* interface.c: Fix previous checkin (an incomplete patch
[official-gcc.git] / gcc / dwarf2out.c
blob8a5c4c255bedb02c79b26bbd24f49e7126eb9739
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
96 int
97 dwarf2out_do_frame (void)
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
123 #ifdef EH_FRAME_SECTION_NAME
124 int flags;
126 if (EH_TABLES_CAN_BE_READ_ONLY)
128 int fde_encoding;
129 int per_encoding;
130 int lsda_encoding;
132 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
133 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
134 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
135 flags = (! flag_pic
136 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
137 && (fde_encoding & 0x70) != DW_EH_PE_aligned
138 && (per_encoding & 0x70) != DW_EH_PE_absptr
139 && (per_encoding & 0x70) != DW_EH_PE_aligned
140 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
141 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
142 ? 0 : SECTION_WRITE;
144 else
145 flags = SECTION_WRITE;
146 named_section_flags (EH_FRAME_SECTION_NAME, flags);
147 #endif
150 /* Version of targetm.eh_frame_section for systems using collect2. */
151 void
152 collect2_eh_frame_section (void)
154 tree label = get_file_function_name ('F');
156 data_section ();
157 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
158 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
159 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
162 /* Default version of targetm.eh_frame_section. */
163 void
164 default_eh_frame_section (void)
166 #ifdef EH_FRAME_SECTION_NAME
167 named_section_eh_frame_section ();
168 #else
169 collect2_eh_frame_section ();
170 #endif
173 DEF_VEC_P(rtx);
174 DEF_VEC_ALLOC_P(rtx,gc);
176 /* Array of RTXes referenced by the debugging information, which therefore
177 must be kept around forever. */
178 static GTY(()) VEC(rtx,gc) *used_rtx_array;
180 /* A pointer to the base of a list of incomplete types which might be
181 completed at some later time. incomplete_types_list needs to be a
182 VEC(tree,gc) because we want to tell the garbage collector about
183 it. */
184 static GTY(()) VEC(tree,gc) *incomplete_types;
186 /* A pointer to the base of a table of references to declaration
187 scopes. This table is a display which tracks the nesting
188 of declaration scopes at the current scope and containing
189 scopes. This table is used to find the proper place to
190 define type declaration DIE's. */
191 static GTY(()) VEC(tree,gc) *decl_scope_table;
193 /* How to start an assembler comment. */
194 #ifndef ASM_COMMENT_START
195 #define ASM_COMMENT_START ";#"
196 #endif
198 typedef struct dw_cfi_struct *dw_cfi_ref;
199 typedef struct dw_fde_struct *dw_fde_ref;
200 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
202 /* Call frames are described using a sequence of Call Frame
203 Information instructions. The register number, offset
204 and address fields are provided as possible operands;
205 their use is selected by the opcode field. */
207 enum dw_cfi_oprnd_type {
208 dw_cfi_oprnd_unused,
209 dw_cfi_oprnd_reg_num,
210 dw_cfi_oprnd_offset,
211 dw_cfi_oprnd_addr,
212 dw_cfi_oprnd_loc
215 typedef union dw_cfi_oprnd_struct GTY(())
217 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
218 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
219 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
220 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
222 dw_cfi_oprnd;
224 typedef struct dw_cfi_struct GTY(())
226 dw_cfi_ref dw_cfi_next;
227 enum dwarf_call_frame_info dw_cfi_opc;
228 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
229 dw_cfi_oprnd1;
230 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
231 dw_cfi_oprnd2;
233 dw_cfi_node;
235 /* This is how we define the location of the CFA. We use to handle it
236 as REG + OFFSET all the time, but now it can be more complex.
237 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
238 Instead of passing around REG and OFFSET, we pass a copy
239 of this structure. */
240 typedef struct cfa_loc GTY(())
242 HOST_WIDE_INT offset;
243 HOST_WIDE_INT base_offset;
244 unsigned int reg;
245 int indirect; /* 1 if CFA is accessed via a dereference. */
246 } dw_cfa_location;
248 /* All call frame descriptions (FDE's) in the GCC generated DWARF
249 refer to a single Common Information Entry (CIE), defined at
250 the beginning of the .debug_frame section. This use of a single
251 CIE obviates the need to keep track of multiple CIE's
252 in the DWARF generation routines below. */
254 typedef struct dw_fde_struct GTY(())
256 tree decl;
257 const char *dw_fde_begin;
258 const char *dw_fde_current_label;
259 const char *dw_fde_end;
260 const char *dw_fde_hot_section_label;
261 const char *dw_fde_hot_section_end_label;
262 const char *dw_fde_unlikely_section_label;
263 const char *dw_fde_unlikely_section_end_label;
264 bool dw_fde_switched_sections;
265 dw_cfi_ref dw_fde_cfi;
266 unsigned funcdef_number;
267 unsigned all_throwers_are_sibcalls : 1;
268 unsigned nothrow : 1;
269 unsigned uses_eh_lsda : 1;
271 dw_fde_node;
273 /* Maximum size (in bytes) of an artificially generated label. */
274 #define MAX_ARTIFICIAL_LABEL_BYTES 30
276 /* The size of addresses as they appear in the Dwarf 2 data.
277 Some architectures use word addresses to refer to code locations,
278 but Dwarf 2 info always uses byte addresses. On such machines,
279 Dwarf 2 addresses need to be larger than the architecture's
280 pointers. */
281 #ifndef DWARF2_ADDR_SIZE
282 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
283 #endif
285 /* The size in bytes of a DWARF field indicating an offset or length
286 relative to a debug info section, specified to be 4 bytes in the
287 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
288 as PTR_SIZE. */
290 #ifndef DWARF_OFFSET_SIZE
291 #define DWARF_OFFSET_SIZE 4
292 #endif
294 /* According to the (draft) DWARF 3 specification, the initial length
295 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
296 bytes are 0xffffffff, followed by the length stored in the next 8
297 bytes.
299 However, the SGI/MIPS ABI uses an initial length which is equal to
300 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
302 #ifndef DWARF_INITIAL_LENGTH_SIZE
303 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
304 #endif
306 #define DWARF_VERSION 2
308 /* Round SIZE up to the nearest BOUNDARY. */
309 #define DWARF_ROUND(SIZE,BOUNDARY) \
310 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
312 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
313 #ifndef DWARF_CIE_DATA_ALIGNMENT
314 #ifdef STACK_GROWS_DOWNWARD
315 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
316 #else
317 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
318 #endif
319 #endif
321 /* A pointer to the base of a table that contains frame description
322 information for each routine. */
323 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
325 /* Number of elements currently allocated for fde_table. */
326 static GTY(()) unsigned fde_table_allocated;
328 /* Number of elements in fde_table currently in use. */
329 static GTY(()) unsigned fde_table_in_use;
331 /* Size (in elements) of increments by which we may expand the
332 fde_table. */
333 #define FDE_TABLE_INCREMENT 256
335 /* A list of call frame insns for the CIE. */
336 static GTY(()) dw_cfi_ref cie_cfi_head;
338 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
339 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
340 attribute that accelerates the lookup of the FDE associated
341 with the subprogram. This variable holds the table index of the FDE
342 associated with the current function (body) definition. */
343 static unsigned current_funcdef_fde;
344 #endif
346 struct indirect_string_node GTY(())
348 const char *str;
349 unsigned int refcount;
350 unsigned int form;
351 char *label;
354 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
356 static GTY(()) int dw2_string_counter;
357 static GTY(()) unsigned long dwarf2out_cfi_label_num;
359 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
361 /* Forward declarations for functions defined in this file. */
363 static char *stripattributes (const char *);
364 static const char *dwarf_cfi_name (unsigned);
365 static dw_cfi_ref new_cfi (void);
366 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
367 static void add_fde_cfi (const char *, dw_cfi_ref);
368 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
369 static void lookup_cfa (dw_cfa_location *);
370 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
371 static void initial_return_save (rtx);
372 static HOST_WIDE_INT stack_adjust_offset (rtx);
373 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
374 static void output_call_frame_info (int);
375 static void dwarf2out_stack_adjust (rtx, bool);
376 static void flush_queued_reg_saves (void);
377 static bool clobbers_queued_reg_save (rtx);
378 static void dwarf2out_frame_debug_expr (rtx, const char *);
380 /* Support for complex CFA locations. */
381 static void output_cfa_loc (dw_cfi_ref);
382 static void get_cfa_from_loc_descr (dw_cfa_location *,
383 struct dw_loc_descr_struct *);
384 static struct dw_loc_descr_struct *build_cfa_loc
385 (dw_cfa_location *);
386 static void def_cfa_1 (const char *, dw_cfa_location *);
388 /* How to start an assembler comment. */
389 #ifndef ASM_COMMENT_START
390 #define ASM_COMMENT_START ";#"
391 #endif
393 /* Data and reference forms for relocatable data. */
394 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
395 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
397 #ifndef DEBUG_FRAME_SECTION
398 #define DEBUG_FRAME_SECTION ".debug_frame"
399 #endif
401 #ifndef FUNC_BEGIN_LABEL
402 #define FUNC_BEGIN_LABEL "LFB"
403 #endif
405 #ifndef FUNC_END_LABEL
406 #define FUNC_END_LABEL "LFE"
407 #endif
409 #ifndef FRAME_BEGIN_LABEL
410 #define FRAME_BEGIN_LABEL "Lframe"
411 #endif
412 #define CIE_AFTER_SIZE_LABEL "LSCIE"
413 #define CIE_END_LABEL "LECIE"
414 #define FDE_LABEL "LSFDE"
415 #define FDE_AFTER_SIZE_LABEL "LASFDE"
416 #define FDE_END_LABEL "LEFDE"
417 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
418 #define LINE_NUMBER_END_LABEL "LELT"
419 #define LN_PROLOG_AS_LABEL "LASLTP"
420 #define LN_PROLOG_END_LABEL "LELTP"
421 #define DIE_LABEL_PREFIX "DW"
423 /* The DWARF 2 CFA column which tracks the return address. Normally this
424 is the column for PC, or the first column after all of the hard
425 registers. */
426 #ifndef DWARF_FRAME_RETURN_COLUMN
427 #ifdef PC_REGNUM
428 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
429 #else
430 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
431 #endif
432 #endif
434 /* The mapping from gcc register number to DWARF 2 CFA column number. By
435 default, we just provide columns for all registers. */
436 #ifndef DWARF_FRAME_REGNUM
437 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
438 #endif
440 /* Hook used by __throw. */
443 expand_builtin_dwarf_sp_column (void)
445 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
448 /* Return a pointer to a copy of the section string name S with all
449 attributes stripped off, and an asterisk prepended (for assemble_name). */
451 static inline char *
452 stripattributes (const char *s)
454 char *stripped = xmalloc (strlen (s) + 2);
455 char *p = stripped;
457 *p++ = '*';
459 while (*s && *s != ',')
460 *p++ = *s++;
462 *p = '\0';
463 return stripped;
466 /* Generate code to initialize the register size table. */
468 void
469 expand_builtin_init_dwarf_reg_sizes (tree address)
471 int i;
472 enum machine_mode mode = TYPE_MODE (char_type_node);
473 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
474 rtx mem = gen_rtx_MEM (BLKmode, addr);
475 bool wrote_return_column = false;
477 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
480 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
481 enum machine_mode save_mode = reg_raw_mode[i];
482 HOST_WIDE_INT size;
484 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
485 save_mode = choose_hard_reg_mode (i, 1, true);
486 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
488 if (save_mode == VOIDmode)
489 continue;
490 wrote_return_column = true;
492 size = GET_MODE_SIZE (save_mode);
493 if (offset < 0)
494 continue;
496 emit_move_insn (adjust_address (mem, mode, offset),
497 gen_int_mode (size, mode));
500 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
501 gcc_assert (wrote_return_column);
502 i = DWARF_ALT_FRAME_RETURN_COLUMN;
503 wrote_return_column = false;
504 #else
505 i = DWARF_FRAME_RETURN_COLUMN;
506 #endif
508 if (! wrote_return_column)
510 enum machine_mode save_mode = Pmode;
511 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
512 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
513 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
517 /* Convert a DWARF call frame info. operation to its string name */
519 static const char *
520 dwarf_cfi_name (unsigned int cfi_opc)
522 switch (cfi_opc)
524 case DW_CFA_advance_loc:
525 return "DW_CFA_advance_loc";
526 case DW_CFA_offset:
527 return "DW_CFA_offset";
528 case DW_CFA_restore:
529 return "DW_CFA_restore";
530 case DW_CFA_nop:
531 return "DW_CFA_nop";
532 case DW_CFA_set_loc:
533 return "DW_CFA_set_loc";
534 case DW_CFA_advance_loc1:
535 return "DW_CFA_advance_loc1";
536 case DW_CFA_advance_loc2:
537 return "DW_CFA_advance_loc2";
538 case DW_CFA_advance_loc4:
539 return "DW_CFA_advance_loc4";
540 case DW_CFA_offset_extended:
541 return "DW_CFA_offset_extended";
542 case DW_CFA_restore_extended:
543 return "DW_CFA_restore_extended";
544 case DW_CFA_undefined:
545 return "DW_CFA_undefined";
546 case DW_CFA_same_value:
547 return "DW_CFA_same_value";
548 case DW_CFA_register:
549 return "DW_CFA_register";
550 case DW_CFA_remember_state:
551 return "DW_CFA_remember_state";
552 case DW_CFA_restore_state:
553 return "DW_CFA_restore_state";
554 case DW_CFA_def_cfa:
555 return "DW_CFA_def_cfa";
556 case DW_CFA_def_cfa_register:
557 return "DW_CFA_def_cfa_register";
558 case DW_CFA_def_cfa_offset:
559 return "DW_CFA_def_cfa_offset";
561 /* DWARF 3 */
562 case DW_CFA_def_cfa_expression:
563 return "DW_CFA_def_cfa_expression";
564 case DW_CFA_expression:
565 return "DW_CFA_expression";
566 case DW_CFA_offset_extended_sf:
567 return "DW_CFA_offset_extended_sf";
568 case DW_CFA_def_cfa_sf:
569 return "DW_CFA_def_cfa_sf";
570 case DW_CFA_def_cfa_offset_sf:
571 return "DW_CFA_def_cfa_offset_sf";
573 /* SGI/MIPS specific */
574 case DW_CFA_MIPS_advance_loc8:
575 return "DW_CFA_MIPS_advance_loc8";
577 /* GNU extensions */
578 case DW_CFA_GNU_window_save:
579 return "DW_CFA_GNU_window_save";
580 case DW_CFA_GNU_args_size:
581 return "DW_CFA_GNU_args_size";
582 case DW_CFA_GNU_negative_offset_extended:
583 return "DW_CFA_GNU_negative_offset_extended";
585 default:
586 return "DW_CFA_<unknown>";
590 /* Return a pointer to a newly allocated Call Frame Instruction. */
592 static inline dw_cfi_ref
593 new_cfi (void)
595 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
597 cfi->dw_cfi_next = NULL;
598 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
599 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
601 return cfi;
604 /* Add a Call Frame Instruction to list of instructions. */
606 static inline void
607 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
609 dw_cfi_ref *p;
611 /* Find the end of the chain. */
612 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
615 *p = cfi;
618 /* Generate a new label for the CFI info to refer to. */
620 char *
621 dwarf2out_cfi_label (void)
623 static char label[20];
625 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
626 ASM_OUTPUT_LABEL (asm_out_file, label);
627 return label;
630 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
631 or to the CIE if LABEL is NULL. */
633 static void
634 add_fde_cfi (const char *label, dw_cfi_ref cfi)
636 if (label)
638 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
640 if (*label == 0)
641 label = dwarf2out_cfi_label ();
643 if (fde->dw_fde_current_label == NULL
644 || strcmp (label, fde->dw_fde_current_label) != 0)
646 dw_cfi_ref xcfi;
648 fde->dw_fde_current_label = label = xstrdup (label);
650 /* Set the location counter to the new label. */
651 xcfi = new_cfi ();
652 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
653 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
654 add_cfi (&fde->dw_fde_cfi, xcfi);
657 add_cfi (&fde->dw_fde_cfi, cfi);
660 else
661 add_cfi (&cie_cfi_head, cfi);
664 /* Subroutine of lookup_cfa. */
666 static void
667 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
669 switch (cfi->dw_cfi_opc)
671 case DW_CFA_def_cfa_offset:
672 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
673 break;
674 case DW_CFA_def_cfa_register:
675 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
676 break;
677 case DW_CFA_def_cfa:
678 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
679 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
680 break;
681 case DW_CFA_def_cfa_expression:
682 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
683 break;
684 default:
685 break;
689 /* Find the previous value for the CFA. */
691 static void
692 lookup_cfa (dw_cfa_location *loc)
694 dw_cfi_ref cfi;
696 loc->reg = INVALID_REGNUM;
697 loc->offset = 0;
698 loc->indirect = 0;
699 loc->base_offset = 0;
701 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
702 lookup_cfa_1 (cfi, loc);
704 if (fde_table_in_use)
706 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
707 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
708 lookup_cfa_1 (cfi, loc);
712 /* The current rule for calculating the DWARF2 canonical frame address. */
713 static dw_cfa_location cfa;
715 /* The register used for saving registers to the stack, and its offset
716 from the CFA. */
717 static dw_cfa_location cfa_store;
719 /* The running total of the size of arguments pushed onto the stack. */
720 static HOST_WIDE_INT args_size;
722 /* The last args_size we actually output. */
723 static HOST_WIDE_INT old_args_size;
725 /* Entry point to update the canonical frame address (CFA).
726 LABEL is passed to add_fde_cfi. The value of CFA is now to be
727 calculated from REG+OFFSET. */
729 void
730 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
732 dw_cfa_location loc;
733 loc.indirect = 0;
734 loc.base_offset = 0;
735 loc.reg = reg;
736 loc.offset = offset;
737 def_cfa_1 (label, &loc);
740 /* Determine if two dw_cfa_location structures define the same data. */
742 static bool
743 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
745 return (loc1->reg == loc2->reg
746 && loc1->offset == loc2->offset
747 && loc1->indirect == loc2->indirect
748 && (loc1->indirect == 0
749 || loc1->base_offset == loc2->base_offset));
752 /* This routine does the actual work. The CFA is now calculated from
753 the dw_cfa_location structure. */
755 static void
756 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
758 dw_cfi_ref cfi;
759 dw_cfa_location old_cfa, loc;
761 cfa = *loc_p;
762 loc = *loc_p;
764 if (cfa_store.reg == loc.reg && loc.indirect == 0)
765 cfa_store.offset = loc.offset;
767 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
768 lookup_cfa (&old_cfa);
770 /* If nothing changed, no need to issue any call frame instructions. */
771 if (cfa_equal_p (&loc, &old_cfa))
772 return;
774 cfi = new_cfi ();
776 if (loc.reg == old_cfa.reg && !loc.indirect)
778 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
779 indicating the CFA register did not change but the offset
780 did. */
781 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
782 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
785 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
786 else if (loc.offset == old_cfa.offset
787 && old_cfa.reg != INVALID_REGNUM
788 && !loc.indirect)
790 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
791 indicating the CFA register has changed to <register> but the
792 offset has not changed. */
793 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
794 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
796 #endif
798 else if (loc.indirect == 0)
800 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
801 indicating the CFA register has changed to <register> with
802 the specified offset. */
803 cfi->dw_cfi_opc = DW_CFA_def_cfa;
804 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
805 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
807 else
809 /* Construct a DW_CFA_def_cfa_expression instruction to
810 calculate the CFA using a full location expression since no
811 register-offset pair is available. */
812 struct dw_loc_descr_struct *loc_list;
814 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
815 loc_list = build_cfa_loc (&loc);
816 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
819 add_fde_cfi (label, cfi);
822 /* Add the CFI for saving a register. REG is the CFA column number.
823 LABEL is passed to add_fde_cfi.
824 If SREG is -1, the register is saved at OFFSET from the CFA;
825 otherwise it is saved in SREG. */
827 static void
828 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
830 dw_cfi_ref cfi = new_cfi ();
832 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
834 if (sreg == INVALID_REGNUM)
836 if (reg & ~0x3f)
837 /* The register number won't fit in 6 bits, so we have to use
838 the long form. */
839 cfi->dw_cfi_opc = DW_CFA_offset_extended;
840 else
841 cfi->dw_cfi_opc = DW_CFA_offset;
843 #ifdef ENABLE_CHECKING
845 /* If we get an offset that is not a multiple of
846 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
847 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
848 description. */
849 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
851 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
853 #endif
854 offset /= DWARF_CIE_DATA_ALIGNMENT;
855 if (offset < 0)
856 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
858 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
860 else if (sreg == reg)
861 cfi->dw_cfi_opc = DW_CFA_same_value;
862 else
864 cfi->dw_cfi_opc = DW_CFA_register;
865 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
868 add_fde_cfi (label, cfi);
871 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
872 This CFI tells the unwinder that it needs to restore the window registers
873 from the previous frame's window save area.
875 ??? Perhaps we should note in the CIE where windows are saved (instead of
876 assuming 0(cfa)) and what registers are in the window. */
878 void
879 dwarf2out_window_save (const char *label)
881 dw_cfi_ref cfi = new_cfi ();
883 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
884 add_fde_cfi (label, cfi);
887 /* Add a CFI to update the running total of the size of arguments
888 pushed onto the stack. */
890 void
891 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
893 dw_cfi_ref cfi;
895 if (size == old_args_size)
896 return;
898 old_args_size = size;
900 cfi = new_cfi ();
901 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
902 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
903 add_fde_cfi (label, cfi);
906 /* Entry point for saving a register to the stack. REG is the GCC register
907 number. LABEL and OFFSET are passed to reg_save. */
909 void
910 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
912 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
915 /* Entry point for saving the return address in the stack.
916 LABEL and OFFSET are passed to reg_save. */
918 void
919 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
921 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
924 /* Entry point for saving the return address in a register.
925 LABEL and SREG are passed to reg_save. */
927 void
928 dwarf2out_return_reg (const char *label, unsigned int sreg)
930 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
933 /* Record the initial position of the return address. RTL is
934 INCOMING_RETURN_ADDR_RTX. */
936 static void
937 initial_return_save (rtx rtl)
939 unsigned int reg = INVALID_REGNUM;
940 HOST_WIDE_INT offset = 0;
942 switch (GET_CODE (rtl))
944 case REG:
945 /* RA is in a register. */
946 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
947 break;
949 case MEM:
950 /* RA is on the stack. */
951 rtl = XEXP (rtl, 0);
952 switch (GET_CODE (rtl))
954 case REG:
955 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
956 offset = 0;
957 break;
959 case PLUS:
960 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
961 offset = INTVAL (XEXP (rtl, 1));
962 break;
964 case MINUS:
965 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
966 offset = -INTVAL (XEXP (rtl, 1));
967 break;
969 default:
970 gcc_unreachable ();
973 break;
975 case PLUS:
976 /* The return address is at some offset from any value we can
977 actually load. For instance, on the SPARC it is in %i7+8. Just
978 ignore the offset for now; it doesn't matter for unwinding frames. */
979 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
980 initial_return_save (XEXP (rtl, 0));
981 return;
983 default:
984 gcc_unreachable ();
987 if (reg != DWARF_FRAME_RETURN_COLUMN)
988 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
991 /* Given a SET, calculate the amount of stack adjustment it
992 contains. */
994 static HOST_WIDE_INT
995 stack_adjust_offset (rtx pattern)
997 rtx src = SET_SRC (pattern);
998 rtx dest = SET_DEST (pattern);
999 HOST_WIDE_INT offset = 0;
1000 enum rtx_code code;
1002 if (dest == stack_pointer_rtx)
1004 /* (set (reg sp) (plus (reg sp) (const_int))) */
1005 code = GET_CODE (src);
1006 if (! (code == PLUS || code == MINUS)
1007 || XEXP (src, 0) != stack_pointer_rtx
1008 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1009 return 0;
1011 offset = INTVAL (XEXP (src, 1));
1012 if (code == PLUS)
1013 offset = -offset;
1015 else if (MEM_P (dest))
1017 /* (set (mem (pre_dec (reg sp))) (foo)) */
1018 src = XEXP (dest, 0);
1019 code = GET_CODE (src);
1021 switch (code)
1023 case PRE_MODIFY:
1024 case POST_MODIFY:
1025 if (XEXP (src, 0) == stack_pointer_rtx)
1027 rtx val = XEXP (XEXP (src, 1), 1);
1028 /* We handle only adjustments by constant amount. */
1029 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1030 && GET_CODE (val) == CONST_INT);
1031 offset = -INTVAL (val);
1032 break;
1034 return 0;
1036 case PRE_DEC:
1037 case POST_DEC:
1038 if (XEXP (src, 0) == stack_pointer_rtx)
1040 offset = GET_MODE_SIZE (GET_MODE (dest));
1041 break;
1043 return 0;
1045 case PRE_INC:
1046 case POST_INC:
1047 if (XEXP (src, 0) == stack_pointer_rtx)
1049 offset = -GET_MODE_SIZE (GET_MODE (dest));
1050 break;
1052 return 0;
1054 default:
1055 return 0;
1058 else
1059 return 0;
1061 return offset;
1064 /* Check INSN to see if it looks like a push or a stack adjustment, and
1065 make a note of it if it does. EH uses this information to find out how
1066 much extra space it needs to pop off the stack. */
1068 static void
1069 dwarf2out_stack_adjust (rtx insn, bool after_p)
1071 HOST_WIDE_INT offset;
1072 const char *label;
1073 int i;
1075 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1076 with this function. Proper support would require all frame-related
1077 insns to be marked, and to be able to handle saving state around
1078 epilogues textually in the middle of the function. */
1079 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1080 return;
1082 /* If only calls can throw, and we have a frame pointer,
1083 save up adjustments until we see the CALL_INSN. */
1084 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1086 if (CALL_P (insn) && !after_p)
1088 /* Extract the size of the args from the CALL rtx itself. */
1089 insn = PATTERN (insn);
1090 if (GET_CODE (insn) == PARALLEL)
1091 insn = XVECEXP (insn, 0, 0);
1092 if (GET_CODE (insn) == SET)
1093 insn = SET_SRC (insn);
1094 gcc_assert (GET_CODE (insn) == CALL);
1095 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1097 return;
1100 if (CALL_P (insn) && !after_p)
1102 if (!flag_asynchronous_unwind_tables)
1103 dwarf2out_args_size ("", args_size);
1104 return;
1106 else if (BARRIER_P (insn))
1108 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1109 the compiler will have already emitted a stack adjustment, but
1110 doesn't bother for calls to noreturn functions. */
1111 #ifdef STACK_GROWS_DOWNWARD
1112 offset = -args_size;
1113 #else
1114 offset = args_size;
1115 #endif
1117 else if (GET_CODE (PATTERN (insn)) == SET)
1118 offset = stack_adjust_offset (PATTERN (insn));
1119 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1120 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1122 /* There may be stack adjustments inside compound insns. Search
1123 for them. */
1124 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1125 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1126 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1128 else
1129 return;
1131 if (offset == 0)
1132 return;
1134 if (cfa.reg == STACK_POINTER_REGNUM)
1135 cfa.offset += offset;
1137 #ifndef STACK_GROWS_DOWNWARD
1138 offset = -offset;
1139 #endif
1141 args_size += offset;
1142 if (args_size < 0)
1143 args_size = 0;
1145 label = dwarf2out_cfi_label ();
1146 def_cfa_1 (label, &cfa);
1147 if (flag_asynchronous_unwind_tables)
1148 dwarf2out_args_size (label, args_size);
1151 #endif
1153 /* We delay emitting a register save until either (a) we reach the end
1154 of the prologue or (b) the register is clobbered. This clusters
1155 register saves so that there are fewer pc advances. */
1157 struct queued_reg_save GTY(())
1159 struct queued_reg_save *next;
1160 rtx reg;
1161 HOST_WIDE_INT cfa_offset;
1162 rtx saved_reg;
1165 static GTY(()) struct queued_reg_save *queued_reg_saves;
1167 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1168 struct reg_saved_in_data GTY(()) {
1169 rtx orig_reg;
1170 rtx saved_in_reg;
1173 /* A list of registers saved in other registers.
1174 The list intentionally has a small maximum capacity of 4; if your
1175 port needs more than that, you might consider implementing a
1176 more efficient data structure. */
1177 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1178 static GTY(()) size_t num_regs_saved_in_regs;
1180 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1181 static const char *last_reg_save_label;
1183 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1184 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1186 static void
1187 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1189 struct queued_reg_save *q;
1191 /* Duplicates waste space, but it's also necessary to remove them
1192 for correctness, since the queue gets output in reverse
1193 order. */
1194 for (q = queued_reg_saves; q != NULL; q = q->next)
1195 if (REGNO (q->reg) == REGNO (reg))
1196 break;
1198 if (q == NULL)
1200 q = ggc_alloc (sizeof (*q));
1201 q->next = queued_reg_saves;
1202 queued_reg_saves = q;
1205 q->reg = reg;
1206 q->cfa_offset = offset;
1207 q->saved_reg = sreg;
1209 last_reg_save_label = label;
1212 /* Output all the entries in QUEUED_REG_SAVES. */
1214 static void
1215 flush_queued_reg_saves (void)
1217 struct queued_reg_save *q;
1219 for (q = queued_reg_saves; q; q = q->next)
1221 size_t i;
1222 unsigned int reg, sreg;
1224 for (i = 0; i < num_regs_saved_in_regs; i++)
1225 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1226 break;
1227 if (q->saved_reg && i == num_regs_saved_in_regs)
1229 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1230 num_regs_saved_in_regs++;
1232 if (i != num_regs_saved_in_regs)
1234 regs_saved_in_regs[i].orig_reg = q->reg;
1235 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1238 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1239 if (q->saved_reg)
1240 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1241 else
1242 sreg = INVALID_REGNUM;
1243 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1246 queued_reg_saves = NULL;
1247 last_reg_save_label = NULL;
1250 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1251 location for? Or, does it clobber a register which we've previously
1252 said that some other register is saved in, and for which we now
1253 have a new location for? */
1255 static bool
1256 clobbers_queued_reg_save (rtx insn)
1258 struct queued_reg_save *q;
1260 for (q = queued_reg_saves; q; q = q->next)
1262 size_t i;
1263 if (modified_in_p (q->reg, insn))
1264 return true;
1265 for (i = 0; i < num_regs_saved_in_regs; i++)
1266 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1267 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1268 return true;
1271 return false;
1274 /* What register, if any, is currently saved in REG? */
1276 static rtx
1277 reg_saved_in (rtx reg)
1279 unsigned int regn = REGNO (reg);
1280 size_t i;
1281 struct queued_reg_save *q;
1283 for (q = queued_reg_saves; q; q = q->next)
1284 if (q->saved_reg && regn == REGNO (q->saved_reg))
1285 return q->reg;
1287 for (i = 0; i < num_regs_saved_in_regs; i++)
1288 if (regs_saved_in_regs[i].saved_in_reg
1289 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1290 return regs_saved_in_regs[i].orig_reg;
1292 return NULL_RTX;
1296 /* A temporary register holding an integral value used in adjusting SP
1297 or setting up the store_reg. The "offset" field holds the integer
1298 value, not an offset. */
1299 static dw_cfa_location cfa_temp;
1301 /* Record call frame debugging information for an expression EXPR,
1302 which either sets SP or FP (adjusting how we calculate the frame
1303 address) or saves a register to the stack or another register.
1304 LABEL indicates the address of EXPR.
1306 This function encodes a state machine mapping rtxes to actions on
1307 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1308 users need not read the source code.
1310 The High-Level Picture
1312 Changes in the register we use to calculate the CFA: Currently we
1313 assume that if you copy the CFA register into another register, we
1314 should take the other one as the new CFA register; this seems to
1315 work pretty well. If it's wrong for some target, it's simple
1316 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1318 Changes in the register we use for saving registers to the stack:
1319 This is usually SP, but not always. Again, we deduce that if you
1320 copy SP into another register (and SP is not the CFA register),
1321 then the new register is the one we will be using for register
1322 saves. This also seems to work.
1324 Register saves: There's not much guesswork about this one; if
1325 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1326 register save, and the register used to calculate the destination
1327 had better be the one we think we're using for this purpose.
1328 It's also assumed that a copy from a call-saved register to another
1329 register is saving that register if RTX_FRAME_RELATED_P is set on
1330 that instruction. If the copy is from a call-saved register to
1331 the *same* register, that means that the register is now the same
1332 value as in the caller.
1334 Except: If the register being saved is the CFA register, and the
1335 offset is nonzero, we are saving the CFA, so we assume we have to
1336 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1337 the intent is to save the value of SP from the previous frame.
1339 In addition, if a register has previously been saved to a different
1340 register,
1342 Invariants / Summaries of Rules
1344 cfa current rule for calculating the CFA. It usually
1345 consists of a register and an offset.
1346 cfa_store register used by prologue code to save things to the stack
1347 cfa_store.offset is the offset from the value of
1348 cfa_store.reg to the actual CFA
1349 cfa_temp register holding an integral value. cfa_temp.offset
1350 stores the value, which will be used to adjust the
1351 stack pointer. cfa_temp is also used like cfa_store,
1352 to track stores to the stack via fp or a temp reg.
1354 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1355 with cfa.reg as the first operand changes the cfa.reg and its
1356 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1357 cfa_temp.offset.
1359 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1360 expression yielding a constant. This sets cfa_temp.reg
1361 and cfa_temp.offset.
1363 Rule 5: Create a new register cfa_store used to save items to the
1364 stack.
1366 Rules 10-14: Save a register to the stack. Define offset as the
1367 difference of the original location and cfa_store's
1368 location (or cfa_temp's location if cfa_temp is used).
1370 The Rules
1372 "{a,b}" indicates a choice of a xor b.
1373 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1375 Rule 1:
1376 (set <reg1> <reg2>:cfa.reg)
1377 effects: cfa.reg = <reg1>
1378 cfa.offset unchanged
1379 cfa_temp.reg = <reg1>
1380 cfa_temp.offset = cfa.offset
1382 Rule 2:
1383 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1384 {<const_int>,<reg>:cfa_temp.reg}))
1385 effects: cfa.reg = sp if fp used
1386 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1387 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1388 if cfa_store.reg==sp
1390 Rule 3:
1391 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1392 effects: cfa.reg = fp
1393 cfa_offset += +/- <const_int>
1395 Rule 4:
1396 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1397 constraints: <reg1> != fp
1398 <reg1> != sp
1399 effects: cfa.reg = <reg1>
1400 cfa_temp.reg = <reg1>
1401 cfa_temp.offset = cfa.offset
1403 Rule 5:
1404 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1405 constraints: <reg1> != fp
1406 <reg1> != sp
1407 effects: cfa_store.reg = <reg1>
1408 cfa_store.offset = cfa.offset - cfa_temp.offset
1410 Rule 6:
1411 (set <reg> <const_int>)
1412 effects: cfa_temp.reg = <reg>
1413 cfa_temp.offset = <const_int>
1415 Rule 7:
1416 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1417 effects: cfa_temp.reg = <reg1>
1418 cfa_temp.offset |= <const_int>
1420 Rule 8:
1421 (set <reg> (high <exp>))
1422 effects: none
1424 Rule 9:
1425 (set <reg> (lo_sum <exp> <const_int>))
1426 effects: cfa_temp.reg = <reg>
1427 cfa_temp.offset = <const_int>
1429 Rule 10:
1430 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1431 effects: cfa_store.offset -= <const_int>
1432 cfa.offset = cfa_store.offset if cfa.reg == sp
1433 cfa.reg = sp
1434 cfa.base_offset = -cfa_store.offset
1436 Rule 11:
1437 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1438 effects: cfa_store.offset += -/+ mode_size(mem)
1439 cfa.offset = cfa_store.offset if cfa.reg == sp
1440 cfa.reg = sp
1441 cfa.base_offset = -cfa_store.offset
1443 Rule 12:
1444 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1446 <reg2>)
1447 effects: cfa.reg = <reg1>
1448 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1450 Rule 13:
1451 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1452 effects: cfa.reg = <reg1>
1453 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1455 Rule 14:
1456 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1457 effects: cfa.reg = <reg1>
1458 cfa.base_offset = -cfa_temp.offset
1459 cfa_temp.offset -= mode_size(mem)
1461   Rule 15:
1462   (set <reg> {unspec, unspec_volatile})
1463   effects: target-dependent */
1465 static void
1466 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1468 rtx src, dest;
1469 HOST_WIDE_INT offset;
1471 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1472 the PARALLEL independently. The first element is always processed if
1473 it is a SET. This is for backward compatibility. Other elements
1474 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1475 flag is set in them. */
1476 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1478 int par_index;
1479 int limit = XVECLEN (expr, 0);
1481 for (par_index = 0; par_index < limit; par_index++)
1482 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1483 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1484 || par_index == 0))
1485 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1487 return;
1490 gcc_assert (GET_CODE (expr) == SET);
1492 src = SET_SRC (expr);
1493 dest = SET_DEST (expr);
1495 if (REG_P (src))
1497 rtx rsi = reg_saved_in (src);
1498 if (rsi)
1499 src = rsi;
1502 switch (GET_CODE (dest))
1504 case REG:
1505 switch (GET_CODE (src))
1507 /* Setting FP from SP. */
1508 case REG:
1509 if (cfa.reg == (unsigned) REGNO (src))
1511 /* Rule 1 */
1512 /* Update the CFA rule wrt SP or FP. Make sure src is
1513 relative to the current CFA register.
1515 We used to require that dest be either SP or FP, but the
1516 ARM copies SP to a temporary register, and from there to
1517 FP. So we just rely on the backends to only set
1518 RTX_FRAME_RELATED_P on appropriate insns. */
1519 cfa.reg = REGNO (dest);
1520 cfa_temp.reg = cfa.reg;
1521 cfa_temp.offset = cfa.offset;
1523 else
1525 /* Saving a register in a register. */
1526 gcc_assert (call_used_regs [REGNO (dest)]
1527 && (!fixed_regs [REGNO (dest)]
1528 /* For the SPARC and its register window. */
1529 || DWARF_FRAME_REGNUM (REGNO (src))
1530 == DWARF_FRAME_RETURN_COLUMN));
1531 queue_reg_save (label, src, dest, 0);
1533 break;
1535 case PLUS:
1536 case MINUS:
1537 case LO_SUM:
1538 if (dest == stack_pointer_rtx)
1540 /* Rule 2 */
1541 /* Adjusting SP. */
1542 switch (GET_CODE (XEXP (src, 1)))
1544 case CONST_INT:
1545 offset = INTVAL (XEXP (src, 1));
1546 break;
1547 case REG:
1548 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1549 == cfa_temp.reg);
1550 offset = cfa_temp.offset;
1551 break;
1552 default:
1553 gcc_unreachable ();
1556 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1558 /* Restoring SP from FP in the epilogue. */
1559 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1560 cfa.reg = STACK_POINTER_REGNUM;
1562 else if (GET_CODE (src) == LO_SUM)
1563 /* Assume we've set the source reg of the LO_SUM from sp. */
1565 else
1566 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1568 if (GET_CODE (src) != MINUS)
1569 offset = -offset;
1570 if (cfa.reg == STACK_POINTER_REGNUM)
1571 cfa.offset += offset;
1572 if (cfa_store.reg == STACK_POINTER_REGNUM)
1573 cfa_store.offset += offset;
1575 else if (dest == hard_frame_pointer_rtx)
1577 /* Rule 3 */
1578 /* Either setting the FP from an offset of the SP,
1579 or adjusting the FP */
1580 gcc_assert (frame_pointer_needed);
1582 gcc_assert (REG_P (XEXP (src, 0))
1583 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1584 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1585 offset = INTVAL (XEXP (src, 1));
1586 if (GET_CODE (src) != MINUS)
1587 offset = -offset;
1588 cfa.offset += offset;
1589 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1591 else
1593 gcc_assert (GET_CODE (src) != MINUS);
1595 /* Rule 4 */
1596 if (REG_P (XEXP (src, 0))
1597 && REGNO (XEXP (src, 0)) == cfa.reg
1598 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1600 /* Setting a temporary CFA register that will be copied
1601 into the FP later on. */
1602 offset = - INTVAL (XEXP (src, 1));
1603 cfa.offset += offset;
1604 cfa.reg = REGNO (dest);
1605 /* Or used to save regs to the stack. */
1606 cfa_temp.reg = cfa.reg;
1607 cfa_temp.offset = cfa.offset;
1610 /* Rule 5 */
1611 else if (REG_P (XEXP (src, 0))
1612 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1613 && XEXP (src, 1) == stack_pointer_rtx)
1615 /* Setting a scratch register that we will use instead
1616 of SP for saving registers to the stack. */
1617 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1618 cfa_store.reg = REGNO (dest);
1619 cfa_store.offset = cfa.offset - cfa_temp.offset;
1622 /* Rule 9 */
1623 else if (GET_CODE (src) == LO_SUM
1624 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1626 cfa_temp.reg = REGNO (dest);
1627 cfa_temp.offset = INTVAL (XEXP (src, 1));
1629 else
1630 gcc_unreachable ();
1632 break;
1634 /* Rule 6 */
1635 case CONST_INT:
1636 cfa_temp.reg = REGNO (dest);
1637 cfa_temp.offset = INTVAL (src);
1638 break;
1640 /* Rule 7 */
1641 case IOR:
1642 gcc_assert (REG_P (XEXP (src, 0))
1643 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1644 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1646 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1647 cfa_temp.reg = REGNO (dest);
1648 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1649 break;
1651 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1652 which will fill in all of the bits. */
1653 /* Rule 8 */
1654 case HIGH:
1655 break;
1657 /* Rule 15 */
1658 case UNSPEC:
1659 case UNSPEC_VOLATILE:
1660 gcc_assert (targetm.dwarf_handle_frame_unspec);
1661 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1662 break;
1664 default:
1665 gcc_unreachable ();
1668 def_cfa_1 (label, &cfa);
1669 break;
1671 case MEM:
1672 gcc_assert (REG_P (src));
1674 /* Saving a register to the stack. Make sure dest is relative to the
1675 CFA register. */
1676 switch (GET_CODE (XEXP (dest, 0)))
1678 /* Rule 10 */
1679 /* With a push. */
1680 case PRE_MODIFY:
1681 /* We can't handle variable size modifications. */
1682 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1683 == CONST_INT);
1684 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1686 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1687 && cfa_store.reg == STACK_POINTER_REGNUM);
1689 cfa_store.offset += offset;
1690 if (cfa.reg == STACK_POINTER_REGNUM)
1691 cfa.offset = cfa_store.offset;
1693 offset = -cfa_store.offset;
1694 break;
1696 /* Rule 11 */
1697 case PRE_INC:
1698 case PRE_DEC:
1699 offset = GET_MODE_SIZE (GET_MODE (dest));
1700 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1701 offset = -offset;
1703 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1704 && cfa_store.reg == STACK_POINTER_REGNUM);
1706 cfa_store.offset += offset;
1707 if (cfa.reg == STACK_POINTER_REGNUM)
1708 cfa.offset = cfa_store.offset;
1710 offset = -cfa_store.offset;
1711 break;
1713 /* Rule 12 */
1714 /* With an offset. */
1715 case PLUS:
1716 case MINUS:
1717 case LO_SUM:
1719 int regno;
1721 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
1722 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1723 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1724 offset = -offset;
1726 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1728 if (cfa_store.reg == (unsigned) regno)
1729 offset -= cfa_store.offset;
1730 else
1732 gcc_assert (cfa_temp.reg == (unsigned) regno);
1733 offset -= cfa_temp.offset;
1736 break;
1738 /* Rule 13 */
1739 /* Without an offset. */
1740 case REG:
1742 int regno = REGNO (XEXP (dest, 0));
1744 if (cfa_store.reg == (unsigned) regno)
1745 offset = -cfa_store.offset;
1746 else
1748 gcc_assert (cfa_temp.reg == (unsigned) regno);
1749 offset = -cfa_temp.offset;
1752 break;
1754 /* Rule 14 */
1755 case POST_INC:
1756 gcc_assert (cfa_temp.reg
1757 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1758 offset = -cfa_temp.offset;
1759 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1760 break;
1762 default:
1763 gcc_unreachable ();
1766 if (REGNO (src) != STACK_POINTER_REGNUM
1767 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1768 && (unsigned) REGNO (src) == cfa.reg)
1770 /* We're storing the current CFA reg into the stack. */
1772 if (cfa.offset == 0)
1774 /* If the source register is exactly the CFA, assume
1775 we're saving SP like any other register; this happens
1776 on the ARM. */
1777 def_cfa_1 (label, &cfa);
1778 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1779 break;
1781 else
1783 /* Otherwise, we'll need to look in the stack to
1784 calculate the CFA. */
1785 rtx x = XEXP (dest, 0);
1787 if (!REG_P (x))
1788 x = XEXP (x, 0);
1789 gcc_assert (REG_P (x));
1791 cfa.reg = REGNO (x);
1792 cfa.base_offset = offset;
1793 cfa.indirect = 1;
1794 def_cfa_1 (label, &cfa);
1795 break;
1799 def_cfa_1 (label, &cfa);
1800 queue_reg_save (label, src, NULL_RTX, offset);
1801 break;
1803 default:
1804 gcc_unreachable ();
1808 /* Record call frame debugging information for INSN, which either
1809 sets SP or FP (adjusting how we calculate the frame address) or saves a
1810 register to the stack. If INSN is NULL_RTX, initialize our state.
1812 If AFTER_P is false, we're being called before the insn is emitted,
1813 otherwise after. Call instructions get invoked twice. */
1815 void
1816 dwarf2out_frame_debug (rtx insn, bool after_p)
1818 const char *label;
1819 rtx src;
1821 if (insn == NULL_RTX)
1823 size_t i;
1825 /* Flush any queued register saves. */
1826 flush_queued_reg_saves ();
1828 /* Set up state for generating call frame debug info. */
1829 lookup_cfa (&cfa);
1830 gcc_assert (cfa.reg
1831 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1833 cfa.reg = STACK_POINTER_REGNUM;
1834 cfa_store = cfa;
1835 cfa_temp.reg = -1;
1836 cfa_temp.offset = 0;
1838 for (i = 0; i < num_regs_saved_in_regs; i++)
1840 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1841 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1843 num_regs_saved_in_regs = 0;
1844 return;
1847 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1848 flush_queued_reg_saves ();
1850 if (! RTX_FRAME_RELATED_P (insn))
1852 if (!ACCUMULATE_OUTGOING_ARGS)
1853 dwarf2out_stack_adjust (insn, after_p);
1854 return;
1857 label = dwarf2out_cfi_label ();
1858 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1859 if (src)
1860 insn = XEXP (src, 0);
1861 else
1862 insn = PATTERN (insn);
1864 dwarf2out_frame_debug_expr (insn, label);
1867 #endif
1869 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1870 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1871 (enum dwarf_call_frame_info cfi);
1873 static enum dw_cfi_oprnd_type
1874 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1876 switch (cfi)
1878 case DW_CFA_nop:
1879 case DW_CFA_GNU_window_save:
1880 return dw_cfi_oprnd_unused;
1882 case DW_CFA_set_loc:
1883 case DW_CFA_advance_loc1:
1884 case DW_CFA_advance_loc2:
1885 case DW_CFA_advance_loc4:
1886 case DW_CFA_MIPS_advance_loc8:
1887 return dw_cfi_oprnd_addr;
1889 case DW_CFA_offset:
1890 case DW_CFA_offset_extended:
1891 case DW_CFA_def_cfa:
1892 case DW_CFA_offset_extended_sf:
1893 case DW_CFA_def_cfa_sf:
1894 case DW_CFA_restore_extended:
1895 case DW_CFA_undefined:
1896 case DW_CFA_same_value:
1897 case DW_CFA_def_cfa_register:
1898 case DW_CFA_register:
1899 return dw_cfi_oprnd_reg_num;
1901 case DW_CFA_def_cfa_offset:
1902 case DW_CFA_GNU_args_size:
1903 case DW_CFA_def_cfa_offset_sf:
1904 return dw_cfi_oprnd_offset;
1906 case DW_CFA_def_cfa_expression:
1907 case DW_CFA_expression:
1908 return dw_cfi_oprnd_loc;
1910 default:
1911 gcc_unreachable ();
1915 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1916 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1917 (enum dwarf_call_frame_info cfi);
1919 static enum dw_cfi_oprnd_type
1920 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1922 switch (cfi)
1924 case DW_CFA_def_cfa:
1925 case DW_CFA_def_cfa_sf:
1926 case DW_CFA_offset:
1927 case DW_CFA_offset_extended_sf:
1928 case DW_CFA_offset_extended:
1929 return dw_cfi_oprnd_offset;
1931 case DW_CFA_register:
1932 return dw_cfi_oprnd_reg_num;
1934 default:
1935 return dw_cfi_oprnd_unused;
1939 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1941 /* Map register numbers held in the call frame info that gcc has
1942 collected using DWARF_FRAME_REGNUM to those that should be output in
1943 .debug_frame and .eh_frame. */
1944 #ifndef DWARF2_FRAME_REG_OUT
1945 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1946 #endif
1948 /* Output a Call Frame Information opcode and its operand(s). */
1950 static void
1951 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1953 unsigned long r;
1954 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1955 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1956 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1957 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1958 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1959 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1961 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1962 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1963 "DW_CFA_offset, column 0x%lx", r);
1964 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1966 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1968 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1969 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1970 "DW_CFA_restore, column 0x%lx", r);
1972 else
1974 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1975 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1977 switch (cfi->dw_cfi_opc)
1979 case DW_CFA_set_loc:
1980 if (for_eh)
1981 dw2_asm_output_encoded_addr_rtx (
1982 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1983 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1984 NULL);
1985 else
1986 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1987 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1988 break;
1990 case DW_CFA_advance_loc1:
1991 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1992 fde->dw_fde_current_label, NULL);
1993 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1994 break;
1996 case DW_CFA_advance_loc2:
1997 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1998 fde->dw_fde_current_label, NULL);
1999 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2000 break;
2002 case DW_CFA_advance_loc4:
2003 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2004 fde->dw_fde_current_label, NULL);
2005 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2006 break;
2008 case DW_CFA_MIPS_advance_loc8:
2009 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2010 fde->dw_fde_current_label, NULL);
2011 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2012 break;
2014 case DW_CFA_offset_extended:
2015 case DW_CFA_def_cfa:
2016 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2017 dw2_asm_output_data_uleb128 (r, NULL);
2018 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2019 break;
2021 case DW_CFA_offset_extended_sf:
2022 case DW_CFA_def_cfa_sf:
2023 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2024 dw2_asm_output_data_uleb128 (r, NULL);
2025 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2026 break;
2028 case DW_CFA_restore_extended:
2029 case DW_CFA_undefined:
2030 case DW_CFA_same_value:
2031 case DW_CFA_def_cfa_register:
2032 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2033 dw2_asm_output_data_uleb128 (r, NULL);
2034 break;
2036 case DW_CFA_register:
2037 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2038 dw2_asm_output_data_uleb128 (r, NULL);
2039 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2040 dw2_asm_output_data_uleb128 (r, NULL);
2041 break;
2043 case DW_CFA_def_cfa_offset:
2044 case DW_CFA_GNU_args_size:
2045 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2046 break;
2048 case DW_CFA_def_cfa_offset_sf:
2049 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2050 break;
2052 case DW_CFA_GNU_window_save:
2053 break;
2055 case DW_CFA_def_cfa_expression:
2056 case DW_CFA_expression:
2057 output_cfa_loc (cfi);
2058 break;
2060 case DW_CFA_GNU_negative_offset_extended:
2061 /* Obsoleted by DW_CFA_offset_extended_sf. */
2062 gcc_unreachable ();
2064 default:
2065 break;
2070 /* Output the call frame information used to record information
2071 that relates to calculating the frame pointer, and records the
2072 location of saved registers. */
2074 static void
2075 output_call_frame_info (int for_eh)
2077 unsigned int i;
2078 dw_fde_ref fde;
2079 dw_cfi_ref cfi;
2080 char l1[20], l2[20], section_start_label[20];
2081 bool any_lsda_needed = false;
2082 char augmentation[6];
2083 int augmentation_size;
2084 int fde_encoding = DW_EH_PE_absptr;
2085 int per_encoding = DW_EH_PE_absptr;
2086 int lsda_encoding = DW_EH_PE_absptr;
2087 int return_reg;
2089 /* Don't emit a CIE if there won't be any FDEs. */
2090 if (fde_table_in_use == 0)
2091 return;
2093 /* If we make FDEs linkonce, we may have to emit an empty label for
2094 an FDE that wouldn't otherwise be emitted. We want to avoid
2095 having an FDE kept around when the function it refers to is
2096 discarded. Example where this matters: a primary function
2097 template in C++ requires EH information, but an explicit
2098 specialization doesn't. */
2099 if (TARGET_USES_WEAK_UNWIND_INFO
2100 && ! flag_asynchronous_unwind_tables
2101 && for_eh)
2102 for (i = 0; i < fde_table_in_use; i++)
2103 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2104 && !fde_table[i].uses_eh_lsda
2105 && ! DECL_WEAK (fde_table[i].decl))
2106 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2107 for_eh, /* empty */ 1);
2109 /* If we don't have any functions we'll want to unwind out of, don't
2110 emit any EH unwind information. Note that if exceptions aren't
2111 enabled, we won't have collected nothrow information, and if we
2112 asked for asynchronous tables, we always want this info. */
2113 if (for_eh)
2115 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2117 for (i = 0; i < fde_table_in_use; i++)
2118 if (fde_table[i].uses_eh_lsda)
2119 any_eh_needed = any_lsda_needed = true;
2120 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2121 any_eh_needed = true;
2122 else if (! fde_table[i].nothrow
2123 && ! fde_table[i].all_throwers_are_sibcalls)
2124 any_eh_needed = true;
2126 if (! any_eh_needed)
2127 return;
2130 /* We're going to be generating comments, so turn on app. */
2131 if (flag_debug_asm)
2132 app_enable ();
2134 if (for_eh)
2135 targetm.asm_out.eh_frame_section ();
2136 else
2137 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2139 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2140 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2142 /* Output the CIE. */
2143 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2144 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2145 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2146 "Length of Common Information Entry");
2147 ASM_OUTPUT_LABEL (asm_out_file, l1);
2149 /* Now that the CIE pointer is PC-relative for EH,
2150 use 0 to identify the CIE. */
2151 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2152 (for_eh ? 0 : DW_CIE_ID),
2153 "CIE Identifier Tag");
2155 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2157 augmentation[0] = 0;
2158 augmentation_size = 0;
2159 if (for_eh)
2161 char *p;
2163 /* Augmentation:
2164 z Indicates that a uleb128 is present to size the
2165 augmentation section.
2166 L Indicates the encoding (and thus presence) of
2167 an LSDA pointer in the FDE augmentation.
2168 R Indicates a non-default pointer encoding for
2169 FDE code pointers.
2170 P Indicates the presence of an encoding + language
2171 personality routine in the CIE augmentation. */
2173 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2174 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2175 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2177 p = augmentation + 1;
2178 if (eh_personality_libfunc)
2180 *p++ = 'P';
2181 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2183 if (any_lsda_needed)
2185 *p++ = 'L';
2186 augmentation_size += 1;
2188 if (fde_encoding != DW_EH_PE_absptr)
2190 *p++ = 'R';
2191 augmentation_size += 1;
2193 if (p > augmentation + 1)
2195 augmentation[0] = 'z';
2196 *p = '\0';
2199 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2200 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2202 int offset = ( 4 /* Length */
2203 + 4 /* CIE Id */
2204 + 1 /* CIE version */
2205 + strlen (augmentation) + 1 /* Augmentation */
2206 + size_of_uleb128 (1) /* Code alignment */
2207 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2208 + 1 /* RA column */
2209 + 1 /* Augmentation size */
2210 + 1 /* Personality encoding */ );
2211 int pad = -offset & (PTR_SIZE - 1);
2213 augmentation_size += pad;
2215 /* Augmentations should be small, so there's scarce need to
2216 iterate for a solution. Die if we exceed one uleb128 byte. */
2217 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2221 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2222 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2223 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2224 "CIE Data Alignment Factor");
2226 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2227 if (DW_CIE_VERSION == 1)
2228 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2229 else
2230 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2232 if (augmentation[0])
2234 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2235 if (eh_personality_libfunc)
2237 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2238 eh_data_format_name (per_encoding));
2239 dw2_asm_output_encoded_addr_rtx (per_encoding,
2240 eh_personality_libfunc, NULL);
2243 if (any_lsda_needed)
2244 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2245 eh_data_format_name (lsda_encoding));
2247 if (fde_encoding != DW_EH_PE_absptr)
2248 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2249 eh_data_format_name (fde_encoding));
2252 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2253 output_cfi (cfi, NULL, for_eh);
2255 /* Pad the CIE out to an address sized boundary. */
2256 ASM_OUTPUT_ALIGN (asm_out_file,
2257 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2258 ASM_OUTPUT_LABEL (asm_out_file, l2);
2260 /* Loop through all of the FDE's. */
2261 for (i = 0; i < fde_table_in_use; i++)
2263 fde = &fde_table[i];
2265 /* Don't emit EH unwind info for leaf functions that don't need it. */
2266 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2267 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2268 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2269 && !fde->uses_eh_lsda)
2270 continue;
2272 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2273 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2274 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2275 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2276 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2277 "FDE Length");
2278 ASM_OUTPUT_LABEL (asm_out_file, l1);
2280 if (for_eh)
2281 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2282 else
2283 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2284 "FDE CIE offset");
2286 if (for_eh)
2288 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2289 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2290 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2291 sym_ref,
2292 "FDE initial location");
2293 if (fde->dw_fde_switched_sections)
2295 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2296 fde->dw_fde_unlikely_section_label);
2297 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2298 fde->dw_fde_hot_section_label);
2299 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2300 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2301 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3,
2302 "FDE initial location");
2303 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2304 fde->dw_fde_hot_section_end_label,
2305 fde->dw_fde_hot_section_label,
2306 "FDE address range");
2307 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2,
2308 "FDE initial location");
2309 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2310 fde->dw_fde_unlikely_section_end_label,
2311 fde->dw_fde_unlikely_section_label,
2312 "FDE address range");
2314 else
2315 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2316 fde->dw_fde_end, fde->dw_fde_begin,
2317 "FDE address range");
2319 else
2321 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2322 "FDE initial location");
2323 if (fde->dw_fde_switched_sections)
2325 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2326 fde->dw_fde_hot_section_label,
2327 "FDE initial location");
2328 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2329 fde->dw_fde_hot_section_end_label,
2330 fde->dw_fde_hot_section_label,
2331 "FDE address range");
2332 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2333 fde->dw_fde_unlikely_section_label,
2334 "FDE initial location");
2335 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2336 fde->dw_fde_unlikely_section_end_label,
2337 fde->dw_fde_unlikely_section_label,
2338 "FDE address range");
2340 else
2341 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2342 fde->dw_fde_end, fde->dw_fde_begin,
2343 "FDE address range");
2346 if (augmentation[0])
2348 if (any_lsda_needed)
2350 int size = size_of_encoded_value (lsda_encoding);
2352 if (lsda_encoding == DW_EH_PE_aligned)
2354 int offset = ( 4 /* Length */
2355 + 4 /* CIE offset */
2356 + 2 * size_of_encoded_value (fde_encoding)
2357 + 1 /* Augmentation size */ );
2358 int pad = -offset & (PTR_SIZE - 1);
2360 size += pad;
2361 gcc_assert (size_of_uleb128 (size) == 1);
2364 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2366 if (fde->uses_eh_lsda)
2368 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2369 fde->funcdef_number);
2370 dw2_asm_output_encoded_addr_rtx (
2371 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2372 "Language Specific Data Area");
2374 else
2376 if (lsda_encoding == DW_EH_PE_aligned)
2377 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2378 dw2_asm_output_data
2379 (size_of_encoded_value (lsda_encoding), 0,
2380 "Language Specific Data Area (none)");
2383 else
2384 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2387 /* Loop through the Call Frame Instructions associated with
2388 this FDE. */
2389 fde->dw_fde_current_label = fde->dw_fde_begin;
2390 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2391 output_cfi (cfi, fde, for_eh);
2393 /* Pad the FDE out to an address sized boundary. */
2394 ASM_OUTPUT_ALIGN (asm_out_file,
2395 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2396 ASM_OUTPUT_LABEL (asm_out_file, l2);
2399 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2400 dw2_asm_output_data (4, 0, "End of Table");
2401 #ifdef MIPS_DEBUGGING_INFO
2402 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2403 get a value of 0. Putting .align 0 after the label fixes it. */
2404 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2405 #endif
2407 /* Turn off app to make assembly quicker. */
2408 if (flag_debug_asm)
2409 app_disable ();
2412 /* Output a marker (i.e. a label) for the beginning of a function, before
2413 the prologue. */
2415 void
2416 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2417 const char *file ATTRIBUTE_UNUSED)
2419 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2420 char * dup_label;
2421 dw_fde_ref fde;
2423 current_function_func_begin_label = NULL;
2425 #ifdef TARGET_UNWIND_INFO
2426 /* ??? current_function_func_begin_label is also used by except.c
2427 for call-site information. We must emit this label if it might
2428 be used. */
2429 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2430 && ! dwarf2out_do_frame ())
2431 return;
2432 #else
2433 if (! dwarf2out_do_frame ())
2434 return;
2435 #endif
2437 function_section (current_function_decl);
2438 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2439 current_function_funcdef_no);
2440 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2441 current_function_funcdef_no);
2442 dup_label = xstrdup (label);
2443 current_function_func_begin_label = dup_label;
2445 #ifdef TARGET_UNWIND_INFO
2446 /* We can elide the fde allocation if we're not emitting debug info. */
2447 if (! dwarf2out_do_frame ())
2448 return;
2449 #endif
2451 /* Expand the fde table if necessary. */
2452 if (fde_table_in_use == fde_table_allocated)
2454 fde_table_allocated += FDE_TABLE_INCREMENT;
2455 fde_table = ggc_realloc (fde_table,
2456 fde_table_allocated * sizeof (dw_fde_node));
2457 memset (fde_table + fde_table_in_use, 0,
2458 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2461 /* Record the FDE associated with this function. */
2462 current_funcdef_fde = fde_table_in_use;
2464 /* Add the new FDE at the end of the fde_table. */
2465 fde = &fde_table[fde_table_in_use++];
2466 fde->decl = current_function_decl;
2467 fde->dw_fde_begin = dup_label;
2468 fde->dw_fde_current_label = NULL;
2469 fde->dw_fde_hot_section_label = NULL;
2470 fde->dw_fde_hot_section_end_label = NULL;
2471 fde->dw_fde_unlikely_section_label = NULL;
2472 fde->dw_fde_unlikely_section_end_label = NULL;
2473 fde->dw_fde_switched_sections = false;
2474 fde->dw_fde_end = NULL;
2475 fde->dw_fde_cfi = NULL;
2476 fde->funcdef_number = current_function_funcdef_no;
2477 fde->nothrow = TREE_NOTHROW (current_function_decl);
2478 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2479 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2481 args_size = old_args_size = 0;
2483 /* We only want to output line number information for the genuine dwarf2
2484 prologue case, not the eh frame case. */
2485 #ifdef DWARF2_DEBUGGING_INFO
2486 if (file)
2487 dwarf2out_source_line (line, file);
2488 #endif
2491 /* Output a marker (i.e. a label) for the absolute end of the generated code
2492 for a function definition. This gets called *after* the epilogue code has
2493 been generated. */
2495 void
2496 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2497 const char *file ATTRIBUTE_UNUSED)
2499 dw_fde_ref fde;
2500 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2502 /* Output a label to mark the endpoint of the code generated for this
2503 function. */
2504 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2505 current_function_funcdef_no);
2506 ASM_OUTPUT_LABEL (asm_out_file, label);
2507 fde = &fde_table[fde_table_in_use - 1];
2508 fde->dw_fde_end = xstrdup (label);
2511 void
2512 dwarf2out_frame_init (void)
2514 /* Allocate the initial hunk of the fde_table. */
2515 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2516 fde_table_allocated = FDE_TABLE_INCREMENT;
2517 fde_table_in_use = 0;
2519 /* Generate the CFA instructions common to all FDE's. Do it now for the
2520 sake of lookup_cfa. */
2522 #ifdef DWARF2_UNWIND_INFO
2523 /* On entry, the Canonical Frame Address is at SP. */
2524 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2525 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2526 #endif
2529 void
2530 dwarf2out_frame_finish (void)
2532 /* Output call frame information. */
2533 if (write_symbols == DWARF2_DEBUG
2534 || write_symbols == VMS_AND_DWARF2_DEBUG
2535 #ifdef DWARF2_FRAME_INFO
2536 || DWARF2_FRAME_INFO
2537 #endif
2539 output_call_frame_info (0);
2541 #ifndef TARGET_UNWIND_INFO
2542 /* Output another copy for the unwinder. */
2543 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2544 output_call_frame_info (1);
2545 #endif
2547 #endif
2549 /* And now, the subset of the debugging information support code necessary
2550 for emitting location expressions. */
2552 /* We need some way to distinguish DW_OP_addr with a direct symbol
2553 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2554 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2557 typedef struct dw_val_struct *dw_val_ref;
2558 typedef struct die_struct *dw_die_ref;
2559 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2560 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2562 /* Each DIE may have a series of attribute/value pairs. Values
2563 can take on several forms. The forms that are used in this
2564 implementation are listed below. */
2566 enum dw_val_class
2568 dw_val_class_addr,
2569 dw_val_class_offset,
2570 dw_val_class_loc,
2571 dw_val_class_loc_list,
2572 dw_val_class_range_list,
2573 dw_val_class_const,
2574 dw_val_class_unsigned_const,
2575 dw_val_class_long_long,
2576 dw_val_class_vec,
2577 dw_val_class_flag,
2578 dw_val_class_die_ref,
2579 dw_val_class_fde_ref,
2580 dw_val_class_lbl_id,
2581 dw_val_class_lbl_offset,
2582 dw_val_class_str
2585 /* Describe a double word constant value. */
2586 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2588 typedef struct dw_long_long_struct GTY(())
2590 unsigned long hi;
2591 unsigned long low;
2593 dw_long_long_const;
2595 /* Describe a floating point constant value, or a vector constant value. */
2597 typedef struct dw_vec_struct GTY(())
2599 unsigned char * GTY((length ("%h.length"))) array;
2600 unsigned length;
2601 unsigned elt_size;
2603 dw_vec_const;
2605 /* The dw_val_node describes an attribute's value, as it is
2606 represented internally. */
2608 typedef struct dw_val_struct GTY(())
2610 enum dw_val_class val_class;
2611 union dw_val_struct_union
2613 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2614 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2615 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2616 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2617 HOST_WIDE_INT GTY ((default)) val_int;
2618 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2619 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2620 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2621 struct dw_val_die_union
2623 dw_die_ref die;
2624 int external;
2625 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2626 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2627 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2628 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2629 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2631 GTY ((desc ("%1.val_class"))) v;
2633 dw_val_node;
2635 /* Locations in memory are described using a sequence of stack machine
2636 operations. */
2638 typedef struct dw_loc_descr_struct GTY(())
2640 dw_loc_descr_ref dw_loc_next;
2641 enum dwarf_location_atom dw_loc_opc;
2642 dw_val_node dw_loc_oprnd1;
2643 dw_val_node dw_loc_oprnd2;
2644 int dw_loc_addr;
2646 dw_loc_descr_node;
2648 /* Location lists are ranges + location descriptions for that range,
2649 so you can track variables that are in different places over
2650 their entire life. */
2651 typedef struct dw_loc_list_struct GTY(())
2653 dw_loc_list_ref dw_loc_next;
2654 const char *begin; /* Label for begin address of range */
2655 const char *end; /* Label for end address of range */
2656 char *ll_symbol; /* Label for beginning of location list.
2657 Only on head of list */
2658 const char *section; /* Section this loclist is relative to */
2659 dw_loc_descr_ref expr;
2660 } dw_loc_list_node;
2662 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2664 static const char *dwarf_stack_op_name (unsigned);
2665 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2666 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2667 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2668 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2669 static unsigned long size_of_locs (dw_loc_descr_ref);
2670 static void output_loc_operands (dw_loc_descr_ref);
2671 static void output_loc_sequence (dw_loc_descr_ref);
2673 /* Convert a DWARF stack opcode into its string name. */
2675 static const char *
2676 dwarf_stack_op_name (unsigned int op)
2678 switch (op)
2680 case DW_OP_addr:
2681 case INTERNAL_DW_OP_tls_addr:
2682 return "DW_OP_addr";
2683 case DW_OP_deref:
2684 return "DW_OP_deref";
2685 case DW_OP_const1u:
2686 return "DW_OP_const1u";
2687 case DW_OP_const1s:
2688 return "DW_OP_const1s";
2689 case DW_OP_const2u:
2690 return "DW_OP_const2u";
2691 case DW_OP_const2s:
2692 return "DW_OP_const2s";
2693 case DW_OP_const4u:
2694 return "DW_OP_const4u";
2695 case DW_OP_const4s:
2696 return "DW_OP_const4s";
2697 case DW_OP_const8u:
2698 return "DW_OP_const8u";
2699 case DW_OP_const8s:
2700 return "DW_OP_const8s";
2701 case DW_OP_constu:
2702 return "DW_OP_constu";
2703 case DW_OP_consts:
2704 return "DW_OP_consts";
2705 case DW_OP_dup:
2706 return "DW_OP_dup";
2707 case DW_OP_drop:
2708 return "DW_OP_drop";
2709 case DW_OP_over:
2710 return "DW_OP_over";
2711 case DW_OP_pick:
2712 return "DW_OP_pick";
2713 case DW_OP_swap:
2714 return "DW_OP_swap";
2715 case DW_OP_rot:
2716 return "DW_OP_rot";
2717 case DW_OP_xderef:
2718 return "DW_OP_xderef";
2719 case DW_OP_abs:
2720 return "DW_OP_abs";
2721 case DW_OP_and:
2722 return "DW_OP_and";
2723 case DW_OP_div:
2724 return "DW_OP_div";
2725 case DW_OP_minus:
2726 return "DW_OP_minus";
2727 case DW_OP_mod:
2728 return "DW_OP_mod";
2729 case DW_OP_mul:
2730 return "DW_OP_mul";
2731 case DW_OP_neg:
2732 return "DW_OP_neg";
2733 case DW_OP_not:
2734 return "DW_OP_not";
2735 case DW_OP_or:
2736 return "DW_OP_or";
2737 case DW_OP_plus:
2738 return "DW_OP_plus";
2739 case DW_OP_plus_uconst:
2740 return "DW_OP_plus_uconst";
2741 case DW_OP_shl:
2742 return "DW_OP_shl";
2743 case DW_OP_shr:
2744 return "DW_OP_shr";
2745 case DW_OP_shra:
2746 return "DW_OP_shra";
2747 case DW_OP_xor:
2748 return "DW_OP_xor";
2749 case DW_OP_bra:
2750 return "DW_OP_bra";
2751 case DW_OP_eq:
2752 return "DW_OP_eq";
2753 case DW_OP_ge:
2754 return "DW_OP_ge";
2755 case DW_OP_gt:
2756 return "DW_OP_gt";
2757 case DW_OP_le:
2758 return "DW_OP_le";
2759 case DW_OP_lt:
2760 return "DW_OP_lt";
2761 case DW_OP_ne:
2762 return "DW_OP_ne";
2763 case DW_OP_skip:
2764 return "DW_OP_skip";
2765 case DW_OP_lit0:
2766 return "DW_OP_lit0";
2767 case DW_OP_lit1:
2768 return "DW_OP_lit1";
2769 case DW_OP_lit2:
2770 return "DW_OP_lit2";
2771 case DW_OP_lit3:
2772 return "DW_OP_lit3";
2773 case DW_OP_lit4:
2774 return "DW_OP_lit4";
2775 case DW_OP_lit5:
2776 return "DW_OP_lit5";
2777 case DW_OP_lit6:
2778 return "DW_OP_lit6";
2779 case DW_OP_lit7:
2780 return "DW_OP_lit7";
2781 case DW_OP_lit8:
2782 return "DW_OP_lit8";
2783 case DW_OP_lit9:
2784 return "DW_OP_lit9";
2785 case DW_OP_lit10:
2786 return "DW_OP_lit10";
2787 case DW_OP_lit11:
2788 return "DW_OP_lit11";
2789 case DW_OP_lit12:
2790 return "DW_OP_lit12";
2791 case DW_OP_lit13:
2792 return "DW_OP_lit13";
2793 case DW_OP_lit14:
2794 return "DW_OP_lit14";
2795 case DW_OP_lit15:
2796 return "DW_OP_lit15";
2797 case DW_OP_lit16:
2798 return "DW_OP_lit16";
2799 case DW_OP_lit17:
2800 return "DW_OP_lit17";
2801 case DW_OP_lit18:
2802 return "DW_OP_lit18";
2803 case DW_OP_lit19:
2804 return "DW_OP_lit19";
2805 case DW_OP_lit20:
2806 return "DW_OP_lit20";
2807 case DW_OP_lit21:
2808 return "DW_OP_lit21";
2809 case DW_OP_lit22:
2810 return "DW_OP_lit22";
2811 case DW_OP_lit23:
2812 return "DW_OP_lit23";
2813 case DW_OP_lit24:
2814 return "DW_OP_lit24";
2815 case DW_OP_lit25:
2816 return "DW_OP_lit25";
2817 case DW_OP_lit26:
2818 return "DW_OP_lit26";
2819 case DW_OP_lit27:
2820 return "DW_OP_lit27";
2821 case DW_OP_lit28:
2822 return "DW_OP_lit28";
2823 case DW_OP_lit29:
2824 return "DW_OP_lit29";
2825 case DW_OP_lit30:
2826 return "DW_OP_lit30";
2827 case DW_OP_lit31:
2828 return "DW_OP_lit31";
2829 case DW_OP_reg0:
2830 return "DW_OP_reg0";
2831 case DW_OP_reg1:
2832 return "DW_OP_reg1";
2833 case DW_OP_reg2:
2834 return "DW_OP_reg2";
2835 case DW_OP_reg3:
2836 return "DW_OP_reg3";
2837 case DW_OP_reg4:
2838 return "DW_OP_reg4";
2839 case DW_OP_reg5:
2840 return "DW_OP_reg5";
2841 case DW_OP_reg6:
2842 return "DW_OP_reg6";
2843 case DW_OP_reg7:
2844 return "DW_OP_reg7";
2845 case DW_OP_reg8:
2846 return "DW_OP_reg8";
2847 case DW_OP_reg9:
2848 return "DW_OP_reg9";
2849 case DW_OP_reg10:
2850 return "DW_OP_reg10";
2851 case DW_OP_reg11:
2852 return "DW_OP_reg11";
2853 case DW_OP_reg12:
2854 return "DW_OP_reg12";
2855 case DW_OP_reg13:
2856 return "DW_OP_reg13";
2857 case DW_OP_reg14:
2858 return "DW_OP_reg14";
2859 case DW_OP_reg15:
2860 return "DW_OP_reg15";
2861 case DW_OP_reg16:
2862 return "DW_OP_reg16";
2863 case DW_OP_reg17:
2864 return "DW_OP_reg17";
2865 case DW_OP_reg18:
2866 return "DW_OP_reg18";
2867 case DW_OP_reg19:
2868 return "DW_OP_reg19";
2869 case DW_OP_reg20:
2870 return "DW_OP_reg20";
2871 case DW_OP_reg21:
2872 return "DW_OP_reg21";
2873 case DW_OP_reg22:
2874 return "DW_OP_reg22";
2875 case DW_OP_reg23:
2876 return "DW_OP_reg23";
2877 case DW_OP_reg24:
2878 return "DW_OP_reg24";
2879 case DW_OP_reg25:
2880 return "DW_OP_reg25";
2881 case DW_OP_reg26:
2882 return "DW_OP_reg26";
2883 case DW_OP_reg27:
2884 return "DW_OP_reg27";
2885 case DW_OP_reg28:
2886 return "DW_OP_reg28";
2887 case DW_OP_reg29:
2888 return "DW_OP_reg29";
2889 case DW_OP_reg30:
2890 return "DW_OP_reg30";
2891 case DW_OP_reg31:
2892 return "DW_OP_reg31";
2893 case DW_OP_breg0:
2894 return "DW_OP_breg0";
2895 case DW_OP_breg1:
2896 return "DW_OP_breg1";
2897 case DW_OP_breg2:
2898 return "DW_OP_breg2";
2899 case DW_OP_breg3:
2900 return "DW_OP_breg3";
2901 case DW_OP_breg4:
2902 return "DW_OP_breg4";
2903 case DW_OP_breg5:
2904 return "DW_OP_breg5";
2905 case DW_OP_breg6:
2906 return "DW_OP_breg6";
2907 case DW_OP_breg7:
2908 return "DW_OP_breg7";
2909 case DW_OP_breg8:
2910 return "DW_OP_breg8";
2911 case DW_OP_breg9:
2912 return "DW_OP_breg9";
2913 case DW_OP_breg10:
2914 return "DW_OP_breg10";
2915 case DW_OP_breg11:
2916 return "DW_OP_breg11";
2917 case DW_OP_breg12:
2918 return "DW_OP_breg12";
2919 case DW_OP_breg13:
2920 return "DW_OP_breg13";
2921 case DW_OP_breg14:
2922 return "DW_OP_breg14";
2923 case DW_OP_breg15:
2924 return "DW_OP_breg15";
2925 case DW_OP_breg16:
2926 return "DW_OP_breg16";
2927 case DW_OP_breg17:
2928 return "DW_OP_breg17";
2929 case DW_OP_breg18:
2930 return "DW_OP_breg18";
2931 case DW_OP_breg19:
2932 return "DW_OP_breg19";
2933 case DW_OP_breg20:
2934 return "DW_OP_breg20";
2935 case DW_OP_breg21:
2936 return "DW_OP_breg21";
2937 case DW_OP_breg22:
2938 return "DW_OP_breg22";
2939 case DW_OP_breg23:
2940 return "DW_OP_breg23";
2941 case DW_OP_breg24:
2942 return "DW_OP_breg24";
2943 case DW_OP_breg25:
2944 return "DW_OP_breg25";
2945 case DW_OP_breg26:
2946 return "DW_OP_breg26";
2947 case DW_OP_breg27:
2948 return "DW_OP_breg27";
2949 case DW_OP_breg28:
2950 return "DW_OP_breg28";
2951 case DW_OP_breg29:
2952 return "DW_OP_breg29";
2953 case DW_OP_breg30:
2954 return "DW_OP_breg30";
2955 case DW_OP_breg31:
2956 return "DW_OP_breg31";
2957 case DW_OP_regx:
2958 return "DW_OP_regx";
2959 case DW_OP_fbreg:
2960 return "DW_OP_fbreg";
2961 case DW_OP_bregx:
2962 return "DW_OP_bregx";
2963 case DW_OP_piece:
2964 return "DW_OP_piece";
2965 case DW_OP_deref_size:
2966 return "DW_OP_deref_size";
2967 case DW_OP_xderef_size:
2968 return "DW_OP_xderef_size";
2969 case DW_OP_nop:
2970 return "DW_OP_nop";
2971 case DW_OP_push_object_address:
2972 return "DW_OP_push_object_address";
2973 case DW_OP_call2:
2974 return "DW_OP_call2";
2975 case DW_OP_call4:
2976 return "DW_OP_call4";
2977 case DW_OP_call_ref:
2978 return "DW_OP_call_ref";
2979 case DW_OP_GNU_push_tls_address:
2980 return "DW_OP_GNU_push_tls_address";
2981 default:
2982 return "OP_<unknown>";
2986 /* Return a pointer to a newly allocated location description. Location
2987 descriptions are simple expression terms that can be strung
2988 together to form more complicated location (address) descriptions. */
2990 static inline dw_loc_descr_ref
2991 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2992 unsigned HOST_WIDE_INT oprnd2)
2994 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2996 descr->dw_loc_opc = op;
2997 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2998 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2999 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3000 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3002 return descr;
3005 /* Add a location description term to a location description expression. */
3007 static inline void
3008 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3010 dw_loc_descr_ref *d;
3012 /* Find the end of the chain. */
3013 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3016 *d = descr;
3019 /* Return the size of a location descriptor. */
3021 static unsigned long
3022 size_of_loc_descr (dw_loc_descr_ref loc)
3024 unsigned long size = 1;
3026 switch (loc->dw_loc_opc)
3028 case DW_OP_addr:
3029 case INTERNAL_DW_OP_tls_addr:
3030 size += DWARF2_ADDR_SIZE;
3031 break;
3032 case DW_OP_const1u:
3033 case DW_OP_const1s:
3034 size += 1;
3035 break;
3036 case DW_OP_const2u:
3037 case DW_OP_const2s:
3038 size += 2;
3039 break;
3040 case DW_OP_const4u:
3041 case DW_OP_const4s:
3042 size += 4;
3043 break;
3044 case DW_OP_const8u:
3045 case DW_OP_const8s:
3046 size += 8;
3047 break;
3048 case DW_OP_constu:
3049 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3050 break;
3051 case DW_OP_consts:
3052 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3053 break;
3054 case DW_OP_pick:
3055 size += 1;
3056 break;
3057 case DW_OP_plus_uconst:
3058 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3059 break;
3060 case DW_OP_skip:
3061 case DW_OP_bra:
3062 size += 2;
3063 break;
3064 case DW_OP_breg0:
3065 case DW_OP_breg1:
3066 case DW_OP_breg2:
3067 case DW_OP_breg3:
3068 case DW_OP_breg4:
3069 case DW_OP_breg5:
3070 case DW_OP_breg6:
3071 case DW_OP_breg7:
3072 case DW_OP_breg8:
3073 case DW_OP_breg9:
3074 case DW_OP_breg10:
3075 case DW_OP_breg11:
3076 case DW_OP_breg12:
3077 case DW_OP_breg13:
3078 case DW_OP_breg14:
3079 case DW_OP_breg15:
3080 case DW_OP_breg16:
3081 case DW_OP_breg17:
3082 case DW_OP_breg18:
3083 case DW_OP_breg19:
3084 case DW_OP_breg20:
3085 case DW_OP_breg21:
3086 case DW_OP_breg22:
3087 case DW_OP_breg23:
3088 case DW_OP_breg24:
3089 case DW_OP_breg25:
3090 case DW_OP_breg26:
3091 case DW_OP_breg27:
3092 case DW_OP_breg28:
3093 case DW_OP_breg29:
3094 case DW_OP_breg30:
3095 case DW_OP_breg31:
3096 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3097 break;
3098 case DW_OP_regx:
3099 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3100 break;
3101 case DW_OP_fbreg:
3102 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3103 break;
3104 case DW_OP_bregx:
3105 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3106 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3107 break;
3108 case DW_OP_piece:
3109 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3110 break;
3111 case DW_OP_deref_size:
3112 case DW_OP_xderef_size:
3113 size += 1;
3114 break;
3115 case DW_OP_call2:
3116 size += 2;
3117 break;
3118 case DW_OP_call4:
3119 size += 4;
3120 break;
3121 case DW_OP_call_ref:
3122 size += DWARF2_ADDR_SIZE;
3123 break;
3124 default:
3125 break;
3128 return size;
3131 /* Return the size of a series of location descriptors. */
3133 static unsigned long
3134 size_of_locs (dw_loc_descr_ref loc)
3136 unsigned long size;
3138 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3140 loc->dw_loc_addr = size;
3141 size += size_of_loc_descr (loc);
3144 return size;
3147 /* Output location description stack opcode's operands (if any). */
3149 static void
3150 output_loc_operands (dw_loc_descr_ref loc)
3152 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3153 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3155 switch (loc->dw_loc_opc)
3157 #ifdef DWARF2_DEBUGGING_INFO
3158 case DW_OP_addr:
3159 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3160 break;
3161 case DW_OP_const2u:
3162 case DW_OP_const2s:
3163 dw2_asm_output_data (2, val1->v.val_int, NULL);
3164 break;
3165 case DW_OP_const4u:
3166 case DW_OP_const4s:
3167 dw2_asm_output_data (4, val1->v.val_int, NULL);
3168 break;
3169 case DW_OP_const8u:
3170 case DW_OP_const8s:
3171 gcc_assert (HOST_BITS_PER_LONG >= 64);
3172 dw2_asm_output_data (8, val1->v.val_int, NULL);
3173 break;
3174 case DW_OP_skip:
3175 case DW_OP_bra:
3177 int offset;
3179 gcc_assert (val1->val_class == dw_val_class_loc);
3180 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3182 dw2_asm_output_data (2, offset, NULL);
3184 break;
3185 #else
3186 case DW_OP_addr:
3187 case DW_OP_const2u:
3188 case DW_OP_const2s:
3189 case DW_OP_const4u:
3190 case DW_OP_const4s:
3191 case DW_OP_const8u:
3192 case DW_OP_const8s:
3193 case DW_OP_skip:
3194 case DW_OP_bra:
3195 /* We currently don't make any attempt to make sure these are
3196 aligned properly like we do for the main unwind info, so
3197 don't support emitting things larger than a byte if we're
3198 only doing unwinding. */
3199 gcc_unreachable ();
3200 #endif
3201 case DW_OP_const1u:
3202 case DW_OP_const1s:
3203 dw2_asm_output_data (1, val1->v.val_int, NULL);
3204 break;
3205 case DW_OP_constu:
3206 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3207 break;
3208 case DW_OP_consts:
3209 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3210 break;
3211 case DW_OP_pick:
3212 dw2_asm_output_data (1, val1->v.val_int, NULL);
3213 break;
3214 case DW_OP_plus_uconst:
3215 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3216 break;
3217 case DW_OP_breg0:
3218 case DW_OP_breg1:
3219 case DW_OP_breg2:
3220 case DW_OP_breg3:
3221 case DW_OP_breg4:
3222 case DW_OP_breg5:
3223 case DW_OP_breg6:
3224 case DW_OP_breg7:
3225 case DW_OP_breg8:
3226 case DW_OP_breg9:
3227 case DW_OP_breg10:
3228 case DW_OP_breg11:
3229 case DW_OP_breg12:
3230 case DW_OP_breg13:
3231 case DW_OP_breg14:
3232 case DW_OP_breg15:
3233 case DW_OP_breg16:
3234 case DW_OP_breg17:
3235 case DW_OP_breg18:
3236 case DW_OP_breg19:
3237 case DW_OP_breg20:
3238 case DW_OP_breg21:
3239 case DW_OP_breg22:
3240 case DW_OP_breg23:
3241 case DW_OP_breg24:
3242 case DW_OP_breg25:
3243 case DW_OP_breg26:
3244 case DW_OP_breg27:
3245 case DW_OP_breg28:
3246 case DW_OP_breg29:
3247 case DW_OP_breg30:
3248 case DW_OP_breg31:
3249 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3250 break;
3251 case DW_OP_regx:
3252 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3253 break;
3254 case DW_OP_fbreg:
3255 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3256 break;
3257 case DW_OP_bregx:
3258 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3259 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3260 break;
3261 case DW_OP_piece:
3262 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3263 break;
3264 case DW_OP_deref_size:
3265 case DW_OP_xderef_size:
3266 dw2_asm_output_data (1, val1->v.val_int, NULL);
3267 break;
3269 case INTERNAL_DW_OP_tls_addr:
3270 if (targetm.asm_out.output_dwarf_dtprel)
3272 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3273 DWARF2_ADDR_SIZE,
3274 val1->v.val_addr);
3275 fputc ('\n', asm_out_file);
3277 else
3278 gcc_unreachable ();
3279 break;
3281 default:
3282 /* Other codes have no operands. */
3283 break;
3287 /* Output a sequence of location operations. */
3289 static void
3290 output_loc_sequence (dw_loc_descr_ref loc)
3292 for (; loc != NULL; loc = loc->dw_loc_next)
3294 /* Output the opcode. */
3295 dw2_asm_output_data (1, loc->dw_loc_opc,
3296 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3298 /* Output the operand(s) (if any). */
3299 output_loc_operands (loc);
3303 /* This routine will generate the correct assembly data for a location
3304 description based on a cfi entry with a complex address. */
3306 static void
3307 output_cfa_loc (dw_cfi_ref cfi)
3309 dw_loc_descr_ref loc;
3310 unsigned long size;
3312 /* Output the size of the block. */
3313 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3314 size = size_of_locs (loc);
3315 dw2_asm_output_data_uleb128 (size, NULL);
3317 /* Now output the operations themselves. */
3318 output_loc_sequence (loc);
3321 /* This function builds a dwarf location descriptor sequence from
3322 a dw_cfa_location. */
3324 static struct dw_loc_descr_struct *
3325 build_cfa_loc (dw_cfa_location *cfa)
3327 struct dw_loc_descr_struct *head, *tmp;
3329 if (cfa->indirect)
3331 if (cfa->base_offset)
3333 if (cfa->reg <= 31)
3334 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3335 else
3336 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3338 else if (cfa->reg <= 31)
3339 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3340 else
3341 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3343 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3344 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3345 add_loc_descr (&head, tmp);
3346 if (cfa->offset != 0)
3348 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3349 add_loc_descr (&head, tmp);
3352 else
3354 if (cfa->offset == 0)
3355 if (cfa->reg <= 31)
3356 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3357 else
3358 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3359 else if (cfa->reg <= 31)
3360 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->offset, 0);
3361 else
3362 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->offset);
3365 return head;
3368 /* This function fills in aa dw_cfa_location structure from a dwarf location
3369 descriptor sequence. */
3371 static void
3372 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3374 struct dw_loc_descr_struct *ptr;
3375 cfa->offset = 0;
3376 cfa->base_offset = 0;
3377 cfa->indirect = 0;
3378 cfa->reg = -1;
3380 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3382 enum dwarf_location_atom op = ptr->dw_loc_opc;
3384 switch (op)
3386 case DW_OP_reg0:
3387 case DW_OP_reg1:
3388 case DW_OP_reg2:
3389 case DW_OP_reg3:
3390 case DW_OP_reg4:
3391 case DW_OP_reg5:
3392 case DW_OP_reg6:
3393 case DW_OP_reg7:
3394 case DW_OP_reg8:
3395 case DW_OP_reg9:
3396 case DW_OP_reg10:
3397 case DW_OP_reg11:
3398 case DW_OP_reg12:
3399 case DW_OP_reg13:
3400 case DW_OP_reg14:
3401 case DW_OP_reg15:
3402 case DW_OP_reg16:
3403 case DW_OP_reg17:
3404 case DW_OP_reg18:
3405 case DW_OP_reg19:
3406 case DW_OP_reg20:
3407 case DW_OP_reg21:
3408 case DW_OP_reg22:
3409 case DW_OP_reg23:
3410 case DW_OP_reg24:
3411 case DW_OP_reg25:
3412 case DW_OP_reg26:
3413 case DW_OP_reg27:
3414 case DW_OP_reg28:
3415 case DW_OP_reg29:
3416 case DW_OP_reg30:
3417 case DW_OP_reg31:
3418 cfa->reg = op - DW_OP_reg0;
3419 break;
3420 case DW_OP_regx:
3421 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3422 break;
3423 case DW_OP_breg0:
3424 case DW_OP_breg1:
3425 case DW_OP_breg2:
3426 case DW_OP_breg3:
3427 case DW_OP_breg4:
3428 case DW_OP_breg5:
3429 case DW_OP_breg6:
3430 case DW_OP_breg7:
3431 case DW_OP_breg8:
3432 case DW_OP_breg9:
3433 case DW_OP_breg10:
3434 case DW_OP_breg11:
3435 case DW_OP_breg12:
3436 case DW_OP_breg13:
3437 case DW_OP_breg14:
3438 case DW_OP_breg15:
3439 case DW_OP_breg16:
3440 case DW_OP_breg17:
3441 case DW_OP_breg18:
3442 case DW_OP_breg19:
3443 case DW_OP_breg20:
3444 case DW_OP_breg21:
3445 case DW_OP_breg22:
3446 case DW_OP_breg23:
3447 case DW_OP_breg24:
3448 case DW_OP_breg25:
3449 case DW_OP_breg26:
3450 case DW_OP_breg27:
3451 case DW_OP_breg28:
3452 case DW_OP_breg29:
3453 case DW_OP_breg30:
3454 case DW_OP_breg31:
3455 cfa->reg = op - DW_OP_breg0;
3456 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3457 break;
3458 case DW_OP_bregx:
3459 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3460 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3461 break;
3462 case DW_OP_deref:
3463 cfa->indirect = 1;
3464 break;
3465 case DW_OP_plus_uconst:
3466 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3467 break;
3468 default:
3469 internal_error ("DW_LOC_OP %s not implemented",
3470 dwarf_stack_op_name (ptr->dw_loc_opc));
3474 #endif /* .debug_frame support */
3476 /* And now, the support for symbolic debugging information. */
3477 #ifdef DWARF2_DEBUGGING_INFO
3479 /* .debug_str support. */
3480 static int output_indirect_string (void **, void *);
3482 static void dwarf2out_init (const char *);
3483 static void dwarf2out_finish (const char *);
3484 static void dwarf2out_define (unsigned int, const char *);
3485 static void dwarf2out_undef (unsigned int, const char *);
3486 static void dwarf2out_start_source_file (unsigned, const char *);
3487 static void dwarf2out_end_source_file (unsigned);
3488 static void dwarf2out_begin_block (unsigned, unsigned);
3489 static void dwarf2out_end_block (unsigned, unsigned);
3490 static bool dwarf2out_ignore_block (tree);
3491 static void dwarf2out_global_decl (tree);
3492 static void dwarf2out_type_decl (tree, int);
3493 static void dwarf2out_imported_module_or_decl (tree, tree);
3494 static void dwarf2out_abstract_function (tree);
3495 static void dwarf2out_var_location (rtx);
3496 static void dwarf2out_begin_function (tree);
3497 static void dwarf2out_switch_text_section (void);
3499 /* The debug hooks structure. */
3501 const struct gcc_debug_hooks dwarf2_debug_hooks =
3503 dwarf2out_init,
3504 dwarf2out_finish,
3505 dwarf2out_define,
3506 dwarf2out_undef,
3507 dwarf2out_start_source_file,
3508 dwarf2out_end_source_file,
3509 dwarf2out_begin_block,
3510 dwarf2out_end_block,
3511 dwarf2out_ignore_block,
3512 dwarf2out_source_line,
3513 dwarf2out_begin_prologue,
3514 debug_nothing_int_charstar, /* end_prologue */
3515 dwarf2out_end_epilogue,
3516 dwarf2out_begin_function,
3517 debug_nothing_int, /* end_function */
3518 dwarf2out_decl, /* function_decl */
3519 dwarf2out_global_decl,
3520 dwarf2out_type_decl, /* type_decl */
3521 dwarf2out_imported_module_or_decl,
3522 debug_nothing_tree, /* deferred_inline_function */
3523 /* The DWARF 2 backend tries to reduce debugging bloat by not
3524 emitting the abstract description of inline functions until
3525 something tries to reference them. */
3526 dwarf2out_abstract_function, /* outlining_inline_function */
3527 debug_nothing_rtx, /* label */
3528 debug_nothing_int, /* handle_pch */
3529 dwarf2out_var_location,
3530 dwarf2out_switch_text_section,
3531 1 /* start_end_main_source_file */
3533 #endif
3535 /* NOTE: In the comments in this file, many references are made to
3536 "Debugging Information Entries". This term is abbreviated as `DIE'
3537 throughout the remainder of this file. */
3539 /* An internal representation of the DWARF output is built, and then
3540 walked to generate the DWARF debugging info. The walk of the internal
3541 representation is done after the entire program has been compiled.
3542 The types below are used to describe the internal representation. */
3544 /* Various DIE's use offsets relative to the beginning of the
3545 .debug_info section to refer to each other. */
3547 typedef long int dw_offset;
3549 /* Define typedefs here to avoid circular dependencies. */
3551 typedef struct dw_attr_struct *dw_attr_ref;
3552 typedef struct dw_line_info_struct *dw_line_info_ref;
3553 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3554 typedef struct pubname_struct *pubname_ref;
3555 typedef struct dw_ranges_struct *dw_ranges_ref;
3557 /* Each entry in the line_info_table maintains the file and
3558 line number associated with the label generated for that
3559 entry. The label gives the PC value associated with
3560 the line number entry. */
3562 typedef struct dw_line_info_struct GTY(())
3564 unsigned long dw_file_num;
3565 unsigned long dw_line_num;
3567 dw_line_info_entry;
3569 /* Line information for functions in separate sections; each one gets its
3570 own sequence. */
3571 typedef struct dw_separate_line_info_struct GTY(())
3573 unsigned long dw_file_num;
3574 unsigned long dw_line_num;
3575 unsigned long function;
3577 dw_separate_line_info_entry;
3579 /* Each DIE attribute has a field specifying the attribute kind,
3580 a link to the next attribute in the chain, and an attribute value.
3581 Attributes are typically linked below the DIE they modify. */
3583 typedef struct dw_attr_struct GTY(())
3585 enum dwarf_attribute dw_attr;
3586 dw_attr_ref dw_attr_next;
3587 dw_val_node dw_attr_val;
3589 dw_attr_node;
3591 /* The Debugging Information Entry (DIE) structure */
3593 typedef struct die_struct GTY(())
3595 enum dwarf_tag die_tag;
3596 char *die_symbol;
3597 dw_attr_ref die_attr;
3598 dw_die_ref die_parent;
3599 dw_die_ref die_child;
3600 dw_die_ref die_sib;
3601 dw_die_ref die_definition; /* ref from a specification to its definition */
3602 dw_offset die_offset;
3603 unsigned long die_abbrev;
3604 int die_mark;
3605 unsigned int decl_id;
3607 die_node;
3609 /* The pubname structure */
3611 typedef struct pubname_struct GTY(())
3613 dw_die_ref die;
3614 char *name;
3616 pubname_entry;
3618 struct dw_ranges_struct GTY(())
3620 int block_num;
3623 /* The limbo die list structure. */
3624 typedef struct limbo_die_struct GTY(())
3626 dw_die_ref die;
3627 tree created_for;
3628 struct limbo_die_struct *next;
3630 limbo_die_node;
3632 /* How to start an assembler comment. */
3633 #ifndef ASM_COMMENT_START
3634 #define ASM_COMMENT_START ";#"
3635 #endif
3637 /* Define a macro which returns nonzero for a TYPE_DECL which was
3638 implicitly generated for a tagged type.
3640 Note that unlike the gcc front end (which generates a NULL named
3641 TYPE_DECL node for each complete tagged type, each array type, and
3642 each function type node created) the g++ front end generates a
3643 _named_ TYPE_DECL node for each tagged type node created.
3644 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3645 generate a DW_TAG_typedef DIE for them. */
3647 #define TYPE_DECL_IS_STUB(decl) \
3648 (DECL_NAME (decl) == NULL_TREE \
3649 || (DECL_ARTIFICIAL (decl) \
3650 && is_tagged_type (TREE_TYPE (decl)) \
3651 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3652 /* This is necessary for stub decls that \
3653 appear in nested inline functions. */ \
3654 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3655 && (decl_ultimate_origin (decl) \
3656 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3658 /* Information concerning the compilation unit's programming
3659 language, and compiler version. */
3661 /* Fixed size portion of the DWARF compilation unit header. */
3662 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3663 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3665 /* Fixed size portion of public names info. */
3666 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3668 /* Fixed size portion of the address range info. */
3669 #define DWARF_ARANGES_HEADER_SIZE \
3670 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3671 DWARF2_ADDR_SIZE * 2) \
3672 - DWARF_INITIAL_LENGTH_SIZE)
3674 /* Size of padding portion in the address range info. It must be
3675 aligned to twice the pointer size. */
3676 #define DWARF_ARANGES_PAD_SIZE \
3677 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3678 DWARF2_ADDR_SIZE * 2) \
3679 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3681 /* Use assembler line directives if available. */
3682 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3683 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3684 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3685 #else
3686 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3687 #endif
3688 #endif
3690 /* Minimum line offset in a special line info. opcode.
3691 This value was chosen to give a reasonable range of values. */
3692 #define DWARF_LINE_BASE -10
3694 /* First special line opcode - leave room for the standard opcodes. */
3695 #define DWARF_LINE_OPCODE_BASE 10
3697 /* Range of line offsets in a special line info. opcode. */
3698 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3700 /* Flag that indicates the initial value of the is_stmt_start flag.
3701 In the present implementation, we do not mark any lines as
3702 the beginning of a source statement, because that information
3703 is not made available by the GCC front-end. */
3704 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3706 #ifdef DWARF2_DEBUGGING_INFO
3707 /* This location is used by calc_die_sizes() to keep track
3708 the offset of each DIE within the .debug_info section. */
3709 static unsigned long next_die_offset;
3710 #endif
3712 /* Record the root of the DIE's built for the current compilation unit. */
3713 static GTY(()) dw_die_ref comp_unit_die;
3715 /* A list of DIEs with a NULL parent waiting to be relocated. */
3716 static GTY(()) limbo_die_node *limbo_die_list;
3718 /* Filenames referenced by this compilation unit. */
3719 static GTY(()) varray_type file_table;
3720 static GTY(()) varray_type file_table_emitted;
3721 static GTY(()) size_t file_table_last_lookup_index;
3723 /* A hash table of references to DIE's that describe declarations.
3724 The key is a DECL_UID() which is a unique number identifying each decl. */
3725 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3727 /* Node of the variable location list. */
3728 struct var_loc_node GTY ((chain_next ("%h.next")))
3730 rtx GTY (()) var_loc_note;
3731 const char * GTY (()) label;
3732 const char * GTY (()) section_label;
3733 struct var_loc_node * GTY (()) next;
3736 /* Variable location list. */
3737 struct var_loc_list_def GTY (())
3739 struct var_loc_node * GTY (()) first;
3741 /* Do not mark the last element of the chained list because
3742 it is marked through the chain. */
3743 struct var_loc_node * GTY ((skip ("%h"))) last;
3745 /* DECL_UID of the variable decl. */
3746 unsigned int decl_id;
3748 typedef struct var_loc_list_def var_loc_list;
3751 /* Table of decl location linked lists. */
3752 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3754 /* A pointer to the base of a list of references to DIE's that
3755 are uniquely identified by their tag, presence/absence of
3756 children DIE's, and list of attribute/value pairs. */
3757 static GTY((length ("abbrev_die_table_allocated")))
3758 dw_die_ref *abbrev_die_table;
3760 /* Number of elements currently allocated for abbrev_die_table. */
3761 static GTY(()) unsigned abbrev_die_table_allocated;
3763 /* Number of elements in type_die_table currently in use. */
3764 static GTY(()) unsigned abbrev_die_table_in_use;
3766 /* Size (in elements) of increments by which we may expand the
3767 abbrev_die_table. */
3768 #define ABBREV_DIE_TABLE_INCREMENT 256
3770 /* A pointer to the base of a table that contains line information
3771 for each source code line in .text in the compilation unit. */
3772 static GTY((length ("line_info_table_allocated")))
3773 dw_line_info_ref line_info_table;
3775 /* Number of elements currently allocated for line_info_table. */
3776 static GTY(()) unsigned line_info_table_allocated;
3778 /* Number of elements in line_info_table currently in use. */
3779 static GTY(()) unsigned line_info_table_in_use;
3781 /* True if the compilation unit contains more than one .text section. */
3782 static GTY(()) bool have_switched_text_section = false;
3784 /* A pointer to the base of a table that contains line information
3785 for each source code line outside of .text in the compilation unit. */
3786 static GTY ((length ("separate_line_info_table_allocated")))
3787 dw_separate_line_info_ref separate_line_info_table;
3789 /* Number of elements currently allocated for separate_line_info_table. */
3790 static GTY(()) unsigned separate_line_info_table_allocated;
3792 /* Number of elements in separate_line_info_table currently in use. */
3793 static GTY(()) unsigned separate_line_info_table_in_use;
3795 /* Size (in elements) of increments by which we may expand the
3796 line_info_table. */
3797 #define LINE_INFO_TABLE_INCREMENT 1024
3799 /* A pointer to the base of a table that contains a list of publicly
3800 accessible names. */
3801 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3803 /* Number of elements currently allocated for pubname_table. */
3804 static GTY(()) unsigned pubname_table_allocated;
3806 /* Number of elements in pubname_table currently in use. */
3807 static GTY(()) unsigned pubname_table_in_use;
3809 /* Size (in elements) of increments by which we may expand the
3810 pubname_table. */
3811 #define PUBNAME_TABLE_INCREMENT 64
3813 /* Array of dies for which we should generate .debug_arange info. */
3814 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3816 /* Number of elements currently allocated for arange_table. */
3817 static GTY(()) unsigned arange_table_allocated;
3819 /* Number of elements in arange_table currently in use. */
3820 static GTY(()) unsigned arange_table_in_use;
3822 /* Size (in elements) of increments by which we may expand the
3823 arange_table. */
3824 #define ARANGE_TABLE_INCREMENT 64
3826 /* Array of dies for which we should generate .debug_ranges info. */
3827 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3829 /* Number of elements currently allocated for ranges_table. */
3830 static GTY(()) unsigned ranges_table_allocated;
3832 /* Number of elements in ranges_table currently in use. */
3833 static GTY(()) unsigned ranges_table_in_use;
3835 /* Size (in elements) of increments by which we may expand the
3836 ranges_table. */
3837 #define RANGES_TABLE_INCREMENT 64
3839 /* Whether we have location lists that need outputting */
3840 static GTY(()) unsigned have_location_lists;
3842 /* Unique label counter. */
3843 static GTY(()) unsigned int loclabel_num;
3845 #ifdef DWARF2_DEBUGGING_INFO
3846 /* Record whether the function being analyzed contains inlined functions. */
3847 static int current_function_has_inlines;
3848 #endif
3849 #if 0 && defined (MIPS_DEBUGGING_INFO)
3850 static int comp_unit_has_inlines;
3851 #endif
3853 /* Number of file tables emitted in maybe_emit_file(). */
3854 static GTY(()) int emitcount = 0;
3856 /* Number of internal labels generated by gen_internal_sym(). */
3857 static GTY(()) int label_num;
3859 #ifdef DWARF2_DEBUGGING_INFO
3861 /* Offset from the "steady-state frame pointer" to the CFA,
3862 within the current function. */
3863 static HOST_WIDE_INT frame_pointer_cfa_offset;
3865 /* Forward declarations for functions defined in this file. */
3867 static int is_pseudo_reg (rtx);
3868 static tree type_main_variant (tree);
3869 static int is_tagged_type (tree);
3870 static const char *dwarf_tag_name (unsigned);
3871 static const char *dwarf_attr_name (unsigned);
3872 static const char *dwarf_form_name (unsigned);
3873 static tree decl_ultimate_origin (tree);
3874 static tree block_ultimate_origin (tree);
3875 static tree decl_class_context (tree);
3876 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3877 static inline enum dw_val_class AT_class (dw_attr_ref);
3878 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3879 static inline unsigned AT_flag (dw_attr_ref);
3880 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3881 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3882 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3883 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3884 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3885 unsigned long);
3886 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3887 unsigned int, unsigned char *);
3888 static hashval_t debug_str_do_hash (const void *);
3889 static int debug_str_eq (const void *, const void *);
3890 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3891 static inline const char *AT_string (dw_attr_ref);
3892 static int AT_string_form (dw_attr_ref);
3893 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3894 static void add_AT_specification (dw_die_ref, dw_die_ref);
3895 static inline dw_die_ref AT_ref (dw_attr_ref);
3896 static inline int AT_ref_external (dw_attr_ref);
3897 static inline void set_AT_ref_external (dw_attr_ref, int);
3898 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3899 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3900 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3901 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3902 dw_loc_list_ref);
3903 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3904 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3905 static inline rtx AT_addr (dw_attr_ref);
3906 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3907 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3908 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3909 unsigned HOST_WIDE_INT);
3910 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3911 unsigned long);
3912 static inline const char *AT_lbl (dw_attr_ref);
3913 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3914 static const char *get_AT_low_pc (dw_die_ref);
3915 static const char *get_AT_hi_pc (dw_die_ref);
3916 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3917 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3918 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3919 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3920 static bool is_c_family (void);
3921 static bool is_cxx (void);
3922 static bool is_java (void);
3923 static bool is_fortran (void);
3924 static bool is_ada (void);
3925 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3926 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3927 static inline void free_die (dw_die_ref);
3928 static void remove_children (dw_die_ref);
3929 static void add_child_die (dw_die_ref, dw_die_ref);
3930 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3931 static dw_die_ref lookup_type_die (tree);
3932 static void equate_type_number_to_die (tree, dw_die_ref);
3933 static hashval_t decl_die_table_hash (const void *);
3934 static int decl_die_table_eq (const void *, const void *);
3935 static dw_die_ref lookup_decl_die (tree);
3936 static hashval_t decl_loc_table_hash (const void *);
3937 static int decl_loc_table_eq (const void *, const void *);
3938 static var_loc_list *lookup_decl_loc (tree);
3939 static void equate_decl_number_to_die (tree, dw_die_ref);
3940 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3941 static void print_spaces (FILE *);
3942 static void print_die (dw_die_ref, FILE *);
3943 static void print_dwarf_line_table (FILE *);
3944 static void reverse_die_lists (dw_die_ref);
3945 static void reverse_all_dies (dw_die_ref);
3946 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3947 static dw_die_ref pop_compile_unit (dw_die_ref);
3948 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3949 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3950 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3951 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3952 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3953 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3954 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3955 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3956 static void compute_section_prefix (dw_die_ref);
3957 static int is_type_die (dw_die_ref);
3958 static int is_comdat_die (dw_die_ref);
3959 static int is_symbol_die (dw_die_ref);
3960 static void assign_symbol_names (dw_die_ref);
3961 static void break_out_includes (dw_die_ref);
3962 static hashval_t htab_cu_hash (const void *);
3963 static int htab_cu_eq (const void *, const void *);
3964 static void htab_cu_del (void *);
3965 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3966 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3967 static void add_sibling_attributes (dw_die_ref);
3968 static void build_abbrev_table (dw_die_ref);
3969 static void output_location_lists (dw_die_ref);
3970 static int constant_size (long unsigned);
3971 static unsigned long size_of_die (dw_die_ref);
3972 static void calc_die_sizes (dw_die_ref);
3973 static void mark_dies (dw_die_ref);
3974 static void unmark_dies (dw_die_ref);
3975 static void unmark_all_dies (dw_die_ref);
3976 static unsigned long size_of_pubnames (void);
3977 static unsigned long size_of_aranges (void);
3978 static enum dwarf_form value_format (dw_attr_ref);
3979 static void output_value_format (dw_attr_ref);
3980 static void output_abbrev_section (void);
3981 static void output_die_symbol (dw_die_ref);
3982 static void output_die (dw_die_ref);
3983 static void output_compilation_unit_header (void);
3984 static void output_comp_unit (dw_die_ref, int);
3985 static const char *dwarf2_name (tree, int);
3986 static void add_pubname (tree, dw_die_ref);
3987 static void output_pubnames (void);
3988 static void add_arange (tree, dw_die_ref);
3989 static void output_aranges (void);
3990 static unsigned int add_ranges (tree);
3991 static void output_ranges (void);
3992 static void output_line_info (void);
3993 static void output_file_names (void);
3994 static dw_die_ref base_type_die (tree);
3995 static tree root_type (tree);
3996 static int is_base_type (tree);
3997 static bool is_subrange_type (tree);
3998 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3999 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4000 static int type_is_enum (tree);
4001 static unsigned int dbx_reg_number (rtx);
4002 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4003 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4004 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4005 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4006 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4007 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4008 static int is_based_loc (rtx);
4009 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4010 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4011 static dw_loc_descr_ref loc_descriptor (rtx);
4012 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4013 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4014 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4015 static tree field_type (tree);
4016 static unsigned int simple_type_align_in_bits (tree);
4017 static unsigned int simple_decl_align_in_bits (tree);
4018 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4019 static HOST_WIDE_INT field_byte_offset (tree);
4020 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4021 dw_loc_descr_ref);
4022 static void add_data_member_location_attribute (dw_die_ref, tree);
4023 static void add_const_value_attribute (dw_die_ref, rtx);
4024 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4025 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4026 static void insert_float (rtx, unsigned char *);
4027 static rtx rtl_for_decl_location (tree);
4028 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4029 enum dwarf_attribute);
4030 static void tree_add_const_value_attribute (dw_die_ref, tree);
4031 static void add_name_attribute (dw_die_ref, const char *);
4032 static void add_comp_dir_attribute (dw_die_ref);
4033 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4034 static void add_subscript_info (dw_die_ref, tree);
4035 static void add_byte_size_attribute (dw_die_ref, tree);
4036 static void add_bit_offset_attribute (dw_die_ref, tree);
4037 static void add_bit_size_attribute (dw_die_ref, tree);
4038 static void add_prototyped_attribute (dw_die_ref, tree);
4039 static void add_abstract_origin_attribute (dw_die_ref, tree);
4040 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4041 static void add_src_coords_attributes (dw_die_ref, tree);
4042 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4043 static void push_decl_scope (tree);
4044 static void pop_decl_scope (void);
4045 static dw_die_ref scope_die_for (tree, dw_die_ref);
4046 static inline int local_scope_p (dw_die_ref);
4047 static inline int class_or_namespace_scope_p (dw_die_ref);
4048 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4049 static void add_calling_convention_attribute (dw_die_ref, tree);
4050 static const char *type_tag (tree);
4051 static tree member_declared_type (tree);
4052 #if 0
4053 static const char *decl_start_label (tree);
4054 #endif
4055 static void gen_array_type_die (tree, dw_die_ref);
4056 #if 0
4057 static void gen_entry_point_die (tree, dw_die_ref);
4058 #endif
4059 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4060 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4061 static void gen_inlined_union_type_die (tree, dw_die_ref);
4062 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4063 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4064 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4065 static void gen_formal_types_die (tree, dw_die_ref);
4066 static void gen_subprogram_die (tree, dw_die_ref);
4067 static void gen_variable_die (tree, dw_die_ref);
4068 static void gen_label_die (tree, dw_die_ref);
4069 static void gen_lexical_block_die (tree, dw_die_ref, int);
4070 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4071 static void gen_field_die (tree, dw_die_ref);
4072 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4073 static dw_die_ref gen_compile_unit_die (const char *);
4074 static void gen_string_type_die (tree, dw_die_ref);
4075 static void gen_inheritance_die (tree, tree, dw_die_ref);
4076 static void gen_member_die (tree, dw_die_ref);
4077 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4078 static void gen_subroutine_type_die (tree, dw_die_ref);
4079 static void gen_typedef_die (tree, dw_die_ref);
4080 static void gen_type_die (tree, dw_die_ref);
4081 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4082 static void gen_block_die (tree, dw_die_ref, int);
4083 static void decls_for_scope (tree, dw_die_ref, int);
4084 static int is_redundant_typedef (tree);
4085 static void gen_namespace_die (tree);
4086 static void gen_decl_die (tree, dw_die_ref);
4087 static dw_die_ref force_decl_die (tree);
4088 static dw_die_ref force_type_die (tree);
4089 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4090 static void declare_in_namespace (tree, dw_die_ref);
4091 static unsigned lookup_filename (const char *);
4092 static void init_file_table (void);
4093 static void retry_incomplete_types (void);
4094 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4095 static void splice_child_die (dw_die_ref, dw_die_ref);
4096 static int file_info_cmp (const void *, const void *);
4097 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4098 const char *, const char *, unsigned);
4099 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4100 const char *, const char *,
4101 const char *);
4102 static void output_loc_list (dw_loc_list_ref);
4103 static char *gen_internal_sym (const char *);
4105 static void prune_unmark_dies (dw_die_ref);
4106 static void prune_unused_types_mark (dw_die_ref, int);
4107 static void prune_unused_types_walk (dw_die_ref);
4108 static void prune_unused_types_walk_attribs (dw_die_ref);
4109 static void prune_unused_types_prune (dw_die_ref);
4110 static void prune_unused_types (void);
4111 static int maybe_emit_file (int);
4113 /* Section names used to hold DWARF debugging information. */
4114 #ifndef DEBUG_INFO_SECTION
4115 #define DEBUG_INFO_SECTION ".debug_info"
4116 #endif
4117 #ifndef DEBUG_ABBREV_SECTION
4118 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4119 #endif
4120 #ifndef DEBUG_ARANGES_SECTION
4121 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4122 #endif
4123 #ifndef DEBUG_MACINFO_SECTION
4124 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4125 #endif
4126 #ifndef DEBUG_LINE_SECTION
4127 #define DEBUG_LINE_SECTION ".debug_line"
4128 #endif
4129 #ifndef DEBUG_LOC_SECTION
4130 #define DEBUG_LOC_SECTION ".debug_loc"
4131 #endif
4132 #ifndef DEBUG_PUBNAMES_SECTION
4133 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4134 #endif
4135 #ifndef DEBUG_STR_SECTION
4136 #define DEBUG_STR_SECTION ".debug_str"
4137 #endif
4138 #ifndef DEBUG_RANGES_SECTION
4139 #define DEBUG_RANGES_SECTION ".debug_ranges"
4140 #endif
4142 /* Standard ELF section names for compiled code and data. */
4143 #ifndef TEXT_SECTION_NAME
4144 #define TEXT_SECTION_NAME ".text"
4145 #endif
4147 /* Section flags for .debug_str section. */
4148 #define DEBUG_STR_SECTION_FLAGS \
4149 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4150 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4151 : SECTION_DEBUG)
4153 /* Labels we insert at beginning sections we can reference instead of
4154 the section names themselves. */
4156 #ifndef TEXT_SECTION_LABEL
4157 #define TEXT_SECTION_LABEL "Ltext"
4158 #endif
4159 #ifndef COLD_TEXT_SECTION_LABEL
4160 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4161 #endif
4162 #ifndef DEBUG_LINE_SECTION_LABEL
4163 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4164 #endif
4165 #ifndef DEBUG_INFO_SECTION_LABEL
4166 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4167 #endif
4168 #ifndef DEBUG_ABBREV_SECTION_LABEL
4169 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4170 #endif
4171 #ifndef DEBUG_LOC_SECTION_LABEL
4172 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4173 #endif
4174 #ifndef DEBUG_RANGES_SECTION_LABEL
4175 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4176 #endif
4177 #ifndef DEBUG_MACINFO_SECTION_LABEL
4178 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4179 #endif
4181 /* Definitions of defaults for formats and names of various special
4182 (artificial) labels which may be generated within this file (when the -g
4183 options is used and DWARF2_DEBUGGING_INFO is in effect.
4184 If necessary, these may be overridden from within the tm.h file, but
4185 typically, overriding these defaults is unnecessary. */
4187 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4188 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4189 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4190 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4191 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4192 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4193 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4194 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4195 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4196 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4198 #ifndef TEXT_END_LABEL
4199 #define TEXT_END_LABEL "Letext"
4200 #endif
4201 #ifndef COLD_END_LABEL
4202 #define COLD_END_LABEL "Letext_cold"
4203 #endif
4204 #ifndef BLOCK_BEGIN_LABEL
4205 #define BLOCK_BEGIN_LABEL "LBB"
4206 #endif
4207 #ifndef BLOCK_END_LABEL
4208 #define BLOCK_END_LABEL "LBE"
4209 #endif
4210 #ifndef LINE_CODE_LABEL
4211 #define LINE_CODE_LABEL "LM"
4212 #endif
4213 #ifndef SEPARATE_LINE_CODE_LABEL
4214 #define SEPARATE_LINE_CODE_LABEL "LSM"
4215 #endif
4217 /* We allow a language front-end to designate a function that is to be
4218 called to "demangle" any name before it is put into a DIE. */
4220 static const char *(*demangle_name_func) (const char *);
4222 void
4223 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4225 demangle_name_func = func;
4228 /* Test if rtl node points to a pseudo register. */
4230 static inline int
4231 is_pseudo_reg (rtx rtl)
4233 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4234 || (GET_CODE (rtl) == SUBREG
4235 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4238 /* Return a reference to a type, with its const and volatile qualifiers
4239 removed. */
4241 static inline tree
4242 type_main_variant (tree type)
4244 type = TYPE_MAIN_VARIANT (type);
4246 /* ??? There really should be only one main variant among any group of
4247 variants of a given type (and all of the MAIN_VARIANT values for all
4248 members of the group should point to that one type) but sometimes the C
4249 front-end messes this up for array types, so we work around that bug
4250 here. */
4251 if (TREE_CODE (type) == ARRAY_TYPE)
4252 while (type != TYPE_MAIN_VARIANT (type))
4253 type = TYPE_MAIN_VARIANT (type);
4255 return type;
4258 /* Return nonzero if the given type node represents a tagged type. */
4260 static inline int
4261 is_tagged_type (tree type)
4263 enum tree_code code = TREE_CODE (type);
4265 return (code == RECORD_TYPE || code == UNION_TYPE
4266 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4269 /* Convert a DIE tag into its string name. */
4271 static const char *
4272 dwarf_tag_name (unsigned int tag)
4274 switch (tag)
4276 case DW_TAG_padding:
4277 return "DW_TAG_padding";
4278 case DW_TAG_array_type:
4279 return "DW_TAG_array_type";
4280 case DW_TAG_class_type:
4281 return "DW_TAG_class_type";
4282 case DW_TAG_entry_point:
4283 return "DW_TAG_entry_point";
4284 case DW_TAG_enumeration_type:
4285 return "DW_TAG_enumeration_type";
4286 case DW_TAG_formal_parameter:
4287 return "DW_TAG_formal_parameter";
4288 case DW_TAG_imported_declaration:
4289 return "DW_TAG_imported_declaration";
4290 case DW_TAG_label:
4291 return "DW_TAG_label";
4292 case DW_TAG_lexical_block:
4293 return "DW_TAG_lexical_block";
4294 case DW_TAG_member:
4295 return "DW_TAG_member";
4296 case DW_TAG_pointer_type:
4297 return "DW_TAG_pointer_type";
4298 case DW_TAG_reference_type:
4299 return "DW_TAG_reference_type";
4300 case DW_TAG_compile_unit:
4301 return "DW_TAG_compile_unit";
4302 case DW_TAG_string_type:
4303 return "DW_TAG_string_type";
4304 case DW_TAG_structure_type:
4305 return "DW_TAG_structure_type";
4306 case DW_TAG_subroutine_type:
4307 return "DW_TAG_subroutine_type";
4308 case DW_TAG_typedef:
4309 return "DW_TAG_typedef";
4310 case DW_TAG_union_type:
4311 return "DW_TAG_union_type";
4312 case DW_TAG_unspecified_parameters:
4313 return "DW_TAG_unspecified_parameters";
4314 case DW_TAG_variant:
4315 return "DW_TAG_variant";
4316 case DW_TAG_common_block:
4317 return "DW_TAG_common_block";
4318 case DW_TAG_common_inclusion:
4319 return "DW_TAG_common_inclusion";
4320 case DW_TAG_inheritance:
4321 return "DW_TAG_inheritance";
4322 case DW_TAG_inlined_subroutine:
4323 return "DW_TAG_inlined_subroutine";
4324 case DW_TAG_module:
4325 return "DW_TAG_module";
4326 case DW_TAG_ptr_to_member_type:
4327 return "DW_TAG_ptr_to_member_type";
4328 case DW_TAG_set_type:
4329 return "DW_TAG_set_type";
4330 case DW_TAG_subrange_type:
4331 return "DW_TAG_subrange_type";
4332 case DW_TAG_with_stmt:
4333 return "DW_TAG_with_stmt";
4334 case DW_TAG_access_declaration:
4335 return "DW_TAG_access_declaration";
4336 case DW_TAG_base_type:
4337 return "DW_TAG_base_type";
4338 case DW_TAG_catch_block:
4339 return "DW_TAG_catch_block";
4340 case DW_TAG_const_type:
4341 return "DW_TAG_const_type";
4342 case DW_TAG_constant:
4343 return "DW_TAG_constant";
4344 case DW_TAG_enumerator:
4345 return "DW_TAG_enumerator";
4346 case DW_TAG_file_type:
4347 return "DW_TAG_file_type";
4348 case DW_TAG_friend:
4349 return "DW_TAG_friend";
4350 case DW_TAG_namelist:
4351 return "DW_TAG_namelist";
4352 case DW_TAG_namelist_item:
4353 return "DW_TAG_namelist_item";
4354 case DW_TAG_namespace:
4355 return "DW_TAG_namespace";
4356 case DW_TAG_packed_type:
4357 return "DW_TAG_packed_type";
4358 case DW_TAG_subprogram:
4359 return "DW_TAG_subprogram";
4360 case DW_TAG_template_type_param:
4361 return "DW_TAG_template_type_param";
4362 case DW_TAG_template_value_param:
4363 return "DW_TAG_template_value_param";
4364 case DW_TAG_thrown_type:
4365 return "DW_TAG_thrown_type";
4366 case DW_TAG_try_block:
4367 return "DW_TAG_try_block";
4368 case DW_TAG_variant_part:
4369 return "DW_TAG_variant_part";
4370 case DW_TAG_variable:
4371 return "DW_TAG_variable";
4372 case DW_TAG_volatile_type:
4373 return "DW_TAG_volatile_type";
4374 case DW_TAG_imported_module:
4375 return "DW_TAG_imported_module";
4376 case DW_TAG_MIPS_loop:
4377 return "DW_TAG_MIPS_loop";
4378 case DW_TAG_format_label:
4379 return "DW_TAG_format_label";
4380 case DW_TAG_function_template:
4381 return "DW_TAG_function_template";
4382 case DW_TAG_class_template:
4383 return "DW_TAG_class_template";
4384 case DW_TAG_GNU_BINCL:
4385 return "DW_TAG_GNU_BINCL";
4386 case DW_TAG_GNU_EINCL:
4387 return "DW_TAG_GNU_EINCL";
4388 default:
4389 return "DW_TAG_<unknown>";
4393 /* Convert a DWARF attribute code into its string name. */
4395 static const char *
4396 dwarf_attr_name (unsigned int attr)
4398 switch (attr)
4400 case DW_AT_sibling:
4401 return "DW_AT_sibling";
4402 case DW_AT_location:
4403 return "DW_AT_location";
4404 case DW_AT_name:
4405 return "DW_AT_name";
4406 case DW_AT_ordering:
4407 return "DW_AT_ordering";
4408 case DW_AT_subscr_data:
4409 return "DW_AT_subscr_data";
4410 case DW_AT_byte_size:
4411 return "DW_AT_byte_size";
4412 case DW_AT_bit_offset:
4413 return "DW_AT_bit_offset";
4414 case DW_AT_bit_size:
4415 return "DW_AT_bit_size";
4416 case DW_AT_element_list:
4417 return "DW_AT_element_list";
4418 case DW_AT_stmt_list:
4419 return "DW_AT_stmt_list";
4420 case DW_AT_low_pc:
4421 return "DW_AT_low_pc";
4422 case DW_AT_high_pc:
4423 return "DW_AT_high_pc";
4424 case DW_AT_language:
4425 return "DW_AT_language";
4426 case DW_AT_member:
4427 return "DW_AT_member";
4428 case DW_AT_discr:
4429 return "DW_AT_discr";
4430 case DW_AT_discr_value:
4431 return "DW_AT_discr_value";
4432 case DW_AT_visibility:
4433 return "DW_AT_visibility";
4434 case DW_AT_import:
4435 return "DW_AT_import";
4436 case DW_AT_string_length:
4437 return "DW_AT_string_length";
4438 case DW_AT_common_reference:
4439 return "DW_AT_common_reference";
4440 case DW_AT_comp_dir:
4441 return "DW_AT_comp_dir";
4442 case DW_AT_const_value:
4443 return "DW_AT_const_value";
4444 case DW_AT_containing_type:
4445 return "DW_AT_containing_type";
4446 case DW_AT_default_value:
4447 return "DW_AT_default_value";
4448 case DW_AT_inline:
4449 return "DW_AT_inline";
4450 case DW_AT_is_optional:
4451 return "DW_AT_is_optional";
4452 case DW_AT_lower_bound:
4453 return "DW_AT_lower_bound";
4454 case DW_AT_producer:
4455 return "DW_AT_producer";
4456 case DW_AT_prototyped:
4457 return "DW_AT_prototyped";
4458 case DW_AT_return_addr:
4459 return "DW_AT_return_addr";
4460 case DW_AT_start_scope:
4461 return "DW_AT_start_scope";
4462 case DW_AT_stride_size:
4463 return "DW_AT_stride_size";
4464 case DW_AT_upper_bound:
4465 return "DW_AT_upper_bound";
4466 case DW_AT_abstract_origin:
4467 return "DW_AT_abstract_origin";
4468 case DW_AT_accessibility:
4469 return "DW_AT_accessibility";
4470 case DW_AT_address_class:
4471 return "DW_AT_address_class";
4472 case DW_AT_artificial:
4473 return "DW_AT_artificial";
4474 case DW_AT_base_types:
4475 return "DW_AT_base_types";
4476 case DW_AT_calling_convention:
4477 return "DW_AT_calling_convention";
4478 case DW_AT_count:
4479 return "DW_AT_count";
4480 case DW_AT_data_member_location:
4481 return "DW_AT_data_member_location";
4482 case DW_AT_decl_column:
4483 return "DW_AT_decl_column";
4484 case DW_AT_decl_file:
4485 return "DW_AT_decl_file";
4486 case DW_AT_decl_line:
4487 return "DW_AT_decl_line";
4488 case DW_AT_declaration:
4489 return "DW_AT_declaration";
4490 case DW_AT_discr_list:
4491 return "DW_AT_discr_list";
4492 case DW_AT_encoding:
4493 return "DW_AT_encoding";
4494 case DW_AT_external:
4495 return "DW_AT_external";
4496 case DW_AT_frame_base:
4497 return "DW_AT_frame_base";
4498 case DW_AT_friend:
4499 return "DW_AT_friend";
4500 case DW_AT_identifier_case:
4501 return "DW_AT_identifier_case";
4502 case DW_AT_macro_info:
4503 return "DW_AT_macro_info";
4504 case DW_AT_namelist_items:
4505 return "DW_AT_namelist_items";
4506 case DW_AT_priority:
4507 return "DW_AT_priority";
4508 case DW_AT_segment:
4509 return "DW_AT_segment";
4510 case DW_AT_specification:
4511 return "DW_AT_specification";
4512 case DW_AT_static_link:
4513 return "DW_AT_static_link";
4514 case DW_AT_type:
4515 return "DW_AT_type";
4516 case DW_AT_use_location:
4517 return "DW_AT_use_location";
4518 case DW_AT_variable_parameter:
4519 return "DW_AT_variable_parameter";
4520 case DW_AT_virtuality:
4521 return "DW_AT_virtuality";
4522 case DW_AT_vtable_elem_location:
4523 return "DW_AT_vtable_elem_location";
4525 case DW_AT_allocated:
4526 return "DW_AT_allocated";
4527 case DW_AT_associated:
4528 return "DW_AT_associated";
4529 case DW_AT_data_location:
4530 return "DW_AT_data_location";
4531 case DW_AT_stride:
4532 return "DW_AT_stride";
4533 case DW_AT_entry_pc:
4534 return "DW_AT_entry_pc";
4535 case DW_AT_use_UTF8:
4536 return "DW_AT_use_UTF8";
4537 case DW_AT_extension:
4538 return "DW_AT_extension";
4539 case DW_AT_ranges:
4540 return "DW_AT_ranges";
4541 case DW_AT_trampoline:
4542 return "DW_AT_trampoline";
4543 case DW_AT_call_column:
4544 return "DW_AT_call_column";
4545 case DW_AT_call_file:
4546 return "DW_AT_call_file";
4547 case DW_AT_call_line:
4548 return "DW_AT_call_line";
4550 case DW_AT_MIPS_fde:
4551 return "DW_AT_MIPS_fde";
4552 case DW_AT_MIPS_loop_begin:
4553 return "DW_AT_MIPS_loop_begin";
4554 case DW_AT_MIPS_tail_loop_begin:
4555 return "DW_AT_MIPS_tail_loop_begin";
4556 case DW_AT_MIPS_epilog_begin:
4557 return "DW_AT_MIPS_epilog_begin";
4558 case DW_AT_MIPS_loop_unroll_factor:
4559 return "DW_AT_MIPS_loop_unroll_factor";
4560 case DW_AT_MIPS_software_pipeline_depth:
4561 return "DW_AT_MIPS_software_pipeline_depth";
4562 case DW_AT_MIPS_linkage_name:
4563 return "DW_AT_MIPS_linkage_name";
4564 case DW_AT_MIPS_stride:
4565 return "DW_AT_MIPS_stride";
4566 case DW_AT_MIPS_abstract_name:
4567 return "DW_AT_MIPS_abstract_name";
4568 case DW_AT_MIPS_clone_origin:
4569 return "DW_AT_MIPS_clone_origin";
4570 case DW_AT_MIPS_has_inlines:
4571 return "DW_AT_MIPS_has_inlines";
4573 case DW_AT_sf_names:
4574 return "DW_AT_sf_names";
4575 case DW_AT_src_info:
4576 return "DW_AT_src_info";
4577 case DW_AT_mac_info:
4578 return "DW_AT_mac_info";
4579 case DW_AT_src_coords:
4580 return "DW_AT_src_coords";
4581 case DW_AT_body_begin:
4582 return "DW_AT_body_begin";
4583 case DW_AT_body_end:
4584 return "DW_AT_body_end";
4585 case DW_AT_GNU_vector:
4586 return "DW_AT_GNU_vector";
4588 case DW_AT_VMS_rtnbeg_pd_address:
4589 return "DW_AT_VMS_rtnbeg_pd_address";
4591 default:
4592 return "DW_AT_<unknown>";
4596 /* Convert a DWARF value form code into its string name. */
4598 static const char *
4599 dwarf_form_name (unsigned int form)
4601 switch (form)
4603 case DW_FORM_addr:
4604 return "DW_FORM_addr";
4605 case DW_FORM_block2:
4606 return "DW_FORM_block2";
4607 case DW_FORM_block4:
4608 return "DW_FORM_block4";
4609 case DW_FORM_data2:
4610 return "DW_FORM_data2";
4611 case DW_FORM_data4:
4612 return "DW_FORM_data4";
4613 case DW_FORM_data8:
4614 return "DW_FORM_data8";
4615 case DW_FORM_string:
4616 return "DW_FORM_string";
4617 case DW_FORM_block:
4618 return "DW_FORM_block";
4619 case DW_FORM_block1:
4620 return "DW_FORM_block1";
4621 case DW_FORM_data1:
4622 return "DW_FORM_data1";
4623 case DW_FORM_flag:
4624 return "DW_FORM_flag";
4625 case DW_FORM_sdata:
4626 return "DW_FORM_sdata";
4627 case DW_FORM_strp:
4628 return "DW_FORM_strp";
4629 case DW_FORM_udata:
4630 return "DW_FORM_udata";
4631 case DW_FORM_ref_addr:
4632 return "DW_FORM_ref_addr";
4633 case DW_FORM_ref1:
4634 return "DW_FORM_ref1";
4635 case DW_FORM_ref2:
4636 return "DW_FORM_ref2";
4637 case DW_FORM_ref4:
4638 return "DW_FORM_ref4";
4639 case DW_FORM_ref8:
4640 return "DW_FORM_ref8";
4641 case DW_FORM_ref_udata:
4642 return "DW_FORM_ref_udata";
4643 case DW_FORM_indirect:
4644 return "DW_FORM_indirect";
4645 default:
4646 return "DW_FORM_<unknown>";
4650 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4651 instance of an inlined instance of a decl which is local to an inline
4652 function, so we have to trace all of the way back through the origin chain
4653 to find out what sort of node actually served as the original seed for the
4654 given block. */
4656 static tree
4657 decl_ultimate_origin (tree decl)
4659 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4660 return NULL_TREE;
4662 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4663 nodes in the function to point to themselves; ignore that if
4664 we're trying to output the abstract instance of this function. */
4665 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4666 return NULL_TREE;
4668 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4669 most distant ancestor, this should never happen. */
4670 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4672 return DECL_ABSTRACT_ORIGIN (decl);
4675 /* Determine the "ultimate origin" of a block. The block may be an inlined
4676 instance of an inlined instance of a block which is local to an inline
4677 function, so we have to trace all of the way back through the origin chain
4678 to find out what sort of node actually served as the original seed for the
4679 given block. */
4681 static tree
4682 block_ultimate_origin (tree block)
4684 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4686 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4687 nodes in the function to point to themselves; ignore that if
4688 we're trying to output the abstract instance of this function. */
4689 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4690 return NULL_TREE;
4692 if (immediate_origin == NULL_TREE)
4693 return NULL_TREE;
4694 else
4696 tree ret_val;
4697 tree lookahead = immediate_origin;
4701 ret_val = lookahead;
4702 lookahead = (TREE_CODE (ret_val) == BLOCK
4703 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4705 while (lookahead != NULL && lookahead != ret_val);
4707 /* The block's abstract origin chain may not be the *ultimate* origin of
4708 the block. It could lead to a DECL that has an abstract origin set.
4709 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4710 will give us if it has one). Note that DECL's abstract origins are
4711 supposed to be the most distant ancestor (or so decl_ultimate_origin
4712 claims), so we don't need to loop following the DECL origins. */
4713 if (DECL_P (ret_val))
4714 return DECL_ORIGIN (ret_val);
4716 return ret_val;
4720 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4721 of a virtual function may refer to a base class, so we check the 'this'
4722 parameter. */
4724 static tree
4725 decl_class_context (tree decl)
4727 tree context = NULL_TREE;
4729 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4730 context = DECL_CONTEXT (decl);
4731 else
4732 context = TYPE_MAIN_VARIANT
4733 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4735 if (context && !TYPE_P (context))
4736 context = NULL_TREE;
4738 return context;
4741 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4742 addition order, and correct that in reverse_all_dies. */
4744 static inline void
4745 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4747 if (die != NULL && attr != NULL)
4749 attr->dw_attr_next = die->die_attr;
4750 die->die_attr = attr;
4754 static inline enum dw_val_class
4755 AT_class (dw_attr_ref a)
4757 return a->dw_attr_val.val_class;
4760 /* Add a flag value attribute to a DIE. */
4762 static inline void
4763 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4765 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4767 attr->dw_attr_next = NULL;
4768 attr->dw_attr = attr_kind;
4769 attr->dw_attr_val.val_class = dw_val_class_flag;
4770 attr->dw_attr_val.v.val_flag = flag;
4771 add_dwarf_attr (die, attr);
4774 static inline unsigned
4775 AT_flag (dw_attr_ref a)
4777 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4778 return a->dw_attr_val.v.val_flag;
4781 /* Add a signed integer attribute value to a DIE. */
4783 static inline void
4784 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4786 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4788 attr->dw_attr_next = NULL;
4789 attr->dw_attr = attr_kind;
4790 attr->dw_attr_val.val_class = dw_val_class_const;
4791 attr->dw_attr_val.v.val_int = int_val;
4792 add_dwarf_attr (die, attr);
4795 static inline HOST_WIDE_INT
4796 AT_int (dw_attr_ref a)
4798 gcc_assert (a && AT_class (a) == dw_val_class_const);
4799 return a->dw_attr_val.v.val_int;
4802 /* Add an unsigned integer attribute value to a DIE. */
4804 static inline void
4805 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4806 unsigned HOST_WIDE_INT unsigned_val)
4808 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4810 attr->dw_attr_next = NULL;
4811 attr->dw_attr = attr_kind;
4812 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4813 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4814 add_dwarf_attr (die, attr);
4817 static inline unsigned HOST_WIDE_INT
4818 AT_unsigned (dw_attr_ref a)
4820 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4821 return a->dw_attr_val.v.val_unsigned;
4824 /* Add an unsigned double integer attribute value to a DIE. */
4826 static inline void
4827 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4828 long unsigned int val_hi, long unsigned int val_low)
4830 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4832 attr->dw_attr_next = NULL;
4833 attr->dw_attr = attr_kind;
4834 attr->dw_attr_val.val_class = dw_val_class_long_long;
4835 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4836 attr->dw_attr_val.v.val_long_long.low = val_low;
4837 add_dwarf_attr (die, attr);
4840 /* Add a floating point attribute value to a DIE and return it. */
4842 static inline void
4843 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4844 unsigned int length, unsigned int elt_size, unsigned char *array)
4846 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4848 attr->dw_attr_next = NULL;
4849 attr->dw_attr = attr_kind;
4850 attr->dw_attr_val.val_class = dw_val_class_vec;
4851 attr->dw_attr_val.v.val_vec.length = length;
4852 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4853 attr->dw_attr_val.v.val_vec.array = array;
4854 add_dwarf_attr (die, attr);
4857 /* Hash and equality functions for debug_str_hash. */
4859 static hashval_t
4860 debug_str_do_hash (const void *x)
4862 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4865 static int
4866 debug_str_eq (const void *x1, const void *x2)
4868 return strcmp ((((const struct indirect_string_node *)x1)->str),
4869 (const char *)x2) == 0;
4872 /* Add a string attribute value to a DIE. */
4874 static inline void
4875 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4877 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4878 struct indirect_string_node *node;
4879 void **slot;
4881 if (! debug_str_hash)
4882 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4883 debug_str_eq, NULL);
4885 slot = htab_find_slot_with_hash (debug_str_hash, str,
4886 htab_hash_string (str), INSERT);
4887 if (*slot == NULL)
4888 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4889 node = (struct indirect_string_node *) *slot;
4890 node->str = ggc_strdup (str);
4891 node->refcount++;
4893 attr->dw_attr_next = NULL;
4894 attr->dw_attr = attr_kind;
4895 attr->dw_attr_val.val_class = dw_val_class_str;
4896 attr->dw_attr_val.v.val_str = node;
4897 add_dwarf_attr (die, attr);
4900 static inline const char *
4901 AT_string (dw_attr_ref a)
4903 gcc_assert (a && AT_class (a) == dw_val_class_str);
4904 return a->dw_attr_val.v.val_str->str;
4907 /* Find out whether a string should be output inline in DIE
4908 or out-of-line in .debug_str section. */
4910 static int
4911 AT_string_form (dw_attr_ref a)
4913 struct indirect_string_node *node;
4914 unsigned int len;
4915 char label[32];
4917 gcc_assert (a && AT_class (a) == dw_val_class_str);
4919 node = a->dw_attr_val.v.val_str;
4920 if (node->form)
4921 return node->form;
4923 len = strlen (node->str) + 1;
4925 /* If the string is shorter or equal to the size of the reference, it is
4926 always better to put it inline. */
4927 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4928 return node->form = DW_FORM_string;
4930 /* If we cannot expect the linker to merge strings in .debug_str
4931 section, only put it into .debug_str if it is worth even in this
4932 single module. */
4933 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4934 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4935 return node->form = DW_FORM_string;
4937 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4938 ++dw2_string_counter;
4939 node->label = xstrdup (label);
4941 return node->form = DW_FORM_strp;
4944 /* Add a DIE reference attribute value to a DIE. */
4946 static inline void
4947 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4949 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4951 attr->dw_attr_next = NULL;
4952 attr->dw_attr = attr_kind;
4953 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4954 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4955 attr->dw_attr_val.v.val_die_ref.external = 0;
4956 add_dwarf_attr (die, attr);
4959 /* Add an AT_specification attribute to a DIE, and also make the back
4960 pointer from the specification to the definition. */
4962 static inline void
4963 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4965 add_AT_die_ref (die, DW_AT_specification, targ_die);
4966 gcc_assert (!targ_die->die_definition);
4967 targ_die->die_definition = die;
4970 static inline dw_die_ref
4971 AT_ref (dw_attr_ref a)
4973 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4974 return a->dw_attr_val.v.val_die_ref.die;
4977 static inline int
4978 AT_ref_external (dw_attr_ref a)
4980 if (a && AT_class (a) == dw_val_class_die_ref)
4981 return a->dw_attr_val.v.val_die_ref.external;
4983 return 0;
4986 static inline void
4987 set_AT_ref_external (dw_attr_ref a, int i)
4989 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4990 a->dw_attr_val.v.val_die_ref.external = i;
4993 /* Add an FDE reference attribute value to a DIE. */
4995 static inline void
4996 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4998 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5000 attr->dw_attr_next = NULL;
5001 attr->dw_attr = attr_kind;
5002 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
5003 attr->dw_attr_val.v.val_fde_index = targ_fde;
5004 add_dwarf_attr (die, attr);
5007 /* Add a location description attribute value to a DIE. */
5009 static inline void
5010 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5012 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5014 attr->dw_attr_next = NULL;
5015 attr->dw_attr = attr_kind;
5016 attr->dw_attr_val.val_class = dw_val_class_loc;
5017 attr->dw_attr_val.v.val_loc = loc;
5018 add_dwarf_attr (die, attr);
5021 static inline dw_loc_descr_ref
5022 AT_loc (dw_attr_ref a)
5024 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5025 return a->dw_attr_val.v.val_loc;
5028 static inline void
5029 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5031 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5033 attr->dw_attr_next = NULL;
5034 attr->dw_attr = attr_kind;
5035 attr->dw_attr_val.val_class = dw_val_class_loc_list;
5036 attr->dw_attr_val.v.val_loc_list = loc_list;
5037 add_dwarf_attr (die, attr);
5038 have_location_lists = 1;
5041 static inline dw_loc_list_ref
5042 AT_loc_list (dw_attr_ref a)
5044 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5045 return a->dw_attr_val.v.val_loc_list;
5048 /* Add an address constant attribute value to a DIE. */
5050 static inline void
5051 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5053 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5055 attr->dw_attr_next = NULL;
5056 attr->dw_attr = attr_kind;
5057 attr->dw_attr_val.val_class = dw_val_class_addr;
5058 attr->dw_attr_val.v.val_addr = addr;
5059 add_dwarf_attr (die, attr);
5062 static inline rtx
5063 AT_addr (dw_attr_ref a)
5065 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5066 return a->dw_attr_val.v.val_addr;
5069 /* Add a label identifier attribute value to a DIE. */
5071 static inline void
5072 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5074 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5076 attr->dw_attr_next = NULL;
5077 attr->dw_attr = attr_kind;
5078 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5079 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5080 add_dwarf_attr (die, attr);
5083 /* Add a section offset attribute value to a DIE. */
5085 static inline void
5086 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5088 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5090 attr->dw_attr_next = NULL;
5091 attr->dw_attr = attr_kind;
5092 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5093 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5094 add_dwarf_attr (die, attr);
5097 /* Add an offset attribute value to a DIE. */
5099 static inline void
5100 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5101 unsigned HOST_WIDE_INT offset)
5103 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5105 attr->dw_attr_next = NULL;
5106 attr->dw_attr = attr_kind;
5107 attr->dw_attr_val.val_class = dw_val_class_offset;
5108 attr->dw_attr_val.v.val_offset = offset;
5109 add_dwarf_attr (die, attr);
5112 /* Add an range_list attribute value to a DIE. */
5114 static void
5115 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5116 long unsigned int offset)
5118 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5120 attr->dw_attr_next = NULL;
5121 attr->dw_attr = attr_kind;
5122 attr->dw_attr_val.val_class = dw_val_class_range_list;
5123 attr->dw_attr_val.v.val_offset = offset;
5124 add_dwarf_attr (die, attr);
5127 static inline const char *
5128 AT_lbl (dw_attr_ref a)
5130 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5131 || AT_class (a) == dw_val_class_lbl_offset));
5132 return a->dw_attr_val.v.val_lbl_id;
5135 /* Get the attribute of type attr_kind. */
5137 static dw_attr_ref
5138 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5140 dw_attr_ref a;
5141 dw_die_ref spec = NULL;
5143 if (die != NULL)
5145 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5146 if (a->dw_attr == attr_kind)
5147 return a;
5148 else if (a->dw_attr == DW_AT_specification
5149 || a->dw_attr == DW_AT_abstract_origin)
5150 spec = AT_ref (a);
5152 if (spec)
5153 return get_AT (spec, attr_kind);
5156 return NULL;
5159 /* Return the "low pc" attribute value, typically associated with a subprogram
5160 DIE. Return null if the "low pc" attribute is either not present, or if it
5161 cannot be represented as an assembler label identifier. */
5163 static inline const char *
5164 get_AT_low_pc (dw_die_ref die)
5166 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5168 return a ? AT_lbl (a) : NULL;
5171 /* Return the "high pc" attribute value, typically associated with a subprogram
5172 DIE. Return null if the "high pc" attribute is either not present, or if it
5173 cannot be represented as an assembler label identifier. */
5175 static inline const char *
5176 get_AT_hi_pc (dw_die_ref die)
5178 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5180 return a ? AT_lbl (a) : NULL;
5183 /* Return the value of the string attribute designated by ATTR_KIND, or
5184 NULL if it is not present. */
5186 static inline const char *
5187 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5189 dw_attr_ref a = get_AT (die, attr_kind);
5191 return a ? AT_string (a) : NULL;
5194 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5195 if it is not present. */
5197 static inline int
5198 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5200 dw_attr_ref a = get_AT (die, attr_kind);
5202 return a ? AT_flag (a) : 0;
5205 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5206 if it is not present. */
5208 static inline unsigned
5209 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5211 dw_attr_ref a = get_AT (die, attr_kind);
5213 return a ? AT_unsigned (a) : 0;
5216 static inline dw_die_ref
5217 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5219 dw_attr_ref a = get_AT (die, attr_kind);
5221 return a ? AT_ref (a) : NULL;
5224 /* Return TRUE if the language is C or C++. */
5226 static inline bool
5227 is_c_family (void)
5229 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5231 return (lang == DW_LANG_C || lang == DW_LANG_C89
5232 || lang == DW_LANG_C_plus_plus);
5235 /* Return TRUE if the language is C++. */
5237 static inline bool
5238 is_cxx (void)
5240 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5241 == DW_LANG_C_plus_plus);
5244 /* Return TRUE if the language is Fortran. */
5246 static inline bool
5247 is_fortran (void)
5249 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5251 return (lang == DW_LANG_Fortran77
5252 || lang == DW_LANG_Fortran90
5253 || lang == DW_LANG_Fortran95);
5256 /* Return TRUE if the language is Java. */
5258 static inline bool
5259 is_java (void)
5261 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5263 return lang == DW_LANG_Java;
5266 /* Return TRUE if the language is Ada. */
5268 static inline bool
5269 is_ada (void)
5271 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5273 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5276 /* Free up the memory used by A. */
5278 static inline void free_AT (dw_attr_ref);
5279 static inline void
5280 free_AT (dw_attr_ref a)
5282 if (AT_class (a) == dw_val_class_str)
5283 if (a->dw_attr_val.v.val_str->refcount)
5284 a->dw_attr_val.v.val_str->refcount--;
5287 /* Remove the specified attribute if present. */
5289 static void
5290 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5292 dw_attr_ref *p;
5293 dw_attr_ref removed = NULL;
5295 if (die != NULL)
5297 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5298 if ((*p)->dw_attr == attr_kind)
5300 removed = *p;
5301 *p = (*p)->dw_attr_next;
5302 break;
5305 if (removed != 0)
5306 free_AT (removed);
5310 /* Remove child die whose die_tag is specified tag. */
5312 static void
5313 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5315 dw_die_ref current, prev, next;
5316 current = die->die_child;
5317 prev = NULL;
5318 while (current != NULL)
5320 if (current->die_tag == tag)
5322 next = current->die_sib;
5323 if (prev == NULL)
5324 die->die_child = next;
5325 else
5326 prev->die_sib = next;
5327 free_die (current);
5328 current = next;
5330 else
5332 prev = current;
5333 current = current->die_sib;
5338 /* Free up the memory used by DIE. */
5340 static inline void
5341 free_die (dw_die_ref die)
5343 remove_children (die);
5346 /* Discard the children of this DIE. */
5348 static void
5349 remove_children (dw_die_ref die)
5351 dw_die_ref child_die = die->die_child;
5353 die->die_child = NULL;
5355 while (child_die != NULL)
5357 dw_die_ref tmp_die = child_die;
5358 dw_attr_ref a;
5360 child_die = child_die->die_sib;
5362 for (a = tmp_die->die_attr; a != NULL;)
5364 dw_attr_ref tmp_a = a;
5366 a = a->dw_attr_next;
5367 free_AT (tmp_a);
5370 free_die (tmp_die);
5374 /* Add a child DIE below its parent. We build the lists up in reverse
5375 addition order, and correct that in reverse_all_dies. */
5377 static inline void
5378 add_child_die (dw_die_ref die, dw_die_ref child_die)
5380 if (die != NULL && child_die != NULL)
5382 gcc_assert (die != child_die);
5384 child_die->die_parent = die;
5385 child_die->die_sib = die->die_child;
5386 die->die_child = child_die;
5390 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5391 is the specification, to the front of PARENT's list of children. */
5393 static void
5394 splice_child_die (dw_die_ref parent, dw_die_ref child)
5396 dw_die_ref *p;
5398 /* We want the declaration DIE from inside the class, not the
5399 specification DIE at toplevel. */
5400 if (child->die_parent != parent)
5402 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5404 if (tmp)
5405 child = tmp;
5408 gcc_assert (child->die_parent == parent
5409 || (child->die_parent
5410 == get_AT_ref (parent, DW_AT_specification)));
5412 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5413 if (*p == child)
5415 *p = child->die_sib;
5416 break;
5419 child->die_parent = parent;
5420 child->die_sib = parent->die_child;
5421 parent->die_child = child;
5424 /* Return a pointer to a newly created DIE node. */
5426 static inline dw_die_ref
5427 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5429 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5431 die->die_tag = tag_value;
5433 if (parent_die != NULL)
5434 add_child_die (parent_die, die);
5435 else
5437 limbo_die_node *limbo_node;
5439 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5440 limbo_node->die = die;
5441 limbo_node->created_for = t;
5442 limbo_node->next = limbo_die_list;
5443 limbo_die_list = limbo_node;
5446 return die;
5449 /* Return the DIE associated with the given type specifier. */
5451 static inline dw_die_ref
5452 lookup_type_die (tree type)
5454 return TYPE_SYMTAB_DIE (type);
5457 /* Equate a DIE to a given type specifier. */
5459 static inline void
5460 equate_type_number_to_die (tree type, dw_die_ref type_die)
5462 TYPE_SYMTAB_DIE (type) = type_die;
5465 /* Returns a hash value for X (which really is a die_struct). */
5467 static hashval_t
5468 decl_die_table_hash (const void *x)
5470 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5473 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5475 static int
5476 decl_die_table_eq (const void *x, const void *y)
5478 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5481 /* Return the DIE associated with a given declaration. */
5483 static inline dw_die_ref
5484 lookup_decl_die (tree decl)
5486 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5489 /* Returns a hash value for X (which really is a var_loc_list). */
5491 static hashval_t
5492 decl_loc_table_hash (const void *x)
5494 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5497 /* Return nonzero if decl_id of var_loc_list X is the same as
5498 UID of decl *Y. */
5500 static int
5501 decl_loc_table_eq (const void *x, const void *y)
5503 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5506 /* Return the var_loc list associated with a given declaration. */
5508 static inline var_loc_list *
5509 lookup_decl_loc (tree decl)
5511 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5514 /* Equate a DIE to a particular declaration. */
5516 static void
5517 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5519 unsigned int decl_id = DECL_UID (decl);
5520 void **slot;
5522 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5523 *slot = decl_die;
5524 decl_die->decl_id = decl_id;
5527 /* Add a variable location node to the linked list for DECL. */
5529 static void
5530 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5532 unsigned int decl_id = DECL_UID (decl);
5533 var_loc_list *temp;
5534 void **slot;
5536 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5537 if (*slot == NULL)
5539 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5540 temp->decl_id = decl_id;
5541 *slot = temp;
5543 else
5544 temp = *slot;
5546 if (temp->last)
5548 /* If the current location is the same as the end of the list,
5549 we have nothing to do. */
5550 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5551 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5553 /* Add LOC to the end of list and update LAST. */
5554 temp->last->next = loc;
5555 temp->last = loc;
5558 /* Do not add empty location to the beginning of the list. */
5559 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5561 temp->first = loc;
5562 temp->last = loc;
5566 /* Keep track of the number of spaces used to indent the
5567 output of the debugging routines that print the structure of
5568 the DIE internal representation. */
5569 static int print_indent;
5571 /* Indent the line the number of spaces given by print_indent. */
5573 static inline void
5574 print_spaces (FILE *outfile)
5576 fprintf (outfile, "%*s", print_indent, "");
5579 /* Print the information associated with a given DIE, and its children.
5580 This routine is a debugging aid only. */
5582 static void
5583 print_die (dw_die_ref die, FILE *outfile)
5585 dw_attr_ref a;
5586 dw_die_ref c;
5588 print_spaces (outfile);
5589 fprintf (outfile, "DIE %4lu: %s\n",
5590 die->die_offset, dwarf_tag_name (die->die_tag));
5591 print_spaces (outfile);
5592 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5593 fprintf (outfile, " offset: %lu\n", die->die_offset);
5595 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5597 print_spaces (outfile);
5598 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5600 switch (AT_class (a))
5602 case dw_val_class_addr:
5603 fprintf (outfile, "address");
5604 break;
5605 case dw_val_class_offset:
5606 fprintf (outfile, "offset");
5607 break;
5608 case dw_val_class_loc:
5609 fprintf (outfile, "location descriptor");
5610 break;
5611 case dw_val_class_loc_list:
5612 fprintf (outfile, "location list -> label:%s",
5613 AT_loc_list (a)->ll_symbol);
5614 break;
5615 case dw_val_class_range_list:
5616 fprintf (outfile, "range list");
5617 break;
5618 case dw_val_class_const:
5619 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5620 break;
5621 case dw_val_class_unsigned_const:
5622 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5623 break;
5624 case dw_val_class_long_long:
5625 fprintf (outfile, "constant (%lu,%lu)",
5626 a->dw_attr_val.v.val_long_long.hi,
5627 a->dw_attr_val.v.val_long_long.low);
5628 break;
5629 case dw_val_class_vec:
5630 fprintf (outfile, "floating-point or vector constant");
5631 break;
5632 case dw_val_class_flag:
5633 fprintf (outfile, "%u", AT_flag (a));
5634 break;
5635 case dw_val_class_die_ref:
5636 if (AT_ref (a) != NULL)
5638 if (AT_ref (a)->die_symbol)
5639 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5640 else
5641 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5643 else
5644 fprintf (outfile, "die -> <null>");
5645 break;
5646 case dw_val_class_lbl_id:
5647 case dw_val_class_lbl_offset:
5648 fprintf (outfile, "label: %s", AT_lbl (a));
5649 break;
5650 case dw_val_class_str:
5651 if (AT_string (a) != NULL)
5652 fprintf (outfile, "\"%s\"", AT_string (a));
5653 else
5654 fprintf (outfile, "<null>");
5655 break;
5656 default:
5657 break;
5660 fprintf (outfile, "\n");
5663 if (die->die_child != NULL)
5665 print_indent += 4;
5666 for (c = die->die_child; c != NULL; c = c->die_sib)
5667 print_die (c, outfile);
5669 print_indent -= 4;
5671 if (print_indent == 0)
5672 fprintf (outfile, "\n");
5675 /* Print the contents of the source code line number correspondence table.
5676 This routine is a debugging aid only. */
5678 static void
5679 print_dwarf_line_table (FILE *outfile)
5681 unsigned i;
5682 dw_line_info_ref line_info;
5684 fprintf (outfile, "\n\nDWARF source line information\n");
5685 for (i = 1; i < line_info_table_in_use; i++)
5687 line_info = &line_info_table[i];
5688 fprintf (outfile, "%5d: ", i);
5689 fprintf (outfile, "%-20s",
5690 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5691 fprintf (outfile, "%6ld", line_info->dw_line_num);
5692 fprintf (outfile, "\n");
5695 fprintf (outfile, "\n\n");
5698 /* Print the information collected for a given DIE. */
5700 void
5701 debug_dwarf_die (dw_die_ref die)
5703 print_die (die, stderr);
5706 /* Print all DWARF information collected for the compilation unit.
5707 This routine is a debugging aid only. */
5709 void
5710 debug_dwarf (void)
5712 print_indent = 0;
5713 print_die (comp_unit_die, stderr);
5714 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5715 print_dwarf_line_table (stderr);
5718 /* We build up the lists of children and attributes by pushing new ones
5719 onto the beginning of the list. Reverse the lists for DIE so that
5720 they are in order of addition. */
5722 static void
5723 reverse_die_lists (dw_die_ref die)
5725 dw_die_ref c, cp, cn;
5726 dw_attr_ref a, ap, an;
5728 for (a = die->die_attr, ap = 0; a; a = an)
5730 an = a->dw_attr_next;
5731 a->dw_attr_next = ap;
5732 ap = a;
5735 die->die_attr = ap;
5737 for (c = die->die_child, cp = 0; c; c = cn)
5739 cn = c->die_sib;
5740 c->die_sib = cp;
5741 cp = c;
5744 die->die_child = cp;
5747 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5748 reverse all dies in add_sibling_attributes, which runs through all the dies,
5749 it would reverse all the dies. Now, however, since we don't call
5750 reverse_die_lists in add_sibling_attributes, we need a routine to
5751 recursively reverse all the dies. This is that routine. */
5753 static void
5754 reverse_all_dies (dw_die_ref die)
5756 dw_die_ref c;
5758 reverse_die_lists (die);
5760 for (c = die->die_child; c; c = c->die_sib)
5761 reverse_all_dies (c);
5764 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5765 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5766 DIE that marks the start of the DIEs for this include file. */
5768 static dw_die_ref
5769 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5771 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5772 dw_die_ref new_unit = gen_compile_unit_die (filename);
5774 new_unit->die_sib = old_unit;
5775 return new_unit;
5778 /* Close an include-file CU and reopen the enclosing one. */
5780 static dw_die_ref
5781 pop_compile_unit (dw_die_ref old_unit)
5783 dw_die_ref new_unit = old_unit->die_sib;
5785 old_unit->die_sib = NULL;
5786 return new_unit;
5789 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5790 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5792 /* Calculate the checksum of a location expression. */
5794 static inline void
5795 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5797 CHECKSUM (loc->dw_loc_opc);
5798 CHECKSUM (loc->dw_loc_oprnd1);
5799 CHECKSUM (loc->dw_loc_oprnd2);
5802 /* Calculate the checksum of an attribute. */
5804 static void
5805 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5807 dw_loc_descr_ref loc;
5808 rtx r;
5810 CHECKSUM (at->dw_attr);
5812 /* We don't care about differences in file numbering. */
5813 if (at->dw_attr == DW_AT_decl_file
5814 /* Or that this was compiled with a different compiler snapshot; if
5815 the output is the same, that's what matters. */
5816 || at->dw_attr == DW_AT_producer)
5817 return;
5819 switch (AT_class (at))
5821 case dw_val_class_const:
5822 CHECKSUM (at->dw_attr_val.v.val_int);
5823 break;
5824 case dw_val_class_unsigned_const:
5825 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5826 break;
5827 case dw_val_class_long_long:
5828 CHECKSUM (at->dw_attr_val.v.val_long_long);
5829 break;
5830 case dw_val_class_vec:
5831 CHECKSUM (at->dw_attr_val.v.val_vec);
5832 break;
5833 case dw_val_class_flag:
5834 CHECKSUM (at->dw_attr_val.v.val_flag);
5835 break;
5836 case dw_val_class_str:
5837 CHECKSUM_STRING (AT_string (at));
5838 break;
5840 case dw_val_class_addr:
5841 r = AT_addr (at);
5842 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5843 CHECKSUM_STRING (XSTR (r, 0));
5844 break;
5846 case dw_val_class_offset:
5847 CHECKSUM (at->dw_attr_val.v.val_offset);
5848 break;
5850 case dw_val_class_loc:
5851 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5852 loc_checksum (loc, ctx);
5853 break;
5855 case dw_val_class_die_ref:
5856 die_checksum (AT_ref (at), ctx, mark);
5857 break;
5859 case dw_val_class_fde_ref:
5860 case dw_val_class_lbl_id:
5861 case dw_val_class_lbl_offset:
5862 break;
5864 default:
5865 break;
5869 /* Calculate the checksum of a DIE. */
5871 static void
5872 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5874 dw_die_ref c;
5875 dw_attr_ref a;
5877 /* To avoid infinite recursion. */
5878 if (die->die_mark)
5880 CHECKSUM (die->die_mark);
5881 return;
5883 die->die_mark = ++(*mark);
5885 CHECKSUM (die->die_tag);
5887 for (a = die->die_attr; a; a = a->dw_attr_next)
5888 attr_checksum (a, ctx, mark);
5890 for (c = die->die_child; c; c = c->die_sib)
5891 die_checksum (c, ctx, mark);
5894 #undef CHECKSUM
5895 #undef CHECKSUM_STRING
5897 /* Do the location expressions look same? */
5898 static inline int
5899 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5901 return loc1->dw_loc_opc == loc2->dw_loc_opc
5902 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5903 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5906 /* Do the values look the same? */
5907 static int
5908 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5910 dw_loc_descr_ref loc1, loc2;
5911 rtx r1, r2;
5913 if (v1->val_class != v2->val_class)
5914 return 0;
5916 switch (v1->val_class)
5918 case dw_val_class_const:
5919 return v1->v.val_int == v2->v.val_int;
5920 case dw_val_class_unsigned_const:
5921 return v1->v.val_unsigned == v2->v.val_unsigned;
5922 case dw_val_class_long_long:
5923 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5924 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5925 case dw_val_class_vec:
5926 if (v1->v.val_vec.length != v2->v.val_vec.length
5927 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5928 return 0;
5929 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5930 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5931 return 0;
5932 return 1;
5933 case dw_val_class_flag:
5934 return v1->v.val_flag == v2->v.val_flag;
5935 case dw_val_class_str:
5936 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5938 case dw_val_class_addr:
5939 r1 = v1->v.val_addr;
5940 r2 = v2->v.val_addr;
5941 if (GET_CODE (r1) != GET_CODE (r2))
5942 return 0;
5943 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
5944 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5946 case dw_val_class_offset:
5947 return v1->v.val_offset == v2->v.val_offset;
5949 case dw_val_class_loc:
5950 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5951 loc1 && loc2;
5952 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5953 if (!same_loc_p (loc1, loc2, mark))
5954 return 0;
5955 return !loc1 && !loc2;
5957 case dw_val_class_die_ref:
5958 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5960 case dw_val_class_fde_ref:
5961 case dw_val_class_lbl_id:
5962 case dw_val_class_lbl_offset:
5963 return 1;
5965 default:
5966 return 1;
5970 /* Do the attributes look the same? */
5972 static int
5973 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5975 if (at1->dw_attr != at2->dw_attr)
5976 return 0;
5978 /* We don't care about differences in file numbering. */
5979 if (at1->dw_attr == DW_AT_decl_file
5980 /* Or that this was compiled with a different compiler snapshot; if
5981 the output is the same, that's what matters. */
5982 || at1->dw_attr == DW_AT_producer)
5983 return 1;
5985 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5988 /* Do the dies look the same? */
5990 static int
5991 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5993 dw_die_ref c1, c2;
5994 dw_attr_ref a1, a2;
5996 /* To avoid infinite recursion. */
5997 if (die1->die_mark)
5998 return die1->die_mark == die2->die_mark;
5999 die1->die_mark = die2->die_mark = ++(*mark);
6001 if (die1->die_tag != die2->die_tag)
6002 return 0;
6004 for (a1 = die1->die_attr, a2 = die2->die_attr;
6005 a1 && a2;
6006 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
6007 if (!same_attr_p (a1, a2, mark))
6008 return 0;
6009 if (a1 || a2)
6010 return 0;
6012 for (c1 = die1->die_child, c2 = die2->die_child;
6013 c1 && c2;
6014 c1 = c1->die_sib, c2 = c2->die_sib)
6015 if (!same_die_p (c1, c2, mark))
6016 return 0;
6017 if (c1 || c2)
6018 return 0;
6020 return 1;
6023 /* Do the dies look the same? Wrapper around same_die_p. */
6025 static int
6026 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6028 int mark = 0;
6029 int ret = same_die_p (die1, die2, &mark);
6031 unmark_all_dies (die1);
6032 unmark_all_dies (die2);
6034 return ret;
6037 /* The prefix to attach to symbols on DIEs in the current comdat debug
6038 info section. */
6039 static char *comdat_symbol_id;
6041 /* The index of the current symbol within the current comdat CU. */
6042 static unsigned int comdat_symbol_number;
6044 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6045 children, and set comdat_symbol_id accordingly. */
6047 static void
6048 compute_section_prefix (dw_die_ref unit_die)
6050 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6051 const char *base = die_name ? lbasename (die_name) : "anonymous";
6052 char *name = alloca (strlen (base) + 64);
6053 char *p;
6054 int i, mark;
6055 unsigned char checksum[16];
6056 struct md5_ctx ctx;
6058 /* Compute the checksum of the DIE, then append part of it as hex digits to
6059 the name filename of the unit. */
6061 md5_init_ctx (&ctx);
6062 mark = 0;
6063 die_checksum (unit_die, &ctx, &mark);
6064 unmark_all_dies (unit_die);
6065 md5_finish_ctx (&ctx, checksum);
6067 sprintf (name, "%s.", base);
6068 clean_symbol_name (name);
6070 p = name + strlen (name);
6071 for (i = 0; i < 4; i++)
6073 sprintf (p, "%.2x", checksum[i]);
6074 p += 2;
6077 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6078 comdat_symbol_number = 0;
6081 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6083 static int
6084 is_type_die (dw_die_ref die)
6086 switch (die->die_tag)
6088 case DW_TAG_array_type:
6089 case DW_TAG_class_type:
6090 case DW_TAG_enumeration_type:
6091 case DW_TAG_pointer_type:
6092 case DW_TAG_reference_type:
6093 case DW_TAG_string_type:
6094 case DW_TAG_structure_type:
6095 case DW_TAG_subroutine_type:
6096 case DW_TAG_union_type:
6097 case DW_TAG_ptr_to_member_type:
6098 case DW_TAG_set_type:
6099 case DW_TAG_subrange_type:
6100 case DW_TAG_base_type:
6101 case DW_TAG_const_type:
6102 case DW_TAG_file_type:
6103 case DW_TAG_packed_type:
6104 case DW_TAG_volatile_type:
6105 case DW_TAG_typedef:
6106 return 1;
6107 default:
6108 return 0;
6112 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6113 Basically, we want to choose the bits that are likely to be shared between
6114 compilations (types) and leave out the bits that are specific to individual
6115 compilations (functions). */
6117 static int
6118 is_comdat_die (dw_die_ref c)
6120 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6121 we do for stabs. The advantage is a greater likelihood of sharing between
6122 objects that don't include headers in the same order (and therefore would
6123 put the base types in a different comdat). jason 8/28/00 */
6125 if (c->die_tag == DW_TAG_base_type)
6126 return 0;
6128 if (c->die_tag == DW_TAG_pointer_type
6129 || c->die_tag == DW_TAG_reference_type
6130 || c->die_tag == DW_TAG_const_type
6131 || c->die_tag == DW_TAG_volatile_type)
6133 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6135 return t ? is_comdat_die (t) : 0;
6138 return is_type_die (c);
6141 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6142 compilation unit. */
6144 static int
6145 is_symbol_die (dw_die_ref c)
6147 return (is_type_die (c)
6148 || (get_AT (c, DW_AT_declaration)
6149 && !get_AT (c, DW_AT_specification)));
6152 static char *
6153 gen_internal_sym (const char *prefix)
6155 char buf[256];
6157 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6158 return xstrdup (buf);
6161 /* Assign symbols to all worthy DIEs under DIE. */
6163 static void
6164 assign_symbol_names (dw_die_ref die)
6166 dw_die_ref c;
6168 if (is_symbol_die (die))
6170 if (comdat_symbol_id)
6172 char *p = alloca (strlen (comdat_symbol_id) + 64);
6174 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6175 comdat_symbol_id, comdat_symbol_number++);
6176 die->die_symbol = xstrdup (p);
6178 else
6179 die->die_symbol = gen_internal_sym ("LDIE");
6182 for (c = die->die_child; c != NULL; c = c->die_sib)
6183 assign_symbol_names (c);
6186 struct cu_hash_table_entry
6188 dw_die_ref cu;
6189 unsigned min_comdat_num, max_comdat_num;
6190 struct cu_hash_table_entry *next;
6193 /* Routines to manipulate hash table of CUs. */
6194 static hashval_t
6195 htab_cu_hash (const void *of)
6197 const struct cu_hash_table_entry *entry = of;
6199 return htab_hash_string (entry->cu->die_symbol);
6202 static int
6203 htab_cu_eq (const void *of1, const void *of2)
6205 const struct cu_hash_table_entry *entry1 = of1;
6206 const struct die_struct *entry2 = of2;
6208 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6211 static void
6212 htab_cu_del (void *what)
6214 struct cu_hash_table_entry *next, *entry = what;
6216 while (entry)
6218 next = entry->next;
6219 free (entry);
6220 entry = next;
6224 /* Check whether we have already seen this CU and set up SYM_NUM
6225 accordingly. */
6226 static int
6227 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6229 struct cu_hash_table_entry dummy;
6230 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6232 dummy.max_comdat_num = 0;
6234 slot = (struct cu_hash_table_entry **)
6235 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6236 INSERT);
6237 entry = *slot;
6239 for (; entry; last = entry, entry = entry->next)
6241 if (same_die_p_wrap (cu, entry->cu))
6242 break;
6245 if (entry)
6247 *sym_num = entry->min_comdat_num;
6248 return 1;
6251 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6252 entry->cu = cu;
6253 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6254 entry->next = *slot;
6255 *slot = entry;
6257 return 0;
6260 /* Record SYM_NUM to record of CU in HTABLE. */
6261 static void
6262 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6264 struct cu_hash_table_entry **slot, *entry;
6266 slot = (struct cu_hash_table_entry **)
6267 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6268 NO_INSERT);
6269 entry = *slot;
6271 entry->max_comdat_num = sym_num;
6274 /* Traverse the DIE (which is always comp_unit_die), and set up
6275 additional compilation units for each of the include files we see
6276 bracketed by BINCL/EINCL. */
6278 static void
6279 break_out_includes (dw_die_ref die)
6281 dw_die_ref *ptr;
6282 dw_die_ref unit = NULL;
6283 limbo_die_node *node, **pnode;
6284 htab_t cu_hash_table;
6286 for (ptr = &(die->die_child); *ptr;)
6288 dw_die_ref c = *ptr;
6290 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6291 || (unit && is_comdat_die (c)))
6293 /* This DIE is for a secondary CU; remove it from the main one. */
6294 *ptr = c->die_sib;
6296 if (c->die_tag == DW_TAG_GNU_BINCL)
6298 unit = push_new_compile_unit (unit, c);
6299 free_die (c);
6301 else if (c->die_tag == DW_TAG_GNU_EINCL)
6303 unit = pop_compile_unit (unit);
6304 free_die (c);
6306 else
6307 add_child_die (unit, c);
6309 else
6311 /* Leave this DIE in the main CU. */
6312 ptr = &(c->die_sib);
6313 continue;
6317 #if 0
6318 /* We can only use this in debugging, since the frontend doesn't check
6319 to make sure that we leave every include file we enter. */
6320 gcc_assert (!unit);
6321 #endif
6323 assign_symbol_names (die);
6324 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6325 for (node = limbo_die_list, pnode = &limbo_die_list;
6326 node;
6327 node = node->next)
6329 int is_dupl;
6331 compute_section_prefix (node->die);
6332 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6333 &comdat_symbol_number);
6334 assign_symbol_names (node->die);
6335 if (is_dupl)
6336 *pnode = node->next;
6337 else
6339 pnode = &node->next;
6340 record_comdat_symbol_number (node->die, cu_hash_table,
6341 comdat_symbol_number);
6344 htab_delete (cu_hash_table);
6347 /* Traverse the DIE and add a sibling attribute if it may have the
6348 effect of speeding up access to siblings. To save some space,
6349 avoid generating sibling attributes for DIE's without children. */
6351 static void
6352 add_sibling_attributes (dw_die_ref die)
6354 dw_die_ref c;
6356 if (die->die_tag != DW_TAG_compile_unit
6357 && die->die_sib && die->die_child != NULL)
6358 /* Add the sibling link to the front of the attribute list. */
6359 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6361 for (c = die->die_child; c != NULL; c = c->die_sib)
6362 add_sibling_attributes (c);
6365 /* Output all location lists for the DIE and its children. */
6367 static void
6368 output_location_lists (dw_die_ref die)
6370 dw_die_ref c;
6371 dw_attr_ref d_attr;
6373 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6374 if (AT_class (d_attr) == dw_val_class_loc_list)
6375 output_loc_list (AT_loc_list (d_attr));
6377 for (c = die->die_child; c != NULL; c = c->die_sib)
6378 output_location_lists (c);
6382 /* The format of each DIE (and its attribute value pairs) is encoded in an
6383 abbreviation table. This routine builds the abbreviation table and assigns
6384 a unique abbreviation id for each abbreviation entry. The children of each
6385 die are visited recursively. */
6387 static void
6388 build_abbrev_table (dw_die_ref die)
6390 unsigned long abbrev_id;
6391 unsigned int n_alloc;
6392 dw_die_ref c;
6393 dw_attr_ref d_attr, a_attr;
6395 /* Scan the DIE references, and mark as external any that refer to
6396 DIEs from other CUs (i.e. those which are not marked). */
6397 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6398 if (AT_class (d_attr) == dw_val_class_die_ref
6399 && AT_ref (d_attr)->die_mark == 0)
6401 gcc_assert (AT_ref (d_attr)->die_symbol);
6403 set_AT_ref_external (d_attr, 1);
6406 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6408 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6410 if (abbrev->die_tag == die->die_tag)
6412 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6414 a_attr = abbrev->die_attr;
6415 d_attr = die->die_attr;
6417 while (a_attr != NULL && d_attr != NULL)
6419 if ((a_attr->dw_attr != d_attr->dw_attr)
6420 || (value_format (a_attr) != value_format (d_attr)))
6421 break;
6423 a_attr = a_attr->dw_attr_next;
6424 d_attr = d_attr->dw_attr_next;
6427 if (a_attr == NULL && d_attr == NULL)
6428 break;
6433 if (abbrev_id >= abbrev_die_table_in_use)
6435 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6437 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6438 abbrev_die_table = ggc_realloc (abbrev_die_table,
6439 sizeof (dw_die_ref) * n_alloc);
6441 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6442 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6443 abbrev_die_table_allocated = n_alloc;
6446 ++abbrev_die_table_in_use;
6447 abbrev_die_table[abbrev_id] = die;
6450 die->die_abbrev = abbrev_id;
6451 for (c = die->die_child; c != NULL; c = c->die_sib)
6452 build_abbrev_table (c);
6455 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6457 static int
6458 constant_size (long unsigned int value)
6460 int log;
6462 if (value == 0)
6463 log = 0;
6464 else
6465 log = floor_log2 (value);
6467 log = log / 8;
6468 log = 1 << (floor_log2 (log) + 1);
6470 return log;
6473 /* Return the size of a DIE as it is represented in the
6474 .debug_info section. */
6476 static unsigned long
6477 size_of_die (dw_die_ref die)
6479 unsigned long size = 0;
6480 dw_attr_ref a;
6482 size += size_of_uleb128 (die->die_abbrev);
6483 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6485 switch (AT_class (a))
6487 case dw_val_class_addr:
6488 size += DWARF2_ADDR_SIZE;
6489 break;
6490 case dw_val_class_offset:
6491 size += DWARF_OFFSET_SIZE;
6492 break;
6493 case dw_val_class_loc:
6495 unsigned long lsize = size_of_locs (AT_loc (a));
6497 /* Block length. */
6498 size += constant_size (lsize);
6499 size += lsize;
6501 break;
6502 case dw_val_class_loc_list:
6503 size += DWARF_OFFSET_SIZE;
6504 break;
6505 case dw_val_class_range_list:
6506 size += DWARF_OFFSET_SIZE;
6507 break;
6508 case dw_val_class_const:
6509 size += size_of_sleb128 (AT_int (a));
6510 break;
6511 case dw_val_class_unsigned_const:
6512 size += constant_size (AT_unsigned (a));
6513 break;
6514 case dw_val_class_long_long:
6515 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6516 break;
6517 case dw_val_class_vec:
6518 size += 1 + (a->dw_attr_val.v.val_vec.length
6519 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6520 break;
6521 case dw_val_class_flag:
6522 size += 1;
6523 break;
6524 case dw_val_class_die_ref:
6525 if (AT_ref_external (a))
6526 size += DWARF2_ADDR_SIZE;
6527 else
6528 size += DWARF_OFFSET_SIZE;
6529 break;
6530 case dw_val_class_fde_ref:
6531 size += DWARF_OFFSET_SIZE;
6532 break;
6533 case dw_val_class_lbl_id:
6534 size += DWARF2_ADDR_SIZE;
6535 break;
6536 case dw_val_class_lbl_offset:
6537 size += DWARF_OFFSET_SIZE;
6538 break;
6539 case dw_val_class_str:
6540 if (AT_string_form (a) == DW_FORM_strp)
6541 size += DWARF_OFFSET_SIZE;
6542 else
6543 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6544 break;
6545 default:
6546 gcc_unreachable ();
6550 return size;
6553 /* Size the debugging information associated with a given DIE. Visits the
6554 DIE's children recursively. Updates the global variable next_die_offset, on
6555 each time through. Uses the current value of next_die_offset to update the
6556 die_offset field in each DIE. */
6558 static void
6559 calc_die_sizes (dw_die_ref die)
6561 dw_die_ref c;
6563 die->die_offset = next_die_offset;
6564 next_die_offset += size_of_die (die);
6566 for (c = die->die_child; c != NULL; c = c->die_sib)
6567 calc_die_sizes (c);
6569 if (die->die_child != NULL)
6570 /* Count the null byte used to terminate sibling lists. */
6571 next_die_offset += 1;
6574 /* Set the marks for a die and its children. We do this so
6575 that we know whether or not a reference needs to use FORM_ref_addr; only
6576 DIEs in the same CU will be marked. We used to clear out the offset
6577 and use that as the flag, but ran into ordering problems. */
6579 static void
6580 mark_dies (dw_die_ref die)
6582 dw_die_ref c;
6584 gcc_assert (!die->die_mark);
6586 die->die_mark = 1;
6587 for (c = die->die_child; c; c = c->die_sib)
6588 mark_dies (c);
6591 /* Clear the marks for a die and its children. */
6593 static void
6594 unmark_dies (dw_die_ref die)
6596 dw_die_ref c;
6598 gcc_assert (die->die_mark);
6600 die->die_mark = 0;
6601 for (c = die->die_child; c; c = c->die_sib)
6602 unmark_dies (c);
6605 /* Clear the marks for a die, its children and referred dies. */
6607 static void
6608 unmark_all_dies (dw_die_ref die)
6610 dw_die_ref c;
6611 dw_attr_ref a;
6613 if (!die->die_mark)
6614 return;
6615 die->die_mark = 0;
6617 for (c = die->die_child; c; c = c->die_sib)
6618 unmark_all_dies (c);
6620 for (a = die->die_attr; a; a = a->dw_attr_next)
6621 if (AT_class (a) == dw_val_class_die_ref)
6622 unmark_all_dies (AT_ref (a));
6625 /* Return the size of the .debug_pubnames table generated for the
6626 compilation unit. */
6628 static unsigned long
6629 size_of_pubnames (void)
6631 unsigned long size;
6632 unsigned i;
6634 size = DWARF_PUBNAMES_HEADER_SIZE;
6635 for (i = 0; i < pubname_table_in_use; i++)
6637 pubname_ref p = &pubname_table[i];
6638 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6641 size += DWARF_OFFSET_SIZE;
6642 return size;
6645 /* Return the size of the information in the .debug_aranges section. */
6647 static unsigned long
6648 size_of_aranges (void)
6650 unsigned long size;
6652 size = DWARF_ARANGES_HEADER_SIZE;
6654 /* Count the address/length pair for this compilation unit. */
6655 size += 2 * DWARF2_ADDR_SIZE;
6656 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6658 /* Count the two zero words used to terminated the address range table. */
6659 size += 2 * DWARF2_ADDR_SIZE;
6660 return size;
6663 /* Select the encoding of an attribute value. */
6665 static enum dwarf_form
6666 value_format (dw_attr_ref a)
6668 switch (a->dw_attr_val.val_class)
6670 case dw_val_class_addr:
6671 return DW_FORM_addr;
6672 case dw_val_class_range_list:
6673 case dw_val_class_offset:
6674 switch (DWARF_OFFSET_SIZE)
6676 case 4:
6677 return DW_FORM_data4;
6678 case 8:
6679 return DW_FORM_data8;
6680 default:
6681 gcc_unreachable ();
6683 case dw_val_class_loc_list:
6684 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6685 .debug_loc section */
6686 return DW_FORM_data4;
6687 case dw_val_class_loc:
6688 switch (constant_size (size_of_locs (AT_loc (a))))
6690 case 1:
6691 return DW_FORM_block1;
6692 case 2:
6693 return DW_FORM_block2;
6694 default:
6695 gcc_unreachable ();
6697 case dw_val_class_const:
6698 return DW_FORM_sdata;
6699 case dw_val_class_unsigned_const:
6700 switch (constant_size (AT_unsigned (a)))
6702 case 1:
6703 return DW_FORM_data1;
6704 case 2:
6705 return DW_FORM_data2;
6706 case 4:
6707 return DW_FORM_data4;
6708 case 8:
6709 return DW_FORM_data8;
6710 default:
6711 gcc_unreachable ();
6713 case dw_val_class_long_long:
6714 return DW_FORM_block1;
6715 case dw_val_class_vec:
6716 return DW_FORM_block1;
6717 case dw_val_class_flag:
6718 return DW_FORM_flag;
6719 case dw_val_class_die_ref:
6720 if (AT_ref_external (a))
6721 return DW_FORM_ref_addr;
6722 else
6723 return DW_FORM_ref;
6724 case dw_val_class_fde_ref:
6725 return DW_FORM_data;
6726 case dw_val_class_lbl_id:
6727 return DW_FORM_addr;
6728 case dw_val_class_lbl_offset:
6729 return DW_FORM_data;
6730 case dw_val_class_str:
6731 return AT_string_form (a);
6733 default:
6734 gcc_unreachable ();
6738 /* Output the encoding of an attribute value. */
6740 static void
6741 output_value_format (dw_attr_ref a)
6743 enum dwarf_form form = value_format (a);
6745 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6748 /* Output the .debug_abbrev section which defines the DIE abbreviation
6749 table. */
6751 static void
6752 output_abbrev_section (void)
6754 unsigned long abbrev_id;
6756 dw_attr_ref a_attr;
6758 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6760 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6762 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6763 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6764 dwarf_tag_name (abbrev->die_tag));
6766 if (abbrev->die_child != NULL)
6767 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6768 else
6769 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6771 for (a_attr = abbrev->die_attr; a_attr != NULL;
6772 a_attr = a_attr->dw_attr_next)
6774 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6775 dwarf_attr_name (a_attr->dw_attr));
6776 output_value_format (a_attr);
6779 dw2_asm_output_data (1, 0, NULL);
6780 dw2_asm_output_data (1, 0, NULL);
6783 /* Terminate the table. */
6784 dw2_asm_output_data (1, 0, NULL);
6787 /* Output a symbol we can use to refer to this DIE from another CU. */
6789 static inline void
6790 output_die_symbol (dw_die_ref die)
6792 char *sym = die->die_symbol;
6794 if (sym == 0)
6795 return;
6797 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6798 /* We make these global, not weak; if the target doesn't support
6799 .linkonce, it doesn't support combining the sections, so debugging
6800 will break. */
6801 targetm.asm_out.globalize_label (asm_out_file, sym);
6803 ASM_OUTPUT_LABEL (asm_out_file, sym);
6806 /* Return a new location list, given the begin and end range, and the
6807 expression. gensym tells us whether to generate a new internal symbol for
6808 this location list node, which is done for the head of the list only. */
6810 static inline dw_loc_list_ref
6811 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6812 const char *section, unsigned int gensym)
6814 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6816 retlist->begin = begin;
6817 retlist->end = end;
6818 retlist->expr = expr;
6819 retlist->section = section;
6820 if (gensym)
6821 retlist->ll_symbol = gen_internal_sym ("LLST");
6823 return retlist;
6826 /* Add a location description expression to a location list. */
6828 static inline void
6829 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6830 const char *begin, const char *end,
6831 const char *section)
6833 dw_loc_list_ref *d;
6835 /* Find the end of the chain. */
6836 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6839 /* Add a new location list node to the list. */
6840 *d = new_loc_list (descr, begin, end, section, 0);
6843 static void
6844 dwarf2out_switch_text_section (void)
6846 dw_fde_ref fde;
6848 gcc_assert (cfun);
6850 fde = &fde_table[fde_table_in_use - 1];
6851 fde->dw_fde_switched_sections = true;
6852 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6853 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6854 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6855 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6856 have_switched_text_section = true;
6859 /* Output the location list given to us. */
6861 static void
6862 output_loc_list (dw_loc_list_ref list_head)
6864 dw_loc_list_ref curr = list_head;
6866 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6868 /* Walk the location list, and output each range + expression. */
6869 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6871 unsigned long size;
6872 if (!separate_line_info_table_in_use && !have_switched_text_section)
6874 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6875 "Location list begin address (%s)",
6876 list_head->ll_symbol);
6877 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6878 "Location list end address (%s)",
6879 list_head->ll_symbol);
6881 else
6883 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6884 "Location list begin address (%s)",
6885 list_head->ll_symbol);
6886 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6887 "Location list end address (%s)",
6888 list_head->ll_symbol);
6890 size = size_of_locs (curr->expr);
6892 /* Output the block length for this list of location operations. */
6893 gcc_assert (size <= 0xffff);
6894 dw2_asm_output_data (2, size, "%s", "Location expression size");
6896 output_loc_sequence (curr->expr);
6899 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6900 "Location list terminator begin (%s)",
6901 list_head->ll_symbol);
6902 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6903 "Location list terminator end (%s)",
6904 list_head->ll_symbol);
6907 /* Output the DIE and its attributes. Called recursively to generate
6908 the definitions of each child DIE. */
6910 static void
6911 output_die (dw_die_ref die)
6913 dw_attr_ref a;
6914 dw_die_ref c;
6915 unsigned long size;
6917 /* If someone in another CU might refer to us, set up a symbol for
6918 them to point to. */
6919 if (die->die_symbol)
6920 output_die_symbol (die);
6922 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6923 die->die_offset, dwarf_tag_name (die->die_tag));
6925 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6927 const char *name = dwarf_attr_name (a->dw_attr);
6929 switch (AT_class (a))
6931 case dw_val_class_addr:
6932 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6933 break;
6935 case dw_val_class_offset:
6936 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6937 "%s", name);
6938 break;
6940 case dw_val_class_range_list:
6942 char *p = strchr (ranges_section_label, '\0');
6944 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6945 a->dw_attr_val.v.val_offset);
6946 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6947 "%s", name);
6948 *p = '\0';
6950 break;
6952 case dw_val_class_loc:
6953 size = size_of_locs (AT_loc (a));
6955 /* Output the block length for this list of location operations. */
6956 dw2_asm_output_data (constant_size (size), size, "%s", name);
6958 output_loc_sequence (AT_loc (a));
6959 break;
6961 case dw_val_class_const:
6962 /* ??? It would be slightly more efficient to use a scheme like is
6963 used for unsigned constants below, but gdb 4.x does not sign
6964 extend. Gdb 5.x does sign extend. */
6965 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6966 break;
6968 case dw_val_class_unsigned_const:
6969 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6970 AT_unsigned (a), "%s", name);
6971 break;
6973 case dw_val_class_long_long:
6975 unsigned HOST_WIDE_INT first, second;
6977 dw2_asm_output_data (1,
6978 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6979 "%s", name);
6981 if (WORDS_BIG_ENDIAN)
6983 first = a->dw_attr_val.v.val_long_long.hi;
6984 second = a->dw_attr_val.v.val_long_long.low;
6986 else
6988 first = a->dw_attr_val.v.val_long_long.low;
6989 second = a->dw_attr_val.v.val_long_long.hi;
6992 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6993 first, "long long constant");
6994 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6995 second, NULL);
6997 break;
6999 case dw_val_class_vec:
7001 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7002 unsigned int len = a->dw_attr_val.v.val_vec.length;
7003 unsigned int i;
7004 unsigned char *p;
7006 dw2_asm_output_data (1, len * elt_size, "%s", name);
7007 if (elt_size > sizeof (HOST_WIDE_INT))
7009 elt_size /= 2;
7010 len *= 2;
7012 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7013 i < len;
7014 i++, p += elt_size)
7015 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7016 "fp or vector constant word %u", i);
7017 break;
7020 case dw_val_class_flag:
7021 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7022 break;
7024 case dw_val_class_loc_list:
7026 char *sym = AT_loc_list (a)->ll_symbol;
7028 gcc_assert (sym);
7029 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
7031 break;
7033 case dw_val_class_die_ref:
7034 if (AT_ref_external (a))
7036 char *sym = AT_ref (a)->die_symbol;
7038 gcc_assert (sym);
7039 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
7041 else
7043 gcc_assert (AT_ref (a)->die_offset);
7044 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7045 "%s", name);
7047 break;
7049 case dw_val_class_fde_ref:
7051 char l1[20];
7053 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7054 a->dw_attr_val.v.val_fde_index * 2);
7055 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
7057 break;
7059 case dw_val_class_lbl_id:
7060 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7061 break;
7063 case dw_val_class_lbl_offset:
7064 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
7065 break;
7067 case dw_val_class_str:
7068 if (AT_string_form (a) == DW_FORM_strp)
7069 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7070 a->dw_attr_val.v.val_str->label,
7071 "%s: \"%s\"", name, AT_string (a));
7072 else
7073 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7074 break;
7076 default:
7077 gcc_unreachable ();
7081 for (c = die->die_child; c != NULL; c = c->die_sib)
7082 output_die (c);
7084 /* Add null byte to terminate sibling list. */
7085 if (die->die_child != NULL)
7086 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7087 die->die_offset);
7090 /* Output the compilation unit that appears at the beginning of the
7091 .debug_info section, and precedes the DIE descriptions. */
7093 static void
7094 output_compilation_unit_header (void)
7096 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7097 dw2_asm_output_data (4, 0xffffffff,
7098 "Initial length escape value indicating 64-bit DWARF extension");
7099 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7100 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7101 "Length of Compilation Unit Info");
7102 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7103 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7104 "Offset Into Abbrev. Section");
7105 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7108 /* Output the compilation unit DIE and its children. */
7110 static void
7111 output_comp_unit (dw_die_ref die, int output_if_empty)
7113 const char *secname;
7114 char *oldsym, *tmp;
7116 /* Unless we are outputting main CU, we may throw away empty ones. */
7117 if (!output_if_empty && die->die_child == NULL)
7118 return;
7120 /* Even if there are no children of this DIE, we must output the information
7121 about the compilation unit. Otherwise, on an empty translation unit, we
7122 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7123 will then complain when examining the file. First mark all the DIEs in
7124 this CU so we know which get local refs. */
7125 mark_dies (die);
7127 build_abbrev_table (die);
7129 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7130 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7131 calc_die_sizes (die);
7133 oldsym = die->die_symbol;
7134 if (oldsym)
7136 tmp = alloca (strlen (oldsym) + 24);
7138 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7139 secname = tmp;
7140 die->die_symbol = NULL;
7142 else
7143 secname = (const char *) DEBUG_INFO_SECTION;
7145 /* Output debugging information. */
7146 named_section_flags (secname, SECTION_DEBUG);
7147 output_compilation_unit_header ();
7148 output_die (die);
7150 /* Leave the marks on the main CU, so we can check them in
7151 output_pubnames. */
7152 if (oldsym)
7154 unmark_dies (die);
7155 die->die_symbol = oldsym;
7159 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7160 output of lang_hooks.decl_printable_name for C++ looks like
7161 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7163 static const char *
7164 dwarf2_name (tree decl, int scope)
7166 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7169 /* Add a new entry to .debug_pubnames if appropriate. */
7171 static void
7172 add_pubname (tree decl, dw_die_ref die)
7174 pubname_ref p;
7176 if (! TREE_PUBLIC (decl))
7177 return;
7179 if (pubname_table_in_use == pubname_table_allocated)
7181 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7182 pubname_table
7183 = ggc_realloc (pubname_table,
7184 (pubname_table_allocated * sizeof (pubname_entry)));
7185 memset (pubname_table + pubname_table_in_use, 0,
7186 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7189 p = &pubname_table[pubname_table_in_use++];
7190 p->die = die;
7191 p->name = xstrdup (dwarf2_name (decl, 1));
7194 /* Output the public names table used to speed up access to externally
7195 visible names. For now, only generate entries for externally
7196 visible procedures. */
7198 static void
7199 output_pubnames (void)
7201 unsigned i;
7202 unsigned long pubnames_length = size_of_pubnames ();
7204 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7205 dw2_asm_output_data (4, 0xffffffff,
7206 "Initial length escape value indicating 64-bit DWARF extension");
7207 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7208 "Length of Public Names Info");
7209 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7210 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7211 "Offset of Compilation Unit Info");
7212 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7213 "Compilation Unit Length");
7215 for (i = 0; i < pubname_table_in_use; i++)
7217 pubname_ref pub = &pubname_table[i];
7219 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7220 gcc_assert (pub->die->die_mark);
7222 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7223 "DIE offset");
7225 dw2_asm_output_nstring (pub->name, -1, "external name");
7228 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7231 /* Add a new entry to .debug_aranges if appropriate. */
7233 static void
7234 add_arange (tree decl, dw_die_ref die)
7236 if (! DECL_SECTION_NAME (decl))
7237 return;
7239 if (arange_table_in_use == arange_table_allocated)
7241 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7242 arange_table = ggc_realloc (arange_table,
7243 (arange_table_allocated
7244 * sizeof (dw_die_ref)));
7245 memset (arange_table + arange_table_in_use, 0,
7246 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7249 arange_table[arange_table_in_use++] = die;
7252 /* Output the information that goes into the .debug_aranges table.
7253 Namely, define the beginning and ending address range of the
7254 text section generated for this compilation unit. */
7256 static void
7257 output_aranges (void)
7259 unsigned i;
7260 unsigned long aranges_length = size_of_aranges ();
7262 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7263 dw2_asm_output_data (4, 0xffffffff,
7264 "Initial length escape value indicating 64-bit DWARF extension");
7265 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7266 "Length of Address Ranges Info");
7267 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7268 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7269 "Offset of Compilation Unit Info");
7270 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7271 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7273 /* We need to align to twice the pointer size here. */
7274 if (DWARF_ARANGES_PAD_SIZE)
7276 /* Pad using a 2 byte words so that padding is correct for any
7277 pointer size. */
7278 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7279 2 * DWARF2_ADDR_SIZE);
7280 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7281 dw2_asm_output_data (2, 0, NULL);
7284 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7285 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7286 text_section_label, "Length");
7287 if (flag_reorder_blocks_and_partition)
7289 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7290 "Address");
7291 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7292 cold_text_section_label, "Length");
7295 for (i = 0; i < arange_table_in_use; i++)
7297 dw_die_ref die = arange_table[i];
7299 /* We shouldn't see aranges for DIEs outside of the main CU. */
7300 gcc_assert (die->die_mark);
7302 if (die->die_tag == DW_TAG_subprogram)
7304 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7305 "Address");
7306 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7307 get_AT_low_pc (die), "Length");
7309 else
7311 /* A static variable; extract the symbol from DW_AT_location.
7312 Note that this code isn't currently hit, as we only emit
7313 aranges for functions (jason 9/23/99). */
7314 dw_attr_ref a = get_AT (die, DW_AT_location);
7315 dw_loc_descr_ref loc;
7317 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7319 loc = AT_loc (a);
7320 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7322 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7323 loc->dw_loc_oprnd1.v.val_addr, "Address");
7324 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7325 get_AT_unsigned (die, DW_AT_byte_size),
7326 "Length");
7330 /* Output the terminator words. */
7331 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7332 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7335 /* Add a new entry to .debug_ranges. Return the offset at which it
7336 was placed. */
7338 static unsigned int
7339 add_ranges (tree block)
7341 unsigned int in_use = ranges_table_in_use;
7343 if (in_use == ranges_table_allocated)
7345 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7346 ranges_table
7347 = ggc_realloc (ranges_table, (ranges_table_allocated
7348 * sizeof (struct dw_ranges_struct)));
7349 memset (ranges_table + ranges_table_in_use, 0,
7350 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7353 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7354 ranges_table_in_use = in_use + 1;
7356 return in_use * 2 * DWARF2_ADDR_SIZE;
7359 static void
7360 output_ranges (void)
7362 unsigned i;
7363 static const char *const start_fmt = "Offset 0x%x";
7364 const char *fmt = start_fmt;
7366 for (i = 0; i < ranges_table_in_use; i++)
7368 int block_num = ranges_table[i].block_num;
7370 if (block_num)
7372 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7373 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7375 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7376 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7378 /* If all code is in the text section, then the compilation
7379 unit base address defaults to DW_AT_low_pc, which is the
7380 base of the text section. */
7381 if (!separate_line_info_table_in_use && !have_switched_text_section)
7383 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7384 text_section_label,
7385 fmt, i * 2 * DWARF2_ADDR_SIZE);
7386 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7387 text_section_label, NULL);
7390 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7391 compilation unit base address to zero, which allows us to
7392 use absolute addresses, and not worry about whether the
7393 target supports cross-section arithmetic. */
7394 else
7396 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7397 fmt, i * 2 * DWARF2_ADDR_SIZE);
7398 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7401 fmt = NULL;
7403 else
7405 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7406 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7407 fmt = start_fmt;
7412 /* Data structure containing information about input files. */
7413 struct file_info
7415 char *path; /* Complete file name. */
7416 char *fname; /* File name part. */
7417 int length; /* Length of entire string. */
7418 int file_idx; /* Index in input file table. */
7419 int dir_idx; /* Index in directory table. */
7422 /* Data structure containing information about directories with source
7423 files. */
7424 struct dir_info
7426 char *path; /* Path including directory name. */
7427 int length; /* Path length. */
7428 int prefix; /* Index of directory entry which is a prefix. */
7429 int count; /* Number of files in this directory. */
7430 int dir_idx; /* Index of directory used as base. */
7431 int used; /* Used in the end? */
7434 /* Callback function for file_info comparison. We sort by looking at
7435 the directories in the path. */
7437 static int
7438 file_info_cmp (const void *p1, const void *p2)
7440 const struct file_info *s1 = p1;
7441 const struct file_info *s2 = p2;
7442 unsigned char *cp1;
7443 unsigned char *cp2;
7445 /* Take care of file names without directories. We need to make sure that
7446 we return consistent values to qsort since some will get confused if
7447 we return the same value when identical operands are passed in opposite
7448 orders. So if neither has a directory, return 0 and otherwise return
7449 1 or -1 depending on which one has the directory. */
7450 if ((s1->path == s1->fname || s2->path == s2->fname))
7451 return (s2->path == s2->fname) - (s1->path == s1->fname);
7453 cp1 = (unsigned char *) s1->path;
7454 cp2 = (unsigned char *) s2->path;
7456 while (1)
7458 ++cp1;
7459 ++cp2;
7460 /* Reached the end of the first path? If so, handle like above. */
7461 if ((cp1 == (unsigned char *) s1->fname)
7462 || (cp2 == (unsigned char *) s2->fname))
7463 return ((cp2 == (unsigned char *) s2->fname)
7464 - (cp1 == (unsigned char *) s1->fname));
7466 /* Character of current path component the same? */
7467 else if (*cp1 != *cp2)
7468 return *cp1 - *cp2;
7472 /* Output the directory table and the file name table. We try to minimize
7473 the total amount of memory needed. A heuristic is used to avoid large
7474 slowdowns with many input files. */
7476 static void
7477 output_file_names (void)
7479 struct file_info *files;
7480 struct dir_info *dirs;
7481 int *saved;
7482 int *savehere;
7483 int *backmap;
7484 size_t ndirs;
7485 int idx_offset;
7486 size_t i;
7487 int idx;
7489 /* Handle the case where file_table is empty. */
7490 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7492 dw2_asm_output_data (1, 0, "End directory table");
7493 dw2_asm_output_data (1, 0, "End file name table");
7494 return;
7497 /* Allocate the various arrays we need. */
7498 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7499 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7501 /* Sort the file names. */
7502 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7504 char *f;
7506 /* Skip all leading "./". */
7507 f = VARRAY_CHAR_PTR (file_table, i);
7508 while (f[0] == '.' && f[1] == '/')
7509 f += 2;
7511 /* Create a new array entry. */
7512 files[i].path = f;
7513 files[i].length = strlen (f);
7514 files[i].file_idx = i;
7516 /* Search for the file name part. */
7517 f = strrchr (f, '/');
7518 files[i].fname = f == NULL ? files[i].path : f + 1;
7521 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7522 sizeof (files[0]), file_info_cmp);
7524 /* Find all the different directories used. */
7525 dirs[0].path = files[1].path;
7526 dirs[0].length = files[1].fname - files[1].path;
7527 dirs[0].prefix = -1;
7528 dirs[0].count = 1;
7529 dirs[0].dir_idx = 0;
7530 dirs[0].used = 0;
7531 files[1].dir_idx = 0;
7532 ndirs = 1;
7534 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7535 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7536 && memcmp (dirs[ndirs - 1].path, files[i].path,
7537 dirs[ndirs - 1].length) == 0)
7539 /* Same directory as last entry. */
7540 files[i].dir_idx = ndirs - 1;
7541 ++dirs[ndirs - 1].count;
7543 else
7545 size_t j;
7547 /* This is a new directory. */
7548 dirs[ndirs].path = files[i].path;
7549 dirs[ndirs].length = files[i].fname - files[i].path;
7550 dirs[ndirs].count = 1;
7551 dirs[ndirs].dir_idx = ndirs;
7552 dirs[ndirs].used = 0;
7553 files[i].dir_idx = ndirs;
7555 /* Search for a prefix. */
7556 dirs[ndirs].prefix = -1;
7557 for (j = 0; j < ndirs; j++)
7558 if (dirs[j].length < dirs[ndirs].length
7559 && dirs[j].length > 1
7560 && (dirs[ndirs].prefix == -1
7561 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7562 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7563 dirs[ndirs].prefix = j;
7565 ++ndirs;
7568 /* Now to the actual work. We have to find a subset of the directories which
7569 allow expressing the file name using references to the directory table
7570 with the least amount of characters. We do not do an exhaustive search
7571 where we would have to check out every combination of every single
7572 possible prefix. Instead we use a heuristic which provides nearly optimal
7573 results in most cases and never is much off. */
7574 saved = alloca (ndirs * sizeof (int));
7575 savehere = alloca (ndirs * sizeof (int));
7577 memset (saved, '\0', ndirs * sizeof (saved[0]));
7578 for (i = 0; i < ndirs; i++)
7580 size_t j;
7581 int total;
7583 /* We can always save some space for the current directory. But this
7584 does not mean it will be enough to justify adding the directory. */
7585 savehere[i] = dirs[i].length;
7586 total = (savehere[i] - saved[i]) * dirs[i].count;
7588 for (j = i + 1; j < ndirs; j++)
7590 savehere[j] = 0;
7591 if (saved[j] < dirs[i].length)
7593 /* Determine whether the dirs[i] path is a prefix of the
7594 dirs[j] path. */
7595 int k;
7597 k = dirs[j].prefix;
7598 while (k != -1 && k != (int) i)
7599 k = dirs[k].prefix;
7601 if (k == (int) i)
7603 /* Yes it is. We can possibly safe some memory but
7604 writing the filenames in dirs[j] relative to
7605 dirs[i]. */
7606 savehere[j] = dirs[i].length;
7607 total += (savehere[j] - saved[j]) * dirs[j].count;
7612 /* Check whether we can safe enough to justify adding the dirs[i]
7613 directory. */
7614 if (total > dirs[i].length + 1)
7616 /* It's worthwhile adding. */
7617 for (j = i; j < ndirs; j++)
7618 if (savehere[j] > 0)
7620 /* Remember how much we saved for this directory so far. */
7621 saved[j] = savehere[j];
7623 /* Remember the prefix directory. */
7624 dirs[j].dir_idx = i;
7629 /* We have to emit them in the order they appear in the file_table array
7630 since the index is used in the debug info generation. To do this
7631 efficiently we generate a back-mapping of the indices first. */
7632 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7633 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7635 backmap[files[i].file_idx] = i;
7637 /* Mark this directory as used. */
7638 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7641 /* That was it. We are ready to emit the information. First emit the
7642 directory name table. We have to make sure the first actually emitted
7643 directory name has index one; zero is reserved for the current working
7644 directory. Make sure we do not confuse these indices with the one for the
7645 constructed table (even though most of the time they are identical). */
7646 idx = 1;
7647 idx_offset = dirs[0].length > 0 ? 1 : 0;
7648 for (i = 1 - idx_offset; i < ndirs; i++)
7649 if (dirs[i].used != 0)
7651 dirs[i].used = idx++;
7652 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7653 "Directory Entry: 0x%x", dirs[i].used);
7656 dw2_asm_output_data (1, 0, "End directory table");
7658 /* Correct the index for the current working directory entry if it
7659 exists. */
7660 if (idx_offset == 0)
7661 dirs[0].used = 0;
7663 /* Now write all the file names. */
7664 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7666 int file_idx = backmap[i];
7667 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7669 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7670 "File Entry: 0x%lx", (unsigned long) i);
7672 /* Include directory index. */
7673 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7675 /* Modification time. */
7676 dw2_asm_output_data_uleb128 (0, NULL);
7678 /* File length in bytes. */
7679 dw2_asm_output_data_uleb128 (0, NULL);
7682 dw2_asm_output_data (1, 0, "End file name table");
7686 /* Output the source line number correspondence information. This
7687 information goes into the .debug_line section. */
7689 static void
7690 output_line_info (void)
7692 char l1[20], l2[20], p1[20], p2[20];
7693 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7694 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7695 unsigned opc;
7696 unsigned n_op_args;
7697 unsigned long lt_index;
7698 unsigned long current_line;
7699 long line_offset;
7700 long line_delta;
7701 unsigned long current_file;
7702 unsigned long function;
7704 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7705 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7706 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7707 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7709 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7710 dw2_asm_output_data (4, 0xffffffff,
7711 "Initial length escape value indicating 64-bit DWARF extension");
7712 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7713 "Length of Source Line Info");
7714 ASM_OUTPUT_LABEL (asm_out_file, l1);
7716 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7717 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7718 ASM_OUTPUT_LABEL (asm_out_file, p1);
7720 /* Define the architecture-dependent minimum instruction length (in
7721 bytes). In this implementation of DWARF, this field is used for
7722 information purposes only. Since GCC generates assembly language,
7723 we have no a priori knowledge of how many instruction bytes are
7724 generated for each source line, and therefore can use only the
7725 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7726 commands. Accordingly, we fix this as `1', which is "correct
7727 enough" for all architectures, and don't let the target override. */
7728 dw2_asm_output_data (1, 1,
7729 "Minimum Instruction Length");
7731 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7732 "Default is_stmt_start flag");
7733 dw2_asm_output_data (1, DWARF_LINE_BASE,
7734 "Line Base Value (Special Opcodes)");
7735 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7736 "Line Range Value (Special Opcodes)");
7737 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7738 "Special Opcode Base");
7740 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7742 switch (opc)
7744 case DW_LNS_advance_pc:
7745 case DW_LNS_advance_line:
7746 case DW_LNS_set_file:
7747 case DW_LNS_set_column:
7748 case DW_LNS_fixed_advance_pc:
7749 n_op_args = 1;
7750 break;
7751 default:
7752 n_op_args = 0;
7753 break;
7756 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7757 opc, n_op_args);
7760 /* Write out the information about the files we use. */
7761 output_file_names ();
7762 ASM_OUTPUT_LABEL (asm_out_file, p2);
7764 /* We used to set the address register to the first location in the text
7765 section here, but that didn't accomplish anything since we already
7766 have a line note for the opening brace of the first function. */
7768 /* Generate the line number to PC correspondence table, encoded as
7769 a series of state machine operations. */
7770 current_file = 1;
7771 current_line = 1;
7773 if (cfun
7774 && (last_text_section == in_unlikely_executed_text
7775 || (last_text_section == in_named
7776 && last_text_section_name == cfun->unlikely_text_section_name)))
7777 strcpy (prev_line_label, cfun->cold_section_label);
7778 else
7779 strcpy (prev_line_label, text_section_label);
7780 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7782 dw_line_info_ref line_info = &line_info_table[lt_index];
7784 #if 0
7785 /* Disable this optimization for now; GDB wants to see two line notes
7786 at the beginning of a function so it can find the end of the
7787 prologue. */
7789 /* Don't emit anything for redundant notes. Just updating the
7790 address doesn't accomplish anything, because we already assume
7791 that anything after the last address is this line. */
7792 if (line_info->dw_line_num == current_line
7793 && line_info->dw_file_num == current_file)
7794 continue;
7795 #endif
7797 /* Emit debug info for the address of the current line.
7799 Unfortunately, we have little choice here currently, and must always
7800 use the most general form. GCC does not know the address delta
7801 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7802 attributes which will give an upper bound on the address range. We
7803 could perhaps use length attributes to determine when it is safe to
7804 use DW_LNS_fixed_advance_pc. */
7806 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7807 if (0)
7809 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7810 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7811 "DW_LNS_fixed_advance_pc");
7812 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7814 else
7816 /* This can handle any delta. This takes
7817 4+DWARF2_ADDR_SIZE bytes. */
7818 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7819 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7820 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7821 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7824 strcpy (prev_line_label, line_label);
7826 /* Emit debug info for the source file of the current line, if
7827 different from the previous line. */
7828 if (line_info->dw_file_num != current_file)
7830 current_file = line_info->dw_file_num;
7831 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7832 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7833 VARRAY_CHAR_PTR (file_table,
7834 current_file));
7837 /* Emit debug info for the current line number, choosing the encoding
7838 that uses the least amount of space. */
7839 if (line_info->dw_line_num != current_line)
7841 line_offset = line_info->dw_line_num - current_line;
7842 line_delta = line_offset - DWARF_LINE_BASE;
7843 current_line = line_info->dw_line_num;
7844 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7845 /* This can handle deltas from -10 to 234, using the current
7846 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7847 takes 1 byte. */
7848 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7849 "line %lu", current_line);
7850 else
7852 /* This can handle any delta. This takes at least 4 bytes,
7853 depending on the value being encoded. */
7854 dw2_asm_output_data (1, DW_LNS_advance_line,
7855 "advance to line %lu", current_line);
7856 dw2_asm_output_data_sleb128 (line_offset, NULL);
7857 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7860 else
7861 /* We still need to start a new row, so output a copy insn. */
7862 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7865 /* Emit debug info for the address of the end of the function. */
7866 if (0)
7868 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7869 "DW_LNS_fixed_advance_pc");
7870 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7872 else
7874 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7875 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7876 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7877 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7880 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7881 dw2_asm_output_data_uleb128 (1, NULL);
7882 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7884 function = 0;
7885 current_file = 1;
7886 current_line = 1;
7887 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7889 dw_separate_line_info_ref line_info
7890 = &separate_line_info_table[lt_index];
7892 #if 0
7893 /* Don't emit anything for redundant notes. */
7894 if (line_info->dw_line_num == current_line
7895 && line_info->dw_file_num == current_file
7896 && line_info->function == function)
7897 goto cont;
7898 #endif
7900 /* Emit debug info for the address of the current line. If this is
7901 a new function, or the first line of a function, then we need
7902 to handle it differently. */
7903 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7904 lt_index);
7905 if (function != line_info->function)
7907 function = line_info->function;
7909 /* Set the address register to the first line in the function. */
7910 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7911 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7912 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7913 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7915 else
7917 /* ??? See the DW_LNS_advance_pc comment above. */
7918 if (0)
7920 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7921 "DW_LNS_fixed_advance_pc");
7922 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7924 else
7926 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7927 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7928 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7929 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7933 strcpy (prev_line_label, line_label);
7935 /* Emit debug info for the source file of the current line, if
7936 different from the previous line. */
7937 if (line_info->dw_file_num != current_file)
7939 current_file = line_info->dw_file_num;
7940 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7941 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7942 VARRAY_CHAR_PTR (file_table,
7943 current_file));
7946 /* Emit debug info for the current line number, choosing the encoding
7947 that uses the least amount of space. */
7948 if (line_info->dw_line_num != current_line)
7950 line_offset = line_info->dw_line_num - current_line;
7951 line_delta = line_offset - DWARF_LINE_BASE;
7952 current_line = line_info->dw_line_num;
7953 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7954 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7955 "line %lu", current_line);
7956 else
7958 dw2_asm_output_data (1, DW_LNS_advance_line,
7959 "advance to line %lu", current_line);
7960 dw2_asm_output_data_sleb128 (line_offset, NULL);
7961 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7964 else
7965 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7967 #if 0
7968 cont:
7969 #endif
7971 lt_index++;
7973 /* If we're done with a function, end its sequence. */
7974 if (lt_index == separate_line_info_table_in_use
7975 || separate_line_info_table[lt_index].function != function)
7977 current_file = 1;
7978 current_line = 1;
7980 /* Emit debug info for the address of the end of the function. */
7981 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7982 if (0)
7984 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7985 "DW_LNS_fixed_advance_pc");
7986 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7988 else
7990 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7991 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7992 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7993 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7996 /* Output the marker for the end of this sequence. */
7997 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7998 dw2_asm_output_data_uleb128 (1, NULL);
7999 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8003 /* Output the marker for the end of the line number info. */
8004 ASM_OUTPUT_LABEL (asm_out_file, l2);
8007 /* Given a pointer to a tree node for some base type, return a pointer to
8008 a DIE that describes the given type.
8010 This routine must only be called for GCC type nodes that correspond to
8011 Dwarf base (fundamental) types. */
8013 static dw_die_ref
8014 base_type_die (tree type)
8016 dw_die_ref base_type_result;
8017 const char *type_name;
8018 enum dwarf_type encoding;
8019 tree name = TYPE_NAME (type);
8021 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8022 return 0;
8024 if (name)
8026 if (TREE_CODE (name) == TYPE_DECL)
8027 name = DECL_NAME (name);
8029 type_name = IDENTIFIER_POINTER (name);
8031 else
8032 type_name = "__unknown__";
8034 switch (TREE_CODE (type))
8036 case INTEGER_TYPE:
8037 /* Carefully distinguish the C character types, without messing
8038 up if the language is not C. Note that we check only for the names
8039 that contain spaces; other names might occur by coincidence in other
8040 languages. */
8041 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
8042 && (TYPE_MAIN_VARIANT (type) == char_type_node
8043 || ! strcmp (type_name, "signed char")
8044 || ! strcmp (type_name, "unsigned char"))))
8046 if (TYPE_UNSIGNED (type))
8047 encoding = DW_ATE_unsigned;
8048 else
8049 encoding = DW_ATE_signed;
8050 break;
8052 /* else fall through. */
8054 case CHAR_TYPE:
8055 /* GNU Pascal/Ada CHAR type. Not used in C. */
8056 if (TYPE_UNSIGNED (type))
8057 encoding = DW_ATE_unsigned_char;
8058 else
8059 encoding = DW_ATE_signed_char;
8060 break;
8062 case REAL_TYPE:
8063 encoding = DW_ATE_float;
8064 break;
8066 /* Dwarf2 doesn't know anything about complex ints, so use
8067 a user defined type for it. */
8068 case COMPLEX_TYPE:
8069 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8070 encoding = DW_ATE_complex_float;
8071 else
8072 encoding = DW_ATE_lo_user;
8073 break;
8075 case BOOLEAN_TYPE:
8076 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8077 encoding = DW_ATE_boolean;
8078 break;
8080 default:
8081 /* No other TREE_CODEs are Dwarf fundamental types. */
8082 gcc_unreachable ();
8085 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8086 if (demangle_name_func)
8087 type_name = (*demangle_name_func) (type_name);
8089 add_AT_string (base_type_result, DW_AT_name, type_name);
8090 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8091 int_size_in_bytes (type));
8092 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8094 return base_type_result;
8097 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8098 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8099 a given type is generally the same as the given type, except that if the
8100 given type is a pointer or reference type, then the root type of the given
8101 type is the root type of the "basis" type for the pointer or reference
8102 type. (This definition of the "root" type is recursive.) Also, the root
8103 type of a `const' qualified type or a `volatile' qualified type is the
8104 root type of the given type without the qualifiers. */
8106 static tree
8107 root_type (tree type)
8109 if (TREE_CODE (type) == ERROR_MARK)
8110 return error_mark_node;
8112 switch (TREE_CODE (type))
8114 case ERROR_MARK:
8115 return error_mark_node;
8117 case POINTER_TYPE:
8118 case REFERENCE_TYPE:
8119 return type_main_variant (root_type (TREE_TYPE (type)));
8121 default:
8122 return type_main_variant (type);
8126 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8127 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8129 static inline int
8130 is_base_type (tree type)
8132 switch (TREE_CODE (type))
8134 case ERROR_MARK:
8135 case VOID_TYPE:
8136 case INTEGER_TYPE:
8137 case REAL_TYPE:
8138 case COMPLEX_TYPE:
8139 case BOOLEAN_TYPE:
8140 case CHAR_TYPE:
8141 return 1;
8143 case ARRAY_TYPE:
8144 case RECORD_TYPE:
8145 case UNION_TYPE:
8146 case QUAL_UNION_TYPE:
8147 case ENUMERAL_TYPE:
8148 case FUNCTION_TYPE:
8149 case METHOD_TYPE:
8150 case POINTER_TYPE:
8151 case REFERENCE_TYPE:
8152 case OFFSET_TYPE:
8153 case LANG_TYPE:
8154 case VECTOR_TYPE:
8155 return 0;
8157 default:
8158 gcc_unreachable ();
8161 return 0;
8164 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8165 node, return the size in bits for the type if it is a constant, or else
8166 return the alignment for the type if the type's size is not constant, or
8167 else return BITS_PER_WORD if the type actually turns out to be an
8168 ERROR_MARK node. */
8170 static inline unsigned HOST_WIDE_INT
8171 simple_type_size_in_bits (tree type)
8173 if (TREE_CODE (type) == ERROR_MARK)
8174 return BITS_PER_WORD;
8175 else if (TYPE_SIZE (type) == NULL_TREE)
8176 return 0;
8177 else if (host_integerp (TYPE_SIZE (type), 1))
8178 return tree_low_cst (TYPE_SIZE (type), 1);
8179 else
8180 return TYPE_ALIGN (type);
8183 /* Return true if the debug information for the given type should be
8184 emitted as a subrange type. */
8186 static inline bool
8187 is_subrange_type (tree type)
8189 tree subtype = TREE_TYPE (type);
8191 /* Subrange types are identified by the fact that they are integer
8192 types, and that they have a subtype which is either an integer type
8193 or an enumeral type. */
8195 if (TREE_CODE (type) != INTEGER_TYPE
8196 || subtype == NULL_TREE)
8197 return false;
8199 if (TREE_CODE (subtype) != INTEGER_TYPE
8200 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8201 return false;
8203 if (TREE_CODE (type) == TREE_CODE (subtype)
8204 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8205 && TYPE_MIN_VALUE (type) != NULL
8206 && TYPE_MIN_VALUE (subtype) != NULL
8207 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8208 && TYPE_MAX_VALUE (type) != NULL
8209 && TYPE_MAX_VALUE (subtype) != NULL
8210 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8212 /* The type and its subtype have the same representation. If in
8213 addition the two types also have the same name, then the given
8214 type is not a subrange type, but rather a plain base type. */
8215 /* FIXME: brobecker/2004-03-22:
8216 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8217 therefore be sufficient to check the TYPE_SIZE node pointers
8218 rather than checking the actual size. Unfortunately, we have
8219 found some cases, such as in the Ada "integer" type, where
8220 this is not the case. Until this problem is solved, we need to
8221 keep checking the actual size. */
8222 tree type_name = TYPE_NAME (type);
8223 tree subtype_name = TYPE_NAME (subtype);
8225 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8226 type_name = DECL_NAME (type_name);
8228 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8229 subtype_name = DECL_NAME (subtype_name);
8231 if (type_name == subtype_name)
8232 return false;
8235 return true;
8238 /* Given a pointer to a tree node for a subrange type, return a pointer
8239 to a DIE that describes the given type. */
8241 static dw_die_ref
8242 subrange_type_die (tree type, dw_die_ref context_die)
8244 dw_die_ref subtype_die;
8245 dw_die_ref subrange_die;
8246 tree name = TYPE_NAME (type);
8247 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8248 tree subtype = TREE_TYPE (type);
8250 if (context_die == NULL)
8251 context_die = comp_unit_die;
8253 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8254 subtype_die = gen_enumeration_type_die (subtype, context_die);
8255 else
8256 subtype_die = base_type_die (subtype);
8258 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8260 if (name != NULL)
8262 if (TREE_CODE (name) == TYPE_DECL)
8263 name = DECL_NAME (name);
8264 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8267 if (int_size_in_bytes (subtype) != size_in_bytes)
8269 /* The size of the subrange type and its base type do not match,
8270 so we need to generate a size attribute for the subrange type. */
8271 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8274 if (TYPE_MIN_VALUE (type) != NULL)
8275 add_bound_info (subrange_die, DW_AT_lower_bound,
8276 TYPE_MIN_VALUE (type));
8277 if (TYPE_MAX_VALUE (type) != NULL)
8278 add_bound_info (subrange_die, DW_AT_upper_bound,
8279 TYPE_MAX_VALUE (type));
8280 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8282 return subrange_die;
8285 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8286 entry that chains various modifiers in front of the given type. */
8288 static dw_die_ref
8289 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8290 dw_die_ref context_die)
8292 enum tree_code code = TREE_CODE (type);
8293 dw_die_ref mod_type_die = NULL;
8294 dw_die_ref sub_die = NULL;
8295 tree item_type = NULL;
8297 if (code != ERROR_MARK)
8299 tree qualified_type;
8301 /* See if we already have the appropriately qualified variant of
8302 this type. */
8303 qualified_type
8304 = get_qualified_type (type,
8305 ((is_const_type ? TYPE_QUAL_CONST : 0)
8306 | (is_volatile_type
8307 ? TYPE_QUAL_VOLATILE : 0)));
8309 /* If we do, then we can just use its DIE, if it exists. */
8310 if (qualified_type)
8312 mod_type_die = lookup_type_die (qualified_type);
8313 if (mod_type_die)
8314 return mod_type_die;
8317 /* Handle C typedef types. */
8318 if (qualified_type && TYPE_NAME (qualified_type)
8319 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8320 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8322 tree type_name = TYPE_NAME (qualified_type);
8323 tree dtype = TREE_TYPE (type_name);
8325 if (qualified_type == dtype)
8327 /* For a named type, use the typedef. */
8328 gen_type_die (qualified_type, context_die);
8329 mod_type_die = lookup_type_die (qualified_type);
8331 else if (is_const_type < TYPE_READONLY (dtype)
8332 || is_volatile_type < TYPE_VOLATILE (dtype))
8333 /* cv-unqualified version of named type. Just use the unnamed
8334 type to which it refers. */
8335 mod_type_die
8336 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8337 is_const_type, is_volatile_type,
8338 context_die);
8340 /* Else cv-qualified version of named type; fall through. */
8343 if (mod_type_die)
8344 /* OK. */
8346 else if (is_const_type)
8348 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8349 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8351 else if (is_volatile_type)
8353 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8354 sub_die = modified_type_die (type, 0, 0, context_die);
8356 else if (code == POINTER_TYPE)
8358 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8359 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8360 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8361 #if 0
8362 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8363 #endif
8364 item_type = TREE_TYPE (type);
8366 else if (code == REFERENCE_TYPE)
8368 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8369 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8370 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8371 #if 0
8372 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8373 #endif
8374 item_type = TREE_TYPE (type);
8376 else if (is_subrange_type (type))
8377 mod_type_die = subrange_type_die (type, context_die);
8378 else if (is_base_type (type))
8379 mod_type_die = base_type_die (type);
8380 else
8382 gen_type_die (type, context_die);
8384 /* We have to get the type_main_variant here (and pass that to the
8385 `lookup_type_die' routine) because the ..._TYPE node we have
8386 might simply be a *copy* of some original type node (where the
8387 copy was created to help us keep track of typedef names) and
8388 that copy might have a different TYPE_UID from the original
8389 ..._TYPE node. */
8390 if (TREE_CODE (type) != VECTOR_TYPE)
8391 mod_type_die = lookup_type_die (type_main_variant (type));
8392 else
8393 /* Vectors have the debugging information in the type,
8394 not the main variant. */
8395 mod_type_die = lookup_type_die (type);
8396 gcc_assert (mod_type_die);
8399 /* We want to equate the qualified type to the die below. */
8400 type = qualified_type;
8403 if (type)
8404 equate_type_number_to_die (type, mod_type_die);
8405 if (item_type)
8406 /* We must do this after the equate_type_number_to_die call, in case
8407 this is a recursive type. This ensures that the modified_type_die
8408 recursion will terminate even if the type is recursive. Recursive
8409 types are possible in Ada. */
8410 sub_die = modified_type_die (item_type,
8411 TYPE_READONLY (item_type),
8412 TYPE_VOLATILE (item_type),
8413 context_die);
8415 if (sub_die != NULL)
8416 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8418 return mod_type_die;
8421 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8422 an enumerated type. */
8424 static inline int
8425 type_is_enum (tree type)
8427 return TREE_CODE (type) == ENUMERAL_TYPE;
8430 /* Return the DBX register number described by a given RTL node. */
8432 static unsigned int
8433 dbx_reg_number (rtx rtl)
8435 unsigned regno = REGNO (rtl);
8437 /* We do not want to see registers that should have been eliminated. */
8438 gcc_assert (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
8439 || rtl != arg_pointer_rtx);
8440 gcc_assert (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM
8441 || rtl != frame_pointer_rtx);
8443 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8445 #ifdef LEAF_REG_REMAP
8446 regno = LEAF_REG_REMAP (regno);
8447 #endif
8449 return DBX_REGISTER_NUMBER (regno);
8452 /* Optionally add a DW_OP_piece term to a location description expression.
8453 DW_OP_piece is only added if the location description expression already
8454 doesn't end with DW_OP_piece. */
8456 static void
8457 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8459 dw_loc_descr_ref loc;
8461 if (*list_head != NULL)
8463 /* Find the end of the chain. */
8464 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8467 if (loc->dw_loc_opc != DW_OP_piece)
8468 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8472 /* Return a location descriptor that designates a machine register or
8473 zero if there is none. */
8475 static dw_loc_descr_ref
8476 reg_loc_descriptor (rtx rtl)
8478 rtx regs;
8480 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8481 return 0;
8483 regs = targetm.dwarf_register_span (rtl);
8485 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8486 return multiple_reg_loc_descriptor (rtl, regs);
8487 else
8488 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8491 /* Return a location descriptor that designates a machine register for
8492 a given hard register number. */
8494 static dw_loc_descr_ref
8495 one_reg_loc_descriptor (unsigned int regno)
8497 if (regno <= 31)
8498 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8499 else
8500 return new_loc_descr (DW_OP_regx, regno, 0);
8503 /* Given an RTL of a register, return a location descriptor that
8504 designates a value that spans more than one register. */
8506 static dw_loc_descr_ref
8507 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8509 int nregs, size, i;
8510 unsigned reg;
8511 dw_loc_descr_ref loc_result = NULL;
8513 reg = dbx_reg_number (rtl);
8514 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8516 /* Simple, contiguous registers. */
8517 if (regs == NULL_RTX)
8519 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8521 loc_result = NULL;
8522 while (nregs--)
8524 dw_loc_descr_ref t;
8526 t = one_reg_loc_descriptor (reg);
8527 add_loc_descr (&loc_result, t);
8528 add_loc_descr_op_piece (&loc_result, size);
8529 ++reg;
8531 return loc_result;
8534 /* Now onto stupid register sets in non contiguous locations. */
8536 gcc_assert (GET_CODE (regs) == PARALLEL);
8538 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8539 loc_result = NULL;
8541 for (i = 0; i < XVECLEN (regs, 0); ++i)
8543 dw_loc_descr_ref t;
8545 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8546 add_loc_descr (&loc_result, t);
8547 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8548 add_loc_descr_op_piece (&loc_result, size);
8550 return loc_result;
8553 /* Return a location descriptor that designates a constant. */
8555 static dw_loc_descr_ref
8556 int_loc_descriptor (HOST_WIDE_INT i)
8558 enum dwarf_location_atom op;
8560 /* Pick the smallest representation of a constant, rather than just
8561 defaulting to the LEB encoding. */
8562 if (i >= 0)
8564 if (i <= 31)
8565 op = DW_OP_lit0 + i;
8566 else if (i <= 0xff)
8567 op = DW_OP_const1u;
8568 else if (i <= 0xffff)
8569 op = DW_OP_const2u;
8570 else if (HOST_BITS_PER_WIDE_INT == 32
8571 || i <= 0xffffffff)
8572 op = DW_OP_const4u;
8573 else
8574 op = DW_OP_constu;
8576 else
8578 if (i >= -0x80)
8579 op = DW_OP_const1s;
8580 else if (i >= -0x8000)
8581 op = DW_OP_const2s;
8582 else if (HOST_BITS_PER_WIDE_INT == 32
8583 || i >= -0x80000000)
8584 op = DW_OP_const4s;
8585 else
8586 op = DW_OP_consts;
8589 return new_loc_descr (op, i, 0);
8592 /* Return an offset from an eliminable register to the post-prologue
8593 frame pointer. */
8595 static HOST_WIDE_INT
8596 eliminate_reg_to_offset (rtx reg)
8598 HOST_WIDE_INT offset = 0;
8600 reg = eliminate_regs (reg, VOIDmode, NULL_RTX);
8601 if (GET_CODE (reg) == PLUS)
8603 offset = INTVAL (XEXP (reg, 1));
8604 reg = XEXP (reg, 0);
8606 gcc_assert (reg == (frame_pointer_needed ? hard_frame_pointer_rtx
8607 : stack_pointer_rtx));
8609 return offset;
8612 /* Return a location descriptor that designates a base+offset location. */
8614 static dw_loc_descr_ref
8615 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8617 dw_loc_descr_ref loc_result;
8619 /* We only use "frame base" when we're sure we're talking about the
8620 post-prologue local stack frame. We do this by *not* running
8621 register elimination until this point, and recognizing the special
8622 argument pointer and soft frame pointer rtx's. */
8623 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8625 offset += eliminate_reg_to_offset (reg);
8626 offset += frame_pointer_cfa_offset;
8628 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8630 else
8632 unsigned int regno = dbx_reg_number (reg);
8634 if (regno <= 31)
8635 loc_result = new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8636 else
8637 loc_result = new_loc_descr (DW_OP_bregx, regno, offset);
8640 return loc_result;
8643 /* Return true if this RTL expression describes a base+offset calculation. */
8645 static inline int
8646 is_based_loc (rtx rtl)
8648 return (GET_CODE (rtl) == PLUS
8649 && ((REG_P (XEXP (rtl, 0))
8650 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8651 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8654 /* The following routine converts the RTL for a variable or parameter
8655 (resident in memory) into an equivalent Dwarf representation of a
8656 mechanism for getting the address of that same variable onto the top of a
8657 hypothetical "address evaluation" stack.
8659 When creating memory location descriptors, we are effectively transforming
8660 the RTL for a memory-resident object into its Dwarf postfix expression
8661 equivalent. This routine recursively descends an RTL tree, turning
8662 it into Dwarf postfix code as it goes.
8664 MODE is the mode of the memory reference, needed to handle some
8665 autoincrement addressing modes.
8667 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8668 location list for RTL.
8670 Return 0 if we can't represent the location. */
8672 static dw_loc_descr_ref
8673 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8675 dw_loc_descr_ref mem_loc_result = NULL;
8676 enum dwarf_location_atom op;
8678 /* Note that for a dynamically sized array, the location we will generate a
8679 description of here will be the lowest numbered location which is
8680 actually within the array. That's *not* necessarily the same as the
8681 zeroth element of the array. */
8683 rtl = targetm.delegitimize_address (rtl);
8685 switch (GET_CODE (rtl))
8687 case POST_INC:
8688 case POST_DEC:
8689 case POST_MODIFY:
8690 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8691 just fall into the SUBREG code. */
8693 /* ... fall through ... */
8695 case SUBREG:
8696 /* The case of a subreg may arise when we have a local (register)
8697 variable or a formal (register) parameter which doesn't quite fill
8698 up an entire register. For now, just assume that it is
8699 legitimate to make the Dwarf info refer to the whole register which
8700 contains the given subreg. */
8701 rtl = XEXP (rtl, 0);
8703 /* ... fall through ... */
8705 case REG:
8706 /* Whenever a register number forms a part of the description of the
8707 method for calculating the (dynamic) address of a memory resident
8708 object, DWARF rules require the register number be referred to as
8709 a "base register". This distinction is not based in any way upon
8710 what category of register the hardware believes the given register
8711 belongs to. This is strictly DWARF terminology we're dealing with
8712 here. Note that in cases where the location of a memory-resident
8713 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8714 OP_CONST (0)) the actual DWARF location descriptor that we generate
8715 may just be OP_BASEREG (basereg). This may look deceptively like
8716 the object in question was allocated to a register (rather than in
8717 memory) so DWARF consumers need to be aware of the subtle
8718 distinction between OP_REG and OP_BASEREG. */
8719 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8720 mem_loc_result = based_loc_descr (rtl, 0);
8721 break;
8723 case MEM:
8724 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8725 if (mem_loc_result != 0)
8726 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8727 break;
8729 case LO_SUM:
8730 rtl = XEXP (rtl, 1);
8732 /* ... fall through ... */
8734 case LABEL_REF:
8735 /* Some ports can transform a symbol ref into a label ref, because
8736 the symbol ref is too far away and has to be dumped into a constant
8737 pool. */
8738 case CONST:
8739 case SYMBOL_REF:
8740 /* Alternatively, the symbol in the constant pool might be referenced
8741 by a different symbol. */
8742 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8744 bool marked;
8745 rtx tmp = get_pool_constant_mark (rtl, &marked);
8747 if (GET_CODE (tmp) == SYMBOL_REF)
8749 rtl = tmp;
8750 if (CONSTANT_POOL_ADDRESS_P (tmp))
8751 get_pool_constant_mark (tmp, &marked);
8752 else
8753 marked = true;
8756 /* If all references to this pool constant were optimized away,
8757 it was not output and thus we can't represent it.
8758 FIXME: might try to use DW_OP_const_value here, though
8759 DW_OP_piece complicates it. */
8760 if (!marked)
8761 return 0;
8764 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8765 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8766 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8767 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8768 break;
8770 case PRE_MODIFY:
8771 /* Extract the PLUS expression nested inside and fall into
8772 PLUS code below. */
8773 rtl = XEXP (rtl, 1);
8774 goto plus;
8776 case PRE_INC:
8777 case PRE_DEC:
8778 /* Turn these into a PLUS expression and fall into the PLUS code
8779 below. */
8780 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8781 GEN_INT (GET_CODE (rtl) == PRE_INC
8782 ? GET_MODE_UNIT_SIZE (mode)
8783 : -GET_MODE_UNIT_SIZE (mode)));
8785 /* ... fall through ... */
8787 case PLUS:
8788 plus:
8789 if (is_based_loc (rtl))
8790 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8791 INTVAL (XEXP (rtl, 1)));
8792 else
8794 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8795 if (mem_loc_result == 0)
8796 break;
8798 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8799 && INTVAL (XEXP (rtl, 1)) >= 0)
8800 add_loc_descr (&mem_loc_result,
8801 new_loc_descr (DW_OP_plus_uconst,
8802 INTVAL (XEXP (rtl, 1)), 0));
8803 else
8805 add_loc_descr (&mem_loc_result,
8806 mem_loc_descriptor (XEXP (rtl, 1), mode));
8807 add_loc_descr (&mem_loc_result,
8808 new_loc_descr (DW_OP_plus, 0, 0));
8811 break;
8813 /* If a pseudo-reg is optimized away, it is possible for it to
8814 be replaced with a MEM containing a multiply or shift. */
8815 case MULT:
8816 op = DW_OP_mul;
8817 goto do_binop;
8819 case ASHIFT:
8820 op = DW_OP_shl;
8821 goto do_binop;
8823 case ASHIFTRT:
8824 op = DW_OP_shra;
8825 goto do_binop;
8827 case LSHIFTRT:
8828 op = DW_OP_shr;
8829 goto do_binop;
8831 do_binop:
8833 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8834 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8836 if (op0 == 0 || op1 == 0)
8837 break;
8839 mem_loc_result = op0;
8840 add_loc_descr (&mem_loc_result, op1);
8841 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8842 break;
8845 case CONST_INT:
8846 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8847 break;
8849 default:
8850 gcc_unreachable ();
8853 return mem_loc_result;
8856 /* Return a descriptor that describes the concatenation of two locations.
8857 This is typically a complex variable. */
8859 static dw_loc_descr_ref
8860 concat_loc_descriptor (rtx x0, rtx x1)
8862 dw_loc_descr_ref cc_loc_result = NULL;
8863 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8864 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8866 if (x0_ref == 0 || x1_ref == 0)
8867 return 0;
8869 cc_loc_result = x0_ref;
8870 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
8872 add_loc_descr (&cc_loc_result, x1_ref);
8873 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
8875 return cc_loc_result;
8878 /* Output a proper Dwarf location descriptor for a variable or parameter
8879 which is either allocated in a register or in a memory location. For a
8880 register, we just generate an OP_REG and the register number. For a
8881 memory location we provide a Dwarf postfix expression describing how to
8882 generate the (dynamic) address of the object onto the address stack.
8884 If we don't know how to describe it, return 0. */
8886 static dw_loc_descr_ref
8887 loc_descriptor (rtx rtl)
8889 dw_loc_descr_ref loc_result = NULL;
8891 switch (GET_CODE (rtl))
8893 case SUBREG:
8894 /* The case of a subreg may arise when we have a local (register)
8895 variable or a formal (register) parameter which doesn't quite fill
8896 up an entire register. For now, just assume that it is
8897 legitimate to make the Dwarf info refer to the whole register which
8898 contains the given subreg. */
8899 rtl = SUBREG_REG (rtl);
8901 /* ... fall through ... */
8903 case REG:
8904 loc_result = reg_loc_descriptor (rtl);
8905 break;
8907 case MEM:
8908 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8909 break;
8911 case CONCAT:
8912 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8913 break;
8915 case VAR_LOCATION:
8916 /* Single part. */
8917 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8919 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
8920 break;
8923 rtl = XEXP (rtl, 1);
8924 /* FALLTHRU */
8926 case PARALLEL:
8928 rtvec par_elems = XVEC (rtl, 0);
8929 int num_elem = GET_NUM_ELEM (par_elems);
8930 enum machine_mode mode;
8931 int i;
8933 /* Create the first one, so we have something to add to. */
8934 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
8935 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8936 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8937 for (i = 1; i < num_elem; i++)
8939 dw_loc_descr_ref temp;
8941 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
8942 add_loc_descr (&loc_result, temp);
8943 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8944 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8947 break;
8949 default:
8950 gcc_unreachable ();
8953 return loc_result;
8956 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8957 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8958 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8959 top-level invocation, and we require the address of LOC; is 0 if we require
8960 the value of LOC. */
8962 static dw_loc_descr_ref
8963 loc_descriptor_from_tree_1 (tree loc, int want_address)
8965 dw_loc_descr_ref ret, ret1;
8966 int have_address = 0;
8967 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8968 enum dwarf_location_atom op;
8970 /* ??? Most of the time we do not take proper care for sign/zero
8971 extending the values properly. Hopefully this won't be a real
8972 problem... */
8974 switch (TREE_CODE (loc))
8976 case ERROR_MARK:
8977 return 0;
8979 case PLACEHOLDER_EXPR:
8980 /* This case involves extracting fields from an object to determine the
8981 position of other fields. We don't try to encode this here. The
8982 only user of this is Ada, which encodes the needed information using
8983 the names of types. */
8984 return 0;
8986 case CALL_EXPR:
8987 return 0;
8989 case PREINCREMENT_EXPR:
8990 case PREDECREMENT_EXPR:
8991 case POSTINCREMENT_EXPR:
8992 case POSTDECREMENT_EXPR:
8993 /* There are no opcodes for these operations. */
8994 return 0;
8996 case ADDR_EXPR:
8997 /* If we already want an address, there's nothing we can do. */
8998 if (want_address)
8999 return 0;
9001 /* Otherwise, process the argument and look for the address. */
9002 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9004 case VAR_DECL:
9005 if (DECL_THREAD_LOCAL_P (loc))
9007 rtx rtl;
9009 /* If this is not defined, we have no way to emit the data. */
9010 if (!targetm.asm_out.output_dwarf_dtprel)
9011 return 0;
9013 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9014 look up addresses of objects in the current module. */
9015 if (DECL_EXTERNAL (loc))
9016 return 0;
9018 rtl = rtl_for_decl_location (loc);
9019 if (rtl == NULL_RTX)
9020 return 0;
9022 if (!MEM_P (rtl))
9023 return 0;
9024 rtl = XEXP (rtl, 0);
9025 if (! CONSTANT_P (rtl))
9026 return 0;
9028 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9029 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9030 ret->dw_loc_oprnd1.v.val_addr = rtl;
9032 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9033 add_loc_descr (&ret, ret1);
9035 have_address = 1;
9036 break;
9038 /* FALLTHRU */
9040 case PARM_DECL:
9041 if (DECL_HAS_VALUE_EXPR_P (loc))
9042 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9043 want_address);
9044 /* FALLTHRU */
9046 case RESULT_DECL:
9048 rtx rtl = rtl_for_decl_location (loc);
9050 if (rtl == NULL_RTX)
9051 return 0;
9052 else if (GET_CODE (rtl) == CONST_INT)
9054 HOST_WIDE_INT val = INTVAL (rtl);
9055 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9056 val &= GET_MODE_MASK (DECL_MODE (loc));
9057 ret = int_loc_descriptor (val);
9059 else if (GET_CODE (rtl) == CONST_STRING)
9060 return 0;
9061 else if (CONSTANT_P (rtl))
9063 ret = new_loc_descr (DW_OP_addr, 0, 0);
9064 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9065 ret->dw_loc_oprnd1.v.val_addr = rtl;
9067 else
9069 enum machine_mode mode;
9071 /* Certain constructs can only be represented at top-level. */
9072 if (want_address == 2)
9073 return loc_descriptor (rtl);
9075 mode = GET_MODE (rtl);
9076 if (MEM_P (rtl))
9078 rtl = XEXP (rtl, 0);
9079 have_address = 1;
9081 ret = mem_loc_descriptor (rtl, mode);
9084 break;
9086 case INDIRECT_REF:
9087 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9088 have_address = 1;
9089 break;
9091 case COMPOUND_EXPR:
9092 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9094 case NOP_EXPR:
9095 case CONVERT_EXPR:
9096 case NON_LVALUE_EXPR:
9097 case VIEW_CONVERT_EXPR:
9098 case SAVE_EXPR:
9099 case MODIFY_EXPR:
9100 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9102 case COMPONENT_REF:
9103 case BIT_FIELD_REF:
9104 case ARRAY_REF:
9105 case ARRAY_RANGE_REF:
9107 tree obj, offset;
9108 HOST_WIDE_INT bitsize, bitpos, bytepos;
9109 enum machine_mode mode;
9110 int volatilep;
9112 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9113 &unsignedp, &volatilep, false);
9115 if (obj == loc)
9116 return 0;
9118 ret = loc_descriptor_from_tree_1 (obj, 1);
9119 if (ret == 0
9120 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9121 return 0;
9123 if (offset != NULL_TREE)
9125 /* Variable offset. */
9126 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9127 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9130 bytepos = bitpos / BITS_PER_UNIT;
9131 if (bytepos > 0)
9132 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9133 else if (bytepos < 0)
9135 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9136 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9139 have_address = 1;
9140 break;
9143 case INTEGER_CST:
9144 if (host_integerp (loc, 0))
9145 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9146 else
9147 return 0;
9148 break;
9150 case CONSTRUCTOR:
9152 /* Get an RTL for this, if something has been emitted. */
9153 rtx rtl = lookup_constant_def (loc);
9154 enum machine_mode mode;
9156 if (!rtl || !MEM_P (rtl))
9157 return 0;
9158 mode = GET_MODE (rtl);
9159 rtl = XEXP (rtl, 0);
9160 ret = mem_loc_descriptor (rtl, mode);
9161 have_address = 1;
9162 break;
9165 case TRUTH_AND_EXPR:
9166 case TRUTH_ANDIF_EXPR:
9167 case BIT_AND_EXPR:
9168 op = DW_OP_and;
9169 goto do_binop;
9171 case TRUTH_XOR_EXPR:
9172 case BIT_XOR_EXPR:
9173 op = DW_OP_xor;
9174 goto do_binop;
9176 case TRUTH_OR_EXPR:
9177 case TRUTH_ORIF_EXPR:
9178 case BIT_IOR_EXPR:
9179 op = DW_OP_or;
9180 goto do_binop;
9182 case FLOOR_DIV_EXPR:
9183 case CEIL_DIV_EXPR:
9184 case ROUND_DIV_EXPR:
9185 case TRUNC_DIV_EXPR:
9186 op = DW_OP_div;
9187 goto do_binop;
9189 case MINUS_EXPR:
9190 op = DW_OP_minus;
9191 goto do_binop;
9193 case FLOOR_MOD_EXPR:
9194 case CEIL_MOD_EXPR:
9195 case ROUND_MOD_EXPR:
9196 case TRUNC_MOD_EXPR:
9197 op = DW_OP_mod;
9198 goto do_binop;
9200 case MULT_EXPR:
9201 op = DW_OP_mul;
9202 goto do_binop;
9204 case LSHIFT_EXPR:
9205 op = DW_OP_shl;
9206 goto do_binop;
9208 case RSHIFT_EXPR:
9209 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9210 goto do_binop;
9212 case PLUS_EXPR:
9213 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9214 && host_integerp (TREE_OPERAND (loc, 1), 0))
9216 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9217 if (ret == 0)
9218 return 0;
9220 add_loc_descr (&ret,
9221 new_loc_descr (DW_OP_plus_uconst,
9222 tree_low_cst (TREE_OPERAND (loc, 1),
9224 0));
9225 break;
9228 op = DW_OP_plus;
9229 goto do_binop;
9231 case LE_EXPR:
9232 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9233 return 0;
9235 op = DW_OP_le;
9236 goto do_binop;
9238 case GE_EXPR:
9239 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9240 return 0;
9242 op = DW_OP_ge;
9243 goto do_binop;
9245 case LT_EXPR:
9246 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9247 return 0;
9249 op = DW_OP_lt;
9250 goto do_binop;
9252 case GT_EXPR:
9253 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9254 return 0;
9256 op = DW_OP_gt;
9257 goto do_binop;
9259 case EQ_EXPR:
9260 op = DW_OP_eq;
9261 goto do_binop;
9263 case NE_EXPR:
9264 op = DW_OP_ne;
9265 goto do_binop;
9267 do_binop:
9268 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9269 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9270 if (ret == 0 || ret1 == 0)
9271 return 0;
9273 add_loc_descr (&ret, ret1);
9274 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9275 break;
9277 case TRUTH_NOT_EXPR:
9278 case BIT_NOT_EXPR:
9279 op = DW_OP_not;
9280 goto do_unop;
9282 case ABS_EXPR:
9283 op = DW_OP_abs;
9284 goto do_unop;
9286 case NEGATE_EXPR:
9287 op = DW_OP_neg;
9288 goto do_unop;
9290 do_unop:
9291 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9292 if (ret == 0)
9293 return 0;
9295 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9296 break;
9298 case MIN_EXPR:
9299 case MAX_EXPR:
9301 const enum tree_code code =
9302 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9304 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9305 build2 (code, integer_type_node,
9306 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9307 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9310 /* ... fall through ... */
9312 case COND_EXPR:
9314 dw_loc_descr_ref lhs
9315 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9316 dw_loc_descr_ref rhs
9317 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9318 dw_loc_descr_ref bra_node, jump_node, tmp;
9320 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9321 if (ret == 0 || lhs == 0 || rhs == 0)
9322 return 0;
9324 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9325 add_loc_descr (&ret, bra_node);
9327 add_loc_descr (&ret, rhs);
9328 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9329 add_loc_descr (&ret, jump_node);
9331 add_loc_descr (&ret, lhs);
9332 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9333 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9335 /* ??? Need a node to point the skip at. Use a nop. */
9336 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9337 add_loc_descr (&ret, tmp);
9338 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9339 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9341 break;
9343 case FIX_TRUNC_EXPR:
9344 case FIX_CEIL_EXPR:
9345 case FIX_FLOOR_EXPR:
9346 case FIX_ROUND_EXPR:
9347 return 0;
9349 default:
9350 /* Leave front-end specific codes as simply unknown. This comes
9351 up, for instance, with the C STMT_EXPR. */
9352 if ((unsigned int) TREE_CODE (loc)
9353 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9354 return 0;
9356 #ifdef ENABLE_CHECKING
9357 /* Otherwise this is a generic code; we should just lists all of
9358 these explicitly. We forgot one. */
9359 gcc_unreachable ();
9360 #else
9361 /* In a release build, we want to degrade gracefully: better to
9362 generate incomplete debugging information than to crash. */
9363 return NULL;
9364 #endif
9367 /* Show if we can't fill the request for an address. */
9368 if (want_address && !have_address)
9369 return 0;
9371 /* If we've got an address and don't want one, dereference. */
9372 if (!want_address && have_address)
9374 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9376 if (size > DWARF2_ADDR_SIZE || size == -1)
9377 return 0;
9378 else if (size == DWARF2_ADDR_SIZE)
9379 op = DW_OP_deref;
9380 else
9381 op = DW_OP_deref_size;
9383 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9386 return ret;
9389 static inline dw_loc_descr_ref
9390 loc_descriptor_from_tree (tree loc)
9392 return loc_descriptor_from_tree_1 (loc, 2);
9395 /* Given a value, round it up to the lowest multiple of `boundary'
9396 which is not less than the value itself. */
9398 static inline HOST_WIDE_INT
9399 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9401 return (((value + boundary - 1) / boundary) * boundary);
9404 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9405 pointer to the declared type for the relevant field variable, or return
9406 `integer_type_node' if the given node turns out to be an
9407 ERROR_MARK node. */
9409 static inline tree
9410 field_type (tree decl)
9412 tree type;
9414 if (TREE_CODE (decl) == ERROR_MARK)
9415 return integer_type_node;
9417 type = DECL_BIT_FIELD_TYPE (decl);
9418 if (type == NULL_TREE)
9419 type = TREE_TYPE (decl);
9421 return type;
9424 /* Given a pointer to a tree node, return the alignment in bits for
9425 it, or else return BITS_PER_WORD if the node actually turns out to
9426 be an ERROR_MARK node. */
9428 static inline unsigned
9429 simple_type_align_in_bits (tree type)
9431 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9434 static inline unsigned
9435 simple_decl_align_in_bits (tree decl)
9437 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9440 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9441 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9442 or return 0 if we are unable to determine what that offset is, either
9443 because the argument turns out to be a pointer to an ERROR_MARK node, or
9444 because the offset is actually variable. (We can't handle the latter case
9445 just yet). */
9447 static HOST_WIDE_INT
9448 field_byte_offset (tree decl)
9450 unsigned int type_align_in_bits;
9451 unsigned int decl_align_in_bits;
9452 unsigned HOST_WIDE_INT type_size_in_bits;
9453 HOST_WIDE_INT object_offset_in_bits;
9454 tree type;
9455 tree field_size_tree;
9456 HOST_WIDE_INT bitpos_int;
9457 HOST_WIDE_INT deepest_bitpos;
9458 unsigned HOST_WIDE_INT field_size_in_bits;
9460 if (TREE_CODE (decl) == ERROR_MARK)
9461 return 0;
9463 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9465 type = field_type (decl);
9466 field_size_tree = DECL_SIZE (decl);
9468 /* The size could be unspecified if there was an error, or for
9469 a flexible array member. */
9470 if (! field_size_tree)
9471 field_size_tree = bitsize_zero_node;
9473 /* We cannot yet cope with fields whose positions are variable, so
9474 for now, when we see such things, we simply return 0. Someday, we may
9475 be able to handle such cases, but it will be damn difficult. */
9476 if (! host_integerp (bit_position (decl), 0))
9477 return 0;
9479 bitpos_int = int_bit_position (decl);
9481 /* If we don't know the size of the field, pretend it's a full word. */
9482 if (host_integerp (field_size_tree, 1))
9483 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9484 else
9485 field_size_in_bits = BITS_PER_WORD;
9487 type_size_in_bits = simple_type_size_in_bits (type);
9488 type_align_in_bits = simple_type_align_in_bits (type);
9489 decl_align_in_bits = simple_decl_align_in_bits (decl);
9491 /* The GCC front-end doesn't make any attempt to keep track of the starting
9492 bit offset (relative to the start of the containing structure type) of the
9493 hypothetical "containing object" for a bit-field. Thus, when computing
9494 the byte offset value for the start of the "containing object" of a
9495 bit-field, we must deduce this information on our own. This can be rather
9496 tricky to do in some cases. For example, handling the following structure
9497 type definition when compiling for an i386/i486 target (which only aligns
9498 long long's to 32-bit boundaries) can be very tricky:
9500 struct S { int field1; long long field2:31; };
9502 Fortunately, there is a simple rule-of-thumb which can be used in such
9503 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9504 structure shown above. It decides to do this based upon one simple rule
9505 for bit-field allocation. GCC allocates each "containing object" for each
9506 bit-field at the first (i.e. lowest addressed) legitimate alignment
9507 boundary (based upon the required minimum alignment for the declared type
9508 of the field) which it can possibly use, subject to the condition that
9509 there is still enough available space remaining in the containing object
9510 (when allocated at the selected point) to fully accommodate all of the
9511 bits of the bit-field itself.
9513 This simple rule makes it obvious why GCC allocates 8 bytes for each
9514 object of the structure type shown above. When looking for a place to
9515 allocate the "containing object" for `field2', the compiler simply tries
9516 to allocate a 64-bit "containing object" at each successive 32-bit
9517 boundary (starting at zero) until it finds a place to allocate that 64-
9518 bit field such that at least 31 contiguous (and previously unallocated)
9519 bits remain within that selected 64 bit field. (As it turns out, for the
9520 example above, the compiler finds it is OK to allocate the "containing
9521 object" 64-bit field at bit-offset zero within the structure type.)
9523 Here we attempt to work backwards from the limited set of facts we're
9524 given, and we try to deduce from those facts, where GCC must have believed
9525 that the containing object started (within the structure type). The value
9526 we deduce is then used (by the callers of this routine) to generate
9527 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9528 and, in the case of DW_AT_location, regular fields as well). */
9530 /* Figure out the bit-distance from the start of the structure to the
9531 "deepest" bit of the bit-field. */
9532 deepest_bitpos = bitpos_int + field_size_in_bits;
9534 /* This is the tricky part. Use some fancy footwork to deduce where the
9535 lowest addressed bit of the containing object must be. */
9536 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9538 /* Round up to type_align by default. This works best for bitfields. */
9539 object_offset_in_bits += type_align_in_bits - 1;
9540 object_offset_in_bits /= type_align_in_bits;
9541 object_offset_in_bits *= type_align_in_bits;
9543 if (object_offset_in_bits > bitpos_int)
9545 /* Sigh, the decl must be packed. */
9546 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9548 /* Round up to decl_align instead. */
9549 object_offset_in_bits += decl_align_in_bits - 1;
9550 object_offset_in_bits /= decl_align_in_bits;
9551 object_offset_in_bits *= decl_align_in_bits;
9554 return object_offset_in_bits / BITS_PER_UNIT;
9557 /* The following routines define various Dwarf attributes and any data
9558 associated with them. */
9560 /* Add a location description attribute value to a DIE.
9562 This emits location attributes suitable for whole variables and
9563 whole parameters. Note that the location attributes for struct fields are
9564 generated by the routine `data_member_location_attribute' below. */
9566 static inline void
9567 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9568 dw_loc_descr_ref descr)
9570 if (descr != 0)
9571 add_AT_loc (die, attr_kind, descr);
9574 /* Attach the specialized form of location attribute used for data members of
9575 struct and union types. In the special case of a FIELD_DECL node which
9576 represents a bit-field, the "offset" part of this special location
9577 descriptor must indicate the distance in bytes from the lowest-addressed
9578 byte of the containing struct or union type to the lowest-addressed byte of
9579 the "containing object" for the bit-field. (See the `field_byte_offset'
9580 function above).
9582 For any given bit-field, the "containing object" is a hypothetical object
9583 (of some integral or enum type) within which the given bit-field lives. The
9584 type of this hypothetical "containing object" is always the same as the
9585 declared type of the individual bit-field itself (for GCC anyway... the
9586 DWARF spec doesn't actually mandate this). Note that it is the size (in
9587 bytes) of the hypothetical "containing object" which will be given in the
9588 DW_AT_byte_size attribute for this bit-field. (See the
9589 `byte_size_attribute' function below.) It is also used when calculating the
9590 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9591 function below.) */
9593 static void
9594 add_data_member_location_attribute (dw_die_ref die, tree decl)
9596 HOST_WIDE_INT offset;
9597 dw_loc_descr_ref loc_descr = 0;
9599 if (TREE_CODE (decl) == TREE_BINFO)
9601 /* We're working on the TAG_inheritance for a base class. */
9602 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9604 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9605 aren't at a fixed offset from all (sub)objects of the same
9606 type. We need to extract the appropriate offset from our
9607 vtable. The following dwarf expression means
9609 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9611 This is specific to the V3 ABI, of course. */
9613 dw_loc_descr_ref tmp;
9615 /* Make a copy of the object address. */
9616 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9617 add_loc_descr (&loc_descr, tmp);
9619 /* Extract the vtable address. */
9620 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9621 add_loc_descr (&loc_descr, tmp);
9623 /* Calculate the address of the offset. */
9624 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9625 gcc_assert (offset < 0);
9627 tmp = int_loc_descriptor (-offset);
9628 add_loc_descr (&loc_descr, tmp);
9629 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9630 add_loc_descr (&loc_descr, tmp);
9632 /* Extract the offset. */
9633 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9634 add_loc_descr (&loc_descr, tmp);
9636 /* Add it to the object address. */
9637 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9638 add_loc_descr (&loc_descr, tmp);
9640 else
9641 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9643 else
9644 offset = field_byte_offset (decl);
9646 if (! loc_descr)
9648 enum dwarf_location_atom op;
9650 /* The DWARF2 standard says that we should assume that the structure
9651 address is already on the stack, so we can specify a structure field
9652 address by using DW_OP_plus_uconst. */
9654 #ifdef MIPS_DEBUGGING_INFO
9655 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9656 operator correctly. It works only if we leave the offset on the
9657 stack. */
9658 op = DW_OP_constu;
9659 #else
9660 op = DW_OP_plus_uconst;
9661 #endif
9663 loc_descr = new_loc_descr (op, offset, 0);
9666 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9669 /* Writes integer values to dw_vec_const array. */
9671 static void
9672 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9674 while (size != 0)
9676 *dest++ = val & 0xff;
9677 val >>= 8;
9678 --size;
9682 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9684 static HOST_WIDE_INT
9685 extract_int (const unsigned char *src, unsigned int size)
9687 HOST_WIDE_INT val = 0;
9689 src += size;
9690 while (size != 0)
9692 val <<= 8;
9693 val |= *--src & 0xff;
9694 --size;
9696 return val;
9699 /* Writes floating point values to dw_vec_const array. */
9701 static void
9702 insert_float (rtx rtl, unsigned char *array)
9704 REAL_VALUE_TYPE rv;
9705 long val[4];
9706 int i;
9708 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9709 real_to_target (val, &rv, GET_MODE (rtl));
9711 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9712 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9714 insert_int (val[i], 4, array);
9715 array += 4;
9719 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9720 does not have a "location" either in memory or in a register. These
9721 things can arise in GNU C when a constant is passed as an actual parameter
9722 to an inlined function. They can also arise in C++ where declared
9723 constants do not necessarily get memory "homes". */
9725 static void
9726 add_const_value_attribute (dw_die_ref die, rtx rtl)
9728 switch (GET_CODE (rtl))
9730 case CONST_INT:
9732 HOST_WIDE_INT val = INTVAL (rtl);
9734 if (val < 0)
9735 add_AT_int (die, DW_AT_const_value, val);
9736 else
9737 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9739 break;
9741 case CONST_DOUBLE:
9742 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9743 floating-point constant. A CONST_DOUBLE is used whenever the
9744 constant requires more than one word in order to be adequately
9745 represented. We output CONST_DOUBLEs as blocks. */
9747 enum machine_mode mode = GET_MODE (rtl);
9749 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9751 unsigned int length = GET_MODE_SIZE (mode);
9752 unsigned char *array = ggc_alloc (length);
9754 insert_float (rtl, array);
9755 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9757 else
9759 /* ??? We really should be using HOST_WIDE_INT throughout. */
9760 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9762 add_AT_long_long (die, DW_AT_const_value,
9763 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9766 break;
9768 case CONST_VECTOR:
9770 enum machine_mode mode = GET_MODE (rtl);
9771 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9772 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9773 unsigned char *array = ggc_alloc (length * elt_size);
9774 unsigned int i;
9775 unsigned char *p;
9777 switch (GET_MODE_CLASS (mode))
9779 case MODE_VECTOR_INT:
9780 for (i = 0, p = array; i < length; i++, p += elt_size)
9782 rtx elt = CONST_VECTOR_ELT (rtl, i);
9783 HOST_WIDE_INT lo, hi;
9785 switch (GET_CODE (elt))
9787 case CONST_INT:
9788 lo = INTVAL (elt);
9789 hi = -(lo < 0);
9790 break;
9792 case CONST_DOUBLE:
9793 lo = CONST_DOUBLE_LOW (elt);
9794 hi = CONST_DOUBLE_HIGH (elt);
9795 break;
9797 default:
9798 gcc_unreachable ();
9801 if (elt_size <= sizeof (HOST_WIDE_INT))
9802 insert_int (lo, elt_size, p);
9803 else
9805 unsigned char *p0 = p;
9806 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9808 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9809 if (WORDS_BIG_ENDIAN)
9811 p0 = p1;
9812 p1 = p;
9814 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9815 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9818 break;
9820 case MODE_VECTOR_FLOAT:
9821 for (i = 0, p = array; i < length; i++, p += elt_size)
9823 rtx elt = CONST_VECTOR_ELT (rtl, i);
9824 insert_float (elt, p);
9826 break;
9828 default:
9829 gcc_unreachable ();
9832 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9834 break;
9836 case CONST_STRING:
9837 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9838 break;
9840 case SYMBOL_REF:
9841 case LABEL_REF:
9842 case CONST:
9843 add_AT_addr (die, DW_AT_const_value, rtl);
9844 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9845 break;
9847 case PLUS:
9848 /* In cases where an inlined instance of an inline function is passed
9849 the address of an `auto' variable (which is local to the caller) we
9850 can get a situation where the DECL_RTL of the artificial local
9851 variable (for the inlining) which acts as a stand-in for the
9852 corresponding formal parameter (of the inline function) will look
9853 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9854 exactly a compile-time constant expression, but it isn't the address
9855 of the (artificial) local variable either. Rather, it represents the
9856 *value* which the artificial local variable always has during its
9857 lifetime. We currently have no way to represent such quasi-constant
9858 values in Dwarf, so for now we just punt and generate nothing. */
9859 break;
9861 default:
9862 /* No other kinds of rtx should be possible here. */
9863 gcc_unreachable ();
9868 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
9869 for use in a later add_const_value_attribute call. */
9871 static rtx
9872 rtl_for_decl_init (tree init, tree type)
9874 rtx rtl = NULL_RTX;
9876 /* If a variable is initialized with a string constant without embedded
9877 zeros, build CONST_STRING. */
9878 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
9880 tree enttype = TREE_TYPE (type);
9881 tree domain = TYPE_DOMAIN (type);
9882 enum machine_mode mode = TYPE_MODE (enttype);
9884 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9885 && domain
9886 && integer_zerop (TYPE_MIN_VALUE (domain))
9887 && compare_tree_int (TYPE_MAX_VALUE (domain),
9888 TREE_STRING_LENGTH (init) - 1) == 0
9889 && ((size_t) TREE_STRING_LENGTH (init)
9890 == strlen (TREE_STRING_POINTER (init)) + 1))
9891 rtl = gen_rtx_CONST_STRING (VOIDmode,
9892 ggc_strdup (TREE_STRING_POINTER (init)));
9894 /* If the initializer is something that we know will expand into an
9895 immediate RTL constant, expand it now. Expanding anything else
9896 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9897 /* Aggregate, vector, and complex types may contain constructors that may
9898 result in code being generated when expand_expr is called, so we can't
9899 handle them here. Integer and float are useful and safe types to handle
9900 here. */
9901 else if ((INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type))
9902 && initializer_constant_valid_p (init, type) == null_pointer_node)
9904 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
9906 /* If expand_expr returns a MEM, it wasn't immediate. */
9907 gcc_assert (!rtl || !MEM_P (rtl));
9910 return rtl;
9913 /* Generate RTL for the variable DECL to represent its location. */
9915 static rtx
9916 rtl_for_decl_location (tree decl)
9918 rtx rtl;
9920 /* Here we have to decide where we are going to say the parameter "lives"
9921 (as far as the debugger is concerned). We only have a couple of
9922 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9924 DECL_RTL normally indicates where the parameter lives during most of the
9925 activation of the function. If optimization is enabled however, this
9926 could be either NULL or else a pseudo-reg. Both of those cases indicate
9927 that the parameter doesn't really live anywhere (as far as the code
9928 generation parts of GCC are concerned) during most of the function's
9929 activation. That will happen (for example) if the parameter is never
9930 referenced within the function.
9932 We could just generate a location descriptor here for all non-NULL
9933 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9934 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9935 where DECL_RTL is NULL or is a pseudo-reg.
9937 Note however that we can only get away with using DECL_INCOMING_RTL as
9938 a backup substitute for DECL_RTL in certain limited cases. In cases
9939 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9940 we can be sure that the parameter was passed using the same type as it is
9941 declared to have within the function, and that its DECL_INCOMING_RTL
9942 points us to a place where a value of that type is passed.
9944 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9945 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9946 because in these cases DECL_INCOMING_RTL points us to a value of some
9947 type which is *different* from the type of the parameter itself. Thus,
9948 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9949 such cases, the debugger would end up (for example) trying to fetch a
9950 `float' from a place which actually contains the first part of a
9951 `double'. That would lead to really incorrect and confusing
9952 output at debug-time.
9954 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9955 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9956 are a couple of exceptions however. On little-endian machines we can
9957 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9958 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9959 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9960 when (on a little-endian machine) a non-prototyped function has a
9961 parameter declared to be of type `short' or `char'. In such cases,
9962 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9963 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9964 passed `int' value. If the debugger then uses that address to fetch
9965 a `short' or a `char' (on a little-endian machine) the result will be
9966 the correct data, so we allow for such exceptional cases below.
9968 Note that our goal here is to describe the place where the given formal
9969 parameter lives during most of the function's activation (i.e. between the
9970 end of the prologue and the start of the epilogue). We'll do that as best
9971 as we can. Note however that if the given formal parameter is modified
9972 sometime during the execution of the function, then a stack backtrace (at
9973 debug-time) will show the function as having been called with the *new*
9974 value rather than the value which was originally passed in. This happens
9975 rarely enough that it is not a major problem, but it *is* a problem, and
9976 I'd like to fix it.
9978 A future version of dwarf2out.c may generate two additional attributes for
9979 any given DW_TAG_formal_parameter DIE which will describe the "passed
9980 type" and the "passed location" for the given formal parameter in addition
9981 to the attributes we now generate to indicate the "declared type" and the
9982 "active location" for each parameter. This additional set of attributes
9983 could be used by debuggers for stack backtraces. Separately, note that
9984 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9985 This happens (for example) for inlined-instances of inline function formal
9986 parameters which are never referenced. This really shouldn't be
9987 happening. All PARM_DECL nodes should get valid non-NULL
9988 DECL_INCOMING_RTL values. FIXME. */
9990 /* Use DECL_RTL as the "location" unless we find something better. */
9991 rtl = DECL_RTL_IF_SET (decl);
9993 /* When generating abstract instances, ignore everything except
9994 constants, symbols living in memory, and symbols living in
9995 fixed registers. */
9996 if (! reload_completed)
9998 if (rtl
9999 && (CONSTANT_P (rtl)
10000 || (MEM_P (rtl)
10001 && CONSTANT_P (XEXP (rtl, 0)))
10002 || (REG_P (rtl)
10003 && TREE_CODE (decl) == VAR_DECL
10004 && TREE_STATIC (decl))))
10006 rtl = targetm.delegitimize_address (rtl);
10007 return rtl;
10009 rtl = NULL_RTX;
10011 else if (TREE_CODE (decl) == PARM_DECL)
10013 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10015 tree declared_type = TREE_TYPE (decl);
10016 tree passed_type = DECL_ARG_TYPE (decl);
10017 enum machine_mode dmode = TYPE_MODE (declared_type);
10018 enum machine_mode pmode = TYPE_MODE (passed_type);
10020 /* This decl represents a formal parameter which was optimized out.
10021 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10022 all cases where (rtl == NULL_RTX) just below. */
10023 if (dmode == pmode)
10024 rtl = DECL_INCOMING_RTL (decl);
10025 else if (SCALAR_INT_MODE_P (dmode)
10026 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10027 && DECL_INCOMING_RTL (decl))
10029 rtx inc = DECL_INCOMING_RTL (decl);
10030 if (REG_P (inc))
10031 rtl = inc;
10032 else if (MEM_P (inc))
10034 if (BYTES_BIG_ENDIAN)
10035 rtl = adjust_address_nv (inc, dmode,
10036 GET_MODE_SIZE (pmode)
10037 - GET_MODE_SIZE (dmode));
10038 else
10039 rtl = inc;
10044 /* If the parm was passed in registers, but lives on the stack, then
10045 make a big endian correction if the mode of the type of the
10046 parameter is not the same as the mode of the rtl. */
10047 /* ??? This is the same series of checks that are made in dbxout.c before
10048 we reach the big endian correction code there. It isn't clear if all
10049 of these checks are necessary here, but keeping them all is the safe
10050 thing to do. */
10051 else if (MEM_P (rtl)
10052 && XEXP (rtl, 0) != const0_rtx
10053 && ! CONSTANT_P (XEXP (rtl, 0))
10054 /* Not passed in memory. */
10055 && !MEM_P (DECL_INCOMING_RTL (decl))
10056 /* Not passed by invisible reference. */
10057 && (!REG_P (XEXP (rtl, 0))
10058 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10059 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10060 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10061 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10062 #endif
10064 /* Big endian correction check. */
10065 && BYTES_BIG_ENDIAN
10066 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10067 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10068 < UNITS_PER_WORD))
10070 int offset = (UNITS_PER_WORD
10071 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10073 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10074 plus_constant (XEXP (rtl, 0), offset));
10077 else if (TREE_CODE (decl) == VAR_DECL
10078 && rtl
10079 && MEM_P (rtl)
10080 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10081 && BYTES_BIG_ENDIAN)
10083 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10084 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10086 /* If a variable is declared "register" yet is smaller than
10087 a register, then if we store the variable to memory, it
10088 looks like we're storing a register-sized value, when in
10089 fact we are not. We need to adjust the offset of the
10090 storage location to reflect the actual value's bytes,
10091 else gdb will not be able to display it. */
10092 if (rsize > dsize)
10093 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10094 plus_constant (XEXP (rtl, 0), rsize-dsize));
10097 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10098 and will have been substituted directly into all expressions that use it.
10099 C does not have such a concept, but C++ and other languages do. */
10100 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10101 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10103 if (rtl)
10104 rtl = targetm.delegitimize_address (rtl);
10106 /* If we don't look past the constant pool, we risk emitting a
10107 reference to a constant pool entry that isn't referenced from
10108 code, and thus is not emitted. */
10109 if (rtl)
10110 rtl = avoid_constant_pool_reference (rtl);
10112 return rtl;
10115 /* We need to figure out what section we should use as the base for the
10116 address ranges where a given location is valid.
10117 1. If this particular DECL has a section associated with it, use that.
10118 2. If this function has a section associated with it, use that.
10119 3. Otherwise, use the text section.
10120 XXX: If you split a variable across multiple sections, we won't notice. */
10122 static const char *
10123 secname_for_decl (tree decl)
10125 const char *secname;
10127 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10129 tree sectree = DECL_SECTION_NAME (decl);
10130 secname = TREE_STRING_POINTER (sectree);
10132 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10134 tree sectree = DECL_SECTION_NAME (current_function_decl);
10135 secname = TREE_STRING_POINTER (sectree);
10137 else if (cfun
10138 && (last_text_section == in_unlikely_executed_text
10139 || (last_text_section == in_named
10140 && last_text_section_name
10141 == cfun->unlikely_text_section_name)))
10142 secname = cfun->cold_section_label;
10143 else
10144 secname = text_section_label;
10146 return secname;
10149 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10150 data attribute for a variable or a parameter. We generate the
10151 DW_AT_const_value attribute only in those cases where the given variable
10152 or parameter does not have a true "location" either in memory or in a
10153 register. This can happen (for example) when a constant is passed as an
10154 actual argument in a call to an inline function. (It's possible that
10155 these things can crop up in other ways also.) Note that one type of
10156 constant value which can be passed into an inlined function is a constant
10157 pointer. This can happen for example if an actual argument in an inlined
10158 function call evaluates to a compile-time constant address. */
10160 static void
10161 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10162 enum dwarf_attribute attr)
10164 rtx rtl;
10165 dw_loc_descr_ref descr;
10166 var_loc_list *loc_list;
10167 struct var_loc_node *node;
10168 if (TREE_CODE (decl) == ERROR_MARK)
10169 return;
10171 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10172 || TREE_CODE (decl) == RESULT_DECL);
10174 /* See if we possibly have multiple locations for this variable. */
10175 loc_list = lookup_decl_loc (decl);
10177 /* If it truly has multiple locations, the first and last node will
10178 differ. */
10179 if (loc_list && loc_list->first != loc_list->last)
10181 const char *endname, *secname;
10182 dw_loc_list_ref list;
10183 rtx varloc;
10185 /* Now that we know what section we are using for a base,
10186 actually construct the list of locations.
10187 The first location information is what is passed to the
10188 function that creates the location list, and the remaining
10189 locations just get added on to that list.
10190 Note that we only know the start address for a location
10191 (IE location changes), so to build the range, we use
10192 the range [current location start, next location start].
10193 This means we have to special case the last node, and generate
10194 a range of [last location start, end of function label]. */
10196 node = loc_list->first;
10197 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10198 secname = secname_for_decl (decl);
10200 list = new_loc_list (loc_descriptor (varloc),
10201 node->label, node->next->label, secname, 1);
10202 node = node->next;
10204 for (; node->next; node = node->next)
10205 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10207 /* The variable has a location between NODE->LABEL and
10208 NODE->NEXT->LABEL. */
10209 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10210 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10211 node->label, node->next->label, secname);
10214 /* If the variable has a location at the last label
10215 it keeps its location until the end of function. */
10216 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10218 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10220 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10221 if (!current_function_decl)
10222 endname = text_end_label;
10223 else
10225 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10226 current_function_funcdef_no);
10227 endname = ggc_strdup (label_id);
10229 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10230 node->label, endname, secname);
10233 /* Finally, add the location list to the DIE, and we are done. */
10234 add_AT_loc_list (die, attr, list);
10235 return;
10238 /* Try to get some constant RTL for this decl, and use that as the value of
10239 the location. */
10241 rtl = rtl_for_decl_location (decl);
10242 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10244 add_const_value_attribute (die, rtl);
10245 return;
10248 /* If we have tried to generate the location otherwise, and it
10249 didn't work out (we wouldn't be here if we did), and we have a one entry
10250 location list, try generating a location from that. */
10251 if (loc_list && loc_list->first)
10253 node = loc_list->first;
10254 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10255 if (descr)
10257 add_AT_location_description (die, attr, descr);
10258 return;
10262 /* We couldn't get any rtl, so try directly generating the location
10263 description from the tree. */
10264 descr = loc_descriptor_from_tree (decl);
10265 if (descr)
10267 add_AT_location_description (die, attr, descr);
10268 return;
10272 /* If we don't have a copy of this variable in memory for some reason (such
10273 as a C++ member constant that doesn't have an out-of-line definition),
10274 we should tell the debugger about the constant value. */
10276 static void
10277 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10279 tree init = DECL_INITIAL (decl);
10280 tree type = TREE_TYPE (decl);
10281 rtx rtl;
10283 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10284 /* OK */;
10285 else
10286 return;
10288 rtl = rtl_for_decl_init (init, type);
10289 if (rtl)
10290 add_const_value_attribute (var_die, rtl);
10293 /* Convert the CFI instructions for the current function into a location
10294 list. This is used for DW_AT_frame_base when we targeting a dwarf2
10295 consumer that does not support the dwarf3 DW_OP_call_frame_cfa. */
10297 static dw_loc_list_ref
10298 convert_cfa_to_loc_list (void)
10300 dw_fde_ref fde;
10301 dw_loc_list_ref list, *list_tail;
10302 dw_cfi_ref cfi;
10303 dw_cfa_location last_cfa, next_cfa;
10304 const char *start_label, *last_label, *section;
10306 fde = &fde_table[fde_table_in_use - 1];
10308 section = secname_for_decl (current_function_decl);
10309 list_tail = &list;
10310 list = NULL;
10312 next_cfa.reg = INVALID_REGNUM;
10313 next_cfa.offset = 0;
10314 next_cfa.indirect = 0;
10315 next_cfa.base_offset = 0;
10317 start_label = fde->dw_fde_begin;
10319 /* ??? Bald assumption that the CIE opcode list does not contain
10320 advance opcodes. */
10321 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10322 lookup_cfa_1 (cfi, &next_cfa);
10324 last_cfa = next_cfa;
10325 last_label = start_label;
10327 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10328 switch (cfi->dw_cfi_opc)
10330 case DW_CFA_advance_loc1:
10331 case DW_CFA_advance_loc2:
10332 case DW_CFA_advance_loc4:
10333 if (!cfa_equal_p (&last_cfa, &next_cfa))
10335 *list_tail = new_loc_list (build_cfa_loc (&last_cfa), start_label,
10336 last_label, section, list == NULL);
10338 list_tail = &(*list_tail)->dw_loc_next;
10339 last_cfa = next_cfa;
10340 start_label = last_label;
10342 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10343 break;
10345 case DW_CFA_advance_loc:
10346 /* The encoding is complex enough that we should never emit this. */
10347 case DW_CFA_remember_state:
10348 case DW_CFA_restore_state:
10349 /* We don't handle these two in this function. It would be possible
10350 if it were to be required. */
10351 gcc_unreachable ();
10353 default:
10354 lookup_cfa_1 (cfi, &next_cfa);
10355 break;
10358 if (!cfa_equal_p (&last_cfa, &next_cfa))
10360 *list_tail = new_loc_list (build_cfa_loc (&last_cfa), start_label,
10361 last_label, section, list == NULL);
10362 list_tail = &(*list_tail)->dw_loc_next;
10363 start_label = last_label;
10365 *list_tail = new_loc_list (build_cfa_loc (&next_cfa), start_label,
10366 fde->dw_fde_end, section, list == NULL);
10368 return list;
10371 /* Compute a displacement from the "steady-state frame pointer" to
10372 the CFA, and store it in frame_pointer_cfa_offset. */
10374 static void
10375 compute_frame_pointer_to_cfa_displacement (void)
10377 HOST_WIDE_INT offset;
10379 offset = eliminate_reg_to_offset (arg_pointer_rtx);
10380 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10382 frame_pointer_cfa_offset = -offset;
10385 /* Generate a DW_AT_name attribute given some string value to be included as
10386 the value of the attribute. */
10388 static void
10389 add_name_attribute (dw_die_ref die, const char *name_string)
10391 if (name_string != NULL && *name_string != 0)
10393 if (demangle_name_func)
10394 name_string = (*demangle_name_func) (name_string);
10396 add_AT_string (die, DW_AT_name, name_string);
10400 /* Generate a DW_AT_comp_dir attribute for DIE. */
10402 static void
10403 add_comp_dir_attribute (dw_die_ref die)
10405 const char *wd = get_src_pwd ();
10406 if (wd != NULL)
10407 add_AT_string (die, DW_AT_comp_dir, wd);
10410 /* Given a tree node describing an array bound (either lower or upper) output
10411 a representation for that bound. */
10413 static void
10414 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10416 switch (TREE_CODE (bound))
10418 case ERROR_MARK:
10419 return;
10421 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10422 case INTEGER_CST:
10423 if (! host_integerp (bound, 0)
10424 || (bound_attr == DW_AT_lower_bound
10425 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10426 || (is_fortran () && integer_onep (bound)))))
10427 /* Use the default. */
10429 else
10430 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10431 break;
10433 case CONVERT_EXPR:
10434 case NOP_EXPR:
10435 case NON_LVALUE_EXPR:
10436 case VIEW_CONVERT_EXPR:
10437 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10438 break;
10440 case SAVE_EXPR:
10441 break;
10443 case VAR_DECL:
10444 case PARM_DECL:
10445 case RESULT_DECL:
10447 dw_die_ref decl_die = lookup_decl_die (bound);
10449 /* ??? Can this happen, or should the variable have been bound
10450 first? Probably it can, since I imagine that we try to create
10451 the types of parameters in the order in which they exist in
10452 the list, and won't have created a forward reference to a
10453 later parameter. */
10454 if (decl_die != NULL)
10455 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10456 break;
10459 default:
10461 /* Otherwise try to create a stack operation procedure to
10462 evaluate the value of the array bound. */
10464 dw_die_ref ctx, decl_die;
10465 dw_loc_descr_ref loc;
10467 loc = loc_descriptor_from_tree (bound);
10468 if (loc == NULL)
10469 break;
10471 if (current_function_decl == 0)
10472 ctx = comp_unit_die;
10473 else
10474 ctx = lookup_decl_die (current_function_decl);
10476 decl_die = new_die (DW_TAG_variable, ctx, bound);
10477 add_AT_flag (decl_die, DW_AT_artificial, 1);
10478 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10479 add_AT_loc (decl_die, DW_AT_location, loc);
10481 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10482 break;
10487 /* Note that the block of subscript information for an array type also
10488 includes information about the element type of type given array type. */
10490 static void
10491 add_subscript_info (dw_die_ref type_die, tree type)
10493 #ifndef MIPS_DEBUGGING_INFO
10494 unsigned dimension_number;
10495 #endif
10496 tree lower, upper;
10497 dw_die_ref subrange_die;
10499 /* The GNU compilers represent multidimensional array types as sequences of
10500 one dimensional array types whose element types are themselves array
10501 types. Here we squish that down, so that each multidimensional array
10502 type gets only one array_type DIE in the Dwarf debugging info. The draft
10503 Dwarf specification say that we are allowed to do this kind of
10504 compression in C (because there is no difference between an array or
10505 arrays and a multidimensional array in C) but for other source languages
10506 (e.g. Ada) we probably shouldn't do this. */
10508 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10509 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10510 We work around this by disabling this feature. See also
10511 gen_array_type_die. */
10512 #ifndef MIPS_DEBUGGING_INFO
10513 for (dimension_number = 0;
10514 TREE_CODE (type) == ARRAY_TYPE;
10515 type = TREE_TYPE (type), dimension_number++)
10516 #endif
10518 tree domain = TYPE_DOMAIN (type);
10520 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10521 and (in GNU C only) variable bounds. Handle all three forms
10522 here. */
10523 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10524 if (domain)
10526 /* We have an array type with specified bounds. */
10527 lower = TYPE_MIN_VALUE (domain);
10528 upper = TYPE_MAX_VALUE (domain);
10530 /* Define the index type. */
10531 if (TREE_TYPE (domain))
10533 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10534 TREE_TYPE field. We can't emit debug info for this
10535 because it is an unnamed integral type. */
10536 if (TREE_CODE (domain) == INTEGER_TYPE
10537 && TYPE_NAME (domain) == NULL_TREE
10538 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10539 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10541 else
10542 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10543 type_die);
10546 /* ??? If upper is NULL, the array has unspecified length,
10547 but it does have a lower bound. This happens with Fortran
10548 dimension arr(N:*)
10549 Since the debugger is definitely going to need to know N
10550 to produce useful results, go ahead and output the lower
10551 bound solo, and hope the debugger can cope. */
10553 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10554 if (upper)
10555 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10558 /* Otherwise we have an array type with an unspecified length. The
10559 DWARF-2 spec does not say how to handle this; let's just leave out the
10560 bounds. */
10564 static void
10565 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10567 unsigned size;
10569 switch (TREE_CODE (tree_node))
10571 case ERROR_MARK:
10572 size = 0;
10573 break;
10574 case ENUMERAL_TYPE:
10575 case RECORD_TYPE:
10576 case UNION_TYPE:
10577 case QUAL_UNION_TYPE:
10578 size = int_size_in_bytes (tree_node);
10579 break;
10580 case FIELD_DECL:
10581 /* For a data member of a struct or union, the DW_AT_byte_size is
10582 generally given as the number of bytes normally allocated for an
10583 object of the *declared* type of the member itself. This is true
10584 even for bit-fields. */
10585 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10586 break;
10587 default:
10588 gcc_unreachable ();
10591 /* Note that `size' might be -1 when we get to this point. If it is, that
10592 indicates that the byte size of the entity in question is variable. We
10593 have no good way of expressing this fact in Dwarf at the present time,
10594 so just let the -1 pass on through. */
10595 add_AT_unsigned (die, DW_AT_byte_size, size);
10598 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10599 which specifies the distance in bits from the highest order bit of the
10600 "containing object" for the bit-field to the highest order bit of the
10601 bit-field itself.
10603 For any given bit-field, the "containing object" is a hypothetical object
10604 (of some integral or enum type) within which the given bit-field lives. The
10605 type of this hypothetical "containing object" is always the same as the
10606 declared type of the individual bit-field itself. The determination of the
10607 exact location of the "containing object" for a bit-field is rather
10608 complicated. It's handled by the `field_byte_offset' function (above).
10610 Note that it is the size (in bytes) of the hypothetical "containing object"
10611 which will be given in the DW_AT_byte_size attribute for this bit-field.
10612 (See `byte_size_attribute' above). */
10614 static inline void
10615 add_bit_offset_attribute (dw_die_ref die, tree decl)
10617 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10618 tree type = DECL_BIT_FIELD_TYPE (decl);
10619 HOST_WIDE_INT bitpos_int;
10620 HOST_WIDE_INT highest_order_object_bit_offset;
10621 HOST_WIDE_INT highest_order_field_bit_offset;
10622 HOST_WIDE_INT unsigned bit_offset;
10624 /* Must be a field and a bit field. */
10625 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10627 /* We can't yet handle bit-fields whose offsets are variable, so if we
10628 encounter such things, just return without generating any attribute
10629 whatsoever. Likewise for variable or too large size. */
10630 if (! host_integerp (bit_position (decl), 0)
10631 || ! host_integerp (DECL_SIZE (decl), 1))
10632 return;
10634 bitpos_int = int_bit_position (decl);
10636 /* Note that the bit offset is always the distance (in bits) from the
10637 highest-order bit of the "containing object" to the highest-order bit of
10638 the bit-field itself. Since the "high-order end" of any object or field
10639 is different on big-endian and little-endian machines, the computation
10640 below must take account of these differences. */
10641 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10642 highest_order_field_bit_offset = bitpos_int;
10644 if (! BYTES_BIG_ENDIAN)
10646 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10647 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10650 bit_offset
10651 = (! BYTES_BIG_ENDIAN
10652 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10653 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10655 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10658 /* For a FIELD_DECL node which represents a bit field, output an attribute
10659 which specifies the length in bits of the given field. */
10661 static inline void
10662 add_bit_size_attribute (dw_die_ref die, tree decl)
10664 /* Must be a field and a bit field. */
10665 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10666 && DECL_BIT_FIELD_TYPE (decl));
10668 if (host_integerp (DECL_SIZE (decl), 1))
10669 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10672 /* If the compiled language is ANSI C, then add a 'prototyped'
10673 attribute, if arg types are given for the parameters of a function. */
10675 static inline void
10676 add_prototyped_attribute (dw_die_ref die, tree func_type)
10678 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10679 && TYPE_ARG_TYPES (func_type) != NULL)
10680 add_AT_flag (die, DW_AT_prototyped, 1);
10683 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10684 by looking in either the type declaration or object declaration
10685 equate table. */
10687 static inline void
10688 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10690 dw_die_ref origin_die = NULL;
10692 if (TREE_CODE (origin) != FUNCTION_DECL)
10694 /* We may have gotten separated from the block for the inlined
10695 function, if we're in an exception handler or some such; make
10696 sure that the abstract function has been written out.
10698 Doing this for nested functions is wrong, however; functions are
10699 distinct units, and our context might not even be inline. */
10700 tree fn = origin;
10702 if (TYPE_P (fn))
10703 fn = TYPE_STUB_DECL (fn);
10705 fn = decl_function_context (fn);
10706 if (fn)
10707 dwarf2out_abstract_function (fn);
10710 if (DECL_P (origin))
10711 origin_die = lookup_decl_die (origin);
10712 else if (TYPE_P (origin))
10713 origin_die = lookup_type_die (origin);
10715 /* XXX: Functions that are never lowered don't always have correct block
10716 trees (in the case of java, they simply have no block tree, in some other
10717 languages). For these functions, there is nothing we can really do to
10718 output correct debug info for inlined functions in all cases. Rather
10719 than die, we'll just produce deficient debug info now, in that we will
10720 have variables without a proper abstract origin. In the future, when all
10721 functions are lowered, we should re-add a gcc_assert (origin_die)
10722 here. */
10724 if (origin_die)
10725 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10728 /* We do not currently support the pure_virtual attribute. */
10730 static inline void
10731 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10733 if (DECL_VINDEX (func_decl))
10735 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10737 if (host_integerp (DECL_VINDEX (func_decl), 0))
10738 add_AT_loc (die, DW_AT_vtable_elem_location,
10739 new_loc_descr (DW_OP_constu,
10740 tree_low_cst (DECL_VINDEX (func_decl), 0),
10741 0));
10743 /* GNU extension: Record what type this method came from originally. */
10744 if (debug_info_level > DINFO_LEVEL_TERSE)
10745 add_AT_die_ref (die, DW_AT_containing_type,
10746 lookup_type_die (DECL_CONTEXT (func_decl)));
10750 /* Add source coordinate attributes for the given decl. */
10752 static void
10753 add_src_coords_attributes (dw_die_ref die, tree decl)
10755 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10756 unsigned file_index = lookup_filename (s.file);
10758 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10759 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10762 /* Add a DW_AT_name attribute and source coordinate attribute for the
10763 given decl, but only if it actually has a name. */
10765 static void
10766 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10768 tree decl_name;
10770 decl_name = DECL_NAME (decl);
10771 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10773 add_name_attribute (die, dwarf2_name (decl, 0));
10774 if (! DECL_ARTIFICIAL (decl))
10775 add_src_coords_attributes (die, decl);
10777 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10778 && TREE_PUBLIC (decl)
10779 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10780 && !DECL_ABSTRACT (decl))
10781 add_AT_string (die, DW_AT_MIPS_linkage_name,
10782 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10785 #ifdef VMS_DEBUGGING_INFO
10786 /* Get the function's name, as described by its RTL. This may be different
10787 from the DECL_NAME name used in the source file. */
10788 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10790 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10791 XEXP (DECL_RTL (decl), 0));
10792 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10794 #endif
10797 /* Push a new declaration scope. */
10799 static void
10800 push_decl_scope (tree scope)
10802 VEC_safe_push (tree, gc, decl_scope_table, scope);
10805 /* Pop a declaration scope. */
10807 static inline void
10808 pop_decl_scope (void)
10810 VEC_pop (tree, decl_scope_table);
10813 /* Return the DIE for the scope that immediately contains this type.
10814 Non-named types get global scope. Named types nested in other
10815 types get their containing scope if it's open, or global scope
10816 otherwise. All other types (i.e. function-local named types) get
10817 the current active scope. */
10819 static dw_die_ref
10820 scope_die_for (tree t, dw_die_ref context_die)
10822 dw_die_ref scope_die = NULL;
10823 tree containing_scope;
10824 int i;
10826 /* Non-types always go in the current scope. */
10827 gcc_assert (TYPE_P (t));
10829 containing_scope = TYPE_CONTEXT (t);
10831 /* Use the containing namespace if it was passed in (for a declaration). */
10832 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10834 if (context_die == lookup_decl_die (containing_scope))
10835 /* OK */;
10836 else
10837 containing_scope = NULL_TREE;
10840 /* Ignore function type "scopes" from the C frontend. They mean that
10841 a tagged type is local to a parmlist of a function declarator, but
10842 that isn't useful to DWARF. */
10843 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10844 containing_scope = NULL_TREE;
10846 if (containing_scope == NULL_TREE)
10847 scope_die = comp_unit_die;
10848 else if (TYPE_P (containing_scope))
10850 /* For types, we can just look up the appropriate DIE. But
10851 first we check to see if we're in the middle of emitting it
10852 so we know where the new DIE should go. */
10853 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
10854 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
10855 break;
10857 if (i < 0)
10859 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10860 || TREE_ASM_WRITTEN (containing_scope));
10862 /* If none of the current dies are suitable, we get file scope. */
10863 scope_die = comp_unit_die;
10865 else
10866 scope_die = lookup_type_die (containing_scope);
10868 else
10869 scope_die = context_die;
10871 return scope_die;
10874 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10876 static inline int
10877 local_scope_p (dw_die_ref context_die)
10879 for (; context_die; context_die = context_die->die_parent)
10880 if (context_die->die_tag == DW_TAG_inlined_subroutine
10881 || context_die->die_tag == DW_TAG_subprogram)
10882 return 1;
10884 return 0;
10887 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10888 whether or not to treat a DIE in this context as a declaration. */
10890 static inline int
10891 class_or_namespace_scope_p (dw_die_ref context_die)
10893 return (context_die
10894 && (context_die->die_tag == DW_TAG_structure_type
10895 || context_die->die_tag == DW_TAG_union_type
10896 || context_die->die_tag == DW_TAG_namespace));
10899 /* Many forms of DIEs require a "type description" attribute. This
10900 routine locates the proper "type descriptor" die for the type given
10901 by 'type', and adds a DW_AT_type attribute below the given die. */
10903 static void
10904 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10905 int decl_volatile, dw_die_ref context_die)
10907 enum tree_code code = TREE_CODE (type);
10908 dw_die_ref type_die = NULL;
10910 /* ??? If this type is an unnamed subrange type of an integral or
10911 floating-point type, use the inner type. This is because we have no
10912 support for unnamed types in base_type_die. This can happen if this is
10913 an Ada subrange type. Correct solution is emit a subrange type die. */
10914 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10915 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10916 type = TREE_TYPE (type), code = TREE_CODE (type);
10918 if (code == ERROR_MARK
10919 /* Handle a special case. For functions whose return type is void, we
10920 generate *no* type attribute. (Note that no object may have type
10921 `void', so this only applies to function return types). */
10922 || code == VOID_TYPE)
10923 return;
10925 type_die = modified_type_die (type,
10926 decl_const || TYPE_READONLY (type),
10927 decl_volatile || TYPE_VOLATILE (type),
10928 context_die);
10930 if (type_die != NULL)
10931 add_AT_die_ref (object_die, DW_AT_type, type_die);
10934 /* Given an object die, add the calling convention attribute for the
10935 function call type. */
10936 static void
10937 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10939 enum dwarf_calling_convention value = DW_CC_normal;
10941 value = targetm.dwarf_calling_convention (type);
10943 /* Only add the attribute if the backend requests it, and
10944 is not DW_CC_normal. */
10945 if (value && (value != DW_CC_normal))
10946 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10949 /* Given a tree pointer to a struct, class, union, or enum type node, return
10950 a pointer to the (string) tag name for the given type, or zero if the type
10951 was declared without a tag. */
10953 static const char *
10954 type_tag (tree type)
10956 const char *name = 0;
10958 if (TYPE_NAME (type) != 0)
10960 tree t = 0;
10962 /* Find the IDENTIFIER_NODE for the type name. */
10963 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10964 t = TYPE_NAME (type);
10966 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10967 a TYPE_DECL node, regardless of whether or not a `typedef' was
10968 involved. */
10969 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10970 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10971 t = DECL_NAME (TYPE_NAME (type));
10973 /* Now get the name as a string, or invent one. */
10974 if (t != 0)
10975 name = IDENTIFIER_POINTER (t);
10978 return (name == 0 || *name == '\0') ? 0 : name;
10981 /* Return the type associated with a data member, make a special check
10982 for bit field types. */
10984 static inline tree
10985 member_declared_type (tree member)
10987 return (DECL_BIT_FIELD_TYPE (member)
10988 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10991 /* Get the decl's label, as described by its RTL. This may be different
10992 from the DECL_NAME name used in the source file. */
10994 #if 0
10995 static const char *
10996 decl_start_label (tree decl)
10998 rtx x;
10999 const char *fnname;
11001 x = DECL_RTL (decl);
11002 gcc_assert (MEM_P (x));
11004 x = XEXP (x, 0);
11005 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11007 fnname = XSTR (x, 0);
11008 return fnname;
11010 #endif
11012 /* These routines generate the internal representation of the DIE's for
11013 the compilation unit. Debugging information is collected by walking
11014 the declaration trees passed in from dwarf2out_decl(). */
11016 static void
11017 gen_array_type_die (tree type, dw_die_ref context_die)
11019 dw_die_ref scope_die = scope_die_for (type, context_die);
11020 dw_die_ref array_die;
11021 tree element_type;
11023 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11024 the inner array type comes before the outer array type. Thus we must
11025 call gen_type_die before we call new_die. See below also. */
11026 #ifdef MIPS_DEBUGGING_INFO
11027 gen_type_die (TREE_TYPE (type), context_die);
11028 #endif
11030 array_die = new_die (DW_TAG_array_type, scope_die, type);
11031 add_name_attribute (array_die, type_tag (type));
11032 equate_type_number_to_die (type, array_die);
11034 if (TREE_CODE (type) == VECTOR_TYPE)
11036 /* The frontend feeds us a representation for the vector as a struct
11037 containing an array. Pull out the array type. */
11038 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11039 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11042 #if 0
11043 /* We default the array ordering. SDB will probably do
11044 the right things even if DW_AT_ordering is not present. It's not even
11045 an issue until we start to get into multidimensional arrays anyway. If
11046 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11047 then we'll have to put the DW_AT_ordering attribute back in. (But if
11048 and when we find out that we need to put these in, we will only do so
11049 for multidimensional arrays. */
11050 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11051 #endif
11053 #ifdef MIPS_DEBUGGING_INFO
11054 /* The SGI compilers handle arrays of unknown bound by setting
11055 AT_declaration and not emitting any subrange DIEs. */
11056 if (! TYPE_DOMAIN (type))
11057 add_AT_flag (array_die, DW_AT_declaration, 1);
11058 else
11059 #endif
11060 add_subscript_info (array_die, type);
11062 /* Add representation of the type of the elements of this array type. */
11063 element_type = TREE_TYPE (type);
11065 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11066 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11067 We work around this by disabling this feature. See also
11068 add_subscript_info. */
11069 #ifndef MIPS_DEBUGGING_INFO
11070 while (TREE_CODE (element_type) == ARRAY_TYPE)
11071 element_type = TREE_TYPE (element_type);
11073 gen_type_die (element_type, context_die);
11074 #endif
11076 add_type_attribute (array_die, element_type, 0, 0, context_die);
11079 #if 0
11080 static void
11081 gen_entry_point_die (tree decl, dw_die_ref context_die)
11083 tree origin = decl_ultimate_origin (decl);
11084 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11086 if (origin != NULL)
11087 add_abstract_origin_attribute (decl_die, origin);
11088 else
11090 add_name_and_src_coords_attributes (decl_die, decl);
11091 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11092 0, 0, context_die);
11095 if (DECL_ABSTRACT (decl))
11096 equate_decl_number_to_die (decl, decl_die);
11097 else
11098 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11100 #endif
11102 /* Walk through the list of incomplete types again, trying once more to
11103 emit full debugging info for them. */
11105 static void
11106 retry_incomplete_types (void)
11108 int i;
11110 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11111 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11114 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11116 static void
11117 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11119 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11121 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11122 be incomplete and such types are not marked. */
11123 add_abstract_origin_attribute (type_die, type);
11126 /* Generate a DIE to represent an inlined instance of a structure type. */
11128 static void
11129 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11131 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11133 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11134 be incomplete and such types are not marked. */
11135 add_abstract_origin_attribute (type_die, type);
11138 /* Generate a DIE to represent an inlined instance of a union type. */
11140 static void
11141 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11143 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11145 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11146 be incomplete and such types are not marked. */
11147 add_abstract_origin_attribute (type_die, type);
11150 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11151 include all of the information about the enumeration values also. Each
11152 enumerated type name/value is listed as a child of the enumerated type
11153 DIE. */
11155 static dw_die_ref
11156 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11158 dw_die_ref type_die = lookup_type_die (type);
11160 if (type_die == NULL)
11162 type_die = new_die (DW_TAG_enumeration_type,
11163 scope_die_for (type, context_die), type);
11164 equate_type_number_to_die (type, type_die);
11165 add_name_attribute (type_die, type_tag (type));
11167 else if (! TYPE_SIZE (type))
11168 return type_die;
11169 else
11170 remove_AT (type_die, DW_AT_declaration);
11172 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11173 given enum type is incomplete, do not generate the DW_AT_byte_size
11174 attribute or the DW_AT_element_list attribute. */
11175 if (TYPE_SIZE (type))
11177 tree link;
11179 TREE_ASM_WRITTEN (type) = 1;
11180 add_byte_size_attribute (type_die, type);
11181 if (TYPE_STUB_DECL (type) != NULL_TREE)
11182 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11184 /* If the first reference to this type was as the return type of an
11185 inline function, then it may not have a parent. Fix this now. */
11186 if (type_die->die_parent == NULL)
11187 add_child_die (scope_die_for (type, context_die), type_die);
11189 for (link = TYPE_VALUES (type);
11190 link != NULL; link = TREE_CHAIN (link))
11192 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11193 tree value = TREE_VALUE (link);
11195 add_name_attribute (enum_die,
11196 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11198 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11199 /* DWARF2 does not provide a way of indicating whether or
11200 not enumeration constants are signed or unsigned. GDB
11201 always assumes the values are signed, so we output all
11202 values as if they were signed. That means that
11203 enumeration constants with very large unsigned values
11204 will appear to have negative values in the debugger. */
11205 add_AT_int (enum_die, DW_AT_const_value,
11206 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11209 else
11210 add_AT_flag (type_die, DW_AT_declaration, 1);
11212 return type_die;
11215 /* Generate a DIE to represent either a real live formal parameter decl or to
11216 represent just the type of some formal parameter position in some function
11217 type.
11219 Note that this routine is a bit unusual because its argument may be a
11220 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11221 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11222 node. If it's the former then this function is being called to output a
11223 DIE to represent a formal parameter object (or some inlining thereof). If
11224 it's the latter, then this function is only being called to output a
11225 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11226 argument type of some subprogram type. */
11228 static dw_die_ref
11229 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11231 dw_die_ref parm_die
11232 = new_die (DW_TAG_formal_parameter, context_die, node);
11233 tree origin;
11235 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11237 case tcc_declaration:
11238 origin = decl_ultimate_origin (node);
11239 if (origin != NULL)
11240 add_abstract_origin_attribute (parm_die, origin);
11241 else
11243 add_name_and_src_coords_attributes (parm_die, node);
11244 add_type_attribute (parm_die, TREE_TYPE (node),
11245 TREE_READONLY (node),
11246 TREE_THIS_VOLATILE (node),
11247 context_die);
11248 if (DECL_ARTIFICIAL (node))
11249 add_AT_flag (parm_die, DW_AT_artificial, 1);
11252 equate_decl_number_to_die (node, parm_die);
11253 if (! DECL_ABSTRACT (node))
11254 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11256 break;
11258 case tcc_type:
11259 /* We were called with some kind of a ..._TYPE node. */
11260 add_type_attribute (parm_die, node, 0, 0, context_die);
11261 break;
11263 default:
11264 gcc_unreachable ();
11267 return parm_die;
11270 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11271 at the end of an (ANSI prototyped) formal parameters list. */
11273 static void
11274 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11276 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11279 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11280 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11281 parameters as specified in some function type specification (except for
11282 those which appear as part of a function *definition*). */
11284 static void
11285 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11287 tree link;
11288 tree formal_type = NULL;
11289 tree first_parm_type;
11290 tree arg;
11292 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11294 arg = DECL_ARGUMENTS (function_or_method_type);
11295 function_or_method_type = TREE_TYPE (function_or_method_type);
11297 else
11298 arg = NULL_TREE;
11300 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11302 /* Make our first pass over the list of formal parameter types and output a
11303 DW_TAG_formal_parameter DIE for each one. */
11304 for (link = first_parm_type; link; )
11306 dw_die_ref parm_die;
11308 formal_type = TREE_VALUE (link);
11309 if (formal_type == void_type_node)
11310 break;
11312 /* Output a (nameless) DIE to represent the formal parameter itself. */
11313 parm_die = gen_formal_parameter_die (formal_type, context_die);
11314 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11315 && link == first_parm_type)
11316 || (arg && DECL_ARTIFICIAL (arg)))
11317 add_AT_flag (parm_die, DW_AT_artificial, 1);
11319 link = TREE_CHAIN (link);
11320 if (arg)
11321 arg = TREE_CHAIN (arg);
11324 /* If this function type has an ellipsis, add a
11325 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11326 if (formal_type != void_type_node)
11327 gen_unspecified_parameters_die (function_or_method_type, context_die);
11329 /* Make our second (and final) pass over the list of formal parameter types
11330 and output DIEs to represent those types (as necessary). */
11331 for (link = TYPE_ARG_TYPES (function_or_method_type);
11332 link && TREE_VALUE (link);
11333 link = TREE_CHAIN (link))
11334 gen_type_die (TREE_VALUE (link), context_die);
11337 /* We want to generate the DIE for TYPE so that we can generate the
11338 die for MEMBER, which has been defined; we will need to refer back
11339 to the member declaration nested within TYPE. If we're trying to
11340 generate minimal debug info for TYPE, processing TYPE won't do the
11341 trick; we need to attach the member declaration by hand. */
11343 static void
11344 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11346 gen_type_die (type, context_die);
11348 /* If we're trying to avoid duplicate debug info, we may not have
11349 emitted the member decl for this function. Emit it now. */
11350 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11351 && ! lookup_decl_die (member))
11353 dw_die_ref type_die;
11354 gcc_assert (!decl_ultimate_origin (member));
11356 push_decl_scope (type);
11357 type_die = lookup_type_die (type);
11358 if (TREE_CODE (member) == FUNCTION_DECL)
11359 gen_subprogram_die (member, type_die);
11360 else if (TREE_CODE (member) == FIELD_DECL)
11362 /* Ignore the nameless fields that are used to skip bits but handle
11363 C++ anonymous unions and structs. */
11364 if (DECL_NAME (member) != NULL_TREE
11365 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11366 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11368 gen_type_die (member_declared_type (member), type_die);
11369 gen_field_die (member, type_die);
11372 else
11373 gen_variable_die (member, type_die);
11375 pop_decl_scope ();
11379 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11380 may later generate inlined and/or out-of-line instances of. */
11382 static void
11383 dwarf2out_abstract_function (tree decl)
11385 dw_die_ref old_die;
11386 tree save_fn;
11387 tree context;
11388 int was_abstract = DECL_ABSTRACT (decl);
11390 /* Make sure we have the actual abstract inline, not a clone. */
11391 decl = DECL_ORIGIN (decl);
11393 old_die = lookup_decl_die (decl);
11394 if (old_die && get_AT (old_die, DW_AT_inline))
11395 /* We've already generated the abstract instance. */
11396 return;
11398 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11399 we don't get confused by DECL_ABSTRACT. */
11400 if (debug_info_level > DINFO_LEVEL_TERSE)
11402 context = decl_class_context (decl);
11403 if (context)
11404 gen_type_die_for_member
11405 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11408 /* Pretend we've just finished compiling this function. */
11409 save_fn = current_function_decl;
11410 current_function_decl = decl;
11412 set_decl_abstract_flags (decl, 1);
11413 dwarf2out_decl (decl);
11414 if (! was_abstract)
11415 set_decl_abstract_flags (decl, 0);
11417 current_function_decl = save_fn;
11420 /* Generate a DIE to represent a declared function (either file-scope or
11421 block-local). */
11423 static void
11424 gen_subprogram_die (tree decl, dw_die_ref context_die)
11426 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11427 tree origin = decl_ultimate_origin (decl);
11428 dw_die_ref subr_die;
11429 tree fn_arg_types;
11430 tree outer_scope;
11431 dw_die_ref old_die = lookup_decl_die (decl);
11432 int declaration = (current_function_decl != decl
11433 || class_or_namespace_scope_p (context_die));
11435 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11436 started to generate the abstract instance of an inline, decided to output
11437 its containing class, and proceeded to emit the declaration of the inline
11438 from the member list for the class. If so, DECLARATION takes priority;
11439 we'll get back to the abstract instance when done with the class. */
11441 /* The class-scope declaration DIE must be the primary DIE. */
11442 if (origin && declaration && class_or_namespace_scope_p (context_die))
11444 origin = NULL;
11445 gcc_assert (!old_die);
11448 if (origin != NULL)
11450 gcc_assert (!declaration || local_scope_p (context_die));
11452 /* Fixup die_parent for the abstract instance of a nested
11453 inline function. */
11454 if (old_die && old_die->die_parent == NULL)
11455 add_child_die (context_die, old_die);
11457 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11458 add_abstract_origin_attribute (subr_die, origin);
11460 else if (old_die)
11462 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11463 unsigned file_index = lookup_filename (s.file);
11465 if (!get_AT_flag (old_die, DW_AT_declaration)
11466 /* We can have a normal definition following an inline one in the
11467 case of redefinition of GNU C extern inlines.
11468 It seems reasonable to use AT_specification in this case. */
11469 && !get_AT (old_die, DW_AT_inline))
11471 /* Detect and ignore this case, where we are trying to output
11472 something we have already output. */
11473 return;
11476 /* If the definition comes from the same place as the declaration,
11477 maybe use the old DIE. We always want the DIE for this function
11478 that has the *_pc attributes to be under comp_unit_die so the
11479 debugger can find it. We also need to do this for abstract
11480 instances of inlines, since the spec requires the out-of-line copy
11481 to have the same parent. For local class methods, this doesn't
11482 apply; we just use the old DIE. */
11483 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11484 && (DECL_ARTIFICIAL (decl)
11485 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11486 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11487 == (unsigned) s.line))))
11489 subr_die = old_die;
11491 /* Clear out the declaration attribute and the formal parameters.
11492 Do not remove all children, because it is possible that this
11493 declaration die was forced using force_decl_die(). In such
11494 cases die that forced declaration die (e.g. TAG_imported_module)
11495 is one of the children that we do not want to remove. */
11496 remove_AT (subr_die, DW_AT_declaration);
11497 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11499 else
11501 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11502 add_AT_specification (subr_die, old_die);
11503 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11504 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11505 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11506 != (unsigned) s.line)
11507 add_AT_unsigned
11508 (subr_die, DW_AT_decl_line, s.line);
11511 else
11513 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11515 if (TREE_PUBLIC (decl))
11516 add_AT_flag (subr_die, DW_AT_external, 1);
11518 add_name_and_src_coords_attributes (subr_die, decl);
11519 if (debug_info_level > DINFO_LEVEL_TERSE)
11521 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11522 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11523 0, 0, context_die);
11526 add_pure_or_virtual_attribute (subr_die, decl);
11527 if (DECL_ARTIFICIAL (decl))
11528 add_AT_flag (subr_die, DW_AT_artificial, 1);
11530 if (TREE_PROTECTED (decl))
11531 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11532 else if (TREE_PRIVATE (decl))
11533 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11536 if (declaration)
11538 if (!old_die || !get_AT (old_die, DW_AT_inline))
11540 add_AT_flag (subr_die, DW_AT_declaration, 1);
11542 /* The first time we see a member function, it is in the context of
11543 the class to which it belongs. We make sure of this by emitting
11544 the class first. The next time is the definition, which is
11545 handled above. The two may come from the same source text.
11547 Note that force_decl_die() forces function declaration die. It is
11548 later reused to represent definition. */
11549 equate_decl_number_to_die (decl, subr_die);
11552 else if (DECL_ABSTRACT (decl))
11554 if (DECL_DECLARED_INLINE_P (decl))
11556 if (cgraph_function_possibly_inlined_p (decl))
11557 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11558 else
11559 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11561 else
11563 if (cgraph_function_possibly_inlined_p (decl))
11564 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11565 else
11566 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11569 equate_decl_number_to_die (decl, subr_die);
11571 else if (!DECL_EXTERNAL (decl))
11573 if (!old_die || !get_AT (old_die, DW_AT_inline))
11574 equate_decl_number_to_die (decl, subr_die);
11576 if (!flag_reorder_blocks_and_partition)
11578 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11579 current_function_funcdef_no);
11580 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11581 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11582 current_function_funcdef_no);
11583 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11585 add_pubname (decl, subr_die);
11586 add_arange (decl, subr_die);
11588 else
11589 { /* Do nothing for now; maybe need to duplicate die, one for
11590 hot section and ond for cold section, then use the hot/cold
11591 section begin/end labels to generate the aranges... */
11593 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11594 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11595 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11596 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11598 add_pubname (decl, subr_die);
11599 add_arange (decl, subr_die);
11600 add_arange (decl, subr_die);
11604 #ifdef MIPS_DEBUGGING_INFO
11605 /* Add a reference to the FDE for this routine. */
11606 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11607 #endif
11609 /* We define the "frame base" as the function's CFA. This is more
11610 convenient for several reasons: (1) It's stable across the prologue
11611 and epilogue, which makes it better than just a frame pointer,
11612 (2) With dwarf3, there exists a one-byte encoding that allows us
11613 to reference the .debug_frame data by proxy, but failing that,
11614 (3) We can at least reuse the code inspection and interpretation
11615 code that determines the CFA position at various points in the
11616 function. */
11617 /* ??? Use some command-line or configury switch to enable the use
11618 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11619 consumers that understand it; fall back to "pure" dwarf2 and
11620 convert the CFA data into a location list. */
11622 dw_loc_list_ref list = convert_cfa_to_loc_list ();
11623 if (list->dw_loc_next)
11624 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11625 else
11626 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11629 /* Compute a displacement from the "steady-state frame pointer" to
11630 the CFA. The former is what all stack slots and argument slots
11631 will reference in the rtl; the later is what we've told the
11632 debugger about. We'll need to adjust all frame_base references
11633 by this displacement. */
11634 compute_frame_pointer_to_cfa_displacement ();
11636 if (cfun->static_chain_decl)
11637 add_AT_location_description (subr_die, DW_AT_static_link,
11638 loc_descriptor_from_tree (cfun->static_chain_decl));
11641 /* Now output descriptions of the arguments for this function. This gets
11642 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11643 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11644 `...' at the end of the formal parameter list. In order to find out if
11645 there was a trailing ellipsis or not, we must instead look at the type
11646 associated with the FUNCTION_DECL. This will be a node of type
11647 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11648 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11649 an ellipsis at the end. */
11651 /* In the case where we are describing a mere function declaration, all we
11652 need to do here (and all we *can* do here) is to describe the *types* of
11653 its formal parameters. */
11654 if (debug_info_level <= DINFO_LEVEL_TERSE)
11656 else if (declaration)
11657 gen_formal_types_die (decl, subr_die);
11658 else
11660 /* Generate DIEs to represent all known formal parameters. */
11661 tree arg_decls = DECL_ARGUMENTS (decl);
11662 tree parm;
11664 /* When generating DIEs, generate the unspecified_parameters DIE
11665 instead if we come across the arg "__builtin_va_alist" */
11666 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11667 if (TREE_CODE (parm) == PARM_DECL)
11669 if (DECL_NAME (parm)
11670 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11671 "__builtin_va_alist"))
11672 gen_unspecified_parameters_die (parm, subr_die);
11673 else
11674 gen_decl_die (parm, subr_die);
11677 /* Decide whether we need an unspecified_parameters DIE at the end.
11678 There are 2 more cases to do this for: 1) the ansi ... declaration -
11679 this is detectable when the end of the arg list is not a
11680 void_type_node 2) an unprototyped function declaration (not a
11681 definition). This just means that we have no info about the
11682 parameters at all. */
11683 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11684 if (fn_arg_types != NULL)
11686 /* This is the prototyped case, check for.... */
11687 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11688 gen_unspecified_parameters_die (decl, subr_die);
11690 else if (DECL_INITIAL (decl) == NULL_TREE)
11691 gen_unspecified_parameters_die (decl, subr_die);
11694 /* Output Dwarf info for all of the stuff within the body of the function
11695 (if it has one - it may be just a declaration). */
11696 outer_scope = DECL_INITIAL (decl);
11698 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11699 a function. This BLOCK actually represents the outermost binding contour
11700 for the function, i.e. the contour in which the function's formal
11701 parameters and labels get declared. Curiously, it appears that the front
11702 end doesn't actually put the PARM_DECL nodes for the current function onto
11703 the BLOCK_VARS list for this outer scope, but are strung off of the
11704 DECL_ARGUMENTS list for the function instead.
11706 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11707 the LABEL_DECL nodes for the function however, and we output DWARF info
11708 for those in decls_for_scope. Just within the `outer_scope' there will be
11709 a BLOCK node representing the function's outermost pair of curly braces,
11710 and any blocks used for the base and member initializers of a C++
11711 constructor function. */
11712 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11714 /* Emit a DW_TAG_variable DIE for a named return value. */
11715 if (DECL_NAME (DECL_RESULT (decl)))
11716 gen_decl_die (DECL_RESULT (decl), subr_die);
11718 current_function_has_inlines = 0;
11719 decls_for_scope (outer_scope, subr_die, 0);
11721 #if 0 && defined (MIPS_DEBUGGING_INFO)
11722 if (current_function_has_inlines)
11724 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11725 if (! comp_unit_has_inlines)
11727 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11728 comp_unit_has_inlines = 1;
11731 #endif
11733 /* Add the calling convention attribute if requested. */
11734 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11738 /* Generate a DIE to represent a declared data object. */
11740 static void
11741 gen_variable_die (tree decl, dw_die_ref context_die)
11743 tree origin = decl_ultimate_origin (decl);
11744 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11746 dw_die_ref old_die = lookup_decl_die (decl);
11747 int declaration = (DECL_EXTERNAL (decl)
11748 /* If DECL is COMDAT and has not actually been
11749 emitted, we cannot take its address; there
11750 might end up being no definition anywhere in
11751 the program. For example, consider the C++
11752 test case:
11754 template <class T>
11755 struct S { static const int i = 7; };
11757 template <class T>
11758 const int S<T>::i;
11760 int f() { return S<int>::i; }
11762 Here, S<int>::i is not DECL_EXTERNAL, but no
11763 definition is required, so the compiler will
11764 not emit a definition. */
11765 || (TREE_CODE (decl) == VAR_DECL
11766 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
11767 || class_or_namespace_scope_p (context_die));
11769 if (origin != NULL)
11770 add_abstract_origin_attribute (var_die, origin);
11772 /* Loop unrolling can create multiple blocks that refer to the same
11773 static variable, so we must test for the DW_AT_declaration flag.
11775 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11776 copy decls and set the DECL_ABSTRACT flag on them instead of
11777 sharing them.
11779 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11781 ??? The declare_in_namespace support causes us to get two DIEs for one
11782 variable, both of which are declarations. We want to avoid considering
11783 one to be a specification, so we must test that this DIE is not a
11784 declaration. */
11785 else if (old_die && TREE_STATIC (decl) && ! declaration
11786 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11788 /* This is a definition of a C++ class level static. */
11789 add_AT_specification (var_die, old_die);
11790 if (DECL_NAME (decl))
11792 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11793 unsigned file_index = lookup_filename (s.file);
11795 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11796 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11798 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11799 != (unsigned) s.line)
11801 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11804 else
11806 add_name_and_src_coords_attributes (var_die, decl);
11807 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11808 TREE_THIS_VOLATILE (decl), context_die);
11810 if (TREE_PUBLIC (decl))
11811 add_AT_flag (var_die, DW_AT_external, 1);
11813 if (DECL_ARTIFICIAL (decl))
11814 add_AT_flag (var_die, DW_AT_artificial, 1);
11816 if (TREE_PROTECTED (decl))
11817 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11818 else if (TREE_PRIVATE (decl))
11819 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11822 if (declaration)
11823 add_AT_flag (var_die, DW_AT_declaration, 1);
11825 if (DECL_ABSTRACT (decl) || declaration)
11826 equate_decl_number_to_die (decl, var_die);
11828 if (! declaration && ! DECL_ABSTRACT (decl))
11830 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11831 add_pubname (decl, var_die);
11833 else
11834 tree_add_const_value_attribute (var_die, decl);
11837 /* Generate a DIE to represent a label identifier. */
11839 static void
11840 gen_label_die (tree decl, dw_die_ref context_die)
11842 tree origin = decl_ultimate_origin (decl);
11843 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11844 rtx insn;
11845 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11847 if (origin != NULL)
11848 add_abstract_origin_attribute (lbl_die, origin);
11849 else
11850 add_name_and_src_coords_attributes (lbl_die, decl);
11852 if (DECL_ABSTRACT (decl))
11853 equate_decl_number_to_die (decl, lbl_die);
11854 else
11856 insn = DECL_RTL_IF_SET (decl);
11858 /* Deleted labels are programmer specified labels which have been
11859 eliminated because of various optimizations. We still emit them
11860 here so that it is possible to put breakpoints on them. */
11861 if (insn
11862 && (LABEL_P (insn)
11863 || ((NOTE_P (insn)
11864 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11866 /* When optimization is enabled (via -O) some parts of the compiler
11867 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11868 represent source-level labels which were explicitly declared by
11869 the user. This really shouldn't be happening though, so catch
11870 it if it ever does happen. */
11871 gcc_assert (!INSN_DELETED_P (insn));
11873 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11874 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11879 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
11880 attributes to the DIE for a block STMT, to describe where the inlined
11881 function was called from. This is similar to add_src_coords_attributes. */
11883 static inline void
11884 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
11886 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
11887 unsigned file_index = lookup_filename (s.file);
11889 add_AT_unsigned (die, DW_AT_call_file, file_index);
11890 add_AT_unsigned (die, DW_AT_call_line, s.line);
11893 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
11894 Add low_pc and high_pc attributes to the DIE for a block STMT. */
11896 static inline void
11897 add_high_low_attributes (tree stmt, dw_die_ref die)
11899 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11901 if (BLOCK_FRAGMENT_CHAIN (stmt))
11903 tree chain;
11905 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
11907 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11910 add_ranges (chain);
11911 chain = BLOCK_FRAGMENT_CHAIN (chain);
11913 while (chain);
11914 add_ranges (NULL);
11916 else
11918 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11919 BLOCK_NUMBER (stmt));
11920 add_AT_lbl_id (die, DW_AT_low_pc, label);
11921 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11922 BLOCK_NUMBER (stmt));
11923 add_AT_lbl_id (die, DW_AT_high_pc, label);
11927 /* Generate a DIE for a lexical block. */
11929 static void
11930 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11932 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11934 if (! BLOCK_ABSTRACT (stmt))
11935 add_high_low_attributes (stmt, stmt_die);
11937 decls_for_scope (stmt, stmt_die, depth);
11940 /* Generate a DIE for an inlined subprogram. */
11942 static void
11943 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11945 tree decl = block_ultimate_origin (stmt);
11947 /* Emit info for the abstract instance first, if we haven't yet. We
11948 must emit this even if the block is abstract, otherwise when we
11949 emit the block below (or elsewhere), we may end up trying to emit
11950 a die whose origin die hasn't been emitted, and crashing. */
11951 dwarf2out_abstract_function (decl);
11953 if (! BLOCK_ABSTRACT (stmt))
11955 dw_die_ref subr_die
11956 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11958 add_abstract_origin_attribute (subr_die, decl);
11959 add_high_low_attributes (stmt, subr_die);
11960 add_call_src_coords_attributes (stmt, subr_die);
11962 decls_for_scope (stmt, subr_die, depth);
11963 current_function_has_inlines = 1;
11965 else
11966 /* We may get here if we're the outer block of function A that was
11967 inlined into function B that was inlined into function C. When
11968 generating debugging info for C, dwarf2out_abstract_function(B)
11969 would mark all inlined blocks as abstract, including this one.
11970 So, we wouldn't (and shouldn't) expect labels to be generated
11971 for this one. Instead, just emit debugging info for
11972 declarations within the block. This is particularly important
11973 in the case of initializers of arguments passed from B to us:
11974 if they're statement expressions containing declarations, we
11975 wouldn't generate dies for their abstract variables, and then,
11976 when generating dies for the real variables, we'd die (pun
11977 intended :-) */
11978 gen_lexical_block_die (stmt, context_die, depth);
11981 /* Generate a DIE for a field in a record, or structure. */
11983 static void
11984 gen_field_die (tree decl, dw_die_ref context_die)
11986 dw_die_ref decl_die;
11988 if (TREE_TYPE (decl) == error_mark_node)
11989 return;
11991 decl_die = new_die (DW_TAG_member, context_die, decl);
11992 add_name_and_src_coords_attributes (decl_die, decl);
11993 add_type_attribute (decl_die, member_declared_type (decl),
11994 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11995 context_die);
11997 if (DECL_BIT_FIELD_TYPE (decl))
11999 add_byte_size_attribute (decl_die, decl);
12000 add_bit_size_attribute (decl_die, decl);
12001 add_bit_offset_attribute (decl_die, decl);
12004 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12005 add_data_member_location_attribute (decl_die, decl);
12007 if (DECL_ARTIFICIAL (decl))
12008 add_AT_flag (decl_die, DW_AT_artificial, 1);
12010 if (TREE_PROTECTED (decl))
12011 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12012 else if (TREE_PRIVATE (decl))
12013 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12015 /* Equate decl number to die, so that we can look up this decl later on. */
12016 equate_decl_number_to_die (decl, decl_die);
12019 #if 0
12020 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12021 Use modified_type_die instead.
12022 We keep this code here just in case these types of DIEs may be needed to
12023 represent certain things in other languages (e.g. Pascal) someday. */
12025 static void
12026 gen_pointer_type_die (tree type, dw_die_ref context_die)
12028 dw_die_ref ptr_die
12029 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12031 equate_type_number_to_die (type, ptr_die);
12032 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12033 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12036 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12037 Use modified_type_die instead.
12038 We keep this code here just in case these types of DIEs may be needed to
12039 represent certain things in other languages (e.g. Pascal) someday. */
12041 static void
12042 gen_reference_type_die (tree type, dw_die_ref context_die)
12044 dw_die_ref ref_die
12045 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12047 equate_type_number_to_die (type, ref_die);
12048 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12049 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12051 #endif
12053 /* Generate a DIE for a pointer to a member type. */
12055 static void
12056 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12058 dw_die_ref ptr_die
12059 = new_die (DW_TAG_ptr_to_member_type,
12060 scope_die_for (type, context_die), type);
12062 equate_type_number_to_die (type, ptr_die);
12063 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12064 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12065 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12068 /* Generate the DIE for the compilation unit. */
12070 static dw_die_ref
12071 gen_compile_unit_die (const char *filename)
12073 dw_die_ref die;
12074 char producer[250];
12075 const char *language_string = lang_hooks.name;
12076 int language;
12078 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12080 if (filename)
12082 add_name_attribute (die, filename);
12083 /* Don't add cwd for <built-in>. */
12084 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
12085 add_comp_dir_attribute (die);
12088 sprintf (producer, "%s %s", language_string, version_string);
12090 #ifdef MIPS_DEBUGGING_INFO
12091 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12092 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12093 not appear in the producer string, the debugger reaches the conclusion
12094 that the object file is stripped and has no debugging information.
12095 To get the MIPS/SGI debugger to believe that there is debugging
12096 information in the object file, we add a -g to the producer string. */
12097 if (debug_info_level > DINFO_LEVEL_TERSE)
12098 strcat (producer, " -g");
12099 #endif
12101 add_AT_string (die, DW_AT_producer, producer);
12103 if (strcmp (language_string, "GNU C++") == 0)
12104 language = DW_LANG_C_plus_plus;
12105 else if (strcmp (language_string, "GNU Ada") == 0)
12106 language = DW_LANG_Ada95;
12107 else if (strcmp (language_string, "GNU F77") == 0)
12108 language = DW_LANG_Fortran77;
12109 else if (strcmp (language_string, "GNU F95") == 0)
12110 language = DW_LANG_Fortran95;
12111 else if (strcmp (language_string, "GNU Pascal") == 0)
12112 language = DW_LANG_Pascal83;
12113 else if (strcmp (language_string, "GNU Java") == 0)
12114 language = DW_LANG_Java;
12115 else
12116 language = DW_LANG_C89;
12118 add_AT_unsigned (die, DW_AT_language, language);
12119 return die;
12122 /* Generate a DIE for a string type. */
12124 static void
12125 gen_string_type_die (tree type, dw_die_ref context_die)
12127 dw_die_ref type_die
12128 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
12130 equate_type_number_to_die (type, type_die);
12132 /* ??? Fudge the string length attribute for now.
12133 TODO: add string length info. */
12134 #if 0
12135 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
12136 bound_representation (upper_bound, 0, 'u');
12137 #endif
12140 /* Generate the DIE for a base class. */
12142 static void
12143 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12145 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12147 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12148 add_data_member_location_attribute (die, binfo);
12150 if (BINFO_VIRTUAL_P (binfo))
12151 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12153 if (access == access_public_node)
12154 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12155 else if (access == access_protected_node)
12156 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12159 /* Generate a DIE for a class member. */
12161 static void
12162 gen_member_die (tree type, dw_die_ref context_die)
12164 tree member;
12165 tree binfo = TYPE_BINFO (type);
12166 dw_die_ref child;
12168 /* If this is not an incomplete type, output descriptions of each of its
12169 members. Note that as we output the DIEs necessary to represent the
12170 members of this record or union type, we will also be trying to output
12171 DIEs to represent the *types* of those members. However the `type'
12172 function (above) will specifically avoid generating type DIEs for member
12173 types *within* the list of member DIEs for this (containing) type except
12174 for those types (of members) which are explicitly marked as also being
12175 members of this (containing) type themselves. The g++ front- end can
12176 force any given type to be treated as a member of some other (containing)
12177 type by setting the TYPE_CONTEXT of the given (member) type to point to
12178 the TREE node representing the appropriate (containing) type. */
12180 /* First output info about the base classes. */
12181 if (binfo)
12183 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12184 int i;
12185 tree base;
12187 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12188 gen_inheritance_die (base,
12189 (accesses ? VEC_index (tree, accesses, i)
12190 : access_public_node), context_die);
12193 /* Now output info about the data members and type members. */
12194 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12196 /* If we thought we were generating minimal debug info for TYPE
12197 and then changed our minds, some of the member declarations
12198 may have already been defined. Don't define them again, but
12199 do put them in the right order. */
12201 child = lookup_decl_die (member);
12202 if (child)
12203 splice_child_die (context_die, child);
12204 else
12205 gen_decl_die (member, context_die);
12208 /* Now output info about the function members (if any). */
12209 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12211 /* Don't include clones in the member list. */
12212 if (DECL_ABSTRACT_ORIGIN (member))
12213 continue;
12215 child = lookup_decl_die (member);
12216 if (child)
12217 splice_child_die (context_die, child);
12218 else
12219 gen_decl_die (member, context_die);
12223 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12224 is set, we pretend that the type was never defined, so we only get the
12225 member DIEs needed by later specification DIEs. */
12227 static void
12228 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12230 dw_die_ref type_die = lookup_type_die (type);
12231 dw_die_ref scope_die = 0;
12232 int nested = 0;
12233 int complete = (TYPE_SIZE (type)
12234 && (! TYPE_STUB_DECL (type)
12235 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12236 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12238 if (type_die && ! complete)
12239 return;
12241 if (TYPE_CONTEXT (type) != NULL_TREE
12242 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12243 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12244 nested = 1;
12246 scope_die = scope_die_for (type, context_die);
12248 if (! type_die || (nested && scope_die == comp_unit_die))
12249 /* First occurrence of type or toplevel definition of nested class. */
12251 dw_die_ref old_die = type_die;
12253 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12254 ? DW_TAG_structure_type : DW_TAG_union_type,
12255 scope_die, type);
12256 equate_type_number_to_die (type, type_die);
12257 if (old_die)
12258 add_AT_specification (type_die, old_die);
12259 else
12260 add_name_attribute (type_die, type_tag (type));
12262 else
12263 remove_AT (type_die, DW_AT_declaration);
12265 /* If this type has been completed, then give it a byte_size attribute and
12266 then give a list of members. */
12267 if (complete && !ns_decl)
12269 /* Prevent infinite recursion in cases where the type of some member of
12270 this type is expressed in terms of this type itself. */
12271 TREE_ASM_WRITTEN (type) = 1;
12272 add_byte_size_attribute (type_die, type);
12273 if (TYPE_STUB_DECL (type) != NULL_TREE)
12274 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12276 /* If the first reference to this type was as the return type of an
12277 inline function, then it may not have a parent. Fix this now. */
12278 if (type_die->die_parent == NULL)
12279 add_child_die (scope_die, type_die);
12281 push_decl_scope (type);
12282 gen_member_die (type, type_die);
12283 pop_decl_scope ();
12285 /* GNU extension: Record what type our vtable lives in. */
12286 if (TYPE_VFIELD (type))
12288 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12290 gen_type_die (vtype, context_die);
12291 add_AT_die_ref (type_die, DW_AT_containing_type,
12292 lookup_type_die (vtype));
12295 else
12297 add_AT_flag (type_die, DW_AT_declaration, 1);
12299 /* We don't need to do this for function-local types. */
12300 if (TYPE_STUB_DECL (type)
12301 && ! decl_function_context (TYPE_STUB_DECL (type)))
12302 VEC_safe_push (tree, gc, incomplete_types, type);
12306 /* Generate a DIE for a subroutine _type_. */
12308 static void
12309 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12311 tree return_type = TREE_TYPE (type);
12312 dw_die_ref subr_die
12313 = new_die (DW_TAG_subroutine_type,
12314 scope_die_for (type, context_die), type);
12316 equate_type_number_to_die (type, subr_die);
12317 add_prototyped_attribute (subr_die, type);
12318 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12319 gen_formal_types_die (type, subr_die);
12322 /* Generate a DIE for a type definition. */
12324 static void
12325 gen_typedef_die (tree decl, dw_die_ref context_die)
12327 dw_die_ref type_die;
12328 tree origin;
12330 if (TREE_ASM_WRITTEN (decl))
12331 return;
12333 TREE_ASM_WRITTEN (decl) = 1;
12334 type_die = new_die (DW_TAG_typedef, context_die, decl);
12335 origin = decl_ultimate_origin (decl);
12336 if (origin != NULL)
12337 add_abstract_origin_attribute (type_die, origin);
12338 else
12340 tree type;
12342 add_name_and_src_coords_attributes (type_die, decl);
12343 if (DECL_ORIGINAL_TYPE (decl))
12345 type = DECL_ORIGINAL_TYPE (decl);
12347 gcc_assert (type != TREE_TYPE (decl));
12348 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12350 else
12351 type = TREE_TYPE (decl);
12353 add_type_attribute (type_die, type, TREE_READONLY (decl),
12354 TREE_THIS_VOLATILE (decl), context_die);
12357 if (DECL_ABSTRACT (decl))
12358 equate_decl_number_to_die (decl, type_die);
12361 /* Generate a type description DIE. */
12363 static void
12364 gen_type_die (tree type, dw_die_ref context_die)
12366 int need_pop;
12368 if (type == NULL_TREE || type == error_mark_node)
12369 return;
12371 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12372 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12374 if (TREE_ASM_WRITTEN (type))
12375 return;
12377 /* Prevent broken recursion; we can't hand off to the same type. */
12378 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12380 TREE_ASM_WRITTEN (type) = 1;
12381 gen_decl_die (TYPE_NAME (type), context_die);
12382 return;
12385 /* We are going to output a DIE to represent the unqualified version
12386 of this type (i.e. without any const or volatile qualifiers) so
12387 get the main variant (i.e. the unqualified version) of this type
12388 now. (Vectors are special because the debugging info is in the
12389 cloned type itself). */
12390 if (TREE_CODE (type) != VECTOR_TYPE)
12391 type = type_main_variant (type);
12393 if (TREE_ASM_WRITTEN (type))
12394 return;
12396 switch (TREE_CODE (type))
12398 case ERROR_MARK:
12399 break;
12401 case POINTER_TYPE:
12402 case REFERENCE_TYPE:
12403 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12404 ensures that the gen_type_die recursion will terminate even if the
12405 type is recursive. Recursive types are possible in Ada. */
12406 /* ??? We could perhaps do this for all types before the switch
12407 statement. */
12408 TREE_ASM_WRITTEN (type) = 1;
12410 /* For these types, all that is required is that we output a DIE (or a
12411 set of DIEs) to represent the "basis" type. */
12412 gen_type_die (TREE_TYPE (type), context_die);
12413 break;
12415 case OFFSET_TYPE:
12416 /* This code is used for C++ pointer-to-data-member types.
12417 Output a description of the relevant class type. */
12418 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12420 /* Output a description of the type of the object pointed to. */
12421 gen_type_die (TREE_TYPE (type), context_die);
12423 /* Now output a DIE to represent this pointer-to-data-member type
12424 itself. */
12425 gen_ptr_to_mbr_type_die (type, context_die);
12426 break;
12428 case FUNCTION_TYPE:
12429 /* Force out return type (in case it wasn't forced out already). */
12430 gen_type_die (TREE_TYPE (type), context_die);
12431 gen_subroutine_type_die (type, context_die);
12432 break;
12434 case METHOD_TYPE:
12435 /* Force out return type (in case it wasn't forced out already). */
12436 gen_type_die (TREE_TYPE (type), context_die);
12437 gen_subroutine_type_die (type, context_die);
12438 break;
12440 case ARRAY_TYPE:
12441 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12443 gen_type_die (TREE_TYPE (type), context_die);
12444 gen_string_type_die (type, context_die);
12446 else
12447 gen_array_type_die (type, context_die);
12448 break;
12450 case VECTOR_TYPE:
12451 gen_array_type_die (type, context_die);
12452 break;
12454 case ENUMERAL_TYPE:
12455 case RECORD_TYPE:
12456 case UNION_TYPE:
12457 case QUAL_UNION_TYPE:
12458 /* If this is a nested type whose containing class hasn't been written
12459 out yet, writing it out will cover this one, too. This does not apply
12460 to instantiations of member class templates; they need to be added to
12461 the containing class as they are generated. FIXME: This hurts the
12462 idea of combining type decls from multiple TUs, since we can't predict
12463 what set of template instantiations we'll get. */
12464 if (TYPE_CONTEXT (type)
12465 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12466 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12468 gen_type_die (TYPE_CONTEXT (type), context_die);
12470 if (TREE_ASM_WRITTEN (type))
12471 return;
12473 /* If that failed, attach ourselves to the stub. */
12474 push_decl_scope (TYPE_CONTEXT (type));
12475 context_die = lookup_type_die (TYPE_CONTEXT (type));
12476 need_pop = 1;
12478 else
12480 declare_in_namespace (type, context_die);
12481 need_pop = 0;
12484 if (TREE_CODE (type) == ENUMERAL_TYPE)
12485 gen_enumeration_type_die (type, context_die);
12486 else
12487 gen_struct_or_union_type_die (type, context_die);
12489 if (need_pop)
12490 pop_decl_scope ();
12492 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12493 it up if it is ever completed. gen_*_type_die will set it for us
12494 when appropriate. */
12495 return;
12497 case VOID_TYPE:
12498 case INTEGER_TYPE:
12499 case REAL_TYPE:
12500 case COMPLEX_TYPE:
12501 case BOOLEAN_TYPE:
12502 case CHAR_TYPE:
12503 /* No DIEs needed for fundamental types. */
12504 break;
12506 case LANG_TYPE:
12507 /* No Dwarf representation currently defined. */
12508 break;
12510 default:
12511 gcc_unreachable ();
12514 TREE_ASM_WRITTEN (type) = 1;
12517 /* Generate a DIE for a tagged type instantiation. */
12519 static void
12520 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12522 if (type == NULL_TREE || type == error_mark_node)
12523 return;
12525 /* We are going to output a DIE to represent the unqualified version of
12526 this type (i.e. without any const or volatile qualifiers) so make sure
12527 that we have the main variant (i.e. the unqualified version) of this
12528 type now. */
12529 gcc_assert (type == type_main_variant (type));
12531 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12532 an instance of an unresolved type. */
12534 switch (TREE_CODE (type))
12536 case ERROR_MARK:
12537 break;
12539 case ENUMERAL_TYPE:
12540 gen_inlined_enumeration_type_die (type, context_die);
12541 break;
12543 case RECORD_TYPE:
12544 gen_inlined_structure_type_die (type, context_die);
12545 break;
12547 case UNION_TYPE:
12548 case QUAL_UNION_TYPE:
12549 gen_inlined_union_type_die (type, context_die);
12550 break;
12552 default:
12553 gcc_unreachable ();
12557 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12558 things which are local to the given block. */
12560 static void
12561 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12563 int must_output_die = 0;
12564 tree origin;
12565 tree decl;
12566 enum tree_code origin_code;
12568 /* Ignore blocks that are NULL. */
12569 if (stmt == NULL_TREE)
12570 return;
12572 /* If the block is one fragment of a non-contiguous block, do not
12573 process the variables, since they will have been done by the
12574 origin block. Do process subblocks. */
12575 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12577 tree sub;
12579 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12580 gen_block_die (sub, context_die, depth + 1);
12582 return;
12585 /* Determine the "ultimate origin" of this block. This block may be an
12586 inlined instance of an inlined instance of inline function, so we have
12587 to trace all of the way back through the origin chain to find out what
12588 sort of node actually served as the original seed for the creation of
12589 the current block. */
12590 origin = block_ultimate_origin (stmt);
12591 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12593 /* Determine if we need to output any Dwarf DIEs at all to represent this
12594 block. */
12595 if (origin_code == FUNCTION_DECL)
12596 /* The outer scopes for inlinings *must* always be represented. We
12597 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12598 must_output_die = 1;
12599 else
12601 /* In the case where the current block represents an inlining of the
12602 "body block" of an inline function, we must *NOT* output any DIE for
12603 this block because we have already output a DIE to represent the whole
12604 inlined function scope and the "body block" of any function doesn't
12605 really represent a different scope according to ANSI C rules. So we
12606 check here to make sure that this block does not represent a "body
12607 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12608 if (! is_body_block (origin ? origin : stmt))
12610 /* Determine if this block directly contains any "significant"
12611 local declarations which we will need to output DIEs for. */
12612 if (debug_info_level > DINFO_LEVEL_TERSE)
12613 /* We are not in terse mode so *any* local declaration counts
12614 as being a "significant" one. */
12615 must_output_die = (BLOCK_VARS (stmt) != NULL
12616 && (TREE_USED (stmt)
12617 || TREE_ASM_WRITTEN (stmt)
12618 || BLOCK_ABSTRACT (stmt)));
12619 else
12620 /* We are in terse mode, so only local (nested) function
12621 definitions count as "significant" local declarations. */
12622 for (decl = BLOCK_VARS (stmt);
12623 decl != NULL; decl = TREE_CHAIN (decl))
12624 if (TREE_CODE (decl) == FUNCTION_DECL
12625 && DECL_INITIAL (decl))
12627 must_output_die = 1;
12628 break;
12633 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12634 DIE for any block which contains no significant local declarations at
12635 all. Rather, in such cases we just call `decls_for_scope' so that any
12636 needed Dwarf info for any sub-blocks will get properly generated. Note
12637 that in terse mode, our definition of what constitutes a "significant"
12638 local declaration gets restricted to include only inlined function
12639 instances and local (nested) function definitions. */
12640 if (must_output_die)
12642 if (origin_code == FUNCTION_DECL)
12643 gen_inlined_subroutine_die (stmt, context_die, depth);
12644 else
12645 gen_lexical_block_die (stmt, context_die, depth);
12647 else
12648 decls_for_scope (stmt, context_die, depth);
12651 /* Generate all of the decls declared within a given scope and (recursively)
12652 all of its sub-blocks. */
12654 static void
12655 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12657 tree decl;
12658 tree subblocks;
12660 /* Ignore NULL blocks. */
12661 if (stmt == NULL_TREE)
12662 return;
12664 if (TREE_USED (stmt))
12666 /* Output the DIEs to represent all of the data objects and typedefs
12667 declared directly within this block but not within any nested
12668 sub-blocks. Also, nested function and tag DIEs have been
12669 generated with a parent of NULL; fix that up now. */
12670 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12672 dw_die_ref die;
12674 if (TREE_CODE (decl) == FUNCTION_DECL)
12675 die = lookup_decl_die (decl);
12676 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12677 die = lookup_type_die (TREE_TYPE (decl));
12678 else
12679 die = NULL;
12681 if (die != NULL && die->die_parent == NULL)
12682 add_child_die (context_die, die);
12683 /* Do not produce debug information for static variables since
12684 these might be optimized out. We are called for these later
12685 in cgraph_varpool_analyze_pending_decls. */
12686 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12688 else
12689 gen_decl_die (decl, context_die);
12693 /* If we're at -g1, we're not interested in subblocks. */
12694 if (debug_info_level <= DINFO_LEVEL_TERSE)
12695 return;
12697 /* Output the DIEs to represent all sub-blocks (and the items declared
12698 therein) of this block. */
12699 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12700 subblocks != NULL;
12701 subblocks = BLOCK_CHAIN (subblocks))
12702 gen_block_die (subblocks, context_die, depth + 1);
12705 /* Is this a typedef we can avoid emitting? */
12707 static inline int
12708 is_redundant_typedef (tree decl)
12710 if (TYPE_DECL_IS_STUB (decl))
12711 return 1;
12713 if (DECL_ARTIFICIAL (decl)
12714 && DECL_CONTEXT (decl)
12715 && is_tagged_type (DECL_CONTEXT (decl))
12716 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12717 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12718 /* Also ignore the artificial member typedef for the class name. */
12719 return 1;
12721 return 0;
12724 /* Returns the DIE for decl. A DIE will always be returned. */
12726 static dw_die_ref
12727 force_decl_die (tree decl)
12729 dw_die_ref decl_die;
12730 unsigned saved_external_flag;
12731 tree save_fn = NULL_TREE;
12732 decl_die = lookup_decl_die (decl);
12733 if (!decl_die)
12735 dw_die_ref context_die;
12736 tree decl_context = DECL_CONTEXT (decl);
12737 if (decl_context)
12739 /* Find die that represents this context. */
12740 if (TYPE_P (decl_context))
12741 context_die = force_type_die (decl_context);
12742 else
12743 context_die = force_decl_die (decl_context);
12745 else
12746 context_die = comp_unit_die;
12748 switch (TREE_CODE (decl))
12750 case FUNCTION_DECL:
12751 /* Clear current_function_decl, so that gen_subprogram_die thinks
12752 that this is a declaration. At this point, we just want to force
12753 declaration die. */
12754 save_fn = current_function_decl;
12755 current_function_decl = NULL_TREE;
12756 gen_subprogram_die (decl, context_die);
12757 current_function_decl = save_fn;
12758 break;
12760 case VAR_DECL:
12761 /* Set external flag to force declaration die. Restore it after
12762 gen_decl_die() call. */
12763 saved_external_flag = DECL_EXTERNAL (decl);
12764 DECL_EXTERNAL (decl) = 1;
12765 gen_decl_die (decl, context_die);
12766 DECL_EXTERNAL (decl) = saved_external_flag;
12767 break;
12769 case NAMESPACE_DECL:
12770 dwarf2out_decl (decl);
12771 break;
12773 default:
12774 gcc_unreachable ();
12777 /* We should be able to find the DIE now. */
12778 if (!decl_die)
12779 decl_die = lookup_decl_die (decl);
12780 gcc_assert (decl_die);
12783 return decl_die;
12786 /* Returns the DIE for TYPE. A DIE is always returned. */
12788 static dw_die_ref
12789 force_type_die (tree type)
12791 dw_die_ref type_die;
12793 type_die = lookup_type_die (type);
12794 if (!type_die)
12796 dw_die_ref context_die;
12797 if (TYPE_CONTEXT (type))
12798 if (TYPE_P (TYPE_CONTEXT (type)))
12799 context_die = force_type_die (TYPE_CONTEXT (type));
12800 else
12801 context_die = force_decl_die (TYPE_CONTEXT (type));
12802 else
12803 context_die = comp_unit_die;
12805 gen_type_die (type, context_die);
12806 type_die = lookup_type_die (type);
12807 gcc_assert (type_die);
12809 return type_die;
12812 /* Force out any required namespaces to be able to output DECL,
12813 and return the new context_die for it, if it's changed. */
12815 static dw_die_ref
12816 setup_namespace_context (tree thing, dw_die_ref context_die)
12818 tree context = (DECL_P (thing)
12819 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12820 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12821 /* Force out the namespace. */
12822 context_die = force_decl_die (context);
12824 return context_die;
12827 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12828 type) within its namespace, if appropriate.
12830 For compatibility with older debuggers, namespace DIEs only contain
12831 declarations; all definitions are emitted at CU scope. */
12833 static void
12834 declare_in_namespace (tree thing, dw_die_ref context_die)
12836 dw_die_ref ns_context;
12838 if (debug_info_level <= DINFO_LEVEL_TERSE)
12839 return;
12841 /* If this decl is from an inlined function, then don't try to emit it in its
12842 namespace, as we will get confused. It would have already been emitted
12843 when the abstract instance of the inline function was emitted anyways. */
12844 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
12845 return;
12847 ns_context = setup_namespace_context (thing, context_die);
12849 if (ns_context != context_die)
12851 if (DECL_P (thing))
12852 gen_decl_die (thing, ns_context);
12853 else
12854 gen_type_die (thing, ns_context);
12858 /* Generate a DIE for a namespace or namespace alias. */
12860 static void
12861 gen_namespace_die (tree decl)
12863 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12865 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12866 they are an alias of. */
12867 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12869 /* Output a real namespace. */
12870 dw_die_ref namespace_die
12871 = new_die (DW_TAG_namespace, context_die, decl);
12872 add_name_and_src_coords_attributes (namespace_die, decl);
12873 equate_decl_number_to_die (decl, namespace_die);
12875 else
12877 /* Output a namespace alias. */
12879 /* Force out the namespace we are an alias of, if necessary. */
12880 dw_die_ref origin_die
12881 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12883 /* Now create the namespace alias DIE. */
12884 dw_die_ref namespace_die
12885 = new_die (DW_TAG_imported_declaration, context_die, decl);
12886 add_name_and_src_coords_attributes (namespace_die, decl);
12887 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12888 equate_decl_number_to_die (decl, namespace_die);
12892 /* Generate Dwarf debug information for a decl described by DECL. */
12894 static void
12895 gen_decl_die (tree decl, dw_die_ref context_die)
12897 tree origin;
12899 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12900 return;
12902 switch (TREE_CODE (decl))
12904 case ERROR_MARK:
12905 break;
12907 case CONST_DECL:
12908 /* The individual enumerators of an enum type get output when we output
12909 the Dwarf representation of the relevant enum type itself. */
12910 break;
12912 case FUNCTION_DECL:
12913 /* Don't output any DIEs to represent mere function declarations,
12914 unless they are class members or explicit block externs. */
12915 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12916 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12917 break;
12919 #if 0
12920 /* FIXME */
12921 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12922 on local redeclarations of global functions. That seems broken. */
12923 if (current_function_decl != decl)
12924 /* This is only a declaration. */;
12925 #endif
12927 /* If we're emitting a clone, emit info for the abstract instance. */
12928 if (DECL_ORIGIN (decl) != decl)
12929 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12931 /* If we're emitting an out-of-line copy of an inline function,
12932 emit info for the abstract instance and set up to refer to it. */
12933 else if (cgraph_function_possibly_inlined_p (decl)
12934 && ! DECL_ABSTRACT (decl)
12935 && ! class_or_namespace_scope_p (context_die)
12936 /* dwarf2out_abstract_function won't emit a die if this is just
12937 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12938 that case, because that works only if we have a die. */
12939 && DECL_INITIAL (decl) != NULL_TREE)
12941 dwarf2out_abstract_function (decl);
12942 set_decl_origin_self (decl);
12945 /* Otherwise we're emitting the primary DIE for this decl. */
12946 else if (debug_info_level > DINFO_LEVEL_TERSE)
12948 /* Before we describe the FUNCTION_DECL itself, make sure that we
12949 have described its return type. */
12950 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12952 /* And its virtual context. */
12953 if (DECL_VINDEX (decl) != NULL_TREE)
12954 gen_type_die (DECL_CONTEXT (decl), context_die);
12956 /* And its containing type. */
12957 origin = decl_class_context (decl);
12958 if (origin != NULL_TREE)
12959 gen_type_die_for_member (origin, decl, context_die);
12961 /* And its containing namespace. */
12962 declare_in_namespace (decl, context_die);
12965 /* Now output a DIE to represent the function itself. */
12966 gen_subprogram_die (decl, context_die);
12967 break;
12969 case TYPE_DECL:
12970 /* If we are in terse mode, don't generate any DIEs to represent any
12971 actual typedefs. */
12972 if (debug_info_level <= DINFO_LEVEL_TERSE)
12973 break;
12975 /* In the special case of a TYPE_DECL node representing the declaration
12976 of some type tag, if the given TYPE_DECL is marked as having been
12977 instantiated from some other (original) TYPE_DECL node (e.g. one which
12978 was generated within the original definition of an inline function) we
12979 have to generate a special (abbreviated) DW_TAG_structure_type,
12980 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12981 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12983 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12984 break;
12987 if (is_redundant_typedef (decl))
12988 gen_type_die (TREE_TYPE (decl), context_die);
12989 else
12990 /* Output a DIE to represent the typedef itself. */
12991 gen_typedef_die (decl, context_die);
12992 break;
12994 case LABEL_DECL:
12995 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12996 gen_label_die (decl, context_die);
12997 break;
12999 case VAR_DECL:
13000 case RESULT_DECL:
13001 /* If we are in terse mode, don't generate any DIEs to represent any
13002 variable declarations or definitions. */
13003 if (debug_info_level <= DINFO_LEVEL_TERSE)
13004 break;
13006 /* Output any DIEs that are needed to specify the type of this data
13007 object. */
13008 gen_type_die (TREE_TYPE (decl), context_die);
13010 /* And its containing type. */
13011 origin = decl_class_context (decl);
13012 if (origin != NULL_TREE)
13013 gen_type_die_for_member (origin, decl, context_die);
13015 /* And its containing namespace. */
13016 declare_in_namespace (decl, context_die);
13018 /* Now output the DIE to represent the data object itself. This gets
13019 complicated because of the possibility that the VAR_DECL really
13020 represents an inlined instance of a formal parameter for an inline
13021 function. */
13022 origin = decl_ultimate_origin (decl);
13023 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13024 gen_formal_parameter_die (decl, context_die);
13025 else
13026 gen_variable_die (decl, context_die);
13027 break;
13029 case FIELD_DECL:
13030 /* Ignore the nameless fields that are used to skip bits but handle C++
13031 anonymous unions and structs. */
13032 if (DECL_NAME (decl) != NULL_TREE
13033 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13034 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13036 gen_type_die (member_declared_type (decl), context_die);
13037 gen_field_die (decl, context_die);
13039 break;
13041 case PARM_DECL:
13042 gen_type_die (TREE_TYPE (decl), context_die);
13043 gen_formal_parameter_die (decl, context_die);
13044 break;
13046 case NAMESPACE_DECL:
13047 gen_namespace_die (decl);
13048 break;
13050 default:
13051 /* Probably some frontend-internal decl. Assume we don't care. */
13052 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13053 break;
13057 /* Add Ada "use" clause information for SGI Workshop debugger. */
13059 void
13060 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
13062 unsigned int file_index;
13064 if (filename != NULL)
13066 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
13067 tree context_list_decl
13068 = build_decl (LABEL_DECL, get_identifier (context_list),
13069 void_type_node);
13071 TREE_PUBLIC (context_list_decl) = TRUE;
13072 add_name_attribute (unit_die, context_list);
13073 file_index = lookup_filename (filename);
13074 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
13075 add_pubname (context_list_decl, unit_die);
13079 /* Output debug information for global decl DECL. Called from toplev.c after
13080 compilation proper has finished. */
13082 static void
13083 dwarf2out_global_decl (tree decl)
13085 /* Output DWARF2 information for file-scope tentative data object
13086 declarations, file-scope (extern) function declarations (which had no
13087 corresponding body) and file-scope tagged type declarations and
13088 definitions which have not yet been forced out. */
13089 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13090 dwarf2out_decl (decl);
13093 /* Output debug information for type decl DECL. Called from toplev.c
13094 and from language front ends (to record built-in types). */
13095 static void
13096 dwarf2out_type_decl (tree decl, int local)
13098 if (!local)
13099 dwarf2out_decl (decl);
13102 /* Output debug information for imported module or decl. */
13104 static void
13105 dwarf2out_imported_module_or_decl (tree decl, tree context)
13107 dw_die_ref imported_die, at_import_die;
13108 dw_die_ref scope_die;
13109 unsigned file_index;
13110 expanded_location xloc;
13112 if (debug_info_level <= DINFO_LEVEL_TERSE)
13113 return;
13115 gcc_assert (decl);
13117 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13118 We need decl DIE for reference and scope die. First, get DIE for the decl
13119 itself. */
13121 /* Get the scope die for decl context. Use comp_unit_die for global module
13122 or decl. If die is not found for non globals, force new die. */
13123 if (!context)
13124 scope_die = comp_unit_die;
13125 else if (TYPE_P (context))
13126 scope_die = force_type_die (context);
13127 else
13128 scope_die = force_decl_die (context);
13130 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13131 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13132 at_import_die = force_type_die (TREE_TYPE (decl));
13133 else
13135 at_import_die = lookup_decl_die (decl);
13136 if (!at_import_die)
13138 /* If we're trying to avoid duplicate debug info, we may not have
13139 emitted the member decl for this field. Emit it now. */
13140 if (TREE_CODE (decl) == FIELD_DECL)
13142 tree type = DECL_CONTEXT (decl);
13143 dw_die_ref type_context_die;
13145 if (TYPE_CONTEXT (type))
13146 if (TYPE_P (TYPE_CONTEXT (type)))
13147 type_context_die = force_type_die (TYPE_CONTEXT (type));
13148 else
13149 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13150 else
13151 type_context_die = comp_unit_die;
13152 gen_type_die_for_member (type, decl, type_context_die);
13154 at_import_die = force_decl_die (decl);
13158 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13159 if (TREE_CODE (decl) == NAMESPACE_DECL)
13160 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13161 else
13162 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13164 xloc = expand_location (input_location);
13165 file_index = lookup_filename (xloc.file);
13166 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
13167 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13168 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13171 /* Write the debugging output for DECL. */
13173 void
13174 dwarf2out_decl (tree decl)
13176 dw_die_ref context_die = comp_unit_die;
13178 switch (TREE_CODE (decl))
13180 case ERROR_MARK:
13181 return;
13183 case FUNCTION_DECL:
13184 /* What we would really like to do here is to filter out all mere
13185 file-scope declarations of file-scope functions which are never
13186 referenced later within this translation unit (and keep all of ones
13187 that *are* referenced later on) but we aren't clairvoyant, so we have
13188 no idea which functions will be referenced in the future (i.e. later
13189 on within the current translation unit). So here we just ignore all
13190 file-scope function declarations which are not also definitions. If
13191 and when the debugger needs to know something about these functions,
13192 it will have to hunt around and find the DWARF information associated
13193 with the definition of the function.
13195 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13196 nodes represent definitions and which ones represent mere
13197 declarations. We have to check DECL_INITIAL instead. That's because
13198 the C front-end supports some weird semantics for "extern inline"
13199 function definitions. These can get inlined within the current
13200 translation unit (and thus, we need to generate Dwarf info for their
13201 abstract instances so that the Dwarf info for the concrete inlined
13202 instances can have something to refer to) but the compiler never
13203 generates any out-of-lines instances of such things (despite the fact
13204 that they *are* definitions).
13206 The important point is that the C front-end marks these "extern
13207 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13208 them anyway. Note that the C++ front-end also plays some similar games
13209 for inline function definitions appearing within include files which
13210 also contain `#pragma interface' pragmas. */
13211 if (DECL_INITIAL (decl) == NULL_TREE)
13212 return;
13214 /* If we're a nested function, initially use a parent of NULL; if we're
13215 a plain function, this will be fixed up in decls_for_scope. If
13216 we're a method, it will be ignored, since we already have a DIE. */
13217 if (decl_function_context (decl)
13218 /* But if we're in terse mode, we don't care about scope. */
13219 && debug_info_level > DINFO_LEVEL_TERSE)
13220 context_die = NULL;
13221 break;
13223 case VAR_DECL:
13224 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13225 declaration and if the declaration was never even referenced from
13226 within this entire compilation unit. We suppress these DIEs in
13227 order to save space in the .debug section (by eliminating entries
13228 which are probably useless). Note that we must not suppress
13229 block-local extern declarations (whether used or not) because that
13230 would screw-up the debugger's name lookup mechanism and cause it to
13231 miss things which really ought to be in scope at a given point. */
13232 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13233 return;
13235 /* For local statics lookup proper context die. */
13236 if (TREE_STATIC (decl) && decl_function_context (decl))
13237 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13239 /* If we are in terse mode, don't generate any DIEs to represent any
13240 variable declarations or definitions. */
13241 if (debug_info_level <= DINFO_LEVEL_TERSE)
13242 return;
13243 break;
13245 case NAMESPACE_DECL:
13246 if (debug_info_level <= DINFO_LEVEL_TERSE)
13247 return;
13248 if (lookup_decl_die (decl) != NULL)
13249 return;
13250 break;
13252 case TYPE_DECL:
13253 /* Don't emit stubs for types unless they are needed by other DIEs. */
13254 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13255 return;
13257 /* Don't bother trying to generate any DIEs to represent any of the
13258 normal built-in types for the language we are compiling. */
13259 if (DECL_IS_BUILTIN (decl))
13261 /* OK, we need to generate one for `bool' so GDB knows what type
13262 comparisons have. */
13263 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
13264 == DW_LANG_C_plus_plus)
13265 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13266 && ! DECL_IGNORED_P (decl))
13267 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13269 return;
13272 /* If we are in terse mode, don't generate any DIEs for types. */
13273 if (debug_info_level <= DINFO_LEVEL_TERSE)
13274 return;
13276 /* If we're a function-scope tag, initially use a parent of NULL;
13277 this will be fixed up in decls_for_scope. */
13278 if (decl_function_context (decl))
13279 context_die = NULL;
13281 break;
13283 default:
13284 return;
13287 gen_decl_die (decl, context_die);
13290 /* Output a marker (i.e. a label) for the beginning of the generated code for
13291 a lexical block. */
13293 static void
13294 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13295 unsigned int blocknum)
13297 current_function_section (current_function_decl);
13298 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13301 /* Output a marker (i.e. a label) for the end of the generated code for a
13302 lexical block. */
13304 static void
13305 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13307 current_function_section (current_function_decl);
13308 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13311 /* Returns nonzero if it is appropriate not to emit any debugging
13312 information for BLOCK, because it doesn't contain any instructions.
13314 Don't allow this for blocks with nested functions or local classes
13315 as we would end up with orphans, and in the presence of scheduling
13316 we may end up calling them anyway. */
13318 static bool
13319 dwarf2out_ignore_block (tree block)
13321 tree decl;
13323 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13324 if (TREE_CODE (decl) == FUNCTION_DECL
13325 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13326 return 0;
13328 return 1;
13331 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13332 dwarf2out.c) and return its "index". The index of each (known) filename is
13333 just a unique number which is associated with only that one filename. We
13334 need such numbers for the sake of generating labels (in the .debug_sfnames
13335 section) and references to those files numbers (in the .debug_srcinfo
13336 and.debug_macinfo sections). If the filename given as an argument is not
13337 found in our current list, add it to the list and assign it the next
13338 available unique index number. In order to speed up searches, we remember
13339 the index of the filename was looked up last. This handles the majority of
13340 all searches. */
13342 static unsigned
13343 lookup_filename (const char *file_name)
13345 size_t i, n;
13346 char *save_file_name;
13348 /* Check to see if the file name that was searched on the previous
13349 call matches this file name. If so, return the index. */
13350 if (file_table_last_lookup_index != 0)
13352 const char *last
13353 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13354 if (strcmp (file_name, last) == 0)
13355 return file_table_last_lookup_index;
13358 /* Didn't match the previous lookup, search the table. */
13359 n = VARRAY_ACTIVE_SIZE (file_table);
13360 for (i = 1; i < n; i++)
13361 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13363 file_table_last_lookup_index = i;
13364 return i;
13367 /* Add the new entry to the end of the filename table. */
13368 file_table_last_lookup_index = n;
13369 save_file_name = (char *) ggc_strdup (file_name);
13370 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13371 VARRAY_PUSH_UINT (file_table_emitted, 0);
13373 /* If the assembler is emitting the file table, and we aren't eliminating
13374 unused debug types, then we must emit .file here. If we are eliminating
13375 unused debug types, then this will be done by the maybe_emit_file call in
13376 prune_unused_types_walk_attribs. */
13378 if (DWARF2_ASM_LINE_DEBUG_INFO && ! flag_eliminate_unused_debug_types)
13379 return maybe_emit_file (i);
13381 return i;
13384 /* If the assembler will construct the file table, then translate the compiler
13385 internal file table number into the assembler file table number, and emit
13386 a .file directive if we haven't already emitted one yet. The file table
13387 numbers are different because we prune debug info for unused variables and
13388 types, which may include filenames. */
13390 static int
13391 maybe_emit_file (int fileno)
13393 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13395 if (!VARRAY_UINT (file_table_emitted, fileno))
13397 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13398 fprintf (asm_out_file, "\t.file %u ",
13399 VARRAY_UINT (file_table_emitted, fileno));
13400 output_quoted_string (asm_out_file,
13401 VARRAY_CHAR_PTR (file_table, fileno));
13402 fputc ('\n', asm_out_file);
13404 return VARRAY_UINT (file_table_emitted, fileno);
13406 else
13407 return fileno;
13410 /* Initialize the compiler internal file table. */
13412 static void
13413 init_file_table (void)
13415 /* Allocate the initial hunk of the file_table. */
13416 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13417 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13419 /* Skip the first entry - file numbers begin at 1. */
13420 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13421 VARRAY_PUSH_UINT (file_table_emitted, 0);
13422 file_table_last_lookup_index = 0;
13425 /* Called by the final INSN scan whenever we see a var location. We
13426 use it to drop labels in the right places, and throw the location in
13427 our lookup table. */
13429 static void
13430 dwarf2out_var_location (rtx loc_note)
13432 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13433 struct var_loc_node *newloc;
13434 rtx prev_insn;
13435 static rtx last_insn;
13436 static const char *last_label;
13437 tree decl;
13439 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13440 return;
13441 prev_insn = PREV_INSN (loc_note);
13443 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13444 /* If the insn we processed last time is the previous insn
13445 and it is also a var location note, use the label we emitted
13446 last time. */
13447 if (last_insn != NULL_RTX
13448 && last_insn == prev_insn
13449 && NOTE_P (prev_insn)
13450 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13452 newloc->label = last_label;
13454 else
13456 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13457 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13458 loclabel_num++;
13459 newloc->label = ggc_strdup (loclabel);
13461 newloc->var_loc_note = loc_note;
13462 newloc->next = NULL;
13464 if (cfun
13465 && (last_text_section == in_unlikely_executed_text
13466 || (last_text_section == in_named
13467 && last_text_section_name == cfun->unlikely_text_section_name)))
13468 newloc->section_label = cfun->cold_section_label;
13469 else
13470 newloc->section_label = text_section_label;
13472 last_insn = loc_note;
13473 last_label = newloc->label;
13474 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13475 if (DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
13476 && DECL_P (DECL_DEBUG_EXPR (decl)))
13477 decl = DECL_DEBUG_EXPR (decl);
13478 add_var_loc_to_decl (decl, newloc);
13481 /* We need to reset the locations at the beginning of each
13482 function. We can't do this in the end_function hook, because the
13483 declarations that use the locations won't have been outputted when
13484 that hook is called. */
13486 static void
13487 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13489 htab_empty (decl_loc_table);
13492 /* Output a label to mark the beginning of a source code line entry
13493 and record information relating to this source line, in
13494 'line_info_table' for later output of the .debug_line section. */
13496 static void
13497 dwarf2out_source_line (unsigned int line, const char *filename)
13499 if (debug_info_level >= DINFO_LEVEL_NORMAL
13500 && line != 0)
13502 current_function_section (current_function_decl);
13504 /* If requested, emit something human-readable. */
13505 if (flag_debug_asm)
13506 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13507 filename, line);
13509 if (DWARF2_ASM_LINE_DEBUG_INFO)
13511 unsigned file_num = lookup_filename (filename);
13513 file_num = maybe_emit_file (file_num);
13515 /* Emit the .loc directive understood by GNU as. */
13516 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13518 /* Indicate that line number info exists. */
13519 line_info_table_in_use++;
13521 /* Indicate that multiple line number tables exist. */
13522 if (DECL_SECTION_NAME (current_function_decl))
13523 separate_line_info_table_in_use++;
13525 else if (DECL_SECTION_NAME (current_function_decl))
13527 dw_separate_line_info_ref line_info;
13528 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13529 separate_line_info_table_in_use);
13531 /* Expand the line info table if necessary. */
13532 if (separate_line_info_table_in_use
13533 == separate_line_info_table_allocated)
13535 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13536 separate_line_info_table
13537 = ggc_realloc (separate_line_info_table,
13538 separate_line_info_table_allocated
13539 * sizeof (dw_separate_line_info_entry));
13540 memset (separate_line_info_table
13541 + separate_line_info_table_in_use,
13543 (LINE_INFO_TABLE_INCREMENT
13544 * sizeof (dw_separate_line_info_entry)));
13547 /* Add the new entry at the end of the line_info_table. */
13548 line_info
13549 = &separate_line_info_table[separate_line_info_table_in_use++];
13550 line_info->dw_file_num = lookup_filename (filename);
13551 line_info->dw_line_num = line;
13552 line_info->function = current_function_funcdef_no;
13554 else
13556 dw_line_info_ref line_info;
13558 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13559 line_info_table_in_use);
13561 /* Expand the line info table if necessary. */
13562 if (line_info_table_in_use == line_info_table_allocated)
13564 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13565 line_info_table
13566 = ggc_realloc (line_info_table,
13567 (line_info_table_allocated
13568 * sizeof (dw_line_info_entry)));
13569 memset (line_info_table + line_info_table_in_use, 0,
13570 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13573 /* Add the new entry at the end of the line_info_table. */
13574 line_info = &line_info_table[line_info_table_in_use++];
13575 line_info->dw_file_num = lookup_filename (filename);
13576 line_info->dw_line_num = line;
13581 /* Record the beginning of a new source file. */
13583 static void
13584 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13586 if (flag_eliminate_dwarf2_dups)
13588 /* Record the beginning of the file for break_out_includes. */
13589 dw_die_ref bincl_die;
13591 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13592 add_AT_string (bincl_die, DW_AT_name, filename);
13595 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13597 int fileno;
13599 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13600 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13601 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13602 lineno);
13604 fileno = maybe_emit_file (lookup_filename (filename));
13605 dw2_asm_output_data_uleb128 (fileno, "Filename we just started");
13609 /* Record the end of a source file. */
13611 static void
13612 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13614 if (flag_eliminate_dwarf2_dups)
13615 /* Record the end of the file for break_out_includes. */
13616 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13618 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13620 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13621 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13625 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13626 the tail part of the directive line, i.e. the part which is past the
13627 initial whitespace, #, whitespace, directive-name, whitespace part. */
13629 static void
13630 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13631 const char *buffer ATTRIBUTE_UNUSED)
13633 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13635 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13636 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13637 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13638 dw2_asm_output_nstring (buffer, -1, "The macro");
13642 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13643 the tail part of the directive line, i.e. the part which is past the
13644 initial whitespace, #, whitespace, directive-name, whitespace part. */
13646 static void
13647 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13648 const char *buffer ATTRIBUTE_UNUSED)
13650 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13652 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13653 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13654 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13655 dw2_asm_output_nstring (buffer, -1, "The macro");
13659 /* Set up for Dwarf output at the start of compilation. */
13661 static void
13662 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13664 init_file_table ();
13666 /* Allocate the decl_die_table. */
13667 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13668 decl_die_table_eq, NULL);
13670 /* Allocate the decl_loc_table. */
13671 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13672 decl_loc_table_eq, NULL);
13674 /* Allocate the initial hunk of the decl_scope_table. */
13675 decl_scope_table = VEC_alloc (tree, gc, 256);
13677 /* Allocate the initial hunk of the abbrev_die_table. */
13678 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13679 * sizeof (dw_die_ref));
13680 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13681 /* Zero-th entry is allocated, but unused. */
13682 abbrev_die_table_in_use = 1;
13684 /* Allocate the initial hunk of the line_info_table. */
13685 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13686 * sizeof (dw_line_info_entry));
13687 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13689 /* Zero-th entry is allocated, but unused. */
13690 line_info_table_in_use = 1;
13692 /* Generate the initial DIE for the .debug section. Note that the (string)
13693 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13694 will (typically) be a relative pathname and that this pathname should be
13695 taken as being relative to the directory from which the compiler was
13696 invoked when the given (base) source file was compiled. We will fill
13697 in this value in dwarf2out_finish. */
13698 comp_unit_die = gen_compile_unit_die (NULL);
13700 incomplete_types = VEC_alloc (tree, gc, 64);
13702 used_rtx_array = VEC_alloc (rtx, gc, 32);
13704 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13705 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13706 DEBUG_ABBREV_SECTION_LABEL, 0);
13707 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13708 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13709 COLD_TEXT_SECTION_LABEL, 0);
13710 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13712 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13713 DEBUG_INFO_SECTION_LABEL, 0);
13714 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13715 DEBUG_LINE_SECTION_LABEL, 0);
13716 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13717 DEBUG_RANGES_SECTION_LABEL, 0);
13718 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13719 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13720 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13721 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13722 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13723 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13725 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13727 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13728 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13729 DEBUG_MACINFO_SECTION_LABEL, 0);
13730 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13733 text_section ();
13734 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13735 if (flag_reorder_blocks_and_partition)
13737 unlikely_text_section ();
13738 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13742 /* A helper function for dwarf2out_finish called through
13743 ht_forall. Emit one queued .debug_str string. */
13745 static int
13746 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13748 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13750 if (node->form == DW_FORM_strp)
13752 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13753 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13754 assemble_string (node->str, strlen (node->str) + 1);
13757 return 1;
13762 /* Clear the marks for a die and its children.
13763 Be cool if the mark isn't set. */
13765 static void
13766 prune_unmark_dies (dw_die_ref die)
13768 dw_die_ref c;
13769 die->die_mark = 0;
13770 for (c = die->die_child; c; c = c->die_sib)
13771 prune_unmark_dies (c);
13775 /* Given DIE that we're marking as used, find any other dies
13776 it references as attributes and mark them as used. */
13778 static void
13779 prune_unused_types_walk_attribs (dw_die_ref die)
13781 dw_attr_ref a;
13783 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13785 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13787 /* A reference to another DIE.
13788 Make sure that it will get emitted. */
13789 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13791 else if (a->dw_attr == DW_AT_decl_file || a->dw_attr == DW_AT_call_file)
13793 /* A reference to a file. Make sure the file name is emitted. */
13794 a->dw_attr_val.v.val_unsigned =
13795 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13801 /* Mark DIE as being used. If DOKIDS is true, then walk down
13802 to DIE's children. */
13804 static void
13805 prune_unused_types_mark (dw_die_ref die, int dokids)
13807 dw_die_ref c;
13809 if (die->die_mark == 0)
13811 /* We haven't done this node yet. Mark it as used. */
13812 die->die_mark = 1;
13814 /* We also have to mark its parents as used.
13815 (But we don't want to mark our parents' kids due to this.) */
13816 if (die->die_parent)
13817 prune_unused_types_mark (die->die_parent, 0);
13819 /* Mark any referenced nodes. */
13820 prune_unused_types_walk_attribs (die);
13822 /* If this node is a specification,
13823 also mark the definition, if it exists. */
13824 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13825 prune_unused_types_mark (die->die_definition, 1);
13828 if (dokids && die->die_mark != 2)
13830 /* We need to walk the children, but haven't done so yet.
13831 Remember that we've walked the kids. */
13832 die->die_mark = 2;
13834 /* Walk them. */
13835 for (c = die->die_child; c; c = c->die_sib)
13837 /* If this is an array type, we need to make sure our
13838 kids get marked, even if they're types. */
13839 if (die->die_tag == DW_TAG_array_type)
13840 prune_unused_types_mark (c, 1);
13841 else
13842 prune_unused_types_walk (c);
13848 /* Walk the tree DIE and mark types that we actually use. */
13850 static void
13851 prune_unused_types_walk (dw_die_ref die)
13853 dw_die_ref c;
13855 /* Don't do anything if this node is already marked. */
13856 if (die->die_mark)
13857 return;
13859 switch (die->die_tag) {
13860 case DW_TAG_const_type:
13861 case DW_TAG_packed_type:
13862 case DW_TAG_pointer_type:
13863 case DW_TAG_reference_type:
13864 case DW_TAG_volatile_type:
13865 case DW_TAG_typedef:
13866 case DW_TAG_array_type:
13867 case DW_TAG_structure_type:
13868 case DW_TAG_union_type:
13869 case DW_TAG_class_type:
13870 case DW_TAG_friend:
13871 case DW_TAG_variant_part:
13872 case DW_TAG_enumeration_type:
13873 case DW_TAG_subroutine_type:
13874 case DW_TAG_string_type:
13875 case DW_TAG_set_type:
13876 case DW_TAG_subrange_type:
13877 case DW_TAG_ptr_to_member_type:
13878 case DW_TAG_file_type:
13879 /* It's a type node --- don't mark it. */
13880 return;
13882 default:
13883 /* Mark everything else. */
13884 break;
13887 die->die_mark = 1;
13889 /* Now, mark any dies referenced from here. */
13890 prune_unused_types_walk_attribs (die);
13892 /* Mark children. */
13893 for (c = die->die_child; c; c = c->die_sib)
13894 prune_unused_types_walk (c);
13898 /* Remove from the tree DIE any dies that aren't marked. */
13900 static void
13901 prune_unused_types_prune (dw_die_ref die)
13903 dw_die_ref c, p, n;
13905 gcc_assert (die->die_mark);
13907 p = NULL;
13908 for (c = die->die_child; c; c = n)
13910 n = c->die_sib;
13911 if (c->die_mark)
13913 prune_unused_types_prune (c);
13914 p = c;
13916 else
13918 if (p)
13919 p->die_sib = n;
13920 else
13921 die->die_child = n;
13922 free_die (c);
13928 /* Remove dies representing declarations that we never use. */
13930 static void
13931 prune_unused_types (void)
13933 unsigned int i;
13934 limbo_die_node *node;
13936 /* Clear all the marks. */
13937 prune_unmark_dies (comp_unit_die);
13938 for (node = limbo_die_list; node; node = node->next)
13939 prune_unmark_dies (node->die);
13941 /* Set the mark on nodes that are actually used. */
13942 prune_unused_types_walk (comp_unit_die);
13943 for (node = limbo_die_list; node; node = node->next)
13944 prune_unused_types_walk (node->die);
13946 /* Also set the mark on nodes referenced from the
13947 pubname_table or arange_table. */
13948 for (i = 0; i < pubname_table_in_use; i++)
13949 prune_unused_types_mark (pubname_table[i].die, 1);
13950 for (i = 0; i < arange_table_in_use; i++)
13951 prune_unused_types_mark (arange_table[i], 1);
13953 /* Get rid of nodes that aren't marked. */
13954 prune_unused_types_prune (comp_unit_die);
13955 for (node = limbo_die_list; node; node = node->next)
13956 prune_unused_types_prune (node->die);
13958 /* Leave the marks clear. */
13959 prune_unmark_dies (comp_unit_die);
13960 for (node = limbo_die_list; node; node = node->next)
13961 prune_unmark_dies (node->die);
13964 /* Output stuff that dwarf requires at the end of every file,
13965 and generate the DWARF-2 debugging info. */
13967 static void
13968 dwarf2out_finish (const char *filename)
13970 limbo_die_node *node, *next_node;
13971 dw_die_ref die = 0;
13973 /* Add the name for the main input file now. We delayed this from
13974 dwarf2out_init to avoid complications with PCH. */
13975 add_name_attribute (comp_unit_die, filename);
13976 if (filename[0] != DIR_SEPARATOR)
13977 add_comp_dir_attribute (comp_unit_die);
13978 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13980 size_t i;
13981 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13982 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13983 /* Don't add cwd for <built-in>. */
13984 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13986 add_comp_dir_attribute (comp_unit_die);
13987 break;
13991 /* Traverse the limbo die list, and add parent/child links. The only
13992 dies without parents that should be here are concrete instances of
13993 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13994 For concrete instances, we can get the parent die from the abstract
13995 instance. */
13996 for (node = limbo_die_list; node; node = next_node)
13998 next_node = node->next;
13999 die = node->die;
14001 if (die->die_parent == NULL)
14003 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14005 if (origin)
14006 add_child_die (origin->die_parent, die);
14007 else if (die == comp_unit_die)
14009 else if (errorcount > 0 || sorrycount > 0)
14010 /* It's OK to be confused by errors in the input. */
14011 add_child_die (comp_unit_die, die);
14012 else
14014 /* In certain situations, the lexical block containing a
14015 nested function can be optimized away, which results
14016 in the nested function die being orphaned. Likewise
14017 with the return type of that nested function. Force
14018 this to be a child of the containing function.
14020 It may happen that even the containing function got fully
14021 inlined and optimized out. In that case we are lost and
14022 assign the empty child. This should not be big issue as
14023 the function is likely unreachable too. */
14024 tree context = NULL_TREE;
14026 gcc_assert (node->created_for);
14028 if (DECL_P (node->created_for))
14029 context = DECL_CONTEXT (node->created_for);
14030 else if (TYPE_P (node->created_for))
14031 context = TYPE_CONTEXT (node->created_for);
14033 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14035 origin = lookup_decl_die (context);
14036 if (origin)
14037 add_child_die (origin, die);
14038 else
14039 add_child_die (comp_unit_die, die);
14044 limbo_die_list = NULL;
14046 /* Walk through the list of incomplete types again, trying once more to
14047 emit full debugging info for them. */
14048 retry_incomplete_types ();
14050 /* We need to reverse all the dies before break_out_includes, or
14051 we'll see the end of an include file before the beginning. */
14052 reverse_all_dies (comp_unit_die);
14054 if (flag_eliminate_unused_debug_types)
14055 prune_unused_types ();
14057 /* Generate separate CUs for each of the include files we've seen.
14058 They will go into limbo_die_list. */
14059 if (flag_eliminate_dwarf2_dups)
14060 break_out_includes (comp_unit_die);
14062 /* Traverse the DIE's and add add sibling attributes to those DIE's
14063 that have children. */
14064 add_sibling_attributes (comp_unit_die);
14065 for (node = limbo_die_list; node; node = node->next)
14066 add_sibling_attributes (node->die);
14068 /* Output a terminator label for the .text section. */
14069 text_section ();
14070 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14071 if (flag_reorder_blocks_and_partition)
14073 unlikely_text_section ();
14074 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14077 /* Output the source line correspondence table. We must do this
14078 even if there is no line information. Otherwise, on an empty
14079 translation unit, we will generate a present, but empty,
14080 .debug_info section. IRIX 6.5 `nm' will then complain when
14081 examining the file. */
14082 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14084 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
14085 output_line_info ();
14088 /* Output location list section if necessary. */
14089 if (have_location_lists)
14091 /* Output the location lists info. */
14092 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
14093 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14094 DEBUG_LOC_SECTION_LABEL, 0);
14095 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14096 output_location_lists (die);
14097 have_location_lists = 0;
14100 /* We can only use the low/high_pc attributes if all of the code was
14101 in .text. */
14102 if (!separate_line_info_table_in_use && !have_switched_text_section)
14104 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14105 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14108 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14109 "base address". Use zero so that these addresses become absolute. */
14110 else if (have_location_lists || ranges_table_in_use)
14111 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14113 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14114 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
14115 debug_line_section_label);
14117 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14118 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14120 /* Output all of the compilation units. We put the main one last so that
14121 the offsets are available to output_pubnames. */
14122 for (node = limbo_die_list; node; node = node->next)
14123 output_comp_unit (node->die, 0);
14125 output_comp_unit (comp_unit_die, 0);
14127 /* Output the abbreviation table. */
14128 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
14129 output_abbrev_section ();
14131 /* Output public names table if necessary. */
14132 if (pubname_table_in_use)
14134 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
14135 output_pubnames ();
14138 /* Output the address range information. We only put functions in the arange
14139 table, so don't write it out if we don't have any. */
14140 if (fde_table_in_use)
14142 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
14143 output_aranges ();
14146 /* Output ranges section if necessary. */
14147 if (ranges_table_in_use)
14149 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
14150 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14151 output_ranges ();
14154 /* Have to end the macro section. */
14155 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14157 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
14158 dw2_asm_output_data (1, 0, "End compilation unit");
14161 /* If we emitted any DW_FORM_strp form attribute, output the string
14162 table too. */
14163 if (debug_str_hash)
14164 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14166 #else
14168 /* This should never be used, but its address is needed for comparisons. */
14169 const struct gcc_debug_hooks dwarf2_debug_hooks;
14171 #endif /* DWARF2_DEBUGGING_INFO */
14173 #include "gt-dwarf2out.h"