1 /* Control flow functions for trees.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
24 #include "hash-table.h"
27 #include "trans-mem.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
31 #include "basic-block.h"
34 #include "gimple-pretty-print.h"
35 #include "pointer-set.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-fold.h"
40 #include "gimple-expr.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-walk.h"
46 #include "gimple-ssa.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-into-ssa.h"
59 #include "tree-dump.h"
60 #include "tree-pass.h"
61 #include "diagnostic-core.h"
64 #include "tree-ssa-propagate.h"
65 #include "value-prof.h"
66 #include "tree-inline.h"
68 #include "tree-ssa-live.h"
70 #include "tree-cfgcleanup.h"
72 /* This file contains functions for building the Control Flow Graph (CFG)
73 for a function tree. */
75 /* Local declarations. */
77 /* Initial capacity for the basic block array. */
78 static const int initial_cfg_capacity
= 20;
80 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
81 which use a particular edge. The CASE_LABEL_EXPRs are chained together
82 via their CASE_CHAIN field, which we clear after we're done with the
83 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
85 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
86 update the case vector in response to edge redirections.
88 Right now this table is set up and torn down at key points in the
89 compilation process. It would be nice if we could make the table
90 more persistent. The key is getting notification of changes to
91 the CFG (particularly edge removal, creation and redirection). */
93 static struct pointer_map_t
*edge_to_cases
;
95 /* If we record edge_to_cases, this bitmap will hold indexes
96 of basic blocks that end in a GIMPLE_SWITCH which we touched
97 due to edge manipulations. */
99 static bitmap touched_switch_bbs
;
101 /* CFG statistics. */
104 long num_merged_labels
;
107 static struct cfg_stats_d cfg_stats
;
109 /* Hash table to store last discriminator assigned for each locus. */
110 struct locus_discrim_map
116 /* Hashtable helpers. */
118 struct locus_discrim_hasher
: typed_free_remove
<locus_discrim_map
>
120 typedef locus_discrim_map value_type
;
121 typedef locus_discrim_map compare_type
;
122 static inline hashval_t
hash (const value_type
*);
123 static inline bool equal (const value_type
*, const compare_type
*);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
130 locus_discrim_hasher::hash (const value_type
*item
)
132 return LOCATION_LINE (item
->locus
);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
139 locus_discrim_hasher::equal (const value_type
*a
, const compare_type
*b
)
141 return LOCATION_LINE (a
->locus
) == LOCATION_LINE (b
->locus
);
144 static hash_table
<locus_discrim_hasher
> discriminator_per_locus
;
146 /* Basic blocks and flowgraphs. */
147 static void make_blocks (gimple_seq
);
150 static void make_edges (void);
151 static void assign_discriminators (void);
152 static void make_cond_expr_edges (basic_block
);
153 static void make_gimple_switch_edges (basic_block
);
154 static bool make_goto_expr_edges (basic_block
);
155 static void make_gimple_asm_edges (basic_block
);
156 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
157 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
159 /* Various helpers. */
160 static inline bool stmt_starts_bb_p (gimple
, gimple
);
161 static int gimple_verify_flow_info (void);
162 static void gimple_make_forwarder_block (edge
);
163 static gimple
first_non_label_stmt (basic_block
);
164 static bool verify_gimple_transaction (gimple
);
166 /* Flowgraph optimization and cleanup. */
167 static void gimple_merge_blocks (basic_block
, basic_block
);
168 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
169 static void remove_bb (basic_block
);
170 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
171 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
172 static edge
find_taken_edge_switch_expr (basic_block
, tree
);
173 static tree
find_case_label_for_value (gimple
, tree
);
176 init_empty_tree_cfg_for_function (struct function
*fn
)
178 /* Initialize the basic block array. */
180 profile_status_for_fn (fn
) = PROFILE_ABSENT
;
181 n_basic_blocks_for_fn (fn
) = NUM_FIXED_BLOCKS
;
182 last_basic_block_for_fn (fn
) = NUM_FIXED_BLOCKS
;
183 vec_alloc (basic_block_info_for_fn (fn
), initial_cfg_capacity
);
184 vec_safe_grow_cleared (basic_block_info_for_fn (fn
),
185 initial_cfg_capacity
);
187 /* Build a mapping of labels to their associated blocks. */
188 vec_alloc (label_to_block_map_for_fn (fn
), initial_cfg_capacity
);
189 vec_safe_grow_cleared (label_to_block_map_for_fn (fn
),
190 initial_cfg_capacity
);
192 SET_BASIC_BLOCK_FOR_FN (fn
, ENTRY_BLOCK
, ENTRY_BLOCK_PTR_FOR_FN (fn
));
193 SET_BASIC_BLOCK_FOR_FN (fn
, EXIT_BLOCK
, EXIT_BLOCK_PTR_FOR_FN (fn
));
195 ENTRY_BLOCK_PTR_FOR_FN (fn
)->next_bb
196 = EXIT_BLOCK_PTR_FOR_FN (fn
);
197 EXIT_BLOCK_PTR_FOR_FN (fn
)->prev_bb
198 = ENTRY_BLOCK_PTR_FOR_FN (fn
);
202 init_empty_tree_cfg (void)
204 init_empty_tree_cfg_for_function (cfun
);
207 /*---------------------------------------------------------------------------
209 ---------------------------------------------------------------------------*/
211 /* Entry point to the CFG builder for trees. SEQ is the sequence of
212 statements to be added to the flowgraph. */
215 build_gimple_cfg (gimple_seq seq
)
217 /* Register specific gimple functions. */
218 gimple_register_cfg_hooks ();
220 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
222 init_empty_tree_cfg ();
226 /* Make sure there is always at least one block, even if it's empty. */
227 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
228 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
230 /* Adjust the size of the array. */
231 if (basic_block_info_for_fn (cfun
)->length ()
232 < (size_t) n_basic_blocks_for_fn (cfun
))
233 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
),
234 n_basic_blocks_for_fn (cfun
));
236 /* To speed up statement iterator walks, we first purge dead labels. */
237 cleanup_dead_labels ();
239 /* Group case nodes to reduce the number of edges.
240 We do this after cleaning up dead labels because otherwise we miss
241 a lot of obvious case merging opportunities. */
242 group_case_labels ();
244 /* Create the edges of the flowgraph. */
245 discriminator_per_locus
.create (13);
247 assign_discriminators ();
248 cleanup_dead_labels ();
249 discriminator_per_locus
.dispose ();
253 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
254 them and propagate the information to the loop. We assume that the
255 annotations come immediately before the condition of the loop. */
258 replace_loop_annotate ()
262 gimple_stmt_iterator gsi
;
265 FOR_EACH_LOOP (loop
, 0)
267 gsi
= gsi_last_bb (loop
->header
);
268 stmt
= gsi_stmt (gsi
);
269 if (!(stmt
&& gimple_code (stmt
) == GIMPLE_COND
))
271 for (gsi_prev_nondebug (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
273 stmt
= gsi_stmt (gsi
);
274 if (gimple_code (stmt
) != GIMPLE_CALL
)
276 if (!gimple_call_internal_p (stmt
)
277 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
279 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
281 case annot_expr_ivdep_kind
:
282 loop
->safelen
= INT_MAX
;
284 case annot_expr_no_vector_kind
:
285 loop
->dont_vectorize
= true;
287 case annot_expr_vector_kind
:
288 loop
->force_vectorize
= true;
289 cfun
->has_force_vectorize_loops
= true;
294 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
295 gimple_call_arg (stmt
, 0));
296 gsi_replace (&gsi
, stmt
, true);
300 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
301 FOR_EACH_BB_FN (bb
, cfun
)
303 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
305 stmt
= gsi_stmt (gsi
);
306 if (gimple_code (stmt
) != GIMPLE_CALL
)
308 if (!gimple_call_internal_p (stmt
)
309 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
311 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
313 case annot_expr_ivdep_kind
:
314 case annot_expr_no_vector_kind
:
315 case annot_expr_vector_kind
:
320 warning_at (gimple_location (stmt
), 0, "ignoring loop annotation");
321 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
322 gimple_call_arg (stmt
, 0));
323 gsi_replace (&gsi
, stmt
, true);
330 execute_build_cfg (void)
332 gimple_seq body
= gimple_body (current_function_decl
);
334 build_gimple_cfg (body
);
335 gimple_set_body (current_function_decl
, NULL
);
336 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
338 fprintf (dump_file
, "Scope blocks:\n");
339 dump_scope_blocks (dump_file
, dump_flags
);
342 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
343 replace_loop_annotate ();
349 const pass_data pass_data_build_cfg
=
351 GIMPLE_PASS
, /* type */
353 OPTGROUP_NONE
, /* optinfo_flags */
354 false, /* has_gate */
355 true, /* has_execute */
356 TV_TREE_CFG
, /* tv_id */
357 PROP_gimple_leh
, /* properties_required */
358 ( PROP_cfg
| PROP_loops
), /* properties_provided */
359 0, /* properties_destroyed */
360 0, /* todo_flags_start */
361 TODO_verify_stmts
, /* todo_flags_finish */
364 class pass_build_cfg
: public gimple_opt_pass
367 pass_build_cfg (gcc::context
*ctxt
)
368 : gimple_opt_pass (pass_data_build_cfg
, ctxt
)
371 /* opt_pass methods: */
372 unsigned int execute () { return execute_build_cfg (); }
374 }; // class pass_build_cfg
379 make_pass_build_cfg (gcc::context
*ctxt
)
381 return new pass_build_cfg (ctxt
);
385 /* Return true if T is a computed goto. */
388 computed_goto_p (gimple t
)
390 return (gimple_code (t
) == GIMPLE_GOTO
391 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
394 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
395 the other edge points to a bb with just __builtin_unreachable ().
396 I.e. return true for C->M edge in:
404 __builtin_unreachable ();
408 assert_unreachable_fallthru_edge_p (edge e
)
410 basic_block pred_bb
= e
->src
;
411 gimple last
= last_stmt (pred_bb
);
412 if (last
&& gimple_code (last
) == GIMPLE_COND
)
414 basic_block other_bb
= EDGE_SUCC (pred_bb
, 0)->dest
;
415 if (other_bb
== e
->dest
)
416 other_bb
= EDGE_SUCC (pred_bb
, 1)->dest
;
417 if (EDGE_COUNT (other_bb
->succs
) == 0)
419 gimple_stmt_iterator gsi
= gsi_after_labels (other_bb
);
424 stmt
= gsi_stmt (gsi
);
425 while (is_gimple_debug (stmt
) || gimple_clobber_p (stmt
))
430 stmt
= gsi_stmt (gsi
);
432 return gimple_call_builtin_p (stmt
, BUILT_IN_UNREACHABLE
);
439 /* Build a flowgraph for the sequence of stmts SEQ. */
442 make_blocks (gimple_seq seq
)
444 gimple_stmt_iterator i
= gsi_start (seq
);
446 bool start_new_block
= true;
447 bool first_stmt_of_seq
= true;
448 basic_block bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
450 while (!gsi_end_p (i
))
457 /* If the statement starts a new basic block or if we have determined
458 in a previous pass that we need to create a new block for STMT, do
460 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
462 if (!first_stmt_of_seq
)
463 gsi_split_seq_before (&i
, &seq
);
464 bb
= create_basic_block (seq
, NULL
, bb
);
465 start_new_block
= false;
468 /* Now add STMT to BB and create the subgraphs for special statement
470 gimple_set_bb (stmt
, bb
);
472 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
474 if (stmt_ends_bb_p (stmt
))
476 /* If the stmt can make abnormal goto use a new temporary
477 for the assignment to the LHS. This makes sure the old value
478 of the LHS is available on the abnormal edge. Otherwise
479 we will end up with overlapping life-ranges for abnormal
481 if (gimple_has_lhs (stmt
)
482 && stmt_can_make_abnormal_goto (stmt
)
483 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
485 tree lhs
= gimple_get_lhs (stmt
);
486 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
487 gimple s
= gimple_build_assign (lhs
, tmp
);
488 gimple_set_location (s
, gimple_location (stmt
));
489 gimple_set_block (s
, gimple_block (stmt
));
490 gimple_set_lhs (stmt
, tmp
);
491 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
492 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
493 DECL_GIMPLE_REG_P (tmp
) = 1;
494 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
496 start_new_block
= true;
500 first_stmt_of_seq
= false;
505 /* Create and return a new empty basic block after bb AFTER. */
508 create_bb (void *h
, void *e
, basic_block after
)
514 /* Create and initialize a new basic block. Since alloc_block uses
515 GC allocation that clears memory to allocate a basic block, we do
516 not have to clear the newly allocated basic block here. */
519 bb
->index
= last_basic_block_for_fn (cfun
);
521 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
523 /* Add the new block to the linked list of blocks. */
524 link_block (bb
, after
);
526 /* Grow the basic block array if needed. */
527 if ((size_t) last_basic_block_for_fn (cfun
)
528 == basic_block_info_for_fn (cfun
)->length ())
531 (last_basic_block_for_fn (cfun
)
532 + (last_basic_block_for_fn (cfun
) + 3) / 4);
533 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
), new_size
);
536 /* Add the newly created block to the array. */
537 SET_BASIC_BLOCK_FOR_FN (cfun
, last_basic_block_for_fn (cfun
), bb
);
539 n_basic_blocks_for_fn (cfun
)++;
540 last_basic_block_for_fn (cfun
)++;
546 /*---------------------------------------------------------------------------
548 ---------------------------------------------------------------------------*/
550 /* Fold COND_EXPR_COND of each COND_EXPR. */
553 fold_cond_expr_cond (void)
557 FOR_EACH_BB_FN (bb
, cfun
)
559 gimple stmt
= last_stmt (bb
);
561 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
563 location_t loc
= gimple_location (stmt
);
567 fold_defer_overflow_warnings ();
568 cond
= fold_binary_loc (loc
, gimple_cond_code (stmt
), boolean_type_node
,
569 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
572 zerop
= integer_zerop (cond
);
573 onep
= integer_onep (cond
);
576 zerop
= onep
= false;
578 fold_undefer_overflow_warnings (zerop
|| onep
,
580 WARN_STRICT_OVERFLOW_CONDITIONAL
);
582 gimple_cond_make_false (stmt
);
584 gimple_cond_make_true (stmt
);
589 /* If basic block BB has an abnormal edge to a basic block
590 containing IFN_ABNORMAL_DISPATCHER internal call, return
591 that the dispatcher's basic block, otherwise return NULL. */
594 get_abnormal_succ_dispatcher (basic_block bb
)
599 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
600 if ((e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
)) == EDGE_ABNORMAL
)
602 gimple_stmt_iterator gsi
603 = gsi_start_nondebug_after_labels_bb (e
->dest
);
604 gimple g
= gsi_stmt (gsi
);
606 && is_gimple_call (g
)
607 && gimple_call_internal_p (g
)
608 && gimple_call_internal_fn (g
) == IFN_ABNORMAL_DISPATCHER
)
614 /* Helper function for make_edges. Create a basic block with
615 with ABNORMAL_DISPATCHER internal call in it if needed, and
616 create abnormal edges from BBS to it and from it to FOR_BB
617 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
620 handle_abnormal_edges (basic_block
*dispatcher_bbs
,
621 basic_block for_bb
, int *bb_to_omp_idx
,
622 auto_vec
<basic_block
> *bbs
, bool computed_goto
)
624 basic_block
*dispatcher
= dispatcher_bbs
+ (computed_goto
? 1 : 0);
625 unsigned int idx
= 0;
631 dispatcher
= dispatcher_bbs
+ 2 * bb_to_omp_idx
[for_bb
->index
];
632 if (bb_to_omp_idx
[for_bb
->index
] != 0)
636 /* If the dispatcher has been created already, then there are basic
637 blocks with abnormal edges to it, so just make a new edge to
639 if (*dispatcher
== NULL
)
641 /* Check if there are any basic blocks that need to have
642 abnormal edges to this dispatcher. If there are none, return
644 if (bb_to_omp_idx
== NULL
)
646 if (bbs
->is_empty ())
651 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
652 if (bb_to_omp_idx
[bb
->index
] == bb_to_omp_idx
[for_bb
->index
])
658 /* Create the dispatcher bb. */
659 *dispatcher
= create_basic_block (NULL
, NULL
, for_bb
);
662 /* Factor computed gotos into a common computed goto site. Also
663 record the location of that site so that we can un-factor the
664 gotos after we have converted back to normal form. */
665 gimple_stmt_iterator gsi
= gsi_start_bb (*dispatcher
);
667 /* Create the destination of the factored goto. Each original
668 computed goto will put its desired destination into this
669 variable and jump to the label we create immediately below. */
670 tree var
= create_tmp_var (ptr_type_node
, "gotovar");
672 /* Build a label for the new block which will contain the
673 factored computed goto. */
674 tree factored_label_decl
675 = create_artificial_label (UNKNOWN_LOCATION
);
676 gimple factored_computed_goto_label
677 = gimple_build_label (factored_label_decl
);
678 gsi_insert_after (&gsi
, factored_computed_goto_label
, GSI_NEW_STMT
);
680 /* Build our new computed goto. */
681 gimple factored_computed_goto
= gimple_build_goto (var
);
682 gsi_insert_after (&gsi
, factored_computed_goto
, GSI_NEW_STMT
);
684 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
687 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
690 gsi
= gsi_last_bb (bb
);
691 gimple last
= gsi_stmt (gsi
);
693 gcc_assert (computed_goto_p (last
));
695 /* Copy the original computed goto's destination into VAR. */
697 = gimple_build_assign (var
, gimple_goto_dest (last
));
698 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
700 edge e
= make_edge (bb
, *dispatcher
, EDGE_FALLTHRU
);
701 e
->goto_locus
= gimple_location (last
);
702 gsi_remove (&gsi
, true);
707 tree arg
= inner
? boolean_true_node
: boolean_false_node
;
708 gimple g
= gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER
,
710 gimple_stmt_iterator gsi
= gsi_after_labels (*dispatcher
);
711 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
713 /* Create predecessor edges of the dispatcher. */
714 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
717 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
719 make_edge (bb
, *dispatcher
, EDGE_ABNORMAL
);
724 make_edge (*dispatcher
, for_bb
, EDGE_ABNORMAL
);
727 /* Join all the blocks in the flowgraph. */
733 struct omp_region
*cur_region
= NULL
;
734 auto_vec
<basic_block
> ab_edge_goto
;
735 auto_vec
<basic_block
> ab_edge_call
;
736 int *bb_to_omp_idx
= NULL
;
737 int cur_omp_region_idx
= 0;
739 /* Create an edge from entry to the first block with executable
741 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
),
742 BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
),
745 /* Traverse the basic block array placing edges. */
746 FOR_EACH_BB_FN (bb
, cfun
)
748 gimple last
= last_stmt (bb
);
752 bb_to_omp_idx
[bb
->index
] = cur_omp_region_idx
;
756 enum gimple_code code
= gimple_code (last
);
760 if (make_goto_expr_edges (bb
))
761 ab_edge_goto
.safe_push (bb
);
765 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
769 make_cond_expr_edges (bb
);
773 make_gimple_switch_edges (bb
);
777 make_eh_edges (last
);
780 case GIMPLE_EH_DISPATCH
:
781 fallthru
= make_eh_dispatch_edges (last
);
785 /* If this function receives a nonlocal goto, then we need to
786 make edges from this call site to all the nonlocal goto
788 if (stmt_can_make_abnormal_goto (last
))
789 ab_edge_call
.safe_push (bb
);
791 /* If this statement has reachable exception handlers, then
792 create abnormal edges to them. */
793 make_eh_edges (last
);
795 /* BUILTIN_RETURN is really a return statement. */
796 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
798 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
801 /* Some calls are known not to return. */
803 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
807 /* A GIMPLE_ASSIGN may throw internally and thus be considered
809 if (is_ctrl_altering_stmt (last
))
810 make_eh_edges (last
);
815 make_gimple_asm_edges (bb
);
820 fallthru
= make_gimple_omp_edges (bb
, &cur_region
,
821 &cur_omp_region_idx
);
822 if (cur_region
&& bb_to_omp_idx
== NULL
)
823 bb_to_omp_idx
= XCNEWVEC (int, n_basic_blocks_for_fn (cfun
));
826 case GIMPLE_TRANSACTION
:
828 tree abort_label
= gimple_transaction_label (last
);
830 make_edge (bb
, label_to_block (abort_label
), EDGE_TM_ABORT
);
836 gcc_assert (!stmt_ends_bb_p (last
));
844 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
847 /* Computed gotos are hell to deal with, especially if there are
848 lots of them with a large number of destinations. So we factor
849 them to a common computed goto location before we build the
850 edge list. After we convert back to normal form, we will un-factor
851 the computed gotos since factoring introduces an unwanted jump.
852 For non-local gotos and abnormal edges from calls to calls that return
853 twice or forced labels, factor the abnormal edges too, by having all
854 abnormal edges from the calls go to a common artificial basic block
855 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
856 basic block to all forced labels and calls returning twice.
857 We do this per-OpenMP structured block, because those regions
858 are guaranteed to be single entry single exit by the standard,
859 so it is not allowed to enter or exit such regions abnormally this way,
860 thus all computed gotos, non-local gotos and setjmp/longjmp calls
861 must not transfer control across SESE region boundaries. */
862 if (!ab_edge_goto
.is_empty () || !ab_edge_call
.is_empty ())
864 gimple_stmt_iterator gsi
;
865 basic_block dispatcher_bb_array
[2] = { NULL
, NULL
};
866 basic_block
*dispatcher_bbs
= dispatcher_bb_array
;
867 int count
= n_basic_blocks_for_fn (cfun
);
870 dispatcher_bbs
= XCNEWVEC (basic_block
, 2 * count
);
872 FOR_EACH_BB_FN (bb
, cfun
)
874 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
876 gimple label_stmt
= gsi_stmt (gsi
);
879 if (gimple_code (label_stmt
) != GIMPLE_LABEL
)
882 target
= gimple_label_label (label_stmt
);
884 /* Make an edge to every label block that has been marked as a
885 potential target for a computed goto or a non-local goto. */
886 if (FORCED_LABEL (target
))
887 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
888 &ab_edge_goto
, true);
889 if (DECL_NONLOCAL (target
))
891 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
892 &ab_edge_call
, false);
897 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
898 gsi_next_nondebug (&gsi
);
899 if (!gsi_end_p (gsi
))
901 /* Make an edge to every setjmp-like call. */
902 gimple call_stmt
= gsi_stmt (gsi
);
903 if (is_gimple_call (call_stmt
)
904 && ((gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
)
905 || gimple_call_builtin_p (call_stmt
,
906 BUILT_IN_SETJMP_RECEIVER
)))
907 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
908 &ab_edge_call
, false);
913 XDELETE (dispatcher_bbs
);
916 XDELETE (bb_to_omp_idx
);
920 /* Fold COND_EXPR_COND of each COND_EXPR. */
921 fold_cond_expr_cond ();
924 /* Find the next available discriminator value for LOCUS. The
925 discriminator distinguishes among several basic blocks that
926 share a common locus, allowing for more accurate sample-based
930 next_discriminator_for_locus (location_t locus
)
932 struct locus_discrim_map item
;
933 struct locus_discrim_map
**slot
;
936 item
.discriminator
= 0;
937 slot
= discriminator_per_locus
.find_slot_with_hash (
938 &item
, LOCATION_LINE (locus
), INSERT
);
940 if (*slot
== HTAB_EMPTY_ENTRY
)
942 *slot
= XNEW (struct locus_discrim_map
);
944 (*slot
)->locus
= locus
;
945 (*slot
)->discriminator
= 0;
947 (*slot
)->discriminator
++;
948 return (*slot
)->discriminator
;
951 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
954 same_line_p (location_t locus1
, location_t locus2
)
956 expanded_location from
, to
;
958 if (locus1
== locus2
)
961 from
= expand_location (locus1
);
962 to
= expand_location (locus2
);
964 if (from
.line
!= to
.line
)
966 if (from
.file
== to
.file
)
968 return (from
.file
!= NULL
970 && filename_cmp (from
.file
, to
.file
) == 0);
973 /* Assign discriminators to each basic block. */
976 assign_discriminators (void)
980 FOR_EACH_BB_FN (bb
, cfun
)
984 gimple last
= last_stmt (bb
);
985 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
987 if (locus
== UNKNOWN_LOCATION
)
990 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
992 gimple first
= first_non_label_stmt (e
->dest
);
993 gimple last
= last_stmt (e
->dest
);
994 if ((first
&& same_line_p (locus
, gimple_location (first
)))
995 || (last
&& same_line_p (locus
, gimple_location (last
))))
997 if (e
->dest
->discriminator
!= 0 && bb
->discriminator
== 0)
998 bb
->discriminator
= next_discriminator_for_locus (locus
);
1000 e
->dest
->discriminator
= next_discriminator_for_locus (locus
);
1006 /* Create the edges for a GIMPLE_COND starting at block BB. */
1009 make_cond_expr_edges (basic_block bb
)
1011 gimple entry
= last_stmt (bb
);
1012 gimple then_stmt
, else_stmt
;
1013 basic_block then_bb
, else_bb
;
1014 tree then_label
, else_label
;
1018 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
1020 /* Entry basic blocks for each component. */
1021 then_label
= gimple_cond_true_label (entry
);
1022 else_label
= gimple_cond_false_label (entry
);
1023 then_bb
= label_to_block (then_label
);
1024 else_bb
= label_to_block (else_label
);
1025 then_stmt
= first_stmt (then_bb
);
1026 else_stmt
= first_stmt (else_bb
);
1028 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
1029 e
->goto_locus
= gimple_location (then_stmt
);
1030 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
1032 e
->goto_locus
= gimple_location (else_stmt
);
1034 /* We do not need the labels anymore. */
1035 gimple_cond_set_true_label (entry
, NULL_TREE
);
1036 gimple_cond_set_false_label (entry
, NULL_TREE
);
1040 /* Called for each element in the hash table (P) as we delete the
1041 edge to cases hash table.
1043 Clear all the TREE_CHAINs to prevent problems with copying of
1044 SWITCH_EXPRs and structure sharing rules, then free the hash table
1048 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED
, void **value
,
1049 void *data ATTRIBUTE_UNUSED
)
1053 for (t
= (tree
) *value
; t
; t
= next
)
1055 next
= CASE_CHAIN (t
);
1056 CASE_CHAIN (t
) = NULL
;
1063 /* Start recording information mapping edges to case labels. */
1066 start_recording_case_labels (void)
1068 gcc_assert (edge_to_cases
== NULL
);
1069 edge_to_cases
= pointer_map_create ();
1070 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
1073 /* Return nonzero if we are recording information for case labels. */
1076 recording_case_labels_p (void)
1078 return (edge_to_cases
!= NULL
);
1081 /* Stop recording information mapping edges to case labels and
1082 remove any information we have recorded. */
1084 end_recording_case_labels (void)
1088 pointer_map_traverse (edge_to_cases
, edge_to_cases_cleanup
, NULL
);
1089 pointer_map_destroy (edge_to_cases
);
1090 edge_to_cases
= NULL
;
1091 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
1093 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1096 gimple stmt
= last_stmt (bb
);
1097 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1098 group_case_labels_stmt (stmt
);
1101 BITMAP_FREE (touched_switch_bbs
);
1104 /* If we are inside a {start,end}_recording_cases block, then return
1105 a chain of CASE_LABEL_EXPRs from T which reference E.
1107 Otherwise return NULL. */
1110 get_cases_for_edge (edge e
, gimple t
)
1115 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1116 chains available. Return NULL so the caller can detect this case. */
1117 if (!recording_case_labels_p ())
1120 slot
= pointer_map_contains (edge_to_cases
, e
);
1122 return (tree
) *slot
;
1124 /* If we did not find E in the hash table, then this must be the first
1125 time we have been queried for information about E & T. Add all the
1126 elements from T to the hash table then perform the query again. */
1128 n
= gimple_switch_num_labels (t
);
1129 for (i
= 0; i
< n
; i
++)
1131 tree elt
= gimple_switch_label (t
, i
);
1132 tree lab
= CASE_LABEL (elt
);
1133 basic_block label_bb
= label_to_block (lab
);
1134 edge this_edge
= find_edge (e
->src
, label_bb
);
1136 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1138 slot
= pointer_map_insert (edge_to_cases
, this_edge
);
1139 CASE_CHAIN (elt
) = (tree
) *slot
;
1143 return (tree
) *pointer_map_contains (edge_to_cases
, e
);
1146 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1149 make_gimple_switch_edges (basic_block bb
)
1151 gimple entry
= last_stmt (bb
);
1154 n
= gimple_switch_num_labels (entry
);
1156 for (i
= 0; i
< n
; ++i
)
1158 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
1159 basic_block label_bb
= label_to_block (lab
);
1160 make_edge (bb
, label_bb
, 0);
1165 /* Return the basic block holding label DEST. */
1168 label_to_block_fn (struct function
*ifun
, tree dest
)
1170 int uid
= LABEL_DECL_UID (dest
);
1172 /* We would die hard when faced by an undefined label. Emit a label to
1173 the very first basic block. This will hopefully make even the dataflow
1174 and undefined variable warnings quite right. */
1175 if (seen_error () && uid
< 0)
1177 gimple_stmt_iterator gsi
=
1178 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
));
1181 stmt
= gimple_build_label (dest
);
1182 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1183 uid
= LABEL_DECL_UID (dest
);
1185 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
1187 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
1190 /* Create edges for a goto statement at block BB. Returns true
1191 if abnormal edges should be created. */
1194 make_goto_expr_edges (basic_block bb
)
1196 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1197 gimple goto_t
= gsi_stmt (last
);
1199 /* A simple GOTO creates normal edges. */
1200 if (simple_goto_p (goto_t
))
1202 tree dest
= gimple_goto_dest (goto_t
);
1203 basic_block label_bb
= label_to_block (dest
);
1204 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1205 e
->goto_locus
= gimple_location (goto_t
);
1206 gsi_remove (&last
, true);
1210 /* A computed GOTO creates abnormal edges. */
1214 /* Create edges for an asm statement with labels at block BB. */
1217 make_gimple_asm_edges (basic_block bb
)
1219 gimple stmt
= last_stmt (bb
);
1220 int i
, n
= gimple_asm_nlabels (stmt
);
1222 for (i
= 0; i
< n
; ++i
)
1224 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1225 basic_block label_bb
= label_to_block (label
);
1226 make_edge (bb
, label_bb
, 0);
1230 /*---------------------------------------------------------------------------
1232 ---------------------------------------------------------------------------*/
1234 /* Cleanup useless labels in basic blocks. This is something we wish
1235 to do early because it allows us to group case labels before creating
1236 the edges for the CFG, and it speeds up block statement iterators in
1237 all passes later on.
1238 We rerun this pass after CFG is created, to get rid of the labels that
1239 are no longer referenced. After then we do not run it any more, since
1240 (almost) no new labels should be created. */
1242 /* A map from basic block index to the leading label of that block. */
1243 static struct label_record
1248 /* True if the label is referenced from somewhere. */
1252 /* Given LABEL return the first label in the same basic block. */
1255 main_block_label (tree label
)
1257 basic_block bb
= label_to_block (label
);
1258 tree main_label
= label_for_bb
[bb
->index
].label
;
1260 /* label_to_block possibly inserted undefined label into the chain. */
1263 label_for_bb
[bb
->index
].label
= label
;
1267 label_for_bb
[bb
->index
].used
= true;
1271 /* Clean up redundant labels within the exception tree. */
1274 cleanup_dead_labels_eh (void)
1281 if (cfun
->eh
== NULL
)
1284 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1285 if (lp
&& lp
->post_landing_pad
)
1287 lab
= main_block_label (lp
->post_landing_pad
);
1288 if (lab
!= lp
->post_landing_pad
)
1290 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1291 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1295 FOR_ALL_EH_REGION (r
)
1299 case ERT_MUST_NOT_THROW
:
1305 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1309 c
->label
= main_block_label (lab
);
1314 case ERT_ALLOWED_EXCEPTIONS
:
1315 lab
= r
->u
.allowed
.label
;
1317 r
->u
.allowed
.label
= main_block_label (lab
);
1323 /* Cleanup redundant labels. This is a three-step process:
1324 1) Find the leading label for each block.
1325 2) Redirect all references to labels to the leading labels.
1326 3) Cleanup all useless labels. */
1329 cleanup_dead_labels (void)
1332 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block_for_fn (cfun
));
1334 /* Find a suitable label for each block. We use the first user-defined
1335 label if there is one, or otherwise just the first label we see. */
1336 FOR_EACH_BB_FN (bb
, cfun
)
1338 gimple_stmt_iterator i
;
1340 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1343 gimple stmt
= gsi_stmt (i
);
1345 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1348 label
= gimple_label_label (stmt
);
1350 /* If we have not yet seen a label for the current block,
1351 remember this one and see if there are more labels. */
1352 if (!label_for_bb
[bb
->index
].label
)
1354 label_for_bb
[bb
->index
].label
= label
;
1358 /* If we did see a label for the current block already, but it
1359 is an artificially created label, replace it if the current
1360 label is a user defined label. */
1361 if (!DECL_ARTIFICIAL (label
)
1362 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1364 label_for_bb
[bb
->index
].label
= label
;
1370 /* Now redirect all jumps/branches to the selected label.
1371 First do so for each block ending in a control statement. */
1372 FOR_EACH_BB_FN (bb
, cfun
)
1374 gimple stmt
= last_stmt (bb
);
1375 tree label
, new_label
;
1380 switch (gimple_code (stmt
))
1383 label
= gimple_cond_true_label (stmt
);
1386 new_label
= main_block_label (label
);
1387 if (new_label
!= label
)
1388 gimple_cond_set_true_label (stmt
, new_label
);
1391 label
= gimple_cond_false_label (stmt
);
1394 new_label
= main_block_label (label
);
1395 if (new_label
!= label
)
1396 gimple_cond_set_false_label (stmt
, new_label
);
1402 size_t i
, n
= gimple_switch_num_labels (stmt
);
1404 /* Replace all destination labels. */
1405 for (i
= 0; i
< n
; ++i
)
1407 tree case_label
= gimple_switch_label (stmt
, i
);
1408 label
= CASE_LABEL (case_label
);
1409 new_label
= main_block_label (label
);
1410 if (new_label
!= label
)
1411 CASE_LABEL (case_label
) = new_label
;
1418 int i
, n
= gimple_asm_nlabels (stmt
);
1420 for (i
= 0; i
< n
; ++i
)
1422 tree cons
= gimple_asm_label_op (stmt
, i
);
1423 tree label
= main_block_label (TREE_VALUE (cons
));
1424 TREE_VALUE (cons
) = label
;
1429 /* We have to handle gotos until they're removed, and we don't
1430 remove them until after we've created the CFG edges. */
1432 if (!computed_goto_p (stmt
))
1434 label
= gimple_goto_dest (stmt
);
1435 new_label
= main_block_label (label
);
1436 if (new_label
!= label
)
1437 gimple_goto_set_dest (stmt
, new_label
);
1441 case GIMPLE_TRANSACTION
:
1443 tree label
= gimple_transaction_label (stmt
);
1446 tree new_label
= main_block_label (label
);
1447 if (new_label
!= label
)
1448 gimple_transaction_set_label (stmt
, new_label
);
1458 /* Do the same for the exception region tree labels. */
1459 cleanup_dead_labels_eh ();
1461 /* Finally, purge dead labels. All user-defined labels and labels that
1462 can be the target of non-local gotos and labels which have their
1463 address taken are preserved. */
1464 FOR_EACH_BB_FN (bb
, cfun
)
1466 gimple_stmt_iterator i
;
1467 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1469 if (!label_for_this_bb
)
1472 /* If the main label of the block is unused, we may still remove it. */
1473 if (!label_for_bb
[bb
->index
].used
)
1474 label_for_this_bb
= NULL
;
1476 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1479 gimple stmt
= gsi_stmt (i
);
1481 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1484 label
= gimple_label_label (stmt
);
1486 if (label
== label_for_this_bb
1487 || !DECL_ARTIFICIAL (label
)
1488 || DECL_NONLOCAL (label
)
1489 || FORCED_LABEL (label
))
1492 gsi_remove (&i
, true);
1496 free (label_for_bb
);
1499 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1500 the ones jumping to the same label.
1501 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1504 group_case_labels_stmt (gimple stmt
)
1506 int old_size
= gimple_switch_num_labels (stmt
);
1507 int i
, j
, new_size
= old_size
;
1508 basic_block default_bb
= NULL
;
1510 default_bb
= label_to_block (CASE_LABEL (gimple_switch_default_label (stmt
)));
1512 /* Look for possible opportunities to merge cases. */
1514 while (i
< old_size
)
1516 tree base_case
, base_high
;
1517 basic_block base_bb
;
1519 base_case
= gimple_switch_label (stmt
, i
);
1521 gcc_assert (base_case
);
1522 base_bb
= label_to_block (CASE_LABEL (base_case
));
1524 /* Discard cases that have the same destination as the
1526 if (base_bb
== default_bb
)
1528 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1534 base_high
= CASE_HIGH (base_case
)
1535 ? CASE_HIGH (base_case
)
1536 : CASE_LOW (base_case
);
1539 /* Try to merge case labels. Break out when we reach the end
1540 of the label vector or when we cannot merge the next case
1541 label with the current one. */
1542 while (i
< old_size
)
1544 tree merge_case
= gimple_switch_label (stmt
, i
);
1545 basic_block merge_bb
= label_to_block (CASE_LABEL (merge_case
));
1546 double_int bhp1
= tree_to_double_int (base_high
) + double_int_one
;
1548 /* Merge the cases if they jump to the same place,
1549 and their ranges are consecutive. */
1550 if (merge_bb
== base_bb
1551 && tree_to_double_int (CASE_LOW (merge_case
)) == bhp1
)
1553 base_high
= CASE_HIGH (merge_case
) ?
1554 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1555 CASE_HIGH (base_case
) = base_high
;
1556 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1565 /* Compress the case labels in the label vector, and adjust the
1566 length of the vector. */
1567 for (i
= 0, j
= 0; i
< new_size
; i
++)
1569 while (! gimple_switch_label (stmt
, j
))
1571 gimple_switch_set_label (stmt
, i
,
1572 gimple_switch_label (stmt
, j
++));
1575 gcc_assert (new_size
<= old_size
);
1576 gimple_switch_set_num_labels (stmt
, new_size
);
1579 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1580 and scan the sorted vector of cases. Combine the ones jumping to the
1584 group_case_labels (void)
1588 FOR_EACH_BB_FN (bb
, cfun
)
1590 gimple stmt
= last_stmt (bb
);
1591 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1592 group_case_labels_stmt (stmt
);
1596 /* Checks whether we can merge block B into block A. */
1599 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1602 gimple_stmt_iterator gsi
;
1604 if (!single_succ_p (a
))
1607 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1610 if (single_succ (a
) != b
)
1613 if (!single_pred_p (b
))
1616 if (b
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1619 /* If A ends by a statement causing exceptions or something similar, we
1620 cannot merge the blocks. */
1621 stmt
= last_stmt (a
);
1622 if (stmt
&& stmt_ends_bb_p (stmt
))
1625 /* Do not allow a block with only a non-local label to be merged. */
1627 && gimple_code (stmt
) == GIMPLE_LABEL
1628 && DECL_NONLOCAL (gimple_label_label (stmt
)))
1631 /* Examine the labels at the beginning of B. */
1632 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1635 stmt
= gsi_stmt (gsi
);
1636 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1638 lab
= gimple_label_label (stmt
);
1640 /* Do not remove user forced labels or for -O0 any user labels. */
1641 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1645 /* Protect the loop latches. */
1646 if (current_loops
&& b
->loop_father
->latch
== b
)
1649 /* It must be possible to eliminate all phi nodes in B. If ssa form
1650 is not up-to-date and a name-mapping is registered, we cannot eliminate
1651 any phis. Symbols marked for renaming are never a problem though. */
1652 for (gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1654 gimple phi
= gsi_stmt (gsi
);
1655 /* Technically only new names matter. */
1656 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1660 /* When not optimizing, don't merge if we'd lose goto_locus. */
1662 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1664 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1665 gimple_stmt_iterator prev
, next
;
1666 prev
= gsi_last_nondebug_bb (a
);
1667 next
= gsi_after_labels (b
);
1668 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1669 gsi_next_nondebug (&next
);
1670 if ((gsi_end_p (prev
)
1671 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1672 && (gsi_end_p (next
)
1673 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1680 /* Replaces all uses of NAME by VAL. */
1683 replace_uses_by (tree name
, tree val
)
1685 imm_use_iterator imm_iter
;
1690 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1692 /* Mark the block if we change the last stmt in it. */
1693 if (cfgcleanup_altered_bbs
1694 && stmt_ends_bb_p (stmt
))
1695 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1697 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1699 replace_exp (use
, val
);
1701 if (gimple_code (stmt
) == GIMPLE_PHI
)
1703 e
= gimple_phi_arg_edge (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
1704 if (e
->flags
& EDGE_ABNORMAL
)
1706 /* This can only occur for virtual operands, since
1707 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1708 would prevent replacement. */
1709 gcc_checking_assert (virtual_operand_p (name
));
1710 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1715 if (gimple_code (stmt
) != GIMPLE_PHI
)
1717 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1718 gimple orig_stmt
= stmt
;
1721 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1722 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1723 only change sth from non-invariant to invariant, and only
1724 when propagating constants. */
1725 if (is_gimple_min_invariant (val
))
1726 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1728 tree op
= gimple_op (stmt
, i
);
1729 /* Operands may be empty here. For example, the labels
1730 of a GIMPLE_COND are nulled out following the creation
1731 of the corresponding CFG edges. */
1732 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1733 recompute_tree_invariant_for_addr_expr (op
);
1736 if (fold_stmt (&gsi
))
1737 stmt
= gsi_stmt (gsi
);
1739 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
1740 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
1746 gcc_checking_assert (has_zero_uses (name
));
1748 /* Also update the trees stored in loop structures. */
1753 FOR_EACH_LOOP (loop
, 0)
1755 substitute_in_loop_info (loop
, name
, val
);
1760 /* Merge block B into block A. */
1763 gimple_merge_blocks (basic_block a
, basic_block b
)
1765 gimple_stmt_iterator last
, gsi
, psi
;
1768 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1770 /* Remove all single-valued PHI nodes from block B of the form
1771 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1772 gsi
= gsi_last_bb (a
);
1773 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
1775 gimple phi
= gsi_stmt (psi
);
1776 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1778 bool may_replace_uses
= (virtual_operand_p (def
)
1779 || may_propagate_copy (def
, use
));
1781 /* In case we maintain loop closed ssa form, do not propagate arguments
1782 of loop exit phi nodes. */
1784 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1785 && !virtual_operand_p (def
)
1786 && TREE_CODE (use
) == SSA_NAME
1787 && a
->loop_father
!= b
->loop_father
)
1788 may_replace_uses
= false;
1790 if (!may_replace_uses
)
1792 gcc_assert (!virtual_operand_p (def
));
1794 /* Note that just emitting the copies is fine -- there is no problem
1795 with ordering of phi nodes. This is because A is the single
1796 predecessor of B, therefore results of the phi nodes cannot
1797 appear as arguments of the phi nodes. */
1798 copy
= gimple_build_assign (def
, use
);
1799 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1800 remove_phi_node (&psi
, false);
1804 /* If we deal with a PHI for virtual operands, we can simply
1805 propagate these without fussing with folding or updating
1807 if (virtual_operand_p (def
))
1809 imm_use_iterator iter
;
1810 use_operand_p use_p
;
1813 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1814 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1815 SET_USE (use_p
, use
);
1817 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
1818 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
1821 replace_uses_by (def
, use
);
1823 remove_phi_node (&psi
, true);
1827 /* Ensure that B follows A. */
1828 move_block_after (b
, a
);
1830 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1831 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1833 /* Remove labels from B and set gimple_bb to A for other statements. */
1834 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1836 gimple stmt
= gsi_stmt (gsi
);
1837 if (gimple_code (stmt
) == GIMPLE_LABEL
)
1839 tree label
= gimple_label_label (stmt
);
1842 gsi_remove (&gsi
, false);
1844 /* Now that we can thread computed gotos, we might have
1845 a situation where we have a forced label in block B
1846 However, the label at the start of block B might still be
1847 used in other ways (think about the runtime checking for
1848 Fortran assigned gotos). So we can not just delete the
1849 label. Instead we move the label to the start of block A. */
1850 if (FORCED_LABEL (label
))
1852 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1853 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
1855 /* Other user labels keep around in a form of a debug stmt. */
1856 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_STMTS
)
1858 gimple dbg
= gimple_build_debug_bind (label
,
1861 gimple_debug_bind_reset_value (dbg
);
1862 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
1865 lp_nr
= EH_LANDING_PAD_NR (label
);
1868 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
1869 lp
->post_landing_pad
= NULL
;
1874 gimple_set_bb (stmt
, a
);
1879 /* Merge the sequences. */
1880 last
= gsi_last_bb (a
);
1881 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
1882 set_bb_seq (b
, NULL
);
1884 if (cfgcleanup_altered_bbs
)
1885 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
1889 /* Return the one of two successors of BB that is not reachable by a
1890 complex edge, if there is one. Else, return BB. We use
1891 this in optimizations that use post-dominators for their heuristics,
1892 to catch the cases in C++ where function calls are involved. */
1895 single_noncomplex_succ (basic_block bb
)
1898 if (EDGE_COUNT (bb
->succs
) != 2)
1901 e0
= EDGE_SUCC (bb
, 0);
1902 e1
= EDGE_SUCC (bb
, 1);
1903 if (e0
->flags
& EDGE_COMPLEX
)
1905 if (e1
->flags
& EDGE_COMPLEX
)
1911 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1914 notice_special_calls (gimple call
)
1916 int flags
= gimple_call_flags (call
);
1918 if (flags
& ECF_MAY_BE_ALLOCA
)
1919 cfun
->calls_alloca
= true;
1920 if (flags
& ECF_RETURNS_TWICE
)
1921 cfun
->calls_setjmp
= true;
1925 /* Clear flags set by notice_special_calls. Used by dead code removal
1926 to update the flags. */
1929 clear_special_calls (void)
1931 cfun
->calls_alloca
= false;
1932 cfun
->calls_setjmp
= false;
1935 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1938 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
1940 /* Since this block is no longer reachable, we can just delete all
1941 of its PHI nodes. */
1942 remove_phi_nodes (bb
);
1944 /* Remove edges to BB's successors. */
1945 while (EDGE_COUNT (bb
->succs
) > 0)
1946 remove_edge (EDGE_SUCC (bb
, 0));
1950 /* Remove statements of basic block BB. */
1953 remove_bb (basic_block bb
)
1955 gimple_stmt_iterator i
;
1959 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
1960 if (dump_flags
& TDF_DETAILS
)
1962 dump_bb (dump_file
, bb
, 0, dump_flags
);
1963 fprintf (dump_file
, "\n");
1969 struct loop
*loop
= bb
->loop_father
;
1971 /* If a loop gets removed, clean up the information associated
1973 if (loop
->latch
== bb
1974 || loop
->header
== bb
)
1975 free_numbers_of_iterations_estimates_loop (loop
);
1978 /* Remove all the instructions in the block. */
1979 if (bb_seq (bb
) != NULL
)
1981 /* Walk backwards so as to get a chance to substitute all
1982 released DEFs into debug stmts. See
1983 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1985 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
1987 gimple stmt
= gsi_stmt (i
);
1988 if (gimple_code (stmt
) == GIMPLE_LABEL
1989 && (FORCED_LABEL (gimple_label_label (stmt
))
1990 || DECL_NONLOCAL (gimple_label_label (stmt
))))
1993 gimple_stmt_iterator new_gsi
;
1995 /* A non-reachable non-local label may still be referenced.
1996 But it no longer needs to carry the extra semantics of
1998 if (DECL_NONLOCAL (gimple_label_label (stmt
)))
2000 DECL_NONLOCAL (gimple_label_label (stmt
)) = 0;
2001 FORCED_LABEL (gimple_label_label (stmt
)) = 1;
2004 new_bb
= bb
->prev_bb
;
2005 new_gsi
= gsi_start_bb (new_bb
);
2006 gsi_remove (&i
, false);
2007 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2011 /* Release SSA definitions if we are in SSA. Note that we
2012 may be called when not in SSA. For example,
2013 final_cleanup calls this function via
2014 cleanup_tree_cfg. */
2015 if (gimple_in_ssa_p (cfun
))
2016 release_defs (stmt
);
2018 gsi_remove (&i
, true);
2022 i
= gsi_last_bb (bb
);
2028 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2029 bb
->il
.gimple
.seq
= NULL
;
2030 bb
->il
.gimple
.phi_nodes
= NULL
;
2034 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2035 predicate VAL, return the edge that will be taken out of the block.
2036 If VAL does not match a unique edge, NULL is returned. */
2039 find_taken_edge (basic_block bb
, tree val
)
2043 stmt
= last_stmt (bb
);
2046 gcc_assert (is_ctrl_stmt (stmt
));
2051 if (!is_gimple_min_invariant (val
))
2054 if (gimple_code (stmt
) == GIMPLE_COND
)
2055 return find_taken_edge_cond_expr (bb
, val
);
2057 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2058 return find_taken_edge_switch_expr (bb
, val
);
2060 if (computed_goto_p (stmt
))
2062 /* Only optimize if the argument is a label, if the argument is
2063 not a label then we can not construct a proper CFG.
2065 It may be the case that we only need to allow the LABEL_REF to
2066 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2067 appear inside a LABEL_EXPR just to be safe. */
2068 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2069 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2070 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2077 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2078 statement, determine which of the outgoing edges will be taken out of the
2079 block. Return NULL if either edge may be taken. */
2082 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2087 dest
= label_to_block (val
);
2090 e
= find_edge (bb
, dest
);
2091 gcc_assert (e
!= NULL
);
2097 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2098 statement, determine which of the two edges will be taken out of the
2099 block. Return NULL if either edge may be taken. */
2102 find_taken_edge_cond_expr (basic_block bb
, tree val
)
2104 edge true_edge
, false_edge
;
2106 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
2108 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
2109 return (integer_zerop (val
) ? false_edge
: true_edge
);
2112 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2113 statement, determine which edge will be taken out of the block. Return
2114 NULL if any edge may be taken. */
2117 find_taken_edge_switch_expr (basic_block bb
, tree val
)
2119 basic_block dest_bb
;
2124 switch_stmt
= last_stmt (bb
);
2125 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2126 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2128 e
= find_edge (bb
, dest_bb
);
2134 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2135 We can make optimal use here of the fact that the case labels are
2136 sorted: We can do a binary search for a case matching VAL. */
2139 find_case_label_for_value (gimple switch_stmt
, tree val
)
2141 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2142 tree default_case
= gimple_switch_default_label (switch_stmt
);
2144 for (low
= 0, high
= n
; high
- low
> 1; )
2146 size_t i
= (high
+ low
) / 2;
2147 tree t
= gimple_switch_label (switch_stmt
, i
);
2150 /* Cache the result of comparing CASE_LOW and val. */
2151 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2158 if (CASE_HIGH (t
) == NULL
)
2160 /* A singe-valued case label. */
2166 /* A case range. We can only handle integer ranges. */
2167 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2172 return default_case
;
2176 /* Dump a basic block on stderr. */
2179 gimple_debug_bb (basic_block bb
)
2181 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2185 /* Dump basic block with index N on stderr. */
2188 gimple_debug_bb_n (int n
)
2190 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun
, n
));
2191 return BASIC_BLOCK_FOR_FN (cfun
, n
);
2195 /* Dump the CFG on stderr.
2197 FLAGS are the same used by the tree dumping functions
2198 (see TDF_* in dumpfile.h). */
2201 gimple_debug_cfg (int flags
)
2203 gimple_dump_cfg (stderr
, flags
);
2207 /* Dump the program showing basic block boundaries on the given FILE.
2209 FLAGS are the same used by the tree dumping functions (see TDF_* in
2213 gimple_dump_cfg (FILE *file
, int flags
)
2215 if (flags
& TDF_DETAILS
)
2217 dump_function_header (file
, current_function_decl
, flags
);
2218 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2219 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
2220 last_basic_block_for_fn (cfun
));
2222 brief_dump_cfg (file
, flags
| TDF_COMMENT
);
2223 fprintf (file
, "\n");
2226 if (flags
& TDF_STATS
)
2227 dump_cfg_stats (file
);
2229 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2233 /* Dump CFG statistics on FILE. */
2236 dump_cfg_stats (FILE *file
)
2238 static long max_num_merged_labels
= 0;
2239 unsigned long size
, total
= 0;
2242 const char * const fmt_str
= "%-30s%-13s%12s\n";
2243 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2244 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2245 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2246 const char *funcname
= current_function_name ();
2248 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2250 fprintf (file
, "---------------------------------------------------------\n");
2251 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2252 fprintf (file
, fmt_str
, "", " instances ", "used ");
2253 fprintf (file
, "---------------------------------------------------------\n");
2255 size
= n_basic_blocks_for_fn (cfun
) * sizeof (struct basic_block_def
);
2257 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks_for_fn (cfun
),
2258 SCALE (size
), LABEL (size
));
2261 FOR_EACH_BB_FN (bb
, cfun
)
2262 num_edges
+= EDGE_COUNT (bb
->succs
);
2263 size
= num_edges
* sizeof (struct edge_def
);
2265 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2267 fprintf (file
, "---------------------------------------------------------\n");
2268 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2270 fprintf (file
, "---------------------------------------------------------\n");
2271 fprintf (file
, "\n");
2273 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2274 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2276 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2277 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2279 fprintf (file
, "\n");
2283 /* Dump CFG statistics on stderr. Keep extern so that it's always
2284 linked in the final executable. */
2287 debug_cfg_stats (void)
2289 dump_cfg_stats (stderr
);
2292 /*---------------------------------------------------------------------------
2293 Miscellaneous helpers
2294 ---------------------------------------------------------------------------*/
2296 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2297 flow. Transfers of control flow associated with EH are excluded. */
2300 call_can_make_abnormal_goto (gimple t
)
2302 /* If the function has no non-local labels, then a call cannot make an
2303 abnormal transfer of control. */
2304 if (!cfun
->has_nonlocal_label
2305 && !cfun
->calls_setjmp
)
2308 /* Likewise if the call has no side effects. */
2309 if (!gimple_has_side_effects (t
))
2312 /* Likewise if the called function is leaf. */
2313 if (gimple_call_flags (t
) & ECF_LEAF
)
2320 /* Return true if T can make an abnormal transfer of control flow.
2321 Transfers of control flow associated with EH are excluded. */
2324 stmt_can_make_abnormal_goto (gimple t
)
2326 if (computed_goto_p (t
))
2328 if (is_gimple_call (t
))
2329 return call_can_make_abnormal_goto (t
);
2334 /* Return true if T represents a stmt that always transfers control. */
2337 is_ctrl_stmt (gimple t
)
2339 switch (gimple_code (t
))
2353 /* Return true if T is a statement that may alter the flow of control
2354 (e.g., a call to a non-returning function). */
2357 is_ctrl_altering_stmt (gimple t
)
2361 switch (gimple_code (t
))
2365 int flags
= gimple_call_flags (t
);
2367 /* A call alters control flow if it can make an abnormal goto. */
2368 if (call_can_make_abnormal_goto (t
))
2371 /* A call also alters control flow if it does not return. */
2372 if (flags
& ECF_NORETURN
)
2375 /* TM ending statements have backedges out of the transaction.
2376 Return true so we split the basic block containing them.
2377 Note that the TM_BUILTIN test is merely an optimization. */
2378 if ((flags
& ECF_TM_BUILTIN
)
2379 && is_tm_ending_fndecl (gimple_call_fndecl (t
)))
2382 /* BUILT_IN_RETURN call is same as return statement. */
2383 if (gimple_call_builtin_p (t
, BUILT_IN_RETURN
))
2388 case GIMPLE_EH_DISPATCH
:
2389 /* EH_DISPATCH branches to the individual catch handlers at
2390 this level of a try or allowed-exceptions region. It can
2391 fallthru to the next statement as well. */
2395 if (gimple_asm_nlabels (t
) > 0)
2400 /* OpenMP directives alter control flow. */
2403 case GIMPLE_TRANSACTION
:
2404 /* A transaction start alters control flow. */
2411 /* If a statement can throw, it alters control flow. */
2412 return stmt_can_throw_internal (t
);
2416 /* Return true if T is a simple local goto. */
2419 simple_goto_p (gimple t
)
2421 return (gimple_code (t
) == GIMPLE_GOTO
2422 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2426 /* Return true if STMT should start a new basic block. PREV_STMT is
2427 the statement preceding STMT. It is used when STMT is a label or a
2428 case label. Labels should only start a new basic block if their
2429 previous statement wasn't a label. Otherwise, sequence of labels
2430 would generate unnecessary basic blocks that only contain a single
2434 stmt_starts_bb_p (gimple stmt
, gimple prev_stmt
)
2439 /* Labels start a new basic block only if the preceding statement
2440 wasn't a label of the same type. This prevents the creation of
2441 consecutive blocks that have nothing but a single label. */
2442 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2444 /* Nonlocal and computed GOTO targets always start a new block. */
2445 if (DECL_NONLOCAL (gimple_label_label (stmt
))
2446 || FORCED_LABEL (gimple_label_label (stmt
)))
2449 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2451 if (DECL_NONLOCAL (gimple_label_label (prev_stmt
)))
2454 cfg_stats
.num_merged_labels
++;
2460 else if (gimple_code (stmt
) == GIMPLE_CALL
2461 && gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2462 /* setjmp acts similar to a nonlocal GOTO target and thus should
2463 start a new block. */
2470 /* Return true if T should end a basic block. */
2473 stmt_ends_bb_p (gimple t
)
2475 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2478 /* Remove block annotations and other data structures. */
2481 delete_tree_cfg_annotations (void)
2483 vec_free (label_to_block_map_for_fn (cfun
));
2487 /* Return the first statement in basic block BB. */
2490 first_stmt (basic_block bb
)
2492 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2495 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2503 /* Return the first non-label statement in basic block BB. */
2506 first_non_label_stmt (basic_block bb
)
2508 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2509 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2511 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2514 /* Return the last statement in basic block BB. */
2517 last_stmt (basic_block bb
)
2519 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2522 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2530 /* Return the last statement of an otherwise empty block. Return NULL
2531 if the block is totally empty, or if it contains more than one
2535 last_and_only_stmt (basic_block bb
)
2537 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2543 last
= gsi_stmt (i
);
2544 gsi_prev_nondebug (&i
);
2548 /* Empty statements should no longer appear in the instruction stream.
2549 Everything that might have appeared before should be deleted by
2550 remove_useless_stmts, and the optimizers should just gsi_remove
2551 instead of smashing with build_empty_stmt.
2553 Thus the only thing that should appear here in a block containing
2554 one executable statement is a label. */
2555 prev
= gsi_stmt (i
);
2556 if (gimple_code (prev
) == GIMPLE_LABEL
)
2562 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2565 reinstall_phi_args (edge new_edge
, edge old_edge
)
2567 edge_var_map_vector
*v
;
2570 gimple_stmt_iterator phis
;
2572 v
= redirect_edge_var_map_vector (old_edge
);
2576 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2577 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2578 i
++, gsi_next (&phis
))
2580 gimple phi
= gsi_stmt (phis
);
2581 tree result
= redirect_edge_var_map_result (vm
);
2582 tree arg
= redirect_edge_var_map_def (vm
);
2584 gcc_assert (result
== gimple_phi_result (phi
));
2586 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2589 redirect_edge_var_map_clear (old_edge
);
2592 /* Returns the basic block after which the new basic block created
2593 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2594 near its "logical" location. This is of most help to humans looking
2595 at debugging dumps. */
2598 split_edge_bb_loc (edge edge_in
)
2600 basic_block dest
= edge_in
->dest
;
2601 basic_block dest_prev
= dest
->prev_bb
;
2605 edge e
= find_edge (dest_prev
, dest
);
2606 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2607 return edge_in
->src
;
2612 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2613 Abort on abnormal edges. */
2616 gimple_split_edge (edge edge_in
)
2618 basic_block new_bb
, after_bb
, dest
;
2621 /* Abnormal edges cannot be split. */
2622 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2624 dest
= edge_in
->dest
;
2626 after_bb
= split_edge_bb_loc (edge_in
);
2628 new_bb
= create_empty_bb (after_bb
);
2629 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2630 new_bb
->count
= edge_in
->count
;
2631 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2632 new_edge
->probability
= REG_BR_PROB_BASE
;
2633 new_edge
->count
= edge_in
->count
;
2635 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2636 gcc_assert (e
== edge_in
);
2637 reinstall_phi_args (new_edge
, e
);
2643 /* Verify properties of the address expression T with base object BASE. */
2646 verify_address (tree t
, tree base
)
2649 bool old_side_effects
;
2651 bool new_side_effects
;
2653 old_constant
= TREE_CONSTANT (t
);
2654 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2656 recompute_tree_invariant_for_addr_expr (t
);
2657 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2658 new_constant
= TREE_CONSTANT (t
);
2660 if (old_constant
!= new_constant
)
2662 error ("constant not recomputed when ADDR_EXPR changed");
2665 if (old_side_effects
!= new_side_effects
)
2667 error ("side effects not recomputed when ADDR_EXPR changed");
2671 if (!(TREE_CODE (base
) == VAR_DECL
2672 || TREE_CODE (base
) == PARM_DECL
2673 || TREE_CODE (base
) == RESULT_DECL
))
2676 if (DECL_GIMPLE_REG_P (base
))
2678 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2685 /* Callback for walk_tree, check that all elements with address taken are
2686 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2687 inside a PHI node. */
2690 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2697 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2698 #define CHECK_OP(N, MSG) \
2699 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2700 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2702 switch (TREE_CODE (t
))
2705 if (SSA_NAME_IN_FREE_LIST (t
))
2707 error ("SSA name in freelist but still referenced");
2713 error ("INDIRECT_REF in gimple IL");
2717 x
= TREE_OPERAND (t
, 0);
2718 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2719 || !is_gimple_mem_ref_addr (x
))
2721 error ("invalid first operand of MEM_REF");
2724 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2725 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2727 error ("invalid offset operand of MEM_REF");
2728 return TREE_OPERAND (t
, 1);
2730 if (TREE_CODE (x
) == ADDR_EXPR
2731 && (x
= verify_address (x
, TREE_OPERAND (x
, 0))))
2737 x
= fold (ASSERT_EXPR_COND (t
));
2738 if (x
== boolean_false_node
)
2740 error ("ASSERT_EXPR with an always-false condition");
2746 error ("MODIFY_EXPR not expected while having tuples");
2753 gcc_assert (is_gimple_address (t
));
2755 /* Skip any references (they will be checked when we recurse down the
2756 tree) and ensure that any variable used as a prefix is marked
2758 for (x
= TREE_OPERAND (t
, 0);
2759 handled_component_p (x
);
2760 x
= TREE_OPERAND (x
, 0))
2763 if ((tem
= verify_address (t
, x
)))
2766 if (!(TREE_CODE (x
) == VAR_DECL
2767 || TREE_CODE (x
) == PARM_DECL
2768 || TREE_CODE (x
) == RESULT_DECL
))
2771 if (!TREE_ADDRESSABLE (x
))
2773 error ("address taken, but ADDRESSABLE bit not set");
2781 x
= COND_EXPR_COND (t
);
2782 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
2784 error ("non-integral used in condition");
2787 if (!is_gimple_condexpr (x
))
2789 error ("invalid conditional operand");
2794 case NON_LVALUE_EXPR
:
2795 case TRUTH_NOT_EXPR
:
2799 case FIX_TRUNC_EXPR
:
2804 CHECK_OP (0, "invalid operand to unary operator");
2810 if (!is_gimple_reg_type (TREE_TYPE (t
)))
2812 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2816 if (TREE_CODE (t
) == BIT_FIELD_REF
)
2818 tree t0
= TREE_OPERAND (t
, 0);
2819 tree t1
= TREE_OPERAND (t
, 1);
2820 tree t2
= TREE_OPERAND (t
, 2);
2821 if (!tree_fits_uhwi_p (t1
)
2822 || !tree_fits_uhwi_p (t2
))
2824 error ("invalid position or size operand to BIT_FIELD_REF");
2827 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
2828 && (TYPE_PRECISION (TREE_TYPE (t
))
2829 != tree_to_uhwi (t1
)))
2831 error ("integral result type precision does not match "
2832 "field size of BIT_FIELD_REF");
2835 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
2836 && TYPE_MODE (TREE_TYPE (t
)) != BLKmode
2837 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
2838 != tree_to_uhwi (t1
)))
2840 error ("mode precision of non-integral result does not "
2841 "match field size of BIT_FIELD_REF");
2844 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0
))
2845 && (tree_to_uhwi (t1
) + tree_to_uhwi (t2
)
2846 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0
)))))
2848 error ("position plus size exceeds size of referenced object in "
2853 t
= TREE_OPERAND (t
, 0);
2858 case ARRAY_RANGE_REF
:
2859 case VIEW_CONVERT_EXPR
:
2860 /* We have a nest of references. Verify that each of the operands
2861 that determine where to reference is either a constant or a variable,
2862 verify that the base is valid, and then show we've already checked
2864 while (handled_component_p (t
))
2866 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
2867 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2868 else if (TREE_CODE (t
) == ARRAY_REF
2869 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
2871 CHECK_OP (1, "invalid array index");
2872 if (TREE_OPERAND (t
, 2))
2873 CHECK_OP (2, "invalid array lower bound");
2874 if (TREE_OPERAND (t
, 3))
2875 CHECK_OP (3, "invalid array stride");
2877 else if (TREE_CODE (t
) == BIT_FIELD_REF
2878 || TREE_CODE (t
) == REALPART_EXPR
2879 || TREE_CODE (t
) == IMAGPART_EXPR
)
2881 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2886 t
= TREE_OPERAND (t
, 0);
2889 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
2891 error ("invalid reference prefix");
2898 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2899 POINTER_PLUS_EXPR. */
2900 if (POINTER_TYPE_P (TREE_TYPE (t
)))
2902 error ("invalid operand to plus/minus, type is a pointer");
2905 CHECK_OP (0, "invalid operand to binary operator");
2906 CHECK_OP (1, "invalid operand to binary operator");
2909 case POINTER_PLUS_EXPR
:
2910 /* Check to make sure the first operand is a pointer or reference type. */
2911 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
2913 error ("invalid operand to pointer plus, first operand is not a pointer");
2916 /* Check to make sure the second operand is a ptrofftype. */
2917 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t
, 1))))
2919 error ("invalid operand to pointer plus, second operand is not an "
2920 "integer type of appropriate width");
2930 case UNORDERED_EXPR
:
2939 case TRUNC_DIV_EXPR
:
2941 case FLOOR_DIV_EXPR
:
2942 case ROUND_DIV_EXPR
:
2943 case TRUNC_MOD_EXPR
:
2945 case FLOOR_MOD_EXPR
:
2946 case ROUND_MOD_EXPR
:
2948 case EXACT_DIV_EXPR
:
2958 CHECK_OP (0, "invalid operand to binary operator");
2959 CHECK_OP (1, "invalid operand to binary operator");
2963 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2967 case CASE_LABEL_EXPR
:
2970 error ("invalid CASE_CHAIN");
2984 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2985 Returns true if there is an error, otherwise false. */
2988 verify_types_in_gimple_min_lval (tree expr
)
2992 if (is_gimple_id (expr
))
2995 if (TREE_CODE (expr
) != TARGET_MEM_REF
2996 && TREE_CODE (expr
) != MEM_REF
)
2998 error ("invalid expression for min lvalue");
3002 /* TARGET_MEM_REFs are strange beasts. */
3003 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3006 op
= TREE_OPERAND (expr
, 0);
3007 if (!is_gimple_val (op
))
3009 error ("invalid operand in indirect reference");
3010 debug_generic_stmt (op
);
3013 /* Memory references now generally can involve a value conversion. */
3018 /* Verify if EXPR is a valid GIMPLE reference expression. If
3019 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3020 if there is an error, otherwise false. */
3023 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
3025 while (handled_component_p (expr
))
3027 tree op
= TREE_OPERAND (expr
, 0);
3029 if (TREE_CODE (expr
) == ARRAY_REF
3030 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3032 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3033 || (TREE_OPERAND (expr
, 2)
3034 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3035 || (TREE_OPERAND (expr
, 3)
3036 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3038 error ("invalid operands to array reference");
3039 debug_generic_stmt (expr
);
3044 /* Verify if the reference array element types are compatible. */
3045 if (TREE_CODE (expr
) == ARRAY_REF
3046 && !useless_type_conversion_p (TREE_TYPE (expr
),
3047 TREE_TYPE (TREE_TYPE (op
))))
3049 error ("type mismatch in array reference");
3050 debug_generic_stmt (TREE_TYPE (expr
));
3051 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3054 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3055 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3056 TREE_TYPE (TREE_TYPE (op
))))
3058 error ("type mismatch in array range reference");
3059 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3060 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3064 if ((TREE_CODE (expr
) == REALPART_EXPR
3065 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3066 && !useless_type_conversion_p (TREE_TYPE (expr
),
3067 TREE_TYPE (TREE_TYPE (op
))))
3069 error ("type mismatch in real/imagpart reference");
3070 debug_generic_stmt (TREE_TYPE (expr
));
3071 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3075 if (TREE_CODE (expr
) == COMPONENT_REF
3076 && !useless_type_conversion_p (TREE_TYPE (expr
),
3077 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3079 error ("type mismatch in component reference");
3080 debug_generic_stmt (TREE_TYPE (expr
));
3081 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3085 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3087 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3088 that their operand is not an SSA name or an invariant when
3089 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3090 bug). Otherwise there is nothing to verify, gross mismatches at
3091 most invoke undefined behavior. */
3093 && (TREE_CODE (op
) == SSA_NAME
3094 || is_gimple_min_invariant (op
)))
3096 error ("conversion of an SSA_NAME on the left hand side");
3097 debug_generic_stmt (expr
);
3100 else if (TREE_CODE (op
) == SSA_NAME
3101 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3103 error ("conversion of register to a different size");
3104 debug_generic_stmt (expr
);
3107 else if (!handled_component_p (op
))
3114 if (TREE_CODE (expr
) == MEM_REF
)
3116 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
3118 error ("invalid address operand in MEM_REF");
3119 debug_generic_stmt (expr
);
3122 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
3123 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3125 error ("invalid offset operand in MEM_REF");
3126 debug_generic_stmt (expr
);
3130 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3132 if (!TMR_BASE (expr
)
3133 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
3135 error ("invalid address operand in TARGET_MEM_REF");
3138 if (!TMR_OFFSET (expr
)
3139 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
3140 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3142 error ("invalid offset operand in TARGET_MEM_REF");
3143 debug_generic_stmt (expr
);
3148 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3149 && verify_types_in_gimple_min_lval (expr
));
3152 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3153 list of pointer-to types that is trivially convertible to DEST. */
3156 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3160 if (!TYPE_POINTER_TO (src_obj
))
3163 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3164 if (useless_type_conversion_p (dest
, src
))
3170 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3171 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3174 valid_fixed_convert_types_p (tree type1
, tree type2
)
3176 return (FIXED_POINT_TYPE_P (type1
)
3177 && (INTEGRAL_TYPE_P (type2
)
3178 || SCALAR_FLOAT_TYPE_P (type2
)
3179 || FIXED_POINT_TYPE_P (type2
)));
3182 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3183 is a problem, otherwise false. */
3186 verify_gimple_call (gimple stmt
)
3188 tree fn
= gimple_call_fn (stmt
);
3189 tree fntype
, fndecl
;
3192 if (gimple_call_internal_p (stmt
))
3196 error ("gimple call has two targets");
3197 debug_generic_stmt (fn
);
3205 error ("gimple call has no target");
3210 if (fn
&& !is_gimple_call_addr (fn
))
3212 error ("invalid function in gimple call");
3213 debug_generic_stmt (fn
);
3218 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3219 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3220 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3222 error ("non-function in gimple call");
3226 fndecl
= gimple_call_fndecl (stmt
);
3228 && TREE_CODE (fndecl
) == FUNCTION_DECL
3229 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3230 && !DECL_PURE_P (fndecl
)
3231 && !TREE_READONLY (fndecl
))
3233 error ("invalid pure const state for function");
3237 if (gimple_call_lhs (stmt
)
3238 && (!is_gimple_lvalue (gimple_call_lhs (stmt
))
3239 || verify_types_in_gimple_reference (gimple_call_lhs (stmt
), true)))
3241 error ("invalid LHS in gimple call");
3245 if (gimple_call_lhs (stmt
) && gimple_call_noreturn_p (stmt
))
3247 error ("LHS in noreturn call");
3251 fntype
= gimple_call_fntype (stmt
);
3253 && gimple_call_lhs (stmt
)
3254 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt
)),
3256 /* ??? At least C++ misses conversions at assignments from
3257 void * call results.
3258 ??? Java is completely off. Especially with functions
3259 returning java.lang.Object.
3260 For now simply allow arbitrary pointer type conversions. */
3261 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt
)))
3262 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3264 error ("invalid conversion in gimple call");
3265 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt
)));
3266 debug_generic_stmt (TREE_TYPE (fntype
));
3270 if (gimple_call_chain (stmt
)
3271 && !is_gimple_val (gimple_call_chain (stmt
)))
3273 error ("invalid static chain in gimple call");
3274 debug_generic_stmt (gimple_call_chain (stmt
));
3278 /* If there is a static chain argument, this should not be an indirect
3279 call, and the decl should have DECL_STATIC_CHAIN set. */
3280 if (gimple_call_chain (stmt
))
3282 if (!gimple_call_fndecl (stmt
))
3284 error ("static chain in indirect gimple call");
3287 fn
= TREE_OPERAND (fn
, 0);
3289 if (!DECL_STATIC_CHAIN (fn
))
3291 error ("static chain with function that doesn%'t use one");
3296 /* ??? The C frontend passes unpromoted arguments in case it
3297 didn't see a function declaration before the call. So for now
3298 leave the call arguments mostly unverified. Once we gimplify
3299 unit-at-a-time we have a chance to fix this. */
3301 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3303 tree arg
= gimple_call_arg (stmt
, i
);
3304 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3305 && !is_gimple_val (arg
))
3306 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3307 && !is_gimple_lvalue (arg
)))
3309 error ("invalid argument to gimple call");
3310 debug_generic_expr (arg
);
3318 /* Verifies the gimple comparison with the result type TYPE and
3319 the operands OP0 and OP1. */
3322 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3324 tree op0_type
= TREE_TYPE (op0
);
3325 tree op1_type
= TREE_TYPE (op1
);
3327 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3329 error ("invalid operands in gimple comparison");
3333 /* For comparisons we do not have the operations type as the
3334 effective type the comparison is carried out in. Instead
3335 we require that either the first operand is trivially
3336 convertible into the second, or the other way around.
3337 Because we special-case pointers to void we allow
3338 comparisons of pointers with the same mode as well. */
3339 if (!useless_type_conversion_p (op0_type
, op1_type
)
3340 && !useless_type_conversion_p (op1_type
, op0_type
)
3341 && (!POINTER_TYPE_P (op0_type
)
3342 || !POINTER_TYPE_P (op1_type
)
3343 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3345 error ("mismatching comparison operand types");
3346 debug_generic_expr (op0_type
);
3347 debug_generic_expr (op1_type
);
3351 /* The resulting type of a comparison may be an effective boolean type. */
3352 if (INTEGRAL_TYPE_P (type
)
3353 && (TREE_CODE (type
) == BOOLEAN_TYPE
3354 || TYPE_PRECISION (type
) == 1))
3356 if (TREE_CODE (op0_type
) == VECTOR_TYPE
3357 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3359 error ("vector comparison returning a boolean");
3360 debug_generic_expr (op0_type
);
3361 debug_generic_expr (op1_type
);
3365 /* Or an integer vector type with the same size and element count
3366 as the comparison operand types. */
3367 else if (TREE_CODE (type
) == VECTOR_TYPE
3368 && TREE_CODE (TREE_TYPE (type
)) == INTEGER_TYPE
)
3370 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3371 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3373 error ("non-vector operands in vector comparison");
3374 debug_generic_expr (op0_type
);
3375 debug_generic_expr (op1_type
);
3379 if (TYPE_VECTOR_SUBPARTS (type
) != TYPE_VECTOR_SUBPARTS (op0_type
)
3380 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type
)))
3381 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type
))))
3382 /* The result of a vector comparison is of signed
3384 || TYPE_UNSIGNED (TREE_TYPE (type
)))
3386 error ("invalid vector comparison resulting type");
3387 debug_generic_expr (type
);
3393 error ("bogus comparison result type");
3394 debug_generic_expr (type
);
3401 /* Verify a gimple assignment statement STMT with an unary rhs.
3402 Returns true if anything is wrong. */
3405 verify_gimple_assign_unary (gimple stmt
)
3407 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3408 tree lhs
= gimple_assign_lhs (stmt
);
3409 tree lhs_type
= TREE_TYPE (lhs
);
3410 tree rhs1
= gimple_assign_rhs1 (stmt
);
3411 tree rhs1_type
= TREE_TYPE (rhs1
);
3413 if (!is_gimple_reg (lhs
))
3415 error ("non-register as LHS of unary operation");
3419 if (!is_gimple_val (rhs1
))
3421 error ("invalid operand in unary operation");
3425 /* First handle conversions. */
3430 /* Allow conversions from pointer type to integral type only if
3431 there is no sign or zero extension involved.
3432 For targets were the precision of ptrofftype doesn't match that
3433 of pointers we need to allow arbitrary conversions to ptrofftype. */
3434 if ((POINTER_TYPE_P (lhs_type
)
3435 && INTEGRAL_TYPE_P (rhs1_type
))
3436 || (POINTER_TYPE_P (rhs1_type
)
3437 && INTEGRAL_TYPE_P (lhs_type
)
3438 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3439 || ptrofftype_p (sizetype
))))
3442 /* Allow conversion from integral to offset type and vice versa. */
3443 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3444 && INTEGRAL_TYPE_P (rhs1_type
))
3445 || (INTEGRAL_TYPE_P (lhs_type
)
3446 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3449 /* Otherwise assert we are converting between types of the
3451 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3453 error ("invalid types in nop conversion");
3454 debug_generic_expr (lhs_type
);
3455 debug_generic_expr (rhs1_type
);
3462 case ADDR_SPACE_CONVERT_EXPR
:
3464 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3465 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3466 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3468 error ("invalid types in address space conversion");
3469 debug_generic_expr (lhs_type
);
3470 debug_generic_expr (rhs1_type
);
3477 case FIXED_CONVERT_EXPR
:
3479 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3480 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3482 error ("invalid types in fixed-point conversion");
3483 debug_generic_expr (lhs_type
);
3484 debug_generic_expr (rhs1_type
);
3493 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3494 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3495 || !VECTOR_FLOAT_TYPE_P (lhs_type
)))
3497 error ("invalid types in conversion to floating point");
3498 debug_generic_expr (lhs_type
);
3499 debug_generic_expr (rhs1_type
);
3506 case FIX_TRUNC_EXPR
:
3508 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3509 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3510 || !VECTOR_FLOAT_TYPE_P (rhs1_type
)))
3512 error ("invalid types in conversion to integer");
3513 debug_generic_expr (lhs_type
);
3514 debug_generic_expr (rhs1_type
);
3521 case VEC_UNPACK_HI_EXPR
:
3522 case VEC_UNPACK_LO_EXPR
:
3523 case REDUC_MAX_EXPR
:
3524 case REDUC_MIN_EXPR
:
3525 case REDUC_PLUS_EXPR
:
3526 case VEC_UNPACK_FLOAT_HI_EXPR
:
3527 case VEC_UNPACK_FLOAT_LO_EXPR
:
3535 case NON_LVALUE_EXPR
:
3543 /* For the remaining codes assert there is no conversion involved. */
3544 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3546 error ("non-trivial conversion in unary operation");
3547 debug_generic_expr (lhs_type
);
3548 debug_generic_expr (rhs1_type
);
3555 /* Verify a gimple assignment statement STMT with a binary rhs.
3556 Returns true if anything is wrong. */
3559 verify_gimple_assign_binary (gimple stmt
)
3561 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3562 tree lhs
= gimple_assign_lhs (stmt
);
3563 tree lhs_type
= TREE_TYPE (lhs
);
3564 tree rhs1
= gimple_assign_rhs1 (stmt
);
3565 tree rhs1_type
= TREE_TYPE (rhs1
);
3566 tree rhs2
= gimple_assign_rhs2 (stmt
);
3567 tree rhs2_type
= TREE_TYPE (rhs2
);
3569 if (!is_gimple_reg (lhs
))
3571 error ("non-register as LHS of binary operation");
3575 if (!is_gimple_val (rhs1
)
3576 || !is_gimple_val (rhs2
))
3578 error ("invalid operands in binary operation");
3582 /* First handle operations that involve different types. */
3587 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3588 || !(INTEGRAL_TYPE_P (rhs1_type
)
3589 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3590 || !(INTEGRAL_TYPE_P (rhs2_type
)
3591 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3593 error ("type mismatch in complex expression");
3594 debug_generic_expr (lhs_type
);
3595 debug_generic_expr (rhs1_type
);
3596 debug_generic_expr (rhs2_type
);
3608 /* Shifts and rotates are ok on integral types, fixed point
3609 types and integer vector types. */
3610 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3611 && !FIXED_POINT_TYPE_P (rhs1_type
)
3612 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3613 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3614 || (!INTEGRAL_TYPE_P (rhs2_type
)
3615 /* Vector shifts of vectors are also ok. */
3616 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3617 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3618 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3619 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3620 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3622 error ("type mismatch in shift expression");
3623 debug_generic_expr (lhs_type
);
3624 debug_generic_expr (rhs1_type
);
3625 debug_generic_expr (rhs2_type
);
3632 case VEC_LSHIFT_EXPR
:
3633 case VEC_RSHIFT_EXPR
:
3635 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3636 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3637 || POINTER_TYPE_P (TREE_TYPE (rhs1_type
))
3638 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type
))
3639 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3640 || (!INTEGRAL_TYPE_P (rhs2_type
)
3641 && (TREE_CODE (rhs2_type
) != VECTOR_TYPE
3642 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3643 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3645 error ("type mismatch in vector shift expression");
3646 debug_generic_expr (lhs_type
);
3647 debug_generic_expr (rhs1_type
);
3648 debug_generic_expr (rhs2_type
);
3651 /* For shifting a vector of non-integral components we
3652 only allow shifting by a constant multiple of the element size. */
3653 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3654 && (TREE_CODE (rhs2
) != INTEGER_CST
3655 || !div_if_zero_remainder (EXACT_DIV_EXPR
, rhs2
,
3656 TYPE_SIZE (TREE_TYPE (rhs1_type
)))))
3658 error ("non-element sized vector shift of floating point vector");
3665 case WIDEN_LSHIFT_EXPR
:
3667 if (!INTEGRAL_TYPE_P (lhs_type
)
3668 || !INTEGRAL_TYPE_P (rhs1_type
)
3669 || TREE_CODE (rhs2
) != INTEGER_CST
3670 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3672 error ("type mismatch in widening vector shift expression");
3673 debug_generic_expr (lhs_type
);
3674 debug_generic_expr (rhs1_type
);
3675 debug_generic_expr (rhs2_type
);
3682 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3683 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3685 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3686 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3687 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3688 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3689 || TREE_CODE (rhs2
) != INTEGER_CST
3690 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3691 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3693 error ("type mismatch in widening vector shift expression");
3694 debug_generic_expr (lhs_type
);
3695 debug_generic_expr (rhs1_type
);
3696 debug_generic_expr (rhs2_type
);
3706 tree lhs_etype
= lhs_type
;
3707 tree rhs1_etype
= rhs1_type
;
3708 tree rhs2_etype
= rhs2_type
;
3709 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
)
3711 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3712 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3714 error ("invalid non-vector operands to vector valued plus");
3717 lhs_etype
= TREE_TYPE (lhs_type
);
3718 rhs1_etype
= TREE_TYPE (rhs1_type
);
3719 rhs2_etype
= TREE_TYPE (rhs2_type
);
3721 if (POINTER_TYPE_P (lhs_etype
)
3722 || POINTER_TYPE_P (rhs1_etype
)
3723 || POINTER_TYPE_P (rhs2_etype
))
3725 error ("invalid (pointer) operands to plus/minus");
3729 /* Continue with generic binary expression handling. */
3733 case POINTER_PLUS_EXPR
:
3735 if (!POINTER_TYPE_P (rhs1_type
)
3736 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3737 || !ptrofftype_p (rhs2_type
))
3739 error ("type mismatch in pointer plus expression");
3740 debug_generic_stmt (lhs_type
);
3741 debug_generic_stmt (rhs1_type
);
3742 debug_generic_stmt (rhs2_type
);
3749 case TRUTH_ANDIF_EXPR
:
3750 case TRUTH_ORIF_EXPR
:
3751 case TRUTH_AND_EXPR
:
3753 case TRUTH_XOR_EXPR
:
3763 case UNORDERED_EXPR
:
3771 /* Comparisons are also binary, but the result type is not
3772 connected to the operand types. */
3773 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3775 case WIDEN_MULT_EXPR
:
3776 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3778 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
3779 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3781 case WIDEN_SUM_EXPR
:
3782 case VEC_WIDEN_MULT_HI_EXPR
:
3783 case VEC_WIDEN_MULT_LO_EXPR
:
3784 case VEC_WIDEN_MULT_EVEN_EXPR
:
3785 case VEC_WIDEN_MULT_ODD_EXPR
:
3786 case VEC_PACK_TRUNC_EXPR
:
3787 case VEC_PACK_SAT_EXPR
:
3788 case VEC_PACK_FIX_TRUNC_EXPR
:
3793 case MULT_HIGHPART_EXPR
:
3794 case TRUNC_DIV_EXPR
:
3796 case FLOOR_DIV_EXPR
:
3797 case ROUND_DIV_EXPR
:
3798 case TRUNC_MOD_EXPR
:
3800 case FLOOR_MOD_EXPR
:
3801 case ROUND_MOD_EXPR
:
3803 case EXACT_DIV_EXPR
:
3809 /* Continue with generic binary expression handling. */
3816 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3817 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3819 error ("type mismatch in binary expression");
3820 debug_generic_stmt (lhs_type
);
3821 debug_generic_stmt (rhs1_type
);
3822 debug_generic_stmt (rhs2_type
);
3829 /* Verify a gimple assignment statement STMT with a ternary rhs.
3830 Returns true if anything is wrong. */
3833 verify_gimple_assign_ternary (gimple stmt
)
3835 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3836 tree lhs
= gimple_assign_lhs (stmt
);
3837 tree lhs_type
= TREE_TYPE (lhs
);
3838 tree rhs1
= gimple_assign_rhs1 (stmt
);
3839 tree rhs1_type
= TREE_TYPE (rhs1
);
3840 tree rhs2
= gimple_assign_rhs2 (stmt
);
3841 tree rhs2_type
= TREE_TYPE (rhs2
);
3842 tree rhs3
= gimple_assign_rhs3 (stmt
);
3843 tree rhs3_type
= TREE_TYPE (rhs3
);
3845 if (!is_gimple_reg (lhs
))
3847 error ("non-register as LHS of ternary operation");
3851 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
3852 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
3853 || !is_gimple_val (rhs2
)
3854 || !is_gimple_val (rhs3
))
3856 error ("invalid operands in ternary operation");
3860 /* First handle operations that involve different types. */
3863 case WIDEN_MULT_PLUS_EXPR
:
3864 case WIDEN_MULT_MINUS_EXPR
:
3865 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3866 && !FIXED_POINT_TYPE_P (rhs1_type
))
3867 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
3868 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
3869 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
3870 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
3872 error ("type mismatch in widening multiply-accumulate expression");
3873 debug_generic_expr (lhs_type
);
3874 debug_generic_expr (rhs1_type
);
3875 debug_generic_expr (rhs2_type
);
3876 debug_generic_expr (rhs3_type
);
3882 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3883 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3884 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3886 error ("type mismatch in fused multiply-add expression");
3887 debug_generic_expr (lhs_type
);
3888 debug_generic_expr (rhs1_type
);
3889 debug_generic_expr (rhs2_type
);
3890 debug_generic_expr (rhs3_type
);
3897 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
3898 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3900 error ("type mismatch in conditional expression");
3901 debug_generic_expr (lhs_type
);
3902 debug_generic_expr (rhs2_type
);
3903 debug_generic_expr (rhs3_type
);
3909 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3910 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3912 error ("type mismatch in vector permute expression");
3913 debug_generic_expr (lhs_type
);
3914 debug_generic_expr (rhs1_type
);
3915 debug_generic_expr (rhs2_type
);
3916 debug_generic_expr (rhs3_type
);
3920 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3921 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
3922 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
3924 error ("vector types expected in vector permute expression");
3925 debug_generic_expr (lhs_type
);
3926 debug_generic_expr (rhs1_type
);
3927 debug_generic_expr (rhs2_type
);
3928 debug_generic_expr (rhs3_type
);
3932 if (TYPE_VECTOR_SUBPARTS (rhs1_type
) != TYPE_VECTOR_SUBPARTS (rhs2_type
)
3933 || TYPE_VECTOR_SUBPARTS (rhs2_type
)
3934 != TYPE_VECTOR_SUBPARTS (rhs3_type
)
3935 || TYPE_VECTOR_SUBPARTS (rhs3_type
)
3936 != TYPE_VECTOR_SUBPARTS (lhs_type
))
3938 error ("vectors with different element number found "
3939 "in vector permute expression");
3940 debug_generic_expr (lhs_type
);
3941 debug_generic_expr (rhs1_type
);
3942 debug_generic_expr (rhs2_type
);
3943 debug_generic_expr (rhs3_type
);
3947 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
3948 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type
)))
3949 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
))))
3951 error ("invalid mask type in vector permute expression");
3952 debug_generic_expr (lhs_type
);
3953 debug_generic_expr (rhs1_type
);
3954 debug_generic_expr (rhs2_type
);
3955 debug_generic_expr (rhs3_type
);
3962 case REALIGN_LOAD_EXPR
:
3972 /* Verify a gimple assignment statement STMT with a single rhs.
3973 Returns true if anything is wrong. */
3976 verify_gimple_assign_single (gimple stmt
)
3978 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3979 tree lhs
= gimple_assign_lhs (stmt
);
3980 tree lhs_type
= TREE_TYPE (lhs
);
3981 tree rhs1
= gimple_assign_rhs1 (stmt
);
3982 tree rhs1_type
= TREE_TYPE (rhs1
);
3985 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3987 error ("non-trivial conversion at assignment");
3988 debug_generic_expr (lhs_type
);
3989 debug_generic_expr (rhs1_type
);
3993 if (gimple_clobber_p (stmt
)
3994 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
3996 error ("non-decl/MEM_REF LHS in clobber statement");
3997 debug_generic_expr (lhs
);
4001 if (handled_component_p (lhs
)
4002 || TREE_CODE (lhs
) == MEM_REF
4003 || TREE_CODE (lhs
) == TARGET_MEM_REF
)
4004 res
|= verify_types_in_gimple_reference (lhs
, true);
4006 /* Special codes we cannot handle via their class. */
4011 tree op
= TREE_OPERAND (rhs1
, 0);
4012 if (!is_gimple_addressable (op
))
4014 error ("invalid operand in unary expression");
4018 /* Technically there is no longer a need for matching types, but
4019 gimple hygiene asks for this check. In LTO we can end up
4020 combining incompatible units and thus end up with addresses
4021 of globals that change their type to a common one. */
4023 && !types_compatible_p (TREE_TYPE (op
),
4024 TREE_TYPE (TREE_TYPE (rhs1
)))
4025 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
4028 error ("type mismatch in address expression");
4029 debug_generic_stmt (TREE_TYPE (rhs1
));
4030 debug_generic_stmt (TREE_TYPE (op
));
4034 return verify_types_in_gimple_reference (op
, true);
4039 error ("INDIRECT_REF in gimple IL");
4045 case ARRAY_RANGE_REF
:
4046 case VIEW_CONVERT_EXPR
:
4049 case TARGET_MEM_REF
:
4051 if (!is_gimple_reg (lhs
)
4052 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4054 error ("invalid rhs for gimple memory store");
4055 debug_generic_stmt (lhs
);
4056 debug_generic_stmt (rhs1
);
4059 return res
|| verify_types_in_gimple_reference (rhs1
, false);
4071 /* tcc_declaration */
4076 if (!is_gimple_reg (lhs
)
4077 && !is_gimple_reg (rhs1
)
4078 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4080 error ("invalid rhs for gimple memory store");
4081 debug_generic_stmt (lhs
);
4082 debug_generic_stmt (rhs1
);
4088 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
4091 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
4093 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
4095 /* For vector CONSTRUCTORs we require that either it is empty
4096 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4097 (then the element count must be correct to cover the whole
4098 outer vector and index must be NULL on all elements, or it is
4099 a CONSTRUCTOR of scalar elements, where we as an exception allow
4100 smaller number of elements (assuming zero filling) and
4101 consecutive indexes as compared to NULL indexes (such
4102 CONSTRUCTORs can appear in the IL from FEs). */
4103 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
4105 if (elt_t
== NULL_TREE
)
4107 elt_t
= TREE_TYPE (elt_v
);
4108 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
4110 tree elt_t
= TREE_TYPE (elt_v
);
4111 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4114 error ("incorrect type of vector CONSTRUCTOR"
4116 debug_generic_stmt (rhs1
);
4119 else if (CONSTRUCTOR_NELTS (rhs1
)
4120 * TYPE_VECTOR_SUBPARTS (elt_t
)
4121 != TYPE_VECTOR_SUBPARTS (rhs1_type
))
4123 error ("incorrect number of vector CONSTRUCTOR"
4125 debug_generic_stmt (rhs1
);
4129 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4132 error ("incorrect type of vector CONSTRUCTOR elements");
4133 debug_generic_stmt (rhs1
);
4136 else if (CONSTRUCTOR_NELTS (rhs1
)
4137 > TYPE_VECTOR_SUBPARTS (rhs1_type
))
4139 error ("incorrect number of vector CONSTRUCTOR elements");
4140 debug_generic_stmt (rhs1
);
4144 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4146 error ("incorrect type of vector CONSTRUCTOR elements");
4147 debug_generic_stmt (rhs1
);
4150 if (elt_i
!= NULL_TREE
4151 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4152 || TREE_CODE (elt_i
) != INTEGER_CST
4153 || compare_tree_int (elt_i
, i
) != 0))
4155 error ("vector CONSTRUCTOR with non-NULL element index");
4156 debug_generic_stmt (rhs1
);
4164 case WITH_SIZE_EXPR
:
4174 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4175 is a problem, otherwise false. */
4178 verify_gimple_assign (gimple stmt
)
4180 switch (gimple_assign_rhs_class (stmt
))
4182 case GIMPLE_SINGLE_RHS
:
4183 return verify_gimple_assign_single (stmt
);
4185 case GIMPLE_UNARY_RHS
:
4186 return verify_gimple_assign_unary (stmt
);
4188 case GIMPLE_BINARY_RHS
:
4189 return verify_gimple_assign_binary (stmt
);
4191 case GIMPLE_TERNARY_RHS
:
4192 return verify_gimple_assign_ternary (stmt
);
4199 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4200 is a problem, otherwise false. */
4203 verify_gimple_return (gimple stmt
)
4205 tree op
= gimple_return_retval (stmt
);
4206 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4208 /* We cannot test for present return values as we do not fix up missing
4209 return values from the original source. */
4213 if (!is_gimple_val (op
)
4214 && TREE_CODE (op
) != RESULT_DECL
)
4216 error ("invalid operand in return statement");
4217 debug_generic_stmt (op
);
4221 if ((TREE_CODE (op
) == RESULT_DECL
4222 && DECL_BY_REFERENCE (op
))
4223 || (TREE_CODE (op
) == SSA_NAME
4224 && SSA_NAME_VAR (op
)
4225 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4226 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4227 op
= TREE_TYPE (op
);
4229 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4231 error ("invalid conversion in return statement");
4232 debug_generic_stmt (restype
);
4233 debug_generic_stmt (TREE_TYPE (op
));
4241 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4242 is a problem, otherwise false. */
4245 verify_gimple_goto (gimple stmt
)
4247 tree dest
= gimple_goto_dest (stmt
);
4249 /* ??? We have two canonical forms of direct goto destinations, a
4250 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4251 if (TREE_CODE (dest
) != LABEL_DECL
4252 && (!is_gimple_val (dest
)
4253 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4255 error ("goto destination is neither a label nor a pointer");
4262 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4263 is a problem, otherwise false. */
4266 verify_gimple_switch (gimple stmt
)
4269 tree elt
, prev_upper_bound
= NULL_TREE
;
4270 tree index_type
, elt_type
= NULL_TREE
;
4272 if (!is_gimple_val (gimple_switch_index (stmt
)))
4274 error ("invalid operand to switch statement");
4275 debug_generic_stmt (gimple_switch_index (stmt
));
4279 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4280 if (! INTEGRAL_TYPE_P (index_type
))
4282 error ("non-integral type switch statement");
4283 debug_generic_expr (index_type
);
4287 elt
= gimple_switch_label (stmt
, 0);
4288 if (CASE_LOW (elt
) != NULL_TREE
|| CASE_HIGH (elt
) != NULL_TREE
)
4290 error ("invalid default case label in switch statement");
4291 debug_generic_expr (elt
);
4295 n
= gimple_switch_num_labels (stmt
);
4296 for (i
= 1; i
< n
; i
++)
4298 elt
= gimple_switch_label (stmt
, i
);
4300 if (! CASE_LOW (elt
))
4302 error ("invalid case label in switch statement");
4303 debug_generic_expr (elt
);
4307 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4309 error ("invalid case range in switch statement");
4310 debug_generic_expr (elt
);
4316 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4317 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4319 error ("type mismatch for case label in switch statement");
4320 debug_generic_expr (elt
);
4326 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4327 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4329 error ("type precision mismatch in switch statement");
4334 if (prev_upper_bound
)
4336 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4338 error ("case labels not sorted in switch statement");
4343 prev_upper_bound
= CASE_HIGH (elt
);
4344 if (! prev_upper_bound
)
4345 prev_upper_bound
= CASE_LOW (elt
);
4351 /* Verify a gimple debug statement STMT.
4352 Returns true if anything is wrong. */
4355 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED
)
4357 /* There isn't much that could be wrong in a gimple debug stmt. A
4358 gimple debug bind stmt, for example, maps a tree, that's usually
4359 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4360 component or member of an aggregate type, to another tree, that
4361 can be an arbitrary expression. These stmts expand into debug
4362 insns, and are converted to debug notes by var-tracking.c. */
4366 /* Verify a gimple label statement STMT.
4367 Returns true if anything is wrong. */
4370 verify_gimple_label (gimple stmt
)
4372 tree decl
= gimple_label_label (stmt
);
4376 if (TREE_CODE (decl
) != LABEL_DECL
)
4378 if (!DECL_NONLOCAL (decl
) && !FORCED_LABEL (decl
)
4379 && DECL_CONTEXT (decl
) != current_function_decl
)
4381 error ("label's context is not the current function decl");
4385 uid
= LABEL_DECL_UID (decl
);
4388 || (*label_to_block_map_for_fn (cfun
))[uid
] != gimple_bb (stmt
)))
4390 error ("incorrect entry in label_to_block_map");
4394 uid
= EH_LANDING_PAD_NR (decl
);
4397 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4398 if (decl
!= lp
->post_landing_pad
)
4400 error ("incorrect setting of landing pad number");
4408 /* Verify the GIMPLE statement STMT. Returns true if there is an
4409 error, otherwise false. */
4412 verify_gimple_stmt (gimple stmt
)
4414 switch (gimple_code (stmt
))
4417 return verify_gimple_assign (stmt
);
4420 return verify_gimple_label (stmt
);
4423 return verify_gimple_call (stmt
);
4426 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4428 error ("invalid comparison code in gimple cond");
4431 if (!(!gimple_cond_true_label (stmt
)
4432 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4433 || !(!gimple_cond_false_label (stmt
)
4434 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4436 error ("invalid labels in gimple cond");
4440 return verify_gimple_comparison (boolean_type_node
,
4441 gimple_cond_lhs (stmt
),
4442 gimple_cond_rhs (stmt
));
4445 return verify_gimple_goto (stmt
);
4448 return verify_gimple_switch (stmt
);
4451 return verify_gimple_return (stmt
);
4456 case GIMPLE_TRANSACTION
:
4457 return verify_gimple_transaction (stmt
);
4459 /* Tuples that do not have tree operands. */
4461 case GIMPLE_PREDICT
:
4463 case GIMPLE_EH_DISPATCH
:
4464 case GIMPLE_EH_MUST_NOT_THROW
:
4468 /* OpenMP directives are validated by the FE and never operated
4469 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4470 non-gimple expressions when the main index variable has had
4471 its address taken. This does not affect the loop itself
4472 because the header of an GIMPLE_OMP_FOR is merely used to determine
4473 how to setup the parallel iteration. */
4477 return verify_gimple_debug (stmt
);
4484 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4485 and false otherwise. */
4488 verify_gimple_phi (gimple phi
)
4492 tree phi_result
= gimple_phi_result (phi
);
4497 error ("invalid PHI result");
4501 virtual_p
= virtual_operand_p (phi_result
);
4502 if (TREE_CODE (phi_result
) != SSA_NAME
4504 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4506 error ("invalid PHI result");
4510 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4512 tree t
= gimple_phi_arg_def (phi
, i
);
4516 error ("missing PHI def");
4520 /* Addressable variables do have SSA_NAMEs but they
4521 are not considered gimple values. */
4522 else if ((TREE_CODE (t
) == SSA_NAME
4523 && virtual_p
!= virtual_operand_p (t
))
4525 && (TREE_CODE (t
) != SSA_NAME
4526 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4528 && !is_gimple_val (t
)))
4530 error ("invalid PHI argument");
4531 debug_generic_expr (t
);
4534 #ifdef ENABLE_TYPES_CHECKING
4535 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4537 error ("incompatible types in PHI argument %u", i
);
4538 debug_generic_stmt (TREE_TYPE (phi_result
));
4539 debug_generic_stmt (TREE_TYPE (t
));
4548 /* Verify the GIMPLE statements inside the sequence STMTS. */
4551 verify_gimple_in_seq_2 (gimple_seq stmts
)
4553 gimple_stmt_iterator ittr
;
4556 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4558 gimple stmt
= gsi_stmt (ittr
);
4560 switch (gimple_code (stmt
))
4563 err
|= verify_gimple_in_seq_2 (gimple_bind_body (stmt
));
4567 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
4568 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
4571 case GIMPLE_EH_FILTER
:
4572 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
4575 case GIMPLE_EH_ELSE
:
4576 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt
));
4577 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt
));
4581 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (stmt
));
4584 case GIMPLE_TRANSACTION
:
4585 err
|= verify_gimple_transaction (stmt
);
4590 bool err2
= verify_gimple_stmt (stmt
);
4592 debug_gimple_stmt (stmt
);
4601 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4602 is a problem, otherwise false. */
4605 verify_gimple_transaction (gimple stmt
)
4607 tree lab
= gimple_transaction_label (stmt
);
4608 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4610 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
4614 /* Verify the GIMPLE statements inside the statement list STMTS. */
4617 verify_gimple_in_seq (gimple_seq stmts
)
4619 timevar_push (TV_TREE_STMT_VERIFY
);
4620 if (verify_gimple_in_seq_2 (stmts
))
4621 internal_error ("verify_gimple failed");
4622 timevar_pop (TV_TREE_STMT_VERIFY
);
4625 /* Return true when the T can be shared. */
4628 tree_node_can_be_shared (tree t
)
4630 if (IS_TYPE_OR_DECL_P (t
)
4631 || is_gimple_min_invariant (t
)
4632 || TREE_CODE (t
) == SSA_NAME
4633 || t
== error_mark_node
4634 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4637 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4646 /* Called via walk_tree. Verify tree sharing. */
4649 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
4651 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4653 if (tree_node_can_be_shared (*tp
))
4655 *walk_subtrees
= false;
4659 if (pointer_set_insert (visited
, *tp
))
4665 /* Called via walk_gimple_stmt. Verify tree sharing. */
4668 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4670 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4671 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
4674 static bool eh_error_found
;
4676 verify_eh_throw_stmt_node (void **slot
, void *data
)
4678 struct throw_stmt_node
*node
= (struct throw_stmt_node
*)*slot
;
4679 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4681 if (!pointer_set_contains (visited
, node
->stmt
))
4683 error ("dead STMT in EH table");
4684 debug_gimple_stmt (node
->stmt
);
4685 eh_error_found
= true;
4690 /* Verify if the location LOCs block is in BLOCKS. */
4693 verify_location (pointer_set_t
*blocks
, location_t loc
)
4695 tree block
= LOCATION_BLOCK (loc
);
4696 if (block
!= NULL_TREE
4697 && !pointer_set_contains (blocks
, block
))
4699 error ("location references block not in block tree");
4702 if (block
!= NULL_TREE
)
4703 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
4707 /* Called via walk_tree. Verify that expressions have no blocks. */
4710 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
4714 *walk_subtrees
= false;
4718 location_t loc
= EXPR_LOCATION (*tp
);
4719 if (LOCATION_BLOCK (loc
) != NULL
)
4725 /* Called via walk_tree. Verify locations of expressions. */
4728 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
4730 struct pointer_set_t
*blocks
= (struct pointer_set_t
*) data
;
4732 if (TREE_CODE (*tp
) == VAR_DECL
4733 && DECL_HAS_DEBUG_EXPR_P (*tp
))
4735 tree t
= DECL_DEBUG_EXPR (*tp
);
4736 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
4740 if ((TREE_CODE (*tp
) == VAR_DECL
4741 || TREE_CODE (*tp
) == PARM_DECL
4742 || TREE_CODE (*tp
) == RESULT_DECL
)
4743 && DECL_HAS_VALUE_EXPR_P (*tp
))
4745 tree t
= DECL_VALUE_EXPR (*tp
);
4746 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
4753 *walk_subtrees
= false;
4757 location_t loc
= EXPR_LOCATION (*tp
);
4758 if (verify_location (blocks
, loc
))
4764 /* Called via walk_gimple_op. Verify locations of expressions. */
4767 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
4769 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4770 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
4773 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4776 collect_subblocks (pointer_set_t
*blocks
, tree block
)
4779 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
4781 pointer_set_insert (blocks
, t
);
4782 collect_subblocks (blocks
, t
);
4786 /* Verify the GIMPLE statements in the CFG of FN. */
4789 verify_gimple_in_cfg (struct function
*fn
)
4793 struct pointer_set_t
*visited
, *visited_stmts
, *blocks
;
4795 timevar_push (TV_TREE_STMT_VERIFY
);
4796 visited
= pointer_set_create ();
4797 visited_stmts
= pointer_set_create ();
4799 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4800 blocks
= pointer_set_create ();
4801 if (DECL_INITIAL (fn
->decl
))
4803 pointer_set_insert (blocks
, DECL_INITIAL (fn
->decl
));
4804 collect_subblocks (blocks
, DECL_INITIAL (fn
->decl
));
4807 FOR_EACH_BB_FN (bb
, fn
)
4809 gimple_stmt_iterator gsi
;
4811 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4813 gimple phi
= gsi_stmt (gsi
);
4817 pointer_set_insert (visited_stmts
, phi
);
4819 if (gimple_bb (phi
) != bb
)
4821 error ("gimple_bb (phi) is set to a wrong basic block");
4825 err2
|= verify_gimple_phi (phi
);
4827 /* Only PHI arguments have locations. */
4828 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
4830 error ("PHI node with location");
4834 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4836 tree arg
= gimple_phi_arg_def (phi
, i
);
4837 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
4841 error ("incorrect sharing of tree nodes");
4842 debug_generic_expr (addr
);
4845 location_t loc
= gimple_phi_arg_location (phi
, i
);
4846 if (virtual_operand_p (gimple_phi_result (phi
))
4847 && loc
!= UNKNOWN_LOCATION
)
4849 error ("virtual PHI with argument locations");
4852 addr
= walk_tree (&arg
, verify_expr_location_1
, blocks
, NULL
);
4855 debug_generic_expr (addr
);
4858 err2
|= verify_location (blocks
, loc
);
4862 debug_gimple_stmt (phi
);
4866 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4868 gimple stmt
= gsi_stmt (gsi
);
4870 struct walk_stmt_info wi
;
4874 pointer_set_insert (visited_stmts
, stmt
);
4876 if (gimple_bb (stmt
) != bb
)
4878 error ("gimple_bb (stmt) is set to a wrong basic block");
4882 err2
|= verify_gimple_stmt (stmt
);
4883 err2
|= verify_location (blocks
, gimple_location (stmt
));
4885 memset (&wi
, 0, sizeof (wi
));
4886 wi
.info
= (void *) visited
;
4887 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
4890 error ("incorrect sharing of tree nodes");
4891 debug_generic_expr (addr
);
4895 memset (&wi
, 0, sizeof (wi
));
4896 wi
.info
= (void *) blocks
;
4897 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
4900 debug_generic_expr (addr
);
4904 /* ??? Instead of not checking these stmts at all the walker
4905 should know its context via wi. */
4906 if (!is_gimple_debug (stmt
)
4907 && !is_gimple_omp (stmt
))
4909 memset (&wi
, 0, sizeof (wi
));
4910 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
4913 debug_generic_expr (addr
);
4914 inform (gimple_location (stmt
), "in statement");
4919 /* If the statement is marked as part of an EH region, then it is
4920 expected that the statement could throw. Verify that when we
4921 have optimizations that simplify statements such that we prove
4922 that they cannot throw, that we update other data structures
4924 lp_nr
= lookup_stmt_eh_lp (stmt
);
4927 if (!stmt_could_throw_p (stmt
))
4929 error ("statement marked for throw, but doesn%'t");
4933 && !gsi_one_before_end_p (gsi
)
4934 && stmt_can_throw_internal (stmt
))
4936 error ("statement marked for throw in middle of block");
4942 debug_gimple_stmt (stmt
);
4947 eh_error_found
= false;
4948 if (get_eh_throw_stmt_table (cfun
))
4949 htab_traverse (get_eh_throw_stmt_table (cfun
),
4950 verify_eh_throw_stmt_node
,
4953 if (err
|| eh_error_found
)
4954 internal_error ("verify_gimple failed");
4956 pointer_set_destroy (visited
);
4957 pointer_set_destroy (visited_stmts
);
4958 pointer_set_destroy (blocks
);
4959 verify_histograms ();
4960 timevar_pop (TV_TREE_STMT_VERIFY
);
4964 /* Verifies that the flow information is OK. */
4967 gimple_verify_flow_info (void)
4971 gimple_stmt_iterator gsi
;
4976 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
4977 || ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
4979 error ("ENTRY_BLOCK has IL associated with it");
4983 if (EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
4984 || EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
4986 error ("EXIT_BLOCK has IL associated with it");
4990 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
4991 if (e
->flags
& EDGE_FALLTHRU
)
4993 error ("fallthru to exit from bb %d", e
->src
->index
);
4997 FOR_EACH_BB_FN (bb
, cfun
)
4999 bool found_ctrl_stmt
= false;
5003 /* Skip labels on the start of basic block. */
5004 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5007 gimple prev_stmt
= stmt
;
5009 stmt
= gsi_stmt (gsi
);
5011 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5014 label
= gimple_label_label (stmt
);
5015 if (prev_stmt
&& DECL_NONLOCAL (label
))
5017 error ("nonlocal label ");
5018 print_generic_expr (stderr
, label
, 0);
5019 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5024 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
5026 error ("EH landing pad label ");
5027 print_generic_expr (stderr
, label
, 0);
5028 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5033 if (label_to_block (label
) != bb
)
5036 print_generic_expr (stderr
, label
, 0);
5037 fprintf (stderr
, " to block does not match in bb %d",
5042 if (decl_function_context (label
) != current_function_decl
)
5045 print_generic_expr (stderr
, label
, 0);
5046 fprintf (stderr
, " has incorrect context in bb %d",
5052 /* Verify that body of basic block BB is free of control flow. */
5053 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
5055 gimple stmt
= gsi_stmt (gsi
);
5057 if (found_ctrl_stmt
)
5059 error ("control flow in the middle of basic block %d",
5064 if (stmt_ends_bb_p (stmt
))
5065 found_ctrl_stmt
= true;
5067 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5070 print_generic_expr (stderr
, gimple_label_label (stmt
), 0);
5071 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
5076 gsi
= gsi_last_bb (bb
);
5077 if (gsi_end_p (gsi
))
5080 stmt
= gsi_stmt (gsi
);
5082 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5085 err
|= verify_eh_edges (stmt
);
5087 if (is_ctrl_stmt (stmt
))
5089 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5090 if (e
->flags
& EDGE_FALLTHRU
)
5092 error ("fallthru edge after a control statement in bb %d",
5098 if (gimple_code (stmt
) != GIMPLE_COND
)
5100 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5101 after anything else but if statement. */
5102 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5103 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
5105 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5111 switch (gimple_code (stmt
))
5118 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
5122 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
5123 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
5124 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5125 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5126 || EDGE_COUNT (bb
->succs
) >= 3)
5128 error ("wrong outgoing edge flags at end of bb %d",
5136 if (simple_goto_p (stmt
))
5138 error ("explicit goto at end of bb %d", bb
->index
);
5143 /* FIXME. We should double check that the labels in the
5144 destination blocks have their address taken. */
5145 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5146 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
5147 | EDGE_FALSE_VALUE
))
5148 || !(e
->flags
& EDGE_ABNORMAL
))
5150 error ("wrong outgoing edge flags at end of bb %d",
5158 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5160 /* ... fallthru ... */
5162 if (!single_succ_p (bb
)
5163 || (single_succ_edge (bb
)->flags
5164 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5165 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5167 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5170 if (single_succ (bb
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
5172 error ("return edge does not point to exit in bb %d",
5184 n
= gimple_switch_num_labels (stmt
);
5186 /* Mark all the destination basic blocks. */
5187 for (i
= 0; i
< n
; ++i
)
5189 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
5190 basic_block label_bb
= label_to_block (lab
);
5191 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5192 label_bb
->aux
= (void *)1;
5195 /* Verify that the case labels are sorted. */
5196 prev
= gimple_switch_label (stmt
, 0);
5197 for (i
= 1; i
< n
; ++i
)
5199 tree c
= gimple_switch_label (stmt
, i
);
5202 error ("found default case not at the start of "
5208 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5210 error ("case labels not sorted: ");
5211 print_generic_expr (stderr
, prev
, 0);
5212 fprintf (stderr
," is greater than ");
5213 print_generic_expr (stderr
, c
, 0);
5214 fprintf (stderr
," but comes before it.\n");
5219 /* VRP will remove the default case if it can prove it will
5220 never be executed. So do not verify there always exists
5221 a default case here. */
5223 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5227 error ("extra outgoing edge %d->%d",
5228 bb
->index
, e
->dest
->index
);
5232 e
->dest
->aux
= (void *)2;
5233 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5234 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5236 error ("wrong outgoing edge flags at end of bb %d",
5242 /* Check that we have all of them. */
5243 for (i
= 0; i
< n
; ++i
)
5245 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
5246 basic_block label_bb
= label_to_block (lab
);
5248 if (label_bb
->aux
!= (void *)2)
5250 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5255 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5256 e
->dest
->aux
= (void *)0;
5260 case GIMPLE_EH_DISPATCH
:
5261 err
|= verify_eh_dispatch_edge (stmt
);
5269 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5270 verify_dominators (CDI_DOMINATORS
);
5276 /* Updates phi nodes after creating a forwarder block joined
5277 by edge FALLTHRU. */
5280 gimple_make_forwarder_block (edge fallthru
)
5284 basic_block dummy
, bb
;
5286 gimple_stmt_iterator gsi
;
5288 dummy
= fallthru
->src
;
5289 bb
= fallthru
->dest
;
5291 if (single_pred_p (bb
))
5294 /* If we redirected a branch we must create new PHI nodes at the
5296 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5298 gimple phi
, new_phi
;
5300 phi
= gsi_stmt (gsi
);
5301 var
= gimple_phi_result (phi
);
5302 new_phi
= create_phi_node (var
, bb
);
5303 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5304 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5308 /* Add the arguments we have stored on edges. */
5309 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5314 flush_pending_stmts (e
);
5319 /* Return a non-special label in the head of basic block BLOCK.
5320 Create one if it doesn't exist. */
5323 gimple_block_label (basic_block bb
)
5325 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5330 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5332 stmt
= gsi_stmt (i
);
5333 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5335 label
= gimple_label_label (stmt
);
5336 if (!DECL_NONLOCAL (label
))
5339 gsi_move_before (&i
, &s
);
5344 label
= create_artificial_label (UNKNOWN_LOCATION
);
5345 stmt
= gimple_build_label (label
);
5346 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5351 /* Attempt to perform edge redirection by replacing a possibly complex
5352 jump instruction by a goto or by removing the jump completely.
5353 This can apply only if all edges now point to the same block. The
5354 parameters and return values are equivalent to
5355 redirect_edge_and_branch. */
5358 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5360 basic_block src
= e
->src
;
5361 gimple_stmt_iterator i
;
5364 /* We can replace or remove a complex jump only when we have exactly
5366 if (EDGE_COUNT (src
->succs
) != 2
5367 /* Verify that all targets will be TARGET. Specifically, the
5368 edge that is not E must also go to TARGET. */
5369 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5372 i
= gsi_last_bb (src
);
5376 stmt
= gsi_stmt (i
);
5378 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5380 gsi_remove (&i
, true);
5381 e
= ssa_redirect_edge (e
, target
);
5382 e
->flags
= EDGE_FALLTHRU
;
5390 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5391 edge representing the redirected branch. */
5394 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5396 basic_block bb
= e
->src
;
5397 gimple_stmt_iterator gsi
;
5401 if (e
->flags
& EDGE_ABNORMAL
)
5404 if (e
->dest
== dest
)
5407 if (e
->flags
& EDGE_EH
)
5408 return redirect_eh_edge (e
, dest
);
5410 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
5412 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5417 gsi
= gsi_last_bb (bb
);
5418 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5420 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5423 /* For COND_EXPR, we only need to redirect the edge. */
5427 /* No non-abnormal edges should lead from a non-simple goto, and
5428 simple ones should be represented implicitly. */
5433 tree label
= gimple_block_label (dest
);
5434 tree cases
= get_cases_for_edge (e
, stmt
);
5436 /* If we have a list of cases associated with E, then use it
5437 as it's a lot faster than walking the entire case vector. */
5440 edge e2
= find_edge (e
->src
, dest
);
5447 CASE_LABEL (cases
) = label
;
5448 cases
= CASE_CHAIN (cases
);
5451 /* If there was already an edge in the CFG, then we need
5452 to move all the cases associated with E to E2. */
5455 tree cases2
= get_cases_for_edge (e2
, stmt
);
5457 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5458 CASE_CHAIN (cases2
) = first
;
5460 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5464 size_t i
, n
= gimple_switch_num_labels (stmt
);
5466 for (i
= 0; i
< n
; i
++)
5468 tree elt
= gimple_switch_label (stmt
, i
);
5469 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5470 CASE_LABEL (elt
) = label
;
5478 int i
, n
= gimple_asm_nlabels (stmt
);
5481 for (i
= 0; i
< n
; ++i
)
5483 tree cons
= gimple_asm_label_op (stmt
, i
);
5484 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
5487 label
= gimple_block_label (dest
);
5488 TREE_VALUE (cons
) = label
;
5492 /* If we didn't find any label matching the former edge in the
5493 asm labels, we must be redirecting the fallthrough
5495 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5500 gsi_remove (&gsi
, true);
5501 e
->flags
|= EDGE_FALLTHRU
;
5504 case GIMPLE_OMP_RETURN
:
5505 case GIMPLE_OMP_CONTINUE
:
5506 case GIMPLE_OMP_SECTIONS_SWITCH
:
5507 case GIMPLE_OMP_FOR
:
5508 /* The edges from OMP constructs can be simply redirected. */
5511 case GIMPLE_EH_DISPATCH
:
5512 if (!(e
->flags
& EDGE_FALLTHRU
))
5513 redirect_eh_dispatch_edge (stmt
, e
, dest
);
5516 case GIMPLE_TRANSACTION
:
5517 /* The ABORT edge has a stored label associated with it, otherwise
5518 the edges are simply redirectable. */
5520 gimple_transaction_set_label (stmt
, gimple_block_label (dest
));
5524 /* Otherwise it must be a fallthru edge, and we don't need to
5525 do anything besides redirecting it. */
5526 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
5530 /* Update/insert PHI nodes as necessary. */
5532 /* Now update the edges in the CFG. */
5533 e
= ssa_redirect_edge (e
, dest
);
5538 /* Returns true if it is possible to remove edge E by redirecting
5539 it to the destination of the other edge from E->src. */
5542 gimple_can_remove_branch_p (const_edge e
)
5544 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
5550 /* Simple wrapper, as we can always redirect fallthru edges. */
5553 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5555 e
= gimple_redirect_edge_and_branch (e
, dest
);
5562 /* Splits basic block BB after statement STMT (but at least after the
5563 labels). If STMT is NULL, BB is split just after the labels. */
5566 gimple_split_block (basic_block bb
, void *stmt
)
5568 gimple_stmt_iterator gsi
;
5569 gimple_stmt_iterator gsi_tgt
;
5576 new_bb
= create_empty_bb (bb
);
5578 /* Redirect the outgoing edges. */
5579 new_bb
->succs
= bb
->succs
;
5581 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5584 if (stmt
&& gimple_code ((gimple
) stmt
) == GIMPLE_LABEL
)
5587 /* Move everything from GSI to the new basic block. */
5588 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5590 act
= gsi_stmt (gsi
);
5591 if (gimple_code (act
) == GIMPLE_LABEL
)
5604 if (gsi_end_p (gsi
))
5607 /* Split the statement list - avoid re-creating new containers as this
5608 brings ugly quadratic memory consumption in the inliner.
5609 (We are still quadratic since we need to update stmt BB pointers,
5611 gsi_split_seq_before (&gsi
, &list
);
5612 set_bb_seq (new_bb
, list
);
5613 for (gsi_tgt
= gsi_start (list
);
5614 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5615 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5621 /* Moves basic block BB after block AFTER. */
5624 gimple_move_block_after (basic_block bb
, basic_block after
)
5626 if (bb
->prev_bb
== after
)
5630 link_block (bb
, after
);
5636 /* Return TRUE if block BB has no executable statements, otherwise return
5640 gimple_empty_block_p (basic_block bb
)
5642 /* BB must have no executable statements. */
5643 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
5646 if (gsi_end_p (gsi
))
5648 if (is_gimple_debug (gsi_stmt (gsi
)))
5649 gsi_next_nondebug (&gsi
);
5650 return gsi_end_p (gsi
);
5654 /* Split a basic block if it ends with a conditional branch and if the
5655 other part of the block is not empty. */
5658 gimple_split_block_before_cond_jump (basic_block bb
)
5660 gimple last
, split_point
;
5661 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
5662 if (gsi_end_p (gsi
))
5664 last
= gsi_stmt (gsi
);
5665 if (gimple_code (last
) != GIMPLE_COND
5666 && gimple_code (last
) != GIMPLE_SWITCH
)
5668 gsi_prev_nondebug (&gsi
);
5669 split_point
= gsi_stmt (gsi
);
5670 return split_block (bb
, split_point
)->dest
;
5674 /* Return true if basic_block can be duplicated. */
5677 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
5682 /* Create a duplicate of the basic block BB. NOTE: This does not
5683 preserve SSA form. */
5686 gimple_duplicate_bb (basic_block bb
)
5689 gimple_stmt_iterator gsi
, gsi_tgt
;
5690 gimple_seq phis
= phi_nodes (bb
);
5691 gimple phi
, stmt
, copy
;
5693 new_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
5695 /* Copy the PHI nodes. We ignore PHI node arguments here because
5696 the incoming edges have not been setup yet. */
5697 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5699 phi
= gsi_stmt (gsi
);
5700 copy
= create_phi_node (NULL_TREE
, new_bb
);
5701 create_new_def_for (gimple_phi_result (phi
), copy
,
5702 gimple_phi_result_ptr (copy
));
5703 gimple_set_uid (copy
, gimple_uid (phi
));
5706 gsi_tgt
= gsi_start_bb (new_bb
);
5707 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5709 def_operand_p def_p
;
5710 ssa_op_iter op_iter
;
5713 stmt
= gsi_stmt (gsi
);
5714 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5717 /* Don't duplicate label debug stmts. */
5718 if (gimple_debug_bind_p (stmt
)
5719 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
5723 /* Create a new copy of STMT and duplicate STMT's virtual
5725 copy
= gimple_copy (stmt
);
5726 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
5728 maybe_duplicate_eh_stmt (copy
, stmt
);
5729 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
5731 /* When copying around a stmt writing into a local non-user
5732 aggregate, make sure it won't share stack slot with other
5734 lhs
= gimple_get_lhs (stmt
);
5735 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
5737 tree base
= get_base_address (lhs
);
5739 && (TREE_CODE (base
) == VAR_DECL
5740 || TREE_CODE (base
) == RESULT_DECL
)
5741 && DECL_IGNORED_P (base
)
5742 && !TREE_STATIC (base
)
5743 && !DECL_EXTERNAL (base
)
5744 && (TREE_CODE (base
) != VAR_DECL
5745 || !DECL_HAS_VALUE_EXPR_P (base
)))
5746 DECL_NONSHAREABLE (base
) = 1;
5749 /* Create new names for all the definitions created by COPY and
5750 add replacement mappings for each new name. */
5751 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
5752 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
5758 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5761 add_phi_args_after_copy_edge (edge e_copy
)
5763 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
5766 gimple phi
, phi_copy
;
5768 gimple_stmt_iterator psi
, psi_copy
;
5770 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5773 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5775 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5776 dest
= get_bb_original (e_copy
->dest
);
5778 dest
= e_copy
->dest
;
5780 e
= find_edge (bb
, dest
);
5783 /* During loop unrolling the target of the latch edge is copied.
5784 In this case we are not looking for edge to dest, but to
5785 duplicated block whose original was dest. */
5786 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5788 if ((e
->dest
->flags
& BB_DUPLICATED
)
5789 && get_bb_original (e
->dest
) == dest
)
5793 gcc_assert (e
!= NULL
);
5796 for (psi
= gsi_start_phis (e
->dest
),
5797 psi_copy
= gsi_start_phis (e_copy
->dest
);
5799 gsi_next (&psi
), gsi_next (&psi_copy
))
5801 phi
= gsi_stmt (psi
);
5802 phi_copy
= gsi_stmt (psi_copy
);
5803 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5804 add_phi_arg (phi_copy
, def
, e_copy
,
5805 gimple_phi_arg_location_from_edge (phi
, e
));
5810 /* Basic block BB_COPY was created by code duplication. Add phi node
5811 arguments for edges going out of BB_COPY. The blocks that were
5812 duplicated have BB_DUPLICATED set. */
5815 add_phi_args_after_copy_bb (basic_block bb_copy
)
5820 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5822 add_phi_args_after_copy_edge (e_copy
);
5826 /* Blocks in REGION_COPY array of length N_REGION were created by
5827 duplication of basic blocks. Add phi node arguments for edges
5828 going from these blocks. If E_COPY is not NULL, also add
5829 phi node arguments for its destination.*/
5832 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
5837 for (i
= 0; i
< n_region
; i
++)
5838 region_copy
[i
]->flags
|= BB_DUPLICATED
;
5840 for (i
= 0; i
< n_region
; i
++)
5841 add_phi_args_after_copy_bb (region_copy
[i
]);
5843 add_phi_args_after_copy_edge (e_copy
);
5845 for (i
= 0; i
< n_region
; i
++)
5846 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
5849 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5850 important exit edge EXIT. By important we mean that no SSA name defined
5851 inside region is live over the other exit edges of the region. All entry
5852 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5853 to the duplicate of the region. Dominance and loop information is
5854 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5855 UPDATE_DOMINANCE is false then we assume that the caller will update the
5856 dominance information after calling this function. The new basic
5857 blocks are stored to REGION_COPY in the same order as they had in REGION,
5858 provided that REGION_COPY is not NULL.
5859 The function returns false if it is unable to copy the region,
5863 gimple_duplicate_sese_region (edge entry
, edge exit
,
5864 basic_block
*region
, unsigned n_region
,
5865 basic_block
*region_copy
,
5866 bool update_dominance
)
5869 bool free_region_copy
= false, copying_header
= false;
5870 struct loop
*loop
= entry
->dest
->loop_father
;
5872 vec
<basic_block
> doms
;
5874 int total_freq
= 0, entry_freq
= 0;
5875 gcov_type total_count
= 0, entry_count
= 0;
5877 if (!can_copy_bbs_p (region
, n_region
))
5880 /* Some sanity checking. Note that we do not check for all possible
5881 missuses of the functions. I.e. if you ask to copy something weird,
5882 it will work, but the state of structures probably will not be
5884 for (i
= 0; i
< n_region
; i
++)
5886 /* We do not handle subloops, i.e. all the blocks must belong to the
5888 if (region
[i
]->loop_father
!= loop
)
5891 if (region
[i
] != entry
->dest
5892 && region
[i
] == loop
->header
)
5896 /* In case the function is used for loop header copying (which is the primary
5897 use), ensure that EXIT and its copy will be new latch and entry edges. */
5898 if (loop
->header
== entry
->dest
)
5900 copying_header
= true;
5902 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
5905 for (i
= 0; i
< n_region
; i
++)
5906 if (region
[i
] != exit
->src
5907 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
5911 initialize_original_copy_tables ();
5914 set_loop_copy (loop
, loop_outer (loop
));
5916 set_loop_copy (loop
, loop
);
5920 region_copy
= XNEWVEC (basic_block
, n_region
);
5921 free_region_copy
= true;
5924 /* Record blocks outside the region that are dominated by something
5926 if (update_dominance
)
5929 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5932 if (entry
->dest
->count
)
5934 total_count
= entry
->dest
->count
;
5935 entry_count
= entry
->count
;
5936 /* Fix up corner cases, to avoid division by zero or creation of negative
5938 if (entry_count
> total_count
)
5939 entry_count
= total_count
;
5943 total_freq
= entry
->dest
->frequency
;
5944 entry_freq
= EDGE_FREQUENCY (entry
);
5945 /* Fix up corner cases, to avoid division by zero or creation of negative
5947 if (total_freq
== 0)
5949 else if (entry_freq
> total_freq
)
5950 entry_freq
= total_freq
;
5953 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
5954 split_edge_bb_loc (entry
), update_dominance
);
5957 scale_bbs_frequencies_gcov_type (region
, n_region
,
5958 total_count
- entry_count
,
5960 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
5965 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
5967 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
5972 loop
->header
= exit
->dest
;
5973 loop
->latch
= exit
->src
;
5976 /* Redirect the entry and add the phi node arguments. */
5977 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
5978 gcc_assert (redirected
!= NULL
);
5979 flush_pending_stmts (entry
);
5981 /* Concerning updating of dominators: We must recount dominators
5982 for entry block and its copy. Anything that is outside of the
5983 region, but was dominated by something inside needs recounting as
5985 if (update_dominance
)
5987 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
5988 doms
.safe_push (get_bb_original (entry
->dest
));
5989 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5993 /* Add the other PHI node arguments. */
5994 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
5996 if (free_region_copy
)
5999 free_original_copy_tables ();
6003 /* Checks if BB is part of the region defined by N_REGION BBS. */
6005 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
6009 for (n
= 0; n
< n_region
; n
++)
6017 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6018 are stored to REGION_COPY in the same order in that they appear
6019 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6020 the region, EXIT an exit from it. The condition guarding EXIT
6021 is moved to ENTRY. Returns true if duplication succeeds, false
6047 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
6048 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
6049 basic_block
*region_copy ATTRIBUTE_UNUSED
)
6052 bool free_region_copy
= false;
6053 struct loop
*loop
= exit
->dest
->loop_father
;
6054 struct loop
*orig_loop
= entry
->dest
->loop_father
;
6055 basic_block switch_bb
, entry_bb
, nentry_bb
;
6056 vec
<basic_block
> doms
;
6057 int total_freq
= 0, exit_freq
= 0;
6058 gcov_type total_count
= 0, exit_count
= 0;
6059 edge exits
[2], nexits
[2], e
;
6060 gimple_stmt_iterator gsi
;
6063 basic_block exit_bb
;
6064 gimple_stmt_iterator psi
;
6067 struct loop
*target
, *aloop
, *cloop
;
6069 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
6071 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
6073 if (!can_copy_bbs_p (region
, n_region
))
6076 initialize_original_copy_tables ();
6077 set_loop_copy (orig_loop
, loop
);
6080 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
6082 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
6084 cloop
= duplicate_loop (aloop
, target
);
6085 duplicate_subloops (aloop
, cloop
);
6091 region_copy
= XNEWVEC (basic_block
, n_region
);
6092 free_region_copy
= true;
6095 gcc_assert (!need_ssa_update_p (cfun
));
6097 /* Record blocks outside the region that are dominated by something
6099 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6101 if (exit
->src
->count
)
6103 total_count
= exit
->src
->count
;
6104 exit_count
= exit
->count
;
6105 /* Fix up corner cases, to avoid division by zero or creation of negative
6107 if (exit_count
> total_count
)
6108 exit_count
= total_count
;
6112 total_freq
= exit
->src
->frequency
;
6113 exit_freq
= EDGE_FREQUENCY (exit
);
6114 /* Fix up corner cases, to avoid division by zero or creation of negative
6116 if (total_freq
== 0)
6118 if (exit_freq
> total_freq
)
6119 exit_freq
= total_freq
;
6122 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
6123 split_edge_bb_loc (exit
), true);
6126 scale_bbs_frequencies_gcov_type (region
, n_region
,
6127 total_count
- exit_count
,
6129 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
6134 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
6136 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
6139 /* Create the switch block, and put the exit condition to it. */
6140 entry_bb
= entry
->dest
;
6141 nentry_bb
= get_bb_copy (entry_bb
);
6142 if (!last_stmt (entry
->src
)
6143 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
6144 switch_bb
= entry
->src
;
6146 switch_bb
= split_edge (entry
);
6147 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
6149 gsi
= gsi_last_bb (switch_bb
);
6150 cond_stmt
= last_stmt (exit
->src
);
6151 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
6152 cond_stmt
= gimple_copy (cond_stmt
);
6154 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
6156 sorig
= single_succ_edge (switch_bb
);
6157 sorig
->flags
= exits
[1]->flags
;
6158 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
6160 /* Register the new edge from SWITCH_BB in loop exit lists. */
6161 rescan_loop_exit (snew
, true, false);
6163 /* Add the PHI node arguments. */
6164 add_phi_args_after_copy (region_copy
, n_region
, snew
);
6166 /* Get rid of now superfluous conditions and associated edges (and phi node
6168 exit_bb
= exit
->dest
;
6170 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6171 PENDING_STMT (e
) = NULL
;
6173 /* The latch of ORIG_LOOP was copied, and so was the backedge
6174 to the original header. We redirect this backedge to EXIT_BB. */
6175 for (i
= 0; i
< n_region
; i
++)
6176 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6178 gcc_assert (single_succ_edge (region_copy
[i
]));
6179 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6180 PENDING_STMT (e
) = NULL
;
6181 for (psi
= gsi_start_phis (exit_bb
);
6185 phi
= gsi_stmt (psi
);
6186 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6187 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6190 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6191 PENDING_STMT (e
) = NULL
;
6193 /* Anything that is outside of the region, but was dominated by something
6194 inside needs to update dominance info. */
6195 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6197 /* Update the SSA web. */
6198 update_ssa (TODO_update_ssa
);
6200 if (free_region_copy
)
6203 free_original_copy_tables ();
6207 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6208 adding blocks when the dominator traversal reaches EXIT. This
6209 function silently assumes that ENTRY strictly dominates EXIT. */
6212 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6213 vec
<basic_block
> *bbs_p
)
6217 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6219 son
= next_dom_son (CDI_DOMINATORS
, son
))
6221 bbs_p
->safe_push (son
);
6223 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6227 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6228 The duplicates are recorded in VARS_MAP. */
6231 replace_by_duplicate_decl (tree
*tp
, struct pointer_map_t
*vars_map
,
6234 tree t
= *tp
, new_t
;
6235 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6238 if (DECL_CONTEXT (t
) == to_context
)
6241 loc
= pointer_map_contains (vars_map
, t
);
6245 loc
= pointer_map_insert (vars_map
, t
);
6249 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6250 add_local_decl (f
, new_t
);
6254 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6255 new_t
= copy_node (t
);
6257 DECL_CONTEXT (new_t
) = to_context
;
6262 new_t
= (tree
) *loc
;
6268 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6269 VARS_MAP maps old ssa names and var_decls to the new ones. */
6272 replace_ssa_name (tree name
, struct pointer_map_t
*vars_map
,
6278 gcc_assert (!virtual_operand_p (name
));
6280 loc
= pointer_map_contains (vars_map
, name
);
6284 tree decl
= SSA_NAME_VAR (name
);
6287 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6288 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6289 decl
, SSA_NAME_DEF_STMT (name
));
6290 if (SSA_NAME_IS_DEFAULT_DEF (name
))
6291 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context
),
6295 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6296 name
, SSA_NAME_DEF_STMT (name
));
6298 loc
= pointer_map_insert (vars_map
, name
);
6302 new_name
= (tree
) *loc
;
6313 struct pointer_map_t
*vars_map
;
6314 htab_t new_label_map
;
6315 struct pointer_map_t
*eh_map
;
6319 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6320 contained in *TP if it has been ORIG_BLOCK previously and change the
6321 DECL_CONTEXT of every local variable referenced in *TP. */
6324 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6326 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6327 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6332 tree block
= TREE_BLOCK (t
);
6333 if (block
== p
->orig_block
6334 || (p
->orig_block
== NULL_TREE
6335 && block
!= NULL_TREE
))
6336 TREE_SET_BLOCK (t
, p
->new_block
);
6337 #ifdef ENABLE_CHECKING
6338 else if (block
!= NULL_TREE
)
6340 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6341 block
= BLOCK_SUPERCONTEXT (block
);
6342 gcc_assert (block
== p
->orig_block
);
6346 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6348 if (TREE_CODE (t
) == SSA_NAME
)
6349 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6350 else if (TREE_CODE (t
) == LABEL_DECL
)
6352 if (p
->new_label_map
)
6354 struct tree_map in
, *out
;
6356 out
= (struct tree_map
*)
6357 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6362 DECL_CONTEXT (t
) = p
->to_context
;
6364 else if (p
->remap_decls_p
)
6366 /* Replace T with its duplicate. T should no longer appear in the
6367 parent function, so this looks wasteful; however, it may appear
6368 in referenced_vars, and more importantly, as virtual operands of
6369 statements, and in alias lists of other variables. It would be
6370 quite difficult to expunge it from all those places. ??? It might
6371 suffice to do this for addressable variables. */
6372 if ((TREE_CODE (t
) == VAR_DECL
6373 && !is_global_var (t
))
6374 || TREE_CODE (t
) == CONST_DECL
)
6375 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6379 else if (TYPE_P (t
))
6385 /* Helper for move_stmt_r. Given an EH region number for the source
6386 function, map that to the duplicate EH regio number in the dest. */
6389 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6391 eh_region old_r
, new_r
;
6394 old_r
= get_eh_region_from_number (old_nr
);
6395 slot
= pointer_map_contains (p
->eh_map
, old_r
);
6396 new_r
= (eh_region
) *slot
;
6398 return new_r
->index
;
6401 /* Similar, but operate on INTEGER_CSTs. */
6404 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6408 old_nr
= tree_to_shwi (old_t_nr
);
6409 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6411 return build_int_cst (integer_type_node
, new_nr
);
6414 /* Like move_stmt_op, but for gimple statements.
6416 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6417 contained in the current statement in *GSI_P and change the
6418 DECL_CONTEXT of every local variable referenced in the current
6422 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
6423 struct walk_stmt_info
*wi
)
6425 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6426 gimple stmt
= gsi_stmt (*gsi_p
);
6427 tree block
= gimple_block (stmt
);
6429 if (block
== p
->orig_block
6430 || (p
->orig_block
== NULL_TREE
6431 && block
!= NULL_TREE
))
6432 gimple_set_block (stmt
, p
->new_block
);
6434 switch (gimple_code (stmt
))
6437 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6439 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6440 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
6441 switch (DECL_FUNCTION_CODE (fndecl
))
6443 case BUILT_IN_EH_COPY_VALUES
:
6444 r
= gimple_call_arg (stmt
, 1);
6445 r
= move_stmt_eh_region_tree_nr (r
, p
);
6446 gimple_call_set_arg (stmt
, 1, r
);
6449 case BUILT_IN_EH_POINTER
:
6450 case BUILT_IN_EH_FILTER
:
6451 r
= gimple_call_arg (stmt
, 0);
6452 r
= move_stmt_eh_region_tree_nr (r
, p
);
6453 gimple_call_set_arg (stmt
, 0, r
);
6464 int r
= gimple_resx_region (stmt
);
6465 r
= move_stmt_eh_region_nr (r
, p
);
6466 gimple_resx_set_region (stmt
, r
);
6470 case GIMPLE_EH_DISPATCH
:
6472 int r
= gimple_eh_dispatch_region (stmt
);
6473 r
= move_stmt_eh_region_nr (r
, p
);
6474 gimple_eh_dispatch_set_region (stmt
, r
);
6478 case GIMPLE_OMP_RETURN
:
6479 case GIMPLE_OMP_CONTINUE
:
6482 if (is_gimple_omp (stmt
))
6484 /* Do not remap variables inside OMP directives. Variables
6485 referenced in clauses and directive header belong to the
6486 parent function and should not be moved into the child
6488 bool save_remap_decls_p
= p
->remap_decls_p
;
6489 p
->remap_decls_p
= false;
6490 *handled_ops_p
= true;
6492 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
6495 p
->remap_decls_p
= save_remap_decls_p
;
6503 /* Move basic block BB from function CFUN to function DEST_FN. The
6504 block is moved out of the original linked list and placed after
6505 block AFTER in the new list. Also, the block is removed from the
6506 original array of blocks and placed in DEST_FN's array of blocks.
6507 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6508 updated to reflect the moved edges.
6510 The local variables are remapped to new instances, VARS_MAP is used
6511 to record the mapping. */
6514 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6515 basic_block after
, bool update_edge_count_p
,
6516 struct move_stmt_d
*d
)
6518 struct control_flow_graph
*cfg
;
6521 gimple_stmt_iterator si
;
6522 unsigned old_len
, new_len
;
6524 /* Remove BB from dominance structures. */
6525 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6527 /* Move BB from its current loop to the copy in the new function. */
6530 struct loop
*new_loop
= (struct loop
*)bb
->loop_father
->aux
;
6532 bb
->loop_father
= new_loop
;
6535 /* Link BB to the new linked list. */
6536 move_block_after (bb
, after
);
6538 /* Update the edge count in the corresponding flowgraphs. */
6539 if (update_edge_count_p
)
6540 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6542 cfun
->cfg
->x_n_edges
--;
6543 dest_cfun
->cfg
->x_n_edges
++;
6546 /* Remove BB from the original basic block array. */
6547 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
6548 cfun
->cfg
->x_n_basic_blocks
--;
6550 /* Grow DEST_CFUN's basic block array if needed. */
6551 cfg
= dest_cfun
->cfg
;
6552 cfg
->x_n_basic_blocks
++;
6553 if (bb
->index
>= cfg
->x_last_basic_block
)
6554 cfg
->x_last_basic_block
= bb
->index
+ 1;
6556 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
6557 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
6559 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
6560 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
6563 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
6565 /* Remap the variables in phi nodes. */
6566 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); )
6568 gimple phi
= gsi_stmt (si
);
6570 tree op
= PHI_RESULT (phi
);
6574 if (virtual_operand_p (op
))
6576 /* Remove the phi nodes for virtual operands (alias analysis will be
6577 run for the new function, anyway). */
6578 remove_phi_node (&si
, true);
6582 SET_PHI_RESULT (phi
,
6583 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6584 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
6586 op
= USE_FROM_PTR (use
);
6587 if (TREE_CODE (op
) == SSA_NAME
)
6588 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6591 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
6593 location_t locus
= gimple_phi_arg_location (phi
, i
);
6594 tree block
= LOCATION_BLOCK (locus
);
6596 if (locus
== UNKNOWN_LOCATION
)
6598 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
6600 if (d
->new_block
== NULL_TREE
)
6601 locus
= LOCATION_LOCUS (locus
);
6603 locus
= COMBINE_LOCATION_DATA (line_table
, locus
, d
->new_block
);
6604 gimple_phi_arg_set_location (phi
, i
, locus
);
6611 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6613 gimple stmt
= gsi_stmt (si
);
6614 struct walk_stmt_info wi
;
6616 memset (&wi
, 0, sizeof (wi
));
6618 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
6620 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6622 tree label
= gimple_label_label (stmt
);
6623 int uid
= LABEL_DECL_UID (label
);
6625 gcc_assert (uid
> -1);
6627 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
6628 if (old_len
<= (unsigned) uid
)
6630 new_len
= 3 * uid
/ 2 + 1;
6631 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
6634 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
6635 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
6637 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
6639 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
6640 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
6643 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
6644 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
6646 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
6647 gimple_remove_stmt_histograms (cfun
, stmt
);
6649 /* We cannot leave any operands allocated from the operand caches of
6650 the current function. */
6651 free_stmt_operands (cfun
, stmt
);
6652 push_cfun (dest_cfun
);
6657 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6658 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
6660 tree block
= LOCATION_BLOCK (e
->goto_locus
);
6661 if (d
->orig_block
== NULL_TREE
6662 || block
== d
->orig_block
)
6663 e
->goto_locus
= d
->new_block
?
6664 COMBINE_LOCATION_DATA (line_table
, e
->goto_locus
, d
->new_block
) :
6665 LOCATION_LOCUS (e
->goto_locus
);
6669 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6670 the outermost EH region. Use REGION as the incoming base EH region. */
6673 find_outermost_region_in_block (struct function
*src_cfun
,
6674 basic_block bb
, eh_region region
)
6676 gimple_stmt_iterator si
;
6678 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6680 gimple stmt
= gsi_stmt (si
);
6681 eh_region stmt_region
;
6684 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
6685 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
6689 region
= stmt_region
;
6690 else if (stmt_region
!= region
)
6692 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
6693 gcc_assert (region
!= NULL
);
6702 new_label_mapper (tree decl
, void *data
)
6704 htab_t hash
= (htab_t
) data
;
6708 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
6710 m
= XNEW (struct tree_map
);
6711 m
->hash
= DECL_UID (decl
);
6712 m
->base
.from
= decl
;
6713 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
6714 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
6715 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
6716 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
6718 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
6719 gcc_assert (*slot
== NULL
);
6726 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6730 replace_block_vars_by_duplicates (tree block
, struct pointer_map_t
*vars_map
,
6735 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
6738 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
6740 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
6743 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
6745 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (*tp
));
6746 DECL_HAS_VALUE_EXPR_P (t
) = 1;
6748 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
6753 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
6754 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
6757 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6761 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
6764 /* Discard it from the old loop array. */
6765 (*get_loops (fn1
))[loop
->num
] = NULL
;
6767 /* Place it in the new loop array, assigning it a new number. */
6768 loop
->num
= number_of_loops (fn2
);
6769 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
6771 /* Recurse to children. */
6772 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
6773 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
6776 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6777 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6778 single basic block in the original CFG and the new basic block is
6779 returned. DEST_CFUN must not have a CFG yet.
6781 Note that the region need not be a pure SESE region. Blocks inside
6782 the region may contain calls to abort/exit. The only restriction
6783 is that ENTRY_BB should be the only entry point and it must
6786 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6787 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6788 to the new function.
6790 All local variables referenced in the region are assumed to be in
6791 the corresponding BLOCK_VARS and unexpanded variable lists
6792 associated with DEST_CFUN. */
6795 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
6796 basic_block exit_bb
, tree orig_block
)
6798 vec
<basic_block
> bbs
, dom_bbs
;
6799 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
6800 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
6801 struct function
*saved_cfun
= cfun
;
6802 int *entry_flag
, *exit_flag
;
6803 unsigned *entry_prob
, *exit_prob
;
6804 unsigned i
, num_entry_edges
, num_exit_edges
, num_nodes
;
6807 htab_t new_label_map
;
6808 struct pointer_map_t
*vars_map
, *eh_map
;
6809 struct loop
*loop
= entry_bb
->loop_father
;
6810 struct loop
*loop0
= get_loop (saved_cfun
, 0);
6811 struct move_stmt_d d
;
6813 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6815 gcc_assert (entry_bb
!= exit_bb
6817 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
6819 /* Collect all the blocks in the region. Manually add ENTRY_BB
6820 because it won't be added by dfs_enumerate_from. */
6822 bbs
.safe_push (entry_bb
);
6823 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
6825 /* The blocks that used to be dominated by something in BBS will now be
6826 dominated by the new block. */
6827 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
6831 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6832 the predecessor edges to ENTRY_BB and the successor edges to
6833 EXIT_BB so that we can re-attach them to the new basic block that
6834 will replace the region. */
6835 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
6836 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
6837 entry_flag
= XNEWVEC (int, num_entry_edges
);
6838 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
6840 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
6842 entry_prob
[i
] = e
->probability
;
6843 entry_flag
[i
] = e
->flags
;
6844 entry_pred
[i
++] = e
->src
;
6850 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
6851 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
6852 exit_flag
= XNEWVEC (int, num_exit_edges
);
6853 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
6855 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
6857 exit_prob
[i
] = e
->probability
;
6858 exit_flag
[i
] = e
->flags
;
6859 exit_succ
[i
++] = e
->dest
;
6871 /* Switch context to the child function to initialize DEST_FN's CFG. */
6872 gcc_assert (dest_cfun
->cfg
== NULL
);
6873 push_cfun (dest_cfun
);
6875 init_empty_tree_cfg ();
6877 /* Initialize EH information for the new function. */
6879 new_label_map
= NULL
;
6882 eh_region region
= NULL
;
6884 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6885 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
6887 init_eh_for_function ();
6890 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
6891 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
6892 new_label_mapper
, new_label_map
);
6896 /* Initialize an empty loop tree. */
6897 struct loops
*loops
= ggc_alloc_cleared_loops ();
6898 init_loops_structure (dest_cfun
, loops
, 1);
6899 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
6900 set_loops_for_fn (dest_cfun
, loops
);
6902 /* Move the outlined loop tree part. */
6903 num_nodes
= bbs
.length ();
6904 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6906 if (bb
->loop_father
->header
== bb
)
6908 struct loop
*this_loop
= bb
->loop_father
;
6909 struct loop
*outer
= loop_outer (this_loop
);
6911 /* If the SESE region contains some bbs ending with
6912 a noreturn call, those are considered to belong
6913 to the outermost loop in saved_cfun, rather than
6914 the entry_bb's loop_father. */
6918 num_nodes
-= this_loop
->num_nodes
;
6919 flow_loop_tree_node_remove (bb
->loop_father
);
6920 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), this_loop
);
6921 fixup_loop_arrays_after_move (saved_cfun
, cfun
, this_loop
);
6924 else if (bb
->loop_father
== loop0
&& loop0
!= loop
)
6927 /* Remove loop exits from the outlined region. */
6928 if (loops_for_fn (saved_cfun
)->exits
)
6929 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6931 void **slot
= htab_find_slot_with_hash
6932 (loops_for_fn (saved_cfun
)->exits
, e
,
6933 htab_hash_pointer (e
), NO_INSERT
);
6935 htab_clear_slot (loops_for_fn (saved_cfun
)->exits
, slot
);
6940 /* Adjust the number of blocks in the tree root of the outlined part. */
6941 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
6943 /* Setup a mapping to be used by move_block_to_fn. */
6944 loop
->aux
= current_loops
->tree_root
;
6945 loop0
->aux
= current_loops
->tree_root
;
6949 /* Move blocks from BBS into DEST_CFUN. */
6950 gcc_assert (bbs
.length () >= 2);
6951 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
6952 vars_map
= pointer_map_create ();
6954 memset (&d
, 0, sizeof (d
));
6955 d
.orig_block
= orig_block
;
6956 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
6957 d
.from_context
= cfun
->decl
;
6958 d
.to_context
= dest_cfun
->decl
;
6959 d
.vars_map
= vars_map
;
6960 d
.new_label_map
= new_label_map
;
6962 d
.remap_decls_p
= true;
6964 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6966 /* No need to update edge counts on the last block. It has
6967 already been updated earlier when we detached the region from
6968 the original CFG. */
6969 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
6975 /* Loop sizes are no longer correct, fix them up. */
6976 loop
->num_nodes
-= num_nodes
;
6977 for (struct loop
*outer
= loop_outer (loop
);
6978 outer
; outer
= loop_outer (outer
))
6979 outer
->num_nodes
-= num_nodes
;
6980 loop0
->num_nodes
-= bbs
.length () - num_nodes
;
6982 if (saved_cfun
->has_simduid_loops
|| saved_cfun
->has_force_vectorize_loops
)
6985 for (i
= 0; vec_safe_iterate (loops
->larray
, i
, &aloop
); i
++)
6990 replace_by_duplicate_decl (&aloop
->simduid
, d
.vars_map
,
6992 dest_cfun
->has_simduid_loops
= true;
6994 if (aloop
->force_vectorize
)
6995 dest_cfun
->has_force_vectorize_loops
= true;
6999 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7003 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7005 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7006 = BLOCK_SUBBLOCKS (orig_block
);
7007 for (block
= BLOCK_SUBBLOCKS (orig_block
);
7008 block
; block
= BLOCK_CHAIN (block
))
7009 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
7010 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
7013 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
7014 vars_map
, dest_cfun
->decl
);
7017 htab_delete (new_label_map
);
7019 pointer_map_destroy (eh_map
);
7020 pointer_map_destroy (vars_map
);
7022 /* Rewire the entry and exit blocks. The successor to the entry
7023 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7024 the child function. Similarly, the predecessor of DEST_FN's
7025 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7026 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7027 various CFG manipulation function get to the right CFG.
7029 FIXME, this is silly. The CFG ought to become a parameter to
7031 push_cfun (dest_cfun
);
7032 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
), entry_bb
, EDGE_FALLTHRU
);
7034 make_edge (exit_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
7037 /* Back in the original function, the SESE region has disappeared,
7038 create a new basic block in its place. */
7039 bb
= create_empty_bb (entry_pred
[0]);
7041 add_bb_to_loop (bb
, loop
);
7042 for (i
= 0; i
< num_entry_edges
; i
++)
7044 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
7045 e
->probability
= entry_prob
[i
];
7048 for (i
= 0; i
< num_exit_edges
; i
++)
7050 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
7051 e
->probability
= exit_prob
[i
];
7054 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
7055 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
7056 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
7074 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7078 dump_function_to_file (tree fndecl
, FILE *file
, int flags
)
7080 tree arg
, var
, old_current_fndecl
= current_function_decl
;
7081 struct function
*dsf
;
7082 bool ignore_topmost_bind
= false, any_var
= false;
7085 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
7086 && decl_is_tm_clone (fndecl
));
7087 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
7089 current_function_decl
= fndecl
;
7090 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
7092 arg
= DECL_ARGUMENTS (fndecl
);
7095 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
7096 fprintf (file
, " ");
7097 print_generic_expr (file
, arg
, dump_flags
);
7098 if (flags
& TDF_VERBOSE
)
7099 print_node (file
, "", arg
, 4);
7100 if (DECL_CHAIN (arg
))
7101 fprintf (file
, ", ");
7102 arg
= DECL_CHAIN (arg
);
7104 fprintf (file
, ")\n");
7106 if (flags
& TDF_VERBOSE
)
7107 print_node (file
, "", fndecl
, 2);
7109 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
7110 if (dsf
&& (flags
& TDF_EH
))
7111 dump_eh_tree (file
, dsf
);
7113 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
7115 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
7116 current_function_decl
= old_current_fndecl
;
7120 /* When GIMPLE is lowered, the variables are no longer available in
7121 BIND_EXPRs, so display them separately. */
7122 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
7125 ignore_topmost_bind
= true;
7127 fprintf (file
, "{\n");
7128 if (!vec_safe_is_empty (fun
->local_decls
))
7129 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
7131 print_generic_decl (file
, var
, flags
);
7132 if (flags
& TDF_VERBOSE
)
7133 print_node (file
, "", var
, 4);
7134 fprintf (file
, "\n");
7138 if (gimple_in_ssa_p (cfun
))
7139 for (ix
= 1; ix
< num_ssa_names
; ++ix
)
7141 tree name
= ssa_name (ix
);
7142 if (name
&& !SSA_NAME_VAR (name
))
7144 fprintf (file
, " ");
7145 print_generic_expr (file
, TREE_TYPE (name
), flags
);
7146 fprintf (file
, " ");
7147 print_generic_expr (file
, name
, flags
);
7148 fprintf (file
, ";\n");
7155 if (fun
&& fun
->decl
== fndecl
7157 && basic_block_info_for_fn (fun
))
7159 /* If the CFG has been built, emit a CFG-based dump. */
7160 if (!ignore_topmost_bind
)
7161 fprintf (file
, "{\n");
7163 if (any_var
&& n_basic_blocks_for_fn (fun
))
7164 fprintf (file
, "\n");
7166 FOR_EACH_BB_FN (bb
, fun
)
7167 dump_bb (file
, bb
, 2, flags
| TDF_COMMENT
);
7169 fprintf (file
, "}\n");
7171 else if (DECL_SAVED_TREE (fndecl
) == NULL
)
7173 /* The function is now in GIMPLE form but the CFG has not been
7174 built yet. Emit the single sequence of GIMPLE statements
7175 that make up its body. */
7176 gimple_seq body
= gimple_body (fndecl
);
7178 if (gimple_seq_first_stmt (body
)
7179 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
7180 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
7181 print_gimple_seq (file
, body
, 0, flags
);
7184 if (!ignore_topmost_bind
)
7185 fprintf (file
, "{\n");
7188 fprintf (file
, "\n");
7190 print_gimple_seq (file
, body
, 2, flags
);
7191 fprintf (file
, "}\n");
7198 /* Make a tree based dump. */
7199 chain
= DECL_SAVED_TREE (fndecl
);
7200 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
7202 if (ignore_topmost_bind
)
7204 chain
= BIND_EXPR_BODY (chain
);
7212 if (!ignore_topmost_bind
)
7213 fprintf (file
, "{\n");
7218 fprintf (file
, "\n");
7220 print_generic_stmt_indented (file
, chain
, flags
, indent
);
7221 if (ignore_topmost_bind
)
7222 fprintf (file
, "}\n");
7225 if (flags
& TDF_ENUMERATE_LOCALS
)
7226 dump_enumerated_decls (file
, flags
);
7227 fprintf (file
, "\n\n");
7229 current_function_decl
= old_current_fndecl
;
7232 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7235 debug_function (tree fn
, int flags
)
7237 dump_function_to_file (fn
, stderr
, flags
);
7241 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7244 print_pred_bbs (FILE *file
, basic_block bb
)
7249 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7250 fprintf (file
, "bb_%d ", e
->src
->index
);
7254 /* Print on FILE the indexes for the successors of basic_block BB. */
7257 print_succ_bbs (FILE *file
, basic_block bb
)
7262 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7263 fprintf (file
, "bb_%d ", e
->dest
->index
);
7266 /* Print to FILE the basic block BB following the VERBOSITY level. */
7269 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
7271 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
7272 memset ((void *) s_indent
, ' ', (size_t) indent
);
7273 s_indent
[indent
] = '\0';
7275 /* Print basic_block's header. */
7278 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
7279 print_pred_bbs (file
, bb
);
7280 fprintf (file
, "}, succs = {");
7281 print_succ_bbs (file
, bb
);
7282 fprintf (file
, "})\n");
7285 /* Print basic_block's body. */
7288 fprintf (file
, "%s {\n", s_indent
);
7289 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
7290 fprintf (file
, "%s }\n", s_indent
);
7294 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
7296 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7297 VERBOSITY level this outputs the contents of the loop, or just its
7301 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
7309 s_indent
= (char *) alloca ((size_t) indent
+ 1);
7310 memset ((void *) s_indent
, ' ', (size_t) indent
);
7311 s_indent
[indent
] = '\0';
7313 /* Print loop's header. */
7314 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
7316 fprintf (file
, "header = %d", loop
->header
->index
);
7319 fprintf (file
, "deleted)\n");
7323 fprintf (file
, ", latch = %d", loop
->latch
->index
);
7325 fprintf (file
, ", multiple latches");
7326 fprintf (file
, ", niter = ");
7327 print_generic_expr (file
, loop
->nb_iterations
, 0);
7329 if (loop
->any_upper_bound
)
7331 fprintf (file
, ", upper_bound = ");
7332 dump_double_int (file
, loop
->nb_iterations_upper_bound
, true);
7335 if (loop
->any_estimate
)
7337 fprintf (file
, ", estimate = ");
7338 dump_double_int (file
, loop
->nb_iterations_estimate
, true);
7340 fprintf (file
, ")\n");
7342 /* Print loop's body. */
7345 fprintf (file
, "%s{\n", s_indent
);
7346 FOR_EACH_BB_FN (bb
, cfun
)
7347 if (bb
->loop_father
== loop
)
7348 print_loops_bb (file
, bb
, indent
, verbosity
);
7350 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
7351 fprintf (file
, "%s}\n", s_indent
);
7355 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7356 spaces. Following VERBOSITY level this outputs the contents of the
7357 loop, or just its structure. */
7360 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
,
7366 print_loop (file
, loop
, indent
, verbosity
);
7367 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
7370 /* Follow a CFG edge from the entry point of the program, and on entry
7371 of a loop, pretty print the loop structure on FILE. */
7374 print_loops (FILE *file
, int verbosity
)
7378 bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
7379 if (bb
&& bb
->loop_father
)
7380 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
7386 debug (struct loop
&ref
)
7388 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
7392 debug (struct loop
*ptr
)
7397 fprintf (stderr
, "<nil>\n");
7400 /* Dump a loop verbosely. */
7403 debug_verbose (struct loop
&ref
)
7405 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
7409 debug_verbose (struct loop
*ptr
)
7414 fprintf (stderr
, "<nil>\n");
7418 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7421 debug_loops (int verbosity
)
7423 print_loops (stderr
, verbosity
);
7426 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7429 debug_loop (struct loop
*loop
, int verbosity
)
7431 print_loop (stderr
, loop
, 0, verbosity
);
7434 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7438 debug_loop_num (unsigned num
, int verbosity
)
7440 debug_loop (get_loop (cfun
, num
), verbosity
);
7443 /* Return true if BB ends with a call, possibly followed by some
7444 instructions that must stay with the call. Return false,
7448 gimple_block_ends_with_call_p (basic_block bb
)
7450 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
7451 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
7455 /* Return true if BB ends with a conditional branch. Return false,
7459 gimple_block_ends_with_condjump_p (const_basic_block bb
)
7461 gimple stmt
= last_stmt (CONST_CAST_BB (bb
));
7462 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
7466 /* Return true if we need to add fake edge to exit at statement T.
7467 Helper function for gimple_flow_call_edges_add. */
7470 need_fake_edge_p (gimple t
)
7472 tree fndecl
= NULL_TREE
;
7475 /* NORETURN and LONGJMP calls already have an edge to exit.
7476 CONST and PURE calls do not need one.
7477 We don't currently check for CONST and PURE here, although
7478 it would be a good idea, because those attributes are
7479 figured out from the RTL in mark_constant_function, and
7480 the counter incrementation code from -fprofile-arcs
7481 leads to different results from -fbranch-probabilities. */
7482 if (is_gimple_call (t
))
7484 fndecl
= gimple_call_fndecl (t
);
7485 call_flags
= gimple_call_flags (t
);
7488 if (is_gimple_call (t
)
7490 && DECL_BUILT_IN (fndecl
)
7491 && (call_flags
& ECF_NOTHROW
)
7492 && !(call_flags
& ECF_RETURNS_TWICE
)
7493 /* fork() doesn't really return twice, but the effect of
7494 wrapping it in __gcov_fork() which calls __gcov_flush()
7495 and clears the counters before forking has the same
7496 effect as returning twice. Force a fake edge. */
7497 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
7498 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
7501 if (is_gimple_call (t
))
7507 if (!(call_flags
& ECF_NORETURN
))
7511 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7512 if ((e
->flags
& EDGE_FAKE
) == 0)
7516 if (gimple_code (t
) == GIMPLE_ASM
7517 && (gimple_asm_volatile_p (t
) || gimple_asm_input_p (t
)))
7524 /* Add fake edges to the function exit for any non constant and non
7525 noreturn calls (or noreturn calls with EH/abnormal edges),
7526 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7527 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7530 The goal is to expose cases in which entering a basic block does
7531 not imply that all subsequent instructions must be executed. */
7534 gimple_flow_call_edges_add (sbitmap blocks
)
7537 int blocks_split
= 0;
7538 int last_bb
= last_basic_block_for_fn (cfun
);
7539 bool check_last_block
= false;
7541 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
7545 check_last_block
= true;
7547 check_last_block
= bitmap_bit_p (blocks
,
7548 EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
->index
);
7550 /* In the last basic block, before epilogue generation, there will be
7551 a fallthru edge to EXIT. Special care is required if the last insn
7552 of the last basic block is a call because make_edge folds duplicate
7553 edges, which would result in the fallthru edge also being marked
7554 fake, which would result in the fallthru edge being removed by
7555 remove_fake_edges, which would result in an invalid CFG.
7557 Moreover, we can't elide the outgoing fake edge, since the block
7558 profiler needs to take this into account in order to solve the minimal
7559 spanning tree in the case that the call doesn't return.
7561 Handle this by adding a dummy instruction in a new last basic block. */
7562 if (check_last_block
)
7564 basic_block bb
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
7565 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
7568 if (!gsi_end_p (gsi
))
7571 if (t
&& need_fake_edge_p (t
))
7575 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
7578 gsi_insert_on_edge (e
, gimple_build_nop ());
7579 gsi_commit_edge_inserts ();
7584 /* Now add fake edges to the function exit for any non constant
7585 calls since there is no way that we can determine if they will
7587 for (i
= 0; i
< last_bb
; i
++)
7589 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
7590 gimple_stmt_iterator gsi
;
7591 gimple stmt
, last_stmt
;
7596 if (blocks
&& !bitmap_bit_p (blocks
, i
))
7599 gsi
= gsi_last_nondebug_bb (bb
);
7600 if (!gsi_end_p (gsi
))
7602 last_stmt
= gsi_stmt (gsi
);
7605 stmt
= gsi_stmt (gsi
);
7606 if (need_fake_edge_p (stmt
))
7610 /* The handling above of the final block before the
7611 epilogue should be enough to verify that there is
7612 no edge to the exit block in CFG already.
7613 Calling make_edge in such case would cause us to
7614 mark that edge as fake and remove it later. */
7615 #ifdef ENABLE_CHECKING
7616 if (stmt
== last_stmt
)
7618 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
7619 gcc_assert (e
== NULL
);
7623 /* Note that the following may create a new basic block
7624 and renumber the existing basic blocks. */
7625 if (stmt
!= last_stmt
)
7627 e
= split_block (bb
, stmt
);
7631 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
7635 while (!gsi_end_p (gsi
));
7640 verify_flow_info ();
7642 return blocks_split
;
7645 /* Removes edge E and all the blocks dominated by it, and updates dominance
7646 information. The IL in E->src needs to be updated separately.
7647 If dominance info is not available, only the edge E is removed.*/
7650 remove_edge_and_dominated_blocks (edge e
)
7652 vec
<basic_block
> bbs_to_remove
= vNULL
;
7653 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
7657 bool none_removed
= false;
7659 basic_block bb
, dbb
;
7662 if (!dom_info_available_p (CDI_DOMINATORS
))
7668 /* No updating is needed for edges to exit. */
7669 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
7671 if (cfgcleanup_altered_bbs
)
7672 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7677 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7678 that is not dominated by E->dest, then this set is empty. Otherwise,
7679 all the basic blocks dominated by E->dest are removed.
7681 Also, to DF_IDOM we store the immediate dominators of the blocks in
7682 the dominance frontier of E (i.e., of the successors of the
7683 removed blocks, if there are any, and of E->dest otherwise). */
7684 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
7689 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
7691 none_removed
= true;
7696 df
= BITMAP_ALLOC (NULL
);
7697 df_idom
= BITMAP_ALLOC (NULL
);
7700 bitmap_set_bit (df_idom
,
7701 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
7704 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
7705 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
7707 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
7709 if (f
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
7710 bitmap_set_bit (df
, f
->dest
->index
);
7713 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
7714 bitmap_clear_bit (df
, bb
->index
);
7716 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
7718 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
7719 bitmap_set_bit (df_idom
,
7720 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
7724 if (cfgcleanup_altered_bbs
)
7726 /* Record the set of the altered basic blocks. */
7727 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7728 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
7731 /* Remove E and the cancelled blocks. */
7736 /* Walk backwards so as to get a chance to substitute all
7737 released DEFs into debug stmts. See
7738 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7740 for (i
= bbs_to_remove
.length (); i
-- > 0; )
7741 delete_basic_block (bbs_to_remove
[i
]);
7744 /* Update the dominance information. The immediate dominator may change only
7745 for blocks whose immediate dominator belongs to DF_IDOM:
7747 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7748 removal. Let Z the arbitrary block such that idom(Z) = Y and
7749 Z dominates X after the removal. Before removal, there exists a path P
7750 from Y to X that avoids Z. Let F be the last edge on P that is
7751 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7752 dominates W, and because of P, Z does not dominate W), and W belongs to
7753 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7754 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
7756 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
7757 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
7759 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
7760 bbs_to_fix_dom
.safe_push (dbb
);
7763 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
7766 BITMAP_FREE (df_idom
);
7767 bbs_to_remove
.release ();
7768 bbs_to_fix_dom
.release ();
7771 /* Purge dead EH edges from basic block BB. */
7774 gimple_purge_dead_eh_edges (basic_block bb
)
7776 bool changed
= false;
7779 gimple stmt
= last_stmt (bb
);
7781 if (stmt
&& stmt_can_throw_internal (stmt
))
7784 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7786 if (e
->flags
& EDGE_EH
)
7788 remove_edge_and_dominated_blocks (e
);
7798 /* Purge dead EH edges from basic block listed in BLOCKS. */
7801 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
7803 bool changed
= false;
7807 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7809 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
7811 /* Earlier gimple_purge_dead_eh_edges could have removed
7812 this basic block already. */
7813 gcc_assert (bb
|| changed
);
7815 changed
|= gimple_purge_dead_eh_edges (bb
);
7821 /* Purge dead abnormal call edges from basic block BB. */
7824 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
7826 bool changed
= false;
7829 gimple stmt
= last_stmt (bb
);
7831 if (!cfun
->has_nonlocal_label
7832 && !cfun
->calls_setjmp
)
7835 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
7838 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7840 if (e
->flags
& EDGE_ABNORMAL
)
7842 if (e
->flags
& EDGE_FALLTHRU
)
7843 e
->flags
&= ~EDGE_ABNORMAL
;
7845 remove_edge_and_dominated_blocks (e
);
7855 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7858 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
7860 bool changed
= false;
7864 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7866 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
7868 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7869 this basic block already. */
7870 gcc_assert (bb
|| changed
);
7872 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
7878 /* This function is called whenever a new edge is created or
7882 gimple_execute_on_growing_pred (edge e
)
7884 basic_block bb
= e
->dest
;
7886 if (!gimple_seq_empty_p (phi_nodes (bb
)))
7887 reserve_phi_args_for_new_edge (bb
);
7890 /* This function is called immediately before edge E is removed from
7891 the edge vector E->dest->preds. */
7894 gimple_execute_on_shrinking_pred (edge e
)
7896 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
7897 remove_phi_args (e
);
7900 /*---------------------------------------------------------------------------
7901 Helper functions for Loop versioning
7902 ---------------------------------------------------------------------------*/
7904 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7905 of 'first'. Both of them are dominated by 'new_head' basic block. When
7906 'new_head' was created by 'second's incoming edge it received phi arguments
7907 on the edge by split_edge(). Later, additional edge 'e' was created to
7908 connect 'new_head' and 'first'. Now this routine adds phi args on this
7909 additional edge 'e' that new_head to second edge received as part of edge
7913 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
7914 basic_block new_head
, edge e
)
7917 gimple_stmt_iterator psi1
, psi2
;
7919 edge e2
= find_edge (new_head
, second
);
7921 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7922 edge, we should always have an edge from NEW_HEAD to SECOND. */
7923 gcc_assert (e2
!= NULL
);
7925 /* Browse all 'second' basic block phi nodes and add phi args to
7926 edge 'e' for 'first' head. PHI args are always in correct order. */
7928 for (psi2
= gsi_start_phis (second
),
7929 psi1
= gsi_start_phis (first
);
7930 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
7931 gsi_next (&psi2
), gsi_next (&psi1
))
7933 phi1
= gsi_stmt (psi1
);
7934 phi2
= gsi_stmt (psi2
);
7935 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
7936 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
7941 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7942 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7943 the destination of the ELSE part. */
7946 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
7947 basic_block second_head ATTRIBUTE_UNUSED
,
7948 basic_block cond_bb
, void *cond_e
)
7950 gimple_stmt_iterator gsi
;
7951 gimple new_cond_expr
;
7952 tree cond_expr
= (tree
) cond_e
;
7955 /* Build new conditional expr */
7956 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
7957 NULL_TREE
, NULL_TREE
);
7959 /* Add new cond in cond_bb. */
7960 gsi
= gsi_last_bb (cond_bb
);
7961 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
7963 /* Adjust edges appropriately to connect new head with first head
7964 as well as second head. */
7965 e0
= single_succ_edge (cond_bb
);
7966 e0
->flags
&= ~EDGE_FALLTHRU
;
7967 e0
->flags
|= EDGE_FALSE_VALUE
;
7971 /* Do book-keeping of basic block BB for the profile consistency checker.
7972 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7973 then do post-pass accounting. Store the counting in RECORD. */
7975 gimple_account_profile_record (basic_block bb
, int after_pass
,
7976 struct profile_record
*record
)
7978 gimple_stmt_iterator i
;
7979 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
7981 record
->size
[after_pass
]
7982 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
7983 if (profile_status_for_fn (cfun
) == PROFILE_READ
)
7984 record
->time
[after_pass
]
7985 += estimate_num_insns (gsi_stmt (i
),
7986 &eni_time_weights
) * bb
->count
;
7987 else if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
)
7988 record
->time
[after_pass
]
7989 += estimate_num_insns (gsi_stmt (i
),
7990 &eni_time_weights
) * bb
->frequency
;
7994 struct cfg_hooks gimple_cfg_hooks
= {
7996 gimple_verify_flow_info
,
7997 gimple_dump_bb
, /* dump_bb */
7998 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
7999 create_bb
, /* create_basic_block */
8000 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
8001 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
8002 gimple_can_remove_branch_p
, /* can_remove_branch_p */
8003 remove_bb
, /* delete_basic_block */
8004 gimple_split_block
, /* split_block */
8005 gimple_move_block_after
, /* move_block_after */
8006 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
8007 gimple_merge_blocks
, /* merge_blocks */
8008 gimple_predict_edge
, /* predict_edge */
8009 gimple_predicted_by_p
, /* predicted_by_p */
8010 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
8011 gimple_duplicate_bb
, /* duplicate_block */
8012 gimple_split_edge
, /* split_edge */
8013 gimple_make_forwarder_block
, /* make_forward_block */
8014 NULL
, /* tidy_fallthru_edge */
8015 NULL
, /* force_nonfallthru */
8016 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
8017 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
8018 gimple_flow_call_edges_add
, /* flow_call_edges_add */
8019 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
8020 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
8021 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
8022 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
8023 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
8024 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
8025 flush_pending_stmts
, /* flush_pending_stmts */
8026 gimple_empty_block_p
, /* block_empty_p */
8027 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
8028 gimple_account_profile_record
,
8032 /* Split all critical edges. */
8035 split_critical_edges (void)
8041 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8042 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8043 mappings around the calls to split_edge. */
8044 start_recording_case_labels ();
8045 FOR_ALL_BB_FN (bb
, cfun
)
8047 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8049 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
8051 /* PRE inserts statements to edges and expects that
8052 since split_critical_edges was done beforehand, committing edge
8053 insertions will not split more edges. In addition to critical
8054 edges we must split edges that have multiple successors and
8055 end by control flow statements, such as RESX.
8056 Go ahead and split them too. This matches the logic in
8057 gimple_find_edge_insert_loc. */
8058 else if ((!single_pred_p (e
->dest
)
8059 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
8060 || e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8061 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
8062 && !(e
->flags
& EDGE_ABNORMAL
))
8064 gimple_stmt_iterator gsi
;
8066 gsi
= gsi_last_bb (e
->src
);
8067 if (!gsi_end_p (gsi
)
8068 && stmt_ends_bb_p (gsi_stmt (gsi
))
8069 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
8070 && !gimple_call_builtin_p (gsi_stmt (gsi
),
8076 end_recording_case_labels ();
8082 const pass_data pass_data_split_crit_edges
=
8084 GIMPLE_PASS
, /* type */
8085 "crited", /* name */
8086 OPTGROUP_NONE
, /* optinfo_flags */
8087 false, /* has_gate */
8088 true, /* has_execute */
8089 TV_TREE_SPLIT_EDGES
, /* tv_id */
8090 PROP_cfg
, /* properties_required */
8091 PROP_no_crit_edges
, /* properties_provided */
8092 0, /* properties_destroyed */
8093 0, /* todo_flags_start */
8094 TODO_verify_flow
, /* todo_flags_finish */
8097 class pass_split_crit_edges
: public gimple_opt_pass
8100 pass_split_crit_edges (gcc::context
*ctxt
)
8101 : gimple_opt_pass (pass_data_split_crit_edges
, ctxt
)
8104 /* opt_pass methods: */
8105 unsigned int execute () { return split_critical_edges (); }
8107 opt_pass
* clone () { return new pass_split_crit_edges (m_ctxt
); }
8108 }; // class pass_split_crit_edges
8113 make_pass_split_crit_edges (gcc::context
*ctxt
)
8115 return new pass_split_crit_edges (ctxt
);
8119 /* Build a ternary operation and gimplify it. Emit code before GSI.
8120 Return the gimple_val holding the result. */
8123 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8124 tree type
, tree a
, tree b
, tree c
)
8127 location_t loc
= gimple_location (gsi_stmt (*gsi
));
8129 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
8132 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8136 /* Build a binary operation and gimplify it. Emit code before GSI.
8137 Return the gimple_val holding the result. */
8140 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8141 tree type
, tree a
, tree b
)
8145 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
8148 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8152 /* Build a unary operation and gimplify it. Emit code before GSI.
8153 Return the gimple_val holding the result. */
8156 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
8161 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
8164 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8170 /* Emit return warnings. */
8173 execute_warn_function_return (void)
8175 source_location location
;
8180 if (!targetm
.warn_func_return (cfun
->decl
))
8183 /* If we have a path to EXIT, then we do return. */
8184 if (TREE_THIS_VOLATILE (cfun
->decl
)
8185 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
) > 0)
8187 location
= UNKNOWN_LOCATION
;
8188 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
8190 last
= last_stmt (e
->src
);
8191 if ((gimple_code (last
) == GIMPLE_RETURN
8192 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
8193 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
8196 if (location
== UNKNOWN_LOCATION
)
8197 location
= cfun
->function_end_locus
;
8198 warning_at (location
, 0, "%<noreturn%> function does return");
8201 /* If we see "return;" in some basic block, then we do reach the end
8202 without returning a value. */
8203 else if (warn_return_type
8204 && !TREE_NO_WARNING (cfun
->decl
)
8205 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
) > 0
8206 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
8208 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
8210 gimple last
= last_stmt (e
->src
);
8211 if (gimple_code (last
) == GIMPLE_RETURN
8212 && gimple_return_retval (last
) == NULL
8213 && !gimple_no_warning_p (last
))
8215 location
= gimple_location (last
);
8216 if (location
== UNKNOWN_LOCATION
)
8217 location
= cfun
->function_end_locus
;
8218 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
8219 TREE_NO_WARNING (cfun
->decl
) = 1;
8228 /* Given a basic block B which ends with a conditional and has
8229 precisely two successors, determine which of the edges is taken if
8230 the conditional is true and which is taken if the conditional is
8231 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8234 extract_true_false_edges_from_block (basic_block b
,
8238 edge e
= EDGE_SUCC (b
, 0);
8240 if (e
->flags
& EDGE_TRUE_VALUE
)
8243 *false_edge
= EDGE_SUCC (b
, 1);
8248 *true_edge
= EDGE_SUCC (b
, 1);
8254 const pass_data pass_data_warn_function_return
=
8256 GIMPLE_PASS
, /* type */
8257 "*warn_function_return", /* name */
8258 OPTGROUP_NONE
, /* optinfo_flags */
8259 false, /* has_gate */
8260 true, /* has_execute */
8261 TV_NONE
, /* tv_id */
8262 PROP_cfg
, /* properties_required */
8263 0, /* properties_provided */
8264 0, /* properties_destroyed */
8265 0, /* todo_flags_start */
8266 0, /* todo_flags_finish */
8269 class pass_warn_function_return
: public gimple_opt_pass
8272 pass_warn_function_return (gcc::context
*ctxt
)
8273 : gimple_opt_pass (pass_data_warn_function_return
, ctxt
)
8276 /* opt_pass methods: */
8277 unsigned int execute () { return execute_warn_function_return (); }
8279 }; // class pass_warn_function_return
8284 make_pass_warn_function_return (gcc::context
*ctxt
)
8286 return new pass_warn_function_return (ctxt
);
8289 /* Walk a gimplified function and warn for functions whose return value is
8290 ignored and attribute((warn_unused_result)) is set. This is done before
8291 inlining, so we don't have to worry about that. */
8294 do_warn_unused_result (gimple_seq seq
)
8297 gimple_stmt_iterator i
;
8299 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
8301 gimple g
= gsi_stmt (i
);
8303 switch (gimple_code (g
))
8306 do_warn_unused_result (gimple_bind_body (g
));
8309 do_warn_unused_result (gimple_try_eval (g
));
8310 do_warn_unused_result (gimple_try_cleanup (g
));
8313 do_warn_unused_result (gimple_catch_handler (g
));
8315 case GIMPLE_EH_FILTER
:
8316 do_warn_unused_result (gimple_eh_filter_failure (g
));
8320 if (gimple_call_lhs (g
))
8322 if (gimple_call_internal_p (g
))
8325 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8326 LHS. All calls whose value is ignored should be
8327 represented like this. Look for the attribute. */
8328 fdecl
= gimple_call_fndecl (g
);
8329 ftype
= gimple_call_fntype (g
);
8331 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
8333 location_t loc
= gimple_location (g
);
8336 warning_at (loc
, OPT_Wunused_result
,
8337 "ignoring return value of %qD, "
8338 "declared with attribute warn_unused_result",
8341 warning_at (loc
, OPT_Wunused_result
,
8342 "ignoring return value of function "
8343 "declared with attribute warn_unused_result");
8348 /* Not a container, not a call, or a call whose value is used. */
8355 run_warn_unused_result (void)
8357 do_warn_unused_result (gimple_body (current_function_decl
));
8362 gate_warn_unused_result (void)
8364 return flag_warn_unused_result
;
8369 const pass_data pass_data_warn_unused_result
=
8371 GIMPLE_PASS
, /* type */
8372 "*warn_unused_result", /* name */
8373 OPTGROUP_NONE
, /* optinfo_flags */
8374 true, /* has_gate */
8375 true, /* has_execute */
8376 TV_NONE
, /* tv_id */
8377 PROP_gimple_any
, /* properties_required */
8378 0, /* properties_provided */
8379 0, /* properties_destroyed */
8380 0, /* todo_flags_start */
8381 0, /* todo_flags_finish */
8384 class pass_warn_unused_result
: public gimple_opt_pass
8387 pass_warn_unused_result (gcc::context
*ctxt
)
8388 : gimple_opt_pass (pass_data_warn_unused_result
, ctxt
)
8391 /* opt_pass methods: */
8392 bool gate () { return gate_warn_unused_result (); }
8393 unsigned int execute () { return run_warn_unused_result (); }
8395 }; // class pass_warn_unused_result
8400 make_pass_warn_unused_result (gcc::context
*ctxt
)
8402 return new pass_warn_unused_result (ctxt
);
8405 /* IPA passes, compilation of earlier functions or inlining
8406 might have changed some properties, such as marked functions nothrow,
8407 pure, const or noreturn.
8408 Remove redundant edges and basic blocks, and create new ones if necessary.
8410 This pass can't be executed as stand alone pass from pass manager, because
8411 in between inlining and this fixup the verify_flow_info would fail. */
8414 execute_fixup_cfg (void)
8417 gimple_stmt_iterator gsi
;
8418 int todo
= gimple_in_ssa_p (cfun
) ? TODO_verify_ssa
: 0;
8419 gcov_type count_scale
;
8424 = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl
)->count
,
8425 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
);
8427 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
=
8428 cgraph_get_node (current_function_decl
)->count
;
8429 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
=
8430 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
,
8433 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
8434 e
->count
= apply_scale (e
->count
, count_scale
);
8436 FOR_EACH_BB_FN (bb
, cfun
)
8438 bb
->count
= apply_scale (bb
->count
, count_scale
);
8439 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
8441 gimple stmt
= gsi_stmt (gsi
);
8442 tree decl
= is_gimple_call (stmt
)
8443 ? gimple_call_fndecl (stmt
)
8447 int flags
= gimple_call_flags (stmt
);
8448 if (flags
& (ECF_CONST
| ECF_PURE
| ECF_LOOPING_CONST_OR_PURE
))
8450 if (gimple_purge_dead_abnormal_call_edges (bb
))
8451 todo
|= TODO_cleanup_cfg
;
8453 if (gimple_in_ssa_p (cfun
))
8455 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
8460 if (flags
& ECF_NORETURN
8461 && fixup_noreturn_call (stmt
))
8462 todo
|= TODO_cleanup_cfg
;
8465 if (maybe_clean_eh_stmt (stmt
)
8466 && gimple_purge_dead_eh_edges (bb
))
8467 todo
|= TODO_cleanup_cfg
;
8470 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8471 e
->count
= apply_scale (e
->count
, count_scale
);
8473 /* If we have a basic block with no successors that does not
8474 end with a control statement or a noreturn call end it with
8475 a call to __builtin_unreachable. This situation can occur
8476 when inlining a noreturn call that does in fact return. */
8477 if (EDGE_COUNT (bb
->succs
) == 0)
8479 gimple stmt
= last_stmt (bb
);
8481 || (!is_ctrl_stmt (stmt
)
8482 && (!is_gimple_call (stmt
)
8483 || (gimple_call_flags (stmt
) & ECF_NORETURN
) == 0)))
8485 stmt
= gimple_build_call
8486 (builtin_decl_implicit (BUILT_IN_UNREACHABLE
), 0);
8487 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
8488 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
8492 if (count_scale
!= REG_BR_PROB_BASE
)
8493 compute_function_frequency ();
8495 /* We just processed all calls. */
8496 if (cfun
->gimple_df
)
8497 vec_free (MODIFIED_NORETURN_CALLS (cfun
));
8499 /* Dump a textual representation of the flowgraph. */
8501 gimple_dump_cfg (dump_file
, dump_flags
);
8504 && (todo
& TODO_cleanup_cfg
))
8505 loops_state_set (LOOPS_NEED_FIXUP
);
8512 const pass_data pass_data_fixup_cfg
=
8514 GIMPLE_PASS
, /* type */
8515 "*free_cfg_annotations", /* name */
8516 OPTGROUP_NONE
, /* optinfo_flags */
8517 false, /* has_gate */
8518 true, /* has_execute */
8519 TV_NONE
, /* tv_id */
8520 PROP_cfg
, /* properties_required */
8521 0, /* properties_provided */
8522 0, /* properties_destroyed */
8523 0, /* todo_flags_start */
8524 0, /* todo_flags_finish */
8527 class pass_fixup_cfg
: public gimple_opt_pass
8530 pass_fixup_cfg (gcc::context
*ctxt
)
8531 : gimple_opt_pass (pass_data_fixup_cfg
, ctxt
)
8534 /* opt_pass methods: */
8535 opt_pass
* clone () { return new pass_fixup_cfg (m_ctxt
); }
8536 unsigned int execute () { return execute_fixup_cfg (); }
8538 }; // class pass_fixup_cfg
8543 make_pass_fixup_cfg (gcc::context
*ctxt
)
8545 return new pass_fixup_cfg (ctxt
);
8548 /* Garbage collection support for edge_def. */
8550 extern void gt_ggc_mx (tree
&);
8551 extern void gt_ggc_mx (gimple
&);
8552 extern void gt_ggc_mx (rtx
&);
8553 extern void gt_ggc_mx (basic_block
&);
8556 gt_ggc_mx (edge_def
*e
)
8558 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8560 gt_ggc_mx (e
->dest
);
8561 if (current_ir_type () == IR_GIMPLE
)
8562 gt_ggc_mx (e
->insns
.g
);
8564 gt_ggc_mx (e
->insns
.r
);
8568 /* PCH support for edge_def. */
8570 extern void gt_pch_nx (tree
&);
8571 extern void gt_pch_nx (gimple
&);
8572 extern void gt_pch_nx (rtx
&);
8573 extern void gt_pch_nx (basic_block
&);
8576 gt_pch_nx (edge_def
*e
)
8578 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8580 gt_pch_nx (e
->dest
);
8581 if (current_ir_type () == IR_GIMPLE
)
8582 gt_pch_nx (e
->insns
.g
);
8584 gt_pch_nx (e
->insns
.r
);
8589 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
8591 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8592 op (&(e
->src
), cookie
);
8593 op (&(e
->dest
), cookie
);
8594 if (current_ir_type () == IR_GIMPLE
)
8595 op (&(e
->insns
.g
), cookie
);
8597 op (&(e
->insns
.r
), cookie
);
8598 op (&(block
), cookie
);