* Makefile.in (SYSTEM_H): Define.
[official-gcc.git] / gcc / jump.c
blobbc80ba2e3b6eb993e951c46236d4cc48172210f3
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This is the jump-optimization pass of the compiler.
23 It is run two or three times: once before cse, sometimes once after cse,
24 and once after reload (before final).
26 jump_optimize deletes unreachable code and labels that are not used.
27 It also deletes jumps that jump to the following insn,
28 and simplifies jumps around unconditional jumps and jumps
29 to unconditional jumps.
31 Each CODE_LABEL has a count of the times it is used
32 stored in the LABEL_NUSES internal field, and each JUMP_INSN
33 has one label that it refers to stored in the
34 JUMP_LABEL internal field. With this we can detect labels that
35 become unused because of the deletion of all the jumps that
36 formerly used them. The JUMP_LABEL info is sometimes looked
37 at by later passes.
39 Optionally, cross-jumping can be done. Currently it is done
40 only the last time (when after reload and before final).
41 In fact, the code for cross-jumping now assumes that register
42 allocation has been done, since it uses `rtx_renumbered_equal_p'.
44 Jump optimization is done after cse when cse's constant-propagation
45 causes jumps to become unconditional or to be deleted.
47 Unreachable loops are not detected here, because the labels
48 have references and the insns appear reachable from the labels.
49 find_basic_blocks in flow.c finds and deletes such loops.
51 The subroutines delete_insn, redirect_jump, and invert_jump are used
52 from other passes as well. */
54 #include "config.h"
55 #include "system.h"
56 #include "rtl.h"
57 #include "tm_p.h"
58 #include "flags.h"
59 #include "hard-reg-set.h"
60 #include "regs.h"
61 #include "insn-config.h"
62 #include "insn-attr.h"
63 #include "recog.h"
64 #include "function.h"
65 #include "expr.h"
66 #include "real.h"
67 #include "except.h"
68 #include "toplev.h"
70 /* ??? Eventually must record somehow the labels used by jumps
71 from nested functions. */
72 /* Pre-record the next or previous real insn for each label?
73 No, this pass is very fast anyway. */
74 /* Condense consecutive labels?
75 This would make life analysis faster, maybe. */
76 /* Optimize jump y; x: ... y: jumpif... x?
77 Don't know if it is worth bothering with. */
78 /* Optimize two cases of conditional jump to conditional jump?
79 This can never delete any instruction or make anything dead,
80 or even change what is live at any point.
81 So perhaps let combiner do it. */
83 /* Vector indexed by uid.
84 For each CODE_LABEL, index by its uid to get first unconditional jump
85 that jumps to the label.
86 For each JUMP_INSN, index by its uid to get the next unconditional jump
87 that jumps to the same label.
88 Element 0 is the start of a chain of all return insns.
89 (It is safe to use element 0 because insn uid 0 is not used. */
91 static rtx *jump_chain;
93 /* Maximum index in jump_chain. */
95 static int max_jump_chain;
97 /* Indicates whether death notes are significant in cross jump analysis.
98 Normally they are not significant, because of A and B jump to C,
99 and R dies in A, it must die in B. But this might not be true after
100 stack register conversion, and we must compare death notes in that
101 case. */
103 static int cross_jump_death_matters = 0;
105 static int init_label_info PARAMS ((rtx));
106 static void delete_barrier_successors PARAMS ((rtx));
107 static void mark_all_labels PARAMS ((rtx, int));
108 static rtx delete_unreferenced_labels PARAMS ((rtx));
109 static void delete_noop_moves PARAMS ((rtx));
110 static int duplicate_loop_exit_test PARAMS ((rtx));
111 static void find_cross_jump PARAMS ((rtx, rtx, int, rtx *, rtx *));
112 static void do_cross_jump PARAMS ((rtx, rtx, rtx));
113 static int jump_back_p PARAMS ((rtx, rtx));
114 static int tension_vector_labels PARAMS ((rtx, int));
115 static void delete_computation PARAMS ((rtx));
116 static void redirect_exp_1 PARAMS ((rtx *, rtx, rtx, rtx));
117 static int redirect_exp PARAMS ((rtx, rtx, rtx));
118 static void invert_exp_1 PARAMS ((rtx));
119 static int invert_exp PARAMS ((rtx));
120 static void delete_from_jump_chain PARAMS ((rtx));
121 static int delete_labelref_insn PARAMS ((rtx, rtx, int));
122 static void mark_modified_reg PARAMS ((rtx, rtx, void *));
123 static void redirect_tablejump PARAMS ((rtx, rtx));
124 static void jump_optimize_1 PARAMS ((rtx, int, int, int, int, int));
125 static int returnjump_p_1 PARAMS ((rtx *, void *));
126 static void delete_prior_computation PARAMS ((rtx, rtx));
128 /* Main external entry point into the jump optimizer. See comments before
129 jump_optimize_1 for descriptions of the arguments. */
130 void
131 jump_optimize (f, cross_jump, noop_moves, after_regscan)
132 rtx f;
133 int cross_jump;
134 int noop_moves;
135 int after_regscan;
137 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, 0, 0);
140 /* Alternate entry into the jump optimizer. This entry point only rebuilds
141 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
142 instructions. */
143 void
144 rebuild_jump_labels (f)
145 rtx f;
147 jump_optimize_1 (f, 0, 0, 0, 1, 0);
150 /* Alternate entry into the jump optimizer. Do only trivial optimizations. */
152 void
153 jump_optimize_minimal (f)
154 rtx f;
156 jump_optimize_1 (f, 0, 0, 0, 0, 1);
159 /* Delete no-op jumps and optimize jumps to jumps
160 and jumps around jumps.
161 Delete unused labels and unreachable code.
163 If CROSS_JUMP is 1, detect matching code
164 before a jump and its destination and unify them.
165 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
167 If NOOP_MOVES is nonzero, delete no-op move insns.
169 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
170 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
172 If MARK_LABELS_ONLY is nonzero, then we only rebuild the jump chain
173 and JUMP_LABEL field for jumping insns.
175 If `optimize' is zero, don't change any code,
176 just determine whether control drops off the end of the function.
177 This case occurs when we have -W and not -O.
178 It works because `delete_insn' checks the value of `optimize'
179 and refrains from actually deleting when that is 0.
181 If MINIMAL is nonzero, then we only perform trivial optimizations:
183 * Removal of unreachable code after BARRIERs.
184 * Removal of unreferenced CODE_LABELs.
185 * Removal of a jump to the next instruction.
186 * Removal of a conditional jump followed by an unconditional jump
187 to the same target as the conditional jump.
188 * Simplify a conditional jump around an unconditional jump.
189 * Simplify a jump to a jump.
190 * Delete extraneous line number notes.
193 static void
194 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan,
195 mark_labels_only, minimal)
196 rtx f;
197 int cross_jump;
198 int noop_moves;
199 int after_regscan;
200 int mark_labels_only;
201 int minimal;
203 register rtx insn, next;
204 int changed;
205 int old_max_reg;
206 int first = 1;
207 int max_uid = 0;
208 rtx last_insn;
209 #ifdef HAVE_trap
210 enum rtx_code reversed_code;
211 #endif
213 cross_jump_death_matters = (cross_jump == 2);
214 max_uid = init_label_info (f) + 1;
216 /* If we are performing cross jump optimizations, then initialize
217 tables mapping UIDs to EH regions to avoid incorrect movement
218 of insns from one EH region to another. */
219 if (flag_exceptions && cross_jump)
220 init_insn_eh_region (f, max_uid);
222 if (! mark_labels_only)
223 delete_barrier_successors (f);
225 /* Leave some extra room for labels and duplicate exit test insns
226 we make. */
227 max_jump_chain = max_uid * 14 / 10;
228 jump_chain = (rtx *) xcalloc (max_jump_chain, sizeof (rtx));
230 mark_all_labels (f, cross_jump);
232 /* Keep track of labels used from static data; we don't track them
233 closely enough to delete them here, so make sure their reference
234 count doesn't drop to zero. */
236 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
237 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
238 LABEL_NUSES (XEXP (insn, 0))++;
240 check_exception_handler_labels ();
242 /* Keep track of labels used for marking handlers for exception
243 regions; they cannot usually be deleted. */
245 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
246 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
247 LABEL_NUSES (XEXP (insn, 0))++;
249 /* Quit now if we just wanted to rebuild the JUMP_LABEL and REG_LABEL
250 notes and recompute LABEL_NUSES. */
251 if (mark_labels_only)
252 goto end;
254 if (! minimal)
255 exception_optimize ();
257 last_insn = delete_unreferenced_labels (f);
259 if (noop_moves)
260 delete_noop_moves (f);
262 /* If we haven't yet gotten to reload and we have just run regscan,
263 delete any insn that sets a register that isn't used elsewhere.
264 This helps some of the optimizations below by having less insns
265 being jumped around. */
267 if (optimize && ! reload_completed && after_regscan)
268 for (insn = f; insn; insn = next)
270 rtx set = single_set (insn);
272 next = NEXT_INSN (insn);
274 if (set && GET_CODE (SET_DEST (set)) == REG
275 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
276 && REGNO_FIRST_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
277 /* We use regno_last_note_uid so as not to delete the setting
278 of a reg that's used in notes. A subsequent optimization
279 might arrange to use that reg for real. */
280 && REGNO_LAST_NOTE_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
281 && ! side_effects_p (SET_SRC (set))
282 && ! find_reg_note (insn, REG_RETVAL, 0)
283 /* An ADDRESSOF expression can turn into a use of the internal arg
284 pointer, so do not delete the initialization of the internal
285 arg pointer yet. If it is truly dead, flow will delete the
286 initializing insn. */
287 && SET_DEST (set) != current_function_internal_arg_pointer)
288 delete_insn (insn);
291 /* Now iterate optimizing jumps until nothing changes over one pass. */
292 changed = 1;
293 old_max_reg = max_reg_num ();
294 while (changed)
296 changed = 0;
298 for (insn = f; insn; insn = next)
300 rtx reallabelprev;
301 rtx temp, temp1, temp2 = NULL_RTX;
302 rtx temp4 ATTRIBUTE_UNUSED;
303 rtx nlabel;
304 int this_is_any_uncondjump;
305 int this_is_any_condjump;
306 int this_is_onlyjump;
308 next = NEXT_INSN (insn);
310 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
311 jump. Try to optimize by duplicating the loop exit test if so.
312 This is only safe immediately after regscan, because it uses
313 the values of regno_first_uid and regno_last_uid. */
314 if (after_regscan && GET_CODE (insn) == NOTE
315 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
316 && (temp1 = next_nonnote_insn (insn)) != 0
317 && any_uncondjump_p (temp1)
318 && onlyjump_p (temp1))
320 temp = PREV_INSN (insn);
321 if (duplicate_loop_exit_test (insn))
323 changed = 1;
324 next = NEXT_INSN (temp);
325 continue;
329 if (GET_CODE (insn) != JUMP_INSN)
330 continue;
332 this_is_any_condjump = any_condjump_p (insn);
333 this_is_any_uncondjump = any_uncondjump_p (insn);
334 this_is_onlyjump = onlyjump_p (insn);
336 /* Tension the labels in dispatch tables. */
338 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
339 changed |= tension_vector_labels (PATTERN (insn), 0);
340 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
341 changed |= tension_vector_labels (PATTERN (insn), 1);
343 /* See if this jump goes to another jump and redirect if so. */
344 nlabel = follow_jumps (JUMP_LABEL (insn));
345 if (nlabel != JUMP_LABEL (insn))
346 changed |= redirect_jump (insn, nlabel, 1);
348 if (! optimize || minimal)
349 continue;
351 /* If a dispatch table always goes to the same place,
352 get rid of it and replace the insn that uses it. */
354 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
355 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
357 int i;
358 rtx pat = PATTERN (insn);
359 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
360 int len = XVECLEN (pat, diff_vec_p);
361 rtx dispatch = prev_real_insn (insn);
362 rtx set;
364 for (i = 0; i < len; i++)
365 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
366 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
367 break;
369 if (i == len
370 && dispatch != 0
371 && GET_CODE (dispatch) == JUMP_INSN
372 && JUMP_LABEL (dispatch) != 0
373 /* Don't mess with a casesi insn.
374 XXX according to the comment before computed_jump_p(),
375 all casesi insns should be a parallel of the jump
376 and a USE of a LABEL_REF. */
377 && ! ((set = single_set (dispatch)) != NULL
378 && (GET_CODE (SET_SRC (set)) == IF_THEN_ELSE))
379 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
381 redirect_tablejump (dispatch,
382 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
383 changed = 1;
387 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
389 /* Detect jump to following insn. */
390 if (reallabelprev == insn
391 && (this_is_any_condjump || this_is_any_uncondjump)
392 && this_is_onlyjump)
394 next = next_real_insn (JUMP_LABEL (insn));
395 delete_jump (insn);
397 /* Remove the "inactive" but "real" insns (i.e. uses and
398 clobbers) in between here and there. */
399 temp = insn;
400 while ((temp = next_real_insn (temp)) != next)
401 delete_insn (temp);
403 changed = 1;
404 continue;
407 /* Detect a conditional jump going to the same place
408 as an immediately following unconditional jump. */
409 else if (this_is_any_condjump && this_is_onlyjump
410 && (temp = next_active_insn (insn)) != 0
411 && simplejump_p (temp)
412 && (next_active_insn (JUMP_LABEL (insn))
413 == next_active_insn (JUMP_LABEL (temp))))
415 /* Don't mess up test coverage analysis. */
416 temp2 = temp;
417 if (flag_test_coverage && !reload_completed)
418 for (temp2 = insn; temp2 != temp; temp2 = NEXT_INSN (temp2))
419 if (GET_CODE (temp2) == NOTE && NOTE_LINE_NUMBER (temp2) > 0)
420 break;
422 if (temp2 == temp)
424 /* Ensure that we jump to the later of the two labels.
425 Consider:
427 if (test) goto L2;
428 goto L1;
431 (clobber return-reg)
433 (use return-reg)
435 If we leave the goto L1, we'll incorrectly leave
436 return-reg dead for TEST true. */
438 temp2 = next_active_insn (JUMP_LABEL (insn));
439 if (!temp2)
440 temp2 = get_last_insn ();
441 if (GET_CODE (temp2) != CODE_LABEL)
442 temp2 = prev_label (temp2);
443 if (temp2 != JUMP_LABEL (temp))
444 redirect_jump (temp, temp2, 1);
446 delete_jump (insn);
447 changed = 1;
448 continue;
452 /* Detect a conditional jump jumping over an unconditional jump. */
454 else if (this_is_any_condjump
455 && reallabelprev != 0
456 && GET_CODE (reallabelprev) == JUMP_INSN
457 && prev_active_insn (reallabelprev) == insn
458 && no_labels_between_p (insn, reallabelprev)
459 && any_uncondjump_p (reallabelprev)
460 && onlyjump_p (reallabelprev))
462 /* When we invert the unconditional jump, we will be
463 decrementing the usage count of its old label.
464 Make sure that we don't delete it now because that
465 might cause the following code to be deleted. */
466 rtx prev_uses = prev_nonnote_insn (reallabelprev);
467 rtx prev_label = JUMP_LABEL (insn);
469 if (prev_label)
470 ++LABEL_NUSES (prev_label);
472 if (invert_jump (insn, JUMP_LABEL (reallabelprev), 1))
474 /* It is very likely that if there are USE insns before
475 this jump, they hold REG_DEAD notes. These REG_DEAD
476 notes are no longer valid due to this optimization,
477 and will cause the life-analysis that following passes
478 (notably delayed-branch scheduling) to think that
479 these registers are dead when they are not.
481 To prevent this trouble, we just remove the USE insns
482 from the insn chain. */
484 while (prev_uses && GET_CODE (prev_uses) == INSN
485 && GET_CODE (PATTERN (prev_uses)) == USE)
487 rtx useless = prev_uses;
488 prev_uses = prev_nonnote_insn (prev_uses);
489 delete_insn (useless);
492 delete_insn (reallabelprev);
493 changed = 1;
496 /* We can now safely delete the label if it is unreferenced
497 since the delete_insn above has deleted the BARRIER. */
498 if (prev_label && --LABEL_NUSES (prev_label) == 0)
499 delete_insn (prev_label);
501 next = NEXT_INSN (insn);
504 /* If we have an unconditional jump preceded by a USE, try to put
505 the USE before the target and jump there. This simplifies many
506 of the optimizations below since we don't have to worry about
507 dealing with these USE insns. We only do this if the label
508 being branch to already has the identical USE or if code
509 never falls through to that label. */
511 else if (this_is_any_uncondjump
512 && (temp = prev_nonnote_insn (insn)) != 0
513 && GET_CODE (temp) == INSN
514 && GET_CODE (PATTERN (temp)) == USE
515 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
516 && (GET_CODE (temp1) == BARRIER
517 || (GET_CODE (temp1) == INSN
518 && rtx_equal_p (PATTERN (temp), PATTERN (temp1))))
519 /* Don't do this optimization if we have a loop containing
520 only the USE instruction, and the loop start label has
521 a usage count of 1. This is because we will redo this
522 optimization everytime through the outer loop, and jump
523 opt will never exit. */
524 && ! ((temp2 = prev_nonnote_insn (temp)) != 0
525 && temp2 == JUMP_LABEL (insn)
526 && LABEL_NUSES (temp2) == 1))
528 if (GET_CODE (temp1) == BARRIER)
530 emit_insn_after (PATTERN (temp), temp1);
531 temp1 = NEXT_INSN (temp1);
534 delete_insn (temp);
535 redirect_jump (insn, get_label_before (temp1), 1);
536 reallabelprev = prev_real_insn (temp1);
537 changed = 1;
538 next = NEXT_INSN (insn);
541 #ifdef HAVE_trap
542 /* Detect a conditional jump jumping over an unconditional trap. */
543 if (HAVE_trap
544 && this_is_any_condjump && this_is_onlyjump
545 && reallabelprev != 0
546 && GET_CODE (reallabelprev) == INSN
547 && GET_CODE (PATTERN (reallabelprev)) == TRAP_IF
548 && TRAP_CONDITION (PATTERN (reallabelprev)) == const_true_rtx
549 && prev_active_insn (reallabelprev) == insn
550 && no_labels_between_p (insn, reallabelprev)
551 && (temp2 = get_condition (insn, &temp4))
552 && ((reversed_code = reversed_comparison_code (temp2, insn))
553 != UNKNOWN))
555 rtx new = gen_cond_trap (reversed_code,
556 XEXP (temp2, 0), XEXP (temp2, 1),
557 TRAP_CODE (PATTERN (reallabelprev)));
559 if (new)
561 emit_insn_before (new, temp4);
562 delete_insn (reallabelprev);
563 delete_jump (insn);
564 changed = 1;
565 continue;
568 /* Detect a jump jumping to an unconditional trap. */
569 else if (HAVE_trap && this_is_onlyjump
570 && (temp = next_active_insn (JUMP_LABEL (insn)))
571 && GET_CODE (temp) == INSN
572 && GET_CODE (PATTERN (temp)) == TRAP_IF
573 && (this_is_any_uncondjump
574 || (this_is_any_condjump
575 && (temp2 = get_condition (insn, &temp4)))))
577 rtx tc = TRAP_CONDITION (PATTERN (temp));
579 if (tc == const_true_rtx
580 || (! this_is_any_uncondjump && rtx_equal_p (temp2, tc)))
582 rtx new;
583 /* Replace an unconditional jump to a trap with a trap. */
584 if (this_is_any_uncondjump)
586 emit_barrier_after (emit_insn_before (gen_trap (), insn));
587 delete_jump (insn);
588 changed = 1;
589 continue;
591 new = gen_cond_trap (GET_CODE (temp2), XEXP (temp2, 0),
592 XEXP (temp2, 1),
593 TRAP_CODE (PATTERN (temp)));
594 if (new)
596 emit_insn_before (new, temp4);
597 delete_jump (insn);
598 changed = 1;
599 continue;
602 /* If the trap condition and jump condition are mutually
603 exclusive, redirect the jump to the following insn. */
604 else if (GET_RTX_CLASS (GET_CODE (tc)) == '<'
605 && this_is_any_condjump
606 && swap_condition (GET_CODE (temp2)) == GET_CODE (tc)
607 && rtx_equal_p (XEXP (tc, 0), XEXP (temp2, 0))
608 && rtx_equal_p (XEXP (tc, 1), XEXP (temp2, 1))
609 && redirect_jump (insn, get_label_after (temp), 1))
611 changed = 1;
612 continue;
615 #endif
616 else
618 /* Now that the jump has been tensioned,
619 try cross jumping: check for identical code
620 before the jump and before its target label. */
622 /* First, cross jumping of conditional jumps: */
624 if (cross_jump && condjump_p (insn))
626 rtx newjpos, newlpos;
627 rtx x = prev_real_insn (JUMP_LABEL (insn));
629 /* A conditional jump may be crossjumped
630 only if the place it jumps to follows
631 an opposing jump that comes back here. */
633 if (x != 0 && ! jump_back_p (x, insn))
634 /* We have no opposing jump;
635 cannot cross jump this insn. */
636 x = 0;
638 newjpos = 0;
639 /* TARGET is nonzero if it is ok to cross jump
640 to code before TARGET. If so, see if matches. */
641 if (x != 0)
642 find_cross_jump (insn, x, 2,
643 &newjpos, &newlpos);
645 if (newjpos != 0)
647 do_cross_jump (insn, newjpos, newlpos);
648 /* Make the old conditional jump
649 into an unconditional one. */
650 SET_SRC (PATTERN (insn))
651 = gen_rtx_LABEL_REF (VOIDmode, JUMP_LABEL (insn));
652 INSN_CODE (insn) = -1;
653 emit_barrier_after (insn);
654 /* Add to jump_chain unless this is a new label
655 whose UID is too large. */
656 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
658 jump_chain[INSN_UID (insn)]
659 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
660 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
662 changed = 1;
663 next = insn;
667 /* Cross jumping of unconditional jumps:
668 a few differences. */
670 if (cross_jump && simplejump_p (insn))
672 rtx newjpos, newlpos;
673 rtx target;
675 newjpos = 0;
677 /* TARGET is nonzero if it is ok to cross jump
678 to code before TARGET. If so, see if matches. */
679 find_cross_jump (insn, JUMP_LABEL (insn), 1,
680 &newjpos, &newlpos);
682 /* If cannot cross jump to code before the label,
683 see if we can cross jump to another jump to
684 the same label. */
685 /* Try each other jump to this label. */
686 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
687 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
688 target != 0 && newjpos == 0;
689 target = jump_chain[INSN_UID (target)])
690 if (target != insn
691 && JUMP_LABEL (target) == JUMP_LABEL (insn)
692 /* Ignore TARGET if it's deleted. */
693 && ! INSN_DELETED_P (target))
694 find_cross_jump (insn, target, 2,
695 &newjpos, &newlpos);
697 if (newjpos != 0)
699 do_cross_jump (insn, newjpos, newlpos);
700 changed = 1;
701 next = insn;
705 /* This code was dead in the previous jump.c! */
706 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
708 /* Return insns all "jump to the same place"
709 so we can cross-jump between any two of them. */
711 rtx newjpos, newlpos, target;
713 newjpos = 0;
715 /* If cannot cross jump to code before the label,
716 see if we can cross jump to another jump to
717 the same label. */
718 /* Try each other jump to this label. */
719 for (target = jump_chain[0];
720 target != 0 && newjpos == 0;
721 target = jump_chain[INSN_UID (target)])
722 if (target != insn
723 && ! INSN_DELETED_P (target)
724 && GET_CODE (PATTERN (target)) == RETURN)
725 find_cross_jump (insn, target, 2,
726 &newjpos, &newlpos);
728 if (newjpos != 0)
730 do_cross_jump (insn, newjpos, newlpos);
731 changed = 1;
732 next = insn;
738 first = 0;
741 /* Delete extraneous line number notes.
742 Note that two consecutive notes for different lines are not really
743 extraneous. There should be some indication where that line belonged,
744 even if it became empty. */
747 rtx last_note = 0;
749 for (insn = f; insn; insn = NEXT_INSN (insn))
750 if (GET_CODE (insn) == NOTE)
752 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
753 /* Any previous line note was for the prologue; gdb wants a new
754 note after the prologue even if it is for the same line. */
755 last_note = NULL_RTX;
756 else if (NOTE_LINE_NUMBER (insn) >= 0)
758 /* Delete this note if it is identical to previous note. */
759 if (last_note
760 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
761 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
763 delete_insn (insn);
764 continue;
767 last_note = insn;
772 end:
773 /* Clean up. */
774 free (jump_chain);
775 jump_chain = 0;
778 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
779 notes whose labels don't occur in the insn any more. Returns the
780 largest INSN_UID found. */
781 static int
782 init_label_info (f)
783 rtx f;
785 int largest_uid = 0;
786 rtx insn;
788 for (insn = f; insn; insn = NEXT_INSN (insn))
790 if (GET_CODE (insn) == CODE_LABEL)
791 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
792 else if (GET_CODE (insn) == JUMP_INSN)
793 JUMP_LABEL (insn) = 0;
794 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
796 rtx note, next;
798 for (note = REG_NOTES (insn); note; note = next)
800 next = XEXP (note, 1);
801 if (REG_NOTE_KIND (note) == REG_LABEL
802 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
803 remove_note (insn, note);
806 if (INSN_UID (insn) > largest_uid)
807 largest_uid = INSN_UID (insn);
810 return largest_uid;
813 /* Delete insns following barriers, up to next label.
815 Also delete no-op jumps created by gcse. */
817 static void
818 delete_barrier_successors (f)
819 rtx f;
821 rtx insn;
822 rtx set;
824 for (insn = f; insn;)
826 if (GET_CODE (insn) == BARRIER)
828 insn = NEXT_INSN (insn);
830 never_reached_warning (insn);
832 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
834 if (GET_CODE (insn) == NOTE
835 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
836 insn = NEXT_INSN (insn);
837 else
838 insn = delete_insn (insn);
840 /* INSN is now the code_label. */
843 /* Also remove (set (pc) (pc)) insns which can be created by
844 gcse. We eliminate such insns now to avoid having them
845 cause problems later. */
846 else if (GET_CODE (insn) == JUMP_INSN
847 && (set = pc_set (insn)) != NULL
848 && SET_SRC (set) == pc_rtx
849 && SET_DEST (set) == pc_rtx
850 && onlyjump_p (insn))
851 insn = delete_insn (insn);
853 else
854 insn = NEXT_INSN (insn);
858 /* Mark the label each jump jumps to.
859 Combine consecutive labels, and count uses of labels.
861 For each label, make a chain (using `jump_chain')
862 of all the *unconditional* jumps that jump to it;
863 also make a chain of all returns.
865 CROSS_JUMP indicates whether we are doing cross jumping
866 and if we are whether we will be paying attention to
867 death notes or not. */
869 static void
870 mark_all_labels (f, cross_jump)
871 rtx f;
872 int cross_jump;
874 rtx insn;
876 for (insn = f; insn; insn = NEXT_INSN (insn))
877 if (INSN_P (insn))
879 if (GET_CODE (insn) == CALL_INSN
880 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
882 mark_all_labels (XEXP (PATTERN (insn), 0), cross_jump);
883 mark_all_labels (XEXP (PATTERN (insn), 1), cross_jump);
884 mark_all_labels (XEXP (PATTERN (insn), 2), cross_jump);
885 continue;
888 mark_jump_label (PATTERN (insn), insn, cross_jump, 0);
889 if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
891 /* When we know the LABEL_REF contained in a REG used in
892 an indirect jump, we'll have a REG_LABEL note so that
893 flow can tell where it's going. */
894 if (JUMP_LABEL (insn) == 0)
896 rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
897 if (label_note)
899 /* But a LABEL_REF around the REG_LABEL note, so
900 that we can canonicalize it. */
901 rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
902 XEXP (label_note, 0));
904 mark_jump_label (label_ref, insn, cross_jump, 0);
905 XEXP (label_note, 0) = XEXP (label_ref, 0);
906 JUMP_LABEL (insn) = XEXP (label_note, 0);
909 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
911 jump_chain[INSN_UID (insn)]
912 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
913 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
915 if (GET_CODE (PATTERN (insn)) == RETURN)
917 jump_chain[INSN_UID (insn)] = jump_chain[0];
918 jump_chain[0] = insn;
924 /* Delete all labels already not referenced.
925 Also find and return the last insn. */
927 static rtx
928 delete_unreferenced_labels (f)
929 rtx f;
931 rtx final = NULL_RTX;
932 rtx insn;
934 for (insn = f; insn;)
936 if (GET_CODE (insn) == CODE_LABEL
937 && LABEL_NUSES (insn) == 0
938 && LABEL_ALTERNATE_NAME (insn) == NULL)
939 insn = delete_insn (insn);
940 else
942 final = insn;
943 insn = NEXT_INSN (insn);
947 return final;
950 /* Delete various simple forms of moves which have no necessary
951 side effect. */
953 static void
954 delete_noop_moves (f)
955 rtx f;
957 rtx insn, next;
959 for (insn = f; insn;)
961 next = NEXT_INSN (insn);
963 if (GET_CODE (insn) == INSN)
965 register rtx body = PATTERN (insn);
967 /* Detect and delete no-op move instructions
968 resulting from not allocating a parameter in a register. */
970 if (GET_CODE (body) == SET
971 && (SET_DEST (body) == SET_SRC (body)
972 || (GET_CODE (SET_DEST (body)) == MEM
973 && GET_CODE (SET_SRC (body)) == MEM
974 && rtx_equal_p (SET_SRC (body), SET_DEST (body))))
975 && ! (GET_CODE (SET_DEST (body)) == MEM
976 && MEM_VOLATILE_P (SET_DEST (body)))
977 && ! (GET_CODE (SET_SRC (body)) == MEM
978 && MEM_VOLATILE_P (SET_SRC (body))))
979 delete_computation (insn);
981 /* Detect and ignore no-op move instructions
982 resulting from smart or fortuitous register allocation. */
984 else if (GET_CODE (body) == SET)
986 int sreg = true_regnum (SET_SRC (body));
987 int dreg = true_regnum (SET_DEST (body));
989 if (sreg == dreg && sreg >= 0)
990 delete_insn (insn);
991 else if (sreg >= 0 && dreg >= 0)
993 rtx trial;
994 rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
995 sreg, NULL_PTR, dreg,
996 GET_MODE (SET_SRC (body)));
998 if (tem != 0
999 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
1001 /* DREG may have been the target of a REG_DEAD note in
1002 the insn which makes INSN redundant. If so, reorg
1003 would still think it is dead. So search for such a
1004 note and delete it if we find it. */
1005 if (! find_regno_note (insn, REG_UNUSED, dreg))
1006 for (trial = prev_nonnote_insn (insn);
1007 trial && GET_CODE (trial) != CODE_LABEL;
1008 trial = prev_nonnote_insn (trial))
1009 if (find_regno_note (trial, REG_DEAD, dreg))
1011 remove_death (dreg, trial);
1012 break;
1015 /* Deleting insn could lose a death-note for SREG. */
1016 if ((trial = find_regno_note (insn, REG_DEAD, sreg)))
1018 /* Change this into a USE so that we won't emit
1019 code for it, but still can keep the note. */
1020 PATTERN (insn)
1021 = gen_rtx_USE (VOIDmode, XEXP (trial, 0));
1022 INSN_CODE (insn) = -1;
1023 /* Remove all reg notes but the REG_DEAD one. */
1024 REG_NOTES (insn) = trial;
1025 XEXP (trial, 1) = NULL_RTX;
1027 else
1028 delete_insn (insn);
1031 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
1032 && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
1033 NULL_PTR, 0,
1034 GET_MODE (SET_DEST (body))))
1036 /* This handles the case where we have two consecutive
1037 assignments of the same constant to pseudos that didn't
1038 get a hard reg. Each SET from the constant will be
1039 converted into a SET of the spill register and an
1040 output reload will be made following it. This produces
1041 two loads of the same constant into the same spill
1042 register. */
1044 rtx in_insn = insn;
1046 /* Look back for a death note for the first reg.
1047 If there is one, it is no longer accurate. */
1048 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
1050 if ((GET_CODE (in_insn) == INSN
1051 || GET_CODE (in_insn) == JUMP_INSN)
1052 && find_regno_note (in_insn, REG_DEAD, dreg))
1054 remove_death (dreg, in_insn);
1055 break;
1057 in_insn = PREV_INSN (in_insn);
1060 /* Delete the second load of the value. */
1061 delete_insn (insn);
1064 else if (GET_CODE (body) == PARALLEL)
1066 /* If each part is a set between two identical registers or
1067 a USE or CLOBBER, delete the insn. */
1068 int i, sreg, dreg;
1069 rtx tem;
1071 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1073 tem = XVECEXP (body, 0, i);
1074 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1075 continue;
1077 if (GET_CODE (tem) != SET
1078 || (sreg = true_regnum (SET_SRC (tem))) < 0
1079 || (dreg = true_regnum (SET_DEST (tem))) < 0
1080 || dreg != sreg)
1081 break;
1084 if (i < 0)
1085 delete_insn (insn);
1087 /* Also delete insns to store bit fields if they are no-ops. */
1088 /* Not worth the hair to detect this in the big-endian case. */
1089 else if (! BYTES_BIG_ENDIAN
1090 && GET_CODE (body) == SET
1091 && GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
1092 && XEXP (SET_DEST (body), 2) == const0_rtx
1093 && XEXP (SET_DEST (body), 0) == SET_SRC (body)
1094 && ! (GET_CODE (SET_SRC (body)) == MEM
1095 && MEM_VOLATILE_P (SET_SRC (body))))
1096 delete_insn (insn);
1098 insn = next;
1102 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1103 jump. Assume that this unconditional jump is to the exit test code. If
1104 the code is sufficiently simple, make a copy of it before INSN,
1105 followed by a jump to the exit of the loop. Then delete the unconditional
1106 jump after INSN.
1108 Return 1 if we made the change, else 0.
1110 This is only safe immediately after a regscan pass because it uses the
1111 values of regno_first_uid and regno_last_uid. */
1113 static int
1114 duplicate_loop_exit_test (loop_start)
1115 rtx loop_start;
1117 rtx insn, set, reg, p, link;
1118 rtx copy = 0, first_copy = 0;
1119 int num_insns = 0;
1120 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
1121 rtx lastexit;
1122 int max_reg = max_reg_num ();
1123 rtx *reg_map = 0;
1125 /* Scan the exit code. We do not perform this optimization if any insn:
1127 is a CALL_INSN
1128 is a CODE_LABEL
1129 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1130 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1131 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1132 is not valid.
1134 We also do not do this if we find an insn with ASM_OPERANDS. While
1135 this restriction should not be necessary, copying an insn with
1136 ASM_OPERANDS can confuse asm_noperands in some cases.
1138 Also, don't do this if the exit code is more than 20 insns. */
1140 for (insn = exitcode;
1141 insn
1142 && ! (GET_CODE (insn) == NOTE
1143 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
1144 insn = NEXT_INSN (insn))
1146 switch (GET_CODE (insn))
1148 case CODE_LABEL:
1149 case CALL_INSN:
1150 return 0;
1151 case NOTE:
1152 /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
1153 a jump immediately after the loop start that branches outside
1154 the loop but within an outer loop, near the exit test.
1155 If we copied this exit test and created a phony
1156 NOTE_INSN_LOOP_VTOP, this could make instructions immediately
1157 before the exit test look like these could be safely moved
1158 out of the loop even if they actually may be never executed.
1159 This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
1161 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1162 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
1163 return 0;
1165 if (optimize < 2
1166 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1167 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
1168 /* If we were to duplicate this code, we would not move
1169 the BLOCK notes, and so debugging the moved code would
1170 be difficult. Thus, we only move the code with -O2 or
1171 higher. */
1172 return 0;
1174 break;
1175 case JUMP_INSN:
1176 case INSN:
1177 /* The code below would grossly mishandle REG_WAS_0 notes,
1178 so get rid of them here. */
1179 while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
1180 remove_note (insn, p);
1181 if (++num_insns > 20
1182 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1183 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
1184 return 0;
1185 break;
1186 default:
1187 break;
1191 /* Unless INSN is zero, we can do the optimization. */
1192 if (insn == 0)
1193 return 0;
1195 lastexit = insn;
1197 /* See if any insn sets a register only used in the loop exit code and
1198 not a user variable. If so, replace it with a new register. */
1199 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1200 if (GET_CODE (insn) == INSN
1201 && (set = single_set (insn)) != 0
1202 && ((reg = SET_DEST (set), GET_CODE (reg) == REG)
1203 || (GET_CODE (reg) == SUBREG
1204 && (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
1205 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1206 && REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
1208 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
1209 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
1210 break;
1212 if (p != lastexit)
1214 /* We can do the replacement. Allocate reg_map if this is the
1215 first replacement we found. */
1216 if (reg_map == 0)
1217 reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
1219 REG_LOOP_TEST_P (reg) = 1;
1221 reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
1225 /* Now copy each insn. */
1226 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1228 switch (GET_CODE (insn))
1230 case BARRIER:
1231 copy = emit_barrier_before (loop_start);
1232 break;
1233 case NOTE:
1234 /* Only copy line-number notes. */
1235 if (NOTE_LINE_NUMBER (insn) >= 0)
1237 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
1238 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
1240 break;
1242 case INSN:
1243 copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
1244 if (reg_map)
1245 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1247 mark_jump_label (PATTERN (copy), copy, 0, 0);
1249 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
1250 make them. */
1251 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1252 if (REG_NOTE_KIND (link) != REG_LABEL)
1254 if (GET_CODE (link) == EXPR_LIST)
1255 REG_NOTES (copy)
1256 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
1257 XEXP (link, 0),
1258 REG_NOTES (copy)));
1259 else
1260 REG_NOTES (copy)
1261 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
1262 XEXP (link, 0),
1263 REG_NOTES (copy)));
1266 if (reg_map && REG_NOTES (copy))
1267 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1268 break;
1270 case JUMP_INSN:
1271 copy = emit_jump_insn_before (copy_insn (PATTERN (insn)),
1272 loop_start);
1273 if (reg_map)
1274 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1275 mark_jump_label (PATTERN (copy), copy, 0, 0);
1276 if (REG_NOTES (insn))
1278 REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
1279 if (reg_map)
1280 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1283 /* If this is a simple jump, add it to the jump chain. */
1285 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
1286 && simplejump_p (copy))
1288 jump_chain[INSN_UID (copy)]
1289 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1290 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1292 break;
1294 default:
1295 abort ();
1298 /* Record the first insn we copied. We need it so that we can
1299 scan the copied insns for new pseudo registers. */
1300 if (! first_copy)
1301 first_copy = copy;
1304 /* Now clean up by emitting a jump to the end label and deleting the jump
1305 at the start of the loop. */
1306 if (! copy || GET_CODE (copy) != BARRIER)
1308 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
1309 loop_start);
1311 /* Record the first insn we copied. We need it so that we can
1312 scan the copied insns for new pseudo registers. This may not
1313 be strictly necessary since we should have copied at least one
1314 insn above. But I am going to be safe. */
1315 if (! first_copy)
1316 first_copy = copy;
1318 mark_jump_label (PATTERN (copy), copy, 0, 0);
1319 if (INSN_UID (copy) < max_jump_chain
1320 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
1322 jump_chain[INSN_UID (copy)]
1323 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1324 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1326 emit_barrier_before (loop_start);
1329 /* Now scan from the first insn we copied to the last insn we copied
1330 (copy) for new pseudo registers. Do this after the code to jump to
1331 the end label since that might create a new pseudo too. */
1332 reg_scan_update (first_copy, copy, max_reg);
1334 /* Mark the exit code as the virtual top of the converted loop. */
1335 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
1337 delete_insn (next_nonnote_insn (loop_start));
1339 /* Clean up. */
1340 if (reg_map)
1341 free (reg_map);
1343 return 1;
1346 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
1347 notes between START and END out before START. Assume that END is not
1348 such a note. START may be such a note. Returns the value of the new
1349 starting insn, which may be different if the original start was such a
1350 note. */
1353 squeeze_notes (start, end)
1354 rtx start, end;
1356 rtx insn;
1357 rtx next;
1359 for (insn = start; insn != end; insn = next)
1361 next = NEXT_INSN (insn);
1362 if (GET_CODE (insn) == NOTE
1363 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
1364 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1365 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1366 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
1367 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
1368 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
1370 if (insn == start)
1371 start = next;
1372 else
1374 rtx prev = PREV_INSN (insn);
1375 PREV_INSN (insn) = PREV_INSN (start);
1376 NEXT_INSN (insn) = start;
1377 NEXT_INSN (PREV_INSN (insn)) = insn;
1378 PREV_INSN (NEXT_INSN (insn)) = insn;
1379 NEXT_INSN (prev) = next;
1380 PREV_INSN (next) = prev;
1385 return start;
1388 /* Compare the instructions before insn E1 with those before E2
1389 to find an opportunity for cross jumping.
1390 (This means detecting identical sequences of insns followed by
1391 jumps to the same place, or followed by a label and a jump
1392 to that label, and replacing one with a jump to the other.)
1394 Assume E1 is a jump that jumps to label E2
1395 (that is not always true but it might as well be).
1396 Find the longest possible equivalent sequences
1397 and store the first insns of those sequences into *F1 and *F2.
1398 Store zero there if no equivalent preceding instructions are found.
1400 We give up if we find a label in stream 1.
1401 Actually we could transfer that label into stream 2. */
1403 static void
1404 find_cross_jump (e1, e2, minimum, f1, f2)
1405 rtx e1, e2;
1406 int minimum;
1407 rtx *f1, *f2;
1409 register rtx i1 = e1, i2 = e2;
1410 register rtx p1, p2;
1411 int lose = 0;
1413 rtx last1 = 0, last2 = 0;
1414 rtx afterlast1 = 0, afterlast2 = 0;
1416 *f1 = 0;
1417 *f2 = 0;
1419 while (1)
1421 i1 = prev_nonnote_insn (i1);
1423 i2 = PREV_INSN (i2);
1424 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
1425 i2 = PREV_INSN (i2);
1427 if (i1 == 0)
1428 break;
1430 /* Don't allow the range of insns preceding E1 or E2
1431 to include the other (E2 or E1). */
1432 if (i2 == e1 || i1 == e2)
1433 break;
1435 /* If we will get to this code by jumping, those jumps will be
1436 tensioned to go directly to the new label (before I2),
1437 so this cross-jumping won't cost extra. So reduce the minimum. */
1438 if (GET_CODE (i1) == CODE_LABEL)
1440 --minimum;
1441 break;
1444 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
1445 break;
1447 /* Avoid moving insns across EH regions if either of the insns
1448 can throw. */
1449 if (flag_exceptions
1450 && (asynchronous_exceptions || GET_CODE (i1) == CALL_INSN)
1451 && !in_same_eh_region (i1, i2))
1452 break;
1454 p1 = PATTERN (i1);
1455 p2 = PATTERN (i2);
1457 /* If this is a CALL_INSN, compare register usage information.
1458 If we don't check this on stack register machines, the two
1459 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1460 numbers of stack registers in the same basic block.
1461 If we don't check this on machines with delay slots, a delay slot may
1462 be filled that clobbers a parameter expected by the subroutine.
1464 ??? We take the simple route for now and assume that if they're
1465 equal, they were constructed identically. */
1467 if (GET_CODE (i1) == CALL_INSN
1468 && ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1469 CALL_INSN_FUNCTION_USAGE (i2)))
1470 lose = 1;
1472 #ifdef STACK_REGS
1473 /* If cross_jump_death_matters is not 0, the insn's mode
1474 indicates whether or not the insn contains any stack-like
1475 regs. */
1477 if (!lose && cross_jump_death_matters && stack_regs_mentioned (i1))
1479 /* If register stack conversion has already been done, then
1480 death notes must also be compared before it is certain that
1481 the two instruction streams match. */
1483 rtx note;
1484 HARD_REG_SET i1_regset, i2_regset;
1486 CLEAR_HARD_REG_SET (i1_regset);
1487 CLEAR_HARD_REG_SET (i2_regset);
1489 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1490 if (REG_NOTE_KIND (note) == REG_DEAD
1491 && STACK_REG_P (XEXP (note, 0)))
1492 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1494 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1495 if (REG_NOTE_KIND (note) == REG_DEAD
1496 && STACK_REG_P (XEXP (note, 0)))
1497 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1499 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1501 lose = 1;
1503 done:
1506 #endif
1508 /* Don't allow old-style asm or volatile extended asms to be accepted
1509 for cross jumping purposes. It is conceptually correct to allow
1510 them, since cross-jumping preserves the dynamic instruction order
1511 even though it is changing the static instruction order. However,
1512 if an asm is being used to emit an assembler pseudo-op, such as
1513 the MIPS `.set reorder' pseudo-op, then the static instruction order
1514 matters and it must be preserved. */
1515 if (GET_CODE (p1) == ASM_INPUT || GET_CODE (p2) == ASM_INPUT
1516 || (GET_CODE (p1) == ASM_OPERANDS && MEM_VOLATILE_P (p1))
1517 || (GET_CODE (p2) == ASM_OPERANDS && MEM_VOLATILE_P (p2)))
1518 lose = 1;
1520 if (lose || GET_CODE (p1) != GET_CODE (p2)
1521 || ! rtx_renumbered_equal_p (p1, p2))
1523 /* The following code helps take care of G++ cleanups. */
1524 rtx equiv1;
1525 rtx equiv2;
1527 if (!lose && GET_CODE (p1) == GET_CODE (p2)
1528 && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
1529 || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
1530 && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
1531 || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
1532 /* If the equivalences are not to a constant, they may
1533 reference pseudos that no longer exist, so we can't
1534 use them. */
1535 && CONSTANT_P (XEXP (equiv1, 0))
1536 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1538 rtx s1 = single_set (i1);
1539 rtx s2 = single_set (i2);
1540 if (s1 != 0 && s2 != 0
1541 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1543 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1544 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1545 if (! rtx_renumbered_equal_p (p1, p2))
1546 cancel_changes (0);
1547 else if (apply_change_group ())
1548 goto win;
1552 /* Insns fail to match; cross jumping is limited to the following
1553 insns. */
1555 #ifdef HAVE_cc0
1556 /* Don't allow the insn after a compare to be shared by
1557 cross-jumping unless the compare is also shared.
1558 Here, if either of these non-matching insns is a compare,
1559 exclude the following insn from possible cross-jumping. */
1560 if (sets_cc0_p (p1) || sets_cc0_p (p2))
1561 last1 = afterlast1, last2 = afterlast2, ++minimum;
1562 #endif
1564 /* If cross-jumping here will feed a jump-around-jump
1565 optimization, this jump won't cost extra, so reduce
1566 the minimum. */
1567 if (GET_CODE (i1) == JUMP_INSN
1568 && JUMP_LABEL (i1)
1569 && prev_real_insn (JUMP_LABEL (i1)) == e1)
1570 --minimum;
1571 break;
1574 win:
1575 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
1577 /* Ok, this insn is potentially includable in a cross-jump here. */
1578 afterlast1 = last1, afterlast2 = last2;
1579 last1 = i1, last2 = i2, --minimum;
1583 if (minimum <= 0 && last1 != 0 && last1 != e1)
1584 *f1 = last1, *f2 = last2;
1587 static void
1588 do_cross_jump (insn, newjpos, newlpos)
1589 rtx insn, newjpos, newlpos;
1591 /* Find an existing label at this point
1592 or make a new one if there is none. */
1593 register rtx label = get_label_before (newlpos);
1595 /* Make the same jump insn jump to the new point. */
1596 if (GET_CODE (PATTERN (insn)) == RETURN)
1598 /* Remove from jump chain of returns. */
1599 delete_from_jump_chain (insn);
1600 /* Change the insn. */
1601 PATTERN (insn) = gen_jump (label);
1602 INSN_CODE (insn) = -1;
1603 JUMP_LABEL (insn) = label;
1604 LABEL_NUSES (label)++;
1605 /* Add to new the jump chain. */
1606 if (INSN_UID (label) < max_jump_chain
1607 && INSN_UID (insn) < max_jump_chain)
1609 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
1610 jump_chain[INSN_UID (label)] = insn;
1613 else
1614 redirect_jump (insn, label, 1);
1616 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
1617 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
1618 the NEWJPOS stream. */
1620 while (newjpos != insn)
1622 rtx lnote;
1624 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
1625 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
1626 || REG_NOTE_KIND (lnote) == REG_EQUIV)
1627 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
1628 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
1629 remove_note (newlpos, lnote);
1631 delete_insn (newjpos);
1632 newjpos = next_real_insn (newjpos);
1633 newlpos = next_real_insn (newlpos);
1637 /* Return the label before INSN, or put a new label there. */
1640 get_label_before (insn)
1641 rtx insn;
1643 rtx label;
1645 /* Find an existing label at this point
1646 or make a new one if there is none. */
1647 label = prev_nonnote_insn (insn);
1649 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1651 rtx prev = PREV_INSN (insn);
1653 label = gen_label_rtx ();
1654 emit_label_after (label, prev);
1655 LABEL_NUSES (label) = 0;
1657 return label;
1660 /* Return the label after INSN, or put a new label there. */
1663 get_label_after (insn)
1664 rtx insn;
1666 rtx label;
1668 /* Find an existing label at this point
1669 or make a new one if there is none. */
1670 label = next_nonnote_insn (insn);
1672 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1674 label = gen_label_rtx ();
1675 emit_label_after (label, insn);
1676 LABEL_NUSES (label) = 0;
1678 return label;
1681 /* Return 1 if INSN is a jump that jumps to right after TARGET
1682 only on the condition that TARGET itself would drop through.
1683 Assumes that TARGET is a conditional jump. */
1685 static int
1686 jump_back_p (insn, target)
1687 rtx insn, target;
1689 rtx cinsn, ctarget;
1690 enum rtx_code codei, codet;
1691 rtx set, tset;
1693 if (! any_condjump_p (insn)
1694 || any_uncondjump_p (target)
1695 || target != prev_real_insn (JUMP_LABEL (insn)))
1696 return 0;
1697 set = pc_set (insn);
1698 tset = pc_set (target);
1700 cinsn = XEXP (SET_SRC (set), 0);
1701 ctarget = XEXP (SET_SRC (tset), 0);
1703 codei = GET_CODE (cinsn);
1704 codet = GET_CODE (ctarget);
1706 if (XEXP (SET_SRC (set), 1) == pc_rtx)
1708 codei = reversed_comparison_code (cinsn, insn);
1709 if (codei == UNKNOWN)
1710 return 0;
1713 if (XEXP (SET_SRC (tset), 2) == pc_rtx)
1715 codet = reversed_comparison_code (ctarget, target);
1716 if (codei == UNKNOWN)
1717 return 0;
1720 return (codei == codet
1721 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
1722 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
1725 /* Given a comparison (CODE ARG0 ARG1), inside a insn, INSN, return an code
1726 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
1727 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
1728 know whether it's source is floating point or integer comparison. Machine
1729 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
1730 to help this function avoid overhead in these cases. */
1731 enum rtx_code
1732 reversed_comparison_code_parts (code, arg0, arg1, insn)
1733 rtx insn, arg0, arg1;
1734 enum rtx_code code;
1736 enum machine_mode mode;
1738 /* If this is not actually a comparison, we can't reverse it. */
1739 if (GET_RTX_CLASS (code) != '<')
1740 return UNKNOWN;
1742 mode = GET_MODE (arg0);
1743 if (mode == VOIDmode)
1744 mode = GET_MODE (arg1);
1746 /* First see if machine description supply us way to reverse the comparison.
1747 Give it priority over everything else to allow machine description to do
1748 tricks. */
1749 #ifdef REVERSIBLE_CC_MODE
1750 if (GET_MODE_CLASS (mode) == MODE_CC
1751 && REVERSIBLE_CC_MODE (mode))
1753 #ifdef REVERSE_CONDITION
1754 return REVERSE_CONDITION (code, mode);
1755 #endif
1756 return reverse_condition (code);
1758 #endif
1760 /* Try few special cases based on the comparison code. */
1761 switch (code)
1763 case GEU:
1764 case GTU:
1765 case LEU:
1766 case LTU:
1767 case NE:
1768 case EQ:
1769 /* It is always safe to reverse EQ and NE, even for the floating
1770 point. Similary the unsigned comparisons are never used for
1771 floating point so we can reverse them in the default way. */
1772 return reverse_condition (code);
1773 case ORDERED:
1774 case UNORDERED:
1775 case LTGT:
1776 case UNEQ:
1777 /* In case we already see unordered comparison, we can be sure to
1778 be dealing with floating point so we don't need any more tests. */
1779 return reverse_condition_maybe_unordered (code);
1780 case UNLT:
1781 case UNLE:
1782 case UNGT:
1783 case UNGE:
1784 /* We don't have safe way to reverse these yet. */
1785 return UNKNOWN;
1786 default:
1787 break;
1790 /* In case we give up IEEE compatibility, all comparisons are reversible. */
1791 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1792 || flag_unsafe_math_optimizations)
1793 return reverse_condition (code);
1795 if (GET_MODE_CLASS (mode) == MODE_CC
1796 #ifdef HAVE_cc0
1797 || arg0 == cc0_rtx
1798 #endif
1801 rtx prev;
1802 /* Try to search for the comparison to determine the real mode.
1803 This code is expensive, but with sane machine description it
1804 will be never used, since REVERSIBLE_CC_MODE will return true
1805 in all cases. */
1806 if (! insn)
1807 return UNKNOWN;
1809 for (prev = prev_nonnote_insn (insn);
1810 prev != 0 && GET_CODE (prev) != CODE_LABEL;
1811 prev = prev_nonnote_insn (prev))
1813 rtx set = set_of (arg0, prev);
1814 if (set && GET_CODE (set) == SET
1815 && rtx_equal_p (SET_DEST (set), arg0))
1817 rtx src = SET_SRC (set);
1819 if (GET_CODE (src) == COMPARE)
1821 rtx comparison = src;
1822 arg0 = XEXP (src, 0);
1823 mode = GET_MODE (arg0);
1824 if (mode == VOIDmode)
1825 mode = GET_MODE (XEXP (comparison, 1));
1826 break;
1828 /* We can get past reg-reg moves. This may be usefull for model
1829 of i387 comparisons that first move flag registers around. */
1830 if (REG_P (src))
1832 arg0 = src;
1833 continue;
1836 /* If register is clobbered in some ununderstandable way,
1837 give up. */
1838 if (set)
1839 return UNKNOWN;
1843 /* An integer condition. */
1844 if (GET_CODE (arg0) == CONST_INT
1845 || (GET_MODE (arg0) != VOIDmode
1846 && GET_MODE_CLASS (mode) != MODE_CC
1847 && ! FLOAT_MODE_P (mode)))
1848 return reverse_condition (code);
1850 return UNKNOWN;
1853 /* An wrapper around the previous function to take COMPARISON as rtx
1854 expression. This simplifies many callers. */
1855 enum rtx_code
1856 reversed_comparison_code (comparison, insn)
1857 rtx comparison, insn;
1859 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
1860 return UNKNOWN;
1861 return reversed_comparison_code_parts (GET_CODE (comparison),
1862 XEXP (comparison, 0),
1863 XEXP (comparison, 1), insn);
1866 /* Given an rtx-code for a comparison, return the code for the negated
1867 comparison. If no such code exists, return UNKNOWN.
1869 WATCH OUT! reverse_condition is not safe to use on a jump that might
1870 be acting on the results of an IEEE floating point comparison, because
1871 of the special treatment of non-signaling nans in comparisons.
1872 Use reversed_comparison_code instead. */
1874 enum rtx_code
1875 reverse_condition (code)
1876 enum rtx_code code;
1878 switch (code)
1880 case EQ:
1881 return NE;
1882 case NE:
1883 return EQ;
1884 case GT:
1885 return LE;
1886 case GE:
1887 return LT;
1888 case LT:
1889 return GE;
1890 case LE:
1891 return GT;
1892 case GTU:
1893 return LEU;
1894 case GEU:
1895 return LTU;
1896 case LTU:
1897 return GEU;
1898 case LEU:
1899 return GTU;
1900 case UNORDERED:
1901 return ORDERED;
1902 case ORDERED:
1903 return UNORDERED;
1905 case UNLT:
1906 case UNLE:
1907 case UNGT:
1908 case UNGE:
1909 case UNEQ:
1910 case LTGT:
1911 return UNKNOWN;
1913 default:
1914 abort ();
1918 /* Similar, but we're allowed to generate unordered comparisons, which
1919 makes it safe for IEEE floating-point. Of course, we have to recognize
1920 that the target will support them too... */
1922 enum rtx_code
1923 reverse_condition_maybe_unordered (code)
1924 enum rtx_code code;
1926 /* Non-IEEE formats don't have unordered conditions. */
1927 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
1928 return reverse_condition (code);
1930 switch (code)
1932 case EQ:
1933 return NE;
1934 case NE:
1935 return EQ;
1936 case GT:
1937 return UNLE;
1938 case GE:
1939 return UNLT;
1940 case LT:
1941 return UNGE;
1942 case LE:
1943 return UNGT;
1944 case LTGT:
1945 return UNEQ;
1946 case UNORDERED:
1947 return ORDERED;
1948 case ORDERED:
1949 return UNORDERED;
1950 case UNLT:
1951 return GE;
1952 case UNLE:
1953 return GT;
1954 case UNGT:
1955 return LE;
1956 case UNGE:
1957 return LT;
1958 case UNEQ:
1959 return LTGT;
1961 default:
1962 abort ();
1966 /* Similar, but return the code when two operands of a comparison are swapped.
1967 This IS safe for IEEE floating-point. */
1969 enum rtx_code
1970 swap_condition (code)
1971 enum rtx_code code;
1973 switch (code)
1975 case EQ:
1976 case NE:
1977 case UNORDERED:
1978 case ORDERED:
1979 case UNEQ:
1980 case LTGT:
1981 return code;
1983 case GT:
1984 return LT;
1985 case GE:
1986 return LE;
1987 case LT:
1988 return GT;
1989 case LE:
1990 return GE;
1991 case GTU:
1992 return LTU;
1993 case GEU:
1994 return LEU;
1995 case LTU:
1996 return GTU;
1997 case LEU:
1998 return GEU;
1999 case UNLT:
2000 return UNGT;
2001 case UNLE:
2002 return UNGE;
2003 case UNGT:
2004 return UNLT;
2005 case UNGE:
2006 return UNLE;
2008 default:
2009 abort ();
2013 /* Given a comparison CODE, return the corresponding unsigned comparison.
2014 If CODE is an equality comparison or already an unsigned comparison,
2015 CODE is returned. */
2017 enum rtx_code
2018 unsigned_condition (code)
2019 enum rtx_code code;
2021 switch (code)
2023 case EQ:
2024 case NE:
2025 case GTU:
2026 case GEU:
2027 case LTU:
2028 case LEU:
2029 return code;
2031 case GT:
2032 return GTU;
2033 case GE:
2034 return GEU;
2035 case LT:
2036 return LTU;
2037 case LE:
2038 return LEU;
2040 default:
2041 abort ();
2045 /* Similarly, return the signed version of a comparison. */
2047 enum rtx_code
2048 signed_condition (code)
2049 enum rtx_code code;
2051 switch (code)
2053 case EQ:
2054 case NE:
2055 case GT:
2056 case GE:
2057 case LT:
2058 case LE:
2059 return code;
2061 case GTU:
2062 return GT;
2063 case GEU:
2064 return GE;
2065 case LTU:
2066 return LT;
2067 case LEU:
2068 return LE;
2070 default:
2071 abort ();
2075 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
2076 truth of CODE1 implies the truth of CODE2. */
2079 comparison_dominates_p (code1, code2)
2080 enum rtx_code code1, code2;
2082 /* UNKNOWN comparison codes can happen as a result of trying to revert
2083 comparison codes.
2084 They can't match anything, so we have to reject them here. */
2085 if (code1 == UNKNOWN || code2 == UNKNOWN)
2086 return 0;
2088 if (code1 == code2)
2089 return 1;
2091 switch (code1)
2093 case UNEQ:
2094 if (code2 == UNLE || code2 == UNGE)
2095 return 1;
2096 break;
2098 case EQ:
2099 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
2100 || code2 == ORDERED)
2101 return 1;
2102 break;
2104 case UNLT:
2105 if (code2 == UNLE || code2 == NE)
2106 return 1;
2107 break;
2109 case LT:
2110 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
2111 return 1;
2112 break;
2114 case UNGT:
2115 if (code2 == UNGE || code2 == NE)
2116 return 1;
2117 break;
2119 case GT:
2120 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
2121 return 1;
2122 break;
2124 case GE:
2125 case LE:
2126 if (code2 == ORDERED)
2127 return 1;
2128 break;
2130 case LTGT:
2131 if (code2 == NE || code2 == ORDERED)
2132 return 1;
2133 break;
2135 case LTU:
2136 if (code2 == LEU || code2 == NE)
2137 return 1;
2138 break;
2140 case GTU:
2141 if (code2 == GEU || code2 == NE)
2142 return 1;
2143 break;
2145 case UNORDERED:
2146 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
2147 || code2 == UNGE || code2 == UNGT)
2148 return 1;
2149 break;
2151 default:
2152 break;
2155 return 0;
2158 /* Return 1 if INSN is an unconditional jump and nothing else. */
2161 simplejump_p (insn)
2162 rtx insn;
2164 return (GET_CODE (insn) == JUMP_INSN
2165 && GET_CODE (PATTERN (insn)) == SET
2166 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
2167 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
2170 /* Return nonzero if INSN is a (possibly) conditional jump
2171 and nothing more.
2173 Use this function is deprecated, since we need to support combined
2174 branch and compare insns. Use any_condjump_p instead whenever possible. */
2177 condjump_p (insn)
2178 rtx insn;
2180 register rtx x = PATTERN (insn);
2182 if (GET_CODE (x) != SET
2183 || GET_CODE (SET_DEST (x)) != PC)
2184 return 0;
2186 x = SET_SRC (x);
2187 if (GET_CODE (x) == LABEL_REF)
2188 return 1;
2189 else
2190 return (GET_CODE (x) == IF_THEN_ELSE
2191 && ((GET_CODE (XEXP (x, 2)) == PC
2192 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
2193 || GET_CODE (XEXP (x, 1)) == RETURN))
2194 || (GET_CODE (XEXP (x, 1)) == PC
2195 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
2196 || GET_CODE (XEXP (x, 2)) == RETURN))));
2198 return 0;
2201 /* Return nonzero if INSN is a (possibly) conditional jump inside a
2202 PARALLEL.
2204 Use this function is deprecated, since we need to support combined
2205 branch and compare insns. Use any_condjump_p instead whenever possible. */
2208 condjump_in_parallel_p (insn)
2209 rtx insn;
2211 register rtx x = PATTERN (insn);
2213 if (GET_CODE (x) != PARALLEL)
2214 return 0;
2215 else
2216 x = XVECEXP (x, 0, 0);
2218 if (GET_CODE (x) != SET)
2219 return 0;
2220 if (GET_CODE (SET_DEST (x)) != PC)
2221 return 0;
2222 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
2223 return 1;
2224 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2225 return 0;
2226 if (XEXP (SET_SRC (x), 2) == pc_rtx
2227 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2228 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2229 return 1;
2230 if (XEXP (SET_SRC (x), 1) == pc_rtx
2231 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2232 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2233 return 1;
2234 return 0;
2237 /* Return set of PC, otherwise NULL. */
2240 pc_set (insn)
2241 rtx insn;
2243 rtx pat;
2244 if (GET_CODE (insn) != JUMP_INSN)
2245 return NULL_RTX;
2246 pat = PATTERN (insn);
2248 /* The set is allowed to appear either as the insn pattern or
2249 the first set in a PARALLEL. */
2250 if (GET_CODE (pat) == PARALLEL)
2251 pat = XVECEXP (pat, 0, 0);
2252 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
2253 return pat;
2255 return NULL_RTX;
2258 /* Return true when insn is an unconditional direct jump,
2259 possibly bundled inside a PARALLEL. */
2262 any_uncondjump_p (insn)
2263 rtx insn;
2265 rtx x = pc_set (insn);
2266 if (!x)
2267 return 0;
2268 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
2269 return 0;
2270 return 1;
2273 /* Return true when insn is a conditional jump. This function works for
2274 instructions containing PC sets in PARALLELs. The instruction may have
2275 various other effects so before removing the jump you must verify
2276 onlyjump_p.
2278 Note that unlike condjump_p it returns false for unconditional jumps. */
2281 any_condjump_p (insn)
2282 rtx insn;
2284 rtx x = pc_set (insn);
2285 enum rtx_code a, b;
2287 if (!x)
2288 return 0;
2289 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2290 return 0;
2292 a = GET_CODE (XEXP (SET_SRC (x), 1));
2293 b = GET_CODE (XEXP (SET_SRC (x), 2));
2295 return ((b == PC && (a == LABEL_REF || a == RETURN))
2296 || (a == PC && (b == LABEL_REF || b == RETURN)));
2299 /* Return the label of a conditional jump. */
2302 condjump_label (insn)
2303 rtx insn;
2305 rtx x = pc_set (insn);
2307 if (!x)
2308 return NULL_RTX;
2309 x = SET_SRC (x);
2310 if (GET_CODE (x) == LABEL_REF)
2311 return x;
2312 if (GET_CODE (x) != IF_THEN_ELSE)
2313 return NULL_RTX;
2314 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
2315 return XEXP (x, 1);
2316 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
2317 return XEXP (x, 2);
2318 return NULL_RTX;
2321 /* Return true if INSN is a (possibly conditional) return insn. */
2323 static int
2324 returnjump_p_1 (loc, data)
2325 rtx *loc;
2326 void *data ATTRIBUTE_UNUSED;
2328 rtx x = *loc;
2329 return x && GET_CODE (x) == RETURN;
2333 returnjump_p (insn)
2334 rtx insn;
2336 if (GET_CODE (insn) != JUMP_INSN)
2337 return 0;
2338 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
2341 /* Return true if INSN is a jump that only transfers control and
2342 nothing more. */
2345 onlyjump_p (insn)
2346 rtx insn;
2348 rtx set;
2350 if (GET_CODE (insn) != JUMP_INSN)
2351 return 0;
2353 set = single_set (insn);
2354 if (set == NULL)
2355 return 0;
2356 if (GET_CODE (SET_DEST (set)) != PC)
2357 return 0;
2358 if (side_effects_p (SET_SRC (set)))
2359 return 0;
2361 return 1;
2364 #ifdef HAVE_cc0
2366 /* Return 1 if X is an RTX that does nothing but set the condition codes
2367 and CLOBBER or USE registers.
2368 Return -1 if X does explicitly set the condition codes,
2369 but also does other things. */
2372 sets_cc0_p (x)
2373 rtx x ATTRIBUTE_UNUSED;
2375 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
2376 return 1;
2377 if (GET_CODE (x) == PARALLEL)
2379 int i;
2380 int sets_cc0 = 0;
2381 int other_things = 0;
2382 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2384 if (GET_CODE (XVECEXP (x, 0, i)) == SET
2385 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
2386 sets_cc0 = 1;
2387 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
2388 other_things = 1;
2390 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
2392 return 0;
2394 #endif
2396 /* Follow any unconditional jump at LABEL;
2397 return the ultimate label reached by any such chain of jumps.
2398 If LABEL is not followed by a jump, return LABEL.
2399 If the chain loops or we can't find end, return LABEL,
2400 since that tells caller to avoid changing the insn.
2402 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2403 a USE or CLOBBER. */
2406 follow_jumps (label)
2407 rtx label;
2409 register rtx insn;
2410 register rtx next;
2411 register rtx value = label;
2412 register int depth;
2414 for (depth = 0;
2415 (depth < 10
2416 && (insn = next_active_insn (value)) != 0
2417 && GET_CODE (insn) == JUMP_INSN
2418 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
2419 && onlyjump_p (insn))
2420 || GET_CODE (PATTERN (insn)) == RETURN)
2421 && (next = NEXT_INSN (insn))
2422 && GET_CODE (next) == BARRIER);
2423 depth++)
2425 /* Don't chain through the insn that jumps into a loop
2426 from outside the loop,
2427 since that would create multiple loop entry jumps
2428 and prevent loop optimization. */
2429 rtx tem;
2430 if (!reload_completed)
2431 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
2432 if (GET_CODE (tem) == NOTE
2433 && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
2434 /* ??? Optional. Disables some optimizations, but makes
2435 gcov output more accurate with -O. */
2436 || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
2437 return value;
2439 /* If we have found a cycle, make the insn jump to itself. */
2440 if (JUMP_LABEL (insn) == label)
2441 return label;
2443 tem = next_active_insn (JUMP_LABEL (insn));
2444 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2445 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2446 break;
2448 value = JUMP_LABEL (insn);
2450 if (depth == 10)
2451 return label;
2452 return value;
2455 /* Assuming that field IDX of X is a vector of label_refs,
2456 replace each of them by the ultimate label reached by it.
2457 Return nonzero if a change is made.
2458 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2460 static int
2461 tension_vector_labels (x, idx)
2462 register rtx x;
2463 register int idx;
2465 int changed = 0;
2466 register int i;
2467 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
2469 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
2470 register rtx nlabel = follow_jumps (olabel);
2471 if (nlabel && nlabel != olabel)
2473 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
2474 ++LABEL_NUSES (nlabel);
2475 if (--LABEL_NUSES (olabel) == 0)
2476 delete_insn (olabel);
2477 changed = 1;
2480 return changed;
2483 /* Find all CODE_LABELs referred to in X, and increment their use counts.
2484 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2485 in INSN, then store one of them in JUMP_LABEL (INSN).
2486 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2487 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2488 Also, when there are consecutive labels, canonicalize on the last of them.
2490 Note that two labels separated by a loop-beginning note
2491 must be kept distinct if we have not yet done loop-optimization,
2492 because the gap between them is where loop-optimize
2493 will want to move invariant code to. CROSS_JUMP tells us
2494 that loop-optimization is done with.
2496 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2497 two labels distinct if they are separated by only USE or CLOBBER insns. */
2499 void
2500 mark_jump_label (x, insn, cross_jump, in_mem)
2501 register rtx x;
2502 rtx insn;
2503 int cross_jump;
2504 int in_mem;
2506 register RTX_CODE code = GET_CODE (x);
2507 register int i;
2508 register const char *fmt;
2510 switch (code)
2512 case PC:
2513 case CC0:
2514 case REG:
2515 case SUBREG:
2516 case CONST_INT:
2517 case CONST_DOUBLE:
2518 case CLOBBER:
2519 case CALL:
2520 return;
2522 case MEM:
2523 in_mem = 1;
2524 break;
2526 case SYMBOL_REF:
2527 if (!in_mem)
2528 return;
2530 /* If this is a constant-pool reference, see if it is a label. */
2531 if (CONSTANT_POOL_ADDRESS_P (x))
2532 mark_jump_label (get_pool_constant (x), insn, cross_jump, in_mem);
2533 break;
2535 case LABEL_REF:
2537 rtx label = XEXP (x, 0);
2538 rtx olabel = label;
2539 rtx note;
2540 rtx next;
2542 /* Ignore remaining references to unreachable labels that
2543 have been deleted. */
2544 if (GET_CODE (label) == NOTE
2545 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
2546 break;
2548 if (GET_CODE (label) != CODE_LABEL)
2549 abort ();
2551 /* Ignore references to labels of containing functions. */
2552 if (LABEL_REF_NONLOCAL_P (x))
2553 break;
2555 /* If there are other labels following this one,
2556 replace it with the last of the consecutive labels. */
2557 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
2559 if (GET_CODE (next) == CODE_LABEL)
2560 label = next;
2561 else if (cross_jump && GET_CODE (next) == INSN
2562 && (GET_CODE (PATTERN (next)) == USE
2563 || GET_CODE (PATTERN (next)) == CLOBBER))
2564 continue;
2565 else if (GET_CODE (next) != NOTE)
2566 break;
2567 else if (! cross_jump
2568 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
2569 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END
2570 /* ??? Optional. Disables some optimizations, but
2571 makes gcov output more accurate with -O. */
2572 || (flag_test_coverage
2573 && NOTE_LINE_NUMBER (next) > 0)))
2574 break;
2577 XEXP (x, 0) = label;
2578 if (! insn || ! INSN_DELETED_P (insn))
2579 ++LABEL_NUSES (label);
2581 if (insn)
2583 if (GET_CODE (insn) == JUMP_INSN)
2584 JUMP_LABEL (insn) = label;
2586 /* If we've changed OLABEL and we had a REG_LABEL note
2587 for it, update it as well. */
2588 else if (label != olabel
2589 && (note = find_reg_note (insn, REG_LABEL, olabel)) != 0)
2590 XEXP (note, 0) = label;
2592 /* Otherwise, add a REG_LABEL note for LABEL unless there already
2593 is one. */
2594 else if (! find_reg_note (insn, REG_LABEL, label))
2596 /* This code used to ignore labels which refered to dispatch
2597 tables to avoid flow.c generating worse code.
2599 However, in the presense of global optimizations like
2600 gcse which call find_basic_blocks without calling
2601 life_analysis, not recording such labels will lead
2602 to compiler aborts because of inconsistencies in the
2603 flow graph. So we go ahead and record the label.
2605 It may also be the case that the optimization argument
2606 is no longer valid because of the more accurate cfg
2607 we build in find_basic_blocks -- it no longer pessimizes
2608 code when it finds a REG_LABEL note. */
2609 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
2610 REG_NOTES (insn));
2613 return;
2616 /* Do walk the labels in a vector, but not the first operand of an
2617 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
2618 case ADDR_VEC:
2619 case ADDR_DIFF_VEC:
2620 if (! INSN_DELETED_P (insn))
2622 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
2624 for (i = 0; i < XVECLEN (x, eltnum); i++)
2625 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX,
2626 cross_jump, in_mem);
2628 return;
2630 default:
2631 break;
2634 fmt = GET_RTX_FORMAT (code);
2635 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2637 if (fmt[i] == 'e')
2638 mark_jump_label (XEXP (x, i), insn, cross_jump, in_mem);
2639 else if (fmt[i] == 'E')
2641 register int j;
2642 for (j = 0; j < XVECLEN (x, i); j++)
2643 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump, in_mem);
2648 /* If all INSN does is set the pc, delete it,
2649 and delete the insn that set the condition codes for it
2650 if that's what the previous thing was. */
2652 void
2653 delete_jump (insn)
2654 rtx insn;
2656 register rtx set = single_set (insn);
2658 if (set && GET_CODE (SET_DEST (set)) == PC)
2659 delete_computation (insn);
2662 /* Verify INSN is a BARRIER and delete it. */
2664 void
2665 delete_barrier (insn)
2666 rtx insn;
2668 if (GET_CODE (insn) != BARRIER)
2669 abort ();
2671 delete_insn (insn);
2674 /* Recursively delete prior insns that compute the value (used only by INSN
2675 which the caller is deleting) stored in the register mentioned by NOTE
2676 which is a REG_DEAD note associated with INSN. */
2678 static void
2679 delete_prior_computation (note, insn)
2680 rtx note;
2681 rtx insn;
2683 rtx our_prev;
2684 rtx reg = XEXP (note, 0);
2686 for (our_prev = prev_nonnote_insn (insn);
2687 our_prev && (GET_CODE (our_prev) == INSN
2688 || GET_CODE (our_prev) == CALL_INSN);
2689 our_prev = prev_nonnote_insn (our_prev))
2691 rtx pat = PATTERN (our_prev);
2693 /* If we reach a CALL which is not calling a const function
2694 or the callee pops the arguments, then give up. */
2695 if (GET_CODE (our_prev) == CALL_INSN
2696 && (! CONST_CALL_P (our_prev)
2697 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2698 break;
2700 /* If we reach a SEQUENCE, it is too complex to try to
2701 do anything with it, so give up. */
2702 if (GET_CODE (pat) == SEQUENCE)
2703 break;
2705 if (GET_CODE (pat) == USE
2706 && GET_CODE (XEXP (pat, 0)) == INSN)
2707 /* reorg creates USEs that look like this. We leave them
2708 alone because reorg needs them for its own purposes. */
2709 break;
2711 if (reg_set_p (reg, pat))
2713 if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
2714 break;
2716 if (GET_CODE (pat) == PARALLEL)
2718 /* If we find a SET of something else, we can't
2719 delete the insn. */
2721 int i;
2723 for (i = 0; i < XVECLEN (pat, 0); i++)
2725 rtx part = XVECEXP (pat, 0, i);
2727 if (GET_CODE (part) == SET
2728 && SET_DEST (part) != reg)
2729 break;
2732 if (i == XVECLEN (pat, 0))
2733 delete_computation (our_prev);
2735 else if (GET_CODE (pat) == SET
2736 && GET_CODE (SET_DEST (pat)) == REG)
2738 int dest_regno = REGNO (SET_DEST (pat));
2739 int dest_endregno
2740 = (dest_regno
2741 + (dest_regno < FIRST_PSEUDO_REGISTER
2742 ? HARD_REGNO_NREGS (dest_regno,
2743 GET_MODE (SET_DEST (pat))) : 1));
2744 int regno = REGNO (reg);
2745 int endregno
2746 = (regno
2747 + (regno < FIRST_PSEUDO_REGISTER
2748 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1));
2750 if (dest_regno >= regno
2751 && dest_endregno <= endregno)
2752 delete_computation (our_prev);
2754 /* We may have a multi-word hard register and some, but not
2755 all, of the words of the register are needed in subsequent
2756 insns. Write REG_UNUSED notes for those parts that were not
2757 needed. */
2758 else if (dest_regno <= regno
2759 && dest_endregno >= endregno)
2761 int i;
2763 REG_NOTES (our_prev)
2764 = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
2765 REG_NOTES (our_prev));
2767 for (i = dest_regno; i < dest_endregno; i++)
2768 if (! find_regno_note (our_prev, REG_UNUSED, i))
2769 break;
2771 if (i == dest_endregno)
2772 delete_computation (our_prev);
2776 break;
2779 /* If PAT references the register that dies here, it is an
2780 additional use. Hence any prior SET isn't dead. However, this
2781 insn becomes the new place for the REG_DEAD note. */
2782 if (reg_overlap_mentioned_p (reg, pat))
2784 XEXP (note, 1) = REG_NOTES (our_prev);
2785 REG_NOTES (our_prev) = note;
2786 break;
2791 /* Delete INSN and recursively delete insns that compute values used only
2792 by INSN. This uses the REG_DEAD notes computed during flow analysis.
2793 If we are running before flow.c, we need do nothing since flow.c will
2794 delete dead code. We also can't know if the registers being used are
2795 dead or not at this point.
2797 Otherwise, look at all our REG_DEAD notes. If a previous insn does
2798 nothing other than set a register that dies in this insn, we can delete
2799 that insn as well.
2801 On machines with CC0, if CC0 is used in this insn, we may be able to
2802 delete the insn that set it. */
2804 static void
2805 delete_computation (insn)
2806 rtx insn;
2808 rtx note, next;
2810 #ifdef HAVE_cc0
2811 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2813 rtx prev = prev_nonnote_insn (insn);
2814 /* We assume that at this stage
2815 CC's are always set explicitly
2816 and always immediately before the jump that
2817 will use them. So if the previous insn
2818 exists to set the CC's, delete it
2819 (unless it performs auto-increments, etc.). */
2820 if (prev && GET_CODE (prev) == INSN
2821 && sets_cc0_p (PATTERN (prev)))
2823 if (sets_cc0_p (PATTERN (prev)) > 0
2824 && ! side_effects_p (PATTERN (prev)))
2825 delete_computation (prev);
2826 else
2827 /* Otherwise, show that cc0 won't be used. */
2828 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
2829 cc0_rtx, REG_NOTES (prev));
2832 #endif
2834 for (note = REG_NOTES (insn); note; note = next)
2836 next = XEXP (note, 1);
2838 if (REG_NOTE_KIND (note) != REG_DEAD
2839 /* Verify that the REG_NOTE is legitimate. */
2840 || GET_CODE (XEXP (note, 0)) != REG)
2841 continue;
2843 delete_prior_computation (note, insn);
2846 delete_insn (insn);
2849 /* Delete insn INSN from the chain of insns and update label ref counts.
2850 May delete some following insns as a consequence; may even delete
2851 a label elsewhere and insns that follow it.
2853 Returns the first insn after INSN that was not deleted. */
2856 delete_insn (insn)
2857 register rtx insn;
2859 register rtx next = NEXT_INSN (insn);
2860 register rtx prev = PREV_INSN (insn);
2861 register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
2862 register int dont_really_delete = 0;
2863 rtx note;
2865 while (next && INSN_DELETED_P (next))
2866 next = NEXT_INSN (next);
2868 /* This insn is already deleted => return first following nondeleted. */
2869 if (INSN_DELETED_P (insn))
2870 return next;
2872 if (was_code_label)
2873 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2875 /* Don't delete user-declared labels. When optimizing, convert them
2876 to special NOTEs instead. When not optimizing, leave them alone. */
2877 if (was_code_label && LABEL_NAME (insn) != 0)
2879 if (! optimize)
2880 dont_really_delete = 1;
2881 else if (! dont_really_delete)
2883 const char *name = LABEL_NAME (insn);
2884 PUT_CODE (insn, NOTE);
2885 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
2886 NOTE_SOURCE_FILE (insn) = name;
2887 dont_really_delete = 1;
2890 else
2891 /* Mark this insn as deleted. */
2892 INSN_DELETED_P (insn) = 1;
2894 /* If this is an unconditional jump, delete it from the jump chain. */
2895 if (simplejump_p (insn))
2896 delete_from_jump_chain (insn);
2898 /* If instruction is followed by a barrier,
2899 delete the barrier too. */
2901 if (next != 0 && GET_CODE (next) == BARRIER)
2903 INSN_DELETED_P (next) = 1;
2904 next = NEXT_INSN (next);
2907 /* Patch out INSN (and the barrier if any) */
2909 if (! dont_really_delete)
2911 if (prev)
2913 NEXT_INSN (prev) = next;
2914 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2915 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
2916 XVECLEN (PATTERN (prev), 0) - 1)) = next;
2919 if (next)
2921 PREV_INSN (next) = prev;
2922 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2923 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2926 if (prev && NEXT_INSN (prev) == 0)
2927 set_last_insn (prev);
2930 /* If deleting a jump, decrement the count of the label,
2931 and delete the label if it is now unused. */
2933 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
2935 rtx lab = JUMP_LABEL (insn), lab_next;
2937 if (--LABEL_NUSES (lab) == 0)
2939 /* This can delete NEXT or PREV,
2940 either directly if NEXT is JUMP_LABEL (INSN),
2941 or indirectly through more levels of jumps. */
2942 delete_insn (lab);
2944 /* I feel a little doubtful about this loop,
2945 but I see no clean and sure alternative way
2946 to find the first insn after INSN that is not now deleted.
2947 I hope this works. */
2948 while (next && INSN_DELETED_P (next))
2949 next = NEXT_INSN (next);
2950 return next;
2952 else if ((lab_next = next_nonnote_insn (lab)) != NULL
2953 && GET_CODE (lab_next) == JUMP_INSN
2954 && (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
2955 || GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
2957 /* If we're deleting the tablejump, delete the dispatch table.
2958 We may not be able to kill the label immediately preceeding
2959 just yet, as it might be referenced in code leading up to
2960 the tablejump. */
2961 delete_insn (lab_next);
2965 /* Likewise if we're deleting a dispatch table. */
2967 if (GET_CODE (insn) == JUMP_INSN
2968 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
2969 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
2971 rtx pat = PATTERN (insn);
2972 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2973 int len = XVECLEN (pat, diff_vec_p);
2975 for (i = 0; i < len; i++)
2976 if (--LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
2977 delete_insn (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
2978 while (next && INSN_DELETED_P (next))
2979 next = NEXT_INSN (next);
2980 return next;
2983 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
2984 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2985 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2986 if (REG_NOTE_KIND (note) == REG_LABEL
2987 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
2988 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
2989 if (--LABEL_NUSES (XEXP (note, 0)) == 0)
2990 delete_insn (XEXP (note, 0));
2992 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
2993 prev = PREV_INSN (prev);
2995 /* If INSN was a label and a dispatch table follows it,
2996 delete the dispatch table. The tablejump must have gone already.
2997 It isn't useful to fall through into a table. */
2999 if (was_code_label
3000 && NEXT_INSN (insn) != 0
3001 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
3002 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
3003 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
3004 next = delete_insn (NEXT_INSN (insn));
3006 /* If INSN was a label, delete insns following it if now unreachable. */
3008 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
3010 register RTX_CODE code;
3011 while (next != 0
3012 && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
3013 || code == NOTE || code == BARRIER
3014 || (code == CODE_LABEL && INSN_DELETED_P (next))))
3016 if (code == NOTE
3017 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
3018 next = NEXT_INSN (next);
3019 /* Keep going past other deleted labels to delete what follows. */
3020 else if (code == CODE_LABEL && INSN_DELETED_P (next))
3021 next = NEXT_INSN (next);
3022 else
3023 /* Note: if this deletes a jump, it can cause more
3024 deletion of unreachable code, after a different label.
3025 As long as the value from this recursive call is correct,
3026 this invocation functions correctly. */
3027 next = delete_insn (next);
3031 return next;
3034 /* Advance from INSN till reaching something not deleted
3035 then return that. May return INSN itself. */
3038 next_nondeleted_insn (insn)
3039 rtx insn;
3041 while (INSN_DELETED_P (insn))
3042 insn = NEXT_INSN (insn);
3043 return insn;
3046 /* Delete a range of insns from FROM to TO, inclusive.
3047 This is for the sake of peephole optimization, so assume
3048 that whatever these insns do will still be done by a new
3049 peephole insn that will replace them. */
3051 void
3052 delete_for_peephole (from, to)
3053 register rtx from, to;
3055 register rtx insn = from;
3057 while (1)
3059 register rtx next = NEXT_INSN (insn);
3060 register rtx prev = PREV_INSN (insn);
3062 if (GET_CODE (insn) != NOTE)
3064 INSN_DELETED_P (insn) = 1;
3066 /* Patch this insn out of the chain. */
3067 /* We don't do this all at once, because we
3068 must preserve all NOTEs. */
3069 if (prev)
3070 NEXT_INSN (prev) = next;
3072 if (next)
3073 PREV_INSN (next) = prev;
3076 if (insn == to)
3077 break;
3078 insn = next;
3081 /* Note that if TO is an unconditional jump
3082 we *do not* delete the BARRIER that follows,
3083 since the peephole that replaces this sequence
3084 is also an unconditional jump in that case. */
3087 /* We have determined that INSN is never reached, and are about to
3088 delete it. Print a warning if the user asked for one.
3090 To try to make this warning more useful, this should only be called
3091 once per basic block not reached, and it only warns when the basic
3092 block contains more than one line from the current function, and
3093 contains at least one operation. CSE and inlining can duplicate insns,
3094 so it's possible to get spurious warnings from this. */
3096 void
3097 never_reached_warning (avoided_insn)
3098 rtx avoided_insn;
3100 rtx insn;
3101 rtx a_line_note = NULL;
3102 int two_avoided_lines = 0;
3103 int contains_insn = 0;
3105 if (! warn_notreached)
3106 return;
3108 /* Scan forwards, looking at LINE_NUMBER notes, until
3109 we hit a LABEL or we run out of insns. */
3111 for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
3113 if (GET_CODE (insn) == CODE_LABEL)
3114 break;
3115 else if (GET_CODE (insn) == NOTE /* A line number note? */
3116 && NOTE_LINE_NUMBER (insn) >= 0)
3118 if (a_line_note == NULL)
3119 a_line_note = insn;
3120 else
3121 two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
3122 != NOTE_LINE_NUMBER (insn));
3124 else if (INSN_P (insn))
3125 contains_insn = 1;
3127 if (two_avoided_lines && contains_insn)
3128 warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
3129 NOTE_LINE_NUMBER (a_line_note),
3130 "will never be executed");
3133 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
3134 NLABEL as a return. Accrue modifications into the change group. */
3136 static void
3137 redirect_exp_1 (loc, olabel, nlabel, insn)
3138 rtx *loc;
3139 rtx olabel, nlabel;
3140 rtx insn;
3142 register rtx x = *loc;
3143 register RTX_CODE code = GET_CODE (x);
3144 register int i;
3145 register const char *fmt;
3147 if (code == LABEL_REF)
3149 if (XEXP (x, 0) == olabel)
3151 rtx n;
3152 if (nlabel)
3153 n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3154 else
3155 n = gen_rtx_RETURN (VOIDmode);
3157 validate_change (insn, loc, n, 1);
3158 return;
3161 else if (code == RETURN && olabel == 0)
3163 x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3164 if (loc == &PATTERN (insn))
3165 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
3166 validate_change (insn, loc, x, 1);
3167 return;
3170 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
3171 && GET_CODE (SET_SRC (x)) == LABEL_REF
3172 && XEXP (SET_SRC (x), 0) == olabel)
3174 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
3175 return;
3178 fmt = GET_RTX_FORMAT (code);
3179 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3181 if (fmt[i] == 'e')
3182 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
3183 else if (fmt[i] == 'E')
3185 register int j;
3186 for (j = 0; j < XVECLEN (x, i); j++)
3187 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
3192 /* Similar, but apply the change group and report success or failure. */
3194 static int
3195 redirect_exp (olabel, nlabel, insn)
3196 rtx olabel, nlabel;
3197 rtx insn;
3199 rtx *loc;
3201 if (GET_CODE (PATTERN (insn)) == PARALLEL)
3202 loc = &XVECEXP (PATTERN (insn), 0, 0);
3203 else
3204 loc = &PATTERN (insn);
3206 redirect_exp_1 (loc, olabel, nlabel, insn);
3207 if (num_validated_changes () == 0)
3208 return 0;
3210 return apply_change_group ();
3213 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
3214 the modifications into the change group. Return false if we did
3215 not see how to do that. */
3218 redirect_jump_1 (jump, nlabel)
3219 rtx jump, nlabel;
3221 int ochanges = num_validated_changes ();
3222 rtx *loc;
3224 if (GET_CODE (PATTERN (jump)) == PARALLEL)
3225 loc = &XVECEXP (PATTERN (jump), 0, 0);
3226 else
3227 loc = &PATTERN (jump);
3229 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
3230 return num_validated_changes () > ochanges;
3233 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
3234 jump target label is unused as a result, it and the code following
3235 it may be deleted.
3237 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3238 RETURN insn.
3240 The return value will be 1 if the change was made, 0 if it wasn't
3241 (this can only occur for NLABEL == 0). */
3244 redirect_jump (jump, nlabel, delete_unused)
3245 rtx jump, nlabel;
3246 int delete_unused;
3248 register rtx olabel = JUMP_LABEL (jump);
3250 if (nlabel == olabel)
3251 return 1;
3253 if (! redirect_exp (olabel, nlabel, jump))
3254 return 0;
3256 /* If this is an unconditional branch, delete it from the jump_chain of
3257 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3258 have UID's in range and JUMP_CHAIN is valid). */
3259 if (jump_chain && (simplejump_p (jump)
3260 || GET_CODE (PATTERN (jump)) == RETURN))
3262 int label_index = nlabel ? INSN_UID (nlabel) : 0;
3264 delete_from_jump_chain (jump);
3265 if (label_index < max_jump_chain
3266 && INSN_UID (jump) < max_jump_chain)
3268 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
3269 jump_chain[label_index] = jump;
3273 JUMP_LABEL (jump) = nlabel;
3274 if (nlabel)
3275 ++LABEL_NUSES (nlabel);
3277 /* If we're eliding the jump over exception cleanups at the end of a
3278 function, move the function end note so that -Wreturn-type works. */
3279 if (olabel && nlabel
3280 && NEXT_INSN (olabel)
3281 && GET_CODE (NEXT_INSN (olabel)) == NOTE
3282 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
3283 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
3285 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused)
3286 delete_insn (olabel);
3288 return 1;
3291 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3292 Accrue the modifications into the change group. */
3294 static void
3295 invert_exp_1 (insn)
3296 rtx insn;
3298 register RTX_CODE code;
3299 rtx x = pc_set (insn);
3301 if (!x)
3302 abort ();
3303 x = SET_SRC (x);
3305 code = GET_CODE (x);
3307 if (code == IF_THEN_ELSE)
3309 register rtx comp = XEXP (x, 0);
3310 register rtx tem;
3311 enum rtx_code reversed_code;
3313 /* We can do this in two ways: The preferable way, which can only
3314 be done if this is not an integer comparison, is to reverse
3315 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3316 of the IF_THEN_ELSE. If we can't do either, fail. */
3318 reversed_code = reversed_comparison_code (comp, insn);
3320 if (reversed_code != UNKNOWN)
3322 validate_change (insn, &XEXP (x, 0),
3323 gen_rtx_fmt_ee (reversed_code,
3324 GET_MODE (comp), XEXP (comp, 0),
3325 XEXP (comp, 1)),
3327 return;
3330 tem = XEXP (x, 1);
3331 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
3332 validate_change (insn, &XEXP (x, 2), tem, 1);
3334 else
3335 abort ();
3338 /* Invert the jump condition of conditional jump insn, INSN.
3340 Return 1 if we can do so, 0 if we cannot find a way to do so that
3341 matches a pattern. */
3343 static int
3344 invert_exp (insn)
3345 rtx insn;
3347 invert_exp_1 (insn);
3348 if (num_validated_changes () == 0)
3349 return 0;
3351 return apply_change_group ();
3354 /* Invert the condition of the jump JUMP, and make it jump to label
3355 NLABEL instead of where it jumps now. Accrue changes into the
3356 change group. Return false if we didn't see how to perform the
3357 inversion and redirection. */
3360 invert_jump_1 (jump, nlabel)
3361 rtx jump, nlabel;
3363 int ochanges;
3365 ochanges = num_validated_changes ();
3366 invert_exp_1 (jump);
3367 if (num_validated_changes () == ochanges)
3368 return 0;
3370 return redirect_jump_1 (jump, nlabel);
3373 /* Invert the condition of the jump JUMP, and make it jump to label
3374 NLABEL instead of where it jumps now. Return true if successful. */
3377 invert_jump (jump, nlabel, delete_unused)
3378 rtx jump, nlabel;
3379 int delete_unused;
3381 /* We have to either invert the condition and change the label or
3382 do neither. Either operation could fail. We first try to invert
3383 the jump. If that succeeds, we try changing the label. If that fails,
3384 we invert the jump back to what it was. */
3386 if (! invert_exp (jump))
3387 return 0;
3389 if (redirect_jump (jump, nlabel, delete_unused))
3391 /* An inverted jump means that a probability taken becomes a
3392 probability not taken. Subtract the branch probability from the
3393 probability base to convert it back to a taken probability. */
3395 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3396 if (note)
3397 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
3399 return 1;
3402 if (! invert_exp (jump))
3403 /* This should just be putting it back the way it was. */
3404 abort ();
3406 return 0;
3409 /* Delete the instruction JUMP from any jump chain it might be on. */
3411 static void
3412 delete_from_jump_chain (jump)
3413 rtx jump;
3415 int index;
3416 rtx olabel = JUMP_LABEL (jump);
3418 /* Handle unconditional jumps. */
3419 if (jump_chain && olabel != 0
3420 && INSN_UID (olabel) < max_jump_chain
3421 && simplejump_p (jump))
3422 index = INSN_UID (olabel);
3423 /* Handle return insns. */
3424 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
3425 index = 0;
3426 else
3427 return;
3429 if (jump_chain[index] == jump)
3430 jump_chain[index] = jump_chain[INSN_UID (jump)];
3431 else
3433 rtx insn;
3435 for (insn = jump_chain[index];
3436 insn != 0;
3437 insn = jump_chain[INSN_UID (insn)])
3438 if (jump_chain[INSN_UID (insn)] == jump)
3440 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
3441 break;
3446 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3448 If the old jump target label (before the dispatch table) becomes unused,
3449 it and the dispatch table may be deleted. In that case, find the insn
3450 before the jump references that label and delete it and logical successors
3451 too. */
3453 static void
3454 redirect_tablejump (jump, nlabel)
3455 rtx jump, nlabel;
3457 register rtx olabel = JUMP_LABEL (jump);
3458 rtx *notep, note, next;
3460 /* Add this jump to the jump_chain of NLABEL. */
3461 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
3462 && INSN_UID (jump) < max_jump_chain)
3464 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
3465 jump_chain[INSN_UID (nlabel)] = jump;
3468 for (notep = &REG_NOTES (jump), note = *notep; note; note = next)
3470 next = XEXP (note, 1);
3472 if (REG_NOTE_KIND (note) != REG_DEAD
3473 /* Verify that the REG_NOTE is legitimate. */
3474 || GET_CODE (XEXP (note, 0)) != REG
3475 || ! reg_mentioned_p (XEXP (note, 0), PATTERN (jump)))
3476 notep = &XEXP (note, 1);
3477 else
3479 delete_prior_computation (note, jump);
3480 *notep = next;
3484 PATTERN (jump) = gen_jump (nlabel);
3485 JUMP_LABEL (jump) = nlabel;
3486 ++LABEL_NUSES (nlabel);
3487 INSN_CODE (jump) = -1;
3489 if (--LABEL_NUSES (olabel) == 0)
3491 delete_labelref_insn (jump, olabel, 0);
3492 delete_insn (olabel);
3496 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
3497 If we found one, delete it and then delete this insn if DELETE_THIS is
3498 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3500 static int
3501 delete_labelref_insn (insn, label, delete_this)
3502 rtx insn, label;
3503 int delete_this;
3505 int deleted = 0;
3506 rtx link;
3508 if (GET_CODE (insn) != NOTE
3509 && reg_mentioned_p (label, PATTERN (insn)))
3511 if (delete_this)
3513 delete_insn (insn);
3514 deleted = 1;
3516 else
3517 return 1;
3520 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3521 if (delete_labelref_insn (XEXP (link, 0), label, 1))
3523 if (delete_this)
3525 delete_insn (insn);
3526 deleted = 1;
3528 else
3529 return 1;
3532 return deleted;
3535 /* Like rtx_equal_p except that it considers two REGs as equal
3536 if they renumber to the same value and considers two commutative
3537 operations to be the same if the order of the operands has been
3538 reversed.
3540 ??? Addition is not commutative on the PA due to the weird implicit
3541 space register selection rules for memory addresses. Therefore, we
3542 don't consider a + b == b + a.
3544 We could/should make this test a little tighter. Possibly only
3545 disabling it on the PA via some backend macro or only disabling this
3546 case when the PLUS is inside a MEM. */
3549 rtx_renumbered_equal_p (x, y)
3550 rtx x, y;
3552 register int i;
3553 register RTX_CODE code = GET_CODE (x);
3554 register const char *fmt;
3556 if (x == y)
3557 return 1;
3559 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
3560 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
3561 && GET_CODE (SUBREG_REG (y)) == REG)))
3563 int reg_x = -1, reg_y = -1;
3564 int word_x = 0, word_y = 0;
3566 if (GET_MODE (x) != GET_MODE (y))
3567 return 0;
3569 /* If we haven't done any renumbering, don't
3570 make any assumptions. */
3571 if (reg_renumber == 0)
3572 return rtx_equal_p (x, y);
3574 if (code == SUBREG)
3576 reg_x = REGNO (SUBREG_REG (x));
3577 word_x = SUBREG_WORD (x);
3579 if (reg_renumber[reg_x] >= 0)
3581 reg_x = reg_renumber[reg_x] + word_x;
3582 word_x = 0;
3586 else
3588 reg_x = REGNO (x);
3589 if (reg_renumber[reg_x] >= 0)
3590 reg_x = reg_renumber[reg_x];
3593 if (GET_CODE (y) == SUBREG)
3595 reg_y = REGNO (SUBREG_REG (y));
3596 word_y = SUBREG_WORD (y);
3598 if (reg_renumber[reg_y] >= 0)
3600 reg_y = reg_renumber[reg_y];
3601 word_y = 0;
3605 else
3607 reg_y = REGNO (y);
3608 if (reg_renumber[reg_y] >= 0)
3609 reg_y = reg_renumber[reg_y];
3612 return reg_x >= 0 && reg_x == reg_y && word_x == word_y;
3615 /* Now we have disposed of all the cases
3616 in which different rtx codes can match. */
3617 if (code != GET_CODE (y))
3618 return 0;
3620 switch (code)
3622 case PC:
3623 case CC0:
3624 case ADDR_VEC:
3625 case ADDR_DIFF_VEC:
3626 return 0;
3628 case CONST_INT:
3629 return INTVAL (x) == INTVAL (y);
3631 case LABEL_REF:
3632 /* We can't assume nonlocal labels have their following insns yet. */
3633 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
3634 return XEXP (x, 0) == XEXP (y, 0);
3636 /* Two label-refs are equivalent if they point at labels
3637 in the same position in the instruction stream. */
3638 return (next_real_insn (XEXP (x, 0))
3639 == next_real_insn (XEXP (y, 0)));
3641 case SYMBOL_REF:
3642 return XSTR (x, 0) == XSTR (y, 0);
3644 case CODE_LABEL:
3645 /* If we didn't match EQ equality above, they aren't the same. */
3646 return 0;
3648 default:
3649 break;
3652 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3654 if (GET_MODE (x) != GET_MODE (y))
3655 return 0;
3657 /* For commutative operations, the RTX match if the operand match in any
3658 order. Also handle the simple binary and unary cases without a loop.
3660 ??? Don't consider PLUS a commutative operator; see comments above. */
3661 if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3662 && code != PLUS)
3663 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3664 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
3665 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
3666 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
3667 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3668 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3669 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
3670 else if (GET_RTX_CLASS (code) == '1')
3671 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
3673 /* Compare the elements. If any pair of corresponding elements
3674 fail to match, return 0 for the whole things. */
3676 fmt = GET_RTX_FORMAT (code);
3677 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3679 register int j;
3680 switch (fmt[i])
3682 case 'w':
3683 if (XWINT (x, i) != XWINT (y, i))
3684 return 0;
3685 break;
3687 case 'i':
3688 if (XINT (x, i) != XINT (y, i))
3689 return 0;
3690 break;
3692 case 's':
3693 if (strcmp (XSTR (x, i), XSTR (y, i)))
3694 return 0;
3695 break;
3697 case 'e':
3698 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
3699 return 0;
3700 break;
3702 case 'u':
3703 if (XEXP (x, i) != XEXP (y, i))
3704 return 0;
3705 /* fall through. */
3706 case '0':
3707 break;
3709 case 'E':
3710 if (XVECLEN (x, i) != XVECLEN (y, i))
3711 return 0;
3712 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3713 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
3714 return 0;
3715 break;
3717 default:
3718 abort ();
3721 return 1;
3724 /* If X is a hard register or equivalent to one or a subregister of one,
3725 return the hard register number. If X is a pseudo register that was not
3726 assigned a hard register, return the pseudo register number. Otherwise,
3727 return -1. Any rtx is valid for X. */
3730 true_regnum (x)
3731 rtx x;
3733 if (GET_CODE (x) == REG)
3735 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
3736 return reg_renumber[REGNO (x)];
3737 return REGNO (x);
3739 if (GET_CODE (x) == SUBREG)
3741 int base = true_regnum (SUBREG_REG (x));
3742 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
3743 return SUBREG_WORD (x) + base;
3745 return -1;
3748 /* Optimize code of the form:
3750 for (x = a[i]; x; ...)
3752 for (x = a[i]; x; ...)
3754 foo:
3756 Loop optimize will change the above code into
3758 if (x = a[i])
3759 for (;;)
3760 { ...; if (! (x = ...)) break; }
3761 if (x = a[i])
3762 for (;;)
3763 { ...; if (! (x = ...)) break; }
3764 foo:
3766 In general, if the first test fails, the program can branch
3767 directly to `foo' and skip the second try which is doomed to fail.
3768 We run this after loop optimization and before flow analysis. */
3770 /* When comparing the insn patterns, we track the fact that different
3771 pseudo-register numbers may have been used in each computation.
3772 The following array stores an equivalence -- same_regs[I] == J means
3773 that pseudo register I was used in the first set of tests in a context
3774 where J was used in the second set. We also count the number of such
3775 pending equivalences. If nonzero, the expressions really aren't the
3776 same. */
3778 static int *same_regs;
3780 static int num_same_regs;
3782 /* Track any registers modified between the target of the first jump and
3783 the second jump. They never compare equal. */
3785 static char *modified_regs;
3787 /* Record if memory was modified. */
3789 static int modified_mem;
3791 /* Called via note_stores on each insn between the target of the first
3792 branch and the second branch. It marks any changed registers. */
3794 static void
3795 mark_modified_reg (dest, x, data)
3796 rtx dest;
3797 rtx x ATTRIBUTE_UNUSED;
3798 void *data ATTRIBUTE_UNUSED;
3800 int regno;
3801 unsigned int i;
3803 if (GET_CODE (dest) == SUBREG)
3804 dest = SUBREG_REG (dest);
3806 if (GET_CODE (dest) == MEM)
3807 modified_mem = 1;
3809 if (GET_CODE (dest) != REG)
3810 return;
3812 regno = REGNO (dest);
3813 if (regno >= FIRST_PSEUDO_REGISTER)
3814 modified_regs[regno] = 1;
3815 else
3816 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
3817 modified_regs[regno + i] = 1;
3820 /* F is the first insn in the chain of insns. */
3822 void
3823 thread_jumps (f, max_reg, flag_before_loop)
3824 rtx f;
3825 int max_reg;
3826 int flag_before_loop;
3828 /* Basic algorithm is to find a conditional branch,
3829 the label it may branch to, and the branch after
3830 that label. If the two branches test the same condition,
3831 walk back from both branch paths until the insn patterns
3832 differ, or code labels are hit. If we make it back to
3833 the target of the first branch, then we know that the first branch
3834 will either always succeed or always fail depending on the relative
3835 senses of the two branches. So adjust the first branch accordingly
3836 in this case. */
3838 rtx label, b1, b2, t1, t2;
3839 enum rtx_code code1, code2;
3840 rtx b1op0, b1op1, b2op0, b2op1;
3841 int changed = 1;
3842 int i;
3843 int *all_reset;
3844 enum rtx_code reversed_code1, reversed_code2;
3846 /* Allocate register tables and quick-reset table. */
3847 modified_regs = (char *) xmalloc (max_reg * sizeof (char));
3848 same_regs = (int *) xmalloc (max_reg * sizeof (int));
3849 all_reset = (int *) xmalloc (max_reg * sizeof (int));
3850 for (i = 0; i < max_reg; i++)
3851 all_reset[i] = -1;
3853 while (changed)
3855 changed = 0;
3857 for (b1 = f; b1; b1 = NEXT_INSN (b1))
3859 rtx set;
3860 rtx set2;
3862 /* Get to a candidate branch insn. */
3863 if (GET_CODE (b1) != JUMP_INSN
3864 || ! any_condjump_p (b1) || JUMP_LABEL (b1) == 0)
3865 continue;
3867 memset (modified_regs, 0, max_reg * sizeof (char));
3868 modified_mem = 0;
3870 memcpy (same_regs, all_reset, max_reg * sizeof (int));
3871 num_same_regs = 0;
3873 label = JUMP_LABEL (b1);
3875 /* Look for a branch after the target. Record any registers and
3876 memory modified between the target and the branch. Stop when we
3877 get to a label since we can't know what was changed there. */
3878 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
3880 if (GET_CODE (b2) == CODE_LABEL)
3881 break;
3883 else if (GET_CODE (b2) == JUMP_INSN)
3885 /* If this is an unconditional jump and is the only use of
3886 its target label, we can follow it. */
3887 if (any_uncondjump_p (b2)
3888 && onlyjump_p (b2)
3889 && JUMP_LABEL (b2) != 0
3890 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
3892 b2 = JUMP_LABEL (b2);
3893 continue;
3895 else
3896 break;
3899 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
3900 continue;
3902 if (GET_CODE (b2) == CALL_INSN)
3904 modified_mem = 1;
3905 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3906 if (call_used_regs[i] && ! fixed_regs[i]
3907 && i != STACK_POINTER_REGNUM
3908 && i != FRAME_POINTER_REGNUM
3909 && i != HARD_FRAME_POINTER_REGNUM
3910 && i != ARG_POINTER_REGNUM)
3911 modified_regs[i] = 1;
3914 note_stores (PATTERN (b2), mark_modified_reg, NULL);
3917 /* Check the next candidate branch insn from the label
3918 of the first. */
3919 if (b2 == 0
3920 || GET_CODE (b2) != JUMP_INSN
3921 || b2 == b1
3922 || !any_condjump_p (b2)
3923 || !onlyjump_p (b2))
3924 continue;
3925 set = pc_set (b1);
3926 set2 = pc_set (b2);
3928 /* Get the comparison codes and operands, reversing the
3929 codes if appropriate. If we don't have comparison codes,
3930 we can't do anything. */
3931 b1op0 = XEXP (XEXP (SET_SRC (set), 0), 0);
3932 b1op1 = XEXP (XEXP (SET_SRC (set), 0), 1);
3933 code1 = GET_CODE (XEXP (SET_SRC (set), 0));
3934 reversed_code1 = code1;
3935 if (XEXP (SET_SRC (set), 1) == pc_rtx)
3936 code1 = reversed_comparison_code (XEXP (SET_SRC (set), 0), b1);
3937 else
3938 reversed_code1 = reversed_comparison_code (XEXP (SET_SRC (set), 0), b1);
3940 b2op0 = XEXP (XEXP (SET_SRC (set2), 0), 0);
3941 b2op1 = XEXP (XEXP (SET_SRC (set2), 0), 1);
3942 code2 = GET_CODE (XEXP (SET_SRC (set2), 0));
3943 reversed_code2 = code2;
3944 if (XEXP (SET_SRC (set2), 1) == pc_rtx)
3945 code2 = reversed_comparison_code (XEXP (SET_SRC (set2), 0), b2);
3946 else
3947 reversed_code2 = reversed_comparison_code (XEXP (SET_SRC (set2), 0), b2);
3949 /* If they test the same things and knowing that B1 branches
3950 tells us whether or not B2 branches, check if we
3951 can thread the branch. */
3952 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
3953 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
3954 && (comparison_dominates_p (code1, code2)
3955 || comparison_dominates_p (code1, reversed_code2)))
3958 t1 = prev_nonnote_insn (b1);
3959 t2 = prev_nonnote_insn (b2);
3961 while (t1 != 0 && t2 != 0)
3963 if (t2 == label)
3965 /* We have reached the target of the first branch.
3966 If there are no pending register equivalents,
3967 we know that this branch will either always
3968 succeed (if the senses of the two branches are
3969 the same) or always fail (if not). */
3970 rtx new_label;
3972 if (num_same_regs != 0)
3973 break;
3975 if (comparison_dominates_p (code1, code2))
3976 new_label = JUMP_LABEL (b2);
3977 else
3978 new_label = get_label_after (b2);
3980 if (JUMP_LABEL (b1) != new_label)
3982 rtx prev = PREV_INSN (new_label);
3984 if (flag_before_loop
3985 && GET_CODE (prev) == NOTE
3986 && NOTE_LINE_NUMBER (prev) == NOTE_INSN_LOOP_BEG)
3988 /* Don't thread to the loop label. If a loop
3989 label is reused, loop optimization will
3990 be disabled for that loop. */
3991 new_label = gen_label_rtx ();
3992 emit_label_after (new_label, PREV_INSN (prev));
3994 changed |= redirect_jump (b1, new_label, 1);
3996 break;
3999 /* If either of these is not a normal insn (it might be
4000 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
4001 have already been skipped above.) Similarly, fail
4002 if the insns are different. */
4003 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
4004 || recog_memoized (t1) != recog_memoized (t2)
4005 || ! rtx_equal_for_thread_p (PATTERN (t1),
4006 PATTERN (t2), t2))
4007 break;
4009 t1 = prev_nonnote_insn (t1);
4010 t2 = prev_nonnote_insn (t2);
4016 /* Clean up. */
4017 free (modified_regs);
4018 free (same_regs);
4019 free (all_reset);
4022 /* This is like RTX_EQUAL_P except that it knows about our handling of
4023 possibly equivalent registers and knows to consider volatile and
4024 modified objects as not equal.
4026 YINSN is the insn containing Y. */
4029 rtx_equal_for_thread_p (x, y, yinsn)
4030 rtx x, y;
4031 rtx yinsn;
4033 register int i;
4034 register int j;
4035 register enum rtx_code code;
4036 register const char *fmt;
4038 code = GET_CODE (x);
4039 /* Rtx's of different codes cannot be equal. */
4040 if (code != GET_CODE (y))
4041 return 0;
4043 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
4044 (REG:SI x) and (REG:HI x) are NOT equivalent. */
4046 if (GET_MODE (x) != GET_MODE (y))
4047 return 0;
4049 /* For floating-point, consider everything unequal. This is a bit
4050 pessimistic, but this pass would only rarely do anything for FP
4051 anyway. */
4052 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
4053 && FLOAT_MODE_P (GET_MODE (x)) && ! flag_unsafe_math_optimizations)
4054 return 0;
4056 /* For commutative operations, the RTX match if the operand match in any
4057 order. Also handle the simple binary and unary cases without a loop. */
4058 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
4059 return ((rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
4060 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn))
4061 || (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 1), yinsn)
4062 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 0), yinsn)));
4063 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
4064 return (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
4065 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn));
4066 else if (GET_RTX_CLASS (code) == '1')
4067 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4069 /* Handle special-cases first. */
4070 switch (code)
4072 case REG:
4073 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
4074 return 1;
4076 /* If neither is user variable or hard register, check for possible
4077 equivalence. */
4078 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
4079 || REGNO (x) < FIRST_PSEUDO_REGISTER
4080 || REGNO (y) < FIRST_PSEUDO_REGISTER)
4081 return 0;
4083 if (same_regs[REGNO (x)] == -1)
4085 same_regs[REGNO (x)] = REGNO (y);
4086 num_same_regs++;
4088 /* If this is the first time we are seeing a register on the `Y'
4089 side, see if it is the last use. If not, we can't thread the
4090 jump, so mark it as not equivalent. */
4091 if (REGNO_LAST_UID (REGNO (y)) != INSN_UID (yinsn))
4092 return 0;
4094 return 1;
4096 else
4097 return (same_regs[REGNO (x)] == (int) REGNO (y));
4099 break;
4101 case MEM:
4102 /* If memory modified or either volatile, not equivalent.
4103 Else, check address. */
4104 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4105 return 0;
4107 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4109 case ASM_INPUT:
4110 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4111 return 0;
4113 break;
4115 case SET:
4116 /* Cancel a pending `same_regs' if setting equivalenced registers.
4117 Then process source. */
4118 if (GET_CODE (SET_DEST (x)) == REG
4119 && GET_CODE (SET_DEST (y)) == REG)
4121 if (same_regs[REGNO (SET_DEST (x))] == (int) REGNO (SET_DEST (y)))
4123 same_regs[REGNO (SET_DEST (x))] = -1;
4124 num_same_regs--;
4126 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
4127 return 0;
4129 else
4131 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
4132 return 0;
4135 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
4137 case LABEL_REF:
4138 return XEXP (x, 0) == XEXP (y, 0);
4140 case SYMBOL_REF:
4141 return XSTR (x, 0) == XSTR (y, 0);
4143 default:
4144 break;
4147 if (x == y)
4148 return 1;
4150 fmt = GET_RTX_FORMAT (code);
4151 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4153 switch (fmt[i])
4155 case 'w':
4156 if (XWINT (x, i) != XWINT (y, i))
4157 return 0;
4158 break;
4160 case 'n':
4161 case 'i':
4162 if (XINT (x, i) != XINT (y, i))
4163 return 0;
4164 break;
4166 case 'V':
4167 case 'E':
4168 /* Two vectors must have the same length. */
4169 if (XVECLEN (x, i) != XVECLEN (y, i))
4170 return 0;
4172 /* And the corresponding elements must match. */
4173 for (j = 0; j < XVECLEN (x, i); j++)
4174 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
4175 XVECEXP (y, i, j), yinsn) == 0)
4176 return 0;
4177 break;
4179 case 'e':
4180 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
4181 return 0;
4182 break;
4184 case 'S':
4185 case 's':
4186 if (strcmp (XSTR (x, i), XSTR (y, i)))
4187 return 0;
4188 break;
4190 case 'u':
4191 /* These are just backpointers, so they don't matter. */
4192 break;
4194 case '0':
4195 case 't':
4196 break;
4198 /* It is believed that rtx's at this level will never
4199 contain anything but integers and other rtx's,
4200 except for within LABEL_REFs and SYMBOL_REFs. */
4201 default:
4202 abort ();
4205 return 1;