simplify-rtx.c (simplify_rtx): Use simplify_subreg rather than simplify_gen_subreg.
[official-gcc.git] / gcc / final.c
blobac81cdcfe6dd83a80ca8d90c6b11ee824c0cdeda
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71 #include "target.h"
72 #include "debug.h"
73 #include "expr.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
76 #include "timevar.h"
77 #include "cgraph.h"
78 #include "coverage.h"
80 #ifdef XCOFF_DEBUGGING_INFO
81 #include "xcoffout.h" /* Needed for external data
82 declarations for e.g. AIX 4.x. */
83 #endif
85 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
86 #include "dwarf2out.h"
87 #endif
89 #ifdef DBX_DEBUGGING_INFO
90 #include "dbxout.h"
91 #endif
93 #ifdef SDB_DEBUGGING_INFO
94 #include "sdbout.h"
95 #endif
97 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
98 null default for it to save conditionalization later. */
99 #ifndef CC_STATUS_INIT
100 #define CC_STATUS_INIT
101 #endif
103 /* How to start an assembler comment. */
104 #ifndef ASM_COMMENT_START
105 #define ASM_COMMENT_START ";#"
106 #endif
108 /* Is the given character a logical line separator for the assembler? */
109 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
110 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
111 #endif
113 #ifndef JUMP_TABLES_IN_TEXT_SECTION
114 #define JUMP_TABLES_IN_TEXT_SECTION 0
115 #endif
117 /* Bitflags used by final_scan_insn. */
118 #define SEEN_BB 1
119 #define SEEN_NOTE 2
120 #define SEEN_EMITTED 4
122 /* Last insn processed by final_scan_insn. */
123 static rtx debug_insn;
124 rtx current_output_insn;
126 /* Line number of last NOTE. */
127 static int last_linenum;
129 /* Highest line number in current block. */
130 static int high_block_linenum;
132 /* Likewise for function. */
133 static int high_function_linenum;
135 /* Filename of last NOTE. */
136 static const char *last_filename;
138 /* Whether to force emission of a line note before the next insn. */
139 static bool force_source_line = false;
141 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
143 /* Nonzero while outputting an `asm' with operands.
144 This means that inconsistencies are the user's fault, so don't die.
145 The precise value is the insn being output, to pass to error_for_asm. */
146 rtx this_is_asm_operands;
148 /* Number of operands of this insn, for an `asm' with operands. */
149 static unsigned int insn_noperands;
151 /* Compare optimization flag. */
153 static rtx last_ignored_compare = 0;
155 /* Assign a unique number to each insn that is output.
156 This can be used to generate unique local labels. */
158 static int insn_counter = 0;
160 #ifdef HAVE_cc0
161 /* This variable contains machine-dependent flags (defined in tm.h)
162 set and examined by output routines
163 that describe how to interpret the condition codes properly. */
165 CC_STATUS cc_status;
167 /* During output of an insn, this contains a copy of cc_status
168 from before the insn. */
170 CC_STATUS cc_prev_status;
171 #endif
173 /* Indexed by hardware reg number, is 1 if that register is ever
174 used in the current function.
176 In life_analysis, or in stupid_life_analysis, this is set
177 up to record the hard regs used explicitly. Reload adds
178 in the hard regs used for holding pseudo regs. Final uses
179 it to generate the code in the function prologue and epilogue
180 to save and restore registers as needed. */
182 char regs_ever_live[FIRST_PSEUDO_REGISTER];
184 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
185 Unlike regs_ever_live, elements of this array corresponding to
186 eliminable regs like the frame pointer are set if an asm sets them. */
188 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
190 /* Nonzero means current function must be given a frame pointer.
191 Initialized in function.c to 0. Set only in reload1.c as per
192 the needs of the function. */
194 int frame_pointer_needed;
196 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
198 static int block_depth;
200 /* Nonzero if have enabled APP processing of our assembler output. */
202 static int app_on;
204 /* If we are outputting an insn sequence, this contains the sequence rtx.
205 Zero otherwise. */
207 rtx final_sequence;
209 #ifdef ASSEMBLER_DIALECT
211 /* Number of the assembler dialect to use, starting at 0. */
212 static int dialect_number;
213 #endif
215 #ifdef HAVE_conditional_execution
216 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
217 rtx current_insn_predicate;
218 #endif
220 #ifdef HAVE_ATTR_length
221 static int asm_insn_count (rtx);
222 #endif
223 static void profile_function (FILE *);
224 static void profile_after_prologue (FILE *);
225 static bool notice_source_line (rtx);
226 static rtx walk_alter_subreg (rtx *);
227 static void output_asm_name (void);
228 static void output_alternate_entry_point (FILE *, rtx);
229 static tree get_mem_expr_from_op (rtx, int *);
230 static void output_asm_operand_names (rtx *, int *, int);
231 static void output_operand (rtx, int);
232 #ifdef LEAF_REGISTERS
233 static void leaf_renumber_regs (rtx);
234 #endif
235 #ifdef HAVE_cc0
236 static int alter_cond (rtx);
237 #endif
238 #ifndef ADDR_VEC_ALIGN
239 static int final_addr_vec_align (rtx);
240 #endif
241 #ifdef HAVE_ATTR_length
242 static int align_fuzz (rtx, rtx, int, unsigned);
243 #endif
245 /* Initialize data in final at the beginning of a compilation. */
247 void
248 init_final (const char *filename ATTRIBUTE_UNUSED)
250 app_on = 0;
251 final_sequence = 0;
253 #ifdef ASSEMBLER_DIALECT
254 dialect_number = ASSEMBLER_DIALECT;
255 #endif
258 /* Default target function prologue and epilogue assembler output.
260 If not overridden for epilogue code, then the function body itself
261 contains return instructions wherever needed. */
262 void
263 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
264 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
268 /* Default target hook that outputs nothing to a stream. */
269 void
270 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
274 /* Enable APP processing of subsequent output.
275 Used before the output from an `asm' statement. */
277 void
278 app_enable (void)
280 if (! app_on)
282 fputs (ASM_APP_ON, asm_out_file);
283 app_on = 1;
287 /* Disable APP processing of subsequent output.
288 Called from varasm.c before most kinds of output. */
290 void
291 app_disable (void)
293 if (app_on)
295 fputs (ASM_APP_OFF, asm_out_file);
296 app_on = 0;
300 /* Return the number of slots filled in the current
301 delayed branch sequence (we don't count the insn needing the
302 delay slot). Zero if not in a delayed branch sequence. */
304 #ifdef DELAY_SLOTS
306 dbr_sequence_length (void)
308 if (final_sequence != 0)
309 return XVECLEN (final_sequence, 0) - 1;
310 else
311 return 0;
313 #endif
315 /* The next two pages contain routines used to compute the length of an insn
316 and to shorten branches. */
318 /* Arrays for insn lengths, and addresses. The latter is referenced by
319 `insn_current_length'. */
321 static int *insn_lengths;
323 varray_type insn_addresses_;
325 /* Max uid for which the above arrays are valid. */
326 static int insn_lengths_max_uid;
328 /* Address of insn being processed. Used by `insn_current_length'. */
329 int insn_current_address;
331 /* Address of insn being processed in previous iteration. */
332 int insn_last_address;
334 /* known invariant alignment of insn being processed. */
335 int insn_current_align;
337 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
338 gives the next following alignment insn that increases the known
339 alignment, or NULL_RTX if there is no such insn.
340 For any alignment obtained this way, we can again index uid_align with
341 its uid to obtain the next following align that in turn increases the
342 alignment, till we reach NULL_RTX; the sequence obtained this way
343 for each insn we'll call the alignment chain of this insn in the following
344 comments. */
346 struct label_alignment
348 short alignment;
349 short max_skip;
352 static rtx *uid_align;
353 static int *uid_shuid;
354 static struct label_alignment *label_align;
356 /* Indicate that branch shortening hasn't yet been done. */
358 void
359 init_insn_lengths (void)
361 if (uid_shuid)
363 free (uid_shuid);
364 uid_shuid = 0;
366 if (insn_lengths)
368 free (insn_lengths);
369 insn_lengths = 0;
370 insn_lengths_max_uid = 0;
372 #ifdef HAVE_ATTR_length
373 INSN_ADDRESSES_FREE ();
374 #endif
375 if (uid_align)
377 free (uid_align);
378 uid_align = 0;
382 /* Obtain the current length of an insn. If branch shortening has been done,
383 get its actual length. Otherwise, use FALLBACK_FN to calculate the
384 length. */
385 static inline int
386 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
387 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
389 #ifdef HAVE_ATTR_length
390 rtx body;
391 int i;
392 int length = 0;
394 if (insn_lengths_max_uid > INSN_UID (insn))
395 return insn_lengths[INSN_UID (insn)];
396 else
397 switch (GET_CODE (insn))
399 case NOTE:
400 case BARRIER:
401 case CODE_LABEL:
402 return 0;
404 case CALL_INSN:
405 length = fallback_fn (insn);
406 break;
408 case JUMP_INSN:
409 body = PATTERN (insn);
410 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
412 /* Alignment is machine-dependent and should be handled by
413 ADDR_VEC_ALIGN. */
415 else
416 length = fallback_fn (insn);
417 break;
419 case INSN:
420 body = PATTERN (insn);
421 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
422 return 0;
424 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
425 length = asm_insn_count (body) * fallback_fn (insn);
426 else if (GET_CODE (body) == SEQUENCE)
427 for (i = 0; i < XVECLEN (body, 0); i++)
428 length += get_attr_length (XVECEXP (body, 0, i));
429 else
430 length = fallback_fn (insn);
431 break;
433 default:
434 break;
437 #ifdef ADJUST_INSN_LENGTH
438 ADJUST_INSN_LENGTH (insn, length);
439 #endif
440 return length;
441 #else /* not HAVE_ATTR_length */
442 return 0;
443 #define insn_default_length 0
444 #define insn_min_length 0
445 #endif /* not HAVE_ATTR_length */
448 /* Obtain the current length of an insn. If branch shortening has been done,
449 get its actual length. Otherwise, get its maximum length. */
451 get_attr_length (rtx insn)
453 return get_attr_length_1 (insn, insn_default_length);
456 /* Obtain the current length of an insn. If branch shortening has been done,
457 get its actual length. Otherwise, get its minimum length. */
459 get_attr_min_length (rtx insn)
461 return get_attr_length_1 (insn, insn_min_length);
464 /* Code to handle alignment inside shorten_branches. */
466 /* Here is an explanation how the algorithm in align_fuzz can give
467 proper results:
469 Call a sequence of instructions beginning with alignment point X
470 and continuing until the next alignment point `block X'. When `X'
471 is used in an expression, it means the alignment value of the
472 alignment point.
474 Call the distance between the start of the first insn of block X, and
475 the end of the last insn of block X `IX', for the `inner size of X'.
476 This is clearly the sum of the instruction lengths.
478 Likewise with the next alignment-delimited block following X, which we
479 shall call block Y.
481 Call the distance between the start of the first insn of block X, and
482 the start of the first insn of block Y `OX', for the `outer size of X'.
484 The estimated padding is then OX - IX.
486 OX can be safely estimated as
488 if (X >= Y)
489 OX = round_up(IX, Y)
490 else
491 OX = round_up(IX, X) + Y - X
493 Clearly est(IX) >= real(IX), because that only depends on the
494 instruction lengths, and those being overestimated is a given.
496 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
497 we needn't worry about that when thinking about OX.
499 When X >= Y, the alignment provided by Y adds no uncertainty factor
500 for branch ranges starting before X, so we can just round what we have.
501 But when X < Y, we don't know anything about the, so to speak,
502 `middle bits', so we have to assume the worst when aligning up from an
503 address mod X to one mod Y, which is Y - X. */
505 #ifndef LABEL_ALIGN
506 #define LABEL_ALIGN(LABEL) align_labels_log
507 #endif
509 #ifndef LABEL_ALIGN_MAX_SKIP
510 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
511 #endif
513 #ifndef LOOP_ALIGN
514 #define LOOP_ALIGN(LABEL) align_loops_log
515 #endif
517 #ifndef LOOP_ALIGN_MAX_SKIP
518 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
519 #endif
521 #ifndef LABEL_ALIGN_AFTER_BARRIER
522 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
523 #endif
525 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
526 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
527 #endif
529 #ifndef JUMP_ALIGN
530 #define JUMP_ALIGN(LABEL) align_jumps_log
531 #endif
533 #ifndef JUMP_ALIGN_MAX_SKIP
534 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
535 #endif
537 #ifndef ADDR_VEC_ALIGN
538 static int
539 final_addr_vec_align (rtx addr_vec)
541 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
543 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
544 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
545 return exact_log2 (align);
549 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
550 #endif
552 #ifndef INSN_LENGTH_ALIGNMENT
553 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
554 #endif
556 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
558 static int min_labelno, max_labelno;
560 #define LABEL_TO_ALIGNMENT(LABEL) \
561 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
563 #define LABEL_TO_MAX_SKIP(LABEL) \
564 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
566 /* For the benefit of port specific code do this also as a function. */
569 label_to_alignment (rtx label)
571 return LABEL_TO_ALIGNMENT (label);
574 #ifdef HAVE_ATTR_length
575 /* The differences in addresses
576 between a branch and its target might grow or shrink depending on
577 the alignment the start insn of the range (the branch for a forward
578 branch or the label for a backward branch) starts out on; if these
579 differences are used naively, they can even oscillate infinitely.
580 We therefore want to compute a 'worst case' address difference that
581 is independent of the alignment the start insn of the range end
582 up on, and that is at least as large as the actual difference.
583 The function align_fuzz calculates the amount we have to add to the
584 naively computed difference, by traversing the part of the alignment
585 chain of the start insn of the range that is in front of the end insn
586 of the range, and considering for each alignment the maximum amount
587 that it might contribute to a size increase.
589 For casesi tables, we also want to know worst case minimum amounts of
590 address difference, in case a machine description wants to introduce
591 some common offset that is added to all offsets in a table.
592 For this purpose, align_fuzz with a growth argument of 0 computes the
593 appropriate adjustment. */
595 /* Compute the maximum delta by which the difference of the addresses of
596 START and END might grow / shrink due to a different address for start
597 which changes the size of alignment insns between START and END.
598 KNOWN_ALIGN_LOG is the alignment known for START.
599 GROWTH should be ~0 if the objective is to compute potential code size
600 increase, and 0 if the objective is to compute potential shrink.
601 The return value is undefined for any other value of GROWTH. */
603 static int
604 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
606 int uid = INSN_UID (start);
607 rtx align_label;
608 int known_align = 1 << known_align_log;
609 int end_shuid = INSN_SHUID (end);
610 int fuzz = 0;
612 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
614 int align_addr, new_align;
616 uid = INSN_UID (align_label);
617 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
618 if (uid_shuid[uid] > end_shuid)
619 break;
620 known_align_log = LABEL_TO_ALIGNMENT (align_label);
621 new_align = 1 << known_align_log;
622 if (new_align < known_align)
623 continue;
624 fuzz += (-align_addr ^ growth) & (new_align - known_align);
625 known_align = new_align;
627 return fuzz;
630 /* Compute a worst-case reference address of a branch so that it
631 can be safely used in the presence of aligned labels. Since the
632 size of the branch itself is unknown, the size of the branch is
633 not included in the range. I.e. for a forward branch, the reference
634 address is the end address of the branch as known from the previous
635 branch shortening pass, minus a value to account for possible size
636 increase due to alignment. For a backward branch, it is the start
637 address of the branch as known from the current pass, plus a value
638 to account for possible size increase due to alignment.
639 NB.: Therefore, the maximum offset allowed for backward branches needs
640 to exclude the branch size. */
643 insn_current_reference_address (rtx branch)
645 rtx dest, seq;
646 int seq_uid;
648 if (! INSN_ADDRESSES_SET_P ())
649 return 0;
651 seq = NEXT_INSN (PREV_INSN (branch));
652 seq_uid = INSN_UID (seq);
653 if (!JUMP_P (branch))
654 /* This can happen for example on the PA; the objective is to know the
655 offset to address something in front of the start of the function.
656 Thus, we can treat it like a backward branch.
657 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
658 any alignment we'd encounter, so we skip the call to align_fuzz. */
659 return insn_current_address;
660 dest = JUMP_LABEL (branch);
662 /* BRANCH has no proper alignment chain set, so use SEQ.
663 BRANCH also has no INSN_SHUID. */
664 if (INSN_SHUID (seq) < INSN_SHUID (dest))
666 /* Forward branch. */
667 return (insn_last_address + insn_lengths[seq_uid]
668 - align_fuzz (seq, dest, length_unit_log, ~0));
670 else
672 /* Backward branch. */
673 return (insn_current_address
674 + align_fuzz (dest, seq, length_unit_log, ~0));
677 #endif /* HAVE_ATTR_length */
679 /* Compute branch alignments based on frequency information in the
680 CFG. */
682 static unsigned int
683 compute_alignments (void)
685 int log, max_skip, max_log;
686 basic_block bb;
688 if (label_align)
690 free (label_align);
691 label_align = 0;
694 max_labelno = max_label_num ();
695 min_labelno = get_first_label_num ();
696 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
698 /* If not optimizing or optimizing for size, don't assign any alignments. */
699 if (! optimize || optimize_size)
700 return 0;
702 FOR_EACH_BB (bb)
704 rtx label = BB_HEAD (bb);
705 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
706 edge e;
707 edge_iterator ei;
709 if (!LABEL_P (label)
710 || probably_never_executed_bb_p (bb))
711 continue;
712 max_log = LABEL_ALIGN (label);
713 max_skip = LABEL_ALIGN_MAX_SKIP;
715 FOR_EACH_EDGE (e, ei, bb->preds)
717 if (e->flags & EDGE_FALLTHRU)
718 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
719 else
720 branch_frequency += EDGE_FREQUENCY (e);
723 /* There are two purposes to align block with no fallthru incoming edge:
724 1) to avoid fetch stalls when branch destination is near cache boundary
725 2) to improve cache efficiency in case the previous block is not executed
726 (so it does not need to be in the cache).
728 We to catch first case, we align frequently executed blocks.
729 To catch the second, we align blocks that are executed more frequently
730 than the predecessor and the predecessor is likely to not be executed
731 when function is called. */
733 if (!has_fallthru
734 && (branch_frequency > BB_FREQ_MAX / 10
735 || (bb->frequency > bb->prev_bb->frequency * 10
736 && (bb->prev_bb->frequency
737 <= ENTRY_BLOCK_PTR->frequency / 2))))
739 log = JUMP_ALIGN (label);
740 if (max_log < log)
742 max_log = log;
743 max_skip = JUMP_ALIGN_MAX_SKIP;
746 /* In case block is frequent and reached mostly by non-fallthru edge,
747 align it. It is most likely a first block of loop. */
748 if (has_fallthru
749 && maybe_hot_bb_p (bb)
750 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
751 && branch_frequency > fallthru_frequency * 2)
753 log = LOOP_ALIGN (label);
754 if (max_log < log)
756 max_log = log;
757 max_skip = LOOP_ALIGN_MAX_SKIP;
760 LABEL_TO_ALIGNMENT (label) = max_log;
761 LABEL_TO_MAX_SKIP (label) = max_skip;
763 return 0;
766 struct tree_opt_pass pass_compute_alignments =
768 NULL, /* name */
769 NULL, /* gate */
770 compute_alignments, /* execute */
771 NULL, /* sub */
772 NULL, /* next */
773 0, /* static_pass_number */
774 0, /* tv_id */
775 0, /* properties_required */
776 0, /* properties_provided */
777 0, /* properties_destroyed */
778 0, /* todo_flags_start */
779 0, /* todo_flags_finish */
780 0 /* letter */
784 /* Make a pass over all insns and compute their actual lengths by shortening
785 any branches of variable length if possible. */
787 /* shorten_branches might be called multiple times: for example, the SH
788 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
789 In order to do this, it needs proper length information, which it obtains
790 by calling shorten_branches. This cannot be collapsed with
791 shorten_branches itself into a single pass unless we also want to integrate
792 reorg.c, since the branch splitting exposes new instructions with delay
793 slots. */
795 void
796 shorten_branches (rtx first ATTRIBUTE_UNUSED)
798 rtx insn;
799 int max_uid;
800 int i;
801 int max_log;
802 int max_skip;
803 #ifdef HAVE_ATTR_length
804 #define MAX_CODE_ALIGN 16
805 rtx seq;
806 int something_changed = 1;
807 char *varying_length;
808 rtx body;
809 int uid;
810 rtx align_tab[MAX_CODE_ALIGN];
812 #endif
814 /* Compute maximum UID and allocate label_align / uid_shuid. */
815 max_uid = get_max_uid ();
817 /* Free uid_shuid before reallocating it. */
818 free (uid_shuid);
820 uid_shuid = XNEWVEC (int, max_uid);
822 if (max_labelno != max_label_num ())
824 int old = max_labelno;
825 int n_labels;
826 int n_old_labels;
828 max_labelno = max_label_num ();
830 n_labels = max_labelno - min_labelno + 1;
831 n_old_labels = old - min_labelno + 1;
833 label_align = xrealloc (label_align,
834 n_labels * sizeof (struct label_alignment));
836 /* Range of labels grows monotonically in the function. Failing here
837 means that the initialization of array got lost. */
838 gcc_assert (n_old_labels <= n_labels);
840 memset (label_align + n_old_labels, 0,
841 (n_labels - n_old_labels) * sizeof (struct label_alignment));
844 /* Initialize label_align and set up uid_shuid to be strictly
845 monotonically rising with insn order. */
846 /* We use max_log here to keep track of the maximum alignment we want to
847 impose on the next CODE_LABEL (or the current one if we are processing
848 the CODE_LABEL itself). */
850 max_log = 0;
851 max_skip = 0;
853 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
855 int log;
857 INSN_SHUID (insn) = i++;
858 if (INSN_P (insn))
859 continue;
861 if (LABEL_P (insn))
863 rtx next;
865 /* Merge in alignments computed by compute_alignments. */
866 log = LABEL_TO_ALIGNMENT (insn);
867 if (max_log < log)
869 max_log = log;
870 max_skip = LABEL_TO_MAX_SKIP (insn);
873 log = LABEL_ALIGN (insn);
874 if (max_log < log)
876 max_log = log;
877 max_skip = LABEL_ALIGN_MAX_SKIP;
879 next = next_nonnote_insn (insn);
880 /* ADDR_VECs only take room if read-only data goes into the text
881 section. */
882 if (JUMP_TABLES_IN_TEXT_SECTION
883 || readonly_data_section == text_section)
884 if (next && JUMP_P (next))
886 rtx nextbody = PATTERN (next);
887 if (GET_CODE (nextbody) == ADDR_VEC
888 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
890 log = ADDR_VEC_ALIGN (next);
891 if (max_log < log)
893 max_log = log;
894 max_skip = LABEL_ALIGN_MAX_SKIP;
898 LABEL_TO_ALIGNMENT (insn) = max_log;
899 LABEL_TO_MAX_SKIP (insn) = max_skip;
900 max_log = 0;
901 max_skip = 0;
903 else if (BARRIER_P (insn))
905 rtx label;
907 for (label = insn; label && ! INSN_P (label);
908 label = NEXT_INSN (label))
909 if (LABEL_P (label))
911 log = LABEL_ALIGN_AFTER_BARRIER (insn);
912 if (max_log < log)
914 max_log = log;
915 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
917 break;
921 #ifdef HAVE_ATTR_length
923 /* Allocate the rest of the arrays. */
924 insn_lengths = XNEWVEC (int, max_uid);
925 insn_lengths_max_uid = max_uid;
926 /* Syntax errors can lead to labels being outside of the main insn stream.
927 Initialize insn_addresses, so that we get reproducible results. */
928 INSN_ADDRESSES_ALLOC (max_uid);
930 varying_length = XCNEWVEC (char, max_uid);
932 /* Initialize uid_align. We scan instructions
933 from end to start, and keep in align_tab[n] the last seen insn
934 that does an alignment of at least n+1, i.e. the successor
935 in the alignment chain for an insn that does / has a known
936 alignment of n. */
937 uid_align = XCNEWVEC (rtx, max_uid);
939 for (i = MAX_CODE_ALIGN; --i >= 0;)
940 align_tab[i] = NULL_RTX;
941 seq = get_last_insn ();
942 for (; seq; seq = PREV_INSN (seq))
944 int uid = INSN_UID (seq);
945 int log;
946 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
947 uid_align[uid] = align_tab[0];
948 if (log)
950 /* Found an alignment label. */
951 uid_align[uid] = align_tab[log];
952 for (i = log - 1; i >= 0; i--)
953 align_tab[i] = seq;
956 #ifdef CASE_VECTOR_SHORTEN_MODE
957 if (optimize)
959 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
960 label fields. */
962 int min_shuid = INSN_SHUID (get_insns ()) - 1;
963 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
964 int rel;
966 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
968 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
969 int len, i, min, max, insn_shuid;
970 int min_align;
971 addr_diff_vec_flags flags;
973 if (!JUMP_P (insn)
974 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
975 continue;
976 pat = PATTERN (insn);
977 len = XVECLEN (pat, 1);
978 gcc_assert (len > 0);
979 min_align = MAX_CODE_ALIGN;
980 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
982 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
983 int shuid = INSN_SHUID (lab);
984 if (shuid < min)
986 min = shuid;
987 min_lab = lab;
989 if (shuid > max)
991 max = shuid;
992 max_lab = lab;
994 if (min_align > LABEL_TO_ALIGNMENT (lab))
995 min_align = LABEL_TO_ALIGNMENT (lab);
997 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
998 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
999 insn_shuid = INSN_SHUID (insn);
1000 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1001 memset (&flags, 0, sizeof (flags));
1002 flags.min_align = min_align;
1003 flags.base_after_vec = rel > insn_shuid;
1004 flags.min_after_vec = min > insn_shuid;
1005 flags.max_after_vec = max > insn_shuid;
1006 flags.min_after_base = min > rel;
1007 flags.max_after_base = max > rel;
1008 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1011 #endif /* CASE_VECTOR_SHORTEN_MODE */
1013 /* Compute initial lengths, addresses, and varying flags for each insn. */
1014 for (insn_current_address = 0, insn = first;
1015 insn != 0;
1016 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1018 uid = INSN_UID (insn);
1020 insn_lengths[uid] = 0;
1022 if (LABEL_P (insn))
1024 int log = LABEL_TO_ALIGNMENT (insn);
1025 if (log)
1027 int align = 1 << log;
1028 int new_address = (insn_current_address + align - 1) & -align;
1029 insn_lengths[uid] = new_address - insn_current_address;
1033 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1035 if (NOTE_P (insn) || BARRIER_P (insn)
1036 || LABEL_P (insn))
1037 continue;
1038 if (INSN_DELETED_P (insn))
1039 continue;
1041 body = PATTERN (insn);
1042 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1044 /* This only takes room if read-only data goes into the text
1045 section. */
1046 if (JUMP_TABLES_IN_TEXT_SECTION
1047 || readonly_data_section == text_section)
1048 insn_lengths[uid] = (XVECLEN (body,
1049 GET_CODE (body) == ADDR_DIFF_VEC)
1050 * GET_MODE_SIZE (GET_MODE (body)));
1051 /* Alignment is handled by ADDR_VEC_ALIGN. */
1053 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1054 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1055 else if (GET_CODE (body) == SEQUENCE)
1057 int i;
1058 int const_delay_slots;
1059 #ifdef DELAY_SLOTS
1060 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1061 #else
1062 const_delay_slots = 0;
1063 #endif
1064 /* Inside a delay slot sequence, we do not do any branch shortening
1065 if the shortening could change the number of delay slots
1066 of the branch. */
1067 for (i = 0; i < XVECLEN (body, 0); i++)
1069 rtx inner_insn = XVECEXP (body, 0, i);
1070 int inner_uid = INSN_UID (inner_insn);
1071 int inner_length;
1073 if (GET_CODE (body) == ASM_INPUT
1074 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1075 inner_length = (asm_insn_count (PATTERN (inner_insn))
1076 * insn_default_length (inner_insn));
1077 else
1078 inner_length = insn_default_length (inner_insn);
1080 insn_lengths[inner_uid] = inner_length;
1081 if (const_delay_slots)
1083 if ((varying_length[inner_uid]
1084 = insn_variable_length_p (inner_insn)) != 0)
1085 varying_length[uid] = 1;
1086 INSN_ADDRESSES (inner_uid) = (insn_current_address
1087 + insn_lengths[uid]);
1089 else
1090 varying_length[inner_uid] = 0;
1091 insn_lengths[uid] += inner_length;
1094 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1096 insn_lengths[uid] = insn_default_length (insn);
1097 varying_length[uid] = insn_variable_length_p (insn);
1100 /* If needed, do any adjustment. */
1101 #ifdef ADJUST_INSN_LENGTH
1102 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1103 if (insn_lengths[uid] < 0)
1104 fatal_insn ("negative insn length", insn);
1105 #endif
1108 /* Now loop over all the insns finding varying length insns. For each,
1109 get the current insn length. If it has changed, reflect the change.
1110 When nothing changes for a full pass, we are done. */
1112 while (something_changed)
1114 something_changed = 0;
1115 insn_current_align = MAX_CODE_ALIGN - 1;
1116 for (insn_current_address = 0, insn = first;
1117 insn != 0;
1118 insn = NEXT_INSN (insn))
1120 int new_length;
1121 #ifdef ADJUST_INSN_LENGTH
1122 int tmp_length;
1123 #endif
1124 int length_align;
1126 uid = INSN_UID (insn);
1128 if (LABEL_P (insn))
1130 int log = LABEL_TO_ALIGNMENT (insn);
1131 if (log > insn_current_align)
1133 int align = 1 << log;
1134 int new_address= (insn_current_address + align - 1) & -align;
1135 insn_lengths[uid] = new_address - insn_current_address;
1136 insn_current_align = log;
1137 insn_current_address = new_address;
1139 else
1140 insn_lengths[uid] = 0;
1141 INSN_ADDRESSES (uid) = insn_current_address;
1142 continue;
1145 length_align = INSN_LENGTH_ALIGNMENT (insn);
1146 if (length_align < insn_current_align)
1147 insn_current_align = length_align;
1149 insn_last_address = INSN_ADDRESSES (uid);
1150 INSN_ADDRESSES (uid) = insn_current_address;
1152 #ifdef CASE_VECTOR_SHORTEN_MODE
1153 if (optimize && JUMP_P (insn)
1154 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1156 rtx body = PATTERN (insn);
1157 int old_length = insn_lengths[uid];
1158 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1159 rtx min_lab = XEXP (XEXP (body, 2), 0);
1160 rtx max_lab = XEXP (XEXP (body, 3), 0);
1161 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1162 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1163 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1164 rtx prev;
1165 int rel_align = 0;
1166 addr_diff_vec_flags flags;
1168 /* Avoid automatic aggregate initialization. */
1169 flags = ADDR_DIFF_VEC_FLAGS (body);
1171 /* Try to find a known alignment for rel_lab. */
1172 for (prev = rel_lab;
1173 prev
1174 && ! insn_lengths[INSN_UID (prev)]
1175 && ! (varying_length[INSN_UID (prev)] & 1);
1176 prev = PREV_INSN (prev))
1177 if (varying_length[INSN_UID (prev)] & 2)
1179 rel_align = LABEL_TO_ALIGNMENT (prev);
1180 break;
1183 /* See the comment on addr_diff_vec_flags in rtl.h for the
1184 meaning of the flags values. base: REL_LAB vec: INSN */
1185 /* Anything after INSN has still addresses from the last
1186 pass; adjust these so that they reflect our current
1187 estimate for this pass. */
1188 if (flags.base_after_vec)
1189 rel_addr += insn_current_address - insn_last_address;
1190 if (flags.min_after_vec)
1191 min_addr += insn_current_address - insn_last_address;
1192 if (flags.max_after_vec)
1193 max_addr += insn_current_address - insn_last_address;
1194 /* We want to know the worst case, i.e. lowest possible value
1195 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1196 its offset is positive, and we have to be wary of code shrink;
1197 otherwise, it is negative, and we have to be vary of code
1198 size increase. */
1199 if (flags.min_after_base)
1201 /* If INSN is between REL_LAB and MIN_LAB, the size
1202 changes we are about to make can change the alignment
1203 within the observed offset, therefore we have to break
1204 it up into two parts that are independent. */
1205 if (! flags.base_after_vec && flags.min_after_vec)
1207 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1208 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1210 else
1211 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1213 else
1215 if (flags.base_after_vec && ! flags.min_after_vec)
1217 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1218 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1220 else
1221 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1223 /* Likewise, determine the highest lowest possible value
1224 for the offset of MAX_LAB. */
1225 if (flags.max_after_base)
1227 if (! flags.base_after_vec && flags.max_after_vec)
1229 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1230 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1232 else
1233 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1235 else
1237 if (flags.base_after_vec && ! flags.max_after_vec)
1239 max_addr += align_fuzz (max_lab, insn, 0, 0);
1240 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1242 else
1243 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1245 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1246 max_addr - rel_addr,
1247 body));
1248 if (JUMP_TABLES_IN_TEXT_SECTION
1249 || readonly_data_section == text_section)
1251 insn_lengths[uid]
1252 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1253 insn_current_address += insn_lengths[uid];
1254 if (insn_lengths[uid] != old_length)
1255 something_changed = 1;
1258 continue;
1260 #endif /* CASE_VECTOR_SHORTEN_MODE */
1262 if (! (varying_length[uid]))
1264 if (NONJUMP_INSN_P (insn)
1265 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1267 int i;
1269 body = PATTERN (insn);
1270 for (i = 0; i < XVECLEN (body, 0); i++)
1272 rtx inner_insn = XVECEXP (body, 0, i);
1273 int inner_uid = INSN_UID (inner_insn);
1275 INSN_ADDRESSES (inner_uid) = insn_current_address;
1277 insn_current_address += insn_lengths[inner_uid];
1280 else
1281 insn_current_address += insn_lengths[uid];
1283 continue;
1286 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1288 int i;
1290 body = PATTERN (insn);
1291 new_length = 0;
1292 for (i = 0; i < XVECLEN (body, 0); i++)
1294 rtx inner_insn = XVECEXP (body, 0, i);
1295 int inner_uid = INSN_UID (inner_insn);
1296 int inner_length;
1298 INSN_ADDRESSES (inner_uid) = insn_current_address;
1300 /* insn_current_length returns 0 for insns with a
1301 non-varying length. */
1302 if (! varying_length[inner_uid])
1303 inner_length = insn_lengths[inner_uid];
1304 else
1305 inner_length = insn_current_length (inner_insn);
1307 if (inner_length != insn_lengths[inner_uid])
1309 insn_lengths[inner_uid] = inner_length;
1310 something_changed = 1;
1312 insn_current_address += insn_lengths[inner_uid];
1313 new_length += inner_length;
1316 else
1318 new_length = insn_current_length (insn);
1319 insn_current_address += new_length;
1322 #ifdef ADJUST_INSN_LENGTH
1323 /* If needed, do any adjustment. */
1324 tmp_length = new_length;
1325 ADJUST_INSN_LENGTH (insn, new_length);
1326 insn_current_address += (new_length - tmp_length);
1327 #endif
1329 if (new_length != insn_lengths[uid])
1331 insn_lengths[uid] = new_length;
1332 something_changed = 1;
1335 /* For a non-optimizing compile, do only a single pass. */
1336 if (!optimize)
1337 break;
1340 free (varying_length);
1342 #endif /* HAVE_ATTR_length */
1345 #ifdef HAVE_ATTR_length
1346 /* Given the body of an INSN known to be generated by an ASM statement, return
1347 the number of machine instructions likely to be generated for this insn.
1348 This is used to compute its length. */
1350 static int
1351 asm_insn_count (rtx body)
1353 const char *template;
1354 int count = 1;
1356 if (GET_CODE (body) == ASM_INPUT)
1357 template = XSTR (body, 0);
1358 else
1359 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1361 for (; *template; template++)
1362 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1363 count++;
1365 return count;
1367 #endif
1369 /* Output assembler code for the start of a function,
1370 and initialize some of the variables in this file
1371 for the new function. The label for the function and associated
1372 assembler pseudo-ops have already been output in `assemble_start_function'.
1374 FIRST is the first insn of the rtl for the function being compiled.
1375 FILE is the file to write assembler code to.
1376 OPTIMIZE is nonzero if we should eliminate redundant
1377 test and compare insns. */
1379 void
1380 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1381 int optimize ATTRIBUTE_UNUSED)
1383 block_depth = 0;
1385 this_is_asm_operands = 0;
1387 last_filename = locator_file (prologue_locator);
1388 last_linenum = locator_line (prologue_locator);
1390 high_block_linenum = high_function_linenum = last_linenum;
1392 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1394 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1395 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1396 dwarf2out_begin_prologue (0, NULL);
1397 #endif
1399 #ifdef LEAF_REG_REMAP
1400 if (current_function_uses_only_leaf_regs)
1401 leaf_renumber_regs (first);
1402 #endif
1404 /* The Sun386i and perhaps other machines don't work right
1405 if the profiling code comes after the prologue. */
1406 #ifdef PROFILE_BEFORE_PROLOGUE
1407 if (current_function_profile)
1408 profile_function (file);
1409 #endif /* PROFILE_BEFORE_PROLOGUE */
1411 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1412 if (dwarf2out_do_frame ())
1413 dwarf2out_frame_debug (NULL_RTX, false);
1414 #endif
1416 /* If debugging, assign block numbers to all of the blocks in this
1417 function. */
1418 if (write_symbols)
1420 reemit_insn_block_notes ();
1421 number_blocks (current_function_decl);
1422 /* We never actually put out begin/end notes for the top-level
1423 block in the function. But, conceptually, that block is
1424 always needed. */
1425 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1428 /* First output the function prologue: code to set up the stack frame. */
1429 targetm.asm_out.function_prologue (file, get_frame_size ());
1431 /* If the machine represents the prologue as RTL, the profiling code must
1432 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1433 #ifdef HAVE_prologue
1434 if (! HAVE_prologue)
1435 #endif
1436 profile_after_prologue (file);
1439 static void
1440 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1442 #ifndef PROFILE_BEFORE_PROLOGUE
1443 if (current_function_profile)
1444 profile_function (file);
1445 #endif /* not PROFILE_BEFORE_PROLOGUE */
1448 static void
1449 profile_function (FILE *file ATTRIBUTE_UNUSED)
1451 #ifndef NO_PROFILE_COUNTERS
1452 # define NO_PROFILE_COUNTERS 0
1453 #endif
1454 #if defined(ASM_OUTPUT_REG_PUSH)
1455 int sval = current_function_returns_struct;
1456 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1457 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1458 int cxt = cfun->static_chain_decl != NULL;
1459 #endif
1460 #endif /* ASM_OUTPUT_REG_PUSH */
1462 if (! NO_PROFILE_COUNTERS)
1464 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1465 switch_to_section (data_section);
1466 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1467 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1468 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1471 switch_to_section (current_function_section ());
1473 #if defined(ASM_OUTPUT_REG_PUSH)
1474 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1475 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1476 #endif
1478 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1479 if (cxt)
1480 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1481 #else
1482 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1483 if (cxt)
1485 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1487 #endif
1488 #endif
1490 FUNCTION_PROFILER (file, current_function_funcdef_no);
1492 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1493 if (cxt)
1494 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1495 #else
1496 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1497 if (cxt)
1499 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1501 #endif
1502 #endif
1504 #if defined(ASM_OUTPUT_REG_PUSH)
1505 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1506 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1507 #endif
1510 /* Output assembler code for the end of a function.
1511 For clarity, args are same as those of `final_start_function'
1512 even though not all of them are needed. */
1514 void
1515 final_end_function (void)
1517 app_disable ();
1519 (*debug_hooks->end_function) (high_function_linenum);
1521 /* Finally, output the function epilogue:
1522 code to restore the stack frame and return to the caller. */
1523 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1525 /* And debug output. */
1526 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1528 #if defined (DWARF2_UNWIND_INFO)
1529 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1530 && dwarf2out_do_frame ())
1531 dwarf2out_end_epilogue (last_linenum, last_filename);
1532 #endif
1535 /* Output assembler code for some insns: all or part of a function.
1536 For description of args, see `final_start_function', above. */
1538 void
1539 final (rtx first, FILE *file, int optimize)
1541 rtx insn;
1542 int max_uid = 0;
1543 int seen = 0;
1545 last_ignored_compare = 0;
1547 #ifdef SDB_DEBUGGING_INFO
1548 /* When producing SDB debugging info, delete troublesome line number
1549 notes from inlined functions in other files as well as duplicate
1550 line number notes. */
1551 if (write_symbols == SDB_DEBUG)
1553 rtx last = 0;
1554 for (insn = first; insn; insn = NEXT_INSN (insn))
1555 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1557 if (last != 0
1558 #ifdef USE_MAPPED_LOCATION
1559 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1560 #else
1561 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1562 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1563 #endif
1566 delete_insn (insn); /* Use delete_note. */
1567 continue;
1569 last = insn;
1572 #endif
1574 for (insn = first; insn; insn = NEXT_INSN (insn))
1576 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1577 max_uid = INSN_UID (insn);
1578 #ifdef HAVE_cc0
1579 /* If CC tracking across branches is enabled, record the insn which
1580 jumps to each branch only reached from one place. */
1581 if (optimize && JUMP_P (insn))
1583 rtx lab = JUMP_LABEL (insn);
1584 if (lab && LABEL_NUSES (lab) == 1)
1586 LABEL_REFS (lab) = insn;
1589 #endif
1592 init_recog ();
1594 CC_STATUS_INIT;
1596 /* Output the insns. */
1597 for (insn = first; insn;)
1599 #ifdef HAVE_ATTR_length
1600 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1602 /* This can be triggered by bugs elsewhere in the compiler if
1603 new insns are created after init_insn_lengths is called. */
1604 gcc_assert (NOTE_P (insn));
1605 insn_current_address = -1;
1607 else
1608 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1609 #endif /* HAVE_ATTR_length */
1611 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1615 const char *
1616 get_insn_template (int code, rtx insn)
1618 switch (insn_data[code].output_format)
1620 case INSN_OUTPUT_FORMAT_SINGLE:
1621 return insn_data[code].output.single;
1622 case INSN_OUTPUT_FORMAT_MULTI:
1623 return insn_data[code].output.multi[which_alternative];
1624 case INSN_OUTPUT_FORMAT_FUNCTION:
1625 gcc_assert (insn);
1626 return (*insn_data[code].output.function) (recog_data.operand, insn);
1628 default:
1629 gcc_unreachable ();
1633 /* Emit the appropriate declaration for an alternate-entry-point
1634 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1635 LABEL_KIND != LABEL_NORMAL.
1637 The case fall-through in this function is intentional. */
1638 static void
1639 output_alternate_entry_point (FILE *file, rtx insn)
1641 const char *name = LABEL_NAME (insn);
1643 switch (LABEL_KIND (insn))
1645 case LABEL_WEAK_ENTRY:
1646 #ifdef ASM_WEAKEN_LABEL
1647 ASM_WEAKEN_LABEL (file, name);
1648 #endif
1649 case LABEL_GLOBAL_ENTRY:
1650 targetm.asm_out.globalize_label (file, name);
1651 case LABEL_STATIC_ENTRY:
1652 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1653 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1654 #endif
1655 ASM_OUTPUT_LABEL (file, name);
1656 break;
1658 case LABEL_NORMAL:
1659 default:
1660 gcc_unreachable ();
1664 /* The final scan for one insn, INSN.
1665 Args are same as in `final', except that INSN
1666 is the insn being scanned.
1667 Value returned is the next insn to be scanned.
1669 NOPEEPHOLES is the flag to disallow peephole processing (currently
1670 used for within delayed branch sequence output).
1672 SEEN is used to track the end of the prologue, for emitting
1673 debug information. We force the emission of a line note after
1674 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1675 at the beginning of the second basic block, whichever comes
1676 first. */
1679 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1680 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1682 #ifdef HAVE_cc0
1683 rtx set;
1684 #endif
1685 rtx next;
1687 insn_counter++;
1689 /* Ignore deleted insns. These can occur when we split insns (due to a
1690 template of "#") while not optimizing. */
1691 if (INSN_DELETED_P (insn))
1692 return NEXT_INSN (insn);
1694 switch (GET_CODE (insn))
1696 case NOTE:
1697 switch (NOTE_LINE_NUMBER (insn))
1699 case NOTE_INSN_DELETED:
1700 break;
1702 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1703 in_cold_section_p = !in_cold_section_p;
1704 (*debug_hooks->switch_text_section) ();
1705 switch_to_section (current_function_section ());
1706 break;
1708 case NOTE_INSN_BASIC_BLOCK:
1709 #ifdef TARGET_UNWIND_INFO
1710 targetm.asm_out.unwind_emit (asm_out_file, insn);
1711 #endif
1713 if (flag_debug_asm)
1714 fprintf (asm_out_file, "\t%s basic block %d\n",
1715 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1717 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1719 *seen |= SEEN_EMITTED;
1720 force_source_line = true;
1722 else
1723 *seen |= SEEN_BB;
1725 break;
1727 case NOTE_INSN_EH_REGION_BEG:
1728 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1729 NOTE_EH_HANDLER (insn));
1730 break;
1732 case NOTE_INSN_EH_REGION_END:
1733 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1734 NOTE_EH_HANDLER (insn));
1735 break;
1737 case NOTE_INSN_PROLOGUE_END:
1738 targetm.asm_out.function_end_prologue (file);
1739 profile_after_prologue (file);
1741 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1743 *seen |= SEEN_EMITTED;
1744 force_source_line = true;
1746 else
1747 *seen |= SEEN_NOTE;
1749 break;
1751 case NOTE_INSN_EPILOGUE_BEG:
1752 targetm.asm_out.function_begin_epilogue (file);
1753 break;
1755 case NOTE_INSN_FUNCTION_BEG:
1756 app_disable ();
1757 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1759 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1761 *seen |= SEEN_EMITTED;
1762 force_source_line = true;
1764 else
1765 *seen |= SEEN_NOTE;
1767 break;
1769 case NOTE_INSN_BLOCK_BEG:
1770 if (debug_info_level == DINFO_LEVEL_NORMAL
1771 || debug_info_level == DINFO_LEVEL_VERBOSE
1772 || write_symbols == DWARF2_DEBUG
1773 || write_symbols == VMS_AND_DWARF2_DEBUG
1774 || write_symbols == VMS_DEBUG)
1776 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1778 app_disable ();
1779 ++block_depth;
1780 high_block_linenum = last_linenum;
1782 /* Output debugging info about the symbol-block beginning. */
1783 (*debug_hooks->begin_block) (last_linenum, n);
1785 /* Mark this block as output. */
1786 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1788 break;
1790 case NOTE_INSN_BLOCK_END:
1791 if (debug_info_level == DINFO_LEVEL_NORMAL
1792 || debug_info_level == DINFO_LEVEL_VERBOSE
1793 || write_symbols == DWARF2_DEBUG
1794 || write_symbols == VMS_AND_DWARF2_DEBUG
1795 || write_symbols == VMS_DEBUG)
1797 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1799 app_disable ();
1801 /* End of a symbol-block. */
1802 --block_depth;
1803 gcc_assert (block_depth >= 0);
1805 (*debug_hooks->end_block) (high_block_linenum, n);
1807 break;
1809 case NOTE_INSN_DELETED_LABEL:
1810 /* Emit the label. We may have deleted the CODE_LABEL because
1811 the label could be proved to be unreachable, though still
1812 referenced (in the form of having its address taken. */
1813 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1814 break;
1816 case NOTE_INSN_VAR_LOCATION:
1817 (*debug_hooks->var_location) (insn);
1818 break;
1820 case 0:
1821 break;
1823 default:
1824 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1825 break;
1827 break;
1829 case BARRIER:
1830 #if defined (DWARF2_UNWIND_INFO)
1831 if (dwarf2out_do_frame ())
1832 dwarf2out_frame_debug (insn, false);
1833 #endif
1834 break;
1836 case CODE_LABEL:
1837 /* The target port might emit labels in the output function for
1838 some insn, e.g. sh.c output_branchy_insn. */
1839 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1841 int align = LABEL_TO_ALIGNMENT (insn);
1842 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1843 int max_skip = LABEL_TO_MAX_SKIP (insn);
1844 #endif
1846 if (align && NEXT_INSN (insn))
1848 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1849 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1850 #else
1851 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1852 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1853 #else
1854 ASM_OUTPUT_ALIGN (file, align);
1855 #endif
1856 #endif
1859 #ifdef HAVE_cc0
1860 CC_STATUS_INIT;
1861 /* If this label is reached from only one place, set the condition
1862 codes from the instruction just before the branch. */
1864 /* Disabled because some insns set cc_status in the C output code
1865 and NOTICE_UPDATE_CC alone can set incorrect status. */
1866 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1868 rtx jump = LABEL_REFS (insn);
1869 rtx barrier = prev_nonnote_insn (insn);
1870 rtx prev;
1871 /* If the LABEL_REFS field of this label has been set to point
1872 at a branch, the predecessor of the branch is a regular
1873 insn, and that branch is the only way to reach this label,
1874 set the condition codes based on the branch and its
1875 predecessor. */
1876 if (barrier && BARRIER_P (barrier)
1877 && jump && JUMP_P (jump)
1878 && (prev = prev_nonnote_insn (jump))
1879 && NONJUMP_INSN_P (prev))
1881 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1882 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1885 #endif
1887 if (LABEL_NAME (insn))
1888 (*debug_hooks->label) (insn);
1890 if (app_on)
1892 fputs (ASM_APP_OFF, file);
1893 app_on = 0;
1896 next = next_nonnote_insn (insn);
1897 if (next != 0 && JUMP_P (next))
1899 rtx nextbody = PATTERN (next);
1901 /* If this label is followed by a jump-table,
1902 make sure we put the label in the read-only section. Also
1903 possibly write the label and jump table together. */
1905 if (GET_CODE (nextbody) == ADDR_VEC
1906 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1908 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1909 /* In this case, the case vector is being moved by the
1910 target, so don't output the label at all. Leave that
1911 to the back end macros. */
1912 #else
1913 if (! JUMP_TABLES_IN_TEXT_SECTION)
1915 int log_align;
1917 switch_to_section (targetm.asm_out.function_rodata_section
1918 (current_function_decl));
1920 #ifdef ADDR_VEC_ALIGN
1921 log_align = ADDR_VEC_ALIGN (next);
1922 #else
1923 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1924 #endif
1925 ASM_OUTPUT_ALIGN (file, log_align);
1927 else
1928 switch_to_section (current_function_section ());
1930 #ifdef ASM_OUTPUT_CASE_LABEL
1931 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1932 next);
1933 #else
1934 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1935 #endif
1936 #endif
1937 break;
1940 if (LABEL_ALT_ENTRY_P (insn))
1941 output_alternate_entry_point (file, insn);
1942 else
1943 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1944 break;
1946 default:
1948 rtx body = PATTERN (insn);
1949 int insn_code_number;
1950 const char *template;
1952 #ifdef HAVE_conditional_execution
1953 /* Reset this early so it is correct for ASM statements. */
1954 current_insn_predicate = NULL_RTX;
1955 #endif
1956 /* An INSN, JUMP_INSN or CALL_INSN.
1957 First check for special kinds that recog doesn't recognize. */
1959 if (GET_CODE (body) == USE /* These are just declarations. */
1960 || GET_CODE (body) == CLOBBER)
1961 break;
1963 #ifdef HAVE_cc0
1965 /* If there is a REG_CC_SETTER note on this insn, it means that
1966 the setting of the condition code was done in the delay slot
1967 of the insn that branched here. So recover the cc status
1968 from the insn that set it. */
1970 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1971 if (note)
1973 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1974 cc_prev_status = cc_status;
1977 #endif
1979 /* Detect insns that are really jump-tables
1980 and output them as such. */
1982 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1984 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1985 int vlen, idx;
1986 #endif
1988 if (! JUMP_TABLES_IN_TEXT_SECTION)
1989 switch_to_section (targetm.asm_out.function_rodata_section
1990 (current_function_decl));
1991 else
1992 switch_to_section (current_function_section ());
1994 if (app_on)
1996 fputs (ASM_APP_OFF, file);
1997 app_on = 0;
2000 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2001 if (GET_CODE (body) == ADDR_VEC)
2003 #ifdef ASM_OUTPUT_ADDR_VEC
2004 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2005 #else
2006 gcc_unreachable ();
2007 #endif
2009 else
2011 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2012 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2013 #else
2014 gcc_unreachable ();
2015 #endif
2017 #else
2018 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2019 for (idx = 0; idx < vlen; idx++)
2021 if (GET_CODE (body) == ADDR_VEC)
2023 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2024 ASM_OUTPUT_ADDR_VEC_ELT
2025 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2026 #else
2027 gcc_unreachable ();
2028 #endif
2030 else
2032 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2033 ASM_OUTPUT_ADDR_DIFF_ELT
2034 (file,
2035 body,
2036 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2037 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2038 #else
2039 gcc_unreachable ();
2040 #endif
2043 #ifdef ASM_OUTPUT_CASE_END
2044 ASM_OUTPUT_CASE_END (file,
2045 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2046 insn);
2047 #endif
2048 #endif
2050 switch_to_section (current_function_section ());
2052 break;
2054 /* Output this line note if it is the first or the last line
2055 note in a row. */
2056 if (notice_source_line (insn))
2058 (*debug_hooks->source_line) (last_linenum, last_filename);
2061 if (GET_CODE (body) == ASM_INPUT)
2063 const char *string = XSTR (body, 0);
2065 /* There's no telling what that did to the condition codes. */
2066 CC_STATUS_INIT;
2068 if (string[0])
2070 if (! app_on)
2072 fputs (ASM_APP_ON, file);
2073 app_on = 1;
2075 fprintf (asm_out_file, "\t%s\n", string);
2077 break;
2080 /* Detect `asm' construct with operands. */
2081 if (asm_noperands (body) >= 0)
2083 unsigned int noperands = asm_noperands (body);
2084 rtx *ops = alloca (noperands * sizeof (rtx));
2085 const char *string;
2087 /* There's no telling what that did to the condition codes. */
2088 CC_STATUS_INIT;
2090 /* Get out the operand values. */
2091 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2092 /* Inhibit dieing on what would otherwise be compiler bugs. */
2093 insn_noperands = noperands;
2094 this_is_asm_operands = insn;
2096 #ifdef FINAL_PRESCAN_INSN
2097 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2098 #endif
2100 /* Output the insn using them. */
2101 if (string[0])
2103 if (! app_on)
2105 fputs (ASM_APP_ON, file);
2106 app_on = 1;
2108 output_asm_insn (string, ops);
2111 this_is_asm_operands = 0;
2112 break;
2115 if (app_on)
2117 fputs (ASM_APP_OFF, file);
2118 app_on = 0;
2121 if (GET_CODE (body) == SEQUENCE)
2123 /* A delayed-branch sequence */
2124 int i;
2126 final_sequence = body;
2128 /* Record the delay slots' frame information before the branch.
2129 This is needed for delayed calls: see execute_cfa_program(). */
2130 #if defined (DWARF2_UNWIND_INFO)
2131 if (dwarf2out_do_frame ())
2132 for (i = 1; i < XVECLEN (body, 0); i++)
2133 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2134 #endif
2136 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2137 force the restoration of a comparison that was previously
2138 thought unnecessary. If that happens, cancel this sequence
2139 and cause that insn to be restored. */
2141 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2142 if (next != XVECEXP (body, 0, 1))
2144 final_sequence = 0;
2145 return next;
2148 for (i = 1; i < XVECLEN (body, 0); i++)
2150 rtx insn = XVECEXP (body, 0, i);
2151 rtx next = NEXT_INSN (insn);
2152 /* We loop in case any instruction in a delay slot gets
2153 split. */
2155 insn = final_scan_insn (insn, file, 0, 1, seen);
2156 while (insn != next);
2158 #ifdef DBR_OUTPUT_SEQEND
2159 DBR_OUTPUT_SEQEND (file);
2160 #endif
2161 final_sequence = 0;
2163 /* If the insn requiring the delay slot was a CALL_INSN, the
2164 insns in the delay slot are actually executed before the
2165 called function. Hence we don't preserve any CC-setting
2166 actions in these insns and the CC must be marked as being
2167 clobbered by the function. */
2168 if (CALL_P (XVECEXP (body, 0, 0)))
2170 CC_STATUS_INIT;
2172 break;
2175 /* We have a real machine instruction as rtl. */
2177 body = PATTERN (insn);
2179 #ifdef HAVE_cc0
2180 set = single_set (insn);
2182 /* Check for redundant test and compare instructions
2183 (when the condition codes are already set up as desired).
2184 This is done only when optimizing; if not optimizing,
2185 it should be possible for the user to alter a variable
2186 with the debugger in between statements
2187 and the next statement should reexamine the variable
2188 to compute the condition codes. */
2190 if (optimize)
2192 if (set
2193 && GET_CODE (SET_DEST (set)) == CC0
2194 && insn != last_ignored_compare)
2196 if (GET_CODE (SET_SRC (set)) == SUBREG)
2197 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2198 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2200 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2201 XEXP (SET_SRC (set), 0)
2202 = alter_subreg (&XEXP (SET_SRC (set), 0));
2203 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2204 XEXP (SET_SRC (set), 1)
2205 = alter_subreg (&XEXP (SET_SRC (set), 1));
2207 if ((cc_status.value1 != 0
2208 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2209 || (cc_status.value2 != 0
2210 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2212 /* Don't delete insn if it has an addressing side-effect. */
2213 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2214 /* or if anything in it is volatile. */
2215 && ! volatile_refs_p (PATTERN (insn)))
2217 /* We don't really delete the insn; just ignore it. */
2218 last_ignored_compare = insn;
2219 break;
2224 #endif
2226 #ifdef HAVE_cc0
2227 /* If this is a conditional branch, maybe modify it
2228 if the cc's are in a nonstandard state
2229 so that it accomplishes the same thing that it would
2230 do straightforwardly if the cc's were set up normally. */
2232 if (cc_status.flags != 0
2233 && JUMP_P (insn)
2234 && GET_CODE (body) == SET
2235 && SET_DEST (body) == pc_rtx
2236 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2237 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2238 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2240 /* This function may alter the contents of its argument
2241 and clear some of the cc_status.flags bits.
2242 It may also return 1 meaning condition now always true
2243 or -1 meaning condition now always false
2244 or 2 meaning condition nontrivial but altered. */
2245 int result = alter_cond (XEXP (SET_SRC (body), 0));
2246 /* If condition now has fixed value, replace the IF_THEN_ELSE
2247 with its then-operand or its else-operand. */
2248 if (result == 1)
2249 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2250 if (result == -1)
2251 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2253 /* The jump is now either unconditional or a no-op.
2254 If it has become a no-op, don't try to output it.
2255 (It would not be recognized.) */
2256 if (SET_SRC (body) == pc_rtx)
2258 delete_insn (insn);
2259 break;
2261 else if (GET_CODE (SET_SRC (body)) == RETURN)
2262 /* Replace (set (pc) (return)) with (return). */
2263 PATTERN (insn) = body = SET_SRC (body);
2265 /* Rerecognize the instruction if it has changed. */
2266 if (result != 0)
2267 INSN_CODE (insn) = -1;
2270 /* Make same adjustments to instructions that examine the
2271 condition codes without jumping and instructions that
2272 handle conditional moves (if this machine has either one). */
2274 if (cc_status.flags != 0
2275 && set != 0)
2277 rtx cond_rtx, then_rtx, else_rtx;
2279 if (!JUMP_P (insn)
2280 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2282 cond_rtx = XEXP (SET_SRC (set), 0);
2283 then_rtx = XEXP (SET_SRC (set), 1);
2284 else_rtx = XEXP (SET_SRC (set), 2);
2286 else
2288 cond_rtx = SET_SRC (set);
2289 then_rtx = const_true_rtx;
2290 else_rtx = const0_rtx;
2293 switch (GET_CODE (cond_rtx))
2295 case GTU:
2296 case GT:
2297 case LTU:
2298 case LT:
2299 case GEU:
2300 case GE:
2301 case LEU:
2302 case LE:
2303 case EQ:
2304 case NE:
2306 int result;
2307 if (XEXP (cond_rtx, 0) != cc0_rtx)
2308 break;
2309 result = alter_cond (cond_rtx);
2310 if (result == 1)
2311 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2312 else if (result == -1)
2313 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2314 else if (result == 2)
2315 INSN_CODE (insn) = -1;
2316 if (SET_DEST (set) == SET_SRC (set))
2317 delete_insn (insn);
2319 break;
2321 default:
2322 break;
2326 #endif
2328 #ifdef HAVE_peephole
2329 /* Do machine-specific peephole optimizations if desired. */
2331 if (optimize && !flag_no_peephole && !nopeepholes)
2333 rtx next = peephole (insn);
2334 /* When peepholing, if there were notes within the peephole,
2335 emit them before the peephole. */
2336 if (next != 0 && next != NEXT_INSN (insn))
2338 rtx note, prev = PREV_INSN (insn);
2340 for (note = NEXT_INSN (insn); note != next;
2341 note = NEXT_INSN (note))
2342 final_scan_insn (note, file, optimize, nopeepholes, seen);
2344 /* Put the notes in the proper position for a later
2345 rescan. For example, the SH target can do this
2346 when generating a far jump in a delayed branch
2347 sequence. */
2348 note = NEXT_INSN (insn);
2349 PREV_INSN (note) = prev;
2350 NEXT_INSN (prev) = note;
2351 NEXT_INSN (PREV_INSN (next)) = insn;
2352 PREV_INSN (insn) = PREV_INSN (next);
2353 NEXT_INSN (insn) = next;
2354 PREV_INSN (next) = insn;
2357 /* PEEPHOLE might have changed this. */
2358 body = PATTERN (insn);
2360 #endif
2362 /* Try to recognize the instruction.
2363 If successful, verify that the operands satisfy the
2364 constraints for the instruction. Crash if they don't,
2365 since `reload' should have changed them so that they do. */
2367 insn_code_number = recog_memoized (insn);
2368 cleanup_subreg_operands (insn);
2370 /* Dump the insn in the assembly for debugging. */
2371 if (flag_dump_rtl_in_asm)
2373 print_rtx_head = ASM_COMMENT_START;
2374 print_rtl_single (asm_out_file, insn);
2375 print_rtx_head = "";
2378 if (! constrain_operands_cached (1))
2379 fatal_insn_not_found (insn);
2381 /* Some target machines need to prescan each insn before
2382 it is output. */
2384 #ifdef FINAL_PRESCAN_INSN
2385 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2386 #endif
2388 #ifdef HAVE_conditional_execution
2389 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2390 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2391 #endif
2393 #ifdef HAVE_cc0
2394 cc_prev_status = cc_status;
2396 /* Update `cc_status' for this instruction.
2397 The instruction's output routine may change it further.
2398 If the output routine for a jump insn needs to depend
2399 on the cc status, it should look at cc_prev_status. */
2401 NOTICE_UPDATE_CC (body, insn);
2402 #endif
2404 current_output_insn = debug_insn = insn;
2406 #if defined (DWARF2_UNWIND_INFO)
2407 if (CALL_P (insn) && dwarf2out_do_frame ())
2408 dwarf2out_frame_debug (insn, false);
2409 #endif
2411 /* Find the proper template for this insn. */
2412 template = get_insn_template (insn_code_number, insn);
2414 /* If the C code returns 0, it means that it is a jump insn
2415 which follows a deleted test insn, and that test insn
2416 needs to be reinserted. */
2417 if (template == 0)
2419 rtx prev;
2421 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2423 /* We have already processed the notes between the setter and
2424 the user. Make sure we don't process them again, this is
2425 particularly important if one of the notes is a block
2426 scope note or an EH note. */
2427 for (prev = insn;
2428 prev != last_ignored_compare;
2429 prev = PREV_INSN (prev))
2431 if (NOTE_P (prev))
2432 delete_insn (prev); /* Use delete_note. */
2435 return prev;
2438 /* If the template is the string "#", it means that this insn must
2439 be split. */
2440 if (template[0] == '#' && template[1] == '\0')
2442 rtx new = try_split (body, insn, 0);
2444 /* If we didn't split the insn, go away. */
2445 if (new == insn && PATTERN (new) == body)
2446 fatal_insn ("could not split insn", insn);
2448 #ifdef HAVE_ATTR_length
2449 /* This instruction should have been split in shorten_branches,
2450 to ensure that we would have valid length info for the
2451 splitees. */
2452 gcc_unreachable ();
2453 #endif
2455 return new;
2458 #ifdef TARGET_UNWIND_INFO
2459 /* ??? This will put the directives in the wrong place if
2460 get_insn_template outputs assembly directly. However calling it
2461 before get_insn_template breaks if the insns is split. */
2462 targetm.asm_out.unwind_emit (asm_out_file, insn);
2463 #endif
2465 /* Output assembler code from the template. */
2466 output_asm_insn (template, recog_data.operand);
2468 /* If necessary, report the effect that the instruction has on
2469 the unwind info. We've already done this for delay slots
2470 and call instructions. */
2471 #if defined (DWARF2_UNWIND_INFO)
2472 if (final_sequence == 0
2473 #if !defined (HAVE_prologue)
2474 && !ACCUMULATE_OUTGOING_ARGS
2475 #endif
2476 && dwarf2out_do_frame ())
2477 dwarf2out_frame_debug (insn, true);
2478 #endif
2480 current_output_insn = debug_insn = 0;
2483 return NEXT_INSN (insn);
2486 /* Return whether a source line note needs to be emitted before INSN. */
2488 static bool
2489 notice_source_line (rtx insn)
2491 const char *filename = insn_file (insn);
2492 int linenum = insn_line (insn);
2494 if (filename
2495 && (force_source_line
2496 || filename != last_filename
2497 || last_linenum != linenum))
2499 force_source_line = false;
2500 last_filename = filename;
2501 last_linenum = linenum;
2502 high_block_linenum = MAX (last_linenum, high_block_linenum);
2503 high_function_linenum = MAX (last_linenum, high_function_linenum);
2504 return true;
2506 return false;
2509 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2510 directly to the desired hard register. */
2512 void
2513 cleanup_subreg_operands (rtx insn)
2515 int i;
2516 extract_insn_cached (insn);
2517 for (i = 0; i < recog_data.n_operands; i++)
2519 /* The following test cannot use recog_data.operand when testing
2520 for a SUBREG: the underlying object might have been changed
2521 already if we are inside a match_operator expression that
2522 matches the else clause. Instead we test the underlying
2523 expression directly. */
2524 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2525 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2526 else if (GET_CODE (recog_data.operand[i]) == PLUS
2527 || GET_CODE (recog_data.operand[i]) == MULT
2528 || MEM_P (recog_data.operand[i]))
2529 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2532 for (i = 0; i < recog_data.n_dups; i++)
2534 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2535 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2536 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2537 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2538 || MEM_P (*recog_data.dup_loc[i]))
2539 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2543 /* If X is a SUBREG, replace it with a REG or a MEM,
2544 based on the thing it is a subreg of. */
2547 alter_subreg (rtx *xp)
2549 rtx x = *xp;
2550 rtx y = SUBREG_REG (x);
2552 /* simplify_subreg does not remove subreg from volatile references.
2553 We are required to. */
2554 if (MEM_P (y))
2556 int offset = SUBREG_BYTE (x);
2558 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2559 contains 0 instead of the proper offset. See simplify_subreg. */
2560 if (offset == 0
2561 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2563 int difference = GET_MODE_SIZE (GET_MODE (y))
2564 - GET_MODE_SIZE (GET_MODE (x));
2565 if (WORDS_BIG_ENDIAN)
2566 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2567 if (BYTES_BIG_ENDIAN)
2568 offset += difference % UNITS_PER_WORD;
2571 *xp = adjust_address (y, GET_MODE (x), offset);
2573 else
2575 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2576 SUBREG_BYTE (x));
2578 if (new != 0)
2579 *xp = new;
2580 else if (REG_P (y))
2582 /* Simplify_subreg can't handle some REG cases, but we have to. */
2583 unsigned int regno = subreg_regno (x);
2584 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2588 return *xp;
2591 /* Do alter_subreg on all the SUBREGs contained in X. */
2593 static rtx
2594 walk_alter_subreg (rtx *xp)
2596 rtx x = *xp;
2597 switch (GET_CODE (x))
2599 case PLUS:
2600 case MULT:
2601 case AND:
2602 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2603 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2604 break;
2606 case MEM:
2607 case ZERO_EXTEND:
2608 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2609 break;
2611 case SUBREG:
2612 return alter_subreg (xp);
2614 default:
2615 break;
2618 return *xp;
2621 #ifdef HAVE_cc0
2623 /* Given BODY, the body of a jump instruction, alter the jump condition
2624 as required by the bits that are set in cc_status.flags.
2625 Not all of the bits there can be handled at this level in all cases.
2627 The value is normally 0.
2628 1 means that the condition has become always true.
2629 -1 means that the condition has become always false.
2630 2 means that COND has been altered. */
2632 static int
2633 alter_cond (rtx cond)
2635 int value = 0;
2637 if (cc_status.flags & CC_REVERSED)
2639 value = 2;
2640 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2643 if (cc_status.flags & CC_INVERTED)
2645 value = 2;
2646 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2649 if (cc_status.flags & CC_NOT_POSITIVE)
2650 switch (GET_CODE (cond))
2652 case LE:
2653 case LEU:
2654 case GEU:
2655 /* Jump becomes unconditional. */
2656 return 1;
2658 case GT:
2659 case GTU:
2660 case LTU:
2661 /* Jump becomes no-op. */
2662 return -1;
2664 case GE:
2665 PUT_CODE (cond, EQ);
2666 value = 2;
2667 break;
2669 case LT:
2670 PUT_CODE (cond, NE);
2671 value = 2;
2672 break;
2674 default:
2675 break;
2678 if (cc_status.flags & CC_NOT_NEGATIVE)
2679 switch (GET_CODE (cond))
2681 case GE:
2682 case GEU:
2683 /* Jump becomes unconditional. */
2684 return 1;
2686 case LT:
2687 case LTU:
2688 /* Jump becomes no-op. */
2689 return -1;
2691 case LE:
2692 case LEU:
2693 PUT_CODE (cond, EQ);
2694 value = 2;
2695 break;
2697 case GT:
2698 case GTU:
2699 PUT_CODE (cond, NE);
2700 value = 2;
2701 break;
2703 default:
2704 break;
2707 if (cc_status.flags & CC_NO_OVERFLOW)
2708 switch (GET_CODE (cond))
2710 case GEU:
2711 /* Jump becomes unconditional. */
2712 return 1;
2714 case LEU:
2715 PUT_CODE (cond, EQ);
2716 value = 2;
2717 break;
2719 case GTU:
2720 PUT_CODE (cond, NE);
2721 value = 2;
2722 break;
2724 case LTU:
2725 /* Jump becomes no-op. */
2726 return -1;
2728 default:
2729 break;
2732 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2733 switch (GET_CODE (cond))
2735 default:
2736 gcc_unreachable ();
2738 case NE:
2739 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2740 value = 2;
2741 break;
2743 case EQ:
2744 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2745 value = 2;
2746 break;
2749 if (cc_status.flags & CC_NOT_SIGNED)
2750 /* The flags are valid if signed condition operators are converted
2751 to unsigned. */
2752 switch (GET_CODE (cond))
2754 case LE:
2755 PUT_CODE (cond, LEU);
2756 value = 2;
2757 break;
2759 case LT:
2760 PUT_CODE (cond, LTU);
2761 value = 2;
2762 break;
2764 case GT:
2765 PUT_CODE (cond, GTU);
2766 value = 2;
2767 break;
2769 case GE:
2770 PUT_CODE (cond, GEU);
2771 value = 2;
2772 break;
2774 default:
2775 break;
2778 return value;
2780 #endif
2782 /* Report inconsistency between the assembler template and the operands.
2783 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2785 void
2786 output_operand_lossage (const char *cmsgid, ...)
2788 char *fmt_string;
2789 char *new_message;
2790 const char *pfx_str;
2791 va_list ap;
2793 va_start (ap, cmsgid);
2795 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2796 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2797 vasprintf (&new_message, fmt_string, ap);
2799 if (this_is_asm_operands)
2800 error_for_asm (this_is_asm_operands, "%s", new_message);
2801 else
2802 internal_error ("%s", new_message);
2804 free (fmt_string);
2805 free (new_message);
2806 va_end (ap);
2809 /* Output of assembler code from a template, and its subroutines. */
2811 /* Annotate the assembly with a comment describing the pattern and
2812 alternative used. */
2814 static void
2815 output_asm_name (void)
2817 if (debug_insn)
2819 int num = INSN_CODE (debug_insn);
2820 fprintf (asm_out_file, "\t%s %d\t%s",
2821 ASM_COMMENT_START, INSN_UID (debug_insn),
2822 insn_data[num].name);
2823 if (insn_data[num].n_alternatives > 1)
2824 fprintf (asm_out_file, "/%d", which_alternative + 1);
2825 #ifdef HAVE_ATTR_length
2826 fprintf (asm_out_file, "\t[length = %d]",
2827 get_attr_length (debug_insn));
2828 #endif
2829 /* Clear this so only the first assembler insn
2830 of any rtl insn will get the special comment for -dp. */
2831 debug_insn = 0;
2835 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2836 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2837 corresponds to the address of the object and 0 if to the object. */
2839 static tree
2840 get_mem_expr_from_op (rtx op, int *paddressp)
2842 tree expr;
2843 int inner_addressp;
2845 *paddressp = 0;
2847 if (REG_P (op))
2848 return REG_EXPR (op);
2849 else if (!MEM_P (op))
2850 return 0;
2852 if (MEM_EXPR (op) != 0)
2853 return MEM_EXPR (op);
2855 /* Otherwise we have an address, so indicate it and look at the address. */
2856 *paddressp = 1;
2857 op = XEXP (op, 0);
2859 /* First check if we have a decl for the address, then look at the right side
2860 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2861 But don't allow the address to itself be indirect. */
2862 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2863 return expr;
2864 else if (GET_CODE (op) == PLUS
2865 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2866 return expr;
2868 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2869 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2870 op = XEXP (op, 0);
2872 expr = get_mem_expr_from_op (op, &inner_addressp);
2873 return inner_addressp ? 0 : expr;
2876 /* Output operand names for assembler instructions. OPERANDS is the
2877 operand vector, OPORDER is the order to write the operands, and NOPS
2878 is the number of operands to write. */
2880 static void
2881 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2883 int wrote = 0;
2884 int i;
2886 for (i = 0; i < nops; i++)
2888 int addressp;
2889 rtx op = operands[oporder[i]];
2890 tree expr = get_mem_expr_from_op (op, &addressp);
2892 fprintf (asm_out_file, "%c%s",
2893 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2894 wrote = 1;
2895 if (expr)
2897 fprintf (asm_out_file, "%s",
2898 addressp ? "*" : "");
2899 print_mem_expr (asm_out_file, expr);
2900 wrote = 1;
2902 else if (REG_P (op) && ORIGINAL_REGNO (op)
2903 && ORIGINAL_REGNO (op) != REGNO (op))
2904 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2908 /* Output text from TEMPLATE to the assembler output file,
2909 obeying %-directions to substitute operands taken from
2910 the vector OPERANDS.
2912 %N (for N a digit) means print operand N in usual manner.
2913 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2914 and print the label name with no punctuation.
2915 %cN means require operand N to be a constant
2916 and print the constant expression with no punctuation.
2917 %aN means expect operand N to be a memory address
2918 (not a memory reference!) and print a reference
2919 to that address.
2920 %nN means expect operand N to be a constant
2921 and print a constant expression for minus the value
2922 of the operand, with no other punctuation. */
2924 void
2925 output_asm_insn (const char *template, rtx *operands)
2927 const char *p;
2928 int c;
2929 #ifdef ASSEMBLER_DIALECT
2930 int dialect = 0;
2931 #endif
2932 int oporder[MAX_RECOG_OPERANDS];
2933 char opoutput[MAX_RECOG_OPERANDS];
2934 int ops = 0;
2936 /* An insn may return a null string template
2937 in a case where no assembler code is needed. */
2938 if (*template == 0)
2939 return;
2941 memset (opoutput, 0, sizeof opoutput);
2942 p = template;
2943 putc ('\t', asm_out_file);
2945 #ifdef ASM_OUTPUT_OPCODE
2946 ASM_OUTPUT_OPCODE (asm_out_file, p);
2947 #endif
2949 while ((c = *p++))
2950 switch (c)
2952 case '\n':
2953 if (flag_verbose_asm)
2954 output_asm_operand_names (operands, oporder, ops);
2955 if (flag_print_asm_name)
2956 output_asm_name ();
2958 ops = 0;
2959 memset (opoutput, 0, sizeof opoutput);
2961 putc (c, asm_out_file);
2962 #ifdef ASM_OUTPUT_OPCODE
2963 while ((c = *p) == '\t')
2965 putc (c, asm_out_file);
2966 p++;
2968 ASM_OUTPUT_OPCODE (asm_out_file, p);
2969 #endif
2970 break;
2972 #ifdef ASSEMBLER_DIALECT
2973 case '{':
2975 int i;
2977 if (dialect)
2978 output_operand_lossage ("nested assembly dialect alternatives");
2979 else
2980 dialect = 1;
2982 /* If we want the first dialect, do nothing. Otherwise, skip
2983 DIALECT_NUMBER of strings ending with '|'. */
2984 for (i = 0; i < dialect_number; i++)
2986 while (*p && *p != '}' && *p++ != '|')
2988 if (*p == '}')
2989 break;
2990 if (*p == '|')
2991 p++;
2994 if (*p == '\0')
2995 output_operand_lossage ("unterminated assembly dialect alternative");
2997 break;
2999 case '|':
3000 if (dialect)
3002 /* Skip to close brace. */
3005 if (*p == '\0')
3007 output_operand_lossage ("unterminated assembly dialect alternative");
3008 break;
3011 while (*p++ != '}');
3012 dialect = 0;
3014 else
3015 putc (c, asm_out_file);
3016 break;
3018 case '}':
3019 if (! dialect)
3020 putc (c, asm_out_file);
3021 dialect = 0;
3022 break;
3023 #endif
3025 case '%':
3026 /* %% outputs a single %. */
3027 if (*p == '%')
3029 p++;
3030 putc (c, asm_out_file);
3032 /* %= outputs a number which is unique to each insn in the entire
3033 compilation. This is useful for making local labels that are
3034 referred to more than once in a given insn. */
3035 else if (*p == '=')
3037 p++;
3038 fprintf (asm_out_file, "%d", insn_counter);
3040 /* % followed by a letter and some digits
3041 outputs an operand in a special way depending on the letter.
3042 Letters `acln' are implemented directly.
3043 Other letters are passed to `output_operand' so that
3044 the PRINT_OPERAND macro can define them. */
3045 else if (ISALPHA (*p))
3047 int letter = *p++;
3048 unsigned long opnum;
3049 char *endptr;
3051 opnum = strtoul (p, &endptr, 10);
3053 if (endptr == p)
3054 output_operand_lossage ("operand number missing "
3055 "after %%-letter");
3056 else if (this_is_asm_operands && opnum >= insn_noperands)
3057 output_operand_lossage ("operand number out of range");
3058 else if (letter == 'l')
3059 output_asm_label (operands[opnum]);
3060 else if (letter == 'a')
3061 output_address (operands[opnum]);
3062 else if (letter == 'c')
3064 if (CONSTANT_ADDRESS_P (operands[opnum]))
3065 output_addr_const (asm_out_file, operands[opnum]);
3066 else
3067 output_operand (operands[opnum], 'c');
3069 else if (letter == 'n')
3071 if (GET_CODE (operands[opnum]) == CONST_INT)
3072 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3073 - INTVAL (operands[opnum]));
3074 else
3076 putc ('-', asm_out_file);
3077 output_addr_const (asm_out_file, operands[opnum]);
3080 else
3081 output_operand (operands[opnum], letter);
3083 if (!opoutput[opnum])
3084 oporder[ops++] = opnum;
3085 opoutput[opnum] = 1;
3087 p = endptr;
3088 c = *p;
3090 /* % followed by a digit outputs an operand the default way. */
3091 else if (ISDIGIT (*p))
3093 unsigned long opnum;
3094 char *endptr;
3096 opnum = strtoul (p, &endptr, 10);
3097 if (this_is_asm_operands && opnum >= insn_noperands)
3098 output_operand_lossage ("operand number out of range");
3099 else
3100 output_operand (operands[opnum], 0);
3102 if (!opoutput[opnum])
3103 oporder[ops++] = opnum;
3104 opoutput[opnum] = 1;
3106 p = endptr;
3107 c = *p;
3109 /* % followed by punctuation: output something for that
3110 punctuation character alone, with no operand.
3111 The PRINT_OPERAND macro decides what is actually done. */
3112 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3113 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3114 output_operand (NULL_RTX, *p++);
3115 #endif
3116 else
3117 output_operand_lossage ("invalid %%-code");
3118 break;
3120 default:
3121 putc (c, asm_out_file);
3124 /* Write out the variable names for operands, if we know them. */
3125 if (flag_verbose_asm)
3126 output_asm_operand_names (operands, oporder, ops);
3127 if (flag_print_asm_name)
3128 output_asm_name ();
3130 putc ('\n', asm_out_file);
3133 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3135 void
3136 output_asm_label (rtx x)
3138 char buf[256];
3140 if (GET_CODE (x) == LABEL_REF)
3141 x = XEXP (x, 0);
3142 if (LABEL_P (x)
3143 || (NOTE_P (x)
3144 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3145 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3146 else
3147 output_operand_lossage ("'%%l' operand isn't a label");
3149 assemble_name (asm_out_file, buf);
3152 /* Print operand X using machine-dependent assembler syntax.
3153 The macro PRINT_OPERAND is defined just to control this function.
3154 CODE is a non-digit that preceded the operand-number in the % spec,
3155 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3156 between the % and the digits.
3157 When CODE is a non-letter, X is 0.
3159 The meanings of the letters are machine-dependent and controlled
3160 by PRINT_OPERAND. */
3162 static void
3163 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3165 if (x && GET_CODE (x) == SUBREG)
3166 x = alter_subreg (&x);
3168 /* X must not be a pseudo reg. */
3169 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3171 PRINT_OPERAND (asm_out_file, x, code);
3174 /* Print a memory reference operand for address X
3175 using machine-dependent assembler syntax.
3176 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3178 void
3179 output_address (rtx x)
3181 walk_alter_subreg (&x);
3182 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3185 /* Print an integer constant expression in assembler syntax.
3186 Addition and subtraction are the only arithmetic
3187 that may appear in these expressions. */
3189 void
3190 output_addr_const (FILE *file, rtx x)
3192 char buf[256];
3194 restart:
3195 switch (GET_CODE (x))
3197 case PC:
3198 putc ('.', file);
3199 break;
3201 case SYMBOL_REF:
3202 if (SYMBOL_REF_DECL (x))
3203 mark_decl_referenced (SYMBOL_REF_DECL (x));
3204 #ifdef ASM_OUTPUT_SYMBOL_REF
3205 ASM_OUTPUT_SYMBOL_REF (file, x);
3206 #else
3207 assemble_name (file, XSTR (x, 0));
3208 #endif
3209 break;
3211 case LABEL_REF:
3212 x = XEXP (x, 0);
3213 /* Fall through. */
3214 case CODE_LABEL:
3215 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3216 #ifdef ASM_OUTPUT_LABEL_REF
3217 ASM_OUTPUT_LABEL_REF (file, buf);
3218 #else
3219 assemble_name (file, buf);
3220 #endif
3221 break;
3223 case CONST_INT:
3224 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3225 break;
3227 case CONST:
3228 /* This used to output parentheses around the expression,
3229 but that does not work on the 386 (either ATT or BSD assembler). */
3230 output_addr_const (file, XEXP (x, 0));
3231 break;
3233 case CONST_DOUBLE:
3234 if (GET_MODE (x) == VOIDmode)
3236 /* We can use %d if the number is one word and positive. */
3237 if (CONST_DOUBLE_HIGH (x))
3238 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3239 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3240 else if (CONST_DOUBLE_LOW (x) < 0)
3241 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3242 else
3243 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3245 else
3246 /* We can't handle floating point constants;
3247 PRINT_OPERAND must handle them. */
3248 output_operand_lossage ("floating constant misused");
3249 break;
3251 case PLUS:
3252 /* Some assemblers need integer constants to appear last (eg masm). */
3253 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3255 output_addr_const (file, XEXP (x, 1));
3256 if (INTVAL (XEXP (x, 0)) >= 0)
3257 fprintf (file, "+");
3258 output_addr_const (file, XEXP (x, 0));
3260 else
3262 output_addr_const (file, XEXP (x, 0));
3263 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3264 || INTVAL (XEXP (x, 1)) >= 0)
3265 fprintf (file, "+");
3266 output_addr_const (file, XEXP (x, 1));
3268 break;
3270 case MINUS:
3271 /* Avoid outputting things like x-x or x+5-x,
3272 since some assemblers can't handle that. */
3273 x = simplify_subtraction (x);
3274 if (GET_CODE (x) != MINUS)
3275 goto restart;
3277 output_addr_const (file, XEXP (x, 0));
3278 fprintf (file, "-");
3279 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3280 || GET_CODE (XEXP (x, 1)) == PC
3281 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3282 output_addr_const (file, XEXP (x, 1));
3283 else
3285 fputs (targetm.asm_out.open_paren, file);
3286 output_addr_const (file, XEXP (x, 1));
3287 fputs (targetm.asm_out.close_paren, file);
3289 break;
3291 case ZERO_EXTEND:
3292 case SIGN_EXTEND:
3293 case SUBREG:
3294 output_addr_const (file, XEXP (x, 0));
3295 break;
3297 default:
3298 #ifdef OUTPUT_ADDR_CONST_EXTRA
3299 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3300 break;
3302 fail:
3303 #endif
3304 output_operand_lossage ("invalid expression as operand");
3308 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3309 %R prints the value of REGISTER_PREFIX.
3310 %L prints the value of LOCAL_LABEL_PREFIX.
3311 %U prints the value of USER_LABEL_PREFIX.
3312 %I prints the value of IMMEDIATE_PREFIX.
3313 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3314 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3316 We handle alternate assembler dialects here, just like output_asm_insn. */
3318 void
3319 asm_fprintf (FILE *file, const char *p, ...)
3321 char buf[10];
3322 char *q, c;
3323 va_list argptr;
3325 va_start (argptr, p);
3327 buf[0] = '%';
3329 while ((c = *p++))
3330 switch (c)
3332 #ifdef ASSEMBLER_DIALECT
3333 case '{':
3335 int i;
3337 /* If we want the first dialect, do nothing. Otherwise, skip
3338 DIALECT_NUMBER of strings ending with '|'. */
3339 for (i = 0; i < dialect_number; i++)
3341 while (*p && *p++ != '|')
3344 if (*p == '|')
3345 p++;
3348 break;
3350 case '|':
3351 /* Skip to close brace. */
3352 while (*p && *p++ != '}')
3354 break;
3356 case '}':
3357 break;
3358 #endif
3360 case '%':
3361 c = *p++;
3362 q = &buf[1];
3363 while (strchr ("-+ #0", c))
3365 *q++ = c;
3366 c = *p++;
3368 while (ISDIGIT (c) || c == '.')
3370 *q++ = c;
3371 c = *p++;
3373 switch (c)
3375 case '%':
3376 putc ('%', file);
3377 break;
3379 case 'd': case 'i': case 'u':
3380 case 'x': case 'X': case 'o':
3381 case 'c':
3382 *q++ = c;
3383 *q = 0;
3384 fprintf (file, buf, va_arg (argptr, int));
3385 break;
3387 case 'w':
3388 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3389 'o' cases, but we do not check for those cases. It
3390 means that the value is a HOST_WIDE_INT, which may be
3391 either `long' or `long long'. */
3392 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3393 q += strlen (HOST_WIDE_INT_PRINT);
3394 *q++ = *p++;
3395 *q = 0;
3396 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3397 break;
3399 case 'l':
3400 *q++ = c;
3401 #ifdef HAVE_LONG_LONG
3402 if (*p == 'l')
3404 *q++ = *p++;
3405 *q++ = *p++;
3406 *q = 0;
3407 fprintf (file, buf, va_arg (argptr, long long));
3409 else
3410 #endif
3412 *q++ = *p++;
3413 *q = 0;
3414 fprintf (file, buf, va_arg (argptr, long));
3417 break;
3419 case 's':
3420 *q++ = c;
3421 *q = 0;
3422 fprintf (file, buf, va_arg (argptr, char *));
3423 break;
3425 case 'O':
3426 #ifdef ASM_OUTPUT_OPCODE
3427 ASM_OUTPUT_OPCODE (asm_out_file, p);
3428 #endif
3429 break;
3431 case 'R':
3432 #ifdef REGISTER_PREFIX
3433 fprintf (file, "%s", REGISTER_PREFIX);
3434 #endif
3435 break;
3437 case 'I':
3438 #ifdef IMMEDIATE_PREFIX
3439 fprintf (file, "%s", IMMEDIATE_PREFIX);
3440 #endif
3441 break;
3443 case 'L':
3444 #ifdef LOCAL_LABEL_PREFIX
3445 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3446 #endif
3447 break;
3449 case 'U':
3450 fputs (user_label_prefix, file);
3451 break;
3453 #ifdef ASM_FPRINTF_EXTENSIONS
3454 /* Uppercase letters are reserved for general use by asm_fprintf
3455 and so are not available to target specific code. In order to
3456 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3457 they are defined here. As they get turned into real extensions
3458 to asm_fprintf they should be removed from this list. */
3459 case 'A': case 'B': case 'C': case 'D': case 'E':
3460 case 'F': case 'G': case 'H': case 'J': case 'K':
3461 case 'M': case 'N': case 'P': case 'Q': case 'S':
3462 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3463 break;
3465 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3466 #endif
3467 default:
3468 gcc_unreachable ();
3470 break;
3472 default:
3473 putc (c, file);
3475 va_end (argptr);
3478 /* Split up a CONST_DOUBLE or integer constant rtx
3479 into two rtx's for single words,
3480 storing in *FIRST the word that comes first in memory in the target
3481 and in *SECOND the other. */
3483 void
3484 split_double (rtx value, rtx *first, rtx *second)
3486 if (GET_CODE (value) == CONST_INT)
3488 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3490 /* In this case the CONST_INT holds both target words.
3491 Extract the bits from it into two word-sized pieces.
3492 Sign extend each half to HOST_WIDE_INT. */
3493 unsigned HOST_WIDE_INT low, high;
3494 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3496 /* Set sign_bit to the most significant bit of a word. */
3497 sign_bit = 1;
3498 sign_bit <<= BITS_PER_WORD - 1;
3500 /* Set mask so that all bits of the word are set. We could
3501 have used 1 << BITS_PER_WORD instead of basing the
3502 calculation on sign_bit. However, on machines where
3503 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3504 compiler warning, even though the code would never be
3505 executed. */
3506 mask = sign_bit << 1;
3507 mask--;
3509 /* Set sign_extend as any remaining bits. */
3510 sign_extend = ~mask;
3512 /* Pick the lower word and sign-extend it. */
3513 low = INTVAL (value);
3514 low &= mask;
3515 if (low & sign_bit)
3516 low |= sign_extend;
3518 /* Pick the higher word, shifted to the least significant
3519 bits, and sign-extend it. */
3520 high = INTVAL (value);
3521 high >>= BITS_PER_WORD - 1;
3522 high >>= 1;
3523 high &= mask;
3524 if (high & sign_bit)
3525 high |= sign_extend;
3527 /* Store the words in the target machine order. */
3528 if (WORDS_BIG_ENDIAN)
3530 *first = GEN_INT (high);
3531 *second = GEN_INT (low);
3533 else
3535 *first = GEN_INT (low);
3536 *second = GEN_INT (high);
3539 else
3541 /* The rule for using CONST_INT for a wider mode
3542 is that we regard the value as signed.
3543 So sign-extend it. */
3544 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3545 if (WORDS_BIG_ENDIAN)
3547 *first = high;
3548 *second = value;
3550 else
3552 *first = value;
3553 *second = high;
3557 else if (GET_CODE (value) != CONST_DOUBLE)
3559 if (WORDS_BIG_ENDIAN)
3561 *first = const0_rtx;
3562 *second = value;
3564 else
3566 *first = value;
3567 *second = const0_rtx;
3570 else if (GET_MODE (value) == VOIDmode
3571 /* This is the old way we did CONST_DOUBLE integers. */
3572 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3574 /* In an integer, the words are defined as most and least significant.
3575 So order them by the target's convention. */
3576 if (WORDS_BIG_ENDIAN)
3578 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3579 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3581 else
3583 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3584 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3587 else
3589 REAL_VALUE_TYPE r;
3590 long l[2];
3591 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3593 /* Note, this converts the REAL_VALUE_TYPE to the target's
3594 format, splits up the floating point double and outputs
3595 exactly 32 bits of it into each of l[0] and l[1] --
3596 not necessarily BITS_PER_WORD bits. */
3597 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3599 /* If 32 bits is an entire word for the target, but not for the host,
3600 then sign-extend on the host so that the number will look the same
3601 way on the host that it would on the target. See for instance
3602 simplify_unary_operation. The #if is needed to avoid compiler
3603 warnings. */
3605 #if HOST_BITS_PER_LONG > 32
3606 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3608 if (l[0] & ((long) 1 << 31))
3609 l[0] |= ((long) (-1) << 32);
3610 if (l[1] & ((long) 1 << 31))
3611 l[1] |= ((long) (-1) << 32);
3613 #endif
3615 *first = GEN_INT (l[0]);
3616 *second = GEN_INT (l[1]);
3620 /* Return nonzero if this function has no function calls. */
3623 leaf_function_p (void)
3625 rtx insn;
3626 rtx link;
3628 if (current_function_profile || profile_arc_flag)
3629 return 0;
3631 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3633 if (CALL_P (insn)
3634 && ! SIBLING_CALL_P (insn))
3635 return 0;
3636 if (NONJUMP_INSN_P (insn)
3637 && GET_CODE (PATTERN (insn)) == SEQUENCE
3638 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3639 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3640 return 0;
3642 for (link = current_function_epilogue_delay_list;
3643 link;
3644 link = XEXP (link, 1))
3646 insn = XEXP (link, 0);
3648 if (CALL_P (insn)
3649 && ! SIBLING_CALL_P (insn))
3650 return 0;
3651 if (NONJUMP_INSN_P (insn)
3652 && GET_CODE (PATTERN (insn)) == SEQUENCE
3653 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3654 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3655 return 0;
3658 return 1;
3661 /* Return 1 if branch is a forward branch.
3662 Uses insn_shuid array, so it works only in the final pass. May be used by
3663 output templates to customary add branch prediction hints.
3666 final_forward_branch_p (rtx insn)
3668 int insn_id, label_id;
3670 gcc_assert (uid_shuid);
3671 insn_id = INSN_SHUID (insn);
3672 label_id = INSN_SHUID (JUMP_LABEL (insn));
3673 /* We've hit some insns that does not have id information available. */
3674 gcc_assert (insn_id && label_id);
3675 return insn_id < label_id;
3678 /* On some machines, a function with no call insns
3679 can run faster if it doesn't create its own register window.
3680 When output, the leaf function should use only the "output"
3681 registers. Ordinarily, the function would be compiled to use
3682 the "input" registers to find its arguments; it is a candidate
3683 for leaf treatment if it uses only the "input" registers.
3684 Leaf function treatment means renumbering so the function
3685 uses the "output" registers instead. */
3687 #ifdef LEAF_REGISTERS
3689 /* Return 1 if this function uses only the registers that can be
3690 safely renumbered. */
3693 only_leaf_regs_used (void)
3695 int i;
3696 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3698 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3699 if ((regs_ever_live[i] || global_regs[i])
3700 && ! permitted_reg_in_leaf_functions[i])
3701 return 0;
3703 if (current_function_uses_pic_offset_table
3704 && pic_offset_table_rtx != 0
3705 && REG_P (pic_offset_table_rtx)
3706 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3707 return 0;
3709 return 1;
3712 /* Scan all instructions and renumber all registers into those
3713 available in leaf functions. */
3715 static void
3716 leaf_renumber_regs (rtx first)
3718 rtx insn;
3720 /* Renumber only the actual patterns.
3721 The reg-notes can contain frame pointer refs,
3722 and renumbering them could crash, and should not be needed. */
3723 for (insn = first; insn; insn = NEXT_INSN (insn))
3724 if (INSN_P (insn))
3725 leaf_renumber_regs_insn (PATTERN (insn));
3726 for (insn = current_function_epilogue_delay_list;
3727 insn;
3728 insn = XEXP (insn, 1))
3729 if (INSN_P (XEXP (insn, 0)))
3730 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3733 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3734 available in leaf functions. */
3736 void
3737 leaf_renumber_regs_insn (rtx in_rtx)
3739 int i, j;
3740 const char *format_ptr;
3742 if (in_rtx == 0)
3743 return;
3745 /* Renumber all input-registers into output-registers.
3746 renumbered_regs would be 1 for an output-register;
3747 they */
3749 if (REG_P (in_rtx))
3751 int newreg;
3753 /* Don't renumber the same reg twice. */
3754 if (in_rtx->used)
3755 return;
3757 newreg = REGNO (in_rtx);
3758 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3759 to reach here as part of a REG_NOTE. */
3760 if (newreg >= FIRST_PSEUDO_REGISTER)
3762 in_rtx->used = 1;
3763 return;
3765 newreg = LEAF_REG_REMAP (newreg);
3766 gcc_assert (newreg >= 0);
3767 regs_ever_live[REGNO (in_rtx)] = 0;
3768 regs_ever_live[newreg] = 1;
3769 REGNO (in_rtx) = newreg;
3770 in_rtx->used = 1;
3773 if (INSN_P (in_rtx))
3775 /* Inside a SEQUENCE, we find insns.
3776 Renumber just the patterns of these insns,
3777 just as we do for the top-level insns. */
3778 leaf_renumber_regs_insn (PATTERN (in_rtx));
3779 return;
3782 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3784 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3785 switch (*format_ptr++)
3787 case 'e':
3788 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3789 break;
3791 case 'E':
3792 if (NULL != XVEC (in_rtx, i))
3794 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3795 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3797 break;
3799 case 'S':
3800 case 's':
3801 case '0':
3802 case 'i':
3803 case 'w':
3804 case 'n':
3805 case 'u':
3806 break;
3808 default:
3809 gcc_unreachable ();
3812 #endif
3815 /* When -gused is used, emit debug info for only used symbols. But in
3816 addition to the standard intercepted debug_hooks there are some direct
3817 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3818 Those routines may also be called from a higher level intercepted routine. So
3819 to prevent recording data for an inner call to one of these for an intercept,
3820 we maintain an intercept nesting counter (debug_nesting). We only save the
3821 intercepted arguments if the nesting is 1. */
3822 int debug_nesting = 0;
3824 static tree *symbol_queue;
3825 int symbol_queue_index = 0;
3826 static int symbol_queue_size = 0;
3828 /* Generate the symbols for any queued up type symbols we encountered
3829 while generating the type info for some originally used symbol.
3830 This might generate additional entries in the queue. Only when
3831 the nesting depth goes to 0 is this routine called. */
3833 void
3834 debug_flush_symbol_queue (void)
3836 int i;
3838 /* Make sure that additionally queued items are not flushed
3839 prematurely. */
3841 ++debug_nesting;
3843 for (i = 0; i < symbol_queue_index; ++i)
3845 /* If we pushed queued symbols then such symbols must be
3846 output no matter what anyone else says. Specifically,
3847 we need to make sure dbxout_symbol() thinks the symbol was
3848 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3849 which may be set for outside reasons. */
3850 int saved_tree_used = TREE_USED (symbol_queue[i]);
3851 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3852 TREE_USED (symbol_queue[i]) = 1;
3853 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3855 #ifdef DBX_DEBUGGING_INFO
3856 dbxout_symbol (symbol_queue[i], 0);
3857 #endif
3859 TREE_USED (symbol_queue[i]) = saved_tree_used;
3860 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3863 symbol_queue_index = 0;
3864 --debug_nesting;
3867 /* Queue a type symbol needed as part of the definition of a decl
3868 symbol. These symbols are generated when debug_flush_symbol_queue()
3869 is called. */
3871 void
3872 debug_queue_symbol (tree decl)
3874 if (symbol_queue_index >= symbol_queue_size)
3876 symbol_queue_size += 10;
3877 symbol_queue = xrealloc (symbol_queue,
3878 symbol_queue_size * sizeof (tree));
3881 symbol_queue[symbol_queue_index++] = decl;
3884 /* Free symbol queue. */
3885 void
3886 debug_free_queue (void)
3888 if (symbol_queue)
3890 free (symbol_queue);
3891 symbol_queue = NULL;
3892 symbol_queue_size = 0;
3896 /* Turn the RTL into assembly. */
3897 static unsigned int
3898 rest_of_handle_final (void)
3900 rtx x;
3901 const char *fnname;
3903 /* Get the function's name, as described by its RTL. This may be
3904 different from the DECL_NAME name used in the source file. */
3906 x = DECL_RTL (current_function_decl);
3907 gcc_assert (MEM_P (x));
3908 x = XEXP (x, 0);
3909 gcc_assert (GET_CODE (x) == SYMBOL_REF);
3910 fnname = XSTR (x, 0);
3912 assemble_start_function (current_function_decl, fnname);
3913 final_start_function (get_insns (), asm_out_file, optimize);
3914 final (get_insns (), asm_out_file, optimize);
3915 final_end_function ();
3917 #ifdef TARGET_UNWIND_INFO
3918 /* ??? The IA-64 ".handlerdata" directive must be issued before
3919 the ".endp" directive that closes the procedure descriptor. */
3920 output_function_exception_table (fnname);
3921 #endif
3923 assemble_end_function (current_function_decl, fnname);
3925 #ifndef TARGET_UNWIND_INFO
3926 /* Otherwise, it feels unclean to switch sections in the middle. */
3927 output_function_exception_table (fnname);
3928 #endif
3930 user_defined_section_attribute = false;
3932 if (! quiet_flag)
3933 fflush (asm_out_file);
3935 /* Release all memory allocated by flow. */
3936 free_basic_block_vars ();
3938 /* Write DBX symbols if requested. */
3940 /* Note that for those inline functions where we don't initially
3941 know for certain that we will be generating an out-of-line copy,
3942 the first invocation of this routine (rest_of_compilation) will
3943 skip over this code by doing a `goto exit_rest_of_compilation;'.
3944 Later on, wrapup_global_declarations will (indirectly) call
3945 rest_of_compilation again for those inline functions that need
3946 to have out-of-line copies generated. During that call, we
3947 *will* be routed past here. */
3949 timevar_push (TV_SYMOUT);
3950 (*debug_hooks->function_decl) (current_function_decl);
3951 timevar_pop (TV_SYMOUT);
3952 return 0;
3955 struct tree_opt_pass pass_final =
3957 NULL, /* name */
3958 NULL, /* gate */
3959 rest_of_handle_final, /* execute */
3960 NULL, /* sub */
3961 NULL, /* next */
3962 0, /* static_pass_number */
3963 TV_FINAL, /* tv_id */
3964 0, /* properties_required */
3965 0, /* properties_provided */
3966 0, /* properties_destroyed */
3967 0, /* todo_flags_start */
3968 TODO_ggc_collect, /* todo_flags_finish */
3969 0 /* letter */
3973 static unsigned int
3974 rest_of_handle_shorten_branches (void)
3976 /* Shorten branches. */
3977 shorten_branches (get_insns ());
3978 return 0;
3981 struct tree_opt_pass pass_shorten_branches =
3983 "shorten", /* name */
3984 NULL, /* gate */
3985 rest_of_handle_shorten_branches, /* execute */
3986 NULL, /* sub */
3987 NULL, /* next */
3988 0, /* static_pass_number */
3989 TV_FINAL, /* tv_id */
3990 0, /* properties_required */
3991 0, /* properties_provided */
3992 0, /* properties_destroyed */
3993 0, /* todo_flags_start */
3994 TODO_dump_func, /* todo_flags_finish */
3995 0 /* letter */
3999 static unsigned int
4000 rest_of_clean_state (void)
4002 rtx insn, next;
4004 /* It is very important to decompose the RTL instruction chain here:
4005 debug information keeps pointing into CODE_LABEL insns inside the function
4006 body. If these remain pointing to the other insns, we end up preserving
4007 whole RTL chain and attached detailed debug info in memory. */
4008 for (insn = get_insns (); insn; insn = next)
4010 next = NEXT_INSN (insn);
4011 NEXT_INSN (insn) = NULL;
4012 PREV_INSN (insn) = NULL;
4015 /* In case the function was not output,
4016 don't leave any temporary anonymous types
4017 queued up for sdb output. */
4018 #ifdef SDB_DEBUGGING_INFO
4019 if (write_symbols == SDB_DEBUG)
4020 sdbout_types (NULL_TREE);
4021 #endif
4023 reload_completed = 0;
4024 epilogue_completed = 0;
4025 flow2_completed = 0;
4026 no_new_pseudos = 0;
4027 #ifdef STACK_REGS
4028 regstack_completed = 0;
4029 #endif
4031 /* Clear out the insn_length contents now that they are no
4032 longer valid. */
4033 init_insn_lengths ();
4035 /* Show no temporary slots allocated. */
4036 init_temp_slots ();
4038 free_basic_block_vars ();
4039 free_bb_for_insn ();
4042 if (targetm.binds_local_p (current_function_decl))
4044 int pref = cfun->preferred_stack_boundary;
4045 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4046 pref = cfun->stack_alignment_needed;
4047 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4048 = pref;
4051 /* Make sure volatile mem refs aren't considered valid operands for
4052 arithmetic insns. We must call this here if this is a nested inline
4053 function, since the above code leaves us in the init_recog state,
4054 and the function context push/pop code does not save/restore volatile_ok.
4056 ??? Maybe it isn't necessary for expand_start_function to call this
4057 anymore if we do it here? */
4059 init_recog_no_volatile ();
4061 /* We're done with this function. Free up memory if we can. */
4062 free_after_parsing (cfun);
4063 free_after_compilation (cfun);
4064 return 0;
4067 struct tree_opt_pass pass_clean_state =
4069 NULL, /* name */
4070 NULL, /* gate */
4071 rest_of_clean_state, /* execute */
4072 NULL, /* sub */
4073 NULL, /* next */
4074 0, /* static_pass_number */
4075 TV_FINAL, /* tv_id */
4076 0, /* properties_required */
4077 0, /* properties_provided */
4078 PROP_rtl, /* properties_destroyed */
4079 0, /* todo_flags_start */
4080 0, /* todo_flags_finish */
4081 0 /* letter */