* config/m68k/m68k.c (post_inc_operand,pre_dec_operand): New.
[official-gcc.git] / gcc / config / m68k / m68k.c
blobe44f490c5a6c4332d7ab409fdaf4afc843d98c25
1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "function.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "conditions.h"
35 #include "output.h"
36 #include "insn-attr.h"
37 #include "recog.h"
38 #include "toplev.h"
39 #include "expr.h"
40 #include "reload.h"
41 #include "tm_p.h"
42 #include "target.h"
43 #include "target-def.h"
44 #include "debug.h"
45 #include "flags.h"
47 enum reg_class regno_reg_class[] =
49 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
50 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
51 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
52 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
53 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
54 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
55 ADDR_REGS
59 /* The ASM_DOT macro allows easy string pasting to handle the differences
60 between MOTOROLA and MIT syntaxes in asm_fprintf(), which doesn't
61 support the %. option. */
62 #if MOTOROLA
63 # define ASM_DOT "."
64 # define ASM_DOTW ".w"
65 # define ASM_DOTL ".l"
66 #else
67 # define ASM_DOT ""
68 # define ASM_DOTW ""
69 # define ASM_DOTL ""
70 #endif
73 /* Structure describing stack frame layout. */
74 struct m68k_frame
76 /* Stack pointer to frame pointer offset. */
77 HOST_WIDE_INT offset;
79 /* Offset of FPU registers. */
80 HOST_WIDE_INT foffset;
82 /* Frame size in bytes (rounded up). */
83 HOST_WIDE_INT size;
85 /* Data and address register. */
86 int reg_no;
87 unsigned int reg_mask;
88 unsigned int reg_rev_mask;
90 /* FPU registers. */
91 int fpu_no;
92 unsigned int fpu_mask;
93 unsigned int fpu_rev_mask;
95 /* Offsets relative to ARG_POINTER. */
96 HOST_WIDE_INT frame_pointer_offset;
97 HOST_WIDE_INT stack_pointer_offset;
99 /* Function which the above information refers to. */
100 int funcdef_no;
103 /* Current frame information calculated by m68k_compute_frame_layout(). */
104 static struct m68k_frame current_frame;
106 static rtx find_addr_reg (rtx);
107 static const char *singlemove_string (rtx *);
108 static void m68k_output_function_prologue (FILE *, HOST_WIDE_INT);
109 static void m68k_output_function_epilogue (FILE *, HOST_WIDE_INT);
110 #ifdef M68K_TARGET_COFF
111 static void m68k_coff_asm_named_section (const char *, unsigned int);
112 #endif /* M68K_TARGET_COFF */
113 static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
114 HOST_WIDE_INT, tree);
115 static rtx m68k_struct_value_rtx (tree, int);
116 static bool m68k_interrupt_function_p (tree func);
117 static tree m68k_handle_fndecl_attribute (tree *node, tree name,
118 tree args, int flags,
119 bool *no_add_attrs);
120 static void m68k_compute_frame_layout (void);
121 static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
122 static int const_int_cost (rtx);
123 static bool m68k_rtx_costs (rtx, int, int, int *);
126 /* Specify the identification number of the library being built */
127 const char *m68k_library_id_string;
129 /* Nonzero if the last compare/test insn had FP operands. The
130 sCC expanders peek at this to determine what to do for the
131 68060, which has no fsCC instructions. */
132 int m68k_last_compare_had_fp_operands;
134 /* Initialize the GCC target structure. */
136 #if INT_OP_GROUP == INT_OP_DOT_WORD
137 #undef TARGET_ASM_ALIGNED_HI_OP
138 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
139 #endif
141 #if INT_OP_GROUP == INT_OP_NO_DOT
142 #undef TARGET_ASM_BYTE_OP
143 #define TARGET_ASM_BYTE_OP "\tbyte\t"
144 #undef TARGET_ASM_ALIGNED_HI_OP
145 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
146 #undef TARGET_ASM_ALIGNED_SI_OP
147 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
148 #endif
150 #if INT_OP_GROUP == INT_OP_DC
151 #undef TARGET_ASM_BYTE_OP
152 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
153 #undef TARGET_ASM_ALIGNED_HI_OP
154 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
155 #undef TARGET_ASM_ALIGNED_SI_OP
156 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
157 #endif
159 #undef TARGET_ASM_UNALIGNED_HI_OP
160 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
161 #undef TARGET_ASM_UNALIGNED_SI_OP
162 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
164 #undef TARGET_ASM_FUNCTION_PROLOGUE
165 #define TARGET_ASM_FUNCTION_PROLOGUE m68k_output_function_prologue
166 #undef TARGET_ASM_FUNCTION_EPILOGUE
167 #define TARGET_ASM_FUNCTION_EPILOGUE m68k_output_function_epilogue
169 #undef TARGET_ASM_OUTPUT_MI_THUNK
170 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
171 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
172 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
174 #undef TARGET_ASM_FILE_START_APP_OFF
175 #define TARGET_ASM_FILE_START_APP_OFF true
177 #undef TARGET_RTX_COSTS
178 #define TARGET_RTX_COSTS m68k_rtx_costs
180 #undef TARGET_ATTRIBUTE_TABLE
181 #define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
183 #undef TARGET_PROMOTE_PROTOTYPES
184 #define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
186 #undef TARGET_STRUCT_VALUE_RTX
187 #define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
189 static const struct attribute_spec m68k_attribute_table[] =
191 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
192 { "interrupt_handler", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
193 { NULL, 0, 0, false, false, false, NULL }
196 struct gcc_target targetm = TARGET_INITIALIZER;
198 /* Sometimes certain combinations of command options do not make
199 sense on a particular target machine. You can define a macro
200 `OVERRIDE_OPTIONS' to take account of this. This macro, if
201 defined, is executed once just after all the command options have
202 been parsed.
204 Don't use this macro to turn on various extra optimizations for
205 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
207 void
208 override_options (void)
210 /* Library identification */
211 if (m68k_library_id_string)
213 int id;
215 if (! TARGET_ID_SHARED_LIBRARY)
216 error ("-mshared-library-id= specified without -mid-shared-library");
217 id = atoi (m68k_library_id_string);
218 if (id < 0 || id > MAX_LIBRARY_ID)
219 error ("-mshared-library-id=%d is not between 0 and %d", id, MAX_LIBRARY_ID);
221 /* From now on, m68k_library_id_string will contain the library offset. */
222 asprintf ((char **)&m68k_library_id_string, "%d", (id * -4) - 4);
224 else
225 /* If TARGET_ID_SHARED_LIBRARY is enabled, this will point to the
226 current library. */
227 m68k_library_id_string = "_current_shared_library_a5_offset_";
229 /* Sanity check to ensure that msep-data and mid-sahred-library are not
230 * both specified together. Doing so simply doesn't make sense.
232 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
233 error ("cannot specify both -msep-data and -mid-shared-library");
235 /* If we're generating code for a separate A5 relative data segment,
236 * we've got to enable -fPIC as well. This might be relaxable to
237 * -fpic but it hasn't been tested properly.
239 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
240 flag_pic = 2;
242 /* -fPIC uses 32-bit pc-relative displacements, which don't exist
243 until the 68020. */
244 if (!TARGET_68020 && !TARGET_COLDFIRE && (flag_pic == 2))
245 error("-fPIC is not currently supported on the 68000 or 68010\n");
247 /* ??? A historic way of turning on pic, or is this intended to
248 be an embedded thing that doesn't have the same name binding
249 significance that it does on hosted ELF systems? */
250 if (TARGET_PCREL && flag_pic == 0)
251 flag_pic = 1;
253 /* Turn off function cse if we are doing PIC. We always want function call
254 to be done as `bsr foo@PLTPC', so it will force the assembler to create
255 the PLT entry for `foo'. Doing function cse will cause the address of
256 `foo' to be loaded into a register, which is exactly what we want to
257 avoid when we are doing PIC on svr4 m68k. */
258 if (flag_pic)
259 flag_no_function_cse = 1;
261 SUBTARGET_OVERRIDE_OPTIONS;
264 /* Return nonzero if FUNC is an interrupt function as specified by the
265 "interrupt_handler" attribute. */
266 static bool
267 m68k_interrupt_function_p(tree func)
269 tree a;
271 if (TREE_CODE (func) != FUNCTION_DECL)
272 return false;
274 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
275 return (a != NULL_TREE);
278 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
279 struct attribute_spec.handler. */
280 static tree
281 m68k_handle_fndecl_attribute (tree *node, tree name,
282 tree args ATTRIBUTE_UNUSED,
283 int flags ATTRIBUTE_UNUSED,
284 bool *no_add_attrs)
286 if (TREE_CODE (*node) != FUNCTION_DECL)
288 warning ("`%s' attribute only applies to functions",
289 IDENTIFIER_POINTER (name));
290 *no_add_attrs = true;
293 return NULL_TREE;
296 static void
297 m68k_compute_frame_layout (void)
299 int regno, saved;
300 unsigned int mask, rmask;
301 bool interrupt_handler = m68k_interrupt_function_p (current_function_decl);
303 /* Only compute the frame once per function.
304 Don't cache information until reload has been completed. */
305 if (current_frame.funcdef_no == current_function_funcdef_no
306 && reload_completed)
307 return;
309 current_frame.size = (get_frame_size () + 3) & -4;
311 mask = rmask = saved = 0;
312 for (regno = 0; regno < 16; regno++)
313 if (m68k_save_reg (regno, interrupt_handler))
315 mask |= 1 << regno;
316 rmask |= 1 << (15 - regno);
317 saved++;
319 current_frame.offset = saved * 4;
320 current_frame.reg_no = saved;
321 current_frame.reg_mask = mask;
322 current_frame.reg_rev_mask = rmask;
324 current_frame.foffset = 0;
325 mask = rmask = saved = 0;
326 if (TARGET_68881 /* || TARGET_CFV4E */)
328 for (regno = 16; regno < 24; regno++)
329 if (m68k_save_reg (regno, interrupt_handler))
331 mask |= 1 << (regno - 16);
332 rmask |= 1 << (23 - regno);
333 saved++;
335 current_frame.foffset = saved * 12 /* (TARGET_CFV4E ? 8 : 12) */;
336 current_frame.offset += current_frame.foffset;
338 current_frame.fpu_no = saved;
339 current_frame.fpu_mask = mask;
340 current_frame.fpu_rev_mask = rmask;
342 /* Remember what function this frame refers to. */
343 current_frame.funcdef_no = current_function_funcdef_no;
346 HOST_WIDE_INT
347 m68k_initial_elimination_offset (int from, int to)
349 /* FIXME: The correct offset to compute here would appear to be
350 (frame_pointer_needed ? -UNITS_PER_WORD * 2 : -UNITS_PER_WORD);
351 but for some obscure reason, this must be 0 to get correct code. */
352 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
353 return 0;
355 m68k_compute_frame_layout ();
357 if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
358 return current_frame.offset + current_frame.size + (frame_pointer_needed ? -UNITS_PER_WORD * 2 : -UNITS_PER_WORD);
359 else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
360 return current_frame.offset + current_frame.size;
362 abort();
365 /* Refer to the array `regs_ever_live' to determine which registers
366 to save; `regs_ever_live[I]' is nonzero if register number I
367 is ever used in the function. This function is responsible for
368 knowing which registers should not be saved even if used.
369 Return true if we need to save REGNO. */
371 static bool
372 m68k_save_reg (unsigned int regno, bool interrupt_handler)
374 if (flag_pic && current_function_uses_pic_offset_table
375 && regno == PIC_OFFSET_TABLE_REGNUM)
376 return true;
378 if (current_function_calls_eh_return)
380 unsigned int i;
381 for (i = 0; ; i++)
383 unsigned int test = EH_RETURN_DATA_REGNO (i);
384 if (test == INVALID_REGNUM)
385 break;
386 if (test == regno)
387 return true;
391 /* Fixed regs we never touch. */
392 if (fixed_regs[regno])
393 return false;
395 /* The frame pointer (if it is such) is handled specially. */
396 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
397 return false;
399 /* Interrupt handlers must also save call_used_regs
400 if they are live or when calling nested functions. */
401 if (interrupt_handler)
403 if (regs_ever_live[regno])
404 return true;
406 if (!current_function_is_leaf && call_used_regs[regno])
407 return true;
410 /* Never need to save registers that aren't touched. */
411 if (!regs_ever_live[regno])
412 return false;
414 /* Otherwise save everything that isn't call-clobbered. */
415 return !call_used_regs[regno];
418 /* This function generates the assembly code for function entry.
419 STREAM is a stdio stream to output the code to.
420 SIZE is an int: how many units of temporary storage to allocate. */
422 static void
423 m68k_output_function_prologue (FILE *stream, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
425 HOST_WIDE_INT fsize_with_regs;
426 HOST_WIDE_INT cfa_offset = INCOMING_FRAME_SP_OFFSET;
428 m68k_compute_frame_layout();
430 /* If the stack limit is a symbol, we can check it here,
431 before actually allocating the space. */
432 if (current_function_limit_stack
433 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
434 asm_fprintf (stream, "\tcmp" ASM_DOT "l %I%s+%wd,%Rsp\n\ttrapcs\n",
435 XSTR (stack_limit_rtx, 0), current_frame.size + 4);
437 /* On ColdFire add register save into initial stack frame setup, if possible. */
438 fsize_with_regs = current_frame.size;
439 if (TARGET_COLDFIRE && current_frame.reg_no > 2)
440 fsize_with_regs += current_frame.reg_no * 4;
442 if (frame_pointer_needed)
444 if (current_frame.size == 0 && TARGET_68040)
445 /* on the 68040, pea + move is faster than link.w 0 */
446 fprintf (stream, MOTOROLA ?
447 "\tpea (%s)\n\tmove.l %s,%s\n" :
448 "\tpea %s@\n\tmovel %s,%s\n",
449 M68K_REGNAME(FRAME_POINTER_REGNUM),
450 M68K_REGNAME(STACK_POINTER_REGNUM),
451 M68K_REGNAME(FRAME_POINTER_REGNUM));
452 else if (fsize_with_regs < 0x8000)
453 asm_fprintf (stream, "\tlink" ASM_DOTW " %s,%I%wd\n",
454 M68K_REGNAME(FRAME_POINTER_REGNUM), -fsize_with_regs);
455 else if (TARGET_68020)
456 asm_fprintf (stream, "\tlink" ASM_DOTL " %s,%I%wd\n",
457 M68K_REGNAME(FRAME_POINTER_REGNUM), -fsize_with_regs);
458 else
459 /* Adding negative number is faster on the 68040. */
460 asm_fprintf (stream, "\tlink" ASM_DOTW " %s,%I0\n"
461 "\tadd" ASM_DOT "l %I%wd,%Rsp\n",
462 M68K_REGNAME(FRAME_POINTER_REGNUM), -fsize_with_regs);
464 if (dwarf2out_do_frame ())
466 char *l;
467 l = (char *) dwarf2out_cfi_label ();
468 cfa_offset += 4;
469 dwarf2out_reg_save (l, FRAME_POINTER_REGNUM, -cfa_offset);
470 dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, cfa_offset);
471 cfa_offset += current_frame.size;
474 else if (fsize_with_regs) /* !frame_pointer_needed */
476 if (fsize_with_regs < 0x8000)
478 if (fsize_with_regs <= 8)
480 if (!TARGET_COLDFIRE)
481 asm_fprintf (stream, "\tsubq" ASM_DOT "w %I%wd,%Rsp\n",
482 fsize_with_regs);
483 else
484 asm_fprintf (stream, "\tsubq" ASM_DOT "l %I%wd,%Rsp\n",
485 fsize_with_regs);
487 else if (fsize_with_regs <= 16 && TARGET_CPU32)
488 /* On the CPU32 it is faster to use two subqw instructions to
489 subtract a small integer (8 < N <= 16) to a register. */
490 asm_fprintf (stream,
491 "\tsubq" ASM_DOT "w %I8,%Rsp\n"
492 "\tsubq" ASM_DOT "w %I%wd,%Rsp\n",
493 fsize_with_regs - 8);
494 else if (TARGET_68040)
495 /* Adding negative number is faster on the 68040. */
496 asm_fprintf (stream, "\tadd" ASM_DOT "w %I%wd,%Rsp\n",
497 -fsize_with_regs);
498 else
499 asm_fprintf (stream, MOTOROLA ?
500 "\tlea (%wd,%Rsp),%Rsp\n" :
501 "\tlea %Rsp@(%wd),%Rsp\n",
502 -fsize_with_regs);
504 else /* fsize_with_regs >= 0x8000 */
505 asm_fprintf (stream, "\tadd" ASM_DOT "l %I%wd,%Rsp\n", -fsize_with_regs);
507 if (dwarf2out_do_frame ())
509 cfa_offset += current_frame.size + 4;
510 dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, cfa_offset);
512 } /* !frame_pointer_needed */
514 if (current_frame.fpu_mask)
516 asm_fprintf (stream, MOTOROLA ?
517 "\tfmovm %I0x%x,-(%Rsp)\n" :
518 "\tfmovem %I0x%x,%Rsp@-\n",
519 current_frame.fpu_mask);
521 if (dwarf2out_do_frame ())
523 char *l = (char *) dwarf2out_cfi_label ();
524 int n_regs, regno;
526 cfa_offset += current_frame.fpu_no * 12;
527 if (! frame_pointer_needed)
528 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
529 for (regno = 16, n_regs = 0; regno < 24; regno++)
530 if (current_frame.fpu_mask & (1 << (regno - 16)))
531 dwarf2out_reg_save (l, regno, -cfa_offset + n_regs++ * 12);
535 /* If the stack limit is not a symbol, check it here.
536 This has the disadvantage that it may be too late... */
537 if (current_function_limit_stack)
539 if (REG_P (stack_limit_rtx))
540 asm_fprintf (stream, "\tcmp" ASM_DOT "l %s,%Rsp\n\ttrapcs\n",
541 M68K_REGNAME(REGNO (stack_limit_rtx)));
542 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
543 warning ("stack limit expression is not supported");
546 if (current_frame.reg_no <= 2)
548 /* Store each separately in the same order moveml uses.
549 Using two movel instructions instead of a single moveml
550 is about 15% faster for the 68020 and 68030 at no expense
551 in code size. */
553 int i;
555 for (i = 0; i < 16; i++)
556 if (current_frame.reg_rev_mask & (1 << i))
558 asm_fprintf (stream, MOTOROLA ?
559 "\t%Omove.l %s,-(%Rsp)\n" :
560 "\tmovel %s,%Rsp@-\n",
561 M68K_REGNAME(15 - i));
562 if (dwarf2out_do_frame ())
564 char *l = (char *) dwarf2out_cfi_label ();
566 cfa_offset += 4;
567 if (! frame_pointer_needed)
568 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
569 dwarf2out_reg_save (l, 15 - i, -cfa_offset);
573 else if (current_frame.reg_rev_mask)
575 if (TARGET_COLDFIRE)
576 /* The ColdFire does not support the predecrement form of the
577 MOVEM instruction, so we must adjust the stack pointer and
578 then use the plain address register indirect mode.
579 The required register save space was combined earlier with
580 the fsize_with_regs amount. */
582 asm_fprintf (stream, MOTOROLA ?
583 "\tmovm.l %I0x%x,(%Rsp)\n" :
584 "\tmoveml %I0x%x,%Rsp@\n",
585 current_frame.reg_mask);
586 else
587 asm_fprintf (stream, MOTOROLA ?
588 "\tmovm.l %I0x%x,-(%Rsp)\n" :
589 "\tmoveml %I0x%x,%Rsp@-\n",
590 current_frame.reg_rev_mask);
591 if (dwarf2out_do_frame ())
593 char *l = (char *) dwarf2out_cfi_label ();
594 int n_regs, regno;
596 cfa_offset += current_frame.reg_no * 4;
597 if (! frame_pointer_needed)
598 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
599 for (regno = 0, n_regs = 0; regno < 16; regno++)
600 if (current_frame.reg_mask & (1 << regno))
601 dwarf2out_reg_save (l, regno, -cfa_offset + n_regs++ * 4);
604 if (!TARGET_SEP_DATA && flag_pic &&
605 (current_function_uses_pic_offset_table ||
606 (!current_function_is_leaf && TARGET_ID_SHARED_LIBRARY)))
608 if (TARGET_ID_SHARED_LIBRARY)
610 asm_fprintf (stream, "\tmovel %s@(%s), %s\n",
611 M68K_REGNAME(PIC_OFFSET_TABLE_REGNUM),
612 m68k_library_id_string,
613 M68K_REGNAME(PIC_OFFSET_TABLE_REGNUM));
615 else
617 if (MOTOROLA)
618 asm_fprintf (stream, "\t%Olea (%Rpc, %U_GLOBAL_OFFSET_TABLE_@GOTPC), %s\n",
619 M68K_REGNAME(PIC_OFFSET_TABLE_REGNUM));
620 else
622 asm_fprintf (stream, "\tmovel %I%U_GLOBAL_OFFSET_TABLE_, %s\n",
623 M68K_REGNAME(PIC_OFFSET_TABLE_REGNUM));
624 asm_fprintf (stream, "\tlea %Rpc@(0,%s:l),%s\n",
625 M68K_REGNAME(PIC_OFFSET_TABLE_REGNUM),
626 M68K_REGNAME(PIC_OFFSET_TABLE_REGNUM));
632 /* Return true if this function's epilogue can be output as RTL. */
634 bool
635 use_return_insn (void)
637 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
638 return false;
640 /* We can output the epilogue as RTL only if no registers need to be
641 restored. */
642 m68k_compute_frame_layout();
643 return current_frame.reg_no ? false : true;
646 /* This function generates the assembly code for function exit,
647 on machines that need it.
649 The function epilogue should not depend on the current stack pointer!
650 It should use the frame pointer only, if there is a frame pointer.
651 This is mandatory because of alloca; we also take advantage of it to
652 omit stack adjustments before returning. */
654 static void
655 m68k_output_function_epilogue (FILE *stream, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
657 HOST_WIDE_INT fsize, fsize_with_regs;
658 bool big = false;
659 bool restore_from_sp = false;
660 rtx insn = get_last_insn ();
662 m68k_compute_frame_layout();
664 /* If the last insn was a BARRIER, we don't have to write any code. */
665 if (GET_CODE (insn) == NOTE)
666 insn = prev_nonnote_insn (insn);
667 if (insn && GET_CODE (insn) == BARRIER)
669 /* Output just a no-op so that debuggers don't get confused
670 about which function the pc is in at this address. */
671 fprintf (stream, "\tnop\n");
672 return;
675 #ifdef FUNCTION_EXTRA_EPILOGUE
676 FUNCTION_EXTRA_EPILOGUE (stream, size);
677 #endif
679 fsize = current_frame.size;
681 /* FIXME : leaf_function_p below is too strong.
682 What we really need to know there is if there could be pending
683 stack adjustment needed at that point. */
684 restore_from_sp = ! frame_pointer_needed
685 || (! current_function_calls_alloca && leaf_function_p ());
687 /* fsize_with_regs is the size we need to adjust the sp when
688 popping the frame. */
689 fsize_with_regs = fsize;
691 /* Because the ColdFire doesn't support moveml with
692 complex address modes, we must adjust the stack manually
693 after restoring registers. When the frame pointer isn't used,
694 we can merge movem adjustment into frame unlinking
695 made immediately after it. */
696 if (TARGET_COLDFIRE && restore_from_sp && (current_frame.reg_no > 2))
697 fsize_with_regs += current_frame.reg_no * 4;
699 if (current_frame.offset + fsize >= 0x8000
700 && ! restore_from_sp
701 && (current_frame.reg_mask || current_frame.fpu_mask))
703 /* Because the ColdFire doesn't support moveml with
704 complex address modes we make an extra correction here. */
705 if (TARGET_COLDFIRE)
706 fsize += current_frame.offset;
708 asm_fprintf (stream, "\t%Omove" ASM_DOT "l %I%wd,%Ra1\n", -fsize);
709 fsize = 0, big = true;
711 if (current_frame.reg_no <= 2)
713 /* Restore each separately in the same order moveml does.
714 Using two movel instructions instead of a single moveml
715 is about 15% faster for the 68020 and 68030 at no expense
716 in code size. */
718 int i;
719 HOST_WIDE_INT offset = current_frame.offset + fsize;
721 for (i = 0; i < 16; i++)
722 if (current_frame.reg_mask & (1 << i))
724 if (big)
726 if (MOTOROLA)
727 asm_fprintf (stream, "\t%Omove.l -%wd(%s,%Ra1.l),%s\n",
728 offset,
729 M68K_REGNAME(FRAME_POINTER_REGNUM),
730 M68K_REGNAME(i));
731 else
732 asm_fprintf (stream, "\tmovel %s@(-%wd,%Ra1:l),%s\n",
733 M68K_REGNAME(FRAME_POINTER_REGNUM),
734 offset,
735 M68K_REGNAME(i));
737 else if (restore_from_sp)
738 asm_fprintf (stream, MOTOROLA ?
739 "\t%Omove.l (%Rsp)+,%s\n" :
740 "\tmovel %Rsp@+,%s\n",
741 M68K_REGNAME(i));
742 else
744 if (MOTOROLA)
745 asm_fprintf (stream, "\t%Omove.l -%wd(%s),%s\n",
746 offset,
747 M68K_REGNAME(FRAME_POINTER_REGNUM),
748 M68K_REGNAME(i));
749 else
750 asm_fprintf (stream, "\tmovel %s@(-%wd),%s\n",
751 M68K_REGNAME(FRAME_POINTER_REGNUM),
752 offset,
753 M68K_REGNAME(i));
755 offset -= 4;
758 else if (current_frame.reg_mask)
760 /* The ColdFire requires special handling due to its limited moveml insn. */
761 if (TARGET_COLDFIRE)
763 if (big)
765 asm_fprintf (stream, "\tadd" ASM_DOT "l %s,%Ra1\n",
766 M68K_REGNAME(FRAME_POINTER_REGNUM));
767 asm_fprintf (stream, MOTOROLA ?
768 "\tmovm.l (%Ra1),%I0x%x\n" :
769 "\tmoveml %Ra1@,%I0x%x\n",
770 current_frame.reg_mask);
772 else if (restore_from_sp)
773 asm_fprintf (stream, MOTOROLA ?
774 "\tmovm.l (%Rsp),%I0x%x\n" :
775 "\tmoveml %Rsp@,%I0x%x\n",
776 current_frame.reg_mask);
777 else
779 if (MOTOROLA)
780 asm_fprintf (stream, "\tmovm.l -%wd(%s),%I0x%x\n",
781 current_frame.offset + fsize,
782 M68K_REGNAME(FRAME_POINTER_REGNUM),
783 current_frame.reg_mask);
784 else
785 asm_fprintf (stream, "\tmoveml %s@(-%wd),%I0x%x\n",
786 M68K_REGNAME(FRAME_POINTER_REGNUM),
787 current_frame.offset + fsize,
788 current_frame.reg_mask);
791 else /* !TARGET_COLDFIRE */
793 if (big)
795 if (MOTOROLA)
796 asm_fprintf (stream, "\tmovm.l -%wd(%s,%Ra1.l),%I0x%x\n",
797 current_frame.offset + fsize,
798 M68K_REGNAME(FRAME_POINTER_REGNUM),
799 current_frame.reg_mask);
800 else
801 asm_fprintf (stream, "\tmoveml %s@(-%wd,%Ra1:l),%I0x%x\n",
802 M68K_REGNAME(FRAME_POINTER_REGNUM),
803 current_frame.offset + fsize,
804 current_frame.reg_mask);
806 else if (restore_from_sp)
808 asm_fprintf (stream, MOTOROLA ?
809 "\tmovm.l (%Rsp)+,%I0x%x\n" :
810 "\tmoveml %Rsp@+,%I0x%x\n",
811 current_frame.reg_mask);
813 else
815 if (MOTOROLA)
816 asm_fprintf (stream, "\tmovm.l -%wd(%s),%I0x%x\n",
817 current_frame.offset + fsize,
818 M68K_REGNAME(FRAME_POINTER_REGNUM),
819 current_frame.reg_mask);
820 else
821 asm_fprintf (stream, "\tmoveml %s@(-%wd),%I0x%x\n",
822 M68K_REGNAME(FRAME_POINTER_REGNUM),
823 current_frame.offset + fsize,
824 current_frame.reg_mask);
828 if (current_frame.fpu_rev_mask)
830 if (big)
832 if (MOTOROLA)
833 asm_fprintf (stream, "\tfmovm -%wd(%s,%Ra1.l),%I0x%x\n",
834 current_frame.foffset + fsize,
835 M68K_REGNAME(FRAME_POINTER_REGNUM),
836 current_frame.fpu_rev_mask);
837 else
838 asm_fprintf (stream, "\tfmovem %s@(-%wd,%Ra1:l),%I0x%x\n",
839 M68K_REGNAME(FRAME_POINTER_REGNUM),
840 current_frame.foffset + fsize,
841 current_frame.fpu_rev_mask);
843 else if (restore_from_sp)
845 if (MOTOROLA)
846 asm_fprintf (stream, "\tfmovm (%Rsp)+,%I0x%x\n",
847 current_frame.fpu_rev_mask);
848 else
849 asm_fprintf (stream, "\tfmovem %Rsp@+,%I0x%x\n",
850 current_frame.fpu_rev_mask);
852 else
854 if (MOTOROLA)
855 asm_fprintf (stream, "\tfmovm -%wd(%s),%I0x%x\n",
856 current_frame.foffset + fsize,
857 M68K_REGNAME(FRAME_POINTER_REGNUM),
858 current_frame.fpu_rev_mask);
859 else
860 asm_fprintf (stream, "\tfmovem %s@(-%wd),%I0x%x\n",
861 M68K_REGNAME(FRAME_POINTER_REGNUM),
862 current_frame.foffset + fsize,
863 current_frame.fpu_rev_mask);
866 if (frame_pointer_needed)
867 fprintf (stream, "\tunlk %s\n", M68K_REGNAME(FRAME_POINTER_REGNUM));
868 else if (fsize_with_regs)
870 if (fsize_with_regs <= 8)
872 if (!TARGET_COLDFIRE)
873 asm_fprintf (stream, "\taddq" ASM_DOT "w %I%wd,%Rsp\n",
874 fsize_with_regs);
875 else
876 asm_fprintf (stream, "\taddq" ASM_DOT "l %I%wd,%Rsp\n",
877 fsize_with_regs);
879 else if (fsize_with_regs <= 16 && TARGET_CPU32)
881 /* On the CPU32 it is faster to use two addqw instructions to
882 add a small integer (8 < N <= 16) to a register. */
883 asm_fprintf (stream, "\taddq" ASM_DOT "w %I8,%Rsp\n"
884 "\taddq" ASM_DOT "w %I%wd,%Rsp\n",
885 fsize_with_regs - 8);
887 else if (fsize_with_regs < 0x8000)
889 if (TARGET_68040)
890 asm_fprintf (stream, "\tadd" ASM_DOT "w %I%wd,%Rsp\n",
891 fsize_with_regs);
892 else
893 asm_fprintf (stream, MOTOROLA ?
894 "\tlea (%wd,%Rsp),%Rsp\n" :
895 "\tlea %Rsp@(%wd),%Rsp\n",
896 fsize_with_regs);
898 else
899 asm_fprintf (stream, "\tadd" ASM_DOT "l %I%wd,%Rsp\n", fsize_with_regs);
901 if (current_function_calls_eh_return)
902 asm_fprintf (stream, "\tadd" ASM_DOT"l %Ra0,%Rsp\n");
903 if (m68k_interrupt_function_p (current_function_decl))
904 fprintf (stream, "\trte\n");
905 else if (current_function_pops_args)
906 asm_fprintf (stream, "\trtd %I%d\n", current_function_pops_args);
907 else
908 fprintf (stream, "\trts\n");
911 /* Similar to general_operand, but exclude stack_pointer_rtx. */
914 not_sp_operand (rtx op, enum machine_mode mode)
916 return op != stack_pointer_rtx && nonimmediate_operand (op, mode);
919 /* Return true if X is a valid comparison operator for the dbcc
920 instruction.
922 Note it rejects floating point comparison operators.
923 (In the future we could use Fdbcc).
925 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
928 valid_dbcc_comparison_p (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
930 switch (GET_CODE (x))
932 case EQ: case NE: case GTU: case LTU:
933 case GEU: case LEU:
934 return 1;
936 /* Reject some when CC_NO_OVERFLOW is set. This may be over
937 conservative */
938 case GT: case LT: case GE: case LE:
939 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
940 default:
941 return 0;
945 /* Return nonzero if flags are currently in the 68881 flag register. */
947 flags_in_68881 (void)
949 /* We could add support for these in the future */
950 return cc_status.flags & CC_IN_68881;
953 /* Output a BSR instruction suitable for PIC code. */
954 void
955 m68k_output_pic_call(rtx dest)
957 const char *out;
959 if (!(GET_CODE (dest) == MEM && GET_CODE (XEXP (dest, 0)) == SYMBOL_REF))
960 out = "jsr %0";
961 /* We output a BSR instruction if we're using -fpic or we're building for
962 * a target that supports long branches. If we're building -fPIC on the
963 * 68000, 68010 or ColdFire we generate one of two sequences:
964 * a shorter one that uses a GOT entry or a longer one that doesn't.
965 * We'll use the -Os command-line flag to decide which to generate.
966 * Both sequences take the same time to execute on the ColdFire.
968 else if (TARGET_PCREL)
969 out = "bsr.l %o0";
970 else if ((flag_pic == 1) || TARGET_68020)
971 #if defined(USE_GAS)
972 out = "bsr.l %0@PLTPC";
973 #else
974 out = "bsr %0@PLTPC";
975 #endif
976 else if (optimize_size || TARGET_ID_SHARED_LIBRARY)
977 out = "move.l %0@GOT(%%a5), %%a1\n\tjsr (%%a1)";
978 else
979 out = "lea %0-.-8,%%a1\n\tjsr 0(%%pc,%%a1)";
981 output_asm_insn(out, &dest);
984 /* Output a dbCC; jCC sequence. Note we do not handle the
985 floating point version of this sequence (Fdbcc). We also
986 do not handle alternative conditions when CC_NO_OVERFLOW is
987 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
988 kick those out before we get here. */
990 void
991 output_dbcc_and_branch (rtx *operands)
993 switch (GET_CODE (operands[3]))
995 case EQ:
996 output_asm_insn (MOTOROLA ?
997 "dbeq %0,%l1\n\tjbeq %l2" :
998 "dbeq %0,%l1\n\tjeq %l2",
999 operands);
1000 break;
1002 case NE:
1003 output_asm_insn (MOTOROLA ?
1004 "dbne %0,%l1\n\tjbne %l2" :
1005 "dbne %0,%l1\n\tjne %l2",
1006 operands);
1007 break;
1009 case GT:
1010 output_asm_insn (MOTOROLA ?
1011 "dbgt %0,%l1\n\tjbgt %l2" :
1012 "dbgt %0,%l1\n\tjgt %l2",
1013 operands);
1014 break;
1016 case GTU:
1017 output_asm_insn (MOTOROLA ?
1018 "dbhi %0,%l1\n\tjbhi %l2" :
1019 "dbhi %0,%l1\n\tjhi %l2",
1020 operands);
1021 break;
1023 case LT:
1024 output_asm_insn (MOTOROLA ?
1025 "dblt %0,%l1\n\tjblt %l2" :
1026 "dblt %0,%l1\n\tjlt %l2",
1027 operands);
1028 break;
1030 case LTU:
1031 output_asm_insn (MOTOROLA ?
1032 "dbcs %0,%l1\n\tjbcs %l2" :
1033 "dbcs %0,%l1\n\tjcs %l2",
1034 operands);
1035 break;
1037 case GE:
1038 output_asm_insn (MOTOROLA ?
1039 "dbge %0,%l1\n\tjbge %l2" :
1040 "dbge %0,%l1\n\tjge %l2",
1041 operands);
1042 break;
1044 case GEU:
1045 output_asm_insn (MOTOROLA ?
1046 "dbcc %0,%l1\n\tjbcc %l2" :
1047 "dbcc %0,%l1\n\tjcc %l2",
1048 operands);
1049 break;
1051 case LE:
1052 output_asm_insn (MOTOROLA ?
1053 "dble %0,%l1\n\tjble %l2" :
1054 "dble %0,%l1\n\tjle %l2",
1055 operands);
1056 break;
1058 case LEU:
1059 output_asm_insn (MOTOROLA ?
1060 "dbls %0,%l1\n\tjbls %l2" :
1061 "dbls %0,%l1\n\tjls %l2",
1062 operands);
1063 break;
1065 default:
1066 abort ();
1069 /* If the decrement is to be done in SImode, then we have
1070 to compensate for the fact that dbcc decrements in HImode. */
1071 switch (GET_MODE (operands[0]))
1073 case SImode:
1074 output_asm_insn (MOTOROLA ?
1075 "clr%.w %0\n\tsubq%.l #1,%0\n\tjbpl %l1" :
1076 "clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1",
1077 operands);
1078 break;
1080 case HImode:
1081 break;
1083 default:
1084 abort ();
1088 const char *
1089 output_scc_di(rtx op, rtx operand1, rtx operand2, rtx dest)
1091 rtx loperands[7];
1092 enum rtx_code op_code = GET_CODE (op);
1094 /* This does not produce a useful cc. */
1095 CC_STATUS_INIT;
1097 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1098 below. Swap the operands and change the op if these requirements
1099 are not fulfilled. */
1100 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1102 rtx tmp = operand1;
1104 operand1 = operand2;
1105 operand2 = tmp;
1106 op_code = swap_condition (op_code);
1108 loperands[0] = operand1;
1109 if (GET_CODE (operand1) == REG)
1110 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1111 else
1112 loperands[1] = adjust_address (operand1, SImode, 4);
1113 if (operand2 != const0_rtx)
1115 loperands[2] = operand2;
1116 if (GET_CODE (operand2) == REG)
1117 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1118 else
1119 loperands[3] = adjust_address (operand2, SImode, 4);
1121 loperands[4] = gen_label_rtx ();
1122 if (operand2 != const0_rtx)
1124 output_asm_insn (MOTOROLA ?
1125 "cmp%.l %2,%0\n\tjbne %l4\n\tcmp%.l %3,%1" :
1126 "cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1",
1127 loperands);
1129 else
1131 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
1132 output_asm_insn ("tst%.l %0", loperands);
1133 else
1135 output_asm_insn ("cmp%.w #0,%0", loperands);
1138 output_asm_insn (MOTOROLA ? "jbne %l4" : "jne %l4", loperands);
1140 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
1141 output_asm_insn ("tst%.l %1", loperands);
1142 else
1143 output_asm_insn ("cmp%.w #0,%1", loperands);
1146 loperands[5] = dest;
1148 switch (op_code)
1150 case EQ:
1151 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1152 CODE_LABEL_NUMBER (loperands[4]));
1153 output_asm_insn ("seq %5", loperands);
1154 break;
1156 case NE:
1157 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1158 CODE_LABEL_NUMBER (loperands[4]));
1159 output_asm_insn ("sne %5", loperands);
1160 break;
1162 case GT:
1163 loperands[6] = gen_label_rtx ();
1164 output_asm_insn (MOTOROLA ?
1165 "shi %5\n\tjbra %l6" :
1166 "shi %5\n\tjra %l6",
1167 loperands);
1168 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1169 CODE_LABEL_NUMBER (loperands[4]));
1170 output_asm_insn ("sgt %5", loperands);
1171 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1172 CODE_LABEL_NUMBER (loperands[6]));
1173 break;
1175 case GTU:
1176 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1177 CODE_LABEL_NUMBER (loperands[4]));
1178 output_asm_insn ("shi %5", loperands);
1179 break;
1181 case LT:
1182 loperands[6] = gen_label_rtx ();
1183 output_asm_insn (MOTOROLA ?
1184 "scs %5\n\tjbra %l6" :
1185 "scs %5\n\tjra %l6",
1186 loperands);
1187 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1188 CODE_LABEL_NUMBER (loperands[4]));
1189 output_asm_insn ("slt %5", loperands);
1190 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1191 CODE_LABEL_NUMBER (loperands[6]));
1192 break;
1194 case LTU:
1195 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1196 CODE_LABEL_NUMBER (loperands[4]));
1197 output_asm_insn ("scs %5", loperands);
1198 break;
1200 case GE:
1201 loperands[6] = gen_label_rtx ();
1202 output_asm_insn (MOTOROLA ?
1203 "scc %5\n\tjbra %l6" :
1204 "scc %5\n\tjra %l6",
1205 loperands);
1206 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1207 CODE_LABEL_NUMBER (loperands[4]));
1208 output_asm_insn ("sge %5", loperands);
1209 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1210 CODE_LABEL_NUMBER (loperands[6]));
1211 break;
1213 case GEU:
1214 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1215 CODE_LABEL_NUMBER (loperands[4]));
1216 output_asm_insn ("scc %5", loperands);
1217 break;
1219 case LE:
1220 loperands[6] = gen_label_rtx ();
1221 output_asm_insn (MOTOROLA ?
1222 "sls %5\n\tjbra %l6" :
1223 "sls %5\n\tjra %l6",
1224 loperands);
1225 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1226 CODE_LABEL_NUMBER (loperands[4]));
1227 output_asm_insn ("sle %5", loperands);
1228 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1229 CODE_LABEL_NUMBER (loperands[6]));
1230 break;
1232 case LEU:
1233 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1234 CODE_LABEL_NUMBER (loperands[4]));
1235 output_asm_insn ("sls %5", loperands);
1236 break;
1238 default:
1239 abort ();
1241 return "";
1244 const char *
1245 output_btst (rtx *operands, rtx countop, rtx dataop, rtx insn, int signpos)
1247 operands[0] = countop;
1248 operands[1] = dataop;
1250 if (GET_CODE (countop) == CONST_INT)
1252 register int count = INTVAL (countop);
1253 /* If COUNT is bigger than size of storage unit in use,
1254 advance to the containing unit of same size. */
1255 if (count > signpos)
1257 int offset = (count & ~signpos) / 8;
1258 count = count & signpos;
1259 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1261 if (count == signpos)
1262 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1263 else
1264 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1266 /* These three statements used to use next_insns_test_no...
1267 but it appears that this should do the same job. */
1268 if (count == 31
1269 && next_insn_tests_no_inequality (insn))
1270 return "tst%.l %1";
1271 if (count == 15
1272 && next_insn_tests_no_inequality (insn))
1273 return "tst%.w %1";
1274 if (count == 7
1275 && next_insn_tests_no_inequality (insn))
1276 return "tst%.b %1";
1278 cc_status.flags = CC_NOT_NEGATIVE;
1280 return "btst %0,%1";
1283 /* Returns true if OP is either a symbol reference or a sum of a symbol
1284 reference and a constant. */
1287 symbolic_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1289 switch (GET_CODE (op))
1291 case SYMBOL_REF:
1292 case LABEL_REF:
1293 return true;
1295 case CONST:
1296 op = XEXP (op, 0);
1297 return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
1298 || GET_CODE (XEXP (op, 0)) == LABEL_REF)
1299 && GET_CODE (XEXP (op, 1)) == CONST_INT);
1301 #if 0 /* Deleted, with corresponding change in m68k.h,
1302 so as to fit the specs. No CONST_DOUBLE is ever symbolic. */
1303 case CONST_DOUBLE:
1304 return GET_MODE (op) == mode;
1305 #endif
1307 default:
1308 return false;
1312 /* Check for sign_extend or zero_extend. Used for bit-count operands. */
1315 extend_operator(rtx x, enum machine_mode mode)
1317 if (mode != VOIDmode && GET_MODE(x) != mode)
1318 return 0;
1319 switch (GET_CODE(x))
1321 case SIGN_EXTEND :
1322 case ZERO_EXTEND :
1323 return 1;
1324 default :
1325 return 0;
1330 /* Legitimize PIC addresses. If the address is already
1331 position-independent, we return ORIG. Newly generated
1332 position-independent addresses go to REG. If we need more
1333 than one register, we lose.
1335 An address is legitimized by making an indirect reference
1336 through the Global Offset Table with the name of the symbol
1337 used as an offset.
1339 The assembler and linker are responsible for placing the
1340 address of the symbol in the GOT. The function prologue
1341 is responsible for initializing a5 to the starting address
1342 of the GOT.
1344 The assembler is also responsible for translating a symbol name
1345 into a constant displacement from the start of the GOT.
1347 A quick example may make things a little clearer:
1349 When not generating PIC code to store the value 12345 into _foo
1350 we would generate the following code:
1352 movel #12345, _foo
1354 When generating PIC two transformations are made. First, the compiler
1355 loads the address of foo into a register. So the first transformation makes:
1357 lea _foo, a0
1358 movel #12345, a0@
1360 The code in movsi will intercept the lea instruction and call this
1361 routine which will transform the instructions into:
1363 movel a5@(_foo:w), a0
1364 movel #12345, a0@
1367 That (in a nutshell) is how *all* symbol and label references are
1368 handled. */
1371 legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
1372 rtx reg)
1374 rtx pic_ref = orig;
1376 /* First handle a simple SYMBOL_REF or LABEL_REF */
1377 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
1379 if (reg == 0)
1380 abort ();
1382 pic_ref = gen_rtx_MEM (Pmode,
1383 gen_rtx_PLUS (Pmode,
1384 pic_offset_table_rtx, orig));
1385 current_function_uses_pic_offset_table = 1;
1386 RTX_UNCHANGING_P (pic_ref) = 1;
1387 emit_move_insn (reg, pic_ref);
1388 return reg;
1390 else if (GET_CODE (orig) == CONST)
1392 rtx base;
1394 /* Make sure this has not already been legitimized. */
1395 if (GET_CODE (XEXP (orig, 0)) == PLUS
1396 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
1397 return orig;
1399 if (reg == 0)
1400 abort ();
1402 /* legitimize both operands of the PLUS */
1403 if (GET_CODE (XEXP (orig, 0)) == PLUS)
1405 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
1406 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
1407 base == reg ? 0 : reg);
1409 else abort ();
1411 if (GET_CODE (orig) == CONST_INT)
1412 return plus_constant (base, INTVAL (orig));
1413 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
1414 /* Likewise, should we set special REG_NOTEs here? */
1416 return pic_ref;
1420 typedef enum { MOVL, SWAP, NEGW, NOTW, NOTB, MOVQ, MVS, MVZ } CONST_METHOD;
1422 static CONST_METHOD const_method (rtx);
1424 #define USE_MOVQ(i) ((unsigned)((i) + 128) <= 255)
1426 static CONST_METHOD
1427 const_method (rtx constant)
1429 int i;
1430 unsigned u;
1432 i = INTVAL (constant);
1433 if (USE_MOVQ (i))
1434 return MOVQ;
1436 /* The ColdFire doesn't have byte or word operations. */
1437 /* FIXME: This may not be useful for the m68060 either. */
1438 if (!TARGET_COLDFIRE)
1440 /* if -256 < N < 256 but N is not in range for a moveq
1441 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
1442 if (USE_MOVQ (i ^ 0xff))
1443 return NOTB;
1444 /* Likewise, try with not.w */
1445 if (USE_MOVQ (i ^ 0xffff))
1446 return NOTW;
1447 /* This is the only value where neg.w is useful */
1448 if (i == -65408)
1449 return NEGW;
1452 /* Try also with swap. */
1453 u = i;
1454 if (USE_MOVQ ((u >> 16) | (u << 16)))
1455 return SWAP;
1457 if (TARGET_CFV4)
1459 /* Try using MVZ/MVS with an immediate value to load constants. */
1460 if (i >= 0 && i <= 65535)
1461 return MVZ;
1462 if (i >= -32768 && i <= 32767)
1463 return MVS;
1466 /* Otherwise, use move.l */
1467 return MOVL;
1470 static int
1471 const_int_cost (rtx constant)
1473 switch (const_method (constant))
1475 case MOVQ :
1476 /* Constants between -128 and 127 are cheap due to moveq */
1477 return 0;
1478 case MVZ:
1479 case MVS:
1480 case NOTB :
1481 case NOTW :
1482 case NEGW :
1483 case SWAP :
1484 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap */
1485 return 1;
1486 case MOVL :
1487 return 2;
1488 default :
1489 abort ();
1493 static bool
1494 m68k_rtx_costs (rtx x, int code, int outer_code, int *total)
1496 switch (code)
1498 case CONST_INT:
1499 /* Constant zero is super cheap due to clr instruction. */
1500 if (x == const0_rtx)
1501 *total = 0;
1502 else
1503 *total = const_int_cost (x);
1504 return true;
1506 case CONST:
1507 case LABEL_REF:
1508 case SYMBOL_REF:
1509 *total = 3;
1510 return true;
1512 case CONST_DOUBLE:
1513 /* Make 0.0 cheaper than other floating constants to
1514 encourage creating tstsf and tstdf insns. */
1515 if (outer_code == COMPARE
1516 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
1517 *total = 4;
1518 else
1519 *total = 5;
1520 return true;
1522 /* These are vaguely right for a 68020. */
1523 /* The costs for long multiply have been adjusted to work properly
1524 in synth_mult on the 68020, relative to an average of the time
1525 for add and the time for shift, taking away a little more because
1526 sometimes move insns are needed. */
1527 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS terms. */
1528 #define MULL_COST (TARGET_68060 ? 2 : TARGET_68040 ? 5 : (TARGET_COLDFIRE && !TARGET_5200) ? 3 : TARGET_COLDFIRE ? 10 : 13)
1529 #define MULW_COST (TARGET_68060 ? 2 : TARGET_68040 ? 3 : TARGET_68020 ? 8 : \
1530 (TARGET_COLDFIRE && !TARGET_5200) ? 2 : 5)
1531 #define DIVW_COST (TARGET_68020 ? 27 : TARGET_CF_HWDIV ? 11 : 12)
1533 case PLUS:
1534 /* An lea costs about three times as much as a simple add. */
1535 if (GET_MODE (x) == SImode
1536 && GET_CODE (XEXP (x, 1)) == REG
1537 && GET_CODE (XEXP (x, 0)) == MULT
1538 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1539 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
1540 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
1541 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
1542 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
1544 /* lea an@(dx:l:i),am */
1545 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
1546 return true;
1548 return false;
1550 case ASHIFT:
1551 case ASHIFTRT:
1552 case LSHIFTRT:
1553 if (TARGET_68060)
1555 *total = COSTS_N_INSNS(1);
1556 return true;
1558 if (! TARGET_68020 && ! TARGET_COLDFIRE)
1560 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
1562 if (INTVAL (XEXP (x, 1)) < 16)
1563 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
1564 else
1565 /* We're using clrw + swap for these cases. */
1566 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
1568 else
1569 *total = COSTS_N_INSNS (10); /* worst case */
1570 return true;
1572 /* A shift by a big integer takes an extra instruction. */
1573 if (GET_CODE (XEXP (x, 1)) == CONST_INT
1574 && (INTVAL (XEXP (x, 1)) == 16))
1576 *total = COSTS_N_INSNS (2); /* clrw;swap */
1577 return true;
1579 if (GET_CODE (XEXP (x, 1)) == CONST_INT
1580 && !(INTVAL (XEXP (x, 1)) > 0
1581 && INTVAL (XEXP (x, 1)) <= 8))
1583 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
1584 return true;
1586 return false;
1588 case MULT:
1589 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
1590 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
1591 && GET_MODE (x) == SImode)
1592 *total = COSTS_N_INSNS (MULW_COST);
1593 else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
1594 *total = COSTS_N_INSNS (MULW_COST);
1595 else
1596 *total = COSTS_N_INSNS (MULL_COST);
1597 return true;
1599 case DIV:
1600 case UDIV:
1601 case MOD:
1602 case UMOD:
1603 if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
1604 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
1605 else if (TARGET_CF_HWDIV)
1606 *total = COSTS_N_INSNS (18);
1607 else
1608 *total = COSTS_N_INSNS (43); /* div.l */
1609 return true;
1611 default:
1612 return false;
1616 const char *
1617 output_move_const_into_data_reg (rtx *operands)
1619 int i;
1621 i = INTVAL (operands[1]);
1622 switch (const_method (operands[1]))
1624 case MVZ:
1625 return "mvsw %1,%0";
1626 case MVS:
1627 return "mvzw %1,%0";
1628 case MOVQ :
1629 return "moveq %1,%0";
1630 case NOTB :
1631 CC_STATUS_INIT;
1632 operands[1] = GEN_INT (i ^ 0xff);
1633 return "moveq %1,%0\n\tnot%.b %0";
1634 case NOTW :
1635 CC_STATUS_INIT;
1636 operands[1] = GEN_INT (i ^ 0xffff);
1637 return "moveq %1,%0\n\tnot%.w %0";
1638 case NEGW :
1639 CC_STATUS_INIT;
1640 return "moveq #-128,%0\n\tneg%.w %0";
1641 case SWAP :
1643 unsigned u = i;
1645 operands[1] = GEN_INT ((u << 16) | (u >> 16));
1646 return "moveq %1,%0\n\tswap %0";
1648 case MOVL :
1649 return "move%.l %1,%0";
1650 default :
1651 abort ();
1655 /* Return 1 if 'constant' can be represented by
1656 mov3q on a ColdFire V4 core. */
1658 valid_mov3q_const (rtx constant)
1660 int i;
1662 if (TARGET_CFV4 && GET_CODE (constant) == CONST_INT)
1664 i = INTVAL (constant);
1665 if ((i == -1) || (i >= 1 && i <= 7))
1666 return 1;
1668 return 0;
1672 const char *
1673 output_move_simode_const (rtx *operands)
1675 if (operands[1] == const0_rtx
1676 && (DATA_REG_P (operands[0])
1677 || GET_CODE (operands[0]) == MEM)
1678 /* clr insns on 68000 read before writing.
1679 This isn't so on the 68010, but we have no TARGET_68010. */
1680 && ((TARGET_68020 || TARGET_COLDFIRE)
1681 || !(GET_CODE (operands[0]) == MEM
1682 && MEM_VOLATILE_P (operands[0]))))
1683 return "clr%.l %0";
1684 else if ((GET_MODE (operands[0]) == SImode)
1685 && valid_mov3q_const (operands[1]))
1686 return "mov3q%.l %1,%0";
1687 else if (operands[1] == const0_rtx
1688 && ADDRESS_REG_P (operands[0]))
1689 return "sub%.l %0,%0";
1690 else if (DATA_REG_P (operands[0]))
1691 return output_move_const_into_data_reg (operands);
1692 else if (ADDRESS_REG_P (operands[0])
1693 && INTVAL (operands[1]) < 0x8000
1694 && INTVAL (operands[1]) >= -0x8000)
1696 if (valid_mov3q_const (operands[1]))
1697 return "mov3q%.l %1,%0";
1698 return "move%.w %1,%0";
1700 else if (GET_CODE (operands[0]) == MEM
1701 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
1702 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
1703 && INTVAL (operands[1]) < 0x8000
1704 && INTVAL (operands[1]) >= -0x8000)
1706 if (valid_mov3q_const (operands[1]))
1707 return "mov3q%.l %1,%-";
1708 return "pea %a1";
1710 return "move%.l %1,%0";
1713 const char *
1714 output_move_simode (rtx *operands)
1716 if (GET_CODE (operands[1]) == CONST_INT)
1717 return output_move_simode_const (operands);
1718 else if ((GET_CODE (operands[1]) == SYMBOL_REF
1719 || GET_CODE (operands[1]) == CONST)
1720 && push_operand (operands[0], SImode))
1721 return "pea %a1";
1722 else if ((GET_CODE (operands[1]) == SYMBOL_REF
1723 || GET_CODE (operands[1]) == CONST)
1724 && ADDRESS_REG_P (operands[0]))
1725 return "lea %a1,%0";
1726 return "move%.l %1,%0";
1729 const char *
1730 output_move_himode (rtx *operands)
1732 if (GET_CODE (operands[1]) == CONST_INT)
1734 if (operands[1] == const0_rtx
1735 && (DATA_REG_P (operands[0])
1736 || GET_CODE (operands[0]) == MEM)
1737 /* clr insns on 68000 read before writing.
1738 This isn't so on the 68010, but we have no TARGET_68010. */
1739 && ((TARGET_68020 || TARGET_COLDFIRE)
1740 || !(GET_CODE (operands[0]) == MEM
1741 && MEM_VOLATILE_P (operands[0]))))
1742 return "clr%.w %0";
1743 else if (operands[1] == const0_rtx
1744 && ADDRESS_REG_P (operands[0]))
1745 return "sub%.l %0,%0";
1746 else if (DATA_REG_P (operands[0])
1747 && INTVAL (operands[1]) < 128
1748 && INTVAL (operands[1]) >= -128)
1750 return "moveq %1,%0";
1752 else if (INTVAL (operands[1]) < 0x8000
1753 && INTVAL (operands[1]) >= -0x8000)
1754 return "move%.w %1,%0";
1756 else if (CONSTANT_P (operands[1]))
1757 return "move%.l %1,%0";
1758 /* Recognize the insn before a tablejump, one that refers
1759 to a table of offsets. Such an insn will need to refer
1760 to a label on the insn. So output one. Use the label-number
1761 of the table of offsets to generate this label. This code,
1762 and similar code below, assumes that there will be at most one
1763 reference to each table. */
1764 if (GET_CODE (operands[1]) == MEM
1765 && GET_CODE (XEXP (operands[1], 0)) == PLUS
1766 && GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == LABEL_REF
1767 && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) != PLUS)
1769 rtx labelref = XEXP (XEXP (operands[1], 0), 1);
1770 if (MOTOROLA)
1771 asm_fprintf (asm_out_file, "\t.set %LLI%d,.+2\n",
1772 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1773 else
1774 (*targetm.asm_out.internal_label) (asm_out_file, "LI",
1775 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1777 return "move%.w %1,%0";
1780 const char *
1781 output_move_qimode (rtx *operands)
1783 /* 68k family always modifies the stack pointer by at least 2, even for
1784 byte pushes. The 5200 (ColdFire) does not do this. */
1785 if (GET_CODE (operands[0]) == MEM
1786 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
1787 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
1788 && ! ADDRESS_REG_P (operands[1])
1789 && ! TARGET_COLDFIRE)
1790 /* generated by pushqi1 pattern now */
1791 abort ();
1793 /* clr and st insns on 68000 read before writing.
1794 This isn't so on the 68010, but we have no TARGET_68010. */
1795 if (!ADDRESS_REG_P (operands[0])
1796 && ((TARGET_68020 || TARGET_COLDFIRE)
1797 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
1799 if (operands[1] == const0_rtx)
1800 return "clr%.b %0";
1801 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
1802 && GET_CODE (operands[1]) == CONST_INT
1803 && (INTVAL (operands[1]) & 255) == 255)
1805 CC_STATUS_INIT;
1806 return "st %0";
1809 if (GET_CODE (operands[1]) == CONST_INT
1810 && DATA_REG_P (operands[0])
1811 && INTVAL (operands[1]) < 128
1812 && INTVAL (operands[1]) >= -128)
1814 return "moveq %1,%0";
1816 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
1817 return "sub%.l %0,%0";
1818 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
1819 return "move%.l %1,%0";
1820 /* 68k family (including the 5200 ColdFire) does not support byte moves to
1821 from address registers. */
1822 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
1823 return "move%.w %1,%0";
1824 return "move%.b %1,%0";
1827 const char *
1828 output_move_stricthi (rtx *operands)
1830 if (operands[1] == const0_rtx
1831 /* clr insns on 68000 read before writing.
1832 This isn't so on the 68010, but we have no TARGET_68010. */
1833 && ((TARGET_68020 || TARGET_COLDFIRE)
1834 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
1835 return "clr%.w %0";
1836 return "move%.w %1,%0";
1839 const char *
1840 output_move_strictqi (rtx *operands)
1842 if (operands[1] == const0_rtx
1843 /* clr insns on 68000 read before writing.
1844 This isn't so on the 68010, but we have no TARGET_68010. */
1845 && ((TARGET_68020 || TARGET_COLDFIRE)
1846 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
1847 return "clr%.b %0";
1848 return "move%.b %1,%0";
1851 /* Return the best assembler insn template
1852 for moving operands[1] into operands[0] as a fullword. */
1854 static const char *
1855 singlemove_string (rtx *operands)
1857 if (GET_CODE (operands[1]) == CONST_INT)
1858 return output_move_simode_const (operands);
1859 return "move%.l %1,%0";
1863 /* Output assembler code to perform a doubleword move insn
1864 with operands OPERANDS. */
1866 const char *
1867 output_move_double (rtx *operands)
1869 enum
1871 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
1872 } optype0, optype1;
1873 rtx latehalf[2];
1874 rtx middlehalf[2];
1875 rtx xops[2];
1876 rtx addreg0 = 0, addreg1 = 0;
1877 int dest_overlapped_low = 0;
1878 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
1880 middlehalf[0] = 0;
1881 middlehalf[1] = 0;
1883 /* First classify both operands. */
1885 if (REG_P (operands[0]))
1886 optype0 = REGOP;
1887 else if (offsettable_memref_p (operands[0]))
1888 optype0 = OFFSOP;
1889 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
1890 optype0 = POPOP;
1891 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
1892 optype0 = PUSHOP;
1893 else if (GET_CODE (operands[0]) == MEM)
1894 optype0 = MEMOP;
1895 else
1896 optype0 = RNDOP;
1898 if (REG_P (operands[1]))
1899 optype1 = REGOP;
1900 else if (CONSTANT_P (operands[1]))
1901 optype1 = CNSTOP;
1902 else if (offsettable_memref_p (operands[1]))
1903 optype1 = OFFSOP;
1904 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
1905 optype1 = POPOP;
1906 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
1907 optype1 = PUSHOP;
1908 else if (GET_CODE (operands[1]) == MEM)
1909 optype1 = MEMOP;
1910 else
1911 optype1 = RNDOP;
1913 /* Check for the cases that the operand constraints are not
1914 supposed to allow to happen. Abort if we get one,
1915 because generating code for these cases is painful. */
1917 if (optype0 == RNDOP || optype1 == RNDOP)
1918 abort ();
1920 /* If one operand is decrementing and one is incrementing
1921 decrement the former register explicitly
1922 and change that operand into ordinary indexing. */
1924 if (optype0 == PUSHOP && optype1 == POPOP)
1926 operands[0] = XEXP (XEXP (operands[0], 0), 0);
1927 if (size == 12)
1928 output_asm_insn ("sub%.l #12,%0", operands);
1929 else
1930 output_asm_insn ("subq%.l #8,%0", operands);
1931 if (GET_MODE (operands[1]) == XFmode)
1932 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
1933 else if (GET_MODE (operands[0]) == DFmode)
1934 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
1935 else
1936 operands[0] = gen_rtx_MEM (DImode, operands[0]);
1937 optype0 = OFFSOP;
1939 if (optype0 == POPOP && optype1 == PUSHOP)
1941 operands[1] = XEXP (XEXP (operands[1], 0), 0);
1942 if (size == 12)
1943 output_asm_insn ("sub%.l #12,%1", operands);
1944 else
1945 output_asm_insn ("subq%.l #8,%1", operands);
1946 if (GET_MODE (operands[1]) == XFmode)
1947 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
1948 else if (GET_MODE (operands[1]) == DFmode)
1949 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
1950 else
1951 operands[1] = gen_rtx_MEM (DImode, operands[1]);
1952 optype1 = OFFSOP;
1955 /* If an operand is an unoffsettable memory ref, find a register
1956 we can increment temporarily to make it refer to the second word. */
1958 if (optype0 == MEMOP)
1959 addreg0 = find_addr_reg (XEXP (operands[0], 0));
1961 if (optype1 == MEMOP)
1962 addreg1 = find_addr_reg (XEXP (operands[1], 0));
1964 /* Ok, we can do one word at a time.
1965 Normally we do the low-numbered word first,
1966 but if either operand is autodecrementing then we
1967 do the high-numbered word first.
1969 In either case, set up in LATEHALF the operands to use
1970 for the high-numbered word and in some cases alter the
1971 operands in OPERANDS to be suitable for the low-numbered word. */
1973 if (size == 12)
1975 if (optype0 == REGOP)
1977 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
1978 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
1980 else if (optype0 == OFFSOP)
1982 middlehalf[0] = adjust_address (operands[0], SImode, 4);
1983 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
1985 else
1987 middlehalf[0] = operands[0];
1988 latehalf[0] = operands[0];
1991 if (optype1 == REGOP)
1993 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
1994 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
1996 else if (optype1 == OFFSOP)
1998 middlehalf[1] = adjust_address (operands[1], SImode, 4);
1999 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
2001 else if (optype1 == CNSTOP)
2003 if (GET_CODE (operands[1]) == CONST_DOUBLE)
2005 REAL_VALUE_TYPE r;
2006 long l[3];
2008 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
2009 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
2010 operands[1] = GEN_INT (l[0]);
2011 middlehalf[1] = GEN_INT (l[1]);
2012 latehalf[1] = GEN_INT (l[2]);
2014 else if (CONSTANT_P (operands[1]))
2016 /* actually, no non-CONST_DOUBLE constant should ever
2017 appear here. */
2018 abort ();
2019 if (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) < 0)
2020 latehalf[1] = constm1_rtx;
2021 else
2022 latehalf[1] = const0_rtx;
2025 else
2027 middlehalf[1] = operands[1];
2028 latehalf[1] = operands[1];
2031 else
2032 /* size is not 12: */
2034 if (optype0 == REGOP)
2035 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
2036 else if (optype0 == OFFSOP)
2037 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
2038 else
2039 latehalf[0] = operands[0];
2041 if (optype1 == REGOP)
2042 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
2043 else if (optype1 == OFFSOP)
2044 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
2045 else if (optype1 == CNSTOP)
2046 split_double (operands[1], &operands[1], &latehalf[1]);
2047 else
2048 latehalf[1] = operands[1];
2051 /* If insn is effectively movd N(sp),-(sp) then we will do the
2052 high word first. We should use the adjusted operand 1 (which is N+4(sp))
2053 for the low word as well, to compensate for the first decrement of sp. */
2054 if (optype0 == PUSHOP
2055 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
2056 && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
2057 operands[1] = middlehalf[1] = latehalf[1];
2059 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
2060 if the upper part of reg N does not appear in the MEM, arrange to
2061 emit the move late-half first. Otherwise, compute the MEM address
2062 into the upper part of N and use that as a pointer to the memory
2063 operand. */
2064 if (optype0 == REGOP
2065 && (optype1 == OFFSOP || optype1 == MEMOP))
2067 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
2069 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
2070 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
2072 /* If both halves of dest are used in the src memory address,
2073 compute the address into latehalf of dest.
2074 Note that this can't happen if the dest is two data regs. */
2075 compadr:
2076 xops[0] = latehalf[0];
2077 xops[1] = XEXP (operands[1], 0);
2078 output_asm_insn ("lea %a1,%0", xops);
2079 if (GET_MODE (operands[1]) == XFmode )
2081 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
2082 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
2083 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
2085 else
2087 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
2088 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
2091 else if (size == 12
2092 && reg_overlap_mentioned_p (middlehalf[0],
2093 XEXP (operands[1], 0)))
2095 /* Check for two regs used by both source and dest.
2096 Note that this can't happen if the dest is all data regs.
2097 It can happen if the dest is d6, d7, a0.
2098 But in that case, latehalf is an addr reg, so
2099 the code at compadr does ok. */
2101 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
2102 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
2103 goto compadr;
2105 /* JRV says this can't happen: */
2106 if (addreg0 || addreg1)
2107 abort ();
2109 /* Only the middle reg conflicts; simply put it last. */
2110 output_asm_insn (singlemove_string (operands), operands);
2111 output_asm_insn (singlemove_string (latehalf), latehalf);
2112 output_asm_insn (singlemove_string (middlehalf), middlehalf);
2113 return "";
2115 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
2116 /* If the low half of dest is mentioned in the source memory
2117 address, the arrange to emit the move late half first. */
2118 dest_overlapped_low = 1;
2121 /* If one or both operands autodecrementing,
2122 do the two words, high-numbered first. */
2124 /* Likewise, the first move would clobber the source of the second one,
2125 do them in the other order. This happens only for registers;
2126 such overlap can't happen in memory unless the user explicitly
2127 sets it up, and that is an undefined circumstance. */
2129 if (optype0 == PUSHOP || optype1 == PUSHOP
2130 || (optype0 == REGOP && optype1 == REGOP
2131 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
2132 || REGNO (operands[0]) == REGNO (latehalf[1])))
2133 || dest_overlapped_low)
2135 /* Make any unoffsettable addresses point at high-numbered word. */
2136 if (addreg0)
2138 if (size == 12)
2139 output_asm_insn ("addq%.l #8,%0", &addreg0);
2140 else
2141 output_asm_insn ("addq%.l #4,%0", &addreg0);
2143 if (addreg1)
2145 if (size == 12)
2146 output_asm_insn ("addq%.l #8,%0", &addreg1);
2147 else
2148 output_asm_insn ("addq%.l #4,%0", &addreg1);
2151 /* Do that word. */
2152 output_asm_insn (singlemove_string (latehalf), latehalf);
2154 /* Undo the adds we just did. */
2155 if (addreg0)
2156 output_asm_insn ("subq%.l #4,%0", &addreg0);
2157 if (addreg1)
2158 output_asm_insn ("subq%.l #4,%0", &addreg1);
2160 if (size == 12)
2162 output_asm_insn (singlemove_string (middlehalf), middlehalf);
2163 if (addreg0)
2164 output_asm_insn ("subq%.l #4,%0", &addreg0);
2165 if (addreg1)
2166 output_asm_insn ("subq%.l #4,%0", &addreg1);
2169 /* Do low-numbered word. */
2170 return singlemove_string (operands);
2173 /* Normal case: do the two words, low-numbered first. */
2175 output_asm_insn (singlemove_string (operands), operands);
2177 /* Do the middle one of the three words for long double */
2178 if (size == 12)
2180 if (addreg0)
2181 output_asm_insn ("addq%.l #4,%0", &addreg0);
2182 if (addreg1)
2183 output_asm_insn ("addq%.l #4,%0", &addreg1);
2185 output_asm_insn (singlemove_string (middlehalf), middlehalf);
2188 /* Make any unoffsettable addresses point at high-numbered word. */
2189 if (addreg0)
2190 output_asm_insn ("addq%.l #4,%0", &addreg0);
2191 if (addreg1)
2192 output_asm_insn ("addq%.l #4,%0", &addreg1);
2194 /* Do that word. */
2195 output_asm_insn (singlemove_string (latehalf), latehalf);
2197 /* Undo the adds we just did. */
2198 if (addreg0)
2200 if (size == 12)
2201 output_asm_insn ("subq%.l #8,%0", &addreg0);
2202 else
2203 output_asm_insn ("subq%.l #4,%0", &addreg0);
2205 if (addreg1)
2207 if (size == 12)
2208 output_asm_insn ("subq%.l #8,%0", &addreg1);
2209 else
2210 output_asm_insn ("subq%.l #4,%0", &addreg1);
2213 return "";
2216 /* Return a REG that occurs in ADDR with coefficient 1.
2217 ADDR can be effectively incremented by incrementing REG. */
2219 static rtx
2220 find_addr_reg (rtx addr)
2222 while (GET_CODE (addr) == PLUS)
2224 if (GET_CODE (XEXP (addr, 0)) == REG)
2225 addr = XEXP (addr, 0);
2226 else if (GET_CODE (XEXP (addr, 1)) == REG)
2227 addr = XEXP (addr, 1);
2228 else if (CONSTANT_P (XEXP (addr, 0)))
2229 addr = XEXP (addr, 1);
2230 else if (CONSTANT_P (XEXP (addr, 1)))
2231 addr = XEXP (addr, 0);
2232 else
2233 abort ();
2235 if (GET_CODE (addr) == REG)
2236 return addr;
2237 abort ();
2240 /* Output assembler code to perform a 32-bit 3-operand add. */
2242 const char *
2243 output_addsi3 (rtx *operands)
2245 if (! operands_match_p (operands[0], operands[1]))
2247 if (!ADDRESS_REG_P (operands[1]))
2249 rtx tmp = operands[1];
2251 operands[1] = operands[2];
2252 operands[2] = tmp;
2255 /* These insns can result from reloads to access
2256 stack slots over 64k from the frame pointer. */
2257 if (GET_CODE (operands[2]) == CONST_INT
2258 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
2259 return "move%.l %2,%0\n\tadd%.l %1,%0";
2260 if (GET_CODE (operands[2]) == REG)
2261 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
2262 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
2264 if (GET_CODE (operands[2]) == CONST_INT)
2266 if (INTVAL (operands[2]) > 0
2267 && INTVAL (operands[2]) <= 8)
2268 return "addq%.l %2,%0";
2269 if (INTVAL (operands[2]) < 0
2270 && INTVAL (operands[2]) >= -8)
2272 operands[2] = GEN_INT (- INTVAL (operands[2]));
2273 return "subq%.l %2,%0";
2275 /* On the CPU32 it is faster to use two addql instructions to
2276 add a small integer (8 < N <= 16) to a register.
2277 Likewise for subql. */
2278 if (TARGET_CPU32 && REG_P (operands[0]))
2280 if (INTVAL (operands[2]) > 8
2281 && INTVAL (operands[2]) <= 16)
2283 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
2284 return "addq%.l #8,%0\n\taddq%.l %2,%0";
2286 if (INTVAL (operands[2]) < -8
2287 && INTVAL (operands[2]) >= -16)
2289 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
2290 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
2293 if (ADDRESS_REG_P (operands[0])
2294 && INTVAL (operands[2]) >= -0x8000
2295 && INTVAL (operands[2]) < 0x8000)
2297 if (TARGET_68040)
2298 return "add%.w %2,%0";
2299 else
2300 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
2303 return "add%.l %2,%0";
2306 /* Store in cc_status the expressions that the condition codes will
2307 describe after execution of an instruction whose pattern is EXP.
2308 Do not alter them if the instruction would not alter the cc's. */
2310 /* On the 68000, all the insns to store in an address register fail to
2311 set the cc's. However, in some cases these instructions can make it
2312 possibly invalid to use the saved cc's. In those cases we clear out
2313 some or all of the saved cc's so they won't be used. */
2315 void
2316 notice_update_cc (rtx exp, rtx insn)
2318 if (GET_CODE (exp) == SET)
2320 if (GET_CODE (SET_SRC (exp)) == CALL)
2322 CC_STATUS_INIT;
2324 else if (ADDRESS_REG_P (SET_DEST (exp)))
2326 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
2327 cc_status.value1 = 0;
2328 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
2329 cc_status.value2 = 0;
2331 else if (!FP_REG_P (SET_DEST (exp))
2332 && SET_DEST (exp) != cc0_rtx
2333 && (FP_REG_P (SET_SRC (exp))
2334 || GET_CODE (SET_SRC (exp)) == FIX
2335 || GET_CODE (SET_SRC (exp)) == FLOAT_TRUNCATE
2336 || GET_CODE (SET_SRC (exp)) == FLOAT_EXTEND))
2338 CC_STATUS_INIT;
2340 /* A pair of move insns doesn't produce a useful overall cc. */
2341 else if (!FP_REG_P (SET_DEST (exp))
2342 && !FP_REG_P (SET_SRC (exp))
2343 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
2344 && (GET_CODE (SET_SRC (exp)) == REG
2345 || GET_CODE (SET_SRC (exp)) == MEM
2346 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
2348 CC_STATUS_INIT;
2350 else if (GET_CODE (SET_SRC (exp)) == CALL)
2352 CC_STATUS_INIT;
2354 else if (XEXP (exp, 0) != pc_rtx)
2356 cc_status.flags = 0;
2357 cc_status.value1 = XEXP (exp, 0);
2358 cc_status.value2 = XEXP (exp, 1);
2361 else if (GET_CODE (exp) == PARALLEL
2362 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
2364 if (ADDRESS_REG_P (XEXP (XVECEXP (exp, 0, 0), 0)))
2365 CC_STATUS_INIT;
2366 else if (XEXP (XVECEXP (exp, 0, 0), 0) != pc_rtx)
2368 cc_status.flags = 0;
2369 cc_status.value1 = XEXP (XVECEXP (exp, 0, 0), 0);
2370 cc_status.value2 = XEXP (XVECEXP (exp, 0, 0), 1);
2373 else
2374 CC_STATUS_INIT;
2375 if (cc_status.value2 != 0
2376 && ADDRESS_REG_P (cc_status.value2)
2377 && GET_MODE (cc_status.value2) == QImode)
2378 CC_STATUS_INIT;
2379 if (cc_status.value2 != 0)
2380 switch (GET_CODE (cc_status.value2))
2382 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
2383 case ROTATE: case ROTATERT:
2384 /* These instructions always clear the overflow bit, and set
2385 the carry to the bit shifted out. */
2386 /* ??? We don't currently have a way to signal carry not valid,
2387 nor do we check for it in the branch insns. */
2388 CC_STATUS_INIT;
2389 break;
2391 case PLUS: case MINUS: case MULT:
2392 case DIV: case UDIV: case MOD: case UMOD: case NEG:
2393 if (GET_MODE (cc_status.value2) != VOIDmode)
2394 cc_status.flags |= CC_NO_OVERFLOW;
2395 break;
2396 case ZERO_EXTEND:
2397 /* (SET r1 (ZERO_EXTEND r2)) on this machine
2398 ends with a move insn moving r2 in r2's mode.
2399 Thus, the cc's are set for r2.
2400 This can set N bit spuriously. */
2401 cc_status.flags |= CC_NOT_NEGATIVE;
2403 default:
2404 break;
2406 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
2407 && cc_status.value2
2408 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
2409 cc_status.value2 = 0;
2410 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
2411 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
2412 cc_status.flags = CC_IN_68881;
2415 const char *
2416 output_move_const_double (rtx *operands)
2418 int code = standard_68881_constant_p (operands[1]);
2420 if (code != 0)
2422 static char buf[40];
2424 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
2425 return buf;
2427 return "fmove%.d %1,%0";
2430 const char *
2431 output_move_const_single (rtx *operands)
2433 int code = standard_68881_constant_p (operands[1]);
2435 if (code != 0)
2437 static char buf[40];
2439 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
2440 return buf;
2442 return "fmove%.s %f1,%0";
2445 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
2446 from the "fmovecr" instruction.
2447 The value, anded with 0xff, gives the code to use in fmovecr
2448 to get the desired constant. */
2450 /* This code has been fixed for cross-compilation. */
2452 static int inited_68881_table = 0;
2454 static const char *const strings_68881[7] = {
2455 "0.0",
2456 "1.0",
2457 "10.0",
2458 "100.0",
2459 "10000.0",
2460 "1e8",
2461 "1e16"
2464 static const int codes_68881[7] = {
2465 0x0f,
2466 0x32,
2467 0x33,
2468 0x34,
2469 0x35,
2470 0x36,
2471 0x37
2474 REAL_VALUE_TYPE values_68881[7];
2476 /* Set up values_68881 array by converting the decimal values
2477 strings_68881 to binary. */
2479 void
2480 init_68881_table (void)
2482 int i;
2483 REAL_VALUE_TYPE r;
2484 enum machine_mode mode;
2486 mode = SFmode;
2487 for (i = 0; i < 7; i++)
2489 if (i == 6)
2490 mode = DFmode;
2491 r = REAL_VALUE_ATOF (strings_68881[i], mode);
2492 values_68881[i] = r;
2494 inited_68881_table = 1;
2498 standard_68881_constant_p (rtx x)
2500 REAL_VALUE_TYPE r;
2501 int i;
2503 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
2504 used at all on those chips. */
2505 if (TARGET_68040 || TARGET_68060)
2506 return 0;
2508 if (! inited_68881_table)
2509 init_68881_table ();
2511 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2513 /* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
2514 is rejected. */
2515 for (i = 0; i < 6; i++)
2517 if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
2518 return (codes_68881[i]);
2521 if (GET_MODE (x) == SFmode)
2522 return 0;
2524 if (REAL_VALUES_EQUAL (r, values_68881[6]))
2525 return (codes_68881[6]);
2527 /* larger powers of ten in the constants ram are not used
2528 because they are not equal to a `double' C constant. */
2529 return 0;
2532 /* If X is a floating-point constant, return the logarithm of X base 2,
2533 or 0 if X is not a power of 2. */
2536 floating_exact_log2 (rtx x)
2538 REAL_VALUE_TYPE r, r1;
2539 int exp;
2541 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2543 if (REAL_VALUES_LESS (r, dconst1))
2544 return 0;
2546 exp = real_exponent (&r);
2547 real_2expN (&r1, exp);
2548 if (REAL_VALUES_EQUAL (r1, r))
2549 return exp;
2551 return 0;
2554 /* A C compound statement to output to stdio stream STREAM the
2555 assembler syntax for an instruction operand X. X is an RTL
2556 expression.
2558 CODE is a value that can be used to specify one of several ways
2559 of printing the operand. It is used when identical operands
2560 must be printed differently depending on the context. CODE
2561 comes from the `%' specification that was used to request
2562 printing of the operand. If the specification was just `%DIGIT'
2563 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2564 is the ASCII code for LTR.
2566 If X is a register, this macro should print the register's name.
2567 The names can be found in an array `reg_names' whose type is
2568 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
2570 When the machine description has a specification `%PUNCT' (a `%'
2571 followed by a punctuation character), this macro is called with
2572 a null pointer for X and the punctuation character for CODE.
2574 The m68k specific codes are:
2576 '.' for dot needed in Motorola-style opcode names.
2577 '-' for an operand pushing on the stack:
2578 sp@-, -(sp) or -(%sp) depending on the style of syntax.
2579 '+' for an operand pushing on the stack:
2580 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
2581 '@' for a reference to the top word on the stack:
2582 sp@, (sp) or (%sp) depending on the style of syntax.
2583 '#' for an immediate operand prefix (# in MIT and Motorola syntax
2584 but & in SGS syntax).
2585 '!' for the cc register (used in an `and to cc' insn).
2586 '$' for the letter `s' in an op code, but only on the 68040.
2587 '&' for the letter `d' in an op code, but only on the 68040.
2588 '/' for register prefix needed by longlong.h.
2590 'b' for byte insn (no effect, on the Sun; this is for the ISI).
2591 'd' to force memory addressing to be absolute, not relative.
2592 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
2593 'o' for operands to go directly to output_operand_address (bypassing
2594 print_operand_address--used only for SYMBOL_REFs under TARGET_PCREL)
2595 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
2596 or print pair of registers as rx:ry.
2600 void
2601 print_operand (FILE *file, rtx op, int letter)
2603 if (letter == '.')
2605 if (MOTOROLA)
2606 fprintf (file, ".");
2608 else if (letter == '#')
2609 asm_fprintf (file, "%I");
2610 else if (letter == '-')
2611 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
2612 else if (letter == '+')
2613 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
2614 else if (letter == '@')
2615 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
2616 else if (letter == '!')
2617 asm_fprintf (file, "%Rfpcr");
2618 else if (letter == '$')
2620 if (TARGET_68040_ONLY)
2621 fprintf (file, "s");
2623 else if (letter == '&')
2625 if (TARGET_68040_ONLY)
2626 fprintf (file, "d");
2628 else if (letter == '/')
2629 asm_fprintf (file, "%R");
2630 else if (letter == 'o')
2632 /* This is only for direct addresses with TARGET_PCREL */
2633 if (GET_CODE (op) != MEM || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
2634 || !TARGET_PCREL)
2635 abort ();
2636 output_addr_const (file, XEXP (op, 0));
2638 else if (GET_CODE (op) == REG)
2640 if (letter == 'R')
2641 /* Print out the second register name of a register pair.
2642 I.e., R (6) => 7. */
2643 fputs (M68K_REGNAME(REGNO (op) + 1), file);
2644 else
2645 fputs (M68K_REGNAME(REGNO (op)), file);
2647 else if (GET_CODE (op) == MEM)
2649 output_address (XEXP (op, 0));
2650 if (letter == 'd' && ! TARGET_68020
2651 && CONSTANT_ADDRESS_P (XEXP (op, 0))
2652 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
2653 && INTVAL (XEXP (op, 0)) < 0x8000
2654 && INTVAL (XEXP (op, 0)) >= -0x8000))
2655 fprintf (file, MOTOROLA ? ".l" : ":l");
2657 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
2659 REAL_VALUE_TYPE r;
2660 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2661 ASM_OUTPUT_FLOAT_OPERAND (letter, file, r);
2663 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
2665 REAL_VALUE_TYPE r;
2666 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2667 ASM_OUTPUT_LONG_DOUBLE_OPERAND (file, r);
2669 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
2671 REAL_VALUE_TYPE r;
2672 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2673 ASM_OUTPUT_DOUBLE_OPERAND (file, r);
2675 else
2677 /* Use `print_operand_address' instead of `output_addr_const'
2678 to ensure that we print relevant PIC stuff. */
2679 asm_fprintf (file, "%I");
2680 if (TARGET_PCREL
2681 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
2682 print_operand_address (file, op);
2683 else
2684 output_addr_const (file, op);
2689 /* A C compound statement to output to stdio stream STREAM the
2690 assembler syntax for an instruction operand that is a memory
2691 reference whose address is ADDR. ADDR is an RTL expression.
2693 Note that this contains a kludge that knows that the only reason
2694 we have an address (plus (label_ref...) (reg...)) when not generating
2695 PIC code is in the insn before a tablejump, and we know that m68k.md
2696 generates a label LInnn: on such an insn.
2698 It is possible for PIC to generate a (plus (label_ref...) (reg...))
2699 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
2701 Some SGS assemblers have a bug such that "Lnnn-LInnn-2.b(pc,d0.l*2)"
2702 fails to assemble. Luckily "Lnnn(pc,d0.l*2)" produces the results
2703 we want. This difference can be accommodated by using an assembler
2704 define such "LDnnn" to be either "Lnnn-LInnn-2.b", "Lnnn", or any other
2705 string, as necessary. This is accomplished via the ASM_OUTPUT_CASE_END
2706 macro. See m68k/sgs.h for an example; for versions without the bug.
2707 Some assemblers refuse all the above solutions. The workaround is to
2708 emit "K(pc,d0.l*2)" with K being a small constant known to give the
2709 right behavior.
2711 They also do not like things like "pea 1.w", so we simple leave off
2712 the .w on small constants.
2714 This routine is responsible for distinguishing between -fpic and -fPIC
2715 style relocations in an address. When generating -fpic code the
2716 offset is output in word mode (eg movel a5@(_foo:w), a0). When generating
2717 -fPIC code the offset is output in long mode (eg movel a5@(_foo:l), a0) */
2719 #if MOTOROLA
2720 # define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2721 asm_fprintf (file, "%LL%d-%LLI%d.b(%Rpc,%s.", labelno, labelno, regname)
2722 #else /* !MOTOROLA */
2723 # define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2724 asm_fprintf (file, "%Rpc@(%LL%d-%LLI%d-2:b,%s:", labelno, labelno, regname)
2725 #endif /* !MOTOROLA */
2727 void
2728 print_operand_address (FILE *file, rtx addr)
2730 register rtx reg1, reg2, breg, ireg;
2731 rtx offset;
2733 switch (GET_CODE (addr))
2735 case REG:
2736 fprintf (file, MOTOROLA ? "(%s)" : "%s@", M68K_REGNAME(REGNO (addr)));
2737 break;
2738 case PRE_DEC:
2739 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
2740 M68K_REGNAME(REGNO (XEXP (addr, 0))));
2741 break;
2742 case POST_INC:
2743 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
2744 M68K_REGNAME(REGNO (XEXP (addr, 0))));
2745 break;
2746 case PLUS:
2747 reg1 = reg2 = ireg = breg = offset = 0;
2748 if (CONSTANT_ADDRESS_P (XEXP (addr, 0)))
2750 offset = XEXP (addr, 0);
2751 addr = XEXP (addr, 1);
2753 else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)))
2755 offset = XEXP (addr, 1);
2756 addr = XEXP (addr, 0);
2758 if (GET_CODE (addr) != PLUS)
2762 else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND)
2764 reg1 = XEXP (addr, 0);
2765 addr = XEXP (addr, 1);
2767 else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND)
2769 reg1 = XEXP (addr, 1);
2770 addr = XEXP (addr, 0);
2772 else if (GET_CODE (XEXP (addr, 0)) == MULT)
2774 reg1 = XEXP (addr, 0);
2775 addr = XEXP (addr, 1);
2777 else if (GET_CODE (XEXP (addr, 1)) == MULT)
2779 reg1 = XEXP (addr, 1);
2780 addr = XEXP (addr, 0);
2782 else if (GET_CODE (XEXP (addr, 0)) == REG)
2784 reg1 = XEXP (addr, 0);
2785 addr = XEXP (addr, 1);
2787 else if (GET_CODE (XEXP (addr, 1)) == REG)
2789 reg1 = XEXP (addr, 1);
2790 addr = XEXP (addr, 0);
2792 if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT
2793 || GET_CODE (addr) == SIGN_EXTEND)
2795 if (reg1 == 0)
2797 reg1 = addr;
2799 else
2801 reg2 = addr;
2803 addr = 0;
2805 #if 0 /* for OLD_INDEXING */
2806 else if (GET_CODE (addr) == PLUS)
2808 if (GET_CODE (XEXP (addr, 0)) == REG)
2810 reg2 = XEXP (addr, 0);
2811 addr = XEXP (addr, 1);
2813 else if (GET_CODE (XEXP (addr, 1)) == REG)
2815 reg2 = XEXP (addr, 1);
2816 addr = XEXP (addr, 0);
2819 #endif
2820 if (offset != 0)
2822 if (addr != 0)
2824 abort ();
2826 addr = offset;
2828 if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND
2829 || GET_CODE (reg1) == MULT))
2830 || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2))))
2832 breg = reg2;
2833 ireg = reg1;
2835 else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1)))
2837 breg = reg1;
2838 ireg = reg2;
2840 if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF
2841 && ! (flag_pic && ireg == pic_offset_table_rtx))
2843 int scale = 1;
2844 if (GET_CODE (ireg) == MULT)
2846 scale = INTVAL (XEXP (ireg, 1));
2847 ireg = XEXP (ireg, 0);
2849 if (GET_CODE (ireg) == SIGN_EXTEND)
2851 ASM_OUTPUT_CASE_FETCH (file,
2852 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2853 M68K_REGNAME(REGNO (XEXP (ireg, 0))));
2854 fprintf (file, "w");
2856 else
2858 ASM_OUTPUT_CASE_FETCH (file,
2859 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2860 M68K_REGNAME(REGNO (ireg)));
2861 fprintf (file, "l");
2863 if (scale != 1)
2864 fprintf (file, MOTOROLA ? "*%d" : ":%d", scale);
2865 putc (')', file);
2866 break;
2868 if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF
2869 && ! (flag_pic && breg == pic_offset_table_rtx))
2871 ASM_OUTPUT_CASE_FETCH (file,
2872 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2873 M68K_REGNAME(REGNO (breg)));
2874 fprintf (file, "l)");
2875 break;
2877 if (ireg != 0 || breg != 0)
2879 int scale = 1;
2880 if (breg == 0)
2882 abort ();
2884 if (! flag_pic && addr && GET_CODE (addr) == LABEL_REF)
2886 abort ();
2888 if (MOTOROLA)
2890 if (addr != 0)
2892 output_addr_const (file, addr);
2893 if (flag_pic && (breg == pic_offset_table_rtx))
2895 fprintf (file, "@GOT");
2896 if (flag_pic == 1)
2897 fprintf (file, ".w");
2900 fprintf (file, "(%s", M68K_REGNAME(REGNO (breg)));
2901 if (ireg != 0)
2902 putc (',', file);
2904 else /* !MOTOROLA */
2906 fprintf (file, "%s@(", M68K_REGNAME(REGNO (breg)));
2907 if (addr != 0)
2909 output_addr_const (file, addr);
2910 if (breg == pic_offset_table_rtx)
2911 switch (flag_pic)
2913 case 1:
2914 fprintf (file, ":w"); break;
2915 case 2:
2916 fprintf (file, ":l"); break;
2917 default:
2918 break;
2920 if (ireg != 0)
2921 putc (',', file);
2923 } /* !MOTOROLA */
2924 if (ireg != 0 && GET_CODE (ireg) == MULT)
2926 scale = INTVAL (XEXP (ireg, 1));
2927 ireg = XEXP (ireg, 0);
2929 if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND)
2930 fprintf (file, MOTOROLA ? "%s.w" : "%s:w",
2931 M68K_REGNAME(REGNO (XEXP (ireg, 0))));
2932 else if (ireg != 0)
2933 fprintf (file, MOTOROLA ? "%s.l" : "%s:l",
2934 M68K_REGNAME(REGNO (ireg)));
2935 if (scale != 1)
2936 fprintf (file, MOTOROLA ? "*%d" : ":%d", scale);
2937 putc (')', file);
2938 break;
2940 else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF
2941 && ! (flag_pic && reg1 == pic_offset_table_rtx))
2943 ASM_OUTPUT_CASE_FETCH (file,
2944 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2945 M68K_REGNAME(REGNO (reg1)));
2946 fprintf (file, "l)");
2947 break;
2949 /* FALL-THROUGH (is this really what we want?) */
2950 default:
2951 if (GET_CODE (addr) == CONST_INT
2952 && INTVAL (addr) < 0x8000
2953 && INTVAL (addr) >= -0x8000)
2955 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
2957 else if (GET_CODE (addr) == CONST_INT)
2959 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
2961 else if (TARGET_PCREL)
2963 fputc ('(', file);
2964 output_addr_const (file, addr);
2965 if (flag_pic == 1)
2966 asm_fprintf (file, ":w,%Rpc)");
2967 else
2968 asm_fprintf (file, ":l,%Rpc)");
2970 else
2972 /* Special case for SYMBOL_REF if the symbol name ends in
2973 `.<letter>', this can be mistaken as a size suffix. Put
2974 the name in parentheses. */
2975 if (GET_CODE (addr) == SYMBOL_REF
2976 && strlen (XSTR (addr, 0)) > 2
2977 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
2979 putc ('(', file);
2980 output_addr_const (file, addr);
2981 putc (')', file);
2983 else
2984 output_addr_const (file, addr);
2986 break;
2990 /* Check for cases where a clr insns can be omitted from code using
2991 strict_low_part sets. For example, the second clrl here is not needed:
2992 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
2994 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
2995 insn we are checking for redundancy. TARGET is the register set by the
2996 clear insn. */
2998 bool
2999 strict_low_part_peephole_ok (enum machine_mode mode, rtx first_insn,
3000 rtx target)
3002 rtx p;
3004 p = prev_nonnote_insn (first_insn);
3006 while (p)
3008 /* If it isn't an insn, then give up. */
3009 if (GET_CODE (p) != INSN)
3010 return false;
3012 if (reg_set_p (target, p))
3014 rtx set = single_set (p);
3015 rtx dest;
3017 /* If it isn't an easy to recognize insn, then give up. */
3018 if (! set)
3019 return false;
3021 dest = SET_DEST (set);
3023 /* If this sets the entire target register to zero, then our
3024 first_insn is redundant. */
3025 if (rtx_equal_p (dest, target)
3026 && SET_SRC (set) == const0_rtx)
3027 return true;
3028 else if (GET_CODE (dest) == STRICT_LOW_PART
3029 && GET_CODE (XEXP (dest, 0)) == REG
3030 && REGNO (XEXP (dest, 0)) == REGNO (target)
3031 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
3032 <= GET_MODE_SIZE (mode)))
3033 /* This is a strict low part set which modifies less than
3034 we are using, so it is safe. */
3036 else
3037 return false;
3040 p = prev_nonnote_insn (p);
3043 return false;
3046 /* Accept integer operands in the range 0..0xffffffff. We have to check the
3047 range carefully since this predicate is used in DImode contexts. Also, we
3048 need some extra crud to make it work when hosted on 64-bit machines. */
3051 const_uint32_operand (rtx op, enum machine_mode mode)
3053 /* It doesn't make sense to ask this question with a mode that is
3054 not larger than 32 bits. */
3055 if (GET_MODE_BITSIZE (mode) <= 32)
3056 abort ();
3058 #if HOST_BITS_PER_WIDE_INT > 32
3059 /* All allowed constants will fit a CONST_INT. */
3060 return (GET_CODE (op) == CONST_INT
3061 && (INTVAL (op) >= 0 && INTVAL (op) <= 0xffffffffL));
3062 #else
3063 return (GET_CODE (op) == CONST_INT
3064 || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0));
3065 #endif
3068 /* Accept integer operands in the range -0x80000000..0x7fffffff. We have
3069 to check the range carefully since this predicate is used in DImode
3070 contexts. */
3073 const_sint32_operand (rtx op, enum machine_mode mode)
3075 /* It doesn't make sense to ask this question with a mode that is
3076 not larger than 32 bits. */
3077 if (GET_MODE_BITSIZE (mode) <= 32)
3078 abort ();
3080 /* All allowed constants will fit a CONST_INT. */
3081 return (GET_CODE (op) == CONST_INT
3082 && (INTVAL (op) >= (-0x7fffffff - 1) && INTVAL (op) <= 0x7fffffff));
3085 /* Operand predicates for implementing asymmetric pc-relative addressing
3086 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
3087 when used as a source operand, but not as a destination operand.
3089 We model this by restricting the meaning of the basic predicates
3090 (general_operand, memory_operand, etc) to forbid the use of this
3091 addressing mode, and then define the following predicates that permit
3092 this addressing mode. These predicates can then be used for the
3093 source operands of the appropriate instructions.
3095 n.b. While it is theoretically possible to change all machine patterns
3096 to use this addressing more where permitted by the architecture,
3097 it has only been implemented for "common" cases: SImode, HImode, and
3098 QImode operands, and only for the principle operations that would
3099 require this addressing mode: data movement and simple integer operations.
3101 In parallel with these new predicates, two new constraint letters
3102 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
3103 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
3104 In the pcrel case 's' is only valid in combination with 'a' registers.
3105 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
3106 of how these constraints are used.
3108 The use of these predicates is strictly optional, though patterns that
3109 don't will cause an extra reload register to be allocated where one
3110 was not necessary:
3112 lea (abc:w,%pc),%a0 ; need to reload address
3113 moveq &1,%d1 ; since write to pc-relative space
3114 movel %d1,%a0@ ; is not allowed
3116 lea (abc:w,%pc),%a1 ; no need to reload address here
3117 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
3119 For more info, consult tiemann@cygnus.com.
3122 All of the ugliness with predicates and constraints is due to the
3123 simple fact that the m68k does not allow a pc-relative addressing
3124 mode as a destination. gcc does not distinguish between source and
3125 destination addresses. Hence, if we claim that pc-relative address
3126 modes are valid, e.g. GO_IF_LEGITIMATE_ADDRESS accepts them, then we
3127 end up with invalid code. To get around this problem, we left
3128 pc-relative modes as invalid addresses, and then added special
3129 predicates and constraints to accept them.
3131 A cleaner way to handle this is to modify gcc to distinguish
3132 between source and destination addresses. We can then say that
3133 pc-relative is a valid source address but not a valid destination
3134 address, and hopefully avoid a lot of the predicate and constraint
3135 hackery. Unfortunately, this would be a pretty big change. It would
3136 be a useful change for a number of ports, but there aren't any current
3137 plans to undertake this.
3139 ***************************************************************************/
3142 /* Special case of a general operand that's used as a source operand.
3143 Use this to permit reads from PC-relative memory when -mpcrel
3144 is specified. */
3147 general_src_operand (rtx op, enum machine_mode mode)
3149 if (TARGET_PCREL
3150 && GET_CODE (op) == MEM
3151 && (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
3152 || GET_CODE (XEXP (op, 0)) == LABEL_REF
3153 || GET_CODE (XEXP (op, 0)) == CONST))
3154 return 1;
3155 return general_operand (op, mode);
3158 /* Special case of a nonimmediate operand that's used as a source.
3159 Use this to permit reads from PC-relative memory when -mpcrel
3160 is specified. */
3163 nonimmediate_src_operand (rtx op, enum machine_mode mode)
3165 if (TARGET_PCREL && GET_CODE (op) == MEM
3166 && (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
3167 || GET_CODE (XEXP (op, 0)) == LABEL_REF
3168 || GET_CODE (XEXP (op, 0)) == CONST))
3169 return 1;
3170 return nonimmediate_operand (op, mode);
3173 /* Special case of a memory operand that's used as a source.
3174 Use this to permit reads from PC-relative memory when -mpcrel
3175 is specified. */
3178 memory_src_operand (rtx op, enum machine_mode mode)
3180 if (TARGET_PCREL && GET_CODE (op) == MEM
3181 && (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
3182 || GET_CODE (XEXP (op, 0)) == LABEL_REF
3183 || GET_CODE (XEXP (op, 0)) == CONST))
3184 return 1;
3185 return memory_operand (op, mode);
3189 post_inc_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3191 return MEM_P (op) && GET_CODE (XEXP (op, 0)) == POST_INC;
3195 pre_dec_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3197 return MEM_P (op) && GET_CODE (XEXP (op, 0)) == PRE_DEC;
3200 /* Predicate that accepts only a pc-relative address. This is needed
3201 because pc-relative addresses don't satisfy the predicate
3202 "general_src_operand". */
3205 pcrel_address (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3207 return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF
3208 || GET_CODE (op) == CONST);
3211 const char *
3212 output_andsi3 (rtx *operands)
3214 int logval;
3215 if (GET_CODE (operands[2]) == CONST_INT
3216 && (INTVAL (operands[2]) | 0xffff) == (HOST_WIDE_INT)0xffffffff
3217 && (DATA_REG_P (operands[0])
3218 || offsettable_memref_p (operands[0]))
3219 && !TARGET_COLDFIRE)
3221 if (GET_CODE (operands[0]) != REG)
3222 operands[0] = adjust_address (operands[0], HImode, 2);
3223 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
3224 /* Do not delete a following tstl %0 insn; that would be incorrect. */
3225 CC_STATUS_INIT;
3226 if (operands[2] == const0_rtx)
3227 return "clr%.w %0";
3228 return "and%.w %2,%0";
3230 if (GET_CODE (operands[2]) == CONST_INT
3231 && (logval = exact_log2 (~ INTVAL (operands[2]))) >= 0
3232 && (DATA_REG_P (operands[0])
3233 || offsettable_memref_p (operands[0])))
3235 if (DATA_REG_P (operands[0]))
3237 operands[1] = GEN_INT (logval);
3239 else
3241 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
3242 operands[1] = GEN_INT (logval % 8);
3244 /* This does not set condition codes in a standard way. */
3245 CC_STATUS_INIT;
3246 return "bclr %1,%0";
3248 return "and%.l %2,%0";
3251 const char *
3252 output_iorsi3 (rtx *operands)
3254 register int logval;
3255 if (GET_CODE (operands[2]) == CONST_INT
3256 && INTVAL (operands[2]) >> 16 == 0
3257 && (DATA_REG_P (operands[0])
3258 || offsettable_memref_p (operands[0]))
3259 && !TARGET_COLDFIRE)
3261 if (GET_CODE (operands[0]) != REG)
3262 operands[0] = adjust_address (operands[0], HImode, 2);
3263 /* Do not delete a following tstl %0 insn; that would be incorrect. */
3264 CC_STATUS_INIT;
3265 if (INTVAL (operands[2]) == 0xffff)
3266 return "mov%.w %2,%0";
3267 return "or%.w %2,%0";
3269 if (GET_CODE (operands[2]) == CONST_INT
3270 && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
3271 && (DATA_REG_P (operands[0])
3272 || offsettable_memref_p (operands[0])))
3274 if (DATA_REG_P (operands[0]))
3275 operands[1] = GEN_INT (logval);
3276 else
3278 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
3279 operands[1] = GEN_INT (logval % 8);
3281 CC_STATUS_INIT;
3282 return "bset %1,%0";
3284 return "or%.l %2,%0";
3287 const char *
3288 output_xorsi3 (rtx *operands)
3290 register int logval;
3291 if (GET_CODE (operands[2]) == CONST_INT
3292 && INTVAL (operands[2]) >> 16 == 0
3293 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
3294 && !TARGET_COLDFIRE)
3296 if (! DATA_REG_P (operands[0]))
3297 operands[0] = adjust_address (operands[0], HImode, 2);
3298 /* Do not delete a following tstl %0 insn; that would be incorrect. */
3299 CC_STATUS_INIT;
3300 if (INTVAL (operands[2]) == 0xffff)
3301 return "not%.w %0";
3302 return "eor%.w %2,%0";
3304 if (GET_CODE (operands[2]) == CONST_INT
3305 && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
3306 && (DATA_REG_P (operands[0])
3307 || offsettable_memref_p (operands[0])))
3309 if (DATA_REG_P (operands[0]))
3310 operands[1] = GEN_INT (logval);
3311 else
3313 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
3314 operands[1] = GEN_INT (logval % 8);
3316 CC_STATUS_INIT;
3317 return "bchg %1,%0";
3319 return "eor%.l %2,%0";
3322 #ifdef M68K_TARGET_COFF
3324 /* Output assembly to switch to section NAME with attribute FLAGS. */
3326 static void
3327 m68k_coff_asm_named_section (const char *name, unsigned int flags)
3329 char flagchar;
3331 if (flags & SECTION_WRITE)
3332 flagchar = 'd';
3333 else
3334 flagchar = 'x';
3336 fprintf (asm_out_file, "\t.section\t%s,\"%c\"\n", name, flagchar);
3339 #endif /* M68K_TARGET_COFF */
3341 static void
3342 m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
3343 HOST_WIDE_INT delta,
3344 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
3345 tree function)
3347 rtx xops[1];
3348 const char *fmt;
3350 if (delta > 0 && delta <= 8)
3351 asm_fprintf (file, MOTOROLA ?
3352 "\taddq.l %I%d,4(%Rsp)\n" :
3353 "\taddql %I%d,%Rsp@(4)\n",
3354 (int) delta);
3355 else if (delta < 0 && delta >= -8)
3356 asm_fprintf (file, MOTOROLA ?
3357 "\tsubq.l %I%d,4(%Rsp)\n" :
3358 "\tsubql %I%d,%Rsp@(4)\n",
3359 (int) -delta);
3360 else if (TARGET_COLDFIRE)
3362 /* ColdFire can't add/sub a constant to memory unless it is in
3363 the range of addq/subq. So load the value into %d0 and
3364 then add it to 4(%sp). */
3365 if (delta >= -128 && delta <= 127)
3366 asm_fprintf (file, MOTOROLA ?
3367 "\tmoveq.l %I%wd,%Rd0\n" :
3368 "\tmoveql %I%wd,%Rd0\n", delta);
3369 else
3370 asm_fprintf (file, MOTOROLA ?
3371 "\tmove.l %I%wd,%Rd0\n" :
3372 "\tmovel %I%wd,%Rd0\n", delta);
3373 asm_fprintf (file, MOTOROLA ?
3374 "\tadd.l %Rd0,4(%Rsp)\n" :
3375 "\taddl %Rd0,%Rsp@(4)\n");
3377 else
3378 asm_fprintf (file, MOTOROLA ?
3379 "\tadd.l %I%wd,4(%Rsp)\n" :
3380 "\taddl %I%wd,%Rsp@(4)\n",
3381 delta);
3383 xops[0] = DECL_RTL (function);
3385 /* Logic taken from call patterns in m68k.md. */
3386 if (flag_pic)
3388 if (TARGET_PCREL)
3389 fmt = "bra.l %o0";
3390 else if ((flag_pic == 1) || TARGET_68020)
3392 if (MOTOROLA)
3393 #if defined(USE_GAS)
3394 fmt = "bra.l %0@PLTPC";
3395 #else
3396 fmt = "bra %0@PLTPC";
3397 #endif
3398 else /* !MOTOROLA */
3399 #ifdef USE_GAS
3400 fmt = "bra.l %0";
3401 #else
3402 fmt = "jra %0,a1";
3403 #endif
3405 else if (optimize_size || TARGET_ID_SHARED_LIBRARY)
3406 fmt = "move.l %0@GOT(%%a5), %%a1\n\tjmp (%%a1)";
3407 else
3408 fmt = "lea %0-.-8,%%a1\n\tjsr 0(%%pc,%%a1)";
3410 else
3412 #if MOTOROLA && !defined (USE_GAS)
3413 fmt = "jmp %0";
3414 #else
3415 fmt = "jra %0";
3416 #endif
3419 output_asm_insn (fmt, xops);
3422 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
3424 static rtx
3425 m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
3426 int incoming ATTRIBUTE_UNUSED)
3428 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);