* interface.c: Fix previous checkin (an incomplete patch
[official-gcc.git] / libstdc++-v3 / include / bits / stl_vector.h
blob94acec2fb2c3e2ab1fa55ee87a4c7613d98758e7
1 // Vector implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
44 * Copyright (c) 1996
45 * Silicon Graphics Computer Systems, Inc.
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
56 /** @file stl_vector.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
61 #ifndef _VECTOR_H
62 #define _VECTOR_H 1
64 #include <bits/stl_iterator_base_funcs.h>
65 #include <bits/functexcept.h>
66 #include <bits/concept_check.h>
68 namespace _GLIBCXX_STD
70 /**
71 * @if maint
72 * See bits/stl_deque.h's _Deque_base for an explanation.
73 * @endif
75 template<typename _Tp, typename _Alloc>
76 struct _Vector_base
78 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
80 struct _Vector_impl
81 : public _Tp_alloc_type
83 _Tp* _M_start;
84 _Tp* _M_finish;
85 _Tp* _M_end_of_storage;
86 _Vector_impl(_Tp_alloc_type const& __a)
87 : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
88 { }
91 public:
92 typedef _Alloc allocator_type;
94 _Tp_alloc_type
95 _M_get_Tp_allocator() const
96 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
98 allocator_type
99 get_allocator() const
100 { return _M_get_Tp_allocator(); }
102 _Vector_base(const allocator_type& __a)
103 : _M_impl(__a)
106 _Vector_base(size_t __n, const allocator_type& __a)
107 : _M_impl(__a)
109 this->_M_impl._M_start = this->_M_allocate(__n);
110 this->_M_impl._M_finish = this->_M_impl._M_start;
111 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
114 ~_Vector_base()
115 { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
116 - this->_M_impl._M_start); }
118 public:
119 _Vector_impl _M_impl;
121 _Tp*
122 _M_allocate(size_t __n)
123 { return _M_impl.allocate(__n); }
125 void
126 _M_deallocate(_Tp* __p, size_t __n)
128 if (__p)
129 _M_impl.deallocate(__p, __n);
135 * @brief A standard container which offers fixed time access to
136 * individual elements in any order.
138 * @ingroup Containers
139 * @ingroup Sequences
141 * Meets the requirements of a <a href="tables.html#65">container</a>, a
142 * <a href="tables.html#66">reversible container</a>, and a
143 * <a href="tables.html#67">sequence</a>, including the
144 * <a href="tables.html#68">optional sequence requirements</a> with the
145 * %exception of @c push_front and @c pop_front.
147 * In some terminology a %vector can be described as a dynamic
148 * C-style array, it offers fast and efficient access to individual
149 * elements in any order and saves the user from worrying about
150 * memory and size allocation. Subscripting ( @c [] ) access is
151 * also provided as with C-style arrays.
153 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
154 class vector : protected _Vector_base<_Tp, _Alloc>
156 // Concept requirements.
157 typedef typename _Alloc::value_type _Alloc_value_type;
158 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
159 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
161 typedef _Vector_base<_Tp, _Alloc> _Base;
162 typedef vector<_Tp, _Alloc> vector_type;
163 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
165 public:
166 typedef _Tp value_type;
167 typedef typename _Tp_alloc_type::pointer pointer;
168 typedef typename _Tp_alloc_type::const_pointer const_pointer;
169 typedef typename _Tp_alloc_type::reference reference;
170 typedef typename _Tp_alloc_type::const_reference const_reference;
171 typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
172 typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
173 const_iterator;
174 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
175 typedef std::reverse_iterator<iterator> reverse_iterator;
176 typedef size_t size_type;
177 typedef ptrdiff_t difference_type;
178 typedef _Alloc allocator_type;
180 protected:
181 /** @if maint
182 * These two functions and three data members are all from the
183 * base class. They should be pretty self-explanatory, as
184 * %vector uses a simple contiguous allocation scheme. @endif
186 using _Base::_M_allocate;
187 using _Base::_M_deallocate;
188 using _Base::_M_impl;
189 using _Base::_M_get_Tp_allocator;
191 public:
192 // [23.2.4.1] construct/copy/destroy
193 // (assign() and get_allocator() are also listed in this section)
195 * @brief Default constructor creates no elements.
197 explicit
198 vector(const allocator_type& __a = allocator_type())
199 : _Base(__a)
203 * @brief Create a %vector with copies of an exemplar element.
204 * @param n The number of elements to initially create.
205 * @param value An element to copy.
207 * This constructor fills the %vector with @a n copies of @a value.
209 explicit
210 vector(size_type __n, const value_type& __value = value_type(),
211 const allocator_type& __a = allocator_type())
212 : _Base(__n, __a)
214 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
215 _M_get_Tp_allocator());
216 this->_M_impl._M_finish = this->_M_impl._M_start + __n;
220 * @brief %Vector copy constructor.
221 * @param x A %vector of identical element and allocator types.
223 * The newly-created %vector uses a copy of the allocation
224 * object used by @a x. All the elements of @a x are copied,
225 * but any extra memory in
226 * @a x (for fast expansion) will not be copied.
228 vector(const vector& __x)
229 : _Base(__x.size(), __x.get_allocator())
230 { this->_M_impl._M_finish =
231 std::__uninitialized_copy_a(__x.begin(), __x.end(),
232 this->_M_impl._M_start,
233 _M_get_Tp_allocator());
237 * @brief Builds a %vector from a range.
238 * @param first An input iterator.
239 * @param last An input iterator.
241 * Create a %vector consisting of copies of the elements from
242 * [first,last).
244 * If the iterators are forward, bidirectional, or
245 * random-access, then this will call the elements' copy
246 * constructor N times (where N is distance(first,last)) and do
247 * no memory reallocation. But if only input iterators are
248 * used, then this will do at most 2N calls to the copy
249 * constructor, and logN memory reallocations.
251 template<typename _InputIterator>
252 vector(_InputIterator __first, _InputIterator __last,
253 const allocator_type& __a = allocator_type())
254 : _Base(__a)
256 // Check whether it's an integral type. If so, it's not an iterator.
257 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
258 _M_initialize_dispatch(__first, __last, _Integral());
262 * The dtor only erases the elements, and note that if the
263 * elements themselves are pointers, the pointed-to memory is
264 * not touched in any way. Managing the pointer is the user's
265 * responsibilty.
267 ~vector()
268 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
269 _M_get_Tp_allocator());
273 * @brief %Vector assignment operator.
274 * @param x A %vector of identical element and allocator types.
276 * All the elements of @a x are copied, but any extra memory in
277 * @a x (for fast expansion) will not be copied. Unlike the
278 * copy constructor, the allocator object is not copied.
280 vector&
281 operator=(const vector& __x);
284 * @brief Assigns a given value to a %vector.
285 * @param n Number of elements to be assigned.
286 * @param val Value to be assigned.
288 * This function fills a %vector with @a n copies of the given
289 * value. Note that the assignment completely changes the
290 * %vector and that the resulting %vector's size is the same as
291 * the number of elements assigned. Old data may be lost.
293 void
294 assign(size_type __n, const value_type& __val)
295 { _M_fill_assign(__n, __val); }
298 * @brief Assigns a range to a %vector.
299 * @param first An input iterator.
300 * @param last An input iterator.
302 * This function fills a %vector with copies of the elements in the
303 * range [first,last).
305 * Note that the assignment completely changes the %vector and
306 * that the resulting %vector's size is the same as the number
307 * of elements assigned. Old data may be lost.
309 template<typename _InputIterator>
310 void
311 assign(_InputIterator __first, _InputIterator __last)
313 // Check whether it's an integral type. If so, it's not an iterator.
314 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
315 _M_assign_dispatch(__first, __last, _Integral());
318 /// Get a copy of the memory allocation object.
319 using _Base::get_allocator;
321 // iterators
323 * Returns a read/write iterator that points to the first
324 * element in the %vector. Iteration is done in ordinary
325 * element order.
327 iterator
328 begin()
329 { return iterator (this->_M_impl._M_start); }
332 * Returns a read-only (constant) iterator that points to the
333 * first element in the %vector. Iteration is done in ordinary
334 * element order.
336 const_iterator
337 begin() const
338 { return const_iterator (this->_M_impl._M_start); }
341 * Returns a read/write iterator that points one past the last
342 * element in the %vector. Iteration is done in ordinary
343 * element order.
345 iterator
346 end()
347 { return iterator (this->_M_impl._M_finish); }
350 * Returns a read-only (constant) iterator that points one past
351 * the last element in the %vector. Iteration is done in
352 * ordinary element order.
354 const_iterator
355 end() const
356 { return const_iterator (this->_M_impl._M_finish); }
359 * Returns a read/write reverse iterator that points to the
360 * last element in the %vector. Iteration is done in reverse
361 * element order.
363 reverse_iterator
364 rbegin()
365 { return reverse_iterator(end()); }
368 * Returns a read-only (constant) reverse iterator that points
369 * to the last element in the %vector. Iteration is done in
370 * reverse element order.
372 const_reverse_iterator
373 rbegin() const
374 { return const_reverse_iterator(end()); }
377 * Returns a read/write reverse iterator that points to one
378 * before the first element in the %vector. Iteration is done
379 * in reverse element order.
381 reverse_iterator
382 rend()
383 { return reverse_iterator(begin()); }
386 * Returns a read-only (constant) reverse iterator that points
387 * to one before the first element in the %vector. Iteration
388 * is done in reverse element order.
390 const_reverse_iterator
391 rend() const
392 { return const_reverse_iterator(begin()); }
394 // [23.2.4.2] capacity
395 /** Returns the number of elements in the %vector. */
396 size_type
397 size() const
398 { return size_type(end() - begin()); }
400 /** Returns the size() of the largest possible %vector. */
401 size_type
402 max_size() const
403 { return size_type(-1) / sizeof(value_type); }
406 * @brief Resizes the %vector to the specified number of elements.
407 * @param new_size Number of elements the %vector should contain.
408 * @param x Data with which new elements should be populated.
410 * This function will %resize the %vector to the specified
411 * number of elements. If the number is smaller than the
412 * %vector's current size the %vector is truncated, otherwise
413 * the %vector is extended and new elements are populated with
414 * given data.
416 void
417 resize(size_type __new_size, value_type __x = value_type())
419 if (__new_size < size())
420 erase(begin() + __new_size, end());
421 else
422 insert(end(), __new_size - size(), __x);
426 * Returns the total number of elements that the %vector can
427 * hold before needing to allocate more memory.
429 size_type
430 capacity() const
431 { return size_type(const_iterator(this->_M_impl._M_end_of_storage)
432 - begin()); }
435 * Returns true if the %vector is empty. (Thus begin() would
436 * equal end().)
438 bool
439 empty() const
440 { return begin() == end(); }
443 * @brief Attempt to preallocate enough memory for specified number of
444 * elements.
445 * @param n Number of elements required.
446 * @throw std::length_error If @a n exceeds @c max_size().
448 * This function attempts to reserve enough memory for the
449 * %vector to hold the specified number of elements. If the
450 * number requested is more than max_size(), length_error is
451 * thrown.
453 * The advantage of this function is that if optimal code is a
454 * necessity and the user can determine the number of elements
455 * that will be required, the user can reserve the memory in
456 * %advance, and thus prevent a possible reallocation of memory
457 * and copying of %vector data.
459 void
460 reserve(size_type __n);
462 // element access
464 * @brief Subscript access to the data contained in the %vector.
465 * @param n The index of the element for which data should be
466 * accessed.
467 * @return Read/write reference to data.
469 * This operator allows for easy, array-style, data access.
470 * Note that data access with this operator is unchecked and
471 * out_of_range lookups are not defined. (For checked lookups
472 * see at().)
474 reference
475 operator[](size_type __n)
476 { return *(begin() + __n); }
479 * @brief Subscript access to the data contained in the %vector.
480 * @param n The index of the element for which data should be
481 * accessed.
482 * @return Read-only (constant) reference to data.
484 * This operator allows for easy, array-style, data access.
485 * Note that data access with this operator is unchecked and
486 * out_of_range lookups are not defined. (For checked lookups
487 * see at().)
489 const_reference
490 operator[](size_type __n) const
491 { return *(begin() + __n); }
493 protected:
494 /// @if maint Safety check used only from at(). @endif
495 void
496 _M_range_check(size_type __n) const
498 if (__n >= this->size())
499 __throw_out_of_range(__N("vector::_M_range_check"));
502 public:
504 * @brief Provides access to the data contained in the %vector.
505 * @param n The index of the element for which data should be
506 * accessed.
507 * @return Read/write reference to data.
508 * @throw std::out_of_range If @a n is an invalid index.
510 * This function provides for safer data access. The parameter
511 * is first checked that it is in the range of the vector. The
512 * function throws out_of_range if the check fails.
514 reference
515 at(size_type __n)
517 _M_range_check(__n);
518 return (*this)[__n];
522 * @brief Provides access to the data contained in the %vector.
523 * @param n The index of the element for which data should be
524 * accessed.
525 * @return Read-only (constant) reference to data.
526 * @throw std::out_of_range If @a n is an invalid index.
528 * This function provides for safer data access. The parameter
529 * is first checked that it is in the range of the vector. The
530 * function throws out_of_range if the check fails.
532 const_reference
533 at(size_type __n) const
535 _M_range_check(__n);
536 return (*this)[__n];
540 * Returns a read/write reference to the data at the first
541 * element of the %vector.
543 reference
544 front()
545 { return *begin(); }
548 * Returns a read-only (constant) reference to the data at the first
549 * element of the %vector.
551 const_reference
552 front() const
553 { return *begin(); }
556 * Returns a read/write reference to the data at the last
557 * element of the %vector.
559 reference
560 back()
561 { return *(end() - 1); }
564 * Returns a read-only (constant) reference to the data at the
565 * last element of the %vector.
567 const_reference
568 back() const
569 { return *(end() - 1); }
571 // _GLIBCXX_RESOLVE_LIB_DEFECTS
572 // DR 464. Suggestion for new member functions in standard containers.
573 // data access
575 * Returns a pointer such that [data(), data() + size()) is a valid
576 * range. For a non-empty %vector, data() == &front().
578 pointer
579 data()
580 { return pointer(this->_M_impl._M_start); }
582 const_pointer
583 data() const
584 { return const_pointer(this->_M_impl._M_start); }
586 // [23.2.4.3] modifiers
588 * @brief Add data to the end of the %vector.
589 * @param x Data to be added.
591 * This is a typical stack operation. The function creates an
592 * element at the end of the %vector and assigns the given data
593 * to it. Due to the nature of a %vector this operation can be
594 * done in constant time if the %vector has preallocated space
595 * available.
597 void
598 push_back(const value_type& __x)
600 if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
602 this->_M_impl.construct(this->_M_impl._M_finish, __x);
603 ++this->_M_impl._M_finish;
605 else
606 _M_insert_aux(end(), __x);
610 * @brief Removes last element.
612 * This is a typical stack operation. It shrinks the %vector by one.
614 * Note that no data is returned, and if the last element's
615 * data is needed, it should be retrieved before pop_back() is
616 * called.
618 void
619 pop_back()
621 --this->_M_impl._M_finish;
622 this->_M_impl.destroy(this->_M_impl._M_finish);
626 * @brief Inserts given value into %vector before specified iterator.
627 * @param position An iterator into the %vector.
628 * @param x Data to be inserted.
629 * @return An iterator that points to the inserted data.
631 * This function will insert a copy of the given value before
632 * the specified location. Note that this kind of operation
633 * could be expensive for a %vector and if it is frequently
634 * used the user should consider using std::list.
636 iterator
637 insert(iterator __position, const value_type& __x);
640 * @brief Inserts a number of copies of given data into the %vector.
641 * @param position An iterator into the %vector.
642 * @param n Number of elements to be inserted.
643 * @param x Data to be inserted.
645 * This function will insert a specified number of copies of
646 * the given data before the location specified by @a position.
648 * Note that this kind of operation could be expensive for a
649 * %vector and if it is frequently used the user should
650 * consider using std::list.
652 void
653 insert(iterator __position, size_type __n, const value_type& __x)
654 { _M_fill_insert(__position, __n, __x); }
657 * @brief Inserts a range into the %vector.
658 * @param position An iterator into the %vector.
659 * @param first An input iterator.
660 * @param last An input iterator.
662 * This function will insert copies of the data in the range
663 * [first,last) into the %vector before the location specified
664 * by @a pos.
666 * Note that this kind of operation could be expensive for a
667 * %vector and if it is frequently used the user should
668 * consider using std::list.
670 template<typename _InputIterator>
671 void
672 insert(iterator __position, _InputIterator __first,
673 _InputIterator __last)
675 // Check whether it's an integral type. If so, it's not an iterator.
676 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
677 _M_insert_dispatch(__position, __first, __last, _Integral());
681 * @brief Remove element at given position.
682 * @param position Iterator pointing to element to be erased.
683 * @return An iterator pointing to the next element (or end()).
685 * This function will erase the element at the given position and thus
686 * shorten the %vector by one.
688 * Note This operation could be expensive and if it is
689 * frequently used the user should consider using std::list.
690 * The user is also cautioned that this function only erases
691 * the element, and that if the element is itself a pointer,
692 * the pointed-to memory is not touched in any way. Managing
693 * the pointer is the user's responsibilty.
695 iterator
696 erase(iterator __position);
699 * @brief Remove a range of elements.
700 * @param first Iterator pointing to the first element to be erased.
701 * @param last Iterator pointing to one past the last element to be
702 * erased.
703 * @return An iterator pointing to the element pointed to by @a last
704 * prior to erasing (or end()).
706 * This function will erase the elements in the range [first,last) and
707 * shorten the %vector accordingly.
709 * Note This operation could be expensive and if it is
710 * frequently used the user should consider using std::list.
711 * The user is also cautioned that this function only erases
712 * the elements, and that if the elements themselves are
713 * pointers, the pointed-to memory is not touched in any way.
714 * Managing the pointer is the user's responsibilty.
716 iterator
717 erase(iterator __first, iterator __last);
720 * @brief Swaps data with another %vector.
721 * @param x A %vector of the same element and allocator types.
723 * This exchanges the elements between two vectors in constant time.
724 * (Three pointers, so it should be quite fast.)
725 * Note that the global std::swap() function is specialized such that
726 * std::swap(v1,v2) will feed to this function.
728 void
729 swap(vector& __x)
731 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
732 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
733 std::swap(this->_M_impl._M_end_of_storage,
734 __x._M_impl._M_end_of_storage);
738 * Erases all the elements. Note that this function only erases the
739 * elements, and that if the elements themselves are pointers, the
740 * pointed-to memory is not touched in any way. Managing the pointer is
741 * the user's responsibilty.
743 void
744 clear()
745 { erase(begin(), end()); }
747 protected:
749 * @if maint
750 * Memory expansion handler. Uses the member allocation function to
751 * obtain @a n bytes of memory, and then copies [first,last) into it.
752 * @endif
754 template<typename _ForwardIterator>
755 pointer
756 _M_allocate_and_copy(size_type __n,
757 _ForwardIterator __first, _ForwardIterator __last)
759 pointer __result = this->_M_allocate(__n);
762 std::__uninitialized_copy_a(__first, __last, __result,
763 _M_get_Tp_allocator());
764 return __result;
766 catch(...)
768 _M_deallocate(__result, __n);
769 __throw_exception_again;
774 // Internal constructor functions follow.
776 // Called by the range constructor to implement [23.1.1]/9
777 template<typename _Integer>
778 void
779 _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
781 this->_M_impl._M_start = _M_allocate(__n);
782 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
783 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
784 _M_get_Tp_allocator());
785 this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
788 // Called by the range constructor to implement [23.1.1]/9
789 template<typename _InputIterator>
790 void
791 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
792 __false_type)
794 typedef typename std::iterator_traits<_InputIterator>::
795 iterator_category _IterCategory;
796 _M_range_initialize(__first, __last, _IterCategory());
799 // Called by the second initialize_dispatch above
800 template<typename _InputIterator>
801 void
802 _M_range_initialize(_InputIterator __first,
803 _InputIterator __last, std::input_iterator_tag)
805 for (; __first != __last; ++__first)
806 push_back(*__first);
809 // Called by the second initialize_dispatch above
810 template<typename _ForwardIterator>
811 void
812 _M_range_initialize(_ForwardIterator __first,
813 _ForwardIterator __last, std::forward_iterator_tag)
815 const size_type __n = std::distance(__first, __last);
816 this->_M_impl._M_start = this->_M_allocate(__n);
817 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
818 this->_M_impl._M_finish =
819 std::__uninitialized_copy_a(__first, __last,
820 this->_M_impl._M_start,
821 _M_get_Tp_allocator());
825 // Internal assign functions follow. The *_aux functions do the actual
826 // assignment work for the range versions.
828 // Called by the range assign to implement [23.1.1]/9
829 template<typename _Integer>
830 void
831 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
833 _M_fill_assign(static_cast<size_type>(__n),
834 static_cast<value_type>(__val));
837 // Called by the range assign to implement [23.1.1]/9
838 template<typename _InputIterator>
839 void
840 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
841 __false_type)
843 typedef typename std::iterator_traits<_InputIterator>::
844 iterator_category _IterCategory;
845 _M_assign_aux(__first, __last, _IterCategory());
848 // Called by the second assign_dispatch above
849 template<typename _InputIterator>
850 void
851 _M_assign_aux(_InputIterator __first, _InputIterator __last,
852 std::input_iterator_tag);
854 // Called by the second assign_dispatch above
855 template<typename _ForwardIterator>
856 void
857 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
858 std::forward_iterator_tag);
860 // Called by assign(n,t), and the range assign when it turns out
861 // to be the same thing.
862 void
863 _M_fill_assign(size_type __n, const value_type& __val);
866 // Internal insert functions follow.
868 // Called by the range insert to implement [23.1.1]/9
869 template<typename _Integer>
870 void
871 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
872 __true_type)
874 _M_fill_insert(__pos, static_cast<size_type>(__n),
875 static_cast<value_type>(__val));
878 // Called by the range insert to implement [23.1.1]/9
879 template<typename _InputIterator>
880 void
881 _M_insert_dispatch(iterator __pos, _InputIterator __first,
882 _InputIterator __last, __false_type)
884 typedef typename std::iterator_traits<_InputIterator>::
885 iterator_category _IterCategory;
886 _M_range_insert(__pos, __first, __last, _IterCategory());
889 // Called by the second insert_dispatch above
890 template<typename _InputIterator>
891 void
892 _M_range_insert(iterator __pos, _InputIterator __first,
893 _InputIterator __last, std::input_iterator_tag);
895 // Called by the second insert_dispatch above
896 template<typename _ForwardIterator>
897 void
898 _M_range_insert(iterator __pos, _ForwardIterator __first,
899 _ForwardIterator __last, std::forward_iterator_tag);
901 // Called by insert(p,n,x), and the range insert when it turns out to be
902 // the same thing.
903 void
904 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
906 // Called by insert(p,x)
907 void
908 _M_insert_aux(iterator __position, const value_type& __x);
913 * @brief Vector equality comparison.
914 * @param x A %vector.
915 * @param y A %vector of the same type as @a x.
916 * @return True iff the size and elements of the vectors are equal.
918 * This is an equivalence relation. It is linear in the size of the
919 * vectors. Vectors are considered equivalent if their sizes are equal,
920 * and if corresponding elements compare equal.
922 template<typename _Tp, typename _Alloc>
923 inline bool
924 operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
925 { return (__x.size() == __y.size()
926 && std::equal(__x.begin(), __x.end(), __y.begin())); }
929 * @brief Vector ordering relation.
930 * @param x A %vector.
931 * @param y A %vector of the same type as @a x.
932 * @return True iff @a x is lexicographically less than @a y.
934 * This is a total ordering relation. It is linear in the size of the
935 * vectors. The elements must be comparable with @c <.
937 * See std::lexicographical_compare() for how the determination is made.
939 template<typename _Tp, typename _Alloc>
940 inline bool
941 operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
942 { return std::lexicographical_compare(__x.begin(), __x.end(),
943 __y.begin(), __y.end()); }
945 /// Based on operator==
946 template<typename _Tp, typename _Alloc>
947 inline bool
948 operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
949 { return !(__x == __y); }
951 /// Based on operator<
952 template<typename _Tp, typename _Alloc>
953 inline bool
954 operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
955 { return __y < __x; }
957 /// Based on operator<
958 template<typename _Tp, typename _Alloc>
959 inline bool
960 operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
961 { return !(__y < __x); }
963 /// Based on operator<
964 template<typename _Tp, typename _Alloc>
965 inline bool
966 operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
967 { return !(__x < __y); }
969 /// See std::vector::swap().
970 template<typename _Tp, typename _Alloc>
971 inline void
972 swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
973 { __x.swap(__y); }
974 } // namespace std
976 #endif /* _VECTOR_H */