1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
90 #include "coretypes.h"
95 #include "stor-layout.h"
96 #include "pointer-set.h"
97 #include "hash-table.h"
98 #include "basic-block.h"
100 #include "hard-reg-set.h"
102 #include "insn-config.h"
105 #include "alloc-pool.h"
109 #include "tree-pass.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val
[(int) VALUE
== (int) IDENTIFIER_NODE
? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE
, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR
,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE
, /* Use location which is associated with a value. */
136 MO_VAL_LOC
, /* Use location which appears in a debug insn. */
137 MO_VAL_SET
, /* Set location associated with a value. */
138 MO_SET
, /* Set location. */
139 MO_COPY
, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER
, /* Clobber location. */
142 MO_CALL
, /* Call insn. */
143 MO_ADJUST
/* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name
[] = {
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
166 EMIT_NOTE_BEFORE_INSN
,
167 EMIT_NOTE_AFTER_INSN
,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 typedef struct micro_operation_def
174 /* Type of micro operation. */
175 enum micro_operation_type type
;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust
;
199 /* A declaration of a variable, or an RTL value being handled like a
201 typedef void *decl_or_value
;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
205 dv_is_decl_p (decl_or_value dv
)
207 return !dv
|| (int) TREE_CODE ((tree
) dv
) != (int) VALUE
;
210 /* Return true if a decl_or_value is a VALUE rtl. */
212 dv_is_value_p (decl_or_value dv
)
214 return dv
&& !dv_is_decl_p (dv
);
217 /* Return the decl in the decl_or_value. */
219 dv_as_decl (decl_or_value dv
)
221 gcc_checking_assert (dv_is_decl_p (dv
));
225 /* Return the value in the decl_or_value. */
227 dv_as_value (decl_or_value dv
)
229 gcc_checking_assert (dv_is_value_p (dv
));
233 /* Return the opaque pointer in the decl_or_value. */
235 dv_as_opaque (decl_or_value dv
)
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 typedef struct attrs_def
247 /* Pointer to next member of the list. */
248 struct attrs_def
*next
;
250 /* The rtx of register. */
253 /* The declaration corresponding to LOC. */
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset
;
260 /* Structure for chaining the locations. */
261 typedef struct location_chain_def
263 /* Next element in the chain. */
264 struct location_chain_def
*next
;
266 /* The location (REG, MEM or VALUE). */
269 /* The "value" stored in this location. */
273 enum var_init_status init
;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 typedef struct loc_exp_dep_s
282 /* The dependent DV. */
284 /* The dependency VALUE or DECL_DEBUG. */
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep_s
*next
;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep_s
**pprev
;
294 /* This data structure holds information about the depth of a variable
296 typedef struct expand_depth_struct
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep
*backlinks
;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
324 /* The depth of the cur_loc expression. */
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec
<loc_exp_dep
, va_heap
, vl_embed
> deps
;
330 /* Structure describing one part of variable. */
331 typedef struct variable_part_def
333 /* Chain of locations of the part. */
334 location_chain loc_chain
;
336 /* Location which was last emitted to location list. */
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset
;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux
*onepaux
;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
354 typedef enum onepart_enum
356 /* Not a one-part variable. */
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
360 /* A DEBUG_EXPR_DECL. */
366 /* Structure describing where the variable is located. */
367 typedef struct variable_def
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
373 /* Reference count. */
376 /* Number of variable parts. */
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum
) onepart
: CHAR_BIT
;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables
;
386 /* The variable parts. */
387 variable_part var_part
[1];
389 typedef const struct variable_def
*const_variable
;
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
394 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
395 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
397 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
399 /* Access VAR's Ith part's offset, checking that it's not a one-part
401 #define VAR_PART_OFFSET(var, i) __extension__ \
402 (*({ variable const __v = (var); \
403 gcc_checking_assert (!__v->onepart); \
404 &__v->var_part[(i)].aux.offset; }))
406 /* Access VAR's one-part auxiliary data, checking that it is a
407 one-part variable. */
408 #define VAR_LOC_1PAUX(var) __extension__ \
409 (*({ variable const __v = (var); \
410 gcc_checking_assert (__v->onepart); \
411 &__v->var_part[0].aux.onepaux; }))
414 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
415 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
418 /* These are accessor macros for the one-part auxiliary data. When
419 convenient for users, they're guarded by tests that the data was
421 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
422 ? VAR_LOC_1PAUX (var)->backlinks \
424 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
425 ? &VAR_LOC_1PAUX (var)->backlinks \
427 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
428 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
429 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
430 ? &VAR_LOC_1PAUX (var)->deps \
435 typedef unsigned int dvuid
;
437 /* Return the uid of DV. */
440 dv_uid (decl_or_value dv
)
442 if (dv_is_value_p (dv
))
443 return CSELIB_VAL_PTR (dv_as_value (dv
))->uid
;
445 return DECL_UID (dv_as_decl (dv
));
448 /* Compute the hash from the uid. */
450 static inline hashval_t
451 dv_uid2hash (dvuid uid
)
456 /* The hash function for a mask table in a shared_htab chain. */
458 static inline hashval_t
459 dv_htab_hash (decl_or_value dv
)
461 return dv_uid2hash (dv_uid (dv
));
464 static void variable_htab_free (void *);
466 /* Variable hashtable helpers. */
468 struct variable_hasher
470 typedef variable_def value_type
;
471 typedef void compare_type
;
472 static inline hashval_t
hash (const value_type
*);
473 static inline bool equal (const value_type
*, const compare_type
*);
474 static inline void remove (value_type
*);
477 /* The hash function for variable_htab, computes the hash value
478 from the declaration of variable X. */
481 variable_hasher::hash (const value_type
*v
)
483 return dv_htab_hash (v
->dv
);
486 /* Compare the declaration of variable X with declaration Y. */
489 variable_hasher::equal (const value_type
*v
, const compare_type
*y
)
491 decl_or_value dv
= CONST_CAST2 (decl_or_value
, const void *, y
);
493 return (dv_as_opaque (v
->dv
) == dv_as_opaque (dv
));
496 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
499 variable_hasher::remove (value_type
*var
)
501 variable_htab_free (var
);
504 typedef hash_table
<variable_hasher
> variable_table_type
;
505 typedef variable_table_type::iterator variable_iterator_type
;
507 /* Structure for passing some other parameters to function
508 emit_note_insn_var_location. */
509 typedef struct emit_note_data_def
511 /* The instruction which the note will be emitted before/after. */
514 /* Where the note will be emitted (before/after insn)? */
515 enum emit_note_where where
;
517 /* The variables and values active at this point. */
518 variable_table_type vars
;
521 /* Structure holding a refcounted hash table. If refcount > 1,
522 it must be first unshared before modified. */
523 typedef struct shared_hash_def
525 /* Reference count. */
528 /* Actual hash table. */
529 variable_table_type htab
;
532 /* Structure holding the IN or OUT set for a basic block. */
533 typedef struct dataflow_set_def
535 /* Adjustment of stack offset. */
536 HOST_WIDE_INT stack_adjust
;
538 /* Attributes for registers (lists of attrs). */
539 attrs regs
[FIRST_PSEUDO_REGISTER
];
541 /* Variable locations. */
544 /* Vars that is being traversed. */
545 shared_hash traversed_vars
;
548 /* The structure (one for each basic block) containing the information
549 needed for variable tracking. */
550 typedef struct variable_tracking_info_def
552 /* The vector of micro operations. */
553 vec
<micro_operation
> mos
;
555 /* The IN and OUT set for dataflow analysis. */
559 /* The permanent-in dataflow set for this block. This is used to
560 hold values for which we had to compute entry values. ??? This
561 should probably be dynamically allocated, to avoid using more
562 memory in non-debug builds. */
565 /* Has the block been visited in DFS? */
568 /* Has the block been flooded in VTA? */
571 } *variable_tracking_info
;
573 /* Alloc pool for struct attrs_def. */
574 static alloc_pool attrs_pool
;
576 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
577 static alloc_pool var_pool
;
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static alloc_pool valvar_pool
;
582 /* Alloc pool for struct location_chain_def. */
583 static alloc_pool loc_chain_pool
;
585 /* Alloc pool for struct shared_hash_def. */
586 static alloc_pool shared_hash_pool
;
588 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
589 static alloc_pool loc_exp_dep_pool
;
591 /* Changed variables, notes will be emitted for them. */
592 static variable_table_type changed_variables
;
594 /* Shall notes be emitted? */
595 static bool emit_notes
;
597 /* Values whose dynamic location lists have gone empty, but whose
598 cselib location lists are still usable. Use this to hold the
599 current location, the backlinks, etc, during emit_notes. */
600 static variable_table_type dropped_values
;
602 /* Empty shared hashtable. */
603 static shared_hash empty_shared_hash
;
605 /* Scratch register bitmap used by cselib_expand_value_rtx. */
606 static bitmap scratch_regs
= NULL
;
608 #ifdef HAVE_window_save
609 typedef struct GTY(()) parm_reg
{
615 /* Vector of windowed parameter registers, if any. */
616 static vec
<parm_reg_t
, va_gc
> *windowed_parm_regs
= NULL
;
619 /* Variable used to tell whether cselib_process_insn called our hook. */
620 static bool cselib_hook_called
;
622 /* Local function prototypes. */
623 static void stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
625 static void insn_stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
627 static bool vt_stack_adjustments (void);
629 static void init_attrs_list_set (attrs
*);
630 static void attrs_list_clear (attrs
*);
631 static attrs
attrs_list_member (attrs
, decl_or_value
, HOST_WIDE_INT
);
632 static void attrs_list_insert (attrs
*, decl_or_value
, HOST_WIDE_INT
, rtx
);
633 static void attrs_list_copy (attrs
*, attrs
);
634 static void attrs_list_union (attrs
*, attrs
);
636 static variable_def
**unshare_variable (dataflow_set
*set
, variable_def
**slot
,
637 variable var
, enum var_init_status
);
638 static void vars_copy (variable_table_type
, variable_table_type
);
639 static tree
var_debug_decl (tree
);
640 static void var_reg_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
641 static void var_reg_delete_and_set (dataflow_set
*, rtx
, bool,
642 enum var_init_status
, rtx
);
643 static void var_reg_delete (dataflow_set
*, rtx
, bool);
644 static void var_regno_delete (dataflow_set
*, int);
645 static void var_mem_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
646 static void var_mem_delete_and_set (dataflow_set
*, rtx
, bool,
647 enum var_init_status
, rtx
);
648 static void var_mem_delete (dataflow_set
*, rtx
, bool);
650 static void dataflow_set_init (dataflow_set
*);
651 static void dataflow_set_clear (dataflow_set
*);
652 static void dataflow_set_copy (dataflow_set
*, dataflow_set
*);
653 static int variable_union_info_cmp_pos (const void *, const void *);
654 static void dataflow_set_union (dataflow_set
*, dataflow_set
*);
655 static location_chain
find_loc_in_1pdv (rtx
, variable
, variable_table_type
);
656 static bool canon_value_cmp (rtx
, rtx
);
657 static int loc_cmp (rtx
, rtx
);
658 static bool variable_part_different_p (variable_part
*, variable_part
*);
659 static bool onepart_variable_different_p (variable
, variable
);
660 static bool variable_different_p (variable
, variable
);
661 static bool dataflow_set_different (dataflow_set
*, dataflow_set
*);
662 static void dataflow_set_destroy (dataflow_set
*);
664 static bool contains_symbol_ref (rtx
);
665 static bool track_expr_p (tree
, bool);
666 static bool same_variable_part_p (rtx
, tree
, HOST_WIDE_INT
);
667 static int add_uses (rtx
*, void *);
668 static void add_uses_1 (rtx
*, void *);
669 static void add_stores (rtx
, const_rtx
, void *);
670 static bool compute_bb_dataflow (basic_block
);
671 static bool vt_find_locations (void);
673 static void dump_attrs_list (attrs
);
674 static void dump_var (variable
);
675 static void dump_vars (variable_table_type
);
676 static void dump_dataflow_set (dataflow_set
*);
677 static void dump_dataflow_sets (void);
679 static void set_dv_changed (decl_or_value
, bool);
680 static void variable_was_changed (variable
, dataflow_set
*);
681 static variable_def
**set_slot_part (dataflow_set
*, rtx
, variable_def
**,
682 decl_or_value
, HOST_WIDE_INT
,
683 enum var_init_status
, rtx
);
684 static void set_variable_part (dataflow_set
*, rtx
,
685 decl_or_value
, HOST_WIDE_INT
,
686 enum var_init_status
, rtx
, enum insert_option
);
687 static variable_def
**clobber_slot_part (dataflow_set
*, rtx
,
688 variable_def
**, HOST_WIDE_INT
, rtx
);
689 static void clobber_variable_part (dataflow_set
*, rtx
,
690 decl_or_value
, HOST_WIDE_INT
, rtx
);
691 static variable_def
**delete_slot_part (dataflow_set
*, rtx
, variable_def
**,
693 static void delete_variable_part (dataflow_set
*, rtx
,
694 decl_or_value
, HOST_WIDE_INT
);
695 static void emit_notes_in_bb (basic_block
, dataflow_set
*);
696 static void vt_emit_notes (void);
698 static bool vt_get_decl_and_offset (rtx
, tree
*, HOST_WIDE_INT
*);
699 static void vt_add_function_parameters (void);
700 static bool vt_initialize (void);
701 static void vt_finalize (void);
703 /* Given a SET, calculate the amount of stack adjustment it contains
704 PRE- and POST-modifying stack pointer.
705 This function is similar to stack_adjust_offset. */
708 stack_adjust_offset_pre_post (rtx pattern
, HOST_WIDE_INT
*pre
,
711 rtx src
= SET_SRC (pattern
);
712 rtx dest
= SET_DEST (pattern
);
715 if (dest
== stack_pointer_rtx
)
717 /* (set (reg sp) (plus (reg sp) (const_int))) */
718 code
= GET_CODE (src
);
719 if (! (code
== PLUS
|| code
== MINUS
)
720 || XEXP (src
, 0) != stack_pointer_rtx
721 || !CONST_INT_P (XEXP (src
, 1)))
725 *post
+= INTVAL (XEXP (src
, 1));
727 *post
-= INTVAL (XEXP (src
, 1));
729 else if (MEM_P (dest
))
731 /* (set (mem (pre_dec (reg sp))) (foo)) */
732 src
= XEXP (dest
, 0);
733 code
= GET_CODE (src
);
739 if (XEXP (src
, 0) == stack_pointer_rtx
)
741 rtx val
= XEXP (XEXP (src
, 1), 1);
742 /* We handle only adjustments by constant amount. */
743 gcc_assert (GET_CODE (XEXP (src
, 1)) == PLUS
&&
746 if (code
== PRE_MODIFY
)
747 *pre
-= INTVAL (val
);
749 *post
-= INTVAL (val
);
755 if (XEXP (src
, 0) == stack_pointer_rtx
)
757 *pre
+= GET_MODE_SIZE (GET_MODE (dest
));
763 if (XEXP (src
, 0) == stack_pointer_rtx
)
765 *post
+= GET_MODE_SIZE (GET_MODE (dest
));
771 if (XEXP (src
, 0) == stack_pointer_rtx
)
773 *pre
-= GET_MODE_SIZE (GET_MODE (dest
));
779 if (XEXP (src
, 0) == stack_pointer_rtx
)
781 *post
-= GET_MODE_SIZE (GET_MODE (dest
));
792 /* Given an INSN, calculate the amount of stack adjustment it contains
793 PRE- and POST-modifying stack pointer. */
796 insn_stack_adjust_offset_pre_post (rtx insn
, HOST_WIDE_INT
*pre
,
804 pattern
= PATTERN (insn
);
805 if (RTX_FRAME_RELATED_P (insn
))
807 rtx expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
809 pattern
= XEXP (expr
, 0);
812 if (GET_CODE (pattern
) == SET
)
813 stack_adjust_offset_pre_post (pattern
, pre
, post
);
814 else if (GET_CODE (pattern
) == PARALLEL
815 || GET_CODE (pattern
) == SEQUENCE
)
819 /* There may be stack adjustments inside compound insns. Search
821 for ( i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
822 if (GET_CODE (XVECEXP (pattern
, 0, i
)) == SET
)
823 stack_adjust_offset_pre_post (XVECEXP (pattern
, 0, i
), pre
, post
);
827 /* Compute stack adjustments for all blocks by traversing DFS tree.
828 Return true when the adjustments on all incoming edges are consistent.
829 Heavily borrowed from pre_and_rev_post_order_compute. */
832 vt_stack_adjustments (void)
834 edge_iterator
*stack
;
837 /* Initialize entry block. */
838 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->visited
= true;
839 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->in
.stack_adjust
=
840 INCOMING_FRAME_SP_OFFSET
;
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
.stack_adjust
=
842 INCOMING_FRAME_SP_OFFSET
;
844 /* Allocate stack for back-tracking up CFG. */
845 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
848 /* Push the first edge on to the stack. */
849 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
857 /* Look at the edge on the top of the stack. */
859 src
= ei_edge (ei
)->src
;
860 dest
= ei_edge (ei
)->dest
;
862 /* Check if the edge destination has been visited yet. */
863 if (!VTI (dest
)->visited
)
866 HOST_WIDE_INT pre
, post
, offset
;
867 VTI (dest
)->visited
= true;
868 VTI (dest
)->in
.stack_adjust
= offset
= VTI (src
)->out
.stack_adjust
;
870 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
871 for (insn
= BB_HEAD (dest
);
872 insn
!= NEXT_INSN (BB_END (dest
));
873 insn
= NEXT_INSN (insn
))
876 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
877 offset
+= pre
+ post
;
880 VTI (dest
)->out
.stack_adjust
= offset
;
882 if (EDGE_COUNT (dest
->succs
) > 0)
883 /* Since the DEST node has been visited for the first
884 time, check its successors. */
885 stack
[sp
++] = ei_start (dest
->succs
);
889 /* We can end up with different stack adjustments for the exit block
890 of a shrink-wrapped function if stack_adjust_offset_pre_post
891 doesn't understand the rtx pattern used to restore the stack
892 pointer in the epilogue. For example, on s390(x), the stack
893 pointer is often restored via a load-multiple instruction
894 and so no stack_adjust offset is recorded for it. This means
895 that the stack offset at the end of the epilogue block is the
896 the same as the offset before the epilogue, whereas other paths
897 to the exit block will have the correct stack_adjust.
899 It is safe to ignore these differences because (a) we never
900 use the stack_adjust for the exit block in this pass and
901 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
902 function are correct.
904 We must check whether the adjustments on other edges are
906 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
907 && VTI (dest
)->in
.stack_adjust
!= VTI (src
)->out
.stack_adjust
)
913 if (! ei_one_before_end_p (ei
))
914 /* Go to the next edge. */
915 ei_next (&stack
[sp
- 1]);
917 /* Return to previous level if there are no more edges. */
926 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
927 hard_frame_pointer_rtx is being mapped to it and offset for it. */
928 static rtx cfa_base_rtx
;
929 static HOST_WIDE_INT cfa_base_offset
;
931 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
932 or hard_frame_pointer_rtx. */
935 compute_cfa_pointer (HOST_WIDE_INT adjustment
)
937 return plus_constant (Pmode
, cfa_base_rtx
, adjustment
+ cfa_base_offset
);
940 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
941 or -1 if the replacement shouldn't be done. */
942 static HOST_WIDE_INT hard_frame_pointer_adjustment
= -1;
944 /* Data for adjust_mems callback. */
946 struct adjust_mem_data
949 enum machine_mode mem_mode
;
950 HOST_WIDE_INT stack_adjust
;
954 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
955 transformation of wider mode arithmetics to narrower mode,
956 -1 if it is suitable and subexpressions shouldn't be
957 traversed and 0 if it is suitable and subexpressions should
958 be traversed. Called through for_each_rtx. */
961 use_narrower_mode_test (rtx
*loc
, void *data
)
963 rtx subreg
= (rtx
) data
;
965 if (CONSTANT_P (*loc
))
967 switch (GET_CODE (*loc
))
970 if (cselib_lookup (*loc
, GET_MODE (SUBREG_REG (subreg
)), 0, VOIDmode
))
972 if (!validate_subreg (GET_MODE (subreg
), GET_MODE (*loc
),
973 *loc
, subreg_lowpart_offset (GET_MODE (subreg
),
982 if (for_each_rtx (&XEXP (*loc
, 0), use_narrower_mode_test
, data
))
991 /* Transform X into narrower mode MODE from wider mode WMODE. */
994 use_narrower_mode (rtx x
, enum machine_mode mode
, enum machine_mode wmode
)
998 return lowpart_subreg (mode
, x
, wmode
);
999 switch (GET_CODE (x
))
1002 return lowpart_subreg (mode
, x
, wmode
);
1006 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
1007 op1
= use_narrower_mode (XEXP (x
, 1), mode
, wmode
);
1008 return simplify_gen_binary (GET_CODE (x
), mode
, op0
, op1
);
1010 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
1011 return simplify_gen_binary (ASHIFT
, mode
, op0
, XEXP (x
, 1));
1017 /* Helper function for adjusting used MEMs. */
1020 adjust_mems (rtx loc
, const_rtx old_rtx
, void *data
)
1022 struct adjust_mem_data
*amd
= (struct adjust_mem_data
*) data
;
1023 rtx mem
, addr
= loc
, tem
;
1024 enum machine_mode mem_mode_save
;
1026 switch (GET_CODE (loc
))
1029 /* Don't do any sp or fp replacements outside of MEM addresses
1031 if (amd
->mem_mode
== VOIDmode
&& amd
->store
)
1033 if (loc
== stack_pointer_rtx
1034 && !frame_pointer_needed
1036 return compute_cfa_pointer (amd
->stack_adjust
);
1037 else if (loc
== hard_frame_pointer_rtx
1038 && frame_pointer_needed
1039 && hard_frame_pointer_adjustment
!= -1
1041 return compute_cfa_pointer (hard_frame_pointer_adjustment
);
1042 gcc_checking_assert (loc
!= virtual_incoming_args_rtx
);
1048 mem
= targetm
.delegitimize_address (mem
);
1049 if (mem
!= loc
&& !MEM_P (mem
))
1050 return simplify_replace_fn_rtx (mem
, old_rtx
, adjust_mems
, data
);
1053 addr
= XEXP (mem
, 0);
1054 mem_mode_save
= amd
->mem_mode
;
1055 amd
->mem_mode
= GET_MODE (mem
);
1056 store_save
= amd
->store
;
1058 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1059 amd
->store
= store_save
;
1060 amd
->mem_mode
= mem_mode_save
;
1062 addr
= targetm
.delegitimize_address (addr
);
1063 if (addr
!= XEXP (mem
, 0))
1064 mem
= replace_equiv_address_nv (mem
, addr
);
1066 mem
= avoid_constant_pool_reference (mem
);
1070 addr
= gen_rtx_PLUS (GET_MODE (loc
), XEXP (loc
, 0),
1071 gen_int_mode (GET_CODE (loc
) == PRE_INC
1072 ? GET_MODE_SIZE (amd
->mem_mode
)
1073 : -GET_MODE_SIZE (amd
->mem_mode
),
1078 addr
= XEXP (loc
, 0);
1079 gcc_assert (amd
->mem_mode
!= VOIDmode
&& amd
->mem_mode
!= BLKmode
);
1080 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1081 tem
= gen_rtx_PLUS (GET_MODE (loc
), XEXP (loc
, 0),
1082 gen_int_mode ((GET_CODE (loc
) == PRE_INC
1083 || GET_CODE (loc
) == POST_INC
)
1084 ? GET_MODE_SIZE (amd
->mem_mode
)
1085 : -GET_MODE_SIZE (amd
->mem_mode
),
1087 store_save
= amd
->store
;
1089 tem
= simplify_replace_fn_rtx (tem
, old_rtx
, adjust_mems
, data
);
1090 amd
->store
= store_save
;
1091 amd
->side_effects
= alloc_EXPR_LIST (0,
1092 gen_rtx_SET (VOIDmode
,
1093 XEXP (loc
, 0), tem
),
1097 addr
= XEXP (loc
, 1);
1100 addr
= XEXP (loc
, 0);
1101 gcc_assert (amd
->mem_mode
!= VOIDmode
);
1102 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1103 store_save
= amd
->store
;
1105 tem
= simplify_replace_fn_rtx (XEXP (loc
, 1), old_rtx
,
1107 amd
->store
= store_save
;
1108 amd
->side_effects
= alloc_EXPR_LIST (0,
1109 gen_rtx_SET (VOIDmode
,
1110 XEXP (loc
, 0), tem
),
1114 /* First try without delegitimization of whole MEMs and
1115 avoid_constant_pool_reference, which is more likely to succeed. */
1116 store_save
= amd
->store
;
1118 addr
= simplify_replace_fn_rtx (SUBREG_REG (loc
), old_rtx
, adjust_mems
,
1120 amd
->store
= store_save
;
1121 mem
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1122 if (mem
== SUBREG_REG (loc
))
1127 tem
= simplify_gen_subreg (GET_MODE (loc
), mem
,
1128 GET_MODE (SUBREG_REG (loc
)),
1132 tem
= simplify_gen_subreg (GET_MODE (loc
), addr
,
1133 GET_MODE (SUBREG_REG (loc
)),
1135 if (tem
== NULL_RTX
)
1136 tem
= gen_rtx_raw_SUBREG (GET_MODE (loc
), addr
, SUBREG_BYTE (loc
));
1138 if (MAY_HAVE_DEBUG_INSNS
1139 && GET_CODE (tem
) == SUBREG
1140 && (GET_CODE (SUBREG_REG (tem
)) == PLUS
1141 || GET_CODE (SUBREG_REG (tem
)) == MINUS
1142 || GET_CODE (SUBREG_REG (tem
)) == MULT
1143 || GET_CODE (SUBREG_REG (tem
)) == ASHIFT
)
1144 && GET_MODE_CLASS (GET_MODE (tem
)) == MODE_INT
1145 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem
))) == MODE_INT
1146 && GET_MODE_SIZE (GET_MODE (tem
))
1147 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem
)))
1148 && subreg_lowpart_p (tem
)
1149 && !for_each_rtx (&SUBREG_REG (tem
), use_narrower_mode_test
, tem
))
1150 return use_narrower_mode (SUBREG_REG (tem
), GET_MODE (tem
),
1151 GET_MODE (SUBREG_REG (tem
)));
1154 /* Don't do any replacements in second and following
1155 ASM_OPERANDS of inline-asm with multiple sets.
1156 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1157 and ASM_OPERANDS_LABEL_VEC need to be equal between
1158 all the ASM_OPERANDs in the insn and adjust_insn will
1160 if (ASM_OPERANDS_OUTPUT_IDX (loc
) != 0)
1169 /* Helper function for replacement of uses. */
1172 adjust_mem_uses (rtx
*x
, void *data
)
1174 rtx new_x
= simplify_replace_fn_rtx (*x
, NULL_RTX
, adjust_mems
, data
);
1176 validate_change (NULL_RTX
, x
, new_x
, true);
1179 /* Helper function for replacement of stores. */
1182 adjust_mem_stores (rtx loc
, const_rtx expr
, void *data
)
1186 rtx new_dest
= simplify_replace_fn_rtx (SET_DEST (expr
), NULL_RTX
,
1188 if (new_dest
!= SET_DEST (expr
))
1190 rtx xexpr
= CONST_CAST_RTX (expr
);
1191 validate_change (NULL_RTX
, &SET_DEST (xexpr
), new_dest
, true);
1196 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1197 replace them with their value in the insn and add the side-effects
1198 as other sets to the insn. */
1201 adjust_insn (basic_block bb
, rtx insn
)
1203 struct adjust_mem_data amd
;
1206 #ifdef HAVE_window_save
1207 /* If the target machine has an explicit window save instruction, the
1208 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1209 if (RTX_FRAME_RELATED_P (insn
)
1210 && find_reg_note (insn
, REG_CFA_WINDOW_SAVE
, NULL_RTX
))
1212 unsigned int i
, nregs
= vec_safe_length (windowed_parm_regs
);
1213 rtx rtl
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (nregs
* 2));
1216 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs
, i
, p
)
1218 XVECEXP (rtl
, 0, i
* 2)
1219 = gen_rtx_SET (VOIDmode
, p
->incoming
, p
->outgoing
);
1220 /* Do not clobber the attached DECL, but only the REG. */
1221 XVECEXP (rtl
, 0, i
* 2 + 1)
1222 = gen_rtx_CLOBBER (GET_MODE (p
->outgoing
),
1223 gen_raw_REG (GET_MODE (p
->outgoing
),
1224 REGNO (p
->outgoing
)));
1227 validate_change (NULL_RTX
, &PATTERN (insn
), rtl
, true);
1232 amd
.mem_mode
= VOIDmode
;
1233 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
1234 amd
.side_effects
= NULL_RTX
;
1237 note_stores (PATTERN (insn
), adjust_mem_stores
, &amd
);
1240 if (GET_CODE (PATTERN (insn
)) == PARALLEL
1241 && asm_noperands (PATTERN (insn
)) > 0
1242 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1247 /* inline-asm with multiple sets is tiny bit more complicated,
1248 because the 3 vectors in ASM_OPERANDS need to be shared between
1249 all ASM_OPERANDS in the instruction. adjust_mems will
1250 not touch ASM_OPERANDS other than the first one, asm_noperands
1251 test above needs to be called before that (otherwise it would fail)
1252 and afterwards this code fixes it up. */
1253 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1254 body
= PATTERN (insn
);
1255 set0
= XVECEXP (body
, 0, 0);
1256 gcc_checking_assert (GET_CODE (set0
) == SET
1257 && GET_CODE (SET_SRC (set0
)) == ASM_OPERANDS
1258 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0
)) == 0);
1259 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
1260 if (GET_CODE (XVECEXP (body
, 0, i
)) != SET
)
1264 set
= XVECEXP (body
, 0, i
);
1265 gcc_checking_assert (GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
1266 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set
))
1268 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set
))
1269 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
))
1270 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set
))
1271 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
))
1272 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set
))
1273 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
)))
1275 rtx newsrc
= shallow_copy_rtx (SET_SRC (set
));
1276 ASM_OPERANDS_INPUT_VEC (newsrc
)
1277 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
));
1278 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc
)
1279 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
));
1280 ASM_OPERANDS_LABEL_VEC (newsrc
)
1281 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
));
1282 validate_change (NULL_RTX
, &SET_SRC (set
), newsrc
, true);
1287 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1289 /* For read-only MEMs containing some constant, prefer those
1291 set
= single_set (insn
);
1292 if (set
&& MEM_P (SET_SRC (set
)) && MEM_READONLY_P (SET_SRC (set
)))
1294 rtx note
= find_reg_equal_equiv_note (insn
);
1296 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1297 validate_change (NULL_RTX
, &SET_SRC (set
), XEXP (note
, 0), true);
1300 if (amd
.side_effects
)
1302 rtx
*pat
, new_pat
, s
;
1305 pat
= &PATTERN (insn
);
1306 if (GET_CODE (*pat
) == COND_EXEC
)
1307 pat
= &COND_EXEC_CODE (*pat
);
1308 if (GET_CODE (*pat
) == PARALLEL
)
1309 oldn
= XVECLEN (*pat
, 0);
1312 for (s
= amd
.side_effects
, newn
= 0; s
; newn
++)
1314 new_pat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (oldn
+ newn
));
1315 if (GET_CODE (*pat
) == PARALLEL
)
1316 for (i
= 0; i
< oldn
; i
++)
1317 XVECEXP (new_pat
, 0, i
) = XVECEXP (*pat
, 0, i
);
1319 XVECEXP (new_pat
, 0, 0) = *pat
;
1320 for (s
= amd
.side_effects
, i
= oldn
; i
< oldn
+ newn
; i
++, s
= XEXP (s
, 1))
1321 XVECEXP (new_pat
, 0, i
) = XEXP (s
, 0);
1322 free_EXPR_LIST_list (&amd
.side_effects
);
1323 validate_change (NULL_RTX
, pat
, new_pat
, true);
1327 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1329 dv_as_rtx (decl_or_value dv
)
1333 if (dv_is_value_p (dv
))
1334 return dv_as_value (dv
);
1336 decl
= dv_as_decl (dv
);
1338 gcc_checking_assert (TREE_CODE (decl
) == DEBUG_EXPR_DECL
);
1339 return DECL_RTL_KNOWN_SET (decl
);
1342 /* Return nonzero if a decl_or_value must not have more than one
1343 variable part. The returned value discriminates among various
1344 kinds of one-part DVs ccording to enum onepart_enum. */
1345 static inline onepart_enum_t
1346 dv_onepart_p (decl_or_value dv
)
1350 if (!MAY_HAVE_DEBUG_INSNS
)
1353 if (dv_is_value_p (dv
))
1354 return ONEPART_VALUE
;
1356 decl
= dv_as_decl (dv
);
1358 if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
1359 return ONEPART_DEXPR
;
1361 if (target_for_debug_bind (decl
) != NULL_TREE
)
1362 return ONEPART_VDECL
;
1367 /* Return the variable pool to be used for a dv of type ONEPART. */
1368 static inline alloc_pool
1369 onepart_pool (onepart_enum_t onepart
)
1371 return onepart
? valvar_pool
: var_pool
;
1374 /* Build a decl_or_value out of a decl. */
1375 static inline decl_or_value
1376 dv_from_decl (tree decl
)
1380 gcc_checking_assert (dv_is_decl_p (dv
));
1384 /* Build a decl_or_value out of a value. */
1385 static inline decl_or_value
1386 dv_from_value (rtx value
)
1390 gcc_checking_assert (dv_is_value_p (dv
));
1394 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1395 static inline decl_or_value
1400 switch (GET_CODE (x
))
1403 dv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (x
));
1404 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x
)) == x
);
1408 dv
= dv_from_value (x
);
1418 extern void debug_dv (decl_or_value dv
);
1421 debug_dv (decl_or_value dv
)
1423 if (dv_is_value_p (dv
))
1424 debug_rtx (dv_as_value (dv
));
1426 debug_generic_stmt (dv_as_decl (dv
));
1429 static void loc_exp_dep_clear (variable var
);
1431 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1434 variable_htab_free (void *elem
)
1437 variable var
= (variable
) elem
;
1438 location_chain node
, next
;
1440 gcc_checking_assert (var
->refcount
> 0);
1443 if (var
->refcount
> 0)
1446 for (i
= 0; i
< var
->n_var_parts
; i
++)
1448 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= next
)
1451 pool_free (loc_chain_pool
, node
);
1453 var
->var_part
[i
].loc_chain
= NULL
;
1455 if (var
->onepart
&& VAR_LOC_1PAUX (var
))
1457 loc_exp_dep_clear (var
);
1458 if (VAR_LOC_DEP_LST (var
))
1459 VAR_LOC_DEP_LST (var
)->pprev
= NULL
;
1460 XDELETE (VAR_LOC_1PAUX (var
));
1461 /* These may be reused across functions, so reset
1463 if (var
->onepart
== ONEPART_DEXPR
)
1464 set_dv_changed (var
->dv
, true);
1466 pool_free (onepart_pool (var
->onepart
), var
);
1469 /* Initialize the set (array) SET of attrs to empty lists. */
1472 init_attrs_list_set (attrs
*set
)
1476 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1480 /* Make the list *LISTP empty. */
1483 attrs_list_clear (attrs
*listp
)
1487 for (list
= *listp
; list
; list
= next
)
1490 pool_free (attrs_pool
, list
);
1495 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1498 attrs_list_member (attrs list
, decl_or_value dv
, HOST_WIDE_INT offset
)
1500 for (; list
; list
= list
->next
)
1501 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
) && list
->offset
== offset
)
1506 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1509 attrs_list_insert (attrs
*listp
, decl_or_value dv
,
1510 HOST_WIDE_INT offset
, rtx loc
)
1514 list
= (attrs
) pool_alloc (attrs_pool
);
1517 list
->offset
= offset
;
1518 list
->next
= *listp
;
1522 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1525 attrs_list_copy (attrs
*dstp
, attrs src
)
1529 attrs_list_clear (dstp
);
1530 for (; src
; src
= src
->next
)
1532 n
= (attrs
) pool_alloc (attrs_pool
);
1535 n
->offset
= src
->offset
;
1541 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1544 attrs_list_union (attrs
*dstp
, attrs src
)
1546 for (; src
; src
= src
->next
)
1548 if (!attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1549 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1553 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1557 attrs_list_mpdv_union (attrs
*dstp
, attrs src
, attrs src2
)
1559 gcc_assert (!*dstp
);
1560 for (; src
; src
= src
->next
)
1562 if (!dv_onepart_p (src
->dv
))
1563 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1565 for (src
= src2
; src
; src
= src
->next
)
1567 if (!dv_onepart_p (src
->dv
)
1568 && !attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1569 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1573 /* Shared hashtable support. */
1575 /* Return true if VARS is shared. */
1578 shared_hash_shared (shared_hash vars
)
1580 return vars
->refcount
> 1;
1583 /* Return the hash table for VARS. */
1585 static inline variable_table_type
1586 shared_hash_htab (shared_hash vars
)
1591 /* Return true if VAR is shared, or maybe because VARS is shared. */
1594 shared_var_p (variable var
, shared_hash vars
)
1596 /* Don't count an entry in the changed_variables table as a duplicate. */
1597 return ((var
->refcount
> 1 + (int) var
->in_changed_variables
)
1598 || shared_hash_shared (vars
));
1601 /* Copy variables into a new hash table. */
1604 shared_hash_unshare (shared_hash vars
)
1606 shared_hash new_vars
= (shared_hash
) pool_alloc (shared_hash_pool
);
1607 gcc_assert (vars
->refcount
> 1);
1608 new_vars
->refcount
= 1;
1609 new_vars
->htab
.create (vars
->htab
.elements () + 3);
1610 vars_copy (new_vars
->htab
, vars
->htab
);
1615 /* Increment reference counter on VARS and return it. */
1617 static inline shared_hash
1618 shared_hash_copy (shared_hash vars
)
1624 /* Decrement reference counter and destroy hash table if not shared
1628 shared_hash_destroy (shared_hash vars
)
1630 gcc_checking_assert (vars
->refcount
> 0);
1631 if (--vars
->refcount
== 0)
1633 vars
->htab
.dispose ();
1634 pool_free (shared_hash_pool
, vars
);
1638 /* Unshare *PVARS if shared and return slot for DV. If INS is
1639 INSERT, insert it if not already present. */
1641 static inline variable_def
**
1642 shared_hash_find_slot_unshare_1 (shared_hash
*pvars
, decl_or_value dv
,
1643 hashval_t dvhash
, enum insert_option ins
)
1645 if (shared_hash_shared (*pvars
))
1646 *pvars
= shared_hash_unshare (*pvars
);
1647 return shared_hash_htab (*pvars
).find_slot_with_hash (dv
, dvhash
, ins
);
1650 static inline variable_def
**
1651 shared_hash_find_slot_unshare (shared_hash
*pvars
, decl_or_value dv
,
1652 enum insert_option ins
)
1654 return shared_hash_find_slot_unshare_1 (pvars
, dv
, dv_htab_hash (dv
), ins
);
1657 /* Return slot for DV, if it is already present in the hash table.
1658 If it is not present, insert it only VARS is not shared, otherwise
1661 static inline variable_def
**
1662 shared_hash_find_slot_1 (shared_hash vars
, decl_or_value dv
, hashval_t dvhash
)
1664 return shared_hash_htab (vars
).find_slot_with_hash (dv
, dvhash
,
1665 shared_hash_shared (vars
)
1666 ? NO_INSERT
: INSERT
);
1669 static inline variable_def
**
1670 shared_hash_find_slot (shared_hash vars
, decl_or_value dv
)
1672 return shared_hash_find_slot_1 (vars
, dv
, dv_htab_hash (dv
));
1675 /* Return slot for DV only if it is already present in the hash table. */
1677 static inline variable_def
**
1678 shared_hash_find_slot_noinsert_1 (shared_hash vars
, decl_or_value dv
,
1681 return shared_hash_htab (vars
).find_slot_with_hash (dv
, dvhash
, NO_INSERT
);
1684 static inline variable_def
**
1685 shared_hash_find_slot_noinsert (shared_hash vars
, decl_or_value dv
)
1687 return shared_hash_find_slot_noinsert_1 (vars
, dv
, dv_htab_hash (dv
));
1690 /* Return variable for DV or NULL if not already present in the hash
1693 static inline variable
1694 shared_hash_find_1 (shared_hash vars
, decl_or_value dv
, hashval_t dvhash
)
1696 return shared_hash_htab (vars
).find_with_hash (dv
, dvhash
);
1699 static inline variable
1700 shared_hash_find (shared_hash vars
, decl_or_value dv
)
1702 return shared_hash_find_1 (vars
, dv
, dv_htab_hash (dv
));
1705 /* Return true if TVAL is better than CVAL as a canonival value. We
1706 choose lowest-numbered VALUEs, using the RTX address as a
1707 tie-breaker. The idea is to arrange them into a star topology,
1708 such that all of them are at most one step away from the canonical
1709 value, and the canonical value has backlinks to all of them, in
1710 addition to all the actual locations. We don't enforce this
1711 topology throughout the entire dataflow analysis, though.
1715 canon_value_cmp (rtx tval
, rtx cval
)
1718 || CSELIB_VAL_PTR (tval
)->uid
< CSELIB_VAL_PTR (cval
)->uid
;
1721 static bool dst_can_be_shared
;
1723 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1725 static variable_def
**
1726 unshare_variable (dataflow_set
*set
, variable_def
**slot
, variable var
,
1727 enum var_init_status initialized
)
1732 new_var
= (variable
) pool_alloc (onepart_pool (var
->onepart
));
1733 new_var
->dv
= var
->dv
;
1734 new_var
->refcount
= 1;
1736 new_var
->n_var_parts
= var
->n_var_parts
;
1737 new_var
->onepart
= var
->onepart
;
1738 new_var
->in_changed_variables
= false;
1740 if (! flag_var_tracking_uninit
)
1741 initialized
= VAR_INIT_STATUS_INITIALIZED
;
1743 for (i
= 0; i
< var
->n_var_parts
; i
++)
1745 location_chain node
;
1746 location_chain
*nextp
;
1748 if (i
== 0 && var
->onepart
)
1750 /* One-part auxiliary data is only used while emitting
1751 notes, so propagate it to the new variable in the active
1752 dataflow set. If we're not emitting notes, this will be
1754 gcc_checking_assert (!VAR_LOC_1PAUX (var
) || emit_notes
);
1755 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (var
);
1756 VAR_LOC_1PAUX (var
) = NULL
;
1759 VAR_PART_OFFSET (new_var
, i
) = VAR_PART_OFFSET (var
, i
);
1760 nextp
= &new_var
->var_part
[i
].loc_chain
;
1761 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1763 location_chain new_lc
;
1765 new_lc
= (location_chain
) pool_alloc (loc_chain_pool
);
1766 new_lc
->next
= NULL
;
1767 if (node
->init
> initialized
)
1768 new_lc
->init
= node
->init
;
1770 new_lc
->init
= initialized
;
1771 if (node
->set_src
&& !(MEM_P (node
->set_src
)))
1772 new_lc
->set_src
= node
->set_src
;
1774 new_lc
->set_src
= NULL
;
1775 new_lc
->loc
= node
->loc
;
1778 nextp
= &new_lc
->next
;
1781 new_var
->var_part
[i
].cur_loc
= var
->var_part
[i
].cur_loc
;
1784 dst_can_be_shared
= false;
1785 if (shared_hash_shared (set
->vars
))
1786 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
, NO_INSERT
);
1787 else if (set
->traversed_vars
&& set
->vars
!= set
->traversed_vars
)
1788 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
1790 if (var
->in_changed_variables
)
1792 variable_def
**cslot
1793 = changed_variables
.find_slot_with_hash (var
->dv
,
1794 dv_htab_hash (var
->dv
), NO_INSERT
);
1795 gcc_assert (*cslot
== (void *) var
);
1796 var
->in_changed_variables
= false;
1797 variable_htab_free (var
);
1799 new_var
->in_changed_variables
= true;
1804 /* Copy all variables from hash table SRC to hash table DST. */
1807 vars_copy (variable_table_type dst
, variable_table_type src
)
1809 variable_iterator_type hi
;
1812 FOR_EACH_HASH_TABLE_ELEMENT (src
, var
, variable
, hi
)
1814 variable_def
**dstp
;
1816 dstp
= dst
.find_slot_with_hash (var
->dv
, dv_htab_hash (var
->dv
), INSERT
);
1821 /* Map a decl to its main debug decl. */
1824 var_debug_decl (tree decl
)
1826 if (decl
&& TREE_CODE (decl
) == VAR_DECL
1827 && DECL_HAS_DEBUG_EXPR_P (decl
))
1829 tree debugdecl
= DECL_DEBUG_EXPR (decl
);
1830 if (DECL_P (debugdecl
))
1837 /* Set the register LOC to contain DV, OFFSET. */
1840 var_reg_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1841 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
1842 enum insert_option iopt
)
1845 bool decl_p
= dv_is_decl_p (dv
);
1848 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
1850 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
1851 if (dv_as_opaque (node
->dv
) == dv_as_opaque (dv
)
1852 && node
->offset
== offset
)
1855 attrs_list_insert (&set
->regs
[REGNO (loc
)], dv
, offset
, loc
);
1856 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
1859 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1862 var_reg_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1865 tree decl
= REG_EXPR (loc
);
1866 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1868 var_reg_decl_set (set
, loc
, initialized
,
1869 dv_from_decl (decl
), offset
, set_src
, INSERT
);
1872 static enum var_init_status
1873 get_init_value (dataflow_set
*set
, rtx loc
, decl_or_value dv
)
1877 enum var_init_status ret_val
= VAR_INIT_STATUS_UNKNOWN
;
1879 if (! flag_var_tracking_uninit
)
1880 return VAR_INIT_STATUS_INITIALIZED
;
1882 var
= shared_hash_find (set
->vars
, dv
);
1885 for (i
= 0; i
< var
->n_var_parts
&& ret_val
== VAR_INIT_STATUS_UNKNOWN
; i
++)
1887 location_chain nextp
;
1888 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
; nextp
= nextp
->next
)
1889 if (rtx_equal_p (nextp
->loc
, loc
))
1891 ret_val
= nextp
->init
;
1900 /* Delete current content of register LOC in dataflow set SET and set
1901 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1902 MODIFY is true, any other live copies of the same variable part are
1903 also deleted from the dataflow set, otherwise the variable part is
1904 assumed to be copied from another location holding the same
1908 var_reg_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
1909 enum var_init_status initialized
, rtx set_src
)
1911 tree decl
= REG_EXPR (loc
);
1912 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1916 decl
= var_debug_decl (decl
);
1918 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
1919 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
1921 nextp
= &set
->regs
[REGNO (loc
)];
1922 for (node
= *nextp
; node
; node
= next
)
1925 if (dv_as_opaque (node
->dv
) != decl
|| node
->offset
!= offset
)
1927 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1928 pool_free (attrs_pool
, node
);
1934 nextp
= &node
->next
;
1938 clobber_variable_part (set
, loc
, dv_from_decl (decl
), offset
, set_src
);
1939 var_reg_set (set
, loc
, initialized
, set_src
);
1942 /* Delete the association of register LOC in dataflow set SET with any
1943 variables that aren't onepart. If CLOBBER is true, also delete any
1944 other live copies of the same variable part, and delete the
1945 association with onepart dvs too. */
1948 var_reg_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
1950 attrs
*nextp
= &set
->regs
[REGNO (loc
)];
1955 tree decl
= REG_EXPR (loc
);
1956 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1958 decl
= var_debug_decl (decl
);
1960 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
1963 for (node
= *nextp
; node
; node
= next
)
1966 if (clobber
|| !dv_onepart_p (node
->dv
))
1968 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1969 pool_free (attrs_pool
, node
);
1973 nextp
= &node
->next
;
1977 /* Delete content of register with number REGNO in dataflow set SET. */
1980 var_regno_delete (dataflow_set
*set
, int regno
)
1982 attrs
*reg
= &set
->regs
[regno
];
1985 for (node
= *reg
; node
; node
= next
)
1988 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1989 pool_free (attrs_pool
, node
);
1994 /* Return true if I is the negated value of a power of two. */
1996 negative_power_of_two_p (HOST_WIDE_INT i
)
1998 unsigned HOST_WIDE_INT x
= -(unsigned HOST_WIDE_INT
)i
;
1999 return x
== (x
& -x
);
2002 /* Strip constant offsets and alignments off of LOC. Return the base
2006 vt_get_canonicalize_base (rtx loc
)
2008 while ((GET_CODE (loc
) == PLUS
2009 || GET_CODE (loc
) == AND
)
2010 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2011 && (GET_CODE (loc
) != AND
2012 || negative_power_of_two_p (INTVAL (XEXP (loc
, 1)))))
2013 loc
= XEXP (loc
, 0);
2018 /* This caches canonicalized addresses for VALUEs, computed using
2019 information in the global cselib table. */
2020 static struct pointer_map_t
*global_get_addr_cache
;
2022 /* This caches canonicalized addresses for VALUEs, computed using
2023 information from the global cache and information pertaining to a
2024 basic block being analyzed. */
2025 static struct pointer_map_t
*local_get_addr_cache
;
2027 static rtx
vt_canonicalize_addr (dataflow_set
*, rtx
);
2029 /* Return the canonical address for LOC, that must be a VALUE, using a
2030 cached global equivalence or computing it and storing it in the
2034 get_addr_from_global_cache (rtx
const loc
)
2039 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2041 slot
= pointer_map_insert (global_get_addr_cache
, loc
);
2045 x
= canon_rtx (get_addr (loc
));
2047 /* Tentative, avoiding infinite recursion. */
2052 rtx nx
= vt_canonicalize_addr (NULL
, x
);
2055 /* The table may have moved during recursion, recompute
2057 slot
= pointer_map_contains (global_get_addr_cache
, loc
);
2065 /* Return the canonical address for LOC, that must be a VALUE, using a
2066 cached local equivalence or computing it and storing it in the
2070 get_addr_from_local_cache (dataflow_set
*set
, rtx
const loc
)
2078 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2080 slot
= pointer_map_insert (local_get_addr_cache
, loc
);
2084 x
= get_addr_from_global_cache (loc
);
2086 /* Tentative, avoiding infinite recursion. */
2089 /* Recurse to cache local expansion of X, or if we need to search
2090 for a VALUE in the expansion. */
2093 rtx nx
= vt_canonicalize_addr (set
, x
);
2096 slot
= pointer_map_contains (local_get_addr_cache
, loc
);
2102 dv
= dv_from_rtx (x
);
2103 var
= shared_hash_find (set
->vars
, dv
);
2107 /* Look for an improved equivalent expression. */
2108 for (l
= var
->var_part
[0].loc_chain
; l
; l
= l
->next
)
2110 rtx base
= vt_get_canonicalize_base (l
->loc
);
2111 if (GET_CODE (base
) == VALUE
2112 && canon_value_cmp (base
, loc
))
2114 rtx nx
= vt_canonicalize_addr (set
, l
->loc
);
2117 slot
= pointer_map_contains (local_get_addr_cache
, loc
);
2127 /* Canonicalize LOC using equivalences from SET in addition to those
2128 in the cselib static table. It expects a VALUE-based expression,
2129 and it will only substitute VALUEs with other VALUEs or
2130 function-global equivalences, so that, if two addresses have base
2131 VALUEs that are locally or globally related in ways that
2132 memrefs_conflict_p cares about, they will both canonicalize to
2133 expressions that have the same base VALUE.
2135 The use of VALUEs as canonical base addresses enables the canonical
2136 RTXs to remain unchanged globally, if they resolve to a constant,
2137 or throughout a basic block otherwise, so that they can be cached
2138 and the cache needs not be invalidated when REGs, MEMs or such
2142 vt_canonicalize_addr (dataflow_set
*set
, rtx oloc
)
2144 HOST_WIDE_INT ofst
= 0;
2145 enum machine_mode mode
= GET_MODE (oloc
);
2152 while (GET_CODE (loc
) == PLUS
2153 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
)
2155 ofst
+= INTVAL (XEXP (loc
, 1));
2156 loc
= XEXP (loc
, 0);
2159 /* Alignment operations can't normally be combined, so just
2160 canonicalize the base and we're done. We'll normally have
2161 only one stack alignment anyway. */
2162 if (GET_CODE (loc
) == AND
2163 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2164 && negative_power_of_two_p (INTVAL (XEXP (loc
, 1))))
2166 x
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2167 if (x
!= XEXP (loc
, 0))
2168 loc
= gen_rtx_AND (mode
, x
, XEXP (loc
, 1));
2172 if (GET_CODE (loc
) == VALUE
)
2175 loc
= get_addr_from_local_cache (set
, loc
);
2177 loc
= get_addr_from_global_cache (loc
);
2179 /* Consolidate plus_constants. */
2180 while (ofst
&& GET_CODE (loc
) == PLUS
2181 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
)
2183 ofst
+= INTVAL (XEXP (loc
, 1));
2184 loc
= XEXP (loc
, 0);
2191 x
= canon_rtx (loc
);
2198 /* Add OFST back in. */
2201 /* Don't build new RTL if we can help it. */
2202 if (GET_CODE (oloc
) == PLUS
2203 && XEXP (oloc
, 0) == loc
2204 && INTVAL (XEXP (oloc
, 1)) == ofst
)
2207 loc
= plus_constant (mode
, loc
, ofst
);
2213 /* Return true iff there's a true dependence between MLOC and LOC.
2214 MADDR must be a canonicalized version of MLOC's address. */
2217 vt_canon_true_dep (dataflow_set
*set
, rtx mloc
, rtx maddr
, rtx loc
)
2219 if (GET_CODE (loc
) != MEM
)
2222 rtx addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2223 if (!canon_true_dependence (mloc
, GET_MODE (mloc
), maddr
, loc
, addr
))
2229 /* Hold parameters for the hashtab traversal function
2230 drop_overlapping_mem_locs, see below. */
2232 struct overlapping_mems
2238 /* Remove all MEMs that overlap with COMS->LOC from the location list
2239 of a hash table entry for a value. COMS->ADDR must be a
2240 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2241 canonicalized itself. */
2244 drop_overlapping_mem_locs (variable_def
**slot
, overlapping_mems
*coms
)
2246 dataflow_set
*set
= coms
->set
;
2247 rtx mloc
= coms
->loc
, addr
= coms
->addr
;
2248 variable var
= *slot
;
2250 if (var
->onepart
== ONEPART_VALUE
)
2252 location_chain loc
, *locp
;
2253 bool changed
= false;
2256 gcc_assert (var
->n_var_parts
== 1);
2258 if (shared_var_p (var
, set
->vars
))
2260 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
2261 if (vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2267 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
2269 gcc_assert (var
->n_var_parts
== 1);
2272 if (VAR_LOC_1PAUX (var
))
2273 cur_loc
= VAR_LOC_FROM (var
);
2275 cur_loc
= var
->var_part
[0].cur_loc
;
2277 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
2280 if (!vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2287 /* If we have deleted the location which was last emitted
2288 we have to emit new location so add the variable to set
2289 of changed variables. */
2290 if (cur_loc
== loc
->loc
)
2293 var
->var_part
[0].cur_loc
= NULL
;
2294 if (VAR_LOC_1PAUX (var
))
2295 VAR_LOC_FROM (var
) = NULL
;
2297 pool_free (loc_chain_pool
, loc
);
2300 if (!var
->var_part
[0].loc_chain
)
2306 variable_was_changed (var
, set
);
2312 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2315 clobber_overlapping_mems (dataflow_set
*set
, rtx loc
)
2317 struct overlapping_mems coms
;
2319 gcc_checking_assert (GET_CODE (loc
) == MEM
);
2322 coms
.loc
= canon_rtx (loc
);
2323 coms
.addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2325 set
->traversed_vars
= set
->vars
;
2326 shared_hash_htab (set
->vars
)
2327 .traverse
<overlapping_mems
*, drop_overlapping_mem_locs
> (&coms
);
2328 set
->traversed_vars
= NULL
;
2331 /* Set the location of DV, OFFSET as the MEM LOC. */
2334 var_mem_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2335 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
2336 enum insert_option iopt
)
2338 if (dv_is_decl_p (dv
))
2339 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
2341 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
2344 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2346 Adjust the address first if it is stack pointer based. */
2349 var_mem_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2352 tree decl
= MEM_EXPR (loc
);
2353 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
2355 var_mem_decl_set (set
, loc
, initialized
,
2356 dv_from_decl (decl
), offset
, set_src
, INSERT
);
2359 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2360 dataflow set SET to LOC. If MODIFY is true, any other live copies
2361 of the same variable part are also deleted from the dataflow set,
2362 otherwise the variable part is assumed to be copied from another
2363 location holding the same part.
2364 Adjust the address first if it is stack pointer based. */
2367 var_mem_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
2368 enum var_init_status initialized
, rtx set_src
)
2370 tree decl
= MEM_EXPR (loc
);
2371 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
2373 clobber_overlapping_mems (set
, loc
);
2374 decl
= var_debug_decl (decl
);
2376 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
2377 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
2380 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, set_src
);
2381 var_mem_set (set
, loc
, initialized
, set_src
);
2384 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2385 true, also delete any other live copies of the same variable part.
2386 Adjust the address first if it is stack pointer based. */
2389 var_mem_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
2391 tree decl
= MEM_EXPR (loc
);
2392 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
2394 clobber_overlapping_mems (set
, loc
);
2395 decl
= var_debug_decl (decl
);
2397 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
2398 delete_variable_part (set
, loc
, dv_from_decl (decl
), offset
);
2401 /* Return true if LOC should not be expanded for location expressions,
2405 unsuitable_loc (rtx loc
)
2407 switch (GET_CODE (loc
))
2421 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2425 val_bind (dataflow_set
*set
, rtx val
, rtx loc
, bool modified
)
2430 var_regno_delete (set
, REGNO (loc
));
2431 var_reg_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2432 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2434 else if (MEM_P (loc
))
2436 struct elt_loc_list
*l
= CSELIB_VAL_PTR (val
)->locs
;
2439 clobber_overlapping_mems (set
, loc
);
2441 if (l
&& GET_CODE (l
->loc
) == VALUE
)
2442 l
= canonical_cselib_val (CSELIB_VAL_PTR (l
->loc
))->locs
;
2444 /* If this MEM is a global constant, we don't need it in the
2445 dynamic tables. ??? We should test this before emitting the
2446 micro-op in the first place. */
2448 if (GET_CODE (l
->loc
) == MEM
&& XEXP (l
->loc
, 0) == XEXP (loc
, 0))
2454 var_mem_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2455 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2459 /* Other kinds of equivalences are necessarily static, at least
2460 so long as we do not perform substitutions while merging
2463 set_variable_part (set
, loc
, dv_from_value (val
), 0,
2464 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2468 /* Bind a value to a location it was just stored in. If MODIFIED
2469 holds, assume the location was modified, detaching it from any
2470 values bound to it. */
2473 val_store (dataflow_set
*set
, rtx val
, rtx loc
, rtx insn
, bool modified
)
2475 cselib_val
*v
= CSELIB_VAL_PTR (val
);
2477 gcc_assert (cselib_preserved_value_p (v
));
2481 fprintf (dump_file
, "%i: ", insn
? INSN_UID (insn
) : 0);
2482 print_inline_rtx (dump_file
, loc
, 0);
2483 fprintf (dump_file
, " evaluates to ");
2484 print_inline_rtx (dump_file
, val
, 0);
2487 struct elt_loc_list
*l
;
2488 for (l
= v
->locs
; l
; l
= l
->next
)
2490 fprintf (dump_file
, "\n%i: ", INSN_UID (l
->setting_insn
));
2491 print_inline_rtx (dump_file
, l
->loc
, 0);
2494 fprintf (dump_file
, "\n");
2497 gcc_checking_assert (!unsuitable_loc (loc
));
2499 val_bind (set
, val
, loc
, modified
);
2502 /* Clear (canonical address) slots that reference X. */
2505 local_get_addr_clear_given_value (const void *v ATTRIBUTE_UNUSED
,
2506 void **slot
, void *x
)
2508 if (vt_get_canonicalize_base ((rtx
)*slot
) == x
)
2513 /* Reset this node, detaching all its equivalences. Return the slot
2514 in the variable hash table that holds dv, if there is one. */
2517 val_reset (dataflow_set
*set
, decl_or_value dv
)
2519 variable var
= shared_hash_find (set
->vars
, dv
) ;
2520 location_chain node
;
2523 if (!var
|| !var
->n_var_parts
)
2526 gcc_assert (var
->n_var_parts
== 1);
2528 if (var
->onepart
== ONEPART_VALUE
)
2530 rtx x
= dv_as_value (dv
);
2533 /* Relationships in the global cache don't change, so reset the
2534 local cache entry only. */
2535 slot
= pointer_map_contains (local_get_addr_cache
, x
);
2538 /* If the value resolved back to itself, odds are that other
2539 values may have cached it too. These entries now refer
2540 to the old X, so detach them too. Entries that used the
2541 old X but resolved to something else remain ok as long as
2542 that something else isn't also reset. */
2544 pointer_map_traverse (local_get_addr_cache
,
2545 local_get_addr_clear_given_value
, x
);
2551 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2552 if (GET_CODE (node
->loc
) == VALUE
2553 && canon_value_cmp (node
->loc
, cval
))
2556 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2557 if (GET_CODE (node
->loc
) == VALUE
&& cval
!= node
->loc
)
2559 /* Redirect the equivalence link to the new canonical
2560 value, or simply remove it if it would point at
2563 set_variable_part (set
, cval
, dv_from_value (node
->loc
),
2564 0, node
->init
, node
->set_src
, NO_INSERT
);
2565 delete_variable_part (set
, dv_as_value (dv
),
2566 dv_from_value (node
->loc
), 0);
2571 decl_or_value cdv
= dv_from_value (cval
);
2573 /* Keep the remaining values connected, accummulating links
2574 in the canonical value. */
2575 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2577 if (node
->loc
== cval
)
2579 else if (GET_CODE (node
->loc
) == REG
)
2580 var_reg_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2581 node
->set_src
, NO_INSERT
);
2582 else if (GET_CODE (node
->loc
) == MEM
)
2583 var_mem_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2584 node
->set_src
, NO_INSERT
);
2586 set_variable_part (set
, node
->loc
, cdv
, 0,
2587 node
->init
, node
->set_src
, NO_INSERT
);
2591 /* We remove this last, to make sure that the canonical value is not
2592 removed to the point of requiring reinsertion. */
2594 delete_variable_part (set
, dv_as_value (dv
), dv_from_value (cval
), 0);
2596 clobber_variable_part (set
, NULL
, dv
, 0, NULL
);
2599 /* Find the values in a given location and map the val to another
2600 value, if it is unique, or add the location as one holding the
2604 val_resolve (dataflow_set
*set
, rtx val
, rtx loc
, rtx insn
)
2606 decl_or_value dv
= dv_from_value (val
);
2608 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2611 fprintf (dump_file
, "%i: ", INSN_UID (insn
));
2613 fprintf (dump_file
, "head: ");
2614 print_inline_rtx (dump_file
, val
, 0);
2615 fputs (" is at ", dump_file
);
2616 print_inline_rtx (dump_file
, loc
, 0);
2617 fputc ('\n', dump_file
);
2620 val_reset (set
, dv
);
2622 gcc_checking_assert (!unsuitable_loc (loc
));
2626 attrs node
, found
= NULL
;
2628 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
2629 if (dv_is_value_p (node
->dv
)
2630 && GET_MODE (dv_as_value (node
->dv
)) == GET_MODE (loc
))
2634 /* Map incoming equivalences. ??? Wouldn't it be nice if
2635 we just started sharing the location lists? Maybe a
2636 circular list ending at the value itself or some
2638 set_variable_part (set
, dv_as_value (node
->dv
),
2639 dv_from_value (val
), node
->offset
,
2640 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2641 set_variable_part (set
, val
, node
->dv
, node
->offset
,
2642 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2645 /* If we didn't find any equivalence, we need to remember that
2646 this value is held in the named register. */
2650 /* ??? Attempt to find and merge equivalent MEMs or other
2653 val_bind (set
, val
, loc
, false);
2656 /* Initialize dataflow set SET to be empty.
2657 VARS_SIZE is the initial size of hash table VARS. */
2660 dataflow_set_init (dataflow_set
*set
)
2662 init_attrs_list_set (set
->regs
);
2663 set
->vars
= shared_hash_copy (empty_shared_hash
);
2664 set
->stack_adjust
= 0;
2665 set
->traversed_vars
= NULL
;
2668 /* Delete the contents of dataflow set SET. */
2671 dataflow_set_clear (dataflow_set
*set
)
2675 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2676 attrs_list_clear (&set
->regs
[i
]);
2678 shared_hash_destroy (set
->vars
);
2679 set
->vars
= shared_hash_copy (empty_shared_hash
);
2682 /* Copy the contents of dataflow set SRC to DST. */
2685 dataflow_set_copy (dataflow_set
*dst
, dataflow_set
*src
)
2689 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2690 attrs_list_copy (&dst
->regs
[i
], src
->regs
[i
]);
2692 shared_hash_destroy (dst
->vars
);
2693 dst
->vars
= shared_hash_copy (src
->vars
);
2694 dst
->stack_adjust
= src
->stack_adjust
;
2697 /* Information for merging lists of locations for a given offset of variable.
2699 struct variable_union_info
2701 /* Node of the location chain. */
2704 /* The sum of positions in the input chains. */
2707 /* The position in the chain of DST dataflow set. */
2711 /* Buffer for location list sorting and its allocated size. */
2712 static struct variable_union_info
*vui_vec
;
2713 static int vui_allocated
;
2715 /* Compare function for qsort, order the structures by POS element. */
2718 variable_union_info_cmp_pos (const void *n1
, const void *n2
)
2720 const struct variable_union_info
*const i1
=
2721 (const struct variable_union_info
*) n1
;
2722 const struct variable_union_info
*const i2
=
2723 ( const struct variable_union_info
*) n2
;
2725 if (i1
->pos
!= i2
->pos
)
2726 return i1
->pos
- i2
->pos
;
2728 return (i1
->pos_dst
- i2
->pos_dst
);
2731 /* Compute union of location parts of variable *SLOT and the same variable
2732 from hash table DATA. Compute "sorted" union of the location chains
2733 for common offsets, i.e. the locations of a variable part are sorted by
2734 a priority where the priority is the sum of the positions in the 2 chains
2735 (if a location is only in one list the position in the second list is
2736 defined to be larger than the length of the chains).
2737 When we are updating the location parts the newest location is in the
2738 beginning of the chain, so when we do the described "sorted" union
2739 we keep the newest locations in the beginning. */
2742 variable_union (variable src
, dataflow_set
*set
)
2745 variable_def
**dstp
;
2748 dstp
= shared_hash_find_slot (set
->vars
, src
->dv
);
2749 if (!dstp
|| !*dstp
)
2753 dst_can_be_shared
= false;
2755 dstp
= shared_hash_find_slot_unshare (&set
->vars
, src
->dv
, INSERT
);
2759 /* Continue traversing the hash table. */
2765 gcc_assert (src
->n_var_parts
);
2766 gcc_checking_assert (src
->onepart
== dst
->onepart
);
2768 /* We can combine one-part variables very efficiently, because their
2769 entries are in canonical order. */
2772 location_chain
*nodep
, dnode
, snode
;
2774 gcc_assert (src
->n_var_parts
== 1
2775 && dst
->n_var_parts
== 1);
2777 snode
= src
->var_part
[0].loc_chain
;
2780 restart_onepart_unshared
:
2781 nodep
= &dst
->var_part
[0].loc_chain
;
2787 int r
= dnode
? loc_cmp (dnode
->loc
, snode
->loc
) : 1;
2791 location_chain nnode
;
2793 if (shared_var_p (dst
, set
->vars
))
2795 dstp
= unshare_variable (set
, dstp
, dst
,
2796 VAR_INIT_STATUS_INITIALIZED
);
2798 goto restart_onepart_unshared
;
2801 *nodep
= nnode
= (location_chain
) pool_alloc (loc_chain_pool
);
2802 nnode
->loc
= snode
->loc
;
2803 nnode
->init
= snode
->init
;
2804 if (!snode
->set_src
|| MEM_P (snode
->set_src
))
2805 nnode
->set_src
= NULL
;
2807 nnode
->set_src
= snode
->set_src
;
2808 nnode
->next
= dnode
;
2812 gcc_checking_assert (rtx_equal_p (dnode
->loc
, snode
->loc
));
2815 snode
= snode
->next
;
2817 nodep
= &dnode
->next
;
2824 gcc_checking_assert (!src
->onepart
);
2826 /* Count the number of location parts, result is K. */
2827 for (i
= 0, j
= 0, k
= 0;
2828 i
< src
->n_var_parts
&& j
< dst
->n_var_parts
; k
++)
2830 if (VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2835 else if (VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
2840 k
+= src
->n_var_parts
- i
;
2841 k
+= dst
->n_var_parts
- j
;
2843 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2844 thus there are at most MAX_VAR_PARTS different offsets. */
2845 gcc_checking_assert (dst
->onepart
? k
== 1 : k
<= MAX_VAR_PARTS
);
2847 if (dst
->n_var_parts
!= k
&& shared_var_p (dst
, set
->vars
))
2849 dstp
= unshare_variable (set
, dstp
, dst
, VAR_INIT_STATUS_UNKNOWN
);
2853 i
= src
->n_var_parts
- 1;
2854 j
= dst
->n_var_parts
- 1;
2855 dst
->n_var_parts
= k
;
2857 for (k
--; k
>= 0; k
--)
2859 location_chain node
, node2
;
2861 if (i
>= 0 && j
>= 0
2862 && VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2864 /* Compute the "sorted" union of the chains, i.e. the locations which
2865 are in both chains go first, they are sorted by the sum of
2866 positions in the chains. */
2869 struct variable_union_info
*vui
;
2871 /* If DST is shared compare the location chains.
2872 If they are different we will modify the chain in DST with
2873 high probability so make a copy of DST. */
2874 if (shared_var_p (dst
, set
->vars
))
2876 for (node
= src
->var_part
[i
].loc_chain
,
2877 node2
= dst
->var_part
[j
].loc_chain
; node
&& node2
;
2878 node
= node
->next
, node2
= node2
->next
)
2880 if (!((REG_P (node2
->loc
)
2881 && REG_P (node
->loc
)
2882 && REGNO (node2
->loc
) == REGNO (node
->loc
))
2883 || rtx_equal_p (node2
->loc
, node
->loc
)))
2885 if (node2
->init
< node
->init
)
2886 node2
->init
= node
->init
;
2892 dstp
= unshare_variable (set
, dstp
, dst
,
2893 VAR_INIT_STATUS_UNKNOWN
);
2894 dst
= (variable
)*dstp
;
2899 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2902 for (node
= dst
->var_part
[j
].loc_chain
; node
; node
= node
->next
)
2907 /* The most common case, much simpler, no qsort is needed. */
2908 location_chain dstnode
= dst
->var_part
[j
].loc_chain
;
2909 dst
->var_part
[k
].loc_chain
= dstnode
;
2910 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
2912 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2913 if (!((REG_P (dstnode
->loc
)
2914 && REG_P (node
->loc
)
2915 && REGNO (dstnode
->loc
) == REGNO (node
->loc
))
2916 || rtx_equal_p (dstnode
->loc
, node
->loc
)))
2918 location_chain new_node
;
2920 /* Copy the location from SRC. */
2921 new_node
= (location_chain
) pool_alloc (loc_chain_pool
);
2922 new_node
->loc
= node
->loc
;
2923 new_node
->init
= node
->init
;
2924 if (!node
->set_src
|| MEM_P (node
->set_src
))
2925 new_node
->set_src
= NULL
;
2927 new_node
->set_src
= node
->set_src
;
2928 node2
->next
= new_node
;
2935 if (src_l
+ dst_l
> vui_allocated
)
2937 vui_allocated
= MAX (vui_allocated
* 2, src_l
+ dst_l
);
2938 vui_vec
= XRESIZEVEC (struct variable_union_info
, vui_vec
,
2943 /* Fill in the locations from DST. */
2944 for (node
= dst
->var_part
[j
].loc_chain
, jj
= 0; node
;
2945 node
= node
->next
, jj
++)
2948 vui
[jj
].pos_dst
= jj
;
2950 /* Pos plus value larger than a sum of 2 valid positions. */
2951 vui
[jj
].pos
= jj
+ src_l
+ dst_l
;
2954 /* Fill in the locations from SRC. */
2956 for (node
= src
->var_part
[i
].loc_chain
, ii
= 0; node
;
2957 node
= node
->next
, ii
++)
2959 /* Find location from NODE. */
2960 for (jj
= 0; jj
< dst_l
; jj
++)
2962 if ((REG_P (vui
[jj
].lc
->loc
)
2963 && REG_P (node
->loc
)
2964 && REGNO (vui
[jj
].lc
->loc
) == REGNO (node
->loc
))
2965 || rtx_equal_p (vui
[jj
].lc
->loc
, node
->loc
))
2967 vui
[jj
].pos
= jj
+ ii
;
2971 if (jj
>= dst_l
) /* The location has not been found. */
2973 location_chain new_node
;
2975 /* Copy the location from SRC. */
2976 new_node
= (location_chain
) pool_alloc (loc_chain_pool
);
2977 new_node
->loc
= node
->loc
;
2978 new_node
->init
= node
->init
;
2979 if (!node
->set_src
|| MEM_P (node
->set_src
))
2980 new_node
->set_src
= NULL
;
2982 new_node
->set_src
= node
->set_src
;
2983 vui
[n
].lc
= new_node
;
2984 vui
[n
].pos_dst
= src_l
+ dst_l
;
2985 vui
[n
].pos
= ii
+ src_l
+ dst_l
;
2992 /* Special case still very common case. For dst_l == 2
2993 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2994 vui[i].pos == i + src_l + dst_l. */
2995 if (vui
[0].pos
> vui
[1].pos
)
2997 /* Order should be 1, 0, 2... */
2998 dst
->var_part
[k
].loc_chain
= vui
[1].lc
;
2999 vui
[1].lc
->next
= vui
[0].lc
;
3002 vui
[0].lc
->next
= vui
[2].lc
;
3003 vui
[n
- 1].lc
->next
= NULL
;
3006 vui
[0].lc
->next
= NULL
;
3011 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3012 if (n
>= 3 && vui
[2].pos
< vui
[1].pos
)
3014 /* Order should be 0, 2, 1, 3... */
3015 vui
[0].lc
->next
= vui
[2].lc
;
3016 vui
[2].lc
->next
= vui
[1].lc
;
3019 vui
[1].lc
->next
= vui
[3].lc
;
3020 vui
[n
- 1].lc
->next
= NULL
;
3023 vui
[1].lc
->next
= NULL
;
3028 /* Order should be 0, 1, 2... */
3030 vui
[n
- 1].lc
->next
= NULL
;
3033 for (; ii
< n
; ii
++)
3034 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3038 qsort (vui
, n
, sizeof (struct variable_union_info
),
3039 variable_union_info_cmp_pos
);
3041 /* Reconnect the nodes in sorted order. */
3042 for (ii
= 1; ii
< n
; ii
++)
3043 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3044 vui
[n
- 1].lc
->next
= NULL
;
3045 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3048 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
3053 else if ((i
>= 0 && j
>= 0
3054 && VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
3057 dst
->var_part
[k
] = dst
->var_part
[j
];
3060 else if ((i
>= 0 && j
>= 0
3061 && VAR_PART_OFFSET (src
, i
) > VAR_PART_OFFSET (dst
, j
))
3064 location_chain
*nextp
;
3066 /* Copy the chain from SRC. */
3067 nextp
= &dst
->var_part
[k
].loc_chain
;
3068 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3070 location_chain new_lc
;
3072 new_lc
= (location_chain
) pool_alloc (loc_chain_pool
);
3073 new_lc
->next
= NULL
;
3074 new_lc
->init
= node
->init
;
3075 if (!node
->set_src
|| MEM_P (node
->set_src
))
3076 new_lc
->set_src
= NULL
;
3078 new_lc
->set_src
= node
->set_src
;
3079 new_lc
->loc
= node
->loc
;
3082 nextp
= &new_lc
->next
;
3085 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (src
, i
);
3088 dst
->var_part
[k
].cur_loc
= NULL
;
3091 if (flag_var_tracking_uninit
)
3092 for (i
= 0; i
< src
->n_var_parts
&& i
< dst
->n_var_parts
; i
++)
3094 location_chain node
, node2
;
3095 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3096 for (node2
= dst
->var_part
[i
].loc_chain
; node2
; node2
= node2
->next
)
3097 if (rtx_equal_p (node
->loc
, node2
->loc
))
3099 if (node
->init
> node2
->init
)
3100 node2
->init
= node
->init
;
3104 /* Continue traversing the hash table. */
3108 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3111 dataflow_set_union (dataflow_set
*dst
, dataflow_set
*src
)
3115 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3116 attrs_list_union (&dst
->regs
[i
], src
->regs
[i
]);
3118 if (dst
->vars
== empty_shared_hash
)
3120 shared_hash_destroy (dst
->vars
);
3121 dst
->vars
= shared_hash_copy (src
->vars
);
3125 variable_iterator_type hi
;
3128 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (src
->vars
),
3130 variable_union (var
, dst
);
3134 /* Whether the value is currently being expanded. */
3135 #define VALUE_RECURSED_INTO(x) \
3136 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3138 /* Whether no expansion was found, saving useless lookups.
3139 It must only be set when VALUE_CHANGED is clear. */
3140 #define NO_LOC_P(x) \
3141 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3143 /* Whether cur_loc in the value needs to be (re)computed. */
3144 #define VALUE_CHANGED(x) \
3145 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3146 /* Whether cur_loc in the decl needs to be (re)computed. */
3147 #define DECL_CHANGED(x) TREE_VISITED (x)
3149 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3150 user DECLs, this means they're in changed_variables. Values and
3151 debug exprs may be left with this flag set if no user variable
3152 requires them to be evaluated. */
3155 set_dv_changed (decl_or_value dv
, bool newv
)
3157 switch (dv_onepart_p (dv
))
3161 NO_LOC_P (dv_as_value (dv
)) = false;
3162 VALUE_CHANGED (dv_as_value (dv
)) = newv
;
3167 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv
))) = false;
3168 /* Fall through... */
3171 DECL_CHANGED (dv_as_decl (dv
)) = newv
;
3176 /* Return true if DV needs to have its cur_loc recomputed. */
3179 dv_changed_p (decl_or_value dv
)
3181 return (dv_is_value_p (dv
)
3182 ? VALUE_CHANGED (dv_as_value (dv
))
3183 : DECL_CHANGED (dv_as_decl (dv
)));
3186 /* Return a location list node whose loc is rtx_equal to LOC, in the
3187 location list of a one-part variable or value VAR, or in that of
3188 any values recursively mentioned in the location lists. VARS must
3189 be in star-canonical form. */
3191 static location_chain
3192 find_loc_in_1pdv (rtx loc
, variable var
, variable_table_type vars
)
3194 location_chain node
;
3195 enum rtx_code loc_code
;
3200 gcc_checking_assert (var
->onepart
);
3202 if (!var
->n_var_parts
)
3205 gcc_checking_assert (loc
!= dv_as_opaque (var
->dv
));
3207 loc_code
= GET_CODE (loc
);
3208 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3213 if (GET_CODE (node
->loc
) != loc_code
)
3215 if (GET_CODE (node
->loc
) != VALUE
)
3218 else if (loc
== node
->loc
)
3220 else if (loc_code
!= VALUE
)
3222 if (rtx_equal_p (loc
, node
->loc
))
3227 /* Since we're in star-canonical form, we don't need to visit
3228 non-canonical nodes: one-part variables and non-canonical
3229 values would only point back to the canonical node. */
3230 if (dv_is_value_p (var
->dv
)
3231 && !canon_value_cmp (node
->loc
, dv_as_value (var
->dv
)))
3233 /* Skip all subsequent VALUEs. */
3234 while (node
->next
&& GET_CODE (node
->next
->loc
) == VALUE
)
3237 gcc_checking_assert (!canon_value_cmp (node
->loc
,
3238 dv_as_value (var
->dv
)));
3239 if (loc
== node
->loc
)
3245 gcc_checking_assert (node
== var
->var_part
[0].loc_chain
);
3246 gcc_checking_assert (!node
->next
);
3248 dv
= dv_from_value (node
->loc
);
3249 rvar
= vars
.find_with_hash (dv
, dv_htab_hash (dv
));
3250 return find_loc_in_1pdv (loc
, rvar
, vars
);
3253 /* ??? Gotta look in cselib_val locations too. */
3258 /* Hash table iteration argument passed to variable_merge. */
3261 /* The set in which the merge is to be inserted. */
3263 /* The set that we're iterating in. */
3265 /* The set that may contain the other dv we are to merge with. */
3267 /* Number of onepart dvs in src. */
3268 int src_onepart_cnt
;
3271 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3272 loc_cmp order, and it is maintained as such. */
3275 insert_into_intersection (location_chain
*nodep
, rtx loc
,
3276 enum var_init_status status
)
3278 location_chain node
;
3281 for (node
= *nodep
; node
; nodep
= &node
->next
, node
= *nodep
)
3282 if ((r
= loc_cmp (node
->loc
, loc
)) == 0)
3284 node
->init
= MIN (node
->init
, status
);
3290 node
= (location_chain
) pool_alloc (loc_chain_pool
);
3293 node
->set_src
= NULL
;
3294 node
->init
= status
;
3295 node
->next
= *nodep
;
3299 /* Insert in DEST the intersection of the locations present in both
3300 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3301 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3305 intersect_loc_chains (rtx val
, location_chain
*dest
, struct dfset_merge
*dsm
,
3306 location_chain s1node
, variable s2var
)
3308 dataflow_set
*s1set
= dsm
->cur
;
3309 dataflow_set
*s2set
= dsm
->src
;
3310 location_chain found
;
3314 location_chain s2node
;
3316 gcc_checking_assert (s2var
->onepart
);
3318 if (s2var
->n_var_parts
)
3320 s2node
= s2var
->var_part
[0].loc_chain
;
3322 for (; s1node
&& s2node
;
3323 s1node
= s1node
->next
, s2node
= s2node
->next
)
3324 if (s1node
->loc
!= s2node
->loc
)
3326 else if (s1node
->loc
== val
)
3329 insert_into_intersection (dest
, s1node
->loc
,
3330 MIN (s1node
->init
, s2node
->init
));
3334 for (; s1node
; s1node
= s1node
->next
)
3336 if (s1node
->loc
== val
)
3339 if ((found
= find_loc_in_1pdv (s1node
->loc
, s2var
,
3340 shared_hash_htab (s2set
->vars
))))
3342 insert_into_intersection (dest
, s1node
->loc
,
3343 MIN (s1node
->init
, found
->init
));
3347 if (GET_CODE (s1node
->loc
) == VALUE
3348 && !VALUE_RECURSED_INTO (s1node
->loc
))
3350 decl_or_value dv
= dv_from_value (s1node
->loc
);
3351 variable svar
= shared_hash_find (s1set
->vars
, dv
);
3354 if (svar
->n_var_parts
== 1)
3356 VALUE_RECURSED_INTO (s1node
->loc
) = true;
3357 intersect_loc_chains (val
, dest
, dsm
,
3358 svar
->var_part
[0].loc_chain
,
3360 VALUE_RECURSED_INTO (s1node
->loc
) = false;
3365 /* ??? gotta look in cselib_val locations too. */
3367 /* ??? if the location is equivalent to any location in src,
3368 searched recursively
3370 add to dst the values needed to represent the equivalence
3372 telling whether locations S is equivalent to another dv's
3375 for each location D in the list
3377 if S and D satisfy rtx_equal_p, then it is present
3379 else if D is a value, recurse without cycles
3381 else if S and D have the same CODE and MODE
3383 for each operand oS and the corresponding oD
3385 if oS and oD are not equivalent, then S an D are not equivalent
3387 else if they are RTX vectors
3389 if any vector oS element is not equivalent to its respective oD,
3390 then S and D are not equivalent
3398 /* Return -1 if X should be before Y in a location list for a 1-part
3399 variable, 1 if Y should be before X, and 0 if they're equivalent
3400 and should not appear in the list. */
3403 loc_cmp (rtx x
, rtx y
)
3406 RTX_CODE code
= GET_CODE (x
);
3416 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3417 if (REGNO (x
) == REGNO (y
))
3419 else if (REGNO (x
) < REGNO (y
))
3432 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3433 return loc_cmp (XEXP (x
, 0), XEXP (y
, 0));
3439 if (GET_CODE (x
) == VALUE
)
3441 if (GET_CODE (y
) != VALUE
)
3443 /* Don't assert the modes are the same, that is true only
3444 when not recursing. (subreg:QI (value:SI 1:1) 0)
3445 and (subreg:QI (value:DI 2:2) 0) can be compared,
3446 even when the modes are different. */
3447 if (canon_value_cmp (x
, y
))
3453 if (GET_CODE (y
) == VALUE
)
3456 /* Entry value is the least preferable kind of expression. */
3457 if (GET_CODE (x
) == ENTRY_VALUE
)
3459 if (GET_CODE (y
) != ENTRY_VALUE
)
3461 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3462 return loc_cmp (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
3465 if (GET_CODE (y
) == ENTRY_VALUE
)
3468 if (GET_CODE (x
) == GET_CODE (y
))
3469 /* Compare operands below. */;
3470 else if (GET_CODE (x
) < GET_CODE (y
))
3475 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3477 if (GET_CODE (x
) == DEBUG_EXPR
)
3479 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3480 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)))
3482 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3483 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)));
3487 fmt
= GET_RTX_FORMAT (code
);
3488 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
3492 if (XWINT (x
, i
) == XWINT (y
, i
))
3494 else if (XWINT (x
, i
) < XWINT (y
, i
))
3501 if (XINT (x
, i
) == XINT (y
, i
))
3503 else if (XINT (x
, i
) < XINT (y
, i
))
3510 /* Compare the vector length first. */
3511 if (XVECLEN (x
, i
) == XVECLEN (y
, i
))
3512 /* Compare the vectors elements. */;
3513 else if (XVECLEN (x
, i
) < XVECLEN (y
, i
))
3518 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3519 if ((r
= loc_cmp (XVECEXP (x
, i
, j
),
3520 XVECEXP (y
, i
, j
))))
3525 if ((r
= loc_cmp (XEXP (x
, i
), XEXP (y
, i
))))
3531 if (XSTR (x
, i
) == XSTR (y
, i
))
3537 if ((r
= strcmp (XSTR (x
, i
), XSTR (y
, i
))) == 0)
3545 /* These are just backpointers, so they don't matter. */
3552 /* It is believed that rtx's at this level will never
3553 contain anything but integers and other rtx's,
3554 except for within LABEL_REFs and SYMBOL_REFs. */
3563 /* Check the order of entries in one-part variables. */
3566 canonicalize_loc_order_check (variable_def
**slot
,
3567 dataflow_set
*data ATTRIBUTE_UNUSED
)
3569 variable var
= *slot
;
3570 location_chain node
, next
;
3572 #ifdef ENABLE_RTL_CHECKING
3574 for (i
= 0; i
< var
->n_var_parts
; i
++)
3575 gcc_assert (var
->var_part
[0].cur_loc
== NULL
);
3576 gcc_assert (!var
->in_changed_variables
);
3582 gcc_assert (var
->n_var_parts
== 1);
3583 node
= var
->var_part
[0].loc_chain
;
3586 while ((next
= node
->next
))
3588 gcc_assert (loc_cmp (node
->loc
, next
->loc
) < 0);
3596 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3597 more likely to be chosen as canonical for an equivalence set.
3598 Ensure less likely values can reach more likely neighbors, making
3599 the connections bidirectional. */
3602 canonicalize_values_mark (variable_def
**slot
, dataflow_set
*set
)
3604 variable var
= *slot
;
3605 decl_or_value dv
= var
->dv
;
3607 location_chain node
;
3609 if (!dv_is_value_p (dv
))
3612 gcc_checking_assert (var
->n_var_parts
== 1);
3614 val
= dv_as_value (dv
);
3616 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3617 if (GET_CODE (node
->loc
) == VALUE
)
3619 if (canon_value_cmp (node
->loc
, val
))
3620 VALUE_RECURSED_INTO (val
) = true;
3623 decl_or_value odv
= dv_from_value (node
->loc
);
3624 variable_def
**oslot
;
3625 oslot
= shared_hash_find_slot_noinsert (set
->vars
, odv
);
3627 set_slot_part (set
, val
, oslot
, odv
, 0,
3628 node
->init
, NULL_RTX
);
3630 VALUE_RECURSED_INTO (node
->loc
) = true;
3637 /* Remove redundant entries from equivalence lists in onepart
3638 variables, canonicalizing equivalence sets into star shapes. */
3641 canonicalize_values_star (variable_def
**slot
, dataflow_set
*set
)
3643 variable var
= *slot
;
3644 decl_or_value dv
= var
->dv
;
3645 location_chain node
;
3648 variable_def
**cslot
;
3655 gcc_checking_assert (var
->n_var_parts
== 1);
3657 if (dv_is_value_p (dv
))
3659 cval
= dv_as_value (dv
);
3660 if (!VALUE_RECURSED_INTO (cval
))
3662 VALUE_RECURSED_INTO (cval
) = false;
3672 gcc_assert (var
->n_var_parts
== 1);
3674 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3675 if (GET_CODE (node
->loc
) == VALUE
)
3678 if (VALUE_RECURSED_INTO (node
->loc
))
3680 if (canon_value_cmp (node
->loc
, cval
))
3689 if (!has_marks
|| dv_is_decl_p (dv
))
3692 /* Keep it marked so that we revisit it, either after visiting a
3693 child node, or after visiting a new parent that might be
3695 VALUE_RECURSED_INTO (val
) = true;
3697 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3698 if (GET_CODE (node
->loc
) == VALUE
3699 && VALUE_RECURSED_INTO (node
->loc
))
3703 VALUE_RECURSED_INTO (cval
) = false;
3704 dv
= dv_from_value (cval
);
3705 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
3708 gcc_assert (dv_is_decl_p (var
->dv
));
3709 /* The canonical value was reset and dropped.
3711 clobber_variable_part (set
, NULL
, var
->dv
, 0, NULL
);
3715 gcc_assert (dv_is_value_p (var
->dv
));
3716 if (var
->n_var_parts
== 0)
3718 gcc_assert (var
->n_var_parts
== 1);
3722 VALUE_RECURSED_INTO (val
) = false;
3727 /* Push values to the canonical one. */
3728 cdv
= dv_from_value (cval
);
3729 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3731 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3732 if (node
->loc
!= cval
)
3734 cslot
= set_slot_part (set
, node
->loc
, cslot
, cdv
, 0,
3735 node
->init
, NULL_RTX
);
3736 if (GET_CODE (node
->loc
) == VALUE
)
3738 decl_or_value ndv
= dv_from_value (node
->loc
);
3740 set_variable_part (set
, cval
, ndv
, 0, node
->init
, NULL_RTX
,
3743 if (canon_value_cmp (node
->loc
, val
))
3745 /* If it could have been a local minimum, it's not any more,
3746 since it's now neighbor to cval, so it may have to push
3747 to it. Conversely, if it wouldn't have prevailed over
3748 val, then whatever mark it has is fine: if it was to
3749 push, it will now push to a more canonical node, but if
3750 it wasn't, then it has already pushed any values it might
3752 VALUE_RECURSED_INTO (node
->loc
) = true;
3753 /* Make sure we visit node->loc by ensuring we cval is
3755 VALUE_RECURSED_INTO (cval
) = true;
3757 else if (!VALUE_RECURSED_INTO (node
->loc
))
3758 /* If we have no need to "recurse" into this node, it's
3759 already "canonicalized", so drop the link to the old
3761 clobber_variable_part (set
, cval
, ndv
, 0, NULL
);
3763 else if (GET_CODE (node
->loc
) == REG
)
3765 attrs list
= set
->regs
[REGNO (node
->loc
)], *listp
;
3767 /* Change an existing attribute referring to dv so that it
3768 refers to cdv, removing any duplicate this might
3769 introduce, and checking that no previous duplicates
3770 existed, all in a single pass. */
3774 if (list
->offset
== 0
3775 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3776 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3783 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3786 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3791 if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3793 *listp
= list
->next
;
3794 pool_free (attrs_pool
, list
);
3799 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (dv
));
3802 else if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3804 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3809 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3811 *listp
= list
->next
;
3812 pool_free (attrs_pool
, list
);
3817 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (cdv
));
3826 if (list
->offset
== 0
3827 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3828 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3838 set_slot_part (set
, val
, cslot
, cdv
, 0,
3839 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
);
3841 slot
= clobber_slot_part (set
, cval
, slot
, 0, NULL
);
3843 /* Variable may have been unshared. */
3845 gcc_checking_assert (var
->n_var_parts
&& var
->var_part
[0].loc_chain
->loc
== cval
3846 && var
->var_part
[0].loc_chain
->next
== NULL
);
3848 if (VALUE_RECURSED_INTO (cval
))
3849 goto restart_with_cval
;
3854 /* Bind one-part variables to the canonical value in an equivalence
3855 set. Not doing this causes dataflow convergence failure in rare
3856 circumstances, see PR42873. Unfortunately we can't do this
3857 efficiently as part of canonicalize_values_star, since we may not
3858 have determined or even seen the canonical value of a set when we
3859 get to a variable that references another member of the set. */
3862 canonicalize_vars_star (variable_def
**slot
, dataflow_set
*set
)
3864 variable var
= *slot
;
3865 decl_or_value dv
= var
->dv
;
3866 location_chain node
;
3869 variable_def
**cslot
;
3871 location_chain cnode
;
3873 if (!var
->onepart
|| var
->onepart
== ONEPART_VALUE
)
3876 gcc_assert (var
->n_var_parts
== 1);
3878 node
= var
->var_part
[0].loc_chain
;
3880 if (GET_CODE (node
->loc
) != VALUE
)
3883 gcc_assert (!node
->next
);
3886 /* Push values to the canonical one. */
3887 cdv
= dv_from_value (cval
);
3888 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3892 gcc_assert (cvar
->n_var_parts
== 1);
3894 cnode
= cvar
->var_part
[0].loc_chain
;
3896 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3897 that are not “more canonical” than it. */
3898 if (GET_CODE (cnode
->loc
) != VALUE
3899 || !canon_value_cmp (cnode
->loc
, cval
))
3902 /* CVAL was found to be non-canonical. Change the variable to point
3903 to the canonical VALUE. */
3904 gcc_assert (!cnode
->next
);
3907 slot
= set_slot_part (set
, cval
, slot
, dv
, 0,
3908 node
->init
, node
->set_src
);
3909 clobber_slot_part (set
, cval
, slot
, 0, node
->set_src
);
3914 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3915 corresponding entry in DSM->src. Multi-part variables are combined
3916 with variable_union, whereas onepart dvs are combined with
3920 variable_merge_over_cur (variable s1var
, struct dfset_merge
*dsm
)
3922 dataflow_set
*dst
= dsm
->dst
;
3923 variable_def
**dstslot
;
3924 variable s2var
, dvar
= NULL
;
3925 decl_or_value dv
= s1var
->dv
;
3926 onepart_enum_t onepart
= s1var
->onepart
;
3929 location_chain node
, *nodep
;
3931 /* If the incoming onepart variable has an empty location list, then
3932 the intersection will be just as empty. For other variables,
3933 it's always union. */
3934 gcc_checking_assert (s1var
->n_var_parts
3935 && s1var
->var_part
[0].loc_chain
);
3938 return variable_union (s1var
, dst
);
3940 gcc_checking_assert (s1var
->n_var_parts
== 1);
3942 dvhash
= dv_htab_hash (dv
);
3943 if (dv_is_value_p (dv
))
3944 val
= dv_as_value (dv
);
3948 s2var
= shared_hash_find_1 (dsm
->src
->vars
, dv
, dvhash
);
3951 dst_can_be_shared
= false;
3955 dsm
->src_onepart_cnt
--;
3956 gcc_assert (s2var
->var_part
[0].loc_chain
3957 && s2var
->onepart
== onepart
3958 && s2var
->n_var_parts
== 1);
3960 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
3964 gcc_assert (dvar
->refcount
== 1
3965 && dvar
->onepart
== onepart
3966 && dvar
->n_var_parts
== 1);
3967 nodep
= &dvar
->var_part
[0].loc_chain
;
3975 if (!dstslot
&& !onepart_variable_different_p (s1var
, s2var
))
3977 dstslot
= shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
,
3979 *dstslot
= dvar
= s2var
;
3984 dst_can_be_shared
= false;
3986 intersect_loc_chains (val
, nodep
, dsm
,
3987 s1var
->var_part
[0].loc_chain
, s2var
);
3993 dvar
= (variable
) pool_alloc (onepart_pool (onepart
));
3996 dvar
->n_var_parts
= 1;
3997 dvar
->onepart
= onepart
;
3998 dvar
->in_changed_variables
= false;
3999 dvar
->var_part
[0].loc_chain
= node
;
4000 dvar
->var_part
[0].cur_loc
= NULL
;
4002 VAR_LOC_1PAUX (dvar
) = NULL
;
4004 VAR_PART_OFFSET (dvar
, 0) = 0;
4007 = shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
, dvhash
,
4009 gcc_assert (!*dstslot
);
4017 nodep
= &dvar
->var_part
[0].loc_chain
;
4018 while ((node
= *nodep
))
4020 location_chain
*nextp
= &node
->next
;
4022 if (GET_CODE (node
->loc
) == REG
)
4026 for (list
= dst
->regs
[REGNO (node
->loc
)]; list
; list
= list
->next
)
4027 if (GET_MODE (node
->loc
) == GET_MODE (list
->loc
)
4028 && dv_is_value_p (list
->dv
))
4032 attrs_list_insert (&dst
->regs
[REGNO (node
->loc
)],
4034 /* If this value became canonical for another value that had
4035 this register, we want to leave it alone. */
4036 else if (dv_as_value (list
->dv
) != val
)
4038 dstslot
= set_slot_part (dst
, dv_as_value (list
->dv
),
4040 node
->init
, NULL_RTX
);
4041 dstslot
= delete_slot_part (dst
, node
->loc
, dstslot
, 0);
4043 /* Since nextp points into the removed node, we can't
4044 use it. The pointer to the next node moved to nodep.
4045 However, if the variable we're walking is unshared
4046 during our walk, we'll keep walking the location list
4047 of the previously-shared variable, in which case the
4048 node won't have been removed, and we'll want to skip
4049 it. That's why we test *nodep here. */
4055 /* Canonicalization puts registers first, so we don't have to
4061 if (dvar
!= *dstslot
)
4063 nodep
= &dvar
->var_part
[0].loc_chain
;
4067 /* Mark all referenced nodes for canonicalization, and make sure
4068 we have mutual equivalence links. */
4069 VALUE_RECURSED_INTO (val
) = true;
4070 for (node
= *nodep
; node
; node
= node
->next
)
4071 if (GET_CODE (node
->loc
) == VALUE
)
4073 VALUE_RECURSED_INTO (node
->loc
) = true;
4074 set_variable_part (dst
, val
, dv_from_value (node
->loc
), 0,
4075 node
->init
, NULL
, INSERT
);
4078 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4079 gcc_assert (*dstslot
== dvar
);
4080 canonicalize_values_star (dstslot
, dst
);
4081 gcc_checking_assert (dstslot
4082 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4088 bool has_value
= false, has_other
= false;
4090 /* If we have one value and anything else, we're going to
4091 canonicalize this, so make sure all values have an entry in
4092 the table and are marked for canonicalization. */
4093 for (node
= *nodep
; node
; node
= node
->next
)
4095 if (GET_CODE (node
->loc
) == VALUE
)
4097 /* If this was marked during register canonicalization,
4098 we know we have to canonicalize values. */
4113 if (has_value
&& has_other
)
4115 for (node
= *nodep
; node
; node
= node
->next
)
4117 if (GET_CODE (node
->loc
) == VALUE
)
4119 decl_or_value dv
= dv_from_value (node
->loc
);
4120 variable_def
**slot
= NULL
;
4122 if (shared_hash_shared (dst
->vars
))
4123 slot
= shared_hash_find_slot_noinsert (dst
->vars
, dv
);
4125 slot
= shared_hash_find_slot_unshare (&dst
->vars
, dv
,
4129 variable var
= (variable
) pool_alloc (onepart_pool
4133 var
->n_var_parts
= 1;
4134 var
->onepart
= ONEPART_VALUE
;
4135 var
->in_changed_variables
= false;
4136 var
->var_part
[0].loc_chain
= NULL
;
4137 var
->var_part
[0].cur_loc
= NULL
;
4138 VAR_LOC_1PAUX (var
) = NULL
;
4142 VALUE_RECURSED_INTO (node
->loc
) = true;
4146 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4147 gcc_assert (*dstslot
== dvar
);
4148 canonicalize_values_star (dstslot
, dst
);
4149 gcc_checking_assert (dstslot
4150 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4156 if (!onepart_variable_different_p (dvar
, s2var
))
4158 variable_htab_free (dvar
);
4159 *dstslot
= dvar
= s2var
;
4162 else if (s2var
!= s1var
&& !onepart_variable_different_p (dvar
, s1var
))
4164 variable_htab_free (dvar
);
4165 *dstslot
= dvar
= s1var
;
4167 dst_can_be_shared
= false;
4170 dst_can_be_shared
= false;
4175 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4176 multi-part variable. Unions of multi-part variables and
4177 intersections of one-part ones will be handled in
4178 variable_merge_over_cur(). */
4181 variable_merge_over_src (variable s2var
, struct dfset_merge
*dsm
)
4183 dataflow_set
*dst
= dsm
->dst
;
4184 decl_or_value dv
= s2var
->dv
;
4186 if (!s2var
->onepart
)
4188 variable_def
**dstp
= shared_hash_find_slot (dst
->vars
, dv
);
4194 dsm
->src_onepart_cnt
++;
4198 /* Combine dataflow set information from SRC2 into DST, using PDST
4199 to carry over information across passes. */
4202 dataflow_set_merge (dataflow_set
*dst
, dataflow_set
*src2
)
4204 dataflow_set cur
= *dst
;
4205 dataflow_set
*src1
= &cur
;
4206 struct dfset_merge dsm
;
4208 size_t src1_elems
, src2_elems
;
4209 variable_iterator_type hi
;
4212 src1_elems
= shared_hash_htab (src1
->vars
).elements ();
4213 src2_elems
= shared_hash_htab (src2
->vars
).elements ();
4214 dataflow_set_init (dst
);
4215 dst
->stack_adjust
= cur
.stack_adjust
;
4216 shared_hash_destroy (dst
->vars
);
4217 dst
->vars
= (shared_hash
) pool_alloc (shared_hash_pool
);
4218 dst
->vars
->refcount
= 1;
4219 dst
->vars
->htab
.create (MAX (src1_elems
, src2_elems
));
4221 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4222 attrs_list_mpdv_union (&dst
->regs
[i
], src1
->regs
[i
], src2
->regs
[i
]);
4227 dsm
.src_onepart_cnt
= 0;
4229 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm
.src
->vars
),
4231 variable_merge_over_src (var
, &dsm
);
4232 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm
.cur
->vars
),
4234 variable_merge_over_cur (var
, &dsm
);
4236 if (dsm
.src_onepart_cnt
)
4237 dst_can_be_shared
= false;
4239 dataflow_set_destroy (src1
);
4242 /* Mark register equivalences. */
4245 dataflow_set_equiv_regs (dataflow_set
*set
)
4250 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4252 rtx canon
[NUM_MACHINE_MODES
];
4254 /* If the list is empty or one entry, no need to canonicalize
4256 if (set
->regs
[i
] == NULL
|| set
->regs
[i
]->next
== NULL
)
4259 memset (canon
, 0, sizeof (canon
));
4261 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4262 if (list
->offset
== 0 && dv_is_value_p (list
->dv
))
4264 rtx val
= dv_as_value (list
->dv
);
4265 rtx
*cvalp
= &canon
[(int)GET_MODE (val
)];
4268 if (canon_value_cmp (val
, cval
))
4272 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4273 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4275 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4280 if (dv_is_value_p (list
->dv
))
4282 rtx val
= dv_as_value (list
->dv
);
4287 VALUE_RECURSED_INTO (val
) = true;
4288 set_variable_part (set
, val
, dv_from_value (cval
), 0,
4289 VAR_INIT_STATUS_INITIALIZED
,
4293 VALUE_RECURSED_INTO (cval
) = true;
4294 set_variable_part (set
, cval
, list
->dv
, 0,
4295 VAR_INIT_STATUS_INITIALIZED
, NULL
, NO_INSERT
);
4298 for (listp
= &set
->regs
[i
]; (list
= *listp
);
4299 listp
= list
? &list
->next
: listp
)
4300 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4302 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4303 variable_def
**slot
;
4308 if (dv_is_value_p (list
->dv
))
4310 rtx val
= dv_as_value (list
->dv
);
4311 if (!VALUE_RECURSED_INTO (val
))
4315 slot
= shared_hash_find_slot_noinsert (set
->vars
, list
->dv
);
4316 canonicalize_values_star (slot
, set
);
4323 /* Remove any redundant values in the location list of VAR, which must
4324 be unshared and 1-part. */
4327 remove_duplicate_values (variable var
)
4329 location_chain node
, *nodep
;
4331 gcc_assert (var
->onepart
);
4332 gcc_assert (var
->n_var_parts
== 1);
4333 gcc_assert (var
->refcount
== 1);
4335 for (nodep
= &var
->var_part
[0].loc_chain
; (node
= *nodep
); )
4337 if (GET_CODE (node
->loc
) == VALUE
)
4339 if (VALUE_RECURSED_INTO (node
->loc
))
4341 /* Remove duplicate value node. */
4342 *nodep
= node
->next
;
4343 pool_free (loc_chain_pool
, node
);
4347 VALUE_RECURSED_INTO (node
->loc
) = true;
4349 nodep
= &node
->next
;
4352 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4353 if (GET_CODE (node
->loc
) == VALUE
)
4355 gcc_assert (VALUE_RECURSED_INTO (node
->loc
));
4356 VALUE_RECURSED_INTO (node
->loc
) = false;
4361 /* Hash table iteration argument passed to variable_post_merge. */
4362 struct dfset_post_merge
4364 /* The new input set for the current block. */
4366 /* Pointer to the permanent input set for the current block, or
4368 dataflow_set
**permp
;
4371 /* Create values for incoming expressions associated with one-part
4372 variables that don't have value numbers for them. */
4375 variable_post_merge_new_vals (variable_def
**slot
, dfset_post_merge
*dfpm
)
4377 dataflow_set
*set
= dfpm
->set
;
4378 variable var
= *slot
;
4379 location_chain node
;
4381 if (!var
->onepart
|| !var
->n_var_parts
)
4384 gcc_assert (var
->n_var_parts
== 1);
4386 if (dv_is_decl_p (var
->dv
))
4388 bool check_dupes
= false;
4391 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4393 if (GET_CODE (node
->loc
) == VALUE
)
4394 gcc_assert (!VALUE_RECURSED_INTO (node
->loc
));
4395 else if (GET_CODE (node
->loc
) == REG
)
4397 attrs att
, *attp
, *curp
= NULL
;
4399 if (var
->refcount
!= 1)
4401 slot
= unshare_variable (set
, slot
, var
,
4402 VAR_INIT_STATUS_INITIALIZED
);
4407 for (attp
= &set
->regs
[REGNO (node
->loc
)]; (att
= *attp
);
4409 if (att
->offset
== 0
4410 && GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4412 if (dv_is_value_p (att
->dv
))
4414 rtx cval
= dv_as_value (att
->dv
);
4419 else if (dv_as_opaque (att
->dv
) == dv_as_opaque (var
->dv
))
4427 if ((*curp
)->offset
== 0
4428 && GET_MODE ((*curp
)->loc
) == GET_MODE (node
->loc
)
4429 && dv_as_opaque ((*curp
)->dv
) == dv_as_opaque (var
->dv
))
4432 curp
= &(*curp
)->next
;
4443 *dfpm
->permp
= XNEW (dataflow_set
);
4444 dataflow_set_init (*dfpm
->permp
);
4447 for (att
= (*dfpm
->permp
)->regs
[REGNO (node
->loc
)];
4448 att
; att
= att
->next
)
4449 if (GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4451 gcc_assert (att
->offset
== 0
4452 && dv_is_value_p (att
->dv
));
4453 val_reset (set
, att
->dv
);
4460 cval
= dv_as_value (cdv
);
4464 /* Create a unique value to hold this register,
4465 that ought to be found and reused in
4466 subsequent rounds. */
4468 gcc_assert (!cselib_lookup (node
->loc
,
4469 GET_MODE (node
->loc
), 0,
4471 v
= cselib_lookup (node
->loc
, GET_MODE (node
->loc
), 1,
4473 cselib_preserve_value (v
);
4474 cselib_invalidate_rtx (node
->loc
);
4476 cdv
= dv_from_value (cval
);
4479 "Created new value %u:%u for reg %i\n",
4480 v
->uid
, v
->hash
, REGNO (node
->loc
));
4483 var_reg_decl_set (*dfpm
->permp
, node
->loc
,
4484 VAR_INIT_STATUS_INITIALIZED
,
4485 cdv
, 0, NULL
, INSERT
);
4491 /* Remove attribute referring to the decl, which now
4492 uses the value for the register, already existing or
4493 to be added when we bring perm in. */
4496 pool_free (attrs_pool
, att
);
4501 remove_duplicate_values (var
);
4507 /* Reset values in the permanent set that are not associated with the
4508 chosen expression. */
4511 variable_post_merge_perm_vals (variable_def
**pslot
, dfset_post_merge
*dfpm
)
4513 dataflow_set
*set
= dfpm
->set
;
4514 variable pvar
= *pslot
, var
;
4515 location_chain pnode
;
4519 gcc_assert (dv_is_value_p (pvar
->dv
)
4520 && pvar
->n_var_parts
== 1);
4521 pnode
= pvar
->var_part
[0].loc_chain
;
4524 && REG_P (pnode
->loc
));
4528 var
= shared_hash_find (set
->vars
, dv
);
4531 /* Although variable_post_merge_new_vals may have made decls
4532 non-star-canonical, values that pre-existed in canonical form
4533 remain canonical, and newly-created values reference a single
4534 REG, so they are canonical as well. Since VAR has the
4535 location list for a VALUE, using find_loc_in_1pdv for it is
4536 fine, since VALUEs don't map back to DECLs. */
4537 if (find_loc_in_1pdv (pnode
->loc
, var
, shared_hash_htab (set
->vars
)))
4539 val_reset (set
, dv
);
4542 for (att
= set
->regs
[REGNO (pnode
->loc
)]; att
; att
= att
->next
)
4543 if (att
->offset
== 0
4544 && GET_MODE (att
->loc
) == GET_MODE (pnode
->loc
)
4545 && dv_is_value_p (att
->dv
))
4548 /* If there is a value associated with this register already, create
4550 if (att
&& dv_as_value (att
->dv
) != dv_as_value (dv
))
4552 rtx cval
= dv_as_value (att
->dv
);
4553 set_variable_part (set
, cval
, dv
, 0, pnode
->init
, NULL
, INSERT
);
4554 set_variable_part (set
, dv_as_value (dv
), att
->dv
, 0, pnode
->init
,
4559 attrs_list_insert (&set
->regs
[REGNO (pnode
->loc
)],
4561 variable_union (pvar
, set
);
4567 /* Just checking stuff and registering register attributes for
4571 dataflow_post_merge_adjust (dataflow_set
*set
, dataflow_set
**permp
)
4573 struct dfset_post_merge dfpm
;
4578 shared_hash_htab (set
->vars
)
4579 .traverse
<dfset_post_merge
*, variable_post_merge_new_vals
> (&dfpm
);
4581 shared_hash_htab ((*permp
)->vars
)
4582 .traverse
<dfset_post_merge
*, variable_post_merge_perm_vals
> (&dfpm
);
4583 shared_hash_htab (set
->vars
)
4584 .traverse
<dataflow_set
*, canonicalize_values_star
> (set
);
4585 shared_hash_htab (set
->vars
)
4586 .traverse
<dataflow_set
*, canonicalize_vars_star
> (set
);
4589 /* Return a node whose loc is a MEM that refers to EXPR in the
4590 location list of a one-part variable or value VAR, or in that of
4591 any values recursively mentioned in the location lists. */
4593 static location_chain
4594 find_mem_expr_in_1pdv (tree expr
, rtx val
, variable_table_type vars
)
4596 location_chain node
;
4599 location_chain where
= NULL
;
4604 gcc_assert (GET_CODE (val
) == VALUE
4605 && !VALUE_RECURSED_INTO (val
));
4607 dv
= dv_from_value (val
);
4608 var
= vars
.find_with_hash (dv
, dv_htab_hash (dv
));
4613 gcc_assert (var
->onepart
);
4615 if (!var
->n_var_parts
)
4618 VALUE_RECURSED_INTO (val
) = true;
4620 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4621 if (MEM_P (node
->loc
)
4622 && MEM_EXPR (node
->loc
) == expr
4623 && INT_MEM_OFFSET (node
->loc
) == 0)
4628 else if (GET_CODE (node
->loc
) == VALUE
4629 && !VALUE_RECURSED_INTO (node
->loc
)
4630 && (where
= find_mem_expr_in_1pdv (expr
, node
->loc
, vars
)))
4633 VALUE_RECURSED_INTO (val
) = false;
4638 /* Return TRUE if the value of MEM may vary across a call. */
4641 mem_dies_at_call (rtx mem
)
4643 tree expr
= MEM_EXPR (mem
);
4649 decl
= get_base_address (expr
);
4657 return (may_be_aliased (decl
)
4658 || (!TREE_READONLY (decl
) && is_global_var (decl
)));
4661 /* Remove all MEMs from the location list of a hash table entry for a
4662 one-part variable, except those whose MEM attributes map back to
4663 the variable itself, directly or within a VALUE. */
4666 dataflow_set_preserve_mem_locs (variable_def
**slot
, dataflow_set
*set
)
4668 variable var
= *slot
;
4670 if (var
->onepart
== ONEPART_VDECL
|| var
->onepart
== ONEPART_DEXPR
)
4672 tree decl
= dv_as_decl (var
->dv
);
4673 location_chain loc
, *locp
;
4674 bool changed
= false;
4676 if (!var
->n_var_parts
)
4679 gcc_assert (var
->n_var_parts
== 1);
4681 if (shared_var_p (var
, set
->vars
))
4683 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4685 /* We want to remove dying MEMs that doesn't refer to DECL. */
4686 if (GET_CODE (loc
->loc
) == MEM
4687 && (MEM_EXPR (loc
->loc
) != decl
4688 || INT_MEM_OFFSET (loc
->loc
) != 0)
4689 && !mem_dies_at_call (loc
->loc
))
4691 /* We want to move here MEMs that do refer to DECL. */
4692 else if (GET_CODE (loc
->loc
) == VALUE
4693 && find_mem_expr_in_1pdv (decl
, loc
->loc
,
4694 shared_hash_htab (set
->vars
)))
4701 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4703 gcc_assert (var
->n_var_parts
== 1);
4706 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4709 rtx old_loc
= loc
->loc
;
4710 if (GET_CODE (old_loc
) == VALUE
)
4712 location_chain mem_node
4713 = find_mem_expr_in_1pdv (decl
, loc
->loc
,
4714 shared_hash_htab (set
->vars
));
4716 /* ??? This picks up only one out of multiple MEMs that
4717 refer to the same variable. Do we ever need to be
4718 concerned about dealing with more than one, or, given
4719 that they should all map to the same variable
4720 location, their addresses will have been merged and
4721 they will be regarded as equivalent? */
4724 loc
->loc
= mem_node
->loc
;
4725 loc
->set_src
= mem_node
->set_src
;
4726 loc
->init
= MIN (loc
->init
, mem_node
->init
);
4730 if (GET_CODE (loc
->loc
) != MEM
4731 || (MEM_EXPR (loc
->loc
) == decl
4732 && INT_MEM_OFFSET (loc
->loc
) == 0)
4733 || !mem_dies_at_call (loc
->loc
))
4735 if (old_loc
!= loc
->loc
&& emit_notes
)
4737 if (old_loc
== var
->var_part
[0].cur_loc
)
4740 var
->var_part
[0].cur_loc
= NULL
;
4749 if (old_loc
== var
->var_part
[0].cur_loc
)
4752 var
->var_part
[0].cur_loc
= NULL
;
4756 pool_free (loc_chain_pool
, loc
);
4759 if (!var
->var_part
[0].loc_chain
)
4765 variable_was_changed (var
, set
);
4771 /* Remove all MEMs from the location list of a hash table entry for a
4775 dataflow_set_remove_mem_locs (variable_def
**slot
, dataflow_set
*set
)
4777 variable var
= *slot
;
4779 if (var
->onepart
== ONEPART_VALUE
)
4781 location_chain loc
, *locp
;
4782 bool changed
= false;
4785 gcc_assert (var
->n_var_parts
== 1);
4787 if (shared_var_p (var
, set
->vars
))
4789 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4790 if (GET_CODE (loc
->loc
) == MEM
4791 && mem_dies_at_call (loc
->loc
))
4797 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4799 gcc_assert (var
->n_var_parts
== 1);
4802 if (VAR_LOC_1PAUX (var
))
4803 cur_loc
= VAR_LOC_FROM (var
);
4805 cur_loc
= var
->var_part
[0].cur_loc
;
4807 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4810 if (GET_CODE (loc
->loc
) != MEM
4811 || !mem_dies_at_call (loc
->loc
))
4818 /* If we have deleted the location which was last emitted
4819 we have to emit new location so add the variable to set
4820 of changed variables. */
4821 if (cur_loc
== loc
->loc
)
4824 var
->var_part
[0].cur_loc
= NULL
;
4825 if (VAR_LOC_1PAUX (var
))
4826 VAR_LOC_FROM (var
) = NULL
;
4828 pool_free (loc_chain_pool
, loc
);
4831 if (!var
->var_part
[0].loc_chain
)
4837 variable_was_changed (var
, set
);
4843 /* Remove all variable-location information about call-clobbered
4844 registers, as well as associations between MEMs and VALUEs. */
4847 dataflow_set_clear_at_call (dataflow_set
*set
)
4850 hard_reg_set_iterator hrsi
;
4852 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
, 0, r
, hrsi
)
4853 var_regno_delete (set
, r
);
4855 if (MAY_HAVE_DEBUG_INSNS
)
4857 set
->traversed_vars
= set
->vars
;
4858 shared_hash_htab (set
->vars
)
4859 .traverse
<dataflow_set
*, dataflow_set_preserve_mem_locs
> (set
);
4860 set
->traversed_vars
= set
->vars
;
4861 shared_hash_htab (set
->vars
)
4862 .traverse
<dataflow_set
*, dataflow_set_remove_mem_locs
> (set
);
4863 set
->traversed_vars
= NULL
;
4868 variable_part_different_p (variable_part
*vp1
, variable_part
*vp2
)
4870 location_chain lc1
, lc2
;
4872 for (lc1
= vp1
->loc_chain
; lc1
; lc1
= lc1
->next
)
4874 for (lc2
= vp2
->loc_chain
; lc2
; lc2
= lc2
->next
)
4876 if (REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
4878 if (REGNO (lc1
->loc
) == REGNO (lc2
->loc
))
4881 if (rtx_equal_p (lc1
->loc
, lc2
->loc
))
4890 /* Return true if one-part variables VAR1 and VAR2 are different.
4891 They must be in canonical order. */
4894 onepart_variable_different_p (variable var1
, variable var2
)
4896 location_chain lc1
, lc2
;
4901 gcc_assert (var1
->n_var_parts
== 1
4902 && var2
->n_var_parts
== 1);
4904 lc1
= var1
->var_part
[0].loc_chain
;
4905 lc2
= var2
->var_part
[0].loc_chain
;
4907 gcc_assert (lc1
&& lc2
);
4911 if (loc_cmp (lc1
->loc
, lc2
->loc
))
4920 /* Return true if variables VAR1 and VAR2 are different. */
4923 variable_different_p (variable var1
, variable var2
)
4930 if (var1
->onepart
!= var2
->onepart
)
4933 if (var1
->n_var_parts
!= var2
->n_var_parts
)
4936 if (var1
->onepart
&& var1
->n_var_parts
)
4938 gcc_checking_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
)
4939 && var1
->n_var_parts
== 1);
4940 /* One-part values have locations in a canonical order. */
4941 return onepart_variable_different_p (var1
, var2
);
4944 for (i
= 0; i
< var1
->n_var_parts
; i
++)
4946 if (VAR_PART_OFFSET (var1
, i
) != VAR_PART_OFFSET (var2
, i
))
4948 if (variable_part_different_p (&var1
->var_part
[i
], &var2
->var_part
[i
]))
4950 if (variable_part_different_p (&var2
->var_part
[i
], &var1
->var_part
[i
]))
4956 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4959 dataflow_set_different (dataflow_set
*old_set
, dataflow_set
*new_set
)
4961 variable_iterator_type hi
;
4964 if (old_set
->vars
== new_set
->vars
)
4967 if (shared_hash_htab (old_set
->vars
).elements ()
4968 != shared_hash_htab (new_set
->vars
).elements ())
4971 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (old_set
->vars
),
4974 variable_table_type htab
= shared_hash_htab (new_set
->vars
);
4975 variable var2
= htab
.find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
4978 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4980 fprintf (dump_file
, "dataflow difference found: removal of:\n");
4986 if (variable_different_p (var1
, var2
))
4988 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4990 fprintf (dump_file
, "dataflow difference found: "
4991 "old and new follow:\n");
4999 /* No need to traverse the second hashtab, if both have the same number
5000 of elements and the second one had all entries found in the first one,
5001 then it can't have any extra entries. */
5005 /* Free the contents of dataflow set SET. */
5008 dataflow_set_destroy (dataflow_set
*set
)
5012 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5013 attrs_list_clear (&set
->regs
[i
]);
5015 shared_hash_destroy (set
->vars
);
5019 /* Return true if RTL X contains a SYMBOL_REF. */
5022 contains_symbol_ref (rtx x
)
5031 code
= GET_CODE (x
);
5032 if (code
== SYMBOL_REF
)
5035 fmt
= GET_RTX_FORMAT (code
);
5036 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5040 if (contains_symbol_ref (XEXP (x
, i
)))
5043 else if (fmt
[i
] == 'E')
5046 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5047 if (contains_symbol_ref (XVECEXP (x
, i
, j
)))
5055 /* Shall EXPR be tracked? */
5058 track_expr_p (tree expr
, bool need_rtl
)
5063 if (TREE_CODE (expr
) == DEBUG_EXPR_DECL
)
5064 return DECL_RTL_SET_P (expr
);
5066 /* If EXPR is not a parameter or a variable do not track it. */
5067 if (TREE_CODE (expr
) != VAR_DECL
&& TREE_CODE (expr
) != PARM_DECL
)
5070 /* It also must have a name... */
5071 if (!DECL_NAME (expr
) && need_rtl
)
5074 /* ... and a RTL assigned to it. */
5075 decl_rtl
= DECL_RTL_IF_SET (expr
);
5076 if (!decl_rtl
&& need_rtl
)
5079 /* If this expression is really a debug alias of some other declaration, we
5080 don't need to track this expression if the ultimate declaration is
5083 if (TREE_CODE (realdecl
) == VAR_DECL
&& DECL_HAS_DEBUG_EXPR_P (realdecl
))
5085 realdecl
= DECL_DEBUG_EXPR (realdecl
);
5086 if (!DECL_P (realdecl
))
5088 if (handled_component_p (realdecl
)
5089 || (TREE_CODE (realdecl
) == MEM_REF
5090 && TREE_CODE (TREE_OPERAND (realdecl
, 0)) == ADDR_EXPR
))
5092 HOST_WIDE_INT bitsize
, bitpos
, maxsize
;
5094 = get_ref_base_and_extent (realdecl
, &bitpos
, &bitsize
,
5096 if (!DECL_P (innerdecl
)
5097 || DECL_IGNORED_P (innerdecl
)
5098 /* Do not track declarations for parts of tracked parameters
5099 since we want to track them as a whole instead. */
5100 || (TREE_CODE (innerdecl
) == PARM_DECL
5101 && DECL_MODE (innerdecl
) != BLKmode
5102 && TREE_CODE (TREE_TYPE (innerdecl
)) != UNION_TYPE
)
5103 || TREE_STATIC (innerdecl
)
5105 || bitpos
+ bitsize
> 256
5106 || bitsize
!= maxsize
)
5116 /* Do not track EXPR if REALDECL it should be ignored for debugging
5118 if (DECL_IGNORED_P (realdecl
))
5121 /* Do not track global variables until we are able to emit correct location
5123 if (TREE_STATIC (realdecl
))
5126 /* When the EXPR is a DECL for alias of some variable (see example)
5127 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5128 DECL_RTL contains SYMBOL_REF.
5131 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5134 if (decl_rtl
&& MEM_P (decl_rtl
)
5135 && contains_symbol_ref (XEXP (decl_rtl
, 0)))
5138 /* If RTX is a memory it should not be very large (because it would be
5139 an array or struct). */
5140 if (decl_rtl
&& MEM_P (decl_rtl
))
5142 /* Do not track structures and arrays. */
5143 if (GET_MODE (decl_rtl
) == BLKmode
5144 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl
)))
5146 if (MEM_SIZE_KNOWN_P (decl_rtl
)
5147 && MEM_SIZE (decl_rtl
) > MAX_VAR_PARTS
)
5151 DECL_CHANGED (expr
) = 0;
5152 DECL_CHANGED (realdecl
) = 0;
5156 /* Determine whether a given LOC refers to the same variable part as
5160 same_variable_part_p (rtx loc
, tree expr
, HOST_WIDE_INT offset
)
5163 HOST_WIDE_INT offset2
;
5165 if (! DECL_P (expr
))
5170 expr2
= REG_EXPR (loc
);
5171 offset2
= REG_OFFSET (loc
);
5173 else if (MEM_P (loc
))
5175 expr2
= MEM_EXPR (loc
);
5176 offset2
= INT_MEM_OFFSET (loc
);
5181 if (! expr2
|| ! DECL_P (expr2
))
5184 expr
= var_debug_decl (expr
);
5185 expr2
= var_debug_decl (expr2
);
5187 return (expr
== expr2
&& offset
== offset2
);
5190 /* LOC is a REG or MEM that we would like to track if possible.
5191 If EXPR is null, we don't know what expression LOC refers to,
5192 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5193 LOC is an lvalue register.
5195 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5196 is something we can track. When returning true, store the mode of
5197 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5198 from EXPR in *OFFSET_OUT (if nonnull). */
5201 track_loc_p (rtx loc
, tree expr
, HOST_WIDE_INT offset
, bool store_reg_p
,
5202 enum machine_mode
*mode_out
, HOST_WIDE_INT
*offset_out
)
5204 enum machine_mode mode
;
5206 if (expr
== NULL
|| !track_expr_p (expr
, true))
5209 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5210 whole subreg, but only the old inner part is really relevant. */
5211 mode
= GET_MODE (loc
);
5212 if (REG_P (loc
) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc
)))
5214 enum machine_mode pseudo_mode
;
5216 pseudo_mode
= PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc
));
5217 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (pseudo_mode
))
5219 offset
+= byte_lowpart_offset (pseudo_mode
, mode
);
5224 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5225 Do the same if we are storing to a register and EXPR occupies
5226 the whole of register LOC; in that case, the whole of EXPR is
5227 being changed. We exclude complex modes from the second case
5228 because the real and imaginary parts are represented as separate
5229 pseudo registers, even if the whole complex value fits into one
5231 if ((GET_MODE_SIZE (mode
) > GET_MODE_SIZE (DECL_MODE (expr
))
5233 && !COMPLEX_MODE_P (DECL_MODE (expr
))
5234 && hard_regno_nregs
[REGNO (loc
)][DECL_MODE (expr
)] == 1))
5235 && offset
+ byte_lowpart_offset (DECL_MODE (expr
), mode
) == 0)
5237 mode
= DECL_MODE (expr
);
5241 if (offset
< 0 || offset
>= MAX_VAR_PARTS
)
5247 *offset_out
= offset
;
5251 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5252 want to track. When returning nonnull, make sure that the attributes
5253 on the returned value are updated. */
5256 var_lowpart (enum machine_mode mode
, rtx loc
)
5258 unsigned int offset
, reg_offset
, regno
;
5260 if (GET_MODE (loc
) == mode
)
5263 if (!REG_P (loc
) && !MEM_P (loc
))
5266 offset
= byte_lowpart_offset (mode
, GET_MODE (loc
));
5269 return adjust_address_nv (loc
, mode
, offset
);
5271 reg_offset
= subreg_lowpart_offset (mode
, GET_MODE (loc
));
5272 regno
= REGNO (loc
) + subreg_regno_offset (REGNO (loc
), GET_MODE (loc
),
5274 return gen_rtx_REG_offset (loc
, mode
, regno
, offset
);
5277 /* Carry information about uses and stores while walking rtx. */
5279 struct count_use_info
5281 /* The insn where the RTX is. */
5284 /* The basic block where insn is. */
5287 /* The array of n_sets sets in the insn, as determined by cselib. */
5288 struct cselib_set
*sets
;
5291 /* True if we're counting stores, false otherwise. */
5295 /* Find a VALUE corresponding to X. */
5297 static inline cselib_val
*
5298 find_use_val (rtx x
, enum machine_mode mode
, struct count_use_info
*cui
)
5304 /* This is called after uses are set up and before stores are
5305 processed by cselib, so it's safe to look up srcs, but not
5306 dsts. So we look up expressions that appear in srcs or in
5307 dest expressions, but we search the sets array for dests of
5311 /* Some targets represent memset and memcpy patterns
5312 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5313 (set (mem:BLK ...) (const_int ...)) or
5314 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5315 in that case, otherwise we end up with mode mismatches. */
5316 if (mode
== BLKmode
&& MEM_P (x
))
5318 for (i
= 0; i
< cui
->n_sets
; i
++)
5319 if (cui
->sets
[i
].dest
== x
)
5320 return cui
->sets
[i
].src_elt
;
5323 return cselib_lookup (x
, mode
, 0, VOIDmode
);
5329 /* Replace all registers and addresses in an expression with VALUE
5330 expressions that map back to them, unless the expression is a
5331 register. If no mapping is or can be performed, returns NULL. */
5334 replace_expr_with_values (rtx loc
)
5336 if (REG_P (loc
) || GET_CODE (loc
) == ENTRY_VALUE
)
5338 else if (MEM_P (loc
))
5340 cselib_val
*addr
= cselib_lookup (XEXP (loc
, 0),
5341 get_address_mode (loc
), 0,
5344 return replace_equiv_address_nv (loc
, addr
->val_rtx
);
5349 return cselib_subst_to_values (loc
, VOIDmode
);
5352 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5353 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5357 rtx_debug_expr_p (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
5361 return GET_CODE (loc
) == DEBUG_EXPR
;
5364 /* Determine what kind of micro operation to choose for a USE. Return
5365 MO_CLOBBER if no micro operation is to be generated. */
5367 static enum micro_operation_type
5368 use_type (rtx loc
, struct count_use_info
*cui
, enum machine_mode
*modep
)
5372 if (cui
&& cui
->sets
)
5374 if (GET_CODE (loc
) == VAR_LOCATION
)
5376 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc
), false))
5378 rtx ploc
= PAT_VAR_LOCATION_LOC (loc
);
5379 if (! VAR_LOC_UNKNOWN_P (ploc
))
5381 cselib_val
*val
= cselib_lookup (ploc
, GET_MODE (loc
), 1,
5384 /* ??? flag_float_store and volatile mems are never
5385 given values, but we could in theory use them for
5387 gcc_assert (val
|| 1);
5395 if (REG_P (loc
) || MEM_P (loc
))
5398 *modep
= GET_MODE (loc
);
5402 || (find_use_val (loc
, GET_MODE (loc
), cui
)
5403 && cselib_lookup (XEXP (loc
, 0),
5404 get_address_mode (loc
), 0,
5410 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5412 if (val
&& !cselib_preserved_value_p (val
))
5420 gcc_assert (REGNO (loc
) < FIRST_PSEUDO_REGISTER
);
5422 if (loc
== cfa_base_rtx
)
5424 expr
= REG_EXPR (loc
);
5427 return MO_USE_NO_VAR
;
5428 else if (target_for_debug_bind (var_debug_decl (expr
)))
5430 else if (track_loc_p (loc
, expr
, REG_OFFSET (loc
),
5431 false, modep
, NULL
))
5434 return MO_USE_NO_VAR
;
5436 else if (MEM_P (loc
))
5438 expr
= MEM_EXPR (loc
);
5442 else if (target_for_debug_bind (var_debug_decl (expr
)))
5444 else if (track_loc_p (loc
, expr
, INT_MEM_OFFSET (loc
),
5446 /* Multi-part variables shouldn't refer to one-part
5447 variable names such as VALUEs (never happens) or
5448 DEBUG_EXPRs (only happens in the presence of debug
5450 && (!MAY_HAVE_DEBUG_INSNS
5451 || !for_each_rtx (&XEXP (loc
, 0), rtx_debug_expr_p
, NULL
)))
5460 /* Log to OUT information about micro-operation MOPT involving X in
5464 log_op_type (rtx x
, basic_block bb
, rtx insn
,
5465 enum micro_operation_type mopt
, FILE *out
)
5467 fprintf (out
, "bb %i op %i insn %i %s ",
5468 bb
->index
, VTI (bb
)->mos
.length (),
5469 INSN_UID (insn
), micro_operation_type_name
[mopt
]);
5470 print_inline_rtx (out
, x
, 2);
5474 /* Tell whether the CONCAT used to holds a VALUE and its location
5475 needs value resolution, i.e., an attempt of mapping the location
5476 back to other incoming values. */
5477 #define VAL_NEEDS_RESOLUTION(x) \
5478 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5479 /* Whether the location in the CONCAT is a tracked expression, that
5480 should also be handled like a MO_USE. */
5481 #define VAL_HOLDS_TRACK_EXPR(x) \
5482 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5483 /* Whether the location in the CONCAT should be handled like a MO_COPY
5485 #define VAL_EXPR_IS_COPIED(x) \
5486 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5487 /* Whether the location in the CONCAT should be handled like a
5488 MO_CLOBBER as well. */
5489 #define VAL_EXPR_IS_CLOBBERED(x) \
5490 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5492 /* All preserved VALUEs. */
5493 static vec
<rtx
> preserved_values
;
5495 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5498 preserve_value (cselib_val
*val
)
5500 cselib_preserve_value (val
);
5501 preserved_values
.safe_push (val
->val_rtx
);
5504 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5505 any rtxes not suitable for CONST use not replaced by VALUEs
5509 non_suitable_const (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
5514 switch (GET_CODE (*x
))
5525 return !MEM_READONLY_P (*x
);
5531 /* Add uses (register and memory references) LOC which will be tracked
5532 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5535 add_uses (rtx
*ploc
, void *data
)
5538 enum machine_mode mode
= VOIDmode
;
5539 struct count_use_info
*cui
= (struct count_use_info
*)data
;
5540 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5542 if (type
!= MO_CLOBBER
)
5544 basic_block bb
= cui
->bb
;
5548 mo
.u
.loc
= type
== MO_USE
? var_lowpart (mode
, loc
) : loc
;
5549 mo
.insn
= cui
->insn
;
5551 if (type
== MO_VAL_LOC
)
5554 rtx vloc
= PAT_VAR_LOCATION_LOC (oloc
);
5557 gcc_assert (cui
->sets
);
5560 && !REG_P (XEXP (vloc
, 0))
5561 && !MEM_P (XEXP (vloc
, 0)))
5564 enum machine_mode address_mode
= get_address_mode (mloc
);
5566 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5569 if (val
&& !cselib_preserved_value_p (val
))
5570 preserve_value (val
);
5573 if (CONSTANT_P (vloc
)
5574 && (GET_CODE (vloc
) != CONST
5575 || for_each_rtx (&vloc
, non_suitable_const
, NULL
)))
5576 /* For constants don't look up any value. */;
5577 else if (!VAR_LOC_UNKNOWN_P (vloc
) && !unsuitable_loc (vloc
)
5578 && (val
= find_use_val (vloc
, GET_MODE (oloc
), cui
)))
5580 enum machine_mode mode2
;
5581 enum micro_operation_type type2
;
5583 bool resolvable
= REG_P (vloc
) || MEM_P (vloc
);
5586 nloc
= replace_expr_with_values (vloc
);
5590 oloc
= shallow_copy_rtx (oloc
);
5591 PAT_VAR_LOCATION_LOC (oloc
) = nloc
;
5594 oloc
= gen_rtx_CONCAT (mode
, val
->val_rtx
, oloc
);
5596 type2
= use_type (vloc
, 0, &mode2
);
5598 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5599 || type2
== MO_CLOBBER
);
5601 if (type2
== MO_CLOBBER
5602 && !cselib_preserved_value_p (val
))
5604 VAL_NEEDS_RESOLUTION (oloc
) = resolvable
;
5605 preserve_value (val
);
5608 else if (!VAR_LOC_UNKNOWN_P (vloc
))
5610 oloc
= shallow_copy_rtx (oloc
);
5611 PAT_VAR_LOCATION_LOC (oloc
) = gen_rtx_UNKNOWN_VAR_LOC ();
5616 else if (type
== MO_VAL_USE
)
5618 enum machine_mode mode2
= VOIDmode
;
5619 enum micro_operation_type type2
;
5620 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5621 rtx vloc
, oloc
= loc
, nloc
;
5623 gcc_assert (cui
->sets
);
5626 && !REG_P (XEXP (oloc
, 0))
5627 && !MEM_P (XEXP (oloc
, 0)))
5630 enum machine_mode address_mode
= get_address_mode (mloc
);
5632 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5635 if (val
&& !cselib_preserved_value_p (val
))
5636 preserve_value (val
);
5639 type2
= use_type (loc
, 0, &mode2
);
5641 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5642 || type2
== MO_CLOBBER
);
5644 if (type2
== MO_USE
)
5645 vloc
= var_lowpart (mode2
, loc
);
5649 /* The loc of a MO_VAL_USE may have two forms:
5651 (concat val src): val is at src, a value-based
5654 (concat (concat val use) src): same as above, with use as
5655 the MO_USE tracked value, if it differs from src.
5659 gcc_checking_assert (REG_P (loc
) || MEM_P (loc
));
5660 nloc
= replace_expr_with_values (loc
);
5665 oloc
= gen_rtx_CONCAT (mode2
, val
->val_rtx
, vloc
);
5667 oloc
= val
->val_rtx
;
5669 mo
.u
.loc
= gen_rtx_CONCAT (mode
, oloc
, nloc
);
5671 if (type2
== MO_USE
)
5672 VAL_HOLDS_TRACK_EXPR (mo
.u
.loc
) = 1;
5673 if (!cselib_preserved_value_p (val
))
5675 VAL_NEEDS_RESOLUTION (mo
.u
.loc
) = 1;
5676 preserve_value (val
);
5680 gcc_assert (type
== MO_USE
|| type
== MO_USE_NO_VAR
);
5682 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5683 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
5684 VTI (bb
)->mos
.safe_push (mo
);
5690 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5693 add_uses_1 (rtx
*x
, void *cui
)
5695 for_each_rtx (x
, add_uses
, cui
);
5698 /* This is the value used during expansion of locations. We want it
5699 to be unbounded, so that variables expanded deep in a recursion
5700 nest are fully evaluated, so that their values are cached
5701 correctly. We avoid recursion cycles through other means, and we
5702 don't unshare RTL, so excess complexity is not a problem. */
5703 #define EXPR_DEPTH (INT_MAX)
5704 /* We use this to keep too-complex expressions from being emitted as
5705 location notes, and then to debug information. Users can trade
5706 compile time for ridiculously complex expressions, although they're
5707 seldom useful, and they may often have to be discarded as not
5708 representable anyway. */
5709 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5711 /* Attempt to reverse the EXPR operation in the debug info and record
5712 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5713 no longer live we can express its value as VAL - 6. */
5716 reverse_op (rtx val
, const_rtx expr
, rtx insn
)
5720 struct elt_loc_list
*l
;
5724 if (GET_CODE (expr
) != SET
)
5727 if (!REG_P (SET_DEST (expr
)) || GET_MODE (val
) != GET_MODE (SET_DEST (expr
)))
5730 src
= SET_SRC (expr
);
5731 switch (GET_CODE (src
))
5738 if (!REG_P (XEXP (src
, 0)))
5743 if (!REG_P (XEXP (src
, 0)) && !MEM_P (XEXP (src
, 0)))
5750 if (!SCALAR_INT_MODE_P (GET_MODE (src
)) || XEXP (src
, 0) == cfa_base_rtx
)
5753 v
= cselib_lookup (XEXP (src
, 0), GET_MODE (XEXP (src
, 0)), 0, VOIDmode
);
5754 if (!v
|| !cselib_preserved_value_p (v
))
5757 /* Use canonical V to avoid creating multiple redundant expressions
5758 for different VALUES equivalent to V. */
5759 v
= canonical_cselib_val (v
);
5761 /* Adding a reverse op isn't useful if V already has an always valid
5762 location. Ignore ENTRY_VALUE, while it is always constant, we should
5763 prefer non-ENTRY_VALUE locations whenever possible. */
5764 for (l
= v
->locs
, count
= 0; l
; l
= l
->next
, count
++)
5765 if (CONSTANT_P (l
->loc
)
5766 && (GET_CODE (l
->loc
) != CONST
|| !references_value_p (l
->loc
, 0)))
5768 /* Avoid creating too large locs lists. */
5769 else if (count
== PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE
))
5772 switch (GET_CODE (src
))
5776 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5778 ret
= gen_rtx_fmt_e (GET_CODE (src
), GET_MODE (val
), val
);
5782 ret
= gen_lowpart_SUBREG (GET_MODE (v
->val_rtx
), val
);
5794 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5796 arg
= XEXP (src
, 1);
5797 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5799 arg
= cselib_expand_value_rtx (arg
, scratch_regs
, 5);
5800 if (arg
== NULL_RTX
)
5802 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5805 ret
= simplify_gen_binary (code
, GET_MODE (val
), val
, arg
);
5807 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5808 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5809 breaks a lot of routines during var-tracking. */
5810 ret
= gen_rtx_fmt_ee (PLUS
, GET_MODE (val
), val
, const0_rtx
);
5816 cselib_add_permanent_equiv (v
, ret
, insn
);
5819 /* Add stores (register and memory references) LOC which will be tracked
5820 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5821 CUIP->insn is instruction which the LOC is part of. */
5824 add_stores (rtx loc
, const_rtx expr
, void *cuip
)
5826 enum machine_mode mode
= VOIDmode
, mode2
;
5827 struct count_use_info
*cui
= (struct count_use_info
*)cuip
;
5828 basic_block bb
= cui
->bb
;
5830 rtx oloc
= loc
, nloc
, src
= NULL
;
5831 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5832 bool track_p
= false;
5834 bool resolve
, preserve
;
5836 if (type
== MO_CLOBBER
)
5843 gcc_assert (loc
!= cfa_base_rtx
);
5844 if ((GET_CODE (expr
) == CLOBBER
&& type
!= MO_VAL_SET
)
5845 || !(track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5846 || GET_CODE (expr
) == CLOBBER
)
5848 mo
.type
= MO_CLOBBER
;
5850 if (GET_CODE (expr
) == SET
5851 && SET_DEST (expr
) == loc
5852 && !unsuitable_loc (SET_SRC (expr
))
5853 && find_use_val (loc
, mode
, cui
))
5855 gcc_checking_assert (type
== MO_VAL_SET
);
5856 mo
.u
.loc
= gen_rtx_SET (VOIDmode
, loc
, SET_SRC (expr
));
5861 if (GET_CODE (expr
) == SET
5862 && SET_DEST (expr
) == loc
5863 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
5864 src
= var_lowpart (mode2
, SET_SRC (expr
));
5865 loc
= var_lowpart (mode2
, loc
);
5874 rtx xexpr
= gen_rtx_SET (VOIDmode
, loc
, src
);
5875 if (same_variable_part_p (src
, REG_EXPR (loc
), REG_OFFSET (loc
)))
5877 /* If this is an instruction copying (part of) a parameter
5878 passed by invisible reference to its register location,
5879 pretend it's a SET so that the initial memory location
5880 is discarded, as the parameter register can be reused
5881 for other purposes and we do not track locations based
5882 on generic registers. */
5885 && TREE_CODE (REG_EXPR (loc
)) == PARM_DECL
5886 && DECL_MODE (REG_EXPR (loc
)) != BLKmode
5887 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc
)))
5888 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0)
5899 mo
.insn
= cui
->insn
;
5901 else if (MEM_P (loc
)
5902 && ((track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5905 if (MEM_P (loc
) && type
== MO_VAL_SET
5906 && !REG_P (XEXP (loc
, 0))
5907 && !MEM_P (XEXP (loc
, 0)))
5910 enum machine_mode address_mode
= get_address_mode (mloc
);
5911 cselib_val
*val
= cselib_lookup (XEXP (mloc
, 0),
5915 if (val
&& !cselib_preserved_value_p (val
))
5916 preserve_value (val
);
5919 if (GET_CODE (expr
) == CLOBBER
|| !track_p
)
5921 mo
.type
= MO_CLOBBER
;
5922 mo
.u
.loc
= track_p
? var_lowpart (mode2
, loc
) : loc
;
5926 if (GET_CODE (expr
) == SET
5927 && SET_DEST (expr
) == loc
5928 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
5929 src
= var_lowpart (mode2
, SET_SRC (expr
));
5930 loc
= var_lowpart (mode2
, loc
);
5939 rtx xexpr
= gen_rtx_SET (VOIDmode
, loc
, src
);
5940 if (same_variable_part_p (SET_SRC (xexpr
),
5942 INT_MEM_OFFSET (loc
)))
5949 mo
.insn
= cui
->insn
;
5954 if (type
!= MO_VAL_SET
)
5955 goto log_and_return
;
5957 v
= find_use_val (oloc
, mode
, cui
);
5960 goto log_and_return
;
5962 resolve
= preserve
= !cselib_preserved_value_p (v
);
5964 /* We cannot track values for multiple-part variables, so we track only
5965 locations for tracked parameters passed either by invisible reference
5966 or directly in multiple locations. */
5970 && TREE_CODE (REG_EXPR (loc
)) == PARM_DECL
5971 && DECL_MODE (REG_EXPR (loc
)) != BLKmode
5972 && TREE_CODE (TREE_TYPE (REG_EXPR (loc
))) != UNION_TYPE
5973 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc
)))
5974 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0) != arg_pointer_rtx
)
5975 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc
))) == PARALLEL
5976 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0) > 1)))
5978 /* Although we don't use the value here, it could be used later by the
5979 mere virtue of its existence as the operand of the reverse operation
5980 that gave rise to it (typically extension/truncation). Make sure it
5981 is preserved as required by vt_expand_var_loc_chain. */
5984 goto log_and_return
;
5987 if (loc
== stack_pointer_rtx
5988 && hard_frame_pointer_adjustment
!= -1
5990 cselib_set_value_sp_based (v
);
5992 nloc
= replace_expr_with_values (oloc
);
5996 if (GET_CODE (PATTERN (cui
->insn
)) == COND_EXEC
)
5998 cselib_val
*oval
= cselib_lookup (oloc
, GET_MODE (oloc
), 0, VOIDmode
);
6000 gcc_assert (oval
!= v
);
6001 gcc_assert (REG_P (oloc
) || MEM_P (oloc
));
6003 if (oval
&& !cselib_preserved_value_p (oval
))
6005 micro_operation moa
;
6007 preserve_value (oval
);
6009 moa
.type
= MO_VAL_USE
;
6010 moa
.u
.loc
= gen_rtx_CONCAT (mode
, oval
->val_rtx
, oloc
);
6011 VAL_NEEDS_RESOLUTION (moa
.u
.loc
) = 1;
6012 moa
.insn
= cui
->insn
;
6014 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6015 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
6016 moa
.type
, dump_file
);
6017 VTI (bb
)->mos
.safe_push (moa
);
6022 else if (resolve
&& GET_CODE (mo
.u
.loc
) == SET
)
6024 if (REG_P (SET_SRC (expr
)) || MEM_P (SET_SRC (expr
)))
6025 nloc
= replace_expr_with_values (SET_SRC (expr
));
6029 /* Avoid the mode mismatch between oexpr and expr. */
6030 if (!nloc
&& mode
!= mode2
)
6032 nloc
= SET_SRC (expr
);
6033 gcc_assert (oloc
== SET_DEST (expr
));
6036 if (nloc
&& nloc
!= SET_SRC (mo
.u
.loc
))
6037 oloc
= gen_rtx_SET (GET_MODE (mo
.u
.loc
), oloc
, nloc
);
6040 if (oloc
== SET_DEST (mo
.u
.loc
))
6041 /* No point in duplicating. */
6043 if (!REG_P (SET_SRC (mo
.u
.loc
)))
6049 if (GET_CODE (mo
.u
.loc
) == SET
6050 && oloc
== SET_DEST (mo
.u
.loc
))
6051 /* No point in duplicating. */
6057 loc
= gen_rtx_CONCAT (mode
, v
->val_rtx
, oloc
);
6059 if (mo
.u
.loc
!= oloc
)
6060 loc
= gen_rtx_CONCAT (GET_MODE (mo
.u
.loc
), loc
, mo
.u
.loc
);
6062 /* The loc of a MO_VAL_SET may have various forms:
6064 (concat val dst): dst now holds val
6066 (concat val (set dst src)): dst now holds val, copied from src
6068 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6069 after replacing mems and non-top-level regs with values.
6071 (concat (concat val dstv) (set dst src)): dst now holds val,
6072 copied from src. dstv is a value-based representation of dst, if
6073 it differs from dst. If resolution is needed, src is a REG, and
6074 its mode is the same as that of val.
6076 (concat (concat val (set dstv srcv)) (set dst src)): src
6077 copied to dst, holding val. dstv and srcv are value-based
6078 representations of dst and src, respectively.
6082 if (GET_CODE (PATTERN (cui
->insn
)) != COND_EXEC
)
6083 reverse_op (v
->val_rtx
, expr
, cui
->insn
);
6088 VAL_HOLDS_TRACK_EXPR (loc
) = 1;
6091 VAL_NEEDS_RESOLUTION (loc
) = resolve
;
6094 if (mo
.type
== MO_CLOBBER
)
6095 VAL_EXPR_IS_CLOBBERED (loc
) = 1;
6096 if (mo
.type
== MO_COPY
)
6097 VAL_EXPR_IS_COPIED (loc
) = 1;
6099 mo
.type
= MO_VAL_SET
;
6102 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6103 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
6104 VTI (bb
)->mos
.safe_push (mo
);
6107 /* Arguments to the call. */
6108 static rtx call_arguments
;
6110 /* Compute call_arguments. */
6113 prepare_call_arguments (basic_block bb
, rtx insn
)
6116 rtx prev
, cur
, next
;
6117 rtx this_arg
= NULL_RTX
;
6118 tree type
= NULL_TREE
, t
, fndecl
= NULL_TREE
;
6119 tree obj_type_ref
= NULL_TREE
;
6120 CUMULATIVE_ARGS args_so_far_v
;
6121 cumulative_args_t args_so_far
;
6123 memset (&args_so_far_v
, 0, sizeof (args_so_far_v
));
6124 args_so_far
= pack_cumulative_args (&args_so_far_v
);
6125 call
= get_call_rtx_from (insn
);
6128 if (GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
6130 rtx symbol
= XEXP (XEXP (call
, 0), 0);
6131 if (SYMBOL_REF_DECL (symbol
))
6132 fndecl
= SYMBOL_REF_DECL (symbol
);
6134 if (fndecl
== NULL_TREE
)
6135 fndecl
= MEM_EXPR (XEXP (call
, 0));
6137 && TREE_CODE (TREE_TYPE (fndecl
)) != FUNCTION_TYPE
6138 && TREE_CODE (TREE_TYPE (fndecl
)) != METHOD_TYPE
)
6140 if (fndecl
&& TYPE_ARG_TYPES (TREE_TYPE (fndecl
)))
6141 type
= TREE_TYPE (fndecl
);
6142 if (fndecl
&& TREE_CODE (fndecl
) != FUNCTION_DECL
)
6144 if (TREE_CODE (fndecl
) == INDIRECT_REF
6145 && TREE_CODE (TREE_OPERAND (fndecl
, 0)) == OBJ_TYPE_REF
)
6146 obj_type_ref
= TREE_OPERAND (fndecl
, 0);
6151 for (t
= TYPE_ARG_TYPES (type
); t
&& t
!= void_list_node
;
6153 if (TREE_CODE (TREE_VALUE (t
)) == REFERENCE_TYPE
6154 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t
))))
6156 if ((t
== NULL
|| t
== void_list_node
) && obj_type_ref
== NULL_TREE
)
6160 int nargs ATTRIBUTE_UNUSED
= list_length (TYPE_ARG_TYPES (type
));
6161 link
= CALL_INSN_FUNCTION_USAGE (insn
);
6162 #ifndef PCC_STATIC_STRUCT_RETURN
6163 if (aggregate_value_p (TREE_TYPE (type
), type
)
6164 && targetm
.calls
.struct_value_rtx (type
, 0) == 0)
6166 tree struct_addr
= build_pointer_type (TREE_TYPE (type
));
6167 enum machine_mode mode
= TYPE_MODE (struct_addr
);
6169 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6171 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6173 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6175 if (reg
== NULL_RTX
)
6177 for (; link
; link
= XEXP (link
, 1))
6178 if (GET_CODE (XEXP (link
, 0)) == USE
6179 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6181 link
= XEXP (link
, 1);
6188 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6190 if (obj_type_ref
&& TYPE_ARG_TYPES (type
) != void_list_node
)
6192 enum machine_mode mode
;
6193 t
= TYPE_ARG_TYPES (type
);
6194 mode
= TYPE_MODE (TREE_VALUE (t
));
6195 this_arg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6196 TREE_VALUE (t
), true);
6197 if (this_arg
&& !REG_P (this_arg
))
6198 this_arg
= NULL_RTX
;
6199 else if (this_arg
== NULL_RTX
)
6201 for (; link
; link
= XEXP (link
, 1))
6202 if (GET_CODE (XEXP (link
, 0)) == USE
6203 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6205 this_arg
= XEXP (XEXP (link
, 0), 0);
6213 t
= type
? TYPE_ARG_TYPES (type
) : NULL_TREE
;
6215 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
6216 if (GET_CODE (XEXP (link
, 0)) == USE
)
6218 rtx item
= NULL_RTX
;
6219 x
= XEXP (XEXP (link
, 0), 0);
6220 if (GET_MODE (link
) == VOIDmode
6221 || GET_MODE (link
) == BLKmode
6222 || (GET_MODE (link
) != GET_MODE (x
)
6223 && (GET_MODE_CLASS (GET_MODE (link
)) != MODE_INT
6224 || GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
)))
6225 /* Can't do anything for these, if the original type mode
6226 isn't known or can't be converted. */;
6229 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6230 if (val
&& cselib_preserved_value_p (val
))
6231 item
= val
->val_rtx
;
6232 else if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
)
6234 enum machine_mode mode
= GET_MODE (x
);
6236 while ((mode
= GET_MODE_WIDER_MODE (mode
)) != VOIDmode
6237 && GET_MODE_BITSIZE (mode
) <= BITS_PER_WORD
)
6239 rtx reg
= simplify_subreg (mode
, x
, GET_MODE (x
), 0);
6241 if (reg
== NULL_RTX
|| !REG_P (reg
))
6243 val
= cselib_lookup (reg
, mode
, 0, VOIDmode
);
6244 if (val
&& cselib_preserved_value_p (val
))
6246 item
= val
->val_rtx
;
6257 if (!frame_pointer_needed
)
6259 struct adjust_mem_data amd
;
6260 amd
.mem_mode
= VOIDmode
;
6261 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
6262 amd
.side_effects
= NULL_RTX
;
6264 mem
= simplify_replace_fn_rtx (mem
, NULL_RTX
, adjust_mems
,
6266 gcc_assert (amd
.side_effects
== NULL_RTX
);
6268 val
= cselib_lookup (mem
, GET_MODE (mem
), 0, VOIDmode
);
6269 if (val
&& cselib_preserved_value_p (val
))
6270 item
= val
->val_rtx
;
6271 else if (GET_MODE_CLASS (GET_MODE (mem
)) != MODE_INT
)
6273 /* For non-integer stack argument see also if they weren't
6274 initialized by integers. */
6275 enum machine_mode imode
= int_mode_for_mode (GET_MODE (mem
));
6276 if (imode
!= GET_MODE (mem
) && imode
!= BLKmode
)
6278 val
= cselib_lookup (adjust_address_nv (mem
, imode
, 0),
6279 imode
, 0, VOIDmode
);
6280 if (val
&& cselib_preserved_value_p (val
))
6281 item
= lowpart_subreg (GET_MODE (x
), val
->val_rtx
,
6289 if (GET_MODE (item
) != GET_MODE (link
))
6290 item
= lowpart_subreg (GET_MODE (link
), item
, GET_MODE (item
));
6291 if (GET_MODE (x2
) != GET_MODE (link
))
6292 x2
= lowpart_subreg (GET_MODE (link
), x2
, GET_MODE (x2
));
6293 item
= gen_rtx_CONCAT (GET_MODE (link
), x2
, item
);
6295 = gen_rtx_EXPR_LIST (VOIDmode
, item
, call_arguments
);
6297 if (t
&& t
!= void_list_node
)
6299 tree argtype
= TREE_VALUE (t
);
6300 enum machine_mode mode
= TYPE_MODE (argtype
);
6302 if (pass_by_reference (&args_so_far_v
, mode
, argtype
, true))
6304 argtype
= build_pointer_type (argtype
);
6305 mode
= TYPE_MODE (argtype
);
6307 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6309 if (TREE_CODE (argtype
) == REFERENCE_TYPE
6310 && INTEGRAL_TYPE_P (TREE_TYPE (argtype
))
6313 && GET_MODE (reg
) == mode
6314 && GET_MODE_CLASS (mode
) == MODE_INT
6316 && REGNO (x
) == REGNO (reg
)
6317 && GET_MODE (x
) == mode
6320 enum machine_mode indmode
6321 = TYPE_MODE (TREE_TYPE (argtype
));
6322 rtx mem
= gen_rtx_MEM (indmode
, x
);
6323 cselib_val
*val
= cselib_lookup (mem
, indmode
, 0, VOIDmode
);
6324 if (val
&& cselib_preserved_value_p (val
))
6326 item
= gen_rtx_CONCAT (indmode
, mem
, val
->val_rtx
);
6327 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6332 struct elt_loc_list
*l
;
6335 /* Try harder, when passing address of a constant
6336 pool integer it can be easily read back. */
6337 item
= XEXP (item
, 1);
6338 if (GET_CODE (item
) == SUBREG
)
6339 item
= SUBREG_REG (item
);
6340 gcc_assert (GET_CODE (item
) == VALUE
);
6341 val
= CSELIB_VAL_PTR (item
);
6342 for (l
= val
->locs
; l
; l
= l
->next
)
6343 if (GET_CODE (l
->loc
) == SYMBOL_REF
6344 && TREE_CONSTANT_POOL_ADDRESS_P (l
->loc
)
6345 && SYMBOL_REF_DECL (l
->loc
)
6346 && DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
)))
6348 initial
= DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
));
6349 if (tree_fits_shwi_p (initial
))
6351 item
= GEN_INT (tree_to_shwi (initial
));
6352 item
= gen_rtx_CONCAT (indmode
, mem
, item
);
6354 = gen_rtx_EXPR_LIST (VOIDmode
, item
,
6361 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6367 /* Add debug arguments. */
6369 && TREE_CODE (fndecl
) == FUNCTION_DECL
6370 && DECL_HAS_DEBUG_ARGS_P (fndecl
))
6372 vec
<tree
, va_gc
> **debug_args
= decl_debug_args_lookup (fndecl
);
6377 for (ix
= 0; vec_safe_iterate (*debug_args
, ix
, ¶m
); ix
+= 2)
6380 tree dtemp
= (**debug_args
)[ix
+ 1];
6381 enum machine_mode mode
= DECL_MODE (dtemp
);
6382 item
= gen_rtx_DEBUG_PARAMETER_REF (mode
, param
);
6383 item
= gen_rtx_CONCAT (mode
, item
, DECL_RTL_KNOWN_SET (dtemp
));
6384 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6390 /* Reverse call_arguments chain. */
6392 for (cur
= call_arguments
; cur
; cur
= next
)
6394 next
= XEXP (cur
, 1);
6395 XEXP (cur
, 1) = prev
;
6398 call_arguments
= prev
;
6400 x
= get_call_rtx_from (insn
);
6403 x
= XEXP (XEXP (x
, 0), 0);
6404 if (GET_CODE (x
) == SYMBOL_REF
)
6405 /* Don't record anything. */;
6406 else if (CONSTANT_P (x
))
6408 x
= gen_rtx_CONCAT (GET_MODE (x
) == VOIDmode
? Pmode
: GET_MODE (x
),
6411 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6415 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6416 if (val
&& cselib_preserved_value_p (val
))
6418 x
= gen_rtx_CONCAT (GET_MODE (x
), pc_rtx
, val
->val_rtx
);
6420 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6426 enum machine_mode mode
6427 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref
)));
6428 rtx clobbered
= gen_rtx_MEM (mode
, this_arg
);
6430 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref
));
6432 clobbered
= plus_constant (mode
, clobbered
,
6433 token
* GET_MODE_SIZE (mode
));
6434 clobbered
= gen_rtx_MEM (mode
, clobbered
);
6435 x
= gen_rtx_CONCAT (mode
, gen_rtx_CLOBBER (VOIDmode
, pc_rtx
), clobbered
);
6437 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6441 /* Callback for cselib_record_sets_hook, that records as micro
6442 operations uses and stores in an insn after cselib_record_sets has
6443 analyzed the sets in an insn, but before it modifies the stored
6444 values in the internal tables, unless cselib_record_sets doesn't
6445 call it directly (perhaps because we're not doing cselib in the
6446 first place, in which case sets and n_sets will be 0). */
6449 add_with_sets (rtx insn
, struct cselib_set
*sets
, int n_sets
)
6451 basic_block bb
= BLOCK_FOR_INSN (insn
);
6453 struct count_use_info cui
;
6454 micro_operation
*mos
;
6456 cselib_hook_called
= true;
6461 cui
.n_sets
= n_sets
;
6463 n1
= VTI (bb
)->mos
.length ();
6464 cui
.store_p
= false;
6465 note_uses (&PATTERN (insn
), add_uses_1
, &cui
);
6466 n2
= VTI (bb
)->mos
.length () - 1;
6467 mos
= VTI (bb
)->mos
.address ();
6469 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6473 while (n1
< n2
&& mos
[n1
].type
== MO_USE
)
6475 while (n1
< n2
&& mos
[n2
].type
!= MO_USE
)
6487 n2
= VTI (bb
)->mos
.length () - 1;
6490 while (n1
< n2
&& mos
[n1
].type
!= MO_VAL_LOC
)
6492 while (n1
< n2
&& mos
[n2
].type
== MO_VAL_LOC
)
6510 mo
.u
.loc
= call_arguments
;
6511 call_arguments
= NULL_RTX
;
6513 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6514 log_op_type (PATTERN (insn
), bb
, insn
, mo
.type
, dump_file
);
6515 VTI (bb
)->mos
.safe_push (mo
);
6518 n1
= VTI (bb
)->mos
.length ();
6519 /* This will record NEXT_INSN (insn), such that we can
6520 insert notes before it without worrying about any
6521 notes that MO_USEs might emit after the insn. */
6523 note_stores (PATTERN (insn
), add_stores
, &cui
);
6524 n2
= VTI (bb
)->mos
.length () - 1;
6525 mos
= VTI (bb
)->mos
.address ();
6527 /* Order the MO_VAL_USEs first (note_stores does nothing
6528 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6529 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6532 while (n1
< n2
&& mos
[n1
].type
== MO_VAL_USE
)
6534 while (n1
< n2
&& mos
[n2
].type
!= MO_VAL_USE
)
6546 n2
= VTI (bb
)->mos
.length () - 1;
6549 while (n1
< n2
&& mos
[n1
].type
== MO_CLOBBER
)
6551 while (n1
< n2
&& mos
[n2
].type
!= MO_CLOBBER
)
6564 static enum var_init_status
6565 find_src_status (dataflow_set
*in
, rtx src
)
6567 tree decl
= NULL_TREE
;
6568 enum var_init_status status
= VAR_INIT_STATUS_UNINITIALIZED
;
6570 if (! flag_var_tracking_uninit
)
6571 status
= VAR_INIT_STATUS_INITIALIZED
;
6573 if (src
&& REG_P (src
))
6574 decl
= var_debug_decl (REG_EXPR (src
));
6575 else if (src
&& MEM_P (src
))
6576 decl
= var_debug_decl (MEM_EXPR (src
));
6579 status
= get_init_value (in
, src
, dv_from_decl (decl
));
6584 /* SRC is the source of an assignment. Use SET to try to find what
6585 was ultimately assigned to SRC. Return that value if known,
6586 otherwise return SRC itself. */
6589 find_src_set_src (dataflow_set
*set
, rtx src
)
6591 tree decl
= NULL_TREE
; /* The variable being copied around. */
6592 rtx set_src
= NULL_RTX
; /* The value for "decl" stored in "src". */
6594 location_chain nextp
;
6598 if (src
&& REG_P (src
))
6599 decl
= var_debug_decl (REG_EXPR (src
));
6600 else if (src
&& MEM_P (src
))
6601 decl
= var_debug_decl (MEM_EXPR (src
));
6605 decl_or_value dv
= dv_from_decl (decl
);
6607 var
= shared_hash_find (set
->vars
, dv
);
6611 for (i
= 0; i
< var
->n_var_parts
&& !found
; i
++)
6612 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
&& !found
;
6613 nextp
= nextp
->next
)
6614 if (rtx_equal_p (nextp
->loc
, src
))
6616 set_src
= nextp
->set_src
;
6626 /* Compute the changes of variable locations in the basic block BB. */
6629 compute_bb_dataflow (basic_block bb
)
6632 micro_operation
*mo
;
6634 dataflow_set old_out
;
6635 dataflow_set
*in
= &VTI (bb
)->in
;
6636 dataflow_set
*out
= &VTI (bb
)->out
;
6638 dataflow_set_init (&old_out
);
6639 dataflow_set_copy (&old_out
, out
);
6640 dataflow_set_copy (out
, in
);
6642 if (MAY_HAVE_DEBUG_INSNS
)
6643 local_get_addr_cache
= pointer_map_create ();
6645 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
6647 rtx insn
= mo
->insn
;
6652 dataflow_set_clear_at_call (out
);
6657 rtx loc
= mo
->u
.loc
;
6660 var_reg_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6661 else if (MEM_P (loc
))
6662 var_mem_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6668 rtx loc
= mo
->u
.loc
;
6672 if (GET_CODE (loc
) == CONCAT
)
6674 val
= XEXP (loc
, 0);
6675 vloc
= XEXP (loc
, 1);
6683 var
= PAT_VAR_LOCATION_DECL (vloc
);
6685 clobber_variable_part (out
, NULL_RTX
,
6686 dv_from_decl (var
), 0, NULL_RTX
);
6689 if (VAL_NEEDS_RESOLUTION (loc
))
6690 val_resolve (out
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
6691 set_variable_part (out
, val
, dv_from_decl (var
), 0,
6692 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6695 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
6696 set_variable_part (out
, PAT_VAR_LOCATION_LOC (vloc
),
6697 dv_from_decl (var
), 0,
6698 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6705 rtx loc
= mo
->u
.loc
;
6706 rtx val
, vloc
, uloc
;
6708 vloc
= uloc
= XEXP (loc
, 1);
6709 val
= XEXP (loc
, 0);
6711 if (GET_CODE (val
) == CONCAT
)
6713 uloc
= XEXP (val
, 1);
6714 val
= XEXP (val
, 0);
6717 if (VAL_NEEDS_RESOLUTION (loc
))
6718 val_resolve (out
, val
, vloc
, insn
);
6720 val_store (out
, val
, uloc
, insn
, false);
6722 if (VAL_HOLDS_TRACK_EXPR (loc
))
6724 if (GET_CODE (uloc
) == REG
)
6725 var_reg_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6727 else if (GET_CODE (uloc
) == MEM
)
6728 var_mem_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6736 rtx loc
= mo
->u
.loc
;
6737 rtx val
, vloc
, uloc
;
6741 uloc
= XEXP (vloc
, 1);
6742 val
= XEXP (vloc
, 0);
6745 if (GET_CODE (uloc
) == SET
)
6747 dstv
= SET_DEST (uloc
);
6748 srcv
= SET_SRC (uloc
);
6756 if (GET_CODE (val
) == CONCAT
)
6758 dstv
= vloc
= XEXP (val
, 1);
6759 val
= XEXP (val
, 0);
6762 if (GET_CODE (vloc
) == SET
)
6764 srcv
= SET_SRC (vloc
);
6766 gcc_assert (val
!= srcv
);
6767 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
6769 dstv
= vloc
= SET_DEST (vloc
);
6771 if (VAL_NEEDS_RESOLUTION (loc
))
6772 val_resolve (out
, val
, srcv
, insn
);
6774 else if (VAL_NEEDS_RESOLUTION (loc
))
6776 gcc_assert (GET_CODE (uloc
) == SET
6777 && GET_CODE (SET_SRC (uloc
)) == REG
);
6778 val_resolve (out
, val
, SET_SRC (uloc
), insn
);
6781 if (VAL_HOLDS_TRACK_EXPR (loc
))
6783 if (VAL_EXPR_IS_CLOBBERED (loc
))
6786 var_reg_delete (out
, uloc
, true);
6787 else if (MEM_P (uloc
))
6789 gcc_assert (MEM_P (dstv
));
6790 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
6791 var_mem_delete (out
, dstv
, true);
6796 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
6797 rtx src
= NULL
, dst
= uloc
;
6798 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
6800 if (GET_CODE (uloc
) == SET
)
6802 src
= SET_SRC (uloc
);
6803 dst
= SET_DEST (uloc
);
6808 if (flag_var_tracking_uninit
)
6810 status
= find_src_status (in
, src
);
6812 if (status
== VAR_INIT_STATUS_UNKNOWN
)
6813 status
= find_src_status (out
, src
);
6816 src
= find_src_set_src (in
, src
);
6820 var_reg_delete_and_set (out
, dst
, !copied_p
,
6822 else if (MEM_P (dst
))
6824 gcc_assert (MEM_P (dstv
));
6825 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
6826 var_mem_delete_and_set (out
, dstv
, !copied_p
,
6831 else if (REG_P (uloc
))
6832 var_regno_delete (out
, REGNO (uloc
));
6833 else if (MEM_P (uloc
))
6835 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
6836 gcc_checking_assert (dstv
== vloc
);
6838 clobber_overlapping_mems (out
, vloc
);
6841 val_store (out
, val
, dstv
, insn
, true);
6847 rtx loc
= mo
->u
.loc
;
6850 if (GET_CODE (loc
) == SET
)
6852 set_src
= SET_SRC (loc
);
6853 loc
= SET_DEST (loc
);
6857 var_reg_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6859 else if (MEM_P (loc
))
6860 var_mem_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6867 rtx loc
= mo
->u
.loc
;
6868 enum var_init_status src_status
;
6871 if (GET_CODE (loc
) == SET
)
6873 set_src
= SET_SRC (loc
);
6874 loc
= SET_DEST (loc
);
6877 if (! flag_var_tracking_uninit
)
6878 src_status
= VAR_INIT_STATUS_INITIALIZED
;
6881 src_status
= find_src_status (in
, set_src
);
6883 if (src_status
== VAR_INIT_STATUS_UNKNOWN
)
6884 src_status
= find_src_status (out
, set_src
);
6887 set_src
= find_src_set_src (in
, set_src
);
6890 var_reg_delete_and_set (out
, loc
, false, src_status
, set_src
);
6891 else if (MEM_P (loc
))
6892 var_mem_delete_and_set (out
, loc
, false, src_status
, set_src
);
6898 rtx loc
= mo
->u
.loc
;
6901 var_reg_delete (out
, loc
, false);
6902 else if (MEM_P (loc
))
6903 var_mem_delete (out
, loc
, false);
6909 rtx loc
= mo
->u
.loc
;
6912 var_reg_delete (out
, loc
, true);
6913 else if (MEM_P (loc
))
6914 var_mem_delete (out
, loc
, true);
6919 out
->stack_adjust
+= mo
->u
.adjust
;
6924 if (MAY_HAVE_DEBUG_INSNS
)
6926 pointer_map_destroy (local_get_addr_cache
);
6927 local_get_addr_cache
= NULL
;
6929 dataflow_set_equiv_regs (out
);
6930 shared_hash_htab (out
->vars
)
6931 .traverse
<dataflow_set
*, canonicalize_values_mark
> (out
);
6932 shared_hash_htab (out
->vars
)
6933 .traverse
<dataflow_set
*, canonicalize_values_star
> (out
);
6935 shared_hash_htab (out
->vars
)
6936 .traverse
<dataflow_set
*, canonicalize_loc_order_check
> (out
);
6939 changed
= dataflow_set_different (&old_out
, out
);
6940 dataflow_set_destroy (&old_out
);
6944 /* Find the locations of variables in the whole function. */
6947 vt_find_locations (void)
6949 fibheap_t worklist
, pending
, fibheap_swap
;
6950 sbitmap visited
, in_worklist
, in_pending
, sbitmap_swap
;
6957 int htabmax
= PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE
);
6958 bool success
= true;
6960 timevar_push (TV_VAR_TRACKING_DATAFLOW
);
6961 /* Compute reverse completion order of depth first search of the CFG
6962 so that the data-flow runs faster. */
6963 rc_order
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
6964 bb_order
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
6965 pre_and_rev_post_order_compute (NULL
, rc_order
, false);
6966 for (i
= 0; i
< n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
; i
++)
6967 bb_order
[rc_order
[i
]] = i
;
6970 worklist
= fibheap_new ();
6971 pending
= fibheap_new ();
6972 visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
6973 in_worklist
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
6974 in_pending
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
6975 bitmap_clear (in_worklist
);
6977 FOR_EACH_BB_FN (bb
, cfun
)
6978 fibheap_insert (pending
, bb_order
[bb
->index
], bb
);
6979 bitmap_ones (in_pending
);
6981 while (success
&& !fibheap_empty (pending
))
6983 fibheap_swap
= pending
;
6985 worklist
= fibheap_swap
;
6986 sbitmap_swap
= in_pending
;
6987 in_pending
= in_worklist
;
6988 in_worklist
= sbitmap_swap
;
6990 bitmap_clear (visited
);
6992 while (!fibheap_empty (worklist
))
6994 bb
= (basic_block
) fibheap_extract_min (worklist
);
6995 bitmap_clear_bit (in_worklist
, bb
->index
);
6996 gcc_assert (!bitmap_bit_p (visited
, bb
->index
));
6997 if (!bitmap_bit_p (visited
, bb
->index
))
7001 int oldinsz
, oldoutsz
;
7003 bitmap_set_bit (visited
, bb
->index
);
7005 if (VTI (bb
)->in
.vars
)
7008 -= shared_hash_htab (VTI (bb
)->in
.vars
).size ()
7009 + shared_hash_htab (VTI (bb
)->out
.vars
).size ();
7010 oldinsz
= shared_hash_htab (VTI (bb
)->in
.vars
).elements ();
7011 oldoutsz
= shared_hash_htab (VTI (bb
)->out
.vars
).elements ();
7014 oldinsz
= oldoutsz
= 0;
7016 if (MAY_HAVE_DEBUG_INSNS
)
7018 dataflow_set
*in
= &VTI (bb
)->in
, *first_out
= NULL
;
7019 bool first
= true, adjust
= false;
7021 /* Calculate the IN set as the intersection of
7022 predecessor OUT sets. */
7024 dataflow_set_clear (in
);
7025 dst_can_be_shared
= true;
7027 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7028 if (!VTI (e
->src
)->flooded
)
7029 gcc_assert (bb_order
[bb
->index
]
7030 <= bb_order
[e
->src
->index
]);
7033 dataflow_set_copy (in
, &VTI (e
->src
)->out
);
7034 first_out
= &VTI (e
->src
)->out
;
7039 dataflow_set_merge (in
, &VTI (e
->src
)->out
);
7045 dataflow_post_merge_adjust (in
, &VTI (bb
)->permp
);
7047 /* Merge and merge_adjust should keep entries in
7049 shared_hash_htab (in
->vars
)
7050 .traverse
<dataflow_set
*,
7051 canonicalize_loc_order_check
> (in
);
7053 if (dst_can_be_shared
)
7055 shared_hash_destroy (in
->vars
);
7056 in
->vars
= shared_hash_copy (first_out
->vars
);
7060 VTI (bb
)->flooded
= true;
7064 /* Calculate the IN set as union of predecessor OUT sets. */
7065 dataflow_set_clear (&VTI (bb
)->in
);
7066 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7067 dataflow_set_union (&VTI (bb
)->in
, &VTI (e
->src
)->out
);
7070 changed
= compute_bb_dataflow (bb
);
7071 htabsz
+= shared_hash_htab (VTI (bb
)->in
.vars
).size ()
7072 + shared_hash_htab (VTI (bb
)->out
.vars
).size ();
7074 if (htabmax
&& htabsz
> htabmax
)
7076 if (MAY_HAVE_DEBUG_INSNS
)
7077 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7078 "variable tracking size limit exceeded with "
7079 "-fvar-tracking-assignments, retrying without");
7081 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7082 "variable tracking size limit exceeded");
7089 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7091 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
7094 if (bitmap_bit_p (visited
, e
->dest
->index
))
7096 if (!bitmap_bit_p (in_pending
, e
->dest
->index
))
7098 /* Send E->DEST to next round. */
7099 bitmap_set_bit (in_pending
, e
->dest
->index
);
7100 fibheap_insert (pending
,
7101 bb_order
[e
->dest
->index
],
7105 else if (!bitmap_bit_p (in_worklist
, e
->dest
->index
))
7107 /* Add E->DEST to current round. */
7108 bitmap_set_bit (in_worklist
, e
->dest
->index
);
7109 fibheap_insert (worklist
, bb_order
[e
->dest
->index
],
7117 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7119 (int)shared_hash_htab (VTI (bb
)->in
.vars
).size (),
7121 (int)shared_hash_htab (VTI (bb
)->out
.vars
).size (),
7123 (int)worklist
->nodes
, (int)pending
->nodes
, htabsz
);
7125 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7127 fprintf (dump_file
, "BB %i IN:\n", bb
->index
);
7128 dump_dataflow_set (&VTI (bb
)->in
);
7129 fprintf (dump_file
, "BB %i OUT:\n", bb
->index
);
7130 dump_dataflow_set (&VTI (bb
)->out
);
7136 if (success
&& MAY_HAVE_DEBUG_INSNS
)
7137 FOR_EACH_BB_FN (bb
, cfun
)
7138 gcc_assert (VTI (bb
)->flooded
);
7141 fibheap_delete (worklist
);
7142 fibheap_delete (pending
);
7143 sbitmap_free (visited
);
7144 sbitmap_free (in_worklist
);
7145 sbitmap_free (in_pending
);
7147 timevar_pop (TV_VAR_TRACKING_DATAFLOW
);
7151 /* Print the content of the LIST to dump file. */
7154 dump_attrs_list (attrs list
)
7156 for (; list
; list
= list
->next
)
7158 if (dv_is_decl_p (list
->dv
))
7159 print_mem_expr (dump_file
, dv_as_decl (list
->dv
));
7161 print_rtl_single (dump_file
, dv_as_value (list
->dv
));
7162 fprintf (dump_file
, "+" HOST_WIDE_INT_PRINT_DEC
, list
->offset
);
7164 fprintf (dump_file
, "\n");
7167 /* Print the information about variable *SLOT to dump file. */
7170 dump_var_tracking_slot (variable_def
**slot
, void *data ATTRIBUTE_UNUSED
)
7172 variable var
= *slot
;
7176 /* Continue traversing the hash table. */
7180 /* Print the information about variable VAR to dump file. */
7183 dump_var (variable var
)
7186 location_chain node
;
7188 if (dv_is_decl_p (var
->dv
))
7190 const_tree decl
= dv_as_decl (var
->dv
);
7192 if (DECL_NAME (decl
))
7194 fprintf (dump_file
, " name: %s",
7195 IDENTIFIER_POINTER (DECL_NAME (decl
)));
7196 if (dump_flags
& TDF_UID
)
7197 fprintf (dump_file
, "D.%u", DECL_UID (decl
));
7199 else if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
7200 fprintf (dump_file
, " name: D#%u", DEBUG_TEMP_UID (decl
));
7202 fprintf (dump_file
, " name: D.%u", DECL_UID (decl
));
7203 fprintf (dump_file
, "\n");
7207 fputc (' ', dump_file
);
7208 print_rtl_single (dump_file
, dv_as_value (var
->dv
));
7211 for (i
= 0; i
< var
->n_var_parts
; i
++)
7213 fprintf (dump_file
, " offset %ld\n",
7214 (long)(var
->onepart
? 0 : VAR_PART_OFFSET (var
, i
)));
7215 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
7217 fprintf (dump_file
, " ");
7218 if (node
->init
== VAR_INIT_STATUS_UNINITIALIZED
)
7219 fprintf (dump_file
, "[uninit]");
7220 print_rtl_single (dump_file
, node
->loc
);
7225 /* Print the information about variables from hash table VARS to dump file. */
7228 dump_vars (variable_table_type vars
)
7230 if (vars
.elements () > 0)
7232 fprintf (dump_file
, "Variables:\n");
7233 vars
.traverse
<void *, dump_var_tracking_slot
> (NULL
);
7237 /* Print the dataflow set SET to dump file. */
7240 dump_dataflow_set (dataflow_set
*set
)
7244 fprintf (dump_file
, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC
"\n",
7246 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7250 fprintf (dump_file
, "Reg %d:", i
);
7251 dump_attrs_list (set
->regs
[i
]);
7254 dump_vars (shared_hash_htab (set
->vars
));
7255 fprintf (dump_file
, "\n");
7258 /* Print the IN and OUT sets for each basic block to dump file. */
7261 dump_dataflow_sets (void)
7265 FOR_EACH_BB_FN (bb
, cfun
)
7267 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
7268 fprintf (dump_file
, "IN:\n");
7269 dump_dataflow_set (&VTI (bb
)->in
);
7270 fprintf (dump_file
, "OUT:\n");
7271 dump_dataflow_set (&VTI (bb
)->out
);
7275 /* Return the variable for DV in dropped_values, inserting one if
7276 requested with INSERT. */
7278 static inline variable
7279 variable_from_dropped (decl_or_value dv
, enum insert_option insert
)
7281 variable_def
**slot
;
7283 onepart_enum_t onepart
;
7285 slot
= dropped_values
.find_slot_with_hash (dv
, dv_htab_hash (dv
), insert
);
7293 gcc_checking_assert (insert
== INSERT
);
7295 onepart
= dv_onepart_p (dv
);
7297 gcc_checking_assert (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
);
7299 empty_var
= (variable
) pool_alloc (onepart_pool (onepart
));
7301 empty_var
->refcount
= 1;
7302 empty_var
->n_var_parts
= 0;
7303 empty_var
->onepart
= onepart
;
7304 empty_var
->in_changed_variables
= false;
7305 empty_var
->var_part
[0].loc_chain
= NULL
;
7306 empty_var
->var_part
[0].cur_loc
= NULL
;
7307 VAR_LOC_1PAUX (empty_var
) = NULL
;
7308 set_dv_changed (dv
, true);
7315 /* Recover the one-part aux from dropped_values. */
7317 static struct onepart_aux
*
7318 recover_dropped_1paux (variable var
)
7322 gcc_checking_assert (var
->onepart
);
7324 if (VAR_LOC_1PAUX (var
))
7325 return VAR_LOC_1PAUX (var
);
7327 if (var
->onepart
== ONEPART_VDECL
)
7330 dvar
= variable_from_dropped (var
->dv
, NO_INSERT
);
7335 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (dvar
);
7336 VAR_LOC_1PAUX (dvar
) = NULL
;
7338 return VAR_LOC_1PAUX (var
);
7341 /* Add variable VAR to the hash table of changed variables and
7342 if it has no locations delete it from SET's hash table. */
7345 variable_was_changed (variable var
, dataflow_set
*set
)
7347 hashval_t hash
= dv_htab_hash (var
->dv
);
7351 variable_def
**slot
;
7353 /* Remember this decl or VALUE has been added to changed_variables. */
7354 set_dv_changed (var
->dv
, true);
7356 slot
= changed_variables
.find_slot_with_hash (var
->dv
, hash
, INSERT
);
7360 variable old_var
= *slot
;
7361 gcc_assert (old_var
->in_changed_variables
);
7362 old_var
->in_changed_variables
= false;
7363 if (var
!= old_var
&& var
->onepart
)
7365 /* Restore the auxiliary info from an empty variable
7366 previously created for changed_variables, so it is
7368 gcc_checking_assert (!VAR_LOC_1PAUX (var
));
7369 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (old_var
);
7370 VAR_LOC_1PAUX (old_var
) = NULL
;
7372 variable_htab_free (*slot
);
7375 if (set
&& var
->n_var_parts
== 0)
7377 onepart_enum_t onepart
= var
->onepart
;
7378 variable empty_var
= NULL
;
7379 variable_def
**dslot
= NULL
;
7381 if (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
)
7383 dslot
= dropped_values
.find_slot_with_hash (var
->dv
,
7384 dv_htab_hash (var
->dv
),
7390 gcc_checking_assert (!empty_var
->in_changed_variables
);
7391 if (!VAR_LOC_1PAUX (var
))
7393 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (empty_var
);
7394 VAR_LOC_1PAUX (empty_var
) = NULL
;
7397 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
7403 empty_var
= (variable
) pool_alloc (onepart_pool (onepart
));
7404 empty_var
->dv
= var
->dv
;
7405 empty_var
->refcount
= 1;
7406 empty_var
->n_var_parts
= 0;
7407 empty_var
->onepart
= onepart
;
7410 empty_var
->refcount
++;
7415 empty_var
->refcount
++;
7416 empty_var
->in_changed_variables
= true;
7420 empty_var
->var_part
[0].loc_chain
= NULL
;
7421 empty_var
->var_part
[0].cur_loc
= NULL
;
7422 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (var
);
7423 VAR_LOC_1PAUX (var
) = NULL
;
7429 if (var
->onepart
&& !VAR_LOC_1PAUX (var
))
7430 recover_dropped_1paux (var
);
7432 var
->in_changed_variables
= true;
7439 if (var
->n_var_parts
== 0)
7441 variable_def
**slot
;
7444 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
7447 if (shared_hash_shared (set
->vars
))
7448 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
,
7450 shared_hash_htab (set
->vars
).clear_slot (slot
);
7456 /* Look for the index in VAR->var_part corresponding to OFFSET.
7457 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7458 referenced int will be set to the index that the part has or should
7459 have, if it should be inserted. */
7462 find_variable_location_part (variable var
, HOST_WIDE_INT offset
,
7463 int *insertion_point
)
7472 if (insertion_point
)
7473 *insertion_point
= 0;
7475 return var
->n_var_parts
- 1;
7478 /* Find the location part. */
7480 high
= var
->n_var_parts
;
7483 pos
= (low
+ high
) / 2;
7484 if (VAR_PART_OFFSET (var
, pos
) < offset
)
7491 if (insertion_point
)
7492 *insertion_point
= pos
;
7494 if (pos
< var
->n_var_parts
&& VAR_PART_OFFSET (var
, pos
) == offset
)
7500 static variable_def
**
7501 set_slot_part (dataflow_set
*set
, rtx loc
, variable_def
**slot
,
7502 decl_or_value dv
, HOST_WIDE_INT offset
,
7503 enum var_init_status initialized
, rtx set_src
)
7506 location_chain node
, next
;
7507 location_chain
*nextp
;
7509 onepart_enum_t onepart
;
7514 onepart
= var
->onepart
;
7516 onepart
= dv_onepart_p (dv
);
7518 gcc_checking_assert (offset
== 0 || !onepart
);
7519 gcc_checking_assert (loc
!= dv_as_opaque (dv
));
7521 if (! flag_var_tracking_uninit
)
7522 initialized
= VAR_INIT_STATUS_INITIALIZED
;
7526 /* Create new variable information. */
7527 var
= (variable
) pool_alloc (onepart_pool (onepart
));
7530 var
->n_var_parts
= 1;
7531 var
->onepart
= onepart
;
7532 var
->in_changed_variables
= false;
7534 VAR_LOC_1PAUX (var
) = NULL
;
7536 VAR_PART_OFFSET (var
, 0) = offset
;
7537 var
->var_part
[0].loc_chain
= NULL
;
7538 var
->var_part
[0].cur_loc
= NULL
;
7541 nextp
= &var
->var_part
[0].loc_chain
;
7547 gcc_assert (dv_as_opaque (var
->dv
) == dv_as_opaque (dv
));
7551 if (GET_CODE (loc
) == VALUE
)
7553 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7554 nextp
= &node
->next
)
7555 if (GET_CODE (node
->loc
) == VALUE
)
7557 if (node
->loc
== loc
)
7562 if (canon_value_cmp (node
->loc
, loc
))
7570 else if (REG_P (node
->loc
) || MEM_P (node
->loc
))
7578 else if (REG_P (loc
))
7580 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7581 nextp
= &node
->next
)
7582 if (REG_P (node
->loc
))
7584 if (REGNO (node
->loc
) < REGNO (loc
))
7588 if (REGNO (node
->loc
) == REGNO (loc
))
7601 else if (MEM_P (loc
))
7603 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7604 nextp
= &node
->next
)
7605 if (REG_P (node
->loc
))
7607 else if (MEM_P (node
->loc
))
7609 if ((r
= loc_cmp (XEXP (node
->loc
, 0), XEXP (loc
, 0))) >= 0)
7621 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7622 nextp
= &node
->next
)
7623 if ((r
= loc_cmp (node
->loc
, loc
)) >= 0)
7631 if (shared_var_p (var
, set
->vars
))
7633 slot
= unshare_variable (set
, slot
, var
, initialized
);
7635 for (nextp
= &var
->var_part
[0].loc_chain
; c
;
7636 nextp
= &(*nextp
)->next
)
7638 gcc_assert ((!node
&& !*nextp
) || node
->loc
== (*nextp
)->loc
);
7645 gcc_assert (dv_as_decl (var
->dv
) == dv_as_decl (dv
));
7647 pos
= find_variable_location_part (var
, offset
, &inspos
);
7651 node
= var
->var_part
[pos
].loc_chain
;
7654 && ((REG_P (node
->loc
) && REG_P (loc
)
7655 && REGNO (node
->loc
) == REGNO (loc
))
7656 || rtx_equal_p (node
->loc
, loc
)))
7658 /* LOC is in the beginning of the chain so we have nothing
7660 if (node
->init
< initialized
)
7661 node
->init
= initialized
;
7662 if (set_src
!= NULL
)
7663 node
->set_src
= set_src
;
7669 /* We have to make a copy of a shared variable. */
7670 if (shared_var_p (var
, set
->vars
))
7672 slot
= unshare_variable (set
, slot
, var
, initialized
);
7679 /* We have not found the location part, new one will be created. */
7681 /* We have to make a copy of the shared variable. */
7682 if (shared_var_p (var
, set
->vars
))
7684 slot
= unshare_variable (set
, slot
, var
, initialized
);
7688 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7689 thus there are at most MAX_VAR_PARTS different offsets. */
7690 gcc_assert (var
->n_var_parts
< MAX_VAR_PARTS
7691 && (!var
->n_var_parts
|| !onepart
));
7693 /* We have to move the elements of array starting at index
7694 inspos to the next position. */
7695 for (pos
= var
->n_var_parts
; pos
> inspos
; pos
--)
7696 var
->var_part
[pos
] = var
->var_part
[pos
- 1];
7699 gcc_checking_assert (!onepart
);
7700 VAR_PART_OFFSET (var
, pos
) = offset
;
7701 var
->var_part
[pos
].loc_chain
= NULL
;
7702 var
->var_part
[pos
].cur_loc
= NULL
;
7705 /* Delete the location from the list. */
7706 nextp
= &var
->var_part
[pos
].loc_chain
;
7707 for (node
= var
->var_part
[pos
].loc_chain
; node
; node
= next
)
7710 if ((REG_P (node
->loc
) && REG_P (loc
)
7711 && REGNO (node
->loc
) == REGNO (loc
))
7712 || rtx_equal_p (node
->loc
, loc
))
7714 /* Save these values, to assign to the new node, before
7715 deleting this one. */
7716 if (node
->init
> initialized
)
7717 initialized
= node
->init
;
7718 if (node
->set_src
!= NULL
&& set_src
== NULL
)
7719 set_src
= node
->set_src
;
7720 if (var
->var_part
[pos
].cur_loc
== node
->loc
)
7721 var
->var_part
[pos
].cur_loc
= NULL
;
7722 pool_free (loc_chain_pool
, node
);
7727 nextp
= &node
->next
;
7730 nextp
= &var
->var_part
[pos
].loc_chain
;
7733 /* Add the location to the beginning. */
7734 node
= (location_chain
) pool_alloc (loc_chain_pool
);
7736 node
->init
= initialized
;
7737 node
->set_src
= set_src
;
7738 node
->next
= *nextp
;
7741 /* If no location was emitted do so. */
7742 if (var
->var_part
[pos
].cur_loc
== NULL
)
7743 variable_was_changed (var
, set
);
7748 /* Set the part of variable's location in the dataflow set SET. The
7749 variable part is specified by variable's declaration in DV and
7750 offset OFFSET and the part's location by LOC. IOPT should be
7751 NO_INSERT if the variable is known to be in SET already and the
7752 variable hash table must not be resized, and INSERT otherwise. */
7755 set_variable_part (dataflow_set
*set
, rtx loc
,
7756 decl_or_value dv
, HOST_WIDE_INT offset
,
7757 enum var_init_status initialized
, rtx set_src
,
7758 enum insert_option iopt
)
7760 variable_def
**slot
;
7762 if (iopt
== NO_INSERT
)
7763 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7766 slot
= shared_hash_find_slot (set
->vars
, dv
);
7768 slot
= shared_hash_find_slot_unshare (&set
->vars
, dv
, iopt
);
7770 set_slot_part (set
, loc
, slot
, dv
, offset
, initialized
, set_src
);
7773 /* Remove all recorded register locations for the given variable part
7774 from dataflow set SET, except for those that are identical to loc.
7775 The variable part is specified by variable's declaration or value
7776 DV and offset OFFSET. */
7778 static variable_def
**
7779 clobber_slot_part (dataflow_set
*set
, rtx loc
, variable_def
**slot
,
7780 HOST_WIDE_INT offset
, rtx set_src
)
7782 variable var
= *slot
;
7783 int pos
= find_variable_location_part (var
, offset
, NULL
);
7787 location_chain node
, next
;
7789 /* Remove the register locations from the dataflow set. */
7790 next
= var
->var_part
[pos
].loc_chain
;
7791 for (node
= next
; node
; node
= next
)
7794 if (node
->loc
!= loc
7795 && (!flag_var_tracking_uninit
7798 || !rtx_equal_p (set_src
, node
->set_src
)))
7800 if (REG_P (node
->loc
))
7805 /* Remove the variable part from the register's
7806 list, but preserve any other variable parts
7807 that might be regarded as live in that same
7809 anextp
= &set
->regs
[REGNO (node
->loc
)];
7810 for (anode
= *anextp
; anode
; anode
= anext
)
7812 anext
= anode
->next
;
7813 if (dv_as_opaque (anode
->dv
) == dv_as_opaque (var
->dv
)
7814 && anode
->offset
== offset
)
7816 pool_free (attrs_pool
, anode
);
7820 anextp
= &anode
->next
;
7824 slot
= delete_slot_part (set
, node
->loc
, slot
, offset
);
7832 /* Remove all recorded register locations for the given variable part
7833 from dataflow set SET, except for those that are identical to loc.
7834 The variable part is specified by variable's declaration or value
7835 DV and offset OFFSET. */
7838 clobber_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
7839 HOST_WIDE_INT offset
, rtx set_src
)
7841 variable_def
**slot
;
7843 if (!dv_as_opaque (dv
)
7844 || (!dv_is_value_p (dv
) && ! DECL_P (dv_as_decl (dv
))))
7847 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7851 clobber_slot_part (set
, loc
, slot
, offset
, set_src
);
7854 /* Delete the part of variable's location from dataflow set SET. The
7855 variable part is specified by its SET->vars slot SLOT and offset
7856 OFFSET and the part's location by LOC. */
7858 static variable_def
**
7859 delete_slot_part (dataflow_set
*set
, rtx loc
, variable_def
**slot
,
7860 HOST_WIDE_INT offset
)
7862 variable var
= *slot
;
7863 int pos
= find_variable_location_part (var
, offset
, NULL
);
7867 location_chain node
, next
;
7868 location_chain
*nextp
;
7872 if (shared_var_p (var
, set
->vars
))
7874 /* If the variable contains the location part we have to
7875 make a copy of the variable. */
7876 for (node
= var
->var_part
[pos
].loc_chain
; node
;
7879 if ((REG_P (node
->loc
) && REG_P (loc
)
7880 && REGNO (node
->loc
) == REGNO (loc
))
7881 || rtx_equal_p (node
->loc
, loc
))
7883 slot
= unshare_variable (set
, slot
, var
,
7884 VAR_INIT_STATUS_UNKNOWN
);
7891 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
7892 cur_loc
= VAR_LOC_FROM (var
);
7894 cur_loc
= var
->var_part
[pos
].cur_loc
;
7896 /* Delete the location part. */
7898 nextp
= &var
->var_part
[pos
].loc_chain
;
7899 for (node
= *nextp
; node
; node
= next
)
7902 if ((REG_P (node
->loc
) && REG_P (loc
)
7903 && REGNO (node
->loc
) == REGNO (loc
))
7904 || rtx_equal_p (node
->loc
, loc
))
7906 /* If we have deleted the location which was last emitted
7907 we have to emit new location so add the variable to set
7908 of changed variables. */
7909 if (cur_loc
== node
->loc
)
7912 var
->var_part
[pos
].cur_loc
= NULL
;
7913 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
7914 VAR_LOC_FROM (var
) = NULL
;
7916 pool_free (loc_chain_pool
, node
);
7921 nextp
= &node
->next
;
7924 if (var
->var_part
[pos
].loc_chain
== NULL
)
7928 while (pos
< var
->n_var_parts
)
7930 var
->var_part
[pos
] = var
->var_part
[pos
+ 1];
7935 variable_was_changed (var
, set
);
7941 /* Delete the part of variable's location from dataflow set SET. The
7942 variable part is specified by variable's declaration or value DV
7943 and offset OFFSET and the part's location by LOC. */
7946 delete_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
7947 HOST_WIDE_INT offset
)
7949 variable_def
**slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7953 delete_slot_part (set
, loc
, slot
, offset
);
7957 /* Structure for passing some other parameters to function
7958 vt_expand_loc_callback. */
7959 struct expand_loc_callback_data
7961 /* The variables and values active at this point. */
7962 variable_table_type vars
;
7964 /* Stack of values and debug_exprs under expansion, and their
7966 auto_vec
<rtx
, 4> expanding
;
7968 /* Stack of values and debug_exprs whose expansion hit recursion
7969 cycles. They will have VALUE_RECURSED_INTO marked when added to
7970 this list. This flag will be cleared if any of its dependencies
7971 resolves to a valid location. So, if the flag remains set at the
7972 end of the search, we know no valid location for this one can
7974 auto_vec
<rtx
, 4> pending
;
7976 /* The maximum depth among the sub-expressions under expansion.
7977 Zero indicates no expansion so far. */
7981 /* Allocate the one-part auxiliary data structure for VAR, with enough
7982 room for COUNT dependencies. */
7985 loc_exp_dep_alloc (variable var
, int count
)
7989 gcc_checking_assert (var
->onepart
);
7991 /* We can be called with COUNT == 0 to allocate the data structure
7992 without any dependencies, e.g. for the backlinks only. However,
7993 if we are specifying a COUNT, then the dependency list must have
7994 been emptied before. It would be possible to adjust pointers or
7995 force it empty here, but this is better done at an earlier point
7996 in the algorithm, so we instead leave an assertion to catch
7998 gcc_checking_assert (!count
7999 || VAR_LOC_DEP_VEC (var
) == NULL
8000 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8002 if (VAR_LOC_1PAUX (var
) && VAR_LOC_DEP_VEC (var
)->space (count
))
8005 allocsize
= offsetof (struct onepart_aux
, deps
)
8006 + vec
<loc_exp_dep
, va_heap
, vl_embed
>::embedded_size (count
);
8008 if (VAR_LOC_1PAUX (var
))
8010 VAR_LOC_1PAUX (var
) = XRESIZEVAR (struct onepart_aux
,
8011 VAR_LOC_1PAUX (var
), allocsize
);
8012 /* If the reallocation moves the onepaux structure, the
8013 back-pointer to BACKLINKS in the first list member will still
8014 point to its old location. Adjust it. */
8015 if (VAR_LOC_DEP_LST (var
))
8016 VAR_LOC_DEP_LST (var
)->pprev
= VAR_LOC_DEP_LSTP (var
);
8020 VAR_LOC_1PAUX (var
) = XNEWVAR (struct onepart_aux
, allocsize
);
8021 *VAR_LOC_DEP_LSTP (var
) = NULL
;
8022 VAR_LOC_FROM (var
) = NULL
;
8023 VAR_LOC_DEPTH (var
).complexity
= 0;
8024 VAR_LOC_DEPTH (var
).entryvals
= 0;
8026 VAR_LOC_DEP_VEC (var
)->embedded_init (count
);
8029 /* Remove all entries from the vector of active dependencies of VAR,
8030 removing them from the back-links lists too. */
8033 loc_exp_dep_clear (variable var
)
8035 while (VAR_LOC_DEP_VEC (var
) && !VAR_LOC_DEP_VEC (var
)->is_empty ())
8037 loc_exp_dep
*led
= &VAR_LOC_DEP_VEC (var
)->last ();
8039 led
->next
->pprev
= led
->pprev
;
8041 *led
->pprev
= led
->next
;
8042 VAR_LOC_DEP_VEC (var
)->pop ();
8046 /* Insert an active dependency from VAR on X to the vector of
8047 dependencies, and add the corresponding back-link to X's list of
8048 back-links in VARS. */
8051 loc_exp_insert_dep (variable var
, rtx x
, variable_table_type vars
)
8057 dv
= dv_from_rtx (x
);
8059 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8060 an additional look up? */
8061 xvar
= vars
.find_with_hash (dv
, dv_htab_hash (dv
));
8065 xvar
= variable_from_dropped (dv
, NO_INSERT
);
8066 gcc_checking_assert (xvar
);
8069 /* No point in adding the same backlink more than once. This may
8070 arise if say the same value appears in two complex expressions in
8071 the same loc_list, or even more than once in a single
8073 if (VAR_LOC_DEP_LST (xvar
) && VAR_LOC_DEP_LST (xvar
)->dv
== var
->dv
)
8076 if (var
->onepart
== NOT_ONEPART
)
8077 led
= (loc_exp_dep
*) pool_alloc (loc_exp_dep_pool
);
8081 memset (&empty
, 0, sizeof (empty
));
8082 VAR_LOC_DEP_VEC (var
)->quick_push (empty
);
8083 led
= &VAR_LOC_DEP_VEC (var
)->last ();
8088 loc_exp_dep_alloc (xvar
, 0);
8089 led
->pprev
= VAR_LOC_DEP_LSTP (xvar
);
8090 led
->next
= *led
->pprev
;
8092 led
->next
->pprev
= &led
->next
;
8096 /* Create active dependencies of VAR on COUNT values starting at
8097 VALUE, and corresponding back-links to the entries in VARS. Return
8098 true if we found any pending-recursion results. */
8101 loc_exp_dep_set (variable var
, rtx result
, rtx
*value
, int count
,
8102 variable_table_type vars
)
8104 bool pending_recursion
= false;
8106 gcc_checking_assert (VAR_LOC_DEP_VEC (var
) == NULL
8107 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8109 /* Set up all dependencies from last_child (as set up at the end of
8110 the loop above) to the end. */
8111 loc_exp_dep_alloc (var
, count
);
8117 if (!pending_recursion
)
8118 pending_recursion
= !result
&& VALUE_RECURSED_INTO (x
);
8120 loc_exp_insert_dep (var
, x
, vars
);
8123 return pending_recursion
;
8126 /* Notify the back-links of IVAR that are pending recursion that we
8127 have found a non-NIL value for it, so they are cleared for another
8128 attempt to compute a current location. */
8131 notify_dependents_of_resolved_value (variable ivar
, variable_table_type vars
)
8133 loc_exp_dep
*led
, *next
;
8135 for (led
= VAR_LOC_DEP_LST (ivar
); led
; led
= next
)
8137 decl_or_value dv
= led
->dv
;
8142 if (dv_is_value_p (dv
))
8144 rtx value
= dv_as_value (dv
);
8146 /* If we have already resolved it, leave it alone. */
8147 if (!VALUE_RECURSED_INTO (value
))
8150 /* Check that VALUE_RECURSED_INTO, true from the test above,
8151 implies NO_LOC_P. */
8152 gcc_checking_assert (NO_LOC_P (value
));
8154 /* We won't notify variables that are being expanded,
8155 because their dependency list is cleared before
8157 NO_LOC_P (value
) = false;
8158 VALUE_RECURSED_INTO (value
) = false;
8160 gcc_checking_assert (dv_changed_p (dv
));
8164 gcc_checking_assert (dv_onepart_p (dv
) != NOT_ONEPART
);
8165 if (!dv_changed_p (dv
))
8169 var
= vars
.find_with_hash (dv
, dv_htab_hash (dv
));
8172 var
= variable_from_dropped (dv
, NO_INSERT
);
8175 notify_dependents_of_resolved_value (var
, vars
);
8178 next
->pprev
= led
->pprev
;
8186 static rtx
vt_expand_loc_callback (rtx x
, bitmap regs
,
8187 int max_depth
, void *data
);
8189 /* Return the combined depth, when one sub-expression evaluated to
8190 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8192 static inline expand_depth
8193 update_depth (expand_depth saved_depth
, expand_depth best_depth
)
8195 /* If we didn't find anything, stick with what we had. */
8196 if (!best_depth
.complexity
)
8199 /* If we found hadn't found anything, use the depth of the current
8200 expression. Do NOT add one extra level, we want to compute the
8201 maximum depth among sub-expressions. We'll increment it later,
8203 if (!saved_depth
.complexity
)
8206 /* Combine the entryval count so that regardless of which one we
8207 return, the entryval count is accurate. */
8208 best_depth
.entryvals
= saved_depth
.entryvals
8209 = best_depth
.entryvals
+ saved_depth
.entryvals
;
8211 if (saved_depth
.complexity
< best_depth
.complexity
)
8217 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8218 DATA for cselib expand callback. If PENDRECP is given, indicate in
8219 it whether any sub-expression couldn't be fully evaluated because
8220 it is pending recursion resolution. */
8223 vt_expand_var_loc_chain (variable var
, bitmap regs
, void *data
, bool *pendrecp
)
8225 struct expand_loc_callback_data
*elcd
8226 = (struct expand_loc_callback_data
*) data
;
8227 location_chain loc
, next
;
8229 int first_child
, result_first_child
, last_child
;
8230 bool pending_recursion
;
8231 rtx loc_from
= NULL
;
8232 struct elt_loc_list
*cloc
= NULL
;
8233 expand_depth depth
= { 0, 0 }, saved_depth
= elcd
->depth
;
8234 int wanted_entryvals
, found_entryvals
= 0;
8236 /* Clear all backlinks pointing at this, so that we're not notified
8237 while we're active. */
8238 loc_exp_dep_clear (var
);
8241 if (var
->onepart
== ONEPART_VALUE
)
8243 cselib_val
*val
= CSELIB_VAL_PTR (dv_as_value (var
->dv
));
8245 gcc_checking_assert (cselib_preserved_value_p (val
));
8250 first_child
= result_first_child
= last_child
8251 = elcd
->expanding
.length ();
8253 wanted_entryvals
= found_entryvals
;
8255 /* Attempt to expand each available location in turn. */
8256 for (next
= loc
= var
->n_var_parts
? var
->var_part
[0].loc_chain
: NULL
;
8257 loc
|| cloc
; loc
= next
)
8259 result_first_child
= last_child
;
8263 loc_from
= cloc
->loc
;
8266 if (unsuitable_loc (loc_from
))
8271 loc_from
= loc
->loc
;
8275 gcc_checking_assert (!unsuitable_loc (loc_from
));
8277 elcd
->depth
.complexity
= elcd
->depth
.entryvals
= 0;
8278 result
= cselib_expand_value_rtx_cb (loc_from
, regs
, EXPR_DEPTH
,
8279 vt_expand_loc_callback
, data
);
8280 last_child
= elcd
->expanding
.length ();
8284 depth
= elcd
->depth
;
8286 gcc_checking_assert (depth
.complexity
8287 || result_first_child
== last_child
);
8289 if (last_child
- result_first_child
!= 1)
8291 if (!depth
.complexity
&& GET_CODE (result
) == ENTRY_VALUE
)
8296 if (depth
.complexity
<= EXPR_USE_DEPTH
)
8298 if (depth
.entryvals
<= wanted_entryvals
)
8300 else if (!found_entryvals
|| depth
.entryvals
< found_entryvals
)
8301 found_entryvals
= depth
.entryvals
;
8307 /* Set it up in case we leave the loop. */
8308 depth
.complexity
= depth
.entryvals
= 0;
8310 result_first_child
= first_child
;
8313 if (!loc_from
&& wanted_entryvals
< found_entryvals
)
8315 /* We found entries with ENTRY_VALUEs and skipped them. Since
8316 we could not find any expansions without ENTRY_VALUEs, but we
8317 found at least one with them, go back and get an entry with
8318 the minimum number ENTRY_VALUE count that we found. We could
8319 avoid looping, but since each sub-loc is already resolved,
8320 the re-expansion should be trivial. ??? Should we record all
8321 attempted locs as dependencies, so that we retry the
8322 expansion should any of them change, in the hope it can give
8323 us a new entry without an ENTRY_VALUE? */
8324 elcd
->expanding
.truncate (first_child
);
8328 /* Register all encountered dependencies as active. */
8329 pending_recursion
= loc_exp_dep_set
8330 (var
, result
, elcd
->expanding
.address () + result_first_child
,
8331 last_child
- result_first_child
, elcd
->vars
);
8333 elcd
->expanding
.truncate (first_child
);
8335 /* Record where the expansion came from. */
8336 gcc_checking_assert (!result
|| !pending_recursion
);
8337 VAR_LOC_FROM (var
) = loc_from
;
8338 VAR_LOC_DEPTH (var
) = depth
;
8340 gcc_checking_assert (!depth
.complexity
== !result
);
8342 elcd
->depth
= update_depth (saved_depth
, depth
);
8344 /* Indicate whether any of the dependencies are pending recursion
8347 *pendrecp
= pending_recursion
;
8349 if (!pendrecp
|| !pending_recursion
)
8350 var
->var_part
[0].cur_loc
= result
;
8355 /* Callback for cselib_expand_value, that looks for expressions
8356 holding the value in the var-tracking hash tables. Return X for
8357 standard processing, anything else is to be used as-is. */
8360 vt_expand_loc_callback (rtx x
, bitmap regs
,
8361 int max_depth ATTRIBUTE_UNUSED
,
8364 struct expand_loc_callback_data
*elcd
8365 = (struct expand_loc_callback_data
*) data
;
8369 bool pending_recursion
= false;
8370 bool from_empty
= false;
8372 switch (GET_CODE (x
))
8375 subreg
= cselib_expand_value_rtx_cb (SUBREG_REG (x
), regs
,
8377 vt_expand_loc_callback
, data
);
8382 result
= simplify_gen_subreg (GET_MODE (x
), subreg
,
8383 GET_MODE (SUBREG_REG (x
)),
8386 /* Invalid SUBREGs are ok in debug info. ??? We could try
8387 alternate expansions for the VALUE as well. */
8389 result
= gen_rtx_raw_SUBREG (GET_MODE (x
), subreg
, SUBREG_BYTE (x
));
8395 dv
= dv_from_rtx (x
);
8402 elcd
->expanding
.safe_push (x
);
8404 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8405 gcc_checking_assert (!VALUE_RECURSED_INTO (x
) || NO_LOC_P (x
));
8409 gcc_checking_assert (VALUE_RECURSED_INTO (x
) || !dv_changed_p (dv
));
8413 var
= elcd
->vars
.find_with_hash (dv
, dv_htab_hash (dv
));
8418 var
= variable_from_dropped (dv
, INSERT
);
8421 gcc_checking_assert (var
);
8423 if (!dv_changed_p (dv
))
8425 gcc_checking_assert (!NO_LOC_P (x
));
8426 gcc_checking_assert (var
->var_part
[0].cur_loc
);
8427 gcc_checking_assert (VAR_LOC_1PAUX (var
));
8428 gcc_checking_assert (VAR_LOC_1PAUX (var
)->depth
.complexity
);
8430 elcd
->depth
= update_depth (elcd
->depth
, VAR_LOC_1PAUX (var
)->depth
);
8432 return var
->var_part
[0].cur_loc
;
8435 VALUE_RECURSED_INTO (x
) = true;
8436 /* This is tentative, but it makes some tests simpler. */
8437 NO_LOC_P (x
) = true;
8439 gcc_checking_assert (var
->n_var_parts
== 1 || from_empty
);
8441 result
= vt_expand_var_loc_chain (var
, regs
, data
, &pending_recursion
);
8443 if (pending_recursion
)
8445 gcc_checking_assert (!result
);
8446 elcd
->pending
.safe_push (x
);
8450 NO_LOC_P (x
) = !result
;
8451 VALUE_RECURSED_INTO (x
) = false;
8452 set_dv_changed (dv
, false);
8455 notify_dependents_of_resolved_value (var
, elcd
->vars
);
8461 /* While expanding variables, we may encounter recursion cycles
8462 because of mutual (possibly indirect) dependencies between two
8463 particular variables (or values), say A and B. If we're trying to
8464 expand A when we get to B, which in turn attempts to expand A, if
8465 we can't find any other expansion for B, we'll add B to this
8466 pending-recursion stack, and tentatively return NULL for its
8467 location. This tentative value will be used for any other
8468 occurrences of B, unless A gets some other location, in which case
8469 it will notify B that it is worth another try at computing a
8470 location for it, and it will use the location computed for A then.
8471 At the end of the expansion, the tentative NULL locations become
8472 final for all members of PENDING that didn't get a notification.
8473 This function performs this finalization of NULL locations. */
8476 resolve_expansions_pending_recursion (vec
<rtx
, va_heap
> *pending
)
8478 while (!pending
->is_empty ())
8480 rtx x
= pending
->pop ();
8483 if (!VALUE_RECURSED_INTO (x
))
8486 gcc_checking_assert (NO_LOC_P (x
));
8487 VALUE_RECURSED_INTO (x
) = false;
8488 dv
= dv_from_rtx (x
);
8489 gcc_checking_assert (dv_changed_p (dv
));
8490 set_dv_changed (dv
, false);
8494 /* Initialize expand_loc_callback_data D with variable hash table V.
8495 It must be a macro because of alloca (vec stack). */
8496 #define INIT_ELCD(d, v) \
8500 (d).depth.complexity = (d).depth.entryvals = 0; \
8503 /* Finalize expand_loc_callback_data D, resolved to location L. */
8504 #define FINI_ELCD(d, l) \
8507 resolve_expansions_pending_recursion (&(d).pending); \
8508 (d).pending.release (); \
8509 (d).expanding.release (); \
8511 if ((l) && MEM_P (l)) \
8512 (l) = targetm.delegitimize_address (l); \
8516 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8517 equivalences in VARS, updating their CUR_LOCs in the process. */
8520 vt_expand_loc (rtx loc
, variable_table_type vars
)
8522 struct expand_loc_callback_data data
;
8525 if (!MAY_HAVE_DEBUG_INSNS
)
8528 INIT_ELCD (data
, vars
);
8530 result
= cselib_expand_value_rtx_cb (loc
, scratch_regs
, EXPR_DEPTH
,
8531 vt_expand_loc_callback
, &data
);
8533 FINI_ELCD (data
, result
);
8538 /* Expand the one-part VARiable to a location, using the equivalences
8539 in VARS, updating their CUR_LOCs in the process. */
8542 vt_expand_1pvar (variable var
, variable_table_type vars
)
8544 struct expand_loc_callback_data data
;
8547 gcc_checking_assert (var
->onepart
&& var
->n_var_parts
== 1);
8549 if (!dv_changed_p (var
->dv
))
8550 return var
->var_part
[0].cur_loc
;
8552 INIT_ELCD (data
, vars
);
8554 loc
= vt_expand_var_loc_chain (var
, scratch_regs
, &data
, NULL
);
8556 gcc_checking_assert (data
.expanding
.is_empty ());
8558 FINI_ELCD (data
, loc
);
8563 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8564 additional parameters: WHERE specifies whether the note shall be emitted
8565 before or after instruction INSN. */
8568 emit_note_insn_var_location (variable_def
**varp
, emit_note_data
*data
)
8570 variable var
= *varp
;
8571 rtx insn
= data
->insn
;
8572 enum emit_note_where where
= data
->where
;
8573 variable_table_type vars
= data
->vars
;
8575 int i
, j
, n_var_parts
;
8577 enum var_init_status initialized
= VAR_INIT_STATUS_UNINITIALIZED
;
8578 HOST_WIDE_INT last_limit
;
8579 tree type_size_unit
;
8580 HOST_WIDE_INT offsets
[MAX_VAR_PARTS
];
8581 rtx loc
[MAX_VAR_PARTS
];
8585 gcc_checking_assert (var
->onepart
== NOT_ONEPART
8586 || var
->onepart
== ONEPART_VDECL
);
8588 decl
= dv_as_decl (var
->dv
);
8594 for (i
= 0; i
< var
->n_var_parts
; i
++)
8595 if (var
->var_part
[i
].cur_loc
== NULL
&& var
->var_part
[i
].loc_chain
)
8596 var
->var_part
[i
].cur_loc
= var
->var_part
[i
].loc_chain
->loc
;
8597 for (i
= 0; i
< var
->n_var_parts
; i
++)
8599 enum machine_mode mode
, wider_mode
;
8601 HOST_WIDE_INT offset
;
8603 if (i
== 0 && var
->onepart
)
8605 gcc_checking_assert (var
->n_var_parts
== 1);
8607 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8608 loc2
= vt_expand_1pvar (var
, vars
);
8612 if (last_limit
< VAR_PART_OFFSET (var
, i
))
8617 else if (last_limit
> VAR_PART_OFFSET (var
, i
))
8619 offset
= VAR_PART_OFFSET (var
, i
);
8620 loc2
= var
->var_part
[i
].cur_loc
;
8621 if (loc2
&& GET_CODE (loc2
) == MEM
8622 && GET_CODE (XEXP (loc2
, 0)) == VALUE
)
8624 rtx depval
= XEXP (loc2
, 0);
8626 loc2
= vt_expand_loc (loc2
, vars
);
8629 loc_exp_insert_dep (var
, depval
, vars
);
8636 gcc_checking_assert (GET_CODE (loc2
) != VALUE
);
8637 for (lc
= var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
8638 if (var
->var_part
[i
].cur_loc
== lc
->loc
)
8640 initialized
= lc
->init
;
8646 offsets
[n_var_parts
] = offset
;
8652 loc
[n_var_parts
] = loc2
;
8653 mode
= GET_MODE (var
->var_part
[i
].cur_loc
);
8654 if (mode
== VOIDmode
&& var
->onepart
)
8655 mode
= DECL_MODE (decl
);
8656 last_limit
= offsets
[n_var_parts
] + GET_MODE_SIZE (mode
);
8658 /* Attempt to merge adjacent registers or memory. */
8659 wider_mode
= GET_MODE_WIDER_MODE (mode
);
8660 for (j
= i
+ 1; j
< var
->n_var_parts
; j
++)
8661 if (last_limit
<= VAR_PART_OFFSET (var
, j
))
8663 if (j
< var
->n_var_parts
8664 && wider_mode
!= VOIDmode
8665 && var
->var_part
[j
].cur_loc
8666 && mode
== GET_MODE (var
->var_part
[j
].cur_loc
)
8667 && (REG_P (loc
[n_var_parts
]) || MEM_P (loc
[n_var_parts
]))
8668 && last_limit
== (var
->onepart
? 0 : VAR_PART_OFFSET (var
, j
))
8669 && (loc2
= vt_expand_loc (var
->var_part
[j
].cur_loc
, vars
))
8670 && GET_CODE (loc
[n_var_parts
]) == GET_CODE (loc2
))
8674 if (REG_P (loc
[n_var_parts
])
8675 && hard_regno_nregs
[REGNO (loc
[n_var_parts
])][mode
] * 2
8676 == hard_regno_nregs
[REGNO (loc
[n_var_parts
])][wider_mode
]
8677 && end_hard_regno (mode
, REGNO (loc
[n_var_parts
]))
8680 if (! WORDS_BIG_ENDIAN
&& ! BYTES_BIG_ENDIAN
)
8681 new_loc
= simplify_subreg (wider_mode
, loc
[n_var_parts
],
8683 else if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
8684 new_loc
= simplify_subreg (wider_mode
, loc2
, mode
, 0);
8687 if (!REG_P (new_loc
)
8688 || REGNO (new_loc
) != REGNO (loc
[n_var_parts
]))
8691 REG_ATTRS (new_loc
) = REG_ATTRS (loc
[n_var_parts
]);
8694 else if (MEM_P (loc
[n_var_parts
])
8695 && GET_CODE (XEXP (loc2
, 0)) == PLUS
8696 && REG_P (XEXP (XEXP (loc2
, 0), 0))
8697 && CONST_INT_P (XEXP (XEXP (loc2
, 0), 1)))
8699 if ((REG_P (XEXP (loc
[n_var_parts
], 0))
8700 && rtx_equal_p (XEXP (loc
[n_var_parts
], 0),
8701 XEXP (XEXP (loc2
, 0), 0))
8702 && INTVAL (XEXP (XEXP (loc2
, 0), 1))
8703 == GET_MODE_SIZE (mode
))
8704 || (GET_CODE (XEXP (loc
[n_var_parts
], 0)) == PLUS
8705 && CONST_INT_P (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
8706 && rtx_equal_p (XEXP (XEXP (loc
[n_var_parts
], 0), 0),
8707 XEXP (XEXP (loc2
, 0), 0))
8708 && INTVAL (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
8709 + GET_MODE_SIZE (mode
)
8710 == INTVAL (XEXP (XEXP (loc2
, 0), 1))))
8711 new_loc
= adjust_address_nv (loc
[n_var_parts
],
8717 loc
[n_var_parts
] = new_loc
;
8719 last_limit
= offsets
[n_var_parts
] + GET_MODE_SIZE (mode
);
8725 type_size_unit
= TYPE_SIZE_UNIT (TREE_TYPE (decl
));
8726 if ((unsigned HOST_WIDE_INT
) last_limit
< TREE_INT_CST_LOW (type_size_unit
))
8729 if (! flag_var_tracking_uninit
)
8730 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8734 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, NULL_RTX
,
8736 else if (n_var_parts
== 1)
8740 if (offsets
[0] || GET_CODE (loc
[0]) == PARALLEL
)
8741 expr_list
= gen_rtx_EXPR_LIST (VOIDmode
, loc
[0], GEN_INT (offsets
[0]));
8745 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, expr_list
,
8748 else if (n_var_parts
)
8752 for (i
= 0; i
< n_var_parts
; i
++)
8754 = gen_rtx_EXPR_LIST (VOIDmode
, loc
[i
], GEN_INT (offsets
[i
]));
8756 parallel
= gen_rtx_PARALLEL (VOIDmode
,
8757 gen_rtvec_v (n_var_parts
, loc
));
8758 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
,
8759 parallel
, (int) initialized
);
8762 if (where
!= EMIT_NOTE_BEFORE_INSN
)
8764 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8765 if (where
== EMIT_NOTE_AFTER_CALL_INSN
)
8766 NOTE_DURING_CALL_P (note
) = true;
8770 /* Make sure that the call related notes come first. */
8771 while (NEXT_INSN (insn
)
8773 && ((NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8774 && NOTE_DURING_CALL_P (insn
))
8775 || NOTE_KIND (insn
) == NOTE_INSN_CALL_ARG_LOCATION
))
8776 insn
= NEXT_INSN (insn
);
8778 && ((NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8779 && NOTE_DURING_CALL_P (insn
))
8780 || NOTE_KIND (insn
) == NOTE_INSN_CALL_ARG_LOCATION
))
8781 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8783 note
= emit_note_before (NOTE_INSN_VAR_LOCATION
, insn
);
8785 NOTE_VAR_LOCATION (note
) = note_vl
;
8787 set_dv_changed (var
->dv
, false);
8788 gcc_assert (var
->in_changed_variables
);
8789 var
->in_changed_variables
= false;
8790 changed_variables
.clear_slot (varp
);
8792 /* Continue traversing the hash table. */
8796 /* While traversing changed_variables, push onto DATA (a stack of RTX
8797 values) entries that aren't user variables. */
8800 var_track_values_to_stack (variable_def
**slot
,
8801 vec
<rtx
, va_heap
> *changed_values_stack
)
8803 variable var
= *slot
;
8805 if (var
->onepart
== ONEPART_VALUE
)
8806 changed_values_stack
->safe_push (dv_as_value (var
->dv
));
8807 else if (var
->onepart
== ONEPART_DEXPR
)
8808 changed_values_stack
->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var
->dv
)));
8813 /* Remove from changed_variables the entry whose DV corresponds to
8814 value or debug_expr VAL. */
8816 remove_value_from_changed_variables (rtx val
)
8818 decl_or_value dv
= dv_from_rtx (val
);
8819 variable_def
**slot
;
8822 slot
= changed_variables
.find_slot_with_hash (dv
, dv_htab_hash (dv
),
8825 var
->in_changed_variables
= false;
8826 changed_variables
.clear_slot (slot
);
8829 /* If VAL (a value or debug_expr) has backlinks to variables actively
8830 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8831 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8832 have dependencies of their own to notify. */
8835 notify_dependents_of_changed_value (rtx val
, variable_table_type htab
,
8836 vec
<rtx
, va_heap
> *changed_values_stack
)
8838 variable_def
**slot
;
8841 decl_or_value dv
= dv_from_rtx (val
);
8843 slot
= changed_variables
.find_slot_with_hash (dv
, dv_htab_hash (dv
),
8846 slot
= htab
.find_slot_with_hash (dv
, dv_htab_hash (dv
), NO_INSERT
);
8848 slot
= dropped_values
.find_slot_with_hash (dv
, dv_htab_hash (dv
),
8852 while ((led
= VAR_LOC_DEP_LST (var
)))
8854 decl_or_value ldv
= led
->dv
;
8857 /* Deactivate and remove the backlink, as it was “used up”. It
8858 makes no sense to attempt to notify the same entity again:
8859 either it will be recomputed and re-register an active
8860 dependency, or it will still have the changed mark. */
8862 led
->next
->pprev
= led
->pprev
;
8864 *led
->pprev
= led
->next
;
8868 if (dv_changed_p (ldv
))
8871 switch (dv_onepart_p (ldv
))
8875 set_dv_changed (ldv
, true);
8876 changed_values_stack
->safe_push (dv_as_rtx (ldv
));
8880 ivar
= htab
.find_with_hash (ldv
, dv_htab_hash (ldv
));
8881 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar
));
8882 variable_was_changed (ivar
, NULL
);
8886 pool_free (loc_exp_dep_pool
, led
);
8887 ivar
= htab
.find_with_hash (ldv
, dv_htab_hash (ldv
));
8890 int i
= ivar
->n_var_parts
;
8893 rtx loc
= ivar
->var_part
[i
].cur_loc
;
8895 if (loc
&& GET_CODE (loc
) == MEM
8896 && XEXP (loc
, 0) == val
)
8898 variable_was_changed (ivar
, NULL
);
8911 /* Take out of changed_variables any entries that don't refer to use
8912 variables. Back-propagate change notifications from values and
8913 debug_exprs to their active dependencies in HTAB or in
8914 CHANGED_VARIABLES. */
8917 process_changed_values (variable_table_type htab
)
8921 auto_vec
<rtx
, 20> changed_values_stack
;
8923 /* Move values from changed_variables to changed_values_stack. */
8925 .traverse
<vec
<rtx
, va_heap
>*, var_track_values_to_stack
>
8926 (&changed_values_stack
);
8928 /* Back-propagate change notifications in values while popping
8929 them from the stack. */
8930 for (n
= i
= changed_values_stack
.length ();
8931 i
> 0; i
= changed_values_stack
.length ())
8933 val
= changed_values_stack
.pop ();
8934 notify_dependents_of_changed_value (val
, htab
, &changed_values_stack
);
8936 /* This condition will hold when visiting each of the entries
8937 originally in changed_variables. We can't remove them
8938 earlier because this could drop the backlinks before we got a
8939 chance to use them. */
8942 remove_value_from_changed_variables (val
);
8948 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8949 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8950 the notes shall be emitted before of after instruction INSN. */
8953 emit_notes_for_changes (rtx insn
, enum emit_note_where where
,
8956 emit_note_data data
;
8957 variable_table_type htab
= shared_hash_htab (vars
);
8959 if (!changed_variables
.elements ())
8962 if (MAY_HAVE_DEBUG_INSNS
)
8963 process_changed_values (htab
);
8970 .traverse
<emit_note_data
*, emit_note_insn_var_location
> (&data
);
8973 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8974 same variable in hash table DATA or is not there at all. */
8977 emit_notes_for_differences_1 (variable_def
**slot
, variable_table_type new_vars
)
8979 variable old_var
, new_var
;
8982 new_var
= new_vars
.find_with_hash (old_var
->dv
, dv_htab_hash (old_var
->dv
));
8986 /* Variable has disappeared. */
8987 variable empty_var
= NULL
;
8989 if (old_var
->onepart
== ONEPART_VALUE
8990 || old_var
->onepart
== ONEPART_DEXPR
)
8992 empty_var
= variable_from_dropped (old_var
->dv
, NO_INSERT
);
8995 gcc_checking_assert (!empty_var
->in_changed_variables
);
8996 if (!VAR_LOC_1PAUX (old_var
))
8998 VAR_LOC_1PAUX (old_var
) = VAR_LOC_1PAUX (empty_var
);
8999 VAR_LOC_1PAUX (empty_var
) = NULL
;
9002 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
9008 empty_var
= (variable
) pool_alloc (onepart_pool (old_var
->onepart
));
9009 empty_var
->dv
= old_var
->dv
;
9010 empty_var
->refcount
= 0;
9011 empty_var
->n_var_parts
= 0;
9012 empty_var
->onepart
= old_var
->onepart
;
9013 empty_var
->in_changed_variables
= false;
9016 if (empty_var
->onepart
)
9018 /* Propagate the auxiliary data to (ultimately)
9019 changed_variables. */
9020 empty_var
->var_part
[0].loc_chain
= NULL
;
9021 empty_var
->var_part
[0].cur_loc
= NULL
;
9022 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (old_var
);
9023 VAR_LOC_1PAUX (old_var
) = NULL
;
9025 variable_was_changed (empty_var
, NULL
);
9026 /* Continue traversing the hash table. */
9029 /* Update cur_loc and one-part auxiliary data, before new_var goes
9030 through variable_was_changed. */
9031 if (old_var
!= new_var
&& new_var
->onepart
)
9033 gcc_checking_assert (VAR_LOC_1PAUX (new_var
) == NULL
);
9034 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (old_var
);
9035 VAR_LOC_1PAUX (old_var
) = NULL
;
9036 new_var
->var_part
[0].cur_loc
= old_var
->var_part
[0].cur_loc
;
9038 if (variable_different_p (old_var
, new_var
))
9039 variable_was_changed (new_var
, NULL
);
9041 /* Continue traversing the hash table. */
9045 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9049 emit_notes_for_differences_2 (variable_def
**slot
, variable_table_type old_vars
)
9051 variable old_var
, new_var
;
9054 old_var
= old_vars
.find_with_hash (new_var
->dv
, dv_htab_hash (new_var
->dv
));
9058 for (i
= 0; i
< new_var
->n_var_parts
; i
++)
9059 new_var
->var_part
[i
].cur_loc
= NULL
;
9060 variable_was_changed (new_var
, NULL
);
9063 /* Continue traversing the hash table. */
9067 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9071 emit_notes_for_differences (rtx insn
, dataflow_set
*old_set
,
9072 dataflow_set
*new_set
)
9074 shared_hash_htab (old_set
->vars
)
9075 .traverse
<variable_table_type
, emit_notes_for_differences_1
>
9076 (shared_hash_htab (new_set
->vars
));
9077 shared_hash_htab (new_set
->vars
)
9078 .traverse
<variable_table_type
, emit_notes_for_differences_2
>
9079 (shared_hash_htab (old_set
->vars
));
9080 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, new_set
->vars
);
9083 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9086 next_non_note_insn_var_location (rtx insn
)
9090 insn
= NEXT_INSN (insn
);
9093 || NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
)
9100 /* Emit the notes for changes of location parts in the basic block BB. */
9103 emit_notes_in_bb (basic_block bb
, dataflow_set
*set
)
9106 micro_operation
*mo
;
9108 dataflow_set_clear (set
);
9109 dataflow_set_copy (set
, &VTI (bb
)->in
);
9111 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
9113 rtx insn
= mo
->insn
;
9114 rtx next_insn
= next_non_note_insn_var_location (insn
);
9119 dataflow_set_clear_at_call (set
);
9120 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_CALL_INSN
, set
->vars
);
9122 rtx arguments
= mo
->u
.loc
, *p
= &arguments
, note
;
9125 XEXP (XEXP (*p
, 0), 1)
9126 = vt_expand_loc (XEXP (XEXP (*p
, 0), 1),
9127 shared_hash_htab (set
->vars
));
9128 /* If expansion is successful, keep it in the list. */
9129 if (XEXP (XEXP (*p
, 0), 1))
9131 /* Otherwise, if the following item is data_value for it,
9133 else if (XEXP (*p
, 1)
9134 && REG_P (XEXP (XEXP (*p
, 0), 0))
9135 && MEM_P (XEXP (XEXP (XEXP (*p
, 1), 0), 0))
9136 && REG_P (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0), 0),
9138 && REGNO (XEXP (XEXP (*p
, 0), 0))
9139 == REGNO (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0),
9141 *p
= XEXP (XEXP (*p
, 1), 1);
9142 /* Just drop this item. */
9146 note
= emit_note_after (NOTE_INSN_CALL_ARG_LOCATION
, insn
);
9147 NOTE_VAR_LOCATION (note
) = arguments
;
9153 rtx loc
= mo
->u
.loc
;
9156 var_reg_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9158 var_mem_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9160 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9166 rtx loc
= mo
->u
.loc
;
9170 if (GET_CODE (loc
) == CONCAT
)
9172 val
= XEXP (loc
, 0);
9173 vloc
= XEXP (loc
, 1);
9181 var
= PAT_VAR_LOCATION_DECL (vloc
);
9183 clobber_variable_part (set
, NULL_RTX
,
9184 dv_from_decl (var
), 0, NULL_RTX
);
9187 if (VAL_NEEDS_RESOLUTION (loc
))
9188 val_resolve (set
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
9189 set_variable_part (set
, val
, dv_from_decl (var
), 0,
9190 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9193 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
9194 set_variable_part (set
, PAT_VAR_LOCATION_LOC (vloc
),
9195 dv_from_decl (var
), 0,
9196 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9199 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9205 rtx loc
= mo
->u
.loc
;
9206 rtx val
, vloc
, uloc
;
9208 vloc
= uloc
= XEXP (loc
, 1);
9209 val
= XEXP (loc
, 0);
9211 if (GET_CODE (val
) == CONCAT
)
9213 uloc
= XEXP (val
, 1);
9214 val
= XEXP (val
, 0);
9217 if (VAL_NEEDS_RESOLUTION (loc
))
9218 val_resolve (set
, val
, vloc
, insn
);
9220 val_store (set
, val
, uloc
, insn
, false);
9222 if (VAL_HOLDS_TRACK_EXPR (loc
))
9224 if (GET_CODE (uloc
) == REG
)
9225 var_reg_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9227 else if (GET_CODE (uloc
) == MEM
)
9228 var_mem_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9232 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9238 rtx loc
= mo
->u
.loc
;
9239 rtx val
, vloc
, uloc
;
9243 uloc
= XEXP (vloc
, 1);
9244 val
= XEXP (vloc
, 0);
9247 if (GET_CODE (uloc
) == SET
)
9249 dstv
= SET_DEST (uloc
);
9250 srcv
= SET_SRC (uloc
);
9258 if (GET_CODE (val
) == CONCAT
)
9260 dstv
= vloc
= XEXP (val
, 1);
9261 val
= XEXP (val
, 0);
9264 if (GET_CODE (vloc
) == SET
)
9266 srcv
= SET_SRC (vloc
);
9268 gcc_assert (val
!= srcv
);
9269 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
9271 dstv
= vloc
= SET_DEST (vloc
);
9273 if (VAL_NEEDS_RESOLUTION (loc
))
9274 val_resolve (set
, val
, srcv
, insn
);
9276 else if (VAL_NEEDS_RESOLUTION (loc
))
9278 gcc_assert (GET_CODE (uloc
) == SET
9279 && GET_CODE (SET_SRC (uloc
)) == REG
);
9280 val_resolve (set
, val
, SET_SRC (uloc
), insn
);
9283 if (VAL_HOLDS_TRACK_EXPR (loc
))
9285 if (VAL_EXPR_IS_CLOBBERED (loc
))
9288 var_reg_delete (set
, uloc
, true);
9289 else if (MEM_P (uloc
))
9291 gcc_assert (MEM_P (dstv
));
9292 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
9293 var_mem_delete (set
, dstv
, true);
9298 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
9299 rtx src
= NULL
, dst
= uloc
;
9300 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
9302 if (GET_CODE (uloc
) == SET
)
9304 src
= SET_SRC (uloc
);
9305 dst
= SET_DEST (uloc
);
9310 status
= find_src_status (set
, src
);
9312 src
= find_src_set_src (set
, src
);
9316 var_reg_delete_and_set (set
, dst
, !copied_p
,
9318 else if (MEM_P (dst
))
9320 gcc_assert (MEM_P (dstv
));
9321 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
9322 var_mem_delete_and_set (set
, dstv
, !copied_p
,
9327 else if (REG_P (uloc
))
9328 var_regno_delete (set
, REGNO (uloc
));
9329 else if (MEM_P (uloc
))
9331 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
9332 gcc_checking_assert (vloc
== dstv
);
9334 clobber_overlapping_mems (set
, vloc
);
9337 val_store (set
, val
, dstv
, insn
, true);
9339 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9346 rtx loc
= mo
->u
.loc
;
9349 if (GET_CODE (loc
) == SET
)
9351 set_src
= SET_SRC (loc
);
9352 loc
= SET_DEST (loc
);
9356 var_reg_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9359 var_mem_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9362 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9369 rtx loc
= mo
->u
.loc
;
9370 enum var_init_status src_status
;
9373 if (GET_CODE (loc
) == SET
)
9375 set_src
= SET_SRC (loc
);
9376 loc
= SET_DEST (loc
);
9379 src_status
= find_src_status (set
, set_src
);
9380 set_src
= find_src_set_src (set
, set_src
);
9383 var_reg_delete_and_set (set
, loc
, false, src_status
, set_src
);
9385 var_mem_delete_and_set (set
, loc
, false, src_status
, set_src
);
9387 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9394 rtx loc
= mo
->u
.loc
;
9397 var_reg_delete (set
, loc
, false);
9399 var_mem_delete (set
, loc
, false);
9401 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9407 rtx loc
= mo
->u
.loc
;
9410 var_reg_delete (set
, loc
, true);
9412 var_mem_delete (set
, loc
, true);
9414 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9420 set
->stack_adjust
+= mo
->u
.adjust
;
9426 /* Emit notes for the whole function. */
9429 vt_emit_notes (void)
9434 gcc_assert (!changed_variables
.elements ());
9436 /* Free memory occupied by the out hash tables, as they aren't used
9438 FOR_EACH_BB_FN (bb
, cfun
)
9439 dataflow_set_clear (&VTI (bb
)->out
);
9441 /* Enable emitting notes by functions (mainly by set_variable_part and
9442 delete_variable_part). */
9445 if (MAY_HAVE_DEBUG_INSNS
)
9447 dropped_values
.create (cselib_get_next_uid () * 2);
9448 loc_exp_dep_pool
= create_alloc_pool ("loc_exp_dep pool",
9449 sizeof (loc_exp_dep
), 64);
9452 dataflow_set_init (&cur
);
9454 FOR_EACH_BB_FN (bb
, cfun
)
9456 /* Emit the notes for changes of variable locations between two
9457 subsequent basic blocks. */
9458 emit_notes_for_differences (BB_HEAD (bb
), &cur
, &VTI (bb
)->in
);
9460 if (MAY_HAVE_DEBUG_INSNS
)
9461 local_get_addr_cache
= pointer_map_create ();
9463 /* Emit the notes for the changes in the basic block itself. */
9464 emit_notes_in_bb (bb
, &cur
);
9466 if (MAY_HAVE_DEBUG_INSNS
)
9467 pointer_map_destroy (local_get_addr_cache
);
9468 local_get_addr_cache
= NULL
;
9470 /* Free memory occupied by the in hash table, we won't need it
9472 dataflow_set_clear (&VTI (bb
)->in
);
9474 #ifdef ENABLE_CHECKING
9475 shared_hash_htab (cur
.vars
)
9476 .traverse
<variable_table_type
, emit_notes_for_differences_1
>
9477 (shared_hash_htab (empty_shared_hash
));
9479 dataflow_set_destroy (&cur
);
9481 if (MAY_HAVE_DEBUG_INSNS
)
9482 dropped_values
.dispose ();
9487 /* If there is a declaration and offset associated with register/memory RTL
9488 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9491 vt_get_decl_and_offset (rtx rtl
, tree
*declp
, HOST_WIDE_INT
*offsetp
)
9495 if (REG_ATTRS (rtl
))
9497 *declp
= REG_EXPR (rtl
);
9498 *offsetp
= REG_OFFSET (rtl
);
9502 else if (GET_CODE (rtl
) == PARALLEL
)
9504 tree decl
= NULL_TREE
;
9505 HOST_WIDE_INT offset
= MAX_VAR_PARTS
;
9506 int len
= XVECLEN (rtl
, 0), i
;
9508 for (i
= 0; i
< len
; i
++)
9510 rtx reg
= XEXP (XVECEXP (rtl
, 0, i
), 0);
9511 if (!REG_P (reg
) || !REG_ATTRS (reg
))
9514 decl
= REG_EXPR (reg
);
9515 if (REG_EXPR (reg
) != decl
)
9517 if (REG_OFFSET (reg
) < offset
)
9518 offset
= REG_OFFSET (reg
);
9528 else if (MEM_P (rtl
))
9530 if (MEM_ATTRS (rtl
))
9532 *declp
= MEM_EXPR (rtl
);
9533 *offsetp
= INT_MEM_OFFSET (rtl
);
9540 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9544 record_entry_value (cselib_val
*val
, rtx rtl
)
9546 rtx ev
= gen_rtx_ENTRY_VALUE (GET_MODE (rtl
));
9548 ENTRY_VALUE_EXP (ev
) = rtl
;
9550 cselib_add_permanent_equiv (val
, ev
, get_insns ());
9553 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9556 vt_add_function_parameter (tree parm
)
9558 rtx decl_rtl
= DECL_RTL_IF_SET (parm
);
9559 rtx incoming
= DECL_INCOMING_RTL (parm
);
9561 enum machine_mode mode
;
9562 HOST_WIDE_INT offset
;
9566 if (TREE_CODE (parm
) != PARM_DECL
)
9569 if (!decl_rtl
|| !incoming
)
9572 if (GET_MODE (decl_rtl
) == BLKmode
|| GET_MODE (incoming
) == BLKmode
)
9575 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9576 rewrite the incoming location of parameters passed on the stack
9577 into MEMs based on the argument pointer, so that incoming doesn't
9578 depend on a pseudo. */
9579 if (MEM_P (incoming
)
9580 && (XEXP (incoming
, 0) == crtl
->args
.internal_arg_pointer
9581 || (GET_CODE (XEXP (incoming
, 0)) == PLUS
9582 && XEXP (XEXP (incoming
, 0), 0)
9583 == crtl
->args
.internal_arg_pointer
9584 && CONST_INT_P (XEXP (XEXP (incoming
, 0), 1)))))
9586 HOST_WIDE_INT off
= -FIRST_PARM_OFFSET (current_function_decl
);
9587 if (GET_CODE (XEXP (incoming
, 0)) == PLUS
)
9588 off
+= INTVAL (XEXP (XEXP (incoming
, 0), 1));
9590 = replace_equiv_address_nv (incoming
,
9591 plus_constant (Pmode
,
9592 arg_pointer_rtx
, off
));
9595 #ifdef HAVE_window_save
9596 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9597 If the target machine has an explicit window save instruction, the
9598 actual entry value is the corresponding OUTGOING_REGNO instead. */
9599 if (HAVE_window_save
&& !crtl
->uses_only_leaf_regs
)
9601 if (REG_P (incoming
)
9602 && HARD_REGISTER_P (incoming
)
9603 && OUTGOING_REGNO (REGNO (incoming
)) != REGNO (incoming
))
9606 p
.incoming
= incoming
;
9608 = gen_rtx_REG_offset (incoming
, GET_MODE (incoming
),
9609 OUTGOING_REGNO (REGNO (incoming
)), 0);
9610 p
.outgoing
= incoming
;
9611 vec_safe_push (windowed_parm_regs
, p
);
9613 else if (GET_CODE (incoming
) == PARALLEL
)
9616 = gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (XVECLEN (incoming
, 0)));
9619 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9621 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9624 reg
= gen_rtx_REG_offset (reg
, GET_MODE (reg
),
9625 OUTGOING_REGNO (REGNO (reg
)), 0);
9627 XVECEXP (outgoing
, 0, i
)
9628 = gen_rtx_EXPR_LIST (VOIDmode
, reg
,
9629 XEXP (XVECEXP (incoming
, 0, i
), 1));
9630 vec_safe_push (windowed_parm_regs
, p
);
9633 incoming
= outgoing
;
9635 else if (MEM_P (incoming
)
9636 && REG_P (XEXP (incoming
, 0))
9637 && HARD_REGISTER_P (XEXP (incoming
, 0)))
9639 rtx reg
= XEXP (incoming
, 0);
9640 if (OUTGOING_REGNO (REGNO (reg
)) != REGNO (reg
))
9644 reg
= gen_raw_REG (GET_MODE (reg
), OUTGOING_REGNO (REGNO (reg
)));
9646 vec_safe_push (windowed_parm_regs
, p
);
9647 incoming
= replace_equiv_address_nv (incoming
, reg
);
9653 if (!vt_get_decl_and_offset (incoming
, &decl
, &offset
))
9655 if (MEM_P (incoming
))
9657 /* This means argument is passed by invisible reference. */
9663 if (!vt_get_decl_and_offset (decl_rtl
, &decl
, &offset
))
9665 offset
+= byte_lowpart_offset (GET_MODE (incoming
),
9666 GET_MODE (decl_rtl
));
9675 /* If that DECL_RTL wasn't a pseudo that got spilled to
9676 memory, bail out. Otherwise, the spill slot sharing code
9677 will force the memory to reference spill_slot_decl (%sfp),
9678 so we don't match above. That's ok, the pseudo must have
9679 referenced the entire parameter, so just reset OFFSET. */
9680 if (decl
!= get_spill_slot_decl (false))
9685 if (!track_loc_p (incoming
, parm
, offset
, false, &mode
, &offset
))
9688 out
= &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
;
9690 dv
= dv_from_decl (parm
);
9692 if (target_for_debug_bind (parm
)
9693 /* We can't deal with these right now, because this kind of
9694 variable is single-part. ??? We could handle parallels
9695 that describe multiple locations for the same single
9696 value, but ATM we don't. */
9697 && GET_CODE (incoming
) != PARALLEL
)
9702 /* ??? We shouldn't ever hit this, but it may happen because
9703 arguments passed by invisible reference aren't dealt with
9704 above: incoming-rtl will have Pmode rather than the
9705 expected mode for the type. */
9709 lowpart
= var_lowpart (mode
, incoming
);
9713 val
= cselib_lookup_from_insn (lowpart
, mode
, true,
9714 VOIDmode
, get_insns ());
9716 /* ??? Float-typed values in memory are not handled by
9720 preserve_value (val
);
9721 set_variable_part (out
, val
->val_rtx
, dv
, offset
,
9722 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9723 dv
= dv_from_value (val
->val_rtx
);
9726 if (MEM_P (incoming
))
9728 val
= cselib_lookup_from_insn (XEXP (incoming
, 0), mode
, true,
9729 VOIDmode
, get_insns ());
9732 preserve_value (val
);
9733 incoming
= replace_equiv_address_nv (incoming
, val
->val_rtx
);
9738 if (REG_P (incoming
))
9740 incoming
= var_lowpart (mode
, incoming
);
9741 gcc_assert (REGNO (incoming
) < FIRST_PSEUDO_REGISTER
);
9742 attrs_list_insert (&out
->regs
[REGNO (incoming
)], dv
, offset
,
9744 set_variable_part (out
, incoming
, dv
, offset
,
9745 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9746 if (dv_is_value_p (dv
))
9748 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv
)), incoming
);
9749 if (TREE_CODE (TREE_TYPE (parm
)) == REFERENCE_TYPE
9750 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm
))))
9752 enum machine_mode indmode
9753 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm
)));
9754 rtx mem
= gen_rtx_MEM (indmode
, incoming
);
9755 cselib_val
*val
= cselib_lookup_from_insn (mem
, indmode
, true,
9760 preserve_value (val
);
9761 record_entry_value (val
, mem
);
9762 set_variable_part (out
, mem
, dv_from_value (val
->val_rtx
), 0,
9763 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9768 else if (GET_CODE (incoming
) == PARALLEL
&& !dv_onepart_p (dv
))
9772 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9774 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9775 offset
= REG_OFFSET (reg
);
9776 gcc_assert (REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
9777 attrs_list_insert (&out
->regs
[REGNO (reg
)], dv
, offset
, reg
);
9778 set_variable_part (out
, reg
, dv
, offset
,
9779 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9782 else if (MEM_P (incoming
))
9784 incoming
= var_lowpart (mode
, incoming
);
9785 set_variable_part (out
, incoming
, dv
, offset
,
9786 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9790 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9793 vt_add_function_parameters (void)
9797 for (parm
= DECL_ARGUMENTS (current_function_decl
);
9798 parm
; parm
= DECL_CHAIN (parm
))
9799 vt_add_function_parameter (parm
);
9801 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl
)))
9803 tree vexpr
= DECL_VALUE_EXPR (DECL_RESULT (current_function_decl
));
9805 if (TREE_CODE (vexpr
) == INDIRECT_REF
)
9806 vexpr
= TREE_OPERAND (vexpr
, 0);
9808 if (TREE_CODE (vexpr
) == PARM_DECL
9809 && DECL_ARTIFICIAL (vexpr
)
9810 && !DECL_IGNORED_P (vexpr
)
9811 && DECL_NAMELESS (vexpr
))
9812 vt_add_function_parameter (vexpr
);
9816 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9817 ensure it isn't flushed during cselib_reset_table.
9818 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9819 has been eliminated. */
9822 vt_init_cfa_base (void)
9826 #ifdef FRAME_POINTER_CFA_OFFSET
9827 cfa_base_rtx
= frame_pointer_rtx
;
9828 cfa_base_offset
= -FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9830 cfa_base_rtx
= arg_pointer_rtx
;
9831 cfa_base_offset
= -ARG_POINTER_CFA_OFFSET (current_function_decl
);
9833 if (cfa_base_rtx
== hard_frame_pointer_rtx
9834 || !fixed_regs
[REGNO (cfa_base_rtx
)])
9836 cfa_base_rtx
= NULL_RTX
;
9839 if (!MAY_HAVE_DEBUG_INSNS
)
9842 /* Tell alias analysis that cfa_base_rtx should share
9843 find_base_term value with stack pointer or hard frame pointer. */
9844 if (!frame_pointer_needed
)
9845 vt_equate_reg_base_value (cfa_base_rtx
, stack_pointer_rtx
);
9846 else if (!crtl
->stack_realign_tried
)
9847 vt_equate_reg_base_value (cfa_base_rtx
, hard_frame_pointer_rtx
);
9849 val
= cselib_lookup_from_insn (cfa_base_rtx
, GET_MODE (cfa_base_rtx
), 1,
9850 VOIDmode
, get_insns ());
9851 preserve_value (val
);
9852 cselib_preserve_cfa_base_value (val
, REGNO (cfa_base_rtx
));
9855 /* Allocate and initialize the data structures for variable tracking
9856 and parse the RTL to get the micro operations. */
9859 vt_initialize (void)
9862 HOST_WIDE_INT fp_cfa_offset
= -1;
9864 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def
));
9866 attrs_pool
= create_alloc_pool ("attrs_def pool",
9867 sizeof (struct attrs_def
), 1024);
9868 var_pool
= create_alloc_pool ("variable_def pool",
9869 sizeof (struct variable_def
)
9870 + (MAX_VAR_PARTS
- 1)
9871 * sizeof (((variable
)NULL
)->var_part
[0]), 64);
9872 loc_chain_pool
= create_alloc_pool ("location_chain_def pool",
9873 sizeof (struct location_chain_def
),
9875 shared_hash_pool
= create_alloc_pool ("shared_hash_def pool",
9876 sizeof (struct shared_hash_def
), 256);
9877 empty_shared_hash
= (shared_hash
) pool_alloc (shared_hash_pool
);
9878 empty_shared_hash
->refcount
= 1;
9879 empty_shared_hash
->htab
.create (1);
9880 changed_variables
.create (10);
9882 /* Init the IN and OUT sets. */
9883 FOR_ALL_BB_FN (bb
, cfun
)
9885 VTI (bb
)->visited
= false;
9886 VTI (bb
)->flooded
= false;
9887 dataflow_set_init (&VTI (bb
)->in
);
9888 dataflow_set_init (&VTI (bb
)->out
);
9889 VTI (bb
)->permp
= NULL
;
9892 if (MAY_HAVE_DEBUG_INSNS
)
9894 cselib_init (CSELIB_RECORD_MEMORY
| CSELIB_PRESERVE_CONSTANTS
);
9895 scratch_regs
= BITMAP_ALLOC (NULL
);
9896 valvar_pool
= create_alloc_pool ("small variable_def pool",
9897 sizeof (struct variable_def
), 256);
9898 preserved_values
.create (256);
9899 global_get_addr_cache
= pointer_map_create ();
9903 scratch_regs
= NULL
;
9905 global_get_addr_cache
= NULL
;
9908 if (MAY_HAVE_DEBUG_INSNS
)
9914 #ifdef FRAME_POINTER_CFA_OFFSET
9915 reg
= frame_pointer_rtx
;
9916 ofst
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9918 reg
= arg_pointer_rtx
;
9919 ofst
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
9922 ofst
-= INCOMING_FRAME_SP_OFFSET
;
9924 val
= cselib_lookup_from_insn (reg
, GET_MODE (reg
), 1,
9925 VOIDmode
, get_insns ());
9926 preserve_value (val
);
9927 if (reg
!= hard_frame_pointer_rtx
&& fixed_regs
[REGNO (reg
)])
9928 cselib_preserve_cfa_base_value (val
, REGNO (reg
));
9929 expr
= plus_constant (GET_MODE (stack_pointer_rtx
),
9930 stack_pointer_rtx
, -ofst
);
9931 cselib_add_permanent_equiv (val
, expr
, get_insns ());
9935 val
= cselib_lookup_from_insn (stack_pointer_rtx
,
9936 GET_MODE (stack_pointer_rtx
), 1,
9937 VOIDmode
, get_insns ());
9938 preserve_value (val
);
9939 expr
= plus_constant (GET_MODE (reg
), reg
, ofst
);
9940 cselib_add_permanent_equiv (val
, expr
, get_insns ());
9944 /* In order to factor out the adjustments made to the stack pointer or to
9945 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9946 instead of individual location lists, we're going to rewrite MEMs based
9947 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9948 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9949 resp. arg_pointer_rtx. We can do this either when there is no frame
9950 pointer in the function and stack adjustments are consistent for all
9951 basic blocks or when there is a frame pointer and no stack realignment.
9952 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9953 has been eliminated. */
9954 if (!frame_pointer_needed
)
9958 if (!vt_stack_adjustments ())
9961 #ifdef FRAME_POINTER_CFA_OFFSET
9962 reg
= frame_pointer_rtx
;
9964 reg
= arg_pointer_rtx
;
9966 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
9969 if (GET_CODE (elim
) == PLUS
)
9970 elim
= XEXP (elim
, 0);
9971 if (elim
== stack_pointer_rtx
)
9972 vt_init_cfa_base ();
9975 else if (!crtl
->stack_realign_tried
)
9979 #ifdef FRAME_POINTER_CFA_OFFSET
9980 reg
= frame_pointer_rtx
;
9981 fp_cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9983 reg
= arg_pointer_rtx
;
9984 fp_cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
9986 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
9989 if (GET_CODE (elim
) == PLUS
)
9991 fp_cfa_offset
-= INTVAL (XEXP (elim
, 1));
9992 elim
= XEXP (elim
, 0);
9994 if (elim
!= hard_frame_pointer_rtx
)
10001 /* If the stack is realigned and a DRAP register is used, we're going to
10002 rewrite MEMs based on it representing incoming locations of parameters
10003 passed on the stack into MEMs based on the argument pointer. Although
10004 we aren't going to rewrite other MEMs, we still need to initialize the
10005 virtual CFA pointer in order to ensure that the argument pointer will
10006 be seen as a constant throughout the function.
10008 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10009 else if (stack_realign_drap
)
10013 #ifdef FRAME_POINTER_CFA_OFFSET
10014 reg
= frame_pointer_rtx
;
10016 reg
= arg_pointer_rtx
;
10018 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10021 if (GET_CODE (elim
) == PLUS
)
10022 elim
= XEXP (elim
, 0);
10023 if (elim
== hard_frame_pointer_rtx
)
10024 vt_init_cfa_base ();
10028 hard_frame_pointer_adjustment
= -1;
10030 vt_add_function_parameters ();
10032 FOR_EACH_BB_FN (bb
, cfun
)
10035 HOST_WIDE_INT pre
, post
= 0;
10036 basic_block first_bb
, last_bb
;
10038 if (MAY_HAVE_DEBUG_INSNS
)
10040 cselib_record_sets_hook
= add_with_sets
;
10041 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10042 fprintf (dump_file
, "first value: %i\n",
10043 cselib_get_next_uid ());
10050 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
10051 || ! single_pred_p (bb
->next_bb
))
10053 e
= find_edge (bb
, bb
->next_bb
);
10054 if (! e
|| (e
->flags
& EDGE_FALLTHRU
) == 0)
10060 /* Add the micro-operations to the vector. */
10061 FOR_BB_BETWEEN (bb
, first_bb
, last_bb
->next_bb
, next_bb
)
10063 HOST_WIDE_INT offset
= VTI (bb
)->out
.stack_adjust
;
10064 VTI (bb
)->out
.stack_adjust
= VTI (bb
)->in
.stack_adjust
;
10065 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
));
10066 insn
= NEXT_INSN (insn
))
10070 if (!frame_pointer_needed
)
10072 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
10075 micro_operation mo
;
10076 mo
.type
= MO_ADJUST
;
10079 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10080 log_op_type (PATTERN (insn
), bb
, insn
,
10081 MO_ADJUST
, dump_file
);
10082 VTI (bb
)->mos
.safe_push (mo
);
10083 VTI (bb
)->out
.stack_adjust
+= pre
;
10087 cselib_hook_called
= false;
10088 adjust_insn (bb
, insn
);
10089 if (MAY_HAVE_DEBUG_INSNS
)
10092 prepare_call_arguments (bb
, insn
);
10093 cselib_process_insn (insn
);
10094 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10096 print_rtl_single (dump_file
, insn
);
10097 dump_cselib_table (dump_file
);
10100 if (!cselib_hook_called
)
10101 add_with_sets (insn
, 0, 0);
10102 cancel_changes (0);
10104 if (!frame_pointer_needed
&& post
)
10106 micro_operation mo
;
10107 mo
.type
= MO_ADJUST
;
10108 mo
.u
.adjust
= post
;
10110 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10111 log_op_type (PATTERN (insn
), bb
, insn
,
10112 MO_ADJUST
, dump_file
);
10113 VTI (bb
)->mos
.safe_push (mo
);
10114 VTI (bb
)->out
.stack_adjust
+= post
;
10117 if (fp_cfa_offset
!= -1
10118 && hard_frame_pointer_adjustment
== -1
10119 && fp_setter_insn (insn
))
10121 vt_init_cfa_base ();
10122 hard_frame_pointer_adjustment
= fp_cfa_offset
;
10123 /* Disassociate sp from fp now. */
10124 if (MAY_HAVE_DEBUG_INSNS
)
10127 cselib_invalidate_rtx (stack_pointer_rtx
);
10128 v
= cselib_lookup (stack_pointer_rtx
, Pmode
, 1,
10130 if (v
&& !cselib_preserved_value_p (v
))
10132 cselib_set_value_sp_based (v
);
10133 preserve_value (v
);
10139 gcc_assert (offset
== VTI (bb
)->out
.stack_adjust
);
10144 if (MAY_HAVE_DEBUG_INSNS
)
10146 cselib_preserve_only_values ();
10147 cselib_reset_table (cselib_get_next_uid ());
10148 cselib_record_sets_hook
= NULL
;
10152 hard_frame_pointer_adjustment
= -1;
10153 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->flooded
= true;
10154 cfa_base_rtx
= NULL_RTX
;
10158 /* This is *not* reset after each function. It gives each
10159 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10160 a unique label number. */
10162 static int debug_label_num
= 1;
10164 /* Get rid of all debug insns from the insn stream. */
10167 delete_debug_insns (void)
10172 if (!MAY_HAVE_DEBUG_INSNS
)
10175 FOR_EACH_BB_FN (bb
, cfun
)
10177 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10178 if (DEBUG_INSN_P (insn
))
10180 tree decl
= INSN_VAR_LOCATION_DECL (insn
);
10181 if (TREE_CODE (decl
) == LABEL_DECL
10182 && DECL_NAME (decl
)
10183 && !DECL_RTL_SET_P (decl
))
10185 PUT_CODE (insn
, NOTE
);
10186 NOTE_KIND (insn
) = NOTE_INSN_DELETED_DEBUG_LABEL
;
10187 NOTE_DELETED_LABEL_NAME (insn
)
10188 = IDENTIFIER_POINTER (DECL_NAME (decl
));
10189 SET_DECL_RTL (decl
, insn
);
10190 CODE_LABEL_NUMBER (insn
) = debug_label_num
++;
10193 delete_insn (insn
);
10198 /* Run a fast, BB-local only version of var tracking, to take care of
10199 information that we don't do global analysis on, such that not all
10200 information is lost. If SKIPPED holds, we're skipping the global
10201 pass entirely, so we should try to use information it would have
10202 handled as well.. */
10205 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED
)
10207 /* ??? Just skip it all for now. */
10208 delete_debug_insns ();
10211 /* Free the data structures needed for variable tracking. */
10218 FOR_EACH_BB_FN (bb
, cfun
)
10220 VTI (bb
)->mos
.release ();
10223 FOR_ALL_BB_FN (bb
, cfun
)
10225 dataflow_set_destroy (&VTI (bb
)->in
);
10226 dataflow_set_destroy (&VTI (bb
)->out
);
10227 if (VTI (bb
)->permp
)
10229 dataflow_set_destroy (VTI (bb
)->permp
);
10230 XDELETE (VTI (bb
)->permp
);
10233 free_aux_for_blocks ();
10234 empty_shared_hash
->htab
.dispose ();
10235 changed_variables
.dispose ();
10236 free_alloc_pool (attrs_pool
);
10237 free_alloc_pool (var_pool
);
10238 free_alloc_pool (loc_chain_pool
);
10239 free_alloc_pool (shared_hash_pool
);
10241 if (MAY_HAVE_DEBUG_INSNS
)
10243 if (global_get_addr_cache
)
10244 pointer_map_destroy (global_get_addr_cache
);
10245 global_get_addr_cache
= NULL
;
10246 if (loc_exp_dep_pool
)
10247 free_alloc_pool (loc_exp_dep_pool
);
10248 loc_exp_dep_pool
= NULL
;
10249 free_alloc_pool (valvar_pool
);
10250 preserved_values
.release ();
10252 BITMAP_FREE (scratch_regs
);
10253 scratch_regs
= NULL
;
10256 #ifdef HAVE_window_save
10257 vec_free (windowed_parm_regs
);
10261 XDELETEVEC (vui_vec
);
10266 /* The entry point to variable tracking pass. */
10268 static inline unsigned int
10269 variable_tracking_main_1 (void)
10273 if (flag_var_tracking_assignments
< 0)
10275 delete_debug_insns ();
10279 if (n_basic_blocks_for_fn (cfun
) > 500 &&
10280 n_edges_for_fn (cfun
) / n_basic_blocks_for_fn (cfun
) >= 20)
10282 vt_debug_insns_local (true);
10286 mark_dfs_back_edges ();
10287 if (!vt_initialize ())
10290 vt_debug_insns_local (true);
10294 success
= vt_find_locations ();
10296 if (!success
&& flag_var_tracking_assignments
> 0)
10300 delete_debug_insns ();
10302 /* This is later restored by our caller. */
10303 flag_var_tracking_assignments
= 0;
10305 success
= vt_initialize ();
10306 gcc_assert (success
);
10308 success
= vt_find_locations ();
10314 vt_debug_insns_local (false);
10318 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10320 dump_dataflow_sets ();
10321 dump_reg_info (dump_file
);
10322 dump_flow_info (dump_file
, dump_flags
);
10325 timevar_push (TV_VAR_TRACKING_EMIT
);
10327 timevar_pop (TV_VAR_TRACKING_EMIT
);
10330 vt_debug_insns_local (false);
10335 variable_tracking_main (void)
10338 int save
= flag_var_tracking_assignments
;
10340 ret
= variable_tracking_main_1 ();
10342 flag_var_tracking_assignments
= save
;
10348 gate_handle_var_tracking (void)
10350 return (flag_var_tracking
&& !targetm
.delay_vartrack
);
10357 const pass_data pass_data_variable_tracking
=
10359 RTL_PASS
, /* type */
10360 "vartrack", /* name */
10361 OPTGROUP_NONE
, /* optinfo_flags */
10362 true, /* has_gate */
10363 true, /* has_execute */
10364 TV_VAR_TRACKING
, /* tv_id */
10365 0, /* properties_required */
10366 0, /* properties_provided */
10367 0, /* properties_destroyed */
10368 0, /* todo_flags_start */
10369 ( TODO_verify_rtl_sharing
| TODO_verify_flow
), /* todo_flags_finish */
10372 class pass_variable_tracking
: public rtl_opt_pass
10375 pass_variable_tracking (gcc::context
*ctxt
)
10376 : rtl_opt_pass (pass_data_variable_tracking
, ctxt
)
10379 /* opt_pass methods: */
10380 bool gate () { return gate_handle_var_tracking (); }
10381 unsigned int execute () { return variable_tracking_main (); }
10383 }; // class pass_variable_tracking
10385 } // anon namespace
10388 make_pass_variable_tracking (gcc::context
*ctxt
)
10390 return new pass_variable_tracking (ctxt
);