libfuncs.h (LTI_synchronize): New libfunc_index.
[official-gcc.git] / gcc / optabs.c
blob61c810e3697a3d4d566d950454928b53a82e2f0e
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "real.h"
45 #include "basic-block.h"
46 #include "target.h"
48 /* Each optab contains info on how this target machine
49 can perform a particular operation
50 for all sizes and kinds of operands.
52 The operation to be performed is often specified
53 by passing one of these optabs as an argument.
55 See expr.h for documentation of these optabs. */
57 #if GCC_VERSION >= 4000
58 __extension__ struct optab optab_table[OTI_MAX]
59 = { [0 ... OTI_MAX - 1].handlers[0 ... NUM_MACHINE_MODES - 1].insn_code
60 = CODE_FOR_nothing };
61 #else
62 /* init_insn_codes will do runtime initialization otherwise. */
63 struct optab optab_table[OTI_MAX];
64 #endif
66 rtx libfunc_table[LTI_MAX];
68 /* Tables of patterns for converting one mode to another. */
69 #if GCC_VERSION >= 4000
70 __extension__ struct convert_optab convert_optab_table[COI_MAX]
71 = { [0 ... COI_MAX - 1].handlers[0 ... NUM_MACHINE_MODES - 1]
72 [0 ... NUM_MACHINE_MODES - 1].insn_code
73 = CODE_FOR_nothing };
74 #else
75 /* init_convert_optab will do runtime initialization otherwise. */
76 struct convert_optab convert_optab_table[COI_MAX];
77 #endif
79 /* Contains the optab used for each rtx code. */
80 optab code_to_optab[NUM_RTX_CODE + 1];
82 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
83 gives the gen_function to make a branch to test that condition. */
85 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
87 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
88 gives the insn code to make a store-condition insn
89 to test that condition. */
91 enum insn_code setcc_gen_code[NUM_RTX_CODE];
93 #ifdef HAVE_conditional_move
94 /* Indexed by the machine mode, gives the insn code to make a conditional
95 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
96 setcc_gen_code to cut down on the number of named patterns. Consider a day
97 when a lot more rtx codes are conditional (eg: for the ARM). */
99 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
100 #endif
102 /* Indexed by the machine mode, gives the insn code for vector conditional
103 operation. */
105 enum insn_code vcond_gen_code[NUM_MACHINE_MODES];
106 enum insn_code vcondu_gen_code[NUM_MACHINE_MODES];
108 /* The insn generating function can not take an rtx_code argument.
109 TRAP_RTX is used as an rtx argument. Its code is replaced with
110 the code to be used in the trap insn and all other fields are ignored. */
111 static GTY(()) rtx trap_rtx;
113 static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
114 enum machine_mode *, int *);
115 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
117 /* Debug facility for use in GDB. */
118 void debug_optab_libfuncs (void);
120 #ifndef HAVE_conditional_trap
121 #define HAVE_conditional_trap 0
122 #define gen_conditional_trap(a,b) (gcc_unreachable (), NULL_RTX)
123 #endif
125 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
126 #if ENABLE_DECIMAL_BID_FORMAT
127 #define DECIMAL_PREFIX "bid_"
128 #else
129 #define DECIMAL_PREFIX "dpd_"
130 #endif
133 /* Info about libfunc. We use same hashtable for normal optabs and conversion
134 optab. In the first case mode2 is unused. */
135 struct libfunc_entry GTY(())
137 size_t optab;
138 enum machine_mode mode1, mode2;
139 rtx libfunc;
142 /* Hash table used to convert declarations into nodes. */
143 static GTY((param_is (struct libfunc_entry))) htab_t libfunc_hash;
145 /* Used for attribute_hash. */
147 static hashval_t
148 hash_libfunc (const void *p)
150 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
152 return (((int) e->mode1 + (int) e->mode2 * NUM_MACHINE_MODES)
153 ^ e->optab);
156 /* Used for optab_hash. */
158 static int
159 eq_libfunc (const void *p, const void *q)
161 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
162 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
164 return (e1->optab == e2->optab
165 && e1->mode1 == e2->mode1
166 && e1->mode2 == e2->mode2);
169 /* Return libfunc corresponding operation defined by OPTAB converting
170 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
171 if no libfunc is available. */
173 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
174 enum machine_mode mode2)
176 struct libfunc_entry e;
177 struct libfunc_entry **slot;
179 e.optab = (size_t) (optab - &convert_optab_table[0]);
180 e.mode1 = mode1;
181 e.mode2 = mode2;
182 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
183 if (!slot)
185 if (optab->libcall_gen)
187 optab->libcall_gen (optab, optab->libcall_basename, mode1, mode2);
188 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
189 if (slot)
190 return (*slot)->libfunc;
191 else
192 return NULL;
194 return NULL;
196 return (*slot)->libfunc;
199 /* Return libfunc corresponding operation defined by OPTAB in MODE.
200 Trigger lazy initialization if needed, return NULL if no libfunc is
201 available. */
203 optab_libfunc (optab optab, enum machine_mode mode)
205 struct libfunc_entry e;
206 struct libfunc_entry **slot;
208 e.optab = (size_t) (optab - &optab_table[0]);
209 e.mode1 = mode;
210 e.mode2 = VOIDmode;
211 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
212 if (!slot)
214 if (optab->libcall_gen)
216 optab->libcall_gen (optab, optab->libcall_basename,
217 optab->libcall_suffix, mode);
218 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash,
219 &e, NO_INSERT);
220 if (slot)
221 return (*slot)->libfunc;
222 else
223 return NULL;
225 return NULL;
227 return (*slot)->libfunc;
231 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
232 the result of operation CODE applied to OP0 (and OP1 if it is a binary
233 operation).
235 If the last insn does not set TARGET, don't do anything, but return 1.
237 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
238 don't add the REG_EQUAL note but return 0. Our caller can then try
239 again, ensuring that TARGET is not one of the operands. */
241 static int
242 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
244 rtx last_insn, insn, set;
245 rtx note;
247 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
249 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
250 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
251 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
252 && GET_RTX_CLASS (code) != RTX_COMPARE
253 && GET_RTX_CLASS (code) != RTX_UNARY)
254 return 1;
256 if (GET_CODE (target) == ZERO_EXTRACT)
257 return 1;
259 for (last_insn = insns;
260 NEXT_INSN (last_insn) != NULL_RTX;
261 last_insn = NEXT_INSN (last_insn))
264 set = single_set (last_insn);
265 if (set == NULL_RTX)
266 return 1;
268 if (! rtx_equal_p (SET_DEST (set), target)
269 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
270 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
271 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
272 return 1;
274 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
275 besides the last insn. */
276 if (reg_overlap_mentioned_p (target, op0)
277 || (op1 && reg_overlap_mentioned_p (target, op1)))
279 insn = PREV_INSN (last_insn);
280 while (insn != NULL_RTX)
282 if (reg_set_p (target, insn))
283 return 0;
285 insn = PREV_INSN (insn);
289 if (GET_RTX_CLASS (code) == RTX_UNARY)
290 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
291 else
292 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
294 set_unique_reg_note (last_insn, REG_EQUAL, note);
296 return 1;
299 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
300 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
301 not actually do a sign-extend or zero-extend, but can leave the
302 higher-order bits of the result rtx undefined, for example, in the case
303 of logical operations, but not right shifts. */
305 static rtx
306 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
307 int unsignedp, int no_extend)
309 rtx result;
311 /* If we don't have to extend and this is a constant, return it. */
312 if (no_extend && GET_MODE (op) == VOIDmode)
313 return op;
315 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
316 extend since it will be more efficient to do so unless the signedness of
317 a promoted object differs from our extension. */
318 if (! no_extend
319 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
320 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
321 return convert_modes (mode, oldmode, op, unsignedp);
323 /* If MODE is no wider than a single word, we return a paradoxical
324 SUBREG. */
325 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
326 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
328 /* Otherwise, get an object of MODE, clobber it, and set the low-order
329 part to OP. */
331 result = gen_reg_rtx (mode);
332 emit_clobber (result);
333 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
334 return result;
337 /* Return the optab used for computing the operation given by the tree code,
338 CODE and the tree EXP. This function is not always usable (for example, it
339 cannot give complete results for multiplication or division) but probably
340 ought to be relied on more widely throughout the expander. */
341 optab
342 optab_for_tree_code (enum tree_code code, const_tree type,
343 enum optab_subtype subtype)
345 bool trapv;
346 switch (code)
348 case BIT_AND_EXPR:
349 return and_optab;
351 case BIT_IOR_EXPR:
352 return ior_optab;
354 case BIT_NOT_EXPR:
355 return one_cmpl_optab;
357 case BIT_XOR_EXPR:
358 return xor_optab;
360 case TRUNC_MOD_EXPR:
361 case CEIL_MOD_EXPR:
362 case FLOOR_MOD_EXPR:
363 case ROUND_MOD_EXPR:
364 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
366 case RDIV_EXPR:
367 case TRUNC_DIV_EXPR:
368 case CEIL_DIV_EXPR:
369 case FLOOR_DIV_EXPR:
370 case ROUND_DIV_EXPR:
371 case EXACT_DIV_EXPR:
372 if (TYPE_SATURATING(type))
373 return TYPE_UNSIGNED(type) ? usdiv_optab : ssdiv_optab;
374 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
376 case LSHIFT_EXPR:
377 if (VECTOR_MODE_P (TYPE_MODE (type)))
379 if (subtype == optab_vector)
380 return TYPE_SATURATING (type) ? NULL : vashl_optab;
382 gcc_assert (subtype == optab_scalar);
384 if (TYPE_SATURATING(type))
385 return TYPE_UNSIGNED(type) ? usashl_optab : ssashl_optab;
386 return ashl_optab;
388 case RSHIFT_EXPR:
389 if (VECTOR_MODE_P (TYPE_MODE (type)))
391 if (subtype == optab_vector)
392 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
394 gcc_assert (subtype == optab_scalar);
396 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
398 case LROTATE_EXPR:
399 if (VECTOR_MODE_P (TYPE_MODE (type)))
401 if (subtype == optab_vector)
402 return vrotl_optab;
404 gcc_assert (subtype == optab_scalar);
406 return rotl_optab;
408 case RROTATE_EXPR:
409 if (VECTOR_MODE_P (TYPE_MODE (type)))
411 if (subtype == optab_vector)
412 return vrotr_optab;
414 gcc_assert (subtype == optab_scalar);
416 return rotr_optab;
418 case MAX_EXPR:
419 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
421 case MIN_EXPR:
422 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
424 case REALIGN_LOAD_EXPR:
425 return vec_realign_load_optab;
427 case WIDEN_SUM_EXPR:
428 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
430 case DOT_PROD_EXPR:
431 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
433 case REDUC_MAX_EXPR:
434 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
436 case REDUC_MIN_EXPR:
437 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
439 case REDUC_PLUS_EXPR:
440 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
442 case VEC_LSHIFT_EXPR:
443 return vec_shl_optab;
445 case VEC_RSHIFT_EXPR:
446 return vec_shr_optab;
448 case VEC_WIDEN_MULT_HI_EXPR:
449 return TYPE_UNSIGNED (type) ?
450 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
452 case VEC_WIDEN_MULT_LO_EXPR:
453 return TYPE_UNSIGNED (type) ?
454 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
456 case VEC_UNPACK_HI_EXPR:
457 return TYPE_UNSIGNED (type) ?
458 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
460 case VEC_UNPACK_LO_EXPR:
461 return TYPE_UNSIGNED (type) ?
462 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
464 case VEC_UNPACK_FLOAT_HI_EXPR:
465 /* The signedness is determined from input operand. */
466 return TYPE_UNSIGNED (type) ?
467 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
469 case VEC_UNPACK_FLOAT_LO_EXPR:
470 /* The signedness is determined from input operand. */
471 return TYPE_UNSIGNED (type) ?
472 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
474 case VEC_PACK_TRUNC_EXPR:
475 return vec_pack_trunc_optab;
477 case VEC_PACK_SAT_EXPR:
478 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
480 case VEC_PACK_FIX_TRUNC_EXPR:
481 /* The signedness is determined from output operand. */
482 return TYPE_UNSIGNED (type) ?
483 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
485 default:
486 break;
489 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
490 switch (code)
492 case POINTER_PLUS_EXPR:
493 case PLUS_EXPR:
494 if (TYPE_SATURATING(type))
495 return TYPE_UNSIGNED(type) ? usadd_optab : ssadd_optab;
496 return trapv ? addv_optab : add_optab;
498 case MINUS_EXPR:
499 if (TYPE_SATURATING(type))
500 return TYPE_UNSIGNED(type) ? ussub_optab : sssub_optab;
501 return trapv ? subv_optab : sub_optab;
503 case MULT_EXPR:
504 if (TYPE_SATURATING(type))
505 return TYPE_UNSIGNED(type) ? usmul_optab : ssmul_optab;
506 return trapv ? smulv_optab : smul_optab;
508 case NEGATE_EXPR:
509 if (TYPE_SATURATING(type))
510 return TYPE_UNSIGNED(type) ? usneg_optab : ssneg_optab;
511 return trapv ? negv_optab : neg_optab;
513 case ABS_EXPR:
514 return trapv ? absv_optab : abs_optab;
516 case VEC_EXTRACT_EVEN_EXPR:
517 return vec_extract_even_optab;
519 case VEC_EXTRACT_ODD_EXPR:
520 return vec_extract_odd_optab;
522 case VEC_INTERLEAVE_HIGH_EXPR:
523 return vec_interleave_high_optab;
525 case VEC_INTERLEAVE_LOW_EXPR:
526 return vec_interleave_low_optab;
528 default:
529 return NULL;
534 /* Expand vector widening operations.
536 There are two different classes of operations handled here:
537 1) Operations whose result is wider than all the arguments to the operation.
538 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
539 In this case OP0 and optionally OP1 would be initialized,
540 but WIDE_OP wouldn't (not relevant for this case).
541 2) Operations whose result is of the same size as the last argument to the
542 operation, but wider than all the other arguments to the operation.
543 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
544 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
546 E.g, when called to expand the following operations, this is how
547 the arguments will be initialized:
548 nops OP0 OP1 WIDE_OP
549 widening-sum 2 oprnd0 - oprnd1
550 widening-dot-product 3 oprnd0 oprnd1 oprnd2
551 widening-mult 2 oprnd0 oprnd1 -
552 type-promotion (vec-unpack) 1 oprnd0 - - */
555 expand_widen_pattern_expr (tree exp, rtx op0, rtx op1, rtx wide_op, rtx target,
556 int unsignedp)
558 tree oprnd0, oprnd1, oprnd2;
559 enum machine_mode wmode = 0, tmode0, tmode1 = 0;
560 optab widen_pattern_optab;
561 int icode;
562 enum machine_mode xmode0, xmode1 = 0, wxmode = 0;
563 rtx temp;
564 rtx pat;
565 rtx xop0, xop1, wxop;
566 int nops = TREE_OPERAND_LENGTH (exp);
568 oprnd0 = TREE_OPERAND (exp, 0);
569 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
570 widen_pattern_optab =
571 optab_for_tree_code (TREE_CODE (exp), TREE_TYPE (oprnd0), optab_default);
572 icode = (int) optab_handler (widen_pattern_optab, tmode0)->insn_code;
573 gcc_assert (icode != CODE_FOR_nothing);
574 xmode0 = insn_data[icode].operand[1].mode;
576 if (nops >= 2)
578 oprnd1 = TREE_OPERAND (exp, 1);
579 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
580 xmode1 = insn_data[icode].operand[2].mode;
583 /* The last operand is of a wider mode than the rest of the operands. */
584 if (nops == 2)
586 wmode = tmode1;
587 wxmode = xmode1;
589 else if (nops == 3)
591 gcc_assert (tmode1 == tmode0);
592 gcc_assert (op1);
593 oprnd2 = TREE_OPERAND (exp, 2);
594 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
595 wxmode = insn_data[icode].operand[3].mode;
598 if (!wide_op)
599 wmode = wxmode = insn_data[icode].operand[0].mode;
601 if (!target
602 || ! (*insn_data[icode].operand[0].predicate) (target, wmode))
603 temp = gen_reg_rtx (wmode);
604 else
605 temp = target;
607 xop0 = op0;
608 xop1 = op1;
609 wxop = wide_op;
611 /* In case the insn wants input operands in modes different from
612 those of the actual operands, convert the operands. It would
613 seem that we don't need to convert CONST_INTs, but we do, so
614 that they're properly zero-extended, sign-extended or truncated
615 for their mode. */
617 if (GET_MODE (op0) != xmode0 && xmode0 != VOIDmode)
618 xop0 = convert_modes (xmode0,
619 GET_MODE (op0) != VOIDmode
620 ? GET_MODE (op0)
621 : tmode0,
622 xop0, unsignedp);
624 if (op1)
625 if (GET_MODE (op1) != xmode1 && xmode1 != VOIDmode)
626 xop1 = convert_modes (xmode1,
627 GET_MODE (op1) != VOIDmode
628 ? GET_MODE (op1)
629 : tmode1,
630 xop1, unsignedp);
632 if (wide_op)
633 if (GET_MODE (wide_op) != wxmode && wxmode != VOIDmode)
634 wxop = convert_modes (wxmode,
635 GET_MODE (wide_op) != VOIDmode
636 ? GET_MODE (wide_op)
637 : wmode,
638 wxop, unsignedp);
640 /* Now, if insn's predicates don't allow our operands, put them into
641 pseudo regs. */
643 if (! (*insn_data[icode].operand[1].predicate) (xop0, xmode0)
644 && xmode0 != VOIDmode)
645 xop0 = copy_to_mode_reg (xmode0, xop0);
647 if (op1)
649 if (! (*insn_data[icode].operand[2].predicate) (xop1, xmode1)
650 && xmode1 != VOIDmode)
651 xop1 = copy_to_mode_reg (xmode1, xop1);
653 if (wide_op)
655 if (! (*insn_data[icode].operand[3].predicate) (wxop, wxmode)
656 && wxmode != VOIDmode)
657 wxop = copy_to_mode_reg (wxmode, wxop);
659 pat = GEN_FCN (icode) (temp, xop0, xop1, wxop);
661 else
662 pat = GEN_FCN (icode) (temp, xop0, xop1);
664 else
666 if (wide_op)
668 if (! (*insn_data[icode].operand[2].predicate) (wxop, wxmode)
669 && wxmode != VOIDmode)
670 wxop = copy_to_mode_reg (wxmode, wxop);
672 pat = GEN_FCN (icode) (temp, xop0, wxop);
674 else
675 pat = GEN_FCN (icode) (temp, xop0);
678 emit_insn (pat);
679 return temp;
682 /* Generate code to perform an operation specified by TERNARY_OPTAB
683 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
685 UNSIGNEDP is for the case where we have to widen the operands
686 to perform the operation. It says to use zero-extension.
688 If TARGET is nonzero, the value
689 is generated there, if it is convenient to do so.
690 In all cases an rtx is returned for the locus of the value;
691 this may or may not be TARGET. */
694 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
695 rtx op1, rtx op2, rtx target, int unsignedp)
697 int icode = (int) optab_handler (ternary_optab, mode)->insn_code;
698 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
699 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
700 enum machine_mode mode2 = insn_data[icode].operand[3].mode;
701 rtx temp;
702 rtx pat;
703 rtx xop0 = op0, xop1 = op1, xop2 = op2;
705 gcc_assert (optab_handler (ternary_optab, mode)->insn_code
706 != CODE_FOR_nothing);
708 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
709 temp = gen_reg_rtx (mode);
710 else
711 temp = target;
713 /* In case the insn wants input operands in modes different from
714 those of the actual operands, convert the operands. It would
715 seem that we don't need to convert CONST_INTs, but we do, so
716 that they're properly zero-extended, sign-extended or truncated
717 for their mode. */
719 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
720 xop0 = convert_modes (mode0,
721 GET_MODE (op0) != VOIDmode
722 ? GET_MODE (op0)
723 : mode,
724 xop0, unsignedp);
726 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
727 xop1 = convert_modes (mode1,
728 GET_MODE (op1) != VOIDmode
729 ? GET_MODE (op1)
730 : mode,
731 xop1, unsignedp);
733 if (GET_MODE (op2) != mode2 && mode2 != VOIDmode)
734 xop2 = convert_modes (mode2,
735 GET_MODE (op2) != VOIDmode
736 ? GET_MODE (op2)
737 : mode,
738 xop2, unsignedp);
740 /* Now, if insn's predicates don't allow our operands, put them into
741 pseudo regs. */
743 if (!insn_data[icode].operand[1].predicate (xop0, mode0)
744 && mode0 != VOIDmode)
745 xop0 = copy_to_mode_reg (mode0, xop0);
747 if (!insn_data[icode].operand[2].predicate (xop1, mode1)
748 && mode1 != VOIDmode)
749 xop1 = copy_to_mode_reg (mode1, xop1);
751 if (!insn_data[icode].operand[3].predicate (xop2, mode2)
752 && mode2 != VOIDmode)
753 xop2 = copy_to_mode_reg (mode2, xop2);
755 pat = GEN_FCN (icode) (temp, xop0, xop1, xop2);
757 emit_insn (pat);
758 return temp;
762 /* Like expand_binop, but return a constant rtx if the result can be
763 calculated at compile time. The arguments and return value are
764 otherwise the same as for expand_binop. */
766 static rtx
767 simplify_expand_binop (enum machine_mode mode, optab binoptab,
768 rtx op0, rtx op1, rtx target, int unsignedp,
769 enum optab_methods methods)
771 if (CONSTANT_P (op0) && CONSTANT_P (op1))
773 rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
775 if (x)
776 return x;
779 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
782 /* Like simplify_expand_binop, but always put the result in TARGET.
783 Return true if the expansion succeeded. */
785 bool
786 force_expand_binop (enum machine_mode mode, optab binoptab,
787 rtx op0, rtx op1, rtx target, int unsignedp,
788 enum optab_methods methods)
790 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
791 target, unsignedp, methods);
792 if (x == 0)
793 return false;
794 if (x != target)
795 emit_move_insn (target, x);
796 return true;
799 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
802 expand_vec_shift_expr (tree vec_shift_expr, rtx target)
804 enum insn_code icode;
805 rtx rtx_op1, rtx_op2;
806 enum machine_mode mode1;
807 enum machine_mode mode2;
808 enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_shift_expr));
809 tree vec_oprnd = TREE_OPERAND (vec_shift_expr, 0);
810 tree shift_oprnd = TREE_OPERAND (vec_shift_expr, 1);
811 optab shift_optab;
812 rtx pat;
814 switch (TREE_CODE (vec_shift_expr))
816 case VEC_RSHIFT_EXPR:
817 shift_optab = vec_shr_optab;
818 break;
819 case VEC_LSHIFT_EXPR:
820 shift_optab = vec_shl_optab;
821 break;
822 default:
823 gcc_unreachable ();
826 icode = (int) optab_handler (shift_optab, mode)->insn_code;
827 gcc_assert (icode != CODE_FOR_nothing);
829 mode1 = insn_data[icode].operand[1].mode;
830 mode2 = insn_data[icode].operand[2].mode;
832 rtx_op1 = expand_normal (vec_oprnd);
833 if (!(*insn_data[icode].operand[1].predicate) (rtx_op1, mode1)
834 && mode1 != VOIDmode)
835 rtx_op1 = force_reg (mode1, rtx_op1);
837 rtx_op2 = expand_normal (shift_oprnd);
838 if (!(*insn_data[icode].operand[2].predicate) (rtx_op2, mode2)
839 && mode2 != VOIDmode)
840 rtx_op2 = force_reg (mode2, rtx_op2);
842 if (!target
843 || ! (*insn_data[icode].operand[0].predicate) (target, mode))
844 target = gen_reg_rtx (mode);
846 /* Emit instruction */
847 pat = GEN_FCN (icode) (target, rtx_op1, rtx_op2);
848 gcc_assert (pat);
849 emit_insn (pat);
851 return target;
854 /* This subroutine of expand_doubleword_shift handles the cases in which
855 the effective shift value is >= BITS_PER_WORD. The arguments and return
856 value are the same as for the parent routine, except that SUPERWORD_OP1
857 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
858 INTO_TARGET may be null if the caller has decided to calculate it. */
860 static bool
861 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
862 rtx outof_target, rtx into_target,
863 int unsignedp, enum optab_methods methods)
865 if (into_target != 0)
866 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
867 into_target, unsignedp, methods))
868 return false;
870 if (outof_target != 0)
872 /* For a signed right shift, we must fill OUTOF_TARGET with copies
873 of the sign bit, otherwise we must fill it with zeros. */
874 if (binoptab != ashr_optab)
875 emit_move_insn (outof_target, CONST0_RTX (word_mode));
876 else
877 if (!force_expand_binop (word_mode, binoptab,
878 outof_input, GEN_INT (BITS_PER_WORD - 1),
879 outof_target, unsignedp, methods))
880 return false;
882 return true;
885 /* This subroutine of expand_doubleword_shift handles the cases in which
886 the effective shift value is < BITS_PER_WORD. The arguments and return
887 value are the same as for the parent routine. */
889 static bool
890 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
891 rtx outof_input, rtx into_input, rtx op1,
892 rtx outof_target, rtx into_target,
893 int unsignedp, enum optab_methods methods,
894 unsigned HOST_WIDE_INT shift_mask)
896 optab reverse_unsigned_shift, unsigned_shift;
897 rtx tmp, carries;
899 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
900 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
902 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
903 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
904 the opposite direction to BINOPTAB. */
905 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
907 carries = outof_input;
908 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
909 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
910 0, true, methods);
912 else
914 /* We must avoid shifting by BITS_PER_WORD bits since that is either
915 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
916 has unknown behavior. Do a single shift first, then shift by the
917 remainder. It's OK to use ~OP1 as the remainder if shift counts
918 are truncated to the mode size. */
919 carries = expand_binop (word_mode, reverse_unsigned_shift,
920 outof_input, const1_rtx, 0, unsignedp, methods);
921 if (shift_mask == BITS_PER_WORD - 1)
923 tmp = immed_double_const (-1, -1, op1_mode);
924 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
925 0, true, methods);
927 else
929 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
930 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
931 0, true, methods);
934 if (tmp == 0 || carries == 0)
935 return false;
936 carries = expand_binop (word_mode, reverse_unsigned_shift,
937 carries, tmp, 0, unsignedp, methods);
938 if (carries == 0)
939 return false;
941 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
942 so the result can go directly into INTO_TARGET if convenient. */
943 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
944 into_target, unsignedp, methods);
945 if (tmp == 0)
946 return false;
948 /* Now OR in the bits carried over from OUTOF_INPUT. */
949 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
950 into_target, unsignedp, methods))
951 return false;
953 /* Use a standard word_mode shift for the out-of half. */
954 if (outof_target != 0)
955 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
956 outof_target, unsignedp, methods))
957 return false;
959 return true;
963 #ifdef HAVE_conditional_move
964 /* Try implementing expand_doubleword_shift using conditional moves.
965 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
966 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
967 are the shift counts to use in the former and latter case. All other
968 arguments are the same as the parent routine. */
970 static bool
971 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
972 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
973 rtx outof_input, rtx into_input,
974 rtx subword_op1, rtx superword_op1,
975 rtx outof_target, rtx into_target,
976 int unsignedp, enum optab_methods methods,
977 unsigned HOST_WIDE_INT shift_mask)
979 rtx outof_superword, into_superword;
981 /* Put the superword version of the output into OUTOF_SUPERWORD and
982 INTO_SUPERWORD. */
983 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
984 if (outof_target != 0 && subword_op1 == superword_op1)
986 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
987 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
988 into_superword = outof_target;
989 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
990 outof_superword, 0, unsignedp, methods))
991 return false;
993 else
995 into_superword = gen_reg_rtx (word_mode);
996 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
997 outof_superword, into_superword,
998 unsignedp, methods))
999 return false;
1002 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
1003 if (!expand_subword_shift (op1_mode, binoptab,
1004 outof_input, into_input, subword_op1,
1005 outof_target, into_target,
1006 unsignedp, methods, shift_mask))
1007 return false;
1009 /* Select between them. Do the INTO half first because INTO_SUPERWORD
1010 might be the current value of OUTOF_TARGET. */
1011 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
1012 into_target, into_superword, word_mode, false))
1013 return false;
1015 if (outof_target != 0)
1016 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
1017 outof_target, outof_superword,
1018 word_mode, false))
1019 return false;
1021 return true;
1023 #endif
1025 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
1026 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
1027 input operand; the shift moves bits in the direction OUTOF_INPUT->
1028 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
1029 of the target. OP1 is the shift count and OP1_MODE is its mode.
1030 If OP1 is constant, it will have been truncated as appropriate
1031 and is known to be nonzero.
1033 If SHIFT_MASK is zero, the result of word shifts is undefined when the
1034 shift count is outside the range [0, BITS_PER_WORD). This routine must
1035 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
1037 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
1038 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
1039 fill with zeros or sign bits as appropriate.
1041 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
1042 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
1043 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
1044 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
1045 are undefined.
1047 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
1048 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
1049 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
1050 function wants to calculate it itself.
1052 Return true if the shift could be successfully synthesized. */
1054 static bool
1055 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1056 rtx outof_input, rtx into_input, rtx op1,
1057 rtx outof_target, rtx into_target,
1058 int unsignedp, enum optab_methods methods,
1059 unsigned HOST_WIDE_INT shift_mask)
1061 rtx superword_op1, tmp, cmp1, cmp2;
1062 rtx subword_label, done_label;
1063 enum rtx_code cmp_code;
1065 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1066 fill the result with sign or zero bits as appropriate. If so, the value
1067 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1068 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1069 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1071 This isn't worthwhile for constant shifts since the optimizers will
1072 cope better with in-range shift counts. */
1073 if (shift_mask >= BITS_PER_WORD
1074 && outof_target != 0
1075 && !CONSTANT_P (op1))
1077 if (!expand_doubleword_shift (op1_mode, binoptab,
1078 outof_input, into_input, op1,
1079 0, into_target,
1080 unsignedp, methods, shift_mask))
1081 return false;
1082 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1083 outof_target, unsignedp, methods))
1084 return false;
1085 return true;
1088 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1089 is true when the effective shift value is less than BITS_PER_WORD.
1090 Set SUPERWORD_OP1 to the shift count that should be used to shift
1091 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1092 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
1093 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1095 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1096 is a subword shift count. */
1097 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1098 0, true, methods);
1099 cmp2 = CONST0_RTX (op1_mode);
1100 cmp_code = EQ;
1101 superword_op1 = op1;
1103 else
1105 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1106 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1107 0, true, methods);
1108 cmp2 = CONST0_RTX (op1_mode);
1109 cmp_code = LT;
1110 superword_op1 = cmp1;
1112 if (cmp1 == 0)
1113 return false;
1115 /* If we can compute the condition at compile time, pick the
1116 appropriate subroutine. */
1117 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1118 if (tmp != 0 && GET_CODE (tmp) == CONST_INT)
1120 if (tmp == const0_rtx)
1121 return expand_superword_shift (binoptab, outof_input, superword_op1,
1122 outof_target, into_target,
1123 unsignedp, methods);
1124 else
1125 return expand_subword_shift (op1_mode, binoptab,
1126 outof_input, into_input, op1,
1127 outof_target, into_target,
1128 unsignedp, methods, shift_mask);
1131 #ifdef HAVE_conditional_move
1132 /* Try using conditional moves to generate straight-line code. */
1134 rtx start = get_last_insn ();
1135 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1136 cmp_code, cmp1, cmp2,
1137 outof_input, into_input,
1138 op1, superword_op1,
1139 outof_target, into_target,
1140 unsignedp, methods, shift_mask))
1141 return true;
1142 delete_insns_since (start);
1144 #endif
1146 /* As a last resort, use branches to select the correct alternative. */
1147 subword_label = gen_label_rtx ();
1148 done_label = gen_label_rtx ();
1150 NO_DEFER_POP;
1151 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1152 0, 0, subword_label);
1153 OK_DEFER_POP;
1155 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1156 outof_target, into_target,
1157 unsignedp, methods))
1158 return false;
1160 emit_jump_insn (gen_jump (done_label));
1161 emit_barrier ();
1162 emit_label (subword_label);
1164 if (!expand_subword_shift (op1_mode, binoptab,
1165 outof_input, into_input, op1,
1166 outof_target, into_target,
1167 unsignedp, methods, shift_mask))
1168 return false;
1170 emit_label (done_label);
1171 return true;
1174 /* Subroutine of expand_binop. Perform a double word multiplication of
1175 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1176 as the target's word_mode. This function return NULL_RTX if anything
1177 goes wrong, in which case it may have already emitted instructions
1178 which need to be deleted.
1180 If we want to multiply two two-word values and have normal and widening
1181 multiplies of single-word values, we can do this with three smaller
1182 multiplications.
1184 The multiplication proceeds as follows:
1185 _______________________
1186 [__op0_high_|__op0_low__]
1187 _______________________
1188 * [__op1_high_|__op1_low__]
1189 _______________________________________________
1190 _______________________
1191 (1) [__op0_low__*__op1_low__]
1192 _______________________
1193 (2a) [__op0_low__*__op1_high_]
1194 _______________________
1195 (2b) [__op0_high_*__op1_low__]
1196 _______________________
1197 (3) [__op0_high_*__op1_high_]
1200 This gives a 4-word result. Since we are only interested in the
1201 lower 2 words, partial result (3) and the upper words of (2a) and
1202 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1203 calculated using non-widening multiplication.
1205 (1), however, needs to be calculated with an unsigned widening
1206 multiplication. If this operation is not directly supported we
1207 try using a signed widening multiplication and adjust the result.
1208 This adjustment works as follows:
1210 If both operands are positive then no adjustment is needed.
1212 If the operands have different signs, for example op0_low < 0 and
1213 op1_low >= 0, the instruction treats the most significant bit of
1214 op0_low as a sign bit instead of a bit with significance
1215 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1216 with 2**BITS_PER_WORD - op0_low, and two's complements the
1217 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1218 the result.
1220 Similarly, if both operands are negative, we need to add
1221 (op0_low + op1_low) * 2**BITS_PER_WORD.
1223 We use a trick to adjust quickly. We logically shift op0_low right
1224 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1225 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1226 logical shift exists, we do an arithmetic right shift and subtract
1227 the 0 or -1. */
1229 static rtx
1230 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1231 bool umulp, enum optab_methods methods)
1233 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1234 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1235 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1236 rtx product, adjust, product_high, temp;
1238 rtx op0_high = operand_subword_force (op0, high, mode);
1239 rtx op0_low = operand_subword_force (op0, low, mode);
1240 rtx op1_high = operand_subword_force (op1, high, mode);
1241 rtx op1_low = operand_subword_force (op1, low, mode);
1243 /* If we're using an unsigned multiply to directly compute the product
1244 of the low-order words of the operands and perform any required
1245 adjustments of the operands, we begin by trying two more multiplications
1246 and then computing the appropriate sum.
1248 We have checked above that the required addition is provided.
1249 Full-word addition will normally always succeed, especially if
1250 it is provided at all, so we don't worry about its failure. The
1251 multiplication may well fail, however, so we do handle that. */
1253 if (!umulp)
1255 /* ??? This could be done with emit_store_flag where available. */
1256 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1257 NULL_RTX, 1, methods);
1258 if (temp)
1259 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1260 NULL_RTX, 0, OPTAB_DIRECT);
1261 else
1263 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1264 NULL_RTX, 0, methods);
1265 if (!temp)
1266 return NULL_RTX;
1267 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1268 NULL_RTX, 0, OPTAB_DIRECT);
1271 if (!op0_high)
1272 return NULL_RTX;
1275 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1276 NULL_RTX, 0, OPTAB_DIRECT);
1277 if (!adjust)
1278 return NULL_RTX;
1280 /* OP0_HIGH should now be dead. */
1282 if (!umulp)
1284 /* ??? This could be done with emit_store_flag where available. */
1285 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1286 NULL_RTX, 1, methods);
1287 if (temp)
1288 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1289 NULL_RTX, 0, OPTAB_DIRECT);
1290 else
1292 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1293 NULL_RTX, 0, methods);
1294 if (!temp)
1295 return NULL_RTX;
1296 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1297 NULL_RTX, 0, OPTAB_DIRECT);
1300 if (!op1_high)
1301 return NULL_RTX;
1304 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1305 NULL_RTX, 0, OPTAB_DIRECT);
1306 if (!temp)
1307 return NULL_RTX;
1309 /* OP1_HIGH should now be dead. */
1311 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1312 adjust, 0, OPTAB_DIRECT);
1314 if (target && !REG_P (target))
1315 target = NULL_RTX;
1317 if (umulp)
1318 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1319 target, 1, OPTAB_DIRECT);
1320 else
1321 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1322 target, 1, OPTAB_DIRECT);
1324 if (!product)
1325 return NULL_RTX;
1327 product_high = operand_subword (product, high, 1, mode);
1328 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1329 REG_P (product_high) ? product_high : adjust,
1330 0, OPTAB_DIRECT);
1331 emit_move_insn (product_high, adjust);
1332 return product;
1335 /* Wrapper around expand_binop which takes an rtx code to specify
1336 the operation to perform, not an optab pointer. All other
1337 arguments are the same. */
1339 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1340 rtx op1, rtx target, int unsignedp,
1341 enum optab_methods methods)
1343 optab binop = code_to_optab[(int) code];
1344 gcc_assert (binop);
1346 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1349 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1350 binop. Order them according to commutative_operand_precedence and, if
1351 possible, try to put TARGET or a pseudo first. */
1352 static bool
1353 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1355 int op0_prec = commutative_operand_precedence (op0);
1356 int op1_prec = commutative_operand_precedence (op1);
1358 if (op0_prec < op1_prec)
1359 return true;
1361 if (op0_prec > op1_prec)
1362 return false;
1364 /* With equal precedence, both orders are ok, but it is better if the
1365 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1366 if (target == 0 || REG_P (target))
1367 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1368 else
1369 return rtx_equal_p (op1, target);
1372 /* Return true if BINOPTAB implements a shift operation. */
1374 static bool
1375 shift_optab_p (optab binoptab)
1377 switch (binoptab->code)
1379 case ASHIFT:
1380 case SS_ASHIFT:
1381 case US_ASHIFT:
1382 case ASHIFTRT:
1383 case LSHIFTRT:
1384 case ROTATE:
1385 case ROTATERT:
1386 return true;
1388 default:
1389 return false;
1393 /* Return true if BINOPTAB implements a commutative binary operation. */
1395 static bool
1396 commutative_optab_p (optab binoptab)
1398 return (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
1399 || binoptab == smul_widen_optab
1400 || binoptab == umul_widen_optab
1401 || binoptab == smul_highpart_optab
1402 || binoptab == umul_highpart_optab);
1405 /* X is to be used in mode MODE as an operand to BINOPTAB. If we're
1406 optimizing, and if the operand is a constant that costs more than
1407 1 instruction, force the constant into a register and return that
1408 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1410 static rtx
1411 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1412 rtx x, bool unsignedp)
1414 if (mode != VOIDmode
1415 && optimize
1416 && CONSTANT_P (x)
1417 && rtx_cost (x, binoptab->code) > COSTS_N_INSNS (1))
1419 if (GET_CODE (x) == CONST_INT)
1421 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1422 if (intval != INTVAL (x))
1423 x = GEN_INT (intval);
1425 else
1426 x = convert_modes (mode, VOIDmode, x, unsignedp);
1427 x = force_reg (mode, x);
1429 return x;
1432 /* Helper function for expand_binop: handle the case where there
1433 is an insn that directly implements the indicated operation.
1434 Returns null if this is not possible. */
1435 static rtx
1436 expand_binop_directly (enum machine_mode mode, optab binoptab,
1437 rtx op0, rtx op1,
1438 rtx target, int unsignedp, enum optab_methods methods,
1439 rtx last)
1441 int icode = (int) optab_handler (binoptab, mode)->insn_code;
1442 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
1443 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
1444 enum machine_mode tmp_mode;
1445 bool commutative_p;
1446 rtx pat;
1447 rtx xop0 = op0, xop1 = op1;
1448 rtx temp;
1449 rtx swap;
1451 if (target)
1452 temp = target;
1453 else
1454 temp = gen_reg_rtx (mode);
1456 /* If it is a commutative operator and the modes would match
1457 if we would swap the operands, we can save the conversions. */
1458 commutative_p = commutative_optab_p (binoptab);
1459 if (commutative_p
1460 && GET_MODE (xop0) != mode0 && GET_MODE (xop1) != mode1
1461 && GET_MODE (xop0) == mode1 && GET_MODE (xop1) == mode1)
1463 swap = xop0;
1464 xop0 = xop1;
1465 xop1 = swap;
1468 /* If we are optimizing, force expensive constants into a register. */
1469 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
1470 if (!shift_optab_p (binoptab))
1471 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
1473 /* In case the insn wants input operands in modes different from
1474 those of the actual operands, convert the operands. It would
1475 seem that we don't need to convert CONST_INTs, but we do, so
1476 that they're properly zero-extended, sign-extended or truncated
1477 for their mode. */
1479 if (GET_MODE (xop0) != mode0 && mode0 != VOIDmode)
1480 xop0 = convert_modes (mode0,
1481 GET_MODE (xop0) != VOIDmode
1482 ? GET_MODE (xop0)
1483 : mode,
1484 xop0, unsignedp);
1486 if (GET_MODE (xop1) != mode1 && mode1 != VOIDmode)
1487 xop1 = convert_modes (mode1,
1488 GET_MODE (xop1) != VOIDmode
1489 ? GET_MODE (xop1)
1490 : mode,
1491 xop1, unsignedp);
1493 /* If operation is commutative,
1494 try to make the first operand a register.
1495 Even better, try to make it the same as the target.
1496 Also try to make the last operand a constant. */
1497 if (commutative_p
1498 && swap_commutative_operands_with_target (target, xop0, xop1))
1500 swap = xop1;
1501 xop1 = xop0;
1502 xop0 = swap;
1505 /* Now, if insn's predicates don't allow our operands, put them into
1506 pseudo regs. */
1508 if (!insn_data[icode].operand[1].predicate (xop0, mode0)
1509 && mode0 != VOIDmode)
1510 xop0 = copy_to_mode_reg (mode0, xop0);
1512 if (!insn_data[icode].operand[2].predicate (xop1, mode1)
1513 && mode1 != VOIDmode)
1514 xop1 = copy_to_mode_reg (mode1, xop1);
1516 if (binoptab == vec_pack_trunc_optab
1517 || binoptab == vec_pack_usat_optab
1518 || binoptab == vec_pack_ssat_optab
1519 || binoptab == vec_pack_ufix_trunc_optab
1520 || binoptab == vec_pack_sfix_trunc_optab)
1522 /* The mode of the result is different then the mode of the
1523 arguments. */
1524 tmp_mode = insn_data[icode].operand[0].mode;
1525 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1526 return 0;
1528 else
1529 tmp_mode = mode;
1531 if (!insn_data[icode].operand[0].predicate (temp, tmp_mode))
1532 temp = gen_reg_rtx (tmp_mode);
1534 pat = GEN_FCN (icode) (temp, xop0, xop1);
1535 if (pat)
1537 /* If PAT is composed of more than one insn, try to add an appropriate
1538 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1539 operand, call expand_binop again, this time without a target. */
1540 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1541 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
1543 delete_insns_since (last);
1544 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1545 unsignedp, methods);
1548 emit_insn (pat);
1549 return temp;
1552 delete_insns_since (last);
1553 return NULL_RTX;
1556 /* Generate code to perform an operation specified by BINOPTAB
1557 on operands OP0 and OP1, with result having machine-mode MODE.
1559 UNSIGNEDP is for the case where we have to widen the operands
1560 to perform the operation. It says to use zero-extension.
1562 If TARGET is nonzero, the value
1563 is generated there, if it is convenient to do so.
1564 In all cases an rtx is returned for the locus of the value;
1565 this may or may not be TARGET. */
1568 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1569 rtx target, int unsignedp, enum optab_methods methods)
1571 enum optab_methods next_methods
1572 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1573 ? OPTAB_WIDEN : methods);
1574 enum mode_class class;
1575 enum machine_mode wider_mode;
1576 rtx libfunc;
1577 rtx temp;
1578 rtx entry_last = get_last_insn ();
1579 rtx last;
1581 class = GET_MODE_CLASS (mode);
1583 /* If subtracting an integer constant, convert this into an addition of
1584 the negated constant. */
1586 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
1588 op1 = negate_rtx (mode, op1);
1589 binoptab = add_optab;
1592 /* Record where to delete back to if we backtrack. */
1593 last = get_last_insn ();
1595 /* If we can do it with a three-operand insn, do so. */
1597 if (methods != OPTAB_MUST_WIDEN
1598 && optab_handler (binoptab, mode)->insn_code != CODE_FOR_nothing)
1600 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1601 unsignedp, methods, last);
1602 if (temp)
1603 return temp;
1606 /* If we were trying to rotate, and that didn't work, try rotating
1607 the other direction before falling back to shifts and bitwise-or. */
1608 if (((binoptab == rotl_optab
1609 && optab_handler (rotr_optab, mode)->insn_code != CODE_FOR_nothing)
1610 || (binoptab == rotr_optab
1611 && optab_handler (rotl_optab, mode)->insn_code != CODE_FOR_nothing))
1612 && class == MODE_INT)
1614 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1615 rtx newop1;
1616 unsigned int bits = GET_MODE_BITSIZE (mode);
1618 if (GET_CODE (op1) == CONST_INT)
1619 newop1 = GEN_INT (bits - INTVAL (op1));
1620 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1621 newop1 = negate_rtx (mode, op1);
1622 else
1623 newop1 = expand_binop (mode, sub_optab,
1624 GEN_INT (bits), op1,
1625 NULL_RTX, unsignedp, OPTAB_DIRECT);
1627 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1628 target, unsignedp, methods, last);
1629 if (temp)
1630 return temp;
1633 /* If this is a multiply, see if we can do a widening operation that
1634 takes operands of this mode and makes a wider mode. */
1636 if (binoptab == smul_optab
1637 && GET_MODE_WIDER_MODE (mode) != VOIDmode
1638 && ((optab_handler ((unsignedp ? umul_widen_optab : smul_widen_optab),
1639 GET_MODE_WIDER_MODE (mode))->insn_code)
1640 != CODE_FOR_nothing))
1642 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
1643 unsignedp ? umul_widen_optab : smul_widen_optab,
1644 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1646 if (temp != 0)
1648 if (GET_MODE_CLASS (mode) == MODE_INT
1649 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1650 GET_MODE_BITSIZE (GET_MODE (temp))))
1651 return gen_lowpart (mode, temp);
1652 else
1653 return convert_to_mode (mode, temp, unsignedp);
1657 /* Look for a wider mode of the same class for which we think we
1658 can open-code the operation. Check for a widening multiply at the
1659 wider mode as well. */
1661 if (CLASS_HAS_WIDER_MODES_P (class)
1662 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1663 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1664 wider_mode != VOIDmode;
1665 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1667 if (optab_handler (binoptab, wider_mode)->insn_code != CODE_FOR_nothing
1668 || (binoptab == smul_optab
1669 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1670 && ((optab_handler ((unsignedp ? umul_widen_optab
1671 : smul_widen_optab),
1672 GET_MODE_WIDER_MODE (wider_mode))->insn_code)
1673 != CODE_FOR_nothing)))
1675 rtx xop0 = op0, xop1 = op1;
1676 int no_extend = 0;
1678 /* For certain integer operations, we need not actually extend
1679 the narrow operands, as long as we will truncate
1680 the results to the same narrowness. */
1682 if ((binoptab == ior_optab || binoptab == and_optab
1683 || binoptab == xor_optab
1684 || binoptab == add_optab || binoptab == sub_optab
1685 || binoptab == smul_optab || binoptab == ashl_optab)
1686 && class == MODE_INT)
1688 no_extend = 1;
1689 xop0 = avoid_expensive_constant (mode, binoptab,
1690 xop0, unsignedp);
1691 if (binoptab != ashl_optab)
1692 xop1 = avoid_expensive_constant (mode, binoptab,
1693 xop1, unsignedp);
1696 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1698 /* The second operand of a shift must always be extended. */
1699 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1700 no_extend && binoptab != ashl_optab);
1702 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1703 unsignedp, OPTAB_DIRECT);
1704 if (temp)
1706 if (class != MODE_INT
1707 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1708 GET_MODE_BITSIZE (wider_mode)))
1710 if (target == 0)
1711 target = gen_reg_rtx (mode);
1712 convert_move (target, temp, 0);
1713 return target;
1715 else
1716 return gen_lowpart (mode, temp);
1718 else
1719 delete_insns_since (last);
1723 /* If operation is commutative,
1724 try to make the first operand a register.
1725 Even better, try to make it the same as the target.
1726 Also try to make the last operand a constant. */
1727 if (commutative_optab_p (binoptab)
1728 && swap_commutative_operands_with_target (target, op0, op1))
1730 temp = op1;
1731 op1 = op0;
1732 op0 = temp;
1735 /* These can be done a word at a time. */
1736 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1737 && class == MODE_INT
1738 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1739 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing)
1741 int i;
1742 rtx insns;
1743 rtx equiv_value;
1745 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1746 won't be accurate, so use a new target. */
1747 if (target == 0 || target == op0 || target == op1)
1748 target = gen_reg_rtx (mode);
1750 start_sequence ();
1752 /* Do the actual arithmetic. */
1753 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1755 rtx target_piece = operand_subword (target, i, 1, mode);
1756 rtx x = expand_binop (word_mode, binoptab,
1757 operand_subword_force (op0, i, mode),
1758 operand_subword_force (op1, i, mode),
1759 target_piece, unsignedp, next_methods);
1761 if (x == 0)
1762 break;
1764 if (target_piece != x)
1765 emit_move_insn (target_piece, x);
1768 insns = get_insns ();
1769 end_sequence ();
1771 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1773 if (binoptab->code != UNKNOWN)
1774 equiv_value
1775 = gen_rtx_fmt_ee (binoptab->code, mode,
1776 copy_rtx (op0), copy_rtx (op1));
1777 else
1778 equiv_value = 0;
1780 emit_insn (insns);
1781 return target;
1785 /* Synthesize double word shifts from single word shifts. */
1786 if ((binoptab == lshr_optab || binoptab == ashl_optab
1787 || binoptab == ashr_optab)
1788 && class == MODE_INT
1789 && (GET_CODE (op1) == CONST_INT || !optimize_size)
1790 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1791 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing
1792 && optab_handler (ashl_optab, word_mode)->insn_code != CODE_FOR_nothing
1793 && optab_handler (lshr_optab, word_mode)->insn_code != CODE_FOR_nothing)
1795 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1796 enum machine_mode op1_mode;
1798 double_shift_mask = targetm.shift_truncation_mask (mode);
1799 shift_mask = targetm.shift_truncation_mask (word_mode);
1800 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1802 /* Apply the truncation to constant shifts. */
1803 if (double_shift_mask > 0 && GET_CODE (op1) == CONST_INT)
1804 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1806 if (op1 == CONST0_RTX (op1_mode))
1807 return op0;
1809 /* Make sure that this is a combination that expand_doubleword_shift
1810 can handle. See the comments there for details. */
1811 if (double_shift_mask == 0
1812 || (shift_mask == BITS_PER_WORD - 1
1813 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1815 rtx insns;
1816 rtx into_target, outof_target;
1817 rtx into_input, outof_input;
1818 int left_shift, outof_word;
1820 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1821 won't be accurate, so use a new target. */
1822 if (target == 0 || target == op0 || target == op1)
1823 target = gen_reg_rtx (mode);
1825 start_sequence ();
1827 /* OUTOF_* is the word we are shifting bits away from, and
1828 INTO_* is the word that we are shifting bits towards, thus
1829 they differ depending on the direction of the shift and
1830 WORDS_BIG_ENDIAN. */
1832 left_shift = binoptab == ashl_optab;
1833 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1835 outof_target = operand_subword (target, outof_word, 1, mode);
1836 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1838 outof_input = operand_subword_force (op0, outof_word, mode);
1839 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1841 if (expand_doubleword_shift (op1_mode, binoptab,
1842 outof_input, into_input, op1,
1843 outof_target, into_target,
1844 unsignedp, next_methods, shift_mask))
1846 insns = get_insns ();
1847 end_sequence ();
1849 emit_insn (insns);
1850 return target;
1852 end_sequence ();
1856 /* Synthesize double word rotates from single word shifts. */
1857 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1858 && class == MODE_INT
1859 && GET_CODE (op1) == CONST_INT
1860 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1861 && optab_handler (ashl_optab, word_mode)->insn_code != CODE_FOR_nothing
1862 && optab_handler (lshr_optab, word_mode)->insn_code != CODE_FOR_nothing)
1864 rtx insns;
1865 rtx into_target, outof_target;
1866 rtx into_input, outof_input;
1867 rtx inter;
1868 int shift_count, left_shift, outof_word;
1870 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1871 won't be accurate, so use a new target. Do this also if target is not
1872 a REG, first because having a register instead may open optimization
1873 opportunities, and second because if target and op0 happen to be MEMs
1874 designating the same location, we would risk clobbering it too early
1875 in the code sequence we generate below. */
1876 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
1877 target = gen_reg_rtx (mode);
1879 start_sequence ();
1881 shift_count = INTVAL (op1);
1883 /* OUTOF_* is the word we are shifting bits away from, and
1884 INTO_* is the word that we are shifting bits towards, thus
1885 they differ depending on the direction of the shift and
1886 WORDS_BIG_ENDIAN. */
1888 left_shift = (binoptab == rotl_optab);
1889 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1891 outof_target = operand_subword (target, outof_word, 1, mode);
1892 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1894 outof_input = operand_subword_force (op0, outof_word, mode);
1895 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1897 if (shift_count == BITS_PER_WORD)
1899 /* This is just a word swap. */
1900 emit_move_insn (outof_target, into_input);
1901 emit_move_insn (into_target, outof_input);
1902 inter = const0_rtx;
1904 else
1906 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1907 rtx first_shift_count, second_shift_count;
1908 optab reverse_unsigned_shift, unsigned_shift;
1910 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1911 ? lshr_optab : ashl_optab);
1913 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1914 ? ashl_optab : lshr_optab);
1916 if (shift_count > BITS_PER_WORD)
1918 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1919 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1921 else
1923 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1924 second_shift_count = GEN_INT (shift_count);
1927 into_temp1 = expand_binop (word_mode, unsigned_shift,
1928 outof_input, first_shift_count,
1929 NULL_RTX, unsignedp, next_methods);
1930 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1931 into_input, second_shift_count,
1932 NULL_RTX, unsignedp, next_methods);
1934 if (into_temp1 != 0 && into_temp2 != 0)
1935 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1936 into_target, unsignedp, next_methods);
1937 else
1938 inter = 0;
1940 if (inter != 0 && inter != into_target)
1941 emit_move_insn (into_target, inter);
1943 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1944 into_input, first_shift_count,
1945 NULL_RTX, unsignedp, next_methods);
1946 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1947 outof_input, second_shift_count,
1948 NULL_RTX, unsignedp, next_methods);
1950 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1951 inter = expand_binop (word_mode, ior_optab,
1952 outof_temp1, outof_temp2,
1953 outof_target, unsignedp, next_methods);
1955 if (inter != 0 && inter != outof_target)
1956 emit_move_insn (outof_target, inter);
1959 insns = get_insns ();
1960 end_sequence ();
1962 if (inter != 0)
1964 emit_insn (insns);
1965 return target;
1969 /* These can be done a word at a time by propagating carries. */
1970 if ((binoptab == add_optab || binoptab == sub_optab)
1971 && class == MODE_INT
1972 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1973 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing)
1975 unsigned int i;
1976 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1977 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1978 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1979 rtx xop0, xop1, xtarget;
1981 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1982 value is one of those, use it. Otherwise, use 1 since it is the
1983 one easiest to get. */
1984 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1985 int normalizep = STORE_FLAG_VALUE;
1986 #else
1987 int normalizep = 1;
1988 #endif
1990 /* Prepare the operands. */
1991 xop0 = force_reg (mode, op0);
1992 xop1 = force_reg (mode, op1);
1994 xtarget = gen_reg_rtx (mode);
1996 if (target == 0 || !REG_P (target))
1997 target = xtarget;
1999 /* Indicate for flow that the entire target reg is being set. */
2000 if (REG_P (target))
2001 emit_clobber (xtarget);
2003 /* Do the actual arithmetic. */
2004 for (i = 0; i < nwords; i++)
2006 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
2007 rtx target_piece = operand_subword (xtarget, index, 1, mode);
2008 rtx op0_piece = operand_subword_force (xop0, index, mode);
2009 rtx op1_piece = operand_subword_force (xop1, index, mode);
2010 rtx x;
2012 /* Main add/subtract of the input operands. */
2013 x = expand_binop (word_mode, binoptab,
2014 op0_piece, op1_piece,
2015 target_piece, unsignedp, next_methods);
2016 if (x == 0)
2017 break;
2019 if (i + 1 < nwords)
2021 /* Store carry from main add/subtract. */
2022 carry_out = gen_reg_rtx (word_mode);
2023 carry_out = emit_store_flag_force (carry_out,
2024 (binoptab == add_optab
2025 ? LT : GT),
2026 x, op0_piece,
2027 word_mode, 1, normalizep);
2030 if (i > 0)
2032 rtx newx;
2034 /* Add/subtract previous carry to main result. */
2035 newx = expand_binop (word_mode,
2036 normalizep == 1 ? binoptab : otheroptab,
2037 x, carry_in,
2038 NULL_RTX, 1, next_methods);
2040 if (i + 1 < nwords)
2042 /* Get out carry from adding/subtracting carry in. */
2043 rtx carry_tmp = gen_reg_rtx (word_mode);
2044 carry_tmp = emit_store_flag_force (carry_tmp,
2045 (binoptab == add_optab
2046 ? LT : GT),
2047 newx, x,
2048 word_mode, 1, normalizep);
2050 /* Logical-ior the two poss. carry together. */
2051 carry_out = expand_binop (word_mode, ior_optab,
2052 carry_out, carry_tmp,
2053 carry_out, 0, next_methods);
2054 if (carry_out == 0)
2055 break;
2057 emit_move_insn (target_piece, newx);
2059 else
2061 if (x != target_piece)
2062 emit_move_insn (target_piece, x);
2065 carry_in = carry_out;
2068 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2070 if (optab_handler (mov_optab, mode)->insn_code != CODE_FOR_nothing
2071 || ! rtx_equal_p (target, xtarget))
2073 rtx temp = emit_move_insn (target, xtarget);
2075 set_unique_reg_note (temp,
2076 REG_EQUAL,
2077 gen_rtx_fmt_ee (binoptab->code, mode,
2078 copy_rtx (xop0),
2079 copy_rtx (xop1)));
2081 else
2082 target = xtarget;
2084 return target;
2087 else
2088 delete_insns_since (last);
2091 /* Attempt to synthesize double word multiplies using a sequence of word
2092 mode multiplications. We first attempt to generate a sequence using a
2093 more efficient unsigned widening multiply, and if that fails we then
2094 try using a signed widening multiply. */
2096 if (binoptab == smul_optab
2097 && class == MODE_INT
2098 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2099 && optab_handler (smul_optab, word_mode)->insn_code != CODE_FOR_nothing
2100 && optab_handler (add_optab, word_mode)->insn_code != CODE_FOR_nothing)
2102 rtx product = NULL_RTX;
2104 if (optab_handler (umul_widen_optab, mode)->insn_code
2105 != CODE_FOR_nothing)
2107 product = expand_doubleword_mult (mode, op0, op1, target,
2108 true, methods);
2109 if (!product)
2110 delete_insns_since (last);
2113 if (product == NULL_RTX
2114 && optab_handler (smul_widen_optab, mode)->insn_code
2115 != CODE_FOR_nothing)
2117 product = expand_doubleword_mult (mode, op0, op1, target,
2118 false, methods);
2119 if (!product)
2120 delete_insns_since (last);
2123 if (product != NULL_RTX)
2125 if (optab_handler (mov_optab, mode)->insn_code != CODE_FOR_nothing)
2127 temp = emit_move_insn (target ? target : product, product);
2128 set_unique_reg_note (temp,
2129 REG_EQUAL,
2130 gen_rtx_fmt_ee (MULT, mode,
2131 copy_rtx (op0),
2132 copy_rtx (op1)));
2134 return product;
2138 /* It can't be open-coded in this mode.
2139 Use a library call if one is available and caller says that's ok. */
2141 libfunc = optab_libfunc (binoptab, mode);
2142 if (libfunc
2143 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2145 rtx insns;
2146 rtx op1x = op1;
2147 enum machine_mode op1_mode = mode;
2148 rtx value;
2150 start_sequence ();
2152 if (shift_optab_p (binoptab))
2154 op1_mode = targetm.libgcc_shift_count_mode ();
2155 /* Specify unsigned here,
2156 since negative shift counts are meaningless. */
2157 op1x = convert_to_mode (op1_mode, op1, 1);
2160 if (GET_MODE (op0) != VOIDmode
2161 && GET_MODE (op0) != mode)
2162 op0 = convert_to_mode (mode, op0, unsignedp);
2164 /* Pass 1 for NO_QUEUE so we don't lose any increments
2165 if the libcall is cse'd or moved. */
2166 value = emit_library_call_value (libfunc,
2167 NULL_RTX, LCT_CONST, mode, 2,
2168 op0, mode, op1x, op1_mode);
2170 insns = get_insns ();
2171 end_sequence ();
2173 target = gen_reg_rtx (mode);
2174 emit_libcall_block (insns, target, value,
2175 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
2177 return target;
2180 delete_insns_since (last);
2182 /* It can't be done in this mode. Can we do it in a wider mode? */
2184 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2185 || methods == OPTAB_MUST_WIDEN))
2187 /* Caller says, don't even try. */
2188 delete_insns_since (entry_last);
2189 return 0;
2192 /* Compute the value of METHODS to pass to recursive calls.
2193 Don't allow widening to be tried recursively. */
2195 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2197 /* Look for a wider mode of the same class for which it appears we can do
2198 the operation. */
2200 if (CLASS_HAS_WIDER_MODES_P (class))
2202 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2203 wider_mode != VOIDmode;
2204 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2206 if ((optab_handler (binoptab, wider_mode)->insn_code
2207 != CODE_FOR_nothing)
2208 || (methods == OPTAB_LIB
2209 && optab_libfunc (binoptab, wider_mode)))
2211 rtx xop0 = op0, xop1 = op1;
2212 int no_extend = 0;
2214 /* For certain integer operations, we need not actually extend
2215 the narrow operands, as long as we will truncate
2216 the results to the same narrowness. */
2218 if ((binoptab == ior_optab || binoptab == and_optab
2219 || binoptab == xor_optab
2220 || binoptab == add_optab || binoptab == sub_optab
2221 || binoptab == smul_optab || binoptab == ashl_optab)
2222 && class == MODE_INT)
2223 no_extend = 1;
2225 xop0 = widen_operand (xop0, wider_mode, mode,
2226 unsignedp, no_extend);
2228 /* The second operand of a shift must always be extended. */
2229 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2230 no_extend && binoptab != ashl_optab);
2232 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2233 unsignedp, methods);
2234 if (temp)
2236 if (class != MODE_INT
2237 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
2238 GET_MODE_BITSIZE (wider_mode)))
2240 if (target == 0)
2241 target = gen_reg_rtx (mode);
2242 convert_move (target, temp, 0);
2243 return target;
2245 else
2246 return gen_lowpart (mode, temp);
2248 else
2249 delete_insns_since (last);
2254 delete_insns_since (entry_last);
2255 return 0;
2258 /* Expand a binary operator which has both signed and unsigned forms.
2259 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2260 signed operations.
2262 If we widen unsigned operands, we may use a signed wider operation instead
2263 of an unsigned wider operation, since the result would be the same. */
2266 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2267 rtx op0, rtx op1, rtx target, int unsignedp,
2268 enum optab_methods methods)
2270 rtx temp;
2271 optab direct_optab = unsignedp ? uoptab : soptab;
2272 struct optab wide_soptab;
2274 /* Do it without widening, if possible. */
2275 temp = expand_binop (mode, direct_optab, op0, op1, target,
2276 unsignedp, OPTAB_DIRECT);
2277 if (temp || methods == OPTAB_DIRECT)
2278 return temp;
2280 /* Try widening to a signed int. Make a fake signed optab that
2281 hides any signed insn for direct use. */
2282 wide_soptab = *soptab;
2283 optab_handler (&wide_soptab, mode)->insn_code = CODE_FOR_nothing;
2284 /* We don't want to generate new hash table entries from this fake
2285 optab. */
2286 wide_soptab.libcall_gen = NULL;
2288 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2289 unsignedp, OPTAB_WIDEN);
2291 /* For unsigned operands, try widening to an unsigned int. */
2292 if (temp == 0 && unsignedp)
2293 temp = expand_binop (mode, uoptab, op0, op1, target,
2294 unsignedp, OPTAB_WIDEN);
2295 if (temp || methods == OPTAB_WIDEN)
2296 return temp;
2298 /* Use the right width lib call if that exists. */
2299 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2300 if (temp || methods == OPTAB_LIB)
2301 return temp;
2303 /* Must widen and use a lib call, use either signed or unsigned. */
2304 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2305 unsignedp, methods);
2306 if (temp != 0)
2307 return temp;
2308 if (unsignedp)
2309 return expand_binop (mode, uoptab, op0, op1, target,
2310 unsignedp, methods);
2311 return 0;
2314 /* Generate code to perform an operation specified by UNOPPTAB
2315 on operand OP0, with two results to TARG0 and TARG1.
2316 We assume that the order of the operands for the instruction
2317 is TARG0, TARG1, OP0.
2319 Either TARG0 or TARG1 may be zero, but what that means is that
2320 the result is not actually wanted. We will generate it into
2321 a dummy pseudo-reg and discard it. They may not both be zero.
2323 Returns 1 if this operation can be performed; 0 if not. */
2326 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2327 int unsignedp)
2329 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2330 enum mode_class class;
2331 enum machine_mode wider_mode;
2332 rtx entry_last = get_last_insn ();
2333 rtx last;
2335 class = GET_MODE_CLASS (mode);
2337 if (!targ0)
2338 targ0 = gen_reg_rtx (mode);
2339 if (!targ1)
2340 targ1 = gen_reg_rtx (mode);
2342 /* Record where to go back to if we fail. */
2343 last = get_last_insn ();
2345 if (optab_handler (unoptab, mode)->insn_code != CODE_FOR_nothing)
2347 int icode = (int) optab_handler (unoptab, mode)->insn_code;
2348 enum machine_mode mode0 = insn_data[icode].operand[2].mode;
2349 rtx pat;
2350 rtx xop0 = op0;
2352 if (GET_MODE (xop0) != VOIDmode
2353 && GET_MODE (xop0) != mode0)
2354 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2356 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2357 if (!insn_data[icode].operand[2].predicate (xop0, mode0))
2358 xop0 = copy_to_mode_reg (mode0, xop0);
2360 /* We could handle this, but we should always be called with a pseudo
2361 for our targets and all insns should take them as outputs. */
2362 gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
2363 gcc_assert (insn_data[icode].operand[1].predicate (targ1, mode));
2365 pat = GEN_FCN (icode) (targ0, targ1, xop0);
2366 if (pat)
2368 emit_insn (pat);
2369 return 1;
2371 else
2372 delete_insns_since (last);
2375 /* It can't be done in this mode. Can we do it in a wider mode? */
2377 if (CLASS_HAS_WIDER_MODES_P (class))
2379 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2380 wider_mode != VOIDmode;
2381 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2383 if (optab_handler (unoptab, wider_mode)->insn_code
2384 != CODE_FOR_nothing)
2386 rtx t0 = gen_reg_rtx (wider_mode);
2387 rtx t1 = gen_reg_rtx (wider_mode);
2388 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2390 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2392 convert_move (targ0, t0, unsignedp);
2393 convert_move (targ1, t1, unsignedp);
2394 return 1;
2396 else
2397 delete_insns_since (last);
2402 delete_insns_since (entry_last);
2403 return 0;
2406 /* Generate code to perform an operation specified by BINOPTAB
2407 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2408 We assume that the order of the operands for the instruction
2409 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2410 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2412 Either TARG0 or TARG1 may be zero, but what that means is that
2413 the result is not actually wanted. We will generate it into
2414 a dummy pseudo-reg and discard it. They may not both be zero.
2416 Returns 1 if this operation can be performed; 0 if not. */
2419 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2420 int unsignedp)
2422 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2423 enum mode_class class;
2424 enum machine_mode wider_mode;
2425 rtx entry_last = get_last_insn ();
2426 rtx last;
2428 class = GET_MODE_CLASS (mode);
2430 if (!targ0)
2431 targ0 = gen_reg_rtx (mode);
2432 if (!targ1)
2433 targ1 = gen_reg_rtx (mode);
2435 /* Record where to go back to if we fail. */
2436 last = get_last_insn ();
2438 if (optab_handler (binoptab, mode)->insn_code != CODE_FOR_nothing)
2440 int icode = (int) optab_handler (binoptab, mode)->insn_code;
2441 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2442 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2443 rtx pat;
2444 rtx xop0 = op0, xop1 = op1;
2446 /* If we are optimizing, force expensive constants into a register. */
2447 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
2448 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
2450 /* In case the insn wants input operands in modes different from
2451 those of the actual operands, convert the operands. It would
2452 seem that we don't need to convert CONST_INTs, but we do, so
2453 that they're properly zero-extended, sign-extended or truncated
2454 for their mode. */
2456 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2457 xop0 = convert_modes (mode0,
2458 GET_MODE (op0) != VOIDmode
2459 ? GET_MODE (op0)
2460 : mode,
2461 xop0, unsignedp);
2463 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2464 xop1 = convert_modes (mode1,
2465 GET_MODE (op1) != VOIDmode
2466 ? GET_MODE (op1)
2467 : mode,
2468 xop1, unsignedp);
2470 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2471 if (!insn_data[icode].operand[1].predicate (xop0, mode0))
2472 xop0 = copy_to_mode_reg (mode0, xop0);
2474 if (!insn_data[icode].operand[2].predicate (xop1, mode1))
2475 xop1 = copy_to_mode_reg (mode1, xop1);
2477 /* We could handle this, but we should always be called with a pseudo
2478 for our targets and all insns should take them as outputs. */
2479 gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
2480 gcc_assert (insn_data[icode].operand[3].predicate (targ1, mode));
2482 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2483 if (pat)
2485 emit_insn (pat);
2486 return 1;
2488 else
2489 delete_insns_since (last);
2492 /* It can't be done in this mode. Can we do it in a wider mode? */
2494 if (CLASS_HAS_WIDER_MODES_P (class))
2496 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2497 wider_mode != VOIDmode;
2498 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2500 if (optab_handler (binoptab, wider_mode)->insn_code
2501 != CODE_FOR_nothing)
2503 rtx t0 = gen_reg_rtx (wider_mode);
2504 rtx t1 = gen_reg_rtx (wider_mode);
2505 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2506 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2508 if (expand_twoval_binop (binoptab, cop0, cop1,
2509 t0, t1, unsignedp))
2511 convert_move (targ0, t0, unsignedp);
2512 convert_move (targ1, t1, unsignedp);
2513 return 1;
2515 else
2516 delete_insns_since (last);
2521 delete_insns_since (entry_last);
2522 return 0;
2525 /* Expand the two-valued library call indicated by BINOPTAB, but
2526 preserve only one of the values. If TARG0 is non-NULL, the first
2527 value is placed into TARG0; otherwise the second value is placed
2528 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2529 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2530 This routine assumes that the value returned by the library call is
2531 as if the return value was of an integral mode twice as wide as the
2532 mode of OP0. Returns 1 if the call was successful. */
2534 bool
2535 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2536 rtx targ0, rtx targ1, enum rtx_code code)
2538 enum machine_mode mode;
2539 enum machine_mode libval_mode;
2540 rtx libval;
2541 rtx insns;
2542 rtx libfunc;
2544 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2545 gcc_assert (!targ0 != !targ1);
2547 mode = GET_MODE (op0);
2548 libfunc = optab_libfunc (binoptab, mode);
2549 if (!libfunc)
2550 return false;
2552 /* The value returned by the library function will have twice as
2553 many bits as the nominal MODE. */
2554 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2555 MODE_INT);
2556 start_sequence ();
2557 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2558 libval_mode, 2,
2559 op0, mode,
2560 op1, mode);
2561 /* Get the part of VAL containing the value that we want. */
2562 libval = simplify_gen_subreg (mode, libval, libval_mode,
2563 targ0 ? 0 : GET_MODE_SIZE (mode));
2564 insns = get_insns ();
2565 end_sequence ();
2566 /* Move the into the desired location. */
2567 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2568 gen_rtx_fmt_ee (code, mode, op0, op1));
2570 return true;
2574 /* Wrapper around expand_unop which takes an rtx code to specify
2575 the operation to perform, not an optab pointer. All other
2576 arguments are the same. */
2578 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2579 rtx target, int unsignedp)
2581 optab unop = code_to_optab[(int) code];
2582 gcc_assert (unop);
2584 return expand_unop (mode, unop, op0, target, unsignedp);
2587 /* Try calculating
2588 (clz:narrow x)
2590 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2591 static rtx
2592 widen_clz (enum machine_mode mode, rtx op0, rtx target)
2594 enum mode_class class = GET_MODE_CLASS (mode);
2595 if (CLASS_HAS_WIDER_MODES_P (class))
2597 enum machine_mode wider_mode;
2598 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2599 wider_mode != VOIDmode;
2600 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2602 if (optab_handler (clz_optab, wider_mode)->insn_code
2603 != CODE_FOR_nothing)
2605 rtx xop0, temp, last;
2607 last = get_last_insn ();
2609 if (target == 0)
2610 target = gen_reg_rtx (mode);
2611 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2612 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2613 if (temp != 0)
2614 temp = expand_binop (wider_mode, sub_optab, temp,
2615 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2616 - GET_MODE_BITSIZE (mode)),
2617 target, true, OPTAB_DIRECT);
2618 if (temp == 0)
2619 delete_insns_since (last);
2621 return temp;
2625 return 0;
2628 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2629 quantities, choosing which based on whether the high word is nonzero. */
2630 static rtx
2631 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2633 rtx xop0 = force_reg (mode, op0);
2634 rtx subhi = gen_highpart (word_mode, xop0);
2635 rtx sublo = gen_lowpart (word_mode, xop0);
2636 rtx hi0_label = gen_label_rtx ();
2637 rtx after_label = gen_label_rtx ();
2638 rtx seq, temp, result;
2640 /* If we were not given a target, use a word_mode register, not a
2641 'mode' register. The result will fit, and nobody is expecting
2642 anything bigger (the return type of __builtin_clz* is int). */
2643 if (!target)
2644 target = gen_reg_rtx (word_mode);
2646 /* In any case, write to a word_mode scratch in both branches of the
2647 conditional, so we can ensure there is a single move insn setting
2648 'target' to tag a REG_EQUAL note on. */
2649 result = gen_reg_rtx (word_mode);
2651 start_sequence ();
2653 /* If the high word is not equal to zero,
2654 then clz of the full value is clz of the high word. */
2655 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2656 word_mode, true, hi0_label);
2658 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2659 if (!temp)
2660 goto fail;
2662 if (temp != result)
2663 convert_move (result, temp, true);
2665 emit_jump_insn (gen_jump (after_label));
2666 emit_barrier ();
2668 /* Else clz of the full value is clz of the low word plus the number
2669 of bits in the high word. */
2670 emit_label (hi0_label);
2672 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2673 if (!temp)
2674 goto fail;
2675 temp = expand_binop (word_mode, add_optab, temp,
2676 GEN_INT (GET_MODE_BITSIZE (word_mode)),
2677 result, true, OPTAB_DIRECT);
2678 if (!temp)
2679 goto fail;
2680 if (temp != result)
2681 convert_move (result, temp, true);
2683 emit_label (after_label);
2684 convert_move (target, result, true);
2686 seq = get_insns ();
2687 end_sequence ();
2689 add_equal_note (seq, target, CLZ, xop0, 0);
2690 emit_insn (seq);
2691 return target;
2693 fail:
2694 end_sequence ();
2695 return 0;
2698 /* Try calculating
2699 (bswap:narrow x)
2701 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2702 static rtx
2703 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2705 enum mode_class class = GET_MODE_CLASS (mode);
2706 enum machine_mode wider_mode;
2707 rtx x, last;
2709 if (!CLASS_HAS_WIDER_MODES_P (class))
2710 return NULL_RTX;
2712 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2713 wider_mode != VOIDmode;
2714 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2715 if (optab_handler (bswap_optab, wider_mode)->insn_code != CODE_FOR_nothing)
2716 goto found;
2717 return NULL_RTX;
2719 found:
2720 last = get_last_insn ();
2722 x = widen_operand (op0, wider_mode, mode, true, true);
2723 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2725 if (x != 0)
2726 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2727 size_int (GET_MODE_BITSIZE (wider_mode)
2728 - GET_MODE_BITSIZE (mode)),
2729 NULL_RTX, true);
2731 if (x != 0)
2733 if (target == 0)
2734 target = gen_reg_rtx (mode);
2735 emit_move_insn (target, gen_lowpart (mode, x));
2737 else
2738 delete_insns_since (last);
2740 return target;
2743 /* Try calculating bswap as two bswaps of two word-sized operands. */
2745 static rtx
2746 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2748 rtx t0, t1;
2750 t1 = expand_unop (word_mode, bswap_optab,
2751 operand_subword_force (op, 0, mode), NULL_RTX, true);
2752 t0 = expand_unop (word_mode, bswap_optab,
2753 operand_subword_force (op, 1, mode), NULL_RTX, true);
2755 if (target == 0)
2756 target = gen_reg_rtx (mode);
2757 if (REG_P (target))
2758 emit_clobber (target);
2759 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2760 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2762 return target;
2765 /* Try calculating (parity x) as (and (popcount x) 1), where
2766 popcount can also be done in a wider mode. */
2767 static rtx
2768 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2770 enum mode_class class = GET_MODE_CLASS (mode);
2771 if (CLASS_HAS_WIDER_MODES_P (class))
2773 enum machine_mode wider_mode;
2774 for (wider_mode = mode; wider_mode != VOIDmode;
2775 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2777 if (optab_handler (popcount_optab, wider_mode)->insn_code
2778 != CODE_FOR_nothing)
2780 rtx xop0, temp, last;
2782 last = get_last_insn ();
2784 if (target == 0)
2785 target = gen_reg_rtx (mode);
2786 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2787 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2788 true);
2789 if (temp != 0)
2790 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2791 target, true, OPTAB_DIRECT);
2792 if (temp == 0)
2793 delete_insns_since (last);
2795 return temp;
2799 return 0;
2802 /* Try calculating ctz(x) as K - clz(x & -x) ,
2803 where K is GET_MODE_BITSIZE(mode) - 1.
2805 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2806 don't have to worry about what the hardware does in that case. (If
2807 the clz instruction produces the usual value at 0, which is K, the
2808 result of this code sequence will be -1; expand_ffs, below, relies
2809 on this. It might be nice to have it be K instead, for consistency
2810 with the (very few) processors that provide a ctz with a defined
2811 value, but that would take one more instruction, and it would be
2812 less convenient for expand_ffs anyway. */
2814 static rtx
2815 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2817 rtx seq, temp;
2819 if (optab_handler (clz_optab, mode)->insn_code == CODE_FOR_nothing)
2820 return 0;
2822 start_sequence ();
2824 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2825 if (temp)
2826 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2827 true, OPTAB_DIRECT);
2828 if (temp)
2829 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2830 if (temp)
2831 temp = expand_binop (mode, sub_optab, GEN_INT (GET_MODE_BITSIZE (mode) - 1),
2832 temp, target,
2833 true, OPTAB_DIRECT);
2834 if (temp == 0)
2836 end_sequence ();
2837 return 0;
2840 seq = get_insns ();
2841 end_sequence ();
2843 add_equal_note (seq, temp, CTZ, op0, 0);
2844 emit_insn (seq);
2845 return temp;
2849 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2850 else with the sequence used by expand_clz.
2852 The ffs builtin promises to return zero for a zero value and ctz/clz
2853 may have an undefined value in that case. If they do not give us a
2854 convenient value, we have to generate a test and branch. */
2855 static rtx
2856 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2858 HOST_WIDE_INT val = 0;
2859 bool defined_at_zero = false;
2860 rtx temp, seq;
2862 if (optab_handler (ctz_optab, mode)->insn_code != CODE_FOR_nothing)
2864 start_sequence ();
2866 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2867 if (!temp)
2868 goto fail;
2870 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2872 else if (optab_handler (clz_optab, mode)->insn_code != CODE_FOR_nothing)
2874 start_sequence ();
2875 temp = expand_ctz (mode, op0, 0);
2876 if (!temp)
2877 goto fail;
2879 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2881 defined_at_zero = true;
2882 val = (GET_MODE_BITSIZE (mode) - 1) - val;
2885 else
2886 return 0;
2888 if (defined_at_zero && val == -1)
2889 /* No correction needed at zero. */;
2890 else
2892 /* We don't try to do anything clever with the situation found
2893 on some processors (eg Alpha) where ctz(0:mode) ==
2894 bitsize(mode). If someone can think of a way to send N to -1
2895 and leave alone all values in the range 0..N-1 (where N is a
2896 power of two), cheaper than this test-and-branch, please add it.
2898 The test-and-branch is done after the operation itself, in case
2899 the operation sets condition codes that can be recycled for this.
2900 (This is true on i386, for instance.) */
2902 rtx nonzero_label = gen_label_rtx ();
2903 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2904 mode, true, nonzero_label);
2906 convert_move (temp, GEN_INT (-1), false);
2907 emit_label (nonzero_label);
2910 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2911 to produce a value in the range 0..bitsize. */
2912 temp = expand_binop (mode, add_optab, temp, GEN_INT (1),
2913 target, false, OPTAB_DIRECT);
2914 if (!temp)
2915 goto fail;
2917 seq = get_insns ();
2918 end_sequence ();
2920 add_equal_note (seq, temp, FFS, op0, 0);
2921 emit_insn (seq);
2922 return temp;
2924 fail:
2925 end_sequence ();
2926 return 0;
2929 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2930 conditions, VAL may already be a SUBREG against which we cannot generate
2931 a further SUBREG. In this case, we expect forcing the value into a
2932 register will work around the situation. */
2934 static rtx
2935 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2936 enum machine_mode imode)
2938 rtx ret;
2939 ret = lowpart_subreg (omode, val, imode);
2940 if (ret == NULL)
2942 val = force_reg (imode, val);
2943 ret = lowpart_subreg (omode, val, imode);
2944 gcc_assert (ret != NULL);
2946 return ret;
2949 /* Expand a floating point absolute value or negation operation via a
2950 logical operation on the sign bit. */
2952 static rtx
2953 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2954 rtx op0, rtx target)
2956 const struct real_format *fmt;
2957 int bitpos, word, nwords, i;
2958 enum machine_mode imode;
2959 HOST_WIDE_INT hi, lo;
2960 rtx temp, insns;
2962 /* The format has to have a simple sign bit. */
2963 fmt = REAL_MODE_FORMAT (mode);
2964 if (fmt == NULL)
2965 return NULL_RTX;
2967 bitpos = fmt->signbit_rw;
2968 if (bitpos < 0)
2969 return NULL_RTX;
2971 /* Don't create negative zeros if the format doesn't support them. */
2972 if (code == NEG && !fmt->has_signed_zero)
2973 return NULL_RTX;
2975 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2977 imode = int_mode_for_mode (mode);
2978 if (imode == BLKmode)
2979 return NULL_RTX;
2980 word = 0;
2981 nwords = 1;
2983 else
2985 imode = word_mode;
2987 if (FLOAT_WORDS_BIG_ENDIAN)
2988 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2989 else
2990 word = bitpos / BITS_PER_WORD;
2991 bitpos = bitpos % BITS_PER_WORD;
2992 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2995 if (bitpos < HOST_BITS_PER_WIDE_INT)
2997 hi = 0;
2998 lo = (HOST_WIDE_INT) 1 << bitpos;
3000 else
3002 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3003 lo = 0;
3005 if (code == ABS)
3006 lo = ~lo, hi = ~hi;
3008 if (target == 0 || target == op0)
3009 target = gen_reg_rtx (mode);
3011 if (nwords > 1)
3013 start_sequence ();
3015 for (i = 0; i < nwords; ++i)
3017 rtx targ_piece = operand_subword (target, i, 1, mode);
3018 rtx op0_piece = operand_subword_force (op0, i, mode);
3020 if (i == word)
3022 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
3023 op0_piece,
3024 immed_double_const (lo, hi, imode),
3025 targ_piece, 1, OPTAB_LIB_WIDEN);
3026 if (temp != targ_piece)
3027 emit_move_insn (targ_piece, temp);
3029 else
3030 emit_move_insn (targ_piece, op0_piece);
3033 insns = get_insns ();
3034 end_sequence ();
3036 emit_insn (insns);
3038 else
3040 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
3041 gen_lowpart (imode, op0),
3042 immed_double_const (lo, hi, imode),
3043 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3044 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3046 set_unique_reg_note (get_last_insn (), REG_EQUAL,
3047 gen_rtx_fmt_e (code, mode, copy_rtx (op0)));
3050 return target;
3053 /* As expand_unop, but will fail rather than attempt the operation in a
3054 different mode or with a libcall. */
3055 static rtx
3056 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3057 int unsignedp)
3059 if (optab_handler (unoptab, mode)->insn_code != CODE_FOR_nothing)
3061 int icode = (int) optab_handler (unoptab, mode)->insn_code;
3062 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3063 rtx xop0 = op0;
3064 rtx last = get_last_insn ();
3065 rtx pat, temp;
3067 if (target)
3068 temp = target;
3069 else
3070 temp = gen_reg_rtx (mode);
3072 if (GET_MODE (xop0) != VOIDmode
3073 && GET_MODE (xop0) != mode0)
3074 xop0 = convert_to_mode (mode0, xop0, unsignedp);
3076 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
3078 if (!insn_data[icode].operand[1].predicate (xop0, mode0))
3079 xop0 = copy_to_mode_reg (mode0, xop0);
3081 if (!insn_data[icode].operand[0].predicate (temp, mode))
3082 temp = gen_reg_rtx (mode);
3084 pat = GEN_FCN (icode) (temp, xop0);
3085 if (pat)
3087 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3088 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
3090 delete_insns_since (last);
3091 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3094 emit_insn (pat);
3096 return temp;
3098 else
3099 delete_insns_since (last);
3101 return 0;
3104 /* Generate code to perform an operation specified by UNOPTAB
3105 on operand OP0, with result having machine-mode MODE.
3107 UNSIGNEDP is for the case where we have to widen the operands
3108 to perform the operation. It says to use zero-extension.
3110 If TARGET is nonzero, the value
3111 is generated there, if it is convenient to do so.
3112 In all cases an rtx is returned for the locus of the value;
3113 this may or may not be TARGET. */
3116 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3117 int unsignedp)
3119 enum mode_class class = GET_MODE_CLASS (mode);
3120 enum machine_mode wider_mode;
3121 rtx temp;
3122 rtx libfunc;
3124 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3125 if (temp)
3126 return temp;
3128 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3130 /* Widening (or narrowing) clz needs special treatment. */
3131 if (unoptab == clz_optab)
3133 temp = widen_clz (mode, op0, target);
3134 if (temp)
3135 return temp;
3137 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3138 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3140 temp = expand_doubleword_clz (mode, op0, target);
3141 if (temp)
3142 return temp;
3145 goto try_libcall;
3148 /* Widening (or narrowing) bswap needs special treatment. */
3149 if (unoptab == bswap_optab)
3151 temp = widen_bswap (mode, op0, target);
3152 if (temp)
3153 return temp;
3155 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3156 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3158 temp = expand_doubleword_bswap (mode, op0, target);
3159 if (temp)
3160 return temp;
3163 goto try_libcall;
3166 if (CLASS_HAS_WIDER_MODES_P (class))
3167 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3168 wider_mode != VOIDmode;
3169 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3171 if (optab_handler (unoptab, wider_mode)->insn_code != CODE_FOR_nothing)
3173 rtx xop0 = op0;
3174 rtx last = get_last_insn ();
3176 /* For certain operations, we need not actually extend
3177 the narrow operand, as long as we will truncate the
3178 results to the same narrowness. */
3180 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3181 (unoptab == neg_optab
3182 || unoptab == one_cmpl_optab)
3183 && class == MODE_INT);
3185 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3186 unsignedp);
3188 if (temp)
3190 if (class != MODE_INT
3191 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3192 GET_MODE_BITSIZE (wider_mode)))
3194 if (target == 0)
3195 target = gen_reg_rtx (mode);
3196 convert_move (target, temp, 0);
3197 return target;
3199 else
3200 return gen_lowpart (mode, temp);
3202 else
3203 delete_insns_since (last);
3207 /* These can be done a word at a time. */
3208 if (unoptab == one_cmpl_optab
3209 && class == MODE_INT
3210 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3211 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3213 int i;
3214 rtx insns;
3216 if (target == 0 || target == op0)
3217 target = gen_reg_rtx (mode);
3219 start_sequence ();
3221 /* Do the actual arithmetic. */
3222 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3224 rtx target_piece = operand_subword (target, i, 1, mode);
3225 rtx x = expand_unop (word_mode, unoptab,
3226 operand_subword_force (op0, i, mode),
3227 target_piece, unsignedp);
3229 if (target_piece != x)
3230 emit_move_insn (target_piece, x);
3233 insns = get_insns ();
3234 end_sequence ();
3236 emit_insn (insns);
3237 return target;
3240 if (unoptab->code == NEG)
3242 /* Try negating floating point values by flipping the sign bit. */
3243 if (SCALAR_FLOAT_MODE_P (mode))
3245 temp = expand_absneg_bit (NEG, mode, op0, target);
3246 if (temp)
3247 return temp;
3250 /* If there is no negation pattern, and we have no negative zero,
3251 try subtracting from zero. */
3252 if (!HONOR_SIGNED_ZEROS (mode))
3254 temp = expand_binop (mode, (unoptab == negv_optab
3255 ? subv_optab : sub_optab),
3256 CONST0_RTX (mode), op0, target,
3257 unsignedp, OPTAB_DIRECT);
3258 if (temp)
3259 return temp;
3263 /* Try calculating parity (x) as popcount (x) % 2. */
3264 if (unoptab == parity_optab)
3266 temp = expand_parity (mode, op0, target);
3267 if (temp)
3268 return temp;
3271 /* Try implementing ffs (x) in terms of clz (x). */
3272 if (unoptab == ffs_optab)
3274 temp = expand_ffs (mode, op0, target);
3275 if (temp)
3276 return temp;
3279 /* Try implementing ctz (x) in terms of clz (x). */
3280 if (unoptab == ctz_optab)
3282 temp = expand_ctz (mode, op0, target);
3283 if (temp)
3284 return temp;
3287 try_libcall:
3288 /* Now try a library call in this mode. */
3289 libfunc = optab_libfunc (unoptab, mode);
3290 if (libfunc)
3292 rtx insns;
3293 rtx value;
3294 rtx eq_value;
3295 enum machine_mode outmode = mode;
3297 /* All of these functions return small values. Thus we choose to
3298 have them return something that isn't a double-word. */
3299 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3300 || unoptab == popcount_optab || unoptab == parity_optab)
3301 outmode
3302 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
3304 start_sequence ();
3306 /* Pass 1 for NO_QUEUE so we don't lose any increments
3307 if the libcall is cse'd or moved. */
3308 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3309 1, op0, mode);
3310 insns = get_insns ();
3311 end_sequence ();
3313 target = gen_reg_rtx (outmode);
3314 eq_value = gen_rtx_fmt_e (unoptab->code, mode, op0);
3315 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3316 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3317 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3318 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3319 emit_libcall_block (insns, target, value, eq_value);
3321 return target;
3324 /* It can't be done in this mode. Can we do it in a wider mode? */
3326 if (CLASS_HAS_WIDER_MODES_P (class))
3328 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3329 wider_mode != VOIDmode;
3330 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3332 if ((optab_handler (unoptab, wider_mode)->insn_code
3333 != CODE_FOR_nothing)
3334 || optab_libfunc (unoptab, wider_mode))
3336 rtx xop0 = op0;
3337 rtx last = get_last_insn ();
3339 /* For certain operations, we need not actually extend
3340 the narrow operand, as long as we will truncate the
3341 results to the same narrowness. */
3343 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3344 (unoptab == neg_optab
3345 || unoptab == one_cmpl_optab)
3346 && class == MODE_INT);
3348 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3349 unsignedp);
3351 /* If we are generating clz using wider mode, adjust the
3352 result. */
3353 if (unoptab == clz_optab && temp != 0)
3354 temp = expand_binop (wider_mode, sub_optab, temp,
3355 GEN_INT (GET_MODE_BITSIZE (wider_mode)
3356 - GET_MODE_BITSIZE (mode)),
3357 target, true, OPTAB_DIRECT);
3359 if (temp)
3361 if (class != MODE_INT)
3363 if (target == 0)
3364 target = gen_reg_rtx (mode);
3365 convert_move (target, temp, 0);
3366 return target;
3368 else
3369 return gen_lowpart (mode, temp);
3371 else
3372 delete_insns_since (last);
3377 /* One final attempt at implementing negation via subtraction,
3378 this time allowing widening of the operand. */
3379 if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
3381 rtx temp;
3382 temp = expand_binop (mode,
3383 unoptab == negv_optab ? subv_optab : sub_optab,
3384 CONST0_RTX (mode), op0,
3385 target, unsignedp, OPTAB_LIB_WIDEN);
3386 if (temp)
3387 return temp;
3390 return 0;
3393 /* Emit code to compute the absolute value of OP0, with result to
3394 TARGET if convenient. (TARGET may be 0.) The return value says
3395 where the result actually is to be found.
3397 MODE is the mode of the operand; the mode of the result is
3398 different but can be deduced from MODE.
3403 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3404 int result_unsignedp)
3406 rtx temp;
3408 if (! flag_trapv)
3409 result_unsignedp = 1;
3411 /* First try to do it with a special abs instruction. */
3412 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3413 op0, target, 0);
3414 if (temp != 0)
3415 return temp;
3417 /* For floating point modes, try clearing the sign bit. */
3418 if (SCALAR_FLOAT_MODE_P (mode))
3420 temp = expand_absneg_bit (ABS, mode, op0, target);
3421 if (temp)
3422 return temp;
3425 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3426 if (optab_handler (smax_optab, mode)->insn_code != CODE_FOR_nothing
3427 && !HONOR_SIGNED_ZEROS (mode))
3429 rtx last = get_last_insn ();
3431 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3432 if (temp != 0)
3433 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3434 OPTAB_WIDEN);
3436 if (temp != 0)
3437 return temp;
3439 delete_insns_since (last);
3442 /* If this machine has expensive jumps, we can do integer absolute
3443 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3444 where W is the width of MODE. */
3446 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
3448 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3449 size_int (GET_MODE_BITSIZE (mode) - 1),
3450 NULL_RTX, 0);
3452 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3453 OPTAB_LIB_WIDEN);
3454 if (temp != 0)
3455 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3456 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3458 if (temp != 0)
3459 return temp;
3462 return NULL_RTX;
3466 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3467 int result_unsignedp, int safe)
3469 rtx temp, op1;
3471 if (! flag_trapv)
3472 result_unsignedp = 1;
3474 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3475 if (temp != 0)
3476 return temp;
3478 /* If that does not win, use conditional jump and negate. */
3480 /* It is safe to use the target if it is the same
3481 as the source if this is also a pseudo register */
3482 if (op0 == target && REG_P (op0)
3483 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3484 safe = 1;
3486 op1 = gen_label_rtx ();
3487 if (target == 0 || ! safe
3488 || GET_MODE (target) != mode
3489 || (MEM_P (target) && MEM_VOLATILE_P (target))
3490 || (REG_P (target)
3491 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3492 target = gen_reg_rtx (mode);
3494 emit_move_insn (target, op0);
3495 NO_DEFER_POP;
3497 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3498 NULL_RTX, NULL_RTX, op1);
3500 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3501 target, target, 0);
3502 if (op0 != target)
3503 emit_move_insn (target, op0);
3504 emit_label (op1);
3505 OK_DEFER_POP;
3506 return target;
3509 /* A subroutine of expand_copysign, perform the copysign operation using the
3510 abs and neg primitives advertised to exist on the target. The assumption
3511 is that we have a split register file, and leaving op0 in fp registers,
3512 and not playing with subregs so much, will help the register allocator. */
3514 static rtx
3515 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3516 int bitpos, bool op0_is_abs)
3518 enum machine_mode imode;
3519 int icode;
3520 rtx sign, label;
3522 if (target == op1)
3523 target = NULL_RTX;
3525 /* Check if the back end provides an insn that handles signbit for the
3526 argument's mode. */
3527 icode = (int) signbit_optab->handlers [(int) mode].insn_code;
3528 if (icode != CODE_FOR_nothing)
3530 imode = insn_data[icode].operand[0].mode;
3531 sign = gen_reg_rtx (imode);
3532 emit_unop_insn (icode, sign, op1, UNKNOWN);
3534 else
3536 HOST_WIDE_INT hi, lo;
3538 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3540 imode = int_mode_for_mode (mode);
3541 if (imode == BLKmode)
3542 return NULL_RTX;
3543 op1 = gen_lowpart (imode, op1);
3545 else
3547 int word;
3549 imode = word_mode;
3550 if (FLOAT_WORDS_BIG_ENDIAN)
3551 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3552 else
3553 word = bitpos / BITS_PER_WORD;
3554 bitpos = bitpos % BITS_PER_WORD;
3555 op1 = operand_subword_force (op1, word, mode);
3558 if (bitpos < HOST_BITS_PER_WIDE_INT)
3560 hi = 0;
3561 lo = (HOST_WIDE_INT) 1 << bitpos;
3563 else
3565 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3566 lo = 0;
3569 sign = gen_reg_rtx (imode);
3570 sign = expand_binop (imode, and_optab, op1,
3571 immed_double_const (lo, hi, imode),
3572 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3575 if (!op0_is_abs)
3577 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3578 if (op0 == NULL)
3579 return NULL_RTX;
3580 target = op0;
3582 else
3584 if (target == NULL_RTX)
3585 target = copy_to_reg (op0);
3586 else
3587 emit_move_insn (target, op0);
3590 label = gen_label_rtx ();
3591 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3593 if (GET_CODE (op0) == CONST_DOUBLE)
3594 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3595 else
3596 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3597 if (op0 != target)
3598 emit_move_insn (target, op0);
3600 emit_label (label);
3602 return target;
3606 /* A subroutine of expand_copysign, perform the entire copysign operation
3607 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3608 is true if op0 is known to have its sign bit clear. */
3610 static rtx
3611 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3612 int bitpos, bool op0_is_abs)
3614 enum machine_mode imode;
3615 HOST_WIDE_INT hi, lo;
3616 int word, nwords, i;
3617 rtx temp, insns;
3619 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3621 imode = int_mode_for_mode (mode);
3622 if (imode == BLKmode)
3623 return NULL_RTX;
3624 word = 0;
3625 nwords = 1;
3627 else
3629 imode = word_mode;
3631 if (FLOAT_WORDS_BIG_ENDIAN)
3632 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3633 else
3634 word = bitpos / BITS_PER_WORD;
3635 bitpos = bitpos % BITS_PER_WORD;
3636 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3639 if (bitpos < HOST_BITS_PER_WIDE_INT)
3641 hi = 0;
3642 lo = (HOST_WIDE_INT) 1 << bitpos;
3644 else
3646 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3647 lo = 0;
3650 if (target == 0 || target == op0 || target == op1)
3651 target = gen_reg_rtx (mode);
3653 if (nwords > 1)
3655 start_sequence ();
3657 for (i = 0; i < nwords; ++i)
3659 rtx targ_piece = operand_subword (target, i, 1, mode);
3660 rtx op0_piece = operand_subword_force (op0, i, mode);
3662 if (i == word)
3664 if (!op0_is_abs)
3665 op0_piece = expand_binop (imode, and_optab, op0_piece,
3666 immed_double_const (~lo, ~hi, imode),
3667 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3669 op1 = expand_binop (imode, and_optab,
3670 operand_subword_force (op1, i, mode),
3671 immed_double_const (lo, hi, imode),
3672 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3674 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3675 targ_piece, 1, OPTAB_LIB_WIDEN);
3676 if (temp != targ_piece)
3677 emit_move_insn (targ_piece, temp);
3679 else
3680 emit_move_insn (targ_piece, op0_piece);
3683 insns = get_insns ();
3684 end_sequence ();
3686 emit_insn (insns);
3688 else
3690 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3691 immed_double_const (lo, hi, imode),
3692 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3694 op0 = gen_lowpart (imode, op0);
3695 if (!op0_is_abs)
3696 op0 = expand_binop (imode, and_optab, op0,
3697 immed_double_const (~lo, ~hi, imode),
3698 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3700 temp = expand_binop (imode, ior_optab, op0, op1,
3701 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3702 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3705 return target;
3708 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3709 scalar floating point mode. Return NULL if we do not know how to
3710 expand the operation inline. */
3713 expand_copysign (rtx op0, rtx op1, rtx target)
3715 enum machine_mode mode = GET_MODE (op0);
3716 const struct real_format *fmt;
3717 bool op0_is_abs;
3718 rtx temp;
3720 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3721 gcc_assert (GET_MODE (op1) == mode);
3723 /* First try to do it with a special instruction. */
3724 temp = expand_binop (mode, copysign_optab, op0, op1,
3725 target, 0, OPTAB_DIRECT);
3726 if (temp)
3727 return temp;
3729 fmt = REAL_MODE_FORMAT (mode);
3730 if (fmt == NULL || !fmt->has_signed_zero)
3731 return NULL_RTX;
3733 op0_is_abs = false;
3734 if (GET_CODE (op0) == CONST_DOUBLE)
3736 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3737 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3738 op0_is_abs = true;
3741 if (fmt->signbit_ro >= 0
3742 && (GET_CODE (op0) == CONST_DOUBLE
3743 || (optab_handler (neg_optab, mode)->insn_code != CODE_FOR_nothing
3744 && optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)))
3746 temp = expand_copysign_absneg (mode, op0, op1, target,
3747 fmt->signbit_ro, op0_is_abs);
3748 if (temp)
3749 return temp;
3752 if (fmt->signbit_rw < 0)
3753 return NULL_RTX;
3754 return expand_copysign_bit (mode, op0, op1, target,
3755 fmt->signbit_rw, op0_is_abs);
3758 /* Generate an instruction whose insn-code is INSN_CODE,
3759 with two operands: an output TARGET and an input OP0.
3760 TARGET *must* be nonzero, and the output is always stored there.
3761 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3762 the value that is stored into TARGET. */
3764 void
3765 emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3767 rtx temp;
3768 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3769 rtx pat;
3771 temp = target;
3773 /* Now, if insn does not accept our operands, put them into pseudos. */
3775 if (!insn_data[icode].operand[1].predicate (op0, mode0))
3776 op0 = copy_to_mode_reg (mode0, op0);
3778 if (!insn_data[icode].operand[0].predicate (temp, GET_MODE (temp)))
3779 temp = gen_reg_rtx (GET_MODE (temp));
3781 pat = GEN_FCN (icode) (temp, op0);
3783 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3784 add_equal_note (pat, temp, code, op0, NULL_RTX);
3786 emit_insn (pat);
3788 if (temp != target)
3789 emit_move_insn (target, temp);
3792 struct no_conflict_data
3794 rtx target, first, insn;
3795 bool must_stay;
3798 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3799 the currently examined clobber / store has to stay in the list of
3800 insns that constitute the actual libcall block. */
3801 static void
3802 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3804 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3806 /* If this inns directly contributes to setting the target, it must stay. */
3807 if (reg_overlap_mentioned_p (p->target, dest))
3808 p->must_stay = true;
3809 /* If we haven't committed to keeping any other insns in the list yet,
3810 there is nothing more to check. */
3811 else if (p->insn == p->first)
3812 return;
3813 /* If this insn sets / clobbers a register that feeds one of the insns
3814 already in the list, this insn has to stay too. */
3815 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3816 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3817 || reg_used_between_p (dest, p->first, p->insn)
3818 /* Likewise if this insn depends on a register set by a previous
3819 insn in the list, or if it sets a result (presumably a hard
3820 register) that is set or clobbered by a previous insn.
3821 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3822 SET_DEST perform the former check on the address, and the latter
3823 check on the MEM. */
3824 || (GET_CODE (set) == SET
3825 && (modified_in_p (SET_SRC (set), p->first)
3826 || modified_in_p (SET_DEST (set), p->first)
3827 || modified_between_p (SET_SRC (set), p->first, p->insn)
3828 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3829 p->must_stay = true;
3833 /* Emit code to make a call to a constant function or a library call.
3835 INSNS is a list containing all insns emitted in the call.
3836 These insns leave the result in RESULT. Our block is to copy RESULT
3837 to TARGET, which is logically equivalent to EQUIV.
3839 We first emit any insns that set a pseudo on the assumption that these are
3840 loading constants into registers; doing so allows them to be safely cse'ed
3841 between blocks. Then we emit all the other insns in the block, followed by
3842 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3843 note with an operand of EQUIV. */
3845 void
3846 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3848 rtx final_dest = target;
3849 rtx prev, next, last, insn;
3851 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3852 into a MEM later. Protect the libcall block from this change. */
3853 if (! REG_P (target) || REG_USERVAR_P (target))
3854 target = gen_reg_rtx (GET_MODE (target));
3856 /* If we're using non-call exceptions, a libcall corresponding to an
3857 operation that may trap may also trap. */
3858 if (flag_non_call_exceptions && may_trap_p (equiv))
3860 for (insn = insns; insn; insn = NEXT_INSN (insn))
3861 if (CALL_P (insn))
3863 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3865 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3866 remove_note (insn, note);
3869 else
3870 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3871 reg note to indicate that this call cannot throw or execute a nonlocal
3872 goto (unless there is already a REG_EH_REGION note, in which case
3873 we update it). */
3874 for (insn = insns; insn; insn = NEXT_INSN (insn))
3875 if (CALL_P (insn))
3877 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3879 if (note != 0)
3880 XEXP (note, 0) = constm1_rtx;
3881 else
3882 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx,
3883 REG_NOTES (insn));
3886 /* First emit all insns that set pseudos. Remove them from the list as
3887 we go. Avoid insns that set pseudos which were referenced in previous
3888 insns. These can be generated by move_by_pieces, for example,
3889 to update an address. Similarly, avoid insns that reference things
3890 set in previous insns. */
3892 for (insn = insns; insn; insn = next)
3894 rtx set = single_set (insn);
3896 next = NEXT_INSN (insn);
3898 if (set != 0 && REG_P (SET_DEST (set))
3899 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3901 struct no_conflict_data data;
3903 data.target = const0_rtx;
3904 data.first = insns;
3905 data.insn = insn;
3906 data.must_stay = 0;
3907 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3908 if (! data.must_stay)
3910 if (PREV_INSN (insn))
3911 NEXT_INSN (PREV_INSN (insn)) = next;
3912 else
3913 insns = next;
3915 if (next)
3916 PREV_INSN (next) = PREV_INSN (insn);
3918 add_insn (insn);
3922 /* Some ports use a loop to copy large arguments onto the stack.
3923 Don't move anything outside such a loop. */
3924 if (LABEL_P (insn))
3925 break;
3928 prev = get_last_insn ();
3930 /* Write the remaining insns followed by the final copy. */
3932 for (insn = insns; insn; insn = next)
3934 next = NEXT_INSN (insn);
3936 add_insn (insn);
3939 last = emit_move_insn (target, result);
3940 if (optab_handler (mov_optab, GET_MODE (target))->insn_code
3941 != CODE_FOR_nothing)
3942 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3944 if (final_dest != target)
3945 emit_move_insn (final_dest, target);
3948 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3949 PURPOSE describes how this comparison will be used. CODE is the rtx
3950 comparison code we will be using.
3952 ??? Actually, CODE is slightly weaker than that. A target is still
3953 required to implement all of the normal bcc operations, but not
3954 required to implement all (or any) of the unordered bcc operations. */
3957 can_compare_p (enum rtx_code code, enum machine_mode mode,
3958 enum can_compare_purpose purpose)
3962 if (optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
3964 if (purpose == ccp_jump)
3965 return bcc_gen_fctn[(int) code] != NULL;
3966 else if (purpose == ccp_store_flag)
3967 return setcc_gen_code[(int) code] != CODE_FOR_nothing;
3968 else
3969 /* There's only one cmov entry point, and it's allowed to fail. */
3970 return 1;
3972 if (purpose == ccp_jump
3973 && optab_handler (cbranch_optab, mode)->insn_code != CODE_FOR_nothing)
3974 return 1;
3975 if (purpose == ccp_cmov
3976 && optab_handler (cmov_optab, mode)->insn_code != CODE_FOR_nothing)
3977 return 1;
3978 if (purpose == ccp_store_flag
3979 && optab_handler (cstore_optab, mode)->insn_code != CODE_FOR_nothing)
3980 return 1;
3981 mode = GET_MODE_WIDER_MODE (mode);
3983 while (mode != VOIDmode);
3985 return 0;
3988 /* This function is called when we are going to emit a compare instruction that
3989 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3991 *PMODE is the mode of the inputs (in case they are const_int).
3992 *PUNSIGNEDP nonzero says that the operands are unsigned;
3993 this matters if they need to be widened.
3995 If they have mode BLKmode, then SIZE specifies the size of both operands.
3997 This function performs all the setup necessary so that the caller only has
3998 to emit a single comparison insn. This setup can involve doing a BLKmode
3999 comparison or emitting a library call to perform the comparison if no insn
4000 is available to handle it.
4001 The values which are passed in through pointers can be modified; the caller
4002 should perform the comparison on the modified values. Constant
4003 comparisons must have already been folded. */
4005 static void
4006 prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
4007 enum machine_mode *pmode, int *punsignedp,
4008 enum can_compare_purpose purpose)
4010 enum machine_mode mode = *pmode;
4011 rtx x = *px, y = *py;
4012 int unsignedp = *punsignedp;
4013 rtx libfunc;
4015 /* If we are inside an appropriately-short loop and we are optimizing,
4016 force expensive constants into a register. */
4017 if (CONSTANT_P (x) && optimize
4018 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
4019 x = force_reg (mode, x);
4021 if (CONSTANT_P (y) && optimize
4022 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
4023 y = force_reg (mode, y);
4025 #ifdef HAVE_cc0
4026 /* Make sure if we have a canonical comparison. The RTL
4027 documentation states that canonical comparisons are required only
4028 for targets which have cc0. */
4029 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4030 #endif
4032 /* Don't let both operands fail to indicate the mode. */
4033 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4034 x = force_reg (mode, x);
4036 /* Handle all BLKmode compares. */
4038 if (mode == BLKmode)
4040 enum machine_mode cmp_mode, result_mode;
4041 enum insn_code cmp_code;
4042 tree length_type;
4043 rtx libfunc;
4044 rtx result;
4045 rtx opalign
4046 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4048 gcc_assert (size);
4050 /* Try to use a memory block compare insn - either cmpstr
4051 or cmpmem will do. */
4052 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4053 cmp_mode != VOIDmode;
4054 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4056 cmp_code = cmpmem_optab[cmp_mode];
4057 if (cmp_code == CODE_FOR_nothing)
4058 cmp_code = cmpstr_optab[cmp_mode];
4059 if (cmp_code == CODE_FOR_nothing)
4060 cmp_code = cmpstrn_optab[cmp_mode];
4061 if (cmp_code == CODE_FOR_nothing)
4062 continue;
4064 /* Must make sure the size fits the insn's mode. */
4065 if ((GET_CODE (size) == CONST_INT
4066 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4067 || (GET_MODE_BITSIZE (GET_MODE (size))
4068 > GET_MODE_BITSIZE (cmp_mode)))
4069 continue;
4071 result_mode = insn_data[cmp_code].operand[0].mode;
4072 result = gen_reg_rtx (result_mode);
4073 size = convert_to_mode (cmp_mode, size, 1);
4074 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4076 *px = result;
4077 *py = const0_rtx;
4078 *pmode = result_mode;
4079 return;
4082 /* Otherwise call a library function, memcmp. */
4083 libfunc = memcmp_libfunc;
4084 length_type = sizetype;
4085 result_mode = TYPE_MODE (integer_type_node);
4086 cmp_mode = TYPE_MODE (length_type);
4087 size = convert_to_mode (TYPE_MODE (length_type), size,
4088 TYPE_UNSIGNED (length_type));
4090 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4091 result_mode, 3,
4092 XEXP (x, 0), Pmode,
4093 XEXP (y, 0), Pmode,
4094 size, cmp_mode);
4095 *px = result;
4096 *py = const0_rtx;
4097 *pmode = result_mode;
4098 return;
4101 /* Don't allow operands to the compare to trap, as that can put the
4102 compare and branch in different basic blocks. */
4103 if (flag_non_call_exceptions)
4105 if (may_trap_p (x))
4106 x = force_reg (mode, x);
4107 if (may_trap_p (y))
4108 y = force_reg (mode, y);
4111 *px = x;
4112 *py = y;
4113 if (can_compare_p (*pcomparison, mode, purpose))
4114 return;
4116 /* Handle a lib call just for the mode we are using. */
4118 libfunc = optab_libfunc (cmp_optab, mode);
4119 if (libfunc && !SCALAR_FLOAT_MODE_P (mode))
4121 rtx result;
4123 /* If we want unsigned, and this mode has a distinct unsigned
4124 comparison routine, use that. */
4125 if (unsignedp)
4127 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4128 if (ulibfunc)
4129 libfunc = ulibfunc;
4132 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4133 targetm.libgcc_cmp_return_mode (),
4134 2, x, mode, y, mode);
4136 /* There are two kinds of comparison routines. Biased routines
4137 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4138 of gcc expect that the comparison operation is equivalent
4139 to the modified comparison. For signed comparisons compare the
4140 result against 1 in the biased case, and zero in the unbiased
4141 case. For unsigned comparisons always compare against 1 after
4142 biasing the unbiased result by adding 1. This gives us a way to
4143 represent LTU. */
4144 *px = result;
4145 *pmode = word_mode;
4146 *py = const1_rtx;
4148 if (!TARGET_LIB_INT_CMP_BIASED)
4150 if (*punsignedp)
4151 *px = plus_constant (result, 1);
4152 else
4153 *py = const0_rtx;
4155 return;
4158 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
4159 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
4162 /* Before emitting an insn with code ICODE, make sure that X, which is going
4163 to be used for operand OPNUM of the insn, is converted from mode MODE to
4164 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4165 that it is accepted by the operand predicate. Return the new value. */
4167 static rtx
4168 prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
4169 enum machine_mode wider_mode, int unsignedp)
4171 if (mode != wider_mode)
4172 x = convert_modes (wider_mode, mode, x, unsignedp);
4174 if (!insn_data[icode].operand[opnum].predicate
4175 (x, insn_data[icode].operand[opnum].mode))
4177 if (reload_completed)
4178 return NULL_RTX;
4179 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
4182 return x;
4185 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4186 we can do the comparison.
4187 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
4188 be NULL_RTX which indicates that only a comparison is to be generated. */
4190 static void
4191 emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
4192 enum rtx_code comparison, int unsignedp, rtx label)
4194 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
4195 enum mode_class class = GET_MODE_CLASS (mode);
4196 enum machine_mode wider_mode = mode;
4198 /* Try combined insns first. */
4201 enum insn_code icode;
4202 PUT_MODE (test, wider_mode);
4204 if (label)
4206 icode = optab_handler (cbranch_optab, wider_mode)->insn_code;
4208 if (icode != CODE_FOR_nothing
4209 && insn_data[icode].operand[0].predicate (test, wider_mode))
4211 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
4212 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
4213 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
4214 return;
4218 /* Handle some compares against zero. */
4219 icode = (int) optab_handler (tst_optab, wider_mode)->insn_code;
4220 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
4222 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
4223 emit_insn (GEN_FCN (icode) (x));
4224 if (label)
4225 emit_jump_insn (bcc_gen_fctn[(int) comparison] (label));
4226 return;
4229 /* Handle compares for which there is a directly suitable insn. */
4231 icode = (int) optab_handler (cmp_optab, wider_mode)->insn_code;
4232 if (icode != CODE_FOR_nothing)
4234 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
4235 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
4236 emit_insn (GEN_FCN (icode) (x, y));
4237 if (label)
4238 emit_jump_insn (bcc_gen_fctn[(int) comparison] (label));
4239 return;
4242 if (!CLASS_HAS_WIDER_MODES_P (class))
4243 break;
4245 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
4247 while (wider_mode != VOIDmode);
4249 gcc_unreachable ();
4252 /* Generate code to compare X with Y so that the condition codes are
4253 set and to jump to LABEL if the condition is true. If X is a
4254 constant and Y is not a constant, then the comparison is swapped to
4255 ensure that the comparison RTL has the canonical form.
4257 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4258 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
4259 the proper branch condition code.
4261 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4263 MODE is the mode of the inputs (in case they are const_int).
4265 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
4266 be passed unchanged to emit_cmp_insn, then potentially converted into an
4267 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
4269 void
4270 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4271 enum machine_mode mode, int unsignedp, rtx label)
4273 rtx op0 = x, op1 = y;
4275 /* Swap operands and condition to ensure canonical RTL. */
4276 if (swap_commutative_operands_p (x, y))
4278 /* If we're not emitting a branch, callers are required to pass
4279 operands in an order conforming to canonical RTL. We relax this
4280 for commutative comparisons so callers using EQ don't need to do
4281 swapping by hand. */
4282 gcc_assert (label || (comparison == swap_condition (comparison)));
4284 op0 = y, op1 = x;
4285 comparison = swap_condition (comparison);
4288 #ifdef HAVE_cc0
4289 /* If OP0 is still a constant, then both X and Y must be constants.
4290 Force X into a register to create canonical RTL. */
4291 if (CONSTANT_P (op0))
4292 op0 = force_reg (mode, op0);
4293 #endif
4295 if (unsignedp)
4296 comparison = unsigned_condition (comparison);
4298 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
4299 ccp_jump);
4300 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
4303 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
4305 void
4306 emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4307 enum machine_mode mode, int unsignedp)
4309 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
4312 /* Emit a library call comparison between floating point X and Y.
4313 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4315 static void
4316 prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
4317 enum machine_mode *pmode, int *punsignedp)
4319 enum rtx_code comparison = *pcomparison;
4320 enum rtx_code swapped = swap_condition (comparison);
4321 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4322 rtx x = *px;
4323 rtx y = *py;
4324 enum machine_mode orig_mode = GET_MODE (x);
4325 enum machine_mode mode, cmp_mode;
4326 rtx value, target, insns, equiv;
4327 rtx libfunc = 0;
4328 bool reversed_p = false;
4329 cmp_mode = targetm.libgcc_cmp_return_mode ();
4331 for (mode = orig_mode;
4332 mode != VOIDmode;
4333 mode = GET_MODE_WIDER_MODE (mode))
4335 if ((libfunc = optab_libfunc (code_to_optab[comparison], mode)))
4336 break;
4338 if ((libfunc = optab_libfunc (code_to_optab[swapped] , mode)))
4340 rtx tmp;
4341 tmp = x; x = y; y = tmp;
4342 comparison = swapped;
4343 break;
4346 if ((libfunc = optab_libfunc (code_to_optab[reversed], mode))
4347 && FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, reversed))
4349 comparison = reversed;
4350 reversed_p = true;
4351 break;
4355 gcc_assert (mode != VOIDmode);
4357 if (mode != orig_mode)
4359 x = convert_to_mode (mode, x, 0);
4360 y = convert_to_mode (mode, y, 0);
4363 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4364 the RTL. The allows the RTL optimizers to delete the libcall if the
4365 condition can be determined at compile-time. */
4366 if (comparison == UNORDERED)
4368 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4369 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4370 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4371 temp, const_true_rtx, equiv);
4373 else
4375 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4376 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4378 rtx true_rtx, false_rtx;
4380 switch (comparison)
4382 case EQ:
4383 true_rtx = const0_rtx;
4384 false_rtx = const_true_rtx;
4385 break;
4387 case NE:
4388 true_rtx = const_true_rtx;
4389 false_rtx = const0_rtx;
4390 break;
4392 case GT:
4393 true_rtx = const1_rtx;
4394 false_rtx = const0_rtx;
4395 break;
4397 case GE:
4398 true_rtx = const0_rtx;
4399 false_rtx = constm1_rtx;
4400 break;
4402 case LT:
4403 true_rtx = constm1_rtx;
4404 false_rtx = const0_rtx;
4405 break;
4407 case LE:
4408 true_rtx = const0_rtx;
4409 false_rtx = const1_rtx;
4410 break;
4412 default:
4413 gcc_unreachable ();
4415 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4416 equiv, true_rtx, false_rtx);
4420 start_sequence ();
4421 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4422 cmp_mode, 2, x, mode, y, mode);
4423 insns = get_insns ();
4424 end_sequence ();
4426 target = gen_reg_rtx (cmp_mode);
4427 emit_libcall_block (insns, target, value, equiv);
4429 if (comparison == UNORDERED
4430 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4431 comparison = reversed_p ? EQ : NE;
4433 *px = target;
4434 *py = const0_rtx;
4435 *pmode = cmp_mode;
4436 *pcomparison = comparison;
4437 *punsignedp = 0;
4440 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4442 void
4443 emit_indirect_jump (rtx loc)
4445 if (!insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate
4446 (loc, Pmode))
4447 loc = copy_to_mode_reg (Pmode, loc);
4449 emit_jump_insn (gen_indirect_jump (loc));
4450 emit_barrier ();
4453 #ifdef HAVE_conditional_move
4455 /* Emit a conditional move instruction if the machine supports one for that
4456 condition and machine mode.
4458 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4459 the mode to use should they be constants. If it is VOIDmode, they cannot
4460 both be constants.
4462 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4463 should be stored there. MODE is the mode to use should they be constants.
4464 If it is VOIDmode, they cannot both be constants.
4466 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4467 is not supported. */
4470 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4471 enum machine_mode cmode, rtx op2, rtx op3,
4472 enum machine_mode mode, int unsignedp)
4474 rtx tem, subtarget, comparison, insn;
4475 enum insn_code icode;
4476 enum rtx_code reversed;
4478 /* If one operand is constant, make it the second one. Only do this
4479 if the other operand is not constant as well. */
4481 if (swap_commutative_operands_p (op0, op1))
4483 tem = op0;
4484 op0 = op1;
4485 op1 = tem;
4486 code = swap_condition (code);
4489 /* get_condition will prefer to generate LT and GT even if the old
4490 comparison was against zero, so undo that canonicalization here since
4491 comparisons against zero are cheaper. */
4492 if (code == LT && op1 == const1_rtx)
4493 code = LE, op1 = const0_rtx;
4494 else if (code == GT && op1 == constm1_rtx)
4495 code = GE, op1 = const0_rtx;
4497 if (cmode == VOIDmode)
4498 cmode = GET_MODE (op0);
4500 if (swap_commutative_operands_p (op2, op3)
4501 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4502 != UNKNOWN))
4504 tem = op2;
4505 op2 = op3;
4506 op3 = tem;
4507 code = reversed;
4510 if (mode == VOIDmode)
4511 mode = GET_MODE (op2);
4513 icode = movcc_gen_code[mode];
4515 if (icode == CODE_FOR_nothing)
4516 return 0;
4518 if (!target)
4519 target = gen_reg_rtx (mode);
4521 subtarget = target;
4523 /* If the insn doesn't accept these operands, put them in pseudos. */
4525 if (!insn_data[icode].operand[0].predicate
4526 (subtarget, insn_data[icode].operand[0].mode))
4527 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4529 if (!insn_data[icode].operand[2].predicate
4530 (op2, insn_data[icode].operand[2].mode))
4531 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4533 if (!insn_data[icode].operand[3].predicate
4534 (op3, insn_data[icode].operand[3].mode))
4535 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4537 /* Everything should now be in the suitable form, so emit the compare insn
4538 and then the conditional move. */
4540 comparison
4541 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4543 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4544 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4545 return NULL and let the caller figure out how best to deal with this
4546 situation. */
4547 if (GET_CODE (comparison) != code)
4548 return NULL_RTX;
4550 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4552 /* If that failed, then give up. */
4553 if (insn == 0)
4554 return 0;
4556 emit_insn (insn);
4558 if (subtarget != target)
4559 convert_move (target, subtarget, 0);
4561 return target;
4564 /* Return nonzero if a conditional move of mode MODE is supported.
4566 This function is for combine so it can tell whether an insn that looks
4567 like a conditional move is actually supported by the hardware. If we
4568 guess wrong we lose a bit on optimization, but that's it. */
4569 /* ??? sparc64 supports conditionally moving integers values based on fp
4570 comparisons, and vice versa. How do we handle them? */
4573 can_conditionally_move_p (enum machine_mode mode)
4575 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4576 return 1;
4578 return 0;
4581 #endif /* HAVE_conditional_move */
4583 /* Emit a conditional addition instruction if the machine supports one for that
4584 condition and machine mode.
4586 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4587 the mode to use should they be constants. If it is VOIDmode, they cannot
4588 both be constants.
4590 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4591 should be stored there. MODE is the mode to use should they be constants.
4592 If it is VOIDmode, they cannot both be constants.
4594 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4595 is not supported. */
4598 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4599 enum machine_mode cmode, rtx op2, rtx op3,
4600 enum machine_mode mode, int unsignedp)
4602 rtx tem, subtarget, comparison, insn;
4603 enum insn_code icode;
4604 enum rtx_code reversed;
4606 /* If one operand is constant, make it the second one. Only do this
4607 if the other operand is not constant as well. */
4609 if (swap_commutative_operands_p (op0, op1))
4611 tem = op0;
4612 op0 = op1;
4613 op1 = tem;
4614 code = swap_condition (code);
4617 /* get_condition will prefer to generate LT and GT even if the old
4618 comparison was against zero, so undo that canonicalization here since
4619 comparisons against zero are cheaper. */
4620 if (code == LT && op1 == const1_rtx)
4621 code = LE, op1 = const0_rtx;
4622 else if (code == GT && op1 == constm1_rtx)
4623 code = GE, op1 = const0_rtx;
4625 if (cmode == VOIDmode)
4626 cmode = GET_MODE (op0);
4628 if (swap_commutative_operands_p (op2, op3)
4629 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4630 != UNKNOWN))
4632 tem = op2;
4633 op2 = op3;
4634 op3 = tem;
4635 code = reversed;
4638 if (mode == VOIDmode)
4639 mode = GET_MODE (op2);
4641 icode = optab_handler (addcc_optab, mode)->insn_code;
4643 if (icode == CODE_FOR_nothing)
4644 return 0;
4646 if (!target)
4647 target = gen_reg_rtx (mode);
4649 /* If the insn doesn't accept these operands, put them in pseudos. */
4651 if (!insn_data[icode].operand[0].predicate
4652 (target, insn_data[icode].operand[0].mode))
4653 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4654 else
4655 subtarget = target;
4657 if (!insn_data[icode].operand[2].predicate
4658 (op2, insn_data[icode].operand[2].mode))
4659 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4661 if (!insn_data[icode].operand[3].predicate
4662 (op3, insn_data[icode].operand[3].mode))
4663 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4665 /* Everything should now be in the suitable form, so emit the compare insn
4666 and then the conditional move. */
4668 comparison
4669 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4671 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4672 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4673 return NULL and let the caller figure out how best to deal with this
4674 situation. */
4675 if (GET_CODE (comparison) != code)
4676 return NULL_RTX;
4678 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4680 /* If that failed, then give up. */
4681 if (insn == 0)
4682 return 0;
4684 emit_insn (insn);
4686 if (subtarget != target)
4687 convert_move (target, subtarget, 0);
4689 return target;
4692 /* These functions attempt to generate an insn body, rather than
4693 emitting the insn, but if the gen function already emits them, we
4694 make no attempt to turn them back into naked patterns. */
4696 /* Generate and return an insn body to add Y to X. */
4699 gen_add2_insn (rtx x, rtx y)
4701 int icode = (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
4703 gcc_assert (insn_data[icode].operand[0].predicate
4704 (x, insn_data[icode].operand[0].mode));
4705 gcc_assert (insn_data[icode].operand[1].predicate
4706 (x, insn_data[icode].operand[1].mode));
4707 gcc_assert (insn_data[icode].operand[2].predicate
4708 (y, insn_data[icode].operand[2].mode));
4710 return GEN_FCN (icode) (x, x, y);
4713 /* Generate and return an insn body to add r1 and c,
4714 storing the result in r0. */
4717 gen_add3_insn (rtx r0, rtx r1, rtx c)
4719 int icode = (int) optab_handler (add_optab, GET_MODE (r0))->insn_code;
4721 if (icode == CODE_FOR_nothing
4722 || !(insn_data[icode].operand[0].predicate
4723 (r0, insn_data[icode].operand[0].mode))
4724 || !(insn_data[icode].operand[1].predicate
4725 (r1, insn_data[icode].operand[1].mode))
4726 || !(insn_data[icode].operand[2].predicate
4727 (c, insn_data[icode].operand[2].mode)))
4728 return NULL_RTX;
4730 return GEN_FCN (icode) (r0, r1, c);
4734 have_add2_insn (rtx x, rtx y)
4736 int icode;
4738 gcc_assert (GET_MODE (x) != VOIDmode);
4740 icode = (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
4742 if (icode == CODE_FOR_nothing)
4743 return 0;
4745 if (!(insn_data[icode].operand[0].predicate
4746 (x, insn_data[icode].operand[0].mode))
4747 || !(insn_data[icode].operand[1].predicate
4748 (x, insn_data[icode].operand[1].mode))
4749 || !(insn_data[icode].operand[2].predicate
4750 (y, insn_data[icode].operand[2].mode)))
4751 return 0;
4753 return 1;
4756 /* Generate and return an insn body to subtract Y from X. */
4759 gen_sub2_insn (rtx x, rtx y)
4761 int icode = (int) optab_handler (sub_optab, GET_MODE (x))->insn_code;
4763 gcc_assert (insn_data[icode].operand[0].predicate
4764 (x, insn_data[icode].operand[0].mode));
4765 gcc_assert (insn_data[icode].operand[1].predicate
4766 (x, insn_data[icode].operand[1].mode));
4767 gcc_assert (insn_data[icode].operand[2].predicate
4768 (y, insn_data[icode].operand[2].mode));
4770 return GEN_FCN (icode) (x, x, y);
4773 /* Generate and return an insn body to subtract r1 and c,
4774 storing the result in r0. */
4777 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4779 int icode = (int) optab_handler (sub_optab, GET_MODE (r0))->insn_code;
4781 if (icode == CODE_FOR_nothing
4782 || !(insn_data[icode].operand[0].predicate
4783 (r0, insn_data[icode].operand[0].mode))
4784 || !(insn_data[icode].operand[1].predicate
4785 (r1, insn_data[icode].operand[1].mode))
4786 || !(insn_data[icode].operand[2].predicate
4787 (c, insn_data[icode].operand[2].mode)))
4788 return NULL_RTX;
4790 return GEN_FCN (icode) (r0, r1, c);
4794 have_sub2_insn (rtx x, rtx y)
4796 int icode;
4798 gcc_assert (GET_MODE (x) != VOIDmode);
4800 icode = (int) optab_handler (sub_optab, GET_MODE (x))->insn_code;
4802 if (icode == CODE_FOR_nothing)
4803 return 0;
4805 if (!(insn_data[icode].operand[0].predicate
4806 (x, insn_data[icode].operand[0].mode))
4807 || !(insn_data[icode].operand[1].predicate
4808 (x, insn_data[icode].operand[1].mode))
4809 || !(insn_data[icode].operand[2].predicate
4810 (y, insn_data[icode].operand[2].mode)))
4811 return 0;
4813 return 1;
4816 /* Generate the body of an instruction to copy Y into X.
4817 It may be a list of insns, if one insn isn't enough. */
4820 gen_move_insn (rtx x, rtx y)
4822 rtx seq;
4824 start_sequence ();
4825 emit_move_insn_1 (x, y);
4826 seq = get_insns ();
4827 end_sequence ();
4828 return seq;
4831 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4832 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4833 no such operation exists, CODE_FOR_nothing will be returned. */
4835 enum insn_code
4836 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4837 int unsignedp)
4839 convert_optab tab;
4840 #ifdef HAVE_ptr_extend
4841 if (unsignedp < 0)
4842 return CODE_FOR_ptr_extend;
4843 #endif
4845 tab = unsignedp ? zext_optab : sext_optab;
4846 return convert_optab_handler (tab, to_mode, from_mode)->insn_code;
4849 /* Generate the body of an insn to extend Y (with mode MFROM)
4850 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4853 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4854 enum machine_mode mfrom, int unsignedp)
4856 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4857 return GEN_FCN (icode) (x, y);
4860 /* can_fix_p and can_float_p say whether the target machine
4861 can directly convert a given fixed point type to
4862 a given floating point type, or vice versa.
4863 The returned value is the CODE_FOR_... value to use,
4864 or CODE_FOR_nothing if these modes cannot be directly converted.
4866 *TRUNCP_PTR is set to 1 if it is necessary to output
4867 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4869 static enum insn_code
4870 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4871 int unsignedp, int *truncp_ptr)
4873 convert_optab tab;
4874 enum insn_code icode;
4876 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4877 icode = convert_optab_handler (tab, fixmode, fltmode)->insn_code;
4878 if (icode != CODE_FOR_nothing)
4880 *truncp_ptr = 0;
4881 return icode;
4884 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4885 for this to work. We need to rework the fix* and ftrunc* patterns
4886 and documentation. */
4887 tab = unsignedp ? ufix_optab : sfix_optab;
4888 icode = convert_optab_handler (tab, fixmode, fltmode)->insn_code;
4889 if (icode != CODE_FOR_nothing
4890 && optab_handler (ftrunc_optab, fltmode)->insn_code != CODE_FOR_nothing)
4892 *truncp_ptr = 1;
4893 return icode;
4896 *truncp_ptr = 0;
4897 return CODE_FOR_nothing;
4900 static enum insn_code
4901 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4902 int unsignedp)
4904 convert_optab tab;
4906 tab = unsignedp ? ufloat_optab : sfloat_optab;
4907 return convert_optab_handler (tab, fltmode, fixmode)->insn_code;
4910 /* Generate code to convert FROM to floating point
4911 and store in TO. FROM must be fixed point and not VOIDmode.
4912 UNSIGNEDP nonzero means regard FROM as unsigned.
4913 Normally this is done by correcting the final value
4914 if it is negative. */
4916 void
4917 expand_float (rtx to, rtx from, int unsignedp)
4919 enum insn_code icode;
4920 rtx target = to;
4921 enum machine_mode fmode, imode;
4922 bool can_do_signed = false;
4924 /* Crash now, because we won't be able to decide which mode to use. */
4925 gcc_assert (GET_MODE (from) != VOIDmode);
4927 /* Look for an insn to do the conversion. Do it in the specified
4928 modes if possible; otherwise convert either input, output or both to
4929 wider mode. If the integer mode is wider than the mode of FROM,
4930 we can do the conversion signed even if the input is unsigned. */
4932 for (fmode = GET_MODE (to); fmode != VOIDmode;
4933 fmode = GET_MODE_WIDER_MODE (fmode))
4934 for (imode = GET_MODE (from); imode != VOIDmode;
4935 imode = GET_MODE_WIDER_MODE (imode))
4937 int doing_unsigned = unsignedp;
4939 if (fmode != GET_MODE (to)
4940 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4941 continue;
4943 icode = can_float_p (fmode, imode, unsignedp);
4944 if (icode == CODE_FOR_nothing && unsignedp)
4946 enum insn_code scode = can_float_p (fmode, imode, 0);
4947 if (scode != CODE_FOR_nothing)
4948 can_do_signed = true;
4949 if (imode != GET_MODE (from))
4950 icode = scode, doing_unsigned = 0;
4953 if (icode != CODE_FOR_nothing)
4955 if (imode != GET_MODE (from))
4956 from = convert_to_mode (imode, from, unsignedp);
4958 if (fmode != GET_MODE (to))
4959 target = gen_reg_rtx (fmode);
4961 emit_unop_insn (icode, target, from,
4962 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4964 if (target != to)
4965 convert_move (to, target, 0);
4966 return;
4970 /* Unsigned integer, and no way to convert directly. Convert as signed,
4971 then unconditionally adjust the result. */
4972 if (unsignedp && can_do_signed)
4974 rtx label = gen_label_rtx ();
4975 rtx temp;
4976 REAL_VALUE_TYPE offset;
4978 /* Look for a usable floating mode FMODE wider than the source and at
4979 least as wide as the target. Using FMODE will avoid rounding woes
4980 with unsigned values greater than the signed maximum value. */
4982 for (fmode = GET_MODE (to); fmode != VOIDmode;
4983 fmode = GET_MODE_WIDER_MODE (fmode))
4984 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4985 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4986 break;
4988 if (fmode == VOIDmode)
4990 /* There is no such mode. Pretend the target is wide enough. */
4991 fmode = GET_MODE (to);
4993 /* Avoid double-rounding when TO is narrower than FROM. */
4994 if ((significand_size (fmode) + 1)
4995 < GET_MODE_BITSIZE (GET_MODE (from)))
4997 rtx temp1;
4998 rtx neglabel = gen_label_rtx ();
5000 /* Don't use TARGET if it isn't a register, is a hard register,
5001 or is the wrong mode. */
5002 if (!REG_P (target)
5003 || REGNO (target) < FIRST_PSEUDO_REGISTER
5004 || GET_MODE (target) != fmode)
5005 target = gen_reg_rtx (fmode);
5007 imode = GET_MODE (from);
5008 do_pending_stack_adjust ();
5010 /* Test whether the sign bit is set. */
5011 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5012 0, neglabel);
5014 /* The sign bit is not set. Convert as signed. */
5015 expand_float (target, from, 0);
5016 emit_jump_insn (gen_jump (label));
5017 emit_barrier ();
5019 /* The sign bit is set.
5020 Convert to a usable (positive signed) value by shifting right
5021 one bit, while remembering if a nonzero bit was shifted
5022 out; i.e., compute (from & 1) | (from >> 1). */
5024 emit_label (neglabel);
5025 temp = expand_binop (imode, and_optab, from, const1_rtx,
5026 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5027 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
5028 NULL_RTX, 1);
5029 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5030 OPTAB_LIB_WIDEN);
5031 expand_float (target, temp, 0);
5033 /* Multiply by 2 to undo the shift above. */
5034 temp = expand_binop (fmode, add_optab, target, target,
5035 target, 0, OPTAB_LIB_WIDEN);
5036 if (temp != target)
5037 emit_move_insn (target, temp);
5039 do_pending_stack_adjust ();
5040 emit_label (label);
5041 goto done;
5045 /* If we are about to do some arithmetic to correct for an
5046 unsigned operand, do it in a pseudo-register. */
5048 if (GET_MODE (to) != fmode
5049 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5050 target = gen_reg_rtx (fmode);
5052 /* Convert as signed integer to floating. */
5053 expand_float (target, from, 0);
5055 /* If FROM is negative (and therefore TO is negative),
5056 correct its value by 2**bitwidth. */
5058 do_pending_stack_adjust ();
5059 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5060 0, label);
5063 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)), fmode);
5064 temp = expand_binop (fmode, add_optab, target,
5065 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5066 target, 0, OPTAB_LIB_WIDEN);
5067 if (temp != target)
5068 emit_move_insn (target, temp);
5070 do_pending_stack_adjust ();
5071 emit_label (label);
5072 goto done;
5075 /* No hardware instruction available; call a library routine. */
5077 rtx libfunc;
5078 rtx insns;
5079 rtx value;
5080 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5082 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5083 from = convert_to_mode (SImode, from, unsignedp);
5085 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5086 gcc_assert (libfunc);
5088 start_sequence ();
5090 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5091 GET_MODE (to), 1, from,
5092 GET_MODE (from));
5093 insns = get_insns ();
5094 end_sequence ();
5096 emit_libcall_block (insns, target, value,
5097 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5098 GET_MODE (to), from));
5101 done:
5103 /* Copy result to requested destination
5104 if we have been computing in a temp location. */
5106 if (target != to)
5108 if (GET_MODE (target) == GET_MODE (to))
5109 emit_move_insn (to, target);
5110 else
5111 convert_move (to, target, 0);
5115 /* Generate code to convert FROM to fixed point and store in TO. FROM
5116 must be floating point. */
5118 void
5119 expand_fix (rtx to, rtx from, int unsignedp)
5121 enum insn_code icode;
5122 rtx target = to;
5123 enum machine_mode fmode, imode;
5124 int must_trunc = 0;
5126 /* We first try to find a pair of modes, one real and one integer, at
5127 least as wide as FROM and TO, respectively, in which we can open-code
5128 this conversion. If the integer mode is wider than the mode of TO,
5129 we can do the conversion either signed or unsigned. */
5131 for (fmode = GET_MODE (from); fmode != VOIDmode;
5132 fmode = GET_MODE_WIDER_MODE (fmode))
5133 for (imode = GET_MODE (to); imode != VOIDmode;
5134 imode = GET_MODE_WIDER_MODE (imode))
5136 int doing_unsigned = unsignedp;
5138 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5139 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5140 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5142 if (icode != CODE_FOR_nothing)
5144 if (fmode != GET_MODE (from))
5145 from = convert_to_mode (fmode, from, 0);
5147 if (must_trunc)
5149 rtx temp = gen_reg_rtx (GET_MODE (from));
5150 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5151 temp, 0);
5154 if (imode != GET_MODE (to))
5155 target = gen_reg_rtx (imode);
5157 emit_unop_insn (icode, target, from,
5158 doing_unsigned ? UNSIGNED_FIX : FIX);
5159 if (target != to)
5160 convert_move (to, target, unsignedp);
5161 return;
5165 /* For an unsigned conversion, there is one more way to do it.
5166 If we have a signed conversion, we generate code that compares
5167 the real value to the largest representable positive number. If if
5168 is smaller, the conversion is done normally. Otherwise, subtract
5169 one plus the highest signed number, convert, and add it back.
5171 We only need to check all real modes, since we know we didn't find
5172 anything with a wider integer mode.
5174 This code used to extend FP value into mode wider than the destination.
5175 This is needed for decimal float modes which cannot accurately
5176 represent one plus the highest signed number of the same size, but
5177 not for binary modes. Consider, for instance conversion from SFmode
5178 into DImode.
5180 The hot path through the code is dealing with inputs smaller than 2^63
5181 and doing just the conversion, so there is no bits to lose.
5183 In the other path we know the value is positive in the range 2^63..2^64-1
5184 inclusive. (as for other input overflow happens and result is undefined)
5185 So we know that the most important bit set in mantissa corresponds to
5186 2^63. The subtraction of 2^63 should not generate any rounding as it
5187 simply clears out that bit. The rest is trivial. */
5189 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5190 for (fmode = GET_MODE (from); fmode != VOIDmode;
5191 fmode = GET_MODE_WIDER_MODE (fmode))
5192 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5193 && (!DECIMAL_FLOAT_MODE_P (fmode)
5194 || GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))))
5196 int bitsize;
5197 REAL_VALUE_TYPE offset;
5198 rtx limit, lab1, lab2, insn;
5200 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
5201 real_2expN (&offset, bitsize - 1, fmode);
5202 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5203 lab1 = gen_label_rtx ();
5204 lab2 = gen_label_rtx ();
5206 if (fmode != GET_MODE (from))
5207 from = convert_to_mode (fmode, from, 0);
5209 /* See if we need to do the subtraction. */
5210 do_pending_stack_adjust ();
5211 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5212 0, lab1);
5214 /* If not, do the signed "fix" and branch around fixup code. */
5215 expand_fix (to, from, 0);
5216 emit_jump_insn (gen_jump (lab2));
5217 emit_barrier ();
5219 /* Otherwise, subtract 2**(N-1), convert to signed number,
5220 then add 2**(N-1). Do the addition using XOR since this
5221 will often generate better code. */
5222 emit_label (lab1);
5223 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5224 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5225 expand_fix (to, target, 0);
5226 target = expand_binop (GET_MODE (to), xor_optab, to,
5227 gen_int_mode
5228 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5229 GET_MODE (to)),
5230 to, 1, OPTAB_LIB_WIDEN);
5232 if (target != to)
5233 emit_move_insn (to, target);
5235 emit_label (lab2);
5237 if (optab_handler (mov_optab, GET_MODE (to))->insn_code
5238 != CODE_FOR_nothing)
5240 /* Make a place for a REG_NOTE and add it. */
5241 insn = emit_move_insn (to, to);
5242 set_unique_reg_note (insn,
5243 REG_EQUAL,
5244 gen_rtx_fmt_e (UNSIGNED_FIX,
5245 GET_MODE (to),
5246 copy_rtx (from)));
5249 return;
5252 /* We can't do it with an insn, so use a library call. But first ensure
5253 that the mode of TO is at least as wide as SImode, since those are the
5254 only library calls we know about. */
5256 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5258 target = gen_reg_rtx (SImode);
5260 expand_fix (target, from, unsignedp);
5262 else
5264 rtx insns;
5265 rtx value;
5266 rtx libfunc;
5268 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5269 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5270 gcc_assert (libfunc);
5272 start_sequence ();
5274 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5275 GET_MODE (to), 1, from,
5276 GET_MODE (from));
5277 insns = get_insns ();
5278 end_sequence ();
5280 emit_libcall_block (insns, target, value,
5281 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5282 GET_MODE (to), from));
5285 if (target != to)
5287 if (GET_MODE (to) == GET_MODE (target))
5288 emit_move_insn (to, target);
5289 else
5290 convert_move (to, target, 0);
5294 /* Generate code to convert FROM or TO a fixed-point.
5295 If UINTP is true, either TO or FROM is an unsigned integer.
5296 If SATP is true, we need to saturate the result. */
5298 void
5299 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5301 enum machine_mode to_mode = GET_MODE (to);
5302 enum machine_mode from_mode = GET_MODE (from);
5303 convert_optab tab;
5304 enum rtx_code this_code;
5305 enum insn_code code;
5306 rtx insns, value;
5307 rtx libfunc;
5309 if (to_mode == from_mode)
5311 emit_move_insn (to, from);
5312 return;
5315 if (uintp)
5317 tab = satp ? satfractuns_optab : fractuns_optab;
5318 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5320 else
5322 tab = satp ? satfract_optab : fract_optab;
5323 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5325 code = tab->handlers[to_mode][from_mode].insn_code;
5326 if (code != CODE_FOR_nothing)
5328 emit_unop_insn (code, to, from, this_code);
5329 return;
5332 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5333 gcc_assert (libfunc);
5335 start_sequence ();
5336 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5337 1, from, from_mode);
5338 insns = get_insns ();
5339 end_sequence ();
5341 emit_libcall_block (insns, to, value,
5342 gen_rtx_fmt_e (tab->code, to_mode, from));
5345 /* Generate code to convert FROM to fixed point and store in TO. FROM
5346 must be floating point, TO must be signed. Use the conversion optab
5347 TAB to do the conversion. */
5349 bool
5350 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5352 enum insn_code icode;
5353 rtx target = to;
5354 enum machine_mode fmode, imode;
5356 /* We first try to find a pair of modes, one real and one integer, at
5357 least as wide as FROM and TO, respectively, in which we can open-code
5358 this conversion. If the integer mode is wider than the mode of TO,
5359 we can do the conversion either signed or unsigned. */
5361 for (fmode = GET_MODE (from); fmode != VOIDmode;
5362 fmode = GET_MODE_WIDER_MODE (fmode))
5363 for (imode = GET_MODE (to); imode != VOIDmode;
5364 imode = GET_MODE_WIDER_MODE (imode))
5366 icode = convert_optab_handler (tab, imode, fmode)->insn_code;
5367 if (icode != CODE_FOR_nothing)
5369 if (fmode != GET_MODE (from))
5370 from = convert_to_mode (fmode, from, 0);
5372 if (imode != GET_MODE (to))
5373 target = gen_reg_rtx (imode);
5375 emit_unop_insn (icode, target, from, UNKNOWN);
5376 if (target != to)
5377 convert_move (to, target, 0);
5378 return true;
5382 return false;
5385 /* Report whether we have an instruction to perform the operation
5386 specified by CODE on operands of mode MODE. */
5388 have_insn_for (enum rtx_code code, enum machine_mode mode)
5390 return (code_to_optab[(int) code] != 0
5391 && (optab_handler (code_to_optab[(int) code], mode)->insn_code
5392 != CODE_FOR_nothing));
5395 /* Set all insn_code fields to CODE_FOR_nothing. */
5397 static void
5398 init_insn_codes (void)
5400 unsigned int i;
5402 for (i = 0; i < (unsigned int) OTI_MAX; i++)
5404 unsigned int j;
5405 optab op;
5407 op = &optab_table[i];
5408 for (j = 0; j < NUM_MACHINE_MODES; j++)
5409 optab_handler (op, j)->insn_code = CODE_FOR_nothing;
5411 for (i = 0; i < (unsigned int) COI_MAX; i++)
5413 unsigned int j, k;
5414 convert_optab op;
5416 op = &convert_optab_table[i];
5417 for (j = 0; j < NUM_MACHINE_MODES; j++)
5418 for (k = 0; k < NUM_MACHINE_MODES; k++)
5419 convert_optab_handler (op, j, k)->insn_code = CODE_FOR_nothing;
5423 /* Initialize OP's code to CODE, and write it into the code_to_optab table. */
5424 static inline void
5425 init_optab (optab op, enum rtx_code code)
5427 op->code = code;
5428 code_to_optab[(int) code] = op;
5431 /* Same, but fill in its code as CODE, and do _not_ write it into
5432 the code_to_optab table. */
5433 static inline void
5434 init_optabv (optab op, enum rtx_code code)
5436 op->code = code;
5439 /* Conversion optabs never go in the code_to_optab table. */
5440 static void
5441 init_convert_optab (convert_optab op, enum rtx_code code)
5443 op->code = code;
5446 /* Initialize the libfunc fields of an entire group of entries in some
5447 optab. Each entry is set equal to a string consisting of a leading
5448 pair of underscores followed by a generic operation name followed by
5449 a mode name (downshifted to lowercase) followed by a single character
5450 representing the number of operands for the given operation (which is
5451 usually one of the characters '2', '3', or '4').
5453 OPTABLE is the table in which libfunc fields are to be initialized.
5454 OPNAME is the generic (string) name of the operation.
5455 SUFFIX is the character which specifies the number of operands for
5456 the given generic operation.
5457 MODE is the mode to generate for.
5460 static void
5461 gen_libfunc (optab optable, const char *opname, int suffix, enum machine_mode mode)
5463 unsigned opname_len = strlen (opname);
5464 const char *mname = GET_MODE_NAME (mode);
5465 unsigned mname_len = strlen (mname);
5466 char *libfunc_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5467 char *p;
5468 const char *q;
5470 p = libfunc_name;
5471 *p++ = '_';
5472 *p++ = '_';
5473 for (q = opname; *q; )
5474 *p++ = *q++;
5475 for (q = mname; *q; q++)
5476 *p++ = TOLOWER (*q);
5477 *p++ = suffix;
5478 *p = '\0';
5480 set_optab_libfunc (optable, mode,
5481 ggc_alloc_string (libfunc_name, p - libfunc_name));
5484 /* Like gen_libfunc, but verify that integer operation is involved. */
5486 static void
5487 gen_int_libfunc (optab optable, const char *opname, char suffix,
5488 enum machine_mode mode)
5490 int maxsize = 2 * BITS_PER_WORD;
5492 if (GET_MODE_CLASS (mode) != MODE_INT)
5493 return;
5494 if (maxsize < LONG_LONG_TYPE_SIZE)
5495 maxsize = LONG_LONG_TYPE_SIZE;
5496 if (GET_MODE_CLASS (mode) != MODE_INT
5497 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5498 return;
5499 gen_libfunc (optable, opname, suffix, mode);
5502 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5504 static void
5505 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5506 enum machine_mode mode)
5508 char *dec_opname;
5510 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5511 gen_libfunc (optable, opname, suffix, mode);
5512 if (DECIMAL_FLOAT_MODE_P (mode))
5514 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5515 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5516 depending on the low level floating format used. */
5517 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5518 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5519 gen_libfunc (optable, dec_opname, suffix, mode);
5523 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5525 static void
5526 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5527 enum machine_mode mode)
5529 if (!ALL_FIXED_POINT_MODE_P (mode))
5530 return;
5531 gen_libfunc (optable, opname, suffix, mode);
5534 /* Like gen_libfunc, but verify that signed fixed-point operation is
5535 involved. */
5537 static void
5538 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5539 enum machine_mode mode)
5541 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5542 return;
5543 gen_libfunc (optable, opname, suffix, mode);
5546 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5547 involved. */
5549 static void
5550 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5551 enum machine_mode mode)
5553 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5554 return;
5555 gen_libfunc (optable, opname, suffix, mode);
5558 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5560 static void
5561 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5562 enum machine_mode mode)
5564 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5565 gen_fp_libfunc (optable, name, suffix, mode);
5566 if (INTEGRAL_MODE_P (mode))
5567 gen_int_libfunc (optable, name, suffix, mode);
5570 /* Like gen_libfunc, but verify that FP or INT operation is involved
5571 and add 'v' suffix for integer operation. */
5573 static void
5574 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5575 enum machine_mode mode)
5577 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5578 gen_fp_libfunc (optable, name, suffix, mode);
5579 if (GET_MODE_CLASS (mode) == MODE_INT)
5581 int len = strlen (name);
5582 char *v_name = XALLOCAVEC (char, len + 2);
5583 strcpy (v_name, name);
5584 v_name[len] = 'v';
5585 v_name[len + 1] = 0;
5586 gen_int_libfunc (optable, v_name, suffix, mode);
5590 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5591 involved. */
5593 static void
5594 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5595 enum machine_mode mode)
5597 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5598 gen_fp_libfunc (optable, name, suffix, mode);
5599 if (INTEGRAL_MODE_P (mode))
5600 gen_int_libfunc (optable, name, suffix, mode);
5601 if (ALL_FIXED_POINT_MODE_P (mode))
5602 gen_fixed_libfunc (optable, name, suffix, mode);
5605 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5606 involved. */
5608 static void
5609 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5610 enum machine_mode mode)
5612 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5613 gen_fp_libfunc (optable, name, suffix, mode);
5614 if (INTEGRAL_MODE_P (mode))
5615 gen_int_libfunc (optable, name, suffix, mode);
5616 if (SIGNED_FIXED_POINT_MODE_P (mode))
5617 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5620 /* Like gen_libfunc, but verify that INT or FIXED operation is
5621 involved. */
5623 static void
5624 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5625 enum machine_mode mode)
5627 if (INTEGRAL_MODE_P (mode))
5628 gen_int_libfunc (optable, name, suffix, mode);
5629 if (ALL_FIXED_POINT_MODE_P (mode))
5630 gen_fixed_libfunc (optable, name, suffix, mode);
5633 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5634 involved. */
5636 static void
5637 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5638 enum machine_mode mode)
5640 if (INTEGRAL_MODE_P (mode))
5641 gen_int_libfunc (optable, name, suffix, mode);
5642 if (SIGNED_FIXED_POINT_MODE_P (mode))
5643 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5646 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5647 involved. */
5649 static void
5650 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5651 enum machine_mode mode)
5653 if (INTEGRAL_MODE_P (mode))
5654 gen_int_libfunc (optable, name, suffix, mode);
5655 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5656 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5659 /* Initialize the libfunc fields of an entire group of entries of an
5660 inter-mode-class conversion optab. The string formation rules are
5661 similar to the ones for init_libfuncs, above, but instead of having
5662 a mode name and an operand count these functions have two mode names
5663 and no operand count. */
5665 static void
5666 gen_interclass_conv_libfunc (convert_optab tab,
5667 const char *opname,
5668 enum machine_mode tmode,
5669 enum machine_mode fmode)
5671 size_t opname_len = strlen (opname);
5672 size_t mname_len = 0;
5674 const char *fname, *tname;
5675 const char *q;
5676 char *libfunc_name, *suffix;
5677 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5678 char *p;
5680 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5681 depends on which underlying decimal floating point format is used. */
5682 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5684 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5686 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5687 nondec_name[0] = '_';
5688 nondec_name[1] = '_';
5689 memcpy (&nondec_name[2], opname, opname_len);
5690 nondec_suffix = nondec_name + opname_len + 2;
5692 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5693 dec_name[0] = '_';
5694 dec_name[1] = '_';
5695 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5696 memcpy (&dec_name[2+dec_len], opname, opname_len);
5697 dec_suffix = dec_name + dec_len + opname_len + 2;
5699 fname = GET_MODE_NAME (fmode);
5700 tname = GET_MODE_NAME (tmode);
5702 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5704 libfunc_name = dec_name;
5705 suffix = dec_suffix;
5707 else
5709 libfunc_name = nondec_name;
5710 suffix = nondec_suffix;
5713 p = suffix;
5714 for (q = fname; *q; p++, q++)
5715 *p = TOLOWER (*q);
5716 for (q = tname; *q; p++, q++)
5717 *p = TOLOWER (*q);
5719 *p = '\0';
5721 set_conv_libfunc (tab, tmode, fmode,
5722 ggc_alloc_string (libfunc_name, p - libfunc_name));
5725 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5726 int->fp conversion. */
5728 static void
5729 gen_int_to_fp_conv_libfunc (convert_optab tab,
5730 const char *opname,
5731 enum machine_mode tmode,
5732 enum machine_mode fmode)
5734 if (GET_MODE_CLASS (fmode) != MODE_INT)
5735 return;
5736 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5737 return;
5738 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5741 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5742 naming scheme. */
5744 static void
5745 gen_ufloat_conv_libfunc (convert_optab tab,
5746 const char *opname ATTRIBUTE_UNUSED,
5747 enum machine_mode tmode,
5748 enum machine_mode fmode)
5750 if (DECIMAL_FLOAT_MODE_P (tmode))
5751 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5752 else
5753 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5756 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5757 fp->int conversion. */
5759 static void
5760 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5761 const char *opname,
5762 enum machine_mode tmode,
5763 enum machine_mode fmode)
5765 if (GET_MODE_CLASS (fmode) != MODE_INT)
5766 return;
5767 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5768 return;
5769 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5772 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5773 fp->int conversion with no decimal floating point involved. */
5775 static void
5776 gen_fp_to_int_conv_libfunc (convert_optab tab,
5777 const char *opname,
5778 enum machine_mode tmode,
5779 enum machine_mode fmode)
5781 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5782 return;
5783 if (GET_MODE_CLASS (tmode) != MODE_INT)
5784 return;
5785 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5788 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5789 The string formation rules are
5790 similar to the ones for init_libfunc, above. */
5792 static void
5793 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5794 enum machine_mode tmode, enum machine_mode fmode)
5796 size_t opname_len = strlen (opname);
5797 size_t mname_len = 0;
5799 const char *fname, *tname;
5800 const char *q;
5801 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5802 char *libfunc_name, *suffix;
5803 char *p;
5805 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5806 depends on which underlying decimal floating point format is used. */
5807 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5809 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5811 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5812 nondec_name[0] = '_';
5813 nondec_name[1] = '_';
5814 memcpy (&nondec_name[2], opname, opname_len);
5815 nondec_suffix = nondec_name + opname_len + 2;
5817 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5818 dec_name[0] = '_';
5819 dec_name[1] = '_';
5820 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5821 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5822 dec_suffix = dec_name + dec_len + opname_len + 2;
5824 fname = GET_MODE_NAME (fmode);
5825 tname = GET_MODE_NAME (tmode);
5827 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5829 libfunc_name = dec_name;
5830 suffix = dec_suffix;
5832 else
5834 libfunc_name = nondec_name;
5835 suffix = nondec_suffix;
5838 p = suffix;
5839 for (q = fname; *q; p++, q++)
5840 *p = TOLOWER (*q);
5841 for (q = tname; *q; p++, q++)
5842 *p = TOLOWER (*q);
5844 *p++ = '2';
5845 *p = '\0';
5847 set_conv_libfunc (tab, tmode, fmode,
5848 ggc_alloc_string (libfunc_name, p - libfunc_name));
5851 /* Pick proper libcall for trunc_optab. We need to chose if we do
5852 truncation or extension and interclass or intraclass. */
5854 static void
5855 gen_trunc_conv_libfunc (convert_optab tab,
5856 const char *opname,
5857 enum machine_mode tmode,
5858 enum machine_mode fmode)
5860 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5861 return;
5862 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5863 return;
5864 if (tmode == fmode)
5865 return;
5867 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5868 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5869 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5871 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5872 return;
5874 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5875 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5876 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5877 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5880 /* Pick proper libcall for extend_optab. We need to chose if we do
5881 truncation or extension and interclass or intraclass. */
5883 static void
5884 gen_extend_conv_libfunc (convert_optab tab,
5885 const char *opname ATTRIBUTE_UNUSED,
5886 enum machine_mode tmode,
5887 enum machine_mode fmode)
5889 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5890 return;
5891 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5892 return;
5893 if (tmode == fmode)
5894 return;
5896 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5897 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5898 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5900 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5901 return;
5903 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5904 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5905 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5906 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5909 /* Pick proper libcall for fract_optab. We need to chose if we do
5910 interclass or intraclass. */
5912 static void
5913 gen_fract_conv_libfunc (convert_optab tab,
5914 const char *opname,
5915 enum machine_mode tmode,
5916 enum machine_mode fmode)
5918 if (tmode == fmode)
5919 return;
5920 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5921 return;
5923 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5924 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5925 else
5926 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5929 /* Pick proper libcall for fractuns_optab. */
5931 static void
5932 gen_fractuns_conv_libfunc (convert_optab tab,
5933 const char *opname,
5934 enum machine_mode tmode,
5935 enum machine_mode fmode)
5937 if (tmode == fmode)
5938 return;
5939 /* One mode must be a fixed-point mode, and the other must be an integer
5940 mode. */
5941 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5942 || (ALL_FIXED_POINT_MODE_P (fmode)
5943 && GET_MODE_CLASS (tmode) == MODE_INT)))
5944 return;
5946 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5949 /* Pick proper libcall for satfract_optab. We need to chose if we do
5950 interclass or intraclass. */
5952 static void
5953 gen_satfract_conv_libfunc (convert_optab tab,
5954 const char *opname,
5955 enum machine_mode tmode,
5956 enum machine_mode fmode)
5958 if (tmode == fmode)
5959 return;
5960 /* TMODE must be a fixed-point mode. */
5961 if (!ALL_FIXED_POINT_MODE_P (tmode))
5962 return;
5964 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5965 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5966 else
5967 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5970 /* Pick proper libcall for satfractuns_optab. */
5972 static void
5973 gen_satfractuns_conv_libfunc (convert_optab tab,
5974 const char *opname,
5975 enum machine_mode tmode,
5976 enum machine_mode fmode)
5978 if (tmode == fmode)
5979 return;
5980 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
5981 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
5982 return;
5984 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5988 init_one_libfunc (const char *name)
5990 rtx symbol;
5992 /* Create a FUNCTION_DECL that can be passed to
5993 targetm.encode_section_info. */
5994 /* ??? We don't have any type information except for this is
5995 a function. Pretend this is "int foo()". */
5996 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
5997 build_function_type (integer_type_node, NULL_TREE));
5998 DECL_ARTIFICIAL (decl) = 1;
5999 DECL_EXTERNAL (decl) = 1;
6000 TREE_PUBLIC (decl) = 1;
6002 symbol = XEXP (DECL_RTL (decl), 0);
6004 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6005 are the flags assigned by targetm.encode_section_info. */
6006 SET_SYMBOL_REF_DECL (symbol, 0);
6008 return symbol;
6011 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6012 MODE to NAME, which should be either 0 or a string constant. */
6013 void
6014 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
6016 rtx val;
6017 struct libfunc_entry e;
6018 struct libfunc_entry **slot;
6019 e.optab = (size_t) (optable - &optab_table[0]);
6020 e.mode1 = mode;
6021 e.mode2 = VOIDmode;
6023 if (name)
6024 val = init_one_libfunc (name);
6025 else
6026 val = 0;
6027 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6028 if (*slot == NULL)
6029 *slot = GGC_NEW (struct libfunc_entry);
6030 (*slot)->optab = (size_t) (optable - &optab_table[0]);
6031 (*slot)->mode1 = mode;
6032 (*slot)->mode2 = VOIDmode;
6033 (*slot)->libfunc = val;
6036 /* Call this to reset the function entry for one conversion optab
6037 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6038 either 0 or a string constant. */
6039 void
6040 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
6041 enum machine_mode fmode, const char *name)
6043 rtx val;
6044 struct libfunc_entry e;
6045 struct libfunc_entry **slot;
6046 e.optab = (size_t) (optable - &convert_optab_table[0]);
6047 e.mode1 = tmode;
6048 e.mode2 = fmode;
6050 if (name)
6051 val = init_one_libfunc (name);
6052 else
6053 val = 0;
6054 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6055 if (*slot == NULL)
6056 *slot = GGC_NEW (struct libfunc_entry);
6057 (*slot)->optab = (size_t) (optable - &convert_optab_table[0]);
6058 (*slot)->mode1 = tmode;
6059 (*slot)->mode2 = fmode;
6060 (*slot)->libfunc = val;
6063 /* Call this to initialize the contents of the optabs
6064 appropriately for the current target machine. */
6066 void
6067 init_optabs (void)
6069 unsigned int i;
6070 enum machine_mode int_mode;
6071 static bool reinit;
6073 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6074 /* Start by initializing all tables to contain CODE_FOR_nothing. */
6076 for (i = 0; i < NUM_RTX_CODE; i++)
6077 setcc_gen_code[i] = CODE_FOR_nothing;
6079 #ifdef HAVE_conditional_move
6080 for (i = 0; i < NUM_MACHINE_MODES; i++)
6081 movcc_gen_code[i] = CODE_FOR_nothing;
6082 #endif
6084 for (i = 0; i < NUM_MACHINE_MODES; i++)
6086 vcond_gen_code[i] = CODE_FOR_nothing;
6087 vcondu_gen_code[i] = CODE_FOR_nothing;
6090 #if GCC_VERSION >= 4000
6091 /* We statically initialize the insn_codes with CODE_FOR_nothing. */
6092 if (reinit)
6093 init_insn_codes ();
6094 #else
6095 init_insn_codes ();
6096 #endif
6098 init_optab (add_optab, PLUS);
6099 init_optabv (addv_optab, PLUS);
6100 init_optab (sub_optab, MINUS);
6101 init_optabv (subv_optab, MINUS);
6102 init_optab (ssadd_optab, SS_PLUS);
6103 init_optab (usadd_optab, US_PLUS);
6104 init_optab (sssub_optab, SS_MINUS);
6105 init_optab (ussub_optab, US_MINUS);
6106 init_optab (smul_optab, MULT);
6107 init_optab (ssmul_optab, SS_MULT);
6108 init_optab (usmul_optab, US_MULT);
6109 init_optabv (smulv_optab, MULT);
6110 init_optab (smul_highpart_optab, UNKNOWN);
6111 init_optab (umul_highpart_optab, UNKNOWN);
6112 init_optab (smul_widen_optab, UNKNOWN);
6113 init_optab (umul_widen_optab, UNKNOWN);
6114 init_optab (usmul_widen_optab, UNKNOWN);
6115 init_optab (smadd_widen_optab, UNKNOWN);
6116 init_optab (umadd_widen_optab, UNKNOWN);
6117 init_optab (ssmadd_widen_optab, UNKNOWN);
6118 init_optab (usmadd_widen_optab, UNKNOWN);
6119 init_optab (smsub_widen_optab, UNKNOWN);
6120 init_optab (umsub_widen_optab, UNKNOWN);
6121 init_optab (ssmsub_widen_optab, UNKNOWN);
6122 init_optab (usmsub_widen_optab, UNKNOWN);
6123 init_optab (sdiv_optab, DIV);
6124 init_optab (ssdiv_optab, SS_DIV);
6125 init_optab (usdiv_optab, US_DIV);
6126 init_optabv (sdivv_optab, DIV);
6127 init_optab (sdivmod_optab, UNKNOWN);
6128 init_optab (udiv_optab, UDIV);
6129 init_optab (udivmod_optab, UNKNOWN);
6130 init_optab (smod_optab, MOD);
6131 init_optab (umod_optab, UMOD);
6132 init_optab (fmod_optab, UNKNOWN);
6133 init_optab (remainder_optab, UNKNOWN);
6134 init_optab (ftrunc_optab, UNKNOWN);
6135 init_optab (and_optab, AND);
6136 init_optab (ior_optab, IOR);
6137 init_optab (xor_optab, XOR);
6138 init_optab (ashl_optab, ASHIFT);
6139 init_optab (ssashl_optab, SS_ASHIFT);
6140 init_optab (usashl_optab, US_ASHIFT);
6141 init_optab (ashr_optab, ASHIFTRT);
6142 init_optab (lshr_optab, LSHIFTRT);
6143 init_optab (rotl_optab, ROTATE);
6144 init_optab (rotr_optab, ROTATERT);
6145 init_optab (smin_optab, SMIN);
6146 init_optab (smax_optab, SMAX);
6147 init_optab (umin_optab, UMIN);
6148 init_optab (umax_optab, UMAX);
6149 init_optab (pow_optab, UNKNOWN);
6150 init_optab (atan2_optab, UNKNOWN);
6152 /* These three have codes assigned exclusively for the sake of
6153 have_insn_for. */
6154 init_optab (mov_optab, SET);
6155 init_optab (movstrict_optab, STRICT_LOW_PART);
6156 init_optab (cmp_optab, COMPARE);
6158 init_optab (storent_optab, UNKNOWN);
6160 init_optab (ucmp_optab, UNKNOWN);
6161 init_optab (tst_optab, UNKNOWN);
6163 init_optab (eq_optab, EQ);
6164 init_optab (ne_optab, NE);
6165 init_optab (gt_optab, GT);
6166 init_optab (ge_optab, GE);
6167 init_optab (lt_optab, LT);
6168 init_optab (le_optab, LE);
6169 init_optab (unord_optab, UNORDERED);
6171 init_optab (neg_optab, NEG);
6172 init_optab (ssneg_optab, SS_NEG);
6173 init_optab (usneg_optab, US_NEG);
6174 init_optabv (negv_optab, NEG);
6175 init_optab (abs_optab, ABS);
6176 init_optabv (absv_optab, ABS);
6177 init_optab (addcc_optab, UNKNOWN);
6178 init_optab (one_cmpl_optab, NOT);
6179 init_optab (bswap_optab, BSWAP);
6180 init_optab (ffs_optab, FFS);
6181 init_optab (clz_optab, CLZ);
6182 init_optab (ctz_optab, CTZ);
6183 init_optab (popcount_optab, POPCOUNT);
6184 init_optab (parity_optab, PARITY);
6185 init_optab (sqrt_optab, SQRT);
6186 init_optab (floor_optab, UNKNOWN);
6187 init_optab (ceil_optab, UNKNOWN);
6188 init_optab (round_optab, UNKNOWN);
6189 init_optab (btrunc_optab, UNKNOWN);
6190 init_optab (nearbyint_optab, UNKNOWN);
6191 init_optab (rint_optab, UNKNOWN);
6192 init_optab (sincos_optab, UNKNOWN);
6193 init_optab (sin_optab, UNKNOWN);
6194 init_optab (asin_optab, UNKNOWN);
6195 init_optab (cos_optab, UNKNOWN);
6196 init_optab (acos_optab, UNKNOWN);
6197 init_optab (exp_optab, UNKNOWN);
6198 init_optab (exp10_optab, UNKNOWN);
6199 init_optab (exp2_optab, UNKNOWN);
6200 init_optab (expm1_optab, UNKNOWN);
6201 init_optab (ldexp_optab, UNKNOWN);
6202 init_optab (scalb_optab, UNKNOWN);
6203 init_optab (logb_optab, UNKNOWN);
6204 init_optab (ilogb_optab, UNKNOWN);
6205 init_optab (log_optab, UNKNOWN);
6206 init_optab (log10_optab, UNKNOWN);
6207 init_optab (log2_optab, UNKNOWN);
6208 init_optab (log1p_optab, UNKNOWN);
6209 init_optab (tan_optab, UNKNOWN);
6210 init_optab (atan_optab, UNKNOWN);
6211 init_optab (copysign_optab, UNKNOWN);
6212 init_optab (signbit_optab, UNKNOWN);
6214 init_optab (isinf_optab, UNKNOWN);
6216 init_optab (strlen_optab, UNKNOWN);
6217 init_optab (cbranch_optab, UNKNOWN);
6218 init_optab (cmov_optab, UNKNOWN);
6219 init_optab (cstore_optab, UNKNOWN);
6220 init_optab (push_optab, UNKNOWN);
6222 init_optab (reduc_smax_optab, UNKNOWN);
6223 init_optab (reduc_umax_optab, UNKNOWN);
6224 init_optab (reduc_smin_optab, UNKNOWN);
6225 init_optab (reduc_umin_optab, UNKNOWN);
6226 init_optab (reduc_splus_optab, UNKNOWN);
6227 init_optab (reduc_uplus_optab, UNKNOWN);
6229 init_optab (ssum_widen_optab, UNKNOWN);
6230 init_optab (usum_widen_optab, UNKNOWN);
6231 init_optab (sdot_prod_optab, UNKNOWN);
6232 init_optab (udot_prod_optab, UNKNOWN);
6234 init_optab (vec_extract_optab, UNKNOWN);
6235 init_optab (vec_extract_even_optab, UNKNOWN);
6236 init_optab (vec_extract_odd_optab, UNKNOWN);
6237 init_optab (vec_interleave_high_optab, UNKNOWN);
6238 init_optab (vec_interleave_low_optab, UNKNOWN);
6239 init_optab (vec_set_optab, UNKNOWN);
6240 init_optab (vec_init_optab, UNKNOWN);
6241 init_optab (vec_shl_optab, UNKNOWN);
6242 init_optab (vec_shr_optab, UNKNOWN);
6243 init_optab (vec_realign_load_optab, UNKNOWN);
6244 init_optab (movmisalign_optab, UNKNOWN);
6245 init_optab (vec_widen_umult_hi_optab, UNKNOWN);
6246 init_optab (vec_widen_umult_lo_optab, UNKNOWN);
6247 init_optab (vec_widen_smult_hi_optab, UNKNOWN);
6248 init_optab (vec_widen_smult_lo_optab, UNKNOWN);
6249 init_optab (vec_unpacks_hi_optab, UNKNOWN);
6250 init_optab (vec_unpacks_lo_optab, UNKNOWN);
6251 init_optab (vec_unpacku_hi_optab, UNKNOWN);
6252 init_optab (vec_unpacku_lo_optab, UNKNOWN);
6253 init_optab (vec_unpacks_float_hi_optab, UNKNOWN);
6254 init_optab (vec_unpacks_float_lo_optab, UNKNOWN);
6255 init_optab (vec_unpacku_float_hi_optab, UNKNOWN);
6256 init_optab (vec_unpacku_float_lo_optab, UNKNOWN);
6257 init_optab (vec_pack_trunc_optab, UNKNOWN);
6258 init_optab (vec_pack_usat_optab, UNKNOWN);
6259 init_optab (vec_pack_ssat_optab, UNKNOWN);
6260 init_optab (vec_pack_ufix_trunc_optab, UNKNOWN);
6261 init_optab (vec_pack_sfix_trunc_optab, UNKNOWN);
6263 init_optab (powi_optab, UNKNOWN);
6265 /* Conversions. */
6266 init_convert_optab (sext_optab, SIGN_EXTEND);
6267 init_convert_optab (zext_optab, ZERO_EXTEND);
6268 init_convert_optab (trunc_optab, TRUNCATE);
6269 init_convert_optab (sfix_optab, FIX);
6270 init_convert_optab (ufix_optab, UNSIGNED_FIX);
6271 init_convert_optab (sfixtrunc_optab, UNKNOWN);
6272 init_convert_optab (ufixtrunc_optab, UNKNOWN);
6273 init_convert_optab (sfloat_optab, FLOAT);
6274 init_convert_optab (ufloat_optab, UNSIGNED_FLOAT);
6275 init_convert_optab (lrint_optab, UNKNOWN);
6276 init_convert_optab (lround_optab, UNKNOWN);
6277 init_convert_optab (lfloor_optab, UNKNOWN);
6278 init_convert_optab (lceil_optab, UNKNOWN);
6280 init_convert_optab (fract_optab, FRACT_CONVERT);
6281 init_convert_optab (fractuns_optab, UNSIGNED_FRACT_CONVERT);
6282 init_convert_optab (satfract_optab, SAT_FRACT);
6283 init_convert_optab (satfractuns_optab, UNSIGNED_SAT_FRACT);
6285 for (i = 0; i < NUM_MACHINE_MODES; i++)
6287 movmem_optab[i] = CODE_FOR_nothing;
6288 cmpstr_optab[i] = CODE_FOR_nothing;
6289 cmpstrn_optab[i] = CODE_FOR_nothing;
6290 cmpmem_optab[i] = CODE_FOR_nothing;
6291 setmem_optab[i] = CODE_FOR_nothing;
6293 sync_add_optab[i] = CODE_FOR_nothing;
6294 sync_sub_optab[i] = CODE_FOR_nothing;
6295 sync_ior_optab[i] = CODE_FOR_nothing;
6296 sync_and_optab[i] = CODE_FOR_nothing;
6297 sync_xor_optab[i] = CODE_FOR_nothing;
6298 sync_nand_optab[i] = CODE_FOR_nothing;
6299 sync_old_add_optab[i] = CODE_FOR_nothing;
6300 sync_old_sub_optab[i] = CODE_FOR_nothing;
6301 sync_old_ior_optab[i] = CODE_FOR_nothing;
6302 sync_old_and_optab[i] = CODE_FOR_nothing;
6303 sync_old_xor_optab[i] = CODE_FOR_nothing;
6304 sync_old_nand_optab[i] = CODE_FOR_nothing;
6305 sync_new_add_optab[i] = CODE_FOR_nothing;
6306 sync_new_sub_optab[i] = CODE_FOR_nothing;
6307 sync_new_ior_optab[i] = CODE_FOR_nothing;
6308 sync_new_and_optab[i] = CODE_FOR_nothing;
6309 sync_new_xor_optab[i] = CODE_FOR_nothing;
6310 sync_new_nand_optab[i] = CODE_FOR_nothing;
6311 sync_compare_and_swap[i] = CODE_FOR_nothing;
6312 sync_compare_and_swap_cc[i] = CODE_FOR_nothing;
6313 sync_lock_test_and_set[i] = CODE_FOR_nothing;
6314 sync_lock_release[i] = CODE_FOR_nothing;
6316 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
6319 /* Fill in the optabs with the insns we support. */
6320 init_all_optabs ();
6322 /* Initialize the optabs with the names of the library functions. */
6323 add_optab->libcall_basename = "add";
6324 add_optab->libcall_suffix = '3';
6325 add_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6326 addv_optab->libcall_basename = "add";
6327 addv_optab->libcall_suffix = '3';
6328 addv_optab->libcall_gen = gen_intv_fp_libfunc;
6329 ssadd_optab->libcall_basename = "ssadd";
6330 ssadd_optab->libcall_suffix = '3';
6331 ssadd_optab->libcall_gen = gen_signed_fixed_libfunc;
6332 usadd_optab->libcall_basename = "usadd";
6333 usadd_optab->libcall_suffix = '3';
6334 usadd_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6335 sub_optab->libcall_basename = "sub";
6336 sub_optab->libcall_suffix = '3';
6337 sub_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6338 subv_optab->libcall_basename = "sub";
6339 subv_optab->libcall_suffix = '3';
6340 subv_optab->libcall_gen = gen_intv_fp_libfunc;
6341 sssub_optab->libcall_basename = "sssub";
6342 sssub_optab->libcall_suffix = '3';
6343 sssub_optab->libcall_gen = gen_signed_fixed_libfunc;
6344 ussub_optab->libcall_basename = "ussub";
6345 ussub_optab->libcall_suffix = '3';
6346 ussub_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6347 smul_optab->libcall_basename = "mul";
6348 smul_optab->libcall_suffix = '3';
6349 smul_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6350 smulv_optab->libcall_basename = "mul";
6351 smulv_optab->libcall_suffix = '3';
6352 smulv_optab->libcall_gen = gen_intv_fp_libfunc;
6353 ssmul_optab->libcall_basename = "ssmul";
6354 ssmul_optab->libcall_suffix = '3';
6355 ssmul_optab->libcall_gen = gen_signed_fixed_libfunc;
6356 usmul_optab->libcall_basename = "usmul";
6357 usmul_optab->libcall_suffix = '3';
6358 usmul_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6359 sdiv_optab->libcall_basename = "div";
6360 sdiv_optab->libcall_suffix = '3';
6361 sdiv_optab->libcall_gen = gen_int_fp_signed_fixed_libfunc;
6362 sdivv_optab->libcall_basename = "divv";
6363 sdivv_optab->libcall_suffix = '3';
6364 sdivv_optab->libcall_gen = gen_int_libfunc;
6365 ssdiv_optab->libcall_basename = "ssdiv";
6366 ssdiv_optab->libcall_suffix = '3';
6367 ssdiv_optab->libcall_gen = gen_signed_fixed_libfunc;
6368 udiv_optab->libcall_basename = "udiv";
6369 udiv_optab->libcall_suffix = '3';
6370 udiv_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6371 usdiv_optab->libcall_basename = "usdiv";
6372 usdiv_optab->libcall_suffix = '3';
6373 usdiv_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6374 sdivmod_optab->libcall_basename = "divmod";
6375 sdivmod_optab->libcall_suffix = '4';
6376 sdivmod_optab->libcall_gen = gen_int_libfunc;
6377 udivmod_optab->libcall_basename = "udivmod";
6378 udivmod_optab->libcall_suffix = '4';
6379 udivmod_optab->libcall_gen = gen_int_libfunc;
6380 smod_optab->libcall_basename = "mod";
6381 smod_optab->libcall_suffix = '3';
6382 smod_optab->libcall_gen = gen_int_libfunc;
6383 umod_optab->libcall_basename = "umod";
6384 umod_optab->libcall_suffix = '3';
6385 umod_optab->libcall_gen = gen_int_libfunc;
6386 ftrunc_optab->libcall_basename = "ftrunc";
6387 ftrunc_optab->libcall_suffix = '2';
6388 ftrunc_optab->libcall_gen = gen_fp_libfunc;
6389 and_optab->libcall_basename = "and";
6390 and_optab->libcall_suffix = '3';
6391 and_optab->libcall_gen = gen_int_libfunc;
6392 ior_optab->libcall_basename = "ior";
6393 ior_optab->libcall_suffix = '3';
6394 ior_optab->libcall_gen = gen_int_libfunc;
6395 xor_optab->libcall_basename = "xor";
6396 xor_optab->libcall_suffix = '3';
6397 xor_optab->libcall_gen = gen_int_libfunc;
6398 ashl_optab->libcall_basename = "ashl";
6399 ashl_optab->libcall_suffix = '3';
6400 ashl_optab->libcall_gen = gen_int_fixed_libfunc;
6401 ssashl_optab->libcall_basename = "ssashl";
6402 ssashl_optab->libcall_suffix = '3';
6403 ssashl_optab->libcall_gen = gen_signed_fixed_libfunc;
6404 usashl_optab->libcall_basename = "usashl";
6405 usashl_optab->libcall_suffix = '3';
6406 usashl_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6407 ashr_optab->libcall_basename = "ashr";
6408 ashr_optab->libcall_suffix = '3';
6409 ashr_optab->libcall_gen = gen_int_signed_fixed_libfunc;
6410 lshr_optab->libcall_basename = "lshr";
6411 lshr_optab->libcall_suffix = '3';
6412 lshr_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6413 smin_optab->libcall_basename = "min";
6414 smin_optab->libcall_suffix = '3';
6415 smin_optab->libcall_gen = gen_int_fp_libfunc;
6416 smax_optab->libcall_basename = "max";
6417 smax_optab->libcall_suffix = '3';
6418 smax_optab->libcall_gen = gen_int_fp_libfunc;
6419 umin_optab->libcall_basename = "umin";
6420 umin_optab->libcall_suffix = '3';
6421 umin_optab->libcall_gen = gen_int_libfunc;
6422 umax_optab->libcall_basename = "umax";
6423 umax_optab->libcall_suffix = '3';
6424 umax_optab->libcall_gen = gen_int_libfunc;
6425 neg_optab->libcall_basename = "neg";
6426 neg_optab->libcall_suffix = '2';
6427 neg_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6428 ssneg_optab->libcall_basename = "ssneg";
6429 ssneg_optab->libcall_suffix = '2';
6430 ssneg_optab->libcall_gen = gen_signed_fixed_libfunc;
6431 usneg_optab->libcall_basename = "usneg";
6432 usneg_optab->libcall_suffix = '2';
6433 usneg_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6434 negv_optab->libcall_basename = "neg";
6435 negv_optab->libcall_suffix = '2';
6436 negv_optab->libcall_gen = gen_intv_fp_libfunc;
6437 one_cmpl_optab->libcall_basename = "one_cmpl";
6438 one_cmpl_optab->libcall_suffix = '2';
6439 one_cmpl_optab->libcall_gen = gen_int_libfunc;
6440 ffs_optab->libcall_basename = "ffs";
6441 ffs_optab->libcall_suffix = '2';
6442 ffs_optab->libcall_gen = gen_int_libfunc;
6443 clz_optab->libcall_basename = "clz";
6444 clz_optab->libcall_suffix = '2';
6445 clz_optab->libcall_gen = gen_int_libfunc;
6446 ctz_optab->libcall_basename = "ctz";
6447 ctz_optab->libcall_suffix = '2';
6448 ctz_optab->libcall_gen = gen_int_libfunc;
6449 popcount_optab->libcall_basename = "popcount";
6450 popcount_optab->libcall_suffix = '2';
6451 popcount_optab->libcall_gen = gen_int_libfunc;
6452 parity_optab->libcall_basename = "parity";
6453 parity_optab->libcall_suffix = '2';
6454 parity_optab->libcall_gen = gen_int_libfunc;
6456 /* Comparison libcalls for integers MUST come in pairs,
6457 signed/unsigned. */
6458 cmp_optab->libcall_basename = "cmp";
6459 cmp_optab->libcall_suffix = '2';
6460 cmp_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6461 ucmp_optab->libcall_basename = "ucmp";
6462 ucmp_optab->libcall_suffix = '2';
6463 ucmp_optab->libcall_gen = gen_int_libfunc;
6465 /* EQ etc are floating point only. */
6466 eq_optab->libcall_basename = "eq";
6467 eq_optab->libcall_suffix = '2';
6468 eq_optab->libcall_gen = gen_fp_libfunc;
6469 ne_optab->libcall_basename = "ne";
6470 ne_optab->libcall_suffix = '2';
6471 ne_optab->libcall_gen = gen_fp_libfunc;
6472 gt_optab->libcall_basename = "gt";
6473 gt_optab->libcall_suffix = '2';
6474 gt_optab->libcall_gen = gen_fp_libfunc;
6475 ge_optab->libcall_basename = "ge";
6476 ge_optab->libcall_suffix = '2';
6477 ge_optab->libcall_gen = gen_fp_libfunc;
6478 lt_optab->libcall_basename = "lt";
6479 lt_optab->libcall_suffix = '2';
6480 lt_optab->libcall_gen = gen_fp_libfunc;
6481 le_optab->libcall_basename = "le";
6482 le_optab->libcall_suffix = '2';
6483 le_optab->libcall_gen = gen_fp_libfunc;
6484 unord_optab->libcall_basename = "unord";
6485 unord_optab->libcall_suffix = '2';
6486 unord_optab->libcall_gen = gen_fp_libfunc;
6488 powi_optab->libcall_basename = "powi";
6489 powi_optab->libcall_suffix = '2';
6490 powi_optab->libcall_gen = gen_fp_libfunc;
6492 /* Conversions. */
6493 sfloat_optab->libcall_basename = "float";
6494 sfloat_optab->libcall_gen = gen_int_to_fp_conv_libfunc;
6495 ufloat_optab->libcall_gen = gen_ufloat_conv_libfunc;
6496 sfix_optab->libcall_basename = "fix";
6497 sfix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6498 ufix_optab->libcall_basename = "fixuns";
6499 ufix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6500 lrint_optab->libcall_basename = "lrint";
6501 lrint_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6502 lround_optab->libcall_basename = "lround";
6503 lround_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6504 lfloor_optab->libcall_basename = "lfloor";
6505 lfloor_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6506 lceil_optab->libcall_basename = "lceil";
6507 lceil_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6509 /* trunc_optab is also used for FLOAT_EXTEND. */
6510 sext_optab->libcall_basename = "extend";
6511 sext_optab->libcall_gen = gen_extend_conv_libfunc;
6512 trunc_optab->libcall_basename = "trunc";
6513 trunc_optab->libcall_gen = gen_trunc_conv_libfunc;
6515 /* Conversions for fixed-point modes and other modes. */
6516 fract_optab->libcall_basename = "fract";
6517 fract_optab->libcall_gen = gen_fract_conv_libfunc;
6518 satfract_optab->libcall_basename = "satfract";
6519 satfract_optab->libcall_gen = gen_satfract_conv_libfunc;
6520 fractuns_optab->libcall_basename = "fractuns";
6521 fractuns_optab->libcall_gen = gen_fractuns_conv_libfunc;
6522 satfractuns_optab->libcall_basename = "satfractuns";
6523 satfractuns_optab->libcall_gen = gen_satfractuns_conv_libfunc;
6525 /* The ffs function operates on `int'. Fall back on it if we do not
6526 have a libgcc2 function for that width. */
6527 if (INT_TYPE_SIZE < BITS_PER_WORD)
6529 int_mode = mode_for_size (INT_TYPE_SIZE, MODE_INT, 0);
6530 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6531 "ffs");
6534 /* Explicitly initialize the bswap libfuncs since we need them to be
6535 valid for things other than word_mode. */
6536 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6537 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6539 /* Use cabs for double complex abs, since systems generally have cabs.
6540 Don't define any libcall for float complex, so that cabs will be used. */
6541 if (complex_double_type_node)
6542 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node), "cabs");
6544 abort_libfunc = init_one_libfunc ("abort");
6545 memcpy_libfunc = init_one_libfunc ("memcpy");
6546 memmove_libfunc = init_one_libfunc ("memmove");
6547 memcmp_libfunc = init_one_libfunc ("memcmp");
6548 memset_libfunc = init_one_libfunc ("memset");
6549 setbits_libfunc = init_one_libfunc ("__setbits");
6551 #ifndef DONT_USE_BUILTIN_SETJMP
6552 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6553 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6554 #else
6555 setjmp_libfunc = init_one_libfunc ("setjmp");
6556 longjmp_libfunc = init_one_libfunc ("longjmp");
6557 #endif
6558 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6559 unwind_sjlj_unregister_libfunc
6560 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6562 /* For function entry/exit instrumentation. */
6563 profile_function_entry_libfunc
6564 = init_one_libfunc ("__cyg_profile_func_enter");
6565 profile_function_exit_libfunc
6566 = init_one_libfunc ("__cyg_profile_func_exit");
6568 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6570 if (HAVE_conditional_trap)
6571 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
6573 /* Allow the target to add more libcalls or rename some, etc. */
6574 targetm.init_libfuncs ();
6576 reinit = true;
6579 /* Print information about the current contents of the optabs on
6580 STDERR. */
6582 void
6583 debug_optab_libfuncs (void)
6585 int i;
6586 int j;
6587 int k;
6589 /* Dump the arithmetic optabs. */
6590 for (i = 0; i != (int) OTI_MAX; i++)
6591 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6593 optab o;
6594 rtx l;
6596 o = &optab_table[i];
6597 l = optab_libfunc (o, j);
6598 if (l)
6600 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6601 fprintf (stderr, "%s\t%s:\t%s\n",
6602 GET_RTX_NAME (o->code),
6603 GET_MODE_NAME (j),
6604 XSTR (l, 0));
6608 /* Dump the conversion optabs. */
6609 for (i = 0; i < (int) COI_MAX; ++i)
6610 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6611 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6613 convert_optab o;
6614 rtx l;
6616 o = &convert_optab_table[i];
6617 l = convert_optab_libfunc (o, j, k);
6618 if (l)
6620 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6621 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6622 GET_RTX_NAME (o->code),
6623 GET_MODE_NAME (j),
6624 GET_MODE_NAME (k),
6625 XSTR (l, 0));
6631 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6632 CODE. Return 0 on failure. */
6635 gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
6636 rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
6638 enum machine_mode mode = GET_MODE (op1);
6639 enum insn_code icode;
6640 rtx insn;
6642 if (!HAVE_conditional_trap)
6643 return 0;
6645 if (mode == VOIDmode)
6646 return 0;
6648 icode = optab_handler (cmp_optab, mode)->insn_code;
6649 if (icode == CODE_FOR_nothing)
6650 return 0;
6652 start_sequence ();
6653 op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
6654 op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
6655 if (!op1 || !op2)
6657 end_sequence ();
6658 return 0;
6660 emit_insn (GEN_FCN (icode) (op1, op2));
6662 PUT_CODE (trap_rtx, code);
6663 gcc_assert (HAVE_conditional_trap);
6664 insn = gen_conditional_trap (trap_rtx, tcode);
6665 if (insn)
6667 emit_insn (insn);
6668 insn = get_insns ();
6670 end_sequence ();
6672 return insn;
6675 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6676 or unsigned operation code. */
6678 static enum rtx_code
6679 get_rtx_code (enum tree_code tcode, bool unsignedp)
6681 enum rtx_code code;
6682 switch (tcode)
6684 case EQ_EXPR:
6685 code = EQ;
6686 break;
6687 case NE_EXPR:
6688 code = NE;
6689 break;
6690 case LT_EXPR:
6691 code = unsignedp ? LTU : LT;
6692 break;
6693 case LE_EXPR:
6694 code = unsignedp ? LEU : LE;
6695 break;
6696 case GT_EXPR:
6697 code = unsignedp ? GTU : GT;
6698 break;
6699 case GE_EXPR:
6700 code = unsignedp ? GEU : GE;
6701 break;
6703 case UNORDERED_EXPR:
6704 code = UNORDERED;
6705 break;
6706 case ORDERED_EXPR:
6707 code = ORDERED;
6708 break;
6709 case UNLT_EXPR:
6710 code = UNLT;
6711 break;
6712 case UNLE_EXPR:
6713 code = UNLE;
6714 break;
6715 case UNGT_EXPR:
6716 code = UNGT;
6717 break;
6718 case UNGE_EXPR:
6719 code = UNGE;
6720 break;
6721 case UNEQ_EXPR:
6722 code = UNEQ;
6723 break;
6724 case LTGT_EXPR:
6725 code = LTGT;
6726 break;
6728 default:
6729 gcc_unreachable ();
6731 return code;
6734 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6735 unsigned operators. Do not generate compare instruction. */
6737 static rtx
6738 vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
6740 enum rtx_code rcode;
6741 tree t_op0, t_op1;
6742 rtx rtx_op0, rtx_op1;
6744 /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
6745 ensures that condition is a relational operation. */
6746 gcc_assert (COMPARISON_CLASS_P (cond));
6748 rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
6749 t_op0 = TREE_OPERAND (cond, 0);
6750 t_op1 = TREE_OPERAND (cond, 1);
6752 /* Expand operands. */
6753 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6754 EXPAND_STACK_PARM);
6755 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6756 EXPAND_STACK_PARM);
6758 if (!insn_data[icode].operand[4].predicate (rtx_op0, GET_MODE (rtx_op0))
6759 && GET_MODE (rtx_op0) != VOIDmode)
6760 rtx_op0 = force_reg (GET_MODE (rtx_op0), rtx_op0);
6762 if (!insn_data[icode].operand[5].predicate (rtx_op1, GET_MODE (rtx_op1))
6763 && GET_MODE (rtx_op1) != VOIDmode)
6764 rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
6766 return gen_rtx_fmt_ee (rcode, VOIDmode, rtx_op0, rtx_op1);
6769 /* Return insn code for VEC_COND_EXPR EXPR. */
6771 static inline enum insn_code
6772 get_vcond_icode (tree expr, enum machine_mode mode)
6774 enum insn_code icode = CODE_FOR_nothing;
6776 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
6777 icode = vcondu_gen_code[mode];
6778 else
6779 icode = vcond_gen_code[mode];
6780 return icode;
6783 /* Return TRUE iff, appropriate vector insns are available
6784 for vector cond expr expr in VMODE mode. */
6786 bool
6787 expand_vec_cond_expr_p (tree expr, enum machine_mode vmode)
6789 if (get_vcond_icode (expr, vmode) == CODE_FOR_nothing)
6790 return false;
6791 return true;
6794 /* Generate insns for VEC_COND_EXPR. */
6797 expand_vec_cond_expr (tree vec_cond_expr, rtx target)
6799 enum insn_code icode;
6800 rtx comparison, rtx_op1, rtx_op2, cc_op0, cc_op1;
6801 enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_cond_expr));
6802 bool unsignedp = TYPE_UNSIGNED (TREE_TYPE (vec_cond_expr));
6804 icode = get_vcond_icode (vec_cond_expr, mode);
6805 if (icode == CODE_FOR_nothing)
6806 return 0;
6808 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
6809 target = gen_reg_rtx (mode);
6811 /* Get comparison rtx. First expand both cond expr operands. */
6812 comparison = vector_compare_rtx (TREE_OPERAND (vec_cond_expr, 0),
6813 unsignedp, icode);
6814 cc_op0 = XEXP (comparison, 0);
6815 cc_op1 = XEXP (comparison, 1);
6816 /* Expand both operands and force them in reg, if required. */
6817 rtx_op1 = expand_normal (TREE_OPERAND (vec_cond_expr, 1));
6818 if (!insn_data[icode].operand[1].predicate (rtx_op1, mode)
6819 && mode != VOIDmode)
6820 rtx_op1 = force_reg (mode, rtx_op1);
6822 rtx_op2 = expand_normal (TREE_OPERAND (vec_cond_expr, 2));
6823 if (!insn_data[icode].operand[2].predicate (rtx_op2, mode)
6824 && mode != VOIDmode)
6825 rtx_op2 = force_reg (mode, rtx_op2);
6827 /* Emit instruction! */
6828 emit_insn (GEN_FCN (icode) (target, rtx_op1, rtx_op2,
6829 comparison, cc_op0, cc_op1));
6831 return target;
6835 /* This is an internal subroutine of the other compare_and_swap expanders.
6836 MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap
6837 operation. TARGET is an optional place to store the value result of
6838 the operation. ICODE is the particular instruction to expand. Return
6839 the result of the operation. */
6841 static rtx
6842 expand_val_compare_and_swap_1 (rtx mem, rtx old_val, rtx new_val,
6843 rtx target, enum insn_code icode)
6845 enum machine_mode mode = GET_MODE (mem);
6846 rtx insn;
6848 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
6849 target = gen_reg_rtx (mode);
6851 if (GET_MODE (old_val) != VOIDmode && GET_MODE (old_val) != mode)
6852 old_val = convert_modes (mode, GET_MODE (old_val), old_val, 1);
6853 if (!insn_data[icode].operand[2].predicate (old_val, mode))
6854 old_val = force_reg (mode, old_val);
6856 if (GET_MODE (new_val) != VOIDmode && GET_MODE (new_val) != mode)
6857 new_val = convert_modes (mode, GET_MODE (new_val), new_val, 1);
6858 if (!insn_data[icode].operand[3].predicate (new_val, mode))
6859 new_val = force_reg (mode, new_val);
6861 insn = GEN_FCN (icode) (target, mem, old_val, new_val);
6862 if (insn == NULL_RTX)
6863 return NULL_RTX;
6864 emit_insn (insn);
6866 return target;
6869 /* Expand a compare-and-swap operation and return its value. */
6872 expand_val_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
6874 enum machine_mode mode = GET_MODE (mem);
6875 enum insn_code icode = sync_compare_and_swap[mode];
6877 if (icode == CODE_FOR_nothing)
6878 return NULL_RTX;
6880 return expand_val_compare_and_swap_1 (mem, old_val, new_val, target, icode);
6883 /* Expand a compare-and-swap operation and store true into the result if
6884 the operation was successful and false otherwise. Return the result.
6885 Unlike other routines, TARGET is not optional. */
6888 expand_bool_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
6890 enum machine_mode mode = GET_MODE (mem);
6891 enum insn_code icode;
6892 rtx subtarget, label0, label1;
6894 /* If the target supports a compare-and-swap pattern that simultaneously
6895 sets some flag for success, then use it. Otherwise use the regular
6896 compare-and-swap and follow that immediately with a compare insn. */
6897 icode = sync_compare_and_swap_cc[mode];
6898 switch (icode)
6900 default:
6901 subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
6902 NULL_RTX, icode);
6903 if (subtarget != NULL_RTX)
6904 break;
6906 /* FALLTHRU */
6907 case CODE_FOR_nothing:
6908 icode = sync_compare_and_swap[mode];
6909 if (icode == CODE_FOR_nothing)
6910 return NULL_RTX;
6912 /* Ensure that if old_val == mem, that we're not comparing
6913 against an old value. */
6914 if (MEM_P (old_val))
6915 old_val = force_reg (mode, old_val);
6917 subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
6918 NULL_RTX, icode);
6919 if (subtarget == NULL_RTX)
6920 return NULL_RTX;
6922 emit_cmp_insn (subtarget, old_val, EQ, const0_rtx, mode, true);
6925 /* If the target has a sane STORE_FLAG_VALUE, then go ahead and use a
6926 setcc instruction from the beginning. We don't work too hard here,
6927 but it's nice to not be stupid about initial code gen either. */
6928 if (STORE_FLAG_VALUE == 1)
6930 icode = setcc_gen_code[EQ];
6931 if (icode != CODE_FOR_nothing)
6933 enum machine_mode cmode = insn_data[icode].operand[0].mode;
6934 rtx insn;
6936 subtarget = target;
6937 if (!insn_data[icode].operand[0].predicate (target, cmode))
6938 subtarget = gen_reg_rtx (cmode);
6940 insn = GEN_FCN (icode) (subtarget);
6941 if (insn)
6943 emit_insn (insn);
6944 if (GET_MODE (target) != GET_MODE (subtarget))
6946 convert_move (target, subtarget, 1);
6947 subtarget = target;
6949 return subtarget;
6954 /* Without an appropriate setcc instruction, use a set of branches to
6955 get 1 and 0 stored into target. Presumably if the target has a
6956 STORE_FLAG_VALUE that isn't 1, then this will get cleaned up by ifcvt. */
6958 label0 = gen_label_rtx ();
6959 label1 = gen_label_rtx ();
6961 emit_jump_insn (bcc_gen_fctn[EQ] (label0));
6962 emit_move_insn (target, const0_rtx);
6963 emit_jump_insn (gen_jump (label1));
6964 emit_barrier ();
6965 emit_label (label0);
6966 emit_move_insn (target, const1_rtx);
6967 emit_label (label1);
6969 return target;
6972 /* This is a helper function for the other atomic operations. This function
6973 emits a loop that contains SEQ that iterates until a compare-and-swap
6974 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6975 a set of instructions that takes a value from OLD_REG as an input and
6976 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6977 set to the current contents of MEM. After SEQ, a compare-and-swap will
6978 attempt to update MEM with NEW_REG. The function returns true when the
6979 loop was generated successfully. */
6981 static bool
6982 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
6984 enum machine_mode mode = GET_MODE (mem);
6985 enum insn_code icode;
6986 rtx label, cmp_reg, subtarget;
6988 /* The loop we want to generate looks like
6990 cmp_reg = mem;
6991 label:
6992 old_reg = cmp_reg;
6993 seq;
6994 cmp_reg = compare-and-swap(mem, old_reg, new_reg)
6995 if (cmp_reg != old_reg)
6996 goto label;
6998 Note that we only do the plain load from memory once. Subsequent
6999 iterations use the value loaded by the compare-and-swap pattern. */
7001 label = gen_label_rtx ();
7002 cmp_reg = gen_reg_rtx (mode);
7004 emit_move_insn (cmp_reg, mem);
7005 emit_label (label);
7006 emit_move_insn (old_reg, cmp_reg);
7007 if (seq)
7008 emit_insn (seq);
7010 /* If the target supports a compare-and-swap pattern that simultaneously
7011 sets some flag for success, then use it. Otherwise use the regular
7012 compare-and-swap and follow that immediately with a compare insn. */
7013 icode = sync_compare_and_swap_cc[mode];
7014 switch (icode)
7016 default:
7017 subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
7018 cmp_reg, icode);
7019 if (subtarget != NULL_RTX)
7021 gcc_assert (subtarget == cmp_reg);
7022 break;
7025 /* FALLTHRU */
7026 case CODE_FOR_nothing:
7027 icode = sync_compare_and_swap[mode];
7028 if (icode == CODE_FOR_nothing)
7029 return false;
7031 subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
7032 cmp_reg, icode);
7033 if (subtarget == NULL_RTX)
7034 return false;
7035 if (subtarget != cmp_reg)
7036 emit_move_insn (cmp_reg, subtarget);
7038 emit_cmp_insn (cmp_reg, old_reg, EQ, const0_rtx, mode, true);
7041 /* ??? Mark this jump predicted not taken? */
7042 emit_jump_insn (bcc_gen_fctn[NE] (label));
7044 return true;
7047 /* This function generates the atomic operation MEM CODE= VAL. In this
7048 case, we do not care about any resulting value. Returns NULL if we
7049 cannot generate the operation. */
7052 expand_sync_operation (rtx mem, rtx val, enum rtx_code code)
7054 enum machine_mode mode = GET_MODE (mem);
7055 enum insn_code icode;
7056 rtx insn;
7058 /* Look to see if the target supports the operation directly. */
7059 switch (code)
7061 case PLUS:
7062 icode = sync_add_optab[mode];
7063 break;
7064 case IOR:
7065 icode = sync_ior_optab[mode];
7066 break;
7067 case XOR:
7068 icode = sync_xor_optab[mode];
7069 break;
7070 case AND:
7071 icode = sync_and_optab[mode];
7072 break;
7073 case NOT:
7074 icode = sync_nand_optab[mode];
7075 break;
7077 case MINUS:
7078 icode = sync_sub_optab[mode];
7079 if (icode == CODE_FOR_nothing || CONST_INT_P (val))
7081 icode = sync_add_optab[mode];
7082 if (icode != CODE_FOR_nothing)
7084 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
7085 code = PLUS;
7088 break;
7090 default:
7091 gcc_unreachable ();
7094 /* Generate the direct operation, if present. */
7095 if (icode != CODE_FOR_nothing)
7097 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7098 val = convert_modes (mode, GET_MODE (val), val, 1);
7099 if (!insn_data[icode].operand[1].predicate (val, mode))
7100 val = force_reg (mode, val);
7102 insn = GEN_FCN (icode) (mem, val);
7103 if (insn)
7105 emit_insn (insn);
7106 return const0_rtx;
7110 /* Failing that, generate a compare-and-swap loop in which we perform the
7111 operation with normal arithmetic instructions. */
7112 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7114 rtx t0 = gen_reg_rtx (mode), t1;
7116 start_sequence ();
7118 t1 = t0;
7119 if (code == NOT)
7121 t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true);
7122 code = AND;
7124 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
7125 true, OPTAB_LIB_WIDEN);
7127 insn = get_insns ();
7128 end_sequence ();
7130 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7131 return const0_rtx;
7134 return NULL_RTX;
7137 /* This function generates the atomic operation MEM CODE= VAL. In this
7138 case, we do care about the resulting value: if AFTER is true then
7139 return the value MEM holds after the operation, if AFTER is false
7140 then return the value MEM holds before the operation. TARGET is an
7141 optional place for the result value to be stored. */
7144 expand_sync_fetch_operation (rtx mem, rtx val, enum rtx_code code,
7145 bool after, rtx target)
7147 enum machine_mode mode = GET_MODE (mem);
7148 enum insn_code old_code, new_code, icode;
7149 bool compensate;
7150 rtx insn;
7152 /* Look to see if the target supports the operation directly. */
7153 switch (code)
7155 case PLUS:
7156 old_code = sync_old_add_optab[mode];
7157 new_code = sync_new_add_optab[mode];
7158 break;
7159 case IOR:
7160 old_code = sync_old_ior_optab[mode];
7161 new_code = sync_new_ior_optab[mode];
7162 break;
7163 case XOR:
7164 old_code = sync_old_xor_optab[mode];
7165 new_code = sync_new_xor_optab[mode];
7166 break;
7167 case AND:
7168 old_code = sync_old_and_optab[mode];
7169 new_code = sync_new_and_optab[mode];
7170 break;
7171 case NOT:
7172 old_code = sync_old_nand_optab[mode];
7173 new_code = sync_new_nand_optab[mode];
7174 break;
7176 case MINUS:
7177 old_code = sync_old_sub_optab[mode];
7178 new_code = sync_new_sub_optab[mode];
7179 if ((old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing)
7180 || CONST_INT_P (val))
7182 old_code = sync_old_add_optab[mode];
7183 new_code = sync_new_add_optab[mode];
7184 if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing)
7186 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
7187 code = PLUS;
7190 break;
7192 default:
7193 gcc_unreachable ();
7196 /* If the target does supports the proper new/old operation, great. But
7197 if we only support the opposite old/new operation, check to see if we
7198 can compensate. In the case in which the old value is supported, then
7199 we can always perform the operation again with normal arithmetic. In
7200 the case in which the new value is supported, then we can only handle
7201 this in the case the operation is reversible. */
7202 compensate = false;
7203 if (after)
7205 icode = new_code;
7206 if (icode == CODE_FOR_nothing)
7208 icode = old_code;
7209 if (icode != CODE_FOR_nothing)
7210 compensate = true;
7213 else
7215 icode = old_code;
7216 if (icode == CODE_FOR_nothing
7217 && (code == PLUS || code == MINUS || code == XOR))
7219 icode = new_code;
7220 if (icode != CODE_FOR_nothing)
7221 compensate = true;
7225 /* If we found something supported, great. */
7226 if (icode != CODE_FOR_nothing)
7228 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
7229 target = gen_reg_rtx (mode);
7231 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7232 val = convert_modes (mode, GET_MODE (val), val, 1);
7233 if (!insn_data[icode].operand[2].predicate (val, mode))
7234 val = force_reg (mode, val);
7236 insn = GEN_FCN (icode) (target, mem, val);
7237 if (insn)
7239 emit_insn (insn);
7241 /* If we need to compensate for using an operation with the
7242 wrong return value, do so now. */
7243 if (compensate)
7245 if (!after)
7247 if (code == PLUS)
7248 code = MINUS;
7249 else if (code == MINUS)
7250 code = PLUS;
7253 if (code == NOT)
7254 target = expand_simple_unop (mode, NOT, target, NULL_RTX, true);
7255 target = expand_simple_binop (mode, code, target, val, NULL_RTX,
7256 true, OPTAB_LIB_WIDEN);
7259 return target;
7263 /* Failing that, generate a compare-and-swap loop in which we perform the
7264 operation with normal arithmetic instructions. */
7265 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7267 rtx t0 = gen_reg_rtx (mode), t1;
7269 if (!target || !register_operand (target, mode))
7270 target = gen_reg_rtx (mode);
7272 start_sequence ();
7274 if (!after)
7275 emit_move_insn (target, t0);
7276 t1 = t0;
7277 if (code == NOT)
7279 t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true);
7280 code = AND;
7282 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
7283 true, OPTAB_LIB_WIDEN);
7284 if (after)
7285 emit_move_insn (target, t1);
7287 insn = get_insns ();
7288 end_sequence ();
7290 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7291 return target;
7294 return NULL_RTX;
7297 /* This function expands a test-and-set operation. Ideally we atomically
7298 store VAL in MEM and return the previous value in MEM. Some targets
7299 may not support this operation and only support VAL with the constant 1;
7300 in this case while the return value will be 0/1, but the exact value
7301 stored in MEM is target defined. TARGET is an option place to stick
7302 the return value. */
7305 expand_sync_lock_test_and_set (rtx mem, rtx val, rtx target)
7307 enum machine_mode mode = GET_MODE (mem);
7308 enum insn_code icode;
7309 rtx insn;
7311 /* If the target supports the test-and-set directly, great. */
7312 icode = sync_lock_test_and_set[mode];
7313 if (icode != CODE_FOR_nothing)
7315 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
7316 target = gen_reg_rtx (mode);
7318 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7319 val = convert_modes (mode, GET_MODE (val), val, 1);
7320 if (!insn_data[icode].operand[2].predicate (val, mode))
7321 val = force_reg (mode, val);
7323 insn = GEN_FCN (icode) (target, mem, val);
7324 if (insn)
7326 emit_insn (insn);
7327 return target;
7331 /* Otherwise, use a compare-and-swap loop for the exchange. */
7332 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7334 if (!target || !register_operand (target, mode))
7335 target = gen_reg_rtx (mode);
7336 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7337 val = convert_modes (mode, GET_MODE (val), val, 1);
7338 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7339 return target;
7342 return NULL_RTX;
7345 #include "gt-optabs.h"