* Makefile.in (SYSTEM_H): Define.
[official-gcc.git] / gcc / unroll.c
blob0d3927632b1bd8a6853493c046067f382f55d8da
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* Try to unroll a loop, and split induction variables.
25 Loops for which the number of iterations can be calculated exactly are
26 handled specially. If the number of iterations times the insn_count is
27 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28 Otherwise, we try to unroll the loop a number of times modulo the number
29 of iterations, so that only one exit test will be needed. It is unrolled
30 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31 the insn count.
33 Otherwise, if the number of iterations can be calculated exactly at
34 run time, and the loop is always entered at the top, then we try to
35 precondition the loop. That is, at run time, calculate how many times
36 the loop will execute, and then execute the loop body a few times so
37 that the remaining iterations will be some multiple of 4 (or 2 if the
38 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
39 with only one exit test needed at the end of the loop.
41 Otherwise, if the number of iterations can not be calculated exactly,
42 not even at run time, then we still unroll the loop a number of times
43 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44 but there must be an exit test after each copy of the loop body.
46 For each induction variable, which is dead outside the loop (replaceable)
47 or for which we can easily calculate the final value, if we can easily
48 calculate its value at each place where it is set as a function of the
49 current loop unroll count and the variable's value at loop entry, then
50 the induction variable is split into `N' different variables, one for
51 each copy of the loop body. One variable is live across the backward
52 branch, and the others are all calculated as a function of this variable.
53 This helps eliminate data dependencies, and leads to further opportunities
54 for cse. */
56 /* Possible improvements follow: */
58 /* ??? Add an extra pass somewhere to determine whether unrolling will
59 give any benefit. E.g. after generating all unrolled insns, compute the
60 cost of all insns and compare against cost of insns in rolled loop.
62 - On traditional architectures, unrolling a non-constant bound loop
63 is a win if there is a giv whose only use is in memory addresses, the
64 memory addresses can be split, and hence giv increments can be
65 eliminated.
66 - It is also a win if the loop is executed many times, and preconditioning
67 can be performed for the loop.
68 Add code to check for these and similar cases. */
70 /* ??? Improve control of which loops get unrolled. Could use profiling
71 info to only unroll the most commonly executed loops. Perhaps have
72 a user specifyable option to control the amount of code expansion,
73 or the percent of loops to consider for unrolling. Etc. */
75 /* ??? Look at the register copies inside the loop to see if they form a
76 simple permutation. If so, iterate the permutation until it gets back to
77 the start state. This is how many times we should unroll the loop, for
78 best results, because then all register copies can be eliminated.
79 For example, the lisp nreverse function should be unrolled 3 times
80 while (this)
82 next = this->cdr;
83 this->cdr = prev;
84 prev = this;
85 this = next;
88 ??? The number of times to unroll the loop may also be based on data
89 references in the loop. For example, if we have a loop that references
90 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
92 /* ??? Add some simple linear equation solving capability so that we can
93 determine the number of loop iterations for more complex loops.
94 For example, consider this loop from gdb
95 #define SWAP_TARGET_AND_HOST(buffer,len)
97 char tmp;
98 char *p = (char *) buffer;
99 char *q = ((char *) buffer) + len - 1;
100 int iterations = (len + 1) >> 1;
101 int i;
102 for (p; p < q; p++, q--;)
104 tmp = *q;
105 *q = *p;
106 *p = tmp;
109 Note that:
110 start value = p = &buffer + current_iteration
111 end value = q = &buffer + len - 1 - current_iteration
112 Given the loop exit test of "p < q", then there must be "q - p" iterations,
113 set equal to zero and solve for number of iterations:
114 q - p = len - 1 - 2*current_iteration = 0
115 current_iteration = (len - 1) / 2
116 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117 iterations of this loop. */
119 /* ??? Currently, no labels are marked as loop invariant when doing loop
120 unrolling. This is because an insn inside the loop, that loads the address
121 of a label inside the loop into a register, could be moved outside the loop
122 by the invariant code motion pass if labels were invariant. If the loop
123 is subsequently unrolled, the code will be wrong because each unrolled
124 body of the loop will use the same address, whereas each actually needs a
125 different address. A case where this happens is when a loop containing
126 a switch statement is unrolled.
128 It would be better to let labels be considered invariant. When we
129 unroll loops here, check to see if any insns using a label local to the
130 loop were moved before the loop. If so, then correct the problem, by
131 moving the insn back into the loop, or perhaps replicate the insn before
132 the loop, one copy for each time the loop is unrolled. */
134 /* The prime factors looked for when trying to unroll a loop by some
135 number which is modulo the total number of iterations. Just checking
136 for these 4 prime factors will find at least one factor for 75% of
137 all numbers theoretically. Practically speaking, this will succeed
138 almost all of the time since loops are generally a multiple of 2
139 and/or 5. */
141 #define NUM_FACTORS 4
143 struct _factor { int factor, count; }
144 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
146 /* Describes the different types of loop unrolling performed. */
148 enum unroll_types
150 UNROLL_COMPLETELY,
151 UNROLL_MODULO,
152 UNROLL_NAIVE
155 #include "config.h"
156 #include "system.h"
157 #include "rtl.h"
158 #include "tm_p.h"
159 #include "insn-config.h"
160 #include "integrate.h"
161 #include "regs.h"
162 #include "recog.h"
163 #include "flags.h"
164 #include "function.h"
165 #include "expr.h"
166 #include "loop.h"
167 #include "toplev.h"
168 #include "hard-reg-set.h"
169 #include "basic-block.h"
171 /* This controls which loops are unrolled, and by how much we unroll
172 them. */
174 #ifndef MAX_UNROLLED_INSNS
175 #define MAX_UNROLLED_INSNS 100
176 #endif
178 /* Indexed by register number, if non-zero, then it contains a pointer
179 to a struct induction for a DEST_REG giv which has been combined with
180 one of more address givs. This is needed because whenever such a DEST_REG
181 giv is modified, we must modify the value of all split address givs
182 that were combined with this DEST_REG giv. */
184 static struct induction **addr_combined_regs;
186 /* Indexed by register number, if this is a splittable induction variable,
187 then this will hold the current value of the register, which depends on the
188 iteration number. */
190 static rtx *splittable_regs;
192 /* Indexed by register number, if this is a splittable induction variable,
193 then this will hold the number of instructions in the loop that modify
194 the induction variable. Used to ensure that only the last insn modifying
195 a split iv will update the original iv of the dest. */
197 static int *splittable_regs_updates;
199 /* Forward declarations. */
201 static void init_reg_map PARAMS ((struct inline_remap *, int));
202 static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
203 static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
204 static void final_reg_note_copy PARAMS ((rtx, struct inline_remap *));
205 static void copy_loop_body PARAMS ((struct loop *, rtx, rtx,
206 struct inline_remap *, rtx, int,
207 enum unroll_types, rtx, rtx, rtx, rtx));
208 static int find_splittable_regs PARAMS ((const struct loop *,
209 enum unroll_types, int));
210 static int find_splittable_givs PARAMS ((const struct loop *,
211 struct iv_class *, enum unroll_types,
212 rtx, int));
213 static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
214 static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
215 static int verify_addresses PARAMS ((struct induction *, rtx, int));
216 static rtx remap_split_bivs PARAMS ((struct loop *, rtx));
217 static rtx find_common_reg_term PARAMS ((rtx, rtx));
218 static rtx subtract_reg_term PARAMS ((rtx, rtx));
219 static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
220 static rtx ujump_to_loop_cont PARAMS ((rtx, rtx));
222 /* Try to unroll one loop and split induction variables in the loop.
224 The loop is described by the arguments LOOP and INSN_COUNT.
225 STRENGTH_REDUCTION_P indicates whether information generated in the
226 strength reduction pass is available.
228 This function is intended to be called from within `strength_reduce'
229 in loop.c. */
231 void
232 unroll_loop (loop, insn_count, strength_reduce_p)
233 struct loop *loop;
234 int insn_count;
235 int strength_reduce_p;
237 struct loop_info *loop_info = LOOP_INFO (loop);
238 struct loop_ivs *ivs = LOOP_IVS (loop);
239 int i, j;
240 unsigned int r;
241 unsigned HOST_WIDE_INT temp;
242 int unroll_number = 1;
243 rtx copy_start, copy_end;
244 rtx insn, sequence, pattern, tem;
245 int max_labelno, max_insnno;
246 rtx insert_before;
247 struct inline_remap *map;
248 char *local_label = NULL;
249 char *local_regno;
250 unsigned int max_local_regnum;
251 unsigned int maxregnum;
252 rtx exit_label = 0;
253 rtx start_label;
254 struct iv_class *bl;
255 int splitting_not_safe = 0;
256 enum unroll_types unroll_type = UNROLL_NAIVE;
257 int loop_preconditioned = 0;
258 rtx safety_label;
259 /* This points to the last real insn in the loop, which should be either
260 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
261 jumps). */
262 rtx last_loop_insn;
263 rtx loop_start = loop->start;
264 rtx loop_end = loop->end;
266 /* Don't bother unrolling huge loops. Since the minimum factor is
267 two, loops greater than one half of MAX_UNROLLED_INSNS will never
268 be unrolled. */
269 if (insn_count > MAX_UNROLLED_INSNS / 2)
271 if (loop_dump_stream)
272 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
273 return;
276 /* When emitting debugger info, we can't unroll loops with unequal numbers
277 of block_beg and block_end notes, because that would unbalance the block
278 structure of the function. This can happen as a result of the
279 "if (foo) bar; else break;" optimization in jump.c. */
280 /* ??? Gcc has a general policy that -g is never supposed to change the code
281 that the compiler emits, so we must disable this optimization always,
282 even if debug info is not being output. This is rare, so this should
283 not be a significant performance problem. */
285 if (1 /* write_symbols != NO_DEBUG */)
287 int block_begins = 0;
288 int block_ends = 0;
290 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
292 if (GET_CODE (insn) == NOTE)
294 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
295 block_begins++;
296 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
297 block_ends++;
298 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
299 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
301 /* Note, would be nice to add code to unroll EH
302 regions, but until that time, we punt (don't
303 unroll). For the proper way of doing it, see
304 expand_inline_function. */
306 if (loop_dump_stream)
307 fprintf (loop_dump_stream,
308 "Unrolling failure: cannot unroll EH regions.\n");
309 return;
314 if (block_begins != block_ends)
316 if (loop_dump_stream)
317 fprintf (loop_dump_stream,
318 "Unrolling failure: Unbalanced block notes.\n");
319 return;
323 /* Determine type of unroll to perform. Depends on the number of iterations
324 and the size of the loop. */
326 /* If there is no strength reduce info, then set
327 loop_info->n_iterations to zero. This can happen if
328 strength_reduce can't find any bivs in the loop. A value of zero
329 indicates that the number of iterations could not be calculated. */
331 if (! strength_reduce_p)
332 loop_info->n_iterations = 0;
334 if (loop_dump_stream && loop_info->n_iterations > 0)
336 fputs ("Loop unrolling: ", loop_dump_stream);
337 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
338 loop_info->n_iterations);
339 fputs (" iterations.\n", loop_dump_stream);
342 /* Find and save a pointer to the last nonnote insn in the loop. */
344 last_loop_insn = prev_nonnote_insn (loop_end);
346 /* Calculate how many times to unroll the loop. Indicate whether or
347 not the loop is being completely unrolled. */
349 if (loop_info->n_iterations == 1)
351 /* Handle the case where the loop begins with an unconditional
352 jump to the loop condition. Make sure to delete the jump
353 insn, otherwise the loop body will never execute. */
355 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
356 if (ujump)
357 delete_insn (ujump);
359 /* If number of iterations is exactly 1, then eliminate the compare and
360 branch at the end of the loop since they will never be taken.
361 Then return, since no other action is needed here. */
363 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
364 don't do anything. */
366 if (GET_CODE (last_loop_insn) == BARRIER)
368 /* Delete the jump insn. This will delete the barrier also. */
369 delete_insn (PREV_INSN (last_loop_insn));
371 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
373 #ifdef HAVE_cc0
374 rtx prev = PREV_INSN (last_loop_insn);
375 #endif
376 delete_insn (last_loop_insn);
377 #ifdef HAVE_cc0
378 /* The immediately preceding insn may be a compare which must be
379 deleted. */
380 if (sets_cc0_p (prev))
381 delete_insn (prev);
382 #endif
385 /* Remove the loop notes since this is no longer a loop. */
386 if (loop->vtop)
387 delete_insn (loop->vtop);
388 if (loop->cont)
389 delete_insn (loop->cont);
390 if (loop_start)
391 delete_insn (loop_start);
392 if (loop_end)
393 delete_insn (loop_end);
395 return;
397 else if (loop_info->n_iterations > 0
398 /* Avoid overflow in the next expression. */
399 && loop_info->n_iterations < MAX_UNROLLED_INSNS
400 && loop_info->n_iterations * insn_count < MAX_UNROLLED_INSNS)
402 unroll_number = loop_info->n_iterations;
403 unroll_type = UNROLL_COMPLETELY;
405 else if (loop_info->n_iterations > 0)
407 /* Try to factor the number of iterations. Don't bother with the
408 general case, only using 2, 3, 5, and 7 will get 75% of all
409 numbers theoretically, and almost all in practice. */
411 for (i = 0; i < NUM_FACTORS; i++)
412 factors[i].count = 0;
414 temp = loop_info->n_iterations;
415 for (i = NUM_FACTORS - 1; i >= 0; i--)
416 while (temp % factors[i].factor == 0)
418 factors[i].count++;
419 temp = temp / factors[i].factor;
422 /* Start with the larger factors first so that we generally
423 get lots of unrolling. */
425 unroll_number = 1;
426 temp = insn_count;
427 for (i = 3; i >= 0; i--)
428 while (factors[i].count--)
430 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
432 unroll_number *= factors[i].factor;
433 temp *= factors[i].factor;
435 else
436 break;
439 /* If we couldn't find any factors, then unroll as in the normal
440 case. */
441 if (unroll_number == 1)
443 if (loop_dump_stream)
444 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
446 else
447 unroll_type = UNROLL_MODULO;
450 /* Default case, calculate number of times to unroll loop based on its
451 size. */
452 if (unroll_type == UNROLL_NAIVE)
454 if (8 * insn_count < MAX_UNROLLED_INSNS)
455 unroll_number = 8;
456 else if (4 * insn_count < MAX_UNROLLED_INSNS)
457 unroll_number = 4;
458 else
459 unroll_number = 2;
462 /* Now we know how many times to unroll the loop. */
464 if (loop_dump_stream)
465 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
467 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
469 /* Loops of these types can start with jump down to the exit condition
470 in rare circumstances.
472 Consider a pair of nested loops where the inner loop is part
473 of the exit code for the outer loop.
475 In this case jump.c will not duplicate the exit test for the outer
476 loop, so it will start with a jump to the exit code.
478 Then consider if the inner loop turns out to iterate once and
479 only once. We will end up deleting the jumps associated with
480 the inner loop. However, the loop notes are not removed from
481 the instruction stream.
483 And finally assume that we can compute the number of iterations
484 for the outer loop.
486 In this case unroll may want to unroll the outer loop even though
487 it starts with a jump to the outer loop's exit code.
489 We could try to optimize this case, but it hardly seems worth it.
490 Just return without unrolling the loop in such cases. */
492 insn = loop_start;
493 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
494 insn = NEXT_INSN (insn);
495 if (GET_CODE (insn) == JUMP_INSN)
496 return;
499 if (unroll_type == UNROLL_COMPLETELY)
501 /* Completely unrolling the loop: Delete the compare and branch at
502 the end (the last two instructions). This delete must done at the
503 very end of loop unrolling, to avoid problems with calls to
504 back_branch_in_range_p, which is called by find_splittable_regs.
505 All increments of splittable bivs/givs are changed to load constant
506 instructions. */
508 copy_start = loop_start;
510 /* Set insert_before to the instruction immediately after the JUMP_INSN
511 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
512 the loop will be correctly handled by copy_loop_body. */
513 insert_before = NEXT_INSN (last_loop_insn);
515 /* Set copy_end to the insn before the jump at the end of the loop. */
516 if (GET_CODE (last_loop_insn) == BARRIER)
517 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
518 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
520 copy_end = PREV_INSN (last_loop_insn);
521 #ifdef HAVE_cc0
522 /* The instruction immediately before the JUMP_INSN may be a compare
523 instruction which we do not want to copy. */
524 if (sets_cc0_p (PREV_INSN (copy_end)))
525 copy_end = PREV_INSN (copy_end);
526 #endif
528 else
530 /* We currently can't unroll a loop if it doesn't end with a
531 JUMP_INSN. There would need to be a mechanism that recognizes
532 this case, and then inserts a jump after each loop body, which
533 jumps to after the last loop body. */
534 if (loop_dump_stream)
535 fprintf (loop_dump_stream,
536 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
537 return;
540 else if (unroll_type == UNROLL_MODULO)
542 /* Partially unrolling the loop: The compare and branch at the end
543 (the last two instructions) must remain. Don't copy the compare
544 and branch instructions at the end of the loop. Insert the unrolled
545 code immediately before the compare/branch at the end so that the
546 code will fall through to them as before. */
548 copy_start = loop_start;
550 /* Set insert_before to the jump insn at the end of the loop.
551 Set copy_end to before the jump insn at the end of the loop. */
552 if (GET_CODE (last_loop_insn) == BARRIER)
554 insert_before = PREV_INSN (last_loop_insn);
555 copy_end = PREV_INSN (insert_before);
557 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
559 insert_before = last_loop_insn;
560 #ifdef HAVE_cc0
561 /* The instruction immediately before the JUMP_INSN may be a compare
562 instruction which we do not want to copy or delete. */
563 if (sets_cc0_p (PREV_INSN (insert_before)))
564 insert_before = PREV_INSN (insert_before);
565 #endif
566 copy_end = PREV_INSN (insert_before);
568 else
570 /* We currently can't unroll a loop if it doesn't end with a
571 JUMP_INSN. There would need to be a mechanism that recognizes
572 this case, and then inserts a jump after each loop body, which
573 jumps to after the last loop body. */
574 if (loop_dump_stream)
575 fprintf (loop_dump_stream,
576 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
577 return;
580 else
582 /* Normal case: Must copy the compare and branch instructions at the
583 end of the loop. */
585 if (GET_CODE (last_loop_insn) == BARRIER)
587 /* Loop ends with an unconditional jump and a barrier.
588 Handle this like above, don't copy jump and barrier.
589 This is not strictly necessary, but doing so prevents generating
590 unconditional jumps to an immediately following label.
592 This will be corrected below if the target of this jump is
593 not the start_label. */
595 insert_before = PREV_INSN (last_loop_insn);
596 copy_end = PREV_INSN (insert_before);
598 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
600 /* Set insert_before to immediately after the JUMP_INSN, so that
601 NOTEs at the end of the loop will be correctly handled by
602 copy_loop_body. */
603 insert_before = NEXT_INSN (last_loop_insn);
604 copy_end = last_loop_insn;
606 else
608 /* We currently can't unroll a loop if it doesn't end with a
609 JUMP_INSN. There would need to be a mechanism that recognizes
610 this case, and then inserts a jump after each loop body, which
611 jumps to after the last loop body. */
612 if (loop_dump_stream)
613 fprintf (loop_dump_stream,
614 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
615 return;
618 /* If copying exit test branches because they can not be eliminated,
619 then must convert the fall through case of the branch to a jump past
620 the end of the loop. Create a label to emit after the loop and save
621 it for later use. Do not use the label after the loop, if any, since
622 it might be used by insns outside the loop, or there might be insns
623 added before it later by final_[bg]iv_value which must be after
624 the real exit label. */
625 exit_label = gen_label_rtx ();
627 insn = loop_start;
628 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
629 insn = NEXT_INSN (insn);
631 if (GET_CODE (insn) == JUMP_INSN)
633 /* The loop starts with a jump down to the exit condition test.
634 Start copying the loop after the barrier following this
635 jump insn. */
636 copy_start = NEXT_INSN (insn);
638 /* Splitting induction variables doesn't work when the loop is
639 entered via a jump to the bottom, because then we end up doing
640 a comparison against a new register for a split variable, but
641 we did not execute the set insn for the new register because
642 it was skipped over. */
643 splitting_not_safe = 1;
644 if (loop_dump_stream)
645 fprintf (loop_dump_stream,
646 "Splitting not safe, because loop not entered at top.\n");
648 else
649 copy_start = loop_start;
652 /* This should always be the first label in the loop. */
653 start_label = NEXT_INSN (copy_start);
654 /* There may be a line number note and/or a loop continue note here. */
655 while (GET_CODE (start_label) == NOTE)
656 start_label = NEXT_INSN (start_label);
657 if (GET_CODE (start_label) != CODE_LABEL)
659 /* This can happen as a result of jump threading. If the first insns in
660 the loop test the same condition as the loop's backward jump, or the
661 opposite condition, then the backward jump will be modified to point
662 to elsewhere, and the loop's start label is deleted.
664 This case currently can not be handled by the loop unrolling code. */
666 if (loop_dump_stream)
667 fprintf (loop_dump_stream,
668 "Unrolling failure: unknown insns between BEG note and loop label.\n");
669 return;
671 if (LABEL_NAME (start_label))
673 /* The jump optimization pass must have combined the original start label
674 with a named label for a goto. We can't unroll this case because
675 jumps which go to the named label must be handled differently than
676 jumps to the loop start, and it is impossible to differentiate them
677 in this case. */
678 if (loop_dump_stream)
679 fprintf (loop_dump_stream,
680 "Unrolling failure: loop start label is gone\n");
681 return;
684 if (unroll_type == UNROLL_NAIVE
685 && GET_CODE (last_loop_insn) == BARRIER
686 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
687 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
689 /* In this case, we must copy the jump and barrier, because they will
690 not be converted to jumps to an immediately following label. */
692 insert_before = NEXT_INSN (last_loop_insn);
693 copy_end = last_loop_insn;
696 if (unroll_type == UNROLL_NAIVE
697 && GET_CODE (last_loop_insn) == JUMP_INSN
698 && start_label != JUMP_LABEL (last_loop_insn))
700 /* ??? The loop ends with a conditional branch that does not branch back
701 to the loop start label. In this case, we must emit an unconditional
702 branch to the loop exit after emitting the final branch.
703 copy_loop_body does not have support for this currently, so we
704 give up. It doesn't seem worthwhile to unroll anyways since
705 unrolling would increase the number of branch instructions
706 executed. */
707 if (loop_dump_stream)
708 fprintf (loop_dump_stream,
709 "Unrolling failure: final conditional branch not to loop start\n");
710 return;
713 /* Allocate a translation table for the labels and insn numbers.
714 They will be filled in as we copy the insns in the loop. */
716 max_labelno = max_label_num ();
717 max_insnno = get_max_uid ();
719 /* Various paths through the unroll code may reach the "egress" label
720 without initializing fields within the map structure.
722 To be safe, we use xcalloc to zero the memory. */
723 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
725 /* Allocate the label map. */
727 if (max_labelno > 0)
729 map->label_map = (rtx *) xmalloc (max_labelno * sizeof (rtx));
731 local_label = (char *) xcalloc (max_labelno, sizeof (char));
734 /* Search the loop and mark all local labels, i.e. the ones which have to
735 be distinct labels when copied. For all labels which might be
736 non-local, set their label_map entries to point to themselves.
737 If they happen to be local their label_map entries will be overwritten
738 before the loop body is copied. The label_map entries for local labels
739 will be set to a different value each time the loop body is copied. */
741 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
743 rtx note;
745 if (GET_CODE (insn) == CODE_LABEL)
746 local_label[CODE_LABEL_NUMBER (insn)] = 1;
747 else if (GET_CODE (insn) == JUMP_INSN)
749 if (JUMP_LABEL (insn))
750 set_label_in_map (map,
751 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
752 JUMP_LABEL (insn));
753 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
754 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
756 rtx pat = PATTERN (insn);
757 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
758 int len = XVECLEN (pat, diff_vec_p);
759 rtx label;
761 for (i = 0; i < len; i++)
763 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
764 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
768 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
769 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
770 XEXP (note, 0));
773 /* Allocate space for the insn map. */
775 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
777 /* Set this to zero, to indicate that we are doing loop unrolling,
778 not function inlining. */
779 map->inline_target = 0;
781 /* The register and constant maps depend on the number of registers
782 present, so the final maps can't be created until after
783 find_splittable_regs is called. However, they are needed for
784 preconditioning, so we create temporary maps when preconditioning
785 is performed. */
787 /* The preconditioning code may allocate two new pseudo registers. */
788 maxregnum = max_reg_num ();
790 /* local_regno is only valid for regnos < max_local_regnum. */
791 max_local_regnum = maxregnum;
793 /* Allocate and zero out the splittable_regs and addr_combined_regs
794 arrays. These must be zeroed here because they will be used if
795 loop preconditioning is performed, and must be zero for that case.
797 It is safe to do this here, since the extra registers created by the
798 preconditioning code and find_splittable_regs will never be used
799 to access the splittable_regs[] and addr_combined_regs[] arrays. */
801 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
802 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
803 addr_combined_regs
804 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
805 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
807 /* Mark all local registers, i.e. the ones which are referenced only
808 inside the loop. */
809 if (INSN_UID (copy_end) < max_uid_for_loop)
811 int copy_start_luid = INSN_LUID (copy_start);
812 int copy_end_luid = INSN_LUID (copy_end);
814 /* If a register is used in the jump insn, we must not duplicate it
815 since it will also be used outside the loop. */
816 if (GET_CODE (copy_end) == JUMP_INSN)
817 copy_end_luid--;
819 /* If we have a target that uses cc0, then we also must not duplicate
820 the insn that sets cc0 before the jump insn, if one is present. */
821 #ifdef HAVE_cc0
822 if (GET_CODE (copy_end) == JUMP_INSN
823 && sets_cc0_p (PREV_INSN (copy_end)))
824 copy_end_luid--;
825 #endif
827 /* If copy_start points to the NOTE that starts the loop, then we must
828 use the next luid, because invariant pseudo-regs moved out of the loop
829 have their lifetimes modified to start here, but they are not safe
830 to duplicate. */
831 if (copy_start == loop_start)
832 copy_start_luid++;
834 /* If a pseudo's lifetime is entirely contained within this loop, then we
835 can use a different pseudo in each unrolled copy of the loop. This
836 results in better code. */
837 /* We must limit the generic test to max_reg_before_loop, because only
838 these pseudo registers have valid regno_first_uid info. */
839 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
840 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) <= max_uid_for_loop
841 && REGNO_FIRST_LUID (r) >= copy_start_luid
842 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) <= max_uid_for_loop
843 && REGNO_LAST_LUID (r) <= copy_end_luid)
845 /* However, we must also check for loop-carried dependencies.
846 If the value the pseudo has at the end of iteration X is
847 used by iteration X+1, then we can not use a different pseudo
848 for each unrolled copy of the loop. */
849 /* A pseudo is safe if regno_first_uid is a set, and this
850 set dominates all instructions from regno_first_uid to
851 regno_last_uid. */
852 /* ??? This check is simplistic. We would get better code if
853 this check was more sophisticated. */
854 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
855 copy_start, copy_end))
856 local_regno[r] = 1;
858 if (loop_dump_stream)
860 if (local_regno[r])
861 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
862 else
863 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
869 /* If this loop requires exit tests when unrolled, check to see if we
870 can precondition the loop so as to make the exit tests unnecessary.
871 Just like variable splitting, this is not safe if the loop is entered
872 via a jump to the bottom. Also, can not do this if no strength
873 reduce info, because precondition_loop_p uses this info. */
875 /* Must copy the loop body for preconditioning before the following
876 find_splittable_regs call since that will emit insns which need to
877 be after the preconditioned loop copies, but immediately before the
878 unrolled loop copies. */
880 /* Also, it is not safe to split induction variables for the preconditioned
881 copies of the loop body. If we split induction variables, then the code
882 assumes that each induction variable can be represented as a function
883 of its initial value and the loop iteration number. This is not true
884 in this case, because the last preconditioned copy of the loop body
885 could be any iteration from the first up to the `unroll_number-1'th,
886 depending on the initial value of the iteration variable. Therefore
887 we can not split induction variables here, because we can not calculate
888 their value. Hence, this code must occur before find_splittable_regs
889 is called. */
891 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
893 rtx initial_value, final_value, increment;
894 enum machine_mode mode;
896 if (precondition_loop_p (loop,
897 &initial_value, &final_value, &increment,
898 &mode))
900 register rtx diff;
901 rtx *labels;
902 int abs_inc, neg_inc;
904 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
906 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
907 "unroll_loop_precondition");
908 global_const_equiv_varray = map->const_equiv_varray;
910 init_reg_map (map, maxregnum);
912 /* Limit loop unrolling to 4, since this will make 7 copies of
913 the loop body. */
914 if (unroll_number > 4)
915 unroll_number = 4;
917 /* Save the absolute value of the increment, and also whether or
918 not it is negative. */
919 neg_inc = 0;
920 abs_inc = INTVAL (increment);
921 if (abs_inc < 0)
923 abs_inc = -abs_inc;
924 neg_inc = 1;
927 start_sequence ();
929 /* Calculate the difference between the final and initial values.
930 Final value may be a (plus (reg x) (const_int 1)) rtx.
931 Let the following cse pass simplify this if initial value is
932 a constant.
934 We must copy the final and initial values here to avoid
935 improperly shared rtl. */
937 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
938 copy_rtx (initial_value), NULL_RTX, 0,
939 OPTAB_LIB_WIDEN);
941 /* Now calculate (diff % (unroll * abs (increment))) by using an
942 and instruction. */
943 diff = expand_binop (GET_MODE (diff), and_optab, diff,
944 GEN_INT (unroll_number * abs_inc - 1),
945 NULL_RTX, 0, OPTAB_LIB_WIDEN);
947 /* Now emit a sequence of branches to jump to the proper precond
948 loop entry point. */
950 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
951 for (i = 0; i < unroll_number; i++)
952 labels[i] = gen_label_rtx ();
954 /* Check for the case where the initial value is greater than or
955 equal to the final value. In that case, we want to execute
956 exactly one loop iteration. The code below will fail for this
957 case. This check does not apply if the loop has a NE
958 comparison at the end. */
960 if (loop_info->comparison_code != NE)
962 emit_cmp_and_jump_insns (initial_value, final_value,
963 neg_inc ? LE : GE,
964 NULL_RTX, mode, 0, 0, labels[1]);
965 JUMP_LABEL (get_last_insn ()) = labels[1];
966 LABEL_NUSES (labels[1])++;
969 /* Assuming the unroll_number is 4, and the increment is 2, then
970 for a negative increment: for a positive increment:
971 diff = 0,1 precond 0 diff = 0,7 precond 0
972 diff = 2,3 precond 3 diff = 1,2 precond 1
973 diff = 4,5 precond 2 diff = 3,4 precond 2
974 diff = 6,7 precond 1 diff = 5,6 precond 3 */
976 /* We only need to emit (unroll_number - 1) branches here, the
977 last case just falls through to the following code. */
979 /* ??? This would give better code if we emitted a tree of branches
980 instead of the current linear list of branches. */
982 for (i = 0; i < unroll_number - 1; i++)
984 int cmp_const;
985 enum rtx_code cmp_code;
987 /* For negative increments, must invert the constant compared
988 against, except when comparing against zero. */
989 if (i == 0)
991 cmp_const = 0;
992 cmp_code = EQ;
994 else if (neg_inc)
996 cmp_const = unroll_number - i;
997 cmp_code = GE;
999 else
1001 cmp_const = i;
1002 cmp_code = LE;
1005 emit_cmp_and_jump_insns (diff, GEN_INT (abs_inc * cmp_const),
1006 cmp_code, NULL_RTX, mode, 0, 0,
1007 labels[i]);
1008 JUMP_LABEL (get_last_insn ()) = labels[i];
1009 LABEL_NUSES (labels[i])++;
1012 /* If the increment is greater than one, then we need another branch,
1013 to handle other cases equivalent to 0. */
1015 /* ??? This should be merged into the code above somehow to help
1016 simplify the code here, and reduce the number of branches emitted.
1017 For the negative increment case, the branch here could easily
1018 be merged with the `0' case branch above. For the positive
1019 increment case, it is not clear how this can be simplified. */
1021 if (abs_inc != 1)
1023 int cmp_const;
1024 enum rtx_code cmp_code;
1026 if (neg_inc)
1028 cmp_const = abs_inc - 1;
1029 cmp_code = LE;
1031 else
1033 cmp_const = abs_inc * (unroll_number - 1) + 1;
1034 cmp_code = GE;
1037 emit_cmp_and_jump_insns (diff, GEN_INT (cmp_const), cmp_code,
1038 NULL_RTX, mode, 0, 0, labels[0]);
1039 JUMP_LABEL (get_last_insn ()) = labels[0];
1040 LABEL_NUSES (labels[0])++;
1043 sequence = gen_sequence ();
1044 end_sequence ();
1045 loop_insn_hoist (loop, sequence);
1047 /* Only the last copy of the loop body here needs the exit
1048 test, so set copy_end to exclude the compare/branch here,
1049 and then reset it inside the loop when get to the last
1050 copy. */
1052 if (GET_CODE (last_loop_insn) == BARRIER)
1053 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1054 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1056 copy_end = PREV_INSN (last_loop_insn);
1057 #ifdef HAVE_cc0
1058 /* The immediately preceding insn may be a compare which
1059 we do not want to copy. */
1060 if (sets_cc0_p (PREV_INSN (copy_end)))
1061 copy_end = PREV_INSN (copy_end);
1062 #endif
1064 else
1065 abort ();
1067 for (i = 1; i < unroll_number; i++)
1069 emit_label_after (labels[unroll_number - i],
1070 PREV_INSN (loop_start));
1072 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1073 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1074 0, (VARRAY_SIZE (map->const_equiv_varray)
1075 * sizeof (struct const_equiv_data)));
1076 map->const_age = 0;
1078 for (j = 0; j < max_labelno; j++)
1079 if (local_label[j])
1080 set_label_in_map (map, j, gen_label_rtx ());
1082 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1083 if (local_regno[r])
1085 map->reg_map[r]
1086 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1087 record_base_value (REGNO (map->reg_map[r]),
1088 regno_reg_rtx[r], 0);
1090 /* The last copy needs the compare/branch insns at the end,
1091 so reset copy_end here if the loop ends with a conditional
1092 branch. */
1094 if (i == unroll_number - 1)
1096 if (GET_CODE (last_loop_insn) == BARRIER)
1097 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1098 else
1099 copy_end = last_loop_insn;
1102 /* None of the copies are the `last_iteration', so just
1103 pass zero for that parameter. */
1104 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1105 unroll_type, start_label, loop_end,
1106 loop_start, copy_end);
1108 emit_label_after (labels[0], PREV_INSN (loop_start));
1110 if (GET_CODE (last_loop_insn) == BARRIER)
1112 insert_before = PREV_INSN (last_loop_insn);
1113 copy_end = PREV_INSN (insert_before);
1115 else
1117 insert_before = last_loop_insn;
1118 #ifdef HAVE_cc0
1119 /* The instruction immediately before the JUMP_INSN may
1120 be a compare instruction which we do not want to copy
1121 or delete. */
1122 if (sets_cc0_p (PREV_INSN (insert_before)))
1123 insert_before = PREV_INSN (insert_before);
1124 #endif
1125 copy_end = PREV_INSN (insert_before);
1128 /* Set unroll type to MODULO now. */
1129 unroll_type = UNROLL_MODULO;
1130 loop_preconditioned = 1;
1132 /* Clean up. */
1133 free (labels);
1137 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1138 the loop unless all loops are being unrolled. */
1139 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1141 if (loop_dump_stream)
1142 fprintf (loop_dump_stream,
1143 "Unrolling failure: Naive unrolling not being done.\n");
1144 goto egress;
1147 /* At this point, we are guaranteed to unroll the loop. */
1149 /* Keep track of the unroll factor for the loop. */
1150 loop_info->unroll_number = unroll_number;
1152 /* For each biv and giv, determine whether it can be safely split into
1153 a different variable for each unrolled copy of the loop body.
1154 We precalculate and save this info here, since computing it is
1155 expensive.
1157 Do this before deleting any instructions from the loop, so that
1158 back_branch_in_range_p will work correctly. */
1160 if (splitting_not_safe)
1161 temp = 0;
1162 else
1163 temp = find_splittable_regs (loop, unroll_type, unroll_number);
1165 /* find_splittable_regs may have created some new registers, so must
1166 reallocate the reg_map with the new larger size, and must realloc
1167 the constant maps also. */
1169 maxregnum = max_reg_num ();
1170 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1172 init_reg_map (map, maxregnum);
1174 if (map->const_equiv_varray == 0)
1175 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1176 maxregnum + temp * unroll_number * 2,
1177 "unroll_loop");
1178 global_const_equiv_varray = map->const_equiv_varray;
1180 /* Search the list of bivs and givs to find ones which need to be remapped
1181 when split, and set their reg_map entry appropriately. */
1183 for (bl = ivs->list; bl; bl = bl->next)
1185 if (REGNO (bl->biv->src_reg) != bl->regno)
1186 map->reg_map[bl->regno] = bl->biv->src_reg;
1187 #if 0
1188 /* Currently, non-reduced/final-value givs are never split. */
1189 for (v = bl->giv; v; v = v->next_iv)
1190 if (REGNO (v->src_reg) != bl->regno)
1191 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1192 #endif
1195 /* Use our current register alignment and pointer flags. */
1196 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1197 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1199 /* If the loop is being partially unrolled, and the iteration variables
1200 are being split, and are being renamed for the split, then must fix up
1201 the compare/jump instruction at the end of the loop to refer to the new
1202 registers. This compare isn't copied, so the registers used in it
1203 will never be replaced if it isn't done here. */
1205 if (unroll_type == UNROLL_MODULO)
1207 insn = NEXT_INSN (copy_end);
1208 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1209 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1212 /* For unroll_number times, make a copy of each instruction
1213 between copy_start and copy_end, and insert these new instructions
1214 before the end of the loop. */
1216 for (i = 0; i < unroll_number; i++)
1218 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1219 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1220 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1221 map->const_age = 0;
1223 for (j = 0; j < max_labelno; j++)
1224 if (local_label[j])
1225 set_label_in_map (map, j, gen_label_rtx ());
1227 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1228 if (local_regno[r])
1230 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1231 record_base_value (REGNO (map->reg_map[r]),
1232 regno_reg_rtx[r], 0);
1235 /* If loop starts with a branch to the test, then fix it so that
1236 it points to the test of the first unrolled copy of the loop. */
1237 if (i == 0 && loop_start != copy_start)
1239 insn = PREV_INSN (copy_start);
1240 pattern = PATTERN (insn);
1242 tem = get_label_from_map (map,
1243 CODE_LABEL_NUMBER
1244 (XEXP (SET_SRC (pattern), 0)));
1245 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1247 /* Set the jump label so that it can be used by later loop unrolling
1248 passes. */
1249 JUMP_LABEL (insn) = tem;
1250 LABEL_NUSES (tem)++;
1253 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1254 i == unroll_number - 1, unroll_type, start_label,
1255 loop_end, insert_before, insert_before);
1258 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1259 insn to be deleted. This prevents any runaway delete_insn call from
1260 more insns that it should, as it always stops at a CODE_LABEL. */
1262 /* Delete the compare and branch at the end of the loop if completely
1263 unrolling the loop. Deleting the backward branch at the end also
1264 deletes the code label at the start of the loop. This is done at
1265 the very end to avoid problems with back_branch_in_range_p. */
1267 if (unroll_type == UNROLL_COMPLETELY)
1268 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1269 else
1270 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1272 /* Delete all of the original loop instructions. Don't delete the
1273 LOOP_BEG note, or the first code label in the loop. */
1275 insn = NEXT_INSN (copy_start);
1276 while (insn != safety_label)
1278 /* ??? Don't delete named code labels. They will be deleted when the
1279 jump that references them is deleted. Otherwise, we end up deleting
1280 them twice, which causes them to completely disappear instead of turn
1281 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1282 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1283 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1284 associated LABEL_DECL to point to one of the new label instances. */
1285 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1286 if (insn != start_label
1287 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1288 && ! (GET_CODE (insn) == NOTE
1289 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1290 insn = delete_insn (insn);
1291 else
1292 insn = NEXT_INSN (insn);
1295 /* Can now delete the 'safety' label emitted to protect us from runaway
1296 delete_insn calls. */
1297 if (INSN_DELETED_P (safety_label))
1298 abort ();
1299 delete_insn (safety_label);
1301 /* If exit_label exists, emit it after the loop. Doing the emit here
1302 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1303 This is needed so that mostly_true_jump in reorg.c will treat jumps
1304 to this loop end label correctly, i.e. predict that they are usually
1305 not taken. */
1306 if (exit_label)
1307 emit_label_after (exit_label, loop_end);
1309 egress:
1310 if (unroll_type == UNROLL_COMPLETELY)
1312 /* Remove the loop notes since this is no longer a loop. */
1313 if (loop->vtop)
1314 delete_insn (loop->vtop);
1315 if (loop->cont)
1316 delete_insn (loop->cont);
1317 if (loop_start)
1318 delete_insn (loop_start);
1319 if (loop_end)
1320 delete_insn (loop_end);
1323 if (map->const_equiv_varray)
1324 VARRAY_FREE (map->const_equiv_varray);
1325 if (map->label_map)
1327 free (map->label_map);
1328 free (local_label);
1330 free (map->insn_map);
1331 free (splittable_regs);
1332 free (splittable_regs_updates);
1333 free (addr_combined_regs);
1334 free (local_regno);
1335 if (map->reg_map)
1336 free (map->reg_map);
1337 free (map);
1340 /* Return true if the loop can be safely, and profitably, preconditioned
1341 so that the unrolled copies of the loop body don't need exit tests.
1343 This only works if final_value, initial_value and increment can be
1344 determined, and if increment is a constant power of 2.
1345 If increment is not a power of 2, then the preconditioning modulo
1346 operation would require a real modulo instead of a boolean AND, and this
1347 is not considered `profitable'. */
1349 /* ??? If the loop is known to be executed very many times, or the machine
1350 has a very cheap divide instruction, then preconditioning is a win even
1351 when the increment is not a power of 2. Use RTX_COST to compute
1352 whether divide is cheap.
1353 ??? A divide by constant doesn't actually need a divide, look at
1354 expand_divmod. The reduced cost of this optimized modulo is not
1355 reflected in RTX_COST. */
1358 precondition_loop_p (loop, initial_value, final_value, increment, mode)
1359 const struct loop *loop;
1360 rtx *initial_value, *final_value, *increment;
1361 enum machine_mode *mode;
1363 rtx loop_start = loop->start;
1364 struct loop_info *loop_info = LOOP_INFO (loop);
1366 if (loop_info->n_iterations > 0)
1368 *initial_value = const0_rtx;
1369 *increment = const1_rtx;
1370 *final_value = GEN_INT (loop_info->n_iterations);
1371 *mode = word_mode;
1373 if (loop_dump_stream)
1375 fputs ("Preconditioning: Success, number of iterations known, ",
1376 loop_dump_stream);
1377 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1378 loop_info->n_iterations);
1379 fputs (".\n", loop_dump_stream);
1381 return 1;
1384 if (loop_info->iteration_var == 0)
1386 if (loop_dump_stream)
1387 fprintf (loop_dump_stream,
1388 "Preconditioning: Could not find iteration variable.\n");
1389 return 0;
1391 else if (loop_info->initial_value == 0)
1393 if (loop_dump_stream)
1394 fprintf (loop_dump_stream,
1395 "Preconditioning: Could not find initial value.\n");
1396 return 0;
1398 else if (loop_info->increment == 0)
1400 if (loop_dump_stream)
1401 fprintf (loop_dump_stream,
1402 "Preconditioning: Could not find increment value.\n");
1403 return 0;
1405 else if (GET_CODE (loop_info->increment) != CONST_INT)
1407 if (loop_dump_stream)
1408 fprintf (loop_dump_stream,
1409 "Preconditioning: Increment not a constant.\n");
1410 return 0;
1412 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1413 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1415 if (loop_dump_stream)
1416 fprintf (loop_dump_stream,
1417 "Preconditioning: Increment not a constant power of 2.\n");
1418 return 0;
1421 /* Unsigned_compare and compare_dir can be ignored here, since they do
1422 not matter for preconditioning. */
1424 if (loop_info->final_value == 0)
1426 if (loop_dump_stream)
1427 fprintf (loop_dump_stream,
1428 "Preconditioning: EQ comparison loop.\n");
1429 return 0;
1432 /* Must ensure that final_value is invariant, so call
1433 loop_invariant_p to check. Before doing so, must check regno
1434 against max_reg_before_loop to make sure that the register is in
1435 the range covered by loop_invariant_p. If it isn't, then it is
1436 most likely a biv/giv which by definition are not invariant. */
1437 if ((GET_CODE (loop_info->final_value) == REG
1438 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1439 || (GET_CODE (loop_info->final_value) == PLUS
1440 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1441 || ! loop_invariant_p (loop, loop_info->final_value))
1443 if (loop_dump_stream)
1444 fprintf (loop_dump_stream,
1445 "Preconditioning: Final value not invariant.\n");
1446 return 0;
1449 /* Fail for floating point values, since the caller of this function
1450 does not have code to deal with them. */
1451 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1452 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1454 if (loop_dump_stream)
1455 fprintf (loop_dump_stream,
1456 "Preconditioning: Floating point final or initial value.\n");
1457 return 0;
1460 /* Fail if loop_info->iteration_var is not live before loop_start,
1461 since we need to test its value in the preconditioning code. */
1463 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1464 > INSN_LUID (loop_start))
1466 if (loop_dump_stream)
1467 fprintf (loop_dump_stream,
1468 "Preconditioning: Iteration var not live before loop start.\n");
1469 return 0;
1472 /* Note that loop_iterations biases the initial value for GIV iterators
1473 such as "while (i-- > 0)" so that we can calculate the number of
1474 iterations just like for BIV iterators.
1476 Also note that the absolute values of initial_value and
1477 final_value are unimportant as only their difference is used for
1478 calculating the number of loop iterations. */
1479 *initial_value = loop_info->initial_value;
1480 *increment = loop_info->increment;
1481 *final_value = loop_info->final_value;
1483 /* Decide what mode to do these calculations in. Choose the larger
1484 of final_value's mode and initial_value's mode, or a full-word if
1485 both are constants. */
1486 *mode = GET_MODE (*final_value);
1487 if (*mode == VOIDmode)
1489 *mode = GET_MODE (*initial_value);
1490 if (*mode == VOIDmode)
1491 *mode = word_mode;
1493 else if (*mode != GET_MODE (*initial_value)
1494 && (GET_MODE_SIZE (*mode)
1495 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1496 *mode = GET_MODE (*initial_value);
1498 /* Success! */
1499 if (loop_dump_stream)
1500 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1501 return 1;
1504 /* All pseudo-registers must be mapped to themselves. Two hard registers
1505 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1506 REGNUM, to avoid function-inlining specific conversions of these
1507 registers. All other hard regs can not be mapped because they may be
1508 used with different
1509 modes. */
1511 static void
1512 init_reg_map (map, maxregnum)
1513 struct inline_remap *map;
1514 int maxregnum;
1516 int i;
1518 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1519 map->reg_map[i] = regno_reg_rtx[i];
1520 /* Just clear the rest of the entries. */
1521 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1522 map->reg_map[i] = 0;
1524 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1525 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1526 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1527 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1530 /* Strength-reduction will often emit code for optimized biv/givs which
1531 calculates their value in a temporary register, and then copies the result
1532 to the iv. This procedure reconstructs the pattern computing the iv;
1533 verifying that all operands are of the proper form.
1535 PATTERN must be the result of single_set.
1536 The return value is the amount that the giv is incremented by. */
1538 static rtx
1539 calculate_giv_inc (pattern, src_insn, regno)
1540 rtx pattern, src_insn;
1541 unsigned int regno;
1543 rtx increment;
1544 rtx increment_total = 0;
1545 int tries = 0;
1547 retry:
1548 /* Verify that we have an increment insn here. First check for a plus
1549 as the set source. */
1550 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1552 /* SR sometimes computes the new giv value in a temp, then copies it
1553 to the new_reg. */
1554 src_insn = PREV_INSN (src_insn);
1555 pattern = PATTERN (src_insn);
1556 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1557 abort ();
1559 /* The last insn emitted is not needed, so delete it to avoid confusing
1560 the second cse pass. This insn sets the giv unnecessarily. */
1561 delete_insn (get_last_insn ());
1564 /* Verify that we have a constant as the second operand of the plus. */
1565 increment = XEXP (SET_SRC (pattern), 1);
1566 if (GET_CODE (increment) != CONST_INT)
1568 /* SR sometimes puts the constant in a register, especially if it is
1569 too big to be an add immed operand. */
1570 src_insn = PREV_INSN (src_insn);
1571 increment = SET_SRC (PATTERN (src_insn));
1573 /* SR may have used LO_SUM to compute the constant if it is too large
1574 for a load immed operand. In this case, the constant is in operand
1575 one of the LO_SUM rtx. */
1576 if (GET_CODE (increment) == LO_SUM)
1577 increment = XEXP (increment, 1);
1579 /* Some ports store large constants in memory and add a REG_EQUAL
1580 note to the store insn. */
1581 else if (GET_CODE (increment) == MEM)
1583 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1584 if (note)
1585 increment = XEXP (note, 0);
1588 else if (GET_CODE (increment) == IOR
1589 || GET_CODE (increment) == ASHIFT
1590 || GET_CODE (increment) == PLUS)
1592 /* The rs6000 port loads some constants with IOR.
1593 The alpha port loads some constants with ASHIFT and PLUS. */
1594 rtx second_part = XEXP (increment, 1);
1595 enum rtx_code code = GET_CODE (increment);
1597 src_insn = PREV_INSN (src_insn);
1598 increment = SET_SRC (PATTERN (src_insn));
1599 /* Don't need the last insn anymore. */
1600 delete_insn (get_last_insn ());
1602 if (GET_CODE (second_part) != CONST_INT
1603 || GET_CODE (increment) != CONST_INT)
1604 abort ();
1606 if (code == IOR)
1607 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1608 else if (code == PLUS)
1609 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1610 else
1611 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1614 if (GET_CODE (increment) != CONST_INT)
1615 abort ();
1617 /* The insn loading the constant into a register is no longer needed,
1618 so delete it. */
1619 delete_insn (get_last_insn ());
1622 if (increment_total)
1623 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1624 else
1625 increment_total = increment;
1627 /* Check that the source register is the same as the register we expected
1628 to see as the source. If not, something is seriously wrong. */
1629 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1630 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1632 /* Some machines (e.g. the romp), may emit two add instructions for
1633 certain constants, so lets try looking for another add immediately
1634 before this one if we have only seen one add insn so far. */
1636 if (tries == 0)
1638 tries++;
1640 src_insn = PREV_INSN (src_insn);
1641 pattern = PATTERN (src_insn);
1643 delete_insn (get_last_insn ());
1645 goto retry;
1648 abort ();
1651 return increment_total;
1654 /* Copy REG_NOTES, except for insn references, because not all insn_map
1655 entries are valid yet. We do need to copy registers now though, because
1656 the reg_map entries can change during copying. */
1658 static rtx
1659 initial_reg_note_copy (notes, map)
1660 rtx notes;
1661 struct inline_remap *map;
1663 rtx copy;
1665 if (notes == 0)
1666 return 0;
1668 copy = rtx_alloc (GET_CODE (notes));
1669 PUT_MODE (copy, GET_MODE (notes));
1671 if (GET_CODE (notes) == EXPR_LIST)
1672 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1673 else if (GET_CODE (notes) == INSN_LIST)
1674 /* Don't substitute for these yet. */
1675 XEXP (copy, 0) = XEXP (notes, 0);
1676 else
1677 abort ();
1679 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1681 return copy;
1684 /* Fixup insn references in copied REG_NOTES. */
1686 static void
1687 final_reg_note_copy (notes, map)
1688 rtx notes;
1689 struct inline_remap *map;
1691 rtx note;
1693 for (note = notes; note; note = XEXP (note, 1))
1694 if (GET_CODE (note) == INSN_LIST)
1695 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1698 /* Copy each instruction in the loop, substituting from map as appropriate.
1699 This is very similar to a loop in expand_inline_function. */
1701 static void
1702 copy_loop_body (loop, copy_start, copy_end, map, exit_label, last_iteration,
1703 unroll_type, start_label, loop_end, insert_before,
1704 copy_notes_from)
1705 struct loop *loop;
1706 rtx copy_start, copy_end;
1707 struct inline_remap *map;
1708 rtx exit_label;
1709 int last_iteration;
1710 enum unroll_types unroll_type;
1711 rtx start_label, loop_end, insert_before, copy_notes_from;
1713 struct loop_ivs *ivs = LOOP_IVS (loop);
1714 rtx insn, pattern;
1715 rtx set, tem, copy = NULL_RTX;
1716 int dest_reg_was_split, i;
1717 #ifdef HAVE_cc0
1718 rtx cc0_insn = 0;
1719 #endif
1720 rtx final_label = 0;
1721 rtx giv_inc, giv_dest_reg, giv_src_reg;
1723 /* If this isn't the last iteration, then map any references to the
1724 start_label to final_label. Final label will then be emitted immediately
1725 after the end of this loop body if it was ever used.
1727 If this is the last iteration, then map references to the start_label
1728 to itself. */
1729 if (! last_iteration)
1731 final_label = gen_label_rtx ();
1732 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1734 else
1735 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1737 start_sequence ();
1739 /* Emit a NOTE_INSN_DELETED to force at least two insns onto the sequence.
1740 Else gen_sequence could return a raw pattern for a jump which we pass
1741 off to emit_insn_before (instead of emit_jump_insn_before) which causes
1742 a variety of losing behaviors later. */
1743 emit_note (0, NOTE_INSN_DELETED);
1745 insn = copy_start;
1748 insn = NEXT_INSN (insn);
1750 map->orig_asm_operands_vector = 0;
1752 switch (GET_CODE (insn))
1754 case INSN:
1755 pattern = PATTERN (insn);
1756 copy = 0;
1757 giv_inc = 0;
1759 /* Check to see if this is a giv that has been combined with
1760 some split address givs. (Combined in the sense that
1761 `combine_givs' in loop.c has put two givs in the same register.)
1762 In this case, we must search all givs based on the same biv to
1763 find the address givs. Then split the address givs.
1764 Do this before splitting the giv, since that may map the
1765 SET_DEST to a new register. */
1767 if ((set = single_set (insn))
1768 && GET_CODE (SET_DEST (set)) == REG
1769 && addr_combined_regs[REGNO (SET_DEST (set))])
1771 struct iv_class *bl;
1772 struct induction *v, *tv;
1773 unsigned int regno = REGNO (SET_DEST (set));
1775 v = addr_combined_regs[REGNO (SET_DEST (set))];
1776 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1778 /* Although the giv_inc amount is not needed here, we must call
1779 calculate_giv_inc here since it might try to delete the
1780 last insn emitted. If we wait until later to call it,
1781 we might accidentally delete insns generated immediately
1782 below by emit_unrolled_add. */
1784 giv_inc = calculate_giv_inc (set, insn, regno);
1786 /* Now find all address giv's that were combined with this
1787 giv 'v'. */
1788 for (tv = bl->giv; tv; tv = tv->next_iv)
1789 if (tv->giv_type == DEST_ADDR && tv->same == v)
1791 int this_giv_inc;
1793 /* If this DEST_ADDR giv was not split, then ignore it. */
1794 if (*tv->location != tv->dest_reg)
1795 continue;
1797 /* Scale this_giv_inc if the multiplicative factors of
1798 the two givs are different. */
1799 this_giv_inc = INTVAL (giv_inc);
1800 if (tv->mult_val != v->mult_val)
1801 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1802 * INTVAL (tv->mult_val));
1804 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1805 *tv->location = tv->dest_reg;
1807 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1809 /* Must emit an insn to increment the split address
1810 giv. Add in the const_adjust field in case there
1811 was a constant eliminated from the address. */
1812 rtx value, dest_reg;
1814 /* tv->dest_reg will be either a bare register,
1815 or else a register plus a constant. */
1816 if (GET_CODE (tv->dest_reg) == REG)
1817 dest_reg = tv->dest_reg;
1818 else
1819 dest_reg = XEXP (tv->dest_reg, 0);
1821 /* Check for shared address givs, and avoid
1822 incrementing the shared pseudo reg more than
1823 once. */
1824 if (! tv->same_insn && ! tv->shared)
1826 /* tv->dest_reg may actually be a (PLUS (REG)
1827 (CONST)) here, so we must call plus_constant
1828 to add the const_adjust amount before calling
1829 emit_unrolled_add below. */
1830 value = plus_constant (tv->dest_reg,
1831 tv->const_adjust);
1833 if (GET_CODE (value) == PLUS)
1835 /* The constant could be too large for an add
1836 immediate, so can't directly emit an insn
1837 here. */
1838 emit_unrolled_add (dest_reg, XEXP (value, 0),
1839 XEXP (value, 1));
1843 /* Reset the giv to be just the register again, in case
1844 it is used after the set we have just emitted.
1845 We must subtract the const_adjust factor added in
1846 above. */
1847 tv->dest_reg = plus_constant (dest_reg,
1848 -tv->const_adjust);
1849 *tv->location = tv->dest_reg;
1854 /* If this is a setting of a splittable variable, then determine
1855 how to split the variable, create a new set based on this split,
1856 and set up the reg_map so that later uses of the variable will
1857 use the new split variable. */
1859 dest_reg_was_split = 0;
1861 if ((set = single_set (insn))
1862 && GET_CODE (SET_DEST (set)) == REG
1863 && splittable_regs[REGNO (SET_DEST (set))])
1865 unsigned int regno = REGNO (SET_DEST (set));
1866 unsigned int src_regno;
1868 dest_reg_was_split = 1;
1870 giv_dest_reg = SET_DEST (set);
1871 giv_src_reg = giv_dest_reg;
1872 /* Compute the increment value for the giv, if it wasn't
1873 already computed above. */
1874 if (giv_inc == 0)
1875 giv_inc = calculate_giv_inc (set, insn, regno);
1877 src_regno = REGNO (giv_src_reg);
1879 if (unroll_type == UNROLL_COMPLETELY)
1881 /* Completely unrolling the loop. Set the induction
1882 variable to a known constant value. */
1884 /* The value in splittable_regs may be an invariant
1885 value, so we must use plus_constant here. */
1886 splittable_regs[regno]
1887 = plus_constant (splittable_regs[src_regno],
1888 INTVAL (giv_inc));
1890 if (GET_CODE (splittable_regs[regno]) == PLUS)
1892 giv_src_reg = XEXP (splittable_regs[regno], 0);
1893 giv_inc = XEXP (splittable_regs[regno], 1);
1895 else
1897 /* The splittable_regs value must be a REG or a
1898 CONST_INT, so put the entire value in the giv_src_reg
1899 variable. */
1900 giv_src_reg = splittable_regs[regno];
1901 giv_inc = const0_rtx;
1904 else
1906 /* Partially unrolling loop. Create a new pseudo
1907 register for the iteration variable, and set it to
1908 be a constant plus the original register. Except
1909 on the last iteration, when the result has to
1910 go back into the original iteration var register. */
1912 /* Handle bivs which must be mapped to a new register
1913 when split. This happens for bivs which need their
1914 final value set before loop entry. The new register
1915 for the biv was stored in the biv's first struct
1916 induction entry by find_splittable_regs. */
1918 if (regno < ivs->n_regs
1919 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1921 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1922 giv_dest_reg = giv_src_reg;
1925 #if 0
1926 /* If non-reduced/final-value givs were split, then
1927 this would have to remap those givs also. See
1928 find_splittable_regs. */
1929 #endif
1931 splittable_regs[regno]
1932 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1933 giv_inc,
1934 splittable_regs[src_regno]);
1935 giv_inc = splittable_regs[regno];
1937 /* Now split the induction variable by changing the dest
1938 of this insn to a new register, and setting its
1939 reg_map entry to point to this new register.
1941 If this is the last iteration, and this is the last insn
1942 that will update the iv, then reuse the original dest,
1943 to ensure that the iv will have the proper value when
1944 the loop exits or repeats.
1946 Using splittable_regs_updates here like this is safe,
1947 because it can only be greater than one if all
1948 instructions modifying the iv are always executed in
1949 order. */
1951 if (! last_iteration
1952 || (splittable_regs_updates[regno]-- != 1))
1954 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1955 giv_dest_reg = tem;
1956 map->reg_map[regno] = tem;
1957 record_base_value (REGNO (tem),
1958 giv_inc == const0_rtx
1959 ? giv_src_reg
1960 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1961 giv_src_reg, giv_inc),
1964 else
1965 map->reg_map[regno] = giv_src_reg;
1968 /* The constant being added could be too large for an add
1969 immediate, so can't directly emit an insn here. */
1970 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1971 copy = get_last_insn ();
1972 pattern = PATTERN (copy);
1974 else
1976 pattern = copy_rtx_and_substitute (pattern, map, 0);
1977 copy = emit_insn (pattern);
1979 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1981 #ifdef HAVE_cc0
1982 /* If this insn is setting CC0, it may need to look at
1983 the insn that uses CC0 to see what type of insn it is.
1984 In that case, the call to recog via validate_change will
1985 fail. So don't substitute constants here. Instead,
1986 do it when we emit the following insn.
1988 For example, see the pyr.md file. That machine has signed and
1989 unsigned compares. The compare patterns must check the
1990 following branch insn to see which what kind of compare to
1991 emit.
1993 If the previous insn set CC0, substitute constants on it as
1994 well. */
1995 if (sets_cc0_p (PATTERN (copy)) != 0)
1996 cc0_insn = copy;
1997 else
1999 if (cc0_insn)
2000 try_constants (cc0_insn, map);
2001 cc0_insn = 0;
2002 try_constants (copy, map);
2004 #else
2005 try_constants (copy, map);
2006 #endif
2008 /* Make split induction variable constants `permanent' since we
2009 know there are no backward branches across iteration variable
2010 settings which would invalidate this. */
2011 if (dest_reg_was_split)
2013 int regno = REGNO (SET_DEST (set));
2015 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2016 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2017 == map->const_age))
2018 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2020 break;
2022 case JUMP_INSN:
2023 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2024 copy = emit_jump_insn (pattern);
2025 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2027 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2028 && ! last_iteration)
2030 /* Update JUMP_LABEL make invert_jump work correctly. */
2031 JUMP_LABEL (copy) = get_label_from_map (map,
2032 CODE_LABEL_NUMBER
2033 (JUMP_LABEL (insn)));
2034 LABEL_NUSES (JUMP_LABEL (copy))++;
2036 /* This is a branch to the beginning of the loop; this is the
2037 last insn being copied; and this is not the last iteration.
2038 In this case, we want to change the original fall through
2039 case to be a branch past the end of the loop, and the
2040 original jump label case to fall_through. */
2042 if (!invert_jump (copy, exit_label, 0))
2044 rtx jmp;
2045 rtx lab = gen_label_rtx ();
2046 /* Can't do it by reversing the jump (probably because we
2047 couldn't reverse the conditions), so emit a new
2048 jump_insn after COPY, and redirect the jump around
2049 that. */
2050 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2051 jmp = emit_barrier_after (jmp);
2052 emit_label_after (lab, jmp);
2053 LABEL_NUSES (lab) = 0;
2054 if (!redirect_jump (copy, lab, 0))
2055 abort ();
2059 #ifdef HAVE_cc0
2060 if (cc0_insn)
2061 try_constants (cc0_insn, map);
2062 cc0_insn = 0;
2063 #endif
2064 try_constants (copy, map);
2066 /* Set the jump label of COPY correctly to avoid problems with
2067 later passes of unroll_loop, if INSN had jump label set. */
2068 if (JUMP_LABEL (insn))
2070 rtx label = 0;
2072 /* Can't use the label_map for every insn, since this may be
2073 the backward branch, and hence the label was not mapped. */
2074 if ((set = single_set (copy)))
2076 tem = SET_SRC (set);
2077 if (GET_CODE (tem) == LABEL_REF)
2078 label = XEXP (tem, 0);
2079 else if (GET_CODE (tem) == IF_THEN_ELSE)
2081 if (XEXP (tem, 1) != pc_rtx)
2082 label = XEXP (XEXP (tem, 1), 0);
2083 else
2084 label = XEXP (XEXP (tem, 2), 0);
2088 if (label && GET_CODE (label) == CODE_LABEL)
2089 JUMP_LABEL (copy) = label;
2090 else
2092 /* An unrecognizable jump insn, probably the entry jump
2093 for a switch statement. This label must have been mapped,
2094 so just use the label_map to get the new jump label. */
2095 JUMP_LABEL (copy)
2096 = get_label_from_map (map,
2097 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2100 /* If this is a non-local jump, then must increase the label
2101 use count so that the label will not be deleted when the
2102 original jump is deleted. */
2103 LABEL_NUSES (JUMP_LABEL (copy))++;
2105 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2106 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2108 rtx pat = PATTERN (copy);
2109 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2110 int len = XVECLEN (pat, diff_vec_p);
2111 int i;
2113 for (i = 0; i < len; i++)
2114 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2117 /* If this used to be a conditional jump insn but whose branch
2118 direction is now known, we must do something special. */
2119 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2121 #ifdef HAVE_cc0
2122 /* If the previous insn set cc0 for us, delete it. */
2123 if (sets_cc0_p (PREV_INSN (copy)))
2124 delete_insn (PREV_INSN (copy));
2125 #endif
2127 /* If this is now a no-op, delete it. */
2128 if (map->last_pc_value == pc_rtx)
2130 /* Don't let delete_insn delete the label referenced here,
2131 because we might possibly need it later for some other
2132 instruction in the loop. */
2133 if (JUMP_LABEL (copy))
2134 LABEL_NUSES (JUMP_LABEL (copy))++;
2135 delete_insn (copy);
2136 if (JUMP_LABEL (copy))
2137 LABEL_NUSES (JUMP_LABEL (copy))--;
2138 copy = 0;
2140 else
2141 /* Otherwise, this is unconditional jump so we must put a
2142 BARRIER after it. We could do some dead code elimination
2143 here, but jump.c will do it just as well. */
2144 emit_barrier ();
2146 break;
2148 case CALL_INSN:
2149 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2150 copy = emit_call_insn (pattern);
2151 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2153 /* Because the USAGE information potentially contains objects other
2154 than hard registers, we need to copy it. */
2155 CALL_INSN_FUNCTION_USAGE (copy)
2156 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2157 map, 0);
2159 #ifdef HAVE_cc0
2160 if (cc0_insn)
2161 try_constants (cc0_insn, map);
2162 cc0_insn = 0;
2163 #endif
2164 try_constants (copy, map);
2166 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2167 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2168 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2169 break;
2171 case CODE_LABEL:
2172 /* If this is the loop start label, then we don't need to emit a
2173 copy of this label since no one will use it. */
2175 if (insn != start_label)
2177 copy = emit_label (get_label_from_map (map,
2178 CODE_LABEL_NUMBER (insn)));
2179 map->const_age++;
2181 break;
2183 case BARRIER:
2184 copy = emit_barrier ();
2185 break;
2187 case NOTE:
2188 /* VTOP and CONT notes are valid only before the loop exit test.
2189 If placed anywhere else, loop may generate bad code. */
2190 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2191 the associated rtl. We do not want to share the structure in
2192 this new block. */
2194 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2195 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2196 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2197 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2198 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2199 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2200 copy = emit_note (NOTE_SOURCE_FILE (insn),
2201 NOTE_LINE_NUMBER (insn));
2202 else
2203 copy = 0;
2204 break;
2206 default:
2207 abort ();
2210 map->insn_map[INSN_UID (insn)] = copy;
2212 while (insn != copy_end);
2214 /* Now finish coping the REG_NOTES. */
2215 insn = copy_start;
2218 insn = NEXT_INSN (insn);
2219 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2220 || GET_CODE (insn) == CALL_INSN)
2221 && map->insn_map[INSN_UID (insn)])
2222 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2224 while (insn != copy_end);
2226 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2227 each of these notes here, since there may be some important ones, such as
2228 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2229 iteration, because the original notes won't be deleted.
2231 We can't use insert_before here, because when from preconditioning,
2232 insert_before points before the loop. We can't use copy_end, because
2233 there may be insns already inserted after it (which we don't want to
2234 copy) when not from preconditioning code. */
2236 if (! last_iteration)
2238 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2240 /* VTOP notes are valid only before the loop exit test.
2241 If placed anywhere else, loop may generate bad code.
2242 There is no need to test for NOTE_INSN_LOOP_CONT notes
2243 here, since COPY_NOTES_FROM will be at most one or two (for cc0)
2244 instructions before the last insn in the loop, and if the
2245 end test is that short, there will be a VTOP note between
2246 the CONT note and the test. */
2247 if (GET_CODE (insn) == NOTE
2248 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2249 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2250 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP)
2251 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2255 if (final_label && LABEL_NUSES (final_label) > 0)
2256 emit_label (final_label);
2258 tem = gen_sequence ();
2259 end_sequence ();
2260 loop_insn_emit_before (loop, 0, insert_before, tem);
2263 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2264 emitted. This will correctly handle the case where the increment value
2265 won't fit in the immediate field of a PLUS insns. */
2267 void
2268 emit_unrolled_add (dest_reg, src_reg, increment)
2269 rtx dest_reg, src_reg, increment;
2271 rtx result;
2273 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2274 dest_reg, 0, OPTAB_LIB_WIDEN);
2276 if (dest_reg != result)
2277 emit_move_insn (dest_reg, result);
2280 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2281 is a backward branch in that range that branches to somewhere between
2282 LOOP->START and INSN. Returns 0 otherwise. */
2284 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2285 In practice, this is not a problem, because this function is seldom called,
2286 and uses a negligible amount of CPU time on average. */
2289 back_branch_in_range_p (loop, insn)
2290 const struct loop *loop;
2291 rtx insn;
2293 rtx p, q, target_insn;
2294 rtx loop_start = loop->start;
2295 rtx loop_end = loop->end;
2296 rtx orig_loop_end = loop->end;
2298 /* Stop before we get to the backward branch at the end of the loop. */
2299 loop_end = prev_nonnote_insn (loop_end);
2300 if (GET_CODE (loop_end) == BARRIER)
2301 loop_end = PREV_INSN (loop_end);
2303 /* Check in case insn has been deleted, search forward for first non
2304 deleted insn following it. */
2305 while (INSN_DELETED_P (insn))
2306 insn = NEXT_INSN (insn);
2308 /* Check for the case where insn is the last insn in the loop. Deal
2309 with the case where INSN was a deleted loop test insn, in which case
2310 it will now be the NOTE_LOOP_END. */
2311 if (insn == loop_end || insn == orig_loop_end)
2312 return 0;
2314 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2316 if (GET_CODE (p) == JUMP_INSN)
2318 target_insn = JUMP_LABEL (p);
2320 /* Search from loop_start to insn, to see if one of them is
2321 the target_insn. We can't use INSN_LUID comparisons here,
2322 since insn may not have an LUID entry. */
2323 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2324 if (q == target_insn)
2325 return 1;
2329 return 0;
2332 /* Try to generate the simplest rtx for the expression
2333 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2334 value of giv's. */
2336 static rtx
2337 fold_rtx_mult_add (mult1, mult2, add1, mode)
2338 rtx mult1, mult2, add1;
2339 enum machine_mode mode;
2341 rtx temp, mult_res;
2342 rtx result;
2344 /* The modes must all be the same. This should always be true. For now,
2345 check to make sure. */
2346 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2347 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2348 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2349 abort ();
2351 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2352 will be a constant. */
2353 if (GET_CODE (mult1) == CONST_INT)
2355 temp = mult2;
2356 mult2 = mult1;
2357 mult1 = temp;
2360 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2361 if (! mult_res)
2362 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2364 /* Again, put the constant second. */
2365 if (GET_CODE (add1) == CONST_INT)
2367 temp = add1;
2368 add1 = mult_res;
2369 mult_res = temp;
2372 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2373 if (! result)
2374 result = gen_rtx_PLUS (mode, add1, mult_res);
2376 return result;
2379 /* Searches the list of induction struct's for the biv BL, to try to calculate
2380 the total increment value for one iteration of the loop as a constant.
2382 Returns the increment value as an rtx, simplified as much as possible,
2383 if it can be calculated. Otherwise, returns 0. */
2386 biv_total_increment (bl)
2387 const struct iv_class *bl;
2389 struct induction *v;
2390 rtx result;
2392 /* For increment, must check every instruction that sets it. Each
2393 instruction must be executed only once each time through the loop.
2394 To verify this, we check that the insn is always executed, and that
2395 there are no backward branches after the insn that branch to before it.
2396 Also, the insn must have a mult_val of one (to make sure it really is
2397 an increment). */
2399 result = const0_rtx;
2400 for (v = bl->biv; v; v = v->next_iv)
2402 if (v->always_computable && v->mult_val == const1_rtx
2403 && ! v->maybe_multiple)
2404 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2405 else
2406 return 0;
2409 return result;
2412 /* For each biv and giv, determine whether it can be safely split into
2413 a different variable for each unrolled copy of the loop body. If it
2414 is safe to split, then indicate that by saving some useful info
2415 in the splittable_regs array.
2417 If the loop is being completely unrolled, then splittable_regs will hold
2418 the current value of the induction variable while the loop is unrolled.
2419 It must be set to the initial value of the induction variable here.
2420 Otherwise, splittable_regs will hold the difference between the current
2421 value of the induction variable and the value the induction variable had
2422 at the top of the loop. It must be set to the value 0 here.
2424 Returns the total number of instructions that set registers that are
2425 splittable. */
2427 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2428 constant values are unnecessary, since we can easily calculate increment
2429 values in this case even if nothing is constant. The increment value
2430 should not involve a multiply however. */
2432 /* ?? Even if the biv/giv increment values aren't constant, it may still
2433 be beneficial to split the variable if the loop is only unrolled a few
2434 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2436 static int
2437 find_splittable_regs (loop, unroll_type, unroll_number)
2438 const struct loop *loop;
2439 enum unroll_types unroll_type;
2440 int unroll_number;
2442 struct loop_ivs *ivs = LOOP_IVS (loop);
2443 struct iv_class *bl;
2444 struct induction *v;
2445 rtx increment, tem;
2446 rtx biv_final_value;
2447 int biv_splittable;
2448 int result = 0;
2450 for (bl = ivs->list; bl; bl = bl->next)
2452 /* Biv_total_increment must return a constant value,
2453 otherwise we can not calculate the split values. */
2455 increment = biv_total_increment (bl);
2456 if (! increment || GET_CODE (increment) != CONST_INT)
2457 continue;
2459 /* The loop must be unrolled completely, or else have a known number
2460 of iterations and only one exit, or else the biv must be dead
2461 outside the loop, or else the final value must be known. Otherwise,
2462 it is unsafe to split the biv since it may not have the proper
2463 value on loop exit. */
2465 /* loop_number_exit_count is non-zero if the loop has an exit other than
2466 a fall through at the end. */
2468 biv_splittable = 1;
2469 biv_final_value = 0;
2470 if (unroll_type != UNROLL_COMPLETELY
2471 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2472 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2473 || ! bl->init_insn
2474 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2475 || (REGNO_FIRST_LUID (bl->regno)
2476 < INSN_LUID (bl->init_insn))
2477 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2478 && ! (biv_final_value = final_biv_value (loop, bl)))
2479 biv_splittable = 0;
2481 /* If any of the insns setting the BIV don't do so with a simple
2482 PLUS, we don't know how to split it. */
2483 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2484 if ((tem = single_set (v->insn)) == 0
2485 || GET_CODE (SET_DEST (tem)) != REG
2486 || REGNO (SET_DEST (tem)) != bl->regno
2487 || GET_CODE (SET_SRC (tem)) != PLUS)
2488 biv_splittable = 0;
2490 /* If final value is non-zero, then must emit an instruction which sets
2491 the value of the biv to the proper value. This is done after
2492 handling all of the givs, since some of them may need to use the
2493 biv's value in their initialization code. */
2495 /* This biv is splittable. If completely unrolling the loop, save
2496 the biv's initial value. Otherwise, save the constant zero. */
2498 if (biv_splittable == 1)
2500 if (unroll_type == UNROLL_COMPLETELY)
2502 /* If the initial value of the biv is itself (i.e. it is too
2503 complicated for strength_reduce to compute), or is a hard
2504 register, or it isn't invariant, then we must create a new
2505 pseudo reg to hold the initial value of the biv. */
2507 if (GET_CODE (bl->initial_value) == REG
2508 && (REGNO (bl->initial_value) == bl->regno
2509 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2510 || ! loop_invariant_p (loop, bl->initial_value)))
2512 rtx tem = gen_reg_rtx (bl->biv->mode);
2514 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2515 loop_insn_hoist (loop,
2516 gen_move_insn (tem, bl->biv->src_reg));
2518 if (loop_dump_stream)
2519 fprintf (loop_dump_stream,
2520 "Biv %d initial value remapped to %d.\n",
2521 bl->regno, REGNO (tem));
2523 splittable_regs[bl->regno] = tem;
2525 else
2526 splittable_regs[bl->regno] = bl->initial_value;
2528 else
2529 splittable_regs[bl->regno] = const0_rtx;
2531 /* Save the number of instructions that modify the biv, so that
2532 we can treat the last one specially. */
2534 splittable_regs_updates[bl->regno] = bl->biv_count;
2535 result += bl->biv_count;
2537 if (loop_dump_stream)
2538 fprintf (loop_dump_stream,
2539 "Biv %d safe to split.\n", bl->regno);
2542 /* Check every giv that depends on this biv to see whether it is
2543 splittable also. Even if the biv isn't splittable, givs which
2544 depend on it may be splittable if the biv is live outside the
2545 loop, and the givs aren't. */
2547 result += find_splittable_givs (loop, bl, unroll_type, increment,
2548 unroll_number);
2550 /* If final value is non-zero, then must emit an instruction which sets
2551 the value of the biv to the proper value. This is done after
2552 handling all of the givs, since some of them may need to use the
2553 biv's value in their initialization code. */
2554 if (biv_final_value)
2556 /* If the loop has multiple exits, emit the insns before the
2557 loop to ensure that it will always be executed no matter
2558 how the loop exits. Otherwise emit the insn after the loop,
2559 since this is slightly more efficient. */
2560 if (! loop->exit_count)
2561 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2562 biv_final_value));
2563 else
2565 /* Create a new register to hold the value of the biv, and then
2566 set the biv to its final value before the loop start. The biv
2567 is set to its final value before loop start to ensure that
2568 this insn will always be executed, no matter how the loop
2569 exits. */
2570 rtx tem = gen_reg_rtx (bl->biv->mode);
2571 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2573 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2574 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2575 biv_final_value));
2577 if (loop_dump_stream)
2578 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2579 REGNO (bl->biv->src_reg), REGNO (tem));
2581 /* Set up the mapping from the original biv register to the new
2582 register. */
2583 bl->biv->src_reg = tem;
2587 return result;
2590 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2591 for the instruction that is using it. Do not make any changes to that
2592 instruction. */
2594 static int
2595 verify_addresses (v, giv_inc, unroll_number)
2596 struct induction *v;
2597 rtx giv_inc;
2598 int unroll_number;
2600 int ret = 1;
2601 rtx orig_addr = *v->location;
2602 rtx last_addr = plus_constant (v->dest_reg,
2603 INTVAL (giv_inc) * (unroll_number - 1));
2605 /* First check to see if either address would fail. Handle the fact
2606 that we have may have a match_dup. */
2607 if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
2608 || ! validate_replace_rtx (*v->location, last_addr, v->insn))
2609 ret = 0;
2611 /* Now put things back the way they were before. This should always
2612 succeed. */
2613 if (! validate_replace_rtx (*v->location, orig_addr, v->insn))
2614 abort ();
2616 return ret;
2619 /* For every giv based on the biv BL, check to determine whether it is
2620 splittable. This is a subroutine to find_splittable_regs ().
2622 Return the number of instructions that set splittable registers. */
2624 static int
2625 find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2626 const struct loop *loop;
2627 struct iv_class *bl;
2628 enum unroll_types unroll_type;
2629 rtx increment;
2630 int unroll_number;
2632 struct loop_ivs *ivs = LOOP_IVS (loop);
2633 struct induction *v, *v2;
2634 rtx final_value;
2635 rtx tem;
2636 int result = 0;
2638 /* Scan the list of givs, and set the same_insn field when there are
2639 multiple identical givs in the same insn. */
2640 for (v = bl->giv; v; v = v->next_iv)
2641 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2642 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2643 && ! v2->same_insn)
2644 v2->same_insn = v;
2646 for (v = bl->giv; v; v = v->next_iv)
2648 rtx giv_inc, value;
2650 /* Only split the giv if it has already been reduced, or if the loop is
2651 being completely unrolled. */
2652 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2653 continue;
2655 /* The giv can be split if the insn that sets the giv is executed once
2656 and only once on every iteration of the loop. */
2657 /* An address giv can always be split. v->insn is just a use not a set,
2658 and hence it does not matter whether it is always executed. All that
2659 matters is that all the biv increments are always executed, and we
2660 won't reach here if they aren't. */
2661 if (v->giv_type != DEST_ADDR
2662 && (! v->always_computable
2663 || back_branch_in_range_p (loop, v->insn)))
2664 continue;
2666 /* The giv increment value must be a constant. */
2667 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2668 v->mode);
2669 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2670 continue;
2672 /* The loop must be unrolled completely, or else have a known number of
2673 iterations and only one exit, or else the giv must be dead outside
2674 the loop, or else the final value of the giv must be known.
2675 Otherwise, it is not safe to split the giv since it may not have the
2676 proper value on loop exit. */
2678 /* The used outside loop test will fail for DEST_ADDR givs. They are
2679 never used outside the loop anyways, so it is always safe to split a
2680 DEST_ADDR giv. */
2682 final_value = 0;
2683 if (unroll_type != UNROLL_COMPLETELY
2684 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2685 && v->giv_type != DEST_ADDR
2686 /* The next part is true if the pseudo is used outside the loop.
2687 We assume that this is true for any pseudo created after loop
2688 starts, because we don't have a reg_n_info entry for them. */
2689 && (REGNO (v->dest_reg) >= max_reg_before_loop
2690 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2691 /* Check for the case where the pseudo is set by a shift/add
2692 sequence, in which case the first insn setting the pseudo
2693 is the first insn of the shift/add sequence. */
2694 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2695 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2696 != INSN_UID (XEXP (tem, 0)))))
2697 /* Line above always fails if INSN was moved by loop opt. */
2698 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2699 >= INSN_LUID (loop->end)))
2700 && ! (final_value = v->final_value))
2701 continue;
2703 #if 0
2704 /* Currently, non-reduced/final-value givs are never split. */
2705 /* Should emit insns after the loop if possible, as the biv final value
2706 code below does. */
2708 /* If the final value is non-zero, and the giv has not been reduced,
2709 then must emit an instruction to set the final value. */
2710 if (final_value && !v->new_reg)
2712 /* Create a new register to hold the value of the giv, and then set
2713 the giv to its final value before the loop start. The giv is set
2714 to its final value before loop start to ensure that this insn
2715 will always be executed, no matter how we exit. */
2716 tem = gen_reg_rtx (v->mode);
2717 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2718 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2720 if (loop_dump_stream)
2721 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2722 REGNO (v->dest_reg), REGNO (tem));
2724 v->src_reg = tem;
2726 #endif
2728 /* This giv is splittable. If completely unrolling the loop, save the
2729 giv's initial value. Otherwise, save the constant zero for it. */
2731 if (unroll_type == UNROLL_COMPLETELY)
2733 /* It is not safe to use bl->initial_value here, because it may not
2734 be invariant. It is safe to use the initial value stored in
2735 the splittable_regs array if it is set. In rare cases, it won't
2736 be set, so then we do exactly the same thing as
2737 find_splittable_regs does to get a safe value. */
2738 rtx biv_initial_value;
2740 if (splittable_regs[bl->regno])
2741 biv_initial_value = splittable_regs[bl->regno];
2742 else if (GET_CODE (bl->initial_value) != REG
2743 || (REGNO (bl->initial_value) != bl->regno
2744 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2745 biv_initial_value = bl->initial_value;
2746 else
2748 rtx tem = gen_reg_rtx (bl->biv->mode);
2750 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2751 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2752 biv_initial_value = tem;
2754 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2755 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2756 v->add_val, v->mode);
2758 else
2759 value = const0_rtx;
2761 if (v->new_reg)
2763 /* If a giv was combined with another giv, then we can only split
2764 this giv if the giv it was combined with was reduced. This
2765 is because the value of v->new_reg is meaningless in this
2766 case. */
2767 if (v->same && ! v->same->new_reg)
2769 if (loop_dump_stream)
2770 fprintf (loop_dump_stream,
2771 "giv combined with unreduced giv not split.\n");
2772 continue;
2774 /* If the giv is an address destination, it could be something other
2775 than a simple register, these have to be treated differently. */
2776 else if (v->giv_type == DEST_REG)
2778 /* If value is not a constant, register, or register plus
2779 constant, then compute its value into a register before
2780 loop start. This prevents invalid rtx sharing, and should
2781 generate better code. We can use bl->initial_value here
2782 instead of splittable_regs[bl->regno] because this code
2783 is going before the loop start. */
2784 if (unroll_type == UNROLL_COMPLETELY
2785 && GET_CODE (value) != CONST_INT
2786 && GET_CODE (value) != REG
2787 && (GET_CODE (value) != PLUS
2788 || GET_CODE (XEXP (value, 0)) != REG
2789 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2791 rtx tem = gen_reg_rtx (v->mode);
2792 record_base_value (REGNO (tem), v->add_val, 0);
2793 loop_iv_add_mult_hoist (loop, bl->initial_value, v->mult_val,
2794 v->add_val, tem);
2795 value = tem;
2798 splittable_regs[REGNO (v->new_reg)] = value;
2800 else
2802 /* Splitting address givs is useful since it will often allow us
2803 to eliminate some increment insns for the base giv as
2804 unnecessary. */
2806 /* If the addr giv is combined with a dest_reg giv, then all
2807 references to that dest reg will be remapped, which is NOT
2808 what we want for split addr regs. We always create a new
2809 register for the split addr giv, just to be safe. */
2811 /* If we have multiple identical address givs within a
2812 single instruction, then use a single pseudo reg for
2813 both. This is necessary in case one is a match_dup
2814 of the other. */
2816 v->const_adjust = 0;
2818 if (v->same_insn)
2820 v->dest_reg = v->same_insn->dest_reg;
2821 if (loop_dump_stream)
2822 fprintf (loop_dump_stream,
2823 "Sharing address givs in insn %d\n",
2824 INSN_UID (v->insn));
2826 /* If multiple address GIVs have been combined with the
2827 same dest_reg GIV, do not create a new register for
2828 each. */
2829 else if (unroll_type != UNROLL_COMPLETELY
2830 && v->giv_type == DEST_ADDR
2831 && v->same && v->same->giv_type == DEST_ADDR
2832 && v->same->unrolled
2833 /* combine_givs_p may return true for some cases
2834 where the add and mult values are not equal.
2835 To share a register here, the values must be
2836 equal. */
2837 && rtx_equal_p (v->same->mult_val, v->mult_val)
2838 && rtx_equal_p (v->same->add_val, v->add_val)
2839 /* If the memory references have different modes,
2840 then the address may not be valid and we must
2841 not share registers. */
2842 && verify_addresses (v, giv_inc, unroll_number))
2844 v->dest_reg = v->same->dest_reg;
2845 v->shared = 1;
2847 else if (unroll_type != UNROLL_COMPLETELY)
2849 /* If not completely unrolling the loop, then create a new
2850 register to hold the split value of the DEST_ADDR giv.
2851 Emit insn to initialize its value before loop start. */
2853 rtx tem = gen_reg_rtx (v->mode);
2854 struct induction *same = v->same;
2855 rtx new_reg = v->new_reg;
2856 record_base_value (REGNO (tem), v->add_val, 0);
2858 /* If the address giv has a constant in its new_reg value,
2859 then this constant can be pulled out and put in value,
2860 instead of being part of the initialization code. */
2862 if (GET_CODE (new_reg) == PLUS
2863 && GET_CODE (XEXP (new_reg, 1)) == CONST_INT)
2865 v->dest_reg
2866 = plus_constant (tem, INTVAL (XEXP (new_reg, 1)));
2868 /* Only succeed if this will give valid addresses.
2869 Try to validate both the first and the last
2870 address resulting from loop unrolling, if
2871 one fails, then can't do const elim here. */
2872 if (verify_addresses (v, giv_inc, unroll_number))
2874 /* Save the negative of the eliminated const, so
2875 that we can calculate the dest_reg's increment
2876 value later. */
2877 v->const_adjust = -INTVAL (XEXP (new_reg, 1));
2879 new_reg = XEXP (new_reg, 0);
2880 if (loop_dump_stream)
2881 fprintf (loop_dump_stream,
2882 "Eliminating constant from giv %d\n",
2883 REGNO (tem));
2885 else
2886 v->dest_reg = tem;
2888 else
2889 v->dest_reg = tem;
2891 /* If the address hasn't been checked for validity yet, do so
2892 now, and fail completely if either the first or the last
2893 unrolled copy of the address is not a valid address
2894 for the instruction that uses it. */
2895 if (v->dest_reg == tem
2896 && ! verify_addresses (v, giv_inc, unroll_number))
2898 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2899 if (v2->same_insn == v)
2900 v2->same_insn = 0;
2902 if (loop_dump_stream)
2903 fprintf (loop_dump_stream,
2904 "Invalid address for giv at insn %d\n",
2905 INSN_UID (v->insn));
2906 continue;
2909 v->new_reg = new_reg;
2910 v->same = same;
2912 /* We set this after the address check, to guarantee that
2913 the register will be initialized. */
2914 v->unrolled = 1;
2916 /* To initialize the new register, just move the value of
2917 new_reg into it. This is not guaranteed to give a valid
2918 instruction on machines with complex addressing modes.
2919 If we can't recognize it, then delete it and emit insns
2920 to calculate the value from scratch. */
2921 loop_insn_hoist (loop, gen_rtx_SET (VOIDmode, tem,
2922 copy_rtx (v->new_reg)));
2923 if (recog_memoized (PREV_INSN (loop->start)) < 0)
2925 rtx sequence, ret;
2927 /* We can't use bl->initial_value to compute the initial
2928 value, because the loop may have been preconditioned.
2929 We must calculate it from NEW_REG. */
2930 delete_insn (PREV_INSN (loop->start));
2932 start_sequence ();
2933 ret = force_operand (v->new_reg, tem);
2934 if (ret != tem)
2935 emit_move_insn (tem, ret);
2936 sequence = gen_sequence ();
2937 end_sequence ();
2938 loop_insn_hoist (loop, sequence);
2940 if (loop_dump_stream)
2941 fprintf (loop_dump_stream,
2942 "Invalid init insn, rewritten.\n");
2945 else
2947 v->dest_reg = value;
2949 /* Check the resulting address for validity, and fail
2950 if the resulting address would be invalid. */
2951 if (! verify_addresses (v, giv_inc, unroll_number))
2953 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2954 if (v2->same_insn == v)
2955 v2->same_insn = 0;
2957 if (loop_dump_stream)
2958 fprintf (loop_dump_stream,
2959 "Invalid address for giv at insn %d\n",
2960 INSN_UID (v->insn));
2961 continue;
2965 /* Store the value of dest_reg into the insn. This sharing
2966 will not be a problem as this insn will always be copied
2967 later. */
2969 *v->location = v->dest_reg;
2971 /* If this address giv is combined with a dest reg giv, then
2972 save the base giv's induction pointer so that we will be
2973 able to handle this address giv properly. The base giv
2974 itself does not have to be splittable. */
2976 if (v->same && v->same->giv_type == DEST_REG)
2977 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2979 if (GET_CODE (v->new_reg) == REG)
2981 /* This giv maybe hasn't been combined with any others.
2982 Make sure that it's giv is marked as splittable here. */
2984 splittable_regs[REGNO (v->new_reg)] = value;
2986 /* Make it appear to depend upon itself, so that the
2987 giv will be properly split in the main loop above. */
2988 if (! v->same)
2990 v->same = v;
2991 addr_combined_regs[REGNO (v->new_reg)] = v;
2995 if (loop_dump_stream)
2996 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2999 else
3001 #if 0
3002 /* Currently, unreduced giv's can't be split. This is not too much
3003 of a problem since unreduced giv's are not live across loop
3004 iterations anyways. When unrolling a loop completely though,
3005 it makes sense to reduce&split givs when possible, as this will
3006 result in simpler instructions, and will not require that a reg
3007 be live across loop iterations. */
3009 splittable_regs[REGNO (v->dest_reg)] = value;
3010 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3011 REGNO (v->dest_reg), INSN_UID (v->insn));
3012 #else
3013 continue;
3014 #endif
3017 /* Unreduced givs are only updated once by definition. Reduced givs
3018 are updated as many times as their biv is. Mark it so if this is
3019 a splittable register. Don't need to do anything for address givs
3020 where this may not be a register. */
3022 if (GET_CODE (v->new_reg) == REG)
3024 int count = 1;
3025 if (! v->ignore)
3026 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
3028 splittable_regs_updates[REGNO (v->new_reg)] = count;
3031 result++;
3033 if (loop_dump_stream)
3035 int regnum;
3037 if (GET_CODE (v->dest_reg) == CONST_INT)
3038 regnum = -1;
3039 else if (GET_CODE (v->dest_reg) != REG)
3040 regnum = REGNO (XEXP (v->dest_reg, 0));
3041 else
3042 regnum = REGNO (v->dest_reg);
3043 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3044 regnum, INSN_UID (v->insn));
3048 return result;
3051 /* Try to prove that the register is dead after the loop exits. Trace every
3052 loop exit looking for an insn that will always be executed, which sets
3053 the register to some value, and appears before the first use of the register
3054 is found. If successful, then return 1, otherwise return 0. */
3056 /* ?? Could be made more intelligent in the handling of jumps, so that
3057 it can search past if statements and other similar structures. */
3059 static int
3060 reg_dead_after_loop (loop, reg)
3061 const struct loop *loop;
3062 rtx reg;
3064 rtx insn, label;
3065 enum rtx_code code;
3066 int jump_count = 0;
3067 int label_count = 0;
3069 /* In addition to checking all exits of this loop, we must also check
3070 all exits of inner nested loops that would exit this loop. We don't
3071 have any way to identify those, so we just give up if there are any
3072 such inner loop exits. */
3074 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3075 label_count++;
3077 if (label_count != loop->exit_count)
3078 return 0;
3080 /* HACK: Must also search the loop fall through exit, create a label_ref
3081 here which points to the loop->end, and append the loop_number_exit_labels
3082 list to it. */
3083 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
3084 LABEL_NEXTREF (label) = loop->exit_labels;
3086 for (; label; label = LABEL_NEXTREF (label))
3088 /* Succeed if find an insn which sets the biv or if reach end of
3089 function. Fail if find an insn that uses the biv, or if come to
3090 a conditional jump. */
3092 insn = NEXT_INSN (XEXP (label, 0));
3093 while (insn)
3095 code = GET_CODE (insn);
3096 if (GET_RTX_CLASS (code) == 'i')
3098 rtx set;
3100 if (reg_referenced_p (reg, PATTERN (insn)))
3101 return 0;
3103 set = single_set (insn);
3104 if (set && rtx_equal_p (SET_DEST (set), reg))
3105 break;
3108 if (code == JUMP_INSN)
3110 if (GET_CODE (PATTERN (insn)) == RETURN)
3111 break;
3112 else if (!any_uncondjump_p (insn)
3113 /* Prevent infinite loop following infinite loops. */
3114 || jump_count++ > 20)
3115 return 0;
3116 else
3117 insn = JUMP_LABEL (insn);
3120 insn = NEXT_INSN (insn);
3124 /* Success, the register is dead on all loop exits. */
3125 return 1;
3128 /* Try to calculate the final value of the biv, the value it will have at
3129 the end of the loop. If we can do it, return that value. */
3132 final_biv_value (loop, bl)
3133 const struct loop *loop;
3134 struct iv_class *bl;
3136 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3137 rtx increment, tem;
3139 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3141 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3142 return 0;
3144 /* The final value for reversed bivs must be calculated differently than
3145 for ordinary bivs. In this case, there is already an insn after the
3146 loop which sets this biv's final value (if necessary), and there are
3147 no other loop exits, so we can return any value. */
3148 if (bl->reversed)
3150 if (loop_dump_stream)
3151 fprintf (loop_dump_stream,
3152 "Final biv value for %d, reversed biv.\n", bl->regno);
3154 return const0_rtx;
3157 /* Try to calculate the final value as initial value + (number of iterations
3158 * increment). For this to work, increment must be invariant, the only
3159 exit from the loop must be the fall through at the bottom (otherwise
3160 it may not have its final value when the loop exits), and the initial
3161 value of the biv must be invariant. */
3163 if (n_iterations != 0
3164 && ! loop->exit_count
3165 && loop_invariant_p (loop, bl->initial_value))
3167 increment = biv_total_increment (bl);
3169 if (increment && loop_invariant_p (loop, increment))
3171 /* Can calculate the loop exit value, emit insns after loop
3172 end to calculate this value into a temporary register in
3173 case it is needed later. */
3175 tem = gen_reg_rtx (bl->biv->mode);
3176 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3177 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
3178 bl->initial_value, tem);
3180 if (loop_dump_stream)
3181 fprintf (loop_dump_stream,
3182 "Final biv value for %d, calculated.\n", bl->regno);
3184 return tem;
3188 /* Check to see if the biv is dead at all loop exits. */
3189 if (reg_dead_after_loop (loop, bl->biv->src_reg))
3191 if (loop_dump_stream)
3192 fprintf (loop_dump_stream,
3193 "Final biv value for %d, biv dead after loop exit.\n",
3194 bl->regno);
3196 return const0_rtx;
3199 return 0;
3202 /* Try to calculate the final value of the giv, the value it will have at
3203 the end of the loop. If we can do it, return that value. */
3206 final_giv_value (loop, v)
3207 const struct loop *loop;
3208 struct induction *v;
3210 struct loop_ivs *ivs = LOOP_IVS (loop);
3211 struct iv_class *bl;
3212 rtx insn;
3213 rtx increment, tem;
3214 rtx seq;
3215 rtx loop_end = loop->end;
3216 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3218 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3220 /* The final value for givs which depend on reversed bivs must be calculated
3221 differently than for ordinary givs. In this case, there is already an
3222 insn after the loop which sets this giv's final value (if necessary),
3223 and there are no other loop exits, so we can return any value. */
3224 if (bl->reversed)
3226 if (loop_dump_stream)
3227 fprintf (loop_dump_stream,
3228 "Final giv value for %d, depends on reversed biv\n",
3229 REGNO (v->dest_reg));
3230 return const0_rtx;
3233 /* Try to calculate the final value as a function of the biv it depends
3234 upon. The only exit from the loop must be the fall through at the bottom
3235 (otherwise it may not have its final value when the loop exits). */
3237 /* ??? Can calculate the final giv value by subtracting off the
3238 extra biv increments times the giv's mult_val. The loop must have
3239 only one exit for this to work, but the loop iterations does not need
3240 to be known. */
3242 if (n_iterations != 0
3243 && ! loop->exit_count)
3245 /* ?? It is tempting to use the biv's value here since these insns will
3246 be put after the loop, and hence the biv will have its final value
3247 then. However, this fails if the biv is subsequently eliminated.
3248 Perhaps determine whether biv's are eliminable before trying to
3249 determine whether giv's are replaceable so that we can use the
3250 biv value here if it is not eliminable. */
3252 /* We are emitting code after the end of the loop, so we must make
3253 sure that bl->initial_value is still valid then. It will still
3254 be valid if it is invariant. */
3256 increment = biv_total_increment (bl);
3258 if (increment && loop_invariant_p (loop, increment)
3259 && loop_invariant_p (loop, bl->initial_value))
3261 /* Can calculate the loop exit value of its biv as
3262 (n_iterations * increment) + initial_value */
3264 /* The loop exit value of the giv is then
3265 (final_biv_value - extra increments) * mult_val + add_val.
3266 The extra increments are any increments to the biv which
3267 occur in the loop after the giv's value is calculated.
3268 We must search from the insn that sets the giv to the end
3269 of the loop to calculate this value. */
3271 /* Put the final biv value in tem. */
3272 tem = gen_reg_rtx (v->mode);
3273 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3274 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3275 GEN_INT (n_iterations),
3276 extend_value_for_giv (v, bl->initial_value),
3277 tem);
3279 /* Subtract off extra increments as we find them. */
3280 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3281 insn = NEXT_INSN (insn))
3283 struct induction *biv;
3285 for (biv = bl->biv; biv; biv = biv->next_iv)
3286 if (biv->insn == insn)
3288 start_sequence ();
3289 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3290 biv->add_val, NULL_RTX, 0,
3291 OPTAB_LIB_WIDEN);
3292 seq = gen_sequence ();
3293 end_sequence ();
3294 loop_insn_sink (loop, seq);
3298 /* Now calculate the giv's final value. */
3299 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3301 if (loop_dump_stream)
3302 fprintf (loop_dump_stream,
3303 "Final giv value for %d, calc from biv's value.\n",
3304 REGNO (v->dest_reg));
3306 return tem;
3310 /* Replaceable giv's should never reach here. */
3311 if (v->replaceable)
3312 abort ();
3314 /* Check to see if the biv is dead at all loop exits. */
3315 if (reg_dead_after_loop (loop, v->dest_reg))
3317 if (loop_dump_stream)
3318 fprintf (loop_dump_stream,
3319 "Final giv value for %d, giv dead after loop exit.\n",
3320 REGNO (v->dest_reg));
3322 return const0_rtx;
3325 return 0;
3328 /* Look back before LOOP->START for then insn that sets REG and return
3329 the equivalent constant if there is a REG_EQUAL note otherwise just
3330 the SET_SRC of REG. */
3332 static rtx
3333 loop_find_equiv_value (loop, reg)
3334 const struct loop *loop;
3335 rtx reg;
3337 rtx loop_start = loop->start;
3338 rtx insn, set;
3339 rtx ret;
3341 ret = reg;
3342 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3344 if (GET_CODE (insn) == CODE_LABEL)
3345 break;
3347 else if (INSN_P (insn) && reg_set_p (reg, insn))
3349 /* We found the last insn before the loop that sets the register.
3350 If it sets the entire register, and has a REG_EQUAL note,
3351 then use the value of the REG_EQUAL note. */
3352 if ((set = single_set (insn))
3353 && (SET_DEST (set) == reg))
3355 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3357 /* Only use the REG_EQUAL note if it is a constant.
3358 Other things, divide in particular, will cause
3359 problems later if we use them. */
3360 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3361 && CONSTANT_P (XEXP (note, 0)))
3362 ret = XEXP (note, 0);
3363 else
3364 ret = SET_SRC (set);
3366 /* We cannot do this if it changes between the
3367 assignment and loop start though. */
3368 if (modified_between_p (ret, insn, loop_start))
3369 ret = reg;
3371 break;
3374 return ret;
3377 /* Return a simplified rtx for the expression OP - REG.
3379 REG must appear in OP, and OP must be a register or the sum of a register
3380 and a second term.
3382 Thus, the return value must be const0_rtx or the second term.
3384 The caller is responsible for verifying that REG appears in OP and OP has
3385 the proper form. */
3387 static rtx
3388 subtract_reg_term (op, reg)
3389 rtx op, reg;
3391 if (op == reg)
3392 return const0_rtx;
3393 if (GET_CODE (op) == PLUS)
3395 if (XEXP (op, 0) == reg)
3396 return XEXP (op, 1);
3397 else if (XEXP (op, 1) == reg)
3398 return XEXP (op, 0);
3400 /* OP does not contain REG as a term. */
3401 abort ();
3404 /* Find and return register term common to both expressions OP0 and
3405 OP1 or NULL_RTX if no such term exists. Each expression must be a
3406 REG or a PLUS of a REG. */
3408 static rtx
3409 find_common_reg_term (op0, op1)
3410 rtx op0, op1;
3412 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3413 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3415 rtx op00;
3416 rtx op01;
3417 rtx op10;
3418 rtx op11;
3420 if (GET_CODE (op0) == PLUS)
3421 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3422 else
3423 op01 = const0_rtx, op00 = op0;
3425 if (GET_CODE (op1) == PLUS)
3426 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3427 else
3428 op11 = const0_rtx, op10 = op1;
3430 /* Find and return common register term if present. */
3431 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3432 return op00;
3433 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3434 return op01;
3437 /* No common register term found. */
3438 return NULL_RTX;
3441 /* Determine the loop iterator and calculate the number of loop
3442 iterations. Returns the exact number of loop iterations if it can
3443 be calculated, otherwise returns zero. */
3445 unsigned HOST_WIDE_INT
3446 loop_iterations (loop)
3447 struct loop *loop;
3449 struct loop_info *loop_info = LOOP_INFO (loop);
3450 struct loop_ivs *ivs = LOOP_IVS (loop);
3451 rtx comparison, comparison_value;
3452 rtx iteration_var, initial_value, increment, final_value;
3453 enum rtx_code comparison_code;
3454 HOST_WIDE_INT abs_inc;
3455 unsigned HOST_WIDE_INT abs_diff;
3456 int off_by_one;
3457 int increment_dir;
3458 int unsigned_p, compare_dir, final_larger;
3459 rtx last_loop_insn;
3460 rtx reg_term;
3461 struct iv_class *bl;
3463 loop_info->n_iterations = 0;
3464 loop_info->initial_value = 0;
3465 loop_info->initial_equiv_value = 0;
3466 loop_info->comparison_value = 0;
3467 loop_info->final_value = 0;
3468 loop_info->final_equiv_value = 0;
3469 loop_info->increment = 0;
3470 loop_info->iteration_var = 0;
3471 loop_info->unroll_number = 1;
3472 loop_info->iv = 0;
3474 /* We used to use prev_nonnote_insn here, but that fails because it might
3475 accidentally get the branch for a contained loop if the branch for this
3476 loop was deleted. We can only trust branches immediately before the
3477 loop_end. */
3478 last_loop_insn = PREV_INSN (loop->end);
3480 /* ??? We should probably try harder to find the jump insn
3481 at the end of the loop. The following code assumes that
3482 the last loop insn is a jump to the top of the loop. */
3483 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3485 if (loop_dump_stream)
3486 fprintf (loop_dump_stream,
3487 "Loop iterations: No final conditional branch found.\n");
3488 return 0;
3491 /* If there is a more than a single jump to the top of the loop
3492 we cannot (easily) determine the iteration count. */
3493 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3495 if (loop_dump_stream)
3496 fprintf (loop_dump_stream,
3497 "Loop iterations: Loop has multiple back edges.\n");
3498 return 0;
3501 /* Find the iteration variable. If the last insn is a conditional
3502 branch, and the insn before tests a register value, make that the
3503 iteration variable. */
3505 comparison = get_condition_for_loop (loop, last_loop_insn);
3506 if (comparison == 0)
3508 if (loop_dump_stream)
3509 fprintf (loop_dump_stream,
3510 "Loop iterations: No final comparison found.\n");
3511 return 0;
3514 /* ??? Get_condition may switch position of induction variable and
3515 invariant register when it canonicalizes the comparison. */
3517 comparison_code = GET_CODE (comparison);
3518 iteration_var = XEXP (comparison, 0);
3519 comparison_value = XEXP (comparison, 1);
3521 if (GET_CODE (iteration_var) != REG)
3523 if (loop_dump_stream)
3524 fprintf (loop_dump_stream,
3525 "Loop iterations: Comparison not against register.\n");
3526 return 0;
3529 /* The only new registers that are created before loop iterations
3530 are givs made from biv increments or registers created by
3531 load_mems. In the latter case, it is possible that try_copy_prop
3532 will propagate a new pseudo into the old iteration register but
3533 this will be marked by having the REG_USERVAR_P bit set. */
3535 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3536 && ! REG_USERVAR_P (iteration_var))
3537 abort ();
3539 /* Determine the initial value of the iteration variable, and the amount
3540 that it is incremented each loop. Use the tables constructed by
3541 the strength reduction pass to calculate these values. */
3543 /* Clear the result values, in case no answer can be found. */
3544 initial_value = 0;
3545 increment = 0;
3547 /* The iteration variable can be either a giv or a biv. Check to see
3548 which it is, and compute the variable's initial value, and increment
3549 value if possible. */
3551 /* If this is a new register, can't handle it since we don't have any
3552 reg_iv_type entry for it. */
3553 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3555 if (loop_dump_stream)
3556 fprintf (loop_dump_stream,
3557 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3558 return 0;
3561 /* Reject iteration variables larger than the host wide int size, since they
3562 could result in a number of iterations greater than the range of our
3563 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3564 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3565 > HOST_BITS_PER_WIDE_INT))
3567 if (loop_dump_stream)
3568 fprintf (loop_dump_stream,
3569 "Loop iterations: Iteration var rejected because mode too large.\n");
3570 return 0;
3572 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3574 if (loop_dump_stream)
3575 fprintf (loop_dump_stream,
3576 "Loop iterations: Iteration var not an integer.\n");
3577 return 0;
3579 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3581 if (REGNO (iteration_var) >= ivs->n_regs)
3582 abort ();
3584 /* Grab initial value, only useful if it is a constant. */
3585 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3586 initial_value = bl->initial_value;
3587 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3589 if (loop_dump_stream)
3590 fprintf (loop_dump_stream,
3591 "Loop iterations: Basic induction var not set once in each iteration.\n");
3592 return 0;
3595 increment = biv_total_increment (bl);
3597 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3599 HOST_WIDE_INT offset = 0;
3600 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3601 rtx biv_initial_value;
3603 if (REGNO (v->src_reg) >= ivs->n_regs)
3604 abort ();
3606 if (!v->always_executed || v->maybe_multiple)
3608 if (loop_dump_stream)
3609 fprintf (loop_dump_stream,
3610 "Loop iterations: General induction var not set once in each iteration.\n");
3611 return 0;
3614 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3616 /* Increment value is mult_val times the increment value of the biv. */
3618 increment = biv_total_increment (bl);
3619 if (increment)
3621 struct induction *biv_inc;
3623 increment = fold_rtx_mult_add (v->mult_val,
3624 extend_value_for_giv (v, increment),
3625 const0_rtx, v->mode);
3626 /* The caller assumes that one full increment has occured at the
3627 first loop test. But that's not true when the biv is incremented
3628 after the giv is set (which is the usual case), e.g.:
3629 i = 6; do {;} while (i++ < 9) .
3630 Therefore, we bias the initial value by subtracting the amount of
3631 the increment that occurs between the giv set and the giv test. */
3632 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3634 if (loop_insn_first_p (v->insn, biv_inc->insn))
3635 offset -= INTVAL (biv_inc->add_val);
3637 offset *= INTVAL (v->mult_val);
3639 if (loop_dump_stream)
3640 fprintf (loop_dump_stream,
3641 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3642 (long) offset);
3644 /* Initial value is mult_val times the biv's initial value plus
3645 add_val. Only useful if it is a constant. */
3646 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3647 initial_value
3648 = fold_rtx_mult_add (v->mult_val,
3649 plus_constant (biv_initial_value, offset),
3650 v->add_val, v->mode);
3652 else
3654 if (loop_dump_stream)
3655 fprintf (loop_dump_stream,
3656 "Loop iterations: Not basic or general induction var.\n");
3657 return 0;
3660 if (initial_value == 0)
3661 return 0;
3663 unsigned_p = 0;
3664 off_by_one = 0;
3665 switch (comparison_code)
3667 case LEU:
3668 unsigned_p = 1;
3669 case LE:
3670 compare_dir = 1;
3671 off_by_one = 1;
3672 break;
3673 case GEU:
3674 unsigned_p = 1;
3675 case GE:
3676 compare_dir = -1;
3677 off_by_one = -1;
3678 break;
3679 case EQ:
3680 /* Cannot determine loop iterations with this case. */
3681 compare_dir = 0;
3682 break;
3683 case LTU:
3684 unsigned_p = 1;
3685 case LT:
3686 compare_dir = 1;
3687 break;
3688 case GTU:
3689 unsigned_p = 1;
3690 case GT:
3691 compare_dir = -1;
3692 case NE:
3693 compare_dir = 0;
3694 break;
3695 default:
3696 abort ();
3699 /* If the comparison value is an invariant register, then try to find
3700 its value from the insns before the start of the loop. */
3702 final_value = comparison_value;
3703 if (GET_CODE (comparison_value) == REG
3704 && loop_invariant_p (loop, comparison_value))
3706 final_value = loop_find_equiv_value (loop, comparison_value);
3708 /* If we don't get an invariant final value, we are better
3709 off with the original register. */
3710 if (! loop_invariant_p (loop, final_value))
3711 final_value = comparison_value;
3714 /* Calculate the approximate final value of the induction variable
3715 (on the last successful iteration). The exact final value
3716 depends on the branch operator, and increment sign. It will be
3717 wrong if the iteration variable is not incremented by one each
3718 time through the loop and (comparison_value + off_by_one -
3719 initial_value) % increment != 0.
3720 ??? Note that the final_value may overflow and thus final_larger
3721 will be bogus. A potentially infinite loop will be classified
3722 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3723 if (off_by_one)
3724 final_value = plus_constant (final_value, off_by_one);
3726 /* Save the calculated values describing this loop's bounds, in case
3727 precondition_loop_p will need them later. These values can not be
3728 recalculated inside precondition_loop_p because strength reduction
3729 optimizations may obscure the loop's structure.
3731 These values are only required by precondition_loop_p and insert_bct
3732 whenever the number of iterations cannot be computed at compile time.
3733 Only the difference between final_value and initial_value is
3734 important. Note that final_value is only approximate. */
3735 loop_info->initial_value = initial_value;
3736 loop_info->comparison_value = comparison_value;
3737 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3738 loop_info->increment = increment;
3739 loop_info->iteration_var = iteration_var;
3740 loop_info->comparison_code = comparison_code;
3741 loop_info->iv = bl;
3743 /* Try to determine the iteration count for loops such
3744 as (for i = init; i < init + const; i++). When running the
3745 loop optimization twice, the first pass often converts simple
3746 loops into this form. */
3748 if (REG_P (initial_value))
3750 rtx reg1;
3751 rtx reg2;
3752 rtx const2;
3754 reg1 = initial_value;
3755 if (GET_CODE (final_value) == PLUS)
3756 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3757 else
3758 reg2 = final_value, const2 = const0_rtx;
3760 /* Check for initial_value = reg1, final_value = reg2 + const2,
3761 where reg1 != reg2. */
3762 if (REG_P (reg2) && reg2 != reg1)
3764 rtx temp;
3766 /* Find what reg1 is equivalent to. Hopefully it will
3767 either be reg2 or reg2 plus a constant. */
3768 temp = loop_find_equiv_value (loop, reg1);
3770 if (find_common_reg_term (temp, reg2))
3771 initial_value = temp;
3772 else
3774 /* Find what reg2 is equivalent to. Hopefully it will
3775 either be reg1 or reg1 plus a constant. Let's ignore
3776 the latter case for now since it is not so common. */
3777 temp = loop_find_equiv_value (loop, reg2);
3779 if (temp == loop_info->iteration_var)
3780 temp = initial_value;
3781 if (temp == reg1)
3782 final_value = (const2 == const0_rtx)
3783 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3786 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3788 rtx temp;
3790 /* When running the loop optimizer twice, check_dbra_loop
3791 further obfuscates reversible loops of the form:
3792 for (i = init; i < init + const; i++). We often end up with
3793 final_value = 0, initial_value = temp, temp = temp2 - init,
3794 where temp2 = init + const. If the loop has a vtop we
3795 can replace initial_value with const. */
3797 temp = loop_find_equiv_value (loop, reg1);
3799 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3801 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3803 if (GET_CODE (temp2) == PLUS
3804 && XEXP (temp2, 0) == XEXP (temp, 1))
3805 initial_value = XEXP (temp2, 1);
3810 /* If have initial_value = reg + const1 and final_value = reg +
3811 const2, then replace initial_value with const1 and final_value
3812 with const2. This should be safe since we are protected by the
3813 initial comparison before entering the loop if we have a vtop.
3814 For example, a + b < a + c is not equivalent to b < c for all a
3815 when using modulo arithmetic.
3817 ??? Without a vtop we could still perform the optimization if we check
3818 the initial and final values carefully. */
3819 if (loop->vtop
3820 && (reg_term = find_common_reg_term (initial_value, final_value)))
3822 initial_value = subtract_reg_term (initial_value, reg_term);
3823 final_value = subtract_reg_term (final_value, reg_term);
3826 loop_info->initial_equiv_value = initial_value;
3827 loop_info->final_equiv_value = final_value;
3829 /* For EQ comparison loops, we don't have a valid final value.
3830 Check this now so that we won't leave an invalid value if we
3831 return early for any other reason. */
3832 if (comparison_code == EQ)
3833 loop_info->final_equiv_value = loop_info->final_value = 0;
3835 if (increment == 0)
3837 if (loop_dump_stream)
3838 fprintf (loop_dump_stream,
3839 "Loop iterations: Increment value can't be calculated.\n");
3840 return 0;
3843 if (GET_CODE (increment) != CONST_INT)
3845 /* If we have a REG, check to see if REG holds a constant value. */
3846 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3847 clear if it is worthwhile to try to handle such RTL. */
3848 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3849 increment = loop_find_equiv_value (loop, increment);
3851 if (GET_CODE (increment) != CONST_INT)
3853 if (loop_dump_stream)
3855 fprintf (loop_dump_stream,
3856 "Loop iterations: Increment value not constant ");
3857 print_simple_rtl (loop_dump_stream, increment);
3858 fprintf (loop_dump_stream, ".\n");
3860 return 0;
3862 loop_info->increment = increment;
3865 if (GET_CODE (initial_value) != CONST_INT)
3867 if (loop_dump_stream)
3869 fprintf (loop_dump_stream,
3870 "Loop iterations: Initial value not constant ");
3871 print_simple_rtl (loop_dump_stream, initial_value);
3872 fprintf (loop_dump_stream, ".\n");
3874 return 0;
3876 else if (comparison_code == EQ)
3878 if (loop_dump_stream)
3879 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3880 return 0;
3882 else if (GET_CODE (final_value) != CONST_INT)
3884 if (loop_dump_stream)
3886 fprintf (loop_dump_stream,
3887 "Loop iterations: Final value not constant ");
3888 print_simple_rtl (loop_dump_stream, final_value);
3889 fprintf (loop_dump_stream, ".\n");
3891 return 0;
3894 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3895 if (unsigned_p)
3896 final_larger
3897 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3898 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3899 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3900 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3901 else
3902 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3903 - (INTVAL (final_value) < INTVAL (initial_value));
3905 if (INTVAL (increment) > 0)
3906 increment_dir = 1;
3907 else if (INTVAL (increment) == 0)
3908 increment_dir = 0;
3909 else
3910 increment_dir = -1;
3912 /* There are 27 different cases: compare_dir = -1, 0, 1;
3913 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3914 There are 4 normal cases, 4 reverse cases (where the iteration variable
3915 will overflow before the loop exits), 4 infinite loop cases, and 15
3916 immediate exit (0 or 1 iteration depending on loop type) cases.
3917 Only try to optimize the normal cases. */
3919 /* (compare_dir/final_larger/increment_dir)
3920 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3921 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3922 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3923 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3925 /* ?? If the meaning of reverse loops (where the iteration variable
3926 will overflow before the loop exits) is undefined, then could
3927 eliminate all of these special checks, and just always assume
3928 the loops are normal/immediate/infinite. Note that this means
3929 the sign of increment_dir does not have to be known. Also,
3930 since it does not really hurt if immediate exit loops or infinite loops
3931 are optimized, then that case could be ignored also, and hence all
3932 loops can be optimized.
3934 According to ANSI Spec, the reverse loop case result is undefined,
3935 because the action on overflow is undefined.
3937 See also the special test for NE loops below. */
3939 if (final_larger == increment_dir && final_larger != 0
3940 && (final_larger == compare_dir || compare_dir == 0))
3941 /* Normal case. */
3943 else
3945 if (loop_dump_stream)
3946 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
3947 return 0;
3950 /* Calculate the number of iterations, final_value is only an approximation,
3951 so correct for that. Note that abs_diff and n_iterations are
3952 unsigned, because they can be as large as 2^n - 1. */
3954 abs_inc = INTVAL (increment);
3955 if (abs_inc > 0)
3956 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3957 else if (abs_inc < 0)
3959 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3960 abs_inc = -abs_inc;
3962 else
3963 abort ();
3965 /* For NE tests, make sure that the iteration variable won't miss
3966 the final value. If abs_diff mod abs_incr is not zero, then the
3967 iteration variable will overflow before the loop exits, and we
3968 can not calculate the number of iterations. */
3969 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
3970 return 0;
3972 /* Note that the number of iterations could be calculated using
3973 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3974 handle potential overflow of the summation. */
3975 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3976 return loop_info->n_iterations;
3979 /* Replace uses of split bivs with their split pseudo register. This is
3980 for original instructions which remain after loop unrolling without
3981 copying. */
3983 static rtx
3984 remap_split_bivs (loop, x)
3985 struct loop *loop;
3986 rtx x;
3988 struct loop_ivs *ivs = LOOP_IVS (loop);
3989 register enum rtx_code code;
3990 register int i;
3991 register const char *fmt;
3993 if (x == 0)
3994 return x;
3996 code = GET_CODE (x);
3997 switch (code)
3999 case SCRATCH:
4000 case PC:
4001 case CC0:
4002 case CONST_INT:
4003 case CONST_DOUBLE:
4004 case CONST:
4005 case SYMBOL_REF:
4006 case LABEL_REF:
4007 return x;
4009 case REG:
4010 #if 0
4011 /* If non-reduced/final-value givs were split, then this would also
4012 have to remap those givs also. */
4013 #endif
4014 if (REGNO (x) < ivs->n_regs
4015 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
4016 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
4017 break;
4019 default:
4020 break;
4023 fmt = GET_RTX_FORMAT (code);
4024 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4026 if (fmt[i] == 'e')
4027 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
4028 else if (fmt[i] == 'E')
4030 register int j;
4031 for (j = 0; j < XVECLEN (x, i); j++)
4032 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
4035 return x;
4038 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
4039 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
4040 return 0. COPY_START is where we can start looking for the insns
4041 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
4042 insns.
4044 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
4045 must dominate LAST_UID.
4047 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4048 may not dominate LAST_UID.
4050 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4051 must dominate LAST_UID. */
4054 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
4055 int regno;
4056 int first_uid;
4057 int last_uid;
4058 rtx copy_start;
4059 rtx copy_end;
4061 int passed_jump = 0;
4062 rtx p = NEXT_INSN (copy_start);
4064 while (INSN_UID (p) != first_uid)
4066 if (GET_CODE (p) == JUMP_INSN)
4067 passed_jump = 1;
4068 /* Could not find FIRST_UID. */
4069 if (p == copy_end)
4070 return 0;
4071 p = NEXT_INSN (p);
4074 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
4075 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
4076 return 0;
4078 /* FIRST_UID is always executed. */
4079 if (passed_jump == 0)
4080 return 1;
4082 while (INSN_UID (p) != last_uid)
4084 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4085 can not be sure that FIRST_UID dominates LAST_UID. */
4086 if (GET_CODE (p) == CODE_LABEL)
4087 return 0;
4088 /* Could not find LAST_UID, but we reached the end of the loop, so
4089 it must be safe. */
4090 else if (p == copy_end)
4091 return 1;
4092 p = NEXT_INSN (p);
4095 /* FIRST_UID is always executed if LAST_UID is executed. */
4096 return 1;
4099 /* This routine is called when the number of iterations for the unrolled
4100 loop is one. The goal is to identify a loop that begins with an
4101 unconditional branch to the loop continuation note (or a label just after).
4102 In this case, the unconditional branch that starts the loop needs to be
4103 deleted so that we execute the single iteration. */
4105 static rtx
4106 ujump_to_loop_cont (loop_start, loop_cont)
4107 rtx loop_start;
4108 rtx loop_cont;
4110 rtx x, label, label_ref;
4112 /* See if loop start, or the next insn is an unconditional jump. */
4113 loop_start = next_nonnote_insn (loop_start);
4115 x = pc_set (loop_start);
4116 if (!x)
4117 return NULL_RTX;
4119 label_ref = SET_SRC (x);
4120 if (!label_ref)
4121 return NULL_RTX;
4123 /* Examine insn after loop continuation note. Return if not a label. */
4124 label = next_nonnote_insn (loop_cont);
4125 if (label == 0 || GET_CODE (label) != CODE_LABEL)
4126 return NULL_RTX;
4128 /* Return the loop start if the branch label matches the code label. */
4129 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4130 return loop_start;
4131 else
4132 return NULL_RTX;