2014-04-15 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / lra-spills.c
blob50f63fc3a1be1c44556daf328bd07bfe6730c188
1 /* Change pseudos by memory.
2 Copyright (C) 2010-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for a pass to change spilled pseudos into
23 memory.
25 The pass creates necessary stack slots and assigns spilled pseudos
26 to the stack slots in following way:
28 for all spilled pseudos P most frequently used first do
29 for all stack slots S do
30 if P doesn't conflict with pseudos assigned to S then
31 assign S to P and goto to the next pseudo process
32 end
33 end
34 create new stack slot S and assign P to S
35 end
37 The actual algorithm is bit more complicated because of different
38 pseudo sizes.
40 After that the code changes spilled pseudos (except ones created
41 from scratches) by corresponding stack slot memory in RTL.
43 If at least one stack slot was created, we need to run more passes
44 because we have new addresses which should be checked and because
45 the old address displacements might change and address constraints
46 (or insn memory constraints) might not be satisfied any more.
48 For some targets, the pass can spill some pseudos into hard
49 registers of different class (usually into vector registers)
50 instead of spilling them into memory if it is possible and
51 profitable. Spilling GENERAL_REGS pseudo into SSE registers for
52 Intel Corei7 is an example of such optimization. And this is
53 actually recommended by Intel optimization guide.
55 The file also contains code for final change of pseudos on hard
56 regs correspondingly assigned to them. */
58 #include "config.h"
59 #include "system.h"
60 #include "coretypes.h"
61 #include "tm.h"
62 #include "rtl.h"
63 #include "tm_p.h"
64 #include "insn-config.h"
65 #include "recog.h"
66 #include "output.h"
67 #include "regs.h"
68 #include "hard-reg-set.h"
69 #include "flags.h"
70 #include "function.h"
71 #include "expr.h"
72 #include "basic-block.h"
73 #include "except.h"
74 #include "timevar.h"
75 #include "target.h"
76 #include "lra-int.h"
77 #include "ira.h"
78 #include "df.h"
81 /* Max regno at the start of the pass. */
82 static int regs_num;
84 /* Map spilled regno -> hard regno used instead of memory for
85 spilling. */
86 static rtx *spill_hard_reg;
88 /* The structure describes stack slot of a spilled pseudo. */
89 struct pseudo_slot
91 /* Number (0, 1, ...) of the stack slot to which given pseudo
92 belongs. */
93 int slot_num;
94 /* First or next slot with the same slot number. */
95 struct pseudo_slot *next, *first;
96 /* Memory representing the spilled pseudo. */
97 rtx mem;
100 /* The stack slots for each spilled pseudo. Indexed by regnos. */
101 static struct pseudo_slot *pseudo_slots;
103 /* The structure describes a register or a stack slot which can be
104 used for several spilled pseudos. */
105 struct slot
107 /* First pseudo with given stack slot. */
108 int regno;
109 /* Hard reg into which the slot pseudos are spilled. The value is
110 negative for pseudos spilled into memory. */
111 int hard_regno;
112 /* Memory representing the all stack slot. It can be different from
113 memory representing a pseudo belonging to give stack slot because
114 pseudo can be placed in a part of the corresponding stack slot.
115 The value is NULL for pseudos spilled into a hard reg. */
116 rtx mem;
117 /* Combined live ranges of all pseudos belonging to given slot. It
118 is used to figure out that a new spilled pseudo can use given
119 stack slot. */
120 lra_live_range_t live_ranges;
123 /* Array containing info about the stack slots. The array element is
124 indexed by the stack slot number in the range [0..slots_num). */
125 static struct slot *slots;
126 /* The number of the stack slots currently existing. */
127 static int slots_num;
129 /* Set up memory of the spilled pseudo I. The function can allocate
130 the corresponding stack slot if it is not done yet. */
131 static void
132 assign_mem_slot (int i)
134 rtx x = NULL_RTX;
135 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
136 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
137 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
138 unsigned int max_ref_width = GET_MODE_SIZE (lra_reg_info[i].biggest_mode);
139 unsigned int total_size = MAX (inherent_size, max_ref_width);
140 unsigned int min_align = max_ref_width * BITS_PER_UNIT;
141 int adjust = 0;
143 lra_assert (regno_reg_rtx[i] != NULL_RTX && REG_P (regno_reg_rtx[i])
144 && lra_reg_info[i].nrefs != 0 && reg_renumber[i] < 0);
146 x = slots[pseudo_slots[i].slot_num].mem;
148 /* We can use a slot already allocated because it is guaranteed the
149 slot provides both enough inherent space and enough total
150 space. */
151 if (x)
153 /* Each pseudo has an inherent size which comes from its own mode,
154 and a total size which provides room for paradoxical subregs
155 which refer to the pseudo reg in wider modes. We allocate a new
156 slot, making sure that it has enough inherent space and total
157 space. */
158 else
160 rtx stack_slot;
162 /* No known place to spill from => no slot to reuse. */
163 x = assign_stack_local (mode, total_size,
164 min_align > inherent_align
165 || total_size > inherent_size ? -1 : 0);
166 stack_slot = x;
167 /* Cancel the big-endian correction done in assign_stack_local.
168 Get the address of the beginning of the slot. This is so we
169 can do a big-endian correction unconditionally below. */
170 if (BYTES_BIG_ENDIAN)
172 adjust = inherent_size - total_size;
173 if (adjust)
174 stack_slot
175 = adjust_address_nv (x,
176 mode_for_size (total_size * BITS_PER_UNIT,
177 MODE_INT, 1),
178 adjust);
180 slots[pseudo_slots[i].slot_num].mem = stack_slot;
183 /* On a big endian machine, the "address" of the slot is the address
184 of the low part that fits its inherent mode. */
185 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
186 adjust += (total_size - inherent_size);
188 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
190 /* Set all of the memory attributes as appropriate for a spill. */
191 set_mem_attrs_for_spill (x);
192 pseudo_slots[i].mem = x;
195 /* Sort pseudos according their usage frequencies. */
196 static int
197 regno_freq_compare (const void *v1p, const void *v2p)
199 const int regno1 = *(const int *) v1p;
200 const int regno2 = *(const int *) v2p;
201 int diff;
203 if ((diff = lra_reg_info[regno2].freq - lra_reg_info[regno1].freq) != 0)
204 return diff;
205 return regno1 - regno2;
208 /* Redefine STACK_GROWS_DOWNWARD in terms of 0 or 1. */
209 #ifdef STACK_GROWS_DOWNWARD
210 # undef STACK_GROWS_DOWNWARD
211 # define STACK_GROWS_DOWNWARD 1
212 #else
213 # define STACK_GROWS_DOWNWARD 0
214 #endif
216 /* Sort pseudos according to their slots, putting the slots in the order
217 that they should be allocated. Slots with lower numbers have the highest
218 priority and should get the smallest displacement from the stack or
219 frame pointer (whichever is being used).
221 The first allocated slot is always closest to the frame pointer,
222 so prefer lower slot numbers when frame_pointer_needed. If the stack
223 and frame grow in the same direction, then the first allocated slot is
224 always closest to the initial stack pointer and furthest away from the
225 final stack pointer, so allocate higher numbers first when using the
226 stack pointer in that case. The reverse is true if the stack and
227 frame grow in opposite directions. */
228 static int
229 pseudo_reg_slot_compare (const void *v1p, const void *v2p)
231 const int regno1 = *(const int *) v1p;
232 const int regno2 = *(const int *) v2p;
233 int diff, slot_num1, slot_num2;
234 int total_size1, total_size2;
236 slot_num1 = pseudo_slots[regno1].slot_num;
237 slot_num2 = pseudo_slots[regno2].slot_num;
238 if ((diff = slot_num1 - slot_num2) != 0)
239 return (frame_pointer_needed
240 || !FRAME_GROWS_DOWNWARD == STACK_GROWS_DOWNWARD ? diff : -diff);
241 total_size1 = GET_MODE_SIZE (lra_reg_info[regno1].biggest_mode);
242 total_size2 = GET_MODE_SIZE (lra_reg_info[regno2].biggest_mode);
243 if ((diff = total_size2 - total_size1) != 0)
244 return diff;
245 return regno1 - regno2;
248 /* Assign spill hard registers to N pseudos in PSEUDO_REGNOS which is
249 sorted in order of highest frequency first. Put the pseudos which
250 did not get a spill hard register at the beginning of array
251 PSEUDO_REGNOS. Return the number of such pseudos. */
252 static int
253 assign_spill_hard_regs (int *pseudo_regnos, int n)
255 int i, k, p, regno, res, spill_class_size, hard_regno, nr;
256 enum reg_class rclass, spill_class;
257 enum machine_mode mode;
258 lra_live_range_t r;
259 rtx insn, set;
260 basic_block bb;
261 HARD_REG_SET conflict_hard_regs;
262 bitmap_head ok_insn_bitmap;
263 bitmap setjump_crosses = regstat_get_setjmp_crosses ();
264 /* Hard registers which can not be used for any purpose at given
265 program point because they are unallocatable or already allocated
266 for other pseudos. */
267 HARD_REG_SET *reserved_hard_regs;
269 if (! lra_reg_spill_p)
270 return n;
271 /* Set up reserved hard regs for every program point. */
272 reserved_hard_regs = XNEWVEC (HARD_REG_SET, lra_live_max_point);
273 for (p = 0; p < lra_live_max_point; p++)
274 COPY_HARD_REG_SET (reserved_hard_regs[p], lra_no_alloc_regs);
275 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
276 if (lra_reg_info[i].nrefs != 0
277 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
278 for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
279 for (p = r->start; p <= r->finish; p++)
280 add_to_hard_reg_set (&reserved_hard_regs[p],
281 lra_reg_info[i].biggest_mode, hard_regno);
282 bitmap_initialize (&ok_insn_bitmap, &reg_obstack);
283 FOR_EACH_BB_FN (bb, cfun)
284 FOR_BB_INSNS (bb, insn)
285 if (DEBUG_INSN_P (insn)
286 || ((set = single_set (insn)) != NULL_RTX
287 && REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))))
288 bitmap_set_bit (&ok_insn_bitmap, INSN_UID (insn));
289 for (res = i = 0; i < n; i++)
291 regno = pseudo_regnos[i];
292 rclass = lra_get_allocno_class (regno);
293 if (bitmap_bit_p (setjump_crosses, regno)
294 || (spill_class
295 = ((enum reg_class)
296 targetm.spill_class ((reg_class_t) rclass,
297 PSEUDO_REGNO_MODE (regno)))) == NO_REGS
298 || bitmap_intersect_compl_p (&lra_reg_info[regno].insn_bitmap,
299 &ok_insn_bitmap))
301 pseudo_regnos[res++] = regno;
302 continue;
304 lra_assert (spill_class != NO_REGS);
305 COPY_HARD_REG_SET (conflict_hard_regs,
306 lra_reg_info[regno].conflict_hard_regs);
307 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
308 for (p = r->start; p <= r->finish; p++)
309 IOR_HARD_REG_SET (conflict_hard_regs, reserved_hard_regs[p]);
310 spill_class_size = ira_class_hard_regs_num[spill_class];
311 mode = lra_reg_info[regno].biggest_mode;
312 for (k = 0; k < spill_class_size; k++)
314 hard_regno = ira_class_hard_regs[spill_class][k];
315 if (! overlaps_hard_reg_set_p (conflict_hard_regs, mode, hard_regno))
316 break;
318 if (k >= spill_class_size)
320 /* There is no available regs -- assign memory later. */
321 pseudo_regnos[res++] = regno;
322 continue;
324 if (lra_dump_file != NULL)
325 fprintf (lra_dump_file, " Spill r%d into hr%d\n", regno, hard_regno);
326 /* Update reserved_hard_regs. */
327 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
328 for (p = r->start; p <= r->finish; p++)
329 add_to_hard_reg_set (&reserved_hard_regs[p],
330 lra_reg_info[regno].biggest_mode, hard_regno);
331 spill_hard_reg[regno]
332 = gen_raw_REG (PSEUDO_REGNO_MODE (regno), hard_regno);
333 for (nr = 0;
334 nr < hard_regno_nregs[hard_regno][lra_reg_info[regno].biggest_mode];
335 nr++)
336 /* Just loop. */
337 df_set_regs_ever_live (hard_regno + nr, true);
339 bitmap_clear (&ok_insn_bitmap);
340 free (reserved_hard_regs);
341 return res;
344 /* Add pseudo REGNO to slot SLOT_NUM. */
345 static void
346 add_pseudo_to_slot (int regno, int slot_num)
348 struct pseudo_slot *first;
350 if (slots[slot_num].regno < 0)
352 /* It is the first pseudo in the slot. */
353 slots[slot_num].regno = regno;
354 pseudo_slots[regno].first = &pseudo_slots[regno];
355 pseudo_slots[regno].next = NULL;
357 else
359 first = pseudo_slots[regno].first = &pseudo_slots[slots[slot_num].regno];
360 pseudo_slots[regno].next = first->next;
361 first->next = &pseudo_slots[regno];
363 pseudo_slots[regno].mem = NULL_RTX;
364 pseudo_slots[regno].slot_num = slot_num;
365 slots[slot_num].live_ranges
366 = lra_merge_live_ranges (slots[slot_num].live_ranges,
367 lra_copy_live_range_list
368 (lra_reg_info[regno].live_ranges));
371 /* Assign stack slot numbers to pseudos in array PSEUDO_REGNOS of
372 length N. Sort pseudos in PSEUDO_REGNOS for subsequent assigning
373 memory stack slots. */
374 static void
375 assign_stack_slot_num_and_sort_pseudos (int *pseudo_regnos, int n)
377 int i, j, regno;
379 slots_num = 0;
380 /* Assign stack slot numbers to spilled pseudos, use smaller numbers
381 for most frequently used pseudos. */
382 for (i = 0; i < n; i++)
384 regno = pseudo_regnos[i];
385 if (! flag_ira_share_spill_slots)
386 j = slots_num;
387 else
389 for (j = 0; j < slots_num; j++)
390 if (slots[j].hard_regno < 0
391 && ! (lra_intersected_live_ranges_p
392 (slots[j].live_ranges,
393 lra_reg_info[regno].live_ranges)))
394 break;
396 if (j >= slots_num)
398 /* New slot. */
399 slots[j].live_ranges = NULL;
400 slots[j].regno = slots[j].hard_regno = -1;
401 slots[j].mem = NULL_RTX;
402 slots_num++;
404 add_pseudo_to_slot (regno, j);
406 /* Sort regnos according to their slot numbers. */
407 qsort (pseudo_regnos, n, sizeof (int), pseudo_reg_slot_compare);
410 /* Recursively process LOC in INSN and change spilled pseudos to the
411 corresponding memory or spilled hard reg. Ignore spilled pseudos
412 created from the scratches. */
413 static void
414 remove_pseudos (rtx *loc, rtx insn)
416 int i;
417 rtx hard_reg;
418 const char *fmt;
419 enum rtx_code code;
421 if (*loc == NULL_RTX)
422 return;
423 code = GET_CODE (*loc);
424 if (code == REG && (i = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
425 && lra_get_regno_hard_regno (i) < 0
426 /* We do not want to assign memory for former scratches because
427 it might result in an address reload for some targets. In
428 any case we transform such pseudos not getting hard registers
429 into scratches back. */
430 && ! lra_former_scratch_p (i))
432 if ((hard_reg = spill_hard_reg[i]) != NULL_RTX)
433 *loc = copy_rtx (hard_reg);
434 else
436 rtx x = lra_eliminate_regs_1 (insn, pseudo_slots[i].mem,
437 GET_MODE (pseudo_slots[i].mem),
438 false, false, true);
439 *loc = x != pseudo_slots[i].mem ? x : copy_rtx (x);
441 return;
444 fmt = GET_RTX_FORMAT (code);
445 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
447 if (fmt[i] == 'e')
448 remove_pseudos (&XEXP (*loc, i), insn);
449 else if (fmt[i] == 'E')
451 int j;
453 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
454 remove_pseudos (&XVECEXP (*loc, i, j), insn);
459 /* Convert spilled pseudos into their stack slots or spill hard regs,
460 put insns to process on the constraint stack (that is all insns in
461 which pseudos were changed to memory or spill hard regs). */
462 static void
463 spill_pseudos (void)
465 basic_block bb;
466 rtx insn;
467 int i;
468 bitmap_head spilled_pseudos, changed_insns;
470 bitmap_initialize (&spilled_pseudos, &reg_obstack);
471 bitmap_initialize (&changed_insns, &reg_obstack);
472 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
474 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
475 && ! lra_former_scratch_p (i))
477 bitmap_set_bit (&spilled_pseudos, i);
478 bitmap_ior_into (&changed_insns, &lra_reg_info[i].insn_bitmap);
481 FOR_EACH_BB_FN (bb, cfun)
483 FOR_BB_INSNS (bb, insn)
484 if (bitmap_bit_p (&changed_insns, INSN_UID (insn)))
486 rtx *link_loc, link;
487 remove_pseudos (&PATTERN (insn), insn);
488 if (CALL_P (insn))
489 remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn);
490 for (link_loc = &REG_NOTES (insn);
491 (link = *link_loc) != NULL_RTX;
492 link_loc = &XEXP (link, 1))
494 switch (REG_NOTE_KIND (link))
496 case REG_FRAME_RELATED_EXPR:
497 case REG_CFA_DEF_CFA:
498 case REG_CFA_ADJUST_CFA:
499 case REG_CFA_OFFSET:
500 case REG_CFA_REGISTER:
501 case REG_CFA_EXPRESSION:
502 case REG_CFA_RESTORE:
503 case REG_CFA_SET_VDRAP:
504 remove_pseudos (&XEXP (link, 0), insn);
505 break;
506 default:
507 break;
510 if (lra_dump_file != NULL)
511 fprintf (lra_dump_file,
512 "Changing spilled pseudos to memory in insn #%u\n",
513 INSN_UID (insn));
514 lra_push_insn (insn);
515 if (lra_reg_spill_p || targetm.different_addr_displacement_p ())
516 lra_set_used_insn_alternative (insn, -1);
518 else if (CALL_P (insn))
519 /* Presence of any pseudo in CALL_INSN_FUNCTION_USAGE does
520 not affect value of insn_bitmap of the corresponding
521 lra_reg_info. That is because we don't need to reload
522 pseudos in CALL_INSN_FUNCTION_USAGEs. So if we process
523 only insns in the insn_bitmap of given pseudo here, we
524 can miss the pseudo in some
525 CALL_INSN_FUNCTION_USAGEs. */
526 remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn);
527 bitmap_and_compl_into (df_get_live_in (bb), &spilled_pseudos);
528 bitmap_and_compl_into (df_get_live_out (bb), &spilled_pseudos);
530 bitmap_clear (&spilled_pseudos);
531 bitmap_clear (&changed_insns);
534 /* Return true if we need to change some pseudos into memory. */
535 bool
536 lra_need_for_spills_p (void)
538 int i; max_regno = max_reg_num ();
540 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
541 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
542 && ! lra_former_scratch_p (i))
543 return true;
544 return false;
547 /* Change spilled pseudos into memory or spill hard regs. Put changed
548 insns on the constraint stack (these insns will be considered on
549 the next constraint pass). The changed insns are all insns in
550 which pseudos were changed. */
551 void
552 lra_spill (void)
554 int i, n, curr_regno;
555 int *pseudo_regnos;
557 regs_num = max_reg_num ();
558 spill_hard_reg = XNEWVEC (rtx, regs_num);
559 pseudo_regnos = XNEWVEC (int, regs_num);
560 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
561 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
562 /* We do not want to assign memory for former scratches. */
563 && ! lra_former_scratch_p (i))
565 spill_hard_reg[i] = NULL_RTX;
566 pseudo_regnos[n++] = i;
568 lra_assert (n > 0);
569 pseudo_slots = XNEWVEC (struct pseudo_slot, regs_num);
570 slots = XNEWVEC (struct slot, regs_num);
571 /* Sort regnos according their usage frequencies. */
572 qsort (pseudo_regnos, n, sizeof (int), regno_freq_compare);
573 n = assign_spill_hard_regs (pseudo_regnos, n);
574 assign_stack_slot_num_and_sort_pseudos (pseudo_regnos, n);
575 for (i = 0; i < n; i++)
576 if (pseudo_slots[pseudo_regnos[i]].mem == NULL_RTX)
577 assign_mem_slot (pseudo_regnos[i]);
578 if (n > 0 && crtl->stack_alignment_needed)
579 /* If we have a stack frame, we must align it now. The stack size
580 may be a part of the offset computation for register
581 elimination. */
582 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
583 if (lra_dump_file != NULL)
585 for (i = 0; i < slots_num; i++)
587 fprintf (lra_dump_file, " Slot %d regnos (width = %d):", i,
588 GET_MODE_SIZE (GET_MODE (slots[i].mem)));
589 for (curr_regno = slots[i].regno;;
590 curr_regno = pseudo_slots[curr_regno].next - pseudo_slots)
592 fprintf (lra_dump_file, " %d", curr_regno);
593 if (pseudo_slots[curr_regno].next == NULL)
594 break;
596 fprintf (lra_dump_file, "\n");
599 spill_pseudos ();
600 free (slots);
601 free (pseudo_slots);
602 free (pseudo_regnos);
603 free (spill_hard_reg);
606 /* Apply alter_subreg for subregs of regs in *LOC. Use FINAL_P for
607 alter_subreg calls. Return true if any subreg of reg is
608 processed. */
609 static bool
610 alter_subregs (rtx *loc, bool final_p)
612 int i;
613 rtx x = *loc;
614 bool res;
615 const char *fmt;
616 enum rtx_code code;
618 if (x == NULL_RTX)
619 return false;
620 code = GET_CODE (x);
621 if (code == SUBREG && REG_P (SUBREG_REG (x)))
623 lra_assert (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER);
624 alter_subreg (loc, final_p);
625 return true;
627 fmt = GET_RTX_FORMAT (code);
628 res = false;
629 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
631 if (fmt[i] == 'e')
633 if (alter_subregs (&XEXP (x, i), final_p))
634 res = true;
636 else if (fmt[i] == 'E')
638 int j;
640 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
641 if (alter_subregs (&XVECEXP (x, i, j), final_p))
642 res = true;
645 return res;
648 /* Return true if REGNO is used for return in the current
649 function. */
650 static bool
651 return_regno_p (unsigned int regno)
653 rtx outgoing = crtl->return_rtx;
655 if (! outgoing)
656 return false;
658 if (REG_P (outgoing))
659 return REGNO (outgoing) == regno;
660 else if (GET_CODE (outgoing) == PARALLEL)
662 int i;
664 for (i = 0; i < XVECLEN (outgoing, 0); i++)
666 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
668 if (REG_P (x) && REGNO (x) == regno)
669 return true;
672 return false;
675 /* Final change of pseudos got hard registers into the corresponding
676 hard registers and removing temporary clobbers. */
677 void
678 lra_final_code_change (void)
680 int i, hard_regno;
681 basic_block bb;
682 rtx insn, curr;
683 int max_regno = max_reg_num ();
685 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
686 if (lra_reg_info[i].nrefs != 0
687 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
688 SET_REGNO (regno_reg_rtx[i], hard_regno);
689 FOR_EACH_BB_FN (bb, cfun)
690 FOR_BB_INSNS_SAFE (bb, insn, curr)
691 if (INSN_P (insn))
693 rtx pat = PATTERN (insn);
695 if (GET_CODE (pat) == CLOBBER && LRA_TEMP_CLOBBER_P (pat))
697 /* Remove clobbers temporarily created in LRA. We don't
698 need them anymore and don't want to waste compiler
699 time processing them in a few subsequent passes. */
700 lra_invalidate_insn_data (insn);
701 delete_insn (insn);
702 continue;
705 /* IRA can generate move insns involving pseudos. It is
706 better remove them earlier to speed up compiler a bit.
707 It is also better to do it here as they might not pass
708 final RTL check in LRA, (e.g. insn moving a control
709 register into itself). So remove an useless move insn
710 unless next insn is USE marking the return reg (we should
711 save this as some subsequent optimizations assume that
712 such original insns are saved). */
713 if (NONJUMP_INSN_P (insn) && GET_CODE (pat) == SET
714 && REG_P (SET_SRC (pat)) && REG_P (SET_DEST (pat))
715 && REGNO (SET_SRC (pat)) == REGNO (SET_DEST (pat))
716 && ! return_regno_p (REGNO (SET_SRC (pat))))
718 lra_invalidate_insn_data (insn);
719 delete_insn (insn);
720 continue;
723 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
724 struct lra_static_insn_data *static_id = id->insn_static_data;
725 bool insn_change_p = false;
727 for (i = id->insn_static_data->n_operands - 1; i >= 0; i--)
728 if ((DEBUG_INSN_P (insn) || ! static_id->operand[i].is_operator)
729 && alter_subregs (id->operand_loc[i], ! DEBUG_INSN_P (insn)))
731 lra_update_dup (id, i);
732 insn_change_p = true;
734 if (insn_change_p)
735 lra_update_operator_dups (id);