1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
3 Originally contributed by Michael P. Hayes
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
27 The files in this collection (df*.c,df.h) provide a general framework
28 for solving dataflow problems. The global dataflow is performed using
29 a good implementation of iterative dataflow analysis.
31 The file df-problems.c provides problem instance for the most common
32 dataflow problems: reaching defs, upward exposed uses, live variables,
33 uninitialized variables, def-use chains, and use-def chains. However,
34 the interface allows other dataflow problems to be defined as well.
36 Dataflow analysis is available in most of the rtl backend (the parts
37 between pass_df_initialize and pass_df_finish). It is quite likely
38 that these boundaries will be expanded in the future. The only
39 requirement is that there be a correct control flow graph.
41 There are three variations of the live variable problem that are
42 available whenever dataflow is available. The LR problem finds the
43 areas that can reach a use of a variable, the UR problems finds the
44 areas that can be reached from a definition of a variable. The LIVE
45 problem finds the intersection of these two areas.
47 There are several optional problems. These can be enabled when they
48 are needed and disabled when they are not needed.
50 Dataflow problems are generally solved in three layers. The bottom
51 layer is called scanning where a data structure is built for each rtl
52 insn that describes the set of defs and uses of that insn. Scanning
53 is generally kept up to date, i.e. as the insns changes, the scanned
54 version of that insn changes also. There are various mechanisms for
55 making this happen and are described in the INCREMENTAL SCANNING
58 In the middle layer, basic blocks are scanned to produce transfer
59 functions which describe the effects of that block on the global
60 dataflow solution. The transfer functions are only rebuilt if the
61 some instruction within the block has changed.
63 The top layer is the dataflow solution itself. The dataflow solution
64 is computed by using an efficient iterative solver and the transfer
65 functions. The dataflow solution must be recomputed whenever the
66 control changes or if one of the transfer function changes.
71 Here is an example of using the dataflow routines.
73 df_[chain,live,note,rd]_add_problem (flags);
75 df_set_blocks (blocks);
81 df_finish_pass (false);
83 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 instance to struct df_problem, to the set of problems solved in this
85 instance of df. All calls to add a problem for a given instance of df
86 must occur before the first call to DF_ANALYZE.
88 Problems can be dependent on other problems. For instance, solving
89 def-use or use-def chains is dependent on solving reaching
90 definitions. As long as these dependencies are listed in the problem
91 definition, the order of adding the problems is not material.
92 Otherwise, the problems will be solved in the order of calls to
93 df_add_problem. Note that it is not necessary to have a problem. In
94 that case, df will just be used to do the scanning.
98 DF_SET_BLOCKS is an optional call used to define a region of the
99 function on which the analysis will be performed. The normal case is
100 to analyze the entire function and no call to df_set_blocks is made.
101 DF_SET_BLOCKS only effects the blocks that are effected when computing
102 the transfer functions and final solution. The insn level information
103 is always kept up to date.
105 When a subset is given, the analysis behaves as if the function only
106 contains those blocks and any edges that occur directly between the
107 blocks in the set. Care should be taken to call df_set_blocks right
108 before the call to analyze in order to eliminate the possibility that
109 optimizations that reorder blocks invalidate the bitvector.
111 DF_ANALYZE causes all of the defined problems to be (re)solved. When
112 DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 contain the computer information. The DF_*_BB_INFO macros can be used
114 to access these bitvectors. All deferred rescannings are down before
115 the transfer functions are recomputed.
117 DF_DUMP can then be called to dump the information produce to some
118 file. This calls DF_DUMP_START, to print the information that is not
119 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 for each block to print the basic specific information. These parts
121 can all be called separately as part of a larger dump function.
124 DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 optional problems. It also causes any insns whose scanning has been
126 deferred to be rescanned as well as clears all of the changeable flags.
127 Setting the pass manager TODO_df_finish flag causes this function to
128 be run. However, the pass manager will call df_finish_pass AFTER the
129 pass dumping has been done, so if you want to see the results of the
130 optional problems in the pass dumps, use the TODO flag rather than
131 calling the function yourself.
135 There are four ways of doing the incremental scanning:
137 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
146 upon even after changes have been made to the instructions. This
147 technique is contra indicated in several cases:
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
172 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
178 This is the technique of choice if either 1a, 1b, or 1c are issues
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
183 This mode is also used by a few passes that still rely on note_uses,
184 note_stores and for_each_rtx instead of using the DF data. This
185 can be said to fall under case 1c.
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
192 3) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
199 4) Do it yourself - In this mechanism, the pass updates the insns
200 itself using the low level df primitives. Currently no pass does
201 this, but it has the advantage that it is quite efficient given
202 that the pass generally has exact knowledge of what it is changing.
206 Scanning produces a `struct df_ref' data structure (ref) is allocated
207 for every register reference (def or use) and this records the insn
208 and bb the ref is found within. The refs are linked together in
209 chains of uses and defs for each insn and for each register. Each ref
210 also has a chain field that links all the use refs for a def or all
211 the def refs for a use. This is used to create use-def or def-use
214 Different optimizations have different needs. Ultimately, only
215 register allocation and schedulers should be using the bitmaps
216 produced for the live register and uninitialized register problems.
217 The rest of the backend should be upgraded to using and maintaining
218 the linked information such as def use or use def chains.
223 While incremental bitmaps are not worthwhile to maintain, incremental
224 chains may be perfectly reasonable. The fastest way to build chains
225 from scratch or after significant modifications is to build reaching
226 definitions (RD) and build the chains from this.
228 However, general algorithms for maintaining use-def or def-use chains
229 are not practical. The amount of work to recompute the chain any
230 chain after an arbitrary change is large. However, with a modest
231 amount of work it is generally possible to have the application that
232 uses the chains keep them up to date. The high level knowledge of
233 what is really happening is essential to crafting efficient
234 incremental algorithms.
236 As for the bit vector problems, there is no interface to give a set of
237 blocks over with to resolve the iteration. In general, restarting a
238 dataflow iteration is difficult and expensive. Again, the best way to
239 keep the dataflow information up to data (if this is really what is
240 needed) it to formulate a problem specific solution.
242 There are fine grained calls for creating and deleting references from
243 instructions in df-scan.c. However, these are not currently connected
244 to the engine that resolves the dataflow equations.
249 The basic object is a DF_REF (reference) and this may either be a
250 DEF (definition) or a USE of a register.
252 These are linked into a variety of lists; namely reg-def, reg-use,
253 insn-def, insn-use, def-use, and use-def lists. For example, the
254 reg-def lists contain all the locations that define a given register
255 while the insn-use lists contain all the locations that use a
258 Note that the reg-def and reg-use chains are generally short for
259 pseudos and long for the hard registers.
263 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
267 2) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
279 3) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
289 There are 4 ways to obtain access to refs:
291 1) References are divided into two categories, REAL and ARTIFICIAL.
293 REAL refs are associated with instructions.
295 ARTIFICIAL refs are associated with basic blocks. The heads of
296 these lists can be accessed by calling df_get_artificial_defs or
297 df_get_artificial_uses for the particular basic block.
299 Artificial defs and uses occur both at the beginning and ends of blocks.
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
314 Artificial defs occur at the end of the entry block. These arise
315 from registers that are live at entry to the function.
317 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324 treated like uses. If it is not set they are ignored.
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
336 3) If def-use or use-def chains are built, these can be traversed to
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
341 4) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
349 df_analyze or df_reorganize_defs or df_reorganize_uses.
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
357 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 both a use and a def. These are both marked read/write to show that they
359 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 will generate a use of reg 42 followed by a def of reg 42 (both marked
361 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 even though reg 41 is decremented before it is used for the memory
364 address in this second example.
366 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 for which the number of word_mode units covered by the outer mode is
368 smaller than that covered by the inner mode, invokes a read-modify-write
369 operation. We generate both a use and a def and again mark them
372 Paradoxical subreg writes do not leave a trace of the old content, so they
373 are write-only operations.
379 #include "coretypes.h"
383 #include "insn-config.h"
385 #include "function.h"
387 #include "alloc-pool.h"
389 #include "hard-reg-set.h"
390 #include "basic-block.h"
394 #include "tree-pass.h"
398 static void *df_get_bb_info (struct dataflow
*, unsigned int);
399 static void df_set_bb_info (struct dataflow
*, unsigned int, void *);
400 static void df_clear_bb_info (struct dataflow
*, unsigned int);
402 static void df_set_clean_cfg (void);
405 /* The obstack on which regsets are allocated. */
406 struct bitmap_obstack reg_obstack
;
408 /* An obstack for bitmap not related to specific dataflow problems.
409 This obstack should e.g. be used for bitmaps with a short life time
410 such as temporary bitmaps. */
412 bitmap_obstack df_bitmap_obstack
;
415 /*----------------------------------------------------------------------------
416 Functions to create, destroy and manipulate an instance of df.
417 ----------------------------------------------------------------------------*/
421 /* Add PROBLEM (and any dependent problems) to the DF instance. */
424 df_add_problem (struct df_problem
*problem
)
426 struct dataflow
*dflow
;
429 /* First try to add the dependent problem. */
430 if (problem
->dependent_problem
)
431 df_add_problem (problem
->dependent_problem
);
433 /* Check to see if this problem has already been defined. If it
434 has, just return that instance, if not, add it to the end of the
436 dflow
= df
->problems_by_index
[problem
->id
];
440 /* Make a new one and add it to the end. */
441 dflow
= XCNEW (struct dataflow
);
442 dflow
->problem
= problem
;
443 dflow
->computed
= false;
444 dflow
->solutions_dirty
= true;
445 df
->problems_by_index
[dflow
->problem
->id
] = dflow
;
447 /* Keep the defined problems ordered by index. This solves the
448 problem that RI will use the information from UREC if UREC has
449 been defined, or from LIVE if LIVE is defined and otherwise LR.
450 However for this to work, the computation of RI must be pushed
451 after which ever of those problems is defined, but we do not
452 require any of those except for LR to have actually been
454 df
->num_problems_defined
++;
455 for (i
= df
->num_problems_defined
- 2; i
>= 0; i
--)
457 if (problem
->id
< df
->problems_in_order
[i
]->problem
->id
)
458 df
->problems_in_order
[i
+1] = df
->problems_in_order
[i
];
461 df
->problems_in_order
[i
+1] = dflow
;
465 df
->problems_in_order
[0] = dflow
;
469 /* Set the MASK flags in the DFLOW problem. The old flags are
470 returned. If a flag is not allowed to be changed this will fail if
471 checking is enabled. */
473 df_set_flags (int changeable_flags
)
475 int old_flags
= df
->changeable_flags
;
476 df
->changeable_flags
|= changeable_flags
;
481 /* Clear the MASK flags in the DFLOW problem. The old flags are
482 returned. If a flag is not allowed to be changed this will fail if
483 checking is enabled. */
485 df_clear_flags (int changeable_flags
)
487 int old_flags
= df
->changeable_flags
;
488 df
->changeable_flags
&= ~changeable_flags
;
493 /* Set the blocks that are to be considered for analysis. If this is
494 not called or is called with null, the entire function in
498 df_set_blocks (bitmap blocks
)
503 bitmap_print (dump_file
, blocks
, "setting blocks to analyze ", "\n");
504 if (df
->blocks_to_analyze
)
506 /* This block is called to change the focus from one subset
510 bitmap_initialize (&diff
, &df_bitmap_obstack
);
511 bitmap_and_compl (&diff
, df
->blocks_to_analyze
, blocks
);
512 for (p
= 0; p
< df
->num_problems_defined
; p
++)
514 struct dataflow
*dflow
= df
->problems_in_order
[p
];
515 if (dflow
->optional_p
&& dflow
->problem
->reset_fun
)
516 dflow
->problem
->reset_fun (df
->blocks_to_analyze
);
517 else if (dflow
->problem
->free_blocks_on_set_blocks
)
520 unsigned int bb_index
;
522 EXECUTE_IF_SET_IN_BITMAP (&diff
, 0, bb_index
, bi
)
524 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, bb_index
);
527 void *bb_info
= df_get_bb_info (dflow
, bb_index
);
528 dflow
->problem
->free_bb_fun (bb
, bb_info
);
529 df_clear_bb_info (dflow
, bb_index
);
535 bitmap_clear (&diff
);
539 /* This block of code is executed to change the focus from
540 the entire function to a subset. */
541 bitmap_head blocks_to_reset
;
542 bool initialized
= false;
544 for (p
= 0; p
< df
->num_problems_defined
; p
++)
546 struct dataflow
*dflow
= df
->problems_in_order
[p
];
547 if (dflow
->optional_p
&& dflow
->problem
->reset_fun
)
552 bitmap_initialize (&blocks_to_reset
, &df_bitmap_obstack
);
553 FOR_ALL_BB_FN (bb
, cfun
)
555 bitmap_set_bit (&blocks_to_reset
, bb
->index
);
558 dflow
->problem
->reset_fun (&blocks_to_reset
);
562 bitmap_clear (&blocks_to_reset
);
564 df
->blocks_to_analyze
= BITMAP_ALLOC (&df_bitmap_obstack
);
566 bitmap_copy (df
->blocks_to_analyze
, blocks
);
567 df
->analyze_subset
= true;
571 /* This block is executed to reset the focus to the entire
574 fprintf (dump_file
, "clearing blocks_to_analyze\n");
575 if (df
->blocks_to_analyze
)
577 BITMAP_FREE (df
->blocks_to_analyze
);
578 df
->blocks_to_analyze
= NULL
;
580 df
->analyze_subset
= false;
583 /* Setting the blocks causes the refs to be unorganized since only
584 the refs in the blocks are seen. */
585 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE
);
586 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE
);
587 df_mark_solutions_dirty ();
591 /* Delete a DFLOW problem (and any problems that depend on this
595 df_remove_problem (struct dataflow
*dflow
)
597 struct df_problem
*problem
;
603 problem
= dflow
->problem
;
604 gcc_assert (problem
->remove_problem_fun
);
606 /* Delete any problems that depended on this problem first. */
607 for (i
= 0; i
< df
->num_problems_defined
; i
++)
608 if (df
->problems_in_order
[i
]->problem
->dependent_problem
== problem
)
609 df_remove_problem (df
->problems_in_order
[i
]);
611 /* Now remove this problem. */
612 for (i
= 0; i
< df
->num_problems_defined
; i
++)
613 if (df
->problems_in_order
[i
] == dflow
)
616 for (j
= i
+ 1; j
< df
->num_problems_defined
; j
++)
617 df
->problems_in_order
[j
-1] = df
->problems_in_order
[j
];
618 df
->problems_in_order
[j
-1] = NULL
;
619 df
->num_problems_defined
--;
623 (problem
->remove_problem_fun
) ();
624 df
->problems_by_index
[problem
->id
] = NULL
;
628 /* Remove all of the problems that are not permanent. Scanning, LR
629 and (at -O2 or higher) LIVE are permanent, the rest are removable.
630 Also clear all of the changeable_flags. */
633 df_finish_pass (bool verify ATTRIBUTE_UNUSED
)
638 #ifdef ENABLE_DF_CHECKING
645 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE
);
646 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE
);
648 #ifdef ENABLE_DF_CHECKING
649 saved_flags
= df
->changeable_flags
;
652 for (i
= 0; i
< df
->num_problems_defined
; i
++)
654 struct dataflow
*dflow
= df
->problems_in_order
[i
];
655 struct df_problem
*problem
= dflow
->problem
;
657 if (dflow
->optional_p
)
659 gcc_assert (problem
->remove_problem_fun
);
660 (problem
->remove_problem_fun
) ();
661 df
->problems_in_order
[i
] = NULL
;
662 df
->problems_by_index
[problem
->id
] = NULL
;
666 df
->num_problems_defined
-= removed
;
668 /* Clear all of the flags. */
669 df
->changeable_flags
= 0;
670 df_process_deferred_rescans ();
672 /* Set the focus back to the whole function. */
673 if (df
->blocks_to_analyze
)
675 BITMAP_FREE (df
->blocks_to_analyze
);
676 df
->blocks_to_analyze
= NULL
;
677 df_mark_solutions_dirty ();
678 df
->analyze_subset
= false;
681 #ifdef ENABLE_DF_CHECKING
682 /* Verification will fail in DF_NO_INSN_RESCAN. */
683 if (!(saved_flags
& DF_NO_INSN_RESCAN
))
685 df_lr_verify_transfer_functions ();
687 df_live_verify_transfer_functions ();
695 #ifdef ENABLE_CHECKING
697 df
->changeable_flags
|= DF_VERIFY_SCHEDULED
;
702 /* Set up the dataflow instance for the entire back end. */
705 rest_of_handle_df_initialize (void)
708 df
= XCNEW (struct df_d
);
709 df
->changeable_flags
= 0;
711 bitmap_obstack_initialize (&df_bitmap_obstack
);
713 /* Set this to a conservative value. Stack_ptr_mod will compute it
715 crtl
->sp_is_unchanging
= 0;
717 df_scan_add_problem ();
718 df_scan_alloc (NULL
);
720 /* These three problems are permanent. */
721 df_lr_add_problem ();
723 df_live_add_problem ();
725 df
->postorder
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
726 df
->postorder_inverted
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
727 df
->n_blocks
= post_order_compute (df
->postorder
, true, true);
728 df
->n_blocks_inverted
= inverted_post_order_compute (df
->postorder_inverted
);
729 gcc_assert (df
->n_blocks
== df
->n_blocks_inverted
);
731 df
->hard_regs_live_count
= XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER
);
734 /* After reload, some ports add certain bits to regs_ever_live so
735 this cannot be reset. */
736 df_compute_regs_ever_live (true);
738 df_compute_regs_ever_live (false);
752 const pass_data pass_data_df_initialize_opt
=
756 OPTGROUP_NONE
, /* optinfo_flags */
758 true, /* has_execute */
759 TV_DF_SCAN
, /* tv_id */
760 0, /* properties_required */
761 0, /* properties_provided */
762 0, /* properties_destroyed */
763 0, /* todo_flags_start */
764 0, /* todo_flags_finish */
767 class pass_df_initialize_opt
: public rtl_opt_pass
770 pass_df_initialize_opt (gcc::context
*ctxt
)
771 : rtl_opt_pass (pass_data_df_initialize_opt
, ctxt
)
774 /* opt_pass methods: */
775 bool gate () { return gate_opt (); }
776 unsigned int execute () { return rest_of_handle_df_initialize (); }
778 }; // class pass_df_initialize_opt
783 make_pass_df_initialize_opt (gcc::context
*ctxt
)
785 return new pass_df_initialize_opt (ctxt
);
792 return optimize
== 0;
798 const pass_data pass_data_df_initialize_no_opt
=
801 "no-opt dfinit", /* name */
802 OPTGROUP_NONE
, /* optinfo_flags */
804 true, /* has_execute */
805 TV_DF_SCAN
, /* tv_id */
806 0, /* properties_required */
807 0, /* properties_provided */
808 0, /* properties_destroyed */
809 0, /* todo_flags_start */
810 0, /* todo_flags_finish */
813 class pass_df_initialize_no_opt
: public rtl_opt_pass
816 pass_df_initialize_no_opt (gcc::context
*ctxt
)
817 : rtl_opt_pass (pass_data_df_initialize_no_opt
, ctxt
)
820 /* opt_pass methods: */
821 bool gate () { return gate_no_opt (); }
822 unsigned int execute () { return rest_of_handle_df_initialize (); }
824 }; // class pass_df_initialize_no_opt
829 make_pass_df_initialize_no_opt (gcc::context
*ctxt
)
831 return new pass_df_initialize_no_opt (ctxt
);
835 /* Free all the dataflow info and the DF structure. This should be
836 called from the df_finish macro which also NULLs the parm. */
839 rest_of_handle_df_finish (void)
845 for (i
= 0; i
< df
->num_problems_defined
; i
++)
847 struct dataflow
*dflow
= df
->problems_in_order
[i
];
848 dflow
->problem
->free_fun ();
851 free (df
->postorder
);
852 free (df
->postorder_inverted
);
853 free (df
->hard_regs_live_count
);
857 bitmap_obstack_release (&df_bitmap_obstack
);
864 const pass_data pass_data_df_finish
=
867 "dfinish", /* name */
868 OPTGROUP_NONE
, /* optinfo_flags */
869 false, /* has_gate */
870 true, /* has_execute */
872 0, /* properties_required */
873 0, /* properties_provided */
874 0, /* properties_destroyed */
875 0, /* todo_flags_start */
876 0, /* todo_flags_finish */
879 class pass_df_finish
: public rtl_opt_pass
882 pass_df_finish (gcc::context
*ctxt
)
883 : rtl_opt_pass (pass_data_df_finish
, ctxt
)
886 /* opt_pass methods: */
887 unsigned int execute () { return rest_of_handle_df_finish (); }
889 }; // class pass_df_finish
894 make_pass_df_finish (gcc::context
*ctxt
)
896 return new pass_df_finish (ctxt
);
903 /*----------------------------------------------------------------------------
904 The general data flow analysis engine.
905 ----------------------------------------------------------------------------*/
907 /* Return time BB when it was visited for last time. */
908 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
910 /* Helper function for df_worklist_dataflow.
911 Propagate the dataflow forward.
912 Given a BB_INDEX, do the dataflow propagation
913 and set bits on for successors in PENDING
914 if the out set of the dataflow has changed.
916 AGE specify time when BB was visited last time.
917 AGE of 0 means we are visiting for first time and need to
918 compute transfer function to initialize datastructures.
919 Otherwise we re-do transfer function only if something change
920 while computing confluence functions.
921 We need to compute confluence only of basic block that are younger
922 then last visit of the BB.
924 Return true if BB info has changed. This is always the case
925 in the first visit. */
928 df_worklist_propagate_forward (struct dataflow
*dataflow
,
930 unsigned *bbindex_to_postorder
,
937 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, bb_index
);
940 /* Calculate <conf_op> of incoming edges. */
941 if (EDGE_COUNT (bb
->preds
) > 0)
942 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
944 if (age
<= BB_LAST_CHANGE_AGE (e
->src
)
945 && bitmap_bit_p (considered
, e
->src
->index
))
946 changed
|= dataflow
->problem
->con_fun_n (e
);
948 else if (dataflow
->problem
->con_fun_0
)
949 dataflow
->problem
->con_fun_0 (bb
);
952 && dataflow
->problem
->trans_fun (bb_index
))
954 /* The out set of this block has changed.
955 Propagate to the outgoing blocks. */
956 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
958 unsigned ob_index
= e
->dest
->index
;
960 if (bitmap_bit_p (considered
, ob_index
))
961 bitmap_set_bit (pending
, bbindex_to_postorder
[ob_index
]);
969 /* Helper function for df_worklist_dataflow.
970 Propagate the dataflow backward. */
973 df_worklist_propagate_backward (struct dataflow
*dataflow
,
975 unsigned *bbindex_to_postorder
,
982 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, bb_index
);
985 /* Calculate <conf_op> of incoming edges. */
986 if (EDGE_COUNT (bb
->succs
) > 0)
987 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
989 if (age
<= BB_LAST_CHANGE_AGE (e
->dest
)
990 && bitmap_bit_p (considered
, e
->dest
->index
))
991 changed
|= dataflow
->problem
->con_fun_n (e
);
993 else if (dataflow
->problem
->con_fun_0
)
994 dataflow
->problem
->con_fun_0 (bb
);
997 && dataflow
->problem
->trans_fun (bb_index
))
999 /* The out set of this block has changed.
1000 Propagate to the outgoing blocks. */
1001 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1003 unsigned ob_index
= e
->src
->index
;
1005 if (bitmap_bit_p (considered
, ob_index
))
1006 bitmap_set_bit (pending
, bbindex_to_postorder
[ob_index
]);
1013 /* Main dataflow solver loop.
1015 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
1017 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
1018 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
1019 PENDING will be freed.
1021 The worklists are bitmaps indexed by postorder positions.
1023 The function implements standard algorithm for dataflow solving with two
1024 worklists (we are processing WORKLIST and storing new BBs to visit in
1027 As an optimization we maintain ages when BB was changed (stored in bb->aux)
1028 and when it was last visited (stored in last_visit_age). This avoids need
1029 to re-do confluence function for edges to basic blocks whose source
1030 did not change since destination was visited last time. */
1033 df_worklist_dataflow_doublequeue (struct dataflow
*dataflow
,
1036 int *blocks_in_postorder
,
1037 unsigned *bbindex_to_postorder
,
1040 enum df_flow_dir dir
= dataflow
->problem
->dir
;
1042 bitmap worklist
= BITMAP_ALLOC (&df_bitmap_obstack
);
1045 vec
<int> last_visit_age
= vNULL
;
1050 last_visit_age
.safe_grow_cleared (n_blocks
);
1052 /* Double-queueing. Worklist is for the current iteration,
1053 and pending is for the next. */
1054 while (!bitmap_empty_p (pending
))
1059 /* Swap pending and worklist. */
1060 bitmap temp
= worklist
;
1064 EXECUTE_IF_SET_IN_BITMAP (worklist
, 0, index
, bi
)
1069 bitmap_clear_bit (pending
, index
);
1070 bb_index
= blocks_in_postorder
[index
];
1071 bb
= BASIC_BLOCK_FOR_FN (cfun
, bb_index
);
1072 prev_age
= last_visit_age
[index
];
1073 if (dir
== DF_FORWARD
)
1074 changed
= df_worklist_propagate_forward (dataflow
, bb_index
,
1075 bbindex_to_postorder
,
1076 pending
, considered
,
1079 changed
= df_worklist_propagate_backward (dataflow
, bb_index
,
1080 bbindex_to_postorder
,
1081 pending
, considered
,
1083 last_visit_age
[index
] = ++age
;
1085 bb
->aux
= (void *)(ptrdiff_t)age
;
1087 bitmap_clear (worklist
);
1089 for (i
= 0; i
< n_blocks
; i
++)
1090 BASIC_BLOCK_FOR_FN (cfun
, blocks_in_postorder
[i
])->aux
= NULL
;
1092 BITMAP_FREE (worklist
);
1093 BITMAP_FREE (pending
);
1094 last_visit_age
.release ();
1096 /* Dump statistics. */
1098 fprintf (dump_file
, "df_worklist_dataflow_doublequeue:"
1099 "n_basic_blocks %d n_edges %d"
1100 " count %d (%5.2g)\n",
1101 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
1102 dcount
, dcount
/ (float)n_basic_blocks_for_fn (cfun
));
1105 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1106 with "n"-th bit representing the n-th block in the reverse-postorder order.
1107 The solver is a double-queue algorithm similar to the "double stack" solver
1108 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1109 The only significant difference is that the worklist in this implementation
1110 is always sorted in RPO of the CFG visiting direction. */
1113 df_worklist_dataflow (struct dataflow
*dataflow
,
1114 bitmap blocks_to_consider
,
1115 int *blocks_in_postorder
,
1118 bitmap pending
= BITMAP_ALLOC (&df_bitmap_obstack
);
1119 sbitmap considered
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
1121 unsigned int *bbindex_to_postorder
;
1124 enum df_flow_dir dir
= dataflow
->problem
->dir
;
1126 gcc_assert (dir
!= DF_NONE
);
1128 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1129 bbindex_to_postorder
= XNEWVEC (unsigned int,
1130 last_basic_block_for_fn (cfun
));
1132 /* Initialize the array to an out-of-bound value. */
1133 for (i
= 0; i
< last_basic_block_for_fn (cfun
); i
++)
1134 bbindex_to_postorder
[i
] = last_basic_block_for_fn (cfun
);
1136 /* Initialize the considered map. */
1137 bitmap_clear (considered
);
1138 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider
, 0, index
, bi
)
1140 bitmap_set_bit (considered
, index
);
1143 /* Initialize the mapping of block index to postorder. */
1144 for (i
= 0; i
< n_blocks
; i
++)
1146 bbindex_to_postorder
[blocks_in_postorder
[i
]] = i
;
1147 /* Add all blocks to the worklist. */
1148 bitmap_set_bit (pending
, i
);
1151 /* Initialize the problem. */
1152 if (dataflow
->problem
->init_fun
)
1153 dataflow
->problem
->init_fun (blocks_to_consider
);
1156 df_worklist_dataflow_doublequeue (dataflow
, pending
, considered
,
1157 blocks_in_postorder
,
1158 bbindex_to_postorder
,
1160 sbitmap_free (considered
);
1161 free (bbindex_to_postorder
);
1165 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1166 the order of the remaining entries. Returns the length of the resulting
1170 df_prune_to_subcfg (int list
[], unsigned len
, bitmap blocks
)
1174 for (act
= 0, last
= 0; act
< len
; act
++)
1175 if (bitmap_bit_p (blocks
, list
[act
]))
1176 list
[last
++] = list
[act
];
1182 /* Execute dataflow analysis on a single dataflow problem.
1184 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1185 examined or will be computed. For calls from DF_ANALYZE, this is
1186 the set of blocks that has been passed to DF_SET_BLOCKS.
1190 df_analyze_problem (struct dataflow
*dflow
,
1191 bitmap blocks_to_consider
,
1192 int *postorder
, int n_blocks
)
1194 timevar_push (dflow
->problem
->tv_id
);
1196 /* (Re)Allocate the datastructures necessary to solve the problem. */
1197 if (dflow
->problem
->alloc_fun
)
1198 dflow
->problem
->alloc_fun (blocks_to_consider
);
1200 #ifdef ENABLE_DF_CHECKING
1201 if (dflow
->problem
->verify_start_fun
)
1202 dflow
->problem
->verify_start_fun ();
1205 /* Set up the problem and compute the local information. */
1206 if (dflow
->problem
->local_compute_fun
)
1207 dflow
->problem
->local_compute_fun (blocks_to_consider
);
1209 /* Solve the equations. */
1210 if (dflow
->problem
->dataflow_fun
)
1211 dflow
->problem
->dataflow_fun (dflow
, blocks_to_consider
,
1212 postorder
, n_blocks
);
1214 /* Massage the solution. */
1215 if (dflow
->problem
->finalize_fun
)
1216 dflow
->problem
->finalize_fun (blocks_to_consider
);
1218 #ifdef ENABLE_DF_CHECKING
1219 if (dflow
->problem
->verify_end_fun
)
1220 dflow
->problem
->verify_end_fun ();
1223 timevar_pop (dflow
->problem
->tv_id
);
1225 dflow
->computed
= true;
1229 /* Analyze dataflow info. */
1236 /* These should be the same. */
1237 gcc_assert (df
->n_blocks
== df
->n_blocks_inverted
);
1239 /* We need to do this before the df_verify_all because this is
1240 not kept incrementally up to date. */
1241 df_compute_regs_ever_live (false);
1242 df_process_deferred_rescans ();
1245 fprintf (dump_file
, "df_analyze called\n");
1247 #ifndef ENABLE_DF_CHECKING
1248 if (df
->changeable_flags
& DF_VERIFY_SCHEDULED
)
1252 /* Skip over the DF_SCAN problem. */
1253 for (i
= 1; i
< df
->num_problems_defined
; i
++)
1255 struct dataflow
*dflow
= df
->problems_in_order
[i
];
1256 if (dflow
->solutions_dirty
)
1258 if (dflow
->problem
->dir
== DF_FORWARD
)
1259 df_analyze_problem (dflow
,
1260 df
->blocks_to_analyze
,
1261 df
->postorder_inverted
,
1262 df
->n_blocks_inverted
);
1264 df_analyze_problem (dflow
,
1265 df
->blocks_to_analyze
,
1271 if (!df
->analyze_subset
)
1273 BITMAP_FREE (df
->blocks_to_analyze
);
1274 df
->blocks_to_analyze
= NULL
;
1278 df_set_clean_cfg ();
1282 /* Analyze dataflow info. */
1287 bitmap current_all_blocks
= BITMAP_ALLOC (&df_bitmap_obstack
);
1290 free (df
->postorder
);
1291 free (df
->postorder_inverted
);
1292 df
->postorder
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
1293 df
->postorder_inverted
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
1294 df
->n_blocks
= post_order_compute (df
->postorder
, true, true);
1295 df
->n_blocks_inverted
= inverted_post_order_compute (df
->postorder_inverted
);
1297 for (i
= 0; i
< df
->n_blocks
; i
++)
1298 bitmap_set_bit (current_all_blocks
, df
->postorder
[i
]);
1300 #ifdef ENABLE_CHECKING
1301 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1303 for (i
= 0; i
< df
->n_blocks_inverted
; i
++)
1304 gcc_assert (bitmap_bit_p (current_all_blocks
, df
->postorder_inverted
[i
]));
1307 /* Make sure that we have pruned any unreachable blocks from these
1309 if (df
->analyze_subset
)
1311 bitmap_and_into (df
->blocks_to_analyze
, current_all_blocks
);
1312 df
->n_blocks
= df_prune_to_subcfg (df
->postorder
,
1313 df
->n_blocks
, df
->blocks_to_analyze
);
1314 df
->n_blocks_inverted
= df_prune_to_subcfg (df
->postorder_inverted
,
1315 df
->n_blocks_inverted
,
1316 df
->blocks_to_analyze
);
1317 BITMAP_FREE (current_all_blocks
);
1321 df
->blocks_to_analyze
= current_all_blocks
;
1322 current_all_blocks
= NULL
;
1328 /* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1329 Returns the number of blocks which is always loop->num_nodes. */
1332 loop_post_order_compute (int *post_order
, struct loop
*loop
)
1334 edge_iterator
*stack
;
1336 int post_order_num
= 0;
1339 /* Allocate stack for back-tracking up CFG. */
1340 stack
= XNEWVEC (edge_iterator
, loop
->num_nodes
+ 1);
1343 /* Allocate bitmap to track nodes that have been visited. */
1344 visited
= BITMAP_ALLOC (NULL
);
1346 /* Push the first edge on to the stack. */
1347 stack
[sp
++] = ei_start (loop_preheader_edge (loop
)->src
->succs
);
1355 /* Look at the edge on the top of the stack. */
1357 src
= ei_edge (ei
)->src
;
1358 dest
= ei_edge (ei
)->dest
;
1360 /* Check if the edge destination has been visited yet and mark it
1362 if (flow_bb_inside_loop_p (loop
, dest
)
1363 && bitmap_set_bit (visited
, dest
->index
))
1365 if (EDGE_COUNT (dest
->succs
) > 0)
1366 /* Since the DEST node has been visited for the first
1367 time, check its successors. */
1368 stack
[sp
++] = ei_start (dest
->succs
);
1370 post_order
[post_order_num
++] = dest
->index
;
1374 if (ei_one_before_end_p (ei
)
1375 && src
!= loop_preheader_edge (loop
)->src
)
1376 post_order
[post_order_num
++] = src
->index
;
1378 if (!ei_one_before_end_p (ei
))
1379 ei_next (&stack
[sp
- 1]);
1386 BITMAP_FREE (visited
);
1388 return post_order_num
;
1391 /* Compute the reverse top sort order of the inverted sub-CFG specified
1392 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1395 loop_inverted_post_order_compute (int *post_order
, struct loop
*loop
)
1398 edge_iterator
*stack
;
1400 int post_order_num
= 0;
1403 /* Allocate stack for back-tracking up CFG. */
1404 stack
= XNEWVEC (edge_iterator
, loop
->num_nodes
+ 1);
1407 /* Allocate bitmap to track nodes that have been visited. */
1408 visited
= BITMAP_ALLOC (NULL
);
1410 /* Put all latches into the initial work list. In theory we'd want
1411 to start from loop exits but then we'd have the special case of
1412 endless loops. It doesn't really matter for DF iteration order and
1413 handling latches last is probably even better. */
1414 stack
[sp
++] = ei_start (loop
->header
->preds
);
1415 bitmap_set_bit (visited
, loop
->header
->index
);
1417 /* The inverted traversal loop. */
1423 /* Look at the edge on the top of the stack. */
1425 bb
= ei_edge (ei
)->dest
;
1426 pred
= ei_edge (ei
)->src
;
1428 /* Check if the predecessor has been visited yet and mark it
1430 if (flow_bb_inside_loop_p (loop
, pred
)
1431 && bitmap_set_bit (visited
, pred
->index
))
1433 if (EDGE_COUNT (pred
->preds
) > 0)
1434 /* Since the predecessor node has been visited for the first
1435 time, check its predecessors. */
1436 stack
[sp
++] = ei_start (pred
->preds
);
1438 post_order
[post_order_num
++] = pred
->index
;
1442 if (flow_bb_inside_loop_p (loop
, bb
)
1443 && ei_one_before_end_p (ei
))
1444 post_order
[post_order_num
++] = bb
->index
;
1446 if (!ei_one_before_end_p (ei
))
1447 ei_next (&stack
[sp
- 1]);
1454 BITMAP_FREE (visited
);
1455 return post_order_num
;
1459 /* Analyze dataflow info for the basic blocks contained in LOOP. */
1462 df_analyze_loop (struct loop
*loop
)
1464 free (df
->postorder
);
1465 free (df
->postorder_inverted
);
1467 df
->postorder
= XNEWVEC (int, loop
->num_nodes
);
1468 df
->postorder_inverted
= XNEWVEC (int, loop
->num_nodes
);
1469 df
->n_blocks
= loop_post_order_compute (df
->postorder
, loop
);
1470 df
->n_blocks_inverted
1471 = loop_inverted_post_order_compute (df
->postorder_inverted
, loop
);
1472 gcc_assert ((unsigned) df
->n_blocks
== loop
->num_nodes
);
1473 gcc_assert ((unsigned) df
->n_blocks_inverted
== loop
->num_nodes
);
1475 bitmap blocks
= BITMAP_ALLOC (&df_bitmap_obstack
);
1476 for (int i
= 0; i
< df
->n_blocks
; ++i
)
1477 bitmap_set_bit (blocks
, df
->postorder
[i
]);
1478 df_set_blocks (blocks
);
1479 BITMAP_FREE (blocks
);
1485 /* Return the number of basic blocks from the last call to df_analyze. */
1488 df_get_n_blocks (enum df_flow_dir dir
)
1490 gcc_assert (dir
!= DF_NONE
);
1492 if (dir
== DF_FORWARD
)
1494 gcc_assert (df
->postorder_inverted
);
1495 return df
->n_blocks_inverted
;
1498 gcc_assert (df
->postorder
);
1499 return df
->n_blocks
;
1503 /* Return a pointer to the array of basic blocks in the reverse postorder.
1504 Depending on the direction of the dataflow problem,
1505 it returns either the usual reverse postorder array
1506 or the reverse postorder of inverted traversal. */
1508 df_get_postorder (enum df_flow_dir dir
)
1510 gcc_assert (dir
!= DF_NONE
);
1512 if (dir
== DF_FORWARD
)
1514 gcc_assert (df
->postorder_inverted
);
1515 return df
->postorder_inverted
;
1517 gcc_assert (df
->postorder
);
1518 return df
->postorder
;
1521 static struct df_problem user_problem
;
1522 static struct dataflow user_dflow
;
1524 /* Interface for calling iterative dataflow with user defined
1525 confluence and transfer functions. All that is necessary is to
1526 supply DIR, a direction, CONF_FUN_0, a confluence function for
1527 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1528 confluence function, TRANS_FUN, the basic block transfer function,
1529 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1530 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1533 df_simple_dataflow (enum df_flow_dir dir
,
1534 df_init_function init_fun
,
1535 df_confluence_function_0 con_fun_0
,
1536 df_confluence_function_n con_fun_n
,
1537 df_transfer_function trans_fun
,
1538 bitmap blocks
, int * postorder
, int n_blocks
)
1540 memset (&user_problem
, 0, sizeof (struct df_problem
));
1541 user_problem
.dir
= dir
;
1542 user_problem
.init_fun
= init_fun
;
1543 user_problem
.con_fun_0
= con_fun_0
;
1544 user_problem
.con_fun_n
= con_fun_n
;
1545 user_problem
.trans_fun
= trans_fun
;
1546 user_dflow
.problem
= &user_problem
;
1547 df_worklist_dataflow (&user_dflow
, blocks
, postorder
, n_blocks
);
1552 /*----------------------------------------------------------------------------
1553 Functions to support limited incremental change.
1554 ----------------------------------------------------------------------------*/
1557 /* Get basic block info. */
1560 df_get_bb_info (struct dataflow
*dflow
, unsigned int index
)
1562 if (dflow
->block_info
== NULL
)
1564 if (index
>= dflow
->block_info_size
)
1566 return (void *)((char *)dflow
->block_info
1567 + index
* dflow
->problem
->block_info_elt_size
);
1571 /* Set basic block info. */
1574 df_set_bb_info (struct dataflow
*dflow
, unsigned int index
,
1577 gcc_assert (dflow
->block_info
);
1578 memcpy ((char *)dflow
->block_info
1579 + index
* dflow
->problem
->block_info_elt_size
,
1580 bb_info
, dflow
->problem
->block_info_elt_size
);
1584 /* Clear basic block info. */
1587 df_clear_bb_info (struct dataflow
*dflow
, unsigned int index
)
1589 gcc_assert (dflow
->block_info
);
1590 gcc_assert (dflow
->block_info_size
> index
);
1591 memset ((char *)dflow
->block_info
1592 + index
* dflow
->problem
->block_info_elt_size
,
1593 0, dflow
->problem
->block_info_elt_size
);
1597 /* Mark the solutions as being out of date. */
1600 df_mark_solutions_dirty (void)
1605 for (p
= 1; p
< df
->num_problems_defined
; p
++)
1606 df
->problems_in_order
[p
]->solutions_dirty
= true;
1611 /* Return true if BB needs it's transfer functions recomputed. */
1614 df_get_bb_dirty (basic_block bb
)
1616 return bitmap_bit_p ((df_live
1617 ? df_live
: df_lr
)->out_of_date_transfer_functions
,
1622 /* Mark BB as needing it's transfer functions as being out of
1626 df_set_bb_dirty (basic_block bb
)
1628 bb
->flags
|= BB_MODIFIED
;
1632 for (p
= 1; p
< df
->num_problems_defined
; p
++)
1634 struct dataflow
*dflow
= df
->problems_in_order
[p
];
1635 if (dflow
->out_of_date_transfer_functions
)
1636 bitmap_set_bit (dflow
->out_of_date_transfer_functions
, bb
->index
);
1638 df_mark_solutions_dirty ();
1643 /* Grow the bb_info array. */
1646 df_grow_bb_info (struct dataflow
*dflow
)
1648 unsigned int new_size
= last_basic_block_for_fn (cfun
) + 1;
1649 if (dflow
->block_info_size
< new_size
)
1651 new_size
+= new_size
/ 4;
1653 = (void *)XRESIZEVEC (char, (char *)dflow
->block_info
,
1655 * dflow
->problem
->block_info_elt_size
);
1656 memset ((char *)dflow
->block_info
1657 + dflow
->block_info_size
1658 * dflow
->problem
->block_info_elt_size
,
1660 (new_size
- dflow
->block_info_size
)
1661 * dflow
->problem
->block_info_elt_size
);
1662 dflow
->block_info_size
= new_size
;
1667 /* Clear the dirty bits. This is called from places that delete
1670 df_clear_bb_dirty (basic_block bb
)
1673 for (p
= 1; p
< df
->num_problems_defined
; p
++)
1675 struct dataflow
*dflow
= df
->problems_in_order
[p
];
1676 if (dflow
->out_of_date_transfer_functions
)
1677 bitmap_clear_bit (dflow
->out_of_date_transfer_functions
, bb
->index
);
1681 /* Called from the rtl_compact_blocks to reorganize the problems basic
1685 df_compact_blocks (void)
1689 void *problem_temps
;
1692 bitmap_initialize (&tmp
, &df_bitmap_obstack
);
1693 for (p
= 0; p
< df
->num_problems_defined
; p
++)
1695 struct dataflow
*dflow
= df
->problems_in_order
[p
];
1697 /* Need to reorganize the out_of_date_transfer_functions for the
1699 if (dflow
->out_of_date_transfer_functions
)
1701 bitmap_copy (&tmp
, dflow
->out_of_date_transfer_functions
);
1702 bitmap_clear (dflow
->out_of_date_transfer_functions
);
1703 if (bitmap_bit_p (&tmp
, ENTRY_BLOCK
))
1704 bitmap_set_bit (dflow
->out_of_date_transfer_functions
, ENTRY_BLOCK
);
1705 if (bitmap_bit_p (&tmp
, EXIT_BLOCK
))
1706 bitmap_set_bit (dflow
->out_of_date_transfer_functions
, EXIT_BLOCK
);
1708 i
= NUM_FIXED_BLOCKS
;
1709 FOR_EACH_BB_FN (bb
, cfun
)
1711 if (bitmap_bit_p (&tmp
, bb
->index
))
1712 bitmap_set_bit (dflow
->out_of_date_transfer_functions
, i
);
1717 /* Now shuffle the block info for the problem. */
1718 if (dflow
->problem
->free_bb_fun
)
1720 int size
= (last_basic_block_for_fn (cfun
)
1721 * dflow
->problem
->block_info_elt_size
);
1722 problem_temps
= XNEWVAR (char, size
);
1723 df_grow_bb_info (dflow
);
1724 memcpy (problem_temps
, dflow
->block_info
, size
);
1726 /* Copy the bb info from the problem tmps to the proper
1727 place in the block_info vector. Null out the copied
1728 item. The entry and exit blocks never move. */
1729 i
= NUM_FIXED_BLOCKS
;
1730 FOR_EACH_BB_FN (bb
, cfun
)
1732 df_set_bb_info (dflow
, i
,
1733 (char *)problem_temps
1734 + bb
->index
* dflow
->problem
->block_info_elt_size
);
1737 memset ((char *)dflow
->block_info
1738 + i
* dflow
->problem
->block_info_elt_size
, 0,
1739 (last_basic_block_for_fn (cfun
) - i
)
1740 * dflow
->problem
->block_info_elt_size
);
1741 free (problem_temps
);
1745 /* Shuffle the bits in the basic_block indexed arrays. */
1747 if (df
->blocks_to_analyze
)
1749 if (bitmap_bit_p (&tmp
, ENTRY_BLOCK
))
1750 bitmap_set_bit (df
->blocks_to_analyze
, ENTRY_BLOCK
);
1751 if (bitmap_bit_p (&tmp
, EXIT_BLOCK
))
1752 bitmap_set_bit (df
->blocks_to_analyze
, EXIT_BLOCK
);
1753 bitmap_copy (&tmp
, df
->blocks_to_analyze
);
1754 bitmap_clear (df
->blocks_to_analyze
);
1755 i
= NUM_FIXED_BLOCKS
;
1756 FOR_EACH_BB_FN (bb
, cfun
)
1758 if (bitmap_bit_p (&tmp
, bb
->index
))
1759 bitmap_set_bit (df
->blocks_to_analyze
, i
);
1764 bitmap_clear (&tmp
);
1766 i
= NUM_FIXED_BLOCKS
;
1767 FOR_EACH_BB_FN (bb
, cfun
)
1769 SET_BASIC_BLOCK_FOR_FN (cfun
, i
, bb
);
1774 gcc_assert (i
== n_basic_blocks_for_fn (cfun
));
1776 for (; i
< last_basic_block_for_fn (cfun
); i
++)
1777 SET_BASIC_BLOCK_FOR_FN (cfun
, i
, NULL
);
1780 if (!df_lr
->solutions_dirty
)
1781 df_set_clean_cfg ();
1786 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1787 block. There is no excuse for people to do this kind of thing. */
1790 df_bb_replace (int old_index
, basic_block new_block
)
1792 int new_block_index
= new_block
->index
;
1796 fprintf (dump_file
, "shoving block %d into %d\n", new_block_index
, old_index
);
1799 gcc_assert (BASIC_BLOCK_FOR_FN (cfun
, old_index
) == NULL
);
1801 for (p
= 0; p
< df
->num_problems_defined
; p
++)
1803 struct dataflow
*dflow
= df
->problems_in_order
[p
];
1804 if (dflow
->block_info
)
1806 df_grow_bb_info (dflow
);
1807 df_set_bb_info (dflow
, old_index
,
1808 df_get_bb_info (dflow
, new_block_index
));
1812 df_clear_bb_dirty (new_block
);
1813 SET_BASIC_BLOCK_FOR_FN (cfun
, old_index
, new_block
);
1814 new_block
->index
= old_index
;
1815 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun
, old_index
));
1816 SET_BASIC_BLOCK_FOR_FN (cfun
, new_block_index
, NULL
);
1820 /* Free all of the per basic block dataflow from all of the problems.
1821 This is typically called before a basic block is deleted and the
1822 problem will be reanalyzed. */
1825 df_bb_delete (int bb_index
)
1827 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, bb_index
);
1833 for (i
= 0; i
< df
->num_problems_defined
; i
++)
1835 struct dataflow
*dflow
= df
->problems_in_order
[i
];
1836 if (dflow
->problem
->free_bb_fun
)
1838 void *bb_info
= df_get_bb_info (dflow
, bb_index
);
1841 dflow
->problem
->free_bb_fun (bb
, bb_info
);
1842 df_clear_bb_info (dflow
, bb_index
);
1846 df_clear_bb_dirty (bb
);
1847 df_mark_solutions_dirty ();
1851 /* Verify that there is a place for everything and everything is in
1852 its place. This is too expensive to run after every pass in the
1853 mainline. However this is an excellent debugging tool if the
1854 dataflow information is not being updated properly. You can just
1855 sprinkle calls in until you find the place that is changing an
1856 underlying structure without calling the proper updating
1863 #ifdef ENABLE_DF_CHECKING
1864 df_lr_verify_transfer_functions ();
1866 df_live_verify_transfer_functions ();
1872 /* Compute an array of ints that describes the cfg. This can be used
1873 to discover places where the cfg is modified by the appropriate
1874 calls have not been made to the keep df informed. The internals of
1875 this are unexciting, the key is that two instances of this can be
1876 compared to see if any changes have been made to the cfg. */
1879 df_compute_cfg_image (void)
1882 int size
= 2 + (2 * n_basic_blocks_for_fn (cfun
));
1886 FOR_ALL_BB_FN (bb
, cfun
)
1888 size
+= EDGE_COUNT (bb
->succs
);
1891 map
= XNEWVEC (int, size
);
1894 FOR_ALL_BB_FN (bb
, cfun
)
1899 map
[i
++] = bb
->index
;
1900 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1901 map
[i
++] = e
->dest
->index
;
1908 static int *saved_cfg
= NULL
;
1911 /* This function compares the saved version of the cfg with the
1912 current cfg and aborts if the two are identical. The function
1913 silently returns if the cfg has been marked as dirty or the two are
1917 df_check_cfg_clean (void)
1924 if (df_lr
->solutions_dirty
)
1927 if (saved_cfg
== NULL
)
1930 new_map
= df_compute_cfg_image ();
1931 gcc_assert (memcmp (saved_cfg
, new_map
, saved_cfg
[0] * sizeof (int)) == 0);
1936 /* This function builds a cfg fingerprint and squirrels it away in
1940 df_set_clean_cfg (void)
1943 saved_cfg
= df_compute_cfg_image ();
1946 #endif /* DF_DEBUG_CFG */
1947 /*----------------------------------------------------------------------------
1948 PUBLIC INTERFACES TO QUERY INFORMATION.
1949 ----------------------------------------------------------------------------*/
1952 /* Return first def of REGNO within BB. */
1955 df_bb_regno_first_def_find (basic_block bb
, unsigned int regno
)
1961 FOR_BB_INSNS (bb
, insn
)
1966 uid
= INSN_UID (insn
);
1967 for (def_rec
= DF_INSN_UID_DEFS (uid
); *def_rec
; def_rec
++)
1969 df_ref def
= *def_rec
;
1970 if (DF_REF_REGNO (def
) == regno
)
1978 /* Return last def of REGNO within BB. */
1981 df_bb_regno_last_def_find (basic_block bb
, unsigned int regno
)
1987 FOR_BB_INSNS_REVERSE (bb
, insn
)
1992 uid
= INSN_UID (insn
);
1993 for (def_rec
= DF_INSN_UID_DEFS (uid
); *def_rec
; def_rec
++)
1995 df_ref def
= *def_rec
;
1996 if (DF_REF_REGNO (def
) == regno
)
2004 /* Finds the reference corresponding to the definition of REG in INSN.
2005 DF is the dataflow object. */
2008 df_find_def (rtx insn
, rtx reg
)
2013 if (GET_CODE (reg
) == SUBREG
)
2014 reg
= SUBREG_REG (reg
);
2015 gcc_assert (REG_P (reg
));
2017 uid
= INSN_UID (insn
);
2018 for (def_rec
= DF_INSN_UID_DEFS (uid
); *def_rec
; def_rec
++)
2020 df_ref def
= *def_rec
;
2021 if (DF_REF_REGNO (def
) == REGNO (reg
))
2029 /* Return true if REG is defined in INSN, zero otherwise. */
2032 df_reg_defined (rtx insn
, rtx reg
)
2034 return df_find_def (insn
, reg
) != NULL
;
2038 /* Finds the reference corresponding to the use of REG in INSN.
2039 DF is the dataflow object. */
2042 df_find_use (rtx insn
, rtx reg
)
2047 if (GET_CODE (reg
) == SUBREG
)
2048 reg
= SUBREG_REG (reg
);
2049 gcc_assert (REG_P (reg
));
2051 uid
= INSN_UID (insn
);
2052 for (use_rec
= DF_INSN_UID_USES (uid
); *use_rec
; use_rec
++)
2054 df_ref use
= *use_rec
;
2055 if (DF_REF_REGNO (use
) == REGNO (reg
))
2058 if (df
->changeable_flags
& DF_EQ_NOTES
)
2059 for (use_rec
= DF_INSN_UID_EQ_USES (uid
); *use_rec
; use_rec
++)
2061 df_ref use
= *use_rec
;
2062 if (DF_REF_REGNO (use
) == REGNO (reg
))
2069 /* Return true if REG is referenced in INSN, zero otherwise. */
2072 df_reg_used (rtx insn
, rtx reg
)
2074 return df_find_use (insn
, reg
) != NULL
;
2078 /*----------------------------------------------------------------------------
2079 Debugging and printing functions.
2080 ----------------------------------------------------------------------------*/
2082 /* Write information about registers and basic blocks into FILE.
2083 This is part of making a debugging dump. */
2086 dump_regset (regset r
, FILE *outf
)
2089 reg_set_iterator rsi
;
2093 fputs (" (nil)", outf
);
2097 EXECUTE_IF_SET_IN_REG_SET (r
, 0, i
, rsi
)
2099 fprintf (outf
, " %d", i
);
2100 if (i
< FIRST_PSEUDO_REGISTER
)
2101 fprintf (outf
, " [%s]",
2106 /* Print a human-readable representation of R on the standard error
2107 stream. This function is designed to be used from within the
2109 extern void debug_regset (regset
);
2111 debug_regset (regset r
)
2113 dump_regset (r
, stderr
);
2114 putc ('\n', stderr
);
2117 /* Write information about registers and basic blocks into FILE.
2118 This is part of making a debugging dump. */
2121 df_print_regset (FILE *file
, bitmap r
)
2127 fputs (" (nil)", file
);
2130 EXECUTE_IF_SET_IN_BITMAP (r
, 0, i
, bi
)
2132 fprintf (file
, " %d", i
);
2133 if (i
< FIRST_PSEUDO_REGISTER
)
2134 fprintf (file
, " [%s]", reg_names
[i
]);
2137 fprintf (file
, "\n");
2141 /* Write information about registers and basic blocks into FILE. The
2142 bitmap is in the form used by df_byte_lr. This is part of making a
2146 df_print_word_regset (FILE *file
, bitmap r
)
2148 unsigned int max_reg
= max_reg_num ();
2151 fputs (" (nil)", file
);
2155 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_reg
; i
++)
2157 bool found
= (bitmap_bit_p (r
, 2 * i
)
2158 || bitmap_bit_p (r
, 2 * i
+ 1));
2162 const char * sep
= "";
2163 fprintf (file
, " %d", i
);
2164 fprintf (file
, "(");
2165 for (word
= 0; word
< 2; word
++)
2166 if (bitmap_bit_p (r
, 2 * i
+ word
))
2168 fprintf (file
, "%s%d", sep
, word
);
2171 fprintf (file
, ")");
2175 fprintf (file
, "\n");
2179 /* Dump dataflow info. */
2182 df_dump (FILE *file
)
2185 df_dump_start (file
);
2187 FOR_ALL_BB_FN (bb
, cfun
)
2189 df_print_bb_index (bb
, file
);
2190 df_dump_top (bb
, file
);
2191 df_dump_bottom (bb
, file
);
2194 fprintf (file
, "\n");
2198 /* Dump dataflow info for df->blocks_to_analyze. */
2201 df_dump_region (FILE *file
)
2203 if (df
->blocks_to_analyze
)
2206 unsigned int bb_index
;
2208 fprintf (file
, "\n\nstarting region dump\n");
2209 df_dump_start (file
);
2211 EXECUTE_IF_SET_IN_BITMAP (df
->blocks_to_analyze
, 0, bb_index
, bi
)
2213 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, bb_index
);
2214 dump_bb (file
, bb
, 0, TDF_DETAILS
);
2216 fprintf (file
, "\n");
2223 /* Dump the introductory information for each problem defined. */
2226 df_dump_start (FILE *file
)
2233 fprintf (file
, "\n\n%s\n", current_function_name ());
2234 fprintf (file
, "\nDataflow summary:\n");
2235 if (df
->blocks_to_analyze
)
2236 fprintf (file
, "def_info->table_size = %d, use_info->table_size = %d\n",
2237 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2239 for (i
= 0; i
< df
->num_problems_defined
; i
++)
2241 struct dataflow
*dflow
= df
->problems_in_order
[i
];
2242 if (dflow
->computed
)
2244 df_dump_problem_function fun
= dflow
->problem
->dump_start_fun
;
2252 /* Dump the top or bottom of the block information for BB. */
2254 df_dump_bb_problem_data (basic_block bb
, FILE *file
, bool top
)
2261 for (i
= 0; i
< df
->num_problems_defined
; i
++)
2263 struct dataflow
*dflow
= df
->problems_in_order
[i
];
2264 if (dflow
->computed
)
2266 df_dump_bb_problem_function bbfun
;
2269 bbfun
= dflow
->problem
->dump_top_fun
;
2271 bbfun
= dflow
->problem
->dump_bottom_fun
;
2279 /* Dump the top of the block information for BB. */
2282 df_dump_top (basic_block bb
, FILE *file
)
2284 df_dump_bb_problem_data (bb
, file
, /*top=*/true);
2287 /* Dump the bottom of the block information for BB. */
2290 df_dump_bottom (basic_block bb
, FILE *file
)
2292 df_dump_bb_problem_data (bb
, file
, /*top=*/false);
2296 /* Dump information about INSN just before or after dumping INSN itself. */
2298 df_dump_insn_problem_data (const_rtx insn
, FILE *file
, bool top
)
2305 for (i
= 0; i
< df
->num_problems_defined
; i
++)
2307 struct dataflow
*dflow
= df
->problems_in_order
[i
];
2308 if (dflow
->computed
)
2310 df_dump_insn_problem_function insnfun
;
2313 insnfun
= dflow
->problem
->dump_insn_top_fun
;
2315 insnfun
= dflow
->problem
->dump_insn_bottom_fun
;
2318 insnfun (insn
, file
);
2323 /* Dump information about INSN before dumping INSN itself. */
2326 df_dump_insn_top (const_rtx insn
, FILE *file
)
2328 df_dump_insn_problem_data (insn
, file
, /*top=*/true);
2331 /* Dump information about INSN after dumping INSN itself. */
2334 df_dump_insn_bottom (const_rtx insn
, FILE *file
)
2336 df_dump_insn_problem_data (insn
, file
, /*top=*/false);
2341 df_ref_dump (df_ref ref
, FILE *file
)
2343 fprintf (file
, "%c%d(%d)",
2344 DF_REF_REG_DEF_P (ref
)
2346 : (DF_REF_FLAGS (ref
) & DF_REF_IN_NOTE
) ? 'e' : 'u',
2348 DF_REF_REGNO (ref
));
2352 df_refs_chain_dump (df_ref
*ref_rec
, bool follow_chain
, FILE *file
)
2354 fprintf (file
, "{ ");
2357 df_ref ref
= *ref_rec
;
2358 df_ref_dump (ref
, file
);
2360 df_chain_dump (DF_REF_CHAIN (ref
), file
);
2363 fprintf (file
, "}");
2367 /* Dump either a ref-def or reg-use chain. */
2370 df_regs_chain_dump (df_ref ref
, FILE *file
)
2372 fprintf (file
, "{ ");
2375 df_ref_dump (ref
, file
);
2376 ref
= DF_REF_NEXT_REG (ref
);
2378 fprintf (file
, "}");
2383 df_mws_dump (struct df_mw_hardreg
**mws
, FILE *file
)
2387 fprintf (file
, "mw %c r[%d..%d]\n",
2388 (DF_MWS_REG_DEF_P (*mws
)) ? 'd' : 'u',
2389 (*mws
)->start_regno
, (*mws
)->end_regno
);
2396 df_insn_uid_debug (unsigned int uid
,
2397 bool follow_chain
, FILE *file
)
2399 fprintf (file
, "insn %d luid %d",
2400 uid
, DF_INSN_UID_LUID (uid
));
2402 if (DF_INSN_UID_DEFS (uid
))
2404 fprintf (file
, " defs ");
2405 df_refs_chain_dump (DF_INSN_UID_DEFS (uid
), follow_chain
, file
);
2408 if (DF_INSN_UID_USES (uid
))
2410 fprintf (file
, " uses ");
2411 df_refs_chain_dump (DF_INSN_UID_USES (uid
), follow_chain
, file
);
2414 if (DF_INSN_UID_EQ_USES (uid
))
2416 fprintf (file
, " eq uses ");
2417 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid
), follow_chain
, file
);
2420 if (DF_INSN_UID_MWS (uid
))
2422 fprintf (file
, " mws ");
2423 df_mws_dump (DF_INSN_UID_MWS (uid
), file
);
2425 fprintf (file
, "\n");
2430 df_insn_debug (rtx insn
, bool follow_chain
, FILE *file
)
2432 df_insn_uid_debug (INSN_UID (insn
), follow_chain
, file
);
2436 df_insn_debug_regno (rtx insn
, FILE *file
)
2438 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (insn
);
2440 fprintf (file
, "insn %d bb %d luid %d defs ",
2441 INSN_UID (insn
), BLOCK_FOR_INSN (insn
)->index
,
2442 DF_INSN_INFO_LUID (insn_info
));
2443 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info
), false, file
);
2445 fprintf (file
, " uses ");
2446 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info
), false, file
);
2448 fprintf (file
, " eq_uses ");
2449 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info
), false, file
);
2450 fprintf (file
, "\n");
2454 df_regno_debug (unsigned int regno
, FILE *file
)
2456 fprintf (file
, "reg %d defs ", regno
);
2457 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno
), file
);
2458 fprintf (file
, " uses ");
2459 df_regs_chain_dump (DF_REG_USE_CHAIN (regno
), file
);
2460 fprintf (file
, " eq_uses ");
2461 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno
), file
);
2462 fprintf (file
, "\n");
2467 df_ref_debug (df_ref ref
, FILE *file
)
2469 fprintf (file
, "%c%d ",
2470 DF_REF_REG_DEF_P (ref
) ? 'd' : 'u',
2472 fprintf (file
, "reg %d bb %d insn %d flag %#x type %#x ",
2475 DF_REF_IS_ARTIFICIAL (ref
) ? -1 : DF_REF_INSN_UID (ref
),
2478 if (DF_REF_LOC (ref
))
2480 if (flag_dump_noaddr
)
2481 fprintf (file
, "loc #(#) chain ");
2483 fprintf (file
, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref
),
2484 (void *)*DF_REF_LOC (ref
));
2487 fprintf (file
, "chain ");
2488 df_chain_dump (DF_REF_CHAIN (ref
), file
);
2489 fprintf (file
, "\n");
2492 /* Functions for debugging from GDB. */
2495 debug_df_insn (rtx insn
)
2497 df_insn_debug (insn
, true, stderr
);
2503 debug_df_reg (rtx reg
)
2505 df_regno_debug (REGNO (reg
), stderr
);
2510 debug_df_regno (unsigned int regno
)
2512 df_regno_debug (regno
, stderr
);
2517 debug_df_ref (df_ref ref
)
2519 df_ref_debug (ref
, stderr
);
2524 debug_df_defno (unsigned int defno
)
2526 df_ref_debug (DF_DEFS_GET (defno
), stderr
);
2531 debug_df_useno (unsigned int defno
)
2533 df_ref_debug (DF_USES_GET (defno
), stderr
);
2538 debug_df_chain (struct df_link
*link
)
2540 df_chain_dump (link
, stderr
);
2541 fputc ('\n', stderr
);