match_index
++].other
= match
;
2409 /* p is used for address_operands. When we are called by
2410 gen_reload, no one will have checked that the address is
2411 strictly valid, i.e., that all pseudos requiring hard regs
2412 have gotten them. */
2414 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2419 /* No need to check general_operand again;
2420 it was done in insn-recog.c. Well, except that reload
2421 doesn't check the validity of its replacements, but
2422 that should only matter when there's a bug. */
2424 /* Anything goes unless it is a REG and really has a hard reg
2425 but the hard reg is not in the class GENERAL_REGS. */
2429 || GENERAL_REGS
== ALL_REGS
2430 || (reload_in_progress
2431 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2432 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2435 else if (strict
< 0 || general_operand (op
, mode
))
2440 /* This is used for a MATCH_SCRATCH in the cases when
2441 we don't actually need anything. So anything goes
2446 case TARGET_MEM_CONSTRAINT
:
2447 /* Memory operands must be valid, to the extent
2448 required by STRICT. */
2452 && !strict_memory_address_p (GET_MODE (op
),
2456 && !memory_address_p (GET_MODE (op
), XEXP (op
, 0)))
2460 /* Before reload, accept what reload can turn into mem. */
2461 else if (strict
< 0 && CONSTANT_P (op
))
2463 /* During reload, accept a pseudo */
2464 else if (reload_in_progress
&& REG_P (op
)
2465 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2471 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
2472 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
2478 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
2479 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
2485 if (GET_CODE (op
) == CONST_DOUBLE
2486 || (GET_CODE (op
) == CONST_VECTOR
2487 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
2493 if (GET_CODE (op
) == CONST_DOUBLE
2494 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, p
))
2499 if (GET_CODE (op
) == CONST_INT
2500 || (GET_CODE (op
) == CONST_DOUBLE
2501 && GET_MODE (op
) == VOIDmode
))
2504 if (CONSTANT_P (op
))
2509 if (GET_CODE (op
) == CONST_INT
2510 || (GET_CODE (op
) == CONST_DOUBLE
2511 && GET_MODE (op
) == VOIDmode
))
2523 if (GET_CODE (op
) == CONST_INT
2524 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, p
))
2530 && ((strict
> 0 && ! offsettable_memref_p (op
))
2532 && !(CONSTANT_P (op
) || MEM_P (op
)))
2533 || (reload_in_progress
2535 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))))
2540 if ((strict
> 0 && offsettable_memref_p (op
))
2541 || (strict
== 0 && offsettable_nonstrict_memref_p (op
))
2542 /* Before reload, accept what reload can handle. */
2544 && (CONSTANT_P (op
) || MEM_P (op
)))
2545 /* During reload, accept a pseudo */
2546 || (reload_in_progress
&& REG_P (op
)
2547 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2556 ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c
, p
));
2562 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2563 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2565 && reg_fits_class_p (op
, cl
, offset
, mode
)))
2568 #ifdef EXTRA_CONSTRAINT_STR
2569 else if (EXTRA_CONSTRAINT_STR (op
, c
, p
))
2572 else if (EXTRA_MEMORY_CONSTRAINT (c
, p
)
2573 /* Every memory operand can be reloaded to fit. */
2574 && ((strict
< 0 && MEM_P (op
))
2575 /* Before reload, accept what reload can turn
2577 || (strict
< 0 && CONSTANT_P (op
))
2578 /* During reload, accept a pseudo */
2579 || (reload_in_progress
&& REG_P (op
)
2580 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2582 else if (EXTRA_ADDRESS_CONSTRAINT (c
, p
)
2583 /* Every address operand can be reloaded to fit. */
2590 while (p
+= len
, c
);
2592 constraints
[opno
] = p
;
2593 /* If this operand did not win somehow,
2594 this alternative loses. */
2598 /* This alternative won; the operands are ok.
2599 Change whichever operands this alternative says to change. */
2604 /* See if any earlyclobber operand conflicts with some other
2607 if (strict
> 0 && seen_earlyclobber_at
>= 0)
2608 for (eopno
= seen_earlyclobber_at
;
2609 eopno
< recog_data
.n_operands
;
2611 /* Ignore earlyclobber operands now in memory,
2612 because we would often report failure when we have
2613 two memory operands, one of which was formerly a REG. */
2614 if (earlyclobber
[eopno
]
2615 && REG_P (recog_data
.operand
[eopno
]))
2616 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2617 if ((MEM_P (recog_data
.operand
[opno
])
2618 || recog_data
.operand_type
[opno
] != OP_OUT
)
2620 /* Ignore things like match_operator operands. */
2621 && *recog_data
.constraints
[opno
] != 0
2622 && ! (matching_operands
[opno
] == eopno
2623 && operands_match_p (recog_data
.operand
[opno
],
2624 recog_data
.operand
[eopno
]))
2625 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2626 recog_data
.operand
[eopno
]))
2631 while (--funny_match_index
>= 0)
2633 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2634 = recog_data
.operand
[funny_match
[funny_match_index
].this_op
];
2641 which_alternative
++;
2643 while (which_alternative
< recog_data
.n_alternatives
);
2645 which_alternative
= -1;
2646 /* If we are about to reject this, but we are not to test strictly,
2647 try a very loose test. Only return failure if it fails also. */
2649 return constrain_operands (-1);
2654 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2655 is a hard reg in class CLASS when its regno is offset by OFFSET
2656 and changed to mode MODE.
2657 If REG occupies multiple hard regs, all of them must be in CLASS. */
2660 reg_fits_class_p (rtx operand
, enum reg_class cl
, int offset
,
2661 enum machine_mode mode
)
2663 int regno
= REGNO (operand
);
2668 return (regno
< FIRST_PSEUDO_REGISTER
2669 && in_hard_reg_set_p (reg_class_contents
[(int) cl
],
2670 mode
, regno
+ offset
));
2673 /* Split single instruction. Helper function for split_all_insns and
2674 split_all_insns_noflow. Return last insn in the sequence if successful,
2675 or NULL if unsuccessful. */
2678 split_insn (rtx insn
)
2680 /* Split insns here to get max fine-grain parallelism. */
2681 rtx first
= PREV_INSN (insn
);
2682 rtx last
= try_split (PATTERN (insn
), insn
, 1);
2683 rtx insn_set
, last_set
, note
;
2688 /* If the original instruction was a single set that was known to be
2689 equivalent to a constant, see if we can say the same about the last
2690 instruction in the split sequence. The two instructions must set
2691 the same destination. */
2692 insn_set
= single_set (insn
);
2695 last_set
= single_set (last
);
2696 if (last_set
&& rtx_equal_p (SET_DEST (last_set
), SET_DEST (insn_set
)))
2698 note
= find_reg_equal_equiv_note (insn
);
2699 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2700 set_unique_reg_note (last
, REG_EQUAL
, XEXP (note
, 0));
2701 else if (CONSTANT_P (SET_SRC (insn_set
)))
2702 set_unique_reg_note (last
, REG_EQUAL
, SET_SRC (insn_set
));
2706 /* try_split returns the NOTE that INSN became. */
2707 SET_INSN_DELETED (insn
);
2709 /* ??? Coddle to md files that generate subregs in post-reload
2710 splitters instead of computing the proper hard register. */
2711 if (reload_completed
&& first
!= last
)
2713 first
= NEXT_INSN (first
);
2717 cleanup_subreg_operands (first
);
2720 first
= NEXT_INSN (first
);
2727 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2730 split_all_insns (void)
2736 blocks
= sbitmap_alloc (last_basic_block
);
2737 sbitmap_zero (blocks
);
2740 FOR_EACH_BB_REVERSE (bb
)
2743 bool finish
= false;
2745 rtl_profile_for_bb (bb
);
2746 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2748 /* Can't use `next_real_insn' because that might go across
2749 CODE_LABELS and short-out basic blocks. */
2750 next
= NEXT_INSN (insn
);
2751 finish
= (insn
== BB_END (bb
));
2754 rtx set
= single_set (insn
);
2756 /* Don't split no-op move insns. These should silently
2757 disappear later in final. Splitting such insns would
2758 break the code that handles LIBCALL blocks. */
2759 if (set
&& set_noop_p (set
))
2761 /* Nops get in the way while scheduling, so delete them
2762 now if register allocation has already been done. It
2763 is too risky to try to do this before register
2764 allocation, and there are unlikely to be very many
2765 nops then anyways. */
2766 if (reload_completed
)
2767 delete_insn_and_edges (insn
);
2771 rtx last
= split_insn (insn
);
2774 /* The split sequence may include barrier, but the
2775 BB boundary we are interested in will be set to
2778 while (BARRIER_P (last
))
2779 last
= PREV_INSN (last
);
2780 SET_BIT (blocks
, bb
->index
);
2788 default_rtl_profile ();
2790 find_many_sub_basic_blocks (blocks
);
2792 #ifdef ENABLE_CHECKING
2793 verify_flow_info ();
2796 sbitmap_free (blocks
);
2799 /* Same as split_all_insns, but do not expect CFG to be available.
2800 Used by machine dependent reorg passes. */
2803 split_all_insns_noflow (void)
2807 for (insn
= get_insns (); insn
; insn
= next
)
2809 next
= NEXT_INSN (insn
);
2812 /* Don't split no-op move insns. These should silently
2813 disappear later in final. Splitting such insns would
2814 break the code that handles LIBCALL blocks. */
2815 rtx set
= single_set (insn
);
2816 if (set
&& set_noop_p (set
))
2818 /* Nops get in the way while scheduling, so delete them
2819 now if register allocation has already been done. It
2820 is too risky to try to do this before register
2821 allocation, and there are unlikely to be very many
2824 ??? Should we use delete_insn when the CFG isn't valid? */
2825 if (reload_completed
)
2826 delete_insn_and_edges (insn
);
2835 #ifdef HAVE_peephole2
2836 struct peep2_insn_data
2842 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2843 static int peep2_current
;
2844 /* The number of instructions available to match a peep2. */
2845 int peep2_current_count
;
2847 /* A non-insn marker indicating the last insn of the block.
2848 The live_before regset for this element is correct, indicating
2849 DF_LIVE_OUT for the block. */
2850 #define PEEP2_EOB pc_rtx
2852 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2853 does not exist. Used by the recognizer to find the next insn to match
2854 in a multi-insn pattern. */
2857 peep2_next_insn (int n
)
2859 gcc_assert (n
<= peep2_current_count
);
2862 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2863 n
-= MAX_INSNS_PER_PEEP2
+ 1;
2865 return peep2_insn_data
[n
].insn
;
2868 /* Return true if REGNO is dead before the Nth non-note insn
2872 peep2_regno_dead_p (int ofs
, int regno
)
2874 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
2876 ofs
+= peep2_current
;
2877 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2878 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2880 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
2882 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
2885 /* Similarly for a REG. */
2888 peep2_reg_dead_p (int ofs
, rtx reg
)
2892 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
2894 ofs
+= peep2_current
;
2895 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2896 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2898 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
2900 regno
= REGNO (reg
);
2901 n
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
2903 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
2908 /* Try to find a hard register of mode MODE, matching the register class in
2909 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2910 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2911 in which case the only condition is that the register must be available
2912 before CURRENT_INSN.
2913 Registers that already have bits set in REG_SET will not be considered.
2915 If an appropriate register is available, it will be returned and the
2916 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2920 peep2_find_free_register (int from
, int to
, const char *class_str
,
2921 enum machine_mode mode
, HARD_REG_SET
*reg_set
)
2923 static int search_ofs
;
2928 gcc_assert (from
< MAX_INSNS_PER_PEEP2
+ 1);
2929 gcc_assert (to
< MAX_INSNS_PER_PEEP2
+ 1);
2931 from
+= peep2_current
;
2932 if (from
>= MAX_INSNS_PER_PEEP2
+ 1)
2933 from
-= MAX_INSNS_PER_PEEP2
+ 1;
2934 to
+= peep2_current
;
2935 if (to
>= MAX_INSNS_PER_PEEP2
+ 1)
2936 to
-= MAX_INSNS_PER_PEEP2
+ 1;
2938 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
2939 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
2943 HARD_REG_SET this_live
;
2945 if (++from
>= MAX_INSNS_PER_PEEP2
+ 1)
2947 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
2948 REG_SET_TO_HARD_REG_SET (this_live
, peep2_insn_data
[from
].live_before
);
2949 IOR_HARD_REG_SET (live
, this_live
);
2952 cl
= (class_str
[0] == 'r' ? GENERAL_REGS
2953 : REG_CLASS_FROM_CONSTRAINT (class_str
[0], class_str
));
2955 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2957 int raw_regno
, regno
, success
, j
;
2959 /* Distribute the free registers as much as possible. */
2960 raw_regno
= search_ofs
+ i
;
2961 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
2962 raw_regno
-= FIRST_PSEUDO_REGISTER
;
2963 #ifdef REG_ALLOC_ORDER
2964 regno
= reg_alloc_order
[raw_regno
];
2969 /* Don't allocate fixed registers. */
2970 if (fixed_regs
[regno
])
2972 /* Don't allocate global registers. */
2973 if (global_regs
[regno
])
2975 /* Make sure the register is of the right class. */
2976 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
))
2978 /* And can support the mode we need. */
2979 if (! HARD_REGNO_MODE_OK (regno
, mode
))
2981 /* And that we don't create an extra save/restore. */
2982 if (! call_used_regs
[regno
] && ! df_regs_ever_live_p (regno
))
2984 if (! targetm
.hard_regno_scratch_ok (regno
))
2987 /* And we don't clobber traceback for noreturn functions. */
2988 if ((regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
)
2989 && (! reload_completed
|| frame_pointer_needed
))
2993 for (j
= hard_regno_nregs
[regno
][mode
] - 1; j
>= 0; j
--)
2995 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
2996 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3004 add_to_hard_reg_set (reg_set
, mode
, regno
);
3006 /* Start the next search with the next register. */
3007 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3009 search_ofs
= raw_regno
;
3011 return gen_rtx_REG (mode
, regno
);
3019 /* Perform the peephole2 optimization pass. */
3022 peephole2_optimize (void)
3028 bool do_cleanup_cfg
= false;
3029 bool do_rebuild_jump_labels
= false;
3031 df_set_flags (DF_LR_RUN_DCE
);
3034 /* Initialize the regsets we're going to use. */
3035 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3036 peep2_insn_data
[i
].live_before
= BITMAP_ALLOC (®_obstack
);
3037 live
= BITMAP_ALLOC (®_obstack
);
3039 FOR_EACH_BB_REVERSE (bb
)
3041 rtl_profile_for_bb (bb
);
3042 /* Indicate that all slots except the last holds invalid data. */
3043 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3044 peep2_insn_data
[i
].insn
= NULL_RTX
;
3045 peep2_current_count
= 0;
3047 /* Indicate that the last slot contains live_after data. */
3048 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3049 peep2_current
= MAX_INSNS_PER_PEEP2
;
3051 /* Start up propagation. */
3052 bitmap_copy (live
, DF_LR_OUT (bb
));
3053 df_simulate_initialize_backwards (bb
, live
);
3054 bitmap_copy (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3056 for (insn
= BB_END (bb
); ; insn
= prev
)
3058 prev
= PREV_INSN (insn
);
3061 rtx attempt
, before_try
, x
;
3064 bool was_call
= false;
3066 /* Record this insn. */
3067 if (--peep2_current
< 0)
3068 peep2_current
= MAX_INSNS_PER_PEEP2
;
3069 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
3070 && peep2_insn_data
[peep2_current
].insn
== NULL_RTX
)
3071 peep2_current_count
++;
3072 peep2_insn_data
[peep2_current
].insn
= insn
;
3073 df_simulate_one_insn_backwards (bb
, insn
, live
);
3074 COPY_REG_SET (peep2_insn_data
[peep2_current
].live_before
, live
);
3076 if (RTX_FRAME_RELATED_P (insn
))
3078 /* If an insn has RTX_FRAME_RELATED_P set, peephole
3079 substitution would lose the
3080 REG_FRAME_RELATED_EXPR that is attached. */
3081 peep2_current_count
= 0;
3085 /* Match the peephole. */
3086 attempt
= peephole2_insns (PATTERN (insn
), insn
, &match_len
);
3088 if (attempt
!= NULL
)
3090 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3091 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3092 cfg-related call notes. */
3093 for (i
= 0; i
<= match_len
; ++i
)
3096 rtx old_insn
, new_insn
, note
;
3098 j
= i
+ peep2_current
;
3099 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3100 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3101 old_insn
= peep2_insn_data
[j
].insn
;
3102 if (!CALL_P (old_insn
))
3107 while (new_insn
!= NULL_RTX
)
3109 if (CALL_P (new_insn
))
3111 new_insn
= NEXT_INSN (new_insn
);
3114 gcc_assert (new_insn
!= NULL_RTX
);
3116 CALL_INSN_FUNCTION_USAGE (new_insn
)
3117 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3119 for (note
= REG_NOTES (old_insn
);
3121 note
= XEXP (note
, 1))
3122 switch (REG_NOTE_KIND (note
))
3126 add_reg_note (new_insn
, REG_NOTE_KIND (note
),
3130 /* Discard all other reg notes. */
3134 /* Croak if there is another call in the sequence. */
3135 while (++i
<= match_len
)
3137 j
= i
+ peep2_current
;
3138 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3139 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3140 old_insn
= peep2_insn_data
[j
].insn
;
3141 gcc_assert (!CALL_P (old_insn
));
3146 i
= match_len
+ peep2_current
;
3147 if (i
>= MAX_INSNS_PER_PEEP2
+ 1)
3148 i
-= MAX_INSNS_PER_PEEP2
+ 1;
3150 note
= find_reg_note (peep2_insn_data
[i
].insn
,
3151 REG_EH_REGION
, NULL_RTX
);
3153 /* Replace the old sequence with the new. */
3154 attempt
= emit_insn_after_setloc (attempt
,
3155 peep2_insn_data
[i
].insn
,
3156 INSN_LOCATOR (peep2_insn_data
[i
].insn
));
3157 before_try
= PREV_INSN (insn
);
3158 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
, false);
3160 /* Re-insert the EH_REGION notes. */
3161 if (note
|| (was_call
&& nonlocal_goto_handler_labels
))
3166 FOR_EACH_EDGE (eh_edge
, ei
, bb
->succs
)
3167 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3170 for (x
= attempt
; x
!= before_try
; x
= PREV_INSN (x
))
3172 || (flag_non_call_exceptions
3173 && may_trap_p (PATTERN (x
))
3174 && !find_reg_note (x
, REG_EH_REGION
, NULL
)))
3177 add_reg_note (x
, REG_EH_REGION
, XEXP (note
, 0));
3179 if (x
!= BB_END (bb
) && eh_edge
)
3184 nfte
= split_block (bb
, x
);
3185 flags
= (eh_edge
->flags
3186 & (EDGE_EH
| EDGE_ABNORMAL
));
3188 flags
|= EDGE_ABNORMAL_CALL
;
3189 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3192 nehe
->probability
= eh_edge
->probability
;
3194 = REG_BR_PROB_BASE
- nehe
->probability
;
3196 do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3202 /* Converting possibly trapping insn to non-trapping is
3203 possible. Zap dummy outgoing edges. */
3204 do_cleanup_cfg
|= purge_dead_edges (bb
);
3207 #ifdef HAVE_conditional_execution
3208 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3209 peep2_insn_data
[i
].insn
= NULL_RTX
;
3210 peep2_insn_data
[peep2_current
].insn
= PEEP2_EOB
;
3211 peep2_current_count
= 0;
3213 /* Back up lifetime information past the end of the
3214 newly created sequence. */
3215 if (++i
>= MAX_INSNS_PER_PEEP2
+ 1)
3217 bitmap_copy (live
, peep2_insn_data
[i
].live_before
);
3219 /* Update life information for the new sequence. */
3226 i
= MAX_INSNS_PER_PEEP2
;
3227 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
3228 && peep2_insn_data
[i
].insn
== NULL_RTX
)
3229 peep2_current_count
++;
3230 peep2_insn_data
[i
].insn
= x
;
3232 df_simulate_one_insn_backwards (bb
, x
, live
);
3233 bitmap_copy (peep2_insn_data
[i
].live_before
, live
);
3242 /* If we generated a jump instruction, it won't have
3243 JUMP_LABEL set. Recompute after we're done. */
3244 for (x
= attempt
; x
!= before_try
; x
= PREV_INSN (x
))
3247 do_rebuild_jump_labels
= true;
3253 if (insn
== BB_HEAD (bb
))
3258 default_rtl_profile ();
3259 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3260 BITMAP_FREE (peep2_insn_data
[i
].live_before
);
3262 if (do_rebuild_jump_labels
)
3263 rebuild_jump_labels (get_insns ());
3265 #endif /* HAVE_peephole2 */
3267 /* Common predicates for use with define_bypass. */
3269 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3270 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3271 must be either a single_set or a PARALLEL with SETs inside. */
3274 store_data_bypass_p (rtx out_insn
, rtx in_insn
)
3276 rtx out_set
, in_set
;
3277 rtx out_pat
, in_pat
;
3278 rtx out_exp
, in_exp
;
3281 in_set
= single_set (in_insn
);
3284 if (!MEM_P (SET_DEST (in_set
)))
3287 out_set
= single_set (out_insn
);
3290 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
)))
3295 out_pat
= PATTERN (out_insn
);
3297 if (GET_CODE (out_pat
) != PARALLEL
)
3300 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3302 out_exp
= XVECEXP (out_pat
, 0, i
);
3304 if (GET_CODE (out_exp
) == CLOBBER
)
3307 gcc_assert (GET_CODE (out_exp
) == SET
);
3309 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_set
)))
3316 in_pat
= PATTERN (in_insn
);
3317 gcc_assert (GET_CODE (in_pat
) == PARALLEL
);
3319 for (i
= 0; i
< XVECLEN (in_pat
, 0); i
++)
3321 in_exp
= XVECEXP (in_pat
, 0, i
);
3323 if (GET_CODE (in_exp
) == CLOBBER
)
3326 gcc_assert (GET_CODE (in_exp
) == SET
);
3328 if (!MEM_P (SET_DEST (in_exp
)))
3331 out_set
= single_set (out_insn
);
3334 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_exp
)))
3339 out_pat
= PATTERN (out_insn
);
3340 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3342 for (j
= 0; j
< XVECLEN (out_pat
, 0); j
++)
3344 out_exp
= XVECEXP (out_pat
, 0, j
);
3346 if (GET_CODE (out_exp
) == CLOBBER
)
3349 gcc_assert (GET_CODE (out_exp
) == SET
);
3351 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_exp
)))
3361 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3362 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3363 or multiple set; IN_INSN should be single_set for truth, but for convenience
3364 of insn categorization may be any JUMP or CALL insn. */
3367 if_test_bypass_p (rtx out_insn
, rtx in_insn
)
3369 rtx out_set
, in_set
;
3371 in_set
= single_set (in_insn
);
3374 gcc_assert (JUMP_P (in_insn
) || CALL_P (in_insn
));
3378 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3380 in_set
= SET_SRC (in_set
);
3382 out_set
= single_set (out_insn
);
3385 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3386 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3394 out_pat
= PATTERN (out_insn
);
3395 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3397 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3399 rtx exp
= XVECEXP (out_pat
, 0, i
);
3401 if (GET_CODE (exp
) == CLOBBER
)
3404 gcc_assert (GET_CODE (exp
) == SET
);
3406 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3407 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3416 gate_handle_peephole2 (void)
3418 return (optimize
> 0 && flag_peephole2
);
3422 rest_of_handle_peephole2 (void)
3424 #ifdef HAVE_peephole2
3425 peephole2_optimize ();
3430 struct rtl_opt_pass pass_peephole2
=
3434 "peephole2", /* name */
3435 gate_handle_peephole2
, /* gate */
3436 rest_of_handle_peephole2
, /* execute */
3439 0, /* static_pass_number */
3440 TV_PEEPHOLE2
, /* tv_id */
3441 0, /* properties_required */
3442 0, /* properties_provided */
3443 0, /* properties_destroyed */
3444 0, /* todo_flags_start */
3445 TODO_df_finish
| TODO_verify_rtl_sharing
|
3446 TODO_dump_func
/* todo_flags_finish */
3451 rest_of_handle_split_all_insns (void)
3457 struct rtl_opt_pass pass_split_all_insns
=
3461 "split1", /* name */
3463 rest_of_handle_split_all_insns
, /* execute */
3466 0, /* static_pass_number */
3468 0, /* properties_required */
3469 0, /* properties_provided */
3470 0, /* properties_destroyed */
3471 0, /* todo_flags_start */
3472 TODO_dump_func
/* todo_flags_finish */
3477 rest_of_handle_split_after_reload (void)
3479 /* If optimizing, then go ahead and split insns now. */
3487 struct rtl_opt_pass pass_split_after_reload
=
3491 "split2", /* name */
3493 rest_of_handle_split_after_reload
, /* execute */
3496 0, /* static_pass_number */
3498 0, /* properties_required */
3499 0, /* properties_provided */
3500 0, /* properties_destroyed */
3501 0, /* todo_flags_start */
3502 TODO_dump_func
/* todo_flags_finish */
3507 gate_handle_split_before_regstack (void)
3509 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3510 /* If flow2 creates new instructions which need splitting
3511 and scheduling after reload is not done, they might not be
3512 split until final which doesn't allow splitting
3513 if HAVE_ATTR_length. */
3514 # ifdef INSN_SCHEDULING
3515 return (optimize
&& !flag_schedule_insns_after_reload
);
3525 rest_of_handle_split_before_regstack (void)
3531 struct rtl_opt_pass pass_split_before_regstack
=
3535 "split3", /* name */
3536 gate_handle_split_before_regstack
, /* gate */
3537 rest_of_handle_split_before_regstack
, /* execute */
3540 0, /* static_pass_number */
3542 0, /* properties_required */
3543 0, /* properties_provided */
3544 0, /* properties_destroyed */
3545 0, /* todo_flags_start */
3546 TODO_dump_func
/* todo_flags_finish */
3551 gate_handle_split_before_sched2 (void)
3553 #ifdef INSN_SCHEDULING
3554 return optimize
> 0 && flag_schedule_insns_after_reload
;
3561 rest_of_handle_split_before_sched2 (void)
3563 #ifdef INSN_SCHEDULING
3569 struct rtl_opt_pass pass_split_before_sched2
=
3573 "split4", /* name */
3574 gate_handle_split_before_sched2
, /* gate */
3575 rest_of_handle_split_before_sched2
, /* execute */
3578 0, /* static_pass_number */
3580 0, /* properties_required */
3581 0, /* properties_provided */
3582 0, /* properties_destroyed */
3583 0, /* todo_flags_start */
3585 TODO_dump_func
/* todo_flags_finish */
3589 /* The placement of the splitting that we do for shorten_branches
3590 depends on whether regstack is used by the target or not. */
3592 gate_do_final_split (void)
3594 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3601 struct rtl_opt_pass pass_split_for_shorten_branches
=
3605 "split5", /* name */
3606 gate_do_final_split
, /* gate */
3607 split_all_insns_noflow
, /* execute */
3610 0, /* static_pass_number */
3612 0, /* properties_required */
3613 0, /* properties_provided */
3614 0, /* properties_destroyed */
3615 0, /* todo_flags_start */
3616 TODO_dump_func
| TODO_verify_rtl_sharing
/* todo_flags_finish */