* config/m68k/m68k.c (post_inc_operand,pre_dec_operand): New.
[official-gcc.git] / gcc / config / m68k / m68k.h
blob6af7116f78b37218e09ddc33da314dabea913d46
1 /* Definitions of target machine for GCC for Motorola 680x0/ColdFire.
2 Copyright (C) 1987, 1988, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* We need to have MOTOROLA always defined (either 0 or 1) because we use
23 if-statements and ?: on it. This way we have compile-time error checking
24 for both the MOTOROLA and MIT code paths. We do rely on the host compiler
25 to optimize away all constant tests. */
26 #ifdef MOTOROLA
27 # undef MOTOROLA
28 # define MOTOROLA 1 /* Use the Motorola assembly syntax. */
29 # define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)")
30 #else
31 # define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)")
32 # define MOTOROLA 0 /* Use the MIT assembly syntax. */
33 #endif
35 /* Note that some other tm.h files include this one and then override
36 many of the definitions that relate to assembler syntax. */
38 #define TARGET_CPU_CPP_BUILTINS() \
39 do \
40 { \
41 builtin_define ("__m68k__"); \
42 builtin_define_std ("mc68000"); \
43 if (TARGET_68040_ONLY) \
44 { \
45 if (TARGET_68060) \
46 builtin_define_std ("mc68060"); \
47 else \
48 builtin_define_std ("mc68040"); \
49 } \
50 else if (TARGET_68060) /* -m68020-60 */ \
51 { \
52 builtin_define_std ("mc68060"); \
53 builtin_define_std ("mc68040"); \
54 builtin_define_std ("mc68030"); \
55 builtin_define_std ("mc68020"); \
56 } \
57 else if (TARGET_68040) /* -m68020-40 */ \
58 { \
59 builtin_define_std ("mc68040"); \
60 builtin_define_std ("mc68030"); \
61 builtin_define_std ("mc68020"); \
62 } \
63 else if (TARGET_68030) \
64 builtin_define_std ("mc68030"); \
65 else if (TARGET_68020) \
66 builtin_define_std ("mc68020"); \
67 if (TARGET_68881) \
68 builtin_define ("__HAVE_68881__"); \
69 if (TARGET_CPU32) \
70 { \
71 builtin_define_std ("mc68332"); \
72 builtin_define_std ("mcpu32"); \
73 } \
74 if (TARGET_COLDFIRE) \
75 builtin_define ("__mcoldfire__"); \
76 if (TARGET_5200) \
77 builtin_define ("__mcf5200__"); \
78 if (TARGET_528x) \
79 { \
80 builtin_define ("__mcf528x__"); \
81 builtin_define ("__mcf5200__"); \
82 } \
83 if (TARGET_CFV3) \
84 { \
85 builtin_define ("__mcf5300__"); \
86 builtin_define ("__mcf5307__"); \
87 } \
88 if (TARGET_CFV4) \
89 { \
90 builtin_define ("__mcf5400__"); \
91 builtin_define ("__mcf5407__"); \
92 } \
93 if (TARGET_CF_HWDIV) \
94 builtin_define ("__mcfhwdiv__"); \
95 if (flag_pic) \
96 { \
97 builtin_define ("__pic__"); \
98 if (flag_pic > 1) \
99 builtin_define ("__PIC__"); \
101 builtin_assert ("cpu=m68k"); \
102 builtin_assert ("machine=m68k"); \
104 while (0)
106 /* Classify the groups of pseudo-ops used to assemble QI, HI and SI
107 quantities. */
108 #define INT_OP_STANDARD 0 /* .byte, .short, .long */
109 #define INT_OP_DOT_WORD 1 /* .byte, .word, .long */
110 #define INT_OP_NO_DOT 2 /* byte, short, long */
111 #define INT_OP_DC 3 /* dc.b, dc.w, dc.l */
113 /* Set the default. */
114 #define INT_OP_GROUP INT_OP_DOT_WORD
116 /* Run-time compilation parameters selecting different hardware subsets. */
118 extern int target_flags;
120 /* Macros used in the machine description to test the flags. */
122 /* Compile for a 68020 (not a 68000 or 68010). */
123 #define MASK_68020 (1<<0)
124 #define TARGET_68020 (target_flags & MASK_68020)
126 /* Compile for a 68030. This does not really make a difference in GCC,
127 it just enables the __mc68030__ predefine. */
128 #define MASK_68030 (1<<1)
129 #define TARGET_68030 (target_flags & MASK_68030)
131 /* Optimize for 68040, but still allow execution on 68020
132 (-m68020-40 or -m68040).
133 The 68040 will execute all 68030 and 68881/2 instructions, but some
134 of them must be emulated in software by the OS. When TARGET_68040 is
135 turned on, these instructions won't be used. This code will still
136 run on a 68030 and 68881/2. */
137 #define MASK_68040 (1<<2)
138 #define TARGET_68040 (target_flags & MASK_68040)
140 /* Use the 68040-only fp instructions (-m68040 or -m68060). */
141 #define MASK_68040_ONLY (1<<3)
142 #define TARGET_68040_ONLY (target_flags & MASK_68040_ONLY)
144 /* Optimize for 68060, but still allow execution on 68020
145 (-m68020-60 or -m68060).
146 The 68060 will execute all 68030 and 68881/2 instructions, but some
147 of them must be emulated in software by the OS. When TARGET_68060 is
148 turned on, these instructions won't be used. This code will still
149 run on a 68030 and 68881/2. */
150 #define MASK_68060 (1<<4)
151 #define TARGET_68060 (target_flags & MASK_68060)
153 /* Compile for mcf5200 */
154 #define MASK_5200 (1<<5)
155 #define TARGET_5200 (target_flags & MASK_5200)
157 /* Build for ColdFire v3 */
158 #define MASK_CFV3 (1<<6)
159 #define TARGET_CFV3 (target_flags & MASK_CFV3)
161 /* Build for ColdFire v4 */
162 #define MASK_CFV4 (1<<7)
163 #define TARGET_CFV4 (target_flags & MASK_CFV4)
165 /* Compile for ColdFire 528x */
166 #define MASK_528x (1<<8)
167 #define TARGET_528x (target_flags & MASK_528x)
169 /* Divide support for ColdFire */
170 #define MASK_CF_HWDIV (1<<9)
171 #define TARGET_CF_HWDIV (target_flags & MASK_CF_HWDIV)
173 /* Compile 68881 insns for floating point (not library calls). */
174 #define MASK_68881 (1<<10)
175 #define TARGET_68881 (target_flags & MASK_68881)
177 /* Compile using 68020 bit-field insns. */
178 #define MASK_BITFIELD (1<<11)
179 #define TARGET_BITFIELD (target_flags & MASK_BITFIELD)
181 /* Compile with 16-bit `int'. */
182 #define MASK_SHORT (1<<12)
183 #define TARGET_SHORT (target_flags & MASK_SHORT)
185 /* Align ints to a word boundary. This breaks compatibility with the
186 published ABI's for structures containing ints, but produces faster
187 code on cpus with 32-bit busses (020, 030, 040, 060, CPU32+, ColdFire).
188 It's required for ColdFire cpus without a misalignment module. */
189 #define MASK_ALIGN_INT (1<<13)
190 #define TARGET_ALIGN_INT (target_flags & MASK_ALIGN_INT)
192 /* Use PC-relative addressing modes (without using a global offset table).
193 The m68000 supports 16-bit PC-relative addressing.
194 The m68020 supports 32-bit PC-relative addressing
195 (using outer displacements).
197 Under this model, all SYMBOL_REFs (and CONSTs) and LABEL_REFs are
198 treated as all containing an implicit PC-relative component, and hence
199 cannot be used directly as addresses for memory writes. See the comments
200 in m68k.c for more information. */
201 #define MASK_PCREL (1<<14)
202 #define TARGET_PCREL (target_flags & MASK_PCREL)
204 /* Relax strict alignment. */
205 #define MASK_NO_STRICT_ALIGNMENT (1<<15)
206 #define TARGET_STRICT_ALIGNMENT (~target_flags & MASK_NO_STRICT_ALIGNMENT)
208 /* Compile using rtd insn calling sequence.
209 This will not work unless you use prototypes at least
210 for all functions that can take varying numbers of args. */
211 #define MASK_RTD (1<<16)
212 #define TARGET_RTD (target_flags & MASK_RTD)
214 /* Support A5 relative data separate from text.
215 * This option implies -fPIC, however it inhibits the generation of the
216 * A5 save/restore in functions and the loading of a5 with a got pointer.
218 #define MASK_SEP_DATA (1<<17)
219 #define TARGET_SEP_DATA (target_flags & MASK_SEP_DATA)
221 /* Compile using library ID based shared libraries.
222 * Set a specific ID using the -mshared-library-id=xxx option.
224 #define MASK_ID_SHARED_LIBRARY (1<<18)
225 #define TARGET_ID_SHARED_LIBRARY (target_flags & MASK_ID_SHARED_LIBRARY)
227 /* Compile for a CPU32. A 68020 without bitfields is a good
228 heuristic for a CPU32. */
229 #define TARGET_CPU32 (TARGET_68020 && !TARGET_BITFIELD)
231 /* Is the target a ColdFire? */
232 #define MASK_COLDFIRE (MASK_5200|MASK_528x|MASK_CFV3|MASK_CFV4)
233 #define TARGET_COLDFIRE (target_flags & MASK_COLDFIRE)
235 /* Which bits can be set by specifying a ColdFire */
236 #define MASK_ALL_CF_BITS (MASK_COLDFIRE|MASK_CF_HWDIV)
238 #define TARGET_SWITCHES \
239 { { "68020", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY), \
240 N_("Generate code for a 68020") }, \
241 { "c68020", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY), \
242 N_("Generate code for a 68020") }, \
243 { "68020", (MASK_68020|MASK_BITFIELD), "" }, \
244 { "c68020", (MASK_68020|MASK_BITFIELD), "" }, \
245 { "68000", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY \
246 |MASK_68020|MASK_BITFIELD|MASK_68881), \
247 N_("Generate code for a 68000") }, \
248 { "c68000", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY \
249 |MASK_68020|MASK_BITFIELD|MASK_68881), \
250 N_("Generate code for a 68000") }, \
251 { "bitfield", MASK_BITFIELD, \
252 N_("Use the bit-field instructions") }, \
253 { "nobitfield", - MASK_BITFIELD, \
254 N_("Do not use the bit-field instructions") }, \
255 { "short", MASK_SHORT, \
256 N_("Consider type `int' to be 16 bits wide") }, \
257 { "noshort", - MASK_SHORT, \
258 N_("Consider type `int' to be 32 bits wide") }, \
259 { "68881", MASK_68881, "" }, \
260 { "soft-float", - MASK_68881, \
261 N_("Generate code with library calls for floating point") }, \
262 { "68020-40", -(MASK_ALL_CF_BITS|MASK_68060|MASK_68040_ONLY), \
263 N_("Generate code for a 68040, without any new instructions") }, \
264 { "68020-40", (MASK_BITFIELD|MASK_68881|MASK_68020|MASK_68040), ""},\
265 { "68020-60", -(MASK_ALL_CF_BITS|MASK_68040_ONLY), \
266 N_("Generate code for a 68060, without any new instructions") }, \
267 { "68020-60", (MASK_BITFIELD|MASK_68881|MASK_68020|MASK_68040 \
268 |MASK_68060), "" }, \
269 { "68030", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY), \
270 N_("Generate code for a 68030") }, \
271 { "68030", (MASK_68020|MASK_68030|MASK_BITFIELD), "" }, \
272 { "68040", - (MASK_ALL_CF_BITS|MASK_68060), \
273 N_("Generate code for a 68040") }, \
274 { "68040", (MASK_68020|MASK_68881|MASK_BITFIELD \
275 |MASK_68040_ONLY|MASK_68040), "" }, \
276 { "68060", - (MASK_ALL_CF_BITS|MASK_68040), \
277 N_("Generate code for a 68060") }, \
278 { "68060", (MASK_68020|MASK_68881|MASK_BITFIELD \
279 |MASK_68040_ONLY|MASK_68060), "" }, \
280 { "5200", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020 \
281 |MASK_BITFIELD|MASK_68881), \
282 N_("Generate code for a 520X") }, \
283 { "5200", (MASK_5200), "" }, \
284 { "5206e", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020 \
285 |MASK_BITFIELD|MASK_68881), \
286 N_("Generate code for a 5206e") }, \
287 { "5206e", (MASK_5200|MASK_CF_HWDIV), "" }, \
288 { "528x", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020 \
289 |MASK_BITFIELD|MASK_68881), \
290 N_("Generate code for a 528x") }, \
291 { "528x", (MASK_528x|MASK_CF_HWDIV), "" }, \
292 { "5307", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020 \
293 |MASK_BITFIELD|MASK_68881), \
294 N_("Generate code for a 5307") }, \
295 { "5307", (MASK_CFV3|MASK_CF_HWDIV), "" }, \
296 { "5407", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020 \
297 |MASK_BITFIELD|MASK_68881), \
298 N_("Generate code for a 5407") }, \
299 { "5407", (MASK_CFV4|MASK_CF_HWDIV), "" }, \
300 { "68851", 0, \
301 N_("Generate code for a 68851") }, \
302 { "no-68851", 0, \
303 N_("Do no generate code for a 68851") }, \
304 { "68302", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY \
305 |MASK_68020|MASK_BITFIELD|MASK_68881), \
306 N_("Generate code for a 68302") }, \
307 { "68332", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY \
308 |MASK_BITFIELD|MASK_68881), \
309 N_("Generate code for a 68332") }, \
310 { "68332", MASK_68020, "" }, \
311 { "cpu32", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY \
312 |MASK_BITFIELD|MASK_68881), \
313 N_("Generate code for a cpu32") }, \
314 { "cpu32", MASK_68020, "" }, \
315 { "align-int", MASK_ALIGN_INT, \
316 N_("Align variables on a 32-bit boundary") }, \
317 { "no-align-int", -MASK_ALIGN_INT, \
318 N_("Align variables on a 16-bit boundary") }, \
319 { "sep-data", MASK_SEP_DATA, \
320 N_("Enable separate data segment") }, \
321 { "no-sep-data", -MASK_SEP_DATA, \
322 N_("Disable separate data segment") }, \
323 { "id-shared-library", MASK_ID_SHARED_LIBRARY, \
324 N_("Enable ID based shared library") }, \
325 { "no-id-shared-library", -MASK_ID_SHARED_LIBRARY, \
326 N_("Disable ID based shared library") }, \
327 { "pcrel", MASK_PCREL, \
328 N_("Generate pc-relative code") }, \
329 { "strict-align", -MASK_NO_STRICT_ALIGNMENT, \
330 N_("Do not use unaligned memory references") }, \
331 { "no-strict-align", MASK_NO_STRICT_ALIGNMENT, \
332 N_("Use unaligned memory references") }, \
333 { "rtd", MASK_RTD, \
334 N_("Use different calling convention using 'rtd'") }, \
335 { "nortd", - MASK_RTD, \
336 N_("Use normal calling convention") }, \
337 SUBTARGET_SWITCHES \
338 { "", TARGET_DEFAULT, "" }}
339 /* TARGET_DEFAULT is defined in m68k-none.h, netbsd.h, etc. */
341 #define TARGET_OPTIONS \
343 { "shared-library-id=", &m68k_library_id_string, \
344 N_("ID of shared library to build"), 0}, \
345 SUBTARGET_OPTIONS \
348 #define OVERRIDE_OPTIONS override_options()
350 /* These are meant to be redefined in the host dependent files */
351 #define SUBTARGET_SWITCHES
352 #define SUBTARGET_OPTIONS
353 #define SUBTARGET_OVERRIDE_OPTIONS
355 /* target machine storage layout */
357 #define LONG_DOUBLE_TYPE_SIZE 80
359 /* Set the value of FLT_EVAL_METHOD in float.h. When using 68040 fp
360 instructions, we get proper intermediate rounding, otherwise we
361 get extended precision results. */
362 #define TARGET_FLT_EVAL_METHOD ((TARGET_68040_ONLY || ! TARGET_68881) ? 0 : 2)
364 #define BITS_BIG_ENDIAN 1
365 #define BYTES_BIG_ENDIAN 1
366 #define WORDS_BIG_ENDIAN 1
368 #define UNITS_PER_WORD 4
370 #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
371 #define STACK_BOUNDARY 16
372 #define FUNCTION_BOUNDARY 16
373 #define EMPTY_FIELD_BOUNDARY 16
375 /* No data type wants to be aligned rounder than this.
376 Most published ABIs say that ints should be aligned on 16 bit
377 boundaries, but CPUs with 32-bit busses get better performance
378 aligned on 32-bit boundaries. ColdFires without a misalignment
379 module require 32-bit alignment. */
380 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_INT ? 32 : 16)
382 #define STRICT_ALIGNMENT (TARGET_STRICT_ALIGNMENT)
384 #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
386 /* Define these to avoid dependence on meaning of `int'. */
387 #define WCHAR_TYPE "long int"
388 #define WCHAR_TYPE_SIZE 32
390 /* Maximum number of library IDs we permit with -mid-shared-library. */
391 #define MAX_LIBRARY_ID 255
394 /* Standard register usage. */
396 /* For the m68k, we give the data registers numbers 0-7,
397 the address registers numbers 010-017 (8-15),
398 and the 68881 floating point registers numbers 020-027 (16-24).
399 We also have a fake `arg-pointer' register 030 (25) used for
400 register elimination. */
401 #define FIRST_PSEUDO_REGISTER 25
403 /* All m68k targets (except AmigaOS) use %a5 as the PIC register */
404 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 13 : INVALID_REGNUM)
406 /* 1 for registers that have pervasive standard uses
407 and are not available for the register allocator.
408 On the m68k, only the stack pointer is such.
409 Our fake arg-pointer is obviously fixed as well. */
410 #define FIXED_REGISTERS \
411 {/* Data registers. */ \
412 0, 0, 0, 0, 0, 0, 0, 0, \
414 /* Address registers. */ \
415 0, 0, 0, 0, 0, 0, 0, 1, \
417 /* Floating point registers \
418 (if available). */ \
419 0, 0, 0, 0, 0, 0, 0, 0, \
421 /* Arg pointer. */ \
424 /* 1 for registers not available across function calls.
425 These must include the FIXED_REGISTERS and also any
426 registers that can be used without being saved.
427 The latter must include the registers where values are returned
428 and the register where structure-value addresses are passed.
429 Aside from that, you can include as many other registers as you like. */
430 #define CALL_USED_REGISTERS \
431 {/* Data registers. */ \
432 1, 1, 0, 0, 0, 0, 0, 0, \
434 /* Address registers. */ \
435 1, 1, 0, 0, 0, 0, 0, 1, \
437 /* Floating point registers \
438 (if available). */ \
439 1, 1, 0, 0, 0, 0, 0, 0, \
441 /* Arg pointer. */ \
444 #define REG_ALLOC_ORDER \
445 { /* d0/d1/a0/a1 */ \
446 0, 1, 8, 9, \
447 /* d2-d7 */ \
448 2, 3, 4, 5, 6, 7, \
449 /* a2-a7/arg */ \
450 10, 11, 12, 13, 14, 15, 24, \
451 /* fp0-fp7 */ \
452 16, 17, 18, 19, 20, 21, 22, 23\
456 /* Make sure everything's fine if we *don't* have a given processor.
457 This assumes that putting a register in fixed_regs will keep the
458 compiler's mitts completely off it. We don't bother to zero it out
459 of register classes. */
460 #define CONDITIONAL_REGISTER_USAGE \
462 int i; \
463 HARD_REG_SET x; \
464 if (! TARGET_68881) \
466 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
467 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
468 if (TEST_HARD_REG_BIT (x, i)) \
469 fixed_regs[i] = call_used_regs[i] = 1; \
471 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
472 fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
473 = call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
476 /* On the m68k, ordinary registers hold 32 bits worth;
477 for the 68881 registers, a single register is always enough for
478 anything that can be stored in them at all. */
479 #define HARD_REGNO_NREGS(REGNO, MODE) \
480 ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \
481 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
483 /* On the m68k, the cpu registers can hold any mode but the 68881 registers
484 can hold only SFmode or DFmode. */
485 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
486 (((REGNO) < 16 \
487 && !((REGNO) < 8 && (REGNO) + GET_MODE_SIZE (MODE) / 4 > 8)) \
488 || ((REGNO) >= 16 && (REGNO) < 24 \
489 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
490 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
491 && GET_MODE_UNIT_SIZE (MODE) <= 12))
493 #define MODES_TIEABLE_P(MODE1, MODE2) \
494 (! TARGET_68881 \
495 || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
496 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
497 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
498 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)))
500 /* Specify the registers used for certain standard purposes.
501 The values of these macros are register numbers. */
503 #define STACK_POINTER_REGNUM 15
505 /* Most m68k targets use %a6 as a frame pointer. The AmigaOS
506 ABI uses %a6 for shared library calls, therefore the frame
507 pointer is shifted to %a5 on this target. */
508 #define FRAME_POINTER_REGNUM 14
510 #define FRAME_POINTER_REQUIRED 0
512 /* Base register for access to arguments of the function.
513 * This isn't a hardware register. It will be eliminated to the
514 * stack pointer or frame pointer.
516 #define ARG_POINTER_REGNUM 24
518 #define STATIC_CHAIN_REGNUM 8
520 /* Register in which address to store a structure value
521 is passed to a function. */
522 #define M68K_STRUCT_VALUE_REGNUM 9
526 /* The m68k has three kinds of registers, so eight classes would be
527 a complete set. One of them is not needed. */
528 enum reg_class {
529 NO_REGS, DATA_REGS,
530 ADDR_REGS, FP_REGS,
531 GENERAL_REGS, DATA_OR_FP_REGS,
532 ADDR_OR_FP_REGS, ALL_REGS,
533 LIM_REG_CLASSES };
535 #define N_REG_CLASSES (int) LIM_REG_CLASSES
537 #define REG_CLASS_NAMES \
538 { "NO_REGS", "DATA_REGS", \
539 "ADDR_REGS", "FP_REGS", \
540 "GENERAL_REGS", "DATA_OR_FP_REGS", \
541 "ADDR_OR_FP_REGS", "ALL_REGS" }
543 #define REG_CLASS_CONTENTS \
545 {0x00000000}, /* NO_REGS */ \
546 {0x000000ff}, /* DATA_REGS */ \
547 {0x0100ff00}, /* ADDR_REGS */ \
548 {0x00ff0000}, /* FP_REGS */ \
549 {0x0100ffff}, /* GENERAL_REGS */ \
550 {0x00ff00ff}, /* DATA_OR_FP_REGS */ \
551 {0x01ffff00}, /* ADDR_OR_FP_REGS */ \
552 {0x01ffffff}, /* ALL_REGS */ \
555 extern enum reg_class regno_reg_class[];
556 #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)])
557 #define INDEX_REG_CLASS GENERAL_REGS
558 #define BASE_REG_CLASS ADDR_REGS
560 /* We do a trick here to modify the effective constraints on the
561 machine description; we zorch the constraint letters that aren't
562 appropriate for a specific target. This allows us to guarantee
563 that a specific kind of register will not be used for a given target
564 without fiddling with the register classes above. */
565 #define REG_CLASS_FROM_LETTER(C) \
566 ((C) == 'a' ? ADDR_REGS : \
567 ((C) == 'd' ? DATA_REGS : \
568 ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
569 NO_REGS) : \
570 NO_REGS)))
572 /* For the m68k, `I' is used for the range 1 to 8
573 allowed as immediate shift counts and in addq.
574 `J' is used for the range of signed numbers that fit in 16 bits.
575 `K' is for numbers that moveq can't handle.
576 `L' is for range -8 to -1, range of values that can be added with subq.
577 `M' is for numbers that moveq+notb can't handle.
578 'N' is for range 24 to 31, rotatert:SI 8 to 1 expressed as rotate.
579 'O' is for 16 (for rotate using swap).
580 'P' is for range 8 to 15, rotatert:HI 8 to 1 expressed as rotate. */
581 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
582 ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
583 (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
584 (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
585 (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : \
586 (C) == 'M' ? (VALUE) < -0x100 || (VALUE) >= 0x100 : \
587 (C) == 'N' ? (VALUE) >= 24 && (VALUE) <= 31 : \
588 (C) == 'O' ? (VALUE) == 16 : \
589 (C) == 'P' ? (VALUE) >= 8 && (VALUE) <= 15 : 0)
591 /* "G" defines all of the floating constants that are *NOT* 68881
592 constants. This is so 68881 constants get reloaded and the
593 fpmovecr is used. */
594 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
595 ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 )
597 /* `Q' means address register indirect addressing mode.
598 `S' is for operands that satisfy 'm' when -mpcrel is in effect.
599 `T' is for operands that satisfy 's' when -mpcrel is not in effect.
600 `U' is for register offset addressing. */
601 #define EXTRA_CONSTRAINT(OP,CODE) \
602 (((CODE) == 'S') \
603 ? (TARGET_PCREL \
604 && GET_CODE (OP) == MEM \
605 && (GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
606 || GET_CODE (XEXP (OP, 0)) == LABEL_REF \
607 || GET_CODE (XEXP (OP, 0)) == CONST)) \
609 (((CODE) == 'T') \
610 ? ( !TARGET_PCREL \
611 && (GET_CODE (OP) == SYMBOL_REF \
612 || GET_CODE (OP) == LABEL_REF \
613 || GET_CODE (OP) == CONST)) \
615 (((CODE) == 'Q') \
616 ? (GET_CODE (OP) == MEM \
617 && GET_CODE (XEXP (OP, 0)) == REG) \
619 (((CODE) == 'U') \
620 ? (GET_CODE (OP) == MEM \
621 && GET_CODE (XEXP (OP, 0)) == PLUS \
622 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
623 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT) \
625 0))))
627 /* On the m68k, use a data reg if possible when the
628 value is a constant in the range where moveq could be used
629 and we ensure that QImodes are reloaded into data regs. */
630 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
631 ((GET_CODE (X) == CONST_INT \
632 && (unsigned) (INTVAL (X) + 0x80) < 0x100 \
633 && (CLASS) != ADDR_REGS) \
634 ? DATA_REGS \
635 : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \
636 ? DATA_REGS \
637 : (GET_CODE (X) == CONST_DOUBLE \
638 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
639 ? (TARGET_68881 && (CLASS == FP_REGS || CLASS == DATA_OR_FP_REGS) \
640 ? FP_REGS : NO_REGS) \
641 : (TARGET_PCREL \
642 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
643 || GET_CODE (X) == LABEL_REF)) \
644 ? ADDR_REGS \
645 : (CLASS))
647 /* Force QImode output reloads from subregs to be allocated to data regs,
648 since QImode stores from address regs are not supported. We make the
649 assumption that if the class is not ADDR_REGS, then it must be a superset
650 of DATA_REGS. */
651 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
652 (((MODE) == QImode && (CLASS) != ADDR_REGS) \
653 ? DATA_REGS \
654 : (CLASS))
656 /* On the m68k, this is the size of MODE in words,
657 except in the FP regs, where a single reg is always enough. */
658 #define CLASS_MAX_NREGS(CLASS, MODE) \
659 ((CLASS) == FP_REGS ? 1 \
660 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
662 /* Moves between fp regs and other regs are two insns. */
663 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
664 (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
665 || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
666 ? 4 : 2)
668 /* Stack layout; function entry, exit and calling. */
670 #define STACK_GROWS_DOWNWARD
671 #define FRAME_GROWS_DOWNWARD
672 #define STARTING_FRAME_OFFSET 0
674 /* On the 680x0, sp@- in a byte insn really pushes a word.
675 On the ColdFire, sp@- in a byte insn pushes just a byte. */
676 #define PUSH_ROUNDING(BYTES) (TARGET_COLDFIRE ? BYTES : ((BYTES) + 1) & ~1)
678 #define FIRST_PARM_OFFSET(FNDECL) 8
680 /* On the 68000, the RTS insn cannot pop anything.
681 On the 68010, the RTD insn may be used to pop them if the number
682 of args is fixed, but if the number is variable then the caller
683 must pop them all. RTD can't be used for library calls now
684 because the library is compiled with the Unix compiler.
685 Use of RTD is a selectable option, since it is incompatible with
686 standard Unix calling sequences. If the option is not selected,
687 the caller must always pop the args. */
688 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
689 ((TARGET_RTD && (!(FUNDECL) || TREE_CODE (FUNDECL) != IDENTIFIER_NODE) \
690 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
691 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
692 == void_type_node))) \
693 ? (SIZE) : 0)
695 /* On the m68k the return value is always in D0. */
696 #define FUNCTION_VALUE(VALTYPE, FUNC) \
697 gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
699 /* On the m68k the return value is always in D0. */
700 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
702 /* On the m68k, D0 is the only register used. */
703 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
705 /* Define this to be true when FUNCTION_VALUE_REGNO_P is true for
706 more than one register.
707 XXX This macro is m68k specific and used only for m68kemb.h. */
708 #define NEEDS_UNTYPED_CALL 0
710 #define PCC_STATIC_STRUCT_RETURN
712 /* On the m68k, all arguments are usually pushed on the stack. */
713 #define FUNCTION_ARG_REGNO_P(N) 0
715 /* On the m68k, this is a single integer, which is a number of bytes
716 of arguments scanned so far. */
717 #define CUMULATIVE_ARGS int
719 /* On the m68k, the offset starts at 0. */
720 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
721 ((CUM) = 0)
723 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
724 ((CUM) += ((MODE) != BLKmode \
725 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
726 : (int_size_in_bytes (TYPE) + 3) & ~3))
728 /* On the m68k all args are always pushed. */
729 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
730 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
732 #define FUNCTION_PROFILER(FILE, LABELNO) \
733 asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO))
735 #define EXIT_IGNORE_STACK 1
737 /* Determine if the epilogue should be output as RTL.
738 You should override this if you define FUNCTION_EXTRA_EPILOGUE.
740 XXX This macro is m68k-specific and only used in m68k.md. */
741 #define USE_RETURN_INSN use_return_insn ()
743 /* Output assembler code for a block containing the constant parts
744 of a trampoline, leaving space for the variable parts.
746 On the m68k, the trampoline looks like this:
747 movl #STATIC,a0
748 jmp FUNCTION
750 WARNING: Targets that may run on 68040+ cpus must arrange for
751 the instruction cache to be flushed. Previous incarnations of
752 the m68k trampoline code attempted to get around this by either
753 using an out-of-line transfer function or pc-relative data, but
754 the fact remains that the code to jump to the transfer function
755 or the code to load the pc-relative data needs to be flushed
756 just as much as the "variable" portion of the trampoline.
757 Recognizing that a cache flush is going to be required anyway,
758 dispense with such notions and build a smaller trampoline.
760 Since more instructions are required to move a template into
761 place than to create it on the spot, don't use a template. */
763 #define TRAMPOLINE_SIZE 12
764 #define TRAMPOLINE_ALIGNMENT 16
766 /* Targets redefine this to invoke code to either flush the cache,
767 or enable stack execution (or both). */
768 #ifndef FINALIZE_TRAMPOLINE
769 #define FINALIZE_TRAMPOLINE(TRAMP)
770 #endif
772 /* We generate a two-instructions program at address TRAMP :
773 movea.l &CXT,%a0
774 jmp FNADDR */
775 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
777 emit_move_insn (gen_rtx_MEM (HImode, TRAMP), GEN_INT(0x207C)); \
778 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 2)), CXT); \
779 emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 6)), \
780 GEN_INT(0x4EF9)); \
781 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 8)), FNADDR); \
782 FINALIZE_TRAMPOLINE(TRAMP); \
785 /* This is the library routine that is used to transfer control from the
786 trampoline to the actual nested function. It is defined for backward
787 compatibility, for linking with object code that used the old trampoline
788 definition.
790 A colon is used with no explicit operands to cause the template string
791 to be scanned for %-constructs.
793 The function name __transfer_from_trampoline is not actually used.
794 The function definition just permits use of "asm with operands"
795 (though the operand list is empty). */
796 #define TRANSFER_FROM_TRAMPOLINE \
797 void \
798 __transfer_from_trampoline () \
800 register char *a0 asm ("%a0"); \
801 asm (GLOBAL_ASM_OP "___trampoline"); \
802 asm ("___trampoline:"); \
803 asm volatile ("move%.l %0,%@" : : "m" (a0[22])); \
804 asm volatile ("move%.l %1,%0" : "=a" (a0) : "m" (a0[18])); \
805 asm ("rts":); \
808 /* There are two registers that can always be eliminated on the m68k.
809 The frame pointer and the arg pointer can be replaced by either the
810 hard frame pointer or to the stack pointer, depending upon the
811 circumstances. The hard frame pointer is not used before reload and
812 so it is not eligible for elimination. */
813 #define ELIMINABLE_REGS \
814 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
815 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM }, \
816 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }}
818 #define CAN_ELIMINATE(FROM, TO) \
819 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
821 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
822 (OFFSET) = m68k_initial_elimination_offset(FROM, TO)
824 /* Addressing modes, and classification of registers for them. */
826 #define HAVE_POST_INCREMENT 1
827 #define HAVE_PRE_DECREMENT 1
829 /* Macros to check register numbers against specific register classes. */
831 #define REGNO_OK_FOR_INDEX_P(REGNO) \
832 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
833 #define REGNO_OK_FOR_BASE_P(REGNO) \
834 (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
835 #define REGNO_OK_FOR_DATA_P(REGNO) \
836 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
837 #define REGNO_OK_FOR_FP_P(REGNO) \
838 (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
840 /* Now macros that check whether X is a register and also,
841 strictly, whether it is in a specified class.
843 These macros are specific to the m68k, and may be used only
844 in code for printing assembler insns and in conditions for
845 define_optimization. */
847 /* 1 if X is a data register. */
848 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
850 /* 1 if X is an fp register. */
851 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
853 /* 1 if X is an address register */
854 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
857 #define MAX_REGS_PER_ADDRESS 2
859 #define CONSTANT_ADDRESS_P(X) \
860 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
861 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
862 || GET_CODE (X) == HIGH)
864 /* Nonzero if the constant value X is a legitimate general operand.
865 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
866 #define LEGITIMATE_CONSTANT_P(X) (GET_MODE (X) != XFmode)
868 #ifndef REG_OK_STRICT
869 #define PCREL_GENERAL_OPERAND_OK 0
870 #else
871 #define PCREL_GENERAL_OPERAND_OK (TARGET_PCREL)
872 #endif
874 #define LEGITIMATE_PIC_OPERAND_P(X) \
875 (! symbolic_operand (X, VOIDmode) \
876 || (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)) \
877 || PCREL_GENERAL_OPERAND_OK)
879 #ifndef REG_OK_STRICT
881 /* Nonzero if X is a hard reg that can be used as an index
882 or if it is a pseudo reg. */
883 #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
884 /* Nonzero if X is a hard reg that can be used as a base reg
885 or if it is a pseudo reg. */
886 #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
888 #else
890 /* Nonzero if X is a hard reg that can be used as an index. */
891 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
892 /* Nonzero if X is a hard reg that can be used as a base reg. */
893 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
895 #endif
897 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
898 that is a valid memory address for an instruction.
899 The MODE argument is the machine mode for the MEM expression
900 that wants to use this address.
902 When generating PIC, an address involving a SYMBOL_REF is legitimate
903 if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF.
904 We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses,
905 and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF.
907 Likewise for a LABEL_REF when generating PIC.
909 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
911 /* Allow SUBREG everywhere we allow REG. This results in better code. It
912 also makes function inlining work when inline functions are called with
913 arguments that are SUBREGs. */
915 #define LEGITIMATE_BASE_REG_P(X) \
916 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
917 || (GET_CODE (X) == SUBREG \
918 && GET_CODE (SUBREG_REG (X)) == REG \
919 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
921 #define INDIRECTABLE_1_ADDRESS_P(X) \
922 ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
923 || LEGITIMATE_BASE_REG_P (X) \
924 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
925 && LEGITIMATE_BASE_REG_P (XEXP (X, 0))) \
926 || (GET_CODE (X) == PLUS \
927 && LEGITIMATE_BASE_REG_P (XEXP (X, 0)) \
928 && GET_CODE (XEXP (X, 1)) == CONST_INT \
929 && (TARGET_68020 \
930 || ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000)) \
931 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
932 && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF) \
933 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
934 && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF))
936 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
937 { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
939 /* Only labels on dispatch tables are valid for indexing from. */
940 #define GO_IF_INDEXABLE_BASE(X, ADDR) \
941 { rtx temp; \
942 if (GET_CODE (X) == LABEL_REF \
943 && (temp = next_nonnote_insn (XEXP (X, 0))) != 0 \
944 && GET_CODE (temp) == JUMP_INSN \
945 && (GET_CODE (PATTERN (temp)) == ADDR_VEC \
946 || GET_CODE (PATTERN (temp)) == ADDR_DIFF_VEC)) \
947 goto ADDR; \
948 if (LEGITIMATE_BASE_REG_P (X)) goto ADDR; }
950 #define GO_IF_INDEXING(X, ADDR) \
951 { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
952 { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
953 if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
954 { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
956 #define GO_IF_INDEXED_ADDRESS(X, ADDR) \
957 { GO_IF_INDEXING (X, ADDR); \
958 if (GET_CODE (X) == PLUS) \
959 { if (GET_CODE (XEXP (X, 1)) == CONST_INT \
960 && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100)) \
961 { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \
962 if (GET_CODE (XEXP (X, 0)) == CONST_INT \
963 && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100)) \
964 { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
966 /* ColdFire/5200 does not allow HImode index registers. */
967 #define LEGITIMATE_INDEX_REG_P(X) \
968 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
969 || (! TARGET_COLDFIRE \
970 && GET_CODE (X) == SIGN_EXTEND \
971 && GET_CODE (XEXP (X, 0)) == REG \
972 && GET_MODE (XEXP (X, 0)) == HImode \
973 && REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
974 || (GET_CODE (X) == SUBREG \
975 && GET_CODE (SUBREG_REG (X)) == REG \
976 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
978 #define LEGITIMATE_INDEX_P(X) \
979 (LEGITIMATE_INDEX_REG_P (X) \
980 || ((TARGET_68020 || TARGET_COLDFIRE) && GET_CODE (X) == MULT \
981 && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
982 && GET_CODE (XEXP (X, 1)) == CONST_INT \
983 && (INTVAL (XEXP (X, 1)) == 2 \
984 || INTVAL (XEXP (X, 1)) == 4 \
985 || (INTVAL (XEXP (X, 1)) == 8 && !TARGET_COLDFIRE))))
987 /* If pic, we accept INDEX+LABEL, which is what do_tablejump makes. */
988 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
989 { GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
990 GO_IF_INDEXED_ADDRESS (X, ADDR); \
991 if (flag_pic && MODE == CASE_VECTOR_MODE && GET_CODE (X) == PLUS \
992 && LEGITIMATE_INDEX_P (XEXP (X, 0)) \
993 && GET_CODE (XEXP (X, 1)) == LABEL_REF) \
994 goto ADDR; }
996 /* Don't call memory_address_noforce for the address to fetch
997 the switch offset. This address is ok as it stands (see above),
998 but memory_address_noforce would alter it. */
999 #define PIC_CASE_VECTOR_ADDRESS(index) index
1001 /* For the 68000, we handle X+REG by loading X into a register R and
1002 using R+REG. R will go in an address reg and indexing will be used.
1003 However, if REG is a broken-out memory address or multiplication,
1004 nothing needs to be done because REG can certainly go in an address reg. */
1005 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1006 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1007 { register int ch = (X) != (OLDX); \
1008 if (GET_CODE (X) == PLUS) \
1009 { int copied = 0; \
1010 if (GET_CODE (XEXP (X, 0)) == MULT) \
1011 { COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);} \
1012 if (GET_CODE (XEXP (X, 1)) == MULT) \
1013 { COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);} \
1014 if (ch && GET_CODE (XEXP (X, 1)) == REG \
1015 && GET_CODE (XEXP (X, 0)) == REG) \
1016 goto WIN; \
1017 if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
1018 if (GET_CODE (XEXP (X, 0)) == REG \
1019 || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
1020 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1021 && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
1022 { register rtx temp = gen_reg_rtx (Pmode); \
1023 register rtx val = force_operand (XEXP (X, 1), 0); \
1024 emit_move_insn (temp, val); \
1025 COPY_ONCE (X); \
1026 XEXP (X, 1) = temp; \
1027 goto WIN; } \
1028 else if (GET_CODE (XEXP (X, 1)) == REG \
1029 || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
1030 && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
1031 && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
1032 { register rtx temp = gen_reg_rtx (Pmode); \
1033 register rtx val = force_operand (XEXP (X, 0), 0); \
1034 emit_move_insn (temp, val); \
1035 COPY_ONCE (X); \
1036 XEXP (X, 0) = temp; \
1037 goto WIN; }}}
1039 /* On the 68000, only predecrement and postincrement address depend thus
1040 (the amount of decrement or increment being the length of the operand). */
1041 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1042 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
1044 #define CASE_VECTOR_MODE HImode
1045 #define CASE_VECTOR_PC_RELATIVE 1
1047 #define DEFAULT_SIGNED_CHAR 1
1048 #define MOVE_MAX 4
1049 #define SLOW_BYTE_ACCESS 0
1051 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1053 #define STORE_FLAG_VALUE (-1)
1055 #define Pmode SImode
1056 #define FUNCTION_MODE QImode
1059 /* Tell final.c how to eliminate redundant test instructions. */
1061 /* Here we define machine-dependent flags and fields in cc_status
1062 (see `conditions.h'). */
1064 /* Set if the cc value is actually in the 68881, so a floating point
1065 conditional branch must be output. */
1066 #define CC_IN_68881 04000
1068 /* On the 68000, all the insns to store in an address register fail to
1069 set the cc's. However, in some cases these instructions can make it
1070 possibly invalid to use the saved cc's. In those cases we clear out
1071 some or all of the saved cc's so they won't be used. */
1072 #define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN)
1074 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
1075 do { if (cc_prev_status.flags & CC_IN_68881) \
1076 return FLOAT; \
1077 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
1078 return NO_OV; \
1079 return NORMAL; } while (0)
1081 /* Control the assembler format that we output. */
1083 #define ASM_APP_ON "#APP\n"
1084 #define ASM_APP_OFF "#NO_APP\n"
1085 #define TEXT_SECTION_ASM_OP "\t.text"
1086 #define DATA_SECTION_ASM_OP "\t.data"
1087 #define GLOBAL_ASM_OP "\t.globl\t"
1088 #define REGISTER_PREFIX ""
1089 #define LOCAL_LABEL_PREFIX ""
1090 #define USER_LABEL_PREFIX "_"
1091 #define IMMEDIATE_PREFIX "#"
1093 #define REGISTER_NAMES \
1094 {REGISTER_PREFIX"d0", REGISTER_PREFIX"d1", REGISTER_PREFIX"d2", \
1095 REGISTER_PREFIX"d3", REGISTER_PREFIX"d4", REGISTER_PREFIX"d5", \
1096 REGISTER_PREFIX"d6", REGISTER_PREFIX"d7", \
1097 REGISTER_PREFIX"a0", REGISTER_PREFIX"a1", REGISTER_PREFIX"a2", \
1098 REGISTER_PREFIX"a3", REGISTER_PREFIX"a4", REGISTER_PREFIX"a5", \
1099 REGISTER_PREFIX"a6", REGISTER_PREFIX"sp", \
1100 REGISTER_PREFIX"fp0", REGISTER_PREFIX"fp1", REGISTER_PREFIX"fp2", \
1101 REGISTER_PREFIX"fp3", REGISTER_PREFIX"fp4", REGISTER_PREFIX"fp5", \
1102 REGISTER_PREFIX"fp6", REGISTER_PREFIX"fp7", REGISTER_PREFIX"argptr" }
1104 #define M68K_FP_REG_NAME REGISTER_PREFIX"fp"
1106 /* Return a register name by index, handling %fp nicely.
1107 We don't replace %fp for targets that don't map it to %a6
1108 since it may confuse GAS. */
1109 #define M68K_REGNAME(r) ( \
1110 ((FRAME_POINTER_REGNUM == 14) \
1111 && ((r) == FRAME_POINTER_REGNUM) \
1112 && frame_pointer_needed) ? \
1113 M68K_FP_REG_NAME : reg_names[(r)])
1115 /* On the Sun-3, the floating point registers have numbers
1116 18 to 25, not 16 to 23 as they do in the compiler. */
1117 #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
1119 /* Before the prologue, RA is at 0(%sp). */
1120 #define INCOMING_RETURN_ADDR_RTX \
1121 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1123 /* We must not use the DBX register numbers for the DWARF 2 CFA column
1124 numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
1125 Instead use the identity mapping. */
1126 #define DWARF_FRAME_REGNUM(REG) REG
1128 /* Before the prologue, the top of the frame is at 4(%sp). */
1129 #define INCOMING_FRAME_SP_OFFSET 4
1131 /* Describe how we implement __builtin_eh_return. */
1132 #define EH_RETURN_DATA_REGNO(N) \
1133 ((N) < 2 ? (N) : INVALID_REGNUM)
1134 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 8)
1135 #define EH_RETURN_HANDLER_RTX \
1136 gen_rtx_MEM (Pmode, \
1137 gen_rtx_PLUS (Pmode, arg_pointer_rtx, \
1138 plus_constant (EH_RETURN_STACKADJ_RTX, \
1139 UNITS_PER_WORD)))
1141 /* Select a format to encode pointers in exception handling data. CODE
1142 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1143 true if the symbol may be affected by dynamic relocations. */
1144 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1145 (flag_pic \
1146 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
1147 : DW_EH_PE_absptr)
1149 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1150 asm_fprintf (FILE, "%U%s", NAME)
1152 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1153 sprintf (LABEL, "*%s%s%ld", LOCAL_LABEL_PREFIX, PREFIX, (long)(NUM))
1155 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1156 asm_fprintf (FILE, "\tmovel %s,%Rsp@-\n", reg_names[REGNO])
1157 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1158 asm_fprintf (FILE, "\tmovel %Rsp@+,%s\n", reg_names[REGNO])
1160 /* The m68k does not use absolute case-vectors, but we must define this macro
1161 anyway. */
1162 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1163 asm_fprintf (FILE, "\t.long %LL%d\n", VALUE)
1165 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1166 asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
1168 /* We don't have a way to align to more than a two-byte boundary, so do the
1169 best we can and don't complain. */
1170 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1171 if ((LOG) >= 1) \
1172 fprintf (FILE, "\t.even\n");
1174 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1175 fprintf (FILE, "\t.skip %u\n", (int)(SIZE))
1177 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1178 ( fputs (".comm ", (FILE)), \
1179 assemble_name ((FILE), (NAME)), \
1180 fprintf ((FILE), ",%u\n", (int)(ROUNDED)))
1182 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1183 ( fputs (".lcomm ", (FILE)), \
1184 assemble_name ((FILE), (NAME)), \
1185 fprintf ((FILE), ",%u\n", (int)(ROUNDED)))
1187 /* Output a float value (represented as a C double) as an immediate operand.
1188 This macro is m68k-specific. */
1189 #define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE) \
1190 do { \
1191 if (CODE == 'f') \
1193 char dstr[30]; \
1194 real_to_decimal (dstr, &(VALUE), sizeof (dstr), 9, 0); \
1195 asm_fprintf ((FILE), "%I0r%s", dstr); \
1197 else \
1199 long l; \
1200 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
1201 asm_fprintf ((FILE), "%I0x%lx", l); \
1203 } while (0)
1205 /* Output a double value (represented as a C double) as an immediate operand.
1206 This macro is m68k-specific. */
1207 #define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \
1208 do { char dstr[30]; \
1209 real_to_decimal (dstr, &(VALUE), sizeof (dstr), 0, 1); \
1210 asm_fprintf (FILE, "%I0r%s", dstr); \
1211 } while (0)
1213 /* Note, long double immediate operands are not actually
1214 generated by m68k.md. */
1215 #define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE) \
1216 do { char dstr[30]; \
1217 real_to_decimal (dstr, &(VALUE), sizeof (dstr), 0, 1); \
1218 asm_fprintf (FILE, "%I0r%s", dstr); \
1219 } while (0)
1221 /* On the 68000, we use several CODE characters:
1222 '.' for dot needed in Motorola-style opcode names.
1223 '-' for an operand pushing on the stack:
1224 sp@-, -(sp) or -(%sp) depending on the style of syntax.
1225 '+' for an operand pushing on the stack:
1226 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
1227 '@' for a reference to the top word on the stack:
1228 sp@, (sp) or (%sp) depending on the style of syntax.
1229 '#' for an immediate operand prefix (# in MIT and Motorola syntax
1230 but & in SGS syntax).
1231 '!' for the fpcr register (used in some float-to-fixed conversions).
1232 '$' for the letter `s' in an op code, but only on the 68040.
1233 '&' for the letter `d' in an op code, but only on the 68040.
1234 '/' for register prefix needed by longlong.h.
1236 'b' for byte insn (no effect, on the Sun; this is for the ISI).
1237 'd' to force memory addressing to be absolute, not relative.
1238 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1239 'o' for operands to go directly to output_operand_address (bypassing
1240 print_operand_address--used only for SYMBOL_REFs under TARGET_PCREL)
1241 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
1242 or print pair of registers as rx:ry. */
1244 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1245 ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \
1246 || (CODE) == '+' || (CODE) == '@' || (CODE) == '!' \
1247 || (CODE) == '$' || (CODE) == '&' || (CODE) == '/')
1250 /* See m68k.c for the m68k specific codes. */
1251 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1253 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1255 /* Variables in m68k.c */
1256 extern const char *m68k_library_id_string;
1257 extern int m68k_last_compare_had_fp_operands;
1260 /* Define the codes that are matched by predicates in m68k.c. */
1262 #define PREDICATE_CODES \
1263 {"general_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
1264 LABEL_REF, SUBREG, REG, MEM}}, \
1265 {"nonimmediate_src_operand", {SUBREG, REG, MEM}}, \
1266 {"memory_src_operand", {SUBREG, MEM}}, \
1267 {"not_sp_operand", {SUBREG, REG, MEM}}, \
1268 {"pcrel_address", {SYMBOL_REF, LABEL_REF, CONST}}, \
1269 {"const_uint32_operand", {CONST_INT, CONST_DOUBLE}}, \
1270 {"const_sint32_operand", {CONST_INT}}, \
1271 {"valid_dbcc_comparison_p", {EQ, NE, GTU, LTU, GEU, LEU, \
1272 GT, LT, GE, LE}}, \
1273 {"extend_operator", {SIGN_EXTEND, ZERO_EXTEND}}, \
1274 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
1275 {"post_inc_operand", {MEM}}, \
1276 {"pre_dec_operand", {MEM}},