* ipa-profile.c: Add toplevel comment.
[official-gcc.git] / gcc / predict.c
blobaffed79ae9d8f5da52ac83b339fdc482b15d101d
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "tree.h"
35 #include "rtl.h"
36 #include "tm_p.h"
37 #include "hard-reg-set.h"
38 #include "basic-block.h"
39 #include "insn-config.h"
40 #include "regs.h"
41 #include "flags.h"
42 #include "function.h"
43 #include "except.h"
44 #include "diagnostic-core.h"
45 #include "recog.h"
46 #include "expr.h"
47 #include "predict.h"
48 #include "coverage.h"
49 #include "sreal.h"
50 #include "params.h"
51 #include "target.h"
52 #include "cfgloop.h"
53 #include "tree-flow.h"
54 #include "ggc.h"
55 #include "tree-pass.h"
56 #include "tree-scalar-evolution.h"
57 #include "cfgloop.h"
58 #include "pointer-set.h"
60 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
61 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
62 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
63 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
65 /* Random guesstimation given names.
66 PROV_VERY_UNLIKELY should be small enough so basic block predicted
67 by it gets below HOT_BB_FREQUENCY_FRACTION. */
68 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
69 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
70 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
71 #define PROB_ALWAYS (REG_BR_PROB_BASE)
73 static void combine_predictions_for_insn (rtx, basic_block);
74 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
75 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
76 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
77 static bool can_predict_insn_p (const_rtx);
79 /* Information we hold about each branch predictor.
80 Filled using information from predict.def. */
82 struct predictor_info
84 const char *const name; /* Name used in the debugging dumps. */
85 const int hitrate; /* Expected hitrate used by
86 predict_insn_def call. */
87 const int flags;
90 /* Use given predictor without Dempster-Shaffer theory if it matches
91 using first_match heuristics. */
92 #define PRED_FLAG_FIRST_MATCH 1
94 /* Recompute hitrate in percent to our representation. */
96 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
98 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
99 static const struct predictor_info predictor_info[]= {
100 #include "predict.def"
102 /* Upper bound on predictors. */
103 {NULL, 0, 0}
105 #undef DEF_PREDICTOR
107 /* Return TRUE if frequency FREQ is considered to be hot. */
109 static inline bool
110 maybe_hot_frequency_p (struct function *fun, int freq)
112 struct cgraph_node *node = cgraph_get_node (fun->decl);
113 if (!profile_info || !flag_branch_probabilities)
115 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
116 return false;
117 if (node->frequency == NODE_FREQUENCY_HOT)
118 return true;
120 if (profile_status_for_function (fun) == PROFILE_ABSENT)
121 return true;
122 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
123 && freq < (ENTRY_BLOCK_PTR_FOR_FUNCTION (fun)->frequency * 2 / 3))
124 return false;
125 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
126 return false;
127 if (freq < (ENTRY_BLOCK_PTR_FOR_FUNCTION (fun)->frequency
128 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
129 return false;
130 return true;
133 static gcov_type min_count = -1;
135 /* Determine the threshold for hot BB counts. */
137 gcov_type
138 get_hot_bb_threshold ()
140 gcov_working_set_t *ws;
141 if (min_count == -1)
143 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
144 gcc_assert (ws);
145 min_count = ws->min_counter;
147 return min_count;
150 /* Set the threshold for hot BB counts. */
152 void
153 set_hot_bb_threshold (gcov_type min)
155 min_count = min;
158 /* Return TRUE if frequency FREQ is considered to be hot. */
160 static inline bool
161 maybe_hot_count_p (struct function *fun, gcov_type count)
163 if (fun && profile_status_for_function (fun) != PROFILE_READ)
164 return true;
165 /* Code executed at most once is not hot. */
166 if (profile_info->runs >= count)
167 return false;
168 return (count >= get_hot_bb_threshold ());
171 /* Return true in case BB can be CPU intensive and should be optimized
172 for maximal performance. */
174 bool
175 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
177 gcc_checking_assert (fun);
178 if (profile_status_for_function (fun) == PROFILE_READ)
179 return maybe_hot_count_p (fun, bb->count);
180 return maybe_hot_frequency_p (fun, bb->frequency);
183 /* Return true if the call can be hot. */
185 bool
186 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
188 if (profile_info && flag_branch_probabilities
189 && !maybe_hot_count_p (NULL,
190 edge->count))
191 return false;
192 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
193 || (edge->callee
194 && edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
195 return false;
196 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
197 && (edge->callee
198 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
199 return false;
200 if (optimize_size)
201 return false;
202 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
203 return true;
204 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
205 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
206 return false;
207 if (flag_guess_branch_prob)
209 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0
210 || edge->frequency <= (CGRAPH_FREQ_BASE
211 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
212 return false;
214 return true;
217 /* Return true in case BB can be CPU intensive and should be optimized
218 for maximal performance. */
220 bool
221 maybe_hot_edge_p (edge e)
223 if (profile_status == PROFILE_READ)
224 return maybe_hot_count_p (cfun, e->count);
225 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
229 /* Return true in case BB is probably never executed. */
231 bool
232 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
234 gcc_checking_assert (fun);
235 if (profile_status_for_function (fun) == PROFILE_READ)
237 if ((bb->count * 4 + profile_info->runs / 2) / profile_info->runs > 0)
238 return false;
239 if (!bb->frequency)
240 return true;
241 if (!ENTRY_BLOCK_PTR->frequency)
242 return false;
243 if (ENTRY_BLOCK_PTR->count && ENTRY_BLOCK_PTR->count < REG_BR_PROB_BASE)
245 return (RDIV (bb->frequency * ENTRY_BLOCK_PTR->count,
246 ENTRY_BLOCK_PTR->frequency)
247 < REG_BR_PROB_BASE / 4);
249 return true;
251 if ((!profile_info || !flag_branch_probabilities)
252 && (cgraph_get_node (fun->decl)->frequency
253 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
254 return true;
255 return false;
259 /* Return true in case edge E is probably never executed. */
261 bool
262 probably_never_executed_edge_p (struct function *fun, edge e)
264 gcc_checking_assert (fun);
265 if (profile_info && flag_branch_probabilities)
266 return ((e->count + profile_info->runs / 2) / profile_info->runs) == 0;
267 if ((!profile_info || !flag_branch_probabilities)
268 && (cgraph_get_node (fun->decl)->frequency
269 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
270 return true;
271 return false;
274 /* Return true if NODE should be optimized for size. */
276 bool
277 cgraph_optimize_for_size_p (struct cgraph_node *node)
279 if (optimize_size)
280 return true;
281 if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
282 return true;
283 else
284 return false;
287 /* Return true when current function should always be optimized for size. */
289 bool
290 optimize_function_for_size_p (struct function *fun)
292 if (optimize_size)
293 return true;
294 if (!fun || !fun->decl)
295 return false;
296 return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
299 /* Return true when current function should always be optimized for speed. */
301 bool
302 optimize_function_for_speed_p (struct function *fun)
304 return !optimize_function_for_size_p (fun);
307 /* Return TRUE when BB should be optimized for size. */
309 bool
310 optimize_bb_for_size_p (const_basic_block bb)
312 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (cfun, bb);
315 /* Return TRUE when BB should be optimized for speed. */
317 bool
318 optimize_bb_for_speed_p (const_basic_block bb)
320 return !optimize_bb_for_size_p (bb);
323 /* Return TRUE when BB should be optimized for size. */
325 bool
326 optimize_edge_for_size_p (edge e)
328 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
331 /* Return TRUE when BB should be optimized for speed. */
333 bool
334 optimize_edge_for_speed_p (edge e)
336 return !optimize_edge_for_size_p (e);
339 /* Return TRUE when BB should be optimized for size. */
341 bool
342 optimize_insn_for_size_p (void)
344 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
347 /* Return TRUE when BB should be optimized for speed. */
349 bool
350 optimize_insn_for_speed_p (void)
352 return !optimize_insn_for_size_p ();
355 /* Return TRUE when LOOP should be optimized for size. */
357 bool
358 optimize_loop_for_size_p (struct loop *loop)
360 return optimize_bb_for_size_p (loop->header);
363 /* Return TRUE when LOOP should be optimized for speed. */
365 bool
366 optimize_loop_for_speed_p (struct loop *loop)
368 return optimize_bb_for_speed_p (loop->header);
371 /* Return TRUE when LOOP nest should be optimized for speed. */
373 bool
374 optimize_loop_nest_for_speed_p (struct loop *loop)
376 struct loop *l = loop;
377 if (optimize_loop_for_speed_p (loop))
378 return true;
379 l = loop->inner;
380 while (l && l != loop)
382 if (optimize_loop_for_speed_p (l))
383 return true;
384 if (l->inner)
385 l = l->inner;
386 else if (l->next)
387 l = l->next;
388 else
390 while (l != loop && !l->next)
391 l = loop_outer (l);
392 if (l != loop)
393 l = l->next;
396 return false;
399 /* Return TRUE when LOOP nest should be optimized for size. */
401 bool
402 optimize_loop_nest_for_size_p (struct loop *loop)
404 return !optimize_loop_nest_for_speed_p (loop);
407 /* Return true when edge E is likely to be well predictable by branch
408 predictor. */
410 bool
411 predictable_edge_p (edge e)
413 if (profile_status == PROFILE_ABSENT)
414 return false;
415 if ((e->probability
416 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
417 || (REG_BR_PROB_BASE - e->probability
418 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
419 return true;
420 return false;
424 /* Set RTL expansion for BB profile. */
426 void
427 rtl_profile_for_bb (basic_block bb)
429 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
432 /* Set RTL expansion for edge profile. */
434 void
435 rtl_profile_for_edge (edge e)
437 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
440 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
441 void
442 default_rtl_profile (void)
444 crtl->maybe_hot_insn_p = true;
447 /* Return true if the one of outgoing edges is already predicted by
448 PREDICTOR. */
450 bool
451 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
453 rtx note;
454 if (!INSN_P (BB_END (bb)))
455 return false;
456 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
457 if (REG_NOTE_KIND (note) == REG_BR_PRED
458 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
459 return true;
460 return false;
463 /* This map contains for a basic block the list of predictions for the
464 outgoing edges. */
466 static struct pointer_map_t *bb_predictions;
468 /* Structure representing predictions in tree level. */
470 struct edge_prediction {
471 struct edge_prediction *ep_next;
472 edge ep_edge;
473 enum br_predictor ep_predictor;
474 int ep_probability;
477 /* Return true if the one of outgoing edges is already predicted by
478 PREDICTOR. */
480 bool
481 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
483 struct edge_prediction *i;
484 void **preds = pointer_map_contains (bb_predictions, bb);
486 if (!preds)
487 return false;
489 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
490 if (i->ep_predictor == predictor)
491 return true;
492 return false;
495 /* Return true when the probability of edge is reliable.
497 The profile guessing code is good at predicting branch outcome (ie.
498 taken/not taken), that is predicted right slightly over 75% of time.
499 It is however notoriously poor on predicting the probability itself.
500 In general the profile appear a lot flatter (with probabilities closer
501 to 50%) than the reality so it is bad idea to use it to drive optimization
502 such as those disabling dynamic branch prediction for well predictable
503 branches.
505 There are two exceptions - edges leading to noreturn edges and edges
506 predicted by number of iterations heuristics are predicted well. This macro
507 should be able to distinguish those, but at the moment it simply check for
508 noreturn heuristic that is only one giving probability over 99% or bellow
509 1%. In future we might want to propagate reliability information across the
510 CFG if we find this information useful on multiple places. */
511 static bool
512 probability_reliable_p (int prob)
514 return (profile_status == PROFILE_READ
515 || (profile_status == PROFILE_GUESSED
516 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
519 /* Same predicate as above, working on edges. */
520 bool
521 edge_probability_reliable_p (const_edge e)
523 return probability_reliable_p (e->probability);
526 /* Same predicate as edge_probability_reliable_p, working on notes. */
527 bool
528 br_prob_note_reliable_p (const_rtx note)
530 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
531 return probability_reliable_p (INTVAL (XEXP (note, 0)));
534 static void
535 predict_insn (rtx insn, enum br_predictor predictor, int probability)
537 gcc_assert (any_condjump_p (insn));
538 if (!flag_guess_branch_prob)
539 return;
541 add_reg_note (insn, REG_BR_PRED,
542 gen_rtx_CONCAT (VOIDmode,
543 GEN_INT ((int) predictor),
544 GEN_INT ((int) probability)));
547 /* Predict insn by given predictor. */
549 void
550 predict_insn_def (rtx insn, enum br_predictor predictor,
551 enum prediction taken)
553 int probability = predictor_info[(int) predictor].hitrate;
555 if (taken != TAKEN)
556 probability = REG_BR_PROB_BASE - probability;
558 predict_insn (insn, predictor, probability);
561 /* Predict edge E with given probability if possible. */
563 void
564 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
566 rtx last_insn;
567 last_insn = BB_END (e->src);
569 /* We can store the branch prediction information only about
570 conditional jumps. */
571 if (!any_condjump_p (last_insn))
572 return;
574 /* We always store probability of branching. */
575 if (e->flags & EDGE_FALLTHRU)
576 probability = REG_BR_PROB_BASE - probability;
578 predict_insn (last_insn, predictor, probability);
581 /* Predict edge E with the given PROBABILITY. */
582 void
583 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
585 gcc_assert (profile_status != PROFILE_GUESSED);
586 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
587 && flag_guess_branch_prob && optimize)
589 struct edge_prediction *i = XNEW (struct edge_prediction);
590 void **preds = pointer_map_insert (bb_predictions, e->src);
592 i->ep_next = (struct edge_prediction *) *preds;
593 *preds = i;
594 i->ep_probability = probability;
595 i->ep_predictor = predictor;
596 i->ep_edge = e;
600 /* Remove all predictions on given basic block that are attached
601 to edge E. */
602 void
603 remove_predictions_associated_with_edge (edge e)
605 void **preds;
607 if (!bb_predictions)
608 return;
610 preds = pointer_map_contains (bb_predictions, e->src);
612 if (preds)
614 struct edge_prediction **prediction = (struct edge_prediction **) preds;
615 struct edge_prediction *next;
617 while (*prediction)
619 if ((*prediction)->ep_edge == e)
621 next = (*prediction)->ep_next;
622 free (*prediction);
623 *prediction = next;
625 else
626 prediction = &((*prediction)->ep_next);
631 /* Clears the list of predictions stored for BB. */
633 static void
634 clear_bb_predictions (basic_block bb)
636 void **preds = pointer_map_contains (bb_predictions, bb);
637 struct edge_prediction *pred, *next;
639 if (!preds)
640 return;
642 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
644 next = pred->ep_next;
645 free (pred);
647 *preds = NULL;
650 /* Return true when we can store prediction on insn INSN.
651 At the moment we represent predictions only on conditional
652 jumps, not at computed jump or other complicated cases. */
653 static bool
654 can_predict_insn_p (const_rtx insn)
656 return (JUMP_P (insn)
657 && any_condjump_p (insn)
658 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
661 /* Predict edge E by given predictor if possible. */
663 void
664 predict_edge_def (edge e, enum br_predictor predictor,
665 enum prediction taken)
667 int probability = predictor_info[(int) predictor].hitrate;
669 if (taken != TAKEN)
670 probability = REG_BR_PROB_BASE - probability;
672 predict_edge (e, predictor, probability);
675 /* Invert all branch predictions or probability notes in the INSN. This needs
676 to be done each time we invert the condition used by the jump. */
678 void
679 invert_br_probabilities (rtx insn)
681 rtx note;
683 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
684 if (REG_NOTE_KIND (note) == REG_BR_PROB)
685 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
686 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
687 XEXP (XEXP (note, 0), 1)
688 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
691 /* Dump information about the branch prediction to the output file. */
693 static void
694 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
695 basic_block bb, int used)
697 edge e;
698 edge_iterator ei;
700 if (!file)
701 return;
703 FOR_EACH_EDGE (e, ei, bb->succs)
704 if (! (e->flags & EDGE_FALLTHRU))
705 break;
707 fprintf (file, " %s heuristics%s: %.1f%%",
708 predictor_info[predictor].name,
709 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
711 if (bb->count)
713 fprintf (file, " exec ");
714 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
715 if (e)
717 fprintf (file, " hit ");
718 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
719 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
723 fprintf (file, "\n");
726 /* We can not predict the probabilities of outgoing edges of bb. Set them
727 evenly and hope for the best. */
728 static void
729 set_even_probabilities (basic_block bb)
731 int nedges = 0;
732 edge e;
733 edge_iterator ei;
735 FOR_EACH_EDGE (e, ei, bb->succs)
736 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
737 nedges ++;
738 FOR_EACH_EDGE (e, ei, bb->succs)
739 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
740 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
741 else
742 e->probability = 0;
745 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
746 note if not already present. Remove now useless REG_BR_PRED notes. */
748 static void
749 combine_predictions_for_insn (rtx insn, basic_block bb)
751 rtx prob_note;
752 rtx *pnote;
753 rtx note;
754 int best_probability = PROB_EVEN;
755 enum br_predictor best_predictor = END_PREDICTORS;
756 int combined_probability = REG_BR_PROB_BASE / 2;
757 int d;
758 bool first_match = false;
759 bool found = false;
761 if (!can_predict_insn_p (insn))
763 set_even_probabilities (bb);
764 return;
767 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
768 pnote = &REG_NOTES (insn);
769 if (dump_file)
770 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
771 bb->index);
773 /* We implement "first match" heuristics and use probability guessed
774 by predictor with smallest index. */
775 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
776 if (REG_NOTE_KIND (note) == REG_BR_PRED)
778 enum br_predictor predictor = ((enum br_predictor)
779 INTVAL (XEXP (XEXP (note, 0), 0)));
780 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
782 found = true;
783 if (best_predictor > predictor)
784 best_probability = probability, best_predictor = predictor;
786 d = (combined_probability * probability
787 + (REG_BR_PROB_BASE - combined_probability)
788 * (REG_BR_PROB_BASE - probability));
790 /* Use FP math to avoid overflows of 32bit integers. */
791 if (d == 0)
792 /* If one probability is 0% and one 100%, avoid division by zero. */
793 combined_probability = REG_BR_PROB_BASE / 2;
794 else
795 combined_probability = (((double) combined_probability) * probability
796 * REG_BR_PROB_BASE / d + 0.5);
799 /* Decide which heuristic to use. In case we didn't match anything,
800 use no_prediction heuristic, in case we did match, use either
801 first match or Dempster-Shaffer theory depending on the flags. */
803 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
804 first_match = true;
806 if (!found)
807 dump_prediction (dump_file, PRED_NO_PREDICTION,
808 combined_probability, bb, true);
809 else
811 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
812 bb, !first_match);
813 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
814 bb, first_match);
817 if (first_match)
818 combined_probability = best_probability;
819 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
821 while (*pnote)
823 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
825 enum br_predictor predictor = ((enum br_predictor)
826 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
827 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
829 dump_prediction (dump_file, predictor, probability, bb,
830 !first_match || best_predictor == predictor);
831 *pnote = XEXP (*pnote, 1);
833 else
834 pnote = &XEXP (*pnote, 1);
837 if (!prob_note)
839 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
841 /* Save the prediction into CFG in case we are seeing non-degenerated
842 conditional jump. */
843 if (!single_succ_p (bb))
845 BRANCH_EDGE (bb)->probability = combined_probability;
846 FALLTHRU_EDGE (bb)->probability
847 = REG_BR_PROB_BASE - combined_probability;
850 else if (!single_succ_p (bb))
852 int prob = INTVAL (XEXP (prob_note, 0));
854 BRANCH_EDGE (bb)->probability = prob;
855 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
857 else
858 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
861 /* Combine predictions into single probability and store them into CFG.
862 Remove now useless prediction entries. */
864 static void
865 combine_predictions_for_bb (basic_block bb)
867 int best_probability = PROB_EVEN;
868 enum br_predictor best_predictor = END_PREDICTORS;
869 int combined_probability = REG_BR_PROB_BASE / 2;
870 int d;
871 bool first_match = false;
872 bool found = false;
873 struct edge_prediction *pred;
874 int nedges = 0;
875 edge e, first = NULL, second = NULL;
876 edge_iterator ei;
877 void **preds;
879 FOR_EACH_EDGE (e, ei, bb->succs)
880 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
882 nedges ++;
883 if (first && !second)
884 second = e;
885 if (!first)
886 first = e;
889 /* When there is no successor or only one choice, prediction is easy.
891 We are lazy for now and predict only basic blocks with two outgoing
892 edges. It is possible to predict generic case too, but we have to
893 ignore first match heuristics and do more involved combining. Implement
894 this later. */
895 if (nedges != 2)
897 if (!bb->count)
898 set_even_probabilities (bb);
899 clear_bb_predictions (bb);
900 if (dump_file)
901 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
902 nedges, bb->index);
903 return;
906 if (dump_file)
907 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
909 preds = pointer_map_contains (bb_predictions, bb);
910 if (preds)
912 /* We implement "first match" heuristics and use probability guessed
913 by predictor with smallest index. */
914 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
916 enum br_predictor predictor = pred->ep_predictor;
917 int probability = pred->ep_probability;
919 if (pred->ep_edge != first)
920 probability = REG_BR_PROB_BASE - probability;
922 found = true;
923 /* First match heuristics would be widly confused if we predicted
924 both directions. */
925 if (best_predictor > predictor)
927 struct edge_prediction *pred2;
928 int prob = probability;
930 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
931 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
933 int probability2 = pred->ep_probability;
935 if (pred2->ep_edge != first)
936 probability2 = REG_BR_PROB_BASE - probability2;
938 if ((probability < REG_BR_PROB_BASE / 2) !=
939 (probability2 < REG_BR_PROB_BASE / 2))
940 break;
942 /* If the same predictor later gave better result, go for it! */
943 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
944 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
945 prob = probability2;
947 if (!pred2)
948 best_probability = prob, best_predictor = predictor;
951 d = (combined_probability * probability
952 + (REG_BR_PROB_BASE - combined_probability)
953 * (REG_BR_PROB_BASE - probability));
955 /* Use FP math to avoid overflows of 32bit integers. */
956 if (d == 0)
957 /* If one probability is 0% and one 100%, avoid division by zero. */
958 combined_probability = REG_BR_PROB_BASE / 2;
959 else
960 combined_probability = (((double) combined_probability)
961 * probability
962 * REG_BR_PROB_BASE / d + 0.5);
966 /* Decide which heuristic to use. In case we didn't match anything,
967 use no_prediction heuristic, in case we did match, use either
968 first match or Dempster-Shaffer theory depending on the flags. */
970 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
971 first_match = true;
973 if (!found)
974 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
975 else
977 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
978 !first_match);
979 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
980 first_match);
983 if (first_match)
984 combined_probability = best_probability;
985 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
987 if (preds)
989 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
991 enum br_predictor predictor = pred->ep_predictor;
992 int probability = pred->ep_probability;
994 if (pred->ep_edge != EDGE_SUCC (bb, 0))
995 probability = REG_BR_PROB_BASE - probability;
996 dump_prediction (dump_file, predictor, probability, bb,
997 !first_match || best_predictor == predictor);
1000 clear_bb_predictions (bb);
1002 if (!bb->count)
1004 first->probability = combined_probability;
1005 second->probability = REG_BR_PROB_BASE - combined_probability;
1009 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1010 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1012 T1 and T2 should be one of the following cases:
1013 1. T1 is SSA_NAME, T2 is NULL
1014 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1015 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1017 static tree
1018 strips_small_constant (tree t1, tree t2)
1020 tree ret = NULL;
1021 int value = 0;
1023 if (!t1)
1024 return NULL;
1025 else if (TREE_CODE (t1) == SSA_NAME)
1026 ret = t1;
1027 else if (host_integerp (t1, 0))
1028 value = tree_low_cst (t1, 0);
1029 else
1030 return NULL;
1032 if (!t2)
1033 return ret;
1034 else if (host_integerp (t2, 0))
1035 value = tree_low_cst (t2, 0);
1036 else if (TREE_CODE (t2) == SSA_NAME)
1038 if (ret)
1039 return NULL;
1040 else
1041 ret = t2;
1044 if (value <= 4 && value >= -4)
1045 return ret;
1046 else
1047 return NULL;
1050 /* Return the SSA_NAME in T or T's operands.
1051 Return NULL if SSA_NAME cannot be found. */
1053 static tree
1054 get_base_value (tree t)
1056 if (TREE_CODE (t) == SSA_NAME)
1057 return t;
1059 if (!BINARY_CLASS_P (t))
1060 return NULL;
1062 switch (TREE_OPERAND_LENGTH (t))
1064 case 1:
1065 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1066 case 2:
1067 return strips_small_constant (TREE_OPERAND (t, 0),
1068 TREE_OPERAND (t, 1));
1069 default:
1070 return NULL;
1074 /* Check the compare STMT in LOOP. If it compares an induction
1075 variable to a loop invariant, return true, and save
1076 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1077 Otherwise return false and set LOOP_INVAIANT to NULL. */
1079 static bool
1080 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1081 tree *loop_invariant,
1082 enum tree_code *compare_code,
1083 tree *loop_step,
1084 tree *loop_iv_base)
1086 tree op0, op1, bound, base;
1087 affine_iv iv0, iv1;
1088 enum tree_code code;
1089 tree step;
1091 code = gimple_cond_code (stmt);
1092 *loop_invariant = NULL;
1094 switch (code)
1096 case GT_EXPR:
1097 case GE_EXPR:
1098 case NE_EXPR:
1099 case LT_EXPR:
1100 case LE_EXPR:
1101 case EQ_EXPR:
1102 break;
1104 default:
1105 return false;
1108 op0 = gimple_cond_lhs (stmt);
1109 op1 = gimple_cond_rhs (stmt);
1111 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1112 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1113 return false;
1114 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1115 return false;
1116 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1117 return false;
1118 if (TREE_CODE (iv0.step) != INTEGER_CST
1119 || TREE_CODE (iv1.step) != INTEGER_CST)
1120 return false;
1121 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1122 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1123 return false;
1125 if (integer_zerop (iv0.step))
1127 if (code != NE_EXPR && code != EQ_EXPR)
1128 code = invert_tree_comparison (code, false);
1129 bound = iv0.base;
1130 base = iv1.base;
1131 if (host_integerp (iv1.step, 0))
1132 step = iv1.step;
1133 else
1134 return false;
1136 else
1138 bound = iv1.base;
1139 base = iv0.base;
1140 if (host_integerp (iv0.step, 0))
1141 step = iv0.step;
1142 else
1143 return false;
1146 if (TREE_CODE (bound) != INTEGER_CST)
1147 bound = get_base_value (bound);
1148 if (!bound)
1149 return false;
1150 if (TREE_CODE (base) != INTEGER_CST)
1151 base = get_base_value (base);
1152 if (!base)
1153 return false;
1155 *loop_invariant = bound;
1156 *compare_code = code;
1157 *loop_step = step;
1158 *loop_iv_base = base;
1159 return true;
1162 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1164 static bool
1165 expr_coherent_p (tree t1, tree t2)
1167 gimple stmt;
1168 tree ssa_name_1 = NULL;
1169 tree ssa_name_2 = NULL;
1171 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1172 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1174 if (t1 == t2)
1175 return true;
1177 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1178 return true;
1179 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1180 return false;
1182 /* Check to see if t1 is expressed/defined with t2. */
1183 stmt = SSA_NAME_DEF_STMT (t1);
1184 gcc_assert (stmt != NULL);
1185 if (is_gimple_assign (stmt))
1187 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1188 if (ssa_name_1 && ssa_name_1 == t2)
1189 return true;
1192 /* Check to see if t2 is expressed/defined with t1. */
1193 stmt = SSA_NAME_DEF_STMT (t2);
1194 gcc_assert (stmt != NULL);
1195 if (is_gimple_assign (stmt))
1197 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1198 if (ssa_name_2 && ssa_name_2 == t1)
1199 return true;
1202 /* Compare if t1 and t2's def_stmts are identical. */
1203 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1204 return true;
1205 else
1206 return false;
1209 /* Predict branch probability of BB when BB contains a branch that compares
1210 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1211 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1213 E.g.
1214 for (int i = 0; i < bound; i++) {
1215 if (i < bound - 2)
1216 computation_1();
1217 else
1218 computation_2();
1221 In this loop, we will predict the branch inside the loop to be taken. */
1223 static void
1224 predict_iv_comparison (struct loop *loop, basic_block bb,
1225 tree loop_bound_var,
1226 tree loop_iv_base_var,
1227 enum tree_code loop_bound_code,
1228 int loop_bound_step)
1230 gimple stmt;
1231 tree compare_var, compare_base;
1232 enum tree_code compare_code;
1233 tree compare_step_var;
1234 edge then_edge;
1235 edge_iterator ei;
1237 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1238 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1239 || predicted_by_p (bb, PRED_LOOP_EXIT))
1240 return;
1242 stmt = last_stmt (bb);
1243 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1244 return;
1245 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1246 &compare_code,
1247 &compare_step_var,
1248 &compare_base))
1249 return;
1251 /* Find the taken edge. */
1252 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1253 if (then_edge->flags & EDGE_TRUE_VALUE)
1254 break;
1256 /* When comparing an IV to a loop invariant, NE is more likely to be
1257 taken while EQ is more likely to be not-taken. */
1258 if (compare_code == NE_EXPR)
1260 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1261 return;
1263 else if (compare_code == EQ_EXPR)
1265 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1266 return;
1269 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1270 return;
1272 /* If loop bound, base and compare bound are all constants, we can
1273 calculate the probability directly. */
1274 if (host_integerp (loop_bound_var, 0)
1275 && host_integerp (compare_var, 0)
1276 && host_integerp (compare_base, 0))
1278 int probability;
1279 bool of, overflow = false;
1280 double_int mod, compare_count, tem, loop_count;
1282 double_int loop_bound = tree_to_double_int (loop_bound_var);
1283 double_int compare_bound = tree_to_double_int (compare_var);
1284 double_int base = tree_to_double_int (compare_base);
1285 double_int compare_step = tree_to_double_int (compare_step_var);
1287 /* (loop_bound - base) / compare_step */
1288 tem = loop_bound.sub_with_overflow (base, &of);
1289 overflow |= of;
1290 loop_count = tem.divmod_with_overflow (compare_step,
1291 0, TRUNC_DIV_EXPR,
1292 &mod, &of);
1293 overflow |= of;
1295 if ((!compare_step.is_negative ())
1296 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1298 /* (loop_bound - compare_bound) / compare_step */
1299 tem = loop_bound.sub_with_overflow (compare_bound, &of);
1300 overflow |= of;
1301 compare_count = tem.divmod_with_overflow (compare_step,
1302 0, TRUNC_DIV_EXPR,
1303 &mod, &of);
1304 overflow |= of;
1306 else
1308 /* (compare_bound - base) / compare_step */
1309 tem = compare_bound.sub_with_overflow (base, &of);
1310 overflow |= of;
1311 compare_count = tem.divmod_with_overflow (compare_step,
1312 0, TRUNC_DIV_EXPR,
1313 &mod, &of);
1314 overflow |= of;
1316 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1317 ++compare_count;
1318 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1319 ++loop_count;
1320 if (compare_count.is_negative ())
1321 compare_count = double_int_zero;
1322 if (loop_count.is_negative ())
1323 loop_count = double_int_zero;
1324 if (loop_count.is_zero ())
1325 probability = 0;
1326 else if (compare_count.scmp (loop_count) == 1)
1327 probability = REG_BR_PROB_BASE;
1328 else
1330 /* If loop_count is too big, such that REG_BR_PROB_BASE * loop_count
1331 could overflow, shift both loop_count and compare_count right
1332 a bit so that it doesn't overflow. Note both counts are known not
1333 to be negative at this point. */
1334 int clz_bits = clz_hwi (loop_count.high);
1335 gcc_assert (REG_BR_PROB_BASE < 32768);
1336 if (clz_bits < 16)
1338 loop_count.arshift (16 - clz_bits, HOST_BITS_PER_DOUBLE_INT);
1339 compare_count.arshift (16 - clz_bits, HOST_BITS_PER_DOUBLE_INT);
1341 tem = compare_count.mul_with_sign (double_int::from_shwi
1342 (REG_BR_PROB_BASE), true, &of);
1343 gcc_assert (!of);
1344 tem = tem.divmod (loop_count, true, TRUNC_DIV_EXPR, &mod);
1345 probability = tem.to_uhwi ();
1348 if (!overflow)
1349 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1351 return;
1354 if (expr_coherent_p (loop_bound_var, compare_var))
1356 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1357 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1358 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1359 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1360 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1361 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1362 else if (loop_bound_code == NE_EXPR)
1364 /* If the loop backedge condition is "(i != bound)", we do
1365 the comparison based on the step of IV:
1366 * step < 0 : backedge condition is like (i > bound)
1367 * step > 0 : backedge condition is like (i < bound) */
1368 gcc_assert (loop_bound_step != 0);
1369 if (loop_bound_step > 0
1370 && (compare_code == LT_EXPR
1371 || compare_code == LE_EXPR))
1372 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1373 else if (loop_bound_step < 0
1374 && (compare_code == GT_EXPR
1375 || compare_code == GE_EXPR))
1376 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1377 else
1378 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1380 else
1381 /* The branch is predicted not-taken if loop_bound_code is
1382 opposite with compare_code. */
1383 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1385 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1387 /* For cases like:
1388 for (i = s; i < h; i++)
1389 if (i > s + 2) ....
1390 The branch should be predicted taken. */
1391 if (loop_bound_step > 0
1392 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1393 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1394 else if (loop_bound_step < 0
1395 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1396 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1397 else
1398 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1402 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1403 exits are resulted from short-circuit conditions that will generate an
1404 if_tmp. E.g.:
1406 if (foo() || global > 10)
1407 break;
1409 This will be translated into:
1411 BB3:
1412 loop header...
1413 BB4:
1414 if foo() goto BB6 else goto BB5
1415 BB5:
1416 if global > 10 goto BB6 else goto BB7
1417 BB6:
1418 goto BB7
1419 BB7:
1420 iftmp = (PHI 0(BB5), 1(BB6))
1421 if iftmp == 1 goto BB8 else goto BB3
1422 BB8:
1423 outside of the loop...
1425 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1426 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1427 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1428 exits to predict them using PRED_LOOP_EXIT. */
1430 static void
1431 predict_extra_loop_exits (edge exit_edge)
1433 unsigned i;
1434 bool check_value_one;
1435 gimple phi_stmt;
1436 tree cmp_rhs, cmp_lhs;
1437 gimple cmp_stmt = last_stmt (exit_edge->src);
1439 if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
1440 return;
1441 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1442 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1443 if (!TREE_CONSTANT (cmp_rhs)
1444 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1445 return;
1446 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1447 return;
1449 /* If check_value_one is true, only the phi_args with value '1' will lead
1450 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1451 loop exit. */
1452 check_value_one = (((integer_onep (cmp_rhs))
1453 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1454 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1456 phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1457 if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
1458 return;
1460 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1462 edge e1;
1463 edge_iterator ei;
1464 tree val = gimple_phi_arg_def (phi_stmt, i);
1465 edge e = gimple_phi_arg_edge (phi_stmt, i);
1467 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1468 continue;
1469 if ((check_value_one ^ integer_onep (val)) == 1)
1470 continue;
1471 if (EDGE_COUNT (e->src->succs) != 1)
1473 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1474 continue;
1477 FOR_EACH_EDGE (e1, ei, e->src->preds)
1478 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1482 /* Predict edge probabilities by exploiting loop structure. */
1484 static void
1485 predict_loops (void)
1487 loop_iterator li;
1488 struct loop *loop;
1490 /* Try to predict out blocks in a loop that are not part of a
1491 natural loop. */
1492 FOR_EACH_LOOP (li, loop, 0)
1494 basic_block bb, *bbs;
1495 unsigned j, n_exits;
1496 vec<edge> exits;
1497 struct tree_niter_desc niter_desc;
1498 edge ex;
1499 struct nb_iter_bound *nb_iter;
1500 enum tree_code loop_bound_code = ERROR_MARK;
1501 tree loop_bound_step = NULL;
1502 tree loop_bound_var = NULL;
1503 tree loop_iv_base = NULL;
1504 gimple stmt = NULL;
1506 exits = get_loop_exit_edges (loop);
1507 n_exits = exits.length ();
1508 if (!n_exits)
1510 exits.release ();
1511 continue;
1514 FOR_EACH_VEC_ELT (exits, j, ex)
1516 tree niter = NULL;
1517 HOST_WIDE_INT nitercst;
1518 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1519 int probability;
1520 enum br_predictor predictor;
1522 predict_extra_loop_exits (ex);
1524 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1525 niter = niter_desc.niter;
1526 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1527 niter = loop_niter_by_eval (loop, ex);
1529 if (TREE_CODE (niter) == INTEGER_CST)
1531 if (host_integerp (niter, 1)
1532 && max
1533 && compare_tree_int (niter, max - 1) == -1)
1534 nitercst = tree_low_cst (niter, 1) + 1;
1535 else
1536 nitercst = max;
1537 predictor = PRED_LOOP_ITERATIONS;
1539 /* If we have just one exit and we can derive some information about
1540 the number of iterations of the loop from the statements inside
1541 the loop, use it to predict this exit. */
1542 else if (n_exits == 1)
1544 nitercst = estimated_stmt_executions_int (loop);
1545 if (nitercst < 0)
1546 continue;
1547 if (nitercst > max)
1548 nitercst = max;
1550 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1552 else
1553 continue;
1555 /* If the prediction for number of iterations is zero, do not
1556 predict the exit edges. */
1557 if (nitercst == 0)
1558 continue;
1560 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1561 predict_edge (ex, predictor, probability);
1563 exits.release ();
1565 /* Find information about loop bound variables. */
1566 for (nb_iter = loop->bounds; nb_iter;
1567 nb_iter = nb_iter->next)
1568 if (nb_iter->stmt
1569 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1571 stmt = nb_iter->stmt;
1572 break;
1574 if (!stmt && last_stmt (loop->header)
1575 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1576 stmt = last_stmt (loop->header);
1577 if (stmt)
1578 is_comparison_with_loop_invariant_p (stmt, loop,
1579 &loop_bound_var,
1580 &loop_bound_code,
1581 &loop_bound_step,
1582 &loop_iv_base);
1584 bbs = get_loop_body (loop);
1586 for (j = 0; j < loop->num_nodes; j++)
1588 int header_found = 0;
1589 edge e;
1590 edge_iterator ei;
1592 bb = bbs[j];
1594 /* Bypass loop heuristics on continue statement. These
1595 statements construct loops via "non-loop" constructs
1596 in the source language and are better to be handled
1597 separately. */
1598 if (predicted_by_p (bb, PRED_CONTINUE))
1599 continue;
1601 /* Loop branch heuristics - predict an edge back to a
1602 loop's head as taken. */
1603 if (bb == loop->latch)
1605 e = find_edge (loop->latch, loop->header);
1606 if (e)
1608 header_found = 1;
1609 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1613 /* Loop exit heuristics - predict an edge exiting the loop if the
1614 conditional has no loop header successors as not taken. */
1615 if (!header_found
1616 /* If we already used more reliable loop exit predictors, do not
1617 bother with PRED_LOOP_EXIT. */
1618 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1619 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1621 /* For loop with many exits we don't want to predict all exits
1622 with the pretty large probability, because if all exits are
1623 considered in row, the loop would be predicted to iterate
1624 almost never. The code to divide probability by number of
1625 exits is very rough. It should compute the number of exits
1626 taken in each patch through function (not the overall number
1627 of exits that might be a lot higher for loops with wide switch
1628 statements in them) and compute n-th square root.
1630 We limit the minimal probability by 2% to avoid
1631 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1632 as this was causing regression in perl benchmark containing such
1633 a wide loop. */
1635 int probability = ((REG_BR_PROB_BASE
1636 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1637 / n_exits);
1638 if (probability < HITRATE (2))
1639 probability = HITRATE (2);
1640 FOR_EACH_EDGE (e, ei, bb->succs)
1641 if (e->dest->index < NUM_FIXED_BLOCKS
1642 || !flow_bb_inside_loop_p (loop, e->dest))
1643 predict_edge (e, PRED_LOOP_EXIT, probability);
1645 if (loop_bound_var)
1646 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1647 loop_bound_code,
1648 tree_low_cst (loop_bound_step, 0));
1651 /* Free basic blocks from get_loop_body. */
1652 free (bbs);
1656 /* Attempt to predict probabilities of BB outgoing edges using local
1657 properties. */
1658 static void
1659 bb_estimate_probability_locally (basic_block bb)
1661 rtx last_insn = BB_END (bb);
1662 rtx cond;
1664 if (! can_predict_insn_p (last_insn))
1665 return;
1666 cond = get_condition (last_insn, NULL, false, false);
1667 if (! cond)
1668 return;
1670 /* Try "pointer heuristic."
1671 A comparison ptr == 0 is predicted as false.
1672 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1673 if (COMPARISON_P (cond)
1674 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1675 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1677 if (GET_CODE (cond) == EQ)
1678 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1679 else if (GET_CODE (cond) == NE)
1680 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1682 else
1684 /* Try "opcode heuristic."
1685 EQ tests are usually false and NE tests are usually true. Also,
1686 most quantities are positive, so we can make the appropriate guesses
1687 about signed comparisons against zero. */
1688 switch (GET_CODE (cond))
1690 case CONST_INT:
1691 /* Unconditional branch. */
1692 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1693 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1694 break;
1696 case EQ:
1697 case UNEQ:
1698 /* Floating point comparisons appears to behave in a very
1699 unpredictable way because of special role of = tests in
1700 FP code. */
1701 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1703 /* Comparisons with 0 are often used for booleans and there is
1704 nothing useful to predict about them. */
1705 else if (XEXP (cond, 1) == const0_rtx
1706 || XEXP (cond, 0) == const0_rtx)
1708 else
1709 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1710 break;
1712 case NE:
1713 case LTGT:
1714 /* Floating point comparisons appears to behave in a very
1715 unpredictable way because of special role of = tests in
1716 FP code. */
1717 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1719 /* Comparisons with 0 are often used for booleans and there is
1720 nothing useful to predict about them. */
1721 else if (XEXP (cond, 1) == const0_rtx
1722 || XEXP (cond, 0) == const0_rtx)
1724 else
1725 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1726 break;
1728 case ORDERED:
1729 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1730 break;
1732 case UNORDERED:
1733 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1734 break;
1736 case LE:
1737 case LT:
1738 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1739 || XEXP (cond, 1) == constm1_rtx)
1740 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1741 break;
1743 case GE:
1744 case GT:
1745 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1746 || XEXP (cond, 1) == constm1_rtx)
1747 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1748 break;
1750 default:
1751 break;
1755 /* Set edge->probability for each successor edge of BB. */
1756 void
1757 guess_outgoing_edge_probabilities (basic_block bb)
1759 bb_estimate_probability_locally (bb);
1760 combine_predictions_for_insn (BB_END (bb), bb);
1763 static tree expr_expected_value (tree, bitmap);
1765 /* Helper function for expr_expected_value. */
1767 static tree
1768 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1769 tree op1, bitmap visited)
1771 gimple def;
1773 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1775 if (TREE_CONSTANT (op0))
1776 return op0;
1778 if (code != SSA_NAME)
1779 return NULL_TREE;
1781 def = SSA_NAME_DEF_STMT (op0);
1783 /* If we were already here, break the infinite cycle. */
1784 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1785 return NULL;
1787 if (gimple_code (def) == GIMPLE_PHI)
1789 /* All the arguments of the PHI node must have the same constant
1790 length. */
1791 int i, n = gimple_phi_num_args (def);
1792 tree val = NULL, new_val;
1794 for (i = 0; i < n; i++)
1796 tree arg = PHI_ARG_DEF (def, i);
1798 /* If this PHI has itself as an argument, we cannot
1799 determine the string length of this argument. However,
1800 if we can find an expected constant value for the other
1801 PHI args then we can still be sure that this is
1802 likely a constant. So be optimistic and just
1803 continue with the next argument. */
1804 if (arg == PHI_RESULT (def))
1805 continue;
1807 new_val = expr_expected_value (arg, visited);
1808 if (!new_val)
1809 return NULL;
1810 if (!val)
1811 val = new_val;
1812 else if (!operand_equal_p (val, new_val, false))
1813 return NULL;
1815 return val;
1817 if (is_gimple_assign (def))
1819 if (gimple_assign_lhs (def) != op0)
1820 return NULL;
1822 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1823 gimple_assign_rhs1 (def),
1824 gimple_assign_rhs_code (def),
1825 gimple_assign_rhs2 (def),
1826 visited);
1829 if (is_gimple_call (def))
1831 tree decl = gimple_call_fndecl (def);
1832 if (!decl)
1833 return NULL;
1834 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1835 switch (DECL_FUNCTION_CODE (decl))
1837 case BUILT_IN_EXPECT:
1839 tree val;
1840 if (gimple_call_num_args (def) != 2)
1841 return NULL;
1842 val = gimple_call_arg (def, 0);
1843 if (TREE_CONSTANT (val))
1844 return val;
1845 return gimple_call_arg (def, 1);
1848 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1849 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1850 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1851 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1852 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1853 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1854 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1855 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1856 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1857 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1858 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1859 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1860 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1861 /* Assume that any given atomic operation has low contention,
1862 and thus the compare-and-swap operation succeeds. */
1863 return boolean_true_node;
1867 return NULL;
1870 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1872 tree res;
1873 op0 = expr_expected_value (op0, visited);
1874 if (!op0)
1875 return NULL;
1876 op1 = expr_expected_value (op1, visited);
1877 if (!op1)
1878 return NULL;
1879 res = fold_build2 (code, type, op0, op1);
1880 if (TREE_CONSTANT (res))
1881 return res;
1882 return NULL;
1884 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1886 tree res;
1887 op0 = expr_expected_value (op0, visited);
1888 if (!op0)
1889 return NULL;
1890 res = fold_build1 (code, type, op0);
1891 if (TREE_CONSTANT (res))
1892 return res;
1893 return NULL;
1895 return NULL;
1898 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1899 The function is used by builtin_expect branch predictor so the evidence
1900 must come from this construct and additional possible constant folding.
1902 We may want to implement more involved value guess (such as value range
1903 propagation based prediction), but such tricks shall go to new
1904 implementation. */
1906 static tree
1907 expr_expected_value (tree expr, bitmap visited)
1909 enum tree_code code;
1910 tree op0, op1;
1912 if (TREE_CONSTANT (expr))
1913 return expr;
1915 extract_ops_from_tree (expr, &code, &op0, &op1);
1916 return expr_expected_value_1 (TREE_TYPE (expr),
1917 op0, code, op1, visited);
1921 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1922 we no longer need. */
1923 static unsigned int
1924 strip_predict_hints (void)
1926 basic_block bb;
1927 gimple ass_stmt;
1928 tree var;
1930 FOR_EACH_BB (bb)
1932 gimple_stmt_iterator bi;
1933 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1935 gimple stmt = gsi_stmt (bi);
1937 if (gimple_code (stmt) == GIMPLE_PREDICT)
1939 gsi_remove (&bi, true);
1940 continue;
1942 else if (gimple_code (stmt) == GIMPLE_CALL)
1944 tree fndecl = gimple_call_fndecl (stmt);
1946 if (fndecl
1947 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1948 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1949 && gimple_call_num_args (stmt) == 2)
1951 var = gimple_call_lhs (stmt);
1952 if (var)
1954 ass_stmt
1955 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1956 gsi_replace (&bi, ass_stmt, true);
1958 else
1960 gsi_remove (&bi, true);
1961 continue;
1965 gsi_next (&bi);
1968 return 0;
1971 /* Predict using opcode of the last statement in basic block. */
1972 static void
1973 tree_predict_by_opcode (basic_block bb)
1975 gimple stmt = last_stmt (bb);
1976 edge then_edge;
1977 tree op0, op1;
1978 tree type;
1979 tree val;
1980 enum tree_code cmp;
1981 bitmap visited;
1982 edge_iterator ei;
1984 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1985 return;
1986 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1987 if (then_edge->flags & EDGE_TRUE_VALUE)
1988 break;
1989 op0 = gimple_cond_lhs (stmt);
1990 op1 = gimple_cond_rhs (stmt);
1991 cmp = gimple_cond_code (stmt);
1992 type = TREE_TYPE (op0);
1993 visited = BITMAP_ALLOC (NULL);
1994 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1995 BITMAP_FREE (visited);
1996 if (val)
1998 if (integer_zerop (val))
1999 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
2000 else
2001 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
2002 return;
2004 /* Try "pointer heuristic."
2005 A comparison ptr == 0 is predicted as false.
2006 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2007 if (POINTER_TYPE_P (type))
2009 if (cmp == EQ_EXPR)
2010 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2011 else if (cmp == NE_EXPR)
2012 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2014 else
2016 /* Try "opcode heuristic."
2017 EQ tests are usually false and NE tests are usually true. Also,
2018 most quantities are positive, so we can make the appropriate guesses
2019 about signed comparisons against zero. */
2020 switch (cmp)
2022 case EQ_EXPR:
2023 case UNEQ_EXPR:
2024 /* Floating point comparisons appears to behave in a very
2025 unpredictable way because of special role of = tests in
2026 FP code. */
2027 if (FLOAT_TYPE_P (type))
2029 /* Comparisons with 0 are often used for booleans and there is
2030 nothing useful to predict about them. */
2031 else if (integer_zerop (op0) || integer_zerop (op1))
2033 else
2034 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2035 break;
2037 case NE_EXPR:
2038 case LTGT_EXPR:
2039 /* Floating point comparisons appears to behave in a very
2040 unpredictable way because of special role of = tests in
2041 FP code. */
2042 if (FLOAT_TYPE_P (type))
2044 /* Comparisons with 0 are often used for booleans and there is
2045 nothing useful to predict about them. */
2046 else if (integer_zerop (op0)
2047 || integer_zerop (op1))
2049 else
2050 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2051 break;
2053 case ORDERED_EXPR:
2054 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2055 break;
2057 case UNORDERED_EXPR:
2058 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2059 break;
2061 case LE_EXPR:
2062 case LT_EXPR:
2063 if (integer_zerop (op1)
2064 || integer_onep (op1)
2065 || integer_all_onesp (op1)
2066 || real_zerop (op1)
2067 || real_onep (op1)
2068 || real_minus_onep (op1))
2069 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2070 break;
2072 case GE_EXPR:
2073 case GT_EXPR:
2074 if (integer_zerop (op1)
2075 || integer_onep (op1)
2076 || integer_all_onesp (op1)
2077 || real_zerop (op1)
2078 || real_onep (op1)
2079 || real_minus_onep (op1))
2080 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2081 break;
2083 default:
2084 break;
2088 /* Try to guess whether the value of return means error code. */
2090 static enum br_predictor
2091 return_prediction (tree val, enum prediction *prediction)
2093 /* VOID. */
2094 if (!val)
2095 return PRED_NO_PREDICTION;
2096 /* Different heuristics for pointers and scalars. */
2097 if (POINTER_TYPE_P (TREE_TYPE (val)))
2099 /* NULL is usually not returned. */
2100 if (integer_zerop (val))
2102 *prediction = NOT_TAKEN;
2103 return PRED_NULL_RETURN;
2106 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2108 /* Negative return values are often used to indicate
2109 errors. */
2110 if (TREE_CODE (val) == INTEGER_CST
2111 && tree_int_cst_sgn (val) < 0)
2113 *prediction = NOT_TAKEN;
2114 return PRED_NEGATIVE_RETURN;
2116 /* Constant return values seems to be commonly taken.
2117 Zero/one often represent booleans so exclude them from the
2118 heuristics. */
2119 if (TREE_CONSTANT (val)
2120 && (!integer_zerop (val) && !integer_onep (val)))
2122 *prediction = TAKEN;
2123 return PRED_CONST_RETURN;
2126 return PRED_NO_PREDICTION;
2129 /* Find the basic block with return expression and look up for possible
2130 return value trying to apply RETURN_PREDICTION heuristics. */
2131 static void
2132 apply_return_prediction (void)
2134 gimple return_stmt = NULL;
2135 tree return_val;
2136 edge e;
2137 gimple phi;
2138 int phi_num_args, i;
2139 enum br_predictor pred;
2140 enum prediction direction;
2141 edge_iterator ei;
2143 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
2145 return_stmt = last_stmt (e->src);
2146 if (return_stmt
2147 && gimple_code (return_stmt) == GIMPLE_RETURN)
2148 break;
2150 if (!e)
2151 return;
2152 return_val = gimple_return_retval (return_stmt);
2153 if (!return_val)
2154 return;
2155 if (TREE_CODE (return_val) != SSA_NAME
2156 || !SSA_NAME_DEF_STMT (return_val)
2157 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2158 return;
2159 phi = SSA_NAME_DEF_STMT (return_val);
2160 phi_num_args = gimple_phi_num_args (phi);
2161 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2163 /* Avoid the degenerate case where all return values form the function
2164 belongs to same category (ie they are all positive constants)
2165 so we can hardly say something about them. */
2166 for (i = 1; i < phi_num_args; i++)
2167 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2168 break;
2169 if (i != phi_num_args)
2170 for (i = 0; i < phi_num_args; i++)
2172 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2173 if (pred != PRED_NO_PREDICTION)
2174 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2175 direction);
2179 /* Look for basic block that contains unlikely to happen events
2180 (such as noreturn calls) and mark all paths leading to execution
2181 of this basic blocks as unlikely. */
2183 static void
2184 tree_bb_level_predictions (void)
2186 basic_block bb;
2187 bool has_return_edges = false;
2188 edge e;
2189 edge_iterator ei;
2191 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
2192 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2194 has_return_edges = true;
2195 break;
2198 apply_return_prediction ();
2200 FOR_EACH_BB (bb)
2202 gimple_stmt_iterator gsi;
2204 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2206 gimple stmt = gsi_stmt (gsi);
2207 tree decl;
2209 if (is_gimple_call (stmt))
2211 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2212 && has_return_edges)
2213 predict_paths_leading_to (bb, PRED_NORETURN,
2214 NOT_TAKEN);
2215 decl = gimple_call_fndecl (stmt);
2216 if (decl
2217 && lookup_attribute ("cold",
2218 DECL_ATTRIBUTES (decl)))
2219 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2220 NOT_TAKEN);
2222 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2224 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2225 gimple_predict_outcome (stmt));
2226 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2227 hints to callers. */
2233 #ifdef ENABLE_CHECKING
2235 /* Callback for pointer_map_traverse, asserts that the pointer map is
2236 empty. */
2238 static bool
2239 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
2240 void *data ATTRIBUTE_UNUSED)
2242 gcc_assert (!*value);
2243 return false;
2245 #endif
2247 /* Predict branch probabilities and estimate profile for basic block BB. */
2249 static void
2250 tree_estimate_probability_bb (basic_block bb)
2252 edge e;
2253 edge_iterator ei;
2254 gimple last;
2256 FOR_EACH_EDGE (e, ei, bb->succs)
2258 /* Predict edges to user labels with attributes. */
2259 if (e->dest != EXIT_BLOCK_PTR)
2261 gimple_stmt_iterator gi;
2262 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2264 gimple stmt = gsi_stmt (gi);
2265 tree decl;
2267 if (gimple_code (stmt) != GIMPLE_LABEL)
2268 break;
2269 decl = gimple_label_label (stmt);
2270 if (DECL_ARTIFICIAL (decl))
2271 continue;
2273 /* Finally, we have a user-defined label. */
2274 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2275 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2276 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2277 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2281 /* Predict early returns to be probable, as we've already taken
2282 care for error returns and other cases are often used for
2283 fast paths through function.
2285 Since we've already removed the return statements, we are
2286 looking for CFG like:
2288 if (conditional)
2291 goto return_block
2293 some other blocks
2294 return_block:
2295 return_stmt. */
2296 if (e->dest != bb->next_bb
2297 && e->dest != EXIT_BLOCK_PTR
2298 && single_succ_p (e->dest)
2299 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
2300 && (last = last_stmt (e->dest)) != NULL
2301 && gimple_code (last) == GIMPLE_RETURN)
2303 edge e1;
2304 edge_iterator ei1;
2306 if (single_succ_p (bb))
2308 FOR_EACH_EDGE (e1, ei1, bb->preds)
2309 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2310 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2311 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2312 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2314 else
2315 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2316 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2317 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2318 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2321 /* Look for block we are guarding (ie we dominate it,
2322 but it doesn't postdominate us). */
2323 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
2324 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2325 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2327 gimple_stmt_iterator bi;
2329 /* The call heuristic claims that a guarded function call
2330 is improbable. This is because such calls are often used
2331 to signal exceptional situations such as printing error
2332 messages. */
2333 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2334 gsi_next (&bi))
2336 gimple stmt = gsi_stmt (bi);
2337 if (is_gimple_call (stmt)
2338 /* Constant and pure calls are hardly used to signalize
2339 something exceptional. */
2340 && gimple_has_side_effects (stmt))
2342 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2343 break;
2348 tree_predict_by_opcode (bb);
2351 /* Predict branch probabilities and estimate profile of the tree CFG.
2352 This function can be called from the loop optimizers to recompute
2353 the profile information. */
2355 void
2356 tree_estimate_probability (void)
2358 basic_block bb;
2360 add_noreturn_fake_exit_edges ();
2361 connect_infinite_loops_to_exit ();
2362 /* We use loop_niter_by_eval, which requires that the loops have
2363 preheaders. */
2364 create_preheaders (CP_SIMPLE_PREHEADERS);
2365 calculate_dominance_info (CDI_POST_DOMINATORS);
2367 bb_predictions = pointer_map_create ();
2368 tree_bb_level_predictions ();
2369 record_loop_exits ();
2371 if (number_of_loops (cfun) > 1)
2372 predict_loops ();
2374 FOR_EACH_BB (bb)
2375 tree_estimate_probability_bb (bb);
2377 FOR_EACH_BB (bb)
2378 combine_predictions_for_bb (bb);
2380 #ifdef ENABLE_CHECKING
2381 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
2382 #endif
2383 pointer_map_destroy (bb_predictions);
2384 bb_predictions = NULL;
2386 estimate_bb_frequencies ();
2387 free_dominance_info (CDI_POST_DOMINATORS);
2388 remove_fake_exit_edges ();
2391 /* Predict branch probabilities and estimate profile of the tree CFG.
2392 This is the driver function for PASS_PROFILE. */
2394 static unsigned int
2395 tree_estimate_probability_driver (void)
2397 unsigned nb_loops;
2399 loop_optimizer_init (LOOPS_NORMAL);
2400 if (dump_file && (dump_flags & TDF_DETAILS))
2401 flow_loops_dump (dump_file, NULL, 0);
2403 mark_irreducible_loops ();
2405 nb_loops = number_of_loops (cfun);
2406 if (nb_loops > 1)
2407 scev_initialize ();
2409 tree_estimate_probability ();
2411 if (nb_loops > 1)
2412 scev_finalize ();
2414 loop_optimizer_finalize ();
2415 if (dump_file && (dump_flags & TDF_DETAILS))
2416 gimple_dump_cfg (dump_file, dump_flags);
2417 if (profile_status == PROFILE_ABSENT)
2418 profile_status = PROFILE_GUESSED;
2419 return 0;
2422 /* Predict edges to successors of CUR whose sources are not postdominated by
2423 BB by PRED and recurse to all postdominators. */
2425 static void
2426 predict_paths_for_bb (basic_block cur, basic_block bb,
2427 enum br_predictor pred,
2428 enum prediction taken,
2429 bitmap visited)
2431 edge e;
2432 edge_iterator ei;
2433 basic_block son;
2435 /* We are looking for all edges forming edge cut induced by
2436 set of all blocks postdominated by BB. */
2437 FOR_EACH_EDGE (e, ei, cur->preds)
2438 if (e->src->index >= NUM_FIXED_BLOCKS
2439 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2441 edge e2;
2442 edge_iterator ei2;
2443 bool found = false;
2445 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2446 if (e->flags & (EDGE_EH | EDGE_FAKE))
2447 continue;
2448 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2450 /* See if there is an edge from e->src that is not abnormal
2451 and does not lead to BB. */
2452 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2453 if (e2 != e
2454 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2455 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2457 found = true;
2458 break;
2461 /* If there is non-abnormal path leaving e->src, predict edge
2462 using predictor. Otherwise we need to look for paths
2463 leading to e->src.
2465 The second may lead to infinite loop in the case we are predicitng
2466 regions that are only reachable by abnormal edges. We simply
2467 prevent visiting given BB twice. */
2468 if (found)
2469 predict_edge_def (e, pred, taken);
2470 else if (bitmap_set_bit (visited, e->src->index))
2471 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2473 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2474 son;
2475 son = next_dom_son (CDI_POST_DOMINATORS, son))
2476 predict_paths_for_bb (son, bb, pred, taken, visited);
2479 /* Sets branch probabilities according to PREDiction and
2480 FLAGS. */
2482 static void
2483 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2484 enum prediction taken)
2486 bitmap visited = BITMAP_ALLOC (NULL);
2487 predict_paths_for_bb (bb, bb, pred, taken, visited);
2488 BITMAP_FREE (visited);
2491 /* Like predict_paths_leading_to but take edge instead of basic block. */
2493 static void
2494 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2495 enum prediction taken)
2497 bool has_nonloop_edge = false;
2498 edge_iterator ei;
2499 edge e2;
2501 basic_block bb = e->src;
2502 FOR_EACH_EDGE (e2, ei, bb->succs)
2503 if (e2->dest != e->src && e2->dest != e->dest
2504 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2505 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2507 has_nonloop_edge = true;
2508 break;
2510 if (!has_nonloop_edge)
2512 bitmap visited = BITMAP_ALLOC (NULL);
2513 predict_paths_for_bb (bb, bb, pred, taken, visited);
2514 BITMAP_FREE (visited);
2516 else
2517 predict_edge_def (e, pred, taken);
2520 /* This is used to carry information about basic blocks. It is
2521 attached to the AUX field of the standard CFG block. */
2523 typedef struct block_info_def
2525 /* Estimated frequency of execution of basic_block. */
2526 sreal frequency;
2528 /* To keep queue of basic blocks to process. */
2529 basic_block next;
2531 /* Number of predecessors we need to visit first. */
2532 int npredecessors;
2533 } *block_info;
2535 /* Similar information for edges. */
2536 typedef struct edge_info_def
2538 /* In case edge is a loopback edge, the probability edge will be reached
2539 in case header is. Estimated number of iterations of the loop can be
2540 then computed as 1 / (1 - back_edge_prob). */
2541 sreal back_edge_prob;
2542 /* True if the edge is a loopback edge in the natural loop. */
2543 unsigned int back_edge:1;
2544 } *edge_info;
2546 #define BLOCK_INFO(B) ((block_info) (B)->aux)
2547 #define EDGE_INFO(E) ((edge_info) (E)->aux)
2549 /* Helper function for estimate_bb_frequencies.
2550 Propagate the frequencies in blocks marked in
2551 TOVISIT, starting in HEAD. */
2553 static void
2554 propagate_freq (basic_block head, bitmap tovisit)
2556 basic_block bb;
2557 basic_block last;
2558 unsigned i;
2559 edge e;
2560 basic_block nextbb;
2561 bitmap_iterator bi;
2563 /* For each basic block we need to visit count number of his predecessors
2564 we need to visit first. */
2565 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2567 edge_iterator ei;
2568 int count = 0;
2570 bb = BASIC_BLOCK (i);
2572 FOR_EACH_EDGE (e, ei, bb->preds)
2574 bool visit = bitmap_bit_p (tovisit, e->src->index);
2576 if (visit && !(e->flags & EDGE_DFS_BACK))
2577 count++;
2578 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2579 fprintf (dump_file,
2580 "Irreducible region hit, ignoring edge to %i->%i\n",
2581 e->src->index, bb->index);
2583 BLOCK_INFO (bb)->npredecessors = count;
2584 /* When function never returns, we will never process exit block. */
2585 if (!count && bb == EXIT_BLOCK_PTR)
2586 bb->count = bb->frequency = 0;
2589 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
2590 last = head;
2591 for (bb = head; bb; bb = nextbb)
2593 edge_iterator ei;
2594 sreal cyclic_probability, frequency;
2596 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2597 memcpy (&frequency, &real_zero, sizeof (real_zero));
2599 nextbb = BLOCK_INFO (bb)->next;
2600 BLOCK_INFO (bb)->next = NULL;
2602 /* Compute frequency of basic block. */
2603 if (bb != head)
2605 #ifdef ENABLE_CHECKING
2606 FOR_EACH_EDGE (e, ei, bb->preds)
2607 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2608 || (e->flags & EDGE_DFS_BACK));
2609 #endif
2611 FOR_EACH_EDGE (e, ei, bb->preds)
2612 if (EDGE_INFO (e)->back_edge)
2614 sreal_add (&cyclic_probability, &cyclic_probability,
2615 &EDGE_INFO (e)->back_edge_prob);
2617 else if (!(e->flags & EDGE_DFS_BACK))
2619 sreal tmp;
2621 /* frequency += (e->probability
2622 * BLOCK_INFO (e->src)->frequency /
2623 REG_BR_PROB_BASE); */
2625 sreal_init (&tmp, e->probability, 0);
2626 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2627 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2628 sreal_add (&frequency, &frequency, &tmp);
2631 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2633 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2634 sizeof (frequency));
2636 else
2638 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2640 memcpy (&cyclic_probability, &real_almost_one,
2641 sizeof (real_almost_one));
2644 /* BLOCK_INFO (bb)->frequency = frequency
2645 / (1 - cyclic_probability) */
2647 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2648 sreal_div (&BLOCK_INFO (bb)->frequency,
2649 &frequency, &cyclic_probability);
2653 bitmap_clear_bit (tovisit, bb->index);
2655 e = find_edge (bb, head);
2656 if (e)
2658 sreal tmp;
2660 /* EDGE_INFO (e)->back_edge_prob
2661 = ((e->probability * BLOCK_INFO (bb)->frequency)
2662 / REG_BR_PROB_BASE); */
2664 sreal_init (&tmp, e->probability, 0);
2665 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2666 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2667 &tmp, &real_inv_br_prob_base);
2670 /* Propagate to successor blocks. */
2671 FOR_EACH_EDGE (e, ei, bb->succs)
2672 if (!(e->flags & EDGE_DFS_BACK)
2673 && BLOCK_INFO (e->dest)->npredecessors)
2675 BLOCK_INFO (e->dest)->npredecessors--;
2676 if (!BLOCK_INFO (e->dest)->npredecessors)
2678 if (!nextbb)
2679 nextbb = e->dest;
2680 else
2681 BLOCK_INFO (last)->next = e->dest;
2683 last = e->dest;
2689 /* Estimate probabilities of loopback edges in loops at same nest level. */
2691 static void
2692 estimate_loops_at_level (struct loop *first_loop)
2694 struct loop *loop;
2696 for (loop = first_loop; loop; loop = loop->next)
2698 edge e;
2699 basic_block *bbs;
2700 unsigned i;
2701 bitmap tovisit = BITMAP_ALLOC (NULL);
2703 estimate_loops_at_level (loop->inner);
2705 /* Find current loop back edge and mark it. */
2706 e = loop_latch_edge (loop);
2707 EDGE_INFO (e)->back_edge = 1;
2709 bbs = get_loop_body (loop);
2710 for (i = 0; i < loop->num_nodes; i++)
2711 bitmap_set_bit (tovisit, bbs[i]->index);
2712 free (bbs);
2713 propagate_freq (loop->header, tovisit);
2714 BITMAP_FREE (tovisit);
2718 /* Propagates frequencies through structure of loops. */
2720 static void
2721 estimate_loops (void)
2723 bitmap tovisit = BITMAP_ALLOC (NULL);
2724 basic_block bb;
2726 /* Start by estimating the frequencies in the loops. */
2727 if (number_of_loops (cfun) > 1)
2728 estimate_loops_at_level (current_loops->tree_root->inner);
2730 /* Now propagate the frequencies through all the blocks. */
2731 FOR_ALL_BB (bb)
2733 bitmap_set_bit (tovisit, bb->index);
2735 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
2736 BITMAP_FREE (tovisit);
2739 /* Convert counts measured by profile driven feedback to frequencies.
2740 Return nonzero iff there was any nonzero execution count. */
2743 counts_to_freqs (void)
2745 gcov_type count_max, true_count_max = 0;
2746 basic_block bb;
2748 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2749 true_count_max = MAX (bb->count, true_count_max);
2751 count_max = MAX (true_count_max, 1);
2752 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2753 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2755 return true_count_max;
2758 /* Return true if function is likely to be expensive, so there is no point to
2759 optimize performance of prologue, epilogue or do inlining at the expense
2760 of code size growth. THRESHOLD is the limit of number of instructions
2761 function can execute at average to be still considered not expensive. */
2763 bool
2764 expensive_function_p (int threshold)
2766 unsigned int sum = 0;
2767 basic_block bb;
2768 unsigned int limit;
2770 /* We can not compute accurately for large thresholds due to scaled
2771 frequencies. */
2772 gcc_assert (threshold <= BB_FREQ_MAX);
2774 /* Frequencies are out of range. This either means that function contains
2775 internal loop executing more than BB_FREQ_MAX times or profile feedback
2776 is available and function has not been executed at all. */
2777 if (ENTRY_BLOCK_PTR->frequency == 0)
2778 return true;
2780 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2781 limit = ENTRY_BLOCK_PTR->frequency * threshold;
2782 FOR_EACH_BB (bb)
2784 rtx insn;
2786 FOR_BB_INSNS (bb, insn)
2787 if (active_insn_p (insn))
2789 sum += bb->frequency;
2790 if (sum > limit)
2791 return true;
2795 return false;
2798 /* Estimate basic blocks frequency by given branch probabilities. */
2800 void
2801 estimate_bb_frequencies (void)
2803 basic_block bb;
2804 sreal freq_max;
2806 if (profile_status != PROFILE_READ || !counts_to_freqs ())
2808 static int real_values_initialized = 0;
2810 if (!real_values_initialized)
2812 real_values_initialized = 1;
2813 sreal_init (&real_zero, 0, 0);
2814 sreal_init (&real_one, 1, 0);
2815 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2816 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2817 sreal_init (&real_one_half, 1, -1);
2818 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2819 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2822 mark_dfs_back_edges ();
2824 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2826 /* Set up block info for each basic block. */
2827 alloc_aux_for_blocks (sizeof (struct block_info_def));
2828 alloc_aux_for_edges (sizeof (struct edge_info_def));
2829 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2831 edge e;
2832 edge_iterator ei;
2834 FOR_EACH_EDGE (e, ei, bb->succs)
2836 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2837 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2838 &EDGE_INFO (e)->back_edge_prob,
2839 &real_inv_br_prob_base);
2843 /* First compute probabilities locally for each loop from innermost
2844 to outermost to examine probabilities for back edges. */
2845 estimate_loops ();
2847 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2848 FOR_EACH_BB (bb)
2849 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2850 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2852 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2853 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2855 sreal tmp;
2857 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2858 sreal_add (&tmp, &tmp, &real_one_half);
2859 bb->frequency = sreal_to_int (&tmp);
2862 free_aux_for_blocks ();
2863 free_aux_for_edges ();
2865 compute_function_frequency ();
2868 /* Decide whether function is hot, cold or unlikely executed. */
2869 void
2870 compute_function_frequency (void)
2872 basic_block bb;
2873 struct cgraph_node *node = cgraph_get_node (current_function_decl);
2875 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2876 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2877 node->only_called_at_startup = true;
2878 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2879 node->only_called_at_exit = true;
2881 if (profile_status != PROFILE_READ)
2883 int flags = flags_from_decl_or_type (current_function_decl);
2884 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2885 != NULL)
2886 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2887 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2888 != NULL)
2889 node->frequency = NODE_FREQUENCY_HOT;
2890 else if (flags & ECF_NORETURN)
2891 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2892 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2893 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2894 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2895 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2896 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2897 return;
2900 /* Only first time try to drop function into unlikely executed.
2901 After inlining the roundoff errors may confuse us.
2902 Ipa-profile pass will drop functions only called from unlikely
2903 functions to unlikely and that is most of what we care about. */
2904 if (!cfun->after_inlining)
2905 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2906 FOR_EACH_BB (bb)
2908 if (maybe_hot_bb_p (cfun, bb))
2910 node->frequency = NODE_FREQUENCY_HOT;
2911 return;
2913 if (!probably_never_executed_bb_p (cfun, bb))
2914 node->frequency = NODE_FREQUENCY_NORMAL;
2918 static bool
2919 gate_estimate_probability (void)
2921 return flag_guess_branch_prob;
2924 /* Build PREDICT_EXPR. */
2925 tree
2926 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2928 tree t = build1 (PREDICT_EXPR, void_type_node,
2929 build_int_cst (integer_type_node, predictor));
2930 SET_PREDICT_EXPR_OUTCOME (t, taken);
2931 return t;
2934 const char *
2935 predictor_name (enum br_predictor predictor)
2937 return predictor_info[predictor].name;
2940 namespace {
2942 const pass_data pass_data_profile =
2944 GIMPLE_PASS, /* type */
2945 "profile_estimate", /* name */
2946 OPTGROUP_NONE, /* optinfo_flags */
2947 true, /* has_gate */
2948 true, /* has_execute */
2949 TV_BRANCH_PROB, /* tv_id */
2950 PROP_cfg, /* properties_required */
2951 0, /* properties_provided */
2952 0, /* properties_destroyed */
2953 0, /* todo_flags_start */
2954 TODO_verify_ssa, /* todo_flags_finish */
2957 class pass_profile : public gimple_opt_pass
2959 public:
2960 pass_profile(gcc::context *ctxt)
2961 : gimple_opt_pass(pass_data_profile, ctxt)
2964 /* opt_pass methods: */
2965 bool gate () { return gate_estimate_probability (); }
2966 unsigned int execute () { return tree_estimate_probability_driver (); }
2968 }; // class pass_profile
2970 } // anon namespace
2972 gimple_opt_pass *
2973 make_pass_profile (gcc::context *ctxt)
2975 return new pass_profile (ctxt);
2978 namespace {
2980 const pass_data pass_data_strip_predict_hints =
2982 GIMPLE_PASS, /* type */
2983 "*strip_predict_hints", /* name */
2984 OPTGROUP_NONE, /* optinfo_flags */
2985 false, /* has_gate */
2986 true, /* has_execute */
2987 TV_BRANCH_PROB, /* tv_id */
2988 PROP_cfg, /* properties_required */
2989 0, /* properties_provided */
2990 0, /* properties_destroyed */
2991 0, /* todo_flags_start */
2992 TODO_verify_ssa, /* todo_flags_finish */
2995 class pass_strip_predict_hints : public gimple_opt_pass
2997 public:
2998 pass_strip_predict_hints(gcc::context *ctxt)
2999 : gimple_opt_pass(pass_data_strip_predict_hints, ctxt)
3002 /* opt_pass methods: */
3003 opt_pass * clone () { return new pass_strip_predict_hints (ctxt_); }
3004 unsigned int execute () { return strip_predict_hints (); }
3006 }; // class pass_strip_predict_hints
3008 } // anon namespace
3010 gimple_opt_pass *
3011 make_pass_strip_predict_hints (gcc::context *ctxt)
3013 return new pass_strip_predict_hints (ctxt);
3016 /* Rebuild function frequencies. Passes are in general expected to
3017 maintain profile by hand, however in some cases this is not possible:
3018 for example when inlining several functions with loops freuqencies might run
3019 out of scale and thus needs to be recomputed. */
3021 void
3022 rebuild_frequencies (void)
3024 timevar_push (TV_REBUILD_FREQUENCIES);
3025 if (profile_status == PROFILE_GUESSED)
3027 loop_optimizer_init (0);
3028 add_noreturn_fake_exit_edges ();
3029 mark_irreducible_loops ();
3030 connect_infinite_loops_to_exit ();
3031 estimate_bb_frequencies ();
3032 remove_fake_exit_edges ();
3033 loop_optimizer_finalize ();
3035 else if (profile_status == PROFILE_READ)
3036 counts_to_freqs ();
3037 else
3038 gcc_unreachable ();
3039 timevar_pop (TV_REBUILD_FREQUENCIES);