2014-04-15 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / sched-rgn.c
blobdc6fa16a19e4ec03418e9a957c9008e03373e225
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass implements list scheduling within basic blocks. It is
23 run twice: (1) after flow analysis, but before register allocation,
24 and (2) after register allocation.
26 The first run performs interblock scheduling, moving insns between
27 different blocks in the same "region", and the second runs only
28 basic block scheduling.
30 Interblock motions performed are useful motions and speculative
31 motions, including speculative loads. Motions requiring code
32 duplication are not supported. The identification of motion type
33 and the check for validity of speculative motions requires
34 construction and analysis of the function's control flow graph.
36 The main entry point for this pass is schedule_insns(), called for
37 each function. The work of the scheduler is organized in three
38 levels: (1) function level: insns are subject to splitting,
39 control-flow-graph is constructed, regions are computed (after
40 reload, each region is of one block), (2) region level: control
41 flow graph attributes required for interblock scheduling are
42 computed (dominators, reachability, etc.), data dependences and
43 priorities are computed, and (3) block level: insns in the block
44 are actually scheduled. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "diagnostic-core.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "hard-reg-set.h"
54 #include "regs.h"
55 #include "function.h"
56 #include "flags.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "except.h"
60 #include "recog.h"
61 #include "params.h"
62 #include "sched-int.h"
63 #include "sel-sched.h"
64 #include "target.h"
65 #include "tree-pass.h"
66 #include "dbgcnt.h"
68 #ifdef INSN_SCHEDULING
70 /* Some accessor macros for h_i_d members only used within this file. */
71 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
72 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
74 /* nr_inter/spec counts interblock/speculative motion for the function. */
75 static int nr_inter, nr_spec;
77 static int is_cfg_nonregular (void);
79 /* Number of regions in the procedure. */
80 int nr_regions = 0;
82 /* Same as above before adding any new regions. */
83 static int nr_regions_initial = 0;
85 /* Table of region descriptions. */
86 region *rgn_table = NULL;
88 /* Array of lists of regions' blocks. */
89 int *rgn_bb_table = NULL;
91 /* Topological order of blocks in the region (if b2 is reachable from
92 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
93 always referred to by either block or b, while its topological
94 order name (in the region) is referred to by bb. */
95 int *block_to_bb = NULL;
97 /* The number of the region containing a block. */
98 int *containing_rgn = NULL;
100 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
101 Currently we can get a ebb only through splitting of currently
102 scheduling block, therefore, we don't need ebb_head array for every region,
103 hence, its sufficient to hold it for current one only. */
104 int *ebb_head = NULL;
106 /* The minimum probability of reaching a source block so that it will be
107 considered for speculative scheduling. */
108 static int min_spec_prob;
110 static void find_single_block_region (bool);
111 static void find_rgns (void);
112 static bool too_large (int, int *, int *);
114 /* Blocks of the current region being scheduled. */
115 int current_nr_blocks;
116 int current_blocks;
118 /* A speculative motion requires checking live information on the path
119 from 'source' to 'target'. The split blocks are those to be checked.
120 After a speculative motion, live information should be modified in
121 the 'update' blocks.
123 Lists of split and update blocks for each candidate of the current
124 target are in array bblst_table. */
125 static basic_block *bblst_table;
126 static int bblst_size, bblst_last;
128 /* Arrays that hold the DFA state at the end of a basic block, to re-use
129 as the initial state at the start of successor blocks. The BB_STATE
130 array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
131 into BB_STATE for basic block I. FIXME: This should be a vec. */
132 static char *bb_state_array = NULL;
133 static state_t *bb_state = NULL;
135 /* Target info declarations.
137 The block currently being scheduled is referred to as the "target" block,
138 while other blocks in the region from which insns can be moved to the
139 target are called "source" blocks. The candidate structure holds info
140 about such sources: are they valid? Speculative? Etc. */
141 typedef struct
143 basic_block *first_member;
144 int nr_members;
146 bblst;
148 typedef struct
150 char is_valid;
151 char is_speculative;
152 int src_prob;
153 bblst split_bbs;
154 bblst update_bbs;
156 candidate;
158 static candidate *candidate_table;
159 #define IS_VALID(src) (candidate_table[src].is_valid)
160 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
161 #define IS_SPECULATIVE_INSN(INSN) \
162 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
163 #define SRC_PROB(src) ( candidate_table[src].src_prob )
165 /* The bb being currently scheduled. */
166 int target_bb;
168 /* List of edges. */
169 typedef struct
171 edge *first_member;
172 int nr_members;
174 edgelst;
176 static edge *edgelst_table;
177 static int edgelst_last;
179 static void extract_edgelst (sbitmap, edgelst *);
181 /* Target info functions. */
182 static void split_edges (int, int, edgelst *);
183 static void compute_trg_info (int);
184 void debug_candidate (int);
185 void debug_candidates (int);
187 /* Dominators array: dom[i] contains the sbitmap of dominators of
188 bb i in the region. */
189 static sbitmap *dom;
191 /* bb 0 is the only region entry. */
192 #define IS_RGN_ENTRY(bb) (!bb)
194 /* Is bb_src dominated by bb_trg. */
195 #define IS_DOMINATED(bb_src, bb_trg) \
196 ( bitmap_bit_p (dom[bb_src], bb_trg) )
198 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
199 the probability of bb i relative to the region entry. */
200 static int *prob;
202 /* Bit-set of edges, where bit i stands for edge i. */
203 typedef sbitmap edgeset;
205 /* Number of edges in the region. */
206 static int rgn_nr_edges;
208 /* Array of size rgn_nr_edges. */
209 static edge *rgn_edges;
211 /* Mapping from each edge in the graph to its number in the rgn. */
212 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
213 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
215 /* The split edges of a source bb is different for each target
216 bb. In order to compute this efficiently, the 'potential-split edges'
217 are computed for each bb prior to scheduling a region. This is actually
218 the split edges of each bb relative to the region entry.
220 pot_split[bb] is the set of potential split edges of bb. */
221 static edgeset *pot_split;
223 /* For every bb, a set of its ancestor edges. */
224 static edgeset *ancestor_edges;
226 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
228 /* Speculative scheduling functions. */
229 static int check_live_1 (int, rtx);
230 static void update_live_1 (int, rtx);
231 static int is_pfree (rtx, int, int);
232 static int find_conditional_protection (rtx, int);
233 static int is_conditionally_protected (rtx, int, int);
234 static int is_prisky (rtx, int, int);
235 static int is_exception_free (rtx, int, int);
237 static bool sets_likely_spilled (rtx);
238 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
239 static void add_branch_dependences (rtx, rtx);
240 static void compute_block_dependences (int);
242 static void schedule_region (int);
243 static void concat_insn_mem_list (rtx, rtx, rtx *, rtx *);
244 static void propagate_deps (int, struct deps_desc *);
245 static void free_pending_lists (void);
247 /* Functions for construction of the control flow graph. */
249 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
251 We decide not to build the control flow graph if there is possibly more
252 than one entry to the function, if computed branches exist, if we
253 have nonlocal gotos, or if we have an unreachable loop. */
255 static int
256 is_cfg_nonregular (void)
258 basic_block b;
259 rtx insn;
261 /* If we have a label that could be the target of a nonlocal goto, then
262 the cfg is not well structured. */
263 if (nonlocal_goto_handler_labels)
264 return 1;
266 /* If we have any forced labels, then the cfg is not well structured. */
267 if (forced_labels)
268 return 1;
270 /* If we have exception handlers, then we consider the cfg not well
271 structured. ?!? We should be able to handle this now that we
272 compute an accurate cfg for EH. */
273 if (current_function_has_exception_handlers ())
274 return 1;
276 /* If we have insns which refer to labels as non-jumped-to operands,
277 then we consider the cfg not well structured. */
278 FOR_EACH_BB_FN (b, cfun)
279 FOR_BB_INSNS (b, insn)
281 rtx note, next, set, dest;
283 /* If this function has a computed jump, then we consider the cfg
284 not well structured. */
285 if (JUMP_P (insn) && computed_jump_p (insn))
286 return 1;
288 if (!INSN_P (insn))
289 continue;
291 note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
292 if (note == NULL_RTX)
293 continue;
295 /* For that label not to be seen as a referred-to label, this
296 must be a single-set which is feeding a jump *only*. This
297 could be a conditional jump with the label split off for
298 machine-specific reasons or a casesi/tablejump. */
299 next = next_nonnote_insn (insn);
300 if (next == NULL_RTX
301 || !JUMP_P (next)
302 || (JUMP_LABEL (next) != XEXP (note, 0)
303 && find_reg_note (next, REG_LABEL_TARGET,
304 XEXP (note, 0)) == NULL_RTX)
305 || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
306 return 1;
308 set = single_set (insn);
309 if (set == NULL_RTX)
310 return 1;
312 dest = SET_DEST (set);
313 if (!REG_P (dest) || !dead_or_set_p (next, dest))
314 return 1;
317 /* Unreachable loops with more than one basic block are detected
318 during the DFS traversal in find_rgns.
320 Unreachable loops with a single block are detected here. This
321 test is redundant with the one in find_rgns, but it's much
322 cheaper to go ahead and catch the trivial case here. */
323 FOR_EACH_BB_FN (b, cfun)
325 if (EDGE_COUNT (b->preds) == 0
326 || (single_pred_p (b)
327 && single_pred (b) == b))
328 return 1;
331 /* All the tests passed. Consider the cfg well structured. */
332 return 0;
335 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
337 static void
338 extract_edgelst (sbitmap set, edgelst *el)
340 unsigned int i = 0;
341 sbitmap_iterator sbi;
343 /* edgelst table space is reused in each call to extract_edgelst. */
344 edgelst_last = 0;
346 el->first_member = &edgelst_table[edgelst_last];
347 el->nr_members = 0;
349 /* Iterate over each word in the bitset. */
350 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, sbi)
352 edgelst_table[edgelst_last++] = rgn_edges[i];
353 el->nr_members++;
357 /* Functions for the construction of regions. */
359 /* Print the regions, for debugging purposes. Callable from debugger. */
361 DEBUG_FUNCTION void
362 debug_regions (void)
364 int rgn, bb;
366 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
367 for (rgn = 0; rgn < nr_regions; rgn++)
369 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
370 rgn_table[rgn].rgn_nr_blocks);
371 fprintf (sched_dump, ";;\tbb/block: ");
373 /* We don't have ebb_head initialized yet, so we can't use
374 BB_TO_BLOCK (). */
375 current_blocks = RGN_BLOCKS (rgn);
377 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
378 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
380 fprintf (sched_dump, "\n\n");
384 /* Print the region's basic blocks. */
386 DEBUG_FUNCTION void
387 debug_region (int rgn)
389 int bb;
391 fprintf (stderr, "\n;; ------------ REGION %d ----------\n\n", rgn);
392 fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
393 rgn_table[rgn].rgn_nr_blocks);
394 fprintf (stderr, ";;\tbb/block: ");
396 /* We don't have ebb_head initialized yet, so we can't use
397 BB_TO_BLOCK (). */
398 current_blocks = RGN_BLOCKS (rgn);
400 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
401 fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
403 fprintf (stderr, "\n\n");
405 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
407 dump_bb (stderr,
408 BASIC_BLOCK_FOR_FN (cfun, rgn_bb_table[current_blocks + bb]),
409 0, TDF_SLIM | TDF_BLOCKS);
410 fprintf (stderr, "\n");
413 fprintf (stderr, "\n");
417 /* True when a bb with index BB_INDEX contained in region RGN. */
418 static bool
419 bb_in_region_p (int bb_index, int rgn)
421 int i;
423 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
424 if (rgn_bb_table[current_blocks + i] == bb_index)
425 return true;
427 return false;
430 /* Dump region RGN to file F using dot syntax. */
431 void
432 dump_region_dot (FILE *f, int rgn)
434 int i;
436 fprintf (f, "digraph Region_%d {\n", rgn);
438 /* We don't have ebb_head initialized yet, so we can't use
439 BB_TO_BLOCK (). */
440 current_blocks = RGN_BLOCKS (rgn);
442 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
444 edge e;
445 edge_iterator ei;
446 int src_bb_num = rgn_bb_table[current_blocks + i];
447 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, src_bb_num);
449 FOR_EACH_EDGE (e, ei, bb->succs)
450 if (bb_in_region_p (e->dest->index, rgn))
451 fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
453 fprintf (f, "}\n");
456 /* The same, but first open a file specified by FNAME. */
457 void
458 dump_region_dot_file (const char *fname, int rgn)
460 FILE *f = fopen (fname, "wt");
461 dump_region_dot (f, rgn);
462 fclose (f);
465 /* Build a single block region for each basic block in the function.
466 This allows for using the same code for interblock and basic block
467 scheduling. */
469 static void
470 find_single_block_region (bool ebbs_p)
472 basic_block bb, ebb_start;
473 int i = 0;
475 nr_regions = 0;
477 if (ebbs_p) {
478 int probability_cutoff;
479 if (profile_info && flag_branch_probabilities)
480 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
481 else
482 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
483 probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
485 FOR_EACH_BB_FN (ebb_start, cfun)
487 RGN_NR_BLOCKS (nr_regions) = 0;
488 RGN_BLOCKS (nr_regions) = i;
489 RGN_DONT_CALC_DEPS (nr_regions) = 0;
490 RGN_HAS_REAL_EBB (nr_regions) = 0;
492 for (bb = ebb_start; ; bb = bb->next_bb)
494 edge e;
496 rgn_bb_table[i] = bb->index;
497 RGN_NR_BLOCKS (nr_regions)++;
498 CONTAINING_RGN (bb->index) = nr_regions;
499 BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
500 i++;
502 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
503 || LABEL_P (BB_HEAD (bb->next_bb)))
504 break;
506 e = find_fallthru_edge (bb->succs);
507 if (! e)
508 break;
509 if (e->probability <= probability_cutoff)
510 break;
513 ebb_start = bb;
514 nr_regions++;
517 else
518 FOR_EACH_BB_FN (bb, cfun)
520 rgn_bb_table[nr_regions] = bb->index;
521 RGN_NR_BLOCKS (nr_regions) = 1;
522 RGN_BLOCKS (nr_regions) = nr_regions;
523 RGN_DONT_CALC_DEPS (nr_regions) = 0;
524 RGN_HAS_REAL_EBB (nr_regions) = 0;
526 CONTAINING_RGN (bb->index) = nr_regions;
527 BLOCK_TO_BB (bb->index) = 0;
528 nr_regions++;
532 /* Estimate number of the insns in the BB. */
533 static int
534 rgn_estimate_number_of_insns (basic_block bb)
536 int count;
538 count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
540 if (MAY_HAVE_DEBUG_INSNS)
542 rtx insn;
544 FOR_BB_INSNS (bb, insn)
545 if (DEBUG_INSN_P (insn))
546 count--;
549 return count;
552 /* Update number of blocks and the estimate for number of insns
553 in the region. Return true if the region is "too large" for interblock
554 scheduling (compile time considerations). */
556 static bool
557 too_large (int block, int *num_bbs, int *num_insns)
559 (*num_bbs)++;
560 (*num_insns) += (common_sched_info->estimate_number_of_insns
561 (BASIC_BLOCK_FOR_FN (cfun, block)));
563 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
564 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
567 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
568 is still an inner loop. Put in max_hdr[blk] the header of the most inner
569 loop containing blk. */
570 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
572 if (max_hdr[blk] == -1) \
573 max_hdr[blk] = hdr; \
574 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
575 bitmap_clear_bit (inner, hdr); \
576 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
578 bitmap_clear_bit (inner,max_hdr[blk]); \
579 max_hdr[blk] = hdr; \
583 /* Find regions for interblock scheduling.
585 A region for scheduling can be:
587 * A loop-free procedure, or
589 * A reducible inner loop, or
591 * A basic block not contained in any other region.
593 ?!? In theory we could build other regions based on extended basic
594 blocks or reverse extended basic blocks. Is it worth the trouble?
596 Loop blocks that form a region are put into the region's block list
597 in topological order.
599 This procedure stores its results into the following global (ick) variables
601 * rgn_nr
602 * rgn_table
603 * rgn_bb_table
604 * block_to_bb
605 * containing region
607 We use dominator relationships to avoid making regions out of non-reducible
608 loops.
610 This procedure needs to be converted to work on pred/succ lists instead
611 of edge tables. That would simplify it somewhat. */
613 static void
614 haifa_find_rgns (void)
616 int *max_hdr, *dfs_nr, *degree;
617 char no_loops = 1;
618 int node, child, loop_head, i, head, tail;
619 int count = 0, sp, idx = 0;
620 edge_iterator current_edge;
621 edge_iterator *stack;
622 int num_bbs, num_insns, unreachable;
623 int too_large_failure;
624 basic_block bb;
626 /* Note if a block is a natural loop header. */
627 sbitmap header;
629 /* Note if a block is a natural inner loop header. */
630 sbitmap inner;
632 /* Note if a block is in the block queue. */
633 sbitmap in_queue;
635 /* Note if a block is in the block queue. */
636 sbitmap in_stack;
638 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
639 and a mapping from block to its loop header (if the block is contained
640 in a loop, else -1).
642 Store results in HEADER, INNER, and MAX_HDR respectively, these will
643 be used as inputs to the second traversal.
645 STACK, SP and DFS_NR are only used during the first traversal. */
647 /* Allocate and initialize variables for the first traversal. */
648 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
649 dfs_nr = XCNEWVEC (int, last_basic_block_for_fn (cfun));
650 stack = XNEWVEC (edge_iterator, n_edges_for_fn (cfun));
652 inner = sbitmap_alloc (last_basic_block_for_fn (cfun));
653 bitmap_ones (inner);
655 header = sbitmap_alloc (last_basic_block_for_fn (cfun));
656 bitmap_clear (header);
658 in_queue = sbitmap_alloc (last_basic_block_for_fn (cfun));
659 bitmap_clear (in_queue);
661 in_stack = sbitmap_alloc (last_basic_block_for_fn (cfun));
662 bitmap_clear (in_stack);
664 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
665 max_hdr[i] = -1;
667 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
668 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
670 /* DFS traversal to find inner loops in the cfg. */
672 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->succs);
673 sp = -1;
675 while (1)
677 if (EDGE_PASSED (current_edge))
679 /* We have reached a leaf node or a node that was already
680 processed. Pop edges off the stack until we find
681 an edge that has not yet been processed. */
682 while (sp >= 0 && EDGE_PASSED (current_edge))
684 /* Pop entry off the stack. */
685 current_edge = stack[sp--];
686 node = ei_edge (current_edge)->src->index;
687 gcc_assert (node != ENTRY_BLOCK);
688 child = ei_edge (current_edge)->dest->index;
689 gcc_assert (child != EXIT_BLOCK);
690 bitmap_clear_bit (in_stack, child);
691 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
692 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
693 ei_next (&current_edge);
696 /* See if have finished the DFS tree traversal. */
697 if (sp < 0 && EDGE_PASSED (current_edge))
698 break;
700 /* Nope, continue the traversal with the popped node. */
701 continue;
704 /* Process a node. */
705 node = ei_edge (current_edge)->src->index;
706 gcc_assert (node != ENTRY_BLOCK);
707 bitmap_set_bit (in_stack, node);
708 dfs_nr[node] = ++count;
710 /* We don't traverse to the exit block. */
711 child = ei_edge (current_edge)->dest->index;
712 if (child == EXIT_BLOCK)
714 SET_EDGE_PASSED (current_edge);
715 ei_next (&current_edge);
716 continue;
719 /* If the successor is in the stack, then we've found a loop.
720 Mark the loop, if it is not a natural loop, then it will
721 be rejected during the second traversal. */
722 if (bitmap_bit_p (in_stack, child))
724 no_loops = 0;
725 bitmap_set_bit (header, child);
726 UPDATE_LOOP_RELATIONS (node, child);
727 SET_EDGE_PASSED (current_edge);
728 ei_next (&current_edge);
729 continue;
732 /* If the child was already visited, then there is no need to visit
733 it again. Just update the loop relationships and restart
734 with a new edge. */
735 if (dfs_nr[child])
737 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
738 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
739 SET_EDGE_PASSED (current_edge);
740 ei_next (&current_edge);
741 continue;
744 /* Push an entry on the stack and continue DFS traversal. */
745 stack[++sp] = current_edge;
746 SET_EDGE_PASSED (current_edge);
747 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
750 /* Reset ->aux field used by EDGE_PASSED. */
751 FOR_ALL_BB_FN (bb, cfun)
753 edge_iterator ei;
754 edge e;
755 FOR_EACH_EDGE (e, ei, bb->succs)
756 e->aux = NULL;
760 /* Another check for unreachable blocks. The earlier test in
761 is_cfg_nonregular only finds unreachable blocks that do not
762 form a loop.
764 The DFS traversal will mark every block that is reachable from
765 the entry node by placing a nonzero value in dfs_nr. Thus if
766 dfs_nr is zero for any block, then it must be unreachable. */
767 unreachable = 0;
768 FOR_EACH_BB_FN (bb, cfun)
769 if (dfs_nr[bb->index] == 0)
771 unreachable = 1;
772 break;
775 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
776 to hold degree counts. */
777 degree = dfs_nr;
779 FOR_EACH_BB_FN (bb, cfun)
780 degree[bb->index] = EDGE_COUNT (bb->preds);
782 /* Do not perform region scheduling if there are any unreachable
783 blocks. */
784 if (!unreachable)
786 int *queue, *degree1 = NULL;
787 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
788 there basic blocks, which are forced to be region heads.
789 This is done to try to assemble few smaller regions
790 from a too_large region. */
791 sbitmap extended_rgn_header = NULL;
792 bool extend_regions_p;
794 if (no_loops)
795 bitmap_set_bit (header, 0);
797 /* Second traversal:find reducible inner loops and topologically sort
798 block of each region. */
800 queue = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
802 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
803 if (extend_regions_p)
805 degree1 = XNEWVEC (int, last_basic_block_for_fn (cfun));
806 extended_rgn_header =
807 sbitmap_alloc (last_basic_block_for_fn (cfun));
808 bitmap_clear (extended_rgn_header);
811 /* Find blocks which are inner loop headers. We still have non-reducible
812 loops to consider at this point. */
813 FOR_EACH_BB_FN (bb, cfun)
815 if (bitmap_bit_p (header, bb->index) && bitmap_bit_p (inner, bb->index))
817 edge e;
818 edge_iterator ei;
819 basic_block jbb;
821 /* Now check that the loop is reducible. We do this separate
822 from finding inner loops so that we do not find a reducible
823 loop which contains an inner non-reducible loop.
825 A simple way to find reducible/natural loops is to verify
826 that each block in the loop is dominated by the loop
827 header.
829 If there exists a block that is not dominated by the loop
830 header, then the block is reachable from outside the loop
831 and thus the loop is not a natural loop. */
832 FOR_EACH_BB_FN (jbb, cfun)
834 /* First identify blocks in the loop, except for the loop
835 entry block. */
836 if (bb->index == max_hdr[jbb->index] && bb != jbb)
838 /* Now verify that the block is dominated by the loop
839 header. */
840 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
841 break;
845 /* If we exited the loop early, then I is the header of
846 a non-reducible loop and we should quit processing it
847 now. */
848 if (jbb != EXIT_BLOCK_PTR_FOR_FN (cfun))
849 continue;
851 /* I is a header of an inner loop, or block 0 in a subroutine
852 with no loops at all. */
853 head = tail = -1;
854 too_large_failure = 0;
855 loop_head = max_hdr[bb->index];
857 if (extend_regions_p)
858 /* We save degree in case when we meet a too_large region
859 and cancel it. We need a correct degree later when
860 calling extend_rgns. */
861 memcpy (degree1, degree,
862 last_basic_block_for_fn (cfun) * sizeof (int));
864 /* Decrease degree of all I's successors for topological
865 ordering. */
866 FOR_EACH_EDGE (e, ei, bb->succs)
867 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
868 --degree[e->dest->index];
870 /* Estimate # insns, and count # blocks in the region. */
871 num_bbs = 1;
872 num_insns = common_sched_info->estimate_number_of_insns (bb);
874 /* Find all loop latches (blocks with back edges to the loop
875 header) or all the leaf blocks in the cfg has no loops.
877 Place those blocks into the queue. */
878 if (no_loops)
880 FOR_EACH_BB_FN (jbb, cfun)
881 /* Leaf nodes have only a single successor which must
882 be EXIT_BLOCK. */
883 if (single_succ_p (jbb)
884 && single_succ (jbb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
886 queue[++tail] = jbb->index;
887 bitmap_set_bit (in_queue, jbb->index);
889 if (too_large (jbb->index, &num_bbs, &num_insns))
891 too_large_failure = 1;
892 break;
896 else
898 edge e;
900 FOR_EACH_EDGE (e, ei, bb->preds)
902 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
903 continue;
905 node = e->src->index;
907 if (max_hdr[node] == loop_head && node != bb->index)
909 /* This is a loop latch. */
910 queue[++tail] = node;
911 bitmap_set_bit (in_queue, node);
913 if (too_large (node, &num_bbs, &num_insns))
915 too_large_failure = 1;
916 break;
922 /* Now add all the blocks in the loop to the queue.
924 We know the loop is a natural loop; however the algorithm
925 above will not always mark certain blocks as being in the
926 loop. Consider:
927 node children
928 a b,c
930 c a,d
933 The algorithm in the DFS traversal may not mark B & D as part
934 of the loop (i.e. they will not have max_hdr set to A).
936 We know they can not be loop latches (else they would have
937 had max_hdr set since they'd have a backedge to a dominator
938 block). So we don't need them on the initial queue.
940 We know they are part of the loop because they are dominated
941 by the loop header and can be reached by a backwards walk of
942 the edges starting with nodes on the initial queue.
944 It is safe and desirable to include those nodes in the
945 loop/scheduling region. To do so we would need to decrease
946 the degree of a node if it is the target of a backedge
947 within the loop itself as the node is placed in the queue.
949 We do not do this because I'm not sure that the actual
950 scheduling code will properly handle this case. ?!? */
952 while (head < tail && !too_large_failure)
954 edge e;
955 child = queue[++head];
957 FOR_EACH_EDGE (e, ei,
958 BASIC_BLOCK_FOR_FN (cfun, child)->preds)
960 node = e->src->index;
962 /* See discussion above about nodes not marked as in
963 this loop during the initial DFS traversal. */
964 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
965 || max_hdr[node] != loop_head)
967 tail = -1;
968 break;
970 else if (!bitmap_bit_p (in_queue, node) && node != bb->index)
972 queue[++tail] = node;
973 bitmap_set_bit (in_queue, node);
975 if (too_large (node, &num_bbs, &num_insns))
977 too_large_failure = 1;
978 break;
984 if (tail >= 0 && !too_large_failure)
986 /* Place the loop header into list of region blocks. */
987 degree[bb->index] = -1;
988 rgn_bb_table[idx] = bb->index;
989 RGN_NR_BLOCKS (nr_regions) = num_bbs;
990 RGN_BLOCKS (nr_regions) = idx++;
991 RGN_DONT_CALC_DEPS (nr_regions) = 0;
992 RGN_HAS_REAL_EBB (nr_regions) = 0;
993 CONTAINING_RGN (bb->index) = nr_regions;
994 BLOCK_TO_BB (bb->index) = count = 0;
996 /* Remove blocks from queue[] when their in degree
997 becomes zero. Repeat until no blocks are left on the
998 list. This produces a topological list of blocks in
999 the region. */
1000 while (tail >= 0)
1002 if (head < 0)
1003 head = tail;
1004 child = queue[head];
1005 if (degree[child] == 0)
1007 edge e;
1009 degree[child] = -1;
1010 rgn_bb_table[idx++] = child;
1011 BLOCK_TO_BB (child) = ++count;
1012 CONTAINING_RGN (child) = nr_regions;
1013 queue[head] = queue[tail--];
1015 FOR_EACH_EDGE (e, ei,
1016 BASIC_BLOCK_FOR_FN (cfun,
1017 child)->succs)
1018 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1019 --degree[e->dest->index];
1021 else
1022 --head;
1024 ++nr_regions;
1026 else if (extend_regions_p)
1028 /* Restore DEGREE. */
1029 int *t = degree;
1031 degree = degree1;
1032 degree1 = t;
1034 /* And force successors of BB to be region heads.
1035 This may provide several smaller regions instead
1036 of one too_large region. */
1037 FOR_EACH_EDGE (e, ei, bb->succs)
1038 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1039 bitmap_set_bit (extended_rgn_header, e->dest->index);
1043 free (queue);
1045 if (extend_regions_p)
1047 free (degree1);
1049 bitmap_ior (header, header, extended_rgn_header);
1050 sbitmap_free (extended_rgn_header);
1052 extend_rgns (degree, &idx, header, max_hdr);
1056 /* Any block that did not end up in a region is placed into a region
1057 by itself. */
1058 FOR_EACH_BB_FN (bb, cfun)
1059 if (degree[bb->index] >= 0)
1061 rgn_bb_table[idx] = bb->index;
1062 RGN_NR_BLOCKS (nr_regions) = 1;
1063 RGN_BLOCKS (nr_regions) = idx++;
1064 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1065 RGN_HAS_REAL_EBB (nr_regions) = 0;
1066 CONTAINING_RGN (bb->index) = nr_regions++;
1067 BLOCK_TO_BB (bb->index) = 0;
1070 free (max_hdr);
1071 free (degree);
1072 free (stack);
1073 sbitmap_free (header);
1074 sbitmap_free (inner);
1075 sbitmap_free (in_queue);
1076 sbitmap_free (in_stack);
1080 /* Wrapper function.
1081 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1082 regions. Otherwise just call find_rgns_haifa. */
1083 static void
1084 find_rgns (void)
1086 if (sel_sched_p () && flag_sel_sched_pipelining)
1087 sel_find_rgns ();
1088 else
1089 haifa_find_rgns ();
1092 static int gather_region_statistics (int **);
1093 static void print_region_statistics (int *, int, int *, int);
1095 /* Calculate the histogram that shows the number of regions having the
1096 given number of basic blocks, and store it in the RSP array. Return
1097 the size of this array. */
1098 static int
1099 gather_region_statistics (int **rsp)
1101 int i, *a = 0, a_sz = 0;
1103 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1104 for (i = 0; i < nr_regions; i++)
1106 int nr_blocks = RGN_NR_BLOCKS (i);
1108 gcc_assert (nr_blocks >= 1);
1110 if (nr_blocks > a_sz)
1112 a = XRESIZEVEC (int, a, nr_blocks);
1114 a[a_sz++] = 0;
1115 while (a_sz != nr_blocks);
1118 a[nr_blocks - 1]++;
1121 *rsp = a;
1122 return a_sz;
1125 /* Print regions statistics. S1 and S2 denote the data before and after
1126 calling extend_rgns, respectively. */
1127 static void
1128 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1130 int i;
1132 /* We iterate until s2_sz because extend_rgns does not decrease
1133 the maximal region size. */
1134 for (i = 1; i < s2_sz; i++)
1136 int n1, n2;
1138 n2 = s2[i];
1140 if (n2 == 0)
1141 continue;
1143 if (i >= s1_sz)
1144 n1 = 0;
1145 else
1146 n1 = s1[i];
1148 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1149 "was %d + %d more\n", i + 1, n1, n2 - n1);
1153 /* Extend regions.
1154 DEGREE - Array of incoming edge count, considering only
1155 the edges, that don't have their sources in formed regions yet.
1156 IDXP - pointer to the next available index in rgn_bb_table.
1157 HEADER - set of all region heads.
1158 LOOP_HDR - mapping from block to the containing loop
1159 (two blocks can reside within one region if they have
1160 the same loop header). */
1161 void
1162 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1164 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1165 int nblocks = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
1167 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1169 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
1171 order = XNEWVEC (int, last_basic_block_for_fn (cfun));
1172 post_order_compute (order, false, false);
1174 for (i = nblocks - 1; i >= 0; i--)
1176 int bbn = order[i];
1177 if (degree[bbn] >= 0)
1179 max_hdr[bbn] = bbn;
1180 rescan = 1;
1182 else
1183 /* This block already was processed in find_rgns. */
1184 max_hdr[bbn] = -1;
1187 /* The idea is to topologically walk through CFG in top-down order.
1188 During the traversal, if all the predecessors of a node are
1189 marked to be in the same region (they all have the same max_hdr),
1190 then current node is also marked to be a part of that region.
1191 Otherwise the node starts its own region.
1192 CFG should be traversed until no further changes are made. On each
1193 iteration the set of the region heads is extended (the set of those
1194 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1195 set of all basic blocks, thus the algorithm is guaranteed to
1196 terminate. */
1198 while (rescan && iter < max_iter)
1200 rescan = 0;
1202 for (i = nblocks - 1; i >= 0; i--)
1204 edge e;
1205 edge_iterator ei;
1206 int bbn = order[i];
1208 if (max_hdr[bbn] != -1 && !bitmap_bit_p (header, bbn))
1210 int hdr = -1;
1212 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->preds)
1214 int predn = e->src->index;
1216 if (predn != ENTRY_BLOCK
1217 /* If pred wasn't processed in find_rgns. */
1218 && max_hdr[predn] != -1
1219 /* And pred and bb reside in the same loop.
1220 (Or out of any loop). */
1221 && loop_hdr[bbn] == loop_hdr[predn])
1223 if (hdr == -1)
1224 /* Then bb extends the containing region of pred. */
1225 hdr = max_hdr[predn];
1226 else if (hdr != max_hdr[predn])
1227 /* Too bad, there are at least two predecessors
1228 that reside in different regions. Thus, BB should
1229 begin its own region. */
1231 hdr = bbn;
1232 break;
1235 else
1236 /* BB starts its own region. */
1238 hdr = bbn;
1239 break;
1243 if (hdr == bbn)
1245 /* If BB start its own region,
1246 update set of headers with BB. */
1247 bitmap_set_bit (header, bbn);
1248 rescan = 1;
1250 else
1251 gcc_assert (hdr != -1);
1253 max_hdr[bbn] = hdr;
1257 iter++;
1260 /* Statistics were gathered on the SPEC2000 package of tests with
1261 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1263 Statistics for SPECint:
1264 1 iteration : 1751 cases (38.7%)
1265 2 iterations: 2770 cases (61.3%)
1266 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1267 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1268 (We don't count single block regions here).
1270 Statistics for SPECfp:
1271 1 iteration : 621 cases (35.9%)
1272 2 iterations: 1110 cases (64.1%)
1273 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1274 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1275 (We don't count single block regions here).
1277 By default we do at most 2 iterations.
1278 This can be overridden with max-sched-extend-regions-iters parameter:
1279 0 - disable region extension,
1280 N > 0 - do at most N iterations. */
1282 if (sched_verbose && iter != 0)
1283 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1284 rescan ? "... failed" : "");
1286 if (!rescan && iter != 0)
1288 int *s1 = NULL, s1_sz = 0;
1290 /* Save the old statistics for later printout. */
1291 if (sched_verbose >= 6)
1292 s1_sz = gather_region_statistics (&s1);
1294 /* We have succeeded. Now assemble the regions. */
1295 for (i = nblocks - 1; i >= 0; i--)
1297 int bbn = order[i];
1299 if (max_hdr[bbn] == bbn)
1300 /* BBN is a region head. */
1302 edge e;
1303 edge_iterator ei;
1304 int num_bbs = 0, j, num_insns = 0, large;
1306 large = too_large (bbn, &num_bbs, &num_insns);
1308 degree[bbn] = -1;
1309 rgn_bb_table[idx] = bbn;
1310 RGN_BLOCKS (nr_regions) = idx++;
1311 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1312 RGN_HAS_REAL_EBB (nr_regions) = 0;
1313 CONTAINING_RGN (bbn) = nr_regions;
1314 BLOCK_TO_BB (bbn) = 0;
1316 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->succs)
1317 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1318 degree[e->dest->index]--;
1320 if (!large)
1321 /* Here we check whether the region is too_large. */
1322 for (j = i - 1; j >= 0; j--)
1324 int succn = order[j];
1325 if (max_hdr[succn] == bbn)
1327 if ((large = too_large (succn, &num_bbs, &num_insns)))
1328 break;
1332 if (large)
1333 /* If the region is too_large, then wrap every block of
1334 the region into single block region.
1335 Here we wrap region head only. Other blocks are
1336 processed in the below cycle. */
1338 RGN_NR_BLOCKS (nr_regions) = 1;
1339 nr_regions++;
1342 num_bbs = 1;
1344 for (j = i - 1; j >= 0; j--)
1346 int succn = order[j];
1348 if (max_hdr[succn] == bbn)
1349 /* This cycle iterates over all basic blocks, that
1350 are supposed to be in the region with head BBN,
1351 and wraps them into that region (or in single
1352 block region). */
1354 gcc_assert (degree[succn] == 0);
1356 degree[succn] = -1;
1357 rgn_bb_table[idx] = succn;
1358 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1359 CONTAINING_RGN (succn) = nr_regions;
1361 if (large)
1362 /* Wrap SUCCN into single block region. */
1364 RGN_BLOCKS (nr_regions) = idx;
1365 RGN_NR_BLOCKS (nr_regions) = 1;
1366 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1367 RGN_HAS_REAL_EBB (nr_regions) = 0;
1368 nr_regions++;
1371 idx++;
1373 FOR_EACH_EDGE (e, ei,
1374 BASIC_BLOCK_FOR_FN (cfun, succn)->succs)
1375 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1376 degree[e->dest->index]--;
1380 if (!large)
1382 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1383 nr_regions++;
1388 if (sched_verbose >= 6)
1390 int *s2, s2_sz;
1392 /* Get the new statistics and print the comparison with the
1393 one before calling this function. */
1394 s2_sz = gather_region_statistics (&s2);
1395 print_region_statistics (s1, s1_sz, s2, s2_sz);
1396 free (s1);
1397 free (s2);
1401 free (order);
1402 free (max_hdr);
1404 *idxp = idx;
1407 /* Functions for regions scheduling information. */
1409 /* Compute dominators, probability, and potential-split-edges of bb.
1410 Assume that these values were already computed for bb's predecessors. */
1412 static void
1413 compute_dom_prob_ps (int bb)
1415 edge_iterator in_ei;
1416 edge in_edge;
1418 /* We shouldn't have any real ebbs yet. */
1419 gcc_assert (ebb_head [bb] == bb + current_blocks);
1421 if (IS_RGN_ENTRY (bb))
1423 bitmap_set_bit (dom[bb], 0);
1424 prob[bb] = REG_BR_PROB_BASE;
1425 return;
1428 prob[bb] = 0;
1430 /* Initialize dom[bb] to '111..1'. */
1431 bitmap_ones (dom[bb]);
1433 FOR_EACH_EDGE (in_edge, in_ei,
1434 BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb))->preds)
1436 int pred_bb;
1437 edge out_edge;
1438 edge_iterator out_ei;
1440 if (in_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1441 continue;
1443 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1444 bitmap_and (dom[bb], dom[bb], dom[pred_bb]);
1445 bitmap_ior (ancestor_edges[bb],
1446 ancestor_edges[bb], ancestor_edges[pred_bb]);
1448 bitmap_set_bit (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1450 bitmap_ior (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1452 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1453 bitmap_set_bit (pot_split[bb], EDGE_TO_BIT (out_edge));
1455 prob[bb] += combine_probabilities (prob[pred_bb], in_edge->probability);
1456 // The rounding divide in combine_probabilities can result in an extra
1457 // probability increment propagating along 50-50 edges. Eventually when
1458 // the edges re-merge, the accumulated probability can go slightly above
1459 // REG_BR_PROB_BASE.
1460 if (prob[bb] > REG_BR_PROB_BASE)
1461 prob[bb] = REG_BR_PROB_BASE;
1464 bitmap_set_bit (dom[bb], bb);
1465 bitmap_and_compl (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1467 if (sched_verbose >= 2)
1468 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1469 (100 * prob[bb]) / REG_BR_PROB_BASE);
1472 /* Functions for target info. */
1474 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1475 Note that bb_trg dominates bb_src. */
1477 static void
1478 split_edges (int bb_src, int bb_trg, edgelst *bl)
1480 sbitmap src = sbitmap_alloc (SBITMAP_SIZE (pot_split[bb_src]));
1481 bitmap_copy (src, pot_split[bb_src]);
1483 bitmap_and_compl (src, src, pot_split[bb_trg]);
1484 extract_edgelst (src, bl);
1485 sbitmap_free (src);
1488 /* Find the valid candidate-source-blocks for the target block TRG, compute
1489 their probability, and check if they are speculative or not.
1490 For speculative sources, compute their update-blocks and split-blocks. */
1492 static void
1493 compute_trg_info (int trg)
1495 candidate *sp;
1496 edgelst el = { NULL, 0 };
1497 int i, j, k, update_idx;
1498 basic_block block;
1499 sbitmap visited;
1500 edge_iterator ei;
1501 edge e;
1503 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1505 bblst_last = 0;
1506 /* bblst_table holds split blocks and update blocks for each block after
1507 the current one in the region. split blocks and update blocks are
1508 the TO blocks of region edges, so there can be at most rgn_nr_edges
1509 of them. */
1510 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1511 bblst_table = XNEWVEC (basic_block, bblst_size);
1513 edgelst_last = 0;
1514 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1516 /* Define some of the fields for the target bb as well. */
1517 sp = candidate_table + trg;
1518 sp->is_valid = 1;
1519 sp->is_speculative = 0;
1520 sp->src_prob = REG_BR_PROB_BASE;
1522 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1524 for (i = trg + 1; i < current_nr_blocks; i++)
1526 sp = candidate_table + i;
1528 sp->is_valid = IS_DOMINATED (i, trg);
1529 if (sp->is_valid)
1531 int tf = prob[trg], cf = prob[i];
1533 /* In CFGs with low probability edges TF can possibly be zero. */
1534 sp->src_prob = (tf ? GCOV_COMPUTE_SCALE (cf, tf) : 0);
1535 sp->is_valid = (sp->src_prob >= min_spec_prob);
1538 if (sp->is_valid)
1540 split_edges (i, trg, &el);
1541 sp->is_speculative = (el.nr_members) ? 1 : 0;
1542 if (sp->is_speculative && !flag_schedule_speculative)
1543 sp->is_valid = 0;
1546 if (sp->is_valid)
1548 /* Compute split blocks and store them in bblst_table.
1549 The TO block of every split edge is a split block. */
1550 sp->split_bbs.first_member = &bblst_table[bblst_last];
1551 sp->split_bbs.nr_members = el.nr_members;
1552 for (j = 0; j < el.nr_members; bblst_last++, j++)
1553 bblst_table[bblst_last] = el.first_member[j]->dest;
1554 sp->update_bbs.first_member = &bblst_table[bblst_last];
1556 /* Compute update blocks and store them in bblst_table.
1557 For every split edge, look at the FROM block, and check
1558 all out edges. For each out edge that is not a split edge,
1559 add the TO block to the update block list. This list can end
1560 up with a lot of duplicates. We need to weed them out to avoid
1561 overrunning the end of the bblst_table. */
1563 update_idx = 0;
1564 bitmap_clear (visited);
1565 for (j = 0; j < el.nr_members; j++)
1567 block = el.first_member[j]->src;
1568 FOR_EACH_EDGE (e, ei, block->succs)
1570 if (!bitmap_bit_p (visited, e->dest->index))
1572 for (k = 0; k < el.nr_members; k++)
1573 if (e == el.first_member[k])
1574 break;
1576 if (k >= el.nr_members)
1578 bblst_table[bblst_last++] = e->dest;
1579 bitmap_set_bit (visited, e->dest->index);
1580 update_idx++;
1585 sp->update_bbs.nr_members = update_idx;
1587 /* Make sure we didn't overrun the end of bblst_table. */
1588 gcc_assert (bblst_last <= bblst_size);
1590 else
1592 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1594 sp->is_speculative = 0;
1595 sp->src_prob = 0;
1599 sbitmap_free (visited);
1602 /* Free the computed target info. */
1603 static void
1604 free_trg_info (void)
1606 free (candidate_table);
1607 free (bblst_table);
1608 free (edgelst_table);
1611 /* Print candidates info, for debugging purposes. Callable from debugger. */
1613 DEBUG_FUNCTION void
1614 debug_candidate (int i)
1616 if (!candidate_table[i].is_valid)
1617 return;
1619 if (candidate_table[i].is_speculative)
1621 int j;
1622 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1624 fprintf (sched_dump, "split path: ");
1625 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1627 int b = candidate_table[i].split_bbs.first_member[j]->index;
1629 fprintf (sched_dump, " %d ", b);
1631 fprintf (sched_dump, "\n");
1633 fprintf (sched_dump, "update path: ");
1634 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1636 int b = candidate_table[i].update_bbs.first_member[j]->index;
1638 fprintf (sched_dump, " %d ", b);
1640 fprintf (sched_dump, "\n");
1642 else
1644 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1648 /* Print candidates info, for debugging purposes. Callable from debugger. */
1650 DEBUG_FUNCTION void
1651 debug_candidates (int trg)
1653 int i;
1655 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1656 BB_TO_BLOCK (trg), trg);
1657 for (i = trg + 1; i < current_nr_blocks; i++)
1658 debug_candidate (i);
1661 /* Functions for speculative scheduling. */
1663 static bitmap_head not_in_df;
1665 /* Return 0 if x is a set of a register alive in the beginning of one
1666 of the split-blocks of src, otherwise return 1. */
1668 static int
1669 check_live_1 (int src, rtx x)
1671 int i;
1672 int regno;
1673 rtx reg = SET_DEST (x);
1675 if (reg == 0)
1676 return 1;
1678 while (GET_CODE (reg) == SUBREG
1679 || GET_CODE (reg) == ZERO_EXTRACT
1680 || GET_CODE (reg) == STRICT_LOW_PART)
1681 reg = XEXP (reg, 0);
1683 if (GET_CODE (reg) == PARALLEL)
1685 int i;
1687 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1688 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1689 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1690 return 1;
1692 return 0;
1695 if (!REG_P (reg))
1696 return 1;
1698 regno = REGNO (reg);
1700 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1702 /* Global registers are assumed live. */
1703 return 0;
1705 else
1707 if (regno < FIRST_PSEUDO_REGISTER)
1709 /* Check for hard registers. */
1710 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1711 while (--j >= 0)
1713 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1715 basic_block b = candidate_table[src].split_bbs.first_member[i];
1716 int t = bitmap_bit_p (&not_in_df, b->index);
1718 /* We can have split blocks, that were recently generated.
1719 Such blocks are always outside current region. */
1720 gcc_assert (!t || (CONTAINING_RGN (b->index)
1721 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1723 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1724 return 0;
1728 else
1730 /* Check for pseudo registers. */
1731 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1733 basic_block b = candidate_table[src].split_bbs.first_member[i];
1734 int t = bitmap_bit_p (&not_in_df, b->index);
1736 gcc_assert (!t || (CONTAINING_RGN (b->index)
1737 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1739 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1740 return 0;
1745 return 1;
1748 /* If x is a set of a register R, mark that R is alive in the beginning
1749 of every update-block of src. */
1751 static void
1752 update_live_1 (int src, rtx x)
1754 int i;
1755 int regno;
1756 rtx reg = SET_DEST (x);
1758 if (reg == 0)
1759 return;
1761 while (GET_CODE (reg) == SUBREG
1762 || GET_CODE (reg) == ZERO_EXTRACT
1763 || GET_CODE (reg) == STRICT_LOW_PART)
1764 reg = XEXP (reg, 0);
1766 if (GET_CODE (reg) == PARALLEL)
1768 int i;
1770 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1771 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1772 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1774 return;
1777 if (!REG_P (reg))
1778 return;
1780 /* Global registers are always live, so the code below does not apply
1781 to them. */
1783 regno = REGNO (reg);
1785 if (! HARD_REGISTER_NUM_P (regno)
1786 || !global_regs[regno])
1788 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1790 basic_block b = candidate_table[src].update_bbs.first_member[i];
1792 if (HARD_REGISTER_NUM_P (regno))
1793 bitmap_set_range (df_get_live_in (b), regno,
1794 hard_regno_nregs[regno][GET_MODE (reg)]);
1795 else
1796 bitmap_set_bit (df_get_live_in (b), regno);
1801 /* Return 1 if insn can be speculatively moved from block src to trg,
1802 otherwise return 0. Called before first insertion of insn to
1803 ready-list or before the scheduling. */
1805 static int
1806 check_live (rtx insn, int src)
1808 /* Find the registers set by instruction. */
1809 if (GET_CODE (PATTERN (insn)) == SET
1810 || GET_CODE (PATTERN (insn)) == CLOBBER)
1811 return check_live_1 (src, PATTERN (insn));
1812 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1814 int j;
1815 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1816 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1817 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1818 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1819 return 0;
1821 return 1;
1824 return 1;
1827 /* Update the live registers info after insn was moved speculatively from
1828 block src to trg. */
1830 static void
1831 update_live (rtx insn, int src)
1833 /* Find the registers set by instruction. */
1834 if (GET_CODE (PATTERN (insn)) == SET
1835 || GET_CODE (PATTERN (insn)) == CLOBBER)
1836 update_live_1 (src, PATTERN (insn));
1837 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1839 int j;
1840 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1841 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1842 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1843 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1847 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1848 #define IS_REACHABLE(bb_from, bb_to) \
1849 (bb_from == bb_to \
1850 || IS_RGN_ENTRY (bb_from) \
1851 || (bitmap_bit_p (ancestor_edges[bb_to], \
1852 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK_FOR_FN (cfun, \
1853 BB_TO_BLOCK (bb_from)))))))
1855 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1857 static void
1858 set_spec_fed (rtx load_insn)
1860 sd_iterator_def sd_it;
1861 dep_t dep;
1863 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1864 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1865 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1868 /* On the path from the insn to load_insn_bb, find a conditional
1869 branch depending on insn, that guards the speculative load. */
1871 static int
1872 find_conditional_protection (rtx insn, int load_insn_bb)
1874 sd_iterator_def sd_it;
1875 dep_t dep;
1877 /* Iterate through DEF-USE forward dependences. */
1878 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1880 rtx next = DEP_CON (dep);
1882 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1883 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1884 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1885 && load_insn_bb != INSN_BB (next)
1886 && DEP_TYPE (dep) == REG_DEP_TRUE
1887 && (JUMP_P (next)
1888 || find_conditional_protection (next, load_insn_bb)))
1889 return 1;
1891 return 0;
1892 } /* find_conditional_protection */
1894 /* Returns 1 if the same insn1 that participates in the computation
1895 of load_insn's address is feeding a conditional branch that is
1896 guarding on load_insn. This is true if we find two DEF-USE
1897 chains:
1898 insn1 -> ... -> conditional-branch
1899 insn1 -> ... -> load_insn,
1900 and if a flow path exists:
1901 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1902 and if insn1 is on the path
1903 region-entry -> ... -> bb_trg -> ... load_insn.
1905 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1906 Locate the branch by following INSN_FORW_DEPS from insn1. */
1908 static int
1909 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1911 sd_iterator_def sd_it;
1912 dep_t dep;
1914 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1916 rtx insn1 = DEP_PRO (dep);
1918 /* Must be a DEF-USE dependence upon non-branch. */
1919 if (DEP_TYPE (dep) != REG_DEP_TRUE
1920 || JUMP_P (insn1))
1921 continue;
1923 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1924 if (INSN_BB (insn1) == bb_src
1925 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1926 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1927 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1928 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1929 continue;
1931 /* Now search for the conditional-branch. */
1932 if (find_conditional_protection (insn1, bb_src))
1933 return 1;
1935 /* Recursive step: search another insn1, "above" current insn1. */
1936 return is_conditionally_protected (insn1, bb_src, bb_trg);
1939 /* The chain does not exist. */
1940 return 0;
1941 } /* is_conditionally_protected */
1943 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1944 load_insn can move speculatively from bb_src to bb_trg. All the
1945 following must hold:
1947 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1948 (2) load_insn and load1 have a def-use dependence upon
1949 the same insn 'insn1'.
1950 (3) either load2 is in bb_trg, or:
1951 - there's only one split-block, and
1952 - load1 is on the escape path, and
1954 From all these we can conclude that the two loads access memory
1955 addresses that differ at most by a constant, and hence if moving
1956 load_insn would cause an exception, it would have been caused by
1957 load2 anyhow. */
1959 static int
1960 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1962 sd_iterator_def back_sd_it;
1963 dep_t back_dep;
1964 candidate *candp = candidate_table + bb_src;
1966 if (candp->split_bbs.nr_members != 1)
1967 /* Must have exactly one escape block. */
1968 return 0;
1970 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1972 rtx insn1 = DEP_PRO (back_dep);
1974 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1975 /* Found a DEF-USE dependence (insn1, load_insn). */
1977 sd_iterator_def fore_sd_it;
1978 dep_t fore_dep;
1980 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1982 rtx insn2 = DEP_CON (fore_dep);
1984 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1986 /* Found a DEF-USE dependence (insn1, insn2). */
1987 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1988 /* insn2 not guaranteed to be a 1 base reg load. */
1989 continue;
1991 if (INSN_BB (insn2) == bb_trg)
1992 /* insn2 is the similar load, in the target block. */
1993 return 1;
1995 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
1996 /* insn2 is a similar load, in a split-block. */
1997 return 1;
2003 /* Couldn't find a similar load. */
2004 return 0;
2005 } /* is_pfree */
2007 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
2008 a load moved speculatively, or if load_insn is protected by
2009 a compare on load_insn's address). */
2011 static int
2012 is_prisky (rtx load_insn, int bb_src, int bb_trg)
2014 if (FED_BY_SPEC_LOAD (load_insn))
2015 return 1;
2017 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
2018 /* Dependence may 'hide' out of the region. */
2019 return 1;
2021 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2022 return 1;
2024 return 0;
2027 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2028 Return 1 if insn is exception-free (and the motion is valid)
2029 and 0 otherwise. */
2031 static int
2032 is_exception_free (rtx insn, int bb_src, int bb_trg)
2034 int insn_class = haifa_classify_insn (insn);
2036 /* Handle non-load insns. */
2037 switch (insn_class)
2039 case TRAP_FREE:
2040 return 1;
2041 case TRAP_RISKY:
2042 return 0;
2043 default:;
2046 /* Handle loads. */
2047 if (!flag_schedule_speculative_load)
2048 return 0;
2049 IS_LOAD_INSN (insn) = 1;
2050 switch (insn_class)
2052 case IFREE:
2053 return (1);
2054 case IRISKY:
2055 return 0;
2056 case PFREE_CANDIDATE:
2057 if (is_pfree (insn, bb_src, bb_trg))
2058 return 1;
2059 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2060 case PRISKY_CANDIDATE:
2061 if (!flag_schedule_speculative_load_dangerous
2062 || is_prisky (insn, bb_src, bb_trg))
2063 return 0;
2064 break;
2065 default:;
2068 return flag_schedule_speculative_load_dangerous;
2071 /* The number of insns from the current block scheduled so far. */
2072 static int sched_target_n_insns;
2073 /* The number of insns from the current block to be scheduled in total. */
2074 static int target_n_insns;
2075 /* The number of insns from the entire region scheduled so far. */
2076 static int sched_n_insns;
2078 /* Implementations of the sched_info functions for region scheduling. */
2079 static void init_ready_list (void);
2080 static int can_schedule_ready_p (rtx);
2081 static void begin_schedule_ready (rtx);
2082 static ds_t new_ready (rtx, ds_t);
2083 static int schedule_more_p (void);
2084 static const char *rgn_print_insn (const_rtx, int);
2085 static int rgn_rank (rtx, rtx);
2086 static void compute_jump_reg_dependencies (rtx, regset);
2088 /* Functions for speculative scheduling. */
2089 static void rgn_add_remove_insn (rtx, int);
2090 static void rgn_add_block (basic_block, basic_block);
2091 static void rgn_fix_recovery_cfg (int, int, int);
2092 static basic_block advance_target_bb (basic_block, rtx);
2094 /* Return nonzero if there are more insns that should be scheduled. */
2096 static int
2097 schedule_more_p (void)
2099 return sched_target_n_insns < target_n_insns;
2102 /* Add all insns that are initially ready to the ready list READY. Called
2103 once before scheduling a set of insns. */
2105 static void
2106 init_ready_list (void)
2108 rtx prev_head = current_sched_info->prev_head;
2109 rtx next_tail = current_sched_info->next_tail;
2110 int bb_src;
2111 rtx insn;
2113 target_n_insns = 0;
2114 sched_target_n_insns = 0;
2115 sched_n_insns = 0;
2117 /* Print debugging information. */
2118 if (sched_verbose >= 5)
2119 debug_rgn_dependencies (target_bb);
2121 /* Prepare current target block info. */
2122 if (current_nr_blocks > 1)
2123 compute_trg_info (target_bb);
2125 /* Initialize ready list with all 'ready' insns in target block.
2126 Count number of insns in the target block being scheduled. */
2127 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2129 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2130 TODO_SPEC (insn) = HARD_DEP;
2131 try_ready (insn);
2132 target_n_insns++;
2134 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2137 /* Add to ready list all 'ready' insns in valid source blocks.
2138 For speculative insns, check-live, exception-free, and
2139 issue-delay. */
2140 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2141 if (IS_VALID (bb_src))
2143 rtx src_head;
2144 rtx src_next_tail;
2145 rtx tail, head;
2147 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2148 &head, &tail);
2149 src_next_tail = NEXT_INSN (tail);
2150 src_head = head;
2152 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2153 if (INSN_P (insn))
2155 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2156 TODO_SPEC (insn) = HARD_DEP;
2157 try_ready (insn);
2162 /* Called after taking INSN from the ready list. Returns nonzero if this
2163 insn can be scheduled, nonzero if we should silently discard it. */
2165 static int
2166 can_schedule_ready_p (rtx insn)
2168 /* An interblock motion? */
2169 if (INSN_BB (insn) != target_bb
2170 && IS_SPECULATIVE_INSN (insn)
2171 && !check_live (insn, INSN_BB (insn)))
2172 return 0;
2173 else
2174 return 1;
2177 /* Updates counter and other information. Split from can_schedule_ready_p ()
2178 because when we schedule insn speculatively then insn passed to
2179 can_schedule_ready_p () differs from the one passed to
2180 begin_schedule_ready (). */
2181 static void
2182 begin_schedule_ready (rtx insn)
2184 /* An interblock motion? */
2185 if (INSN_BB (insn) != target_bb)
2187 if (IS_SPECULATIVE_INSN (insn))
2189 gcc_assert (check_live (insn, INSN_BB (insn)));
2191 update_live (insn, INSN_BB (insn));
2193 /* For speculative load, mark insns fed by it. */
2194 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2195 set_spec_fed (insn);
2197 nr_spec++;
2199 nr_inter++;
2201 else
2203 /* In block motion. */
2204 sched_target_n_insns++;
2206 sched_n_insns++;
2209 /* Called after INSN has all its hard dependencies resolved and the speculation
2210 of type TS is enough to overcome them all.
2211 Return nonzero if it should be moved to the ready list or the queue, or zero
2212 if we should silently discard it. */
2213 static ds_t
2214 new_ready (rtx next, ds_t ts)
2216 if (INSN_BB (next) != target_bb)
2218 int not_ex_free = 0;
2220 /* For speculative insns, before inserting to ready/queue,
2221 check live, exception-free, and issue-delay. */
2222 if (!IS_VALID (INSN_BB (next))
2223 || CANT_MOVE (next)
2224 || (IS_SPECULATIVE_INSN (next)
2225 && ((recog_memoized (next) >= 0
2226 && min_insn_conflict_delay (curr_state, next, next)
2227 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2228 || IS_SPECULATION_CHECK_P (next)
2229 || !check_live (next, INSN_BB (next))
2230 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2231 target_bb)))))
2233 if (not_ex_free
2234 /* We are here because is_exception_free () == false.
2235 But we possibly can handle that with control speculation. */
2236 && sched_deps_info->generate_spec_deps
2237 && spec_info->mask & BEGIN_CONTROL)
2239 ds_t new_ds;
2241 /* Add control speculation to NEXT's dependency type. */
2242 new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2244 /* Check if NEXT can be speculated with new dependency type. */
2245 if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2246 /* Here we got new control-speculative instruction. */
2247 ts = new_ds;
2248 else
2249 /* NEXT isn't ready yet. */
2250 ts = DEP_POSTPONED;
2252 else
2253 /* NEXT isn't ready yet. */
2254 ts = DEP_POSTPONED;
2258 return ts;
2261 /* Return a string that contains the insn uid and optionally anything else
2262 necessary to identify this insn in an output. It's valid to use a
2263 static buffer for this. The ALIGNED parameter should cause the string
2264 to be formatted so that multiple output lines will line up nicely. */
2266 static const char *
2267 rgn_print_insn (const_rtx insn, int aligned)
2269 static char tmp[80];
2271 if (aligned)
2272 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2273 else
2275 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2276 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2277 else
2278 sprintf (tmp, "%d", INSN_UID (insn));
2280 return tmp;
2283 /* Compare priority of two insns. Return a positive number if the second
2284 insn is to be preferred for scheduling, and a negative one if the first
2285 is to be preferred. Zero if they are equally good. */
2287 static int
2288 rgn_rank (rtx insn1, rtx insn2)
2290 /* Some comparison make sense in interblock scheduling only. */
2291 if (INSN_BB (insn1) != INSN_BB (insn2))
2293 int spec_val, prob_val;
2295 /* Prefer an inblock motion on an interblock motion. */
2296 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2297 return 1;
2298 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2299 return -1;
2301 /* Prefer a useful motion on a speculative one. */
2302 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2303 if (spec_val)
2304 return spec_val;
2306 /* Prefer a more probable (speculative) insn. */
2307 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2308 if (prob_val)
2309 return prob_val;
2311 return 0;
2314 /* NEXT is an instruction that depends on INSN (a backward dependence);
2315 return nonzero if we should include this dependence in priority
2316 calculations. */
2319 contributes_to_priority (rtx next, rtx insn)
2321 /* NEXT and INSN reside in one ebb. */
2322 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2325 /* INSN is a JUMP_INSN. Store the set of registers that must be
2326 considered as used by this jump in USED. */
2328 static void
2329 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2330 regset used ATTRIBUTE_UNUSED)
2332 /* Nothing to do here, since we postprocess jumps in
2333 add_branch_dependences. */
2336 /* This variable holds common_sched_info hooks and data relevant to
2337 the interblock scheduler. */
2338 static struct common_sched_info_def rgn_common_sched_info;
2341 /* This holds data for the dependence analysis relevant to
2342 the interblock scheduler. */
2343 static struct sched_deps_info_def rgn_sched_deps_info;
2345 /* This holds constant data used for initializing the above structure
2346 for the Haifa scheduler. */
2347 static const struct sched_deps_info_def rgn_const_sched_deps_info =
2349 compute_jump_reg_dependencies,
2350 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2351 0, 0, 0
2354 /* Same as above, but for the selective scheduler. */
2355 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2357 compute_jump_reg_dependencies,
2358 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2359 0, 0, 0
2362 /* Return true if scheduling INSN will trigger finish of scheduling
2363 current block. */
2364 static bool
2365 rgn_insn_finishes_block_p (rtx insn)
2367 if (INSN_BB (insn) == target_bb
2368 && sched_target_n_insns + 1 == target_n_insns)
2369 /* INSN is the last not-scheduled instruction in the current block. */
2370 return true;
2372 return false;
2375 /* Used in schedule_insns to initialize current_sched_info for scheduling
2376 regions (or single basic blocks). */
2378 static const struct haifa_sched_info rgn_const_sched_info =
2380 init_ready_list,
2381 can_schedule_ready_p,
2382 schedule_more_p,
2383 new_ready,
2384 rgn_rank,
2385 rgn_print_insn,
2386 contributes_to_priority,
2387 rgn_insn_finishes_block_p,
2389 NULL, NULL,
2390 NULL, NULL,
2391 0, 0,
2393 rgn_add_remove_insn,
2394 begin_schedule_ready,
2395 NULL,
2396 advance_target_bb,
2397 NULL, NULL,
2398 SCHED_RGN
2401 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2402 for the interblock scheduler frontend. */
2403 static struct haifa_sched_info rgn_sched_info;
2405 /* Returns maximum priority that an insn was assigned to. */
2408 get_rgn_sched_max_insns_priority (void)
2410 return rgn_sched_info.sched_max_insns_priority;
2413 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2415 static bool
2416 sets_likely_spilled (rtx pat)
2418 bool ret = false;
2419 note_stores (pat, sets_likely_spilled_1, &ret);
2420 return ret;
2423 static void
2424 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2426 bool *ret = (bool *) data;
2428 if (GET_CODE (pat) == SET
2429 && REG_P (x)
2430 && HARD_REGISTER_P (x)
2431 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2432 *ret = true;
2435 /* A bitmap to note insns that participate in any dependency. Used in
2436 add_branch_dependences. */
2437 static sbitmap insn_referenced;
2439 /* Add dependences so that branches are scheduled to run last in their
2440 block. */
2441 static void
2442 add_branch_dependences (rtx head, rtx tail)
2444 rtx insn, last;
2446 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2447 that can throw exceptions, force them to remain in order at the end of
2448 the block by adding dependencies and giving the last a high priority.
2449 There may be notes present, and prev_head may also be a note.
2451 Branches must obviously remain at the end. Calls should remain at the
2452 end since moving them results in worse register allocation. Uses remain
2453 at the end to ensure proper register allocation.
2455 cc0 setters remain at the end because they can't be moved away from
2456 their cc0 user.
2458 Predecessors of SCHED_GROUP_P instructions at the end remain at the end.
2460 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2462 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2463 values) are not moved before reload because we can wind up with register
2464 allocation failures. */
2466 while (tail != head && DEBUG_INSN_P (tail))
2467 tail = PREV_INSN (tail);
2469 insn = tail;
2470 last = 0;
2471 while (CALL_P (insn)
2472 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
2473 || (NONJUMP_INSN_P (insn)
2474 && (GET_CODE (PATTERN (insn)) == USE
2475 || GET_CODE (PATTERN (insn)) == CLOBBER
2476 || can_throw_internal (insn)
2477 #ifdef HAVE_cc0
2478 || sets_cc0_p (PATTERN (insn))
2479 #endif
2480 || (!reload_completed
2481 && sets_likely_spilled (PATTERN (insn)))))
2482 || NOTE_P (insn)
2483 || (last != 0 && SCHED_GROUP_P (last)))
2485 if (!NOTE_P (insn))
2487 if (last != 0
2488 && sd_find_dep_between (insn, last, false) == NULL)
2490 if (! sched_insns_conditions_mutex_p (last, insn))
2491 add_dependence (last, insn, REG_DEP_ANTI);
2492 bitmap_set_bit (insn_referenced, INSN_LUID (insn));
2495 CANT_MOVE (insn) = 1;
2497 last = insn;
2500 /* Don't overrun the bounds of the basic block. */
2501 if (insn == head)
2502 break;
2505 insn = PREV_INSN (insn);
2506 while (insn != head && DEBUG_INSN_P (insn));
2509 /* Make sure these insns are scheduled last in their block. */
2510 insn = last;
2511 if (insn != 0)
2512 while (insn != head)
2514 insn = prev_nonnote_insn (insn);
2516 if (bitmap_bit_p (insn_referenced, INSN_LUID (insn))
2517 || DEBUG_INSN_P (insn))
2518 continue;
2520 if (! sched_insns_conditions_mutex_p (last, insn))
2521 add_dependence (last, insn, REG_DEP_ANTI);
2524 if (!targetm.have_conditional_execution ())
2525 return;
2527 /* Finally, if the block ends in a jump, and we are doing intra-block
2528 scheduling, make sure that the branch depends on any COND_EXEC insns
2529 inside the block to avoid moving the COND_EXECs past the branch insn.
2531 We only have to do this after reload, because (1) before reload there
2532 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2533 scheduler after reload.
2535 FIXME: We could in some cases move COND_EXEC insns past the branch if
2536 this scheduler would be a little smarter. Consider this code:
2538 T = [addr]
2539 C ? addr += 4
2540 !C ? X += 12
2541 C ? T += 1
2542 C ? jump foo
2544 On a target with a one cycle stall on a memory access the optimal
2545 sequence would be:
2547 T = [addr]
2548 C ? addr += 4
2549 C ? T += 1
2550 C ? jump foo
2551 !C ? X += 12
2553 We don't want to put the 'X += 12' before the branch because it just
2554 wastes a cycle of execution time when the branch is taken.
2556 Note that in the example "!C" will always be true. That is another
2557 possible improvement for handling COND_EXECs in this scheduler: it
2558 could remove always-true predicates. */
2560 if (!reload_completed || ! (JUMP_P (tail) || JUMP_TABLE_DATA_P (tail)))
2561 return;
2563 insn = tail;
2564 while (insn != head)
2566 insn = PREV_INSN (insn);
2568 /* Note that we want to add this dependency even when
2569 sched_insns_conditions_mutex_p returns true. The whole point
2570 is that we _want_ this dependency, even if these insns really
2571 are independent. */
2572 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2573 add_dependence (tail, insn, REG_DEP_ANTI);
2577 /* Data structures for the computation of data dependences in a regions. We
2578 keep one `deps' structure for every basic block. Before analyzing the
2579 data dependences for a bb, its variables are initialized as a function of
2580 the variables of its predecessors. When the analysis for a bb completes,
2581 we save the contents to the corresponding bb_deps[bb] variable. */
2583 static struct deps_desc *bb_deps;
2585 static void
2586 concat_insn_mem_list (rtx copy_insns, rtx copy_mems, rtx *old_insns_p,
2587 rtx *old_mems_p)
2589 rtx new_insns = *old_insns_p;
2590 rtx new_mems = *old_mems_p;
2592 while (copy_insns)
2594 new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
2595 new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
2596 copy_insns = XEXP (copy_insns, 1);
2597 copy_mems = XEXP (copy_mems, 1);
2600 *old_insns_p = new_insns;
2601 *old_mems_p = new_mems;
2604 /* Join PRED_DEPS to the SUCC_DEPS. */
2605 void
2606 deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
2608 unsigned reg;
2609 reg_set_iterator rsi;
2611 /* The reg_last lists are inherited by successor. */
2612 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2614 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2615 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2617 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2618 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2619 succ_rl->implicit_sets
2620 = concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2621 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2622 succ_rl->clobbers);
2623 succ_rl->uses_length += pred_rl->uses_length;
2624 succ_rl->clobbers_length += pred_rl->clobbers_length;
2626 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2628 /* Mem read/write lists are inherited by successor. */
2629 concat_insn_mem_list (pred_deps->pending_read_insns,
2630 pred_deps->pending_read_mems,
2631 &succ_deps->pending_read_insns,
2632 &succ_deps->pending_read_mems);
2633 concat_insn_mem_list (pred_deps->pending_write_insns,
2634 pred_deps->pending_write_mems,
2635 &succ_deps->pending_write_insns,
2636 &succ_deps->pending_write_mems);
2638 succ_deps->pending_jump_insns
2639 = concat_INSN_LIST (pred_deps->pending_jump_insns,
2640 succ_deps->pending_jump_insns);
2641 succ_deps->last_pending_memory_flush
2642 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2643 succ_deps->last_pending_memory_flush);
2645 succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2646 succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2647 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2649 /* last_function_call is inherited by successor. */
2650 succ_deps->last_function_call
2651 = concat_INSN_LIST (pred_deps->last_function_call,
2652 succ_deps->last_function_call);
2654 /* last_function_call_may_noreturn is inherited by successor. */
2655 succ_deps->last_function_call_may_noreturn
2656 = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2657 succ_deps->last_function_call_may_noreturn);
2659 /* sched_before_next_call is inherited by successor. */
2660 succ_deps->sched_before_next_call
2661 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2662 succ_deps->sched_before_next_call);
2665 /* After computing the dependencies for block BB, propagate the dependencies
2666 found in TMP_DEPS to the successors of the block. */
2667 static void
2668 propagate_deps (int bb, struct deps_desc *pred_deps)
2670 basic_block block = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb));
2671 edge_iterator ei;
2672 edge e;
2674 /* bb's structures are inherited by its successors. */
2675 FOR_EACH_EDGE (e, ei, block->succs)
2677 /* Only bbs "below" bb, in the same region, are interesting. */
2678 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2679 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2680 || BLOCK_TO_BB (e->dest->index) <= bb)
2681 continue;
2683 deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2686 /* These lists should point to the right place, for correct
2687 freeing later. */
2688 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2689 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2690 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2691 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2692 bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
2694 /* Can't allow these to be freed twice. */
2695 pred_deps->pending_read_insns = 0;
2696 pred_deps->pending_read_mems = 0;
2697 pred_deps->pending_write_insns = 0;
2698 pred_deps->pending_write_mems = 0;
2699 pred_deps->pending_jump_insns = 0;
2702 /* Compute dependences inside bb. In a multiple blocks region:
2703 (1) a bb is analyzed after its predecessors, and (2) the lists in
2704 effect at the end of bb (after analyzing for bb) are inherited by
2705 bb's successors.
2707 Specifically for reg-reg data dependences, the block insns are
2708 scanned by sched_analyze () top-to-bottom. Three lists are
2709 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2710 reg_last[].implicit_sets for implicit hard register DEFs, and
2711 reg_last[].uses for register USEs.
2713 When analysis is completed for bb, we update for its successors:
2714 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2715 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2716 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2718 The mechanism for computing mem-mem data dependence is very
2719 similar, and the result is interblock dependences in the region. */
2721 static void
2722 compute_block_dependences (int bb)
2724 rtx head, tail;
2725 struct deps_desc tmp_deps;
2727 tmp_deps = bb_deps[bb];
2729 /* Do the analysis for this block. */
2730 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2731 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2733 sched_analyze (&tmp_deps, head, tail);
2735 /* Selective scheduling handles control dependencies by itself. */
2736 if (!sel_sched_p ())
2737 add_branch_dependences (head, tail);
2739 if (current_nr_blocks > 1)
2740 propagate_deps (bb, &tmp_deps);
2742 /* Free up the INSN_LISTs. */
2743 free_deps (&tmp_deps);
2745 if (targetm.sched.dependencies_evaluation_hook)
2746 targetm.sched.dependencies_evaluation_hook (head, tail);
2749 /* Free dependencies of instructions inside BB. */
2750 static void
2751 free_block_dependencies (int bb)
2753 rtx head;
2754 rtx tail;
2756 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2758 if (no_real_insns_p (head, tail))
2759 return;
2761 sched_free_deps (head, tail, true);
2764 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2765 them to the unused_*_list variables, so that they can be reused. */
2767 static void
2768 free_pending_lists (void)
2770 int bb;
2772 for (bb = 0; bb < current_nr_blocks; bb++)
2774 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2775 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2776 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2777 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2778 free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
2782 /* Print dependences for debugging starting from FROM_BB.
2783 Callable from debugger. */
2784 /* Print dependences for debugging starting from FROM_BB.
2785 Callable from debugger. */
2786 DEBUG_FUNCTION void
2787 debug_rgn_dependencies (int from_bb)
2789 int bb;
2791 fprintf (sched_dump,
2792 ";; --------------- forward dependences: ------------ \n");
2794 for (bb = from_bb; bb < current_nr_blocks; bb++)
2796 rtx head, tail;
2798 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2799 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2800 BB_TO_BLOCK (bb), bb);
2802 debug_dependencies (head, tail);
2806 /* Print dependencies information for instructions between HEAD and TAIL.
2807 ??? This function would probably fit best in haifa-sched.c. */
2808 void debug_dependencies (rtx head, rtx tail)
2810 rtx insn;
2811 rtx next_tail = NEXT_INSN (tail);
2813 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2814 "insn", "code", "bb", "dep", "prio", "cost",
2815 "reservation");
2816 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2817 "----", "----", "--", "---", "----", "----",
2818 "-----------");
2820 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2822 if (! INSN_P (insn))
2824 int n;
2825 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2826 if (NOTE_P (insn))
2828 n = NOTE_KIND (insn);
2829 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2831 else
2832 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2833 continue;
2836 fprintf (sched_dump,
2837 ";; %s%5d%6d%6d%6d%6d%6d ",
2838 (SCHED_GROUP_P (insn) ? "+" : " "),
2839 INSN_UID (insn),
2840 INSN_CODE (insn),
2841 BLOCK_NUM (insn),
2842 sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2843 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2844 : INSN_PRIORITY (insn))
2845 : INSN_PRIORITY (insn)),
2846 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2847 : insn_cost (insn))
2848 : insn_cost (insn)));
2850 if (recog_memoized (insn) < 0)
2851 fprintf (sched_dump, "nothing");
2852 else
2853 print_reservation (sched_dump, insn);
2855 fprintf (sched_dump, "\t: ");
2857 sd_iterator_def sd_it;
2858 dep_t dep;
2860 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2861 fprintf (sched_dump, "%d%s%s ", INSN_UID (DEP_CON (dep)),
2862 DEP_NONREG (dep) ? "n" : "",
2863 DEP_MULTIPLE (dep) ? "m" : "");
2865 fprintf (sched_dump, "\n");
2868 fprintf (sched_dump, "\n");
2871 /* Returns true if all the basic blocks of the current region have
2872 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2873 bool
2874 sched_is_disabled_for_current_region_p (void)
2876 int bb;
2878 for (bb = 0; bb < current_nr_blocks; bb++)
2879 if (!(BASIC_BLOCK_FOR_FN (cfun,
2880 BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2881 return false;
2883 return true;
2886 /* Free all region dependencies saved in INSN_BACK_DEPS and
2887 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2888 when scheduling, so this function is supposed to be called from
2889 the selective scheduling only. */
2890 void
2891 free_rgn_deps (void)
2893 int bb;
2895 for (bb = 0; bb < current_nr_blocks; bb++)
2897 rtx head, tail;
2899 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2900 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2902 sched_free_deps (head, tail, false);
2906 static int rgn_n_insns;
2908 /* Compute insn priority for a current region. */
2909 void
2910 compute_priorities (void)
2912 int bb;
2914 current_sched_info->sched_max_insns_priority = 0;
2915 for (bb = 0; bb < current_nr_blocks; bb++)
2917 rtx head, tail;
2919 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2920 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2922 if (no_real_insns_p (head, tail))
2923 continue;
2925 rgn_n_insns += set_priorities (head, tail);
2927 current_sched_info->sched_max_insns_priority++;
2930 /* (Re-)initialize the arrays of DFA states at the end of each basic block.
2932 SAVED_LAST_BASIC_BLOCK is the previous length of the arrays. It must be
2933 zero for the first call to this function, to allocate the arrays for the
2934 first time.
2936 This function is called once during initialization of the scheduler, and
2937 called again to resize the arrays if new basic blocks have been created,
2938 for example for speculation recovery code. */
2940 static void
2941 realloc_bb_state_array (int saved_last_basic_block)
2943 char *old_bb_state_array = bb_state_array;
2944 size_t lbb = (size_t) last_basic_block_for_fn (cfun);
2945 size_t slbb = (size_t) saved_last_basic_block;
2947 /* Nothing to do if nothing changed since the last time this was called. */
2948 if (saved_last_basic_block == last_basic_block_for_fn (cfun))
2949 return;
2951 /* The selective scheduler doesn't use the state arrays. */
2952 if (sel_sched_p ())
2954 gcc_assert (bb_state_array == NULL && bb_state == NULL);
2955 return;
2958 gcc_checking_assert (saved_last_basic_block == 0
2959 || (bb_state_array != NULL && bb_state != NULL));
2961 bb_state_array = XRESIZEVEC (char, bb_state_array, lbb * dfa_state_size);
2962 bb_state = XRESIZEVEC (state_t, bb_state, lbb);
2964 /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
2965 Otherwise only fixup the newly allocated ones. For the state
2966 array itself, only initialize the new entries. */
2967 bool bb_state_array_moved = (bb_state_array != old_bb_state_array);
2968 for (size_t i = bb_state_array_moved ? 0 : slbb; i < lbb; i++)
2969 bb_state[i] = (state_t) (bb_state_array + i * dfa_state_size);
2970 for (size_t i = slbb; i < lbb; i++)
2971 state_reset (bb_state[i]);
2974 /* Free the arrays of DFA states at the end of each basic block. */
2976 static void
2977 free_bb_state_array (void)
2979 free (bb_state_array);
2980 free (bb_state);
2981 bb_state_array = NULL;
2982 bb_state = NULL;
2985 /* Schedule a region. A region is either an inner loop, a loop-free
2986 subroutine, or a single basic block. Each bb in the region is
2987 scheduled after its flow predecessors. */
2989 static void
2990 schedule_region (int rgn)
2992 int bb;
2993 int sched_rgn_n_insns = 0;
2995 rgn_n_insns = 0;
2997 /* Do not support register pressure sensitive scheduling for the new regions
2998 as we don't update the liveness info for them. */
2999 if (sched_pressure != SCHED_PRESSURE_NONE
3000 && rgn >= nr_regions_initial)
3002 free_global_sched_pressure_data ();
3003 sched_pressure = SCHED_PRESSURE_NONE;
3006 rgn_setup_region (rgn);
3008 /* Don't schedule region that is marked by
3009 NOTE_DISABLE_SCHED_OF_BLOCK. */
3010 if (sched_is_disabled_for_current_region_p ())
3011 return;
3013 sched_rgn_compute_dependencies (rgn);
3015 sched_rgn_local_init (rgn);
3017 /* Set priorities. */
3018 compute_priorities ();
3020 sched_extend_ready_list (rgn_n_insns);
3022 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3024 sched_init_region_reg_pressure_info ();
3025 for (bb = 0; bb < current_nr_blocks; bb++)
3027 basic_block first_bb, last_bb;
3028 rtx head, tail;
3030 first_bb = EBB_FIRST_BB (bb);
3031 last_bb = EBB_LAST_BB (bb);
3033 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3035 if (no_real_insns_p (head, tail))
3037 gcc_assert (first_bb == last_bb);
3038 continue;
3040 sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
3044 /* Now we can schedule all blocks. */
3045 for (bb = 0; bb < current_nr_blocks; bb++)
3047 basic_block first_bb, last_bb, curr_bb;
3048 rtx head, tail;
3050 first_bb = EBB_FIRST_BB (bb);
3051 last_bb = EBB_LAST_BB (bb);
3053 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3055 if (no_real_insns_p (head, tail))
3057 gcc_assert (first_bb == last_bb);
3058 continue;
3061 current_sched_info->prev_head = PREV_INSN (head);
3062 current_sched_info->next_tail = NEXT_INSN (tail);
3064 remove_notes (head, tail);
3066 unlink_bb_notes (first_bb, last_bb);
3068 target_bb = bb;
3070 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
3071 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
3073 curr_bb = first_bb;
3074 if (dbg_cnt (sched_block))
3076 edge f;
3077 int saved_last_basic_block = last_basic_block_for_fn (cfun);
3079 schedule_block (&curr_bb, bb_state[first_bb->index]);
3080 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
3081 sched_rgn_n_insns += sched_n_insns;
3082 realloc_bb_state_array (saved_last_basic_block);
3083 f = find_fallthru_edge (last_bb->succs);
3084 if (f && f->probability * 100 / REG_BR_PROB_BASE >=
3085 PARAM_VALUE (PARAM_SCHED_STATE_EDGE_PROB_CUTOFF))
3087 memcpy (bb_state[f->dest->index], curr_state,
3088 dfa_state_size);
3089 if (sched_verbose >= 5)
3090 fprintf (sched_dump, "saving state for edge %d->%d\n",
3091 f->src->index, f->dest->index);
3094 else
3096 sched_rgn_n_insns += rgn_n_insns;
3099 /* Clean up. */
3100 if (current_nr_blocks > 1)
3101 free_trg_info ();
3104 /* Sanity check: verify that all region insns were scheduled. */
3105 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
3107 sched_finish_ready_list ();
3109 /* Done with this region. */
3110 sched_rgn_local_finish ();
3112 /* Free dependencies. */
3113 for (bb = 0; bb < current_nr_blocks; ++bb)
3114 free_block_dependencies (bb);
3116 gcc_assert (haifa_recovery_bb_ever_added_p
3117 || deps_pools_are_empty_p ());
3120 /* Initialize data structures for region scheduling. */
3122 void
3123 sched_rgn_init (bool single_blocks_p)
3125 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3126 / 100);
3128 nr_inter = 0;
3129 nr_spec = 0;
3131 extend_regions ();
3133 CONTAINING_RGN (ENTRY_BLOCK) = -1;
3134 CONTAINING_RGN (EXIT_BLOCK) = -1;
3136 realloc_bb_state_array (0);
3138 /* Compute regions for scheduling. */
3139 if (single_blocks_p
3140 || n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS + 1
3141 || !flag_schedule_interblock
3142 || is_cfg_nonregular ())
3144 find_single_block_region (sel_sched_p ());
3146 else
3148 /* Compute the dominators and post dominators. */
3149 if (!sel_sched_p ())
3150 calculate_dominance_info (CDI_DOMINATORS);
3152 /* Find regions. */
3153 find_rgns ();
3155 if (sched_verbose >= 3)
3156 debug_regions ();
3158 /* For now. This will move as more and more of haifa is converted
3159 to using the cfg code. */
3160 if (!sel_sched_p ())
3161 free_dominance_info (CDI_DOMINATORS);
3164 gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks_for_fn (cfun));
3166 RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3167 RGN_NR_BLOCKS (nr_regions - 1));
3168 nr_regions_initial = nr_regions;
3171 /* Free data structures for region scheduling. */
3172 void
3173 sched_rgn_finish (void)
3175 free_bb_state_array ();
3177 /* Reposition the prologue and epilogue notes in case we moved the
3178 prologue/epilogue insns. */
3179 if (reload_completed)
3180 reposition_prologue_and_epilogue_notes ();
3182 if (sched_verbose)
3184 if (reload_completed == 0
3185 && flag_schedule_interblock)
3187 fprintf (sched_dump,
3188 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3189 nr_inter, nr_spec);
3191 else
3192 gcc_assert (nr_inter <= 0);
3193 fprintf (sched_dump, "\n\n");
3196 nr_regions = 0;
3198 free (rgn_table);
3199 rgn_table = NULL;
3201 free (rgn_bb_table);
3202 rgn_bb_table = NULL;
3204 free (block_to_bb);
3205 block_to_bb = NULL;
3207 free (containing_rgn);
3208 containing_rgn = NULL;
3210 free (ebb_head);
3211 ebb_head = NULL;
3214 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3215 point to the region RGN. */
3216 void
3217 rgn_setup_region (int rgn)
3219 int bb;
3221 /* Set variables for the current region. */
3222 current_nr_blocks = RGN_NR_BLOCKS (rgn);
3223 current_blocks = RGN_BLOCKS (rgn);
3225 /* EBB_HEAD is a region-scope structure. But we realloc it for
3226 each region to save time/memory/something else.
3227 See comments in add_block1, for what reasons we allocate +1 element. */
3228 ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3229 for (bb = 0; bb <= current_nr_blocks; bb++)
3230 ebb_head[bb] = current_blocks + bb;
3233 /* Compute instruction dependencies in region RGN. */
3234 void
3235 sched_rgn_compute_dependencies (int rgn)
3237 if (!RGN_DONT_CALC_DEPS (rgn))
3239 int bb;
3241 if (sel_sched_p ())
3242 sched_emulate_haifa_p = 1;
3244 init_deps_global ();
3246 /* Initializations for region data dependence analysis. */
3247 bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
3248 for (bb = 0; bb < current_nr_blocks; bb++)
3249 init_deps (bb_deps + bb, false);
3251 /* Initialize bitmap used in add_branch_dependences. */
3252 insn_referenced = sbitmap_alloc (sched_max_luid);
3253 bitmap_clear (insn_referenced);
3255 /* Compute backward dependencies. */
3256 for (bb = 0; bb < current_nr_blocks; bb++)
3257 compute_block_dependences (bb);
3259 sbitmap_free (insn_referenced);
3260 free_pending_lists ();
3261 finish_deps_global ();
3262 free (bb_deps);
3264 /* We don't want to recalculate this twice. */
3265 RGN_DONT_CALC_DEPS (rgn) = 1;
3267 if (sel_sched_p ())
3268 sched_emulate_haifa_p = 0;
3270 else
3271 /* (This is a recovery block. It is always a single block region.)
3272 OR (We use selective scheduling.) */
3273 gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3276 /* Init region data structures. Returns true if this region should
3277 not be scheduled. */
3278 void
3279 sched_rgn_local_init (int rgn)
3281 int bb;
3283 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3284 if (current_nr_blocks > 1)
3286 basic_block block;
3287 edge e;
3288 edge_iterator ei;
3290 prob = XNEWVEC (int, current_nr_blocks);
3292 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3293 bitmap_vector_clear (dom, current_nr_blocks);
3295 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3296 rgn_nr_edges = 0;
3297 FOR_EACH_BB_FN (block, cfun)
3299 if (CONTAINING_RGN (block->index) != rgn)
3300 continue;
3301 FOR_EACH_EDGE (e, ei, block->succs)
3302 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3305 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3306 rgn_nr_edges = 0;
3307 FOR_EACH_BB_FN (block, cfun)
3309 if (CONTAINING_RGN (block->index) != rgn)
3310 continue;
3311 FOR_EACH_EDGE (e, ei, block->succs)
3312 rgn_edges[rgn_nr_edges++] = e;
3315 /* Split edges. */
3316 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3317 bitmap_vector_clear (pot_split, current_nr_blocks);
3318 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3319 bitmap_vector_clear (ancestor_edges, current_nr_blocks);
3321 /* Compute probabilities, dominators, split_edges. */
3322 for (bb = 0; bb < current_nr_blocks; bb++)
3323 compute_dom_prob_ps (bb);
3325 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3326 /* We don't need them anymore. But we want to avoid duplication of
3327 aux fields in the newly created edges. */
3328 FOR_EACH_BB_FN (block, cfun)
3330 if (CONTAINING_RGN (block->index) != rgn)
3331 continue;
3332 FOR_EACH_EDGE (e, ei, block->succs)
3333 e->aux = NULL;
3338 /* Free data computed for the finished region. */
3339 void
3340 sched_rgn_local_free (void)
3342 free (prob);
3343 sbitmap_vector_free (dom);
3344 sbitmap_vector_free (pot_split);
3345 sbitmap_vector_free (ancestor_edges);
3346 free (rgn_edges);
3349 /* Free data computed for the finished region. */
3350 void
3351 sched_rgn_local_finish (void)
3353 if (current_nr_blocks > 1 && !sel_sched_p ())
3355 sched_rgn_local_free ();
3359 /* Setup scheduler infos. */
3360 void
3361 rgn_setup_common_sched_info (void)
3363 memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3364 sizeof (rgn_common_sched_info));
3366 rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3367 rgn_common_sched_info.add_block = rgn_add_block;
3368 rgn_common_sched_info.estimate_number_of_insns
3369 = rgn_estimate_number_of_insns;
3370 rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3372 common_sched_info = &rgn_common_sched_info;
3375 /* Setup all *_sched_info structures (for the Haifa frontend
3376 and for the dependence analysis) in the interblock scheduler. */
3377 void
3378 rgn_setup_sched_infos (void)
3380 if (!sel_sched_p ())
3381 memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3382 sizeof (rgn_sched_deps_info));
3383 else
3384 memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3385 sizeof (rgn_sched_deps_info));
3387 sched_deps_info = &rgn_sched_deps_info;
3389 memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3390 current_sched_info = &rgn_sched_info;
3393 /* The one entry point in this file. */
3394 void
3395 schedule_insns (void)
3397 int rgn;
3399 /* Taking care of this degenerate case makes the rest of
3400 this code simpler. */
3401 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
3402 return;
3404 rgn_setup_common_sched_info ();
3405 rgn_setup_sched_infos ();
3407 haifa_sched_init ();
3408 sched_rgn_init (reload_completed);
3410 bitmap_initialize (&not_in_df, 0);
3411 bitmap_clear (&not_in_df);
3413 /* Schedule every region in the subroutine. */
3414 for (rgn = 0; rgn < nr_regions; rgn++)
3415 if (dbg_cnt (sched_region))
3416 schedule_region (rgn);
3418 /* Clean up. */
3419 sched_rgn_finish ();
3420 bitmap_clear (&not_in_df);
3422 haifa_sched_finish ();
3425 /* INSN has been added to/removed from current region. */
3426 static void
3427 rgn_add_remove_insn (rtx insn, int remove_p)
3429 if (!remove_p)
3430 rgn_n_insns++;
3431 else
3432 rgn_n_insns--;
3434 if (INSN_BB (insn) == target_bb)
3436 if (!remove_p)
3437 target_n_insns++;
3438 else
3439 target_n_insns--;
3443 /* Extend internal data structures. */
3444 void
3445 extend_regions (void)
3447 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks_for_fn (cfun));
3448 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table,
3449 n_basic_blocks_for_fn (cfun));
3450 block_to_bb = XRESIZEVEC (int, block_to_bb,
3451 last_basic_block_for_fn (cfun));
3452 containing_rgn = XRESIZEVEC (int, containing_rgn,
3453 last_basic_block_for_fn (cfun));
3456 void
3457 rgn_make_new_region_out_of_new_block (basic_block bb)
3459 int i;
3461 i = RGN_BLOCKS (nr_regions);
3462 /* I - first free position in rgn_bb_table. */
3464 rgn_bb_table[i] = bb->index;
3465 RGN_NR_BLOCKS (nr_regions) = 1;
3466 RGN_HAS_REAL_EBB (nr_regions) = 0;
3467 RGN_DONT_CALC_DEPS (nr_regions) = 0;
3468 CONTAINING_RGN (bb->index) = nr_regions;
3469 BLOCK_TO_BB (bb->index) = 0;
3471 nr_regions++;
3473 RGN_BLOCKS (nr_regions) = i + 1;
3476 /* BB was added to ebb after AFTER. */
3477 static void
3478 rgn_add_block (basic_block bb, basic_block after)
3480 extend_regions ();
3481 bitmap_set_bit (&not_in_df, bb->index);
3483 if (after == 0 || after == EXIT_BLOCK_PTR_FOR_FN (cfun))
3485 rgn_make_new_region_out_of_new_block (bb);
3486 RGN_DONT_CALC_DEPS (nr_regions - 1) = (after
3487 == EXIT_BLOCK_PTR_FOR_FN (cfun));
3489 else
3491 int i, pos;
3493 /* We need to fix rgn_table, block_to_bb, containing_rgn
3494 and ebb_head. */
3496 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3498 /* We extend ebb_head to one more position to
3499 easily find the last position of the last ebb in
3500 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3501 is _always_ valid for access. */
3503 i = BLOCK_TO_BB (after->index) + 1;
3504 pos = ebb_head[i] - 1;
3505 /* Now POS is the index of the last block in the region. */
3507 /* Find index of basic block AFTER. */
3508 for (; rgn_bb_table[pos] != after->index; pos--)
3511 pos++;
3512 gcc_assert (pos > ebb_head[i - 1]);
3514 /* i - ebb right after "AFTER". */
3515 /* ebb_head[i] - VALID. */
3517 /* Source position: ebb_head[i]
3518 Destination position: ebb_head[i] + 1
3519 Last position:
3520 RGN_BLOCKS (nr_regions) - 1
3521 Number of elements to copy: (last_position) - (source_position) + 1
3524 memmove (rgn_bb_table + pos + 1,
3525 rgn_bb_table + pos,
3526 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3527 * sizeof (*rgn_bb_table));
3529 rgn_bb_table[pos] = bb->index;
3531 for (; i <= current_nr_blocks; i++)
3532 ebb_head [i]++;
3534 i = CONTAINING_RGN (after->index);
3535 CONTAINING_RGN (bb->index) = i;
3537 RGN_HAS_REAL_EBB (i) = 1;
3539 for (++i; i <= nr_regions; i++)
3540 RGN_BLOCKS (i)++;
3544 /* Fix internal data after interblock movement of jump instruction.
3545 For parameter meaning please refer to
3546 sched-int.h: struct sched_info: fix_recovery_cfg. */
3547 static void
3548 rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3550 int old_pos, new_pos, i;
3552 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3554 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3555 rgn_bb_table[old_pos] != check_bb_nexti;
3556 old_pos--)
3558 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3560 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3561 rgn_bb_table[new_pos] != bbi;
3562 new_pos--)
3564 new_pos++;
3565 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3567 gcc_assert (new_pos < old_pos);
3569 memmove (rgn_bb_table + new_pos + 1,
3570 rgn_bb_table + new_pos,
3571 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3573 rgn_bb_table[new_pos] = check_bb_nexti;
3575 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3576 ebb_head[i]++;
3579 /* Return next block in ebb chain. For parameter meaning please refer to
3580 sched-int.h: struct sched_info: advance_target_bb. */
3581 static basic_block
3582 advance_target_bb (basic_block bb, rtx insn)
3584 if (insn)
3585 return 0;
3587 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3588 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3589 return bb->next_bb;
3592 #endif
3594 static bool
3595 gate_handle_live_range_shrinkage (void)
3597 #ifdef INSN_SCHEDULING
3598 return flag_live_range_shrinkage;
3599 #else
3600 return 0;
3601 #endif
3604 /* Run instruction scheduler. */
3605 static unsigned int
3606 rest_of_handle_live_range_shrinkage (void)
3608 #ifdef INSN_SCHEDULING
3609 int saved;
3611 initialize_live_range_shrinkage ();
3612 saved = flag_schedule_interblock;
3613 flag_schedule_interblock = false;
3614 schedule_insns ();
3615 flag_schedule_interblock = saved;
3616 finish_live_range_shrinkage ();
3617 #endif
3618 return 0;
3621 static bool
3622 gate_handle_sched (void)
3624 #ifdef INSN_SCHEDULING
3625 return optimize > 0 && flag_schedule_insns && dbg_cnt (sched_func);
3626 #else
3627 return 0;
3628 #endif
3631 /* Run instruction scheduler. */
3632 static unsigned int
3633 rest_of_handle_sched (void)
3635 #ifdef INSN_SCHEDULING
3636 if (flag_selective_scheduling
3637 && ! maybe_skip_selective_scheduling ())
3638 run_selective_scheduling ();
3639 else
3640 schedule_insns ();
3641 #endif
3642 return 0;
3645 static bool
3646 gate_handle_sched2 (void)
3648 #ifdef INSN_SCHEDULING
3649 return optimize > 0 && flag_schedule_insns_after_reload
3650 && !targetm.delay_sched2 && dbg_cnt (sched2_func);
3651 #else
3652 return 0;
3653 #endif
3656 /* Run second scheduling pass after reload. */
3657 static unsigned int
3658 rest_of_handle_sched2 (void)
3660 #ifdef INSN_SCHEDULING
3661 if (flag_selective_scheduling2
3662 && ! maybe_skip_selective_scheduling ())
3663 run_selective_scheduling ();
3664 else
3666 /* Do control and data sched analysis again,
3667 and write some more of the results to dump file. */
3668 if (flag_sched2_use_superblocks)
3669 schedule_ebbs ();
3670 else
3671 schedule_insns ();
3673 #endif
3674 return 0;
3677 namespace {
3679 const pass_data pass_data_live_range_shrinkage =
3681 RTL_PASS, /* type */
3682 "lr_shrinkage", /* name */
3683 OPTGROUP_NONE, /* optinfo_flags */
3684 true, /* has_gate */
3685 true, /* has_execute */
3686 TV_LIVE_RANGE_SHRINKAGE, /* tv_id */
3687 0, /* properties_required */
3688 0, /* properties_provided */
3689 0, /* properties_destroyed */
3690 0, /* todo_flags_start */
3691 ( TODO_df_finish | TODO_verify_rtl_sharing
3692 | TODO_verify_flow ), /* todo_flags_finish */
3695 class pass_live_range_shrinkage : public rtl_opt_pass
3697 public:
3698 pass_live_range_shrinkage(gcc::context *ctxt)
3699 : rtl_opt_pass(pass_data_live_range_shrinkage, ctxt)
3702 /* opt_pass methods: */
3703 bool gate () { return gate_handle_live_range_shrinkage (); }
3704 unsigned int execute () { return rest_of_handle_live_range_shrinkage (); }
3706 }; // class pass_live_range_shrinkage
3708 } // anon namespace
3710 rtl_opt_pass *
3711 make_pass_live_range_shrinkage (gcc::context *ctxt)
3713 return new pass_live_range_shrinkage (ctxt);
3716 namespace {
3718 const pass_data pass_data_sched =
3720 RTL_PASS, /* type */
3721 "sched1", /* name */
3722 OPTGROUP_NONE, /* optinfo_flags */
3723 true, /* has_gate */
3724 true, /* has_execute */
3725 TV_SCHED, /* tv_id */
3726 0, /* properties_required */
3727 0, /* properties_provided */
3728 0, /* properties_destroyed */
3729 0, /* todo_flags_start */
3730 ( TODO_df_finish | TODO_verify_rtl_sharing
3731 | TODO_verify_flow ), /* todo_flags_finish */
3734 class pass_sched : public rtl_opt_pass
3736 public:
3737 pass_sched (gcc::context *ctxt)
3738 : rtl_opt_pass (pass_data_sched, ctxt)
3741 /* opt_pass methods: */
3742 bool gate () { return gate_handle_sched (); }
3743 unsigned int execute () { return rest_of_handle_sched (); }
3745 }; // class pass_sched
3747 } // anon namespace
3749 rtl_opt_pass *
3750 make_pass_sched (gcc::context *ctxt)
3752 return new pass_sched (ctxt);
3755 namespace {
3757 const pass_data pass_data_sched2 =
3759 RTL_PASS, /* type */
3760 "sched2", /* name */
3761 OPTGROUP_NONE, /* optinfo_flags */
3762 true, /* has_gate */
3763 true, /* has_execute */
3764 TV_SCHED2, /* tv_id */
3765 0, /* properties_required */
3766 0, /* properties_provided */
3767 0, /* properties_destroyed */
3768 0, /* todo_flags_start */
3769 ( TODO_df_finish | TODO_verify_rtl_sharing
3770 | TODO_verify_flow ), /* todo_flags_finish */
3773 class pass_sched2 : public rtl_opt_pass
3775 public:
3776 pass_sched2 (gcc::context *ctxt)
3777 : rtl_opt_pass (pass_data_sched2, ctxt)
3780 /* opt_pass methods: */
3781 bool gate () { return gate_handle_sched2 (); }
3782 unsigned int execute () { return rest_of_handle_sched2 (); }
3784 }; // class pass_sched2
3786 } // anon namespace
3788 rtl_opt_pass *
3789 make_pass_sched2 (gcc::context *ctxt)
3791 return new pass_sched2 (ctxt);