1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
39 #include "coretypes.h"
41 #include "diagnostic-core.h"
49 #include "hard-reg-set.h"
51 #include "insn-config.h"
54 #include "basic-block.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
62 #include "tree-flow.h"
64 struct target_rtl default_target_rtl
;
66 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
71 /* Commonly used modes. */
73 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
74 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
75 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
76 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
78 /* Datastructures maintained for currently processed function in RTL form. */
80 struct rtl_data x_rtl
;
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
92 static GTY(()) int label_num
= 1;
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
98 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
102 REAL_VALUE_TYPE dconst0
;
103 REAL_VALUE_TYPE dconst1
;
104 REAL_VALUE_TYPE dconst2
;
105 REAL_VALUE_TYPE dconstm1
;
106 REAL_VALUE_TYPE dconsthalf
;
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
110 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
117 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
119 /* A hash table storing CONST_INTs whose absolute value is greater
120 than MAX_SAVED_CONST_INT. */
122 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
123 htab_t const_int_htab
;
125 /* A hash table storing memory attribute structures. */
126 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
127 htab_t mem_attrs_htab
;
129 /* A hash table storing register attribute structures. */
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
131 htab_t reg_attrs_htab
;
133 /* A hash table storing all CONST_DOUBLEs. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
135 htab_t const_double_htab
;
137 /* A hash table storing all CONST_FIXEDs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
139 htab_t const_fixed_htab
;
141 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
142 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
143 #define last_location (crtl->emit.x_last_location)
144 #define first_label_num (crtl->emit.x_first_label_num)
146 static rtx
make_call_insn_raw (rtx
);
147 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
148 static void set_used_decls (tree
);
149 static void mark_label_nuses (rtx
);
150 static hashval_t
const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t
const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx
lookup_const_double (rtx
);
155 static hashval_t
const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx
lookup_const_fixed (rtx
);
158 static hashval_t
mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static mem_attrs
*get_mem_attrs (alias_set_type
, tree
, rtx
, rtx
, unsigned int,
161 addr_space_t
, enum machine_mode
);
162 static hashval_t
reg_attrs_htab_hash (const void *);
163 static int reg_attrs_htab_eq (const void *, const void *);
164 static reg_attrs
*get_reg_attrs (tree
, int);
165 static rtx
gen_const_vector (enum machine_mode
, int);
166 static void copy_rtx_if_shared_1 (rtx
*orig
);
168 /* Probability of the conditional branch currently proceeded by try_split.
169 Set to -1 otherwise. */
170 int split_branch_probability
= -1;
172 /* Returns a hash code for X (which is a really a CONST_INT). */
175 const_int_htab_hash (const void *x
)
177 return (hashval_t
) INTVAL ((const_rtx
) x
);
180 /* Returns nonzero if the value represented by X (which is really a
181 CONST_INT) is the same as that given by Y (which is really a
185 const_int_htab_eq (const void *x
, const void *y
)
187 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
190 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
192 const_double_htab_hash (const void *x
)
194 const_rtx
const value
= (const_rtx
) x
;
197 if (GET_MODE (value
) == VOIDmode
)
198 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
201 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
202 /* MODE is used in the comparison, so it should be in the hash. */
203 h
^= GET_MODE (value
);
208 /* Returns nonzero if the value represented by X (really a ...)
209 is the same as that represented by Y (really a ...) */
211 const_double_htab_eq (const void *x
, const void *y
)
213 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
215 if (GET_MODE (a
) != GET_MODE (b
))
217 if (GET_MODE (a
) == VOIDmode
)
218 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
219 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
221 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
222 CONST_DOUBLE_REAL_VALUE (b
));
225 /* Returns a hash code for X (which is really a CONST_FIXED). */
228 const_fixed_htab_hash (const void *x
)
230 const_rtx
const value
= (const_rtx
) x
;
233 h
= fixed_hash (CONST_FIXED_VALUE (value
));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h
^= GET_MODE (value
);
239 /* Returns nonzero if the value represented by X (really a ...)
240 is the same as that represented by Y (really a ...). */
243 const_fixed_htab_eq (const void *x
, const void *y
)
245 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
247 if (GET_MODE (a
) != GET_MODE (b
))
249 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
252 /* Returns a hash code for X (which is a really a mem_attrs *). */
255 mem_attrs_htab_hash (const void *x
)
257 const mem_attrs
*const p
= (const mem_attrs
*) x
;
259 return (p
->alias
^ (p
->align
* 1000)
260 ^ (p
->addrspace
* 4000)
261 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
262 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
263 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
266 /* Returns nonzero if the value represented by X (which is really a
267 mem_attrs *) is the same as that given by Y (which is also really a
271 mem_attrs_htab_eq (const void *x
, const void *y
)
273 const mem_attrs
*const p
= (const mem_attrs
*) x
;
274 const mem_attrs
*const q
= (const mem_attrs
*) y
;
276 return (p
->alias
== q
->alias
&& p
->offset
== q
->offset
277 && p
->size
== q
->size
&& p
->align
== q
->align
278 && p
->addrspace
== q
->addrspace
279 && (p
->expr
== q
->expr
280 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
281 && operand_equal_p (p
->expr
, q
->expr
, 0))));
284 /* Allocate a new mem_attrs structure and insert it into the hash table if
285 one identical to it is not already in the table. We are doing this for
289 get_mem_attrs (alias_set_type alias
, tree expr
, rtx offset
, rtx size
,
290 unsigned int align
, addr_space_t addrspace
, enum machine_mode mode
)
295 /* If everything is the default, we can just return zero.
296 This must match what the corresponding MEM_* macros return when the
297 field is not present. */
298 if (alias
== 0 && expr
== 0 && offset
== 0 && addrspace
== 0
300 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
301 && (STRICT_ALIGNMENT
&& mode
!= BLKmode
302 ? align
== GET_MODE_ALIGNMENT (mode
) : align
== BITS_PER_UNIT
))
307 attrs
.offset
= offset
;
310 attrs
.addrspace
= addrspace
;
312 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
315 *slot
= ggc_alloc_mem_attrs ();
316 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
319 return (mem_attrs
*) *slot
;
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
325 reg_attrs_htab_hash (const void *x
)
327 const reg_attrs
*const p
= (const reg_attrs
*) x
;
329 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
337 reg_attrs_htab_eq (const void *x
, const void *y
)
339 const reg_attrs
*const p
= (const reg_attrs
*) x
;
340 const reg_attrs
*const q
= (const reg_attrs
*) y
;
342 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
349 get_reg_attrs (tree decl
, int offset
)
354 /* If everything is the default, we can just return zero. */
355 if (decl
== 0 && offset
== 0)
359 attrs
.offset
= offset
;
361 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
364 *slot
= ggc_alloc_reg_attrs ();
365 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
368 return (reg_attrs
*) *slot
;
373 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
379 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
380 MEM_VOLATILE_P (x
) = true;
386 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
387 don't attempt to share with the various global pieces of rtl (such as
388 frame_pointer_rtx). */
391 gen_raw_REG (enum machine_mode mode
, int regno
)
393 rtx x
= gen_rtx_raw_REG (mode
, regno
);
394 ORIGINAL_REGNO (x
) = regno
;
398 /* There are some RTL codes that require special attention; the generation
399 functions do the raw handling. If you add to this list, modify
400 special_rtx in gengenrtl.c as well. */
403 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
407 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
408 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
410 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
411 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
412 return const_true_rtx
;
415 /* Look up the CONST_INT in the hash table. */
416 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
417 (hashval_t
) arg
, INSERT
);
419 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
425 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
427 return GEN_INT (trunc_int_for_mode (c
, mode
));
430 /* CONST_DOUBLEs might be created from pairs of integers, or from
431 REAL_VALUE_TYPEs. Also, their length is known only at run time,
432 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
434 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
435 hash table. If so, return its counterpart; otherwise add it
436 to the hash table and return it. */
438 lookup_const_double (rtx real
)
440 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
447 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
448 VALUE in mode MODE. */
450 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
452 rtx real
= rtx_alloc (CONST_DOUBLE
);
453 PUT_MODE (real
, mode
);
457 return lookup_const_double (real
);
460 /* Determine whether FIXED, a CONST_FIXED, already exists in the
461 hash table. If so, return its counterpart; otherwise add it
462 to the hash table and return it. */
465 lookup_const_fixed (rtx fixed
)
467 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
474 /* Return a CONST_FIXED rtx for a fixed-point value specified by
475 VALUE in mode MODE. */
478 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
480 rtx fixed
= rtx_alloc (CONST_FIXED
);
481 PUT_MODE (fixed
, mode
);
485 return lookup_const_fixed (fixed
);
488 /* Constructs double_int from rtx CST. */
491 rtx_to_double_int (const_rtx cst
)
495 if (CONST_INT_P (cst
))
496 r
= shwi_to_double_int (INTVAL (cst
));
497 else if (CONST_DOUBLE_P (cst
) && GET_MODE (cst
) == VOIDmode
)
499 r
.low
= CONST_DOUBLE_LOW (cst
);
500 r
.high
= CONST_DOUBLE_HIGH (cst
);
509 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
513 immed_double_int_const (double_int i
, enum machine_mode mode
)
515 return immed_double_const (i
.low
, i
.high
, mode
);
518 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
519 of ints: I0 is the low-order word and I1 is the high-order word.
520 Do not use this routine for non-integer modes; convert to
521 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
524 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
529 /* There are the following cases (note that there are no modes with
530 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
532 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
534 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
535 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
536 from copies of the sign bit, and sign of i0 and i1 are the same), then
537 we return a CONST_INT for i0.
538 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
539 if (mode
!= VOIDmode
)
541 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
542 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
543 /* We can get a 0 for an error mark. */
544 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
545 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
547 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
548 return gen_int_mode (i0
, mode
);
550 gcc_assert (GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
);
553 /* If this integer fits in one word, return a CONST_INT. */
554 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
557 /* We use VOIDmode for integers. */
558 value
= rtx_alloc (CONST_DOUBLE
);
559 PUT_MODE (value
, VOIDmode
);
561 CONST_DOUBLE_LOW (value
) = i0
;
562 CONST_DOUBLE_HIGH (value
) = i1
;
564 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
565 XWINT (value
, i
) = 0;
567 return lookup_const_double (value
);
571 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
573 /* In case the MD file explicitly references the frame pointer, have
574 all such references point to the same frame pointer. This is
575 used during frame pointer elimination to distinguish the explicit
576 references to these registers from pseudos that happened to be
579 If we have eliminated the frame pointer or arg pointer, we will
580 be using it as a normal register, for example as a spill
581 register. In such cases, we might be accessing it in a mode that
582 is not Pmode and therefore cannot use the pre-allocated rtx.
584 Also don't do this when we are making new REGs in reload, since
585 we don't want to get confused with the real pointers. */
587 if (mode
== Pmode
&& !reload_in_progress
)
589 if (regno
== FRAME_POINTER_REGNUM
590 && (!reload_completed
|| frame_pointer_needed
))
591 return frame_pointer_rtx
;
592 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
593 if (regno
== HARD_FRAME_POINTER_REGNUM
594 && (!reload_completed
|| frame_pointer_needed
))
595 return hard_frame_pointer_rtx
;
597 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
598 if (regno
== ARG_POINTER_REGNUM
)
599 return arg_pointer_rtx
;
601 #ifdef RETURN_ADDRESS_POINTER_REGNUM
602 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
603 return return_address_pointer_rtx
;
605 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
606 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
607 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
608 return pic_offset_table_rtx
;
609 if (regno
== STACK_POINTER_REGNUM
)
610 return stack_pointer_rtx
;
614 /* If the per-function register table has been set up, try to re-use
615 an existing entry in that table to avoid useless generation of RTL.
617 This code is disabled for now until we can fix the various backends
618 which depend on having non-shared hard registers in some cases. Long
619 term we want to re-enable this code as it can significantly cut down
620 on the amount of useless RTL that gets generated.
622 We'll also need to fix some code that runs after reload that wants to
623 set ORIGINAL_REGNO. */
628 && regno
< FIRST_PSEUDO_REGISTER
629 && reg_raw_mode
[regno
] == mode
)
630 return regno_reg_rtx
[regno
];
633 return gen_raw_REG (mode
, regno
);
637 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
639 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
641 /* This field is not cleared by the mere allocation of the rtx, so
648 /* Generate a memory referring to non-trapping constant memory. */
651 gen_const_mem (enum machine_mode mode
, rtx addr
)
653 rtx mem
= gen_rtx_MEM (mode
, addr
);
654 MEM_READONLY_P (mem
) = 1;
655 MEM_NOTRAP_P (mem
) = 1;
659 /* Generate a MEM referring to fixed portions of the frame, e.g., register
663 gen_frame_mem (enum machine_mode mode
, rtx addr
)
665 rtx mem
= gen_rtx_MEM (mode
, addr
);
666 MEM_NOTRAP_P (mem
) = 1;
667 set_mem_alias_set (mem
, get_frame_alias_set ());
671 /* Generate a MEM referring to a temporary use of the stack, not part
672 of the fixed stack frame. For example, something which is pushed
673 by a target splitter. */
675 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
677 rtx mem
= gen_rtx_MEM (mode
, addr
);
678 MEM_NOTRAP_P (mem
) = 1;
679 if (!cfun
->calls_alloca
)
680 set_mem_alias_set (mem
, get_frame_alias_set ());
684 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
685 this construct would be valid, and false otherwise. */
688 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
689 const_rtx reg
, unsigned int offset
)
691 unsigned int isize
= GET_MODE_SIZE (imode
);
692 unsigned int osize
= GET_MODE_SIZE (omode
);
694 /* All subregs must be aligned. */
695 if (offset
% osize
!= 0)
698 /* The subreg offset cannot be outside the inner object. */
702 /* ??? This should not be here. Temporarily continue to allow word_mode
703 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
704 Generally, backends are doing something sketchy but it'll take time to
706 if (omode
== word_mode
)
708 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
709 is the culprit here, and not the backends. */
710 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
712 /* Allow component subregs of complex and vector. Though given the below
713 extraction rules, it's not always clear what that means. */
714 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
715 && GET_MODE_INNER (imode
) == omode
)
717 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
718 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
719 represent this. It's questionable if this ought to be represented at
720 all -- why can't this all be hidden in post-reload splitters that make
721 arbitrarily mode changes to the registers themselves. */
722 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
724 /* Subregs involving floating point modes are not allowed to
725 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
726 (subreg:SI (reg:DF) 0) isn't. */
727 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
733 /* Paradoxical subregs must have offset zero. */
737 /* This is a normal subreg. Verify that the offset is representable. */
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
743 unsigned int regno
= REGNO (reg
);
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
747 && GET_MODE_INNER (imode
) == omode
)
749 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
753 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize
< UNITS_PER_WORD
)
764 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
765 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
766 if (offset
% UNITS_PER_WORD
!= low_off
)
773 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
775 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
776 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
779 /* Generate a SUBREG representing the least-significant part of REG if MODE
780 is smaller than mode of REG, otherwise paradoxical SUBREG. */
783 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
785 enum machine_mode inmode
;
787 inmode
= GET_MODE (reg
);
788 if (inmode
== VOIDmode
)
790 return gen_rtx_SUBREG (mode
, reg
,
791 subreg_lowpart_offset (mode
, inmode
));
795 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
798 gen_rtvec (int n
, ...)
806 /* Don't allocate an empty rtvec... */
813 rt_val
= rtvec_alloc (n
);
815 for (i
= 0; i
< n
; i
++)
816 rt_val
->elem
[i
] = va_arg (p
, rtx
);
823 gen_rtvec_v (int n
, rtx
*argp
)
828 /* Don't allocate an empty rtvec... */
832 rt_val
= rtvec_alloc (n
);
834 for (i
= 0; i
< n
; i
++)
835 rt_val
->elem
[i
] = *argp
++;
840 /* Return the number of bytes between the start of an OUTER_MODE
841 in-memory value and the start of an INNER_MODE in-memory value,
842 given that the former is a lowpart of the latter. It may be a
843 paradoxical lowpart, in which case the offset will be negative
844 on big-endian targets. */
847 byte_lowpart_offset (enum machine_mode outer_mode
,
848 enum machine_mode inner_mode
)
850 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
851 return subreg_lowpart_offset (outer_mode
, inner_mode
);
853 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
856 /* Generate a REG rtx for a new pseudo register of mode MODE.
857 This pseudo is assigned the next sequential register number. */
860 gen_reg_rtx (enum machine_mode mode
)
863 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
865 gcc_assert (can_create_pseudo_p ());
867 /* If a virtual register with bigger mode alignment is generated,
868 increase stack alignment estimation because it might be spilled
870 if (SUPPORTS_STACK_ALIGNMENT
871 && crtl
->stack_alignment_estimated
< align
872 && !crtl
->stack_realign_processed
)
874 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
875 if (crtl
->stack_alignment_estimated
< min_align
)
876 crtl
->stack_alignment_estimated
= min_align
;
879 if (generating_concat_p
880 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
881 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
883 /* For complex modes, don't make a single pseudo.
884 Instead, make a CONCAT of two pseudos.
885 This allows noncontiguous allocation of the real and imaginary parts,
886 which makes much better code. Besides, allocating DCmode
887 pseudos overstrains reload on some machines like the 386. */
888 rtx realpart
, imagpart
;
889 enum machine_mode partmode
= GET_MODE_INNER (mode
);
891 realpart
= gen_reg_rtx (partmode
);
892 imagpart
= gen_reg_rtx (partmode
);
893 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
896 /* Make sure regno_pointer_align, and regno_reg_rtx are large
897 enough to have an element for this pseudo reg number. */
899 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
901 int old_size
= crtl
->emit
.regno_pointer_align_length
;
905 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
906 memset (tmp
+ old_size
, 0, old_size
);
907 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
909 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
910 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
911 regno_reg_rtx
= new1
;
913 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
916 val
= gen_raw_REG (mode
, reg_rtx_no
);
917 regno_reg_rtx
[reg_rtx_no
++] = val
;
921 /* Update NEW with the same attributes as REG, but with OFFSET added
922 to the REG_OFFSET. */
925 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
927 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
928 REG_OFFSET (reg
) + offset
);
931 /* Generate a register with same attributes as REG, but with OFFSET
932 added to the REG_OFFSET. */
935 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
938 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
940 update_reg_offset (new_rtx
, reg
, offset
);
944 /* Generate a new pseudo-register with the same attributes as REG, but
945 with OFFSET added to the REG_OFFSET. */
948 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
950 rtx new_rtx
= gen_reg_rtx (mode
);
952 update_reg_offset (new_rtx
, reg
, offset
);
956 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
957 new register is a (possibly paradoxical) lowpart of the old one. */
960 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
962 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
963 PUT_MODE (reg
, mode
);
966 /* Copy REG's attributes from X, if X has any attributes. If REG and X
967 have different modes, REG is a (possibly paradoxical) lowpart of X. */
970 set_reg_attrs_from_value (rtx reg
, rtx x
)
974 /* Hard registers can be reused for multiple purposes within the same
975 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
977 if (HARD_REGISTER_P (reg
))
980 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
983 if (MEM_OFFSET (x
) && CONST_INT_P (MEM_OFFSET (x
)))
985 = get_reg_attrs (MEM_EXPR (x
), INTVAL (MEM_OFFSET (x
)) + offset
);
987 mark_reg_pointer (reg
, 0);
992 update_reg_offset (reg
, x
, offset
);
994 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
998 /* Generate a REG rtx for a new pseudo register, copying the mode
999 and attributes from X. */
1002 gen_reg_rtx_and_attrs (rtx x
)
1004 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1005 set_reg_attrs_from_value (reg
, x
);
1009 /* Set the register attributes for registers contained in PARM_RTX.
1010 Use needed values from memory attributes of MEM. */
1013 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1015 if (REG_P (parm_rtx
))
1016 set_reg_attrs_from_value (parm_rtx
, mem
);
1017 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1019 /* Check for a NULL entry in the first slot, used to indicate that the
1020 parameter goes both on the stack and in registers. */
1021 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1022 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1024 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1025 if (REG_P (XEXP (x
, 0)))
1026 REG_ATTRS (XEXP (x
, 0))
1027 = get_reg_attrs (MEM_EXPR (mem
),
1028 INTVAL (XEXP (x
, 1)));
1033 /* Set the REG_ATTRS for registers in value X, given that X represents
1037 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1039 if (GET_CODE (x
) == SUBREG
)
1041 gcc_assert (subreg_lowpart_p (x
));
1046 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1048 if (GET_CODE (x
) == CONCAT
)
1050 if (REG_P (XEXP (x
, 0)))
1051 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1052 if (REG_P (XEXP (x
, 1)))
1053 REG_ATTRS (XEXP (x
, 1))
1054 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1056 if (GET_CODE (x
) == PARALLEL
)
1060 /* Check for a NULL entry, used to indicate that the parameter goes
1061 both on the stack and in registers. */
1062 if (XEXP (XVECEXP (x
, 0, 0), 0))
1067 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1069 rtx y
= XVECEXP (x
, 0, i
);
1070 if (REG_P (XEXP (y
, 0)))
1071 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1076 /* Assign the RTX X to declaration T. */
1079 set_decl_rtl (tree t
, rtx x
)
1081 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1083 set_reg_attrs_for_decl_rtl (t
, x
);
1086 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1087 if the ABI requires the parameter to be passed by reference. */
1090 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1092 DECL_INCOMING_RTL (t
) = x
;
1093 if (x
&& !by_reference_p
)
1094 set_reg_attrs_for_decl_rtl (t
, x
);
1097 /* Identify REG (which may be a CONCAT) as a user register. */
1100 mark_user_reg (rtx reg
)
1102 if (GET_CODE (reg
) == CONCAT
)
1104 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1105 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1109 gcc_assert (REG_P (reg
));
1110 REG_USERVAR_P (reg
) = 1;
1114 /* Identify REG as a probable pointer register and show its alignment
1115 as ALIGN, if nonzero. */
1118 mark_reg_pointer (rtx reg
, int align
)
1120 if (! REG_POINTER (reg
))
1122 REG_POINTER (reg
) = 1;
1125 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1127 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1128 /* We can no-longer be sure just how aligned this pointer is. */
1129 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1132 /* Return 1 plus largest pseudo reg number used in the current function. */
1140 /* Return 1 + the largest label number used so far in the current function. */
1143 max_label_num (void)
1148 /* Return first label number used in this function (if any were used). */
1151 get_first_label_num (void)
1153 return first_label_num
;
1156 /* If the rtx for label was created during the expansion of a nested
1157 function, then first_label_num won't include this label number.
1158 Fix this now so that array indices work later. */
1161 maybe_set_first_label_num (rtx x
)
1163 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1164 first_label_num
= CODE_LABEL_NUMBER (x
);
1167 /* Return a value representing some low-order bits of X, where the number
1168 of low-order bits is given by MODE. Note that no conversion is done
1169 between floating-point and fixed-point values, rather, the bit
1170 representation is returned.
1172 This function handles the cases in common between gen_lowpart, below,
1173 and two variants in cse.c and combine.c. These are the cases that can
1174 be safely handled at all points in the compilation.
1176 If this is not a case we can handle, return 0. */
1179 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1181 int msize
= GET_MODE_SIZE (mode
);
1184 enum machine_mode innermode
;
1186 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1187 so we have to make one up. Yuk. */
1188 innermode
= GET_MODE (x
);
1190 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1191 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1192 else if (innermode
== VOIDmode
)
1193 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
* 2, MODE_INT
, 0);
1195 xsize
= GET_MODE_SIZE (innermode
);
1197 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1199 if (innermode
== mode
)
1202 /* MODE must occupy no more words than the mode of X. */
1203 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1204 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1207 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1208 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1211 offset
= subreg_lowpart_offset (mode
, innermode
);
1213 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1214 && (GET_MODE_CLASS (mode
) == MODE_INT
1215 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1217 /* If we are getting the low-order part of something that has been
1218 sign- or zero-extended, we can either just use the object being
1219 extended or make a narrower extension. If we want an even smaller
1220 piece than the size of the object being extended, call ourselves
1223 This case is used mostly by combine and cse. */
1225 if (GET_MODE (XEXP (x
, 0)) == mode
)
1227 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1228 return gen_lowpart_common (mode
, XEXP (x
, 0));
1229 else if (msize
< xsize
)
1230 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1232 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1233 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1234 || GET_CODE (x
) == CONST_DOUBLE
|| CONST_INT_P (x
))
1235 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1237 /* Otherwise, we can't do this. */
1242 gen_highpart (enum machine_mode mode
, rtx x
)
1244 unsigned int msize
= GET_MODE_SIZE (mode
);
1247 /* This case loses if X is a subreg. To catch bugs early,
1248 complain if an invalid MODE is used even in other cases. */
1249 gcc_assert (msize
<= UNITS_PER_WORD
1250 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1252 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1253 subreg_highpart_offset (mode
, GET_MODE (x
)));
1254 gcc_assert (result
);
1256 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1257 the target if we have a MEM. gen_highpart must return a valid operand,
1258 emitting code if necessary to do so. */
1261 result
= validize_mem (result
);
1262 gcc_assert (result
);
1268 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1269 be VOIDmode constant. */
1271 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1273 if (GET_MODE (exp
) != VOIDmode
)
1275 gcc_assert (GET_MODE (exp
) == innermode
);
1276 return gen_highpart (outermode
, exp
);
1278 return simplify_gen_subreg (outermode
, exp
, innermode
,
1279 subreg_highpart_offset (outermode
, innermode
));
1282 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1285 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1287 unsigned int offset
= 0;
1288 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1292 if (WORDS_BIG_ENDIAN
)
1293 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1294 if (BYTES_BIG_ENDIAN
)
1295 offset
+= difference
% UNITS_PER_WORD
;
1301 /* Return offset in bytes to get OUTERMODE high part
1302 of the value in mode INNERMODE stored in memory in target format. */
1304 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1306 unsigned int offset
= 0;
1307 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1309 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1313 if (! WORDS_BIG_ENDIAN
)
1314 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1315 if (! BYTES_BIG_ENDIAN
)
1316 offset
+= difference
% UNITS_PER_WORD
;
1322 /* Return 1 iff X, assumed to be a SUBREG,
1323 refers to the least significant part of its containing reg.
1324 If X is not a SUBREG, always return 1 (it is its own low part!). */
1327 subreg_lowpart_p (const_rtx x
)
1329 if (GET_CODE (x
) != SUBREG
)
1331 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1334 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1335 == SUBREG_BYTE (x
));
1338 /* Return subword OFFSET of operand OP.
1339 The word number, OFFSET, is interpreted as the word number starting
1340 at the low-order address. OFFSET 0 is the low-order word if not
1341 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1343 If we cannot extract the required word, we return zero. Otherwise,
1344 an rtx corresponding to the requested word will be returned.
1346 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1347 reload has completed, a valid address will always be returned. After
1348 reload, if a valid address cannot be returned, we return zero.
1350 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1351 it is the responsibility of the caller.
1353 MODE is the mode of OP in case it is a CONST_INT.
1355 ??? This is still rather broken for some cases. The problem for the
1356 moment is that all callers of this thing provide no 'goal mode' to
1357 tell us to work with. This exists because all callers were written
1358 in a word based SUBREG world.
1359 Now use of this function can be deprecated by simplify_subreg in most
1364 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1366 if (mode
== VOIDmode
)
1367 mode
= GET_MODE (op
);
1369 gcc_assert (mode
!= VOIDmode
);
1371 /* If OP is narrower than a word, fail. */
1373 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1376 /* If we want a word outside OP, return zero. */
1378 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1381 /* Form a new MEM at the requested address. */
1384 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1386 if (! validate_address
)
1389 else if (reload_completed
)
1391 if (! strict_memory_address_addr_space_p (word_mode
,
1393 MEM_ADDR_SPACE (op
)))
1397 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1400 /* Rest can be handled by simplify_subreg. */
1401 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1404 /* Similar to `operand_subword', but never return 0. If we can't
1405 extract the required subword, put OP into a register and try again.
1406 The second attempt must succeed. We always validate the address in
1409 MODE is the mode of OP, in case it is CONST_INT. */
1412 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1414 rtx result
= operand_subword (op
, offset
, 1, mode
);
1419 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1421 /* If this is a register which can not be accessed by words, copy it
1422 to a pseudo register. */
1424 op
= copy_to_reg (op
);
1426 op
= force_reg (mode
, op
);
1429 result
= operand_subword (op
, offset
, 1, mode
);
1430 gcc_assert (result
);
1435 /* Returns 1 if both MEM_EXPR can be considered equal
1439 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1444 if (! expr1
|| ! expr2
)
1447 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1450 return operand_equal_p (expr1
, expr2
, 0);
1453 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1454 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1458 get_mem_align_offset (rtx mem
, unsigned int align
)
1461 unsigned HOST_WIDE_INT offset
;
1463 /* This function can't use
1464 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1465 || !CONST_INT_P (MEM_OFFSET (mem))
1466 || (MAX (MEM_ALIGN (mem),
1467 get_object_alignment (MEM_EXPR (mem), align))
1471 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1473 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1474 for <variable>. get_inner_reference doesn't handle it and
1475 even if it did, the alignment in that case needs to be determined
1476 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1477 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1478 isn't sufficiently aligned, the object it is in might be. */
1479 gcc_assert (MEM_P (mem
));
1480 expr
= MEM_EXPR (mem
);
1481 if (expr
== NULL_TREE
1482 || MEM_OFFSET (mem
) == NULL_RTX
1483 || !CONST_INT_P (MEM_OFFSET (mem
)))
1486 offset
= INTVAL (MEM_OFFSET (mem
));
1489 if (DECL_ALIGN (expr
) < align
)
1492 else if (INDIRECT_REF_P (expr
))
1494 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1497 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1501 tree inner
= TREE_OPERAND (expr
, 0);
1502 tree field
= TREE_OPERAND (expr
, 1);
1503 tree byte_offset
= component_ref_field_offset (expr
);
1504 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1507 || !host_integerp (byte_offset
, 1)
1508 || !host_integerp (bit_offset
, 1))
1511 offset
+= tree_low_cst (byte_offset
, 1);
1512 offset
+= tree_low_cst (bit_offset
, 1) / BITS_PER_UNIT
;
1514 if (inner
== NULL_TREE
)
1516 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1517 < (unsigned int) align
)
1521 else if (DECL_P (inner
))
1523 if (DECL_ALIGN (inner
) < align
)
1527 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1535 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1538 /* Given REF (a MEM) and T, either the type of X or the expression
1539 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1540 if we are making a new object of this type. BITPOS is nonzero if
1541 there is an offset outstanding on T that will be applied later. */
1544 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1545 HOST_WIDE_INT bitpos
)
1547 alias_set_type alias
;
1549 rtx offset
= NULL_RTX
;
1550 rtx size
= NULL_RTX
;
1551 unsigned int align
= BITS_PER_UNIT
;
1552 HOST_WIDE_INT apply_bitpos
= 0;
1555 /* It can happen that type_for_mode was given a mode for which there
1556 is no language-level type. In which case it returns NULL, which
1561 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1562 if (type
== error_mark_node
)
1565 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1566 wrong answer, as it assumes that DECL_RTL already has the right alias
1567 info. Callers should not set DECL_RTL until after the call to
1568 set_mem_attributes. */
1569 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1571 /* Get the alias set from the expression or type (perhaps using a
1572 front-end routine) and use it. */
1573 alias
= get_alias_set (t
);
1575 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1576 MEM_IN_STRUCT_P (ref
)
1577 = AGGREGATE_TYPE_P (type
) || TREE_CODE (type
) == COMPLEX_TYPE
;
1578 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1580 /* If we are making an object of this type, or if this is a DECL, we know
1581 that it is a scalar if the type is not an aggregate. */
1582 if ((objectp
|| DECL_P (t
))
1583 && ! AGGREGATE_TYPE_P (type
)
1584 && TREE_CODE (type
) != COMPLEX_TYPE
)
1585 MEM_SCALAR_P (ref
) = 1;
1587 /* Default values from pre-existing memory attributes if present. */
1588 if (MEM_ATTRS (ref
))
1590 /* ??? Can this ever happen? Calling this routine on a MEM that
1591 already carries memory attributes should probably be invalid. */
1592 expr
= MEM_EXPR (ref
);
1593 offset
= MEM_OFFSET (ref
);
1594 size
= MEM_SIZE (ref
);
1595 align
= MEM_ALIGN (ref
);
1598 /* Otherwise, default values from the mode of the MEM reference. */
1599 else if (GET_MODE (ref
) != BLKmode
)
1601 /* Respect mode size. */
1602 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (ref
)));
1603 /* ??? Is this really necessary? We probably should always get
1604 the size from the type below. */
1606 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1607 if T is an object, always compute the object alignment below. */
1608 if (STRICT_ALIGNMENT
&& TYPE_P (t
))
1609 align
= GET_MODE_ALIGNMENT (GET_MODE (ref
));
1610 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1611 e.g. if the type carries an alignment attribute. Should we be
1612 able to simply always use TYPE_ALIGN? */
1615 /* We can set the alignment from the type if we are making an object,
1616 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1617 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1618 align
= MAX (align
, TYPE_ALIGN (type
));
1620 else if (TREE_CODE (t
) == MEM_REF
)
1622 tree op0
= TREE_OPERAND (t
, 0);
1623 if (TREE_CODE (op0
) == ADDR_EXPR
1624 && (DECL_P (TREE_OPERAND (op0
, 0))
1625 || CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0))))
1627 if (DECL_P (TREE_OPERAND (op0
, 0)))
1628 align
= DECL_ALIGN (TREE_OPERAND (op0
, 0));
1629 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0)))
1631 align
= TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0
, 0)));
1632 #ifdef CONSTANT_ALIGNMENT
1633 align
= CONSTANT_ALIGNMENT (TREE_OPERAND (op0
, 0), align
);
1636 if (TREE_INT_CST_LOW (TREE_OPERAND (t
, 1)) != 0)
1638 unsigned HOST_WIDE_INT ioff
1639 = TREE_INT_CST_LOW (TREE_OPERAND (t
, 1));
1640 unsigned HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1641 align
= MIN (aoff
, align
);
1645 /* ??? This isn't fully correct, we can't set the alignment from the
1646 type in all cases. */
1647 align
= MAX (align
, TYPE_ALIGN (type
));
1650 else if (TREE_CODE (t
) == TARGET_MEM_REF
)
1651 /* ??? This isn't fully correct, we can't set the alignment from the
1652 type in all cases. */
1653 align
= MAX (align
, TYPE_ALIGN (type
));
1655 /* If the size is known, we can set that. */
1656 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1657 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1659 /* If T is not a type, we may be able to deduce some more information about
1664 bool align_computed
= false;
1666 if (TREE_THIS_VOLATILE (t
))
1667 MEM_VOLATILE_P (ref
) = 1;
1669 /* Now remove any conversions: they don't change what the underlying
1670 object is. Likewise for SAVE_EXPR. */
1671 while (CONVERT_EXPR_P (t
)
1672 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1673 || TREE_CODE (t
) == SAVE_EXPR
)
1674 t
= TREE_OPERAND (t
, 0);
1676 /* Note whether this expression can trap. */
1677 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1679 base
= get_base_address (t
);
1680 if (base
&& DECL_P (base
)
1681 && TREE_READONLY (base
)
1682 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1683 && !TREE_THIS_VOLATILE (base
))
1684 MEM_READONLY_P (ref
) = 1;
1686 /* If this expression uses it's parent's alias set, mark it such
1687 that we won't change it. */
1688 if (component_uses_parent_alias_set (t
))
1689 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1691 /* If this is a decl, set the attributes of the MEM from it. */
1695 offset
= const0_rtx
;
1696 apply_bitpos
= bitpos
;
1697 size
= (DECL_SIZE_UNIT (t
)
1698 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1699 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1700 align
= DECL_ALIGN (t
);
1701 align_computed
= true;
1704 /* If this is a constant, we know the alignment. */
1705 else if (CONSTANT_CLASS_P (t
))
1707 align
= TYPE_ALIGN (type
);
1708 #ifdef CONSTANT_ALIGNMENT
1709 align
= CONSTANT_ALIGNMENT (t
, align
);
1711 align_computed
= true;
1714 /* If this is a field reference and not a bit-field, record it. */
1715 /* ??? There is some information that can be gleaned from bit-fields,
1716 such as the word offset in the structure that might be modified.
1717 But skip it for now. */
1718 else if (TREE_CODE (t
) == COMPONENT_REF
1719 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1722 offset
= const0_rtx
;
1723 apply_bitpos
= bitpos
;
1724 /* ??? Any reason the field size would be different than
1725 the size we got from the type? */
1728 /* If this is an array reference, look for an outer field reference. */
1729 else if (TREE_CODE (t
) == ARRAY_REF
)
1731 tree off_tree
= size_zero_node
;
1732 /* We can't modify t, because we use it at the end of the
1738 tree index
= TREE_OPERAND (t2
, 1);
1739 tree low_bound
= array_ref_low_bound (t2
);
1740 tree unit_size
= array_ref_element_size (t2
);
1742 /* We assume all arrays have sizes that are a multiple of a byte.
1743 First subtract the lower bound, if any, in the type of the
1744 index, then convert to sizetype and multiply by the size of
1745 the array element. */
1746 if (! integer_zerop (low_bound
))
1747 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1750 off_tree
= size_binop (PLUS_EXPR
,
1751 size_binop (MULT_EXPR
,
1752 fold_convert (sizetype
,
1756 t2
= TREE_OPERAND (t2
, 0);
1758 while (TREE_CODE (t2
) == ARRAY_REF
);
1764 if (host_integerp (off_tree
, 1))
1766 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1767 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1768 align
= DECL_ALIGN (t2
);
1769 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< align
)
1771 align_computed
= true;
1772 offset
= GEN_INT (ioff
);
1773 apply_bitpos
= bitpos
;
1776 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1780 if (host_integerp (off_tree
, 1))
1782 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1783 apply_bitpos
= bitpos
;
1785 /* ??? Any reason the field size would be different than
1786 the size we got from the type? */
1789 /* If this is an indirect reference, record it. */
1790 else if (TREE_CODE (t
) == MEM_REF
)
1793 offset
= const0_rtx
;
1794 apply_bitpos
= bitpos
;
1798 /* If this is an indirect reference, record it. */
1799 else if (TREE_CODE (t
) == MEM_REF
1800 || TREE_CODE (t
) == TARGET_MEM_REF
)
1803 offset
= const0_rtx
;
1804 apply_bitpos
= bitpos
;
1807 if (!align_computed
&& !INDIRECT_REF_P (t
))
1809 unsigned int obj_align
= get_object_alignment (t
, BIGGEST_ALIGNMENT
);
1810 align
= MAX (align
, obj_align
);
1814 /* If we modified OFFSET based on T, then subtract the outstanding
1815 bit position offset. Similarly, increase the size of the accessed
1816 object to contain the negative offset. */
1819 offset
= plus_constant (offset
, -(apply_bitpos
/ BITS_PER_UNIT
));
1821 size
= plus_constant (size
, apply_bitpos
/ BITS_PER_UNIT
);
1824 /* Now set the attributes we computed above. */
1826 = get_mem_attrs (alias
, expr
, offset
, size
, align
,
1827 TYPE_ADDR_SPACE (type
), GET_MODE (ref
));
1829 /* If this is already known to be a scalar or aggregate, we are done. */
1830 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1833 /* If it is a reference into an aggregate, this is part of an aggregate.
1834 Otherwise we don't know. */
1835 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1836 || TREE_CODE (t
) == ARRAY_RANGE_REF
1837 || TREE_CODE (t
) == BIT_FIELD_REF
)
1838 MEM_IN_STRUCT_P (ref
) = 1;
1842 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1844 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1847 /* Set the alias set of MEM to SET. */
1850 set_mem_alias_set (rtx mem
, alias_set_type set
)
1852 /* If the new and old alias sets don't conflict, something is wrong. */
1853 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1855 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1856 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1857 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1860 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1863 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1865 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1866 MEM_OFFSET (mem
), MEM_SIZE (mem
),
1867 MEM_ALIGN (mem
), addrspace
, GET_MODE (mem
));
1870 /* Set the alignment of MEM to ALIGN bits. */
1873 set_mem_align (rtx mem
, unsigned int align
)
1875 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1876 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1877 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1880 /* Set the expr for MEM to EXPR. */
1883 set_mem_expr (rtx mem
, tree expr
)
1886 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1887 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1888 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1891 /* Set the offset of MEM to OFFSET. */
1894 set_mem_offset (rtx mem
, rtx offset
)
1896 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1897 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1898 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1901 /* Set the size of MEM to SIZE. */
1904 set_mem_size (rtx mem
, rtx size
)
1906 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1907 MEM_OFFSET (mem
), size
, MEM_ALIGN (mem
),
1908 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1911 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1912 and its address changed to ADDR. (VOIDmode means don't change the mode.
1913 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1914 returned memory location is required to be valid. The memory
1915 attributes are not changed. */
1918 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1923 gcc_assert (MEM_P (memref
));
1924 as
= MEM_ADDR_SPACE (memref
);
1925 if (mode
== VOIDmode
)
1926 mode
= GET_MODE (memref
);
1928 addr
= XEXP (memref
, 0);
1929 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1930 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
1935 if (reload_in_progress
|| reload_completed
)
1936 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
1938 addr
= memory_address_addr_space (mode
, addr
, as
);
1941 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1944 new_rtx
= gen_rtx_MEM (mode
, addr
);
1945 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1949 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1950 way we are changing MEMREF, so we only preserve the alias set. */
1953 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1955 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1), size
;
1956 enum machine_mode mmode
= GET_MODE (new_rtx
);
1959 size
= mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
));
1960 align
= mmode
== BLKmode
? BITS_PER_UNIT
: GET_MODE_ALIGNMENT (mmode
);
1962 /* If there are no changes, just return the original memory reference. */
1963 if (new_rtx
== memref
)
1965 if (MEM_ATTRS (memref
) == 0
1966 || (MEM_EXPR (memref
) == NULL
1967 && MEM_OFFSET (memref
) == NULL
1968 && MEM_SIZE (memref
) == size
1969 && MEM_ALIGN (memref
) == align
))
1972 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1973 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1977 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0, size
, align
,
1978 MEM_ADDR_SPACE (memref
), mmode
);
1983 /* Return a memory reference like MEMREF, but with its mode changed
1984 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1985 nonzero, the memory address is forced to be valid.
1986 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1987 and caller is responsible for adjusting MEMREF base register. */
1990 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
1991 int validate
, int adjust
)
1993 rtx addr
= XEXP (memref
, 0);
1995 rtx memoffset
= MEM_OFFSET (memref
);
1997 unsigned int memalign
= MEM_ALIGN (memref
);
1998 addr_space_t as
= MEM_ADDR_SPACE (memref
);
1999 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
2002 /* If there are no changes, just return the original memory reference. */
2003 if (mode
== GET_MODE (memref
) && !offset
2004 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
2007 /* ??? Prefer to create garbage instead of creating shared rtl.
2008 This may happen even if offset is nonzero -- consider
2009 (plus (plus reg reg) const_int) -- so do this always. */
2010 addr
= copy_rtx (addr
);
2012 /* Convert a possibly large offset to a signed value within the
2013 range of the target address space. */
2014 pbits
= GET_MODE_BITSIZE (address_mode
);
2015 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2017 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2018 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2024 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2025 object, we can merge it into the LO_SUM. */
2026 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2028 && (unsigned HOST_WIDE_INT
) offset
2029 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2030 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2031 plus_constant (XEXP (addr
, 1), offset
));
2033 addr
= plus_constant (addr
, offset
);
2036 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2038 /* If the address is a REG, change_address_1 rightfully returns memref,
2039 but this would destroy memref's MEM_ATTRS. */
2040 if (new_rtx
== memref
&& offset
!= 0)
2041 new_rtx
= copy_rtx (new_rtx
);
2043 /* Compute the new values of the memory attributes due to this adjustment.
2044 We add the offsets and update the alignment. */
2046 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
2048 /* Compute the new alignment by taking the MIN of the alignment and the
2049 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2054 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
2056 /* We can compute the size in a number of ways. */
2057 if (GET_MODE (new_rtx
) != BLKmode
)
2058 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx
)));
2059 else if (MEM_SIZE (memref
))
2060 size
= plus_constant (MEM_SIZE (memref
), -offset
);
2062 MEM_ATTRS (new_rtx
) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
2063 memoffset
, size
, memalign
, as
,
2064 GET_MODE (new_rtx
));
2066 /* At some point, we should validate that this offset is within the object,
2067 if all the appropriate values are known. */
2071 /* Return a memory reference like MEMREF, but with its mode changed
2072 to MODE and its address changed to ADDR, which is assumed to be
2073 MEMREF offset by OFFSET bytes. If VALIDATE is
2074 nonzero, the memory address is forced to be valid. */
2077 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2078 HOST_WIDE_INT offset
, int validate
)
2080 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2081 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
2084 /* Return a memory reference like MEMREF, but whose address is changed by
2085 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2086 known to be in OFFSET (possibly 1). */
2089 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2091 rtx new_rtx
, addr
= XEXP (memref
, 0);
2092 addr_space_t as
= MEM_ADDR_SPACE (memref
);
2093 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
2095 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2097 /* At this point we don't know _why_ the address is invalid. It
2098 could have secondary memory references, multiplies or anything.
2100 However, if we did go and rearrange things, we can wind up not
2101 being able to recognize the magic around pic_offset_table_rtx.
2102 This stuff is fragile, and is yet another example of why it is
2103 bad to expose PIC machinery too early. */
2104 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
, as
)
2105 && GET_CODE (addr
) == PLUS
2106 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2108 addr
= force_reg (GET_MODE (addr
), addr
);
2109 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2112 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2113 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2115 /* If there are no changes, just return the original memory reference. */
2116 if (new_rtx
== memref
)
2119 /* Update the alignment to reflect the offset. Reset the offset, which
2122 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
2123 MIN (MEM_ALIGN (memref
), pow2
* BITS_PER_UNIT
),
2124 as
, GET_MODE (new_rtx
));
2128 /* Return a memory reference like MEMREF, but with its address changed to
2129 ADDR. The caller is asserting that the actual piece of memory pointed
2130 to is the same, just the form of the address is being changed, such as
2131 by putting something into a register. */
2134 replace_equiv_address (rtx memref
, rtx addr
)
2136 /* change_address_1 copies the memory attribute structure without change
2137 and that's exactly what we want here. */
2138 update_temp_slot_address (XEXP (memref
, 0), addr
);
2139 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2142 /* Likewise, but the reference is not required to be valid. */
2145 replace_equiv_address_nv (rtx memref
, rtx addr
)
2147 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2150 /* Return a memory reference like MEMREF, but with its mode widened to
2151 MODE and offset by OFFSET. This would be used by targets that e.g.
2152 cannot issue QImode memory operations and have to use SImode memory
2153 operations plus masking logic. */
2156 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2158 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1);
2159 tree expr
= MEM_EXPR (new_rtx
);
2160 rtx memoffset
= MEM_OFFSET (new_rtx
);
2161 unsigned int size
= GET_MODE_SIZE (mode
);
2163 /* If there are no changes, just return the original memory reference. */
2164 if (new_rtx
== memref
)
2167 /* If we don't know what offset we were at within the expression, then
2168 we can't know if we've overstepped the bounds. */
2174 if (TREE_CODE (expr
) == COMPONENT_REF
)
2176 tree field
= TREE_OPERAND (expr
, 1);
2177 tree offset
= component_ref_field_offset (expr
);
2179 if (! DECL_SIZE_UNIT (field
))
2185 /* Is the field at least as large as the access? If so, ok,
2186 otherwise strip back to the containing structure. */
2187 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2188 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2189 && INTVAL (memoffset
) >= 0)
2192 if (! host_integerp (offset
, 1))
2198 expr
= TREE_OPERAND (expr
, 0);
2200 = (GEN_INT (INTVAL (memoffset
)
2201 + tree_low_cst (offset
, 1)
2202 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2205 /* Similarly for the decl. */
2206 else if (DECL_P (expr
)
2207 && DECL_SIZE_UNIT (expr
)
2208 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2209 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2210 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2214 /* The widened memory access overflows the expression, which means
2215 that it could alias another expression. Zap it. */
2222 memoffset
= NULL_RTX
;
2224 /* The widened memory may alias other stuff, so zap the alias set. */
2225 /* ??? Maybe use get_alias_set on any remaining expression. */
2227 MEM_ATTRS (new_rtx
) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2228 MEM_ALIGN (new_rtx
),
2229 MEM_ADDR_SPACE (new_rtx
), mode
);
2234 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2235 static GTY(()) tree spill_slot_decl
;
2238 get_spill_slot_decl (bool force_build_p
)
2240 tree d
= spill_slot_decl
;
2243 if (d
|| !force_build_p
)
2246 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2247 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2248 DECL_ARTIFICIAL (d
) = 1;
2249 DECL_IGNORED_P (d
) = 1;
2251 spill_slot_decl
= d
;
2253 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2254 MEM_NOTRAP_P (rd
) = 1;
2255 MEM_ATTRS (rd
) = get_mem_attrs (new_alias_set (), d
, const0_rtx
,
2256 NULL_RTX
, 0, ADDR_SPACE_GENERIC
, BLKmode
);
2257 SET_DECL_RTL (d
, rd
);
2262 /* Given MEM, a result from assign_stack_local, fill in the memory
2263 attributes as appropriate for a register allocator spill slot.
2264 These slots are not aliasable by other memory. We arrange for
2265 them all to use a single MEM_EXPR, so that the aliasing code can
2266 work properly in the case of shared spill slots. */
2269 set_mem_attrs_for_spill (rtx mem
)
2271 alias_set_type alias
;
2275 expr
= get_spill_slot_decl (true);
2276 alias
= MEM_ALIAS_SET (DECL_RTL (expr
));
2278 /* We expect the incoming memory to be of the form:
2279 (mem:MODE (plus (reg sfp) (const_int offset)))
2280 with perhaps the plus missing for offset = 0. */
2281 addr
= XEXP (mem
, 0);
2282 offset
= const0_rtx
;
2283 if (GET_CODE (addr
) == PLUS
2284 && CONST_INT_P (XEXP (addr
, 1)))
2285 offset
= XEXP (addr
, 1);
2287 MEM_ATTRS (mem
) = get_mem_attrs (alias
, expr
, offset
,
2288 MEM_SIZE (mem
), MEM_ALIGN (mem
),
2289 ADDR_SPACE_GENERIC
, GET_MODE (mem
));
2290 MEM_NOTRAP_P (mem
) = 1;
2293 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2296 gen_label_rtx (void)
2298 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2299 NULL
, label_num
++, NULL
);
2302 /* For procedure integration. */
2304 /* Install new pointers to the first and last insns in the chain.
2305 Also, set cur_insn_uid to one higher than the last in use.
2306 Used for an inline-procedure after copying the insn chain. */
2309 set_new_first_and_last_insn (rtx first
, rtx last
)
2313 set_first_insn (first
);
2314 set_last_insn (last
);
2317 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2319 int debug_count
= 0;
2321 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2322 cur_debug_insn_uid
= 0;
2324 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2325 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2326 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2329 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2330 if (DEBUG_INSN_P (insn
))
2335 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2337 cur_debug_insn_uid
++;
2340 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2341 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2346 /* Go through all the RTL insn bodies and copy any invalid shared
2347 structure. This routine should only be called once. */
2350 unshare_all_rtl_1 (rtx insn
)
2352 /* Unshare just about everything else. */
2353 unshare_all_rtl_in_chain (insn
);
2355 /* Make sure the addresses of stack slots found outside the insn chain
2356 (such as, in DECL_RTL of a variable) are not shared
2357 with the insn chain.
2359 This special care is necessary when the stack slot MEM does not
2360 actually appear in the insn chain. If it does appear, its address
2361 is unshared from all else at that point. */
2362 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2365 /* Go through all the RTL insn bodies and copy any invalid shared
2366 structure, again. This is a fairly expensive thing to do so it
2367 should be done sparingly. */
2370 unshare_all_rtl_again (rtx insn
)
2375 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2378 reset_used_flags (PATTERN (p
));
2379 reset_used_flags (REG_NOTES (p
));
2382 /* Make sure that virtual stack slots are not shared. */
2383 set_used_decls (DECL_INITIAL (cfun
->decl
));
2385 /* Make sure that virtual parameters are not shared. */
2386 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2387 set_used_flags (DECL_RTL (decl
));
2389 reset_used_flags (stack_slot_list
);
2391 unshare_all_rtl_1 (insn
);
2395 unshare_all_rtl (void)
2397 unshare_all_rtl_1 (get_insns ());
2401 struct rtl_opt_pass pass_unshare_all_rtl
=
2405 "unshare", /* name */
2407 unshare_all_rtl
, /* execute */
2410 0, /* static_pass_number */
2411 TV_NONE
, /* tv_id */
2412 0, /* properties_required */
2413 0, /* properties_provided */
2414 0, /* properties_destroyed */
2415 0, /* todo_flags_start */
2416 TODO_dump_func
| TODO_verify_rtl_sharing
/* todo_flags_finish */
2421 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2422 Recursively does the same for subexpressions. */
2425 verify_rtx_sharing (rtx orig
, rtx insn
)
2430 const char *format_ptr
;
2435 code
= GET_CODE (x
);
2437 /* These types may be freely shared. */
2456 /* SCRATCH must be shared because they represent distinct values. */
2458 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2463 if (shared_const_p (orig
))
2468 /* A MEM is allowed to be shared if its address is constant. */
2469 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2470 || reload_completed
|| reload_in_progress
)
2479 /* This rtx may not be shared. If it has already been seen,
2480 replace it with a copy of itself. */
2481 #ifdef ENABLE_CHECKING
2482 if (RTX_FLAG (x
, used
))
2484 error ("invalid rtl sharing found in the insn");
2486 error ("shared rtx");
2488 internal_error ("internal consistency failure");
2491 gcc_assert (!RTX_FLAG (x
, used
));
2493 RTX_FLAG (x
, used
) = 1;
2495 /* Now scan the subexpressions recursively. */
2497 format_ptr
= GET_RTX_FORMAT (code
);
2499 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2501 switch (*format_ptr
++)
2504 verify_rtx_sharing (XEXP (x
, i
), insn
);
2508 if (XVEC (x
, i
) != NULL
)
2511 int len
= XVECLEN (x
, i
);
2513 for (j
= 0; j
< len
; j
++)
2515 /* We allow sharing of ASM_OPERANDS inside single
2517 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2518 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2520 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2522 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2531 /* Go through all the RTL insn bodies and check that there is no unexpected
2532 sharing in between the subexpressions. */
2535 verify_rtl_sharing (void)
2539 timevar_push (TV_VERIFY_RTL_SHARING
);
2541 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2544 reset_used_flags (PATTERN (p
));
2545 reset_used_flags (REG_NOTES (p
));
2546 if (GET_CODE (PATTERN (p
)) == SEQUENCE
)
2549 rtx q
, sequence
= PATTERN (p
);
2551 for (i
= 0; i
< XVECLEN (sequence
, 0); i
++)
2553 q
= XVECEXP (sequence
, 0, i
);
2554 gcc_assert (INSN_P (q
));
2555 reset_used_flags (PATTERN (q
));
2556 reset_used_flags (REG_NOTES (q
));
2561 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2564 verify_rtx_sharing (PATTERN (p
), p
);
2565 verify_rtx_sharing (REG_NOTES (p
), p
);
2568 timevar_pop (TV_VERIFY_RTL_SHARING
);
2571 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2572 Assumes the mark bits are cleared at entry. */
2575 unshare_all_rtl_in_chain (rtx insn
)
2577 for (; insn
; insn
= NEXT_INSN (insn
))
2580 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2581 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2585 /* Go through all virtual stack slots of a function and mark them as
2586 shared. We never replace the DECL_RTLs themselves with a copy,
2587 but expressions mentioned into a DECL_RTL cannot be shared with
2588 expressions in the instruction stream.
2590 Note that reload may convert pseudo registers into memories in-place.
2591 Pseudo registers are always shared, but MEMs never are. Thus if we
2592 reset the used flags on MEMs in the instruction stream, we must set
2593 them again on MEMs that appear in DECL_RTLs. */
2596 set_used_decls (tree blk
)
2601 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2602 if (DECL_RTL_SET_P (t
))
2603 set_used_flags (DECL_RTL (t
));
2605 /* Now process sub-blocks. */
2606 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2610 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2611 Recursively does the same for subexpressions. Uses
2612 copy_rtx_if_shared_1 to reduce stack space. */
2615 copy_rtx_if_shared (rtx orig
)
2617 copy_rtx_if_shared_1 (&orig
);
2621 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2622 use. Recursively does the same for subexpressions. */
2625 copy_rtx_if_shared_1 (rtx
*orig1
)
2631 const char *format_ptr
;
2635 /* Repeat is used to turn tail-recursion into iteration. */
2642 code
= GET_CODE (x
);
2644 /* These types may be freely shared. */
2661 /* SCRATCH must be shared because they represent distinct values. */
2664 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2669 if (shared_const_p (x
))
2679 /* The chain of insns is not being copied. */
2686 /* This rtx may not be shared. If it has already been seen,
2687 replace it with a copy of itself. */
2689 if (RTX_FLAG (x
, used
))
2691 x
= shallow_copy_rtx (x
);
2694 RTX_FLAG (x
, used
) = 1;
2696 /* Now scan the subexpressions recursively.
2697 We can store any replaced subexpressions directly into X
2698 since we know X is not shared! Any vectors in X
2699 must be copied if X was copied. */
2701 format_ptr
= GET_RTX_FORMAT (code
);
2702 length
= GET_RTX_LENGTH (code
);
2705 for (i
= 0; i
< length
; i
++)
2707 switch (*format_ptr
++)
2711 copy_rtx_if_shared_1 (last_ptr
);
2712 last_ptr
= &XEXP (x
, i
);
2716 if (XVEC (x
, i
) != NULL
)
2719 int len
= XVECLEN (x
, i
);
2721 /* Copy the vector iff I copied the rtx and the length
2723 if (copied
&& len
> 0)
2724 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2726 /* Call recursively on all inside the vector. */
2727 for (j
= 0; j
< len
; j
++)
2730 copy_rtx_if_shared_1 (last_ptr
);
2731 last_ptr
= &XVECEXP (x
, i
, j
);
2746 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2749 mark_used_flags (rtx x
, int flag
)
2753 const char *format_ptr
;
2756 /* Repeat is used to turn tail-recursion into iteration. */
2761 code
= GET_CODE (x
);
2763 /* These types may be freely shared so we needn't do any resetting
2788 /* The chain of insns is not being copied. */
2795 RTX_FLAG (x
, used
) = flag
;
2797 format_ptr
= GET_RTX_FORMAT (code
);
2798 length
= GET_RTX_LENGTH (code
);
2800 for (i
= 0; i
< length
; i
++)
2802 switch (*format_ptr
++)
2810 mark_used_flags (XEXP (x
, i
), flag
);
2814 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2815 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
2821 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2822 to look for shared sub-parts. */
2825 reset_used_flags (rtx x
)
2827 mark_used_flags (x
, 0);
2830 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2831 to look for shared sub-parts. */
2834 set_used_flags (rtx x
)
2836 mark_used_flags (x
, 1);
2839 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2840 Return X or the rtx for the pseudo reg the value of X was copied into.
2841 OTHER must be valid as a SET_DEST. */
2844 make_safe_from (rtx x
, rtx other
)
2847 switch (GET_CODE (other
))
2850 other
= SUBREG_REG (other
);
2852 case STRICT_LOW_PART
:
2855 other
= XEXP (other
, 0);
2864 && GET_CODE (x
) != SUBREG
)
2866 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2867 || reg_mentioned_p (other
, x
))))
2869 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2870 emit_move_insn (temp
, x
);
2876 /* Emission of insns (adding them to the doubly-linked list). */
2878 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2881 get_last_insn_anywhere (void)
2883 struct sequence_stack
*stack
;
2884 if (get_last_insn ())
2885 return get_last_insn ();
2886 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2887 if (stack
->last
!= 0)
2892 /* Return the first nonnote insn emitted in current sequence or current
2893 function. This routine looks inside SEQUENCEs. */
2896 get_first_nonnote_insn (void)
2898 rtx insn
= get_insns ();
2903 for (insn
= next_insn (insn
);
2904 insn
&& NOTE_P (insn
);
2905 insn
= next_insn (insn
))
2909 if (NONJUMP_INSN_P (insn
)
2910 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2911 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2918 /* Return the last nonnote insn emitted in current sequence or current
2919 function. This routine looks inside SEQUENCEs. */
2922 get_last_nonnote_insn (void)
2924 rtx insn
= get_last_insn ();
2929 for (insn
= previous_insn (insn
);
2930 insn
&& NOTE_P (insn
);
2931 insn
= previous_insn (insn
))
2935 if (NONJUMP_INSN_P (insn
)
2936 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2937 insn
= XVECEXP (PATTERN (insn
), 0,
2938 XVECLEN (PATTERN (insn
), 0) - 1);
2945 /* Return the number of actual (non-debug) insns emitted in this
2949 get_max_insn_count (void)
2951 int n
= cur_insn_uid
;
2953 /* The table size must be stable across -g, to avoid codegen
2954 differences due to debug insns, and not be affected by
2955 -fmin-insn-uid, to avoid excessive table size and to simplify
2956 debugging of -fcompare-debug failures. */
2957 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
2958 n
-= cur_debug_insn_uid
;
2960 n
-= MIN_NONDEBUG_INSN_UID
;
2966 /* Return the next insn. If it is a SEQUENCE, return the first insn
2970 next_insn (rtx insn
)
2974 insn
= NEXT_INSN (insn
);
2975 if (insn
&& NONJUMP_INSN_P (insn
)
2976 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2977 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2983 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2987 previous_insn (rtx insn
)
2991 insn
= PREV_INSN (insn
);
2992 if (insn
&& NONJUMP_INSN_P (insn
)
2993 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2994 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3000 /* Return the next insn after INSN that is not a NOTE. This routine does not
3001 look inside SEQUENCEs. */
3004 next_nonnote_insn (rtx insn
)
3008 insn
= NEXT_INSN (insn
);
3009 if (insn
== 0 || !NOTE_P (insn
))
3016 /* Return the next insn after INSN that is not a NOTE, but stop the
3017 search before we enter another basic block. This routine does not
3018 look inside SEQUENCEs. */
3021 next_nonnote_insn_bb (rtx insn
)
3025 insn
= NEXT_INSN (insn
);
3026 if (insn
== 0 || !NOTE_P (insn
))
3028 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3035 /* Return the previous insn before INSN that is not a NOTE. This routine does
3036 not look inside SEQUENCEs. */
3039 prev_nonnote_insn (rtx insn
)
3043 insn
= PREV_INSN (insn
);
3044 if (insn
== 0 || !NOTE_P (insn
))
3051 /* Return the previous insn before INSN that is not a NOTE, but stop
3052 the search before we enter another basic block. This routine does
3053 not look inside SEQUENCEs. */
3056 prev_nonnote_insn_bb (rtx insn
)
3060 insn
= PREV_INSN (insn
);
3061 if (insn
== 0 || !NOTE_P (insn
))
3063 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3070 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3071 routine does not look inside SEQUENCEs. */
3074 next_nondebug_insn (rtx insn
)
3078 insn
= NEXT_INSN (insn
);
3079 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3086 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3087 This routine does not look inside SEQUENCEs. */
3090 prev_nondebug_insn (rtx insn
)
3094 insn
= PREV_INSN (insn
);
3095 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3102 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3103 This routine does not look inside SEQUENCEs. */
3106 next_nonnote_nondebug_insn (rtx insn
)
3110 insn
= NEXT_INSN (insn
);
3111 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3118 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3119 This routine does not look inside SEQUENCEs. */
3122 prev_nonnote_nondebug_insn (rtx insn
)
3126 insn
= PREV_INSN (insn
);
3127 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3134 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3135 or 0, if there is none. This routine does not look inside
3139 next_real_insn (rtx insn
)
3143 insn
= NEXT_INSN (insn
);
3144 if (insn
== 0 || INSN_P (insn
))
3151 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3152 or 0, if there is none. This routine does not look inside
3156 prev_real_insn (rtx insn
)
3160 insn
= PREV_INSN (insn
);
3161 if (insn
== 0 || INSN_P (insn
))
3168 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3169 This routine does not look inside SEQUENCEs. */
3172 last_call_insn (void)
3176 for (insn
= get_last_insn ();
3177 insn
&& !CALL_P (insn
);
3178 insn
= PREV_INSN (insn
))
3184 /* Find the next insn after INSN that really does something. This routine
3185 does not look inside SEQUENCEs. After reload this also skips over
3186 standalone USE and CLOBBER insn. */
3189 active_insn_p (const_rtx insn
)
3191 return (CALL_P (insn
) || JUMP_P (insn
)
3192 || (NONJUMP_INSN_P (insn
)
3193 && (! reload_completed
3194 || (GET_CODE (PATTERN (insn
)) != USE
3195 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3199 next_active_insn (rtx insn
)
3203 insn
= NEXT_INSN (insn
);
3204 if (insn
== 0 || active_insn_p (insn
))
3211 /* Find the last insn before INSN that really does something. This routine
3212 does not look inside SEQUENCEs. After reload this also skips over
3213 standalone USE and CLOBBER insn. */
3216 prev_active_insn (rtx insn
)
3220 insn
= PREV_INSN (insn
);
3221 if (insn
== 0 || active_insn_p (insn
))
3228 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3231 next_label (rtx insn
)
3235 insn
= NEXT_INSN (insn
);
3236 if (insn
== 0 || LABEL_P (insn
))
3243 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3246 prev_label (rtx insn
)
3250 insn
= PREV_INSN (insn
);
3251 if (insn
== 0 || LABEL_P (insn
))
3258 /* Return the last label to mark the same position as LABEL. Return null
3259 if LABEL itself is null. */
3262 skip_consecutive_labels (rtx label
)
3266 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3274 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3275 and REG_CC_USER notes so we can find it. */
3278 link_cc0_insns (rtx insn
)
3280 rtx user
= next_nonnote_insn (insn
);
3282 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3283 user
= XVECEXP (PATTERN (user
), 0, 0);
3285 add_reg_note (user
, REG_CC_SETTER
, insn
);
3286 add_reg_note (insn
, REG_CC_USER
, user
);
3289 /* Return the next insn that uses CC0 after INSN, which is assumed to
3290 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3291 applied to the result of this function should yield INSN).
3293 Normally, this is simply the next insn. However, if a REG_CC_USER note
3294 is present, it contains the insn that uses CC0.
3296 Return 0 if we can't find the insn. */
3299 next_cc0_user (rtx insn
)
3301 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3304 return XEXP (note
, 0);
3306 insn
= next_nonnote_insn (insn
);
3307 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3308 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3310 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3316 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3317 note, it is the previous insn. */
3320 prev_cc0_setter (rtx insn
)
3322 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3325 return XEXP (note
, 0);
3327 insn
= prev_nonnote_insn (insn
);
3328 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3335 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3338 find_auto_inc (rtx
*xp
, void *data
)
3341 rtx reg
= (rtx
) data
;
3343 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3346 switch (GET_CODE (x
))
3354 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3365 /* Increment the label uses for all labels present in rtx. */
3368 mark_label_nuses (rtx x
)
3374 code
= GET_CODE (x
);
3375 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3376 LABEL_NUSES (XEXP (x
, 0))++;
3378 fmt
= GET_RTX_FORMAT (code
);
3379 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3382 mark_label_nuses (XEXP (x
, i
));
3383 else if (fmt
[i
] == 'E')
3384 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3385 mark_label_nuses (XVECEXP (x
, i
, j
));
3390 /* Try splitting insns that can be split for better scheduling.
3391 PAT is the pattern which might split.
3392 TRIAL is the insn providing PAT.
3393 LAST is nonzero if we should return the last insn of the sequence produced.
3395 If this routine succeeds in splitting, it returns the first or last
3396 replacement insn depending on the value of LAST. Otherwise, it
3397 returns TRIAL. If the insn to be returned can be split, it will be. */
3400 try_split (rtx pat
, rtx trial
, int last
)
3402 rtx before
= PREV_INSN (trial
);
3403 rtx after
= NEXT_INSN (trial
);
3404 int has_barrier
= 0;
3407 rtx insn_last
, insn
;
3410 /* We're not good at redistributing frame information. */
3411 if (RTX_FRAME_RELATED_P (trial
))
3414 if (any_condjump_p (trial
)
3415 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3416 split_branch_probability
= INTVAL (XEXP (note
, 0));
3417 probability
= split_branch_probability
;
3419 seq
= split_insns (pat
, trial
);
3421 split_branch_probability
= -1;
3423 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3424 We may need to handle this specially. */
3425 if (after
&& BARRIER_P (after
))
3428 after
= NEXT_INSN (after
);
3434 /* Avoid infinite loop if any insn of the result matches
3435 the original pattern. */
3439 if (INSN_P (insn_last
)
3440 && rtx_equal_p (PATTERN (insn_last
), pat
))
3442 if (!NEXT_INSN (insn_last
))
3444 insn_last
= NEXT_INSN (insn_last
);
3447 /* We will be adding the new sequence to the function. The splitters
3448 may have introduced invalid RTL sharing, so unshare the sequence now. */
3449 unshare_all_rtl_in_chain (seq
);
3452 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3456 mark_jump_label (PATTERN (insn
), insn
, 0);
3458 if (probability
!= -1
3459 && any_condjump_p (insn
)
3460 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3462 /* We can preserve the REG_BR_PROB notes only if exactly
3463 one jump is created, otherwise the machine description
3464 is responsible for this step using
3465 split_branch_probability variable. */
3466 gcc_assert (njumps
== 1);
3467 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3472 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3473 in SEQ and copy any additional information across. */
3476 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3481 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3482 target may have explicitly specified. */
3483 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3486 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3488 /* If the old call was a sibling call, the new one must
3490 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3492 /* If the new call is the last instruction in the sequence,
3493 it will effectively replace the old call in-situ. Otherwise
3494 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3495 so that it comes immediately after the new call. */
3496 if (NEXT_INSN (insn
))
3497 for (next
= NEXT_INSN (trial
);
3498 next
&& NOTE_P (next
);
3499 next
= NEXT_INSN (next
))
3500 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3503 add_insn_after (next
, insn
, NULL
);
3509 /* Copy notes, particularly those related to the CFG. */
3510 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3512 switch (REG_NOTE_KIND (note
))
3515 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3520 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3523 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3527 case REG_NON_LOCAL_GOTO
:
3528 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3531 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3537 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3539 rtx reg
= XEXP (note
, 0);
3540 if (!FIND_REG_INC_NOTE (insn
, reg
)
3541 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3542 add_reg_note (insn
, REG_INC
, reg
);
3552 /* If there are LABELS inside the split insns increment the
3553 usage count so we don't delete the label. */
3557 while (insn
!= NULL_RTX
)
3559 /* JUMP_P insns have already been "marked" above. */
3560 if (NONJUMP_INSN_P (insn
))
3561 mark_label_nuses (PATTERN (insn
));
3563 insn
= PREV_INSN (insn
);
3567 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATOR (trial
));
3569 delete_insn (trial
);
3571 emit_barrier_after (tem
);
3573 /* Recursively call try_split for each new insn created; by the
3574 time control returns here that insn will be fully split, so
3575 set LAST and continue from the insn after the one returned.
3576 We can't use next_active_insn here since AFTER may be a note.
3577 Ignore deleted insns, which can be occur if not optimizing. */
3578 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3579 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3580 tem
= try_split (PATTERN (tem
), tem
, 1);
3582 /* Return either the first or the last insn, depending on which was
3585 ? (after
? PREV_INSN (after
) : get_last_insn ())
3586 : NEXT_INSN (before
);
3589 /* Make and return an INSN rtx, initializing all its slots.
3590 Store PATTERN in the pattern slots. */
3593 make_insn_raw (rtx pattern
)
3597 insn
= rtx_alloc (INSN
);
3599 INSN_UID (insn
) = cur_insn_uid
++;
3600 PATTERN (insn
) = pattern
;
3601 INSN_CODE (insn
) = -1;
3602 REG_NOTES (insn
) = NULL
;
3603 INSN_LOCATOR (insn
) = curr_insn_locator ();
3604 BLOCK_FOR_INSN (insn
) = NULL
;
3606 #ifdef ENABLE_RTL_CHECKING
3609 && (returnjump_p (insn
)
3610 || (GET_CODE (insn
) == SET
3611 && SET_DEST (insn
) == pc_rtx
)))
3613 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3621 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3624 make_debug_insn_raw (rtx pattern
)
3628 insn
= rtx_alloc (DEBUG_INSN
);
3629 INSN_UID (insn
) = cur_debug_insn_uid
++;
3630 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3631 INSN_UID (insn
) = cur_insn_uid
++;
3633 PATTERN (insn
) = pattern
;
3634 INSN_CODE (insn
) = -1;
3635 REG_NOTES (insn
) = NULL
;
3636 INSN_LOCATOR (insn
) = curr_insn_locator ();
3637 BLOCK_FOR_INSN (insn
) = NULL
;
3642 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3645 make_jump_insn_raw (rtx pattern
)
3649 insn
= rtx_alloc (JUMP_INSN
);
3650 INSN_UID (insn
) = cur_insn_uid
++;
3652 PATTERN (insn
) = pattern
;
3653 INSN_CODE (insn
) = -1;
3654 REG_NOTES (insn
) = NULL
;
3655 JUMP_LABEL (insn
) = NULL
;
3656 INSN_LOCATOR (insn
) = curr_insn_locator ();
3657 BLOCK_FOR_INSN (insn
) = NULL
;
3662 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3665 make_call_insn_raw (rtx pattern
)
3669 insn
= rtx_alloc (CALL_INSN
);
3670 INSN_UID (insn
) = cur_insn_uid
++;
3672 PATTERN (insn
) = pattern
;
3673 INSN_CODE (insn
) = -1;
3674 REG_NOTES (insn
) = NULL
;
3675 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3676 INSN_LOCATOR (insn
) = curr_insn_locator ();
3677 BLOCK_FOR_INSN (insn
) = NULL
;
3682 /* Add INSN to the end of the doubly-linked list.
3683 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3688 PREV_INSN (insn
) = get_last_insn();
3689 NEXT_INSN (insn
) = 0;
3691 if (NULL
!= get_last_insn())
3692 NEXT_INSN (get_last_insn ()) = insn
;
3694 if (NULL
== get_insns ())
3695 set_first_insn (insn
);
3697 set_last_insn (insn
);
3700 /* Add INSN into the doubly-linked list after insn AFTER. This and
3701 the next should be the only functions called to insert an insn once
3702 delay slots have been filled since only they know how to update a
3706 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3708 rtx next
= NEXT_INSN (after
);
3710 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3712 NEXT_INSN (insn
) = next
;
3713 PREV_INSN (insn
) = after
;
3717 PREV_INSN (next
) = insn
;
3718 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3719 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3721 else if (get_last_insn () == after
)
3722 set_last_insn (insn
);
3725 struct sequence_stack
*stack
= seq_stack
;
3726 /* Scan all pending sequences too. */
3727 for (; stack
; stack
= stack
->next
)
3728 if (after
== stack
->last
)
3737 if (!BARRIER_P (after
)
3738 && !BARRIER_P (insn
)
3739 && (bb
= BLOCK_FOR_INSN (after
)))
3741 set_block_for_insn (insn
, bb
);
3743 df_insn_rescan (insn
);
3744 /* Should not happen as first in the BB is always
3745 either NOTE or LABEL. */
3746 if (BB_END (bb
) == after
3747 /* Avoid clobbering of structure when creating new BB. */
3748 && !BARRIER_P (insn
)
3749 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3753 NEXT_INSN (after
) = insn
;
3754 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3756 rtx sequence
= PATTERN (after
);
3757 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3761 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3762 the previous should be the only functions called to insert an insn
3763 once delay slots have been filled since only they know how to
3764 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3768 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3770 rtx prev
= PREV_INSN (before
);
3772 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3774 PREV_INSN (insn
) = prev
;
3775 NEXT_INSN (insn
) = before
;
3779 NEXT_INSN (prev
) = insn
;
3780 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3782 rtx sequence
= PATTERN (prev
);
3783 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3786 else if (get_insns () == before
)
3787 set_first_insn (insn
);
3790 struct sequence_stack
*stack
= seq_stack
;
3791 /* Scan all pending sequences too. */
3792 for (; stack
; stack
= stack
->next
)
3793 if (before
== stack
->first
)
3795 stack
->first
= insn
;
3803 && !BARRIER_P (before
)
3804 && !BARRIER_P (insn
))
3805 bb
= BLOCK_FOR_INSN (before
);
3809 set_block_for_insn (insn
, bb
);
3811 df_insn_rescan (insn
);
3812 /* Should not happen as first in the BB is always either NOTE or
3814 gcc_assert (BB_HEAD (bb
) != insn
3815 /* Avoid clobbering of structure when creating new BB. */
3817 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3820 PREV_INSN (before
) = insn
;
3821 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3822 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3826 /* Replace insn with an deleted instruction note. */
3829 set_insn_deleted (rtx insn
)
3831 df_insn_delete (BLOCK_FOR_INSN (insn
), INSN_UID (insn
));
3832 PUT_CODE (insn
, NOTE
);
3833 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3837 /* Remove an insn from its doubly-linked list. This function knows how
3838 to handle sequences. */
3840 remove_insn (rtx insn
)
3842 rtx next
= NEXT_INSN (insn
);
3843 rtx prev
= PREV_INSN (insn
);
3846 /* Later in the code, the block will be marked dirty. */
3847 df_insn_delete (NULL
, INSN_UID (insn
));
3851 NEXT_INSN (prev
) = next
;
3852 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3854 rtx sequence
= PATTERN (prev
);
3855 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3858 else if (get_insns () == insn
)
3861 PREV_INSN (next
) = NULL
;
3862 set_first_insn (next
);
3866 struct sequence_stack
*stack
= seq_stack
;
3867 /* Scan all pending sequences too. */
3868 for (; stack
; stack
= stack
->next
)
3869 if (insn
== stack
->first
)
3871 stack
->first
= next
;
3880 PREV_INSN (next
) = prev
;
3881 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3882 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3884 else if (get_last_insn () == insn
)
3885 set_last_insn (prev
);
3888 struct sequence_stack
*stack
= seq_stack
;
3889 /* Scan all pending sequences too. */
3890 for (; stack
; stack
= stack
->next
)
3891 if (insn
== stack
->last
)
3899 if (!BARRIER_P (insn
)
3900 && (bb
= BLOCK_FOR_INSN (insn
)))
3902 if (NONDEBUG_INSN_P (insn
))
3903 df_set_bb_dirty (bb
);
3904 if (BB_HEAD (bb
) == insn
)
3906 /* Never ever delete the basic block note without deleting whole
3908 gcc_assert (!NOTE_P (insn
));
3909 BB_HEAD (bb
) = next
;
3911 if (BB_END (bb
) == insn
)
3916 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3919 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3921 gcc_assert (call_insn
&& CALL_P (call_insn
));
3923 /* Put the register usage information on the CALL. If there is already
3924 some usage information, put ours at the end. */
3925 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
3929 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
3930 link
= XEXP (link
, 1))
3933 XEXP (link
, 1) = call_fusage
;
3936 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
3939 /* Delete all insns made since FROM.
3940 FROM becomes the new last instruction. */
3943 delete_insns_since (rtx from
)
3948 NEXT_INSN (from
) = 0;
3949 set_last_insn (from
);
3952 /* This function is deprecated, please use sequences instead.
3954 Move a consecutive bunch of insns to a different place in the chain.
3955 The insns to be moved are those between FROM and TO.
3956 They are moved to a new position after the insn AFTER.
3957 AFTER must not be FROM or TO or any insn in between.
3959 This function does not know about SEQUENCEs and hence should not be
3960 called after delay-slot filling has been done. */
3963 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
3965 #ifdef ENABLE_CHECKING
3967 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
3968 gcc_assert (after
!= x
);
3969 gcc_assert (after
!= to
);
3972 /* Splice this bunch out of where it is now. */
3973 if (PREV_INSN (from
))
3974 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3976 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3977 if (get_last_insn () == to
)
3978 set_last_insn (PREV_INSN (from
));
3979 if (get_insns () == from
)
3980 set_first_insn (NEXT_INSN (to
));
3982 /* Make the new neighbors point to it and it to them. */
3983 if (NEXT_INSN (after
))
3984 PREV_INSN (NEXT_INSN (after
)) = to
;
3986 NEXT_INSN (to
) = NEXT_INSN (after
);
3987 PREV_INSN (from
) = after
;
3988 NEXT_INSN (after
) = from
;
3989 if (after
== get_last_insn())
3993 /* Same as function above, but take care to update BB boundaries. */
3995 reorder_insns (rtx from
, rtx to
, rtx after
)
3997 rtx prev
= PREV_INSN (from
);
3998 basic_block bb
, bb2
;
4000 reorder_insns_nobb (from
, to
, after
);
4002 if (!BARRIER_P (after
)
4003 && (bb
= BLOCK_FOR_INSN (after
)))
4006 df_set_bb_dirty (bb
);
4008 if (!BARRIER_P (from
)
4009 && (bb2
= BLOCK_FOR_INSN (from
)))
4011 if (BB_END (bb2
) == to
)
4012 BB_END (bb2
) = prev
;
4013 df_set_bb_dirty (bb2
);
4016 if (BB_END (bb
) == after
)
4019 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4021 df_insn_change_bb (x
, bb
);
4026 /* Emit insn(s) of given code and pattern
4027 at a specified place within the doubly-linked list.
4029 All of the emit_foo global entry points accept an object
4030 X which is either an insn list or a PATTERN of a single
4033 There are thus a few canonical ways to generate code and
4034 emit it at a specific place in the instruction stream. For
4035 example, consider the instruction named SPOT and the fact that
4036 we would like to emit some instructions before SPOT. We might
4040 ... emit the new instructions ...
4041 insns_head = get_insns ();
4044 emit_insn_before (insns_head, SPOT);
4046 It used to be common to generate SEQUENCE rtl instead, but that
4047 is a relic of the past which no longer occurs. The reason is that
4048 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4049 generated would almost certainly die right after it was created. */
4052 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4053 rtx (*make_raw
) (rtx
))
4057 gcc_assert (before
);
4062 switch (GET_CODE (x
))
4074 rtx next
= NEXT_INSN (insn
);
4075 add_insn_before (insn
, before
, bb
);
4081 #ifdef ENABLE_RTL_CHECKING
4088 last
= (*make_raw
) (x
);
4089 add_insn_before (last
, before
, bb
);
4096 /* Make X be output before the instruction BEFORE. */
4099 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4101 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4104 /* Make an instruction with body X and code JUMP_INSN
4105 and output it before the instruction BEFORE. */
4108 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4110 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4111 make_jump_insn_raw
);
4114 /* Make an instruction with body X and code CALL_INSN
4115 and output it before the instruction BEFORE. */
4118 emit_call_insn_before_noloc (rtx x
, rtx before
)
4120 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4121 make_call_insn_raw
);
4124 /* Make an instruction with body X and code DEBUG_INSN
4125 and output it before the instruction BEFORE. */
4128 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4130 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4131 make_debug_insn_raw
);
4134 /* Make an insn of code BARRIER
4135 and output it before the insn BEFORE. */
4138 emit_barrier_before (rtx before
)
4140 rtx insn
= rtx_alloc (BARRIER
);
4142 INSN_UID (insn
) = cur_insn_uid
++;
4144 add_insn_before (insn
, before
, NULL
);
4148 /* Emit the label LABEL before the insn BEFORE. */
4151 emit_label_before (rtx label
, rtx before
)
4153 /* This can be called twice for the same label as a result of the
4154 confusion that follows a syntax error! So make it harmless. */
4155 if (INSN_UID (label
) == 0)
4157 INSN_UID (label
) = cur_insn_uid
++;
4158 add_insn_before (label
, before
, NULL
);
4164 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4167 emit_note_before (enum insn_note subtype
, rtx before
)
4169 rtx note
= rtx_alloc (NOTE
);
4170 INSN_UID (note
) = cur_insn_uid
++;
4171 NOTE_KIND (note
) = subtype
;
4172 BLOCK_FOR_INSN (note
) = NULL
;
4173 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4175 add_insn_before (note
, before
, NULL
);
4179 /* Helper for emit_insn_after, handles lists of instructions
4183 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4187 if (!bb
&& !BARRIER_P (after
))
4188 bb
= BLOCK_FOR_INSN (after
);
4192 df_set_bb_dirty (bb
);
4193 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4194 if (!BARRIER_P (last
))
4196 set_block_for_insn (last
, bb
);
4197 df_insn_rescan (last
);
4199 if (!BARRIER_P (last
))
4201 set_block_for_insn (last
, bb
);
4202 df_insn_rescan (last
);
4204 if (BB_END (bb
) == after
)
4208 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4211 after_after
= NEXT_INSN (after
);
4213 NEXT_INSN (after
) = first
;
4214 PREV_INSN (first
) = after
;
4215 NEXT_INSN (last
) = after_after
;
4217 PREV_INSN (after_after
) = last
;
4219 if (after
== get_last_insn())
4220 set_last_insn (last
);
4226 emit_pattern_after_noloc (rtx x
, rtx after
, basic_block bb
,
4227 rtx (*make_raw
)(rtx
))
4236 switch (GET_CODE (x
))
4245 last
= emit_insn_after_1 (x
, after
, bb
);
4248 #ifdef ENABLE_RTL_CHECKING
4255 last
= (*make_raw
) (x
);
4256 add_insn_after (last
, after
, bb
);
4263 /* Make X be output after the insn AFTER and set the BB of insn. If
4264 BB is NULL, an attempt is made to infer the BB from AFTER. */
4267 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4269 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4273 /* Make an insn of code JUMP_INSN with body X
4274 and output it after the insn AFTER. */
4277 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4279 return emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
);
4282 /* Make an instruction with body X and code CALL_INSN
4283 and output it after the instruction AFTER. */
4286 emit_call_insn_after_noloc (rtx x
, rtx after
)
4288 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4291 /* Make an instruction with body X and code CALL_INSN
4292 and output it after the instruction AFTER. */
4295 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4297 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4300 /* Make an insn of code BARRIER
4301 and output it after the insn AFTER. */
4304 emit_barrier_after (rtx after
)
4306 rtx insn
= rtx_alloc (BARRIER
);
4308 INSN_UID (insn
) = cur_insn_uid
++;
4310 add_insn_after (insn
, after
, NULL
);
4314 /* Emit the label LABEL after the insn AFTER. */
4317 emit_label_after (rtx label
, rtx after
)
4319 /* This can be called twice for the same label
4320 as a result of the confusion that follows a syntax error!
4321 So make it harmless. */
4322 if (INSN_UID (label
) == 0)
4324 INSN_UID (label
) = cur_insn_uid
++;
4325 add_insn_after (label
, after
, NULL
);
4331 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4334 emit_note_after (enum insn_note subtype
, rtx after
)
4336 rtx note
= rtx_alloc (NOTE
);
4337 INSN_UID (note
) = cur_insn_uid
++;
4338 NOTE_KIND (note
) = subtype
;
4339 BLOCK_FOR_INSN (note
) = NULL
;
4340 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4341 add_insn_after (note
, after
, NULL
);
4345 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4346 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4349 emit_pattern_after_setloc (rtx pattern
, rtx after
, int loc
,
4350 rtx (*make_raw
) (rtx
))
4352 rtx last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4354 if (pattern
== NULL_RTX
|| !loc
)
4357 after
= NEXT_INSN (after
);
4360 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4361 INSN_LOCATOR (after
) = loc
;
4364 after
= NEXT_INSN (after
);
4369 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4370 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4374 emit_pattern_after (rtx pattern
, rtx after
, bool skip_debug_insns
,
4375 rtx (*make_raw
) (rtx
))
4379 if (skip_debug_insns
)
4380 while (DEBUG_INSN_P (prev
))
4381 prev
= PREV_INSN (prev
);
4384 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATOR (prev
),
4387 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4390 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4392 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4394 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4397 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4399 emit_insn_after (rtx pattern
, rtx after
)
4401 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4404 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4406 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4408 return emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
);
4411 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4413 emit_jump_insn_after (rtx pattern
, rtx after
)
4415 return emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
);
4418 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4420 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4422 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4425 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4427 emit_call_insn_after (rtx pattern
, rtx after
)
4429 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4432 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4434 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4436 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4439 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4441 emit_debug_insn_after (rtx pattern
, rtx after
)
4443 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4446 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4447 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4448 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4452 emit_pattern_before_setloc (rtx pattern
, rtx before
, int loc
, bool insnp
,
4453 rtx (*make_raw
) (rtx
))
4455 rtx first
= PREV_INSN (before
);
4456 rtx last
= emit_pattern_before_noloc (pattern
, before
,
4457 insnp
? before
: NULL_RTX
,
4460 if (pattern
== NULL_RTX
|| !loc
)
4464 first
= get_insns ();
4466 first
= NEXT_INSN (first
);
4469 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4470 INSN_LOCATOR (first
) = loc
;
4473 first
= NEXT_INSN (first
);
4478 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4479 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4480 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4481 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4484 emit_pattern_before (rtx pattern
, rtx before
, bool skip_debug_insns
,
4485 bool insnp
, rtx (*make_raw
) (rtx
))
4489 if (skip_debug_insns
)
4490 while (DEBUG_INSN_P (next
))
4491 next
= PREV_INSN (next
);
4494 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATOR (next
),
4497 return emit_pattern_before_noloc (pattern
, before
,
4498 insnp
? before
: NULL_RTX
,
4502 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4504 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4506 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4510 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4512 emit_insn_before (rtx pattern
, rtx before
)
4514 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4517 /* like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4519 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4521 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4522 make_jump_insn_raw
);
4525 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4527 emit_jump_insn_before (rtx pattern
, rtx before
)
4529 return emit_pattern_before (pattern
, before
, true, false,
4530 make_jump_insn_raw
);
4533 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4535 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4537 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4538 make_call_insn_raw
);
4541 /* Like emit_call_insn_before_noloc,
4542 but set insn_locator according to BEFORE. */
4544 emit_call_insn_before (rtx pattern
, rtx before
)
4546 return emit_pattern_before (pattern
, before
, true, false,
4547 make_call_insn_raw
);
4550 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4552 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4554 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4555 make_debug_insn_raw
);
4558 /* Like emit_debug_insn_before_noloc,
4559 but set insn_locator according to BEFORE. */
4561 emit_debug_insn_before (rtx pattern
, rtx before
)
4563 return emit_pattern_before (pattern
, before
, false, false,
4564 make_debug_insn_raw
);
4567 /* Take X and emit it at the end of the doubly-linked
4570 Returns the last insn emitted. */
4575 rtx last
= get_last_insn();
4581 switch (GET_CODE (x
))
4593 rtx next
= NEXT_INSN (insn
);
4600 #ifdef ENABLE_RTL_CHECKING
4607 last
= make_insn_raw (x
);
4615 /* Make an insn of code DEBUG_INSN with pattern X
4616 and add it to the end of the doubly-linked list. */
4619 emit_debug_insn (rtx x
)
4621 rtx last
= get_last_insn();
4627 switch (GET_CODE (x
))
4639 rtx next
= NEXT_INSN (insn
);
4646 #ifdef ENABLE_RTL_CHECKING
4653 last
= make_debug_insn_raw (x
);
4661 /* Make an insn of code JUMP_INSN with pattern X
4662 and add it to the end of the doubly-linked list. */
4665 emit_jump_insn (rtx x
)
4667 rtx last
= NULL_RTX
, insn
;
4669 switch (GET_CODE (x
))
4681 rtx next
= NEXT_INSN (insn
);
4688 #ifdef ENABLE_RTL_CHECKING
4695 last
= make_jump_insn_raw (x
);
4703 /* Make an insn of code CALL_INSN with pattern X
4704 and add it to the end of the doubly-linked list. */
4707 emit_call_insn (rtx x
)
4711 switch (GET_CODE (x
))
4720 insn
= emit_insn (x
);
4723 #ifdef ENABLE_RTL_CHECKING
4730 insn
= make_call_insn_raw (x
);
4738 /* Add the label LABEL to the end of the doubly-linked list. */
4741 emit_label (rtx label
)
4743 /* This can be called twice for the same label
4744 as a result of the confusion that follows a syntax error!
4745 So make it harmless. */
4746 if (INSN_UID (label
) == 0)
4748 INSN_UID (label
) = cur_insn_uid
++;
4754 /* Make an insn of code BARRIER
4755 and add it to the end of the doubly-linked list. */
4760 rtx barrier
= rtx_alloc (BARRIER
);
4761 INSN_UID (barrier
) = cur_insn_uid
++;
4766 /* Emit a copy of note ORIG. */
4769 emit_note_copy (rtx orig
)
4773 note
= rtx_alloc (NOTE
);
4775 INSN_UID (note
) = cur_insn_uid
++;
4776 NOTE_DATA (note
) = NOTE_DATA (orig
);
4777 NOTE_KIND (note
) = NOTE_KIND (orig
);
4778 BLOCK_FOR_INSN (note
) = NULL
;
4784 /* Make an insn of code NOTE or type NOTE_NO
4785 and add it to the end of the doubly-linked list. */
4788 emit_note (enum insn_note kind
)
4792 note
= rtx_alloc (NOTE
);
4793 INSN_UID (note
) = cur_insn_uid
++;
4794 NOTE_KIND (note
) = kind
;
4795 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4796 BLOCK_FOR_INSN (note
) = NULL
;
4801 /* Emit a clobber of lvalue X. */
4804 emit_clobber (rtx x
)
4806 /* CONCATs should not appear in the insn stream. */
4807 if (GET_CODE (x
) == CONCAT
)
4809 emit_clobber (XEXP (x
, 0));
4810 return emit_clobber (XEXP (x
, 1));
4812 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4815 /* Return a sequence of insns to clobber lvalue X. */
4829 /* Emit a use of rvalue X. */
4834 /* CONCATs should not appear in the insn stream. */
4835 if (GET_CODE (x
) == CONCAT
)
4837 emit_use (XEXP (x
, 0));
4838 return emit_use (XEXP (x
, 1));
4840 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4843 /* Return a sequence of insns to use rvalue X. */
4857 /* Cause next statement to emit a line note even if the line number
4861 force_next_line_note (void)
4866 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4867 note of this type already exists, remove it first. */
4870 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4872 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4878 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4879 has multiple sets (some callers assume single_set
4880 means the insn only has one set, when in fact it
4881 means the insn only has one * useful * set). */
4882 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4888 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4889 It serves no useful purpose and breaks eliminate_regs. */
4890 if (GET_CODE (datum
) == ASM_OPERANDS
)
4895 XEXP (note
, 0) = datum
;
4896 df_notes_rescan (insn
);
4904 XEXP (note
, 0) = datum
;
4910 add_reg_note (insn
, kind
, datum
);
4916 df_notes_rescan (insn
);
4922 return REG_NOTES (insn
);
4925 /* Return an indication of which type of insn should have X as a body.
4926 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4928 static enum rtx_code
4929 classify_insn (rtx x
)
4933 if (GET_CODE (x
) == CALL
)
4935 if (GET_CODE (x
) == RETURN
)
4937 if (GET_CODE (x
) == SET
)
4939 if (SET_DEST (x
) == pc_rtx
)
4941 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4946 if (GET_CODE (x
) == PARALLEL
)
4949 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
4950 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
4952 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4953 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
4955 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4956 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
4962 /* Emit the rtl pattern X as an appropriate kind of insn.
4963 If X is a label, it is simply added into the insn chain. */
4968 enum rtx_code code
= classify_insn (x
);
4973 return emit_label (x
);
4975 return emit_insn (x
);
4978 rtx insn
= emit_jump_insn (x
);
4979 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
4980 return emit_barrier ();
4984 return emit_call_insn (x
);
4986 return emit_debug_insn (x
);
4992 /* Space for free sequence stack entries. */
4993 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
4995 /* Begin emitting insns to a sequence. If this sequence will contain
4996 something that might cause the compiler to pop arguments to function
4997 calls (because those pops have previously been deferred; see
4998 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4999 before calling this function. That will ensure that the deferred
5000 pops are not accidentally emitted in the middle of this sequence. */
5003 start_sequence (void)
5005 struct sequence_stack
*tem
;
5007 if (free_sequence_stack
!= NULL
)
5009 tem
= free_sequence_stack
;
5010 free_sequence_stack
= tem
->next
;
5013 tem
= ggc_alloc_sequence_stack ();
5015 tem
->next
= seq_stack
;
5016 tem
->first
= get_insns ();
5017 tem
->last
= get_last_insn ();
5025 /* Set up the insn chain starting with FIRST as the current sequence,
5026 saving the previously current one. See the documentation for
5027 start_sequence for more information about how to use this function. */
5030 push_to_sequence (rtx first
)
5036 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
5038 set_first_insn (first
);
5039 set_last_insn (last
);
5042 /* Like push_to_sequence, but take the last insn as an argument to avoid
5043 looping through the list. */
5046 push_to_sequence2 (rtx first
, rtx last
)
5050 set_first_insn (first
);
5051 set_last_insn (last
);
5054 /* Set up the outer-level insn chain
5055 as the current sequence, saving the previously current one. */
5058 push_topmost_sequence (void)
5060 struct sequence_stack
*stack
, *top
= NULL
;
5064 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5067 set_first_insn (top
->first
);
5068 set_last_insn (top
->last
);
5071 /* After emitting to the outer-level insn chain, update the outer-level
5072 insn chain, and restore the previous saved state. */
5075 pop_topmost_sequence (void)
5077 struct sequence_stack
*stack
, *top
= NULL
;
5079 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5082 top
->first
= get_insns ();
5083 top
->last
= get_last_insn ();
5088 /* After emitting to a sequence, restore previous saved state.
5090 To get the contents of the sequence just made, you must call
5091 `get_insns' *before* calling here.
5093 If the compiler might have deferred popping arguments while
5094 generating this sequence, and this sequence will not be immediately
5095 inserted into the instruction stream, use do_pending_stack_adjust
5096 before calling get_insns. That will ensure that the deferred
5097 pops are inserted into this sequence, and not into some random
5098 location in the instruction stream. See INHIBIT_DEFER_POP for more
5099 information about deferred popping of arguments. */
5104 struct sequence_stack
*tem
= seq_stack
;
5106 set_first_insn (tem
->first
);
5107 set_last_insn (tem
->last
);
5108 seq_stack
= tem
->next
;
5110 memset (tem
, 0, sizeof (*tem
));
5111 tem
->next
= free_sequence_stack
;
5112 free_sequence_stack
= tem
;
5115 /* Return 1 if currently emitting into a sequence. */
5118 in_sequence_p (void)
5120 return seq_stack
!= 0;
5123 /* Put the various virtual registers into REGNO_REG_RTX. */
5126 init_virtual_regs (void)
5128 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5129 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5130 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5131 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5132 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5133 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5134 = virtual_preferred_stack_boundary_rtx
;
5138 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5139 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5140 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5141 static int copy_insn_n_scratches
;
5143 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5144 copied an ASM_OPERANDS.
5145 In that case, it is the original input-operand vector. */
5146 static rtvec orig_asm_operands_vector
;
5148 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5149 copied an ASM_OPERANDS.
5150 In that case, it is the copied input-operand vector. */
5151 static rtvec copy_asm_operands_vector
;
5153 /* Likewise for the constraints vector. */
5154 static rtvec orig_asm_constraints_vector
;
5155 static rtvec copy_asm_constraints_vector
;
5157 /* Recursively create a new copy of an rtx for copy_insn.
5158 This function differs from copy_rtx in that it handles SCRATCHes and
5159 ASM_OPERANDs properly.
5160 Normally, this function is not used directly; use copy_insn as front end.
5161 However, you could first copy an insn pattern with copy_insn and then use
5162 this function afterwards to properly copy any REG_NOTEs containing
5166 copy_insn_1 (rtx orig
)
5171 const char *format_ptr
;
5176 code
= GET_CODE (orig
);
5191 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
5196 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5197 if (copy_insn_scratch_in
[i
] == orig
)
5198 return copy_insn_scratch_out
[i
];
5202 if (shared_const_p (orig
))
5206 /* A MEM with a constant address is not sharable. The problem is that
5207 the constant address may need to be reloaded. If the mem is shared,
5208 then reloading one copy of this mem will cause all copies to appear
5209 to have been reloaded. */
5215 /* Copy the various flags, fields, and other information. We assume
5216 that all fields need copying, and then clear the fields that should
5217 not be copied. That is the sensible default behavior, and forces
5218 us to explicitly document why we are *not* copying a flag. */
5219 copy
= shallow_copy_rtx (orig
);
5221 /* We do not copy the USED flag, which is used as a mark bit during
5222 walks over the RTL. */
5223 RTX_FLAG (copy
, used
) = 0;
5225 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5228 RTX_FLAG (copy
, jump
) = 0;
5229 RTX_FLAG (copy
, call
) = 0;
5230 RTX_FLAG (copy
, frame_related
) = 0;
5233 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5235 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5236 switch (*format_ptr
++)
5239 if (XEXP (orig
, i
) != NULL
)
5240 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5245 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5246 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5247 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5248 XVEC (copy
, i
) = copy_asm_operands_vector
;
5249 else if (XVEC (orig
, i
) != NULL
)
5251 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5252 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5253 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5264 /* These are left unchanged. */
5271 if (code
== SCRATCH
)
5273 i
= copy_insn_n_scratches
++;
5274 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5275 copy_insn_scratch_in
[i
] = orig
;
5276 copy_insn_scratch_out
[i
] = copy
;
5278 else if (code
== ASM_OPERANDS
)
5280 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5281 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5282 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5283 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5289 /* Create a new copy of an rtx.
5290 This function differs from copy_rtx in that it handles SCRATCHes and
5291 ASM_OPERANDs properly.
5292 INSN doesn't really have to be a full INSN; it could be just the
5295 copy_insn (rtx insn
)
5297 copy_insn_n_scratches
= 0;
5298 orig_asm_operands_vector
= 0;
5299 orig_asm_constraints_vector
= 0;
5300 copy_asm_operands_vector
= 0;
5301 copy_asm_constraints_vector
= 0;
5302 return copy_insn_1 (insn
);
5305 /* Initialize data structures and variables in this file
5306 before generating rtl for each function. */
5311 set_first_insn (NULL
);
5312 set_last_insn (NULL
);
5313 if (MIN_NONDEBUG_INSN_UID
)
5314 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5317 cur_debug_insn_uid
= 1;
5318 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5319 last_location
= UNKNOWN_LOCATION
;
5320 first_label_num
= label_num
;
5323 /* Init the tables that describe all the pseudo regs. */
5325 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5327 crtl
->emit
.regno_pointer_align
5328 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5330 regno_reg_rtx
= ggc_alloc_vec_rtx (crtl
->emit
.regno_pointer_align_length
);
5332 /* Put copies of all the hard registers into regno_reg_rtx. */
5333 memcpy (regno_reg_rtx
,
5334 initial_regno_reg_rtx
,
5335 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5337 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5338 init_virtual_regs ();
5340 /* Indicate that the virtual registers and stack locations are
5342 REG_POINTER (stack_pointer_rtx
) = 1;
5343 REG_POINTER (frame_pointer_rtx
) = 1;
5344 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5345 REG_POINTER (arg_pointer_rtx
) = 1;
5347 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5348 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5349 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5350 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5351 REG_POINTER (virtual_cfa_rtx
) = 1;
5353 #ifdef STACK_BOUNDARY
5354 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5355 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5356 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5357 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5359 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5360 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5361 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5362 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5363 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5366 #ifdef INIT_EXPANDERS
5371 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5374 gen_const_vector (enum machine_mode mode
, int constant
)
5379 enum machine_mode inner
;
5381 units
= GET_MODE_NUNITS (mode
);
5382 inner
= GET_MODE_INNER (mode
);
5384 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5386 v
= rtvec_alloc (units
);
5388 /* We need to call this function after we set the scalar const_tiny_rtx
5390 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5392 for (i
= 0; i
< units
; ++i
)
5393 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5395 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5399 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5400 all elements are zero, and the one vector when all elements are one. */
5402 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5404 enum machine_mode inner
= GET_MODE_INNER (mode
);
5405 int nunits
= GET_MODE_NUNITS (mode
);
5409 /* Check to see if all of the elements have the same value. */
5410 x
= RTVEC_ELT (v
, nunits
- 1);
5411 for (i
= nunits
- 2; i
>= 0; i
--)
5412 if (RTVEC_ELT (v
, i
) != x
)
5415 /* If the values are all the same, check to see if we can use one of the
5416 standard constant vectors. */
5419 if (x
== CONST0_RTX (inner
))
5420 return CONST0_RTX (mode
);
5421 else if (x
== CONST1_RTX (inner
))
5422 return CONST1_RTX (mode
);
5425 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5428 /* Initialise global register information required by all functions. */
5431 init_emit_regs (void)
5435 /* Reset register attributes */
5436 htab_empty (reg_attrs_htab
);
5438 /* We need reg_raw_mode, so initialize the modes now. */
5439 init_reg_modes_target ();
5441 /* Assign register numbers to the globally defined register rtx. */
5442 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
5443 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
5444 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
5445 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5446 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5447 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5448 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5449 virtual_incoming_args_rtx
=
5450 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5451 virtual_stack_vars_rtx
=
5452 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5453 virtual_stack_dynamic_rtx
=
5454 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5455 virtual_outgoing_args_rtx
=
5456 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5457 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5458 virtual_preferred_stack_boundary_rtx
=
5459 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5461 /* Initialize RTL for commonly used hard registers. These are
5462 copied into regno_reg_rtx as we begin to compile each function. */
5463 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5464 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5466 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5467 return_address_pointer_rtx
5468 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5471 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5472 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5474 pic_offset_table_rtx
= NULL_RTX
;
5477 /* Create some permanent unique rtl objects shared between all functions. */
5480 init_emit_once (void)
5483 enum machine_mode mode
;
5484 enum machine_mode double_mode
;
5486 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5488 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5489 const_int_htab_eq
, NULL
);
5491 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5492 const_double_htab_eq
, NULL
);
5494 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5495 const_fixed_htab_eq
, NULL
);
5497 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5498 mem_attrs_htab_eq
, NULL
);
5499 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5500 reg_attrs_htab_eq
, NULL
);
5502 /* Compute the word and byte modes. */
5504 byte_mode
= VOIDmode
;
5505 word_mode
= VOIDmode
;
5506 double_mode
= VOIDmode
;
5508 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5510 mode
= GET_MODE_WIDER_MODE (mode
))
5512 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5513 && byte_mode
== VOIDmode
)
5516 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5517 && word_mode
== VOIDmode
)
5521 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5523 mode
= GET_MODE_WIDER_MODE (mode
))
5525 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5526 && double_mode
== VOIDmode
)
5530 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5532 #ifdef INIT_EXPANDERS
5533 /* This is to initialize {init|mark|free}_machine_status before the first
5534 call to push_function_context_to. This is needed by the Chill front
5535 end which calls push_function_context_to before the first call to
5536 init_function_start. */
5540 /* Create the unique rtx's for certain rtx codes and operand values. */
5542 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5543 tries to use these variables. */
5544 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5545 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5546 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5548 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5549 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5550 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5552 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5554 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5555 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5556 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5561 dconsthalf
= dconst1
;
5562 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5564 for (i
= 0; i
< (int) ARRAY_SIZE (const_tiny_rtx
); i
++)
5566 const REAL_VALUE_TYPE
*const r
=
5567 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5569 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5571 mode
= GET_MODE_WIDER_MODE (mode
))
5572 const_tiny_rtx
[i
][(int) mode
] =
5573 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5575 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5577 mode
= GET_MODE_WIDER_MODE (mode
))
5578 const_tiny_rtx
[i
][(int) mode
] =
5579 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5581 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5583 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5585 mode
= GET_MODE_WIDER_MODE (mode
))
5586 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5588 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5590 mode
= GET_MODE_WIDER_MODE (mode
))
5591 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5594 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5596 mode
= GET_MODE_WIDER_MODE (mode
))
5598 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5599 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5602 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5604 mode
= GET_MODE_WIDER_MODE (mode
))
5606 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5607 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5610 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5612 mode
= GET_MODE_WIDER_MODE (mode
))
5614 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5615 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5618 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5620 mode
= GET_MODE_WIDER_MODE (mode
))
5622 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5623 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5626 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5628 mode
= GET_MODE_WIDER_MODE (mode
))
5630 FCONST0(mode
).data
.high
= 0;
5631 FCONST0(mode
).data
.low
= 0;
5632 FCONST0(mode
).mode
= mode
;
5633 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5634 FCONST0 (mode
), mode
);
5637 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5639 mode
= GET_MODE_WIDER_MODE (mode
))
5641 FCONST0(mode
).data
.high
= 0;
5642 FCONST0(mode
).data
.low
= 0;
5643 FCONST0(mode
).mode
= mode
;
5644 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5645 FCONST0 (mode
), mode
);
5648 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5650 mode
= GET_MODE_WIDER_MODE (mode
))
5652 FCONST0(mode
).data
.high
= 0;
5653 FCONST0(mode
).data
.low
= 0;
5654 FCONST0(mode
).mode
= mode
;
5655 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5656 FCONST0 (mode
), mode
);
5658 /* We store the value 1. */
5659 FCONST1(mode
).data
.high
= 0;
5660 FCONST1(mode
).data
.low
= 0;
5661 FCONST1(mode
).mode
= mode
;
5662 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5663 2 * HOST_BITS_PER_WIDE_INT
,
5664 &FCONST1(mode
).data
.low
,
5665 &FCONST1(mode
).data
.high
,
5666 SIGNED_FIXED_POINT_MODE_P (mode
));
5667 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5668 FCONST1 (mode
), mode
);
5671 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5673 mode
= GET_MODE_WIDER_MODE (mode
))
5675 FCONST0(mode
).data
.high
= 0;
5676 FCONST0(mode
).data
.low
= 0;
5677 FCONST0(mode
).mode
= mode
;
5678 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5679 FCONST0 (mode
), mode
);
5681 /* We store the value 1. */
5682 FCONST1(mode
).data
.high
= 0;
5683 FCONST1(mode
).data
.low
= 0;
5684 FCONST1(mode
).mode
= mode
;
5685 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5686 2 * HOST_BITS_PER_WIDE_INT
,
5687 &FCONST1(mode
).data
.low
,
5688 &FCONST1(mode
).data
.high
,
5689 SIGNED_FIXED_POINT_MODE_P (mode
));
5690 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5691 FCONST1 (mode
), mode
);
5694 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5696 mode
= GET_MODE_WIDER_MODE (mode
))
5698 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5701 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5703 mode
= GET_MODE_WIDER_MODE (mode
))
5705 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5708 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5710 mode
= GET_MODE_WIDER_MODE (mode
))
5712 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5713 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5716 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5718 mode
= GET_MODE_WIDER_MODE (mode
))
5720 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5721 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5724 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5725 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5726 const_tiny_rtx
[0][i
] = const0_rtx
;
5728 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5729 if (STORE_FLAG_VALUE
== 1)
5730 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5733 /* Produce exact duplicate of insn INSN after AFTER.
5734 Care updating of libcall regions if present. */
5737 emit_copy_of_insn_after (rtx insn
, rtx after
)
5741 switch (GET_CODE (insn
))
5744 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5748 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5752 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
5756 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5757 if (CALL_INSN_FUNCTION_USAGE (insn
))
5758 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5759 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5760 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5761 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5762 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5763 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5764 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5771 /* Update LABEL_NUSES. */
5772 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5774 INSN_LOCATOR (new_rtx
) = INSN_LOCATOR (insn
);
5776 /* If the old insn is frame related, then so is the new one. This is
5777 primarily needed for IA-64 unwind info which marks epilogue insns,
5778 which may be duplicated by the basic block reordering code. */
5779 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5781 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5782 will make them. REG_LABEL_TARGETs are created there too, but are
5783 supposed to be sticky, so we copy them. */
5784 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5785 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5787 if (GET_CODE (link
) == EXPR_LIST
)
5788 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5789 copy_insn_1 (XEXP (link
, 0)));
5791 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
5794 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5798 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5800 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5802 if (hard_reg_clobbers
[mode
][regno
])
5803 return hard_reg_clobbers
[mode
][regno
];
5805 return (hard_reg_clobbers
[mode
][regno
] =
5806 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5809 #include "gt-emit-rtl.h"