2014-04-15 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / recog.c
blobf2647e39aae9fc7b6be8ff969c700a387c75393e
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl-error.h"
27 #include "tm_p.h"
28 #include "insn-config.h"
29 #include "insn-attr.h"
30 #include "hard-reg-set.h"
31 #include "recog.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "reload.h"
39 #include "target.h"
40 #include "tree-pass.h"
41 #include "df.h"
42 #include "insn-codes.h"
44 #ifndef STACK_PUSH_CODE
45 #ifdef STACK_GROWS_DOWNWARD
46 #define STACK_PUSH_CODE PRE_DEC
47 #else
48 #define STACK_PUSH_CODE PRE_INC
49 #endif
50 #endif
52 #ifndef STACK_POP_CODE
53 #ifdef STACK_GROWS_DOWNWARD
54 #define STACK_POP_CODE POST_INC
55 #else
56 #define STACK_POP_CODE POST_DEC
57 #endif
58 #endif
60 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
61 static void validate_replace_src_1 (rtx *, void *);
62 static rtx split_insn (rtx);
64 /* Nonzero means allow operands to be volatile.
65 This should be 0 if you are generating rtl, such as if you are calling
66 the functions in optabs.c and expmed.c (most of the time).
67 This should be 1 if all valid insns need to be recognized,
68 such as in reginfo.c and final.c and reload.c.
70 init_recog and init_recog_no_volatile are responsible for setting this. */
72 int volatile_ok;
74 struct recog_data_d recog_data;
76 /* Contains a vector of operand_alternative structures for every operand.
77 Set up by preprocess_constraints. */
78 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
80 /* On return from `constrain_operands', indicate which alternative
81 was satisfied. */
83 int which_alternative;
85 /* Nonzero after end of reload pass.
86 Set to 1 or 0 by toplev.c.
87 Controls the significance of (SUBREG (MEM)). */
89 int reload_completed;
91 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
92 int epilogue_completed;
94 /* Initialize data used by the function `recog'.
95 This must be called once in the compilation of a function
96 before any insn recognition may be done in the function. */
98 void
99 init_recog_no_volatile (void)
101 volatile_ok = 0;
104 void
105 init_recog (void)
107 volatile_ok = 1;
111 /* Return true if labels in asm operands BODY are LABEL_REFs. */
113 static bool
114 asm_labels_ok (rtx body)
116 rtx asmop;
117 int i;
119 asmop = extract_asm_operands (body);
120 if (asmop == NULL_RTX)
121 return true;
123 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
124 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
125 return false;
127 return true;
130 /* Check that X is an insn-body for an `asm' with operands
131 and that the operands mentioned in it are legitimate. */
134 check_asm_operands (rtx x)
136 int noperands;
137 rtx *operands;
138 const char **constraints;
139 int i;
141 if (!asm_labels_ok (x))
142 return 0;
144 /* Post-reload, be more strict with things. */
145 if (reload_completed)
147 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
148 extract_insn (make_insn_raw (x));
149 constrain_operands (1);
150 return which_alternative >= 0;
153 noperands = asm_noperands (x);
154 if (noperands < 0)
155 return 0;
156 if (noperands == 0)
157 return 1;
159 operands = XALLOCAVEC (rtx, noperands);
160 constraints = XALLOCAVEC (const char *, noperands);
162 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
164 for (i = 0; i < noperands; i++)
166 const char *c = constraints[i];
167 if (c[0] == '%')
168 c++;
169 if (! asm_operand_ok (operands[i], c, constraints))
170 return 0;
173 return 1;
176 /* Static data for the next two routines. */
178 typedef struct change_t
180 rtx object;
181 int old_code;
182 rtx *loc;
183 rtx old;
184 bool unshare;
185 } change_t;
187 static change_t *changes;
188 static int changes_allocated;
190 static int num_changes = 0;
192 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
193 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
194 the change is simply made.
196 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
197 will be called with the address and mode as parameters. If OBJECT is
198 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
199 the change in place.
201 IN_GROUP is nonzero if this is part of a group of changes that must be
202 performed as a group. In that case, the changes will be stored. The
203 function `apply_change_group' will validate and apply the changes.
205 If IN_GROUP is zero, this is a single change. Try to recognize the insn
206 or validate the memory reference with the change applied. If the result
207 is not valid for the machine, suppress the change and return zero.
208 Otherwise, perform the change and return 1. */
210 static bool
211 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
213 rtx old = *loc;
215 if (old == new_rtx || rtx_equal_p (old, new_rtx))
216 return 1;
218 gcc_assert (in_group != 0 || num_changes == 0);
220 *loc = new_rtx;
222 /* Save the information describing this change. */
223 if (num_changes >= changes_allocated)
225 if (changes_allocated == 0)
226 /* This value allows for repeated substitutions inside complex
227 indexed addresses, or changes in up to 5 insns. */
228 changes_allocated = MAX_RECOG_OPERANDS * 5;
229 else
230 changes_allocated *= 2;
232 changes = XRESIZEVEC (change_t, changes, changes_allocated);
235 changes[num_changes].object = object;
236 changes[num_changes].loc = loc;
237 changes[num_changes].old = old;
238 changes[num_changes].unshare = unshare;
240 if (object && !MEM_P (object))
242 /* Set INSN_CODE to force rerecognition of insn. Save old code in
243 case invalid. */
244 changes[num_changes].old_code = INSN_CODE (object);
245 INSN_CODE (object) = -1;
248 num_changes++;
250 /* If we are making a group of changes, return 1. Otherwise, validate the
251 change group we made. */
253 if (in_group)
254 return 1;
255 else
256 return apply_change_group ();
259 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
260 UNSHARE to false. */
262 bool
263 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
265 return validate_change_1 (object, loc, new_rtx, in_group, false);
268 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
269 UNSHARE to true. */
271 bool
272 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
274 return validate_change_1 (object, loc, new_rtx, in_group, true);
278 /* Keep X canonicalized if some changes have made it non-canonical; only
279 modifies the operands of X, not (for example) its code. Simplifications
280 are not the job of this routine.
282 Return true if anything was changed. */
283 bool
284 canonicalize_change_group (rtx insn, rtx x)
286 if (COMMUTATIVE_P (x)
287 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
289 /* Oops, the caller has made X no longer canonical.
290 Let's redo the changes in the correct order. */
291 rtx tem = XEXP (x, 0);
292 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
293 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
294 return true;
296 else
297 return false;
301 /* This subroutine of apply_change_group verifies whether the changes to INSN
302 were valid; i.e. whether INSN can still be recognized.
304 If IN_GROUP is true clobbers which have to be added in order to
305 match the instructions will be added to the current change group.
306 Otherwise the changes will take effect immediately. */
309 insn_invalid_p (rtx insn, bool in_group)
311 rtx pat = PATTERN (insn);
312 int num_clobbers = 0;
313 /* If we are before reload and the pattern is a SET, see if we can add
314 clobbers. */
315 int icode = recog (pat, insn,
316 (GET_CODE (pat) == SET
317 && ! reload_completed
318 && ! reload_in_progress)
319 ? &num_clobbers : 0);
320 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
323 /* If this is an asm and the operand aren't legal, then fail. Likewise if
324 this is not an asm and the insn wasn't recognized. */
325 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
326 || (!is_asm && icode < 0))
327 return 1;
329 /* If we have to add CLOBBERs, fail if we have to add ones that reference
330 hard registers since our callers can't know if they are live or not.
331 Otherwise, add them. */
332 if (num_clobbers > 0)
334 rtx newpat;
336 if (added_clobbers_hard_reg_p (icode))
337 return 1;
339 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
340 XVECEXP (newpat, 0, 0) = pat;
341 add_clobbers (newpat, icode);
342 if (in_group)
343 validate_change (insn, &PATTERN (insn), newpat, 1);
344 else
345 PATTERN (insn) = pat = newpat;
348 /* After reload, verify that all constraints are satisfied. */
349 if (reload_completed)
351 extract_insn (insn);
353 if (! constrain_operands (1))
354 return 1;
357 INSN_CODE (insn) = icode;
358 return 0;
361 /* Return number of changes made and not validated yet. */
363 num_changes_pending (void)
365 return num_changes;
368 /* Tentatively apply the changes numbered NUM and up.
369 Return 1 if all changes are valid, zero otherwise. */
372 verify_changes (int num)
374 int i;
375 rtx last_validated = NULL_RTX;
377 /* The changes have been applied and all INSN_CODEs have been reset to force
378 rerecognition.
380 The changes are valid if we aren't given an object, or if we are
381 given a MEM and it still is a valid address, or if this is in insn
382 and it is recognized. In the latter case, if reload has completed,
383 we also require that the operands meet the constraints for
384 the insn. */
386 for (i = num; i < num_changes; i++)
388 rtx object = changes[i].object;
390 /* If there is no object to test or if it is the same as the one we
391 already tested, ignore it. */
392 if (object == 0 || object == last_validated)
393 continue;
395 if (MEM_P (object))
397 if (! memory_address_addr_space_p (GET_MODE (object),
398 XEXP (object, 0),
399 MEM_ADDR_SPACE (object)))
400 break;
402 else if (/* changes[i].old might be zero, e.g. when putting a
403 REG_FRAME_RELATED_EXPR into a previously empty list. */
404 changes[i].old
405 && REG_P (changes[i].old)
406 && asm_noperands (PATTERN (object)) > 0
407 && REG_EXPR (changes[i].old) != NULL_TREE
408 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
409 && DECL_REGISTER (REG_EXPR (changes[i].old)))
411 /* Don't allow changes of hard register operands to inline
412 assemblies if they have been defined as register asm ("x"). */
413 break;
415 else if (DEBUG_INSN_P (object))
416 continue;
417 else if (insn_invalid_p (object, true))
419 rtx pat = PATTERN (object);
421 /* Perhaps we couldn't recognize the insn because there were
422 extra CLOBBERs at the end. If so, try to re-recognize
423 without the last CLOBBER (later iterations will cause each of
424 them to be eliminated, in turn). But don't do this if we
425 have an ASM_OPERAND. */
426 if (GET_CODE (pat) == PARALLEL
427 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
428 && asm_noperands (PATTERN (object)) < 0)
430 rtx newpat;
432 if (XVECLEN (pat, 0) == 2)
433 newpat = XVECEXP (pat, 0, 0);
434 else
436 int j;
438 newpat
439 = gen_rtx_PARALLEL (VOIDmode,
440 rtvec_alloc (XVECLEN (pat, 0) - 1));
441 for (j = 0; j < XVECLEN (newpat, 0); j++)
442 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
445 /* Add a new change to this group to replace the pattern
446 with this new pattern. Then consider this change
447 as having succeeded. The change we added will
448 cause the entire call to fail if things remain invalid.
450 Note that this can lose if a later change than the one
451 we are processing specified &XVECEXP (PATTERN (object), 0, X)
452 but this shouldn't occur. */
454 validate_change (object, &PATTERN (object), newpat, 1);
455 continue;
457 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
458 || GET_CODE (pat) == VAR_LOCATION)
459 /* If this insn is a CLOBBER or USE, it is always valid, but is
460 never recognized. */
461 continue;
462 else
463 break;
465 last_validated = object;
468 return (i == num_changes);
471 /* A group of changes has previously been issued with validate_change
472 and verified with verify_changes. Call df_insn_rescan for each of
473 the insn changed and clear num_changes. */
475 void
476 confirm_change_group (void)
478 int i;
479 rtx last_object = NULL;
481 for (i = 0; i < num_changes; i++)
483 rtx object = changes[i].object;
485 if (changes[i].unshare)
486 *changes[i].loc = copy_rtx (*changes[i].loc);
488 /* Avoid unnecessary rescanning when multiple changes to same instruction
489 are made. */
490 if (object)
492 if (object != last_object && last_object && INSN_P (last_object))
493 df_insn_rescan (last_object);
494 last_object = object;
498 if (last_object && INSN_P (last_object))
499 df_insn_rescan (last_object);
500 num_changes = 0;
503 /* Apply a group of changes previously issued with `validate_change'.
504 If all changes are valid, call confirm_change_group and return 1,
505 otherwise, call cancel_changes and return 0. */
508 apply_change_group (void)
510 if (verify_changes (0))
512 confirm_change_group ();
513 return 1;
515 else
517 cancel_changes (0);
518 return 0;
523 /* Return the number of changes so far in the current group. */
526 num_validated_changes (void)
528 return num_changes;
531 /* Retract the changes numbered NUM and up. */
533 void
534 cancel_changes (int num)
536 int i;
538 /* Back out all the changes. Do this in the opposite order in which
539 they were made. */
540 for (i = num_changes - 1; i >= num; i--)
542 *changes[i].loc = changes[i].old;
543 if (changes[i].object && !MEM_P (changes[i].object))
544 INSN_CODE (changes[i].object) = changes[i].old_code;
546 num_changes = num;
549 /* Reduce conditional compilation elsewhere. */
550 #ifndef HAVE_extv
551 #define HAVE_extv 0
552 #define CODE_FOR_extv CODE_FOR_nothing
553 #endif
554 #ifndef HAVE_extzv
555 #define HAVE_extzv 0
556 #define CODE_FOR_extzv CODE_FOR_nothing
557 #endif
559 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
560 rtx. */
562 static void
563 simplify_while_replacing (rtx *loc, rtx to, rtx object,
564 enum machine_mode op0_mode)
566 rtx x = *loc;
567 enum rtx_code code = GET_CODE (x);
568 rtx new_rtx = NULL_RTX;
570 if (SWAPPABLE_OPERANDS_P (x)
571 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
573 validate_unshare_change (object, loc,
574 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
575 : swap_condition (code),
576 GET_MODE (x), XEXP (x, 1),
577 XEXP (x, 0)), 1);
578 x = *loc;
579 code = GET_CODE (x);
582 /* Canonicalize arithmetics with all constant operands. */
583 switch (GET_RTX_CLASS (code))
585 case RTX_UNARY:
586 if (CONSTANT_P (XEXP (x, 0)))
587 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
588 op0_mode);
589 break;
590 case RTX_COMM_ARITH:
591 case RTX_BIN_ARITH:
592 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
593 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
594 XEXP (x, 1));
595 break;
596 case RTX_COMPARE:
597 case RTX_COMM_COMPARE:
598 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
599 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
600 XEXP (x, 0), XEXP (x, 1));
601 break;
602 default:
603 break;
605 if (new_rtx)
607 validate_change (object, loc, new_rtx, 1);
608 return;
611 switch (code)
613 case PLUS:
614 /* If we have a PLUS whose second operand is now a CONST_INT, use
615 simplify_gen_binary to try to simplify it.
616 ??? We may want later to remove this, once simplification is
617 separated from this function. */
618 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
619 validate_change (object, loc,
620 simplify_gen_binary
621 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
622 break;
623 case MINUS:
624 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
625 validate_change (object, loc,
626 simplify_gen_binary
627 (PLUS, GET_MODE (x), XEXP (x, 0),
628 simplify_gen_unary (NEG,
629 GET_MODE (x), XEXP (x, 1),
630 GET_MODE (x))), 1);
631 break;
632 case ZERO_EXTEND:
633 case SIGN_EXTEND:
634 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
636 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
637 op0_mode);
638 /* If any of the above failed, substitute in something that
639 we know won't be recognized. */
640 if (!new_rtx)
641 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
642 validate_change (object, loc, new_rtx, 1);
644 break;
645 case SUBREG:
646 /* All subregs possible to simplify should be simplified. */
647 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
648 SUBREG_BYTE (x));
650 /* Subregs of VOIDmode operands are incorrect. */
651 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
652 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
653 if (new_rtx)
654 validate_change (object, loc, new_rtx, 1);
655 break;
656 case ZERO_EXTRACT:
657 case SIGN_EXTRACT:
658 /* If we are replacing a register with memory, try to change the memory
659 to be the mode required for memory in extract operations (this isn't
660 likely to be an insertion operation; if it was, nothing bad will
661 happen, we might just fail in some cases). */
663 if (MEM_P (XEXP (x, 0))
664 && CONST_INT_P (XEXP (x, 1))
665 && CONST_INT_P (XEXP (x, 2))
666 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
667 MEM_ADDR_SPACE (XEXP (x, 0)))
668 && !MEM_VOLATILE_P (XEXP (x, 0)))
670 enum machine_mode wanted_mode = VOIDmode;
671 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
672 int pos = INTVAL (XEXP (x, 2));
674 if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
676 wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
677 if (wanted_mode == VOIDmode)
678 wanted_mode = word_mode;
680 else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
682 wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
683 if (wanted_mode == VOIDmode)
684 wanted_mode = word_mode;
687 /* If we have a narrower mode, we can do something. */
688 if (wanted_mode != VOIDmode
689 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
691 int offset = pos / BITS_PER_UNIT;
692 rtx newmem;
694 /* If the bytes and bits are counted differently, we
695 must adjust the offset. */
696 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
697 offset =
698 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
699 offset);
701 gcc_assert (GET_MODE_PRECISION (wanted_mode)
702 == GET_MODE_BITSIZE (wanted_mode));
703 pos %= GET_MODE_BITSIZE (wanted_mode);
705 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
707 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
708 validate_change (object, &XEXP (x, 0), newmem, 1);
712 break;
714 default:
715 break;
719 /* Replace every occurrence of FROM in X with TO. Mark each change with
720 validate_change passing OBJECT. */
722 static void
723 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
724 bool simplify)
726 int i, j;
727 const char *fmt;
728 rtx x = *loc;
729 enum rtx_code code;
730 enum machine_mode op0_mode = VOIDmode;
731 int prev_changes = num_changes;
733 if (!x)
734 return;
736 code = GET_CODE (x);
737 fmt = GET_RTX_FORMAT (code);
738 if (fmt[0] == 'e')
739 op0_mode = GET_MODE (XEXP (x, 0));
741 /* X matches FROM if it is the same rtx or they are both referring to the
742 same register in the same mode. Avoid calling rtx_equal_p unless the
743 operands look similar. */
745 if (x == from
746 || (REG_P (x) && REG_P (from)
747 && GET_MODE (x) == GET_MODE (from)
748 && REGNO (x) == REGNO (from))
749 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
750 && rtx_equal_p (x, from)))
752 validate_unshare_change (object, loc, to, 1);
753 return;
756 /* Call ourself recursively to perform the replacements.
757 We must not replace inside already replaced expression, otherwise we
758 get infinite recursion for replacements like (reg X)->(subreg (reg X))
759 so we must special case shared ASM_OPERANDS. */
761 if (GET_CODE (x) == PARALLEL)
763 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
765 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
766 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
768 /* Verify that operands are really shared. */
769 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
770 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
771 (x, 0, j))));
772 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
773 from, to, object, simplify);
775 else
776 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
777 simplify);
780 else
781 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
783 if (fmt[i] == 'e')
784 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
785 else if (fmt[i] == 'E')
786 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
787 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
788 simplify);
791 /* If we didn't substitute, there is nothing more to do. */
792 if (num_changes == prev_changes)
793 return;
795 /* ??? The regmove is no more, so is this aberration still necessary? */
796 /* Allow substituted expression to have different mode. This is used by
797 regmove to change mode of pseudo register. */
798 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
799 op0_mode = GET_MODE (XEXP (x, 0));
801 /* Do changes needed to keep rtx consistent. Don't do any other
802 simplifications, as it is not our job. */
803 if (simplify)
804 simplify_while_replacing (loc, to, object, op0_mode);
807 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
808 with TO. After all changes have been made, validate by seeing
809 if INSN is still valid. */
812 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
814 validate_replace_rtx_1 (loc, from, to, insn, true);
815 return apply_change_group ();
818 /* Try replacing every occurrence of FROM in INSN with TO. After all
819 changes have been made, validate by seeing if INSN is still valid. */
822 validate_replace_rtx (rtx from, rtx to, rtx insn)
824 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
825 return apply_change_group ();
828 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
829 is a part of INSN. After all changes have been made, validate by seeing if
830 INSN is still valid.
831 validate_replace_rtx (from, to, insn) is equivalent to
832 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
835 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
837 validate_replace_rtx_1 (where, from, to, insn, true);
838 return apply_change_group ();
841 /* Same as above, but do not simplify rtx afterwards. */
843 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
844 rtx insn)
846 validate_replace_rtx_1 (where, from, to, insn, false);
847 return apply_change_group ();
851 /* Try replacing every occurrence of FROM in INSN with TO. This also
852 will replace in REG_EQUAL and REG_EQUIV notes. */
854 void
855 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
857 rtx note;
858 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
859 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
860 if (REG_NOTE_KIND (note) == REG_EQUAL
861 || REG_NOTE_KIND (note) == REG_EQUIV)
862 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
865 /* Function called by note_uses to replace used subexpressions. */
866 struct validate_replace_src_data
868 rtx from; /* Old RTX */
869 rtx to; /* New RTX */
870 rtx insn; /* Insn in which substitution is occurring. */
873 static void
874 validate_replace_src_1 (rtx *x, void *data)
876 struct validate_replace_src_data *d
877 = (struct validate_replace_src_data *) data;
879 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
882 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
883 SET_DESTs. */
885 void
886 validate_replace_src_group (rtx from, rtx to, rtx insn)
888 struct validate_replace_src_data d;
890 d.from = from;
891 d.to = to;
892 d.insn = insn;
893 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
896 /* Try simplify INSN.
897 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
898 pattern and return true if something was simplified. */
900 bool
901 validate_simplify_insn (rtx insn)
903 int i;
904 rtx pat = NULL;
905 rtx newpat = NULL;
907 pat = PATTERN (insn);
909 if (GET_CODE (pat) == SET)
911 newpat = simplify_rtx (SET_SRC (pat));
912 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
913 validate_change (insn, &SET_SRC (pat), newpat, 1);
914 newpat = simplify_rtx (SET_DEST (pat));
915 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
916 validate_change (insn, &SET_DEST (pat), newpat, 1);
918 else if (GET_CODE (pat) == PARALLEL)
919 for (i = 0; i < XVECLEN (pat, 0); i++)
921 rtx s = XVECEXP (pat, 0, i);
923 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
925 newpat = simplify_rtx (SET_SRC (s));
926 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
927 validate_change (insn, &SET_SRC (s), newpat, 1);
928 newpat = simplify_rtx (SET_DEST (s));
929 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
930 validate_change (insn, &SET_DEST (s), newpat, 1);
933 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
936 #ifdef HAVE_cc0
937 /* Return 1 if the insn using CC0 set by INSN does not contain
938 any ordered tests applied to the condition codes.
939 EQ and NE tests do not count. */
942 next_insn_tests_no_inequality (rtx insn)
944 rtx next = next_cc0_user (insn);
946 /* If there is no next insn, we have to take the conservative choice. */
947 if (next == 0)
948 return 0;
950 return (INSN_P (next)
951 && ! inequality_comparisons_p (PATTERN (next)));
953 #endif
955 /* Return 1 if OP is a valid general operand for machine mode MODE.
956 This is either a register reference, a memory reference,
957 or a constant. In the case of a memory reference, the address
958 is checked for general validity for the target machine.
960 Register and memory references must have mode MODE in order to be valid,
961 but some constants have no machine mode and are valid for any mode.
963 If MODE is VOIDmode, OP is checked for validity for whatever mode
964 it has.
966 The main use of this function is as a predicate in match_operand
967 expressions in the machine description. */
970 general_operand (rtx op, enum machine_mode mode)
972 enum rtx_code code = GET_CODE (op);
974 if (mode == VOIDmode)
975 mode = GET_MODE (op);
977 /* Don't accept CONST_INT or anything similar
978 if the caller wants something floating. */
979 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
980 && GET_MODE_CLASS (mode) != MODE_INT
981 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
982 return 0;
984 if (CONST_INT_P (op)
985 && mode != VOIDmode
986 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
987 return 0;
989 if (CONSTANT_P (op))
990 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
991 || mode == VOIDmode)
992 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
993 && targetm.legitimate_constant_p (mode == VOIDmode
994 ? GET_MODE (op)
995 : mode, op));
997 /* Except for certain constants with VOIDmode, already checked for,
998 OP's mode must match MODE if MODE specifies a mode. */
1000 if (GET_MODE (op) != mode)
1001 return 0;
1003 if (code == SUBREG)
1005 rtx sub = SUBREG_REG (op);
1007 #ifdef INSN_SCHEDULING
1008 /* On machines that have insn scheduling, we want all memory
1009 reference to be explicit, so outlaw paradoxical SUBREGs.
1010 However, we must allow them after reload so that they can
1011 get cleaned up by cleanup_subreg_operands. */
1012 if (!reload_completed && MEM_P (sub)
1013 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
1014 return 0;
1015 #endif
1016 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1017 may result in incorrect reference. We should simplify all valid
1018 subregs of MEM anyway. But allow this after reload because we
1019 might be called from cleanup_subreg_operands.
1021 ??? This is a kludge. */
1022 if (!reload_completed && SUBREG_BYTE (op) != 0
1023 && MEM_P (sub))
1024 return 0;
1026 #ifdef CANNOT_CHANGE_MODE_CLASS
1027 if (REG_P (sub)
1028 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1029 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1030 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1031 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1032 /* LRA can generate some invalid SUBREGS just for matched
1033 operand reload presentation. LRA needs to treat them as
1034 valid. */
1035 && ! LRA_SUBREG_P (op))
1036 return 0;
1037 #endif
1039 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1040 create such rtl, and we must reject it. */
1041 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1042 /* LRA can use subreg to store a floating point value in an
1043 integer mode. Although the floating point and the
1044 integer modes need the same number of hard registers, the
1045 size of floating point mode can be less than the integer
1046 mode. */
1047 && ! lra_in_progress
1048 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1049 return 0;
1051 op = sub;
1052 code = GET_CODE (op);
1055 if (code == REG)
1056 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1057 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1059 if (code == MEM)
1061 rtx y = XEXP (op, 0);
1063 if (! volatile_ok && MEM_VOLATILE_P (op))
1064 return 0;
1066 /* Use the mem's mode, since it will be reloaded thus. LRA can
1067 generate move insn with invalid addresses which is made valid
1068 and efficiently calculated by LRA through further numerous
1069 transformations. */
1070 if (lra_in_progress
1071 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1072 return 1;
1075 return 0;
1078 /* Return 1 if OP is a valid memory address for a memory reference
1079 of mode MODE.
1081 The main use of this function is as a predicate in match_operand
1082 expressions in the machine description. */
1085 address_operand (rtx op, enum machine_mode mode)
1087 return memory_address_p (mode, op);
1090 /* Return 1 if OP is a register reference of mode MODE.
1091 If MODE is VOIDmode, accept a register in any mode.
1093 The main use of this function is as a predicate in match_operand
1094 expressions in the machine description. */
1097 register_operand (rtx op, enum machine_mode mode)
1099 if (GET_CODE (op) == SUBREG)
1101 rtx sub = SUBREG_REG (op);
1103 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1104 because it is guaranteed to be reloaded into one.
1105 Just make sure the MEM is valid in itself.
1106 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1107 but currently it does result from (SUBREG (REG)...) where the
1108 reg went on the stack.) */
1109 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1110 return 0;
1112 else if (!REG_P (op))
1113 return 0;
1114 return general_operand (op, mode);
1117 /* Return 1 for a register in Pmode; ignore the tested mode. */
1120 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1122 return register_operand (op, Pmode);
1125 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1126 or a hard register. */
1129 scratch_operand (rtx op, enum machine_mode mode)
1131 if (GET_MODE (op) != mode && mode != VOIDmode)
1132 return 0;
1134 return (GET_CODE (op) == SCRATCH
1135 || (REG_P (op)
1136 && (lra_in_progress || REGNO (op) < FIRST_PSEUDO_REGISTER)));
1139 /* Return 1 if OP is a valid immediate operand for mode MODE.
1141 The main use of this function is as a predicate in match_operand
1142 expressions in the machine description. */
1145 immediate_operand (rtx op, enum machine_mode mode)
1147 /* Don't accept CONST_INT or anything similar
1148 if the caller wants something floating. */
1149 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1150 && GET_MODE_CLASS (mode) != MODE_INT
1151 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1152 return 0;
1154 if (CONST_INT_P (op)
1155 && mode != VOIDmode
1156 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1157 return 0;
1159 return (CONSTANT_P (op)
1160 && (GET_MODE (op) == mode || mode == VOIDmode
1161 || GET_MODE (op) == VOIDmode)
1162 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1163 && targetm.legitimate_constant_p (mode == VOIDmode
1164 ? GET_MODE (op)
1165 : mode, op));
1168 /* Returns 1 if OP is an operand that is a CONST_INT. */
1171 const_int_operand (rtx op, enum machine_mode mode)
1173 if (!CONST_INT_P (op))
1174 return 0;
1176 if (mode != VOIDmode
1177 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1178 return 0;
1180 return 1;
1183 /* Returns 1 if OP is an operand that is a constant integer or constant
1184 floating-point number. */
1187 const_double_operand (rtx op, enum machine_mode mode)
1189 /* Don't accept CONST_INT or anything similar
1190 if the caller wants something floating. */
1191 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1192 && GET_MODE_CLASS (mode) != MODE_INT
1193 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1194 return 0;
1196 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1197 && (mode == VOIDmode || GET_MODE (op) == mode
1198 || GET_MODE (op) == VOIDmode));
1201 /* Return 1 if OP is a general operand that is not an immediate operand. */
1204 nonimmediate_operand (rtx op, enum machine_mode mode)
1206 return (general_operand (op, mode) && ! CONSTANT_P (op));
1209 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1212 nonmemory_operand (rtx op, enum machine_mode mode)
1214 if (CONSTANT_P (op))
1215 return immediate_operand (op, mode);
1216 return register_operand (op, mode);
1219 /* Return 1 if OP is a valid operand that stands for pushing a
1220 value of mode MODE onto the stack.
1222 The main use of this function is as a predicate in match_operand
1223 expressions in the machine description. */
1226 push_operand (rtx op, enum machine_mode mode)
1228 unsigned int rounded_size = GET_MODE_SIZE (mode);
1230 #ifdef PUSH_ROUNDING
1231 rounded_size = PUSH_ROUNDING (rounded_size);
1232 #endif
1234 if (!MEM_P (op))
1235 return 0;
1237 if (mode != VOIDmode && GET_MODE (op) != mode)
1238 return 0;
1240 op = XEXP (op, 0);
1242 if (rounded_size == GET_MODE_SIZE (mode))
1244 if (GET_CODE (op) != STACK_PUSH_CODE)
1245 return 0;
1247 else
1249 if (GET_CODE (op) != PRE_MODIFY
1250 || GET_CODE (XEXP (op, 1)) != PLUS
1251 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1252 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1253 #ifdef STACK_GROWS_DOWNWARD
1254 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1255 #else
1256 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1257 #endif
1259 return 0;
1262 return XEXP (op, 0) == stack_pointer_rtx;
1265 /* Return 1 if OP is a valid operand that stands for popping a
1266 value of mode MODE off the stack.
1268 The main use of this function is as a predicate in match_operand
1269 expressions in the machine description. */
1272 pop_operand (rtx op, enum machine_mode mode)
1274 if (!MEM_P (op))
1275 return 0;
1277 if (mode != VOIDmode && GET_MODE (op) != mode)
1278 return 0;
1280 op = XEXP (op, 0);
1282 if (GET_CODE (op) != STACK_POP_CODE)
1283 return 0;
1285 return XEXP (op, 0) == stack_pointer_rtx;
1288 /* Return 1 if ADDR is a valid memory address
1289 for mode MODE in address space AS. */
1292 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1293 rtx addr, addr_space_t as)
1295 #ifdef GO_IF_LEGITIMATE_ADDRESS
1296 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1297 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1298 return 0;
1300 win:
1301 return 1;
1302 #else
1303 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1304 #endif
1307 /* Return 1 if OP is a valid memory reference with mode MODE,
1308 including a valid address.
1310 The main use of this function is as a predicate in match_operand
1311 expressions in the machine description. */
1314 memory_operand (rtx op, enum machine_mode mode)
1316 rtx inner;
1318 if (! reload_completed)
1319 /* Note that no SUBREG is a memory operand before end of reload pass,
1320 because (SUBREG (MEM...)) forces reloading into a register. */
1321 return MEM_P (op) && general_operand (op, mode);
1323 if (mode != VOIDmode && GET_MODE (op) != mode)
1324 return 0;
1326 inner = op;
1327 if (GET_CODE (inner) == SUBREG)
1328 inner = SUBREG_REG (inner);
1330 return (MEM_P (inner) && general_operand (op, mode));
1333 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1334 that is, a memory reference whose address is a general_operand. */
1337 indirect_operand (rtx op, enum machine_mode mode)
1339 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1340 if (! reload_completed
1341 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1343 int offset = SUBREG_BYTE (op);
1344 rtx inner = SUBREG_REG (op);
1346 if (mode != VOIDmode && GET_MODE (op) != mode)
1347 return 0;
1349 /* The only way that we can have a general_operand as the resulting
1350 address is if OFFSET is zero and the address already is an operand
1351 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1352 operand. */
1354 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1355 || (GET_CODE (XEXP (inner, 0)) == PLUS
1356 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1357 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1358 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1361 return (MEM_P (op)
1362 && memory_operand (op, mode)
1363 && general_operand (XEXP (op, 0), Pmode));
1366 /* Return 1 if this is an ordered comparison operator (not including
1367 ORDERED and UNORDERED). */
1370 ordered_comparison_operator (rtx op, enum machine_mode mode)
1372 if (mode != VOIDmode && GET_MODE (op) != mode)
1373 return false;
1374 switch (GET_CODE (op))
1376 case EQ:
1377 case NE:
1378 case LT:
1379 case LTU:
1380 case LE:
1381 case LEU:
1382 case GT:
1383 case GTU:
1384 case GE:
1385 case GEU:
1386 return true;
1387 default:
1388 return false;
1392 /* Return 1 if this is a comparison operator. This allows the use of
1393 MATCH_OPERATOR to recognize all the branch insns. */
1396 comparison_operator (rtx op, enum machine_mode mode)
1398 return ((mode == VOIDmode || GET_MODE (op) == mode)
1399 && COMPARISON_P (op));
1402 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1405 extract_asm_operands (rtx body)
1407 rtx tmp;
1408 switch (GET_CODE (body))
1410 case ASM_OPERANDS:
1411 return body;
1413 case SET:
1414 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1415 tmp = SET_SRC (body);
1416 if (GET_CODE (tmp) == ASM_OPERANDS)
1417 return tmp;
1418 break;
1420 case PARALLEL:
1421 tmp = XVECEXP (body, 0, 0);
1422 if (GET_CODE (tmp) == ASM_OPERANDS)
1423 return tmp;
1424 if (GET_CODE (tmp) == SET)
1426 tmp = SET_SRC (tmp);
1427 if (GET_CODE (tmp) == ASM_OPERANDS)
1428 return tmp;
1430 break;
1432 default:
1433 break;
1435 return NULL;
1438 /* If BODY is an insn body that uses ASM_OPERANDS,
1439 return the number of operands (both input and output) in the insn.
1440 Otherwise return -1. */
1443 asm_noperands (const_rtx body)
1445 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1446 int n_sets = 0;
1448 if (asm_op == NULL)
1449 return -1;
1451 if (GET_CODE (body) == SET)
1452 n_sets = 1;
1453 else if (GET_CODE (body) == PARALLEL)
1455 int i;
1456 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1458 /* Multiple output operands, or 1 output plus some clobbers:
1459 body is
1460 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1461 /* Count backwards through CLOBBERs to determine number of SETs. */
1462 for (i = XVECLEN (body, 0); i > 0; i--)
1464 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1465 break;
1466 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1467 return -1;
1470 /* N_SETS is now number of output operands. */
1471 n_sets = i;
1473 /* Verify that all the SETs we have
1474 came from a single original asm_operands insn
1475 (so that invalid combinations are blocked). */
1476 for (i = 0; i < n_sets; i++)
1478 rtx elt = XVECEXP (body, 0, i);
1479 if (GET_CODE (elt) != SET)
1480 return -1;
1481 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1482 return -1;
1483 /* If these ASM_OPERANDS rtx's came from different original insns
1484 then they aren't allowed together. */
1485 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1486 != ASM_OPERANDS_INPUT_VEC (asm_op))
1487 return -1;
1490 else
1492 /* 0 outputs, but some clobbers:
1493 body is [(asm_operands ...) (clobber (reg ...))...]. */
1494 /* Make sure all the other parallel things really are clobbers. */
1495 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1496 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1497 return -1;
1501 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1502 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1505 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1506 copy its operands (both input and output) into the vector OPERANDS,
1507 the locations of the operands within the insn into the vector OPERAND_LOCS,
1508 and the constraints for the operands into CONSTRAINTS.
1509 Write the modes of the operands into MODES.
1510 Return the assembler-template.
1512 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1513 we don't store that info. */
1515 const char *
1516 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1517 const char **constraints, enum machine_mode *modes,
1518 location_t *loc)
1520 int nbase = 0, n, i;
1521 rtx asmop;
1523 switch (GET_CODE (body))
1525 case ASM_OPERANDS:
1526 /* Zero output asm: BODY is (asm_operands ...). */
1527 asmop = body;
1528 break;
1530 case SET:
1531 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1532 asmop = SET_SRC (body);
1534 /* The output is in the SET.
1535 Its constraint is in the ASM_OPERANDS itself. */
1536 if (operands)
1537 operands[0] = SET_DEST (body);
1538 if (operand_locs)
1539 operand_locs[0] = &SET_DEST (body);
1540 if (constraints)
1541 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1542 if (modes)
1543 modes[0] = GET_MODE (SET_DEST (body));
1544 nbase = 1;
1545 break;
1547 case PARALLEL:
1549 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1551 asmop = XVECEXP (body, 0, 0);
1552 if (GET_CODE (asmop) == SET)
1554 asmop = SET_SRC (asmop);
1556 /* At least one output, plus some CLOBBERs. The outputs are in
1557 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1558 for (i = 0; i < nparallel; i++)
1560 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1561 break; /* Past last SET */
1562 if (operands)
1563 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1564 if (operand_locs)
1565 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1566 if (constraints)
1567 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1568 if (modes)
1569 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1571 nbase = i;
1573 break;
1576 default:
1577 gcc_unreachable ();
1580 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1581 for (i = 0; i < n; i++)
1583 if (operand_locs)
1584 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1585 if (operands)
1586 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1587 if (constraints)
1588 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1589 if (modes)
1590 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1592 nbase += n;
1594 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1595 for (i = 0; i < n; i++)
1597 if (operand_locs)
1598 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1599 if (operands)
1600 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1601 if (constraints)
1602 constraints[nbase + i] = "";
1603 if (modes)
1604 modes[nbase + i] = Pmode;
1607 if (loc)
1608 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1610 return ASM_OPERANDS_TEMPLATE (asmop);
1613 /* Parse inline assembly string STRING and determine which operands are
1614 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1615 to true if operand I is referenced.
1617 This is intended to distinguish barrier-like asms such as:
1619 asm ("" : "=m" (...));
1621 from real references such as:
1623 asm ("sw\t$0, %0" : "=m" (...)); */
1625 void
1626 get_referenced_operands (const char *string, bool *used,
1627 unsigned int noperands)
1629 memset (used, 0, sizeof (bool) * noperands);
1630 const char *p = string;
1631 while (*p)
1632 switch (*p)
1634 case '%':
1635 p += 1;
1636 /* A letter followed by a digit indicates an operand number. */
1637 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1638 p += 1;
1639 if (ISDIGIT (*p))
1641 char *endptr;
1642 unsigned long opnum = strtoul (p, &endptr, 10);
1643 if (endptr != p && opnum < noperands)
1644 used[opnum] = true;
1645 p = endptr;
1647 else
1648 p += 1;
1649 break;
1651 default:
1652 p++;
1653 break;
1657 /* Check if an asm_operand matches its constraints.
1658 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1661 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1663 int result = 0;
1664 #ifdef AUTO_INC_DEC
1665 bool incdec_ok = false;
1666 #endif
1668 /* Use constrain_operands after reload. */
1669 gcc_assert (!reload_completed);
1671 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1672 many alternatives as required to match the other operands. */
1673 if (*constraint == '\0')
1674 result = 1;
1676 while (*constraint)
1678 char c = *constraint;
1679 int len;
1680 switch (c)
1682 case ',':
1683 constraint++;
1684 continue;
1685 case '=':
1686 case '+':
1687 case '*':
1688 case '%':
1689 case '!':
1690 case '#':
1691 case '&':
1692 case '?':
1693 break;
1695 case '0': case '1': case '2': case '3': case '4':
1696 case '5': case '6': case '7': case '8': case '9':
1697 /* If caller provided constraints pointer, look up
1698 the matching constraint. Otherwise, our caller should have
1699 given us the proper matching constraint, but we can't
1700 actually fail the check if they didn't. Indicate that
1701 results are inconclusive. */
1702 if (constraints)
1704 char *end;
1705 unsigned long match;
1707 match = strtoul (constraint, &end, 10);
1708 if (!result)
1709 result = asm_operand_ok (op, constraints[match], NULL);
1710 constraint = (const char *) end;
1712 else
1715 constraint++;
1716 while (ISDIGIT (*constraint));
1717 if (! result)
1718 result = -1;
1720 continue;
1722 case 'p':
1723 if (address_operand (op, VOIDmode))
1724 result = 1;
1725 break;
1727 case TARGET_MEM_CONSTRAINT:
1728 case 'V': /* non-offsettable */
1729 if (memory_operand (op, VOIDmode))
1730 result = 1;
1731 break;
1733 case 'o': /* offsettable */
1734 if (offsettable_nonstrict_memref_p (op))
1735 result = 1;
1736 break;
1738 case '<':
1739 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1740 excepting those that expand_call created. Further, on some
1741 machines which do not have generalized auto inc/dec, an inc/dec
1742 is not a memory_operand.
1744 Match any memory and hope things are resolved after reload. */
1746 if (MEM_P (op)
1747 && (1
1748 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1749 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1750 result = 1;
1751 #ifdef AUTO_INC_DEC
1752 incdec_ok = true;
1753 #endif
1754 break;
1756 case '>':
1757 if (MEM_P (op)
1758 && (1
1759 || GET_CODE (XEXP (op, 0)) == PRE_INC
1760 || GET_CODE (XEXP (op, 0)) == POST_INC))
1761 result = 1;
1762 #ifdef AUTO_INC_DEC
1763 incdec_ok = true;
1764 #endif
1765 break;
1767 case 'E':
1768 case 'F':
1769 if (CONST_DOUBLE_AS_FLOAT_P (op)
1770 || (GET_CODE (op) == CONST_VECTOR
1771 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1772 result = 1;
1773 break;
1775 case 'G':
1776 if (CONST_DOUBLE_AS_FLOAT_P (op)
1777 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1778 result = 1;
1779 break;
1780 case 'H':
1781 if (CONST_DOUBLE_AS_FLOAT_P (op)
1782 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1783 result = 1;
1784 break;
1786 case 's':
1787 if (CONST_SCALAR_INT_P (op))
1788 break;
1789 /* Fall through. */
1791 case 'i':
1792 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1793 result = 1;
1794 break;
1796 case 'n':
1797 if (CONST_SCALAR_INT_P (op))
1798 result = 1;
1799 break;
1801 case 'I':
1802 if (CONST_INT_P (op)
1803 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1804 result = 1;
1805 break;
1806 case 'J':
1807 if (CONST_INT_P (op)
1808 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1809 result = 1;
1810 break;
1811 case 'K':
1812 if (CONST_INT_P (op)
1813 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1814 result = 1;
1815 break;
1816 case 'L':
1817 if (CONST_INT_P (op)
1818 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1819 result = 1;
1820 break;
1821 case 'M':
1822 if (CONST_INT_P (op)
1823 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1824 result = 1;
1825 break;
1826 case 'N':
1827 if (CONST_INT_P (op)
1828 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1829 result = 1;
1830 break;
1831 case 'O':
1832 if (CONST_INT_P (op)
1833 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1834 result = 1;
1835 break;
1836 case 'P':
1837 if (CONST_INT_P (op)
1838 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1839 result = 1;
1840 break;
1842 case 'X':
1843 result = 1;
1844 break;
1846 case 'g':
1847 if (general_operand (op, VOIDmode))
1848 result = 1;
1849 break;
1851 default:
1852 /* For all other letters, we first check for a register class,
1853 otherwise it is an EXTRA_CONSTRAINT. */
1854 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1856 case 'r':
1857 if (GET_MODE (op) == BLKmode)
1858 break;
1859 if (register_operand (op, VOIDmode))
1860 result = 1;
1862 #ifdef EXTRA_CONSTRAINT_STR
1863 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1864 /* Every memory operand can be reloaded to fit. */
1865 result = result || memory_operand (op, VOIDmode);
1866 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1867 /* Every address operand can be reloaded to fit. */
1868 result = result || address_operand (op, VOIDmode);
1869 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1870 result = 1;
1871 #endif
1872 break;
1874 len = CONSTRAINT_LEN (c, constraint);
1876 constraint++;
1877 while (--len && *constraint);
1878 if (len)
1879 return 0;
1882 #ifdef AUTO_INC_DEC
1883 /* For operands without < or > constraints reject side-effects. */
1884 if (!incdec_ok && result && MEM_P (op))
1885 switch (GET_CODE (XEXP (op, 0)))
1887 case PRE_INC:
1888 case POST_INC:
1889 case PRE_DEC:
1890 case POST_DEC:
1891 case PRE_MODIFY:
1892 case POST_MODIFY:
1893 return 0;
1894 default:
1895 break;
1897 #endif
1899 return result;
1902 /* Given an rtx *P, if it is a sum containing an integer constant term,
1903 return the location (type rtx *) of the pointer to that constant term.
1904 Otherwise, return a null pointer. */
1906 rtx *
1907 find_constant_term_loc (rtx *p)
1909 rtx *tem;
1910 enum rtx_code code = GET_CODE (*p);
1912 /* If *P IS such a constant term, P is its location. */
1914 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1915 || code == CONST)
1916 return p;
1918 /* Otherwise, if not a sum, it has no constant term. */
1920 if (GET_CODE (*p) != PLUS)
1921 return 0;
1923 /* If one of the summands is constant, return its location. */
1925 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1926 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1927 return p;
1929 /* Otherwise, check each summand for containing a constant term. */
1931 if (XEXP (*p, 0) != 0)
1933 tem = find_constant_term_loc (&XEXP (*p, 0));
1934 if (tem != 0)
1935 return tem;
1938 if (XEXP (*p, 1) != 0)
1940 tem = find_constant_term_loc (&XEXP (*p, 1));
1941 if (tem != 0)
1942 return tem;
1945 return 0;
1948 /* Return 1 if OP is a memory reference
1949 whose address contains no side effects
1950 and remains valid after the addition
1951 of a positive integer less than the
1952 size of the object being referenced.
1954 We assume that the original address is valid and do not check it.
1956 This uses strict_memory_address_p as a subroutine, so
1957 don't use it before reload. */
1960 offsettable_memref_p (rtx op)
1962 return ((MEM_P (op))
1963 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1964 MEM_ADDR_SPACE (op)));
1967 /* Similar, but don't require a strictly valid mem ref:
1968 consider pseudo-regs valid as index or base regs. */
1971 offsettable_nonstrict_memref_p (rtx op)
1973 return ((MEM_P (op))
1974 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1975 MEM_ADDR_SPACE (op)));
1978 /* Return 1 if Y is a memory address which contains no side effects
1979 and would remain valid for address space AS after the addition of
1980 a positive integer less than the size of that mode.
1982 We assume that the original address is valid and do not check it.
1983 We do check that it is valid for narrower modes.
1985 If STRICTP is nonzero, we require a strictly valid address,
1986 for the sake of use in reload.c. */
1989 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1990 addr_space_t as)
1992 enum rtx_code ycode = GET_CODE (y);
1993 rtx z;
1994 rtx y1 = y;
1995 rtx *y2;
1996 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1997 (strictp ? strict_memory_address_addr_space_p
1998 : memory_address_addr_space_p);
1999 unsigned int mode_sz = GET_MODE_SIZE (mode);
2001 if (CONSTANT_ADDRESS_P (y))
2002 return 1;
2004 /* Adjusting an offsettable address involves changing to a narrower mode.
2005 Make sure that's OK. */
2007 if (mode_dependent_address_p (y, as))
2008 return 0;
2010 enum machine_mode address_mode = GET_MODE (y);
2011 if (address_mode == VOIDmode)
2012 address_mode = targetm.addr_space.address_mode (as);
2013 #ifdef POINTERS_EXTEND_UNSIGNED
2014 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
2015 #endif
2017 /* ??? How much offset does an offsettable BLKmode reference need?
2018 Clearly that depends on the situation in which it's being used.
2019 However, the current situation in which we test 0xffffffff is
2020 less than ideal. Caveat user. */
2021 if (mode_sz == 0)
2022 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
2024 /* If the expression contains a constant term,
2025 see if it remains valid when max possible offset is added. */
2027 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
2029 int good;
2031 y1 = *y2;
2032 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
2033 /* Use QImode because an odd displacement may be automatically invalid
2034 for any wider mode. But it should be valid for a single byte. */
2035 good = (*addressp) (QImode, y, as);
2037 /* In any case, restore old contents of memory. */
2038 *y2 = y1;
2039 return good;
2042 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
2043 return 0;
2045 /* The offset added here is chosen as the maximum offset that
2046 any instruction could need to add when operating on something
2047 of the specified mode. We assume that if Y and Y+c are
2048 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2049 go inside a LO_SUM here, so we do so as well. */
2050 if (GET_CODE (y) == LO_SUM
2051 && mode != BLKmode
2052 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2053 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2054 plus_constant (address_mode, XEXP (y, 1),
2055 mode_sz - 1));
2056 #ifdef POINTERS_EXTEND_UNSIGNED
2057 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2058 else if (POINTERS_EXTEND_UNSIGNED > 0
2059 && GET_CODE (y) == ZERO_EXTEND
2060 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2061 z = gen_rtx_ZERO_EXTEND (address_mode,
2062 plus_constant (pointer_mode, XEXP (y, 0),
2063 mode_sz - 1));
2064 #endif
2065 else
2066 z = plus_constant (address_mode, y, mode_sz - 1);
2068 /* Use QImode because an odd displacement may be automatically invalid
2069 for any wider mode. But it should be valid for a single byte. */
2070 return (*addressp) (QImode, z, as);
2073 /* Return 1 if ADDR is an address-expression whose effect depends
2074 on the mode of the memory reference it is used in.
2076 ADDRSPACE is the address space associated with the address.
2078 Autoincrement addressing is a typical example of mode-dependence
2079 because the amount of the increment depends on the mode. */
2081 bool
2082 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2084 /* Auto-increment addressing with anything other than post_modify
2085 or pre_modify always introduces a mode dependency. Catch such
2086 cases now instead of deferring to the target. */
2087 if (GET_CODE (addr) == PRE_INC
2088 || GET_CODE (addr) == POST_INC
2089 || GET_CODE (addr) == PRE_DEC
2090 || GET_CODE (addr) == POST_DEC)
2091 return true;
2093 return targetm.mode_dependent_address_p (addr, addrspace);
2096 /* Like extract_insn, but save insn extracted and don't extract again, when
2097 called again for the same insn expecting that recog_data still contain the
2098 valid information. This is used primary by gen_attr infrastructure that
2099 often does extract insn again and again. */
2100 void
2101 extract_insn_cached (rtx insn)
2103 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2104 return;
2105 extract_insn (insn);
2106 recog_data.insn = insn;
2109 /* Do cached extract_insn, constrain_operands and complain about failures.
2110 Used by insn_attrtab. */
2111 void
2112 extract_constrain_insn_cached (rtx insn)
2114 extract_insn_cached (insn);
2115 if (which_alternative == -1
2116 && !constrain_operands (reload_completed))
2117 fatal_insn_not_found (insn);
2120 /* Do cached constrain_operands and complain about failures. */
2122 constrain_operands_cached (int strict)
2124 if (which_alternative == -1)
2125 return constrain_operands (strict);
2126 else
2127 return 1;
2130 /* Analyze INSN and fill in recog_data. */
2132 void
2133 extract_insn (rtx insn)
2135 int i;
2136 int icode;
2137 int noperands;
2138 rtx body = PATTERN (insn);
2140 recog_data.n_operands = 0;
2141 recog_data.n_alternatives = 0;
2142 recog_data.n_dups = 0;
2143 recog_data.is_asm = false;
2145 switch (GET_CODE (body))
2147 case USE:
2148 case CLOBBER:
2149 case ASM_INPUT:
2150 case ADDR_VEC:
2151 case ADDR_DIFF_VEC:
2152 case VAR_LOCATION:
2153 return;
2155 case SET:
2156 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2157 goto asm_insn;
2158 else
2159 goto normal_insn;
2160 case PARALLEL:
2161 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2162 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2163 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2164 goto asm_insn;
2165 else
2166 goto normal_insn;
2167 case ASM_OPERANDS:
2168 asm_insn:
2169 recog_data.n_operands = noperands = asm_noperands (body);
2170 if (noperands >= 0)
2172 /* This insn is an `asm' with operands. */
2174 /* expand_asm_operands makes sure there aren't too many operands. */
2175 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2177 /* Now get the operand values and constraints out of the insn. */
2178 decode_asm_operands (body, recog_data.operand,
2179 recog_data.operand_loc,
2180 recog_data.constraints,
2181 recog_data.operand_mode, NULL);
2182 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2183 if (noperands > 0)
2185 const char *p = recog_data.constraints[0];
2186 recog_data.n_alternatives = 1;
2187 while (*p)
2188 recog_data.n_alternatives += (*p++ == ',');
2190 recog_data.is_asm = true;
2191 break;
2193 fatal_insn_not_found (insn);
2195 default:
2196 normal_insn:
2197 /* Ordinary insn: recognize it, get the operands via insn_extract
2198 and get the constraints. */
2200 icode = recog_memoized (insn);
2201 if (icode < 0)
2202 fatal_insn_not_found (insn);
2204 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2205 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2206 recog_data.n_dups = insn_data[icode].n_dups;
2208 insn_extract (insn);
2210 for (i = 0; i < noperands; i++)
2212 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2213 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2214 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2215 /* VOIDmode match_operands gets mode from their real operand. */
2216 if (recog_data.operand_mode[i] == VOIDmode)
2217 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2220 for (i = 0; i < noperands; i++)
2221 recog_data.operand_type[i]
2222 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2223 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2224 : OP_IN);
2226 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2228 if (INSN_CODE (insn) < 0)
2229 for (i = 0; i < recog_data.n_alternatives; i++)
2230 recog_data.alternative_enabled_p[i] = true;
2231 else
2233 recog_data.insn = insn;
2234 for (i = 0; i < recog_data.n_alternatives; i++)
2236 which_alternative = i;
2237 recog_data.alternative_enabled_p[i]
2238 = HAVE_ATTR_enabled ? get_attr_enabled (insn) : 1;
2242 recog_data.insn = NULL;
2243 which_alternative = -1;
2246 /* After calling extract_insn, you can use this function to extract some
2247 information from the constraint strings into a more usable form.
2248 The collected data is stored in recog_op_alt. */
2249 void
2250 preprocess_constraints (void)
2252 int i;
2254 for (i = 0; i < recog_data.n_operands; i++)
2255 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2256 * sizeof (struct operand_alternative)));
2258 for (i = 0; i < recog_data.n_operands; i++)
2260 int j;
2261 struct operand_alternative *op_alt;
2262 const char *p = recog_data.constraints[i];
2264 op_alt = recog_op_alt[i];
2266 for (j = 0; j < recog_data.n_alternatives; j++)
2268 op_alt[j].cl = NO_REGS;
2269 op_alt[j].constraint = p;
2270 op_alt[j].matches = -1;
2271 op_alt[j].matched = -1;
2273 if (!recog_data.alternative_enabled_p[j])
2275 p = skip_alternative (p);
2276 continue;
2279 if (*p == '\0' || *p == ',')
2281 op_alt[j].anything_ok = 1;
2282 continue;
2285 for (;;)
2287 char c = *p;
2288 if (c == '#')
2290 c = *++p;
2291 while (c != ',' && c != '\0');
2292 if (c == ',' || c == '\0')
2294 p++;
2295 break;
2298 switch (c)
2300 case '=': case '+': case '*': case '%':
2301 case 'E': case 'F': case 'G': case 'H':
2302 case 's': case 'i': case 'n':
2303 case 'I': case 'J': case 'K': case 'L':
2304 case 'M': case 'N': case 'O': case 'P':
2305 /* These don't say anything we care about. */
2306 break;
2308 case '?':
2309 op_alt[j].reject += 6;
2310 break;
2311 case '!':
2312 op_alt[j].reject += 600;
2313 break;
2314 case '&':
2315 op_alt[j].earlyclobber = 1;
2316 break;
2318 case '0': case '1': case '2': case '3': case '4':
2319 case '5': case '6': case '7': case '8': case '9':
2321 char *end;
2322 op_alt[j].matches = strtoul (p, &end, 10);
2323 recog_op_alt[op_alt[j].matches][j].matched = i;
2324 p = end;
2326 continue;
2328 case TARGET_MEM_CONSTRAINT:
2329 op_alt[j].memory_ok = 1;
2330 break;
2331 case '<':
2332 op_alt[j].decmem_ok = 1;
2333 break;
2334 case '>':
2335 op_alt[j].incmem_ok = 1;
2336 break;
2337 case 'V':
2338 op_alt[j].nonoffmem_ok = 1;
2339 break;
2340 case 'o':
2341 op_alt[j].offmem_ok = 1;
2342 break;
2343 case 'X':
2344 op_alt[j].anything_ok = 1;
2345 break;
2347 case 'p':
2348 op_alt[j].is_address = 1;
2349 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2350 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2351 ADDRESS, SCRATCH)];
2352 break;
2354 case 'g':
2355 case 'r':
2356 op_alt[j].cl =
2357 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2358 break;
2360 default:
2361 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2363 op_alt[j].memory_ok = 1;
2364 break;
2366 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2368 op_alt[j].is_address = 1;
2369 op_alt[j].cl
2370 = (reg_class_subunion
2371 [(int) op_alt[j].cl]
2372 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2373 ADDRESS, SCRATCH)]);
2374 break;
2377 op_alt[j].cl
2378 = (reg_class_subunion
2379 [(int) op_alt[j].cl]
2380 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2381 break;
2383 p += CONSTRAINT_LEN (c, p);
2389 /* Check the operands of an insn against the insn's operand constraints
2390 and return 1 if they are valid.
2391 The information about the insn's operands, constraints, operand modes
2392 etc. is obtained from the global variables set up by extract_insn.
2394 WHICH_ALTERNATIVE is set to a number which indicates which
2395 alternative of constraints was matched: 0 for the first alternative,
2396 1 for the next, etc.
2398 In addition, when two operands are required to match
2399 and it happens that the output operand is (reg) while the
2400 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2401 make the output operand look like the input.
2402 This is because the output operand is the one the template will print.
2404 This is used in final, just before printing the assembler code and by
2405 the routines that determine an insn's attribute.
2407 If STRICT is a positive nonzero value, it means that we have been
2408 called after reload has been completed. In that case, we must
2409 do all checks strictly. If it is zero, it means that we have been called
2410 before reload has completed. In that case, we first try to see if we can
2411 find an alternative that matches strictly. If not, we try again, this
2412 time assuming that reload will fix up the insn. This provides a "best
2413 guess" for the alternative and is used to compute attributes of insns prior
2414 to reload. A negative value of STRICT is used for this internal call. */
2416 struct funny_match
2418 int this_op, other;
2422 constrain_operands (int strict)
2424 const char *constraints[MAX_RECOG_OPERANDS];
2425 int matching_operands[MAX_RECOG_OPERANDS];
2426 int earlyclobber[MAX_RECOG_OPERANDS];
2427 int c;
2429 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2430 int funny_match_index;
2432 which_alternative = 0;
2433 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2434 return 1;
2436 for (c = 0; c < recog_data.n_operands; c++)
2438 constraints[c] = recog_data.constraints[c];
2439 matching_operands[c] = -1;
2444 int seen_earlyclobber_at = -1;
2445 int opno;
2446 int lose = 0;
2447 funny_match_index = 0;
2449 if (!recog_data.alternative_enabled_p[which_alternative])
2451 int i;
2453 for (i = 0; i < recog_data.n_operands; i++)
2454 constraints[i] = skip_alternative (constraints[i]);
2456 which_alternative++;
2457 continue;
2460 for (opno = 0; opno < recog_data.n_operands; opno++)
2462 rtx op = recog_data.operand[opno];
2463 enum machine_mode mode = GET_MODE (op);
2464 const char *p = constraints[opno];
2465 int offset = 0;
2466 int win = 0;
2467 int val;
2468 int len;
2470 earlyclobber[opno] = 0;
2472 /* A unary operator may be accepted by the predicate, but it
2473 is irrelevant for matching constraints. */
2474 if (UNARY_P (op))
2475 op = XEXP (op, 0);
2477 if (GET_CODE (op) == SUBREG)
2479 if (REG_P (SUBREG_REG (op))
2480 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2481 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2482 GET_MODE (SUBREG_REG (op)),
2483 SUBREG_BYTE (op),
2484 GET_MODE (op));
2485 op = SUBREG_REG (op);
2488 /* An empty constraint or empty alternative
2489 allows anything which matched the pattern. */
2490 if (*p == 0 || *p == ',')
2491 win = 1;
2494 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2496 case '\0':
2497 len = 0;
2498 break;
2499 case ',':
2500 c = '\0';
2501 break;
2503 case '?': case '!': case '*': case '%':
2504 case '=': case '+':
2505 break;
2507 case '#':
2508 /* Ignore rest of this alternative as far as
2509 constraint checking is concerned. */
2511 p++;
2512 while (*p && *p != ',');
2513 len = 0;
2514 break;
2516 case '&':
2517 earlyclobber[opno] = 1;
2518 if (seen_earlyclobber_at < 0)
2519 seen_earlyclobber_at = opno;
2520 break;
2522 case '0': case '1': case '2': case '3': case '4':
2523 case '5': case '6': case '7': case '8': case '9':
2525 /* This operand must be the same as a previous one.
2526 This kind of constraint is used for instructions such
2527 as add when they take only two operands.
2529 Note that the lower-numbered operand is passed first.
2531 If we are not testing strictly, assume that this
2532 constraint will be satisfied. */
2534 char *end;
2535 int match;
2537 match = strtoul (p, &end, 10);
2538 p = end;
2540 if (strict < 0)
2541 val = 1;
2542 else
2544 rtx op1 = recog_data.operand[match];
2545 rtx op2 = recog_data.operand[opno];
2547 /* A unary operator may be accepted by the predicate,
2548 but it is irrelevant for matching constraints. */
2549 if (UNARY_P (op1))
2550 op1 = XEXP (op1, 0);
2551 if (UNARY_P (op2))
2552 op2 = XEXP (op2, 0);
2554 val = operands_match_p (op1, op2);
2557 matching_operands[opno] = match;
2558 matching_operands[match] = opno;
2560 if (val != 0)
2561 win = 1;
2563 /* If output is *x and input is *--x, arrange later
2564 to change the output to *--x as well, since the
2565 output op is the one that will be printed. */
2566 if (val == 2 && strict > 0)
2568 funny_match[funny_match_index].this_op = opno;
2569 funny_match[funny_match_index++].other = match;
2572 len = 0;
2573 break;
2575 case 'p':
2576 /* p is used for address_operands. When we are called by
2577 gen_reload, no one will have checked that the address is
2578 strictly valid, i.e., that all pseudos requiring hard regs
2579 have gotten them. */
2580 if (strict <= 0
2581 || (strict_memory_address_p (recog_data.operand_mode[opno],
2582 op)))
2583 win = 1;
2584 break;
2586 /* No need to check general_operand again;
2587 it was done in insn-recog.c. Well, except that reload
2588 doesn't check the validity of its replacements, but
2589 that should only matter when there's a bug. */
2590 case 'g':
2591 /* Anything goes unless it is a REG and really has a hard reg
2592 but the hard reg is not in the class GENERAL_REGS. */
2593 if (REG_P (op))
2595 if (strict < 0
2596 || GENERAL_REGS == ALL_REGS
2597 || (reload_in_progress
2598 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2599 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2600 win = 1;
2602 else if (strict < 0 || general_operand (op, mode))
2603 win = 1;
2604 break;
2606 case 'X':
2607 /* This is used for a MATCH_SCRATCH in the cases when
2608 we don't actually need anything. So anything goes
2609 any time. */
2610 win = 1;
2611 break;
2613 case TARGET_MEM_CONSTRAINT:
2614 /* Memory operands must be valid, to the extent
2615 required by STRICT. */
2616 if (MEM_P (op))
2618 if (strict > 0
2619 && !strict_memory_address_addr_space_p
2620 (GET_MODE (op), XEXP (op, 0),
2621 MEM_ADDR_SPACE (op)))
2622 break;
2623 if (strict == 0
2624 && !memory_address_addr_space_p
2625 (GET_MODE (op), XEXP (op, 0),
2626 MEM_ADDR_SPACE (op)))
2627 break;
2628 win = 1;
2630 /* Before reload, accept what reload can turn into mem. */
2631 else if (strict < 0 && CONSTANT_P (op))
2632 win = 1;
2633 /* During reload, accept a pseudo */
2634 else if (reload_in_progress && REG_P (op)
2635 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2636 win = 1;
2637 break;
2639 case '<':
2640 if (MEM_P (op)
2641 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2642 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2643 win = 1;
2644 break;
2646 case '>':
2647 if (MEM_P (op)
2648 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2649 || GET_CODE (XEXP (op, 0)) == POST_INC))
2650 win = 1;
2651 break;
2653 case 'E':
2654 case 'F':
2655 if (CONST_DOUBLE_AS_FLOAT_P (op)
2656 || (GET_CODE (op) == CONST_VECTOR
2657 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2658 win = 1;
2659 break;
2661 case 'G':
2662 case 'H':
2663 if (CONST_DOUBLE_AS_FLOAT_P (op)
2664 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2665 win = 1;
2666 break;
2668 case 's':
2669 if (CONST_SCALAR_INT_P (op))
2670 break;
2671 case 'i':
2672 if (CONSTANT_P (op))
2673 win = 1;
2674 break;
2676 case 'n':
2677 if (CONST_SCALAR_INT_P (op))
2678 win = 1;
2679 break;
2681 case 'I':
2682 case 'J':
2683 case 'K':
2684 case 'L':
2685 case 'M':
2686 case 'N':
2687 case 'O':
2688 case 'P':
2689 if (CONST_INT_P (op)
2690 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2691 win = 1;
2692 break;
2694 case 'V':
2695 if (MEM_P (op)
2696 && ((strict > 0 && ! offsettable_memref_p (op))
2697 || (strict < 0
2698 && !(CONSTANT_P (op) || MEM_P (op)))
2699 || (reload_in_progress
2700 && !(REG_P (op)
2701 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2702 win = 1;
2703 break;
2705 case 'o':
2706 if ((strict > 0 && offsettable_memref_p (op))
2707 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2708 /* Before reload, accept what reload can handle. */
2709 || (strict < 0
2710 && (CONSTANT_P (op) || MEM_P (op)))
2711 /* During reload, accept a pseudo */
2712 || (reload_in_progress && REG_P (op)
2713 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2714 win = 1;
2715 break;
2717 default:
2719 enum reg_class cl;
2721 cl = (c == 'r'
2722 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2723 if (cl != NO_REGS)
2725 if (strict < 0
2726 || (strict == 0
2727 && REG_P (op)
2728 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2729 || (strict == 0 && GET_CODE (op) == SCRATCH)
2730 || (REG_P (op)
2731 && reg_fits_class_p (op, cl, offset, mode)))
2732 win = 1;
2734 #ifdef EXTRA_CONSTRAINT_STR
2735 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2736 win = 1;
2738 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2739 /* Every memory operand can be reloaded to fit. */
2740 && ((strict < 0 && MEM_P (op))
2741 /* Before reload, accept what reload can turn
2742 into mem. */
2743 || (strict < 0 && CONSTANT_P (op))
2744 /* During reload, accept a pseudo */
2745 || (reload_in_progress && REG_P (op)
2746 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2747 win = 1;
2748 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2749 /* Every address operand can be reloaded to fit. */
2750 && strict < 0)
2751 win = 1;
2752 /* Cater to architectures like IA-64 that define extra memory
2753 constraints without using define_memory_constraint. */
2754 else if (reload_in_progress
2755 && REG_P (op)
2756 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2757 && reg_renumber[REGNO (op)] < 0
2758 && reg_equiv_mem (REGNO (op)) != 0
2759 && EXTRA_CONSTRAINT_STR
2760 (reg_equiv_mem (REGNO (op)), c, p))
2761 win = 1;
2762 #endif
2763 break;
2766 while (p += len, c);
2768 constraints[opno] = p;
2769 /* If this operand did not win somehow,
2770 this alternative loses. */
2771 if (! win)
2772 lose = 1;
2774 /* This alternative won; the operands are ok.
2775 Change whichever operands this alternative says to change. */
2776 if (! lose)
2778 int opno, eopno;
2780 /* See if any earlyclobber operand conflicts with some other
2781 operand. */
2783 if (strict > 0 && seen_earlyclobber_at >= 0)
2784 for (eopno = seen_earlyclobber_at;
2785 eopno < recog_data.n_operands;
2786 eopno++)
2787 /* Ignore earlyclobber operands now in memory,
2788 because we would often report failure when we have
2789 two memory operands, one of which was formerly a REG. */
2790 if (earlyclobber[eopno]
2791 && REG_P (recog_data.operand[eopno]))
2792 for (opno = 0; opno < recog_data.n_operands; opno++)
2793 if ((MEM_P (recog_data.operand[opno])
2794 || recog_data.operand_type[opno] != OP_OUT)
2795 && opno != eopno
2796 /* Ignore things like match_operator operands. */
2797 && *recog_data.constraints[opno] != 0
2798 && ! (matching_operands[opno] == eopno
2799 && operands_match_p (recog_data.operand[opno],
2800 recog_data.operand[eopno]))
2801 && ! safe_from_earlyclobber (recog_data.operand[opno],
2802 recog_data.operand[eopno]))
2803 lose = 1;
2805 if (! lose)
2807 while (--funny_match_index >= 0)
2809 recog_data.operand[funny_match[funny_match_index].other]
2810 = recog_data.operand[funny_match[funny_match_index].this_op];
2813 #ifdef AUTO_INC_DEC
2814 /* For operands without < or > constraints reject side-effects. */
2815 if (recog_data.is_asm)
2817 for (opno = 0; opno < recog_data.n_operands; opno++)
2818 if (MEM_P (recog_data.operand[opno]))
2819 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2821 case PRE_INC:
2822 case POST_INC:
2823 case PRE_DEC:
2824 case POST_DEC:
2825 case PRE_MODIFY:
2826 case POST_MODIFY:
2827 if (strchr (recog_data.constraints[opno], '<') == NULL
2828 && strchr (recog_data.constraints[opno], '>')
2829 == NULL)
2830 return 0;
2831 break;
2832 default:
2833 break;
2836 #endif
2837 return 1;
2841 which_alternative++;
2843 while (which_alternative < recog_data.n_alternatives);
2845 which_alternative = -1;
2846 /* If we are about to reject this, but we are not to test strictly,
2847 try a very loose test. Only return failure if it fails also. */
2848 if (strict == 0)
2849 return constrain_operands (-1);
2850 else
2851 return 0;
2854 /* Return true iff OPERAND (assumed to be a REG rtx)
2855 is a hard reg in class CLASS when its regno is offset by OFFSET
2856 and changed to mode MODE.
2857 If REG occupies multiple hard regs, all of them must be in CLASS. */
2859 bool
2860 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2861 enum machine_mode mode)
2863 unsigned int regno = REGNO (operand);
2865 if (cl == NO_REGS)
2866 return false;
2868 /* Regno must not be a pseudo register. Offset may be negative. */
2869 return (HARD_REGISTER_NUM_P (regno)
2870 && HARD_REGISTER_NUM_P (regno + offset)
2871 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2872 regno + offset));
2875 /* Split single instruction. Helper function for split_all_insns and
2876 split_all_insns_noflow. Return last insn in the sequence if successful,
2877 or NULL if unsuccessful. */
2879 static rtx
2880 split_insn (rtx insn)
2882 /* Split insns here to get max fine-grain parallelism. */
2883 rtx first = PREV_INSN (insn);
2884 rtx last = try_split (PATTERN (insn), insn, 1);
2885 rtx insn_set, last_set, note;
2887 if (last == insn)
2888 return NULL_RTX;
2890 /* If the original instruction was a single set that was known to be
2891 equivalent to a constant, see if we can say the same about the last
2892 instruction in the split sequence. The two instructions must set
2893 the same destination. */
2894 insn_set = single_set (insn);
2895 if (insn_set)
2897 last_set = single_set (last);
2898 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2900 note = find_reg_equal_equiv_note (insn);
2901 if (note && CONSTANT_P (XEXP (note, 0)))
2902 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2903 else if (CONSTANT_P (SET_SRC (insn_set)))
2904 set_unique_reg_note (last, REG_EQUAL,
2905 copy_rtx (SET_SRC (insn_set)));
2909 /* try_split returns the NOTE that INSN became. */
2910 SET_INSN_DELETED (insn);
2912 /* ??? Coddle to md files that generate subregs in post-reload
2913 splitters instead of computing the proper hard register. */
2914 if (reload_completed && first != last)
2916 first = NEXT_INSN (first);
2917 for (;;)
2919 if (INSN_P (first))
2920 cleanup_subreg_operands (first);
2921 if (first == last)
2922 break;
2923 first = NEXT_INSN (first);
2927 return last;
2930 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2932 void
2933 split_all_insns (void)
2935 sbitmap blocks;
2936 bool changed;
2937 basic_block bb;
2939 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2940 bitmap_clear (blocks);
2941 changed = false;
2943 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2945 rtx insn, next;
2946 bool finish = false;
2948 rtl_profile_for_bb (bb);
2949 for (insn = BB_HEAD (bb); !finish ; insn = next)
2951 /* Can't use `next_real_insn' because that might go across
2952 CODE_LABELS and short-out basic blocks. */
2953 next = NEXT_INSN (insn);
2954 finish = (insn == BB_END (bb));
2955 if (INSN_P (insn))
2957 rtx set = single_set (insn);
2959 /* Don't split no-op move insns. These should silently
2960 disappear later in final. Splitting such insns would
2961 break the code that handles LIBCALL blocks. */
2962 if (set && set_noop_p (set))
2964 /* Nops get in the way while scheduling, so delete them
2965 now if register allocation has already been done. It
2966 is too risky to try to do this before register
2967 allocation, and there are unlikely to be very many
2968 nops then anyways. */
2969 if (reload_completed)
2970 delete_insn_and_edges (insn);
2972 else
2974 if (split_insn (insn))
2976 bitmap_set_bit (blocks, bb->index);
2977 changed = true;
2984 default_rtl_profile ();
2985 if (changed)
2986 find_many_sub_basic_blocks (blocks);
2988 #ifdef ENABLE_CHECKING
2989 verify_flow_info ();
2990 #endif
2992 sbitmap_free (blocks);
2995 /* Same as split_all_insns, but do not expect CFG to be available.
2996 Used by machine dependent reorg passes. */
2998 unsigned int
2999 split_all_insns_noflow (void)
3001 rtx next, insn;
3003 for (insn = get_insns (); insn; insn = next)
3005 next = NEXT_INSN (insn);
3006 if (INSN_P (insn))
3008 /* Don't split no-op move insns. These should silently
3009 disappear later in final. Splitting such insns would
3010 break the code that handles LIBCALL blocks. */
3011 rtx set = single_set (insn);
3012 if (set && set_noop_p (set))
3014 /* Nops get in the way while scheduling, so delete them
3015 now if register allocation has already been done. It
3016 is too risky to try to do this before register
3017 allocation, and there are unlikely to be very many
3018 nops then anyways.
3020 ??? Should we use delete_insn when the CFG isn't valid? */
3021 if (reload_completed)
3022 delete_insn_and_edges (insn);
3024 else
3025 split_insn (insn);
3028 return 0;
3031 #ifdef HAVE_peephole2
3032 struct peep2_insn_data
3034 rtx insn;
3035 regset live_before;
3038 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3039 static int peep2_current;
3041 static bool peep2_do_rebuild_jump_labels;
3042 static bool peep2_do_cleanup_cfg;
3044 /* The number of instructions available to match a peep2. */
3045 int peep2_current_count;
3047 /* A non-insn marker indicating the last insn of the block.
3048 The live_before regset for this element is correct, indicating
3049 DF_LIVE_OUT for the block. */
3050 #define PEEP2_EOB pc_rtx
3052 /* Wrap N to fit into the peep2_insn_data buffer. */
3054 static int
3055 peep2_buf_position (int n)
3057 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3058 n -= MAX_INSNS_PER_PEEP2 + 1;
3059 return n;
3062 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3063 does not exist. Used by the recognizer to find the next insn to match
3064 in a multi-insn pattern. */
3067 peep2_next_insn (int n)
3069 gcc_assert (n <= peep2_current_count);
3071 n = peep2_buf_position (peep2_current + n);
3073 return peep2_insn_data[n].insn;
3076 /* Return true if REGNO is dead before the Nth non-note insn
3077 after `current'. */
3080 peep2_regno_dead_p (int ofs, int regno)
3082 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3084 ofs = peep2_buf_position (peep2_current + ofs);
3086 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3088 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3091 /* Similarly for a REG. */
3094 peep2_reg_dead_p (int ofs, rtx reg)
3096 int regno, n;
3098 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3100 ofs = peep2_buf_position (peep2_current + ofs);
3102 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3104 regno = REGNO (reg);
3105 n = hard_regno_nregs[regno][GET_MODE (reg)];
3106 while (--n >= 0)
3107 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3108 return 0;
3109 return 1;
3112 /* Regno offset to be used in the register search. */
3113 static int search_ofs;
3115 /* Try to find a hard register of mode MODE, matching the register class in
3116 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3117 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3118 in which case the only condition is that the register must be available
3119 before CURRENT_INSN.
3120 Registers that already have bits set in REG_SET will not be considered.
3122 If an appropriate register is available, it will be returned and the
3123 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3124 returned. */
3127 peep2_find_free_register (int from, int to, const char *class_str,
3128 enum machine_mode mode, HARD_REG_SET *reg_set)
3130 enum reg_class cl;
3131 HARD_REG_SET live;
3132 df_ref *def_rec;
3133 int i;
3135 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3136 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3138 from = peep2_buf_position (peep2_current + from);
3139 to = peep2_buf_position (peep2_current + to);
3141 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3142 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3144 while (from != to)
3146 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3148 /* Don't use registers set or clobbered by the insn. */
3149 for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3150 *def_rec; def_rec++)
3151 SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3153 from = peep2_buf_position (from + 1);
3156 cl = (class_str[0] == 'r' ? GENERAL_REGS
3157 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3159 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3161 int raw_regno, regno, success, j;
3163 /* Distribute the free registers as much as possible. */
3164 raw_regno = search_ofs + i;
3165 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3166 raw_regno -= FIRST_PSEUDO_REGISTER;
3167 #ifdef REG_ALLOC_ORDER
3168 regno = reg_alloc_order[raw_regno];
3169 #else
3170 regno = raw_regno;
3171 #endif
3173 /* Can it support the mode we need? */
3174 if (! HARD_REGNO_MODE_OK (regno, mode))
3175 continue;
3177 success = 1;
3178 for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3180 /* Don't allocate fixed registers. */
3181 if (fixed_regs[regno + j])
3183 success = 0;
3184 break;
3186 /* Don't allocate global registers. */
3187 if (global_regs[regno + j])
3189 success = 0;
3190 break;
3192 /* Make sure the register is of the right class. */
3193 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3195 success = 0;
3196 break;
3198 /* And that we don't create an extra save/restore. */
3199 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3201 success = 0;
3202 break;
3205 if (! targetm.hard_regno_scratch_ok (regno + j))
3207 success = 0;
3208 break;
3211 /* And we don't clobber traceback for noreturn functions. */
3212 if ((regno + j == FRAME_POINTER_REGNUM
3213 || regno + j == HARD_FRAME_POINTER_REGNUM)
3214 && (! reload_completed || frame_pointer_needed))
3216 success = 0;
3217 break;
3220 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3221 || TEST_HARD_REG_BIT (live, regno + j))
3223 success = 0;
3224 break;
3228 if (success)
3230 add_to_hard_reg_set (reg_set, mode, regno);
3232 /* Start the next search with the next register. */
3233 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3234 raw_regno = 0;
3235 search_ofs = raw_regno;
3237 return gen_rtx_REG (mode, regno);
3241 search_ofs = 0;
3242 return NULL_RTX;
3245 /* Forget all currently tracked instructions, only remember current
3246 LIVE regset. */
3248 static void
3249 peep2_reinit_state (regset live)
3251 int i;
3253 /* Indicate that all slots except the last holds invalid data. */
3254 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3255 peep2_insn_data[i].insn = NULL_RTX;
3256 peep2_current_count = 0;
3258 /* Indicate that the last slot contains live_after data. */
3259 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3260 peep2_current = MAX_INSNS_PER_PEEP2;
3262 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3265 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3266 starting at INSN. Perform the replacement, removing the old insns and
3267 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3268 if the replacement is rejected. */
3270 static rtx
3271 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3273 int i;
3274 rtx last, eh_note, as_note, before_try, x;
3275 rtx old_insn, new_insn;
3276 bool was_call = false;
3278 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3279 match more than one insn, or to be split into more than one insn. */
3280 old_insn = peep2_insn_data[peep2_current].insn;
3281 if (RTX_FRAME_RELATED_P (old_insn))
3283 bool any_note = false;
3284 rtx note;
3286 if (match_len != 0)
3287 return NULL;
3289 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3290 may be in the stream for the purpose of register allocation. */
3291 if (active_insn_p (attempt))
3292 new_insn = attempt;
3293 else
3294 new_insn = next_active_insn (attempt);
3295 if (next_active_insn (new_insn))
3296 return NULL;
3298 /* We have a 1-1 replacement. Copy over any frame-related info. */
3299 RTX_FRAME_RELATED_P (new_insn) = 1;
3301 /* Allow the backend to fill in a note during the split. */
3302 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3303 switch (REG_NOTE_KIND (note))
3305 case REG_FRAME_RELATED_EXPR:
3306 case REG_CFA_DEF_CFA:
3307 case REG_CFA_ADJUST_CFA:
3308 case REG_CFA_OFFSET:
3309 case REG_CFA_REGISTER:
3310 case REG_CFA_EXPRESSION:
3311 case REG_CFA_RESTORE:
3312 case REG_CFA_SET_VDRAP:
3313 any_note = true;
3314 break;
3315 default:
3316 break;
3319 /* If the backend didn't supply a note, copy one over. */
3320 if (!any_note)
3321 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3322 switch (REG_NOTE_KIND (note))
3324 case REG_FRAME_RELATED_EXPR:
3325 case REG_CFA_DEF_CFA:
3326 case REG_CFA_ADJUST_CFA:
3327 case REG_CFA_OFFSET:
3328 case REG_CFA_REGISTER:
3329 case REG_CFA_EXPRESSION:
3330 case REG_CFA_RESTORE:
3331 case REG_CFA_SET_VDRAP:
3332 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3333 any_note = true;
3334 break;
3335 default:
3336 break;
3339 /* If there still isn't a note, make sure the unwind info sees the
3340 same expression as before the split. */
3341 if (!any_note)
3343 rtx old_set, new_set;
3345 /* The old insn had better have been simple, or annotated. */
3346 old_set = single_set (old_insn);
3347 gcc_assert (old_set != NULL);
3349 new_set = single_set (new_insn);
3350 if (!new_set || !rtx_equal_p (new_set, old_set))
3351 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3354 /* Copy prologue/epilogue status. This is required in order to keep
3355 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3356 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3359 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3360 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3361 cfg-related call notes. */
3362 for (i = 0; i <= match_len; ++i)
3364 int j;
3365 rtx note;
3367 j = peep2_buf_position (peep2_current + i);
3368 old_insn = peep2_insn_data[j].insn;
3369 if (!CALL_P (old_insn))
3370 continue;
3371 was_call = true;
3373 new_insn = attempt;
3374 while (new_insn != NULL_RTX)
3376 if (CALL_P (new_insn))
3377 break;
3378 new_insn = NEXT_INSN (new_insn);
3381 gcc_assert (new_insn != NULL_RTX);
3383 CALL_INSN_FUNCTION_USAGE (new_insn)
3384 = CALL_INSN_FUNCTION_USAGE (old_insn);
3386 for (note = REG_NOTES (old_insn);
3387 note;
3388 note = XEXP (note, 1))
3389 switch (REG_NOTE_KIND (note))
3391 case REG_NORETURN:
3392 case REG_SETJMP:
3393 case REG_TM:
3394 add_reg_note (new_insn, REG_NOTE_KIND (note),
3395 XEXP (note, 0));
3396 break;
3397 default:
3398 /* Discard all other reg notes. */
3399 break;
3402 /* Croak if there is another call in the sequence. */
3403 while (++i <= match_len)
3405 j = peep2_buf_position (peep2_current + i);
3406 old_insn = peep2_insn_data[j].insn;
3407 gcc_assert (!CALL_P (old_insn));
3409 break;
3412 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3413 move those notes over to the new sequence. */
3414 as_note = NULL;
3415 for (i = match_len; i >= 0; --i)
3417 int j = peep2_buf_position (peep2_current + i);
3418 old_insn = peep2_insn_data[j].insn;
3420 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3421 if (as_note)
3422 break;
3425 i = peep2_buf_position (peep2_current + match_len);
3426 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3428 /* Replace the old sequence with the new. */
3429 last = emit_insn_after_setloc (attempt,
3430 peep2_insn_data[i].insn,
3431 INSN_LOCATION (peep2_insn_data[i].insn));
3432 before_try = PREV_INSN (insn);
3433 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3435 /* Re-insert the EH_REGION notes. */
3436 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3438 edge eh_edge;
3439 edge_iterator ei;
3441 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3442 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3443 break;
3445 if (eh_note)
3446 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3448 if (eh_edge)
3449 for (x = last; x != before_try; x = PREV_INSN (x))
3450 if (x != BB_END (bb)
3451 && (can_throw_internal (x)
3452 || can_nonlocal_goto (x)))
3454 edge nfte, nehe;
3455 int flags;
3457 nfte = split_block (bb, x);
3458 flags = (eh_edge->flags
3459 & (EDGE_EH | EDGE_ABNORMAL));
3460 if (CALL_P (x))
3461 flags |= EDGE_ABNORMAL_CALL;
3462 nehe = make_edge (nfte->src, eh_edge->dest,
3463 flags);
3465 nehe->probability = eh_edge->probability;
3466 nfte->probability
3467 = REG_BR_PROB_BASE - nehe->probability;
3469 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3470 bb = nfte->src;
3471 eh_edge = nehe;
3474 /* Converting possibly trapping insn to non-trapping is
3475 possible. Zap dummy outgoing edges. */
3476 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3479 /* Re-insert the ARGS_SIZE notes. */
3480 if (as_note)
3481 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3483 /* If we generated a jump instruction, it won't have
3484 JUMP_LABEL set. Recompute after we're done. */
3485 for (x = last; x != before_try; x = PREV_INSN (x))
3486 if (JUMP_P (x))
3488 peep2_do_rebuild_jump_labels = true;
3489 break;
3492 return last;
3495 /* After performing a replacement in basic block BB, fix up the life
3496 information in our buffer. LAST is the last of the insns that we
3497 emitted as a replacement. PREV is the insn before the start of
3498 the replacement. MATCH_LEN is the number of instructions that were
3499 matched, and which now need to be replaced in the buffer. */
3501 static void
3502 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3504 int i = peep2_buf_position (peep2_current + match_len + 1);
3505 rtx x;
3506 regset_head live;
3508 INIT_REG_SET (&live);
3509 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3511 gcc_assert (peep2_current_count >= match_len + 1);
3512 peep2_current_count -= match_len + 1;
3514 x = last;
3517 if (INSN_P (x))
3519 df_insn_rescan (x);
3520 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3522 peep2_current_count++;
3523 if (--i < 0)
3524 i = MAX_INSNS_PER_PEEP2;
3525 peep2_insn_data[i].insn = x;
3526 df_simulate_one_insn_backwards (bb, x, &live);
3527 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3530 x = PREV_INSN (x);
3532 while (x != prev);
3533 CLEAR_REG_SET (&live);
3535 peep2_current = i;
3538 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3539 Return true if we added it, false otherwise. The caller will try to match
3540 peepholes against the buffer if we return false; otherwise it will try to
3541 add more instructions to the buffer. */
3543 static bool
3544 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3546 int pos;
3548 /* Once we have filled the maximum number of insns the buffer can hold,
3549 allow the caller to match the insns against peepholes. We wait until
3550 the buffer is full in case the target has similar peepholes of different
3551 length; we always want to match the longest if possible. */
3552 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3553 return false;
3555 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3556 any other pattern, lest it change the semantics of the frame info. */
3557 if (RTX_FRAME_RELATED_P (insn))
3559 /* Let the buffer drain first. */
3560 if (peep2_current_count > 0)
3561 return false;
3562 /* Now the insn will be the only thing in the buffer. */
3565 pos = peep2_buf_position (peep2_current + peep2_current_count);
3566 peep2_insn_data[pos].insn = insn;
3567 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3568 peep2_current_count++;
3570 df_simulate_one_insn_forwards (bb, insn, live);
3571 return true;
3574 /* Perform the peephole2 optimization pass. */
3576 static void
3577 peephole2_optimize (void)
3579 rtx insn;
3580 bitmap live;
3581 int i;
3582 basic_block bb;
3584 peep2_do_cleanup_cfg = false;
3585 peep2_do_rebuild_jump_labels = false;
3587 df_set_flags (DF_LR_RUN_DCE);
3588 df_note_add_problem ();
3589 df_analyze ();
3591 /* Initialize the regsets we're going to use. */
3592 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3593 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3594 search_ofs = 0;
3595 live = BITMAP_ALLOC (&reg_obstack);
3597 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3599 bool past_end = false;
3600 int pos;
3602 rtl_profile_for_bb (bb);
3604 /* Start up propagation. */
3605 bitmap_copy (live, DF_LR_IN (bb));
3606 df_simulate_initialize_forwards (bb, live);
3607 peep2_reinit_state (live);
3609 insn = BB_HEAD (bb);
3610 for (;;)
3612 rtx attempt, head;
3613 int match_len;
3615 if (!past_end && !NONDEBUG_INSN_P (insn))
3617 next_insn:
3618 insn = NEXT_INSN (insn);
3619 if (insn == NEXT_INSN (BB_END (bb)))
3620 past_end = true;
3621 continue;
3623 if (!past_end && peep2_fill_buffer (bb, insn, live))
3624 goto next_insn;
3626 /* If we did not fill an empty buffer, it signals the end of the
3627 block. */
3628 if (peep2_current_count == 0)
3629 break;
3631 /* The buffer filled to the current maximum, so try to match. */
3633 pos = peep2_buf_position (peep2_current + peep2_current_count);
3634 peep2_insn_data[pos].insn = PEEP2_EOB;
3635 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3637 /* Match the peephole. */
3638 head = peep2_insn_data[peep2_current].insn;
3639 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3640 if (attempt != NULL)
3642 rtx last = peep2_attempt (bb, head, match_len, attempt);
3643 if (last)
3645 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3646 continue;
3650 /* No match: advance the buffer by one insn. */
3651 peep2_current = peep2_buf_position (peep2_current + 1);
3652 peep2_current_count--;
3656 default_rtl_profile ();
3657 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3658 BITMAP_FREE (peep2_insn_data[i].live_before);
3659 BITMAP_FREE (live);
3660 if (peep2_do_rebuild_jump_labels)
3661 rebuild_jump_labels (get_insns ());
3663 #endif /* HAVE_peephole2 */
3665 /* Common predicates for use with define_bypass. */
3667 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3668 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3669 must be either a single_set or a PARALLEL with SETs inside. */
3672 store_data_bypass_p (rtx out_insn, rtx in_insn)
3674 rtx out_set, in_set;
3675 rtx out_pat, in_pat;
3676 rtx out_exp, in_exp;
3677 int i, j;
3679 in_set = single_set (in_insn);
3680 if (in_set)
3682 if (!MEM_P (SET_DEST (in_set)))
3683 return false;
3685 out_set = single_set (out_insn);
3686 if (out_set)
3688 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3689 return false;
3691 else
3693 out_pat = PATTERN (out_insn);
3695 if (GET_CODE (out_pat) != PARALLEL)
3696 return false;
3698 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3700 out_exp = XVECEXP (out_pat, 0, i);
3702 if (GET_CODE (out_exp) == CLOBBER)
3703 continue;
3705 gcc_assert (GET_CODE (out_exp) == SET);
3707 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3708 return false;
3712 else
3714 in_pat = PATTERN (in_insn);
3715 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3717 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3719 in_exp = XVECEXP (in_pat, 0, i);
3721 if (GET_CODE (in_exp) == CLOBBER)
3722 continue;
3724 gcc_assert (GET_CODE (in_exp) == SET);
3726 if (!MEM_P (SET_DEST (in_exp)))
3727 return false;
3729 out_set = single_set (out_insn);
3730 if (out_set)
3732 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3733 return false;
3735 else
3737 out_pat = PATTERN (out_insn);
3738 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3740 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3742 out_exp = XVECEXP (out_pat, 0, j);
3744 if (GET_CODE (out_exp) == CLOBBER)
3745 continue;
3747 gcc_assert (GET_CODE (out_exp) == SET);
3749 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3750 return false;
3756 return true;
3759 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3760 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3761 or multiple set; IN_INSN should be single_set for truth, but for convenience
3762 of insn categorization may be any JUMP or CALL insn. */
3765 if_test_bypass_p (rtx out_insn, rtx in_insn)
3767 rtx out_set, in_set;
3769 in_set = single_set (in_insn);
3770 if (! in_set)
3772 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3773 return false;
3776 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3777 return false;
3778 in_set = SET_SRC (in_set);
3780 out_set = single_set (out_insn);
3781 if (out_set)
3783 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3784 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3785 return false;
3787 else
3789 rtx out_pat;
3790 int i;
3792 out_pat = PATTERN (out_insn);
3793 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3795 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3797 rtx exp = XVECEXP (out_pat, 0, i);
3799 if (GET_CODE (exp) == CLOBBER)
3800 continue;
3802 gcc_assert (GET_CODE (exp) == SET);
3804 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3805 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3806 return false;
3810 return true;
3813 static bool
3814 gate_handle_peephole2 (void)
3816 return (optimize > 0 && flag_peephole2);
3819 static unsigned int
3820 rest_of_handle_peephole2 (void)
3822 #ifdef HAVE_peephole2
3823 peephole2_optimize ();
3824 #endif
3825 return 0;
3828 namespace {
3830 const pass_data pass_data_peephole2 =
3832 RTL_PASS, /* type */
3833 "peephole2", /* name */
3834 OPTGROUP_NONE, /* optinfo_flags */
3835 true, /* has_gate */
3836 true, /* has_execute */
3837 TV_PEEPHOLE2, /* tv_id */
3838 0, /* properties_required */
3839 0, /* properties_provided */
3840 0, /* properties_destroyed */
3841 0, /* todo_flags_start */
3842 ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
3845 class pass_peephole2 : public rtl_opt_pass
3847 public:
3848 pass_peephole2 (gcc::context *ctxt)
3849 : rtl_opt_pass (pass_data_peephole2, ctxt)
3852 /* opt_pass methods: */
3853 /* The epiphany backend creates a second instance of this pass, so we need
3854 a clone method. */
3855 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3856 bool gate () { return gate_handle_peephole2 (); }
3857 unsigned int execute () { return rest_of_handle_peephole2 (); }
3859 }; // class pass_peephole2
3861 } // anon namespace
3863 rtl_opt_pass *
3864 make_pass_peephole2 (gcc::context *ctxt)
3866 return new pass_peephole2 (ctxt);
3869 static unsigned int
3870 rest_of_handle_split_all_insns (void)
3872 split_all_insns ();
3873 return 0;
3876 namespace {
3878 const pass_data pass_data_split_all_insns =
3880 RTL_PASS, /* type */
3881 "split1", /* name */
3882 OPTGROUP_NONE, /* optinfo_flags */
3883 false, /* has_gate */
3884 true, /* has_execute */
3885 TV_NONE, /* tv_id */
3886 0, /* properties_required */
3887 0, /* properties_provided */
3888 0, /* properties_destroyed */
3889 0, /* todo_flags_start */
3890 0, /* todo_flags_finish */
3893 class pass_split_all_insns : public rtl_opt_pass
3895 public:
3896 pass_split_all_insns (gcc::context *ctxt)
3897 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3900 /* opt_pass methods: */
3901 /* The epiphany backend creates a second instance of this pass, so
3902 we need a clone method. */
3903 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3904 unsigned int execute () { return rest_of_handle_split_all_insns (); }
3906 }; // class pass_split_all_insns
3908 } // anon namespace
3910 rtl_opt_pass *
3911 make_pass_split_all_insns (gcc::context *ctxt)
3913 return new pass_split_all_insns (ctxt);
3916 static unsigned int
3917 rest_of_handle_split_after_reload (void)
3919 /* If optimizing, then go ahead and split insns now. */
3920 #ifndef STACK_REGS
3921 if (optimize > 0)
3922 #endif
3923 split_all_insns ();
3924 return 0;
3927 namespace {
3929 const pass_data pass_data_split_after_reload =
3931 RTL_PASS, /* type */
3932 "split2", /* name */
3933 OPTGROUP_NONE, /* optinfo_flags */
3934 false, /* has_gate */
3935 true, /* has_execute */
3936 TV_NONE, /* tv_id */
3937 0, /* properties_required */
3938 0, /* properties_provided */
3939 0, /* properties_destroyed */
3940 0, /* todo_flags_start */
3941 0, /* todo_flags_finish */
3944 class pass_split_after_reload : public rtl_opt_pass
3946 public:
3947 pass_split_after_reload (gcc::context *ctxt)
3948 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3951 /* opt_pass methods: */
3952 unsigned int execute () { return rest_of_handle_split_after_reload (); }
3954 }; // class pass_split_after_reload
3956 } // anon namespace
3958 rtl_opt_pass *
3959 make_pass_split_after_reload (gcc::context *ctxt)
3961 return new pass_split_after_reload (ctxt);
3964 static bool
3965 gate_handle_split_before_regstack (void)
3967 #if HAVE_ATTR_length && defined (STACK_REGS)
3968 /* If flow2 creates new instructions which need splitting
3969 and scheduling after reload is not done, they might not be
3970 split until final which doesn't allow splitting
3971 if HAVE_ATTR_length. */
3972 # ifdef INSN_SCHEDULING
3973 return (optimize && !flag_schedule_insns_after_reload);
3974 # else
3975 return (optimize);
3976 # endif
3977 #else
3978 return 0;
3979 #endif
3982 static unsigned int
3983 rest_of_handle_split_before_regstack (void)
3985 split_all_insns ();
3986 return 0;
3989 namespace {
3991 const pass_data pass_data_split_before_regstack =
3993 RTL_PASS, /* type */
3994 "split3", /* name */
3995 OPTGROUP_NONE, /* optinfo_flags */
3996 true, /* has_gate */
3997 true, /* has_execute */
3998 TV_NONE, /* tv_id */
3999 0, /* properties_required */
4000 0, /* properties_provided */
4001 0, /* properties_destroyed */
4002 0, /* todo_flags_start */
4003 0, /* todo_flags_finish */
4006 class pass_split_before_regstack : public rtl_opt_pass
4008 public:
4009 pass_split_before_regstack (gcc::context *ctxt)
4010 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
4013 /* opt_pass methods: */
4014 bool gate () { return gate_handle_split_before_regstack (); }
4015 unsigned int execute () {
4016 return rest_of_handle_split_before_regstack ();
4019 }; // class pass_split_before_regstack
4021 } // anon namespace
4023 rtl_opt_pass *
4024 make_pass_split_before_regstack (gcc::context *ctxt)
4026 return new pass_split_before_regstack (ctxt);
4029 static bool
4030 gate_handle_split_before_sched2 (void)
4032 #ifdef INSN_SCHEDULING
4033 return optimize > 0 && flag_schedule_insns_after_reload;
4034 #else
4035 return 0;
4036 #endif
4039 static unsigned int
4040 rest_of_handle_split_before_sched2 (void)
4042 #ifdef INSN_SCHEDULING
4043 split_all_insns ();
4044 #endif
4045 return 0;
4048 namespace {
4050 const pass_data pass_data_split_before_sched2 =
4052 RTL_PASS, /* type */
4053 "split4", /* name */
4054 OPTGROUP_NONE, /* optinfo_flags */
4055 true, /* has_gate */
4056 true, /* has_execute */
4057 TV_NONE, /* tv_id */
4058 0, /* properties_required */
4059 0, /* properties_provided */
4060 0, /* properties_destroyed */
4061 0, /* todo_flags_start */
4062 TODO_verify_flow, /* todo_flags_finish */
4065 class pass_split_before_sched2 : public rtl_opt_pass
4067 public:
4068 pass_split_before_sched2 (gcc::context *ctxt)
4069 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4072 /* opt_pass methods: */
4073 bool gate () { return gate_handle_split_before_sched2 (); }
4074 unsigned int execute () { return rest_of_handle_split_before_sched2 (); }
4076 }; // class pass_split_before_sched2
4078 } // anon namespace
4080 rtl_opt_pass *
4081 make_pass_split_before_sched2 (gcc::context *ctxt)
4083 return new pass_split_before_sched2 (ctxt);
4086 /* The placement of the splitting that we do for shorten_branches
4087 depends on whether regstack is used by the target or not. */
4088 static bool
4089 gate_do_final_split (void)
4091 #if HAVE_ATTR_length && !defined (STACK_REGS)
4092 return 1;
4093 #else
4094 return 0;
4095 #endif
4098 namespace {
4100 const pass_data pass_data_split_for_shorten_branches =
4102 RTL_PASS, /* type */
4103 "split5", /* name */
4104 OPTGROUP_NONE, /* optinfo_flags */
4105 true, /* has_gate */
4106 true, /* has_execute */
4107 TV_NONE, /* tv_id */
4108 0, /* properties_required */
4109 0, /* properties_provided */
4110 0, /* properties_destroyed */
4111 0, /* todo_flags_start */
4112 TODO_verify_rtl_sharing, /* todo_flags_finish */
4115 class pass_split_for_shorten_branches : public rtl_opt_pass
4117 public:
4118 pass_split_for_shorten_branches (gcc::context *ctxt)
4119 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4122 /* opt_pass methods: */
4123 bool gate () { return gate_do_final_split (); }
4124 unsigned int execute () { return split_all_insns_noflow (); }
4126 }; // class pass_split_for_shorten_branches
4128 } // anon namespace
4130 rtl_opt_pass *
4131 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4133 return new pass_split_for_shorten_branches (ctxt);