1 /* Dummy data flow analysis for GNU compiler in nonoptimizing mode.
2 Copyright (C) 1987, 1991, 1994 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21 /* This file performs stupid register allocation, which is used
22 when cc1 gets the -noreg switch (which is when cc does not get -O).
24 Stupid register allocation goes in place of the the flow_analysis,
25 local_alloc and global_alloc passes. combine_instructions cannot
26 be done with stupid allocation because the data flow info that it needs
29 In stupid allocation, the only user-defined variables that can
30 go in registers are those declared "register". They are assumed
31 to have a life span equal to their scope. Other user variables
32 are given stack slots in the rtl-generation pass and are not
33 represented as pseudo regs. A compiler-generated temporary
34 is assumed to live from its first mention to its last mention.
36 Since each pseudo-reg's life span is just an interval, it can be
37 represented as a pair of numbers, each of which identifies an insn by
38 its position in the function (number of insns before it). The first
39 thing done for stupid allocation is to compute such a number for each
40 insn. It is called the suid. Then the life-interval of each
41 pseudo reg is computed. Then the pseudo regs are ordered by priority
42 and assigned hard regs in priority order. */
47 #include "hard-reg-set.h"
51 /* Vector mapping INSN_UIDs to suids.
52 The suids are like uids but increase monotonically always.
53 We use them to see whether a subroutine call came
54 between a variable's birth and its death. */
58 /* Get the suid of an insn. */
60 #define INSN_SUID(INSN) (uid_suid[INSN_UID (INSN)])
62 /* Record the suid of the last CALL_INSN
63 so we can tell whether a pseudo reg crosses any calls. */
65 static int last_call_suid
;
67 /* Element N is suid of insn where life span of pseudo reg N ends.
68 Element is 0 if register N has not been seen yet on backward scan. */
70 static int *reg_where_dead
;
72 /* Element N is suid of insn where life span of pseudo reg N begins. */
74 static int *reg_where_born
;
76 /* Numbers of pseudo-regs to be allocated, highest priority first. */
78 static int *reg_order
;
80 /* Indexed by reg number (hard or pseudo), nonzero if register is live
81 at the current point in the instruction stream. */
83 static char *regs_live
;
85 /* Indexed by insn's suid, the set of hard regs live after that insn. */
87 static HARD_REG_SET
*after_insn_hard_regs
;
89 /* Record that hard reg REGNO is live after insn INSN. */
91 #define MARK_LIVE_AFTER(INSN,REGNO) \
92 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (INSN)], (REGNO))
94 static int stupid_reg_compare
PROTO((int *, int *));
95 static int stupid_find_reg
PROTO((int, enum reg_class
, enum machine_mode
,
97 static void stupid_mark_refs
PROTO((rtx
, rtx
));
99 /* Stupid life analysis is for the case where only variables declared
100 `register' go in registers. For this case, we mark all
101 pseudo-registers that belong to register variables as
102 dying in the last instruction of the function, and all other
103 pseudo registers as dying in the last place they are referenced.
104 Hard registers are marked as dying in the last reference before
105 the end or before each store into them. */
108 stupid_life_analysis (f
, nregs
, file
)
114 register rtx last
, insn
;
115 int max_uid
, max_suid
;
117 bzero (regs_ever_live
, sizeof regs_ever_live
);
119 regs_live
= (char *) alloca (nregs
);
121 /* First find the last real insn, and count the number of insns,
122 and assign insns their suids. */
124 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
125 if (INSN_UID (insn
) > i
)
129 uid_suid
= (int *) alloca ((i
+ 1) * sizeof (int));
131 /* Compute the mapping from uids to suids.
132 Suids are numbers assigned to insns, like uids,
133 except that suids increase monotonically through the code. */
135 last
= 0; /* In case of empty function body */
136 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
138 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
141 INSN_SUID (insn
) = ++i
;
144 last_call_suid
= i
+ 1;
149 /* Allocate tables to record info about regs. */
151 reg_where_dead
= (int *) alloca (nregs
* sizeof (int));
152 bzero (reg_where_dead
, nregs
* sizeof (int));
154 reg_where_born
= (int *) alloca (nregs
* sizeof (int));
155 bzero (reg_where_born
, nregs
* sizeof (int));
157 reg_order
= (int *) alloca (nregs
* sizeof (int));
158 bzero (reg_order
, nregs
* sizeof (int));
160 reg_renumber
= (short *) oballoc (nregs
* sizeof (short));
161 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
164 for (i
= FIRST_VIRTUAL_REGISTER
; i
< max_regno
; i
++)
165 reg_renumber
[i
] = -1;
168 = (HARD_REG_SET
*) alloca (max_suid
* sizeof (HARD_REG_SET
));
170 bzero (after_insn_hard_regs
, max_suid
* sizeof (HARD_REG_SET
));
172 /* Allocate and zero out many data structures
173 that will record the data from lifetime analysis. */
175 allocate_for_life_analysis ();
177 for (i
= 0; i
< max_regno
; i
++)
180 bzero (regs_live
, nregs
);
182 /* Find where each pseudo register is born and dies,
183 by scanning all insns from the end to the start
184 and noting all mentions of the registers.
186 Also find where each hard register is live
187 and record that info in after_insn_hard_regs.
188 regs_live[I] is 1 if hard reg I is live
189 at the current point in the scan. */
191 for (insn
= last
; insn
; insn
= PREV_INSN (insn
))
193 register HARD_REG_SET
*p
= after_insn_hard_regs
+ INSN_SUID (insn
);
195 /* Copy the info in regs_live into the element of after_insn_hard_regs
196 for the current position in the rtl code. */
198 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
200 SET_HARD_REG_BIT (*p
, i
);
202 /* Update which hard regs are currently live
203 and also the birth and death suids of pseudo regs
204 based on the pattern of this insn. */
206 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
207 stupid_mark_refs (PATTERN (insn
), insn
);
209 /* Mark all call-clobbered regs as live after each call insn
210 so that a pseudo whose life span includes this insn
211 will not go in one of them.
212 Then mark those regs as all dead for the continuing scan
213 of the insns before the call. */
215 if (GET_CODE (insn
) == CALL_INSN
)
217 last_call_suid
= INSN_SUID (insn
);
218 IOR_HARD_REG_SET (after_insn_hard_regs
[last_call_suid
],
221 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
222 if (call_used_regs
[i
])
225 /* It is important that this be done after processing the insn's
226 pattern because we want the function result register to still
227 be live if it's also used to pass arguments. */
228 stupid_mark_refs (CALL_INSN_FUNCTION_USAGE (insn
), insn
);
232 /* Now decide the order in which to allocate the pseudo registers. */
234 for (i
= LAST_VIRTUAL_REGISTER
+ 1; i
< max_regno
; i
++)
237 qsort (®_order
[LAST_VIRTUAL_REGISTER
+ 1],
238 max_regno
- LAST_VIRTUAL_REGISTER
- 1, sizeof (int),
241 /* Now, in that order, try to find hard registers for those pseudo regs. */
243 for (i
= LAST_VIRTUAL_REGISTER
+ 1; i
< max_regno
; i
++)
245 register int r
= reg_order
[i
];
247 /* Some regnos disappear from the rtl. Ignore them to avoid crash. */
248 if (regno_reg_rtx
[r
] == 0)
251 /* Now find the best hard-register class for this pseudo register */
252 if (N_REG_CLASSES
> 1)
253 reg_renumber
[r
] = stupid_find_reg (reg_n_calls_crossed
[r
],
254 reg_preferred_class (r
),
255 PSEUDO_REGNO_MODE (r
),
259 /* If no reg available in that class, try alternate class. */
260 if (reg_renumber
[r
] == -1 && reg_alternate_class (r
) != NO_REGS
)
261 reg_renumber
[r
] = stupid_find_reg (reg_n_calls_crossed
[r
],
262 reg_alternate_class (r
),
263 PSEUDO_REGNO_MODE (r
),
269 dump_flow_info (file
);
272 /* Comparison function for qsort.
273 Returns -1 (1) if register *R1P is higher priority than *R2P. */
276 stupid_reg_compare (r1p
, r2p
)
279 register int r1
= *r1p
, r2
= *r2p
;
280 register int len1
= reg_where_dead
[r1
] - reg_where_born
[r1
];
281 register int len2
= reg_where_dead
[r2
] - reg_where_born
[r2
];
288 tem
= reg_n_refs
[r1
] - reg_n_refs
[r2
];
292 /* If regs are equally good, sort by regno,
293 so that the results of qsort leave nothing to chance. */
297 /* Find a block of SIZE words of hard registers in reg_class CLASS
298 that can hold a value of machine-mode MODE
299 (but actually we test only the first of the block for holding MODE)
300 currently free from after insn whose suid is BIRTH
301 through the insn whose suid is DEATH,
302 and return the number of the first of them.
303 Return -1 if such a block cannot be found.
305 If CALL_PRESERVED is nonzero, insist on registers preserved
306 over subroutine calls, and return -1 if cannot find such. */
309 stupid_find_reg (call_preserved
, class, mode
, born_insn
, dead_insn
)
311 enum reg_class
class;
312 enum machine_mode mode
;
313 int born_insn
, dead_insn
;
317 register /* Declare them register if they are scalars. */
319 HARD_REG_SET used
, this_reg
;
320 #ifdef ELIMINABLE_REGS
321 static struct {int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
324 COPY_HARD_REG_SET (used
,
325 call_preserved
? call_used_reg_set
: fixed_reg_set
);
327 #ifdef ELIMINABLE_REGS
328 for (i
= 0; i
< sizeof eliminables
/ sizeof eliminables
[0]; i
++)
329 SET_HARD_REG_BIT (used
, eliminables
[i
].from
);
330 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
331 SET_HARD_REG_BIT (used
, HARD_FRAME_POINTER_REGNUM
);
334 SET_HARD_REG_BIT (used
, FRAME_POINTER_REGNUM
);
337 for (ins
= born_insn
; ins
< dead_insn
; ins
++)
338 IOR_HARD_REG_SET (used
, after_insn_hard_regs
[ins
]);
340 IOR_COMPL_HARD_REG_SET (used
, reg_class_contents
[(int) class]);
342 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
344 #ifdef REG_ALLOC_ORDER
345 int regno
= reg_alloc_order
[i
];
350 /* If a register has screwy overlap problems,
351 don't use it at all if not optimizing.
352 Actually this is only for the 387 stack register,
353 and it's because subsequent code won't work. */
354 #ifdef OVERLAPPING_REGNO_P
355 if (OVERLAPPING_REGNO_P (regno
))
359 if (! TEST_HARD_REG_BIT (used
, regno
)
360 && HARD_REGNO_MODE_OK (regno
, mode
))
363 register int size1
= HARD_REGNO_NREGS (regno
, mode
);
364 for (j
= 1; j
< size1
&& ! TEST_HARD_REG_BIT (used
, regno
+ j
); j
++);
367 CLEAR_HARD_REG_SET (this_reg
);
369 SET_HARD_REG_BIT (this_reg
, regno
+ j
);
370 for (ins
= born_insn
; ins
< dead_insn
; ins
++)
372 IOR_HARD_REG_SET (after_insn_hard_regs
[ins
], this_reg
);
376 #ifndef REG_ALLOC_ORDER
377 i
+= j
; /* Skip starting points we know will lose */
385 /* Walk X, noting all assignments and references to registers
386 and recording what they imply about life spans.
387 INSN is the current insn, supplied so we can find its suid. */
390 stupid_mark_refs (x
, insn
)
393 register RTX_CODE code
;
395 register int regno
, i
;
402 if (code
== SET
|| code
== CLOBBER
)
404 if (SET_DEST (x
) != 0 && GET_CODE (SET_DEST (x
)) == REG
)
406 /* Register is being assigned. */
407 regno
= REGNO (SET_DEST (x
));
409 /* For hard regs, update the where-live info. */
410 if (regno
< FIRST_PSEUDO_REGISTER
)
413 = HARD_REGNO_NREGS (regno
, GET_MODE (SET_DEST (x
)));
417 regs_ever_live
[regno
+j
] = 1;
418 regs_live
[regno
+j
] = 0;
420 /* The following line is for unused outputs;
421 they do get stored even though never used again. */
422 MARK_LIVE_AFTER (insn
, regno
);
424 /* When a hard reg is clobbered, mark it in use
425 just before this insn, so it is live all through. */
426 if (code
== CLOBBER
&& INSN_SUID (insn
) > 0)
427 SET_HARD_REG_BIT (after_insn_hard_regs
[INSN_SUID (insn
) - 1],
431 /* For pseudo regs, record where born, where dead, number of
432 times used, and whether live across a call. */
435 /* Update the life-interval bounds of this pseudo reg. */
437 /* When a pseudo-reg is CLOBBERed, it is born just before
438 the clobbering insn. When setting, just after. */
439 int where_born
= INSN_SUID (insn
) - (code
== CLOBBER
);
441 reg_where_born
[regno
] = where_born
;
443 /* The reg must live at least one insn even
444 in it is never again used--because it has to go
445 in SOME hard reg. Mark it as dying after the current
446 insn so that it will conflict with any other outputs of
448 if (reg_where_dead
[regno
] < where_born
+ 2)
450 reg_where_dead
[regno
] = where_born
+ 2;
451 regs_live
[regno
] = 1;
454 /* Count the refs of this reg. */
457 if (last_call_suid
< reg_where_dead
[regno
])
458 reg_n_calls_crossed
[regno
] += 1;
462 /* Record references from the value being set,
463 or from addresses in the place being set if that's not a reg.
464 If setting a SUBREG, we treat the entire reg as *used*. */
467 stupid_mark_refs (SET_SRC (x
), insn
);
468 if (GET_CODE (SET_DEST (x
)) != REG
)
469 stupid_mark_refs (SET_DEST (x
), insn
);
474 /* Register value being used, not set. */
479 if (regno
< FIRST_PSEUDO_REGISTER
)
481 /* Hard reg: mark it live for continuing scan of previous insns. */
482 register int j
= HARD_REGNO_NREGS (regno
, GET_MODE (x
));
485 regs_ever_live
[regno
+j
] = 1;
486 regs_live
[regno
+j
] = 1;
491 /* Pseudo reg: record first use, last use and number of uses. */
493 reg_where_born
[regno
] = INSN_SUID (insn
);
495 if (regs_live
[regno
] == 0)
497 regs_live
[regno
] = 1;
498 reg_where_dead
[regno
] = INSN_SUID (insn
);
504 /* Recursive scan of all other rtx's. */
506 fmt
= GET_RTX_FORMAT (code
);
507 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
510 stupid_mark_refs (XEXP (x
, i
), insn
);
514 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
515 stupid_mark_refs (XVECEXP (x
, i
, j
), insn
);