libfuncs.h (LTI_synchronize): New libfunc_index.
[official-gcc.git] / gcc / final.c
blob1f673fb7858a5ba995dbbf7be9da3308d6d927af
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74 #include "tree-pass.h"
75 #include "timevar.h"
76 #include "cgraph.h"
77 #include "coverage.h"
78 #include "df.h"
79 #include "vecprim.h"
80 #include "ggc.h"
81 #include "cfgloop.h"
82 #include "params.h"
84 #ifdef XCOFF_DEBUGGING_INFO
85 #include "xcoffout.h" /* Needed for external data
86 declarations for e.g. AIX 4.x. */
87 #endif
89 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
90 #include "dwarf2out.h"
91 #endif
93 #ifdef DBX_DEBUGGING_INFO
94 #include "dbxout.h"
95 #endif
97 #ifdef SDB_DEBUGGING_INFO
98 #include "sdbout.h"
99 #endif
101 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
102 null default for it to save conditionalization later. */
103 #ifndef CC_STATUS_INIT
104 #define CC_STATUS_INIT
105 #endif
107 /* How to start an assembler comment. */
108 #ifndef ASM_COMMENT_START
109 #define ASM_COMMENT_START ";#"
110 #endif
112 /* Is the given character a logical line separator for the assembler? */
113 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
114 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
115 #endif
117 #ifndef JUMP_TABLES_IN_TEXT_SECTION
118 #define JUMP_TABLES_IN_TEXT_SECTION 0
119 #endif
121 /* Bitflags used by final_scan_insn. */
122 #define SEEN_BB 1
123 #define SEEN_NOTE 2
124 #define SEEN_EMITTED 4
126 /* Last insn processed by final_scan_insn. */
127 static rtx debug_insn;
128 rtx current_output_insn;
130 /* Line number of last NOTE. */
131 static int last_linenum;
133 /* Highest line number in current block. */
134 static int high_block_linenum;
136 /* Likewise for function. */
137 static int high_function_linenum;
139 /* Filename of last NOTE. */
140 static const char *last_filename;
142 /* Override filename and line number. */
143 static const char *override_filename;
144 static int override_linenum;
146 /* Whether to force emission of a line note before the next insn. */
147 static bool force_source_line = false;
149 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
151 /* Nonzero while outputting an `asm' with operands.
152 This means that inconsistencies are the user's fault, so don't die.
153 The precise value is the insn being output, to pass to error_for_asm. */
154 rtx this_is_asm_operands;
156 /* Number of operands of this insn, for an `asm' with operands. */
157 static unsigned int insn_noperands;
159 /* Compare optimization flag. */
161 static rtx last_ignored_compare = 0;
163 /* Assign a unique number to each insn that is output.
164 This can be used to generate unique local labels. */
166 static int insn_counter = 0;
168 #ifdef HAVE_cc0
169 /* This variable contains machine-dependent flags (defined in tm.h)
170 set and examined by output routines
171 that describe how to interpret the condition codes properly. */
173 CC_STATUS cc_status;
175 /* During output of an insn, this contains a copy of cc_status
176 from before the insn. */
178 CC_STATUS cc_prev_status;
179 #endif
181 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
183 static int block_depth;
185 /* Nonzero if have enabled APP processing of our assembler output. */
187 static int app_on;
189 /* If we are outputting an insn sequence, this contains the sequence rtx.
190 Zero otherwise. */
192 rtx final_sequence;
194 #ifdef ASSEMBLER_DIALECT
196 /* Number of the assembler dialect to use, starting at 0. */
197 static int dialect_number;
198 #endif
200 #ifdef HAVE_conditional_execution
201 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
202 rtx current_insn_predicate;
203 #endif
205 #ifdef HAVE_ATTR_length
206 static int asm_insn_count (rtx);
207 #endif
208 static void profile_function (FILE *);
209 static void profile_after_prologue (FILE *);
210 static bool notice_source_line (rtx);
211 static rtx walk_alter_subreg (rtx *, bool *);
212 static void output_asm_name (void);
213 static void output_alternate_entry_point (FILE *, rtx);
214 static tree get_mem_expr_from_op (rtx, int *);
215 static void output_asm_operand_names (rtx *, int *, int);
216 static void output_operand (rtx, int);
217 #ifdef LEAF_REGISTERS
218 static void leaf_renumber_regs (rtx);
219 #endif
220 #ifdef HAVE_cc0
221 static int alter_cond (rtx);
222 #endif
223 #ifndef ADDR_VEC_ALIGN
224 static int final_addr_vec_align (rtx);
225 #endif
226 #ifdef HAVE_ATTR_length
227 static int align_fuzz (rtx, rtx, int, unsigned);
228 #endif
230 /* Initialize data in final at the beginning of a compilation. */
232 void
233 init_final (const char *filename ATTRIBUTE_UNUSED)
235 app_on = 0;
236 final_sequence = 0;
238 #ifdef ASSEMBLER_DIALECT
239 dialect_number = ASSEMBLER_DIALECT;
240 #endif
243 /* Default target function prologue and epilogue assembler output.
245 If not overridden for epilogue code, then the function body itself
246 contains return instructions wherever needed. */
247 void
248 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
253 /* Default target hook that outputs nothing to a stream. */
254 void
255 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
259 /* Enable APP processing of subsequent output.
260 Used before the output from an `asm' statement. */
262 void
263 app_enable (void)
265 if (! app_on)
267 fputs (ASM_APP_ON, asm_out_file);
268 app_on = 1;
272 /* Disable APP processing of subsequent output.
273 Called from varasm.c before most kinds of output. */
275 void
276 app_disable (void)
278 if (app_on)
280 fputs (ASM_APP_OFF, asm_out_file);
281 app_on = 0;
285 /* Return the number of slots filled in the current
286 delayed branch sequence (we don't count the insn needing the
287 delay slot). Zero if not in a delayed branch sequence. */
289 #ifdef DELAY_SLOTS
291 dbr_sequence_length (void)
293 if (final_sequence != 0)
294 return XVECLEN (final_sequence, 0) - 1;
295 else
296 return 0;
298 #endif
300 /* The next two pages contain routines used to compute the length of an insn
301 and to shorten branches. */
303 /* Arrays for insn lengths, and addresses. The latter is referenced by
304 `insn_current_length'. */
306 static int *insn_lengths;
308 VEC(int,heap) *insn_addresses_;
310 /* Max uid for which the above arrays are valid. */
311 static int insn_lengths_max_uid;
313 /* Address of insn being processed. Used by `insn_current_length'. */
314 int insn_current_address;
316 /* Address of insn being processed in previous iteration. */
317 int insn_last_address;
319 /* known invariant alignment of insn being processed. */
320 int insn_current_align;
322 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
323 gives the next following alignment insn that increases the known
324 alignment, or NULL_RTX if there is no such insn.
325 For any alignment obtained this way, we can again index uid_align with
326 its uid to obtain the next following align that in turn increases the
327 alignment, till we reach NULL_RTX; the sequence obtained this way
328 for each insn we'll call the alignment chain of this insn in the following
329 comments. */
331 struct label_alignment
333 short alignment;
334 short max_skip;
337 static rtx *uid_align;
338 static int *uid_shuid;
339 static struct label_alignment *label_align;
341 /* Indicate that branch shortening hasn't yet been done. */
343 void
344 init_insn_lengths (void)
346 if (uid_shuid)
348 free (uid_shuid);
349 uid_shuid = 0;
351 if (insn_lengths)
353 free (insn_lengths);
354 insn_lengths = 0;
355 insn_lengths_max_uid = 0;
357 #ifdef HAVE_ATTR_length
358 INSN_ADDRESSES_FREE ();
359 #endif
360 if (uid_align)
362 free (uid_align);
363 uid_align = 0;
367 /* Obtain the current length of an insn. If branch shortening has been done,
368 get its actual length. Otherwise, use FALLBACK_FN to calculate the
369 length. */
370 static inline int
371 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
372 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
374 #ifdef HAVE_ATTR_length
375 rtx body;
376 int i;
377 int length = 0;
379 if (insn_lengths_max_uid > INSN_UID (insn))
380 return insn_lengths[INSN_UID (insn)];
381 else
382 switch (GET_CODE (insn))
384 case NOTE:
385 case BARRIER:
386 case CODE_LABEL:
387 return 0;
389 case CALL_INSN:
390 length = fallback_fn (insn);
391 break;
393 case JUMP_INSN:
394 body = PATTERN (insn);
395 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
397 /* Alignment is machine-dependent and should be handled by
398 ADDR_VEC_ALIGN. */
400 else
401 length = fallback_fn (insn);
402 break;
404 case INSN:
405 body = PATTERN (insn);
406 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
407 return 0;
409 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
410 length = asm_insn_count (body) * fallback_fn (insn);
411 else if (GET_CODE (body) == SEQUENCE)
412 for (i = 0; i < XVECLEN (body, 0); i++)
413 length += get_attr_length (XVECEXP (body, 0, i));
414 else
415 length = fallback_fn (insn);
416 break;
418 default:
419 break;
422 #ifdef ADJUST_INSN_LENGTH
423 ADJUST_INSN_LENGTH (insn, length);
424 #endif
425 return length;
426 #else /* not HAVE_ATTR_length */
427 return 0;
428 #define insn_default_length 0
429 #define insn_min_length 0
430 #endif /* not HAVE_ATTR_length */
433 /* Obtain the current length of an insn. If branch shortening has been done,
434 get its actual length. Otherwise, get its maximum length. */
436 get_attr_length (rtx insn)
438 return get_attr_length_1 (insn, insn_default_length);
441 /* Obtain the current length of an insn. If branch shortening has been done,
442 get its actual length. Otherwise, get its minimum length. */
444 get_attr_min_length (rtx insn)
446 return get_attr_length_1 (insn, insn_min_length);
449 /* Code to handle alignment inside shorten_branches. */
451 /* Here is an explanation how the algorithm in align_fuzz can give
452 proper results:
454 Call a sequence of instructions beginning with alignment point X
455 and continuing until the next alignment point `block X'. When `X'
456 is used in an expression, it means the alignment value of the
457 alignment point.
459 Call the distance between the start of the first insn of block X, and
460 the end of the last insn of block X `IX', for the `inner size of X'.
461 This is clearly the sum of the instruction lengths.
463 Likewise with the next alignment-delimited block following X, which we
464 shall call block Y.
466 Call the distance between the start of the first insn of block X, and
467 the start of the first insn of block Y `OX', for the `outer size of X'.
469 The estimated padding is then OX - IX.
471 OX can be safely estimated as
473 if (X >= Y)
474 OX = round_up(IX, Y)
475 else
476 OX = round_up(IX, X) + Y - X
478 Clearly est(IX) >= real(IX), because that only depends on the
479 instruction lengths, and those being overestimated is a given.
481 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
482 we needn't worry about that when thinking about OX.
484 When X >= Y, the alignment provided by Y adds no uncertainty factor
485 for branch ranges starting before X, so we can just round what we have.
486 But when X < Y, we don't know anything about the, so to speak,
487 `middle bits', so we have to assume the worst when aligning up from an
488 address mod X to one mod Y, which is Y - X. */
490 #ifndef LABEL_ALIGN
491 #define LABEL_ALIGN(LABEL) align_labels_log
492 #endif
494 #ifndef LABEL_ALIGN_MAX_SKIP
495 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
496 #endif
498 #ifndef LOOP_ALIGN
499 #define LOOP_ALIGN(LABEL) align_loops_log
500 #endif
502 #ifndef LOOP_ALIGN_MAX_SKIP
503 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
504 #endif
506 #ifndef LABEL_ALIGN_AFTER_BARRIER
507 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
508 #endif
510 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
511 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
512 #endif
514 #ifndef JUMP_ALIGN
515 #define JUMP_ALIGN(LABEL) align_jumps_log
516 #endif
518 #ifndef JUMP_ALIGN_MAX_SKIP
519 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
520 #endif
522 #ifndef ADDR_VEC_ALIGN
523 static int
524 final_addr_vec_align (rtx addr_vec)
526 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
528 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
529 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
530 return exact_log2 (align);
534 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
535 #endif
537 #ifndef INSN_LENGTH_ALIGNMENT
538 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
539 #endif
541 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
543 static int min_labelno, max_labelno;
545 #define LABEL_TO_ALIGNMENT(LABEL) \
546 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
548 #define LABEL_TO_MAX_SKIP(LABEL) \
549 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
551 /* For the benefit of port specific code do this also as a function. */
554 label_to_alignment (rtx label)
556 return LABEL_TO_ALIGNMENT (label);
559 #ifdef HAVE_ATTR_length
560 /* The differences in addresses
561 between a branch and its target might grow or shrink depending on
562 the alignment the start insn of the range (the branch for a forward
563 branch or the label for a backward branch) starts out on; if these
564 differences are used naively, they can even oscillate infinitely.
565 We therefore want to compute a 'worst case' address difference that
566 is independent of the alignment the start insn of the range end
567 up on, and that is at least as large as the actual difference.
568 The function align_fuzz calculates the amount we have to add to the
569 naively computed difference, by traversing the part of the alignment
570 chain of the start insn of the range that is in front of the end insn
571 of the range, and considering for each alignment the maximum amount
572 that it might contribute to a size increase.
574 For casesi tables, we also want to know worst case minimum amounts of
575 address difference, in case a machine description wants to introduce
576 some common offset that is added to all offsets in a table.
577 For this purpose, align_fuzz with a growth argument of 0 computes the
578 appropriate adjustment. */
580 /* Compute the maximum delta by which the difference of the addresses of
581 START and END might grow / shrink due to a different address for start
582 which changes the size of alignment insns between START and END.
583 KNOWN_ALIGN_LOG is the alignment known for START.
584 GROWTH should be ~0 if the objective is to compute potential code size
585 increase, and 0 if the objective is to compute potential shrink.
586 The return value is undefined for any other value of GROWTH. */
588 static int
589 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
591 int uid = INSN_UID (start);
592 rtx align_label;
593 int known_align = 1 << known_align_log;
594 int end_shuid = INSN_SHUID (end);
595 int fuzz = 0;
597 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
599 int align_addr, new_align;
601 uid = INSN_UID (align_label);
602 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
603 if (uid_shuid[uid] > end_shuid)
604 break;
605 known_align_log = LABEL_TO_ALIGNMENT (align_label);
606 new_align = 1 << known_align_log;
607 if (new_align < known_align)
608 continue;
609 fuzz += (-align_addr ^ growth) & (new_align - known_align);
610 known_align = new_align;
612 return fuzz;
615 /* Compute a worst-case reference address of a branch so that it
616 can be safely used in the presence of aligned labels. Since the
617 size of the branch itself is unknown, the size of the branch is
618 not included in the range. I.e. for a forward branch, the reference
619 address is the end address of the branch as known from the previous
620 branch shortening pass, minus a value to account for possible size
621 increase due to alignment. For a backward branch, it is the start
622 address of the branch as known from the current pass, plus a value
623 to account for possible size increase due to alignment.
624 NB.: Therefore, the maximum offset allowed for backward branches needs
625 to exclude the branch size. */
628 insn_current_reference_address (rtx branch)
630 rtx dest, seq;
631 int seq_uid;
633 if (! INSN_ADDRESSES_SET_P ())
634 return 0;
636 seq = NEXT_INSN (PREV_INSN (branch));
637 seq_uid = INSN_UID (seq);
638 if (!JUMP_P (branch))
639 /* This can happen for example on the PA; the objective is to know the
640 offset to address something in front of the start of the function.
641 Thus, we can treat it like a backward branch.
642 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
643 any alignment we'd encounter, so we skip the call to align_fuzz. */
644 return insn_current_address;
645 dest = JUMP_LABEL (branch);
647 /* BRANCH has no proper alignment chain set, so use SEQ.
648 BRANCH also has no INSN_SHUID. */
649 if (INSN_SHUID (seq) < INSN_SHUID (dest))
651 /* Forward branch. */
652 return (insn_last_address + insn_lengths[seq_uid]
653 - align_fuzz (seq, dest, length_unit_log, ~0));
655 else
657 /* Backward branch. */
658 return (insn_current_address
659 + align_fuzz (dest, seq, length_unit_log, ~0));
662 #endif /* HAVE_ATTR_length */
664 /* Compute branch alignments based on frequency information in the
665 CFG. */
667 static unsigned int
668 compute_alignments (void)
670 int log, max_skip, max_log;
671 basic_block bb;
672 int freq_max = 0;
673 int freq_threshold = 0;
675 if (label_align)
677 free (label_align);
678 label_align = 0;
681 max_labelno = max_label_num ();
682 min_labelno = get_first_label_num ();
683 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
685 /* If not optimizing or optimizing for size, don't assign any alignments. */
686 if (! optimize || optimize_size)
687 return 0;
689 if (dump_file)
691 dump_flow_info (dump_file, TDF_DETAILS);
692 flow_loops_dump (dump_file, NULL, 1);
693 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
695 FOR_EACH_BB (bb)
696 if (bb->frequency > freq_max)
697 freq_max = bb->frequency;
698 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
700 if (dump_file)
701 fprintf(dump_file, "freq_max: %i\n",freq_max);
702 FOR_EACH_BB (bb)
704 rtx label = BB_HEAD (bb);
705 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
706 edge e;
707 edge_iterator ei;
709 if (!LABEL_P (label)
710 || probably_never_executed_bb_p (bb))
712 if (dump_file)
713 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
714 bb->index, bb->frequency, bb->loop_father->num, bb->loop_depth);
715 continue;
717 max_log = LABEL_ALIGN (label);
718 max_skip = LABEL_ALIGN_MAX_SKIP;
720 FOR_EACH_EDGE (e, ei, bb->preds)
722 if (e->flags & EDGE_FALLTHRU)
723 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
724 else
725 branch_frequency += EDGE_FREQUENCY (e);
727 if (dump_file)
729 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
730 bb->index, bb->frequency, bb->loop_father->num,
731 bb->loop_depth,
732 fallthru_frequency, branch_frequency);
733 if (!bb->loop_father->inner && bb->loop_father->num)
734 fprintf (dump_file, " inner_loop");
735 if (bb->loop_father->header == bb)
736 fprintf (dump_file, " loop_header");
737 fprintf (dump_file, "\n");
740 /* There are two purposes to align block with no fallthru incoming edge:
741 1) to avoid fetch stalls when branch destination is near cache boundary
742 2) to improve cache efficiency in case the previous block is not executed
743 (so it does not need to be in the cache).
745 We to catch first case, we align frequently executed blocks.
746 To catch the second, we align blocks that are executed more frequently
747 than the predecessor and the predecessor is likely to not be executed
748 when function is called. */
750 if (!has_fallthru
751 && (branch_frequency > freq_threshold
752 || (bb->frequency > bb->prev_bb->frequency * 10
753 && (bb->prev_bb->frequency
754 <= ENTRY_BLOCK_PTR->frequency / 2))))
756 log = JUMP_ALIGN (label);
757 if (dump_file)
758 fprintf(dump_file, " jump alignment added.\n");
759 if (max_log < log)
761 max_log = log;
762 max_skip = JUMP_ALIGN_MAX_SKIP;
765 /* In case block is frequent and reached mostly by non-fallthru edge,
766 align it. It is most likely a first block of loop. */
767 if (has_fallthru
768 && maybe_hot_bb_p (bb)
769 && branch_frequency + fallthru_frequency > freq_threshold
770 && (branch_frequency
771 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
773 log = LOOP_ALIGN (label);
774 if (dump_file)
775 fprintf(dump_file, " internal loop alignment added.\n");
776 if (max_log < log)
778 max_log = log;
779 max_skip = LOOP_ALIGN_MAX_SKIP;
782 LABEL_TO_ALIGNMENT (label) = max_log;
783 LABEL_TO_MAX_SKIP (label) = max_skip;
786 if (dump_file)
787 loop_optimizer_finalize ();
788 return 0;
791 struct rtl_opt_pass pass_compute_alignments =
794 RTL_PASS,
795 "alignments", /* name */
796 NULL, /* gate */
797 compute_alignments, /* execute */
798 NULL, /* sub */
799 NULL, /* next */
800 0, /* static_pass_number */
801 0, /* tv_id */
802 0, /* properties_required */
803 0, /* properties_provided */
804 0, /* properties_destroyed */
805 0, /* todo_flags_start */
806 TODO_dump_func | TODO_verify_rtl_sharing
807 | TODO_ggc_collect /* todo_flags_finish */
812 /* Make a pass over all insns and compute their actual lengths by shortening
813 any branches of variable length if possible. */
815 /* shorten_branches might be called multiple times: for example, the SH
816 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
817 In order to do this, it needs proper length information, which it obtains
818 by calling shorten_branches. This cannot be collapsed with
819 shorten_branches itself into a single pass unless we also want to integrate
820 reorg.c, since the branch splitting exposes new instructions with delay
821 slots. */
823 void
824 shorten_branches (rtx first ATTRIBUTE_UNUSED)
826 rtx insn;
827 int max_uid;
828 int i;
829 int max_log;
830 int max_skip;
831 #ifdef HAVE_ATTR_length
832 #define MAX_CODE_ALIGN 16
833 rtx seq;
834 int something_changed = 1;
835 char *varying_length;
836 rtx body;
837 int uid;
838 rtx align_tab[MAX_CODE_ALIGN];
840 #endif
842 /* Compute maximum UID and allocate label_align / uid_shuid. */
843 max_uid = get_max_uid ();
845 /* Free uid_shuid before reallocating it. */
846 free (uid_shuid);
848 uid_shuid = XNEWVEC (int, max_uid);
850 if (max_labelno != max_label_num ())
852 int old = max_labelno;
853 int n_labels;
854 int n_old_labels;
856 max_labelno = max_label_num ();
858 n_labels = max_labelno - min_labelno + 1;
859 n_old_labels = old - min_labelno + 1;
861 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
863 /* Range of labels grows monotonically in the function. Failing here
864 means that the initialization of array got lost. */
865 gcc_assert (n_old_labels <= n_labels);
867 memset (label_align + n_old_labels, 0,
868 (n_labels - n_old_labels) * sizeof (struct label_alignment));
871 /* Initialize label_align and set up uid_shuid to be strictly
872 monotonically rising with insn order. */
873 /* We use max_log here to keep track of the maximum alignment we want to
874 impose on the next CODE_LABEL (or the current one if we are processing
875 the CODE_LABEL itself). */
877 max_log = 0;
878 max_skip = 0;
880 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
882 int log;
884 INSN_SHUID (insn) = i++;
885 if (INSN_P (insn))
886 continue;
888 if (LABEL_P (insn))
890 rtx next;
892 /* Merge in alignments computed by compute_alignments. */
893 log = LABEL_TO_ALIGNMENT (insn);
894 if (max_log < log)
896 max_log = log;
897 max_skip = LABEL_TO_MAX_SKIP (insn);
900 log = LABEL_ALIGN (insn);
901 if (max_log < log)
903 max_log = log;
904 max_skip = LABEL_ALIGN_MAX_SKIP;
906 next = next_nonnote_insn (insn);
907 /* ADDR_VECs only take room if read-only data goes into the text
908 section. */
909 if (JUMP_TABLES_IN_TEXT_SECTION
910 || readonly_data_section == text_section)
911 if (next && JUMP_P (next))
913 rtx nextbody = PATTERN (next);
914 if (GET_CODE (nextbody) == ADDR_VEC
915 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
917 log = ADDR_VEC_ALIGN (next);
918 if (max_log < log)
920 max_log = log;
921 max_skip = LABEL_ALIGN_MAX_SKIP;
925 LABEL_TO_ALIGNMENT (insn) = max_log;
926 LABEL_TO_MAX_SKIP (insn) = max_skip;
927 max_log = 0;
928 max_skip = 0;
930 else if (BARRIER_P (insn))
932 rtx label;
934 for (label = insn; label && ! INSN_P (label);
935 label = NEXT_INSN (label))
936 if (LABEL_P (label))
938 log = LABEL_ALIGN_AFTER_BARRIER (insn);
939 if (max_log < log)
941 max_log = log;
942 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
944 break;
948 #ifdef HAVE_ATTR_length
950 /* Allocate the rest of the arrays. */
951 insn_lengths = XNEWVEC (int, max_uid);
952 insn_lengths_max_uid = max_uid;
953 /* Syntax errors can lead to labels being outside of the main insn stream.
954 Initialize insn_addresses, so that we get reproducible results. */
955 INSN_ADDRESSES_ALLOC (max_uid);
957 varying_length = XCNEWVEC (char, max_uid);
959 /* Initialize uid_align. We scan instructions
960 from end to start, and keep in align_tab[n] the last seen insn
961 that does an alignment of at least n+1, i.e. the successor
962 in the alignment chain for an insn that does / has a known
963 alignment of n. */
964 uid_align = XCNEWVEC (rtx, max_uid);
966 for (i = MAX_CODE_ALIGN; --i >= 0;)
967 align_tab[i] = NULL_RTX;
968 seq = get_last_insn ();
969 for (; seq; seq = PREV_INSN (seq))
971 int uid = INSN_UID (seq);
972 int log;
973 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
974 uid_align[uid] = align_tab[0];
975 if (log)
977 /* Found an alignment label. */
978 uid_align[uid] = align_tab[log];
979 for (i = log - 1; i >= 0; i--)
980 align_tab[i] = seq;
983 #ifdef CASE_VECTOR_SHORTEN_MODE
984 if (optimize)
986 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
987 label fields. */
989 int min_shuid = INSN_SHUID (get_insns ()) - 1;
990 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
991 int rel;
993 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
995 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
996 int len, i, min, max, insn_shuid;
997 int min_align;
998 addr_diff_vec_flags flags;
1000 if (!JUMP_P (insn)
1001 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1002 continue;
1003 pat = PATTERN (insn);
1004 len = XVECLEN (pat, 1);
1005 gcc_assert (len > 0);
1006 min_align = MAX_CODE_ALIGN;
1007 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1009 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1010 int shuid = INSN_SHUID (lab);
1011 if (shuid < min)
1013 min = shuid;
1014 min_lab = lab;
1016 if (shuid > max)
1018 max = shuid;
1019 max_lab = lab;
1021 if (min_align > LABEL_TO_ALIGNMENT (lab))
1022 min_align = LABEL_TO_ALIGNMENT (lab);
1024 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1025 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1026 insn_shuid = INSN_SHUID (insn);
1027 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1028 memset (&flags, 0, sizeof (flags));
1029 flags.min_align = min_align;
1030 flags.base_after_vec = rel > insn_shuid;
1031 flags.min_after_vec = min > insn_shuid;
1032 flags.max_after_vec = max > insn_shuid;
1033 flags.min_after_base = min > rel;
1034 flags.max_after_base = max > rel;
1035 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1038 #endif /* CASE_VECTOR_SHORTEN_MODE */
1040 /* Compute initial lengths, addresses, and varying flags for each insn. */
1041 for (insn_current_address = 0, insn = first;
1042 insn != 0;
1043 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1045 uid = INSN_UID (insn);
1047 insn_lengths[uid] = 0;
1049 if (LABEL_P (insn))
1051 int log = LABEL_TO_ALIGNMENT (insn);
1052 if (log)
1054 int align = 1 << log;
1055 int new_address = (insn_current_address + align - 1) & -align;
1056 insn_lengths[uid] = new_address - insn_current_address;
1060 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1062 if (NOTE_P (insn) || BARRIER_P (insn)
1063 || LABEL_P (insn))
1064 continue;
1065 if (INSN_DELETED_P (insn))
1066 continue;
1068 body = PATTERN (insn);
1069 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1071 /* This only takes room if read-only data goes into the text
1072 section. */
1073 if (JUMP_TABLES_IN_TEXT_SECTION
1074 || readonly_data_section == text_section)
1075 insn_lengths[uid] = (XVECLEN (body,
1076 GET_CODE (body) == ADDR_DIFF_VEC)
1077 * GET_MODE_SIZE (GET_MODE (body)));
1078 /* Alignment is handled by ADDR_VEC_ALIGN. */
1080 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1081 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1082 else if (GET_CODE (body) == SEQUENCE)
1084 int i;
1085 int const_delay_slots;
1086 #ifdef DELAY_SLOTS
1087 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1088 #else
1089 const_delay_slots = 0;
1090 #endif
1091 /* Inside a delay slot sequence, we do not do any branch shortening
1092 if the shortening could change the number of delay slots
1093 of the branch. */
1094 for (i = 0; i < XVECLEN (body, 0); i++)
1096 rtx inner_insn = XVECEXP (body, 0, i);
1097 int inner_uid = INSN_UID (inner_insn);
1098 int inner_length;
1100 if (GET_CODE (body) == ASM_INPUT
1101 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1102 inner_length = (asm_insn_count (PATTERN (inner_insn))
1103 * insn_default_length (inner_insn));
1104 else
1105 inner_length = insn_default_length (inner_insn);
1107 insn_lengths[inner_uid] = inner_length;
1108 if (const_delay_slots)
1110 if ((varying_length[inner_uid]
1111 = insn_variable_length_p (inner_insn)) != 0)
1112 varying_length[uid] = 1;
1113 INSN_ADDRESSES (inner_uid) = (insn_current_address
1114 + insn_lengths[uid]);
1116 else
1117 varying_length[inner_uid] = 0;
1118 insn_lengths[uid] += inner_length;
1121 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1123 insn_lengths[uid] = insn_default_length (insn);
1124 varying_length[uid] = insn_variable_length_p (insn);
1127 /* If needed, do any adjustment. */
1128 #ifdef ADJUST_INSN_LENGTH
1129 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1130 if (insn_lengths[uid] < 0)
1131 fatal_insn ("negative insn length", insn);
1132 #endif
1135 /* Now loop over all the insns finding varying length insns. For each,
1136 get the current insn length. If it has changed, reflect the change.
1137 When nothing changes for a full pass, we are done. */
1139 while (something_changed)
1141 something_changed = 0;
1142 insn_current_align = MAX_CODE_ALIGN - 1;
1143 for (insn_current_address = 0, insn = first;
1144 insn != 0;
1145 insn = NEXT_INSN (insn))
1147 int new_length;
1148 #ifdef ADJUST_INSN_LENGTH
1149 int tmp_length;
1150 #endif
1151 int length_align;
1153 uid = INSN_UID (insn);
1155 if (LABEL_P (insn))
1157 int log = LABEL_TO_ALIGNMENT (insn);
1158 if (log > insn_current_align)
1160 int align = 1 << log;
1161 int new_address= (insn_current_address + align - 1) & -align;
1162 insn_lengths[uid] = new_address - insn_current_address;
1163 insn_current_align = log;
1164 insn_current_address = new_address;
1166 else
1167 insn_lengths[uid] = 0;
1168 INSN_ADDRESSES (uid) = insn_current_address;
1169 continue;
1172 length_align = INSN_LENGTH_ALIGNMENT (insn);
1173 if (length_align < insn_current_align)
1174 insn_current_align = length_align;
1176 insn_last_address = INSN_ADDRESSES (uid);
1177 INSN_ADDRESSES (uid) = insn_current_address;
1179 #ifdef CASE_VECTOR_SHORTEN_MODE
1180 if (optimize && JUMP_P (insn)
1181 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1183 rtx body = PATTERN (insn);
1184 int old_length = insn_lengths[uid];
1185 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1186 rtx min_lab = XEXP (XEXP (body, 2), 0);
1187 rtx max_lab = XEXP (XEXP (body, 3), 0);
1188 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1189 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1190 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1191 rtx prev;
1192 int rel_align = 0;
1193 addr_diff_vec_flags flags;
1195 /* Avoid automatic aggregate initialization. */
1196 flags = ADDR_DIFF_VEC_FLAGS (body);
1198 /* Try to find a known alignment for rel_lab. */
1199 for (prev = rel_lab;
1200 prev
1201 && ! insn_lengths[INSN_UID (prev)]
1202 && ! (varying_length[INSN_UID (prev)] & 1);
1203 prev = PREV_INSN (prev))
1204 if (varying_length[INSN_UID (prev)] & 2)
1206 rel_align = LABEL_TO_ALIGNMENT (prev);
1207 break;
1210 /* See the comment on addr_diff_vec_flags in rtl.h for the
1211 meaning of the flags values. base: REL_LAB vec: INSN */
1212 /* Anything after INSN has still addresses from the last
1213 pass; adjust these so that they reflect our current
1214 estimate for this pass. */
1215 if (flags.base_after_vec)
1216 rel_addr += insn_current_address - insn_last_address;
1217 if (flags.min_after_vec)
1218 min_addr += insn_current_address - insn_last_address;
1219 if (flags.max_after_vec)
1220 max_addr += insn_current_address - insn_last_address;
1221 /* We want to know the worst case, i.e. lowest possible value
1222 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1223 its offset is positive, and we have to be wary of code shrink;
1224 otherwise, it is negative, and we have to be vary of code
1225 size increase. */
1226 if (flags.min_after_base)
1228 /* If INSN is between REL_LAB and MIN_LAB, the size
1229 changes we are about to make can change the alignment
1230 within the observed offset, therefore we have to break
1231 it up into two parts that are independent. */
1232 if (! flags.base_after_vec && flags.min_after_vec)
1234 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1235 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1237 else
1238 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1240 else
1242 if (flags.base_after_vec && ! flags.min_after_vec)
1244 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1245 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1247 else
1248 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1250 /* Likewise, determine the highest lowest possible value
1251 for the offset of MAX_LAB. */
1252 if (flags.max_after_base)
1254 if (! flags.base_after_vec && flags.max_after_vec)
1256 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1257 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1259 else
1260 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1262 else
1264 if (flags.base_after_vec && ! flags.max_after_vec)
1266 max_addr += align_fuzz (max_lab, insn, 0, 0);
1267 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1269 else
1270 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1272 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1273 max_addr - rel_addr,
1274 body));
1275 if (JUMP_TABLES_IN_TEXT_SECTION
1276 || readonly_data_section == text_section)
1278 insn_lengths[uid]
1279 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1280 insn_current_address += insn_lengths[uid];
1281 if (insn_lengths[uid] != old_length)
1282 something_changed = 1;
1285 continue;
1287 #endif /* CASE_VECTOR_SHORTEN_MODE */
1289 if (! (varying_length[uid]))
1291 if (NONJUMP_INSN_P (insn)
1292 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1294 int i;
1296 body = PATTERN (insn);
1297 for (i = 0; i < XVECLEN (body, 0); i++)
1299 rtx inner_insn = XVECEXP (body, 0, i);
1300 int inner_uid = INSN_UID (inner_insn);
1302 INSN_ADDRESSES (inner_uid) = insn_current_address;
1304 insn_current_address += insn_lengths[inner_uid];
1307 else
1308 insn_current_address += insn_lengths[uid];
1310 continue;
1313 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1315 int i;
1317 body = PATTERN (insn);
1318 new_length = 0;
1319 for (i = 0; i < XVECLEN (body, 0); i++)
1321 rtx inner_insn = XVECEXP (body, 0, i);
1322 int inner_uid = INSN_UID (inner_insn);
1323 int inner_length;
1325 INSN_ADDRESSES (inner_uid) = insn_current_address;
1327 /* insn_current_length returns 0 for insns with a
1328 non-varying length. */
1329 if (! varying_length[inner_uid])
1330 inner_length = insn_lengths[inner_uid];
1331 else
1332 inner_length = insn_current_length (inner_insn);
1334 if (inner_length != insn_lengths[inner_uid])
1336 insn_lengths[inner_uid] = inner_length;
1337 something_changed = 1;
1339 insn_current_address += insn_lengths[inner_uid];
1340 new_length += inner_length;
1343 else
1345 new_length = insn_current_length (insn);
1346 insn_current_address += new_length;
1349 #ifdef ADJUST_INSN_LENGTH
1350 /* If needed, do any adjustment. */
1351 tmp_length = new_length;
1352 ADJUST_INSN_LENGTH (insn, new_length);
1353 insn_current_address += (new_length - tmp_length);
1354 #endif
1356 if (new_length != insn_lengths[uid])
1358 insn_lengths[uid] = new_length;
1359 something_changed = 1;
1362 /* For a non-optimizing compile, do only a single pass. */
1363 if (!optimize)
1364 break;
1367 free (varying_length);
1369 #endif /* HAVE_ATTR_length */
1372 #ifdef HAVE_ATTR_length
1373 /* Given the body of an INSN known to be generated by an ASM statement, return
1374 the number of machine instructions likely to be generated for this insn.
1375 This is used to compute its length. */
1377 static int
1378 asm_insn_count (rtx body)
1380 const char *template;
1381 int count = 1;
1383 if (GET_CODE (body) == ASM_INPUT)
1384 template = XSTR (body, 0);
1385 else
1386 template = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1388 for (; *template; template++)
1389 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template, template)
1390 || *template == '\n')
1391 count++;
1393 return count;
1395 #endif
1397 /* ??? This is probably the wrong place for these. */
1398 /* Structure recording the mapping from source file and directory
1399 names at compile time to those to be embedded in debug
1400 information. */
1401 typedef struct debug_prefix_map
1403 const char *old_prefix;
1404 const char *new_prefix;
1405 size_t old_len;
1406 size_t new_len;
1407 struct debug_prefix_map *next;
1408 } debug_prefix_map;
1410 /* Linked list of such structures. */
1411 debug_prefix_map *debug_prefix_maps;
1414 /* Record a debug file prefix mapping. ARG is the argument to
1415 -fdebug-prefix-map and must be of the form OLD=NEW. */
1417 void
1418 add_debug_prefix_map (const char *arg)
1420 debug_prefix_map *map;
1421 const char *p;
1423 p = strchr (arg, '=');
1424 if (!p)
1426 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1427 return;
1429 map = XNEW (debug_prefix_map);
1430 map->old_prefix = ggc_alloc_string (arg, p - arg);
1431 map->old_len = p - arg;
1432 p++;
1433 map->new_prefix = ggc_strdup (p);
1434 map->new_len = strlen (p);
1435 map->next = debug_prefix_maps;
1436 debug_prefix_maps = map;
1439 /* Perform user-specified mapping of debug filename prefixes. Return
1440 the new name corresponding to FILENAME. */
1442 const char *
1443 remap_debug_filename (const char *filename)
1445 debug_prefix_map *map;
1446 char *s;
1447 const char *name;
1448 size_t name_len;
1450 for (map = debug_prefix_maps; map; map = map->next)
1451 if (strncmp (filename, map->old_prefix, map->old_len) == 0)
1452 break;
1453 if (!map)
1454 return filename;
1455 name = filename + map->old_len;
1456 name_len = strlen (name) + 1;
1457 s = (char *) alloca (name_len + map->new_len);
1458 memcpy (s, map->new_prefix, map->new_len);
1459 memcpy (s + map->new_len, name, name_len);
1460 return ggc_strdup (s);
1463 /* Output assembler code for the start of a function,
1464 and initialize some of the variables in this file
1465 for the new function. The label for the function and associated
1466 assembler pseudo-ops have already been output in `assemble_start_function'.
1468 FIRST is the first insn of the rtl for the function being compiled.
1469 FILE is the file to write assembler code to.
1470 OPTIMIZE is nonzero if we should eliminate redundant
1471 test and compare insns. */
1473 void
1474 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1475 int optimize ATTRIBUTE_UNUSED)
1477 block_depth = 0;
1479 this_is_asm_operands = 0;
1481 last_filename = locator_file (prologue_locator);
1482 last_linenum = locator_line (prologue_locator);
1484 high_block_linenum = high_function_linenum = last_linenum;
1486 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1488 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1489 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1490 dwarf2out_begin_prologue (0, NULL);
1491 #endif
1493 #ifdef LEAF_REG_REMAP
1494 if (current_function_uses_only_leaf_regs)
1495 leaf_renumber_regs (first);
1496 #endif
1498 /* The Sun386i and perhaps other machines don't work right
1499 if the profiling code comes after the prologue. */
1500 #ifdef PROFILE_BEFORE_PROLOGUE
1501 if (crtl->profile)
1502 profile_function (file);
1503 #endif /* PROFILE_BEFORE_PROLOGUE */
1505 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1506 if (dwarf2out_do_frame ())
1507 dwarf2out_frame_debug (NULL_RTX, false);
1508 #endif
1510 /* If debugging, assign block numbers to all of the blocks in this
1511 function. */
1512 if (write_symbols)
1514 reemit_insn_block_notes ();
1515 number_blocks (current_function_decl);
1516 /* We never actually put out begin/end notes for the top-level
1517 block in the function. But, conceptually, that block is
1518 always needed. */
1519 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1522 if (warn_frame_larger_than
1523 && get_frame_size () > frame_larger_than_size)
1525 /* Issue a warning */
1526 warning (OPT_Wframe_larger_than_,
1527 "the frame size of %wd bytes is larger than %wd bytes",
1528 get_frame_size (), frame_larger_than_size);
1531 /* First output the function prologue: code to set up the stack frame. */
1532 targetm.asm_out.function_prologue (file, get_frame_size ());
1534 /* If the machine represents the prologue as RTL, the profiling code must
1535 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1536 #ifdef HAVE_prologue
1537 if (! HAVE_prologue)
1538 #endif
1539 profile_after_prologue (file);
1542 static void
1543 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1545 #ifndef PROFILE_BEFORE_PROLOGUE
1546 if (crtl->profile)
1547 profile_function (file);
1548 #endif /* not PROFILE_BEFORE_PROLOGUE */
1551 static void
1552 profile_function (FILE *file ATTRIBUTE_UNUSED)
1554 #ifndef NO_PROFILE_COUNTERS
1555 # define NO_PROFILE_COUNTERS 0
1556 #endif
1557 #if defined(ASM_OUTPUT_REG_PUSH)
1558 int sval = cfun->returns_struct;
1559 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1560 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1561 int cxt = cfun->static_chain_decl != NULL;
1562 #endif
1563 #endif /* ASM_OUTPUT_REG_PUSH */
1565 if (! NO_PROFILE_COUNTERS)
1567 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1568 switch_to_section (data_section);
1569 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1570 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1571 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1574 switch_to_section (current_function_section ());
1576 #if defined(ASM_OUTPUT_REG_PUSH)
1577 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1579 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1581 #endif
1583 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1584 if (cxt)
1585 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1586 #else
1587 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1588 if (cxt)
1590 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1592 #endif
1593 #endif
1595 FUNCTION_PROFILER (file, current_function_funcdef_no);
1597 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1598 if (cxt)
1599 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1600 #else
1601 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1602 if (cxt)
1604 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1606 #endif
1607 #endif
1609 #if defined(ASM_OUTPUT_REG_PUSH)
1610 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1612 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1614 #endif
1617 /* Output assembler code for the end of a function.
1618 For clarity, args are same as those of `final_start_function'
1619 even though not all of them are needed. */
1621 void
1622 final_end_function (void)
1624 app_disable ();
1626 (*debug_hooks->end_function) (high_function_linenum);
1628 /* Finally, output the function epilogue:
1629 code to restore the stack frame and return to the caller. */
1630 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1632 /* And debug output. */
1633 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1635 #if defined (DWARF2_UNWIND_INFO)
1636 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1637 && dwarf2out_do_frame ())
1638 dwarf2out_end_epilogue (last_linenum, last_filename);
1639 #endif
1642 /* Output assembler code for some insns: all or part of a function.
1643 For description of args, see `final_start_function', above. */
1645 void
1646 final (rtx first, FILE *file, int optimize)
1648 rtx insn;
1649 int max_uid = 0;
1650 int seen = 0;
1652 last_ignored_compare = 0;
1654 for (insn = first; insn; insn = NEXT_INSN (insn))
1656 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1657 max_uid = INSN_UID (insn);
1658 #ifdef HAVE_cc0
1659 /* If CC tracking across branches is enabled, record the insn which
1660 jumps to each branch only reached from one place. */
1661 if (optimize && JUMP_P (insn))
1663 rtx lab = JUMP_LABEL (insn);
1664 if (lab && LABEL_NUSES (lab) == 1)
1666 LABEL_REFS (lab) = insn;
1669 #endif
1672 init_recog ();
1674 CC_STATUS_INIT;
1676 /* Output the insns. */
1677 for (insn = first; insn;)
1679 #ifdef HAVE_ATTR_length
1680 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1682 /* This can be triggered by bugs elsewhere in the compiler if
1683 new insns are created after init_insn_lengths is called. */
1684 gcc_assert (NOTE_P (insn));
1685 insn_current_address = -1;
1687 else
1688 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1689 #endif /* HAVE_ATTR_length */
1691 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1695 const char *
1696 get_insn_template (int code, rtx insn)
1698 switch (insn_data[code].output_format)
1700 case INSN_OUTPUT_FORMAT_SINGLE:
1701 return insn_data[code].output.single;
1702 case INSN_OUTPUT_FORMAT_MULTI:
1703 return insn_data[code].output.multi[which_alternative];
1704 case INSN_OUTPUT_FORMAT_FUNCTION:
1705 gcc_assert (insn);
1706 return (*insn_data[code].output.function) (recog_data.operand, insn);
1708 default:
1709 gcc_unreachable ();
1713 /* Emit the appropriate declaration for an alternate-entry-point
1714 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1715 LABEL_KIND != LABEL_NORMAL.
1717 The case fall-through in this function is intentional. */
1718 static void
1719 output_alternate_entry_point (FILE *file, rtx insn)
1721 const char *name = LABEL_NAME (insn);
1723 switch (LABEL_KIND (insn))
1725 case LABEL_WEAK_ENTRY:
1726 #ifdef ASM_WEAKEN_LABEL
1727 ASM_WEAKEN_LABEL (file, name);
1728 #endif
1729 case LABEL_GLOBAL_ENTRY:
1730 targetm.asm_out.globalize_label (file, name);
1731 case LABEL_STATIC_ENTRY:
1732 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1733 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1734 #endif
1735 ASM_OUTPUT_LABEL (file, name);
1736 break;
1738 case LABEL_NORMAL:
1739 default:
1740 gcc_unreachable ();
1744 /* The final scan for one insn, INSN.
1745 Args are same as in `final', except that INSN
1746 is the insn being scanned.
1747 Value returned is the next insn to be scanned.
1749 NOPEEPHOLES is the flag to disallow peephole processing (currently
1750 used for within delayed branch sequence output).
1752 SEEN is used to track the end of the prologue, for emitting
1753 debug information. We force the emission of a line note after
1754 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1755 at the beginning of the second basic block, whichever comes
1756 first. */
1759 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1760 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1762 #ifdef HAVE_cc0
1763 rtx set;
1764 #endif
1765 rtx next;
1767 insn_counter++;
1769 /* Ignore deleted insns. These can occur when we split insns (due to a
1770 template of "#") while not optimizing. */
1771 if (INSN_DELETED_P (insn))
1772 return NEXT_INSN (insn);
1774 switch (GET_CODE (insn))
1776 case NOTE:
1777 switch (NOTE_KIND (insn))
1779 case NOTE_INSN_DELETED:
1780 break;
1782 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1783 in_cold_section_p = !in_cold_section_p;
1784 #ifdef DWARF2_UNWIND_INFO
1785 if (dwarf2out_do_frame ())
1786 dwarf2out_switch_text_section ();
1787 else
1788 #endif
1789 (*debug_hooks->switch_text_section) ();
1791 switch_to_section (current_function_section ());
1792 break;
1794 case NOTE_INSN_BASIC_BLOCK:
1795 #ifdef TARGET_UNWIND_INFO
1796 targetm.asm_out.unwind_emit (asm_out_file, insn);
1797 #endif
1799 if (flag_debug_asm)
1800 fprintf (asm_out_file, "\t%s basic block %d\n",
1801 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1803 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1805 *seen |= SEEN_EMITTED;
1806 force_source_line = true;
1808 else
1809 *seen |= SEEN_BB;
1811 break;
1813 case NOTE_INSN_EH_REGION_BEG:
1814 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1815 NOTE_EH_HANDLER (insn));
1816 break;
1818 case NOTE_INSN_EH_REGION_END:
1819 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1820 NOTE_EH_HANDLER (insn));
1821 break;
1823 case NOTE_INSN_PROLOGUE_END:
1824 targetm.asm_out.function_end_prologue (file);
1825 profile_after_prologue (file);
1827 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1829 *seen |= SEEN_EMITTED;
1830 force_source_line = true;
1832 else
1833 *seen |= SEEN_NOTE;
1835 break;
1837 case NOTE_INSN_EPILOGUE_BEG:
1838 targetm.asm_out.function_begin_epilogue (file);
1839 break;
1841 case NOTE_INSN_FUNCTION_BEG:
1842 app_disable ();
1843 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1845 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1847 *seen |= SEEN_EMITTED;
1848 force_source_line = true;
1850 else
1851 *seen |= SEEN_NOTE;
1853 break;
1855 case NOTE_INSN_BLOCK_BEG:
1856 if (debug_info_level == DINFO_LEVEL_NORMAL
1857 || debug_info_level == DINFO_LEVEL_VERBOSE
1858 || write_symbols == DWARF2_DEBUG
1859 || write_symbols == VMS_AND_DWARF2_DEBUG
1860 || write_symbols == VMS_DEBUG)
1862 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1864 app_disable ();
1865 ++block_depth;
1866 high_block_linenum = last_linenum;
1868 /* Output debugging info about the symbol-block beginning. */
1869 (*debug_hooks->begin_block) (last_linenum, n);
1871 /* Mark this block as output. */
1872 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1874 if (write_symbols == DBX_DEBUG
1875 || write_symbols == SDB_DEBUG)
1877 location_t *locus_ptr
1878 = block_nonartificial_location (NOTE_BLOCK (insn));
1880 if (locus_ptr != NULL)
1882 override_filename = LOCATION_FILE (*locus_ptr);
1883 override_linenum = LOCATION_LINE (*locus_ptr);
1886 break;
1888 case NOTE_INSN_BLOCK_END:
1889 if (debug_info_level == DINFO_LEVEL_NORMAL
1890 || debug_info_level == DINFO_LEVEL_VERBOSE
1891 || write_symbols == DWARF2_DEBUG
1892 || write_symbols == VMS_AND_DWARF2_DEBUG
1893 || write_symbols == VMS_DEBUG)
1895 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1897 app_disable ();
1899 /* End of a symbol-block. */
1900 --block_depth;
1901 gcc_assert (block_depth >= 0);
1903 (*debug_hooks->end_block) (high_block_linenum, n);
1905 if (write_symbols == DBX_DEBUG
1906 || write_symbols == SDB_DEBUG)
1908 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
1909 location_t *locus_ptr
1910 = block_nonartificial_location (outer_block);
1912 if (locus_ptr != NULL)
1914 override_filename = LOCATION_FILE (*locus_ptr);
1915 override_linenum = LOCATION_LINE (*locus_ptr);
1917 else
1919 override_filename = NULL;
1920 override_linenum = 0;
1923 break;
1925 case NOTE_INSN_DELETED_LABEL:
1926 /* Emit the label. We may have deleted the CODE_LABEL because
1927 the label could be proved to be unreachable, though still
1928 referenced (in the form of having its address taken. */
1929 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1930 break;
1932 case NOTE_INSN_VAR_LOCATION:
1933 (*debug_hooks->var_location) (insn);
1934 break;
1936 default:
1937 gcc_unreachable ();
1938 break;
1940 break;
1942 case BARRIER:
1943 #if defined (DWARF2_UNWIND_INFO)
1944 if (dwarf2out_do_frame ())
1945 dwarf2out_frame_debug (insn, false);
1946 #endif
1947 break;
1949 case CODE_LABEL:
1950 /* The target port might emit labels in the output function for
1951 some insn, e.g. sh.c output_branchy_insn. */
1952 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1954 int align = LABEL_TO_ALIGNMENT (insn);
1955 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1956 int max_skip = LABEL_TO_MAX_SKIP (insn);
1957 #endif
1959 if (align && NEXT_INSN (insn))
1961 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1962 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1963 #else
1964 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1965 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1966 #else
1967 ASM_OUTPUT_ALIGN (file, align);
1968 #endif
1969 #endif
1972 #ifdef HAVE_cc0
1973 CC_STATUS_INIT;
1974 #endif
1976 if (LABEL_NAME (insn))
1977 (*debug_hooks->label) (insn);
1979 if (app_on)
1981 fputs (ASM_APP_OFF, file);
1982 app_on = 0;
1985 next = next_nonnote_insn (insn);
1986 if (next != 0 && JUMP_P (next))
1988 rtx nextbody = PATTERN (next);
1990 /* If this label is followed by a jump-table,
1991 make sure we put the label in the read-only section. Also
1992 possibly write the label and jump table together. */
1994 if (GET_CODE (nextbody) == ADDR_VEC
1995 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1997 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1998 /* In this case, the case vector is being moved by the
1999 target, so don't output the label at all. Leave that
2000 to the back end macros. */
2001 #else
2002 if (! JUMP_TABLES_IN_TEXT_SECTION)
2004 int log_align;
2006 switch_to_section (targetm.asm_out.function_rodata_section
2007 (current_function_decl));
2009 #ifdef ADDR_VEC_ALIGN
2010 log_align = ADDR_VEC_ALIGN (next);
2011 #else
2012 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2013 #endif
2014 ASM_OUTPUT_ALIGN (file, log_align);
2016 else
2017 switch_to_section (current_function_section ());
2019 #ifdef ASM_OUTPUT_CASE_LABEL
2020 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2021 next);
2022 #else
2023 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2024 #endif
2025 #endif
2026 break;
2029 if (LABEL_ALT_ENTRY_P (insn))
2030 output_alternate_entry_point (file, insn);
2031 else
2032 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2033 break;
2035 default:
2037 rtx body = PATTERN (insn);
2038 int insn_code_number;
2039 const char *template;
2041 #ifdef HAVE_conditional_execution
2042 /* Reset this early so it is correct for ASM statements. */
2043 current_insn_predicate = NULL_RTX;
2044 #endif
2045 /* An INSN, JUMP_INSN or CALL_INSN.
2046 First check for special kinds that recog doesn't recognize. */
2048 if (GET_CODE (body) == USE /* These are just declarations. */
2049 || GET_CODE (body) == CLOBBER)
2050 break;
2052 #ifdef HAVE_cc0
2054 /* If there is a REG_CC_SETTER note on this insn, it means that
2055 the setting of the condition code was done in the delay slot
2056 of the insn that branched here. So recover the cc status
2057 from the insn that set it. */
2059 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2060 if (note)
2062 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2063 cc_prev_status = cc_status;
2066 #endif
2068 /* Detect insns that are really jump-tables
2069 and output them as such. */
2071 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2073 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2074 int vlen, idx;
2075 #endif
2077 if (! JUMP_TABLES_IN_TEXT_SECTION)
2078 switch_to_section (targetm.asm_out.function_rodata_section
2079 (current_function_decl));
2080 else
2081 switch_to_section (current_function_section ());
2083 if (app_on)
2085 fputs (ASM_APP_OFF, file);
2086 app_on = 0;
2089 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2090 if (GET_CODE (body) == ADDR_VEC)
2092 #ifdef ASM_OUTPUT_ADDR_VEC
2093 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2094 #else
2095 gcc_unreachable ();
2096 #endif
2098 else
2100 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2101 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2102 #else
2103 gcc_unreachable ();
2104 #endif
2106 #else
2107 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2108 for (idx = 0; idx < vlen; idx++)
2110 if (GET_CODE (body) == ADDR_VEC)
2112 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2113 ASM_OUTPUT_ADDR_VEC_ELT
2114 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2115 #else
2116 gcc_unreachable ();
2117 #endif
2119 else
2121 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2122 ASM_OUTPUT_ADDR_DIFF_ELT
2123 (file,
2124 body,
2125 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2126 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2127 #else
2128 gcc_unreachable ();
2129 #endif
2132 #ifdef ASM_OUTPUT_CASE_END
2133 ASM_OUTPUT_CASE_END (file,
2134 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2135 insn);
2136 #endif
2137 #endif
2139 switch_to_section (current_function_section ());
2141 break;
2143 /* Output this line note if it is the first or the last line
2144 note in a row. */
2145 if (notice_source_line (insn))
2147 (*debug_hooks->source_line) (last_linenum, last_filename);
2150 if (GET_CODE (body) == ASM_INPUT)
2152 const char *string = XSTR (body, 0);
2154 /* There's no telling what that did to the condition codes. */
2155 CC_STATUS_INIT;
2157 if (string[0])
2159 expanded_location loc;
2161 if (! app_on)
2163 fputs (ASM_APP_ON, file);
2164 app_on = 1;
2166 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2167 if (*loc.file && loc.line)
2168 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2169 ASM_COMMENT_START, loc.line, loc.file);
2170 fprintf (asm_out_file, "\t%s\n", string);
2171 #if HAVE_AS_LINE_ZERO
2172 if (*loc.file && loc.line)
2173 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2174 #endif
2176 break;
2179 /* Detect `asm' construct with operands. */
2180 if (asm_noperands (body) >= 0)
2182 unsigned int noperands = asm_noperands (body);
2183 rtx *ops = XALLOCAVEC (rtx, noperands);
2184 const char *string;
2185 location_t loc;
2186 expanded_location expanded;
2188 /* There's no telling what that did to the condition codes. */
2189 CC_STATUS_INIT;
2191 /* Get out the operand values. */
2192 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2193 /* Inhibit dying on what would otherwise be compiler bugs. */
2194 insn_noperands = noperands;
2195 this_is_asm_operands = insn;
2196 expanded = expand_location (loc);
2198 #ifdef FINAL_PRESCAN_INSN
2199 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2200 #endif
2202 /* Output the insn using them. */
2203 if (string[0])
2205 if (! app_on)
2207 fputs (ASM_APP_ON, file);
2208 app_on = 1;
2210 if (expanded.file && expanded.line)
2211 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2212 ASM_COMMENT_START, expanded.line, expanded.file);
2213 output_asm_insn (string, ops);
2214 #if HAVE_AS_LINE_ZERO
2215 if (expanded.file && expanded.line)
2216 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2217 #endif
2220 this_is_asm_operands = 0;
2221 break;
2224 if (app_on)
2226 fputs (ASM_APP_OFF, file);
2227 app_on = 0;
2230 if (GET_CODE (body) == SEQUENCE)
2232 /* A delayed-branch sequence */
2233 int i;
2235 final_sequence = body;
2237 /* Record the delay slots' frame information before the branch.
2238 This is needed for delayed calls: see execute_cfa_program(). */
2239 #if defined (DWARF2_UNWIND_INFO)
2240 if (dwarf2out_do_frame ())
2241 for (i = 1; i < XVECLEN (body, 0); i++)
2242 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2243 #endif
2245 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2246 force the restoration of a comparison that was previously
2247 thought unnecessary. If that happens, cancel this sequence
2248 and cause that insn to be restored. */
2250 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2251 if (next != XVECEXP (body, 0, 1))
2253 final_sequence = 0;
2254 return next;
2257 for (i = 1; i < XVECLEN (body, 0); i++)
2259 rtx insn = XVECEXP (body, 0, i);
2260 rtx next = NEXT_INSN (insn);
2261 /* We loop in case any instruction in a delay slot gets
2262 split. */
2264 insn = final_scan_insn (insn, file, 0, 1, seen);
2265 while (insn != next);
2267 #ifdef DBR_OUTPUT_SEQEND
2268 DBR_OUTPUT_SEQEND (file);
2269 #endif
2270 final_sequence = 0;
2272 /* If the insn requiring the delay slot was a CALL_INSN, the
2273 insns in the delay slot are actually executed before the
2274 called function. Hence we don't preserve any CC-setting
2275 actions in these insns and the CC must be marked as being
2276 clobbered by the function. */
2277 if (CALL_P (XVECEXP (body, 0, 0)))
2279 CC_STATUS_INIT;
2281 break;
2284 /* We have a real machine instruction as rtl. */
2286 body = PATTERN (insn);
2288 #ifdef HAVE_cc0
2289 set = single_set (insn);
2291 /* Check for redundant test and compare instructions
2292 (when the condition codes are already set up as desired).
2293 This is done only when optimizing; if not optimizing,
2294 it should be possible for the user to alter a variable
2295 with the debugger in between statements
2296 and the next statement should reexamine the variable
2297 to compute the condition codes. */
2299 if (optimize)
2301 if (set
2302 && GET_CODE (SET_DEST (set)) == CC0
2303 && insn != last_ignored_compare)
2305 if (GET_CODE (SET_SRC (set)) == SUBREG)
2306 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2307 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2309 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2310 XEXP (SET_SRC (set), 0)
2311 = alter_subreg (&XEXP (SET_SRC (set), 0));
2312 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2313 XEXP (SET_SRC (set), 1)
2314 = alter_subreg (&XEXP (SET_SRC (set), 1));
2316 if ((cc_status.value1 != 0
2317 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2318 || (cc_status.value2 != 0
2319 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2321 /* Don't delete insn if it has an addressing side-effect. */
2322 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2323 /* or if anything in it is volatile. */
2324 && ! volatile_refs_p (PATTERN (insn)))
2326 /* We don't really delete the insn; just ignore it. */
2327 last_ignored_compare = insn;
2328 break;
2333 #endif
2335 #ifdef HAVE_cc0
2336 /* If this is a conditional branch, maybe modify it
2337 if the cc's are in a nonstandard state
2338 so that it accomplishes the same thing that it would
2339 do straightforwardly if the cc's were set up normally. */
2341 if (cc_status.flags != 0
2342 && JUMP_P (insn)
2343 && GET_CODE (body) == SET
2344 && SET_DEST (body) == pc_rtx
2345 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2346 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2347 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2349 /* This function may alter the contents of its argument
2350 and clear some of the cc_status.flags bits.
2351 It may also return 1 meaning condition now always true
2352 or -1 meaning condition now always false
2353 or 2 meaning condition nontrivial but altered. */
2354 int result = alter_cond (XEXP (SET_SRC (body), 0));
2355 /* If condition now has fixed value, replace the IF_THEN_ELSE
2356 with its then-operand or its else-operand. */
2357 if (result == 1)
2358 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2359 if (result == -1)
2360 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2362 /* The jump is now either unconditional or a no-op.
2363 If it has become a no-op, don't try to output it.
2364 (It would not be recognized.) */
2365 if (SET_SRC (body) == pc_rtx)
2367 delete_insn (insn);
2368 break;
2370 else if (GET_CODE (SET_SRC (body)) == RETURN)
2371 /* Replace (set (pc) (return)) with (return). */
2372 PATTERN (insn) = body = SET_SRC (body);
2374 /* Rerecognize the instruction if it has changed. */
2375 if (result != 0)
2376 INSN_CODE (insn) = -1;
2379 /* If this is a conditional trap, maybe modify it if the cc's
2380 are in a nonstandard state so that it accomplishes the same
2381 thing that it would do straightforwardly if the cc's were
2382 set up normally. */
2383 if (cc_status.flags != 0
2384 && NONJUMP_INSN_P (insn)
2385 && GET_CODE (body) == TRAP_IF
2386 && COMPARISON_P (TRAP_CONDITION (body))
2387 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2389 /* This function may alter the contents of its argument
2390 and clear some of the cc_status.flags bits.
2391 It may also return 1 meaning condition now always true
2392 or -1 meaning condition now always false
2393 or 2 meaning condition nontrivial but altered. */
2394 int result = alter_cond (TRAP_CONDITION (body));
2396 /* If TRAP_CONDITION has become always false, delete the
2397 instruction. */
2398 if (result == -1)
2400 delete_insn (insn);
2401 break;
2404 /* If TRAP_CONDITION has become always true, replace
2405 TRAP_CONDITION with const_true_rtx. */
2406 if (result == 1)
2407 TRAP_CONDITION (body) = const_true_rtx;
2409 /* Rerecognize the instruction if it has changed. */
2410 if (result != 0)
2411 INSN_CODE (insn) = -1;
2414 /* Make same adjustments to instructions that examine the
2415 condition codes without jumping and instructions that
2416 handle conditional moves (if this machine has either one). */
2418 if (cc_status.flags != 0
2419 && set != 0)
2421 rtx cond_rtx, then_rtx, else_rtx;
2423 if (!JUMP_P (insn)
2424 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2426 cond_rtx = XEXP (SET_SRC (set), 0);
2427 then_rtx = XEXP (SET_SRC (set), 1);
2428 else_rtx = XEXP (SET_SRC (set), 2);
2430 else
2432 cond_rtx = SET_SRC (set);
2433 then_rtx = const_true_rtx;
2434 else_rtx = const0_rtx;
2437 switch (GET_CODE (cond_rtx))
2439 case GTU:
2440 case GT:
2441 case LTU:
2442 case LT:
2443 case GEU:
2444 case GE:
2445 case LEU:
2446 case LE:
2447 case EQ:
2448 case NE:
2450 int result;
2451 if (XEXP (cond_rtx, 0) != cc0_rtx)
2452 break;
2453 result = alter_cond (cond_rtx);
2454 if (result == 1)
2455 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2456 else if (result == -1)
2457 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2458 else if (result == 2)
2459 INSN_CODE (insn) = -1;
2460 if (SET_DEST (set) == SET_SRC (set))
2461 delete_insn (insn);
2463 break;
2465 default:
2466 break;
2470 #endif
2472 #ifdef HAVE_peephole
2473 /* Do machine-specific peephole optimizations if desired. */
2475 if (optimize && !flag_no_peephole && !nopeepholes)
2477 rtx next = peephole (insn);
2478 /* When peepholing, if there were notes within the peephole,
2479 emit them before the peephole. */
2480 if (next != 0 && next != NEXT_INSN (insn))
2482 rtx note, prev = PREV_INSN (insn);
2484 for (note = NEXT_INSN (insn); note != next;
2485 note = NEXT_INSN (note))
2486 final_scan_insn (note, file, optimize, nopeepholes, seen);
2488 /* Put the notes in the proper position for a later
2489 rescan. For example, the SH target can do this
2490 when generating a far jump in a delayed branch
2491 sequence. */
2492 note = NEXT_INSN (insn);
2493 PREV_INSN (note) = prev;
2494 NEXT_INSN (prev) = note;
2495 NEXT_INSN (PREV_INSN (next)) = insn;
2496 PREV_INSN (insn) = PREV_INSN (next);
2497 NEXT_INSN (insn) = next;
2498 PREV_INSN (next) = insn;
2501 /* PEEPHOLE might have changed this. */
2502 body = PATTERN (insn);
2504 #endif
2506 /* Try to recognize the instruction.
2507 If successful, verify that the operands satisfy the
2508 constraints for the instruction. Crash if they don't,
2509 since `reload' should have changed them so that they do. */
2511 insn_code_number = recog_memoized (insn);
2512 cleanup_subreg_operands (insn);
2514 /* Dump the insn in the assembly for debugging. */
2515 if (flag_dump_rtl_in_asm)
2517 print_rtx_head = ASM_COMMENT_START;
2518 print_rtl_single (asm_out_file, insn);
2519 print_rtx_head = "";
2522 if (! constrain_operands_cached (1))
2523 fatal_insn_not_found (insn);
2525 /* Some target machines need to prescan each insn before
2526 it is output. */
2528 #ifdef FINAL_PRESCAN_INSN
2529 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2530 #endif
2532 #ifdef HAVE_conditional_execution
2533 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2534 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2535 #endif
2537 #ifdef HAVE_cc0
2538 cc_prev_status = cc_status;
2540 /* Update `cc_status' for this instruction.
2541 The instruction's output routine may change it further.
2542 If the output routine for a jump insn needs to depend
2543 on the cc status, it should look at cc_prev_status. */
2545 NOTICE_UPDATE_CC (body, insn);
2546 #endif
2548 current_output_insn = debug_insn = insn;
2550 #if defined (DWARF2_UNWIND_INFO)
2551 if (CALL_P (insn) && dwarf2out_do_frame ())
2552 dwarf2out_frame_debug (insn, false);
2553 #endif
2555 /* Find the proper template for this insn. */
2556 template = get_insn_template (insn_code_number, insn);
2558 /* If the C code returns 0, it means that it is a jump insn
2559 which follows a deleted test insn, and that test insn
2560 needs to be reinserted. */
2561 if (template == 0)
2563 rtx prev;
2565 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2567 /* We have already processed the notes between the setter and
2568 the user. Make sure we don't process them again, this is
2569 particularly important if one of the notes is a block
2570 scope note or an EH note. */
2571 for (prev = insn;
2572 prev != last_ignored_compare;
2573 prev = PREV_INSN (prev))
2575 if (NOTE_P (prev))
2576 delete_insn (prev); /* Use delete_note. */
2579 return prev;
2582 /* If the template is the string "#", it means that this insn must
2583 be split. */
2584 if (template[0] == '#' && template[1] == '\0')
2586 rtx new = try_split (body, insn, 0);
2588 /* If we didn't split the insn, go away. */
2589 if (new == insn && PATTERN (new) == body)
2590 fatal_insn ("could not split insn", insn);
2592 #ifdef HAVE_ATTR_length
2593 /* This instruction should have been split in shorten_branches,
2594 to ensure that we would have valid length info for the
2595 splitees. */
2596 gcc_unreachable ();
2597 #endif
2599 return new;
2602 #ifdef TARGET_UNWIND_INFO
2603 /* ??? This will put the directives in the wrong place if
2604 get_insn_template outputs assembly directly. However calling it
2605 before get_insn_template breaks if the insns is split. */
2606 targetm.asm_out.unwind_emit (asm_out_file, insn);
2607 #endif
2609 /* Output assembler code from the template. */
2610 output_asm_insn (template, recog_data.operand);
2612 /* If necessary, report the effect that the instruction has on
2613 the unwind info. We've already done this for delay slots
2614 and call instructions. */
2615 #if defined (DWARF2_UNWIND_INFO)
2616 if (final_sequence == 0
2617 #if !defined (HAVE_prologue)
2618 && !ACCUMULATE_OUTGOING_ARGS
2619 #endif
2620 && dwarf2out_do_frame ())
2621 dwarf2out_frame_debug (insn, true);
2622 #endif
2624 current_output_insn = debug_insn = 0;
2627 return NEXT_INSN (insn);
2630 /* Return whether a source line note needs to be emitted before INSN. */
2632 static bool
2633 notice_source_line (rtx insn)
2635 const char *filename;
2636 int linenum;
2638 if (override_filename)
2640 filename = override_filename;
2641 linenum = override_linenum;
2643 else
2645 filename = insn_file (insn);
2646 linenum = insn_line (insn);
2649 if (filename
2650 && (force_source_line
2651 || filename != last_filename
2652 || last_linenum != linenum))
2654 force_source_line = false;
2655 last_filename = filename;
2656 last_linenum = linenum;
2657 high_block_linenum = MAX (last_linenum, high_block_linenum);
2658 high_function_linenum = MAX (last_linenum, high_function_linenum);
2659 return true;
2661 return false;
2664 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2665 directly to the desired hard register. */
2667 void
2668 cleanup_subreg_operands (rtx insn)
2670 int i;
2671 bool changed = false;
2672 extract_insn_cached (insn);
2673 for (i = 0; i < recog_data.n_operands; i++)
2675 /* The following test cannot use recog_data.operand when testing
2676 for a SUBREG: the underlying object might have been changed
2677 already if we are inside a match_operator expression that
2678 matches the else clause. Instead we test the underlying
2679 expression directly. */
2680 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2682 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2683 changed = true;
2685 else if (GET_CODE (recog_data.operand[i]) == PLUS
2686 || GET_CODE (recog_data.operand[i]) == MULT
2687 || MEM_P (recog_data.operand[i]))
2688 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
2691 for (i = 0; i < recog_data.n_dups; i++)
2693 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2695 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2696 changed = true;
2698 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2699 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2700 || MEM_P (*recog_data.dup_loc[i]))
2701 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
2703 if (changed)
2704 df_insn_rescan (insn);
2707 /* If X is a SUBREG, replace it with a REG or a MEM,
2708 based on the thing it is a subreg of. */
2711 alter_subreg (rtx *xp)
2713 rtx x = *xp;
2714 rtx y = SUBREG_REG (x);
2716 /* simplify_subreg does not remove subreg from volatile references.
2717 We are required to. */
2718 if (MEM_P (y))
2720 int offset = SUBREG_BYTE (x);
2722 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2723 contains 0 instead of the proper offset. See simplify_subreg. */
2724 if (offset == 0
2725 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2727 int difference = GET_MODE_SIZE (GET_MODE (y))
2728 - GET_MODE_SIZE (GET_MODE (x));
2729 if (WORDS_BIG_ENDIAN)
2730 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2731 if (BYTES_BIG_ENDIAN)
2732 offset += difference % UNITS_PER_WORD;
2735 *xp = adjust_address (y, GET_MODE (x), offset);
2737 else
2739 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2740 SUBREG_BYTE (x));
2742 if (new != 0)
2743 *xp = new;
2744 else if (REG_P (y))
2746 /* Simplify_subreg can't handle some REG cases, but we have to. */
2747 unsigned int regno;
2748 HOST_WIDE_INT offset;
2750 regno = subreg_regno (x);
2751 if (subreg_lowpart_p (x))
2752 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
2753 else
2754 offset = SUBREG_BYTE (x);
2755 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
2759 return *xp;
2762 /* Do alter_subreg on all the SUBREGs contained in X. */
2764 static rtx
2765 walk_alter_subreg (rtx *xp, bool *changed)
2767 rtx x = *xp;
2768 switch (GET_CODE (x))
2770 case PLUS:
2771 case MULT:
2772 case AND:
2773 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2774 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
2775 break;
2777 case MEM:
2778 case ZERO_EXTEND:
2779 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2780 break;
2782 case SUBREG:
2783 *changed = true;
2784 return alter_subreg (xp);
2786 default:
2787 break;
2790 return *xp;
2793 #ifdef HAVE_cc0
2795 /* Given BODY, the body of a jump instruction, alter the jump condition
2796 as required by the bits that are set in cc_status.flags.
2797 Not all of the bits there can be handled at this level in all cases.
2799 The value is normally 0.
2800 1 means that the condition has become always true.
2801 -1 means that the condition has become always false.
2802 2 means that COND has been altered. */
2804 static int
2805 alter_cond (rtx cond)
2807 int value = 0;
2809 if (cc_status.flags & CC_REVERSED)
2811 value = 2;
2812 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2815 if (cc_status.flags & CC_INVERTED)
2817 value = 2;
2818 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2821 if (cc_status.flags & CC_NOT_POSITIVE)
2822 switch (GET_CODE (cond))
2824 case LE:
2825 case LEU:
2826 case GEU:
2827 /* Jump becomes unconditional. */
2828 return 1;
2830 case GT:
2831 case GTU:
2832 case LTU:
2833 /* Jump becomes no-op. */
2834 return -1;
2836 case GE:
2837 PUT_CODE (cond, EQ);
2838 value = 2;
2839 break;
2841 case LT:
2842 PUT_CODE (cond, NE);
2843 value = 2;
2844 break;
2846 default:
2847 break;
2850 if (cc_status.flags & CC_NOT_NEGATIVE)
2851 switch (GET_CODE (cond))
2853 case GE:
2854 case GEU:
2855 /* Jump becomes unconditional. */
2856 return 1;
2858 case LT:
2859 case LTU:
2860 /* Jump becomes no-op. */
2861 return -1;
2863 case LE:
2864 case LEU:
2865 PUT_CODE (cond, EQ);
2866 value = 2;
2867 break;
2869 case GT:
2870 case GTU:
2871 PUT_CODE (cond, NE);
2872 value = 2;
2873 break;
2875 default:
2876 break;
2879 if (cc_status.flags & CC_NO_OVERFLOW)
2880 switch (GET_CODE (cond))
2882 case GEU:
2883 /* Jump becomes unconditional. */
2884 return 1;
2886 case LEU:
2887 PUT_CODE (cond, EQ);
2888 value = 2;
2889 break;
2891 case GTU:
2892 PUT_CODE (cond, NE);
2893 value = 2;
2894 break;
2896 case LTU:
2897 /* Jump becomes no-op. */
2898 return -1;
2900 default:
2901 break;
2904 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2905 switch (GET_CODE (cond))
2907 default:
2908 gcc_unreachable ();
2910 case NE:
2911 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2912 value = 2;
2913 break;
2915 case EQ:
2916 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2917 value = 2;
2918 break;
2921 if (cc_status.flags & CC_NOT_SIGNED)
2922 /* The flags are valid if signed condition operators are converted
2923 to unsigned. */
2924 switch (GET_CODE (cond))
2926 case LE:
2927 PUT_CODE (cond, LEU);
2928 value = 2;
2929 break;
2931 case LT:
2932 PUT_CODE (cond, LTU);
2933 value = 2;
2934 break;
2936 case GT:
2937 PUT_CODE (cond, GTU);
2938 value = 2;
2939 break;
2941 case GE:
2942 PUT_CODE (cond, GEU);
2943 value = 2;
2944 break;
2946 default:
2947 break;
2950 return value;
2952 #endif
2954 /* Report inconsistency between the assembler template and the operands.
2955 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2957 void
2958 output_operand_lossage (const char *cmsgid, ...)
2960 char *fmt_string;
2961 char *new_message;
2962 const char *pfx_str;
2963 va_list ap;
2965 va_start (ap, cmsgid);
2967 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2968 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2969 vasprintf (&new_message, fmt_string, ap);
2971 if (this_is_asm_operands)
2972 error_for_asm (this_is_asm_operands, "%s", new_message);
2973 else
2974 internal_error ("%s", new_message);
2976 free (fmt_string);
2977 free (new_message);
2978 va_end (ap);
2981 /* Output of assembler code from a template, and its subroutines. */
2983 /* Annotate the assembly with a comment describing the pattern and
2984 alternative used. */
2986 static void
2987 output_asm_name (void)
2989 if (debug_insn)
2991 int num = INSN_CODE (debug_insn);
2992 fprintf (asm_out_file, "\t%s %d\t%s",
2993 ASM_COMMENT_START, INSN_UID (debug_insn),
2994 insn_data[num].name);
2995 if (insn_data[num].n_alternatives > 1)
2996 fprintf (asm_out_file, "/%d", which_alternative + 1);
2997 #ifdef HAVE_ATTR_length
2998 fprintf (asm_out_file, "\t[length = %d]",
2999 get_attr_length (debug_insn));
3000 #endif
3001 /* Clear this so only the first assembler insn
3002 of any rtl insn will get the special comment for -dp. */
3003 debug_insn = 0;
3007 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3008 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3009 corresponds to the address of the object and 0 if to the object. */
3011 static tree
3012 get_mem_expr_from_op (rtx op, int *paddressp)
3014 tree expr;
3015 int inner_addressp;
3017 *paddressp = 0;
3019 if (REG_P (op))
3020 return REG_EXPR (op);
3021 else if (!MEM_P (op))
3022 return 0;
3024 if (MEM_EXPR (op) != 0)
3025 return MEM_EXPR (op);
3027 /* Otherwise we have an address, so indicate it and look at the address. */
3028 *paddressp = 1;
3029 op = XEXP (op, 0);
3031 /* First check if we have a decl for the address, then look at the right side
3032 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3033 But don't allow the address to itself be indirect. */
3034 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3035 return expr;
3036 else if (GET_CODE (op) == PLUS
3037 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3038 return expr;
3040 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
3041 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3042 op = XEXP (op, 0);
3044 expr = get_mem_expr_from_op (op, &inner_addressp);
3045 return inner_addressp ? 0 : expr;
3048 /* Output operand names for assembler instructions. OPERANDS is the
3049 operand vector, OPORDER is the order to write the operands, and NOPS
3050 is the number of operands to write. */
3052 static void
3053 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3055 int wrote = 0;
3056 int i;
3058 for (i = 0; i < nops; i++)
3060 int addressp;
3061 rtx op = operands[oporder[i]];
3062 tree expr = get_mem_expr_from_op (op, &addressp);
3064 fprintf (asm_out_file, "%c%s",
3065 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3066 wrote = 1;
3067 if (expr)
3069 fprintf (asm_out_file, "%s",
3070 addressp ? "*" : "");
3071 print_mem_expr (asm_out_file, expr);
3072 wrote = 1;
3074 else if (REG_P (op) && ORIGINAL_REGNO (op)
3075 && ORIGINAL_REGNO (op) != REGNO (op))
3076 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3080 /* Output text from TEMPLATE to the assembler output file,
3081 obeying %-directions to substitute operands taken from
3082 the vector OPERANDS.
3084 %N (for N a digit) means print operand N in usual manner.
3085 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3086 and print the label name with no punctuation.
3087 %cN means require operand N to be a constant
3088 and print the constant expression with no punctuation.
3089 %aN means expect operand N to be a memory address
3090 (not a memory reference!) and print a reference
3091 to that address.
3092 %nN means expect operand N to be a constant
3093 and print a constant expression for minus the value
3094 of the operand, with no other punctuation. */
3096 void
3097 output_asm_insn (const char *template, rtx *operands)
3099 const char *p;
3100 int c;
3101 #ifdef ASSEMBLER_DIALECT
3102 int dialect = 0;
3103 #endif
3104 int oporder[MAX_RECOG_OPERANDS];
3105 char opoutput[MAX_RECOG_OPERANDS];
3106 int ops = 0;
3108 /* An insn may return a null string template
3109 in a case where no assembler code is needed. */
3110 if (*template == 0)
3111 return;
3113 memset (opoutput, 0, sizeof opoutput);
3114 p = template;
3115 putc ('\t', asm_out_file);
3117 #ifdef ASM_OUTPUT_OPCODE
3118 ASM_OUTPUT_OPCODE (asm_out_file, p);
3119 #endif
3121 while ((c = *p++))
3122 switch (c)
3124 case '\n':
3125 if (flag_verbose_asm)
3126 output_asm_operand_names (operands, oporder, ops);
3127 if (flag_print_asm_name)
3128 output_asm_name ();
3130 ops = 0;
3131 memset (opoutput, 0, sizeof opoutput);
3133 putc (c, asm_out_file);
3134 #ifdef ASM_OUTPUT_OPCODE
3135 while ((c = *p) == '\t')
3137 putc (c, asm_out_file);
3138 p++;
3140 ASM_OUTPUT_OPCODE (asm_out_file, p);
3141 #endif
3142 break;
3144 #ifdef ASSEMBLER_DIALECT
3145 case '{':
3147 int i;
3149 if (dialect)
3150 output_operand_lossage ("nested assembly dialect alternatives");
3151 else
3152 dialect = 1;
3154 /* If we want the first dialect, do nothing. Otherwise, skip
3155 DIALECT_NUMBER of strings ending with '|'. */
3156 for (i = 0; i < dialect_number; i++)
3158 while (*p && *p != '}' && *p++ != '|')
3160 if (*p == '}')
3161 break;
3162 if (*p == '|')
3163 p++;
3166 if (*p == '\0')
3167 output_operand_lossage ("unterminated assembly dialect alternative");
3169 break;
3171 case '|':
3172 if (dialect)
3174 /* Skip to close brace. */
3177 if (*p == '\0')
3179 output_operand_lossage ("unterminated assembly dialect alternative");
3180 break;
3183 while (*p++ != '}');
3184 dialect = 0;
3186 else
3187 putc (c, asm_out_file);
3188 break;
3190 case '}':
3191 if (! dialect)
3192 putc (c, asm_out_file);
3193 dialect = 0;
3194 break;
3195 #endif
3197 case '%':
3198 /* %% outputs a single %. */
3199 if (*p == '%')
3201 p++;
3202 putc (c, asm_out_file);
3204 /* %= outputs a number which is unique to each insn in the entire
3205 compilation. This is useful for making local labels that are
3206 referred to more than once in a given insn. */
3207 else if (*p == '=')
3209 p++;
3210 fprintf (asm_out_file, "%d", insn_counter);
3212 /* % followed by a letter and some digits
3213 outputs an operand in a special way depending on the letter.
3214 Letters `acln' are implemented directly.
3215 Other letters are passed to `output_operand' so that
3216 the PRINT_OPERAND macro can define them. */
3217 else if (ISALPHA (*p))
3219 int letter = *p++;
3220 unsigned long opnum;
3221 char *endptr;
3223 opnum = strtoul (p, &endptr, 10);
3225 if (endptr == p)
3226 output_operand_lossage ("operand number missing "
3227 "after %%-letter");
3228 else if (this_is_asm_operands && opnum >= insn_noperands)
3229 output_operand_lossage ("operand number out of range");
3230 else if (letter == 'l')
3231 output_asm_label (operands[opnum]);
3232 else if (letter == 'a')
3233 output_address (operands[opnum]);
3234 else if (letter == 'c')
3236 if (CONSTANT_ADDRESS_P (operands[opnum]))
3237 output_addr_const (asm_out_file, operands[opnum]);
3238 else
3239 output_operand (operands[opnum], 'c');
3241 else if (letter == 'n')
3243 if (GET_CODE (operands[opnum]) == CONST_INT)
3244 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3245 - INTVAL (operands[opnum]));
3246 else
3248 putc ('-', asm_out_file);
3249 output_addr_const (asm_out_file, operands[opnum]);
3252 else
3253 output_operand (operands[opnum], letter);
3255 if (!opoutput[opnum])
3256 oporder[ops++] = opnum;
3257 opoutput[opnum] = 1;
3259 p = endptr;
3260 c = *p;
3262 /* % followed by a digit outputs an operand the default way. */
3263 else if (ISDIGIT (*p))
3265 unsigned long opnum;
3266 char *endptr;
3268 opnum = strtoul (p, &endptr, 10);
3269 if (this_is_asm_operands && opnum >= insn_noperands)
3270 output_operand_lossage ("operand number out of range");
3271 else
3272 output_operand (operands[opnum], 0);
3274 if (!opoutput[opnum])
3275 oporder[ops++] = opnum;
3276 opoutput[opnum] = 1;
3278 p = endptr;
3279 c = *p;
3281 /* % followed by punctuation: output something for that
3282 punctuation character alone, with no operand.
3283 The PRINT_OPERAND macro decides what is actually done. */
3284 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3285 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3286 output_operand (NULL_RTX, *p++);
3287 #endif
3288 else
3289 output_operand_lossage ("invalid %%-code");
3290 break;
3292 default:
3293 putc (c, asm_out_file);
3296 /* Write out the variable names for operands, if we know them. */
3297 if (flag_verbose_asm)
3298 output_asm_operand_names (operands, oporder, ops);
3299 if (flag_print_asm_name)
3300 output_asm_name ();
3302 putc ('\n', asm_out_file);
3305 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3307 void
3308 output_asm_label (rtx x)
3310 char buf[256];
3312 if (GET_CODE (x) == LABEL_REF)
3313 x = XEXP (x, 0);
3314 if (LABEL_P (x)
3315 || (NOTE_P (x)
3316 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3317 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3318 else
3319 output_operand_lossage ("'%%l' operand isn't a label");
3321 assemble_name (asm_out_file, buf);
3324 /* Print operand X using machine-dependent assembler syntax.
3325 The macro PRINT_OPERAND is defined just to control this function.
3326 CODE is a non-digit that preceded the operand-number in the % spec,
3327 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3328 between the % and the digits.
3329 When CODE is a non-letter, X is 0.
3331 The meanings of the letters are machine-dependent and controlled
3332 by PRINT_OPERAND. */
3334 static void
3335 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3337 if (x && GET_CODE (x) == SUBREG)
3338 x = alter_subreg (&x);
3340 /* X must not be a pseudo reg. */
3341 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3343 PRINT_OPERAND (asm_out_file, x, code);
3346 /* Print a memory reference operand for address X
3347 using machine-dependent assembler syntax.
3348 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3350 void
3351 output_address (rtx x)
3353 bool changed = false;
3354 walk_alter_subreg (&x, &changed);
3355 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3358 /* Print an integer constant expression in assembler syntax.
3359 Addition and subtraction are the only arithmetic
3360 that may appear in these expressions. */
3362 void
3363 output_addr_const (FILE *file, rtx x)
3365 char buf[256];
3367 restart:
3368 switch (GET_CODE (x))
3370 case PC:
3371 putc ('.', file);
3372 break;
3374 case SYMBOL_REF:
3375 if (SYMBOL_REF_DECL (x))
3376 mark_decl_referenced (SYMBOL_REF_DECL (x));
3377 #ifdef ASM_OUTPUT_SYMBOL_REF
3378 ASM_OUTPUT_SYMBOL_REF (file, x);
3379 #else
3380 assemble_name (file, XSTR (x, 0));
3381 #endif
3382 break;
3384 case LABEL_REF:
3385 x = XEXP (x, 0);
3386 /* Fall through. */
3387 case CODE_LABEL:
3388 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3389 #ifdef ASM_OUTPUT_LABEL_REF
3390 ASM_OUTPUT_LABEL_REF (file, buf);
3391 #else
3392 assemble_name (file, buf);
3393 #endif
3394 break;
3396 case CONST_INT:
3397 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3398 break;
3400 case CONST:
3401 /* This used to output parentheses around the expression,
3402 but that does not work on the 386 (either ATT or BSD assembler). */
3403 output_addr_const (file, XEXP (x, 0));
3404 break;
3406 case CONST_DOUBLE:
3407 if (GET_MODE (x) == VOIDmode)
3409 /* We can use %d if the number is one word and positive. */
3410 if (CONST_DOUBLE_HIGH (x))
3411 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3412 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3413 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3414 else if (CONST_DOUBLE_LOW (x) < 0)
3415 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3416 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3417 else
3418 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3420 else
3421 /* We can't handle floating point constants;
3422 PRINT_OPERAND must handle them. */
3423 output_operand_lossage ("floating constant misused");
3424 break;
3426 case CONST_FIXED:
3427 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3428 (unsigned HOST_WIDE_INT) CONST_FIXED_VALUE_LOW (x));
3429 break;
3431 case PLUS:
3432 /* Some assemblers need integer constants to appear last (eg masm). */
3433 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3435 output_addr_const (file, XEXP (x, 1));
3436 if (INTVAL (XEXP (x, 0)) >= 0)
3437 fprintf (file, "+");
3438 output_addr_const (file, XEXP (x, 0));
3440 else
3442 output_addr_const (file, XEXP (x, 0));
3443 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3444 || INTVAL (XEXP (x, 1)) >= 0)
3445 fprintf (file, "+");
3446 output_addr_const (file, XEXP (x, 1));
3448 break;
3450 case MINUS:
3451 /* Avoid outputting things like x-x or x+5-x,
3452 since some assemblers can't handle that. */
3453 x = simplify_subtraction (x);
3454 if (GET_CODE (x) != MINUS)
3455 goto restart;
3457 output_addr_const (file, XEXP (x, 0));
3458 fprintf (file, "-");
3459 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3460 || GET_CODE (XEXP (x, 1)) == PC
3461 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3462 output_addr_const (file, XEXP (x, 1));
3463 else
3465 fputs (targetm.asm_out.open_paren, file);
3466 output_addr_const (file, XEXP (x, 1));
3467 fputs (targetm.asm_out.close_paren, file);
3469 break;
3471 case ZERO_EXTEND:
3472 case SIGN_EXTEND:
3473 case SUBREG:
3474 case TRUNCATE:
3475 output_addr_const (file, XEXP (x, 0));
3476 break;
3478 default:
3479 #ifdef OUTPUT_ADDR_CONST_EXTRA
3480 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3481 break;
3483 fail:
3484 #endif
3485 output_operand_lossage ("invalid expression as operand");
3489 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3490 %R prints the value of REGISTER_PREFIX.
3491 %L prints the value of LOCAL_LABEL_PREFIX.
3492 %U prints the value of USER_LABEL_PREFIX.
3493 %I prints the value of IMMEDIATE_PREFIX.
3494 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3495 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3497 We handle alternate assembler dialects here, just like output_asm_insn. */
3499 void
3500 asm_fprintf (FILE *file, const char *p, ...)
3502 char buf[10];
3503 char *q, c;
3504 va_list argptr;
3506 va_start (argptr, p);
3508 buf[0] = '%';
3510 while ((c = *p++))
3511 switch (c)
3513 #ifdef ASSEMBLER_DIALECT
3514 case '{':
3516 int i;
3518 /* If we want the first dialect, do nothing. Otherwise, skip
3519 DIALECT_NUMBER of strings ending with '|'. */
3520 for (i = 0; i < dialect_number; i++)
3522 while (*p && *p++ != '|')
3525 if (*p == '|')
3526 p++;
3529 break;
3531 case '|':
3532 /* Skip to close brace. */
3533 while (*p && *p++ != '}')
3535 break;
3537 case '}':
3538 break;
3539 #endif
3541 case '%':
3542 c = *p++;
3543 q = &buf[1];
3544 while (strchr ("-+ #0", c))
3546 *q++ = c;
3547 c = *p++;
3549 while (ISDIGIT (c) || c == '.')
3551 *q++ = c;
3552 c = *p++;
3554 switch (c)
3556 case '%':
3557 putc ('%', file);
3558 break;
3560 case 'd': case 'i': case 'u':
3561 case 'x': case 'X': case 'o':
3562 case 'c':
3563 *q++ = c;
3564 *q = 0;
3565 fprintf (file, buf, va_arg (argptr, int));
3566 break;
3568 case 'w':
3569 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3570 'o' cases, but we do not check for those cases. It
3571 means that the value is a HOST_WIDE_INT, which may be
3572 either `long' or `long long'. */
3573 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3574 q += strlen (HOST_WIDE_INT_PRINT);
3575 *q++ = *p++;
3576 *q = 0;
3577 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3578 break;
3580 case 'l':
3581 *q++ = c;
3582 #ifdef HAVE_LONG_LONG
3583 if (*p == 'l')
3585 *q++ = *p++;
3586 *q++ = *p++;
3587 *q = 0;
3588 fprintf (file, buf, va_arg (argptr, long long));
3590 else
3591 #endif
3593 *q++ = *p++;
3594 *q = 0;
3595 fprintf (file, buf, va_arg (argptr, long));
3598 break;
3600 case 's':
3601 *q++ = c;
3602 *q = 0;
3603 fprintf (file, buf, va_arg (argptr, char *));
3604 break;
3606 case 'O':
3607 #ifdef ASM_OUTPUT_OPCODE
3608 ASM_OUTPUT_OPCODE (asm_out_file, p);
3609 #endif
3610 break;
3612 case 'R':
3613 #ifdef REGISTER_PREFIX
3614 fprintf (file, "%s", REGISTER_PREFIX);
3615 #endif
3616 break;
3618 case 'I':
3619 #ifdef IMMEDIATE_PREFIX
3620 fprintf (file, "%s", IMMEDIATE_PREFIX);
3621 #endif
3622 break;
3624 case 'L':
3625 #ifdef LOCAL_LABEL_PREFIX
3626 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3627 #endif
3628 break;
3630 case 'U':
3631 fputs (user_label_prefix, file);
3632 break;
3634 #ifdef ASM_FPRINTF_EXTENSIONS
3635 /* Uppercase letters are reserved for general use by asm_fprintf
3636 and so are not available to target specific code. In order to
3637 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3638 they are defined here. As they get turned into real extensions
3639 to asm_fprintf they should be removed from this list. */
3640 case 'A': case 'B': case 'C': case 'D': case 'E':
3641 case 'F': case 'G': case 'H': case 'J': case 'K':
3642 case 'M': case 'N': case 'P': case 'Q': case 'S':
3643 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3644 break;
3646 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3647 #endif
3648 default:
3649 gcc_unreachable ();
3651 break;
3653 default:
3654 putc (c, file);
3656 va_end (argptr);
3659 /* Split up a CONST_DOUBLE or integer constant rtx
3660 into two rtx's for single words,
3661 storing in *FIRST the word that comes first in memory in the target
3662 and in *SECOND the other. */
3664 void
3665 split_double (rtx value, rtx *first, rtx *second)
3667 if (GET_CODE (value) == CONST_INT)
3669 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3671 /* In this case the CONST_INT holds both target words.
3672 Extract the bits from it into two word-sized pieces.
3673 Sign extend each half to HOST_WIDE_INT. */
3674 unsigned HOST_WIDE_INT low, high;
3675 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3677 /* Set sign_bit to the most significant bit of a word. */
3678 sign_bit = 1;
3679 sign_bit <<= BITS_PER_WORD - 1;
3681 /* Set mask so that all bits of the word are set. We could
3682 have used 1 << BITS_PER_WORD instead of basing the
3683 calculation on sign_bit. However, on machines where
3684 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3685 compiler warning, even though the code would never be
3686 executed. */
3687 mask = sign_bit << 1;
3688 mask--;
3690 /* Set sign_extend as any remaining bits. */
3691 sign_extend = ~mask;
3693 /* Pick the lower word and sign-extend it. */
3694 low = INTVAL (value);
3695 low &= mask;
3696 if (low & sign_bit)
3697 low |= sign_extend;
3699 /* Pick the higher word, shifted to the least significant
3700 bits, and sign-extend it. */
3701 high = INTVAL (value);
3702 high >>= BITS_PER_WORD - 1;
3703 high >>= 1;
3704 high &= mask;
3705 if (high & sign_bit)
3706 high |= sign_extend;
3708 /* Store the words in the target machine order. */
3709 if (WORDS_BIG_ENDIAN)
3711 *first = GEN_INT (high);
3712 *second = GEN_INT (low);
3714 else
3716 *first = GEN_INT (low);
3717 *second = GEN_INT (high);
3720 else
3722 /* The rule for using CONST_INT for a wider mode
3723 is that we regard the value as signed.
3724 So sign-extend it. */
3725 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3726 if (WORDS_BIG_ENDIAN)
3728 *first = high;
3729 *second = value;
3731 else
3733 *first = value;
3734 *second = high;
3738 else if (GET_CODE (value) != CONST_DOUBLE)
3740 if (WORDS_BIG_ENDIAN)
3742 *first = const0_rtx;
3743 *second = value;
3745 else
3747 *first = value;
3748 *second = const0_rtx;
3751 else if (GET_MODE (value) == VOIDmode
3752 /* This is the old way we did CONST_DOUBLE integers. */
3753 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3755 /* In an integer, the words are defined as most and least significant.
3756 So order them by the target's convention. */
3757 if (WORDS_BIG_ENDIAN)
3759 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3760 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3762 else
3764 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3765 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3768 else
3770 REAL_VALUE_TYPE r;
3771 long l[2];
3772 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3774 /* Note, this converts the REAL_VALUE_TYPE to the target's
3775 format, splits up the floating point double and outputs
3776 exactly 32 bits of it into each of l[0] and l[1] --
3777 not necessarily BITS_PER_WORD bits. */
3778 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3780 /* If 32 bits is an entire word for the target, but not for the host,
3781 then sign-extend on the host so that the number will look the same
3782 way on the host that it would on the target. See for instance
3783 simplify_unary_operation. The #if is needed to avoid compiler
3784 warnings. */
3786 #if HOST_BITS_PER_LONG > 32
3787 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3789 if (l[0] & ((long) 1 << 31))
3790 l[0] |= ((long) (-1) << 32);
3791 if (l[1] & ((long) 1 << 31))
3792 l[1] |= ((long) (-1) << 32);
3794 #endif
3796 *first = GEN_INT (l[0]);
3797 *second = GEN_INT (l[1]);
3801 /* Return nonzero if this function has no function calls. */
3804 leaf_function_p (void)
3806 rtx insn;
3807 rtx link;
3809 if (crtl->profile || profile_arc_flag)
3810 return 0;
3812 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3814 if (CALL_P (insn)
3815 && ! SIBLING_CALL_P (insn))
3816 return 0;
3817 if (NONJUMP_INSN_P (insn)
3818 && GET_CODE (PATTERN (insn)) == SEQUENCE
3819 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3820 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3821 return 0;
3823 for (link = crtl->epilogue_delay_list;
3824 link;
3825 link = XEXP (link, 1))
3827 insn = XEXP (link, 0);
3829 if (CALL_P (insn)
3830 && ! SIBLING_CALL_P (insn))
3831 return 0;
3832 if (NONJUMP_INSN_P (insn)
3833 && GET_CODE (PATTERN (insn)) == SEQUENCE
3834 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3835 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3836 return 0;
3839 return 1;
3842 /* Return 1 if branch is a forward branch.
3843 Uses insn_shuid array, so it works only in the final pass. May be used by
3844 output templates to customary add branch prediction hints.
3847 final_forward_branch_p (rtx insn)
3849 int insn_id, label_id;
3851 gcc_assert (uid_shuid);
3852 insn_id = INSN_SHUID (insn);
3853 label_id = INSN_SHUID (JUMP_LABEL (insn));
3854 /* We've hit some insns that does not have id information available. */
3855 gcc_assert (insn_id && label_id);
3856 return insn_id < label_id;
3859 /* On some machines, a function with no call insns
3860 can run faster if it doesn't create its own register window.
3861 When output, the leaf function should use only the "output"
3862 registers. Ordinarily, the function would be compiled to use
3863 the "input" registers to find its arguments; it is a candidate
3864 for leaf treatment if it uses only the "input" registers.
3865 Leaf function treatment means renumbering so the function
3866 uses the "output" registers instead. */
3868 #ifdef LEAF_REGISTERS
3870 /* Return 1 if this function uses only the registers that can be
3871 safely renumbered. */
3874 only_leaf_regs_used (void)
3876 int i;
3877 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3879 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3880 if ((df_regs_ever_live_p (i) || global_regs[i])
3881 && ! permitted_reg_in_leaf_functions[i])
3882 return 0;
3884 if (crtl->uses_pic_offset_table
3885 && pic_offset_table_rtx != 0
3886 && REG_P (pic_offset_table_rtx)
3887 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3888 return 0;
3890 return 1;
3893 /* Scan all instructions and renumber all registers into those
3894 available in leaf functions. */
3896 static void
3897 leaf_renumber_regs (rtx first)
3899 rtx insn;
3901 /* Renumber only the actual patterns.
3902 The reg-notes can contain frame pointer refs,
3903 and renumbering them could crash, and should not be needed. */
3904 for (insn = first; insn; insn = NEXT_INSN (insn))
3905 if (INSN_P (insn))
3906 leaf_renumber_regs_insn (PATTERN (insn));
3907 for (insn = crtl->epilogue_delay_list;
3908 insn;
3909 insn = XEXP (insn, 1))
3910 if (INSN_P (XEXP (insn, 0)))
3911 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3914 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3915 available in leaf functions. */
3917 void
3918 leaf_renumber_regs_insn (rtx in_rtx)
3920 int i, j;
3921 const char *format_ptr;
3923 if (in_rtx == 0)
3924 return;
3926 /* Renumber all input-registers into output-registers.
3927 renumbered_regs would be 1 for an output-register;
3928 they */
3930 if (REG_P (in_rtx))
3932 int newreg;
3934 /* Don't renumber the same reg twice. */
3935 if (in_rtx->used)
3936 return;
3938 newreg = REGNO (in_rtx);
3939 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3940 to reach here as part of a REG_NOTE. */
3941 if (newreg >= FIRST_PSEUDO_REGISTER)
3943 in_rtx->used = 1;
3944 return;
3946 newreg = LEAF_REG_REMAP (newreg);
3947 gcc_assert (newreg >= 0);
3948 df_set_regs_ever_live (REGNO (in_rtx), false);
3949 df_set_regs_ever_live (newreg, true);
3950 SET_REGNO (in_rtx, newreg);
3951 in_rtx->used = 1;
3954 if (INSN_P (in_rtx))
3956 /* Inside a SEQUENCE, we find insns.
3957 Renumber just the patterns of these insns,
3958 just as we do for the top-level insns. */
3959 leaf_renumber_regs_insn (PATTERN (in_rtx));
3960 return;
3963 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3965 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3966 switch (*format_ptr++)
3968 case 'e':
3969 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3970 break;
3972 case 'E':
3973 if (NULL != XVEC (in_rtx, i))
3975 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3976 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3978 break;
3980 case 'S':
3981 case 's':
3982 case '0':
3983 case 'i':
3984 case 'w':
3985 case 'n':
3986 case 'u':
3987 break;
3989 default:
3990 gcc_unreachable ();
3993 #endif
3996 /* When -gused is used, emit debug info for only used symbols. But in
3997 addition to the standard intercepted debug_hooks there are some direct
3998 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3999 Those routines may also be called from a higher level intercepted routine. So
4000 to prevent recording data for an inner call to one of these for an intercept,
4001 we maintain an intercept nesting counter (debug_nesting). We only save the
4002 intercepted arguments if the nesting is 1. */
4003 int debug_nesting = 0;
4005 static tree *symbol_queue;
4006 int symbol_queue_index = 0;
4007 static int symbol_queue_size = 0;
4009 /* Generate the symbols for any queued up type symbols we encountered
4010 while generating the type info for some originally used symbol.
4011 This might generate additional entries in the queue. Only when
4012 the nesting depth goes to 0 is this routine called. */
4014 void
4015 debug_flush_symbol_queue (void)
4017 int i;
4019 /* Make sure that additionally queued items are not flushed
4020 prematurely. */
4022 ++debug_nesting;
4024 for (i = 0; i < symbol_queue_index; ++i)
4026 /* If we pushed queued symbols then such symbols must be
4027 output no matter what anyone else says. Specifically,
4028 we need to make sure dbxout_symbol() thinks the symbol was
4029 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
4030 which may be set for outside reasons. */
4031 int saved_tree_used = TREE_USED (symbol_queue[i]);
4032 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
4033 TREE_USED (symbol_queue[i]) = 1;
4034 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
4036 #ifdef DBX_DEBUGGING_INFO
4037 dbxout_symbol (symbol_queue[i], 0);
4038 #endif
4040 TREE_USED (symbol_queue[i]) = saved_tree_used;
4041 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
4044 symbol_queue_index = 0;
4045 --debug_nesting;
4048 /* Queue a type symbol needed as part of the definition of a decl
4049 symbol. These symbols are generated when debug_flush_symbol_queue()
4050 is called. */
4052 void
4053 debug_queue_symbol (tree decl)
4055 if (symbol_queue_index >= symbol_queue_size)
4057 symbol_queue_size += 10;
4058 symbol_queue = XRESIZEVEC (tree, symbol_queue, symbol_queue_size);
4061 symbol_queue[symbol_queue_index++] = decl;
4064 /* Free symbol queue. */
4065 void
4066 debug_free_queue (void)
4068 if (symbol_queue)
4070 free (symbol_queue);
4071 symbol_queue = NULL;
4072 symbol_queue_size = 0;
4076 /* Turn the RTL into assembly. */
4077 static unsigned int
4078 rest_of_handle_final (void)
4080 rtx x;
4081 const char *fnname;
4083 /* Get the function's name, as described by its RTL. This may be
4084 different from the DECL_NAME name used in the source file. */
4086 x = DECL_RTL (current_function_decl);
4087 gcc_assert (MEM_P (x));
4088 x = XEXP (x, 0);
4089 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4090 fnname = XSTR (x, 0);
4092 assemble_start_function (current_function_decl, fnname);
4093 final_start_function (get_insns (), asm_out_file, optimize);
4094 final (get_insns (), asm_out_file, optimize);
4095 final_end_function ();
4097 #ifdef TARGET_UNWIND_INFO
4098 /* ??? The IA-64 ".handlerdata" directive must be issued before
4099 the ".endp" directive that closes the procedure descriptor. */
4100 output_function_exception_table (fnname);
4101 #endif
4103 assemble_end_function (current_function_decl, fnname);
4105 #ifndef TARGET_UNWIND_INFO
4106 /* Otherwise, it feels unclean to switch sections in the middle. */
4107 output_function_exception_table (fnname);
4108 #endif
4110 user_defined_section_attribute = false;
4112 /* Free up reg info memory. */
4113 free_reg_info ();
4115 if (! quiet_flag)
4116 fflush (asm_out_file);
4118 /* Write DBX symbols if requested. */
4120 /* Note that for those inline functions where we don't initially
4121 know for certain that we will be generating an out-of-line copy,
4122 the first invocation of this routine (rest_of_compilation) will
4123 skip over this code by doing a `goto exit_rest_of_compilation;'.
4124 Later on, wrapup_global_declarations will (indirectly) call
4125 rest_of_compilation again for those inline functions that need
4126 to have out-of-line copies generated. During that call, we
4127 *will* be routed past here. */
4129 timevar_push (TV_SYMOUT);
4130 (*debug_hooks->function_decl) (current_function_decl);
4131 timevar_pop (TV_SYMOUT);
4132 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4133 && targetm.have_ctors_dtors)
4134 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4135 decl_init_priority_lookup
4136 (current_function_decl));
4137 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4138 && targetm.have_ctors_dtors)
4139 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4140 decl_fini_priority_lookup
4141 (current_function_decl));
4142 return 0;
4145 struct rtl_opt_pass pass_final =
4148 RTL_PASS,
4149 NULL, /* name */
4150 NULL, /* gate */
4151 rest_of_handle_final, /* execute */
4152 NULL, /* sub */
4153 NULL, /* next */
4154 0, /* static_pass_number */
4155 TV_FINAL, /* tv_id */
4156 0, /* properties_required */
4157 0, /* properties_provided */
4158 0, /* properties_destroyed */
4159 0, /* todo_flags_start */
4160 TODO_ggc_collect /* todo_flags_finish */
4165 static unsigned int
4166 rest_of_handle_shorten_branches (void)
4168 /* Shorten branches. */
4169 shorten_branches (get_insns ());
4170 return 0;
4173 struct rtl_opt_pass pass_shorten_branches =
4176 RTL_PASS,
4177 "shorten", /* name */
4178 NULL, /* gate */
4179 rest_of_handle_shorten_branches, /* execute */
4180 NULL, /* sub */
4181 NULL, /* next */
4182 0, /* static_pass_number */
4183 TV_FINAL, /* tv_id */
4184 0, /* properties_required */
4185 0, /* properties_provided */
4186 0, /* properties_destroyed */
4187 0, /* todo_flags_start */
4188 TODO_dump_func /* todo_flags_finish */
4193 static unsigned int
4194 rest_of_clean_state (void)
4196 rtx insn, next;
4198 /* It is very important to decompose the RTL instruction chain here:
4199 debug information keeps pointing into CODE_LABEL insns inside the function
4200 body. If these remain pointing to the other insns, we end up preserving
4201 whole RTL chain and attached detailed debug info in memory. */
4202 for (insn = get_insns (); insn; insn = next)
4204 next = NEXT_INSN (insn);
4205 NEXT_INSN (insn) = NULL;
4206 PREV_INSN (insn) = NULL;
4209 /* In case the function was not output,
4210 don't leave any temporary anonymous types
4211 queued up for sdb output. */
4212 #ifdef SDB_DEBUGGING_INFO
4213 if (write_symbols == SDB_DEBUG)
4214 sdbout_types (NULL_TREE);
4215 #endif
4217 reload_completed = 0;
4218 epilogue_completed = 0;
4219 #ifdef STACK_REGS
4220 regstack_completed = 0;
4221 #endif
4223 /* Clear out the insn_length contents now that they are no
4224 longer valid. */
4225 init_insn_lengths ();
4227 /* Show no temporary slots allocated. */
4228 init_temp_slots ();
4230 free_bb_for_insn ();
4232 if (targetm.binds_local_p (current_function_decl))
4234 unsigned int pref = crtl->preferred_stack_boundary;
4235 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4236 pref = crtl->stack_alignment_needed;
4237 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4238 = pref;
4241 /* Make sure volatile mem refs aren't considered valid operands for
4242 arithmetic insns. We must call this here if this is a nested inline
4243 function, since the above code leaves us in the init_recog state,
4244 and the function context push/pop code does not save/restore volatile_ok.
4246 ??? Maybe it isn't necessary for expand_start_function to call this
4247 anymore if we do it here? */
4249 init_recog_no_volatile ();
4251 /* We're done with this function. Free up memory if we can. */
4252 free_after_parsing (cfun);
4253 free_after_compilation (cfun);
4254 return 0;
4257 struct rtl_opt_pass pass_clean_state =
4260 RTL_PASS,
4261 NULL, /* name */
4262 NULL, /* gate */
4263 rest_of_clean_state, /* execute */
4264 NULL, /* sub */
4265 NULL, /* next */
4266 0, /* static_pass_number */
4267 TV_FINAL, /* tv_id */
4268 0, /* properties_required */
4269 0, /* properties_provided */
4270 PROP_rtl, /* properties_destroyed */
4271 0, /* todo_flags_start */
4272 0 /* todo_flags_finish */