1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
32 #include "coretypes.h"
37 #include "hard-reg-set.h"
38 #include "basic-block.h"
39 #include "insn-config.h"
44 #include "diagnostic-core.h"
53 #include "tree-flow.h"
55 #include "tree-pass.h"
56 #include "tree-scalar-evolution.h"
58 #include "pointer-set.h"
60 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
61 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
62 static sreal real_zero
, real_one
, real_almost_one
, real_br_prob_base
,
63 real_inv_br_prob_base
, real_one_half
, real_bb_freq_max
;
65 /* Random guesstimation given names.
66 PROV_VERY_UNLIKELY should be small enough so basic block predicted
67 by it gets below HOT_BB_FREQUENCY_FRACTION. */
68 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
69 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
70 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
71 #define PROB_ALWAYS (REG_BR_PROB_BASE)
73 static void combine_predictions_for_insn (rtx
, basic_block
);
74 static void dump_prediction (FILE *, enum br_predictor
, int, basic_block
, int);
75 static void predict_paths_leading_to (basic_block
, enum br_predictor
, enum prediction
);
76 static void predict_paths_leading_to_edge (edge
, enum br_predictor
, enum prediction
);
77 static bool can_predict_insn_p (const_rtx
);
79 /* Information we hold about each branch predictor.
80 Filled using information from predict.def. */
84 const char *const name
; /* Name used in the debugging dumps. */
85 const int hitrate
; /* Expected hitrate used by
86 predict_insn_def call. */
90 /* Use given predictor without Dempster-Shaffer theory if it matches
91 using first_match heuristics. */
92 #define PRED_FLAG_FIRST_MATCH 1
94 /* Recompute hitrate in percent to our representation. */
96 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
98 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
99 static const struct predictor_info predictor_info
[]= {
100 #include "predict.def"
102 /* Upper bound on predictors. */
107 /* Return TRUE if frequency FREQ is considered to be hot. */
110 maybe_hot_frequency_p (struct function
*fun
, int freq
)
112 struct cgraph_node
*node
= cgraph_get_node (fun
->decl
);
113 if (!profile_info
|| !flag_branch_probabilities
)
115 if (node
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
)
117 if (node
->frequency
== NODE_FREQUENCY_HOT
)
120 if (profile_status_for_function (fun
) == PROFILE_ABSENT
)
122 if (node
->frequency
== NODE_FREQUENCY_EXECUTED_ONCE
123 && freq
< (ENTRY_BLOCK_PTR_FOR_FUNCTION (fun
)->frequency
* 2 / 3))
125 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
) == 0)
127 if (freq
< (ENTRY_BLOCK_PTR_FOR_FUNCTION (fun
)->frequency
128 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
)))
133 static gcov_type min_count
= -1;
135 /* Determine the threshold for hot BB counts. */
138 get_hot_bb_threshold ()
140 gcov_working_set_t
*ws
;
143 ws
= find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE
));
145 min_count
= ws
->min_counter
;
150 /* Set the threshold for hot BB counts. */
153 set_hot_bb_threshold (gcov_type min
)
158 /* Return TRUE if frequency FREQ is considered to be hot. */
161 maybe_hot_count_p (struct function
*fun
, gcov_type count
)
163 if (fun
&& profile_status_for_function (fun
) != PROFILE_READ
)
165 /* Code executed at most once is not hot. */
166 if (profile_info
->runs
>= count
)
168 return (count
>= get_hot_bb_threshold ());
171 /* Return true in case BB can be CPU intensive and should be optimized
172 for maximal performance. */
175 maybe_hot_bb_p (struct function
*fun
, const_basic_block bb
)
177 gcc_checking_assert (fun
);
178 if (profile_status_for_function (fun
) == PROFILE_READ
)
179 return maybe_hot_count_p (fun
, bb
->count
);
180 return maybe_hot_frequency_p (fun
, bb
->frequency
);
183 /* Return true if the call can be hot. */
186 cgraph_maybe_hot_edge_p (struct cgraph_edge
*edge
)
188 if (profile_info
&& flag_branch_probabilities
189 && !maybe_hot_count_p (NULL
,
192 if (edge
->caller
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
194 && edge
->callee
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
))
196 if (edge
->caller
->frequency
> NODE_FREQUENCY_UNLIKELY_EXECUTED
198 && edge
->callee
->frequency
<= NODE_FREQUENCY_EXECUTED_ONCE
))
202 if (edge
->caller
->frequency
== NODE_FREQUENCY_HOT
)
204 if (edge
->caller
->frequency
== NODE_FREQUENCY_EXECUTED_ONCE
205 && edge
->frequency
< CGRAPH_FREQ_BASE
* 3 / 2)
207 if (flag_guess_branch_prob
)
209 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
) == 0
210 || edge
->frequency
<= (CGRAPH_FREQ_BASE
211 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
)))
217 /* Return true in case BB can be CPU intensive and should be optimized
218 for maximal performance. */
221 maybe_hot_edge_p (edge e
)
223 if (profile_status
== PROFILE_READ
)
224 return maybe_hot_count_p (cfun
, e
->count
);
225 return maybe_hot_frequency_p (cfun
, EDGE_FREQUENCY (e
));
229 /* Return true in case BB is probably never executed. */
232 probably_never_executed_bb_p (struct function
*fun
, const_basic_block bb
)
234 gcc_checking_assert (fun
);
235 if (profile_status_for_function (fun
) == PROFILE_READ
)
237 if ((bb
->count
* 4 + profile_info
->runs
/ 2) / profile_info
->runs
> 0)
241 if (!ENTRY_BLOCK_PTR
->frequency
)
243 if (ENTRY_BLOCK_PTR
->count
&& ENTRY_BLOCK_PTR
->count
< REG_BR_PROB_BASE
)
245 return (RDIV (bb
->frequency
* ENTRY_BLOCK_PTR
->count
,
246 ENTRY_BLOCK_PTR
->frequency
)
247 < REG_BR_PROB_BASE
/ 4);
251 if ((!profile_info
|| !flag_branch_probabilities
)
252 && (cgraph_get_node (fun
->decl
)->frequency
253 == NODE_FREQUENCY_UNLIKELY_EXECUTED
))
259 /* Return true in case edge E is probably never executed. */
262 probably_never_executed_edge_p (struct function
*fun
, edge e
)
264 gcc_checking_assert (fun
);
265 if (profile_info
&& flag_branch_probabilities
)
266 return ((e
->count
+ profile_info
->runs
/ 2) / profile_info
->runs
) == 0;
267 if ((!profile_info
|| !flag_branch_probabilities
)
268 && (cgraph_get_node (fun
->decl
)->frequency
269 == NODE_FREQUENCY_UNLIKELY_EXECUTED
))
274 /* Return true if NODE should be optimized for size. */
277 cgraph_optimize_for_size_p (struct cgraph_node
*node
)
281 if (node
&& (node
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
))
287 /* Return true when current function should always be optimized for size. */
290 optimize_function_for_size_p (struct function
*fun
)
294 if (!fun
|| !fun
->decl
)
296 return cgraph_optimize_for_size_p (cgraph_get_node (fun
->decl
));
299 /* Return true when current function should always be optimized for speed. */
302 optimize_function_for_speed_p (struct function
*fun
)
304 return !optimize_function_for_size_p (fun
);
307 /* Return TRUE when BB should be optimized for size. */
310 optimize_bb_for_size_p (const_basic_block bb
)
312 return optimize_function_for_size_p (cfun
) || !maybe_hot_bb_p (cfun
, bb
);
315 /* Return TRUE when BB should be optimized for speed. */
318 optimize_bb_for_speed_p (const_basic_block bb
)
320 return !optimize_bb_for_size_p (bb
);
323 /* Return TRUE when BB should be optimized for size. */
326 optimize_edge_for_size_p (edge e
)
328 return optimize_function_for_size_p (cfun
) || !maybe_hot_edge_p (e
);
331 /* Return TRUE when BB should be optimized for speed. */
334 optimize_edge_for_speed_p (edge e
)
336 return !optimize_edge_for_size_p (e
);
339 /* Return TRUE when BB should be optimized for size. */
342 optimize_insn_for_size_p (void)
344 return optimize_function_for_size_p (cfun
) || !crtl
->maybe_hot_insn_p
;
347 /* Return TRUE when BB should be optimized for speed. */
350 optimize_insn_for_speed_p (void)
352 return !optimize_insn_for_size_p ();
355 /* Return TRUE when LOOP should be optimized for size. */
358 optimize_loop_for_size_p (struct loop
*loop
)
360 return optimize_bb_for_size_p (loop
->header
);
363 /* Return TRUE when LOOP should be optimized for speed. */
366 optimize_loop_for_speed_p (struct loop
*loop
)
368 return optimize_bb_for_speed_p (loop
->header
);
371 /* Return TRUE when LOOP nest should be optimized for speed. */
374 optimize_loop_nest_for_speed_p (struct loop
*loop
)
376 struct loop
*l
= loop
;
377 if (optimize_loop_for_speed_p (loop
))
380 while (l
&& l
!= loop
)
382 if (optimize_loop_for_speed_p (l
))
390 while (l
!= loop
&& !l
->next
)
399 /* Return TRUE when LOOP nest should be optimized for size. */
402 optimize_loop_nest_for_size_p (struct loop
*loop
)
404 return !optimize_loop_nest_for_speed_p (loop
);
407 /* Return true when edge E is likely to be well predictable by branch
411 predictable_edge_p (edge e
)
413 if (profile_status
== PROFILE_ABSENT
)
416 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME
) * REG_BR_PROB_BASE
/ 100)
417 || (REG_BR_PROB_BASE
- e
->probability
418 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME
) * REG_BR_PROB_BASE
/ 100))
424 /* Set RTL expansion for BB profile. */
427 rtl_profile_for_bb (basic_block bb
)
429 crtl
->maybe_hot_insn_p
= maybe_hot_bb_p (cfun
, bb
);
432 /* Set RTL expansion for edge profile. */
435 rtl_profile_for_edge (edge e
)
437 crtl
->maybe_hot_insn_p
= maybe_hot_edge_p (e
);
440 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
442 default_rtl_profile (void)
444 crtl
->maybe_hot_insn_p
= true;
447 /* Return true if the one of outgoing edges is already predicted by
451 rtl_predicted_by_p (const_basic_block bb
, enum br_predictor predictor
)
454 if (!INSN_P (BB_END (bb
)))
456 for (note
= REG_NOTES (BB_END (bb
)); note
; note
= XEXP (note
, 1))
457 if (REG_NOTE_KIND (note
) == REG_BR_PRED
458 && INTVAL (XEXP (XEXP (note
, 0), 0)) == (int)predictor
)
463 /* This map contains for a basic block the list of predictions for the
466 static struct pointer_map_t
*bb_predictions
;
468 /* Structure representing predictions in tree level. */
470 struct edge_prediction
{
471 struct edge_prediction
*ep_next
;
473 enum br_predictor ep_predictor
;
477 /* Return true if the one of outgoing edges is already predicted by
481 gimple_predicted_by_p (const_basic_block bb
, enum br_predictor predictor
)
483 struct edge_prediction
*i
;
484 void **preds
= pointer_map_contains (bb_predictions
, bb
);
489 for (i
= (struct edge_prediction
*) *preds
; i
; i
= i
->ep_next
)
490 if (i
->ep_predictor
== predictor
)
495 /* Return true when the probability of edge is reliable.
497 The profile guessing code is good at predicting branch outcome (ie.
498 taken/not taken), that is predicted right slightly over 75% of time.
499 It is however notoriously poor on predicting the probability itself.
500 In general the profile appear a lot flatter (with probabilities closer
501 to 50%) than the reality so it is bad idea to use it to drive optimization
502 such as those disabling dynamic branch prediction for well predictable
505 There are two exceptions - edges leading to noreturn edges and edges
506 predicted by number of iterations heuristics are predicted well. This macro
507 should be able to distinguish those, but at the moment it simply check for
508 noreturn heuristic that is only one giving probability over 99% or bellow
509 1%. In future we might want to propagate reliability information across the
510 CFG if we find this information useful on multiple places. */
512 probability_reliable_p (int prob
)
514 return (profile_status
== PROFILE_READ
515 || (profile_status
== PROFILE_GUESSED
516 && (prob
<= HITRATE (1) || prob
>= HITRATE (99))));
519 /* Same predicate as above, working on edges. */
521 edge_probability_reliable_p (const_edge e
)
523 return probability_reliable_p (e
->probability
);
526 /* Same predicate as edge_probability_reliable_p, working on notes. */
528 br_prob_note_reliable_p (const_rtx note
)
530 gcc_assert (REG_NOTE_KIND (note
) == REG_BR_PROB
);
531 return probability_reliable_p (INTVAL (XEXP (note
, 0)));
535 predict_insn (rtx insn
, enum br_predictor predictor
, int probability
)
537 gcc_assert (any_condjump_p (insn
));
538 if (!flag_guess_branch_prob
)
541 add_reg_note (insn
, REG_BR_PRED
,
542 gen_rtx_CONCAT (VOIDmode
,
543 GEN_INT ((int) predictor
),
544 GEN_INT ((int) probability
)));
547 /* Predict insn by given predictor. */
550 predict_insn_def (rtx insn
, enum br_predictor predictor
,
551 enum prediction taken
)
553 int probability
= predictor_info
[(int) predictor
].hitrate
;
556 probability
= REG_BR_PROB_BASE
- probability
;
558 predict_insn (insn
, predictor
, probability
);
561 /* Predict edge E with given probability if possible. */
564 rtl_predict_edge (edge e
, enum br_predictor predictor
, int probability
)
567 last_insn
= BB_END (e
->src
);
569 /* We can store the branch prediction information only about
570 conditional jumps. */
571 if (!any_condjump_p (last_insn
))
574 /* We always store probability of branching. */
575 if (e
->flags
& EDGE_FALLTHRU
)
576 probability
= REG_BR_PROB_BASE
- probability
;
578 predict_insn (last_insn
, predictor
, probability
);
581 /* Predict edge E with the given PROBABILITY. */
583 gimple_predict_edge (edge e
, enum br_predictor predictor
, int probability
)
585 gcc_assert (profile_status
!= PROFILE_GUESSED
);
586 if ((e
->src
!= ENTRY_BLOCK_PTR
&& EDGE_COUNT (e
->src
->succs
) > 1)
587 && flag_guess_branch_prob
&& optimize
)
589 struct edge_prediction
*i
= XNEW (struct edge_prediction
);
590 void **preds
= pointer_map_insert (bb_predictions
, e
->src
);
592 i
->ep_next
= (struct edge_prediction
*) *preds
;
594 i
->ep_probability
= probability
;
595 i
->ep_predictor
= predictor
;
600 /* Remove all predictions on given basic block that are attached
603 remove_predictions_associated_with_edge (edge e
)
610 preds
= pointer_map_contains (bb_predictions
, e
->src
);
614 struct edge_prediction
**prediction
= (struct edge_prediction
**) preds
;
615 struct edge_prediction
*next
;
619 if ((*prediction
)->ep_edge
== e
)
621 next
= (*prediction
)->ep_next
;
626 prediction
= &((*prediction
)->ep_next
);
631 /* Clears the list of predictions stored for BB. */
634 clear_bb_predictions (basic_block bb
)
636 void **preds
= pointer_map_contains (bb_predictions
, bb
);
637 struct edge_prediction
*pred
, *next
;
642 for (pred
= (struct edge_prediction
*) *preds
; pred
; pred
= next
)
644 next
= pred
->ep_next
;
650 /* Return true when we can store prediction on insn INSN.
651 At the moment we represent predictions only on conditional
652 jumps, not at computed jump or other complicated cases. */
654 can_predict_insn_p (const_rtx insn
)
656 return (JUMP_P (insn
)
657 && any_condjump_p (insn
)
658 && EDGE_COUNT (BLOCK_FOR_INSN (insn
)->succs
) >= 2);
661 /* Predict edge E by given predictor if possible. */
664 predict_edge_def (edge e
, enum br_predictor predictor
,
665 enum prediction taken
)
667 int probability
= predictor_info
[(int) predictor
].hitrate
;
670 probability
= REG_BR_PROB_BASE
- probability
;
672 predict_edge (e
, predictor
, probability
);
675 /* Invert all branch predictions or probability notes in the INSN. This needs
676 to be done each time we invert the condition used by the jump. */
679 invert_br_probabilities (rtx insn
)
683 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
684 if (REG_NOTE_KIND (note
) == REG_BR_PROB
)
685 XEXP (note
, 0) = GEN_INT (REG_BR_PROB_BASE
- INTVAL (XEXP (note
, 0)));
686 else if (REG_NOTE_KIND (note
) == REG_BR_PRED
)
687 XEXP (XEXP (note
, 0), 1)
688 = GEN_INT (REG_BR_PROB_BASE
- INTVAL (XEXP (XEXP (note
, 0), 1)));
691 /* Dump information about the branch prediction to the output file. */
694 dump_prediction (FILE *file
, enum br_predictor predictor
, int probability
,
695 basic_block bb
, int used
)
703 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
704 if (! (e
->flags
& EDGE_FALLTHRU
))
707 fprintf (file
, " %s heuristics%s: %.1f%%",
708 predictor_info
[predictor
].name
,
709 used
? "" : " (ignored)", probability
* 100.0 / REG_BR_PROB_BASE
);
713 fprintf (file
, " exec ");
714 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, bb
->count
);
717 fprintf (file
, " hit ");
718 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, e
->count
);
719 fprintf (file
, " (%.1f%%)", e
->count
* 100.0 / bb
->count
);
723 fprintf (file
, "\n");
726 /* We can not predict the probabilities of outgoing edges of bb. Set them
727 evenly and hope for the best. */
729 set_even_probabilities (basic_block bb
)
735 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
736 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
738 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
739 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
740 e
->probability
= (REG_BR_PROB_BASE
+ nedges
/ 2) / nedges
;
745 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
746 note if not already present. Remove now useless REG_BR_PRED notes. */
749 combine_predictions_for_insn (rtx insn
, basic_block bb
)
754 int best_probability
= PROB_EVEN
;
755 enum br_predictor best_predictor
= END_PREDICTORS
;
756 int combined_probability
= REG_BR_PROB_BASE
/ 2;
758 bool first_match
= false;
761 if (!can_predict_insn_p (insn
))
763 set_even_probabilities (bb
);
767 prob_note
= find_reg_note (insn
, REG_BR_PROB
, 0);
768 pnote
= ®_NOTES (insn
);
770 fprintf (dump_file
, "Predictions for insn %i bb %i\n", INSN_UID (insn
),
773 /* We implement "first match" heuristics and use probability guessed
774 by predictor with smallest index. */
775 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
776 if (REG_NOTE_KIND (note
) == REG_BR_PRED
)
778 enum br_predictor predictor
= ((enum br_predictor
)
779 INTVAL (XEXP (XEXP (note
, 0), 0)));
780 int probability
= INTVAL (XEXP (XEXP (note
, 0), 1));
783 if (best_predictor
> predictor
)
784 best_probability
= probability
, best_predictor
= predictor
;
786 d
= (combined_probability
* probability
787 + (REG_BR_PROB_BASE
- combined_probability
)
788 * (REG_BR_PROB_BASE
- probability
));
790 /* Use FP math to avoid overflows of 32bit integers. */
792 /* If one probability is 0% and one 100%, avoid division by zero. */
793 combined_probability
= REG_BR_PROB_BASE
/ 2;
795 combined_probability
= (((double) combined_probability
) * probability
796 * REG_BR_PROB_BASE
/ d
+ 0.5);
799 /* Decide which heuristic to use. In case we didn't match anything,
800 use no_prediction heuristic, in case we did match, use either
801 first match or Dempster-Shaffer theory depending on the flags. */
803 if (predictor_info
[best_predictor
].flags
& PRED_FLAG_FIRST_MATCH
)
807 dump_prediction (dump_file
, PRED_NO_PREDICTION
,
808 combined_probability
, bb
, true);
811 dump_prediction (dump_file
, PRED_DS_THEORY
, combined_probability
,
813 dump_prediction (dump_file
, PRED_FIRST_MATCH
, best_probability
,
818 combined_probability
= best_probability
;
819 dump_prediction (dump_file
, PRED_COMBINED
, combined_probability
, bb
, true);
823 if (REG_NOTE_KIND (*pnote
) == REG_BR_PRED
)
825 enum br_predictor predictor
= ((enum br_predictor
)
826 INTVAL (XEXP (XEXP (*pnote
, 0), 0)));
827 int probability
= INTVAL (XEXP (XEXP (*pnote
, 0), 1));
829 dump_prediction (dump_file
, predictor
, probability
, bb
,
830 !first_match
|| best_predictor
== predictor
);
831 *pnote
= XEXP (*pnote
, 1);
834 pnote
= &XEXP (*pnote
, 1);
839 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (combined_probability
));
841 /* Save the prediction into CFG in case we are seeing non-degenerated
843 if (!single_succ_p (bb
))
845 BRANCH_EDGE (bb
)->probability
= combined_probability
;
846 FALLTHRU_EDGE (bb
)->probability
847 = REG_BR_PROB_BASE
- combined_probability
;
850 else if (!single_succ_p (bb
))
852 int prob
= INTVAL (XEXP (prob_note
, 0));
854 BRANCH_EDGE (bb
)->probability
= prob
;
855 FALLTHRU_EDGE (bb
)->probability
= REG_BR_PROB_BASE
- prob
;
858 single_succ_edge (bb
)->probability
= REG_BR_PROB_BASE
;
861 /* Combine predictions into single probability and store them into CFG.
862 Remove now useless prediction entries. */
865 combine_predictions_for_bb (basic_block bb
)
867 int best_probability
= PROB_EVEN
;
868 enum br_predictor best_predictor
= END_PREDICTORS
;
869 int combined_probability
= REG_BR_PROB_BASE
/ 2;
871 bool first_match
= false;
873 struct edge_prediction
*pred
;
875 edge e
, first
= NULL
, second
= NULL
;
879 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
880 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
883 if (first
&& !second
)
889 /* When there is no successor or only one choice, prediction is easy.
891 We are lazy for now and predict only basic blocks with two outgoing
892 edges. It is possible to predict generic case too, but we have to
893 ignore first match heuristics and do more involved combining. Implement
898 set_even_probabilities (bb
);
899 clear_bb_predictions (bb
);
901 fprintf (dump_file
, "%i edges in bb %i predicted to even probabilities\n",
907 fprintf (dump_file
, "Predictions for bb %i\n", bb
->index
);
909 preds
= pointer_map_contains (bb_predictions
, bb
);
912 /* We implement "first match" heuristics and use probability guessed
913 by predictor with smallest index. */
914 for (pred
= (struct edge_prediction
*) *preds
; pred
; pred
= pred
->ep_next
)
916 enum br_predictor predictor
= pred
->ep_predictor
;
917 int probability
= pred
->ep_probability
;
919 if (pred
->ep_edge
!= first
)
920 probability
= REG_BR_PROB_BASE
- probability
;
923 /* First match heuristics would be widly confused if we predicted
925 if (best_predictor
> predictor
)
927 struct edge_prediction
*pred2
;
928 int prob
= probability
;
930 for (pred2
= (struct edge_prediction
*) *preds
; pred2
; pred2
= pred2
->ep_next
)
931 if (pred2
!= pred
&& pred2
->ep_predictor
== pred
->ep_predictor
)
933 int probability2
= pred
->ep_probability
;
935 if (pred2
->ep_edge
!= first
)
936 probability2
= REG_BR_PROB_BASE
- probability2
;
938 if ((probability
< REG_BR_PROB_BASE
/ 2) !=
939 (probability2
< REG_BR_PROB_BASE
/ 2))
942 /* If the same predictor later gave better result, go for it! */
943 if ((probability
>= REG_BR_PROB_BASE
/ 2 && (probability2
> probability
))
944 || (probability
<= REG_BR_PROB_BASE
/ 2 && (probability2
< probability
)))
948 best_probability
= prob
, best_predictor
= predictor
;
951 d
= (combined_probability
* probability
952 + (REG_BR_PROB_BASE
- combined_probability
)
953 * (REG_BR_PROB_BASE
- probability
));
955 /* Use FP math to avoid overflows of 32bit integers. */
957 /* If one probability is 0% and one 100%, avoid division by zero. */
958 combined_probability
= REG_BR_PROB_BASE
/ 2;
960 combined_probability
= (((double) combined_probability
)
962 * REG_BR_PROB_BASE
/ d
+ 0.5);
966 /* Decide which heuristic to use. In case we didn't match anything,
967 use no_prediction heuristic, in case we did match, use either
968 first match or Dempster-Shaffer theory depending on the flags. */
970 if (predictor_info
[best_predictor
].flags
& PRED_FLAG_FIRST_MATCH
)
974 dump_prediction (dump_file
, PRED_NO_PREDICTION
, combined_probability
, bb
, true);
977 dump_prediction (dump_file
, PRED_DS_THEORY
, combined_probability
, bb
,
979 dump_prediction (dump_file
, PRED_FIRST_MATCH
, best_probability
, bb
,
984 combined_probability
= best_probability
;
985 dump_prediction (dump_file
, PRED_COMBINED
, combined_probability
, bb
, true);
989 for (pred
= (struct edge_prediction
*) *preds
; pred
; pred
= pred
->ep_next
)
991 enum br_predictor predictor
= pred
->ep_predictor
;
992 int probability
= pred
->ep_probability
;
994 if (pred
->ep_edge
!= EDGE_SUCC (bb
, 0))
995 probability
= REG_BR_PROB_BASE
- probability
;
996 dump_prediction (dump_file
, predictor
, probability
, bb
,
997 !first_match
|| best_predictor
== predictor
);
1000 clear_bb_predictions (bb
);
1004 first
->probability
= combined_probability
;
1005 second
->probability
= REG_BR_PROB_BASE
- combined_probability
;
1009 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1010 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1012 T1 and T2 should be one of the following cases:
1013 1. T1 is SSA_NAME, T2 is NULL
1014 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1015 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1018 strips_small_constant (tree t1
, tree t2
)
1025 else if (TREE_CODE (t1
) == SSA_NAME
)
1027 else if (host_integerp (t1
, 0))
1028 value
= tree_low_cst (t1
, 0);
1034 else if (host_integerp (t2
, 0))
1035 value
= tree_low_cst (t2
, 0);
1036 else if (TREE_CODE (t2
) == SSA_NAME
)
1044 if (value
<= 4 && value
>= -4)
1050 /* Return the SSA_NAME in T or T's operands.
1051 Return NULL if SSA_NAME cannot be found. */
1054 get_base_value (tree t
)
1056 if (TREE_CODE (t
) == SSA_NAME
)
1059 if (!BINARY_CLASS_P (t
))
1062 switch (TREE_OPERAND_LENGTH (t
))
1065 return strips_small_constant (TREE_OPERAND (t
, 0), NULL
);
1067 return strips_small_constant (TREE_OPERAND (t
, 0),
1068 TREE_OPERAND (t
, 1));
1074 /* Check the compare STMT in LOOP. If it compares an induction
1075 variable to a loop invariant, return true, and save
1076 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1077 Otherwise return false and set LOOP_INVAIANT to NULL. */
1080 is_comparison_with_loop_invariant_p (gimple stmt
, struct loop
*loop
,
1081 tree
*loop_invariant
,
1082 enum tree_code
*compare_code
,
1086 tree op0
, op1
, bound
, base
;
1088 enum tree_code code
;
1091 code
= gimple_cond_code (stmt
);
1092 *loop_invariant
= NULL
;
1108 op0
= gimple_cond_lhs (stmt
);
1109 op1
= gimple_cond_rhs (stmt
);
1111 if ((TREE_CODE (op0
) != SSA_NAME
&& TREE_CODE (op0
) != INTEGER_CST
)
1112 || (TREE_CODE (op1
) != SSA_NAME
&& TREE_CODE (op1
) != INTEGER_CST
))
1114 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op0
, &iv0
, true))
1116 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op1
, &iv1
, true))
1118 if (TREE_CODE (iv0
.step
) != INTEGER_CST
1119 || TREE_CODE (iv1
.step
) != INTEGER_CST
)
1121 if ((integer_zerop (iv0
.step
) && integer_zerop (iv1
.step
))
1122 || (!integer_zerop (iv0
.step
) && !integer_zerop (iv1
.step
)))
1125 if (integer_zerop (iv0
.step
))
1127 if (code
!= NE_EXPR
&& code
!= EQ_EXPR
)
1128 code
= invert_tree_comparison (code
, false);
1131 if (host_integerp (iv1
.step
, 0))
1140 if (host_integerp (iv0
.step
, 0))
1146 if (TREE_CODE (bound
) != INTEGER_CST
)
1147 bound
= get_base_value (bound
);
1150 if (TREE_CODE (base
) != INTEGER_CST
)
1151 base
= get_base_value (base
);
1155 *loop_invariant
= bound
;
1156 *compare_code
= code
;
1158 *loop_iv_base
= base
;
1162 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1165 expr_coherent_p (tree t1
, tree t2
)
1168 tree ssa_name_1
= NULL
;
1169 tree ssa_name_2
= NULL
;
1171 gcc_assert (TREE_CODE (t1
) == SSA_NAME
|| TREE_CODE (t1
) == INTEGER_CST
);
1172 gcc_assert (TREE_CODE (t2
) == SSA_NAME
|| TREE_CODE (t2
) == INTEGER_CST
);
1177 if (TREE_CODE (t1
) == INTEGER_CST
&& TREE_CODE (t2
) == INTEGER_CST
)
1179 if (TREE_CODE (t1
) == INTEGER_CST
|| TREE_CODE (t2
) == INTEGER_CST
)
1182 /* Check to see if t1 is expressed/defined with t2. */
1183 stmt
= SSA_NAME_DEF_STMT (t1
);
1184 gcc_assert (stmt
!= NULL
);
1185 if (is_gimple_assign (stmt
))
1187 ssa_name_1
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
1188 if (ssa_name_1
&& ssa_name_1
== t2
)
1192 /* Check to see if t2 is expressed/defined with t1. */
1193 stmt
= SSA_NAME_DEF_STMT (t2
);
1194 gcc_assert (stmt
!= NULL
);
1195 if (is_gimple_assign (stmt
))
1197 ssa_name_2
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
1198 if (ssa_name_2
&& ssa_name_2
== t1
)
1202 /* Compare if t1 and t2's def_stmts are identical. */
1203 if (ssa_name_2
!= NULL
&& ssa_name_1
== ssa_name_2
)
1209 /* Predict branch probability of BB when BB contains a branch that compares
1210 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1211 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1214 for (int i = 0; i < bound; i++) {
1221 In this loop, we will predict the branch inside the loop to be taken. */
1224 predict_iv_comparison (struct loop
*loop
, basic_block bb
,
1225 tree loop_bound_var
,
1226 tree loop_iv_base_var
,
1227 enum tree_code loop_bound_code
,
1228 int loop_bound_step
)
1231 tree compare_var
, compare_base
;
1232 enum tree_code compare_code
;
1233 tree compare_step_var
;
1237 if (predicted_by_p (bb
, PRED_LOOP_ITERATIONS_GUESSED
)
1238 || predicted_by_p (bb
, PRED_LOOP_ITERATIONS
)
1239 || predicted_by_p (bb
, PRED_LOOP_EXIT
))
1242 stmt
= last_stmt (bb
);
1243 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
1245 if (!is_comparison_with_loop_invariant_p (stmt
, loop
, &compare_var
,
1251 /* Find the taken edge. */
1252 FOR_EACH_EDGE (then_edge
, ei
, bb
->succs
)
1253 if (then_edge
->flags
& EDGE_TRUE_VALUE
)
1256 /* When comparing an IV to a loop invariant, NE is more likely to be
1257 taken while EQ is more likely to be not-taken. */
1258 if (compare_code
== NE_EXPR
)
1260 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1263 else if (compare_code
== EQ_EXPR
)
1265 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1269 if (!expr_coherent_p (loop_iv_base_var
, compare_base
))
1272 /* If loop bound, base and compare bound are all constants, we can
1273 calculate the probability directly. */
1274 if (host_integerp (loop_bound_var
, 0)
1275 && host_integerp (compare_var
, 0)
1276 && host_integerp (compare_base
, 0))
1279 bool of
, overflow
= false;
1280 double_int mod
, compare_count
, tem
, loop_count
;
1282 double_int loop_bound
= tree_to_double_int (loop_bound_var
);
1283 double_int compare_bound
= tree_to_double_int (compare_var
);
1284 double_int base
= tree_to_double_int (compare_base
);
1285 double_int compare_step
= tree_to_double_int (compare_step_var
);
1287 /* (loop_bound - base) / compare_step */
1288 tem
= loop_bound
.sub_with_overflow (base
, &of
);
1290 loop_count
= tem
.divmod_with_overflow (compare_step
,
1295 if ((!compare_step
.is_negative ())
1296 ^ (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1298 /* (loop_bound - compare_bound) / compare_step */
1299 tem
= loop_bound
.sub_with_overflow (compare_bound
, &of
);
1301 compare_count
= tem
.divmod_with_overflow (compare_step
,
1308 /* (compare_bound - base) / compare_step */
1309 tem
= compare_bound
.sub_with_overflow (base
, &of
);
1311 compare_count
= tem
.divmod_with_overflow (compare_step
,
1316 if (compare_code
== LE_EXPR
|| compare_code
== GE_EXPR
)
1318 if (loop_bound_code
== LE_EXPR
|| loop_bound_code
== GE_EXPR
)
1320 if (compare_count
.is_negative ())
1321 compare_count
= double_int_zero
;
1322 if (loop_count
.is_negative ())
1323 loop_count
= double_int_zero
;
1324 if (loop_count
.is_zero ())
1326 else if (compare_count
.scmp (loop_count
) == 1)
1327 probability
= REG_BR_PROB_BASE
;
1330 /* If loop_count is too big, such that REG_BR_PROB_BASE * loop_count
1331 could overflow, shift both loop_count and compare_count right
1332 a bit so that it doesn't overflow. Note both counts are known not
1333 to be negative at this point. */
1334 int clz_bits
= clz_hwi (loop_count
.high
);
1335 gcc_assert (REG_BR_PROB_BASE
< 32768);
1338 loop_count
.arshift (16 - clz_bits
, HOST_BITS_PER_DOUBLE_INT
);
1339 compare_count
.arshift (16 - clz_bits
, HOST_BITS_PER_DOUBLE_INT
);
1341 tem
= compare_count
.mul_with_sign (double_int::from_shwi
1342 (REG_BR_PROB_BASE
), true, &of
);
1344 tem
= tem
.divmod (loop_count
, true, TRUNC_DIV_EXPR
, &mod
);
1345 probability
= tem
.to_uhwi ();
1349 predict_edge (then_edge
, PRED_LOOP_IV_COMPARE
, probability
);
1354 if (expr_coherent_p (loop_bound_var
, compare_var
))
1356 if ((loop_bound_code
== LT_EXPR
|| loop_bound_code
== LE_EXPR
)
1357 && (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1358 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1359 else if ((loop_bound_code
== GT_EXPR
|| loop_bound_code
== GE_EXPR
)
1360 && (compare_code
== GT_EXPR
|| compare_code
== GE_EXPR
))
1361 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1362 else if (loop_bound_code
== NE_EXPR
)
1364 /* If the loop backedge condition is "(i != bound)", we do
1365 the comparison based on the step of IV:
1366 * step < 0 : backedge condition is like (i > bound)
1367 * step > 0 : backedge condition is like (i < bound) */
1368 gcc_assert (loop_bound_step
!= 0);
1369 if (loop_bound_step
> 0
1370 && (compare_code
== LT_EXPR
1371 || compare_code
== LE_EXPR
))
1372 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1373 else if (loop_bound_step
< 0
1374 && (compare_code
== GT_EXPR
1375 || compare_code
== GE_EXPR
))
1376 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1378 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1381 /* The branch is predicted not-taken if loop_bound_code is
1382 opposite with compare_code. */
1383 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1385 else if (expr_coherent_p (loop_iv_base_var
, compare_var
))
1388 for (i = s; i < h; i++)
1390 The branch should be predicted taken. */
1391 if (loop_bound_step
> 0
1392 && (compare_code
== GT_EXPR
|| compare_code
== GE_EXPR
))
1393 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1394 else if (loop_bound_step
< 0
1395 && (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1396 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1398 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1402 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1403 exits are resulted from short-circuit conditions that will generate an
1406 if (foo() || global > 10)
1409 This will be translated into:
1414 if foo() goto BB6 else goto BB5
1416 if global > 10 goto BB6 else goto BB7
1420 iftmp = (PHI 0(BB5), 1(BB6))
1421 if iftmp == 1 goto BB8 else goto BB3
1423 outside of the loop...
1425 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1426 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1427 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1428 exits to predict them using PRED_LOOP_EXIT. */
1431 predict_extra_loop_exits (edge exit_edge
)
1434 bool check_value_one
;
1436 tree cmp_rhs
, cmp_lhs
;
1437 gimple cmp_stmt
= last_stmt (exit_edge
->src
);
1439 if (!cmp_stmt
|| gimple_code (cmp_stmt
) != GIMPLE_COND
)
1441 cmp_rhs
= gimple_cond_rhs (cmp_stmt
);
1442 cmp_lhs
= gimple_cond_lhs (cmp_stmt
);
1443 if (!TREE_CONSTANT (cmp_rhs
)
1444 || !(integer_zerop (cmp_rhs
) || integer_onep (cmp_rhs
)))
1446 if (TREE_CODE (cmp_lhs
) != SSA_NAME
)
1449 /* If check_value_one is true, only the phi_args with value '1' will lead
1450 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1452 check_value_one
= (((integer_onep (cmp_rhs
))
1453 ^ (gimple_cond_code (cmp_stmt
) == EQ_EXPR
))
1454 ^ ((exit_edge
->flags
& EDGE_TRUE_VALUE
) != 0));
1456 phi_stmt
= SSA_NAME_DEF_STMT (cmp_lhs
);
1457 if (!phi_stmt
|| gimple_code (phi_stmt
) != GIMPLE_PHI
)
1460 for (i
= 0; i
< gimple_phi_num_args (phi_stmt
); i
++)
1464 tree val
= gimple_phi_arg_def (phi_stmt
, i
);
1465 edge e
= gimple_phi_arg_edge (phi_stmt
, i
);
1467 if (!TREE_CONSTANT (val
) || !(integer_zerop (val
) || integer_onep (val
)))
1469 if ((check_value_one
^ integer_onep (val
)) == 1)
1471 if (EDGE_COUNT (e
->src
->succs
) != 1)
1473 predict_paths_leading_to_edge (e
, PRED_LOOP_EXIT
, NOT_TAKEN
);
1477 FOR_EACH_EDGE (e1
, ei
, e
->src
->preds
)
1478 predict_paths_leading_to_edge (e1
, PRED_LOOP_EXIT
, NOT_TAKEN
);
1482 /* Predict edge probabilities by exploiting loop structure. */
1485 predict_loops (void)
1490 /* Try to predict out blocks in a loop that are not part of a
1492 FOR_EACH_LOOP (li
, loop
, 0)
1494 basic_block bb
, *bbs
;
1495 unsigned j
, n_exits
;
1497 struct tree_niter_desc niter_desc
;
1499 struct nb_iter_bound
*nb_iter
;
1500 enum tree_code loop_bound_code
= ERROR_MARK
;
1501 tree loop_bound_step
= NULL
;
1502 tree loop_bound_var
= NULL
;
1503 tree loop_iv_base
= NULL
;
1506 exits
= get_loop_exit_edges (loop
);
1507 n_exits
= exits
.length ();
1514 FOR_EACH_VEC_ELT (exits
, j
, ex
)
1517 HOST_WIDE_INT nitercst
;
1518 int max
= PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS
);
1520 enum br_predictor predictor
;
1522 predict_extra_loop_exits (ex
);
1524 if (number_of_iterations_exit (loop
, ex
, &niter_desc
, false, false))
1525 niter
= niter_desc
.niter
;
1526 if (!niter
|| TREE_CODE (niter_desc
.niter
) != INTEGER_CST
)
1527 niter
= loop_niter_by_eval (loop
, ex
);
1529 if (TREE_CODE (niter
) == INTEGER_CST
)
1531 if (host_integerp (niter
, 1)
1533 && compare_tree_int (niter
, max
- 1) == -1)
1534 nitercst
= tree_low_cst (niter
, 1) + 1;
1537 predictor
= PRED_LOOP_ITERATIONS
;
1539 /* If we have just one exit and we can derive some information about
1540 the number of iterations of the loop from the statements inside
1541 the loop, use it to predict this exit. */
1542 else if (n_exits
== 1)
1544 nitercst
= estimated_stmt_executions_int (loop
);
1550 predictor
= PRED_LOOP_ITERATIONS_GUESSED
;
1555 /* If the prediction for number of iterations is zero, do not
1556 predict the exit edges. */
1560 probability
= ((REG_BR_PROB_BASE
+ nitercst
/ 2) / nitercst
);
1561 predict_edge (ex
, predictor
, probability
);
1565 /* Find information about loop bound variables. */
1566 for (nb_iter
= loop
->bounds
; nb_iter
;
1567 nb_iter
= nb_iter
->next
)
1569 && gimple_code (nb_iter
->stmt
) == GIMPLE_COND
)
1571 stmt
= nb_iter
->stmt
;
1574 if (!stmt
&& last_stmt (loop
->header
)
1575 && gimple_code (last_stmt (loop
->header
)) == GIMPLE_COND
)
1576 stmt
= last_stmt (loop
->header
);
1578 is_comparison_with_loop_invariant_p (stmt
, loop
,
1584 bbs
= get_loop_body (loop
);
1586 for (j
= 0; j
< loop
->num_nodes
; j
++)
1588 int header_found
= 0;
1594 /* Bypass loop heuristics on continue statement. These
1595 statements construct loops via "non-loop" constructs
1596 in the source language and are better to be handled
1598 if (predicted_by_p (bb
, PRED_CONTINUE
))
1601 /* Loop branch heuristics - predict an edge back to a
1602 loop's head as taken. */
1603 if (bb
== loop
->latch
)
1605 e
= find_edge (loop
->latch
, loop
->header
);
1609 predict_edge_def (e
, PRED_LOOP_BRANCH
, TAKEN
);
1613 /* Loop exit heuristics - predict an edge exiting the loop if the
1614 conditional has no loop header successors as not taken. */
1616 /* If we already used more reliable loop exit predictors, do not
1617 bother with PRED_LOOP_EXIT. */
1618 && !predicted_by_p (bb
, PRED_LOOP_ITERATIONS_GUESSED
)
1619 && !predicted_by_p (bb
, PRED_LOOP_ITERATIONS
))
1621 /* For loop with many exits we don't want to predict all exits
1622 with the pretty large probability, because if all exits are
1623 considered in row, the loop would be predicted to iterate
1624 almost never. The code to divide probability by number of
1625 exits is very rough. It should compute the number of exits
1626 taken in each patch through function (not the overall number
1627 of exits that might be a lot higher for loops with wide switch
1628 statements in them) and compute n-th square root.
1630 We limit the minimal probability by 2% to avoid
1631 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1632 as this was causing regression in perl benchmark containing such
1635 int probability
= ((REG_BR_PROB_BASE
1636 - predictor_info
[(int) PRED_LOOP_EXIT
].hitrate
)
1638 if (probability
< HITRATE (2))
1639 probability
= HITRATE (2);
1640 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1641 if (e
->dest
->index
< NUM_FIXED_BLOCKS
1642 || !flow_bb_inside_loop_p (loop
, e
->dest
))
1643 predict_edge (e
, PRED_LOOP_EXIT
, probability
);
1646 predict_iv_comparison (loop
, bb
, loop_bound_var
, loop_iv_base
,
1648 tree_low_cst (loop_bound_step
, 0));
1651 /* Free basic blocks from get_loop_body. */
1656 /* Attempt to predict probabilities of BB outgoing edges using local
1659 bb_estimate_probability_locally (basic_block bb
)
1661 rtx last_insn
= BB_END (bb
);
1664 if (! can_predict_insn_p (last_insn
))
1666 cond
= get_condition (last_insn
, NULL
, false, false);
1670 /* Try "pointer heuristic."
1671 A comparison ptr == 0 is predicted as false.
1672 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1673 if (COMPARISON_P (cond
)
1674 && ((REG_P (XEXP (cond
, 0)) && REG_POINTER (XEXP (cond
, 0)))
1675 || (REG_P (XEXP (cond
, 1)) && REG_POINTER (XEXP (cond
, 1)))))
1677 if (GET_CODE (cond
) == EQ
)
1678 predict_insn_def (last_insn
, PRED_POINTER
, NOT_TAKEN
);
1679 else if (GET_CODE (cond
) == NE
)
1680 predict_insn_def (last_insn
, PRED_POINTER
, TAKEN
);
1684 /* Try "opcode heuristic."
1685 EQ tests are usually false and NE tests are usually true. Also,
1686 most quantities are positive, so we can make the appropriate guesses
1687 about signed comparisons against zero. */
1688 switch (GET_CODE (cond
))
1691 /* Unconditional branch. */
1692 predict_insn_def (last_insn
, PRED_UNCONDITIONAL
,
1693 cond
== const0_rtx
? NOT_TAKEN
: TAKEN
);
1698 /* Floating point comparisons appears to behave in a very
1699 unpredictable way because of special role of = tests in
1701 if (FLOAT_MODE_P (GET_MODE (XEXP (cond
, 0))))
1703 /* Comparisons with 0 are often used for booleans and there is
1704 nothing useful to predict about them. */
1705 else if (XEXP (cond
, 1) == const0_rtx
1706 || XEXP (cond
, 0) == const0_rtx
)
1709 predict_insn_def (last_insn
, PRED_OPCODE_NONEQUAL
, NOT_TAKEN
);
1714 /* Floating point comparisons appears to behave in a very
1715 unpredictable way because of special role of = tests in
1717 if (FLOAT_MODE_P (GET_MODE (XEXP (cond
, 0))))
1719 /* Comparisons with 0 are often used for booleans and there is
1720 nothing useful to predict about them. */
1721 else if (XEXP (cond
, 1) == const0_rtx
1722 || XEXP (cond
, 0) == const0_rtx
)
1725 predict_insn_def (last_insn
, PRED_OPCODE_NONEQUAL
, TAKEN
);
1729 predict_insn_def (last_insn
, PRED_FPOPCODE
, TAKEN
);
1733 predict_insn_def (last_insn
, PRED_FPOPCODE
, NOT_TAKEN
);
1738 if (XEXP (cond
, 1) == const0_rtx
|| XEXP (cond
, 1) == const1_rtx
1739 || XEXP (cond
, 1) == constm1_rtx
)
1740 predict_insn_def (last_insn
, PRED_OPCODE_POSITIVE
, NOT_TAKEN
);
1745 if (XEXP (cond
, 1) == const0_rtx
|| XEXP (cond
, 1) == const1_rtx
1746 || XEXP (cond
, 1) == constm1_rtx
)
1747 predict_insn_def (last_insn
, PRED_OPCODE_POSITIVE
, TAKEN
);
1755 /* Set edge->probability for each successor edge of BB. */
1757 guess_outgoing_edge_probabilities (basic_block bb
)
1759 bb_estimate_probability_locally (bb
);
1760 combine_predictions_for_insn (BB_END (bb
), bb
);
1763 static tree
expr_expected_value (tree
, bitmap
);
1765 /* Helper function for expr_expected_value. */
1768 expr_expected_value_1 (tree type
, tree op0
, enum tree_code code
,
1769 tree op1
, bitmap visited
)
1773 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1775 if (TREE_CONSTANT (op0
))
1778 if (code
!= SSA_NAME
)
1781 def
= SSA_NAME_DEF_STMT (op0
);
1783 /* If we were already here, break the infinite cycle. */
1784 if (!bitmap_set_bit (visited
, SSA_NAME_VERSION (op0
)))
1787 if (gimple_code (def
) == GIMPLE_PHI
)
1789 /* All the arguments of the PHI node must have the same constant
1791 int i
, n
= gimple_phi_num_args (def
);
1792 tree val
= NULL
, new_val
;
1794 for (i
= 0; i
< n
; i
++)
1796 tree arg
= PHI_ARG_DEF (def
, i
);
1798 /* If this PHI has itself as an argument, we cannot
1799 determine the string length of this argument. However,
1800 if we can find an expected constant value for the other
1801 PHI args then we can still be sure that this is
1802 likely a constant. So be optimistic and just
1803 continue with the next argument. */
1804 if (arg
== PHI_RESULT (def
))
1807 new_val
= expr_expected_value (arg
, visited
);
1812 else if (!operand_equal_p (val
, new_val
, false))
1817 if (is_gimple_assign (def
))
1819 if (gimple_assign_lhs (def
) != op0
)
1822 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def
)),
1823 gimple_assign_rhs1 (def
),
1824 gimple_assign_rhs_code (def
),
1825 gimple_assign_rhs2 (def
),
1829 if (is_gimple_call (def
))
1831 tree decl
= gimple_call_fndecl (def
);
1834 if (DECL_BUILT_IN_CLASS (decl
) == BUILT_IN_NORMAL
)
1835 switch (DECL_FUNCTION_CODE (decl
))
1837 case BUILT_IN_EXPECT
:
1840 if (gimple_call_num_args (def
) != 2)
1842 val
= gimple_call_arg (def
, 0);
1843 if (TREE_CONSTANT (val
))
1845 return gimple_call_arg (def
, 1);
1848 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N
:
1849 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1
:
1850 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2
:
1851 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4
:
1852 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8
:
1853 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16
:
1854 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE
:
1855 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N
:
1856 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1
:
1857 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2
:
1858 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4
:
1859 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8
:
1860 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16
:
1861 /* Assume that any given atomic operation has low contention,
1862 and thus the compare-and-swap operation succeeds. */
1863 return boolean_true_node
;
1870 if (get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
)
1873 op0
= expr_expected_value (op0
, visited
);
1876 op1
= expr_expected_value (op1
, visited
);
1879 res
= fold_build2 (code
, type
, op0
, op1
);
1880 if (TREE_CONSTANT (res
))
1884 if (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
)
1887 op0
= expr_expected_value (op0
, visited
);
1890 res
= fold_build1 (code
, type
, op0
);
1891 if (TREE_CONSTANT (res
))
1898 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1899 The function is used by builtin_expect branch predictor so the evidence
1900 must come from this construct and additional possible constant folding.
1902 We may want to implement more involved value guess (such as value range
1903 propagation based prediction), but such tricks shall go to new
1907 expr_expected_value (tree expr
, bitmap visited
)
1909 enum tree_code code
;
1912 if (TREE_CONSTANT (expr
))
1915 extract_ops_from_tree (expr
, &code
, &op0
, &op1
);
1916 return expr_expected_value_1 (TREE_TYPE (expr
),
1917 op0
, code
, op1
, visited
);
1921 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1922 we no longer need. */
1924 strip_predict_hints (void)
1932 gimple_stmt_iterator bi
;
1933 for (bi
= gsi_start_bb (bb
); !gsi_end_p (bi
);)
1935 gimple stmt
= gsi_stmt (bi
);
1937 if (gimple_code (stmt
) == GIMPLE_PREDICT
)
1939 gsi_remove (&bi
, true);
1942 else if (gimple_code (stmt
) == GIMPLE_CALL
)
1944 tree fndecl
= gimple_call_fndecl (stmt
);
1947 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
1948 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_EXPECT
1949 && gimple_call_num_args (stmt
) == 2)
1951 var
= gimple_call_lhs (stmt
);
1955 = gimple_build_assign (var
, gimple_call_arg (stmt
, 0));
1956 gsi_replace (&bi
, ass_stmt
, true);
1960 gsi_remove (&bi
, true);
1971 /* Predict using opcode of the last statement in basic block. */
1973 tree_predict_by_opcode (basic_block bb
)
1975 gimple stmt
= last_stmt (bb
);
1984 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
1986 FOR_EACH_EDGE (then_edge
, ei
, bb
->succs
)
1987 if (then_edge
->flags
& EDGE_TRUE_VALUE
)
1989 op0
= gimple_cond_lhs (stmt
);
1990 op1
= gimple_cond_rhs (stmt
);
1991 cmp
= gimple_cond_code (stmt
);
1992 type
= TREE_TYPE (op0
);
1993 visited
= BITMAP_ALLOC (NULL
);
1994 val
= expr_expected_value_1 (boolean_type_node
, op0
, cmp
, op1
, visited
);
1995 BITMAP_FREE (visited
);
1998 if (integer_zerop (val
))
1999 predict_edge_def (then_edge
, PRED_BUILTIN_EXPECT
, NOT_TAKEN
);
2001 predict_edge_def (then_edge
, PRED_BUILTIN_EXPECT
, TAKEN
);
2004 /* Try "pointer heuristic."
2005 A comparison ptr == 0 is predicted as false.
2006 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2007 if (POINTER_TYPE_P (type
))
2010 predict_edge_def (then_edge
, PRED_TREE_POINTER
, NOT_TAKEN
);
2011 else if (cmp
== NE_EXPR
)
2012 predict_edge_def (then_edge
, PRED_TREE_POINTER
, TAKEN
);
2016 /* Try "opcode heuristic."
2017 EQ tests are usually false and NE tests are usually true. Also,
2018 most quantities are positive, so we can make the appropriate guesses
2019 about signed comparisons against zero. */
2024 /* Floating point comparisons appears to behave in a very
2025 unpredictable way because of special role of = tests in
2027 if (FLOAT_TYPE_P (type
))
2029 /* Comparisons with 0 are often used for booleans and there is
2030 nothing useful to predict about them. */
2031 else if (integer_zerop (op0
) || integer_zerop (op1
))
2034 predict_edge_def (then_edge
, PRED_TREE_OPCODE_NONEQUAL
, NOT_TAKEN
);
2039 /* Floating point comparisons appears to behave in a very
2040 unpredictable way because of special role of = tests in
2042 if (FLOAT_TYPE_P (type
))
2044 /* Comparisons with 0 are often used for booleans and there is
2045 nothing useful to predict about them. */
2046 else if (integer_zerop (op0
)
2047 || integer_zerop (op1
))
2050 predict_edge_def (then_edge
, PRED_TREE_OPCODE_NONEQUAL
, TAKEN
);
2054 predict_edge_def (then_edge
, PRED_TREE_FPOPCODE
, TAKEN
);
2057 case UNORDERED_EXPR
:
2058 predict_edge_def (then_edge
, PRED_TREE_FPOPCODE
, NOT_TAKEN
);
2063 if (integer_zerop (op1
)
2064 || integer_onep (op1
)
2065 || integer_all_onesp (op1
)
2068 || real_minus_onep (op1
))
2069 predict_edge_def (then_edge
, PRED_TREE_OPCODE_POSITIVE
, NOT_TAKEN
);
2074 if (integer_zerop (op1
)
2075 || integer_onep (op1
)
2076 || integer_all_onesp (op1
)
2079 || real_minus_onep (op1
))
2080 predict_edge_def (then_edge
, PRED_TREE_OPCODE_POSITIVE
, TAKEN
);
2088 /* Try to guess whether the value of return means error code. */
2090 static enum br_predictor
2091 return_prediction (tree val
, enum prediction
*prediction
)
2095 return PRED_NO_PREDICTION
;
2096 /* Different heuristics for pointers and scalars. */
2097 if (POINTER_TYPE_P (TREE_TYPE (val
)))
2099 /* NULL is usually not returned. */
2100 if (integer_zerop (val
))
2102 *prediction
= NOT_TAKEN
;
2103 return PRED_NULL_RETURN
;
2106 else if (INTEGRAL_TYPE_P (TREE_TYPE (val
)))
2108 /* Negative return values are often used to indicate
2110 if (TREE_CODE (val
) == INTEGER_CST
2111 && tree_int_cst_sgn (val
) < 0)
2113 *prediction
= NOT_TAKEN
;
2114 return PRED_NEGATIVE_RETURN
;
2116 /* Constant return values seems to be commonly taken.
2117 Zero/one often represent booleans so exclude them from the
2119 if (TREE_CONSTANT (val
)
2120 && (!integer_zerop (val
) && !integer_onep (val
)))
2122 *prediction
= TAKEN
;
2123 return PRED_CONST_RETURN
;
2126 return PRED_NO_PREDICTION
;
2129 /* Find the basic block with return expression and look up for possible
2130 return value trying to apply RETURN_PREDICTION heuristics. */
2132 apply_return_prediction (void)
2134 gimple return_stmt
= NULL
;
2138 int phi_num_args
, i
;
2139 enum br_predictor pred
;
2140 enum prediction direction
;
2143 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
2145 return_stmt
= last_stmt (e
->src
);
2147 && gimple_code (return_stmt
) == GIMPLE_RETURN
)
2152 return_val
= gimple_return_retval (return_stmt
);
2155 if (TREE_CODE (return_val
) != SSA_NAME
2156 || !SSA_NAME_DEF_STMT (return_val
)
2157 || gimple_code (SSA_NAME_DEF_STMT (return_val
)) != GIMPLE_PHI
)
2159 phi
= SSA_NAME_DEF_STMT (return_val
);
2160 phi_num_args
= gimple_phi_num_args (phi
);
2161 pred
= return_prediction (PHI_ARG_DEF (phi
, 0), &direction
);
2163 /* Avoid the degenerate case where all return values form the function
2164 belongs to same category (ie they are all positive constants)
2165 so we can hardly say something about them. */
2166 for (i
= 1; i
< phi_num_args
; i
++)
2167 if (pred
!= return_prediction (PHI_ARG_DEF (phi
, i
), &direction
))
2169 if (i
!= phi_num_args
)
2170 for (i
= 0; i
< phi_num_args
; i
++)
2172 pred
= return_prediction (PHI_ARG_DEF (phi
, i
), &direction
);
2173 if (pred
!= PRED_NO_PREDICTION
)
2174 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi
, i
), pred
,
2179 /* Look for basic block that contains unlikely to happen events
2180 (such as noreturn calls) and mark all paths leading to execution
2181 of this basic blocks as unlikely. */
2184 tree_bb_level_predictions (void)
2187 bool has_return_edges
= false;
2191 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
2192 if (!(e
->flags
& (EDGE_ABNORMAL
| EDGE_FAKE
| EDGE_EH
)))
2194 has_return_edges
= true;
2198 apply_return_prediction ();
2202 gimple_stmt_iterator gsi
;
2204 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2206 gimple stmt
= gsi_stmt (gsi
);
2209 if (is_gimple_call (stmt
))
2211 if ((gimple_call_flags (stmt
) & ECF_NORETURN
)
2212 && has_return_edges
)
2213 predict_paths_leading_to (bb
, PRED_NORETURN
,
2215 decl
= gimple_call_fndecl (stmt
);
2217 && lookup_attribute ("cold",
2218 DECL_ATTRIBUTES (decl
)))
2219 predict_paths_leading_to (bb
, PRED_COLD_FUNCTION
,
2222 else if (gimple_code (stmt
) == GIMPLE_PREDICT
)
2224 predict_paths_leading_to (bb
, gimple_predict_predictor (stmt
),
2225 gimple_predict_outcome (stmt
));
2226 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2227 hints to callers. */
2233 #ifdef ENABLE_CHECKING
2235 /* Callback for pointer_map_traverse, asserts that the pointer map is
2239 assert_is_empty (const void *key ATTRIBUTE_UNUSED
, void **value
,
2240 void *data ATTRIBUTE_UNUSED
)
2242 gcc_assert (!*value
);
2247 /* Predict branch probabilities and estimate profile for basic block BB. */
2250 tree_estimate_probability_bb (basic_block bb
)
2256 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2258 /* Predict edges to user labels with attributes. */
2259 if (e
->dest
!= EXIT_BLOCK_PTR
)
2261 gimple_stmt_iterator gi
;
2262 for (gi
= gsi_start_bb (e
->dest
); !gsi_end_p (gi
); gsi_next (&gi
))
2264 gimple stmt
= gsi_stmt (gi
);
2267 if (gimple_code (stmt
) != GIMPLE_LABEL
)
2269 decl
= gimple_label_label (stmt
);
2270 if (DECL_ARTIFICIAL (decl
))
2273 /* Finally, we have a user-defined label. */
2274 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl
)))
2275 predict_edge_def (e
, PRED_COLD_LABEL
, NOT_TAKEN
);
2276 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl
)))
2277 predict_edge_def (e
, PRED_HOT_LABEL
, TAKEN
);
2281 /* Predict early returns to be probable, as we've already taken
2282 care for error returns and other cases are often used for
2283 fast paths through function.
2285 Since we've already removed the return statements, we are
2286 looking for CFG like:
2296 if (e
->dest
!= bb
->next_bb
2297 && e
->dest
!= EXIT_BLOCK_PTR
2298 && single_succ_p (e
->dest
)
2299 && single_succ_edge (e
->dest
)->dest
== EXIT_BLOCK_PTR
2300 && (last
= last_stmt (e
->dest
)) != NULL
2301 && gimple_code (last
) == GIMPLE_RETURN
)
2306 if (single_succ_p (bb
))
2308 FOR_EACH_EDGE (e1
, ei1
, bb
->preds
)
2309 if (!predicted_by_p (e1
->src
, PRED_NULL_RETURN
)
2310 && !predicted_by_p (e1
->src
, PRED_CONST_RETURN
)
2311 && !predicted_by_p (e1
->src
, PRED_NEGATIVE_RETURN
))
2312 predict_edge_def (e1
, PRED_TREE_EARLY_RETURN
, NOT_TAKEN
);
2315 if (!predicted_by_p (e
->src
, PRED_NULL_RETURN
)
2316 && !predicted_by_p (e
->src
, PRED_CONST_RETURN
)
2317 && !predicted_by_p (e
->src
, PRED_NEGATIVE_RETURN
))
2318 predict_edge_def (e
, PRED_TREE_EARLY_RETURN
, NOT_TAKEN
);
2321 /* Look for block we are guarding (ie we dominate it,
2322 but it doesn't postdominate us). */
2323 if (e
->dest
!= EXIT_BLOCK_PTR
&& e
->dest
!= bb
2324 && dominated_by_p (CDI_DOMINATORS
, e
->dest
, e
->src
)
2325 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, e
->dest
))
2327 gimple_stmt_iterator bi
;
2329 /* The call heuristic claims that a guarded function call
2330 is improbable. This is because such calls are often used
2331 to signal exceptional situations such as printing error
2333 for (bi
= gsi_start_bb (e
->dest
); !gsi_end_p (bi
);
2336 gimple stmt
= gsi_stmt (bi
);
2337 if (is_gimple_call (stmt
)
2338 /* Constant and pure calls are hardly used to signalize
2339 something exceptional. */
2340 && gimple_has_side_effects (stmt
))
2342 predict_edge_def (e
, PRED_CALL
, NOT_TAKEN
);
2348 tree_predict_by_opcode (bb
);
2351 /* Predict branch probabilities and estimate profile of the tree CFG.
2352 This function can be called from the loop optimizers to recompute
2353 the profile information. */
2356 tree_estimate_probability (void)
2360 add_noreturn_fake_exit_edges ();
2361 connect_infinite_loops_to_exit ();
2362 /* We use loop_niter_by_eval, which requires that the loops have
2364 create_preheaders (CP_SIMPLE_PREHEADERS
);
2365 calculate_dominance_info (CDI_POST_DOMINATORS
);
2367 bb_predictions
= pointer_map_create ();
2368 tree_bb_level_predictions ();
2369 record_loop_exits ();
2371 if (number_of_loops (cfun
) > 1)
2375 tree_estimate_probability_bb (bb
);
2378 combine_predictions_for_bb (bb
);
2380 #ifdef ENABLE_CHECKING
2381 pointer_map_traverse (bb_predictions
, assert_is_empty
, NULL
);
2383 pointer_map_destroy (bb_predictions
);
2384 bb_predictions
= NULL
;
2386 estimate_bb_frequencies ();
2387 free_dominance_info (CDI_POST_DOMINATORS
);
2388 remove_fake_exit_edges ();
2391 /* Predict branch probabilities and estimate profile of the tree CFG.
2392 This is the driver function for PASS_PROFILE. */
2395 tree_estimate_probability_driver (void)
2399 loop_optimizer_init (LOOPS_NORMAL
);
2400 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2401 flow_loops_dump (dump_file
, NULL
, 0);
2403 mark_irreducible_loops ();
2405 nb_loops
= number_of_loops (cfun
);
2409 tree_estimate_probability ();
2414 loop_optimizer_finalize ();
2415 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2416 gimple_dump_cfg (dump_file
, dump_flags
);
2417 if (profile_status
== PROFILE_ABSENT
)
2418 profile_status
= PROFILE_GUESSED
;
2422 /* Predict edges to successors of CUR whose sources are not postdominated by
2423 BB by PRED and recurse to all postdominators. */
2426 predict_paths_for_bb (basic_block cur
, basic_block bb
,
2427 enum br_predictor pred
,
2428 enum prediction taken
,
2435 /* We are looking for all edges forming edge cut induced by
2436 set of all blocks postdominated by BB. */
2437 FOR_EACH_EDGE (e
, ei
, cur
->preds
)
2438 if (e
->src
->index
>= NUM_FIXED_BLOCKS
2439 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, bb
))
2445 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2446 if (e
->flags
& (EDGE_EH
| EDGE_FAKE
))
2448 gcc_assert (bb
== cur
|| dominated_by_p (CDI_POST_DOMINATORS
, cur
, bb
));
2450 /* See if there is an edge from e->src that is not abnormal
2451 and does not lead to BB. */
2452 FOR_EACH_EDGE (e2
, ei2
, e
->src
->succs
)
2454 && !(e2
->flags
& (EDGE_EH
| EDGE_FAKE
))
2455 && !dominated_by_p (CDI_POST_DOMINATORS
, e2
->dest
, bb
))
2461 /* If there is non-abnormal path leaving e->src, predict edge
2462 using predictor. Otherwise we need to look for paths
2465 The second may lead to infinite loop in the case we are predicitng
2466 regions that are only reachable by abnormal edges. We simply
2467 prevent visiting given BB twice. */
2469 predict_edge_def (e
, pred
, taken
);
2470 else if (bitmap_set_bit (visited
, e
->src
->index
))
2471 predict_paths_for_bb (e
->src
, e
->src
, pred
, taken
, visited
);
2473 for (son
= first_dom_son (CDI_POST_DOMINATORS
, cur
);
2475 son
= next_dom_son (CDI_POST_DOMINATORS
, son
))
2476 predict_paths_for_bb (son
, bb
, pred
, taken
, visited
);
2479 /* Sets branch probabilities according to PREDiction and
2483 predict_paths_leading_to (basic_block bb
, enum br_predictor pred
,
2484 enum prediction taken
)
2486 bitmap visited
= BITMAP_ALLOC (NULL
);
2487 predict_paths_for_bb (bb
, bb
, pred
, taken
, visited
);
2488 BITMAP_FREE (visited
);
2491 /* Like predict_paths_leading_to but take edge instead of basic block. */
2494 predict_paths_leading_to_edge (edge e
, enum br_predictor pred
,
2495 enum prediction taken
)
2497 bool has_nonloop_edge
= false;
2501 basic_block bb
= e
->src
;
2502 FOR_EACH_EDGE (e2
, ei
, bb
->succs
)
2503 if (e2
->dest
!= e
->src
&& e2
->dest
!= e
->dest
2504 && !(e
->flags
& (EDGE_EH
| EDGE_FAKE
))
2505 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, e2
->dest
))
2507 has_nonloop_edge
= true;
2510 if (!has_nonloop_edge
)
2512 bitmap visited
= BITMAP_ALLOC (NULL
);
2513 predict_paths_for_bb (bb
, bb
, pred
, taken
, visited
);
2514 BITMAP_FREE (visited
);
2517 predict_edge_def (e
, pred
, taken
);
2520 /* This is used to carry information about basic blocks. It is
2521 attached to the AUX field of the standard CFG block. */
2523 typedef struct block_info_def
2525 /* Estimated frequency of execution of basic_block. */
2528 /* To keep queue of basic blocks to process. */
2531 /* Number of predecessors we need to visit first. */
2535 /* Similar information for edges. */
2536 typedef struct edge_info_def
2538 /* In case edge is a loopback edge, the probability edge will be reached
2539 in case header is. Estimated number of iterations of the loop can be
2540 then computed as 1 / (1 - back_edge_prob). */
2541 sreal back_edge_prob
;
2542 /* True if the edge is a loopback edge in the natural loop. */
2543 unsigned int back_edge
:1;
2546 #define BLOCK_INFO(B) ((block_info) (B)->aux)
2547 #define EDGE_INFO(E) ((edge_info) (E)->aux)
2549 /* Helper function for estimate_bb_frequencies.
2550 Propagate the frequencies in blocks marked in
2551 TOVISIT, starting in HEAD. */
2554 propagate_freq (basic_block head
, bitmap tovisit
)
2563 /* For each basic block we need to visit count number of his predecessors
2564 we need to visit first. */
2565 EXECUTE_IF_SET_IN_BITMAP (tovisit
, 0, i
, bi
)
2570 bb
= BASIC_BLOCK (i
);
2572 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2574 bool visit
= bitmap_bit_p (tovisit
, e
->src
->index
);
2576 if (visit
&& !(e
->flags
& EDGE_DFS_BACK
))
2578 else if (visit
&& dump_file
&& !EDGE_INFO (e
)->back_edge
)
2580 "Irreducible region hit, ignoring edge to %i->%i\n",
2581 e
->src
->index
, bb
->index
);
2583 BLOCK_INFO (bb
)->npredecessors
= count
;
2584 /* When function never returns, we will never process exit block. */
2585 if (!count
&& bb
== EXIT_BLOCK_PTR
)
2586 bb
->count
= bb
->frequency
= 0;
2589 memcpy (&BLOCK_INFO (head
)->frequency
, &real_one
, sizeof (real_one
));
2591 for (bb
= head
; bb
; bb
= nextbb
)
2594 sreal cyclic_probability
, frequency
;
2596 memcpy (&cyclic_probability
, &real_zero
, sizeof (real_zero
));
2597 memcpy (&frequency
, &real_zero
, sizeof (real_zero
));
2599 nextbb
= BLOCK_INFO (bb
)->next
;
2600 BLOCK_INFO (bb
)->next
= NULL
;
2602 /* Compute frequency of basic block. */
2605 #ifdef ENABLE_CHECKING
2606 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2607 gcc_assert (!bitmap_bit_p (tovisit
, e
->src
->index
)
2608 || (e
->flags
& EDGE_DFS_BACK
));
2611 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2612 if (EDGE_INFO (e
)->back_edge
)
2614 sreal_add (&cyclic_probability
, &cyclic_probability
,
2615 &EDGE_INFO (e
)->back_edge_prob
);
2617 else if (!(e
->flags
& EDGE_DFS_BACK
))
2621 /* frequency += (e->probability
2622 * BLOCK_INFO (e->src)->frequency /
2623 REG_BR_PROB_BASE); */
2625 sreal_init (&tmp
, e
->probability
, 0);
2626 sreal_mul (&tmp
, &tmp
, &BLOCK_INFO (e
->src
)->frequency
);
2627 sreal_mul (&tmp
, &tmp
, &real_inv_br_prob_base
);
2628 sreal_add (&frequency
, &frequency
, &tmp
);
2631 if (sreal_compare (&cyclic_probability
, &real_zero
) == 0)
2633 memcpy (&BLOCK_INFO (bb
)->frequency
, &frequency
,
2634 sizeof (frequency
));
2638 if (sreal_compare (&cyclic_probability
, &real_almost_one
) > 0)
2640 memcpy (&cyclic_probability
, &real_almost_one
,
2641 sizeof (real_almost_one
));
2644 /* BLOCK_INFO (bb)->frequency = frequency
2645 / (1 - cyclic_probability) */
2647 sreal_sub (&cyclic_probability
, &real_one
, &cyclic_probability
);
2648 sreal_div (&BLOCK_INFO (bb
)->frequency
,
2649 &frequency
, &cyclic_probability
);
2653 bitmap_clear_bit (tovisit
, bb
->index
);
2655 e
= find_edge (bb
, head
);
2660 /* EDGE_INFO (e)->back_edge_prob
2661 = ((e->probability * BLOCK_INFO (bb)->frequency)
2662 / REG_BR_PROB_BASE); */
2664 sreal_init (&tmp
, e
->probability
, 0);
2665 sreal_mul (&tmp
, &tmp
, &BLOCK_INFO (bb
)->frequency
);
2666 sreal_mul (&EDGE_INFO (e
)->back_edge_prob
,
2667 &tmp
, &real_inv_br_prob_base
);
2670 /* Propagate to successor blocks. */
2671 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2672 if (!(e
->flags
& EDGE_DFS_BACK
)
2673 && BLOCK_INFO (e
->dest
)->npredecessors
)
2675 BLOCK_INFO (e
->dest
)->npredecessors
--;
2676 if (!BLOCK_INFO (e
->dest
)->npredecessors
)
2681 BLOCK_INFO (last
)->next
= e
->dest
;
2689 /* Estimate probabilities of loopback edges in loops at same nest level. */
2692 estimate_loops_at_level (struct loop
*first_loop
)
2696 for (loop
= first_loop
; loop
; loop
= loop
->next
)
2701 bitmap tovisit
= BITMAP_ALLOC (NULL
);
2703 estimate_loops_at_level (loop
->inner
);
2705 /* Find current loop back edge and mark it. */
2706 e
= loop_latch_edge (loop
);
2707 EDGE_INFO (e
)->back_edge
= 1;
2709 bbs
= get_loop_body (loop
);
2710 for (i
= 0; i
< loop
->num_nodes
; i
++)
2711 bitmap_set_bit (tovisit
, bbs
[i
]->index
);
2713 propagate_freq (loop
->header
, tovisit
);
2714 BITMAP_FREE (tovisit
);
2718 /* Propagates frequencies through structure of loops. */
2721 estimate_loops (void)
2723 bitmap tovisit
= BITMAP_ALLOC (NULL
);
2726 /* Start by estimating the frequencies in the loops. */
2727 if (number_of_loops (cfun
) > 1)
2728 estimate_loops_at_level (current_loops
->tree_root
->inner
);
2730 /* Now propagate the frequencies through all the blocks. */
2733 bitmap_set_bit (tovisit
, bb
->index
);
2735 propagate_freq (ENTRY_BLOCK_PTR
, tovisit
);
2736 BITMAP_FREE (tovisit
);
2739 /* Convert counts measured by profile driven feedback to frequencies.
2740 Return nonzero iff there was any nonzero execution count. */
2743 counts_to_freqs (void)
2745 gcov_type count_max
, true_count_max
= 0;
2748 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
2749 true_count_max
= MAX (bb
->count
, true_count_max
);
2751 count_max
= MAX (true_count_max
, 1);
2752 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
2753 bb
->frequency
= (bb
->count
* BB_FREQ_MAX
+ count_max
/ 2) / count_max
;
2755 return true_count_max
;
2758 /* Return true if function is likely to be expensive, so there is no point to
2759 optimize performance of prologue, epilogue or do inlining at the expense
2760 of code size growth. THRESHOLD is the limit of number of instructions
2761 function can execute at average to be still considered not expensive. */
2764 expensive_function_p (int threshold
)
2766 unsigned int sum
= 0;
2770 /* We can not compute accurately for large thresholds due to scaled
2772 gcc_assert (threshold
<= BB_FREQ_MAX
);
2774 /* Frequencies are out of range. This either means that function contains
2775 internal loop executing more than BB_FREQ_MAX times or profile feedback
2776 is available and function has not been executed at all. */
2777 if (ENTRY_BLOCK_PTR
->frequency
== 0)
2780 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2781 limit
= ENTRY_BLOCK_PTR
->frequency
* threshold
;
2786 FOR_BB_INSNS (bb
, insn
)
2787 if (active_insn_p (insn
))
2789 sum
+= bb
->frequency
;
2798 /* Estimate basic blocks frequency by given branch probabilities. */
2801 estimate_bb_frequencies (void)
2806 if (profile_status
!= PROFILE_READ
|| !counts_to_freqs ())
2808 static int real_values_initialized
= 0;
2810 if (!real_values_initialized
)
2812 real_values_initialized
= 1;
2813 sreal_init (&real_zero
, 0, 0);
2814 sreal_init (&real_one
, 1, 0);
2815 sreal_init (&real_br_prob_base
, REG_BR_PROB_BASE
, 0);
2816 sreal_init (&real_bb_freq_max
, BB_FREQ_MAX
, 0);
2817 sreal_init (&real_one_half
, 1, -1);
2818 sreal_div (&real_inv_br_prob_base
, &real_one
, &real_br_prob_base
);
2819 sreal_sub (&real_almost_one
, &real_one
, &real_inv_br_prob_base
);
2822 mark_dfs_back_edges ();
2824 single_succ_edge (ENTRY_BLOCK_PTR
)->probability
= REG_BR_PROB_BASE
;
2826 /* Set up block info for each basic block. */
2827 alloc_aux_for_blocks (sizeof (struct block_info_def
));
2828 alloc_aux_for_edges (sizeof (struct edge_info_def
));
2829 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
2834 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2836 sreal_init (&EDGE_INFO (e
)->back_edge_prob
, e
->probability
, 0);
2837 sreal_mul (&EDGE_INFO (e
)->back_edge_prob
,
2838 &EDGE_INFO (e
)->back_edge_prob
,
2839 &real_inv_br_prob_base
);
2843 /* First compute probabilities locally for each loop from innermost
2844 to outermost to examine probabilities for back edges. */
2847 memcpy (&freq_max
, &real_zero
, sizeof (real_zero
));
2849 if (sreal_compare (&freq_max
, &BLOCK_INFO (bb
)->frequency
) < 0)
2850 memcpy (&freq_max
, &BLOCK_INFO (bb
)->frequency
, sizeof (freq_max
));
2852 sreal_div (&freq_max
, &real_bb_freq_max
, &freq_max
);
2853 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
2857 sreal_mul (&tmp
, &BLOCK_INFO (bb
)->frequency
, &freq_max
);
2858 sreal_add (&tmp
, &tmp
, &real_one_half
);
2859 bb
->frequency
= sreal_to_int (&tmp
);
2862 free_aux_for_blocks ();
2863 free_aux_for_edges ();
2865 compute_function_frequency ();
2868 /* Decide whether function is hot, cold or unlikely executed. */
2870 compute_function_frequency (void)
2873 struct cgraph_node
*node
= cgraph_get_node (current_function_decl
);
2875 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
2876 || MAIN_NAME_P (DECL_NAME (current_function_decl
)))
2877 node
->only_called_at_startup
= true;
2878 if (DECL_STATIC_DESTRUCTOR (current_function_decl
))
2879 node
->only_called_at_exit
= true;
2881 if (profile_status
!= PROFILE_READ
)
2883 int flags
= flags_from_decl_or_type (current_function_decl
);
2884 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl
))
2886 node
->frequency
= NODE_FREQUENCY_UNLIKELY_EXECUTED
;
2887 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl
))
2889 node
->frequency
= NODE_FREQUENCY_HOT
;
2890 else if (flags
& ECF_NORETURN
)
2891 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
2892 else if (MAIN_NAME_P (DECL_NAME (current_function_decl
)))
2893 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
2894 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
2895 || DECL_STATIC_DESTRUCTOR (current_function_decl
))
2896 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
2900 /* Only first time try to drop function into unlikely executed.
2901 After inlining the roundoff errors may confuse us.
2902 Ipa-profile pass will drop functions only called from unlikely
2903 functions to unlikely and that is most of what we care about. */
2904 if (!cfun
->after_inlining
)
2905 node
->frequency
= NODE_FREQUENCY_UNLIKELY_EXECUTED
;
2908 if (maybe_hot_bb_p (cfun
, bb
))
2910 node
->frequency
= NODE_FREQUENCY_HOT
;
2913 if (!probably_never_executed_bb_p (cfun
, bb
))
2914 node
->frequency
= NODE_FREQUENCY_NORMAL
;
2919 gate_estimate_probability (void)
2921 return flag_guess_branch_prob
;
2924 /* Build PREDICT_EXPR. */
2926 build_predict_expr (enum br_predictor predictor
, enum prediction taken
)
2928 tree t
= build1 (PREDICT_EXPR
, void_type_node
,
2929 build_int_cst (integer_type_node
, predictor
));
2930 SET_PREDICT_EXPR_OUTCOME (t
, taken
);
2935 predictor_name (enum br_predictor predictor
)
2937 return predictor_info
[predictor
].name
;
2942 const pass_data pass_data_profile
=
2944 GIMPLE_PASS
, /* type */
2945 "profile_estimate", /* name */
2946 OPTGROUP_NONE
, /* optinfo_flags */
2947 true, /* has_gate */
2948 true, /* has_execute */
2949 TV_BRANCH_PROB
, /* tv_id */
2950 PROP_cfg
, /* properties_required */
2951 0, /* properties_provided */
2952 0, /* properties_destroyed */
2953 0, /* todo_flags_start */
2954 TODO_verify_ssa
, /* todo_flags_finish */
2957 class pass_profile
: public gimple_opt_pass
2960 pass_profile(gcc::context
*ctxt
)
2961 : gimple_opt_pass(pass_data_profile
, ctxt
)
2964 /* opt_pass methods: */
2965 bool gate () { return gate_estimate_probability (); }
2966 unsigned int execute () { return tree_estimate_probability_driver (); }
2968 }; // class pass_profile
2973 make_pass_profile (gcc::context
*ctxt
)
2975 return new pass_profile (ctxt
);
2980 const pass_data pass_data_strip_predict_hints
=
2982 GIMPLE_PASS
, /* type */
2983 "*strip_predict_hints", /* name */
2984 OPTGROUP_NONE
, /* optinfo_flags */
2985 false, /* has_gate */
2986 true, /* has_execute */
2987 TV_BRANCH_PROB
, /* tv_id */
2988 PROP_cfg
, /* properties_required */
2989 0, /* properties_provided */
2990 0, /* properties_destroyed */
2991 0, /* todo_flags_start */
2992 TODO_verify_ssa
, /* todo_flags_finish */
2995 class pass_strip_predict_hints
: public gimple_opt_pass
2998 pass_strip_predict_hints(gcc::context
*ctxt
)
2999 : gimple_opt_pass(pass_data_strip_predict_hints
, ctxt
)
3002 /* opt_pass methods: */
3003 opt_pass
* clone () { return new pass_strip_predict_hints (ctxt_
); }
3004 unsigned int execute () { return strip_predict_hints (); }
3006 }; // class pass_strip_predict_hints
3011 make_pass_strip_predict_hints (gcc::context
*ctxt
)
3013 return new pass_strip_predict_hints (ctxt
);
3016 /* Rebuild function frequencies. Passes are in general expected to
3017 maintain profile by hand, however in some cases this is not possible:
3018 for example when inlining several functions with loops freuqencies might run
3019 out of scale and thus needs to be recomputed. */
3022 rebuild_frequencies (void)
3024 timevar_push (TV_REBUILD_FREQUENCIES
);
3025 if (profile_status
== PROFILE_GUESSED
)
3027 loop_optimizer_init (0);
3028 add_noreturn_fake_exit_edges ();
3029 mark_irreducible_loops ();
3030 connect_infinite_loops_to_exit ();
3031 estimate_bb_frequencies ();
3032 remove_fake_exit_edges ();
3033 loop_optimizer_finalize ();
3035 else if (profile_status
== PROFILE_READ
)
3039 timevar_pop (TV_REBUILD_FREQUENCIES
);