* c-decl.c (finish_decl): Don't set DECL_C_HARD_REGISTER for
[official-gcc.git] / boehm-gc / os_dep.c
bloba192d35a21ac49d234bf590b38e5d0f9266d3b9e
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 # include "gc_priv.h"
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
26 # define __KERNEL__
27 # include <asm/signal.h>
28 # undef __KERNEL__
29 # else
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
35 # if 2 <= __GLIBC__
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
46 # endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS)
49 # include <sys/types.h>
50 # if !defined(MSWIN32) && !defined(SUNOS4)
51 # include <unistd.h>
52 # endif
53 # endif
55 # include <stdio.h>
56 # include <signal.h>
58 /* Blatantly OS dependent routines, except for those that are related */
59 /* to dynamic loading. */
61 # if !defined(THREADS) && !defined(STACKBOTTOM) && defined(HEURISTIC2)
62 # define NEED_FIND_LIMIT
63 # endif
65 # if defined(IRIX_THREADS) || defined(HPUX_THREADS)
66 # define NEED_FIND_LIMIT
67 # endif
69 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
70 # define NEED_FIND_LIMIT
71 # endif
73 # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
74 # define NEED_FIND_LIMIT
75 # endif
77 # if defined(LINUX) && \
78 (defined(POWERPC) || defined(SPARC) || defined(ALPHA) || defined(IA64) \
79 || defined(MIPS))
80 # define NEED_FIND_LIMIT
81 # endif
83 #ifdef NEED_FIND_LIMIT
84 # include <setjmp.h>
85 #endif
87 #ifdef FREEBSD
88 # include <machine/trap.h>
89 #endif
91 #ifdef AMIGA
92 # include <proto/exec.h>
93 # include <proto/dos.h>
94 # include <dos/dosextens.h>
95 # include <workbench/startup.h>
96 #endif
98 #ifdef MSWIN32
99 # define WIN32_LEAN_AND_MEAN
100 # define NOSERVICE
101 # include <windows.h>
102 #endif
104 #ifdef MACOS
105 # include <Processes.h>
106 #endif
108 #ifdef IRIX5
109 # include <sys/uio.h>
110 # include <malloc.h> /* for locking */
111 #endif
112 #ifdef USE_MMAP
113 # include <sys/types.h>
114 # include <sys/mman.h>
115 # include <sys/stat.h>
116 # include <fcntl.h>
117 #endif
119 #ifdef SUNOS5SIGS
120 # include <sys/siginfo.h>
121 # undef setjmp
122 # undef longjmp
123 # define setjmp(env) sigsetjmp(env, 1)
124 # define longjmp(env, val) siglongjmp(env, val)
125 # define jmp_buf sigjmp_buf
126 #endif
128 #ifdef DJGPP
129 /* Apparently necessary for djgpp 2.01. May casuse problems with */
130 /* other versions. */
131 typedef long unsigned int caddr_t;
132 #endif
134 #ifdef PCR
135 # include "il/PCR_IL.h"
136 # include "th/PCR_ThCtl.h"
137 # include "mm/PCR_MM.h"
138 #endif
140 #if !defined(NO_EXECUTE_PERMISSION)
141 # define OPT_PROT_EXEC PROT_EXEC
142 #else
143 # define OPT_PROT_EXEC 0
144 #endif
146 #if defined(SEARCH_FOR_DATA_START)
147 /* The I386 case can be handled without a search. The Alpha case */
148 /* used to be handled differently as well, but the rules changed */
149 /* for recent Linux versions. This seems to be the easiest way to */
150 /* cover all versions. */
152 # ifdef LINUX
153 # pragma weak __data_start
154 extern int __data_start;
155 # pragma weak data_start
156 extern int data_start;
157 # endif /* LINUX */
158 extern int _end;
160 ptr_t GC_data_start;
162 void GC_init_linux_data_start()
164 extern ptr_t GC_find_limit();
166 # ifdef LINUX
167 /* Try the easy approaches first: */
168 if (&__data_start != 0) {
169 GC_data_start = (ptr_t)(&__data_start);
170 return;
172 if (&data_start != 0) {
173 GC_data_start = (ptr_t)(&data_start);
174 return;
176 # endif /* LINUX */
177 GC_data_start = GC_find_limit((ptr_t)(&_end), FALSE);
179 #endif
181 # ifdef ECOS
183 # ifndef ECOS_GC_MEMORY_SIZE
184 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
185 # endif /* ECOS_GC_MEMORY_SIZE */
187 // setjmp() function, as described in ANSI para 7.6.1.1
188 #define setjmp( __env__ ) hal_setjmp( __env__ )
190 // FIXME: This is a simple way of allocating memory which is
191 // compatible with ECOS early releases. Later releases use a more
192 // sophisticated means of allocating memory than this simple static
193 // allocator, but this method is at least bound to work.
194 static char memory[ECOS_GC_MEMORY_SIZE];
195 static char *brk = memory;
197 static void *tiny_sbrk(ptrdiff_t increment)
199 void *p = brk;
201 brk += increment;
203 if (brk > memory + sizeof memory)
205 brk -= increment;
206 return NULL;
209 return p;
211 #define sbrk tiny_sbrk
212 # endif /* ECOS */
214 # ifdef OS2
216 # include <stddef.h>
218 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
220 struct exe_hdr {
221 unsigned short magic_number;
222 unsigned short padding[29];
223 long new_exe_offset;
226 #define E_MAGIC(x) (x).magic_number
227 #define EMAGIC 0x5A4D
228 #define E_LFANEW(x) (x).new_exe_offset
230 struct e32_exe {
231 unsigned char magic_number[2];
232 unsigned char byte_order;
233 unsigned char word_order;
234 unsigned long exe_format_level;
235 unsigned short cpu;
236 unsigned short os;
237 unsigned long padding1[13];
238 unsigned long object_table_offset;
239 unsigned long object_count;
240 unsigned long padding2[31];
243 #define E32_MAGIC1(x) (x).magic_number[0]
244 #define E32MAGIC1 'L'
245 #define E32_MAGIC2(x) (x).magic_number[1]
246 #define E32MAGIC2 'X'
247 #define E32_BORDER(x) (x).byte_order
248 #define E32LEBO 0
249 #define E32_WORDER(x) (x).word_order
250 #define E32LEWO 0
251 #define E32_CPU(x) (x).cpu
252 #define E32CPU286 1
253 #define E32_OBJTAB(x) (x).object_table_offset
254 #define E32_OBJCNT(x) (x).object_count
256 struct o32_obj {
257 unsigned long size;
258 unsigned long base;
259 unsigned long flags;
260 unsigned long pagemap;
261 unsigned long mapsize;
262 unsigned long reserved;
265 #define O32_FLAGS(x) (x).flags
266 #define OBJREAD 0x0001L
267 #define OBJWRITE 0x0002L
268 #define OBJINVALID 0x0080L
269 #define O32_SIZE(x) (x).size
270 #define O32_BASE(x) (x).base
272 # else /* IBM's compiler */
274 /* A kludge to get around what appears to be a header file bug */
275 # ifndef WORD
276 # define WORD unsigned short
277 # endif
278 # ifndef DWORD
279 # define DWORD unsigned long
280 # endif
282 # define EXE386 1
283 # include <newexe.h>
284 # include <exe386.h>
286 # endif /* __IBMC__ */
288 # define INCL_DOSEXCEPTIONS
289 # define INCL_DOSPROCESS
290 # define INCL_DOSERRORS
291 # define INCL_DOSMODULEMGR
292 # define INCL_DOSMEMMGR
293 # include <os2.h>
296 /* Disable and enable signals during nontrivial allocations */
298 void GC_disable_signals(void)
300 ULONG nest;
302 DosEnterMustComplete(&nest);
303 if (nest != 1) ABORT("nested GC_disable_signals");
306 void GC_enable_signals(void)
308 ULONG nest;
310 DosExitMustComplete(&nest);
311 if (nest != 0) ABORT("GC_enable_signals");
315 # else
317 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
318 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
319 && !defined(NO_SIGSET)
321 # if defined(sigmask) && !defined(UTS4)
322 /* Use the traditional BSD interface */
323 # define SIGSET_T int
324 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
325 # define SIG_FILL(set) (set) = 0x7fffffff
326 /* Setting the leading bit appears to provoke a bug in some */
327 /* longjmp implementations. Most systems appear not to have */
328 /* a signal 32. */
329 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
330 # else
331 /* Use POSIX/SYSV interface */
332 # define SIGSET_T sigset_t
333 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
334 # define SIG_FILL(set) sigfillset(&set)
335 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
336 # endif
338 static GC_bool mask_initialized = FALSE;
340 static SIGSET_T new_mask;
342 static SIGSET_T old_mask;
344 static SIGSET_T dummy;
346 #if defined(PRINTSTATS) && !defined(THREADS)
347 # define CHECK_SIGNALS
348 int GC_sig_disabled = 0;
349 #endif
351 void GC_disable_signals()
353 if (!mask_initialized) {
354 SIG_FILL(new_mask);
356 SIG_DEL(new_mask, SIGSEGV);
357 SIG_DEL(new_mask, SIGILL);
358 SIG_DEL(new_mask, SIGQUIT);
359 # ifdef SIGBUS
360 SIG_DEL(new_mask, SIGBUS);
361 # endif
362 # ifdef SIGIOT
363 SIG_DEL(new_mask, SIGIOT);
364 # endif
365 # ifdef SIGEMT
366 SIG_DEL(new_mask, SIGEMT);
367 # endif
368 # ifdef SIGTRAP
369 SIG_DEL(new_mask, SIGTRAP);
370 # endif
371 mask_initialized = TRUE;
373 # ifdef CHECK_SIGNALS
374 if (GC_sig_disabled != 0) ABORT("Nested disables");
375 GC_sig_disabled++;
376 # endif
377 SIGSETMASK(old_mask,new_mask);
380 void GC_enable_signals()
382 # ifdef CHECK_SIGNALS
383 if (GC_sig_disabled != 1) ABORT("Unmatched enable");
384 GC_sig_disabled--;
385 # endif
386 SIGSETMASK(dummy,old_mask);
389 # endif /* !PCR */
391 # endif /*!OS/2 */
393 /* Ivan Demakov: simplest way (to me) */
394 #if defined (DOS4GW) || defined (NO_SIGSET)
395 void GC_disable_signals() { }
396 void GC_enable_signals() { }
397 #endif
399 /* Find the page size */
400 word GC_page_size;
402 # ifdef MSWIN32
403 void GC_setpagesize()
405 SYSTEM_INFO sysinfo;
407 GetSystemInfo(&sysinfo);
408 GC_page_size = sysinfo.dwPageSize;
411 # else
412 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
413 || defined(USE_MUNMAP)
414 void GC_setpagesize()
416 GC_page_size = GETPAGESIZE();
418 # else
419 /* It's acceptable to fake it. */
420 void GC_setpagesize()
422 GC_page_size = HBLKSIZE;
424 # endif
425 # endif
428 * Find the base of the stack.
429 * Used only in single-threaded environment.
430 * With threads, GC_mark_roots needs to know how to do this.
431 * Called with allocator lock held.
433 # ifdef MSWIN32
434 # define is_writable(prot) ((prot) == PAGE_READWRITE \
435 || (prot) == PAGE_WRITECOPY \
436 || (prot) == PAGE_EXECUTE_READWRITE \
437 || (prot) == PAGE_EXECUTE_WRITECOPY)
438 /* Return the number of bytes that are writable starting at p. */
439 /* The pointer p is assumed to be page aligned. */
440 /* If base is not 0, *base becomes the beginning of the */
441 /* allocation region containing p. */
442 word GC_get_writable_length(ptr_t p, ptr_t *base)
444 MEMORY_BASIC_INFORMATION buf;
445 word result;
446 word protect;
448 result = VirtualQuery(p, &buf, sizeof(buf));
449 if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
450 if (base != 0) *base = (ptr_t)(buf.AllocationBase);
451 protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
452 if (!is_writable(protect)) {
453 return(0);
455 if (buf.State != MEM_COMMIT) return(0);
456 return(buf.RegionSize);
459 ptr_t GC_get_stack_base()
461 int dummy;
462 ptr_t sp = (ptr_t)(&dummy);
463 ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
464 word size = GC_get_writable_length(trunc_sp, 0);
466 return(trunc_sp + size);
470 # else
472 # ifdef OS2
474 ptr_t GC_get_stack_base()
476 PTIB ptib;
477 PPIB ppib;
479 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
480 GC_err_printf0("DosGetInfoBlocks failed\n");
481 ABORT("DosGetInfoBlocks failed\n");
483 return((ptr_t)(ptib -> tib_pstacklimit));
486 # else
488 # ifdef AMIGA
490 ptr_t GC_get_stack_base()
492 struct Process *proc = (struct Process*)SysBase->ThisTask;
494 /* Reference: Amiga Guru Book Pages: 42,567,574 */
495 if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS
496 && proc->pr_CLI != NULL) {
497 /* first ULONG is StackSize */
498 /*longPtr = proc->pr_ReturnAddr;
499 size = longPtr[0];*/
501 return (char *)proc->pr_ReturnAddr + sizeof(ULONG);
502 } else {
503 return (char *)proc->pr_Task.tc_SPUpper;
507 #if 0 /* old version */
508 ptr_t GC_get_stack_base()
510 extern struct WBStartup *_WBenchMsg;
511 extern long __base;
512 extern long __stack;
513 struct Task *task;
514 struct Process *proc;
515 struct CommandLineInterface *cli;
516 long size;
518 if ((task = FindTask(0)) == 0) {
519 GC_err_puts("Cannot find own task structure\n");
520 ABORT("task missing");
522 proc = (struct Process *)task;
523 cli = BADDR(proc->pr_CLI);
525 if (_WBenchMsg != 0 || cli == 0) {
526 size = (char *)task->tc_SPUpper - (char *)task->tc_SPLower;
527 } else {
528 size = cli->cli_DefaultStack * 4;
530 return (ptr_t)(__base + GC_max(size, __stack));
532 #endif /* 0 */
534 # else /* !AMIGA, !OS2, ... */
536 # ifdef NEED_FIND_LIMIT
537 /* Some tools to implement HEURISTIC2 */
538 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
539 /* static */ jmp_buf GC_jmp_buf;
541 /*ARGSUSED*/
542 void GC_fault_handler(sig)
543 int sig;
545 longjmp(GC_jmp_buf, 1);
548 # ifdef __STDC__
549 typedef void (*handler)(int);
550 # else
551 typedef void (*handler)();
552 # endif
554 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
555 static struct sigaction old_segv_act;
556 # if defined(_sigargs) || defined(HPUX) /* !Irix6.x */
557 static struct sigaction old_bus_act;
558 # endif
559 # else
560 static handler old_segv_handler, old_bus_handler;
561 # endif
563 void GC_setup_temporary_fault_handler()
565 # ifndef ECOS
566 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
567 struct sigaction act;
569 act.sa_handler = GC_fault_handler;
570 act.sa_flags = SA_RESTART | SA_NODEFER;
571 /* The presence of SA_NODEFER represents yet another gross */
572 /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */
573 /* interact correctly with -lthread. We hide the confusion */
574 /* by making sure that signal handling doesn't affect the */
575 /* signal mask. */
577 (void) sigemptyset(&act.sa_mask);
578 # ifdef IRIX_THREADS
579 /* Older versions have a bug related to retrieving and */
580 /* and setting a handler at the same time. */
581 (void) sigaction(SIGSEGV, 0, &old_segv_act);
582 (void) sigaction(SIGSEGV, &act, 0);
583 # else
584 (void) sigaction(SIGSEGV, &act, &old_segv_act);
585 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
586 || defined(HPUX)
587 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
588 /* Pthreads doesn't exist under Irix 5.x, so we */
589 /* don't have to worry in the threads case. */
590 (void) sigaction(SIGBUS, &act, &old_bus_act);
591 # endif
592 # endif /* IRIX_THREADS */
593 # else
594 old_segv_handler = signal(SIGSEGV, GC_fault_handler);
595 # ifdef SIGBUS
596 old_bus_handler = signal(SIGBUS, GC_fault_handler);
597 # endif
598 # endif
599 # endif /* ECOS */
602 void GC_reset_fault_handler()
604 # ifndef ECOS
605 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
606 (void) sigaction(SIGSEGV, &old_segv_act, 0);
607 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
608 || defined(HPUX)
609 (void) sigaction(SIGBUS, &old_bus_act, 0);
610 # endif
611 # else
612 (void) signal(SIGSEGV, old_segv_handler);
613 # ifdef SIGBUS
614 (void) signal(SIGBUS, old_bus_handler);
615 # endif
616 # endif
617 # endif /* ECOS */
620 /* Return the first nonaddressible location > p (up) or */
621 /* the smallest location q s.t. [q,p] is addressible (!up). */
622 ptr_t GC_find_limit(p, up)
623 ptr_t p;
624 GC_bool up;
626 # ifndef ECOS
627 static VOLATILE ptr_t result;
628 /* Needs to be static, since otherwise it may not be */
629 /* preserved across the longjmp. Can safely be */
630 /* static since it's only called once, with the */
631 /* allocation lock held. */
634 GC_setup_temporary_fault_handler();
635 if (setjmp(GC_jmp_buf) == 0) {
636 result = (ptr_t)(((word)(p))
637 & ~(MIN_PAGE_SIZE-1));
638 for (;;) {
639 if (up) {
640 result += MIN_PAGE_SIZE;
641 } else {
642 result -= MIN_PAGE_SIZE;
644 GC_noop1((word)(*result));
647 GC_reset_fault_handler();
648 if (!up) {
649 result += MIN_PAGE_SIZE;
651 return(result);
652 # else /* ECOS */
653 abort();
654 # endif /* ECOS */
656 # endif
658 # ifndef ECOS
660 #ifdef LINUX_STACKBOTTOM
662 #include <sys/types.h>
663 #include <sys/stat.h>
664 #include <fcntl.h>
666 # define STAT_SKIP 27 /* Number of fields preceding startstack */
667 /* field in /proc/self/stat */
669 ptr_t GC_linux_stack_base(void)
671 /* We read the stack base value from /proc/self/stat. We do this */
672 /* using direct I/O system calls in order to avoid calling malloc */
673 /* in case REDIRECT_MALLOC is defined. */
674 # define STAT_BUF_SIZE 4096
675 # ifdef USE_LD_WRAP
676 # define STAT_READ __real_read
677 # else
678 # define STAT_READ read
679 # endif
680 char stat_buf[STAT_BUF_SIZE];
681 int f;
682 char c;
683 word result = 0;
684 size_t i, buf_offset = 0;
686 f = open("/proc/self/stat", O_RDONLY);
687 if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
688 ABORT("Couldn't read /proc/self/stat");
690 c = stat_buf[buf_offset++];
691 /* Skip the required number of fields. This number is hopefully */
692 /* constant across all Linux implementations. */
693 for (i = 0; i < STAT_SKIP; ++i) {
694 while (isspace(c)) c = stat_buf[buf_offset++];
695 while (!isspace(c)) c = stat_buf[buf_offset++];
697 while (isspace(c)) c = stat_buf[buf_offset++];
698 while (isdigit(c)) {
699 result *= 10;
700 result += c - '0';
701 c = stat_buf[buf_offset++];
703 close(f);
704 if (result < 0x10000000) ABORT("Absurd stack bottom value");
705 return (ptr_t)result;
708 #endif /* LINUX_STACKBOTTOM */
710 ptr_t GC_get_stack_base()
712 word dummy;
713 ptr_t result;
715 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
717 # if defined(STACKBASE)
718 extern ptr_t STACKBASE;
719 return(STACKBASE);
720 # else
721 # ifdef STACKBOTTOM
722 return(STACKBOTTOM);
723 # else
724 # ifdef HEURISTIC1
725 # ifdef STACK_GROWS_DOWN
726 result = (ptr_t)((((word)(&dummy))
727 + STACKBOTTOM_ALIGNMENT_M1)
728 & ~STACKBOTTOM_ALIGNMENT_M1);
729 # else
730 result = (ptr_t)(((word)(&dummy))
731 & ~STACKBOTTOM_ALIGNMENT_M1);
732 # endif
733 # endif /* HEURISTIC1 */
734 # ifdef LINUX_STACKBOTTOM
735 result = GC_linux_stack_base();
736 # endif
737 # ifdef HEURISTIC2
738 # ifdef STACK_GROWS_DOWN
739 result = GC_find_limit((ptr_t)(&dummy), TRUE);
740 # ifdef HEURISTIC2_LIMIT
741 if (result > HEURISTIC2_LIMIT
742 && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
743 result = HEURISTIC2_LIMIT;
745 # endif
746 # else
747 result = GC_find_limit((ptr_t)(&dummy), FALSE);
748 # ifdef HEURISTIC2_LIMIT
749 if (result < HEURISTIC2_LIMIT
750 && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
751 result = HEURISTIC2_LIMIT;
753 # endif
754 # endif
756 # endif /* HEURISTIC2 */
757 # ifdef STACK_GROWS_DOWN
758 if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
759 # endif
760 return(result);
761 # endif /* STACKBOTTOM */
762 # endif /* STACKBASE */
764 # endif /* ECOS */
766 # endif /* ! AMIGA */
767 # endif /* ! OS2 */
768 # endif /* ! MSWIN32 */
771 * Register static data segment(s) as roots.
772 * If more data segments are added later then they need to be registered
773 * add that point (as we do with SunOS dynamic loading),
774 * or GC_mark_roots needs to check for them (as we do with PCR).
775 * Called with allocator lock held.
778 # ifdef OS2
780 void GC_register_data_segments()
782 PTIB ptib;
783 PPIB ppib;
784 HMODULE module_handle;
785 # define PBUFSIZ 512
786 UCHAR path[PBUFSIZ];
787 FILE * myexefile;
788 struct exe_hdr hdrdos; /* MSDOS header. */
789 struct e32_exe hdr386; /* Real header for my executable */
790 struct o32_obj seg; /* Currrent segment */
791 int nsegs;
794 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
795 GC_err_printf0("DosGetInfoBlocks failed\n");
796 ABORT("DosGetInfoBlocks failed\n");
798 module_handle = ppib -> pib_hmte;
799 if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
800 GC_err_printf0("DosQueryModuleName failed\n");
801 ABORT("DosGetInfoBlocks failed\n");
803 myexefile = fopen(path, "rb");
804 if (myexefile == 0) {
805 GC_err_puts("Couldn't open executable ");
806 GC_err_puts(path); GC_err_puts("\n");
807 ABORT("Failed to open executable\n");
809 if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
810 GC_err_puts("Couldn't read MSDOS header from ");
811 GC_err_puts(path); GC_err_puts("\n");
812 ABORT("Couldn't read MSDOS header");
814 if (E_MAGIC(hdrdos) != EMAGIC) {
815 GC_err_puts("Executable has wrong DOS magic number: ");
816 GC_err_puts(path); GC_err_puts("\n");
817 ABORT("Bad DOS magic number");
819 if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
820 GC_err_puts("Seek to new header failed in ");
821 GC_err_puts(path); GC_err_puts("\n");
822 ABORT("Bad DOS magic number");
824 if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
825 GC_err_puts("Couldn't read MSDOS header from ");
826 GC_err_puts(path); GC_err_puts("\n");
827 ABORT("Couldn't read OS/2 header");
829 if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
830 GC_err_puts("Executable has wrong OS/2 magic number:");
831 GC_err_puts(path); GC_err_puts("\n");
832 ABORT("Bad OS/2 magic number");
834 if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
835 GC_err_puts("Executable %s has wrong byte order: ");
836 GC_err_puts(path); GC_err_puts("\n");
837 ABORT("Bad byte order");
839 if ( E32_CPU(hdr386) == E32CPU286) {
840 GC_err_puts("GC can't handle 80286 executables: ");
841 GC_err_puts(path); GC_err_puts("\n");
842 EXIT();
844 if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
845 SEEK_SET) != 0) {
846 GC_err_puts("Seek to object table failed: ");
847 GC_err_puts(path); GC_err_puts("\n");
848 ABORT("Seek to object table failed");
850 for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
851 int flags;
852 if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
853 GC_err_puts("Couldn't read obj table entry from ");
854 GC_err_puts(path); GC_err_puts("\n");
855 ABORT("Couldn't read obj table entry");
857 flags = O32_FLAGS(seg);
858 if (!(flags & OBJWRITE)) continue;
859 if (!(flags & OBJREAD)) continue;
860 if (flags & OBJINVALID) {
861 GC_err_printf0("Object with invalid pages?\n");
862 continue;
864 GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
868 # else
870 # ifdef MSWIN32
871 /* Unfortunately, we have to handle win32s very differently from NT, */
872 /* Since VirtualQuery has very different semantics. In particular, */
873 /* under win32s a VirtualQuery call on an unmapped page returns an */
874 /* invalid result. Under GC_register_data_segments is a noop and */
875 /* all real work is done by GC_register_dynamic_libraries. Under */
876 /* win32s, we cannot find the data segments associated with dll's. */
877 /* We rgister the main data segment here. */
878 GC_bool GC_win32s = FALSE; /* We're running under win32s. */
880 GC_bool GC_is_win32s()
882 DWORD v = GetVersion();
884 /* Check that this is not NT, and Windows major version <= 3 */
885 return ((v & 0x80000000) && (v & 0xff) <= 3);
888 void GC_init_win32()
890 GC_win32s = GC_is_win32s();
893 /* Return the smallest address a such that VirtualQuery */
894 /* returns correct results for all addresses between a and start. */
895 /* Assumes VirtualQuery returns correct information for start. */
896 ptr_t GC_least_described_address(ptr_t start)
898 MEMORY_BASIC_INFORMATION buf;
899 SYSTEM_INFO sysinfo;
900 DWORD result;
901 LPVOID limit;
902 ptr_t p;
903 LPVOID q;
905 GetSystemInfo(&sysinfo);
906 limit = sysinfo.lpMinimumApplicationAddress;
907 p = (ptr_t)((word)start & ~(GC_page_size - 1));
908 for (;;) {
909 q = (LPVOID)(p - GC_page_size);
910 if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
911 result = VirtualQuery(q, &buf, sizeof(buf));
912 if (result != sizeof(buf) || buf.AllocationBase == 0) break;
913 p = (ptr_t)(buf.AllocationBase);
915 return(p);
918 /* Is p the start of either the malloc heap, or of one of our */
919 /* heap sections? */
920 GC_bool GC_is_heap_base (ptr_t p)
923 register unsigned i;
925 # ifndef REDIRECT_MALLOC
926 static ptr_t malloc_heap_pointer = 0;
928 if (0 == malloc_heap_pointer) {
929 MEMORY_BASIC_INFORMATION buf;
930 register DWORD result = VirtualQuery(malloc(1), &buf, sizeof(buf));
932 if (result != sizeof(buf)) {
933 ABORT("Weird VirtualQuery result");
935 malloc_heap_pointer = (ptr_t)(buf.AllocationBase);
937 if (p == malloc_heap_pointer) return(TRUE);
938 # endif
939 for (i = 0; i < GC_n_heap_bases; i++) {
940 if (GC_heap_bases[i] == p) return(TRUE);
942 return(FALSE);
945 void GC_register_root_section(ptr_t static_root)
947 MEMORY_BASIC_INFORMATION buf;
948 SYSTEM_INFO sysinfo;
949 DWORD result;
950 DWORD protect;
951 LPVOID p;
952 char * base;
953 char * limit, * new_limit;
955 if (!GC_win32s) return;
956 p = base = limit = GC_least_described_address(static_root);
957 GetSystemInfo(&sysinfo);
958 while (p < sysinfo.lpMaximumApplicationAddress) {
959 result = VirtualQuery(p, &buf, sizeof(buf));
960 if (result != sizeof(buf) || buf.AllocationBase == 0
961 || GC_is_heap_base(buf.AllocationBase)) break;
962 new_limit = (char *)p + buf.RegionSize;
963 protect = buf.Protect;
964 if (buf.State == MEM_COMMIT
965 && is_writable(protect)) {
966 if ((char *)p == limit) {
967 limit = new_limit;
968 } else {
969 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
970 base = p;
971 limit = new_limit;
974 if (p > (LPVOID)new_limit /* overflow */) break;
975 p = (LPVOID)new_limit;
977 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
980 void GC_register_data_segments()
982 static char dummy;
984 GC_register_root_section((ptr_t)(&dummy));
986 # else
987 # ifdef AMIGA
989 void GC_register_data_segments()
991 struct Process *proc;
992 struct CommandLineInterface *cli;
993 BPTR myseglist;
994 ULONG *data;
996 int num;
999 # ifdef __GNUC__
1000 ULONG dataSegSize;
1001 GC_bool found_segment = FALSE;
1002 extern char __data_size[];
1004 dataSegSize=__data_size+8;
1005 /* Can`t find the Location of __data_size, because
1006 it`s possible that is it, inside the segment. */
1008 # endif
1010 proc= (struct Process*)SysBase->ThisTask;
1012 /* Reference: Amiga Guru Book Pages: 538ff,565,573
1013 and XOper.asm */
1014 if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS) {
1015 if (proc->pr_CLI == NULL) {
1016 myseglist = proc->pr_SegList;
1017 } else {
1018 /* ProcLoaded 'Loaded as a command: '*/
1019 cli = BADDR(proc->pr_CLI);
1020 myseglist = cli->cli_Module;
1022 } else {
1023 ABORT("Not a Process.");
1026 if (myseglist == NULL) {
1027 ABORT("Arrrgh.. can't find segments, aborting");
1030 /* xoper hunks Shell Process */
1032 num=0;
1033 for (data = (ULONG *)BADDR(myseglist); data != NULL;
1034 data = (ULONG *)BADDR(data[0])) {
1035 if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
1036 ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
1037 # ifdef __GNUC__
1038 if (dataSegSize == data[-1]) {
1039 found_segment = TRUE;
1041 # endif
1042 GC_add_roots_inner((char *)&data[1],
1043 ((char *)&data[1]) + data[-1], FALSE);
1045 ++num;
1046 } /* for */
1047 # ifdef __GNUC__
1048 if (!found_segment) {
1049 ABORT("Can`t find correct Segments.\nSolution: Use an newer version of ixemul.library");
1051 # endif
1054 #if 0 /* old version */
1055 void GC_register_data_segments()
1057 extern struct WBStartup *_WBenchMsg;
1058 struct Process *proc;
1059 struct CommandLineInterface *cli;
1060 BPTR myseglist;
1061 ULONG *data;
1063 if ( _WBenchMsg != 0 ) {
1064 if ((myseglist = _WBenchMsg->sm_Segment) == 0) {
1065 GC_err_puts("No seglist from workbench\n");
1066 return;
1068 } else {
1069 if ((proc = (struct Process *)FindTask(0)) == 0) {
1070 GC_err_puts("Cannot find process structure\n");
1071 return;
1073 if ((cli = BADDR(proc->pr_CLI)) == 0) {
1074 GC_err_puts("No CLI\n");
1075 return;
1077 if ((myseglist = cli->cli_Module) == 0) {
1078 GC_err_puts("No seglist from CLI\n");
1079 return;
1083 for (data = (ULONG *)BADDR(myseglist); data != 0;
1084 data = (ULONG *)BADDR(data[0])) {
1085 # ifdef AMIGA_SKIP_SEG
1086 if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
1087 ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
1088 # else
1090 # endif /* AMIGA_SKIP_SEG */
1091 GC_add_roots_inner((char *)&data[1],
1092 ((char *)&data[1]) + data[-1], FALSE);
1096 #endif /* old version */
1099 # else
1101 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1102 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1103 char * GC_SysVGetDataStart(max_page_size, etext_addr)
1104 int max_page_size;
1105 int * etext_addr;
1107 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1108 & ~(sizeof(word) - 1);
1109 /* etext rounded to word boundary */
1110 word next_page = ((text_end + (word)max_page_size - 1)
1111 & ~((word)max_page_size - 1));
1112 word page_offset = (text_end & ((word)max_page_size - 1));
1113 VOLATILE char * result = (char *)(next_page + page_offset);
1114 /* Note that this isnt equivalent to just adding */
1115 /* max_page_size to &etext if &etext is at a page boundary */
1117 GC_setup_temporary_fault_handler();
1118 if (setjmp(GC_jmp_buf) == 0) {
1119 /* Try writing to the address. */
1120 *result = *result;
1121 GC_reset_fault_handler();
1122 } else {
1123 GC_reset_fault_handler();
1124 /* We got here via a longjmp. The address is not readable. */
1125 /* This is known to happen under Solaris 2.4 + gcc, which place */
1126 /* string constants in the text segment, but after etext. */
1127 /* Use plan B. Note that we now know there is a gap between */
1128 /* text and data segments, so plan A bought us something. */
1129 result = (char *)GC_find_limit((ptr_t)(DATAEND) - MIN_PAGE_SIZE, FALSE);
1131 return((char *)result);
1133 # endif
1136 void GC_register_data_segments()
1138 # if !defined(PCR) && !defined(SRC_M3) && !defined(NEXT) && !defined(MACOS) \
1139 && !defined(MACOSX)
1140 # if defined(REDIRECT_MALLOC) && defined(SOLARIS_THREADS)
1141 /* As of Solaris 2.3, the Solaris threads implementation */
1142 /* allocates the data structure for the initial thread with */
1143 /* sbrk at process startup. It needs to be scanned, so that */
1144 /* we don't lose some malloc allocated data structures */
1145 /* hanging from it. We're on thin ice here ... */
1146 extern caddr_t sbrk();
1148 GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1149 # else
1150 GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1151 # endif
1152 # endif
1153 # if !defined(PCR) && (defined(NEXT) || defined(MACOSX))
1154 GC_add_roots_inner(DATASTART, (char *) get_end(), FALSE);
1155 # endif
1156 # if defined(MACOS)
1158 # if defined(THINK_C)
1159 extern void* GC_MacGetDataStart(void);
1160 /* globals begin above stack and end at a5. */
1161 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1162 (ptr_t)LMGetCurrentA5(), FALSE);
1163 # else
1164 # if defined(__MWERKS__)
1165 # if !__POWERPC__
1166 extern void* GC_MacGetDataStart(void);
1167 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1168 # if __option(far_data)
1169 extern void* GC_MacGetDataEnd(void);
1170 # endif
1171 /* globals begin above stack and end at a5. */
1172 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1173 (ptr_t)LMGetCurrentA5(), FALSE);
1174 /* MATTHEW: Handle Far Globals */
1175 # if __option(far_data)
1176 /* Far globals follow he QD globals: */
1177 GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1178 (ptr_t)GC_MacGetDataEnd(), FALSE);
1179 # endif
1180 # else
1181 extern char __data_start__[], __data_end__[];
1182 GC_add_roots_inner((ptr_t)&__data_start__,
1183 (ptr_t)&__data_end__, FALSE);
1184 # endif /* __POWERPC__ */
1185 # endif /* __MWERKS__ */
1186 # endif /* !THINK_C */
1188 # endif /* MACOS */
1190 /* Dynamic libraries are added at every collection, since they may */
1191 /* change. */
1194 # endif /* ! AMIGA */
1195 # endif /* ! MSWIN32 */
1196 # endif /* ! OS2 */
1199 * Auxiliary routines for obtaining memory from OS.
1202 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1203 && !defined(MSWIN32) && !defined(MACOS) && !defined(DOS4GW)
1205 # ifdef SUNOS4
1206 extern caddr_t sbrk();
1207 # endif
1208 # ifdef __STDC__
1209 # define SBRK_ARG_T ptrdiff_t
1210 # else
1211 # define SBRK_ARG_T int
1212 # endif
1214 # ifdef RS6000
1215 /* The compiler seems to generate speculative reads one past the end of */
1216 /* an allocated object. Hence we need to make sure that the page */
1217 /* following the last heap page is also mapped. */
1218 ptr_t GC_unix_get_mem(bytes)
1219 word bytes;
1221 caddr_t cur_brk = (caddr_t)sbrk(0);
1222 caddr_t result;
1223 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1224 static caddr_t my_brk_val = 0;
1226 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1227 if (lsbs != 0) {
1228 if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1230 if (cur_brk == my_brk_val) {
1231 /* Use the extra block we allocated last time. */
1232 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1233 if (result == (caddr_t)(-1)) return(0);
1234 result -= GC_page_size;
1235 } else {
1236 result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1237 if (result == (caddr_t)(-1)) return(0);
1239 my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1240 return((ptr_t)result);
1243 #else /* Not RS6000 */
1245 #if defined(USE_MMAP)
1246 /* Tested only under IRIX5 and Solaris 2 */
1248 #ifdef USE_MMAP_FIXED
1249 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1250 /* Seems to yield better performance on Solaris 2, but can */
1251 /* be unreliable if something is already mapped at the address. */
1252 #else
1253 # define GC_MMAP_FLAGS MAP_PRIVATE
1254 #endif
1256 ptr_t GC_unix_get_mem(bytes)
1257 word bytes;
1259 static GC_bool initialized = FALSE;
1260 static int fd;
1261 void *result;
1262 static ptr_t last_addr = HEAP_START;
1264 if (!initialized) {
1265 fd = open("/dev/zero", O_RDONLY);
1266 initialized = TRUE;
1268 if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1269 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1270 GC_MMAP_FLAGS, fd, 0/* offset */);
1271 if (result == MAP_FAILED) return(0);
1272 last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1273 last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1274 return((ptr_t)result);
1277 #else /* Not RS6000, not USE_MMAP */
1278 ptr_t GC_unix_get_mem(bytes)
1279 word bytes;
1281 ptr_t result;
1282 # ifdef IRIX5
1283 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1284 /* The equivalent may be needed on other systems as well. */
1285 __LOCK_MALLOC();
1286 # endif
1288 ptr_t cur_brk = (ptr_t)sbrk(0);
1289 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1291 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1292 if (lsbs != 0) {
1293 if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1295 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1296 if (result == (ptr_t)(-1)) result = 0;
1298 # ifdef IRIX5
1299 __UNLOCK_MALLOC();
1300 # endif
1301 return(result);
1304 #endif /* Not USE_MMAP */
1305 #endif /* Not RS6000 */
1307 # endif /* UN*X */
1309 # ifdef OS2
1311 void * os2_alloc(size_t bytes)
1313 void * result;
1315 if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1316 PAG_WRITE | PAG_COMMIT)
1317 != NO_ERROR) {
1318 return(0);
1320 if (result == 0) return(os2_alloc(bytes));
1321 return(result);
1324 # endif /* OS2 */
1327 # ifdef MSWIN32
1328 word GC_n_heap_bases = 0;
1330 ptr_t GC_win32_get_mem(bytes)
1331 word bytes;
1333 ptr_t result;
1335 if (GC_win32s) {
1336 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1337 /* There are also unconfirmed rumors of other */
1338 /* problems, so we dodge the issue. */
1339 result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1340 result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1341 } else {
1342 result = (ptr_t) VirtualAlloc(NULL, bytes,
1343 MEM_COMMIT | MEM_RESERVE,
1344 PAGE_EXECUTE_READWRITE);
1346 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1347 /* If I read the documentation correctly, this can */
1348 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1349 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1350 GC_heap_bases[GC_n_heap_bases++] = result;
1351 return(result);
1354 void GC_win32_free_heap ()
1356 if (GC_win32s) {
1357 while (GC_n_heap_bases > 0) {
1358 GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1359 GC_heap_bases[GC_n_heap_bases] = 0;
1365 # endif
1367 #ifdef USE_MUNMAP
1369 /* For now, this only works on some Unix-like systems. If you */
1370 /* have something else, don't define USE_MUNMAP. */
1371 /* We assume ANSI C to support this feature. */
1372 #include <unistd.h>
1373 #include <sys/mman.h>
1374 #include <sys/stat.h>
1375 #include <sys/types.h>
1376 #include <fcntl.h>
1378 /* Compute a page aligned starting address for the unmap */
1379 /* operation on a block of size bytes starting at start. */
1380 /* Return 0 if the block is too small to make this feasible. */
1381 ptr_t GC_unmap_start(ptr_t start, word bytes)
1383 ptr_t result = start;
1384 /* Round start to next page boundary. */
1385 result += GC_page_size - 1;
1386 result = (ptr_t)((word)result & ~(GC_page_size - 1));
1387 if (result + GC_page_size > start + bytes) return 0;
1388 return result;
1391 /* Compute end address for an unmap operation on the indicated */
1392 /* block. */
1393 ptr_t GC_unmap_end(ptr_t start, word bytes)
1395 ptr_t end_addr = start + bytes;
1396 end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1397 return end_addr;
1400 /* We assume that GC_remap is called on exactly the same range */
1401 /* as a previous call to GC_unmap. It is safe to consistently */
1402 /* round the endpoints in both places. */
1403 void GC_unmap(ptr_t start, word bytes)
1405 ptr_t start_addr = GC_unmap_start(start, bytes);
1406 ptr_t end_addr = GC_unmap_end(start, bytes);
1407 word len = end_addr - start_addr;
1408 if (0 == start_addr) return;
1409 if (munmap(start_addr, len) != 0) ABORT("munmap failed");
1410 GC_unmapped_bytes += len;
1414 void GC_remap(ptr_t start, word bytes)
1416 static int zero_descr = -1;
1417 ptr_t start_addr = GC_unmap_start(start, bytes);
1418 ptr_t end_addr = GC_unmap_end(start, bytes);
1419 word len = end_addr - start_addr;
1420 ptr_t result;
1422 if (-1 == zero_descr) zero_descr = open("/dev/zero", O_RDWR);
1423 if (0 == start_addr) return;
1424 result = mmap(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1425 MAP_FIXED | MAP_PRIVATE, zero_descr, 0);
1426 if (result != start_addr) {
1427 ABORT("mmap remapping failed");
1429 GC_unmapped_bytes -= len;
1432 /* Two adjacent blocks have already been unmapped and are about to */
1433 /* be merged. Unmap the whole block. This typically requires */
1434 /* that we unmap a small section in the middle that was not previously */
1435 /* unmapped due to alignment constraints. */
1436 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1438 ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1439 ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1440 ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1441 ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1442 ptr_t start_addr = end1_addr;
1443 ptr_t end_addr = start2_addr;
1444 word len;
1445 GC_ASSERT(start1 + bytes1 == start2);
1446 if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1447 if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1448 if (0 == start_addr) return;
1449 len = end_addr - start_addr;
1450 if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1451 GC_unmapped_bytes += len;
1454 #endif /* USE_MUNMAP */
1456 /* Routine for pushing any additional roots. In THREADS */
1457 /* environment, this is also responsible for marking from */
1458 /* thread stacks. In the SRC_M3 case, it also handles */
1459 /* global variables. */
1460 #ifndef THREADS
1461 void (*GC_push_other_roots)() = 0;
1462 #else /* THREADS */
1464 # ifdef PCR
1465 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1467 struct PCR_ThCtl_TInfoRep info;
1468 PCR_ERes result;
1470 info.ti_stkLow = info.ti_stkHi = 0;
1471 result = PCR_ThCtl_GetInfo(t, &info);
1472 GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1473 return(result);
1476 /* Push the contents of an old object. We treat this as stack */
1477 /* data only becasue that makes it robust against mark stack */
1478 /* overflow. */
1479 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1481 GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1482 return(PCR_ERes_okay);
1486 void GC_default_push_other_roots()
1488 /* Traverse data allocated by previous memory managers. */
1490 extern struct PCR_MM_ProcsRep * GC_old_allocator;
1492 if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1493 GC_push_old_obj, 0)
1494 != PCR_ERes_okay) {
1495 ABORT("Old object enumeration failed");
1498 /* Traverse all thread stacks. */
1499 if (PCR_ERes_IsErr(
1500 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1501 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1502 ABORT("Thread stack marking failed\n");
1506 # endif /* PCR */
1508 # ifdef SRC_M3
1510 # ifdef ALL_INTERIOR_POINTERS
1511 --> misconfigured
1512 # endif
1515 extern void ThreadF__ProcessStacks();
1517 void GC_push_thread_stack(start, stop)
1518 word start, stop;
1520 GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
1523 /* Push routine with M3 specific calling convention. */
1524 GC_m3_push_root(dummy1, p, dummy2, dummy3)
1525 word *p;
1526 ptr_t dummy1, dummy2;
1527 int dummy3;
1529 word q = *p;
1531 if ((ptr_t)(q) >= GC_least_plausible_heap_addr
1532 && (ptr_t)(q) < GC_greatest_plausible_heap_addr) {
1533 GC_push_one_checked(q,FALSE);
1537 /* M3 set equivalent to RTHeap.TracedRefTypes */
1538 typedef struct { int elts[1]; } RefTypeSet;
1539 RefTypeSet GC_TracedRefTypes = {{0x1}};
1541 /* From finalize.c */
1542 extern void GC_push_finalizer_structures();
1544 /* From stubborn.c: */
1545 # ifdef STUBBORN_ALLOC
1546 extern GC_PTR * GC_changing_list_start;
1547 # endif
1550 void GC_default_push_other_roots()
1552 /* Use the M3 provided routine for finding static roots. */
1553 /* This is a bit dubious, since it presumes no C roots. */
1554 /* We handle the collector roots explicitly. */
1556 # ifdef STUBBORN_ALLOC
1557 GC_push_one(GC_changing_list_start);
1558 # endif
1559 GC_push_finalizer_structures();
1560 RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
1562 if (GC_words_allocd > 0) {
1563 ThreadF__ProcessStacks(GC_push_thread_stack);
1565 /* Otherwise this isn't absolutely necessary, and we have */
1566 /* startup ordering problems. */
1569 # endif /* SRC_M3 */
1571 # if defined(SOLARIS_THREADS) || defined(WIN32_THREADS) \
1572 || defined(IRIX_THREADS) || defined(LINUX_THREADS) \
1573 || defined(IRIX_JDK_THREADS) || defined(HPUX_THREADS)
1575 extern void GC_push_all_stacks();
1577 void GC_default_push_other_roots()
1579 GC_push_all_stacks();
1582 # endif /* SOLARIS_THREADS || ... */
1584 void (*GC_push_other_roots)() = GC_default_push_other_roots;
1586 #endif
1589 * Routines for accessing dirty bits on virtual pages.
1590 * We plan to eventaually implement four strategies for doing so:
1591 * DEFAULT_VDB: A simple dummy implementation that treats every page
1592 * as possibly dirty. This makes incremental collection
1593 * useless, but the implementation is still correct.
1594 * PCR_VDB: Use PPCRs virtual dirty bit facility.
1595 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
1596 * works under some SVR4 variants. Even then, it may be
1597 * too slow to be entirely satisfactory. Requires reading
1598 * dirty bits for entire address space. Implementations tend
1599 * to assume that the client is a (slow) debugger.
1600 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
1601 * dirtied pages. The implementation (and implementability)
1602 * is highly system dependent. This usually fails when system
1603 * calls write to a protected page. We prevent the read system
1604 * call from doing so. It is the clients responsibility to
1605 * make sure that other system calls are similarly protected
1606 * or write only to the stack.
1609 GC_bool GC_dirty_maintained = FALSE;
1611 # ifdef DEFAULT_VDB
1613 /* All of the following assume the allocation lock is held, and */
1614 /* signals are disabled. */
1616 /* The client asserts that unallocated pages in the heap are never */
1617 /* written. */
1619 /* Initialize virtual dirty bit implementation. */
1620 void GC_dirty_init()
1622 GC_dirty_maintained = TRUE;
1625 /* Retrieve system dirty bits for heap to a local buffer. */
1626 /* Restore the systems notion of which pages are dirty. */
1627 void GC_read_dirty()
1630 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
1631 /* If the actual page size is different, this returns TRUE if any */
1632 /* of the pages overlapping h are dirty. This routine may err on the */
1633 /* side of labelling pages as dirty (and this implementation does). */
1634 /*ARGSUSED*/
1635 GC_bool GC_page_was_dirty(h)
1636 struct hblk *h;
1638 return(TRUE);
1642 * The following two routines are typically less crucial. They matter
1643 * most with large dynamic libraries, or if we can't accurately identify
1644 * stacks, e.g. under Solaris 2.X. Otherwise the following default
1645 * versions are adequate.
1648 /* Could any valid GC heap pointer ever have been written to this page? */
1649 /*ARGSUSED*/
1650 GC_bool GC_page_was_ever_dirty(h)
1651 struct hblk *h;
1653 return(TRUE);
1656 /* Reset the n pages starting at h to "was never dirty" status. */
1657 void GC_is_fresh(h, n)
1658 struct hblk *h;
1659 word n;
1663 /* A call hints that h is about to be written. */
1664 /* May speed up some dirty bit implementations. */
1665 /*ARGSUSED*/
1666 void GC_write_hint(h)
1667 struct hblk *h;
1671 # endif /* DEFAULT_VDB */
1674 # ifdef MPROTECT_VDB
1677 * See DEFAULT_VDB for interface descriptions.
1681 * This implementation maintains dirty bits itself by catching write
1682 * faults and keeping track of them. We assume nobody else catches
1683 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls
1684 * except as a result of a read system call. This means clients must
1685 * either ensure that system calls do not touch the heap, or must
1686 * provide their own wrappers analogous to the one for read.
1687 * We assume the page size is a multiple of HBLKSIZE.
1688 * This implementation is currently SunOS 4.X and IRIX 5.X specific, though we
1689 * tried to use portable code where easily possible. It is known
1690 * not to work under a number of other systems.
1693 # ifndef MSWIN32
1695 # include <sys/mman.h>
1696 # include <signal.h>
1697 # include <sys/syscall.h>
1699 # define PROTECT(addr, len) \
1700 if (mprotect((caddr_t)(addr), (size_t)(len), \
1701 PROT_READ | OPT_PROT_EXEC) < 0) { \
1702 ABORT("mprotect failed"); \
1704 # define UNPROTECT(addr, len) \
1705 if (mprotect((caddr_t)(addr), (size_t)(len), \
1706 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
1707 ABORT("un-mprotect failed"); \
1710 # else
1712 # include <signal.h>
1714 static DWORD protect_junk;
1715 # define PROTECT(addr, len) \
1716 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
1717 &protect_junk)) { \
1718 DWORD last_error = GetLastError(); \
1719 GC_printf1("Last error code: %lx\n", last_error); \
1720 ABORT("VirtualProtect failed"); \
1722 # define UNPROTECT(addr, len) \
1723 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
1724 &protect_junk)) { \
1725 ABORT("un-VirtualProtect failed"); \
1728 # endif
1730 #if defined(SUNOS4) || defined(FREEBSD)
1731 typedef void (* SIG_PF)();
1732 #endif
1733 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX)
1734 # ifdef __STDC__
1735 typedef void (* SIG_PF)(int);
1736 # else
1737 typedef void (* SIG_PF)();
1738 # endif
1739 #endif
1740 #if defined(MSWIN32)
1741 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
1742 # undef SIG_DFL
1743 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
1744 #endif
1746 #if defined(IRIX5) || defined(OSF1)
1747 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
1748 #endif
1749 #if defined(SUNOS5SIGS)
1750 # ifdef HPUX
1751 # define SIGINFO __siginfo
1752 # else
1753 # define SIGINFO siginfo
1754 # endif
1755 # ifdef __STDC__
1756 typedef void (* REAL_SIG_PF)(int, struct SIGINFO *, void *);
1757 # else
1758 typedef void (* REAL_SIG_PF)();
1759 # endif
1760 #endif
1761 #if defined(LINUX)
1762 # include <linux/version.h>
1763 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(IA64)
1764 typedef struct sigcontext s_c;
1765 # else
1766 typedef struct sigcontext_struct s_c;
1767 # endif
1768 # if defined(ALPHA) || defined(M68K)
1769 typedef void (* REAL_SIG_PF)(int, int, s_c *);
1770 # else
1771 # if defined(IA64)
1772 typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
1773 # else
1774 typedef void (* REAL_SIG_PF)(int, s_c);
1775 # endif
1776 # endif
1777 # ifdef ALPHA
1778 /* Retrieve fault address from sigcontext structure by decoding */
1779 /* instruction. */
1780 char * get_fault_addr(s_c *sc) {
1781 unsigned instr;
1782 word faultaddr;
1784 instr = *((unsigned *)(sc->sc_pc));
1785 faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
1786 faultaddr += (word) (((int)instr << 16) >> 16);
1787 return (char *)faultaddr;
1789 # endif /* !ALPHA */
1790 # endif
1792 SIG_PF GC_old_bus_handler;
1793 SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
1795 /*ARGSUSED*/
1796 # if defined (SUNOS4) || defined(FREEBSD)
1797 void GC_write_fault_handler(sig, code, scp, addr)
1798 int sig, code;
1799 struct sigcontext *scp;
1800 char * addr;
1801 # ifdef SUNOS4
1802 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
1803 # define CODE_OK (FC_CODE(code) == FC_PROT \
1804 || (FC_CODE(code) == FC_OBJERR \
1805 && FC_ERRNO(code) == FC_PROT))
1806 # endif
1807 # ifdef FREEBSD
1808 # define SIG_OK (sig == SIGBUS)
1809 # define CODE_OK (code == BUS_PAGE_FAULT)
1810 # endif
1811 # endif
1812 # if defined(IRIX5) || defined(OSF1)
1813 # include <errno.h>
1814 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
1815 # define SIG_OK (sig == SIGSEGV)
1816 # ifdef OSF1
1817 # define CODE_OK (code == 2 /* experimentally determined */)
1818 # endif
1819 # ifdef IRIX5
1820 # define CODE_OK (code == EACCES)
1821 # endif
1822 # endif
1823 # if defined(LINUX)
1824 # if defined(ALPHA) || defined(M68K)
1825 void GC_write_fault_handler(int sig, int code, s_c * sc)
1826 # else
1827 # if defined(IA64)
1828 void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
1829 # else
1830 void GC_write_fault_handler(int sig, s_c sc)
1831 # endif
1832 # endif
1833 # define SIG_OK (sig == SIGSEGV)
1834 # define CODE_OK TRUE
1835 /* Empirically c.trapno == 14, on IA32, but is that useful? */
1836 /* Should probably consider alignment issues on other */
1837 /* architectures. */
1838 # endif
1839 # if defined(SUNOS5SIGS)
1840 # ifdef __STDC__
1841 void GC_write_fault_handler(int sig, struct SIGINFO *scp, void * context)
1842 # else
1843 void GC_write_fault_handler(sig, scp, context)
1844 int sig;
1845 struct SIGINFO *scp;
1846 void * context;
1847 # endif
1848 # ifdef HPUX
1849 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
1850 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
1851 || (scp -> si_code == BUS_ADRERR) \
1852 || (scp -> si_code == BUS_UNKNOWN) \
1853 || (scp -> si_code == SEGV_UNKNOWN) \
1854 || (scp -> si_code == BUS_OBJERR)
1855 # else
1856 # define SIG_OK (sig == SIGSEGV)
1857 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
1858 # endif
1859 # endif
1860 # if defined(MSWIN32)
1861 LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
1862 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
1863 EXCEPTION_ACCESS_VIOLATION)
1864 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
1865 /* Write fault */
1866 # endif
1868 register unsigned i;
1869 # ifdef IRIX5
1870 char * addr = (char *) (size_t) (scp -> sc_badvaddr);
1871 # endif
1872 # if defined(OSF1) && defined(ALPHA)
1873 char * addr = (char *) (scp -> sc_traparg_a0);
1874 # endif
1875 # ifdef SUNOS5SIGS
1876 char * addr = (char *) (scp -> si_addr);
1877 # endif
1878 # ifdef LINUX
1879 # ifdef I386
1880 char * addr = (char *) (sc.cr2);
1881 # else
1882 # if defined(M68K)
1883 char * addr = NULL;
1885 struct sigcontext *scp = (struct sigcontext *)(&sc);
1887 int format = (scp->sc_formatvec >> 12) & 0xf;
1888 unsigned long *framedata = (unsigned long *)(scp + 1);
1889 unsigned long ea;
1891 if (format == 0xa || format == 0xb) {
1892 /* 68020/030 */
1893 ea = framedata[2];
1894 } else if (format == 7) {
1895 /* 68040 */
1896 ea = framedata[3];
1897 } else if (format == 4) {
1898 /* 68060 */
1899 ea = framedata[0];
1900 if (framedata[1] & 0x08000000) {
1901 /* correct addr on misaligned access */
1902 ea = (ea+4095)&(~4095);
1905 addr = (char *)ea;
1906 # else
1907 # ifdef ALPHA
1908 char * addr = get_fault_addr(sc);
1909 # else
1910 # ifdef IA64
1911 char * addr = si -> si_addr;
1912 /* I believe this is claimed to work on all platforms for */
1913 /* Linux 2.3.47 and later. Hopefully we don't have to */
1914 /* worry about earlier kernels on IA64. */
1915 # else
1916 # if defined(POWERPC)
1917 char * addr = (char *) (sc.regs->dar);
1918 # else
1919 --> architecture not supported
1920 # endif
1921 # endif
1922 # endif
1923 # endif
1924 # endif
1925 # endif
1926 # if defined(MSWIN32)
1927 char * addr = (char *) (exc_info -> ExceptionRecord
1928 -> ExceptionInformation[1]);
1929 # define sig SIGSEGV
1930 # endif
1932 if (SIG_OK && CODE_OK) {
1933 register struct hblk * h =
1934 (struct hblk *)((word)addr & ~(GC_page_size-1));
1935 GC_bool in_allocd_block;
1937 # ifdef SUNOS5SIGS
1938 /* Address is only within the correct physical page. */
1939 in_allocd_block = FALSE;
1940 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1941 if (HDR(h+i) != 0) {
1942 in_allocd_block = TRUE;
1945 # else
1946 in_allocd_block = (HDR(addr) != 0);
1947 # endif
1948 if (!in_allocd_block) {
1949 /* Heap blocks now begin and end on page boundaries */
1950 SIG_PF old_handler;
1952 if (sig == SIGSEGV) {
1953 old_handler = GC_old_segv_handler;
1954 } else {
1955 old_handler = GC_old_bus_handler;
1957 if (old_handler == SIG_DFL) {
1958 # ifndef MSWIN32
1959 GC_err_printf1("Segfault at 0x%lx\n", addr);
1960 ABORT("Unexpected bus error or segmentation fault");
1961 # else
1962 return(EXCEPTION_CONTINUE_SEARCH);
1963 # endif
1964 } else {
1965 # if defined (SUNOS4) || defined(FREEBSD)
1966 (*old_handler) (sig, code, scp, addr);
1967 return;
1968 # endif
1969 # if defined (SUNOS5SIGS)
1970 (*(REAL_SIG_PF)old_handler) (sig, scp, context);
1971 return;
1972 # endif
1973 # if defined (LINUX)
1974 # if defined(ALPHA) || defined(M68K)
1975 (*(REAL_SIG_PF)old_handler) (sig, code, sc);
1976 # else
1977 # if defined(IA64)
1978 (*(REAL_SIG_PF)old_handler) (sig, si, scp);
1979 # else
1980 (*(REAL_SIG_PF)old_handler) (sig, sc);
1981 # endif
1982 # endif
1983 return;
1984 # endif
1985 # if defined (IRIX5) || defined(OSF1)
1986 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
1987 return;
1988 # endif
1989 # ifdef MSWIN32
1990 return((*old_handler)(exc_info));
1991 # endif
1994 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1995 register int index = PHT_HASH(h+i);
1997 set_pht_entry_from_index(GC_dirty_pages, index);
1999 UNPROTECT(h, GC_page_size);
2000 # if defined(OSF1) || defined(LINUX)
2001 /* These reset the signal handler each time by default. */
2002 signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2003 # endif
2004 /* The write may not take place before dirty bits are read. */
2005 /* But then we'll fault again ... */
2006 # ifdef MSWIN32
2007 return(EXCEPTION_CONTINUE_EXECUTION);
2008 # else
2009 return;
2010 # endif
2012 #ifdef MSWIN32
2013 return EXCEPTION_CONTINUE_SEARCH;
2014 #else
2015 GC_err_printf1("Segfault at 0x%lx\n", addr);
2016 ABORT("Unexpected bus error or segmentation fault");
2017 #endif
2021 * We hold the allocation lock. We expect block h to be written
2022 * shortly.
2024 void GC_write_hint(h)
2025 struct hblk *h;
2027 register struct hblk * h_trunc;
2028 register unsigned i;
2029 register GC_bool found_clean;
2031 if (!GC_dirty_maintained) return;
2032 h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2033 found_clean = FALSE;
2034 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2035 register int index = PHT_HASH(h_trunc+i);
2037 if (!get_pht_entry_from_index(GC_dirty_pages, index)) {
2038 found_clean = TRUE;
2039 set_pht_entry_from_index(GC_dirty_pages, index);
2042 if (found_clean) {
2043 UNPROTECT(h_trunc, GC_page_size);
2047 void GC_dirty_init()
2049 #if defined(SUNOS5SIGS) || defined(IRIX5) /* || defined(OSF1) */
2050 struct sigaction act, oldact;
2051 # ifdef IRIX5
2052 act.sa_flags = SA_RESTART;
2053 act.sa_handler = GC_write_fault_handler;
2054 # else
2055 act.sa_flags = SA_RESTART | SA_SIGINFO;
2056 act.sa_sigaction = GC_write_fault_handler;
2057 # endif
2058 (void)sigemptyset(&act.sa_mask);
2059 #endif
2060 # ifdef PRINTSTATS
2061 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2062 # endif
2063 GC_dirty_maintained = TRUE;
2064 if (GC_page_size % HBLKSIZE != 0) {
2065 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2066 ABORT("Page size not multiple of HBLKSIZE");
2068 # if defined(SUNOS4) || defined(FREEBSD)
2069 GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2070 if (GC_old_bus_handler == SIG_IGN) {
2071 GC_err_printf0("Previously ignored bus error!?");
2072 GC_old_bus_handler = SIG_DFL;
2074 if (GC_old_bus_handler != SIG_DFL) {
2075 # ifdef PRINTSTATS
2076 GC_err_printf0("Replaced other SIGBUS handler\n");
2077 # endif
2079 # endif
2080 # if defined(OSF1) || defined(SUNOS4) || defined(LINUX)
2081 GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2082 if (GC_old_segv_handler == SIG_IGN) {
2083 GC_err_printf0("Previously ignored segmentation violation!?");
2084 GC_old_segv_handler = SIG_DFL;
2086 if (GC_old_segv_handler != SIG_DFL) {
2087 # ifdef PRINTSTATS
2088 GC_err_printf0("Replaced other SIGSEGV handler\n");
2089 # endif
2091 # endif
2092 # if defined(SUNOS5SIGS) || defined(IRIX5)
2093 # if defined(IRIX_THREADS) || defined(IRIX_JDK_THREADS)
2094 sigaction(SIGSEGV, 0, &oldact);
2095 sigaction(SIGSEGV, &act, 0);
2096 # else
2097 sigaction(SIGSEGV, &act, &oldact);
2098 # endif
2099 # if defined(_sigargs)
2100 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2101 /* sa_sigaction. */
2102 GC_old_segv_handler = oldact.sa_handler;
2103 # else /* Irix 6.x or SUNOS5SIGS */
2104 if (oldact.sa_flags & SA_SIGINFO) {
2105 GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2106 } else {
2107 GC_old_segv_handler = oldact.sa_handler;
2109 # endif
2110 if (GC_old_segv_handler == SIG_IGN) {
2111 GC_err_printf0("Previously ignored segmentation violation!?");
2112 GC_old_segv_handler = SIG_DFL;
2114 if (GC_old_segv_handler != SIG_DFL) {
2115 # ifdef PRINTSTATS
2116 GC_err_printf0("Replaced other SIGSEGV handler\n");
2117 # endif
2119 # ifdef HPUX
2120 sigaction(SIGBUS, &act, &oldact);
2121 GC_old_bus_handler = oldact.sa_handler;
2122 if (GC_old_segv_handler != SIG_DFL) {
2123 # ifdef PRINTSTATS
2124 GC_err_printf0("Replaced other SIGBUS handler\n");
2125 # endif
2127 # endif
2128 # endif
2129 # if defined(MSWIN32)
2130 GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2131 if (GC_old_segv_handler != NULL) {
2132 # ifdef PRINTSTATS
2133 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2134 # endif
2135 } else {
2136 GC_old_segv_handler = SIG_DFL;
2138 # endif
2143 void GC_protect_heap()
2145 ptr_t start;
2146 word len;
2147 unsigned i;
2149 for (i = 0; i < GC_n_heap_sects; i++) {
2150 start = GC_heap_sects[i].hs_start;
2151 len = GC_heap_sects[i].hs_bytes;
2152 PROTECT(start, len);
2156 /* We assume that either the world is stopped or its OK to lose dirty */
2157 /* bits while this is happenning (as in GC_enable_incremental). */
2158 void GC_read_dirty()
2160 BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2161 (sizeof GC_dirty_pages));
2162 BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2163 GC_protect_heap();
2166 GC_bool GC_page_was_dirty(h)
2167 struct hblk * h;
2169 register word index = PHT_HASH(h);
2171 return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2175 * Acquiring the allocation lock here is dangerous, since this
2176 * can be called from within GC_call_with_alloc_lock, and the cord
2177 * package does so. On systems that allow nested lock acquisition, this
2178 * happens to work.
2179 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2182 void GC_begin_syscall()
2184 if (!I_HOLD_LOCK()) LOCK();
2187 void GC_end_syscall()
2189 if (!I_HOLD_LOCK()) UNLOCK();
2192 void GC_unprotect_range(addr, len)
2193 ptr_t addr;
2194 word len;
2196 struct hblk * start_block;
2197 struct hblk * end_block;
2198 register struct hblk *h;
2199 ptr_t obj_start;
2201 if (!GC_incremental) return;
2202 obj_start = GC_base(addr);
2203 if (obj_start == 0) return;
2204 if (GC_base(addr + len - 1) != obj_start) {
2205 ABORT("GC_unprotect_range(range bigger than object)");
2207 start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2208 end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2209 end_block += GC_page_size/HBLKSIZE - 1;
2210 for (h = start_block; h <= end_block; h++) {
2211 register word index = PHT_HASH(h);
2213 set_pht_entry_from_index(GC_dirty_pages, index);
2215 UNPROTECT(start_block,
2216 ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2219 #if !defined(MSWIN32) && !defined(LINUX_THREADS)
2220 /* Replacement for UNIX system call. */
2221 /* Other calls that write to the heap */
2222 /* should be handled similarly. */
2223 # if defined(__STDC__) && !defined(SUNOS4)
2224 # include <unistd.h>
2225 # include <sys/uio.h>
2226 ssize_t read(int fd, void *buf, size_t nbyte)
2227 # else
2228 # ifndef LINT
2229 int read(fd, buf, nbyte)
2230 # else
2231 int GC_read(fd, buf, nbyte)
2232 # endif
2233 int fd;
2234 char *buf;
2235 int nbyte;
2236 # endif
2238 int result;
2240 GC_begin_syscall();
2241 GC_unprotect_range(buf, (word)nbyte);
2242 # if defined(IRIX5) || defined(LINUX_THREADS)
2243 /* Indirect system call may not always be easily available. */
2244 /* We could call _read, but that would interfere with the */
2245 /* libpthread interception of read. */
2246 /* On Linux, we have to be careful with the linuxthreads */
2247 /* read interception. */
2249 struct iovec iov;
2251 iov.iov_base = buf;
2252 iov.iov_len = nbyte;
2253 result = readv(fd, &iov, 1);
2255 # else
2256 /* The two zero args at the end of this list are because one
2257 IA-64 syscall() implementation actually requires six args
2258 to be passed, even though they aren't always used. */
2259 result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
2260 # endif
2261 GC_end_syscall();
2262 return(result);
2264 #endif /* !MSWIN32 && !LINUX */
2266 #ifdef USE_LD_WRAP
2267 /* We use the GNU ld call wrapping facility. */
2268 /* This requires that the linker be invoked with "--wrap read". */
2269 /* This can be done by passing -Wl,"--wrap read" to gcc. */
2270 /* I'm not sure that this actually wraps whatever version of read */
2271 /* is called by stdio. That code also mentions __read. */
2272 # include <unistd.h>
2273 ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
2275 int result;
2277 GC_begin_syscall();
2278 GC_unprotect_range(buf, (word)nbyte);
2279 result = __real_read(fd, buf, nbyte);
2280 GC_end_syscall();
2281 return(result);
2284 /* We should probably also do this for __read, or whatever stdio */
2285 /* actually calls. */
2286 #endif
2288 /*ARGSUSED*/
2289 GC_bool GC_page_was_ever_dirty(h)
2290 struct hblk *h;
2292 return(TRUE);
2295 /* Reset the n pages starting at h to "was never dirty" status. */
2296 /*ARGSUSED*/
2297 void GC_is_fresh(h, n)
2298 struct hblk *h;
2299 word n;
2303 # endif /* MPROTECT_VDB */
2305 # ifdef PROC_VDB
2308 * See DEFAULT_VDB for interface descriptions.
2312 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
2313 * from which we can read page modified bits. This facility is far from
2314 * optimal (e.g. we would like to get the info for only some of the
2315 * address space), but it avoids intercepting system calls.
2318 #include <errno.h>
2319 #include <sys/types.h>
2320 #include <sys/signal.h>
2321 #include <sys/fault.h>
2322 #include <sys/syscall.h>
2323 #include <sys/procfs.h>
2324 #include <sys/stat.h>
2325 #include <fcntl.h>
2327 #define INITIAL_BUF_SZ 4096
2328 word GC_proc_buf_size = INITIAL_BUF_SZ;
2329 char *GC_proc_buf;
2331 #ifdef SOLARIS_THREADS
2332 /* We don't have exact sp values for threads. So we count on */
2333 /* occasionally declaring stack pages to be fresh. Thus we */
2334 /* need a real implementation of GC_is_fresh. We can't clear */
2335 /* entries in GC_written_pages, since that would declare all */
2336 /* pages with the given hash address to be fresh. */
2337 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
2338 struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
2339 /* Collisions are dropped. */
2341 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
2342 # define ADD_FRESH_PAGE(h) \
2343 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
2344 # define PAGE_IS_FRESH(h) \
2345 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
2346 #endif
2348 /* Add all pages in pht2 to pht1 */
2349 void GC_or_pages(pht1, pht2)
2350 page_hash_table pht1, pht2;
2352 register int i;
2354 for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
2357 int GC_proc_fd;
2359 void GC_dirty_init()
2361 int fd;
2362 char buf[30];
2364 GC_dirty_maintained = TRUE;
2365 if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
2366 register int i;
2368 for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
2369 # ifdef PRINTSTATS
2370 GC_printf1("Allocated words:%lu:all pages may have been written\n",
2371 (unsigned long)
2372 (GC_words_allocd + GC_words_allocd_before_gc));
2373 # endif
2375 sprintf(buf, "/proc/%d", getpid());
2376 fd = open(buf, O_RDONLY);
2377 if (fd < 0) {
2378 ABORT("/proc open failed");
2380 GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
2381 close(fd);
2382 if (GC_proc_fd < 0) {
2383 ABORT("/proc ioctl failed");
2385 GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
2386 # ifdef SOLARIS_THREADS
2387 GC_fresh_pages = (struct hblk **)
2388 GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
2389 if (GC_fresh_pages == 0) {
2390 GC_err_printf0("No space for fresh pages\n");
2391 EXIT();
2393 BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
2394 # endif
2397 /* Ignore write hints. They don't help us here. */
2398 /*ARGSUSED*/
2399 void GC_write_hint(h)
2400 struct hblk *h;
2404 #ifdef SOLARIS_THREADS
2405 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
2406 #else
2407 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
2408 #endif
2410 void GC_read_dirty()
2412 unsigned long ps, np;
2413 int nmaps;
2414 ptr_t vaddr;
2415 struct prasmap * map;
2416 char * bufp;
2417 ptr_t current_addr, limit;
2418 int i;
2419 int dummy;
2421 BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
2423 bufp = GC_proc_buf;
2424 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2425 # ifdef PRINTSTATS
2426 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
2427 GC_proc_buf_size);
2428 # endif
2430 /* Retry with larger buffer. */
2431 word new_size = 2 * GC_proc_buf_size;
2432 char * new_buf = GC_scratch_alloc(new_size);
2434 if (new_buf != 0) {
2435 GC_proc_buf = bufp = new_buf;
2436 GC_proc_buf_size = new_size;
2438 if (syscall(SYS_read, GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2439 WARN("Insufficient space for /proc read\n", 0);
2440 /* Punt: */
2441 memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
2442 memset(GC_written_pages, 0xff, sizeof(page_hash_table));
2443 # ifdef SOLARIS_THREADS
2444 BZERO(GC_fresh_pages,
2445 MAX_FRESH_PAGES * sizeof (struct hblk *));
2446 # endif
2447 return;
2451 /* Copy dirty bits into GC_grungy_pages */
2452 nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
2453 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
2454 nmaps, PG_REFERENCED, PG_MODIFIED); */
2455 bufp = bufp + sizeof(struct prpageheader);
2456 for (i = 0; i < nmaps; i++) {
2457 map = (struct prasmap *)bufp;
2458 vaddr = (ptr_t)(map -> pr_vaddr);
2459 ps = map -> pr_pagesize;
2460 np = map -> pr_npage;
2461 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
2462 limit = vaddr + ps * np;
2463 bufp += sizeof (struct prasmap);
2464 for (current_addr = vaddr;
2465 current_addr < limit; current_addr += ps){
2466 if ((*bufp++) & PG_MODIFIED) {
2467 register struct hblk * h = (struct hblk *) current_addr;
2469 while ((ptr_t)h < current_addr + ps) {
2470 register word index = PHT_HASH(h);
2472 set_pht_entry_from_index(GC_grungy_pages, index);
2473 # ifdef SOLARIS_THREADS
2475 register int slot = FRESH_PAGE_SLOT(h);
2477 if (GC_fresh_pages[slot] == h) {
2478 GC_fresh_pages[slot] = 0;
2481 # endif
2482 h++;
2486 bufp += sizeof(long) - 1;
2487 bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
2489 /* Update GC_written_pages. */
2490 GC_or_pages(GC_written_pages, GC_grungy_pages);
2491 # ifdef SOLARIS_THREADS
2492 /* Make sure that old stacks are considered completely clean */
2493 /* unless written again. */
2494 GC_old_stacks_are_fresh();
2495 # endif
2498 #undef READ
2500 GC_bool GC_page_was_dirty(h)
2501 struct hblk *h;
2503 register word index = PHT_HASH(h);
2504 register GC_bool result;
2506 result = get_pht_entry_from_index(GC_grungy_pages, index);
2507 # ifdef SOLARIS_THREADS
2508 if (result && PAGE_IS_FRESH(h)) result = FALSE;
2509 /* This happens only if page was declared fresh since */
2510 /* the read_dirty call, e.g. because it's in an unused */
2511 /* thread stack. It's OK to treat it as clean, in */
2512 /* that case. And it's consistent with */
2513 /* GC_page_was_ever_dirty. */
2514 # endif
2515 return(result);
2518 GC_bool GC_page_was_ever_dirty(h)
2519 struct hblk *h;
2521 register word index = PHT_HASH(h);
2522 register GC_bool result;
2524 result = get_pht_entry_from_index(GC_written_pages, index);
2525 # ifdef SOLARIS_THREADS
2526 if (result && PAGE_IS_FRESH(h)) result = FALSE;
2527 # endif
2528 return(result);
2531 /* Caller holds allocation lock. */
2532 void GC_is_fresh(h, n)
2533 struct hblk *h;
2534 word n;
2537 register word index;
2539 # ifdef SOLARIS_THREADS
2540 register word i;
2542 if (GC_fresh_pages != 0) {
2543 for (i = 0; i < n; i++) {
2544 ADD_FRESH_PAGE(h + i);
2547 # endif
2550 # endif /* PROC_VDB */
2553 # ifdef PCR_VDB
2555 # include "vd/PCR_VD.h"
2557 # define NPAGES (32*1024) /* 128 MB */
2559 PCR_VD_DB GC_grungy_bits[NPAGES];
2561 ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
2562 /* HBLKSIZE aligned. */
2564 void GC_dirty_init()
2566 GC_dirty_maintained = TRUE;
2567 /* For the time being, we assume the heap generally grows up */
2568 GC_vd_base = GC_heap_sects[0].hs_start;
2569 if (GC_vd_base == 0) {
2570 ABORT("Bad initial heap segment");
2572 if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
2573 != PCR_ERes_okay) {
2574 ABORT("dirty bit initialization failed");
2578 void GC_read_dirty()
2580 /* lazily enable dirty bits on newly added heap sects */
2582 static int onhs = 0;
2583 int nhs = GC_n_heap_sects;
2584 for( ; onhs < nhs; onhs++ ) {
2585 PCR_VD_WriteProtectEnable(
2586 GC_heap_sects[onhs].hs_start,
2587 GC_heap_sects[onhs].hs_bytes );
2592 if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
2593 != PCR_ERes_okay) {
2594 ABORT("dirty bit read failed");
2598 GC_bool GC_page_was_dirty(h)
2599 struct hblk *h;
2601 if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
2602 return(TRUE);
2604 return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
2607 /*ARGSUSED*/
2608 void GC_write_hint(h)
2609 struct hblk *h;
2611 PCR_VD_WriteProtectDisable(h, HBLKSIZE);
2612 PCR_VD_WriteProtectEnable(h, HBLKSIZE);
2615 # endif /* PCR_VDB */
2618 * Call stack save code for debugging.
2619 * Should probably be in mach_dep.c, but that requires reorganization.
2621 #if defined(SPARC)
2622 # if defined(LINUX)
2623 struct frame {
2624 long fr_local[8];
2625 long fr_arg[6];
2626 struct frame *fr_savfp;
2627 long fr_savpc;
2628 # ifndef __arch64__
2629 char *fr_stret;
2630 # endif
2631 long fr_argd[6];
2632 long fr_argx[0];
2634 # else
2635 # if defined(SUNOS4)
2636 # include <machine/frame.h>
2637 # else
2638 # if defined (DRSNX)
2639 # include <sys/sparc/frame.h>
2640 # else
2641 # if defined(OPENBSD)
2642 # include <frame.h>
2643 # else
2644 # include <sys/frame.h>
2645 # endif
2646 # endif
2647 # endif
2648 # endif
2649 # if NARGS > 6
2650 --> We only know how to to get the first 6 arguments
2651 # endif
2653 #ifdef SAVE_CALL_CHAIN
2654 /* Fill in the pc and argument information for up to NFRAMES of my */
2655 /* callers. Ignore my frame and my callers frame. */
2657 #ifdef OPENBSD
2658 # define FR_SAVFP fr_fp
2659 # define FR_SAVPC fr_pc
2660 #else
2661 # define FR_SAVFP fr_savfp
2662 # define FR_SAVPC fr_savpc
2663 #endif
2665 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
2666 #define BIAS 2047
2667 #else
2668 #define BIAS 0
2669 #endif
2671 void GC_save_callers (info)
2672 struct callinfo info[NFRAMES];
2674 struct frame *frame;
2675 struct frame *fp;
2676 int nframes = 0;
2677 word GC_save_regs_in_stack();
2679 frame = (struct frame *) GC_save_regs_in_stack ();
2681 for (fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
2682 fp != 0 && nframes < NFRAMES;
2683 fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
2684 register int i;
2686 info[nframes].ci_pc = fp->FR_SAVPC;
2687 for (i = 0; i < NARGS; i++) {
2688 info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
2691 if (nframes < NFRAMES) info[nframes].ci_pc = 0;
2694 #endif /* SAVE_CALL_CHAIN */
2695 #endif /* SPARC */