1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
55 #include "insn-config.h"
56 #include "insn-attr.h"
58 #include "conditions.h"
60 #include "hard-reg-set.h"
64 #include "rtl-error.h"
65 #include "toplev.h" /* exact_log2, floor_log2 */
68 #include "basic-block.h"
70 #include "targhooks.h"
73 #include "tree-pass.h"
81 #include "tree-pretty-print.h" /* for dump_function_header */
84 #ifdef XCOFF_DEBUGGING_INFO
85 #include "xcoffout.h" /* Needed for external data
86 declarations for e.g. AIX 4.x. */
89 #include "dwarf2out.h"
91 #ifdef DBX_DEBUGGING_INFO
95 #ifdef SDB_DEBUGGING_INFO
99 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
100 So define a null default for it to save conditionalization later. */
101 #ifndef CC_STATUS_INIT
102 #define CC_STATUS_INIT
105 /* Is the given character a logical line separator for the assembler? */
106 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
107 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
110 #ifndef JUMP_TABLES_IN_TEXT_SECTION
111 #define JUMP_TABLES_IN_TEXT_SECTION 0
114 /* Bitflags used by final_scan_insn. */
116 #define SEEN_EMITTED 2
118 /* Last insn processed by final_scan_insn. */
119 static rtx debug_insn
;
120 rtx current_output_insn
;
122 /* Line number of last NOTE. */
123 static int last_linenum
;
125 /* Last discriminator written to assembly. */
126 static int last_discriminator
;
128 /* Discriminator of current block. */
129 static int discriminator
;
131 /* Highest line number in current block. */
132 static int high_block_linenum
;
134 /* Likewise for function. */
135 static int high_function_linenum
;
137 /* Filename of last NOTE. */
138 static const char *last_filename
;
140 /* Override filename and line number. */
141 static const char *override_filename
;
142 static int override_linenum
;
144 /* Whether to force emission of a line note before the next insn. */
145 static bool force_source_line
= false;
147 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
149 /* Nonzero while outputting an `asm' with operands.
150 This means that inconsistencies are the user's fault, so don't die.
151 The precise value is the insn being output, to pass to error_for_asm. */
152 rtx this_is_asm_operands
;
154 /* Number of operands of this insn, for an `asm' with operands. */
155 static unsigned int insn_noperands
;
157 /* Compare optimization flag. */
159 static rtx last_ignored_compare
= 0;
161 /* Assign a unique number to each insn that is output.
162 This can be used to generate unique local labels. */
164 static int insn_counter
= 0;
167 /* This variable contains machine-dependent flags (defined in tm.h)
168 set and examined by output routines
169 that describe how to interpret the condition codes properly. */
173 /* During output of an insn, this contains a copy of cc_status
174 from before the insn. */
176 CC_STATUS cc_prev_status
;
179 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
181 static int block_depth
;
183 /* Nonzero if have enabled APP processing of our assembler output. */
187 /* If we are outputting an insn sequence, this contains the sequence rtx.
192 #ifdef ASSEMBLER_DIALECT
194 /* Number of the assembler dialect to use, starting at 0. */
195 static int dialect_number
;
198 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
199 rtx current_insn_predicate
;
201 /* True if printing into -fdump-final-insns= dump. */
202 bool final_insns_dump_p
;
204 /* True if profile_function should be called, but hasn't been called yet. */
205 static bool need_profile_function
;
207 static int asm_insn_count (rtx
);
208 static void profile_function (FILE *);
209 static void profile_after_prologue (FILE *);
210 static bool notice_source_line (rtx
, bool *);
211 static rtx
walk_alter_subreg (rtx
*, bool *);
212 static void output_asm_name (void);
213 static void output_alternate_entry_point (FILE *, rtx
);
214 static tree
get_mem_expr_from_op (rtx
, int *);
215 static void output_asm_operand_names (rtx
*, int *, int);
216 #ifdef LEAF_REGISTERS
217 static void leaf_renumber_regs (rtx
);
220 static int alter_cond (rtx
);
222 #ifndef ADDR_VEC_ALIGN
223 static int final_addr_vec_align (rtx
);
225 static int align_fuzz (rtx
, rtx
, int, unsigned);
227 /* Initialize data in final at the beginning of a compilation. */
230 init_final (const char *filename ATTRIBUTE_UNUSED
)
235 #ifdef ASSEMBLER_DIALECT
236 dialect_number
= ASSEMBLER_DIALECT
;
240 /* Default target function prologue and epilogue assembler output.
242 If not overridden for epilogue code, then the function body itself
243 contains return instructions wherever needed. */
245 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
246 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
251 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
252 tree decl ATTRIBUTE_UNUSED
,
253 bool new_is_cold ATTRIBUTE_UNUSED
)
257 /* Default target hook that outputs nothing to a stream. */
259 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
263 /* Enable APP processing of subsequent output.
264 Used before the output from an `asm' statement. */
271 fputs (ASM_APP_ON
, asm_out_file
);
276 /* Disable APP processing of subsequent output.
277 Called from varasm.c before most kinds of output. */
284 fputs (ASM_APP_OFF
, asm_out_file
);
289 /* Return the number of slots filled in the current
290 delayed branch sequence (we don't count the insn needing the
291 delay slot). Zero if not in a delayed branch sequence. */
295 dbr_sequence_length (void)
297 if (final_sequence
!= 0)
298 return XVECLEN (final_sequence
, 0) - 1;
304 /* The next two pages contain routines used to compute the length of an insn
305 and to shorten branches. */
307 /* Arrays for insn lengths, and addresses. The latter is referenced by
308 `insn_current_length'. */
310 static int *insn_lengths
;
312 vec
<int> insn_addresses_
;
314 /* Max uid for which the above arrays are valid. */
315 static int insn_lengths_max_uid
;
317 /* Address of insn being processed. Used by `insn_current_length'. */
318 int insn_current_address
;
320 /* Address of insn being processed in previous iteration. */
321 int insn_last_address
;
323 /* known invariant alignment of insn being processed. */
324 int insn_current_align
;
326 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
327 gives the next following alignment insn that increases the known
328 alignment, or NULL_RTX if there is no such insn.
329 For any alignment obtained this way, we can again index uid_align with
330 its uid to obtain the next following align that in turn increases the
331 alignment, till we reach NULL_RTX; the sequence obtained this way
332 for each insn we'll call the alignment chain of this insn in the following
335 struct label_alignment
341 static rtx
*uid_align
;
342 static int *uid_shuid
;
343 static struct label_alignment
*label_align
;
345 /* Indicate that branch shortening hasn't yet been done. */
348 init_insn_lengths (void)
359 insn_lengths_max_uid
= 0;
361 if (HAVE_ATTR_length
)
362 INSN_ADDRESSES_FREE ();
370 /* Obtain the current length of an insn. If branch shortening has been done,
371 get its actual length. Otherwise, use FALLBACK_FN to calculate the
374 get_attr_length_1 (rtx insn
, int (*fallback_fn
) (rtx
))
380 if (!HAVE_ATTR_length
)
383 if (insn_lengths_max_uid
> INSN_UID (insn
))
384 return insn_lengths
[INSN_UID (insn
)];
386 switch (GET_CODE (insn
))
396 length
= fallback_fn (insn
);
400 body
= PATTERN (insn
);
401 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
404 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
405 length
= asm_insn_count (body
) * fallback_fn (insn
);
406 else if (GET_CODE (body
) == SEQUENCE
)
407 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
408 length
+= get_attr_length_1 (XVECEXP (body
, 0, i
), fallback_fn
);
410 length
= fallback_fn (insn
);
417 #ifdef ADJUST_INSN_LENGTH
418 ADJUST_INSN_LENGTH (insn
, length
);
423 /* Obtain the current length of an insn. If branch shortening has been done,
424 get its actual length. Otherwise, get its maximum length. */
426 get_attr_length (rtx insn
)
428 return get_attr_length_1 (insn
, insn_default_length
);
431 /* Obtain the current length of an insn. If branch shortening has been done,
432 get its actual length. Otherwise, get its minimum length. */
434 get_attr_min_length (rtx insn
)
436 return get_attr_length_1 (insn
, insn_min_length
);
439 /* Code to handle alignment inside shorten_branches. */
441 /* Here is an explanation how the algorithm in align_fuzz can give
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
453 Likewise with the next alignment-delimited block following X, which we
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
459 The estimated padding is then OX - IX.
461 OX can be safely estimated as
466 OX = round_up(IX, X) + Y - X
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
481 #define LABEL_ALIGN(LABEL) align_labels_log
485 #define LOOP_ALIGN(LABEL) align_loops_log
488 #ifndef LABEL_ALIGN_AFTER_BARRIER
489 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
493 #define JUMP_ALIGN(LABEL) align_jumps_log
497 default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED
)
503 default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
505 return align_loops_max_skip
;
509 default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
511 return align_labels_max_skip
;
515 default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
517 return align_jumps_max_skip
;
520 #ifndef ADDR_VEC_ALIGN
522 final_addr_vec_align (rtx addr_vec
)
524 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
526 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
527 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
528 return exact_log2 (align
);
532 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
535 #ifndef INSN_LENGTH_ALIGNMENT
536 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
539 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
541 static int min_labelno
, max_labelno
;
543 #define LABEL_TO_ALIGNMENT(LABEL) \
544 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
546 #define LABEL_TO_MAX_SKIP(LABEL) \
547 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
549 /* For the benefit of port specific code do this also as a function. */
552 label_to_alignment (rtx label
)
554 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
555 return LABEL_TO_ALIGNMENT (label
);
560 label_to_max_skip (rtx label
)
562 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
563 return LABEL_TO_MAX_SKIP (label
);
567 /* The differences in addresses
568 between a branch and its target might grow or shrink depending on
569 the alignment the start insn of the range (the branch for a forward
570 branch or the label for a backward branch) starts out on; if these
571 differences are used naively, they can even oscillate infinitely.
572 We therefore want to compute a 'worst case' address difference that
573 is independent of the alignment the start insn of the range end
574 up on, and that is at least as large as the actual difference.
575 The function align_fuzz calculates the amount we have to add to the
576 naively computed difference, by traversing the part of the alignment
577 chain of the start insn of the range that is in front of the end insn
578 of the range, and considering for each alignment the maximum amount
579 that it might contribute to a size increase.
581 For casesi tables, we also want to know worst case minimum amounts of
582 address difference, in case a machine description wants to introduce
583 some common offset that is added to all offsets in a table.
584 For this purpose, align_fuzz with a growth argument of 0 computes the
585 appropriate adjustment. */
587 /* Compute the maximum delta by which the difference of the addresses of
588 START and END might grow / shrink due to a different address for start
589 which changes the size of alignment insns between START and END.
590 KNOWN_ALIGN_LOG is the alignment known for START.
591 GROWTH should be ~0 if the objective is to compute potential code size
592 increase, and 0 if the objective is to compute potential shrink.
593 The return value is undefined for any other value of GROWTH. */
596 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
598 int uid
= INSN_UID (start
);
600 int known_align
= 1 << known_align_log
;
601 int end_shuid
= INSN_SHUID (end
);
604 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
606 int align_addr
, new_align
;
608 uid
= INSN_UID (align_label
);
609 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
610 if (uid_shuid
[uid
] > end_shuid
)
612 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
613 new_align
= 1 << known_align_log
;
614 if (new_align
< known_align
)
616 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
617 known_align
= new_align
;
622 /* Compute a worst-case reference address of a branch so that it
623 can be safely used in the presence of aligned labels. Since the
624 size of the branch itself is unknown, the size of the branch is
625 not included in the range. I.e. for a forward branch, the reference
626 address is the end address of the branch as known from the previous
627 branch shortening pass, minus a value to account for possible size
628 increase due to alignment. For a backward branch, it is the start
629 address of the branch as known from the current pass, plus a value
630 to account for possible size increase due to alignment.
631 NB.: Therefore, the maximum offset allowed for backward branches needs
632 to exclude the branch size. */
635 insn_current_reference_address (rtx branch
)
640 if (! INSN_ADDRESSES_SET_P ())
643 seq
= NEXT_INSN (PREV_INSN (branch
));
644 seq_uid
= INSN_UID (seq
);
645 if (!JUMP_P (branch
))
646 /* This can happen for example on the PA; the objective is to know the
647 offset to address something in front of the start of the function.
648 Thus, we can treat it like a backward branch.
649 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
650 any alignment we'd encounter, so we skip the call to align_fuzz. */
651 return insn_current_address
;
652 dest
= JUMP_LABEL (branch
);
654 /* BRANCH has no proper alignment chain set, so use SEQ.
655 BRANCH also has no INSN_SHUID. */
656 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
658 /* Forward branch. */
659 return (insn_last_address
+ insn_lengths
[seq_uid
]
660 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
664 /* Backward branch. */
665 return (insn_current_address
666 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
670 /* Compute branch alignments based on frequency information in the
674 compute_alignments (void)
676 int log
, max_skip
, max_log
;
679 int freq_threshold
= 0;
687 max_labelno
= max_label_num ();
688 min_labelno
= get_first_label_num ();
689 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
691 /* If not optimizing or optimizing for size, don't assign any alignments. */
692 if (! optimize
|| optimize_function_for_size_p (cfun
))
697 dump_reg_info (dump_file
);
698 dump_flow_info (dump_file
, TDF_DETAILS
);
699 flow_loops_dump (dump_file
, NULL
, 1);
701 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
702 FOR_EACH_BB_FN (bb
, cfun
)
703 if (bb
->frequency
> freq_max
)
704 freq_max
= bb
->frequency
;
705 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
708 fprintf (dump_file
, "freq_max: %i\n",freq_max
);
709 FOR_EACH_BB_FN (bb
, cfun
)
711 rtx label
= BB_HEAD (bb
);
712 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
717 || optimize_bb_for_size_p (bb
))
721 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
722 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
726 max_log
= LABEL_ALIGN (label
);
727 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
729 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
731 if (e
->flags
& EDGE_FALLTHRU
)
732 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
734 branch_frequency
+= EDGE_FREQUENCY (e
);
738 fprintf (dump_file
, "BB %4i freq %4i loop %2i loop_depth"
739 " %2i fall %4i branch %4i",
740 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
742 fallthru_frequency
, branch_frequency
);
743 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
744 fprintf (dump_file
, " inner_loop");
745 if (bb
->loop_father
->header
== bb
)
746 fprintf (dump_file
, " loop_header");
747 fprintf (dump_file
, "\n");
750 /* There are two purposes to align block with no fallthru incoming edge:
751 1) to avoid fetch stalls when branch destination is near cache boundary
752 2) to improve cache efficiency in case the previous block is not executed
753 (so it does not need to be in the cache).
755 We to catch first case, we align frequently executed blocks.
756 To catch the second, we align blocks that are executed more frequently
757 than the predecessor and the predecessor is likely to not be executed
758 when function is called. */
761 && (branch_frequency
> freq_threshold
762 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
763 && (bb
->prev_bb
->frequency
764 <= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
/ 2))))
766 log
= JUMP_ALIGN (label
);
768 fprintf (dump_file
, " jump alignment added.\n");
772 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
775 /* In case block is frequent and reached mostly by non-fallthru edge,
776 align it. It is most likely a first block of loop. */
778 && optimize_bb_for_speed_p (bb
)
779 && branch_frequency
+ fallthru_frequency
> freq_threshold
781 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
783 log
= LOOP_ALIGN (label
);
785 fprintf (dump_file
, " internal loop alignment added.\n");
789 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
792 LABEL_TO_ALIGNMENT (label
) = max_log
;
793 LABEL_TO_MAX_SKIP (label
) = max_skip
;
796 loop_optimizer_finalize ();
797 free_dominance_info (CDI_DOMINATORS
);
801 /* Grow the LABEL_ALIGN array after new labels are created. */
804 grow_label_align (void)
806 int old
= max_labelno
;
810 max_labelno
= max_label_num ();
812 n_labels
= max_labelno
- min_labelno
+ 1;
813 n_old_labels
= old
- min_labelno
+ 1;
815 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
817 /* Range of labels grows monotonically in the function. Failing here
818 means that the initialization of array got lost. */
819 gcc_assert (n_old_labels
<= n_labels
);
821 memset (label_align
+ n_old_labels
, 0,
822 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
825 /* Update the already computed alignment information. LABEL_PAIRS is a vector
826 made up of pairs of labels for which the alignment information of the first
827 element will be copied from that of the second element. */
830 update_alignments (vec
<rtx
> &label_pairs
)
833 rtx iter
, label
= NULL_RTX
;
835 if (max_labelno
!= max_label_num ())
838 FOR_EACH_VEC_ELT (label_pairs
, i
, iter
)
841 LABEL_TO_ALIGNMENT (label
) = LABEL_TO_ALIGNMENT (iter
);
842 LABEL_TO_MAX_SKIP (label
) = LABEL_TO_MAX_SKIP (iter
);
850 const pass_data pass_data_compute_alignments
=
853 "alignments", /* name */
854 OPTGROUP_NONE
, /* optinfo_flags */
855 false, /* has_gate */
856 true, /* has_execute */
858 0, /* properties_required */
859 0, /* properties_provided */
860 0, /* properties_destroyed */
861 0, /* todo_flags_start */
862 TODO_verify_rtl_sharing
, /* todo_flags_finish */
865 class pass_compute_alignments
: public rtl_opt_pass
868 pass_compute_alignments (gcc::context
*ctxt
)
869 : rtl_opt_pass (pass_data_compute_alignments
, ctxt
)
872 /* opt_pass methods: */
873 unsigned int execute () { return compute_alignments (); }
875 }; // class pass_compute_alignments
880 make_pass_compute_alignments (gcc::context
*ctxt
)
882 return new pass_compute_alignments (ctxt
);
886 /* Make a pass over all insns and compute their actual lengths by shortening
887 any branches of variable length if possible. */
889 /* shorten_branches might be called multiple times: for example, the SH
890 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
891 In order to do this, it needs proper length information, which it obtains
892 by calling shorten_branches. This cannot be collapsed with
893 shorten_branches itself into a single pass unless we also want to integrate
894 reorg.c, since the branch splitting exposes new instructions with delay
898 shorten_branches (rtx first
)
905 #define MAX_CODE_ALIGN 16
907 int something_changed
= 1;
908 char *varying_length
;
911 rtx align_tab
[MAX_CODE_ALIGN
];
913 /* Compute maximum UID and allocate label_align / uid_shuid. */
914 max_uid
= get_max_uid ();
916 /* Free uid_shuid before reallocating it. */
919 uid_shuid
= XNEWVEC (int, max_uid
);
921 if (max_labelno
!= max_label_num ())
924 /* Initialize label_align and set up uid_shuid to be strictly
925 monotonically rising with insn order. */
926 /* We use max_log here to keep track of the maximum alignment we want to
927 impose on the next CODE_LABEL (or the current one if we are processing
928 the CODE_LABEL itself). */
933 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
937 INSN_SHUID (insn
) = i
++;
944 bool next_is_jumptable
;
946 /* Merge in alignments computed by compute_alignments. */
947 log
= LABEL_TO_ALIGNMENT (insn
);
951 max_skip
= LABEL_TO_MAX_SKIP (insn
);
954 next
= next_nonnote_insn (insn
);
955 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
956 if (!next_is_jumptable
)
958 log
= LABEL_ALIGN (insn
);
962 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
965 /* ADDR_VECs only take room if read-only data goes into the text
967 if ((JUMP_TABLES_IN_TEXT_SECTION
968 || readonly_data_section
== text_section
)
969 && next_is_jumptable
)
971 log
= ADDR_VEC_ALIGN (next
);
975 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
978 LABEL_TO_ALIGNMENT (insn
) = max_log
;
979 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
983 else if (BARRIER_P (insn
))
987 for (label
= insn
; label
&& ! INSN_P (label
);
988 label
= NEXT_INSN (label
))
991 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
995 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
1001 if (!HAVE_ATTR_length
)
1004 /* Allocate the rest of the arrays. */
1005 insn_lengths
= XNEWVEC (int, max_uid
);
1006 insn_lengths_max_uid
= max_uid
;
1007 /* Syntax errors can lead to labels being outside of the main insn stream.
1008 Initialize insn_addresses, so that we get reproducible results. */
1009 INSN_ADDRESSES_ALLOC (max_uid
);
1011 varying_length
= XCNEWVEC (char, max_uid
);
1013 /* Initialize uid_align. We scan instructions
1014 from end to start, and keep in align_tab[n] the last seen insn
1015 that does an alignment of at least n+1, i.e. the successor
1016 in the alignment chain for an insn that does / has a known
1018 uid_align
= XCNEWVEC (rtx
, max_uid
);
1020 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1021 align_tab
[i
] = NULL_RTX
;
1022 seq
= get_last_insn ();
1023 for (; seq
; seq
= PREV_INSN (seq
))
1025 int uid
= INSN_UID (seq
);
1027 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
1028 uid_align
[uid
] = align_tab
[0];
1031 /* Found an alignment label. */
1032 uid_align
[uid
] = align_tab
[log
];
1033 for (i
= log
- 1; i
>= 0; i
--)
1038 /* When optimizing, we start assuming minimum length, and keep increasing
1039 lengths as we find the need for this, till nothing changes.
1040 When not optimizing, we start assuming maximum lengths, and
1041 do a single pass to update the lengths. */
1042 bool increasing
= optimize
!= 0;
1044 #ifdef CASE_VECTOR_SHORTEN_MODE
1047 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1050 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1051 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1054 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1056 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1057 int len
, i
, min
, max
, insn_shuid
;
1059 addr_diff_vec_flags flags
;
1061 if (! JUMP_TABLE_DATA_P (insn
)
1062 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1064 pat
= PATTERN (insn
);
1065 len
= XVECLEN (pat
, 1);
1066 gcc_assert (len
> 0);
1067 min_align
= MAX_CODE_ALIGN
;
1068 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1070 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1071 int shuid
= INSN_SHUID (lab
);
1082 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1083 min_align
= LABEL_TO_ALIGNMENT (lab
);
1085 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1086 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1087 insn_shuid
= INSN_SHUID (insn
);
1088 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1089 memset (&flags
, 0, sizeof (flags
));
1090 flags
.min_align
= min_align
;
1091 flags
.base_after_vec
= rel
> insn_shuid
;
1092 flags
.min_after_vec
= min
> insn_shuid
;
1093 flags
.max_after_vec
= max
> insn_shuid
;
1094 flags
.min_after_base
= min
> rel
;
1095 flags
.max_after_base
= max
> rel
;
1096 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1099 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1102 #endif /* CASE_VECTOR_SHORTEN_MODE */
1104 /* Compute initial lengths, addresses, and varying flags for each insn. */
1105 int (*length_fun
) (rtx
) = increasing
? insn_min_length
: insn_default_length
;
1107 for (insn_current_address
= 0, insn
= first
;
1109 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1111 uid
= INSN_UID (insn
);
1113 insn_lengths
[uid
] = 0;
1117 int log
= LABEL_TO_ALIGNMENT (insn
);
1120 int align
= 1 << log
;
1121 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1122 insn_lengths
[uid
] = new_address
- insn_current_address
;
1126 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1128 if (NOTE_P (insn
) || BARRIER_P (insn
)
1129 || LABEL_P (insn
) || DEBUG_INSN_P (insn
))
1131 if (INSN_DELETED_P (insn
))
1134 body
= PATTERN (insn
);
1135 if (JUMP_TABLE_DATA_P (insn
))
1137 /* This only takes room if read-only data goes into the text
1139 if (JUMP_TABLES_IN_TEXT_SECTION
1140 || readonly_data_section
== text_section
)
1141 insn_lengths
[uid
] = (XVECLEN (body
,
1142 GET_CODE (body
) == ADDR_DIFF_VEC
)
1143 * GET_MODE_SIZE (GET_MODE (body
)));
1144 /* Alignment is handled by ADDR_VEC_ALIGN. */
1146 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1147 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1148 else if (GET_CODE (body
) == SEQUENCE
)
1151 int const_delay_slots
;
1153 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1155 const_delay_slots
= 0;
1157 int (*inner_length_fun
) (rtx
)
1158 = const_delay_slots
? length_fun
: insn_default_length
;
1159 /* Inside a delay slot sequence, we do not do any branch shortening
1160 if the shortening could change the number of delay slots
1162 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1164 rtx inner_insn
= XVECEXP (body
, 0, i
);
1165 int inner_uid
= INSN_UID (inner_insn
);
1168 if (GET_CODE (body
) == ASM_INPUT
1169 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1170 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1171 * insn_default_length (inner_insn
));
1173 inner_length
= inner_length_fun (inner_insn
);
1175 insn_lengths
[inner_uid
] = inner_length
;
1176 if (const_delay_slots
)
1178 if ((varying_length
[inner_uid
]
1179 = insn_variable_length_p (inner_insn
)) != 0)
1180 varying_length
[uid
] = 1;
1181 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1182 + insn_lengths
[uid
]);
1185 varying_length
[inner_uid
] = 0;
1186 insn_lengths
[uid
] += inner_length
;
1189 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1191 insn_lengths
[uid
] = length_fun (insn
);
1192 varying_length
[uid
] = insn_variable_length_p (insn
);
1195 /* If needed, do any adjustment. */
1196 #ifdef ADJUST_INSN_LENGTH
1197 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1198 if (insn_lengths
[uid
] < 0)
1199 fatal_insn ("negative insn length", insn
);
1203 /* Now loop over all the insns finding varying length insns. For each,
1204 get the current insn length. If it has changed, reflect the change.
1205 When nothing changes for a full pass, we are done. */
1207 while (something_changed
)
1209 something_changed
= 0;
1210 insn_current_align
= MAX_CODE_ALIGN
- 1;
1211 for (insn_current_address
= 0, insn
= first
;
1213 insn
= NEXT_INSN (insn
))
1216 #ifdef ADJUST_INSN_LENGTH
1221 uid
= INSN_UID (insn
);
1225 int log
= LABEL_TO_ALIGNMENT (insn
);
1227 #ifdef CASE_VECTOR_SHORTEN_MODE
1228 /* If the mode of a following jump table was changed, we
1229 may need to update the alignment of this label. */
1231 bool next_is_jumptable
;
1233 next
= next_nonnote_insn (insn
);
1234 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1235 if ((JUMP_TABLES_IN_TEXT_SECTION
1236 || readonly_data_section
== text_section
)
1237 && next_is_jumptable
)
1239 int newlog
= ADDR_VEC_ALIGN (next
);
1243 LABEL_TO_ALIGNMENT (insn
) = log
;
1244 something_changed
= 1;
1249 if (log
> insn_current_align
)
1251 int align
= 1 << log
;
1252 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1253 insn_lengths
[uid
] = new_address
- insn_current_address
;
1254 insn_current_align
= log
;
1255 insn_current_address
= new_address
;
1258 insn_lengths
[uid
] = 0;
1259 INSN_ADDRESSES (uid
) = insn_current_address
;
1263 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1264 if (length_align
< insn_current_align
)
1265 insn_current_align
= length_align
;
1267 insn_last_address
= INSN_ADDRESSES (uid
);
1268 INSN_ADDRESSES (uid
) = insn_current_address
;
1270 #ifdef CASE_VECTOR_SHORTEN_MODE
1272 && JUMP_TABLE_DATA_P (insn
)
1273 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1275 rtx body
= PATTERN (insn
);
1276 int old_length
= insn_lengths
[uid
];
1277 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1278 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1279 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1280 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1281 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1282 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1285 addr_diff_vec_flags flags
;
1286 enum machine_mode vec_mode
;
1288 /* Avoid automatic aggregate initialization. */
1289 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1291 /* Try to find a known alignment for rel_lab. */
1292 for (prev
= rel_lab
;
1294 && ! insn_lengths
[INSN_UID (prev
)]
1295 && ! (varying_length
[INSN_UID (prev
)] & 1);
1296 prev
= PREV_INSN (prev
))
1297 if (varying_length
[INSN_UID (prev
)] & 2)
1299 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1303 /* See the comment on addr_diff_vec_flags in rtl.h for the
1304 meaning of the flags values. base: REL_LAB vec: INSN */
1305 /* Anything after INSN has still addresses from the last
1306 pass; adjust these so that they reflect our current
1307 estimate for this pass. */
1308 if (flags
.base_after_vec
)
1309 rel_addr
+= insn_current_address
- insn_last_address
;
1310 if (flags
.min_after_vec
)
1311 min_addr
+= insn_current_address
- insn_last_address
;
1312 if (flags
.max_after_vec
)
1313 max_addr
+= insn_current_address
- insn_last_address
;
1314 /* We want to know the worst case, i.e. lowest possible value
1315 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1316 its offset is positive, and we have to be wary of code shrink;
1317 otherwise, it is negative, and we have to be vary of code
1319 if (flags
.min_after_base
)
1321 /* If INSN is between REL_LAB and MIN_LAB, the size
1322 changes we are about to make can change the alignment
1323 within the observed offset, therefore we have to break
1324 it up into two parts that are independent. */
1325 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1327 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1328 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1331 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1335 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1337 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1338 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1341 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1343 /* Likewise, determine the highest lowest possible value
1344 for the offset of MAX_LAB. */
1345 if (flags
.max_after_base
)
1347 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1349 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1350 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1353 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1357 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1359 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1360 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1363 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1365 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1366 max_addr
- rel_addr
, body
);
1368 || (GET_MODE_SIZE (vec_mode
)
1369 >= GET_MODE_SIZE (GET_MODE (body
))))
1370 PUT_MODE (body
, vec_mode
);
1371 if (JUMP_TABLES_IN_TEXT_SECTION
1372 || readonly_data_section
== text_section
)
1375 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1376 insn_current_address
+= insn_lengths
[uid
];
1377 if (insn_lengths
[uid
] != old_length
)
1378 something_changed
= 1;
1383 #endif /* CASE_VECTOR_SHORTEN_MODE */
1385 if (! (varying_length
[uid
]))
1387 if (NONJUMP_INSN_P (insn
)
1388 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1392 body
= PATTERN (insn
);
1393 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1395 rtx inner_insn
= XVECEXP (body
, 0, i
);
1396 int inner_uid
= INSN_UID (inner_insn
);
1398 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1400 insn_current_address
+= insn_lengths
[inner_uid
];
1404 insn_current_address
+= insn_lengths
[uid
];
1409 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1413 body
= PATTERN (insn
);
1415 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1417 rtx inner_insn
= XVECEXP (body
, 0, i
);
1418 int inner_uid
= INSN_UID (inner_insn
);
1421 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1423 /* insn_current_length returns 0 for insns with a
1424 non-varying length. */
1425 if (! varying_length
[inner_uid
])
1426 inner_length
= insn_lengths
[inner_uid
];
1428 inner_length
= insn_current_length (inner_insn
);
1430 if (inner_length
!= insn_lengths
[inner_uid
])
1432 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1434 insn_lengths
[inner_uid
] = inner_length
;
1435 something_changed
= 1;
1438 inner_length
= insn_lengths
[inner_uid
];
1440 insn_current_address
+= inner_length
;
1441 new_length
+= inner_length
;
1446 new_length
= insn_current_length (insn
);
1447 insn_current_address
+= new_length
;
1450 #ifdef ADJUST_INSN_LENGTH
1451 /* If needed, do any adjustment. */
1452 tmp_length
= new_length
;
1453 ADJUST_INSN_LENGTH (insn
, new_length
);
1454 insn_current_address
+= (new_length
- tmp_length
);
1457 if (new_length
!= insn_lengths
[uid
]
1458 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1460 insn_lengths
[uid
] = new_length
;
1461 something_changed
= 1;
1464 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1466 /* For a non-optimizing compile, do only a single pass. */
1471 free (varying_length
);
1474 /* Given the body of an INSN known to be generated by an ASM statement, return
1475 the number of machine instructions likely to be generated for this insn.
1476 This is used to compute its length. */
1479 asm_insn_count (rtx body
)
1483 if (GET_CODE (body
) == ASM_INPUT
)
1484 templ
= XSTR (body
, 0);
1486 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1488 return asm_str_count (templ
);
1491 /* Return the number of machine instructions likely to be generated for the
1492 inline-asm template. */
1494 asm_str_count (const char *templ
)
1501 for (; *templ
; templ
++)
1502 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1509 /* ??? This is probably the wrong place for these. */
1510 /* Structure recording the mapping from source file and directory
1511 names at compile time to those to be embedded in debug
1513 typedef struct debug_prefix_map
1515 const char *old_prefix
;
1516 const char *new_prefix
;
1519 struct debug_prefix_map
*next
;
1522 /* Linked list of such structures. */
1523 static debug_prefix_map
*debug_prefix_maps
;
1526 /* Record a debug file prefix mapping. ARG is the argument to
1527 -fdebug-prefix-map and must be of the form OLD=NEW. */
1530 add_debug_prefix_map (const char *arg
)
1532 debug_prefix_map
*map
;
1535 p
= strchr (arg
, '=');
1538 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1541 map
= XNEW (debug_prefix_map
);
1542 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1543 map
->old_len
= p
- arg
;
1545 map
->new_prefix
= xstrdup (p
);
1546 map
->new_len
= strlen (p
);
1547 map
->next
= debug_prefix_maps
;
1548 debug_prefix_maps
= map
;
1551 /* Perform user-specified mapping of debug filename prefixes. Return
1552 the new name corresponding to FILENAME. */
1555 remap_debug_filename (const char *filename
)
1557 debug_prefix_map
*map
;
1562 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1563 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1567 name
= filename
+ map
->old_len
;
1568 name_len
= strlen (name
) + 1;
1569 s
= (char *) alloca (name_len
+ map
->new_len
);
1570 memcpy (s
, map
->new_prefix
, map
->new_len
);
1571 memcpy (s
+ map
->new_len
, name
, name_len
);
1572 return ggc_strdup (s
);
1575 /* Return true if DWARF2 debug info can be emitted for DECL. */
1578 dwarf2_debug_info_emitted_p (tree decl
)
1580 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1583 if (DECL_IGNORED_P (decl
))
1589 /* Return scope resulting from combination of S1 and S2. */
1591 choose_inner_scope (tree s1
, tree s2
)
1597 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1602 /* Emit lexical block notes needed to change scope from S1 to S2. */
1605 change_scope (rtx orig_insn
, tree s1
, tree s2
)
1607 rtx insn
= orig_insn
;
1608 tree com
= NULL_TREE
;
1609 tree ts1
= s1
, ts2
= s2
;
1614 gcc_assert (ts1
&& ts2
);
1615 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1616 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1617 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1618 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1621 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1622 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1631 rtx note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1632 NOTE_BLOCK (note
) = s
;
1633 s
= BLOCK_SUPERCONTEXT (s
);
1640 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1641 NOTE_BLOCK (insn
) = s
;
1642 s
= BLOCK_SUPERCONTEXT (s
);
1646 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1647 on the scope tree and the newly reordered instructions. */
1650 reemit_insn_block_notes (void)
1652 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1655 insn
= get_insns ();
1656 for (; insn
; insn
= NEXT_INSN (insn
))
1660 /* Prevent lexical blocks from straddling section boundaries. */
1661 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
1663 for (tree s
= cur_block
; s
!= DECL_INITIAL (cfun
->decl
);
1664 s
= BLOCK_SUPERCONTEXT (s
))
1666 rtx note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1667 NOTE_BLOCK (note
) = s
;
1668 note
= emit_note_after (NOTE_INSN_BLOCK_BEG
, insn
);
1669 NOTE_BLOCK (note
) = s
;
1673 if (!active_insn_p (insn
))
1676 /* Avoid putting scope notes between jump table and its label. */
1677 if (JUMP_TABLE_DATA_P (insn
))
1680 this_block
= insn_scope (insn
);
1681 /* For sequences compute scope resulting from merging all scopes
1682 of instructions nested inside. */
1683 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1686 rtx body
= PATTERN (insn
);
1689 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1690 this_block
= choose_inner_scope (this_block
,
1691 insn_scope (XVECEXP (body
, 0, i
)));
1695 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1698 this_block
= DECL_INITIAL (cfun
->decl
);
1701 if (this_block
!= cur_block
)
1703 change_scope (insn
, cur_block
, this_block
);
1704 cur_block
= this_block
;
1708 /* change_scope emits before the insn, not after. */
1709 note
= emit_note (NOTE_INSN_DELETED
);
1710 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1716 /* Output assembler code for the start of a function,
1717 and initialize some of the variables in this file
1718 for the new function. The label for the function and associated
1719 assembler pseudo-ops have already been output in `assemble_start_function'.
1721 FIRST is the first insn of the rtl for the function being compiled.
1722 FILE is the file to write assembler code to.
1723 OPTIMIZE_P is nonzero if we should eliminate redundant
1724 test and compare insns. */
1727 final_start_function (rtx first
, FILE *file
,
1728 int optimize_p ATTRIBUTE_UNUSED
)
1732 this_is_asm_operands
= 0;
1734 need_profile_function
= false;
1736 last_filename
= LOCATION_FILE (prologue_location
);
1737 last_linenum
= LOCATION_LINE (prologue_location
);
1738 last_discriminator
= discriminator
= 0;
1740 high_block_linenum
= high_function_linenum
= last_linenum
;
1742 if (flag_sanitize
& SANITIZE_ADDRESS
)
1743 asan_function_start ();
1745 if (!DECL_IGNORED_P (current_function_decl
))
1746 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1748 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1749 dwarf2out_begin_prologue (0, NULL
);
1751 #ifdef LEAF_REG_REMAP
1752 if (crtl
->uses_only_leaf_regs
)
1753 leaf_renumber_regs (first
);
1756 /* The Sun386i and perhaps other machines don't work right
1757 if the profiling code comes after the prologue. */
1758 if (targetm
.profile_before_prologue () && crtl
->profile
)
1760 if (targetm
.asm_out
.function_prologue
1761 == default_function_pro_epilogue
1762 #ifdef HAVE_prologue
1768 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1774 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1775 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1777 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1778 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1787 need_profile_function
= true;
1789 profile_function (file
);
1792 profile_function (file
);
1795 /* If debugging, assign block numbers to all of the blocks in this
1799 reemit_insn_block_notes ();
1800 number_blocks (current_function_decl
);
1801 /* We never actually put out begin/end notes for the top-level
1802 block in the function. But, conceptually, that block is
1804 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1807 if (warn_frame_larger_than
1808 && get_frame_size () > frame_larger_than_size
)
1810 /* Issue a warning */
1811 warning (OPT_Wframe_larger_than_
,
1812 "the frame size of %wd bytes is larger than %wd bytes",
1813 get_frame_size (), frame_larger_than_size
);
1816 /* First output the function prologue: code to set up the stack frame. */
1817 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1819 /* If the machine represents the prologue as RTL, the profiling code must
1820 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1821 #ifdef HAVE_prologue
1822 if (! HAVE_prologue
)
1824 profile_after_prologue (file
);
1828 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1830 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1831 profile_function (file
);
1835 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1837 #ifndef NO_PROFILE_COUNTERS
1838 # define NO_PROFILE_COUNTERS 0
1840 #ifdef ASM_OUTPUT_REG_PUSH
1841 rtx sval
= NULL
, chain
= NULL
;
1843 if (cfun
->returns_struct
)
1844 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1846 if (cfun
->static_chain_decl
)
1847 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1848 #endif /* ASM_OUTPUT_REG_PUSH */
1850 if (! NO_PROFILE_COUNTERS
)
1852 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1853 switch_to_section (data_section
);
1854 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1855 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1856 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1859 switch_to_section (current_function_section ());
1861 #ifdef ASM_OUTPUT_REG_PUSH
1862 if (sval
&& REG_P (sval
))
1863 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1864 if (chain
&& REG_P (chain
))
1865 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1868 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1870 #ifdef ASM_OUTPUT_REG_PUSH
1871 if (chain
&& REG_P (chain
))
1872 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1873 if (sval
&& REG_P (sval
))
1874 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1878 /* Output assembler code for the end of a function.
1879 For clarity, args are same as those of `final_start_function'
1880 even though not all of them are needed. */
1883 final_end_function (void)
1887 if (!DECL_IGNORED_P (current_function_decl
))
1888 debug_hooks
->end_function (high_function_linenum
);
1890 /* Finally, output the function epilogue:
1891 code to restore the stack frame and return to the caller. */
1892 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1894 /* And debug output. */
1895 if (!DECL_IGNORED_P (current_function_decl
))
1896 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1898 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1899 && dwarf2out_do_frame ())
1900 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1904 /* Dumper helper for basic block information. FILE is the assembly
1905 output file, and INSN is the instruction being emitted. */
1908 dump_basic_block_info (FILE *file
, rtx insn
, basic_block
*start_to_bb
,
1909 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1913 if (!flag_debug_asm
)
1916 if (INSN_UID (insn
) < bb_map_size
1917 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1922 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1924 fprintf (file
, " freq:%d", bb
->frequency
);
1926 fprintf (file
, " count:" HOST_WIDEST_INT_PRINT_DEC
,
1928 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1929 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1930 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1932 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
1934 fprintf (file
, "\n");
1936 if (INSN_UID (insn
) < bb_map_size
1937 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
1942 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
1943 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1945 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
1947 fprintf (file
, "\n");
1951 /* Output assembler code for some insns: all or part of a function.
1952 For description of args, see `final_start_function', above. */
1955 final (rtx first
, FILE *file
, int optimize_p
)
1960 /* Used for -dA dump. */
1961 basic_block
*start_to_bb
= NULL
;
1962 basic_block
*end_to_bb
= NULL
;
1963 int bb_map_size
= 0;
1966 last_ignored_compare
= 0;
1969 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1971 /* If CC tracking across branches is enabled, record the insn which
1972 jumps to each branch only reached from one place. */
1973 if (optimize_p
&& JUMP_P (insn
))
1975 rtx lab
= JUMP_LABEL (insn
);
1976 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
1978 LABEL_REFS (lab
) = insn
;
1992 bb_map_size
= get_max_uid () + 1;
1993 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
1994 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
1996 /* There is no cfg for a thunk. */
1997 if (!cfun
->is_thunk
)
1998 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2000 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
2001 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
2005 /* Output the insns. */
2006 for (insn
= first
; insn
;)
2008 if (HAVE_ATTR_length
)
2010 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
2012 /* This can be triggered by bugs elsewhere in the compiler if
2013 new insns are created after init_insn_lengths is called. */
2014 gcc_assert (NOTE_P (insn
));
2015 insn_current_address
= -1;
2018 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2021 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
2022 bb_map_size
, &bb_seqn
);
2023 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
2032 /* Remove CFI notes, to avoid compare-debug failures. */
2033 for (insn
= first
; insn
; insn
= next
)
2035 next
= NEXT_INSN (insn
);
2037 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
2038 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
2044 get_insn_template (int code
, rtx insn
)
2046 switch (insn_data
[code
].output_format
)
2048 case INSN_OUTPUT_FORMAT_SINGLE
:
2049 return insn_data
[code
].output
.single
;
2050 case INSN_OUTPUT_FORMAT_MULTI
:
2051 return insn_data
[code
].output
.multi
[which_alternative
];
2052 case INSN_OUTPUT_FORMAT_FUNCTION
:
2054 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
2061 /* Emit the appropriate declaration for an alternate-entry-point
2062 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2063 LABEL_KIND != LABEL_NORMAL.
2065 The case fall-through in this function is intentional. */
2067 output_alternate_entry_point (FILE *file
, rtx insn
)
2069 const char *name
= LABEL_NAME (insn
);
2071 switch (LABEL_KIND (insn
))
2073 case LABEL_WEAK_ENTRY
:
2074 #ifdef ASM_WEAKEN_LABEL
2075 ASM_WEAKEN_LABEL (file
, name
);
2077 case LABEL_GLOBAL_ENTRY
:
2078 targetm
.asm_out
.globalize_label (file
, name
);
2079 case LABEL_STATIC_ENTRY
:
2080 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2081 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2083 ASM_OUTPUT_LABEL (file
, name
);
2092 /* Given a CALL_INSN, find and return the nested CALL. */
2094 call_from_call_insn (rtx insn
)
2097 gcc_assert (CALL_P (insn
));
2100 while (GET_CODE (x
) != CALL
)
2102 switch (GET_CODE (x
))
2107 x
= COND_EXEC_CODE (x
);
2110 x
= XVECEXP (x
, 0, 0);
2120 /* The final scan for one insn, INSN.
2121 Args are same as in `final', except that INSN
2122 is the insn being scanned.
2123 Value returned is the next insn to be scanned.
2125 NOPEEPHOLES is the flag to disallow peephole processing (currently
2126 used for within delayed branch sequence output).
2128 SEEN is used to track the end of the prologue, for emitting
2129 debug information. We force the emission of a line note after
2130 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2133 final_scan_insn (rtx insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2134 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2143 /* Ignore deleted insns. These can occur when we split insns (due to a
2144 template of "#") while not optimizing. */
2145 if (INSN_DELETED_P (insn
))
2146 return NEXT_INSN (insn
);
2148 switch (GET_CODE (insn
))
2151 switch (NOTE_KIND (insn
))
2153 case NOTE_INSN_DELETED
:
2156 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2157 in_cold_section_p
= !in_cold_section_p
;
2159 if (dwarf2out_do_frame ())
2160 dwarf2out_switch_text_section ();
2161 else if (!DECL_IGNORED_P (current_function_decl
))
2162 debug_hooks
->switch_text_section ();
2164 switch_to_section (current_function_section ());
2165 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2166 current_function_decl
,
2168 /* Emit a label for the split cold section. Form label name by
2169 suffixing "cold" to the original function's name. */
2170 if (in_cold_section_p
)
2172 tree cold_function_name
2173 = clone_function_name (current_function_decl
, "cold");
2174 ASM_OUTPUT_LABEL (asm_out_file
,
2175 IDENTIFIER_POINTER (cold_function_name
));
2179 case NOTE_INSN_BASIC_BLOCK
:
2180 if (need_profile_function
)
2182 profile_function (asm_out_file
);
2183 need_profile_function
= false;
2186 if (targetm
.asm_out
.unwind_emit
)
2187 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2189 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2193 case NOTE_INSN_EH_REGION_BEG
:
2194 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2195 NOTE_EH_HANDLER (insn
));
2198 case NOTE_INSN_EH_REGION_END
:
2199 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2200 NOTE_EH_HANDLER (insn
));
2203 case NOTE_INSN_PROLOGUE_END
:
2204 targetm
.asm_out
.function_end_prologue (file
);
2205 profile_after_prologue (file
);
2207 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2209 *seen
|= SEEN_EMITTED
;
2210 force_source_line
= true;
2217 case NOTE_INSN_EPILOGUE_BEG
:
2218 if (!DECL_IGNORED_P (current_function_decl
))
2219 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2220 targetm
.asm_out
.function_begin_epilogue (file
);
2224 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2227 case NOTE_INSN_CFI_LABEL
:
2228 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2229 NOTE_LABEL_NUMBER (insn
));
2232 case NOTE_INSN_FUNCTION_BEG
:
2233 if (need_profile_function
)
2235 profile_function (asm_out_file
);
2236 need_profile_function
= false;
2240 if (!DECL_IGNORED_P (current_function_decl
))
2241 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2243 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2245 *seen
|= SEEN_EMITTED
;
2246 force_source_line
= true;
2253 case NOTE_INSN_BLOCK_BEG
:
2254 if (debug_info_level
== DINFO_LEVEL_NORMAL
2255 || debug_info_level
== DINFO_LEVEL_VERBOSE
2256 || write_symbols
== DWARF2_DEBUG
2257 || write_symbols
== VMS_AND_DWARF2_DEBUG
2258 || write_symbols
== VMS_DEBUG
)
2260 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2264 high_block_linenum
= last_linenum
;
2266 /* Output debugging info about the symbol-block beginning. */
2267 if (!DECL_IGNORED_P (current_function_decl
))
2268 debug_hooks
->begin_block (last_linenum
, n
);
2270 /* Mark this block as output. */
2271 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2273 if (write_symbols
== DBX_DEBUG
2274 || write_symbols
== SDB_DEBUG
)
2276 location_t
*locus_ptr
2277 = block_nonartificial_location (NOTE_BLOCK (insn
));
2279 if (locus_ptr
!= NULL
)
2281 override_filename
= LOCATION_FILE (*locus_ptr
);
2282 override_linenum
= LOCATION_LINE (*locus_ptr
);
2287 case NOTE_INSN_BLOCK_END
:
2288 if (debug_info_level
== DINFO_LEVEL_NORMAL
2289 || debug_info_level
== DINFO_LEVEL_VERBOSE
2290 || write_symbols
== DWARF2_DEBUG
2291 || write_symbols
== VMS_AND_DWARF2_DEBUG
2292 || write_symbols
== VMS_DEBUG
)
2294 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2298 /* End of a symbol-block. */
2300 gcc_assert (block_depth
>= 0);
2302 if (!DECL_IGNORED_P (current_function_decl
))
2303 debug_hooks
->end_block (high_block_linenum
, n
);
2305 if (write_symbols
== DBX_DEBUG
2306 || write_symbols
== SDB_DEBUG
)
2308 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2309 location_t
*locus_ptr
2310 = block_nonartificial_location (outer_block
);
2312 if (locus_ptr
!= NULL
)
2314 override_filename
= LOCATION_FILE (*locus_ptr
);
2315 override_linenum
= LOCATION_LINE (*locus_ptr
);
2319 override_filename
= NULL
;
2320 override_linenum
= 0;
2325 case NOTE_INSN_DELETED_LABEL
:
2326 /* Emit the label. We may have deleted the CODE_LABEL because
2327 the label could be proved to be unreachable, though still
2328 referenced (in the form of having its address taken. */
2329 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2332 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2333 /* Similarly, but need to use different namespace for it. */
2334 if (CODE_LABEL_NUMBER (insn
) != -1)
2335 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2338 case NOTE_INSN_VAR_LOCATION
:
2339 case NOTE_INSN_CALL_ARG_LOCATION
:
2340 if (!DECL_IGNORED_P (current_function_decl
))
2341 debug_hooks
->var_location (insn
);
2354 /* The target port might emit labels in the output function for
2355 some insn, e.g. sh.c output_branchy_insn. */
2356 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2358 int align
= LABEL_TO_ALIGNMENT (insn
);
2359 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2360 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2363 if (align
&& NEXT_INSN (insn
))
2365 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2366 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2368 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2369 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2371 ASM_OUTPUT_ALIGN (file
, align
);
2378 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2379 debug_hooks
->label (insn
);
2383 next
= next_nonnote_insn (insn
);
2384 /* If this label is followed by a jump-table, make sure we put
2385 the label in the read-only section. Also possibly write the
2386 label and jump table together. */
2387 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2389 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2390 /* In this case, the case vector is being moved by the
2391 target, so don't output the label at all. Leave that
2392 to the back end macros. */
2394 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2398 switch_to_section (targetm
.asm_out
.function_rodata_section
2399 (current_function_decl
));
2401 #ifdef ADDR_VEC_ALIGN
2402 log_align
= ADDR_VEC_ALIGN (next
);
2404 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2406 ASM_OUTPUT_ALIGN (file
, log_align
);
2409 switch_to_section (current_function_section ());
2411 #ifdef ASM_OUTPUT_CASE_LABEL
2412 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2415 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2420 if (LABEL_ALT_ENTRY_P (insn
))
2421 output_alternate_entry_point (file
, insn
);
2423 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2428 rtx body
= PATTERN (insn
);
2429 int insn_code_number
;
2433 /* Reset this early so it is correct for ASM statements. */
2434 current_insn_predicate
= NULL_RTX
;
2436 /* An INSN, JUMP_INSN or CALL_INSN.
2437 First check for special kinds that recog doesn't recognize. */
2439 if (GET_CODE (body
) == USE
/* These are just declarations. */
2440 || GET_CODE (body
) == CLOBBER
)
2445 /* If there is a REG_CC_SETTER note on this insn, it means that
2446 the setting of the condition code was done in the delay slot
2447 of the insn that branched here. So recover the cc status
2448 from the insn that set it. */
2450 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2453 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2454 cc_prev_status
= cc_status
;
2459 /* Detect insns that are really jump-tables
2460 and output them as such. */
2462 if (JUMP_TABLE_DATA_P (insn
))
2464 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2468 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2469 switch_to_section (targetm
.asm_out
.function_rodata_section
2470 (current_function_decl
));
2472 switch_to_section (current_function_section ());
2476 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2477 if (GET_CODE (body
) == ADDR_VEC
)
2479 #ifdef ASM_OUTPUT_ADDR_VEC
2480 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2487 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2488 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2494 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2495 for (idx
= 0; idx
< vlen
; idx
++)
2497 if (GET_CODE (body
) == ADDR_VEC
)
2499 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2500 ASM_OUTPUT_ADDR_VEC_ELT
2501 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2508 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2509 ASM_OUTPUT_ADDR_DIFF_ELT
2512 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2513 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2519 #ifdef ASM_OUTPUT_CASE_END
2520 ASM_OUTPUT_CASE_END (file
,
2521 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2526 switch_to_section (current_function_section ());
2530 /* Output this line note if it is the first or the last line
2532 if (!DECL_IGNORED_P (current_function_decl
)
2533 && notice_source_line (insn
, &is_stmt
))
2534 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2535 last_discriminator
, is_stmt
);
2537 if (GET_CODE (body
) == ASM_INPUT
)
2539 const char *string
= XSTR (body
, 0);
2541 /* There's no telling what that did to the condition codes. */
2546 expanded_location loc
;
2549 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2550 if (*loc
.file
&& loc
.line
)
2551 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2552 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2553 fprintf (asm_out_file
, "\t%s\n", string
);
2554 #if HAVE_AS_LINE_ZERO
2555 if (*loc
.file
&& loc
.line
)
2556 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2562 /* Detect `asm' construct with operands. */
2563 if (asm_noperands (body
) >= 0)
2565 unsigned int noperands
= asm_noperands (body
);
2566 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2569 expanded_location expanded
;
2571 /* There's no telling what that did to the condition codes. */
2574 /* Get out the operand values. */
2575 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2576 /* Inhibit dying on what would otherwise be compiler bugs. */
2577 insn_noperands
= noperands
;
2578 this_is_asm_operands
= insn
;
2579 expanded
= expand_location (loc
);
2581 #ifdef FINAL_PRESCAN_INSN
2582 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2585 /* Output the insn using them. */
2589 if (expanded
.file
&& expanded
.line
)
2590 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2591 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2592 output_asm_insn (string
, ops
);
2593 #if HAVE_AS_LINE_ZERO
2594 if (expanded
.file
&& expanded
.line
)
2595 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2599 if (targetm
.asm_out
.final_postscan_insn
)
2600 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2603 this_is_asm_operands
= 0;
2609 if (GET_CODE (body
) == SEQUENCE
)
2611 /* A delayed-branch sequence */
2614 final_sequence
= body
;
2616 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2617 force the restoration of a comparison that was previously
2618 thought unnecessary. If that happens, cancel this sequence
2619 and cause that insn to be restored. */
2621 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, 1, seen
);
2622 if (next
!= XVECEXP (body
, 0, 1))
2628 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2630 rtx insn
= XVECEXP (body
, 0, i
);
2631 rtx next
= NEXT_INSN (insn
);
2632 /* We loop in case any instruction in a delay slot gets
2635 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2636 while (insn
!= next
);
2638 #ifdef DBR_OUTPUT_SEQEND
2639 DBR_OUTPUT_SEQEND (file
);
2643 /* If the insn requiring the delay slot was a CALL_INSN, the
2644 insns in the delay slot are actually executed before the
2645 called function. Hence we don't preserve any CC-setting
2646 actions in these insns and the CC must be marked as being
2647 clobbered by the function. */
2648 if (CALL_P (XVECEXP (body
, 0, 0)))
2655 /* We have a real machine instruction as rtl. */
2657 body
= PATTERN (insn
);
2660 set
= single_set (insn
);
2662 /* Check for redundant test and compare instructions
2663 (when the condition codes are already set up as desired).
2664 This is done only when optimizing; if not optimizing,
2665 it should be possible for the user to alter a variable
2666 with the debugger in between statements
2667 and the next statement should reexamine the variable
2668 to compute the condition codes. */
2673 && GET_CODE (SET_DEST (set
)) == CC0
2674 && insn
!= last_ignored_compare
)
2677 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2678 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2680 src1
= SET_SRC (set
);
2682 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2684 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2685 XEXP (SET_SRC (set
), 0)
2686 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2687 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2688 XEXP (SET_SRC (set
), 1)
2689 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2690 if (XEXP (SET_SRC (set
), 1)
2691 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2692 src2
= XEXP (SET_SRC (set
), 0);
2694 if ((cc_status
.value1
!= 0
2695 && rtx_equal_p (src1
, cc_status
.value1
))
2696 || (cc_status
.value2
!= 0
2697 && rtx_equal_p (src1
, cc_status
.value2
))
2698 || (src2
!= 0 && cc_status
.value1
!= 0
2699 && rtx_equal_p (src2
, cc_status
.value1
))
2700 || (src2
!= 0 && cc_status
.value2
!= 0
2701 && rtx_equal_p (src2
, cc_status
.value2
)))
2703 /* Don't delete insn if it has an addressing side-effect. */
2704 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2705 /* or if anything in it is volatile. */
2706 && ! volatile_refs_p (PATTERN (insn
)))
2708 /* We don't really delete the insn; just ignore it. */
2709 last_ignored_compare
= insn
;
2716 /* If this is a conditional branch, maybe modify it
2717 if the cc's are in a nonstandard state
2718 so that it accomplishes the same thing that it would
2719 do straightforwardly if the cc's were set up normally. */
2721 if (cc_status
.flags
!= 0
2723 && GET_CODE (body
) == SET
2724 && SET_DEST (body
) == pc_rtx
2725 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2726 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2727 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2729 /* This function may alter the contents of its argument
2730 and clear some of the cc_status.flags bits.
2731 It may also return 1 meaning condition now always true
2732 or -1 meaning condition now always false
2733 or 2 meaning condition nontrivial but altered. */
2734 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2735 /* If condition now has fixed value, replace the IF_THEN_ELSE
2736 with its then-operand or its else-operand. */
2738 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2740 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2742 /* The jump is now either unconditional or a no-op.
2743 If it has become a no-op, don't try to output it.
2744 (It would not be recognized.) */
2745 if (SET_SRC (body
) == pc_rtx
)
2750 else if (ANY_RETURN_P (SET_SRC (body
)))
2751 /* Replace (set (pc) (return)) with (return). */
2752 PATTERN (insn
) = body
= SET_SRC (body
);
2754 /* Rerecognize the instruction if it has changed. */
2756 INSN_CODE (insn
) = -1;
2759 /* If this is a conditional trap, maybe modify it if the cc's
2760 are in a nonstandard state so that it accomplishes the same
2761 thing that it would do straightforwardly if the cc's were
2763 if (cc_status
.flags
!= 0
2764 && NONJUMP_INSN_P (insn
)
2765 && GET_CODE (body
) == TRAP_IF
2766 && COMPARISON_P (TRAP_CONDITION (body
))
2767 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2769 /* This function may alter the contents of its argument
2770 and clear some of the cc_status.flags bits.
2771 It may also return 1 meaning condition now always true
2772 or -1 meaning condition now always false
2773 or 2 meaning condition nontrivial but altered. */
2774 int result
= alter_cond (TRAP_CONDITION (body
));
2776 /* If TRAP_CONDITION has become always false, delete the
2784 /* If TRAP_CONDITION has become always true, replace
2785 TRAP_CONDITION with const_true_rtx. */
2787 TRAP_CONDITION (body
) = const_true_rtx
;
2789 /* Rerecognize the instruction if it has changed. */
2791 INSN_CODE (insn
) = -1;
2794 /* Make same adjustments to instructions that examine the
2795 condition codes without jumping and instructions that
2796 handle conditional moves (if this machine has either one). */
2798 if (cc_status
.flags
!= 0
2801 rtx cond_rtx
, then_rtx
, else_rtx
;
2804 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2806 cond_rtx
= XEXP (SET_SRC (set
), 0);
2807 then_rtx
= XEXP (SET_SRC (set
), 1);
2808 else_rtx
= XEXP (SET_SRC (set
), 2);
2812 cond_rtx
= SET_SRC (set
);
2813 then_rtx
= const_true_rtx
;
2814 else_rtx
= const0_rtx
;
2817 if (COMPARISON_P (cond_rtx
)
2818 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2821 result
= alter_cond (cond_rtx
);
2823 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2824 else if (result
== -1)
2825 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2826 else if (result
== 2)
2827 INSN_CODE (insn
) = -1;
2828 if (SET_DEST (set
) == SET_SRC (set
))
2835 #ifdef HAVE_peephole
2836 /* Do machine-specific peephole optimizations if desired. */
2838 if (optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2840 rtx next
= peephole (insn
);
2841 /* When peepholing, if there were notes within the peephole,
2842 emit them before the peephole. */
2843 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2845 rtx note
, prev
= PREV_INSN (insn
);
2847 for (note
= NEXT_INSN (insn
); note
!= next
;
2848 note
= NEXT_INSN (note
))
2849 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2851 /* Put the notes in the proper position for a later
2852 rescan. For example, the SH target can do this
2853 when generating a far jump in a delayed branch
2855 note
= NEXT_INSN (insn
);
2856 PREV_INSN (note
) = prev
;
2857 NEXT_INSN (prev
) = note
;
2858 NEXT_INSN (PREV_INSN (next
)) = insn
;
2859 PREV_INSN (insn
) = PREV_INSN (next
);
2860 NEXT_INSN (insn
) = next
;
2861 PREV_INSN (next
) = insn
;
2864 /* PEEPHOLE might have changed this. */
2865 body
= PATTERN (insn
);
2869 /* Try to recognize the instruction.
2870 If successful, verify that the operands satisfy the
2871 constraints for the instruction. Crash if they don't,
2872 since `reload' should have changed them so that they do. */
2874 insn_code_number
= recog_memoized (insn
);
2875 cleanup_subreg_operands (insn
);
2877 /* Dump the insn in the assembly for debugging (-dAP).
2878 If the final dump is requested as slim RTL, dump slim
2879 RTL to the assembly file also. */
2880 if (flag_dump_rtl_in_asm
)
2882 print_rtx_head
= ASM_COMMENT_START
;
2883 if (! (dump_flags
& TDF_SLIM
))
2884 print_rtl_single (asm_out_file
, insn
);
2886 dump_insn_slim (asm_out_file
, insn
);
2887 print_rtx_head
= "";
2890 if (! constrain_operands_cached (1))
2891 fatal_insn_not_found (insn
);
2893 /* Some target machines need to prescan each insn before
2896 #ifdef FINAL_PRESCAN_INSN
2897 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2900 if (targetm
.have_conditional_execution ()
2901 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2902 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2905 cc_prev_status
= cc_status
;
2907 /* Update `cc_status' for this instruction.
2908 The instruction's output routine may change it further.
2909 If the output routine for a jump insn needs to depend
2910 on the cc status, it should look at cc_prev_status. */
2912 NOTICE_UPDATE_CC (body
, insn
);
2915 current_output_insn
= debug_insn
= insn
;
2917 /* Find the proper template for this insn. */
2918 templ
= get_insn_template (insn_code_number
, insn
);
2920 /* If the C code returns 0, it means that it is a jump insn
2921 which follows a deleted test insn, and that test insn
2922 needs to be reinserted. */
2927 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2929 /* We have already processed the notes between the setter and
2930 the user. Make sure we don't process them again, this is
2931 particularly important if one of the notes is a block
2932 scope note or an EH note. */
2934 prev
!= last_ignored_compare
;
2935 prev
= PREV_INSN (prev
))
2938 delete_insn (prev
); /* Use delete_note. */
2944 /* If the template is the string "#", it means that this insn must
2946 if (templ
[0] == '#' && templ
[1] == '\0')
2948 rtx new_rtx
= try_split (body
, insn
, 0);
2950 /* If we didn't split the insn, go away. */
2951 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
2952 fatal_insn ("could not split insn", insn
);
2954 /* If we have a length attribute, this instruction should have
2955 been split in shorten_branches, to ensure that we would have
2956 valid length info for the splitees. */
2957 gcc_assert (!HAVE_ATTR_length
);
2962 /* ??? This will put the directives in the wrong place if
2963 get_insn_template outputs assembly directly. However calling it
2964 before get_insn_template breaks if the insns is split. */
2965 if (targetm
.asm_out
.unwind_emit_before_insn
2966 && targetm
.asm_out
.unwind_emit
)
2967 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2971 rtx x
= call_from_call_insn (insn
);
2973 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2977 t
= SYMBOL_REF_DECL (x
);
2979 assemble_external (t
);
2981 if (!DECL_IGNORED_P (current_function_decl
))
2982 debug_hooks
->var_location (insn
);
2985 /* Output assembler code from the template. */
2986 output_asm_insn (templ
, recog_data
.operand
);
2988 /* Some target machines need to postscan each insn after
2990 if (targetm
.asm_out
.final_postscan_insn
)
2991 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
2992 recog_data
.n_operands
);
2994 if (!targetm
.asm_out
.unwind_emit_before_insn
2995 && targetm
.asm_out
.unwind_emit
)
2996 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2998 current_output_insn
= debug_insn
= 0;
3001 return NEXT_INSN (insn
);
3004 /* Return whether a source line note needs to be emitted before INSN.
3005 Sets IS_STMT to TRUE if the line should be marked as a possible
3006 breakpoint location. */
3009 notice_source_line (rtx insn
, bool *is_stmt
)
3011 const char *filename
;
3014 if (override_filename
)
3016 filename
= override_filename
;
3017 linenum
= override_linenum
;
3021 filename
= insn_file (insn
);
3022 linenum
= insn_line (insn
);
3025 if (filename
== NULL
)
3028 if (force_source_line
3029 || filename
!= last_filename
3030 || last_linenum
!= linenum
)
3032 force_source_line
= false;
3033 last_filename
= filename
;
3034 last_linenum
= linenum
;
3035 last_discriminator
= discriminator
;
3037 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3038 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3042 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
3044 /* If the discriminator changed, but the line number did not,
3045 output the line table entry with is_stmt false so the
3046 debugger does not treat this as a breakpoint location. */
3047 last_discriminator
= discriminator
;
3055 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3056 directly to the desired hard register. */
3059 cleanup_subreg_operands (rtx insn
)
3062 bool changed
= false;
3063 extract_insn_cached (insn
);
3064 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3066 /* The following test cannot use recog_data.operand when testing
3067 for a SUBREG: the underlying object might have been changed
3068 already if we are inside a match_operator expression that
3069 matches the else clause. Instead we test the underlying
3070 expression directly. */
3071 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3073 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3076 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3077 || GET_CODE (recog_data
.operand
[i
]) == MULT
3078 || MEM_P (recog_data
.operand
[i
]))
3079 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3082 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3084 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3086 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3089 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3090 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3091 || MEM_P (*recog_data
.dup_loc
[i
]))
3092 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3095 df_insn_rescan (insn
);
3098 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3099 the thing it is a subreg of. Do it anyway if FINAL_P. */
3102 alter_subreg (rtx
*xp
, bool final_p
)
3105 rtx y
= SUBREG_REG (x
);
3107 /* simplify_subreg does not remove subreg from volatile references.
3108 We are required to. */
3111 int offset
= SUBREG_BYTE (x
);
3113 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3114 contains 0 instead of the proper offset. See simplify_subreg. */
3116 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3118 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3119 - GET_MODE_SIZE (GET_MODE (x
));
3120 if (WORDS_BIG_ENDIAN
)
3121 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3122 if (BYTES_BIG_ENDIAN
)
3123 offset
+= difference
% UNITS_PER_WORD
;
3127 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3129 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3133 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3138 else if (final_p
&& REG_P (y
))
3140 /* Simplify_subreg can't handle some REG cases, but we have to. */
3142 HOST_WIDE_INT offset
;
3144 regno
= subreg_regno (x
);
3145 if (subreg_lowpart_p (x
))
3146 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3148 offset
= SUBREG_BYTE (x
);
3149 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3156 /* Do alter_subreg on all the SUBREGs contained in X. */
3159 walk_alter_subreg (rtx
*xp
, bool *changed
)
3162 switch (GET_CODE (x
))
3167 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3168 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3173 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3178 return alter_subreg (xp
, true);
3189 /* Given BODY, the body of a jump instruction, alter the jump condition
3190 as required by the bits that are set in cc_status.flags.
3191 Not all of the bits there can be handled at this level in all cases.
3193 The value is normally 0.
3194 1 means that the condition has become always true.
3195 -1 means that the condition has become always false.
3196 2 means that COND has been altered. */
3199 alter_cond (rtx cond
)
3203 if (cc_status
.flags
& CC_REVERSED
)
3206 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3209 if (cc_status
.flags
& CC_INVERTED
)
3212 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3215 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3216 switch (GET_CODE (cond
))
3221 /* Jump becomes unconditional. */
3227 /* Jump becomes no-op. */
3231 PUT_CODE (cond
, EQ
);
3236 PUT_CODE (cond
, NE
);
3244 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3245 switch (GET_CODE (cond
))
3249 /* Jump becomes unconditional. */
3254 /* Jump becomes no-op. */
3259 PUT_CODE (cond
, EQ
);
3265 PUT_CODE (cond
, NE
);
3273 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3274 switch (GET_CODE (cond
))
3277 /* Jump becomes unconditional. */
3281 PUT_CODE (cond
, EQ
);
3286 PUT_CODE (cond
, NE
);
3291 /* Jump becomes no-op. */
3298 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3299 switch (GET_CODE (cond
))
3305 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3310 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3315 if (cc_status
.flags
& CC_NOT_SIGNED
)
3316 /* The flags are valid if signed condition operators are converted
3318 switch (GET_CODE (cond
))
3321 PUT_CODE (cond
, LEU
);
3326 PUT_CODE (cond
, LTU
);
3331 PUT_CODE (cond
, GTU
);
3336 PUT_CODE (cond
, GEU
);
3348 /* Report inconsistency between the assembler template and the operands.
3349 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3352 output_operand_lossage (const char *cmsgid
, ...)
3356 const char *pfx_str
;
3359 va_start (ap
, cmsgid
);
3361 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3362 asprintf (&fmt_string
, "%s%s", pfx_str
, _(cmsgid
));
3363 vasprintf (&new_message
, fmt_string
, ap
);
3365 if (this_is_asm_operands
)
3366 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3368 internal_error ("%s", new_message
);
3375 /* Output of assembler code from a template, and its subroutines. */
3377 /* Annotate the assembly with a comment describing the pattern and
3378 alternative used. */
3381 output_asm_name (void)
3385 int num
= INSN_CODE (debug_insn
);
3386 fprintf (asm_out_file
, "\t%s %d\t%s",
3387 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3388 insn_data
[num
].name
);
3389 if (insn_data
[num
].n_alternatives
> 1)
3390 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3392 if (HAVE_ATTR_length
)
3393 fprintf (asm_out_file
, "\t[length = %d]",
3394 get_attr_length (debug_insn
));
3396 /* Clear this so only the first assembler insn
3397 of any rtl insn will get the special comment for -dp. */
3402 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3403 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3404 corresponds to the address of the object and 0 if to the object. */
3407 get_mem_expr_from_op (rtx op
, int *paddressp
)
3415 return REG_EXPR (op
);
3416 else if (!MEM_P (op
))
3419 if (MEM_EXPR (op
) != 0)
3420 return MEM_EXPR (op
);
3422 /* Otherwise we have an address, so indicate it and look at the address. */
3426 /* First check if we have a decl for the address, then look at the right side
3427 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3428 But don't allow the address to itself be indirect. */
3429 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3431 else if (GET_CODE (op
) == PLUS
3432 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3436 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3439 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3440 return inner_addressp
? 0 : expr
;
3443 /* Output operand names for assembler instructions. OPERANDS is the
3444 operand vector, OPORDER is the order to write the operands, and NOPS
3445 is the number of operands to write. */
3448 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3453 for (i
= 0; i
< nops
; i
++)
3456 rtx op
= operands
[oporder
[i
]];
3457 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3459 fprintf (asm_out_file
, "%c%s",
3460 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3464 fprintf (asm_out_file
, "%s",
3465 addressp
? "*" : "");
3466 print_mem_expr (asm_out_file
, expr
);
3469 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3470 && ORIGINAL_REGNO (op
) != REGNO (op
))
3471 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3475 #ifdef ASSEMBLER_DIALECT
3476 /* Helper function to parse assembler dialects in the asm string.
3477 This is called from output_asm_insn and asm_fprintf. */
3479 do_assembler_dialects (const char *p
, int *dialect
)
3490 output_operand_lossage ("nested assembly dialect alternatives");
3494 /* If we want the first dialect, do nothing. Otherwise, skip
3495 DIALECT_NUMBER of strings ending with '|'. */
3496 for (i
= 0; i
< dialect_number
; i
++)
3498 while (*p
&& *p
!= '}')
3506 /* Skip over any character after a percent sign. */
3518 output_operand_lossage ("unterminated assembly dialect alternative");
3525 /* Skip to close brace. */
3530 output_operand_lossage ("unterminated assembly dialect alternative");
3534 /* Skip over any character after a percent sign. */
3535 if (*p
== '%' && p
[1])
3549 putc (c
, asm_out_file
);
3554 putc (c
, asm_out_file
);
3565 /* Output text from TEMPLATE to the assembler output file,
3566 obeying %-directions to substitute operands taken from
3567 the vector OPERANDS.
3569 %N (for N a digit) means print operand N in usual manner.
3570 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3571 and print the label name with no punctuation.
3572 %cN means require operand N to be a constant
3573 and print the constant expression with no punctuation.
3574 %aN means expect operand N to be a memory address
3575 (not a memory reference!) and print a reference
3577 %nN means expect operand N to be a constant
3578 and print a constant expression for minus the value
3579 of the operand, with no other punctuation. */
3582 output_asm_insn (const char *templ
, rtx
*operands
)
3586 #ifdef ASSEMBLER_DIALECT
3589 int oporder
[MAX_RECOG_OPERANDS
];
3590 char opoutput
[MAX_RECOG_OPERANDS
];
3593 /* An insn may return a null string template
3594 in a case where no assembler code is needed. */
3598 memset (opoutput
, 0, sizeof opoutput
);
3600 putc ('\t', asm_out_file
);
3602 #ifdef ASM_OUTPUT_OPCODE
3603 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3610 if (flag_verbose_asm
)
3611 output_asm_operand_names (operands
, oporder
, ops
);
3612 if (flag_print_asm_name
)
3616 memset (opoutput
, 0, sizeof opoutput
);
3618 putc (c
, asm_out_file
);
3619 #ifdef ASM_OUTPUT_OPCODE
3620 while ((c
= *p
) == '\t')
3622 putc (c
, asm_out_file
);
3625 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3629 #ifdef ASSEMBLER_DIALECT
3633 p
= do_assembler_dialects (p
, &dialect
);
3638 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3639 if ASSEMBLER_DIALECT defined and these characters have a special
3640 meaning as dialect delimiters.*/
3642 #ifdef ASSEMBLER_DIALECT
3643 || *p
== '{' || *p
== '}' || *p
== '|'
3647 putc (*p
, asm_out_file
);
3650 /* %= outputs a number which is unique to each insn in the entire
3651 compilation. This is useful for making local labels that are
3652 referred to more than once in a given insn. */
3656 fprintf (asm_out_file
, "%d", insn_counter
);
3658 /* % followed by a letter and some digits
3659 outputs an operand in a special way depending on the letter.
3660 Letters `acln' are implemented directly.
3661 Other letters are passed to `output_operand' so that
3662 the TARGET_PRINT_OPERAND hook can define them. */
3663 else if (ISALPHA (*p
))
3666 unsigned long opnum
;
3669 opnum
= strtoul (p
, &endptr
, 10);
3672 output_operand_lossage ("operand number missing "
3674 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3675 output_operand_lossage ("operand number out of range");
3676 else if (letter
== 'l')
3677 output_asm_label (operands
[opnum
]);
3678 else if (letter
== 'a')
3679 output_address (operands
[opnum
]);
3680 else if (letter
== 'c')
3682 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3683 output_addr_const (asm_out_file
, operands
[opnum
]);
3685 output_operand (operands
[opnum
], 'c');
3687 else if (letter
== 'n')
3689 if (CONST_INT_P (operands
[opnum
]))
3690 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3691 - INTVAL (operands
[opnum
]));
3694 putc ('-', asm_out_file
);
3695 output_addr_const (asm_out_file
, operands
[opnum
]);
3699 output_operand (operands
[opnum
], letter
);
3701 if (!opoutput
[opnum
])
3702 oporder
[ops
++] = opnum
;
3703 opoutput
[opnum
] = 1;
3708 /* % followed by a digit outputs an operand the default way. */
3709 else if (ISDIGIT (*p
))
3711 unsigned long opnum
;
3714 opnum
= strtoul (p
, &endptr
, 10);
3715 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3716 output_operand_lossage ("operand number out of range");
3718 output_operand (operands
[opnum
], 0);
3720 if (!opoutput
[opnum
])
3721 oporder
[ops
++] = opnum
;
3722 opoutput
[opnum
] = 1;
3727 /* % followed by punctuation: output something for that
3728 punctuation character alone, with no operand. The
3729 TARGET_PRINT_OPERAND hook decides what is actually done. */
3730 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3731 output_operand (NULL_RTX
, *p
++);
3733 output_operand_lossage ("invalid %%-code");
3737 putc (c
, asm_out_file
);
3740 /* Write out the variable names for operands, if we know them. */
3741 if (flag_verbose_asm
)
3742 output_asm_operand_names (operands
, oporder
, ops
);
3743 if (flag_print_asm_name
)
3746 putc ('\n', asm_out_file
);
3749 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3752 output_asm_label (rtx x
)
3756 if (GET_CODE (x
) == LABEL_REF
)
3760 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3761 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3763 output_operand_lossage ("'%%l' operand isn't a label");
3765 assemble_name (asm_out_file
, buf
);
3768 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3769 output_operand. Marks SYMBOL_REFs as referenced through use of
3770 assemble_external. */
3773 mark_symbol_ref_as_used (rtx
*xp
, void *dummy ATTRIBUTE_UNUSED
)
3777 /* If we have a used symbol, we may have to emit assembly
3778 annotations corresponding to whether the symbol is external, weak
3779 or has non-default visibility. */
3780 if (GET_CODE (x
) == SYMBOL_REF
)
3784 t
= SYMBOL_REF_DECL (x
);
3786 assemble_external (t
);
3794 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3797 mark_symbol_refs_as_used (rtx x
)
3799 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3802 /* Print operand X using machine-dependent assembler syntax.
3803 CODE is a non-digit that preceded the operand-number in the % spec,
3804 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3805 between the % and the digits.
3806 When CODE is a non-letter, X is 0.
3808 The meanings of the letters are machine-dependent and controlled
3809 by TARGET_PRINT_OPERAND. */
3812 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3814 if (x
&& GET_CODE (x
) == SUBREG
)
3815 x
= alter_subreg (&x
, true);
3817 /* X must not be a pseudo reg. */
3818 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3820 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3825 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3828 /* Print a memory reference operand for address X using
3829 machine-dependent assembler syntax. */
3832 output_address (rtx x
)
3834 bool changed
= false;
3835 walk_alter_subreg (&x
, &changed
);
3836 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3839 /* Print an integer constant expression in assembler syntax.
3840 Addition and subtraction are the only arithmetic
3841 that may appear in these expressions. */
3844 output_addr_const (FILE *file
, rtx x
)
3849 switch (GET_CODE (x
))
3856 if (SYMBOL_REF_DECL (x
))
3857 assemble_external (SYMBOL_REF_DECL (x
));
3858 #ifdef ASM_OUTPUT_SYMBOL_REF
3859 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3861 assemble_name (file
, XSTR (x
, 0));
3869 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3870 #ifdef ASM_OUTPUT_LABEL_REF
3871 ASM_OUTPUT_LABEL_REF (file
, buf
);
3873 assemble_name (file
, buf
);
3878 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3882 /* This used to output parentheses around the expression,
3883 but that does not work on the 386 (either ATT or BSD assembler). */
3884 output_addr_const (file
, XEXP (x
, 0));
3888 if (GET_MODE (x
) == VOIDmode
)
3890 /* We can use %d if the number is one word and positive. */
3891 if (CONST_DOUBLE_HIGH (x
))
3892 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3893 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3894 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3895 else if (CONST_DOUBLE_LOW (x
) < 0)
3896 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3897 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3899 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3902 /* We can't handle floating point constants;
3903 PRINT_OPERAND must handle them. */
3904 output_operand_lossage ("floating constant misused");
3908 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3912 /* Some assemblers need integer constants to appear last (eg masm). */
3913 if (CONST_INT_P (XEXP (x
, 0)))
3915 output_addr_const (file
, XEXP (x
, 1));
3916 if (INTVAL (XEXP (x
, 0)) >= 0)
3917 fprintf (file
, "+");
3918 output_addr_const (file
, XEXP (x
, 0));
3922 output_addr_const (file
, XEXP (x
, 0));
3923 if (!CONST_INT_P (XEXP (x
, 1))
3924 || INTVAL (XEXP (x
, 1)) >= 0)
3925 fprintf (file
, "+");
3926 output_addr_const (file
, XEXP (x
, 1));
3931 /* Avoid outputting things like x-x or x+5-x,
3932 since some assemblers can't handle that. */
3933 x
= simplify_subtraction (x
);
3934 if (GET_CODE (x
) != MINUS
)
3937 output_addr_const (file
, XEXP (x
, 0));
3938 fprintf (file
, "-");
3939 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3940 || GET_CODE (XEXP (x
, 1)) == PC
3941 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3942 output_addr_const (file
, XEXP (x
, 1));
3945 fputs (targetm
.asm_out
.open_paren
, file
);
3946 output_addr_const (file
, XEXP (x
, 1));
3947 fputs (targetm
.asm_out
.close_paren
, file
);
3955 output_addr_const (file
, XEXP (x
, 0));
3959 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
3962 output_operand_lossage ("invalid expression as operand");
3966 /* Output a quoted string. */
3969 output_quoted_string (FILE *asm_file
, const char *string
)
3971 #ifdef OUTPUT_QUOTED_STRING
3972 OUTPUT_QUOTED_STRING (asm_file
, string
);
3976 putc ('\"', asm_file
);
3977 while ((c
= *string
++) != 0)
3981 if (c
== '\"' || c
== '\\')
3982 putc ('\\', asm_file
);
3986 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
3988 putc ('\"', asm_file
);
3992 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
3995 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
3997 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
4002 char *p
= buf
+ sizeof (buf
);
4004 *--p
= "0123456789abcdef"[value
% 16];
4005 while ((value
/= 16) != 0);
4008 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
4012 /* Internal function that prints an unsigned long in decimal in reverse.
4013 The output string IS NOT null-terminated. */
4016 sprint_ul_rev (char *s
, unsigned long value
)
4021 s
[i
] = "0123456789"[value
% 10];
4024 /* alternate version, without modulo */
4025 /* oldval = value; */
4027 /* s[i] = "0123456789" [oldval - 10*value]; */
4034 /* Write an unsigned long as decimal to a file, fast. */
4037 fprint_ul (FILE *f
, unsigned long value
)
4039 /* python says: len(str(2**64)) == 20 */
4043 i
= sprint_ul_rev (s
, value
);
4045 /* It's probably too small to bother with string reversal and fputs. */
4054 /* Write an unsigned long as decimal to a string, fast.
4055 s must be wide enough to not overflow, at least 21 chars.
4056 Returns the length of the string (without terminating '\0'). */
4059 sprint_ul (char *s
, unsigned long value
)
4066 len
= sprint_ul_rev (s
, value
);
4069 /* Reverse the string. */
4083 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4084 %R prints the value of REGISTER_PREFIX.
4085 %L prints the value of LOCAL_LABEL_PREFIX.
4086 %U prints the value of USER_LABEL_PREFIX.
4087 %I prints the value of IMMEDIATE_PREFIX.
4088 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4089 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4091 We handle alternate assembler dialects here, just like output_asm_insn. */
4094 asm_fprintf (FILE *file
, const char *p
, ...)
4098 #ifdef ASSEMBLER_DIALECT
4103 va_start (argptr
, p
);
4110 #ifdef ASSEMBLER_DIALECT
4114 p
= do_assembler_dialects (p
, &dialect
);
4121 while (strchr ("-+ #0", c
))
4126 while (ISDIGIT (c
) || c
== '.')
4137 case 'd': case 'i': case 'u':
4138 case 'x': case 'X': case 'o':
4142 fprintf (file
, buf
, va_arg (argptr
, int));
4146 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4147 'o' cases, but we do not check for those cases. It
4148 means that the value is a HOST_WIDE_INT, which may be
4149 either `long' or `long long'. */
4150 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4151 q
+= strlen (HOST_WIDE_INT_PRINT
);
4154 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4159 #ifdef HAVE_LONG_LONG
4165 fprintf (file
, buf
, va_arg (argptr
, long long));
4172 fprintf (file
, buf
, va_arg (argptr
, long));
4180 fprintf (file
, buf
, va_arg (argptr
, char *));
4184 #ifdef ASM_OUTPUT_OPCODE
4185 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4190 #ifdef REGISTER_PREFIX
4191 fprintf (file
, "%s", REGISTER_PREFIX
);
4196 #ifdef IMMEDIATE_PREFIX
4197 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4202 #ifdef LOCAL_LABEL_PREFIX
4203 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4208 fputs (user_label_prefix
, file
);
4211 #ifdef ASM_FPRINTF_EXTENSIONS
4212 /* Uppercase letters are reserved for general use by asm_fprintf
4213 and so are not available to target specific code. In order to
4214 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4215 they are defined here. As they get turned into real extensions
4216 to asm_fprintf they should be removed from this list. */
4217 case 'A': case 'B': case 'C': case 'D': case 'E':
4218 case 'F': case 'G': case 'H': case 'J': case 'K':
4219 case 'M': case 'N': case 'P': case 'Q': case 'S':
4220 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4223 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4236 /* Return nonzero if this function has no function calls. */
4239 leaf_function_p (void)
4243 if (crtl
->profile
|| profile_arc_flag
)
4246 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4249 && ! SIBLING_CALL_P (insn
))
4251 if (NONJUMP_INSN_P (insn
)
4252 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4253 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4254 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4261 /* Return 1 if branch is a forward branch.
4262 Uses insn_shuid array, so it works only in the final pass. May be used by
4263 output templates to customary add branch prediction hints.
4266 final_forward_branch_p (rtx insn
)
4268 int insn_id
, label_id
;
4270 gcc_assert (uid_shuid
);
4271 insn_id
= INSN_SHUID (insn
);
4272 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4273 /* We've hit some insns that does not have id information available. */
4274 gcc_assert (insn_id
&& label_id
);
4275 return insn_id
< label_id
;
4278 /* On some machines, a function with no call insns
4279 can run faster if it doesn't create its own register window.
4280 When output, the leaf function should use only the "output"
4281 registers. Ordinarily, the function would be compiled to use
4282 the "input" registers to find its arguments; it is a candidate
4283 for leaf treatment if it uses only the "input" registers.
4284 Leaf function treatment means renumbering so the function
4285 uses the "output" registers instead. */
4287 #ifdef LEAF_REGISTERS
4289 /* Return 1 if this function uses only the registers that can be
4290 safely renumbered. */
4293 only_leaf_regs_used (void)
4296 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4298 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4299 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4300 && ! permitted_reg_in_leaf_functions
[i
])
4303 if (crtl
->uses_pic_offset_table
4304 && pic_offset_table_rtx
!= 0
4305 && REG_P (pic_offset_table_rtx
)
4306 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4312 /* Scan all instructions and renumber all registers into those
4313 available in leaf functions. */
4316 leaf_renumber_regs (rtx first
)
4320 /* Renumber only the actual patterns.
4321 The reg-notes can contain frame pointer refs,
4322 and renumbering them could crash, and should not be needed. */
4323 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4325 leaf_renumber_regs_insn (PATTERN (insn
));
4328 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4329 available in leaf functions. */
4332 leaf_renumber_regs_insn (rtx in_rtx
)
4335 const char *format_ptr
;
4340 /* Renumber all input-registers into output-registers.
4341 renumbered_regs would be 1 for an output-register;
4348 /* Don't renumber the same reg twice. */
4352 newreg
= REGNO (in_rtx
);
4353 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4354 to reach here as part of a REG_NOTE. */
4355 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4360 newreg
= LEAF_REG_REMAP (newreg
);
4361 gcc_assert (newreg
>= 0);
4362 df_set_regs_ever_live (REGNO (in_rtx
), false);
4363 df_set_regs_ever_live (newreg
, true);
4364 SET_REGNO (in_rtx
, newreg
);
4368 if (INSN_P (in_rtx
))
4370 /* Inside a SEQUENCE, we find insns.
4371 Renumber just the patterns of these insns,
4372 just as we do for the top-level insns. */
4373 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4377 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4379 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4380 switch (*format_ptr
++)
4383 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4387 if (NULL
!= XVEC (in_rtx
, i
))
4389 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4390 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4409 /* Turn the RTL into assembly. */
4411 rest_of_handle_final (void)
4416 /* Get the function's name, as described by its RTL. This may be
4417 different from the DECL_NAME name used in the source file. */
4419 x
= DECL_RTL (current_function_decl
);
4420 gcc_assert (MEM_P (x
));
4422 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
4423 fnname
= XSTR (x
, 0);
4425 assemble_start_function (current_function_decl
, fnname
);
4426 final_start_function (get_insns (), asm_out_file
, optimize
);
4427 final (get_insns (), asm_out_file
, optimize
);
4428 final_end_function ();
4430 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4431 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4432 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4433 output_function_exception_table (fnname
);
4435 assemble_end_function (current_function_decl
, fnname
);
4437 user_defined_section_attribute
= false;
4439 /* Free up reg info memory. */
4443 fflush (asm_out_file
);
4445 /* Write DBX symbols if requested. */
4447 /* Note that for those inline functions where we don't initially
4448 know for certain that we will be generating an out-of-line copy,
4449 the first invocation of this routine (rest_of_compilation) will
4450 skip over this code by doing a `goto exit_rest_of_compilation;'.
4451 Later on, wrapup_global_declarations will (indirectly) call
4452 rest_of_compilation again for those inline functions that need
4453 to have out-of-line copies generated. During that call, we
4454 *will* be routed past here. */
4456 timevar_push (TV_SYMOUT
);
4457 if (!DECL_IGNORED_P (current_function_decl
))
4458 debug_hooks
->function_decl (current_function_decl
);
4459 timevar_pop (TV_SYMOUT
);
4461 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4462 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4464 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4465 && targetm
.have_ctors_dtors
)
4466 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4467 decl_init_priority_lookup
4468 (current_function_decl
));
4469 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4470 && targetm
.have_ctors_dtors
)
4471 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4472 decl_fini_priority_lookup
4473 (current_function_decl
));
4479 const pass_data pass_data_final
=
4481 RTL_PASS
, /* type */
4483 OPTGROUP_NONE
, /* optinfo_flags */
4484 false, /* has_gate */
4485 true, /* has_execute */
4486 TV_FINAL
, /* tv_id */
4487 0, /* properties_required */
4488 0, /* properties_provided */
4489 0, /* properties_destroyed */
4490 0, /* todo_flags_start */
4491 0, /* todo_flags_finish */
4494 class pass_final
: public rtl_opt_pass
4497 pass_final (gcc::context
*ctxt
)
4498 : rtl_opt_pass (pass_data_final
, ctxt
)
4501 /* opt_pass methods: */
4502 unsigned int execute () { return rest_of_handle_final (); }
4504 }; // class pass_final
4509 make_pass_final (gcc::context
*ctxt
)
4511 return new pass_final (ctxt
);
4516 rest_of_handle_shorten_branches (void)
4518 /* Shorten branches. */
4519 shorten_branches (get_insns ());
4525 const pass_data pass_data_shorten_branches
=
4527 RTL_PASS
, /* type */
4528 "shorten", /* name */
4529 OPTGROUP_NONE
, /* optinfo_flags */
4530 false, /* has_gate */
4531 true, /* has_execute */
4532 TV_SHORTEN_BRANCH
, /* tv_id */
4533 0, /* properties_required */
4534 0, /* properties_provided */
4535 0, /* properties_destroyed */
4536 0, /* todo_flags_start */
4537 0, /* todo_flags_finish */
4540 class pass_shorten_branches
: public rtl_opt_pass
4543 pass_shorten_branches (gcc::context
*ctxt
)
4544 : rtl_opt_pass (pass_data_shorten_branches
, ctxt
)
4547 /* opt_pass methods: */
4548 unsigned int execute () { return rest_of_handle_shorten_branches (); }
4550 }; // class pass_shorten_branches
4555 make_pass_shorten_branches (gcc::context
*ctxt
)
4557 return new pass_shorten_branches (ctxt
);
4562 rest_of_clean_state (void)
4565 FILE *final_output
= NULL
;
4566 int save_unnumbered
= flag_dump_unnumbered
;
4567 int save_noaddr
= flag_dump_noaddr
;
4569 if (flag_dump_final_insns
)
4571 final_output
= fopen (flag_dump_final_insns
, "a");
4574 error ("could not open final insn dump file %qs: %m",
4575 flag_dump_final_insns
);
4576 flag_dump_final_insns
= NULL
;
4580 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4581 if (flag_compare_debug_opt
|| flag_compare_debug
)
4582 dump_flags
|= TDF_NOUID
;
4583 dump_function_header (final_output
, current_function_decl
,
4585 final_insns_dump_p
= true;
4587 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4589 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4593 set_block_for_insn (insn
, NULL
);
4594 INSN_UID (insn
) = 0;
4599 /* It is very important to decompose the RTL instruction chain here:
4600 debug information keeps pointing into CODE_LABEL insns inside the function
4601 body. If these remain pointing to the other insns, we end up preserving
4602 whole RTL chain and attached detailed debug info in memory. */
4603 for (insn
= get_insns (); insn
; insn
= next
)
4605 next
= NEXT_INSN (insn
);
4606 NEXT_INSN (insn
) = NULL
;
4607 PREV_INSN (insn
) = NULL
;
4610 && (!NOTE_P (insn
) ||
4611 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4612 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4613 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4614 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4615 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4616 print_rtl_single (final_output
, insn
);
4621 flag_dump_noaddr
= save_noaddr
;
4622 flag_dump_unnumbered
= save_unnumbered
;
4623 final_insns_dump_p
= false;
4625 if (fclose (final_output
))
4627 error ("could not close final insn dump file %qs: %m",
4628 flag_dump_final_insns
);
4629 flag_dump_final_insns
= NULL
;
4633 /* In case the function was not output,
4634 don't leave any temporary anonymous types
4635 queued up for sdb output. */
4636 #ifdef SDB_DEBUGGING_INFO
4637 if (write_symbols
== SDB_DEBUG
)
4638 sdbout_types (NULL_TREE
);
4641 flag_rerun_cse_after_global_opts
= 0;
4642 reload_completed
= 0;
4643 epilogue_completed
= 0;
4645 regstack_completed
= 0;
4648 /* Clear out the insn_length contents now that they are no
4650 init_insn_lengths ();
4652 /* Show no temporary slots allocated. */
4655 free_bb_for_insn ();
4659 /* We can reduce stack alignment on call site only when we are sure that
4660 the function body just produced will be actually used in the final
4662 if (decl_binds_to_current_def_p (current_function_decl
))
4664 unsigned int pref
= crtl
->preferred_stack_boundary
;
4665 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4666 pref
= crtl
->stack_alignment_needed
;
4667 cgraph_rtl_info (current_function_decl
)->preferred_incoming_stack_boundary
4671 /* Make sure volatile mem refs aren't considered valid operands for
4672 arithmetic insns. We must call this here if this is a nested inline
4673 function, since the above code leaves us in the init_recog state,
4674 and the function context push/pop code does not save/restore volatile_ok.
4676 ??? Maybe it isn't necessary for expand_start_function to call this
4677 anymore if we do it here? */
4679 init_recog_no_volatile ();
4681 /* We're done with this function. Free up memory if we can. */
4682 free_after_parsing (cfun
);
4683 free_after_compilation (cfun
);
4689 const pass_data pass_data_clean_state
=
4691 RTL_PASS
, /* type */
4692 "*clean_state", /* name */
4693 OPTGROUP_NONE
, /* optinfo_flags */
4694 false, /* has_gate */
4695 true, /* has_execute */
4696 TV_FINAL
, /* tv_id */
4697 0, /* properties_required */
4698 0, /* properties_provided */
4699 PROP_rtl
, /* properties_destroyed */
4700 0, /* todo_flags_start */
4701 0, /* todo_flags_finish */
4704 class pass_clean_state
: public rtl_opt_pass
4707 pass_clean_state (gcc::context
*ctxt
)
4708 : rtl_opt_pass (pass_data_clean_state
, ctxt
)
4711 /* opt_pass methods: */
4712 unsigned int execute () { return rest_of_clean_state (); }
4714 }; // class pass_clean_state
4719 make_pass_clean_state (gcc::context
*ctxt
)
4721 return new pass_clean_state (ctxt
);