RISC-V: Make stack_save_restore tests more robust
[official-gcc.git] / gcc / rtl.h
blob0e9491b89b4d619a6b18100971f8f3007bb98b09
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
37 #include "hard-reg-set.h"
39 class predefined_function_abi;
41 /* Value used by some passes to "recognize" noop moves as valid
42 instructions. */
43 #define NOOP_MOVE_INSN_CODE INT_MAX
45 /* Register Transfer Language EXPRESSIONS CODES */
47 #define RTX_CODE enum rtx_code
48 enum rtx_code : unsigned {
50 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
51 #include "rtl.def" /* rtl expressions are documented here */
52 #undef DEF_RTL_EXPR
54 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
55 NUM_RTX_CODE.
56 Assumes default enum value assignment. */
58 /* The cast here, saves many elsewhere. */
59 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
61 /* Similar, but since generator files get more entries... */
62 #ifdef GENERATOR_FILE
63 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
64 #endif
66 #define RTX_CODE_BITSIZE 8
68 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
70 enum rtx_class {
71 /* We check bit 0-1 of some rtx class codes in the predicates below. */
73 /* Bit 0 = comparison if 0, arithmetic is 1
74 Bit 1 = 1 if commutative. */
75 RTX_COMPARE, /* 0 */
76 RTX_COMM_COMPARE,
77 RTX_BIN_ARITH,
78 RTX_COMM_ARITH,
80 /* Must follow the four preceding values. */
81 RTX_UNARY, /* 4 */
83 RTX_EXTRA,
84 RTX_MATCH,
85 RTX_INSN,
87 /* Bit 0 = 1 if constant. */
88 RTX_OBJ, /* 8 */
89 RTX_CONST_OBJ,
91 RTX_TERNARY,
92 RTX_BITFIELD_OPS,
93 RTX_AUTOINC
96 #define RTX_OBJ_MASK (~1)
97 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
98 #define RTX_COMPARE_MASK (~1)
99 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
100 #define RTX_ARITHMETIC_MASK (~1)
101 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
102 #define RTX_BINARY_MASK (~3)
103 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
104 #define RTX_COMMUTATIVE_MASK (~2)
105 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
106 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
108 extern const unsigned char rtx_length[NUM_RTX_CODE];
109 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
111 extern const char * const rtx_name[NUM_RTX_CODE];
112 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
114 extern const char * const rtx_format[NUM_RTX_CODE];
115 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
117 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
118 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
120 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
121 and NEXT_INSN fields). */
122 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
124 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
125 extern const unsigned char rtx_next[NUM_RTX_CODE];
127 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
128 relative to which the offsets are calculated, as explained in rtl.def. */
129 struct addr_diff_vec_flags
131 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
132 unsigned min_align: 8;
133 /* Flags: */
134 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
135 unsigned min_after_vec: 1; /* minimum address target label is
136 after the ADDR_DIFF_VEC. */
137 unsigned max_after_vec: 1; /* maximum address target label is
138 after the ADDR_DIFF_VEC. */
139 unsigned min_after_base: 1; /* minimum address target label is
140 after BASE. */
141 unsigned max_after_base: 1; /* maximum address target label is
142 after BASE. */
143 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
144 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
145 unsigned : 2;
146 unsigned scale : 8;
149 /* Structure used to describe the attributes of a MEM. These are hashed
150 so MEMs that the same attributes share a data structure. This means
151 they cannot be modified in place. */
152 class GTY(()) mem_attrs
154 public:
155 mem_attrs ();
157 /* The expression that the MEM accesses, or null if not known.
158 This expression might be larger than the memory reference itself.
159 (In other words, the MEM might access only part of the object.) */
160 tree expr;
162 /* The offset of the memory reference from the start of EXPR.
163 Only valid if OFFSET_KNOWN_P. */
164 poly_int64 offset;
166 /* The size of the memory reference in bytes. Only valid if
167 SIZE_KNOWN_P. */
168 poly_int64 size;
170 /* The alias set of the memory reference. */
171 alias_set_type alias;
173 /* The alignment of the reference in bits. Always a multiple of
174 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
175 than the memory reference itself. */
176 unsigned int align;
178 /* The address space that the memory reference uses. */
179 unsigned char addrspace;
181 /* True if OFFSET is known. */
182 bool offset_known_p;
184 /* True if SIZE is known. */
185 bool size_known_p;
188 /* Structure used to describe the attributes of a REG in similar way as
189 mem_attrs does for MEM above. Note that the OFFSET field is calculated
190 in the same way as for mem_attrs, rather than in the same way as a
191 SUBREG_BYTE. For example, if a big-endian target stores a byte
192 object in the low part of a 4-byte register, the OFFSET field
193 will be -3 rather than 0. */
195 class GTY((for_user)) reg_attrs {
196 public:
197 tree decl; /* decl corresponding to REG. */
198 poly_int64 offset; /* Offset from start of DECL. */
201 /* Common union for an element of an rtx. */
203 union rtunion
205 int rt_int;
206 unsigned int rt_uint;
207 poly_uint16_pod rt_subreg;
208 const char *rt_str;
209 rtx rt_rtx;
210 rtvec rt_rtvec;
211 machine_mode rt_type;
212 addr_diff_vec_flags rt_addr_diff_vec_flags;
213 struct cselib_val *rt_cselib;
214 tree rt_tree;
215 basic_block rt_bb;
216 mem_attrs *rt_mem;
217 class constant_descriptor_rtx *rt_constant;
218 struct dw_cfi_node *rt_cfi;
221 /* Describes the properties of a REG. */
222 struct GTY(()) reg_info {
223 /* The value of REGNO. */
224 unsigned int regno;
226 /* The value of REG_NREGS. */
227 unsigned int nregs : 8;
228 unsigned int unused : 24;
230 /* The value of REG_ATTRS. */
231 reg_attrs *attrs;
234 /* This structure remembers the position of a SYMBOL_REF within an
235 object_block structure. A SYMBOL_REF only provides this information
236 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
237 struct GTY(()) block_symbol {
238 /* The usual SYMBOL_REF fields. */
239 rtunion GTY ((skip)) fld[2];
241 /* The block that contains this object. */
242 struct object_block *block;
244 /* The offset of this object from the start of its block. It is negative
245 if the symbol has not yet been assigned an offset. */
246 HOST_WIDE_INT offset;
249 /* Describes a group of objects that are to be placed together in such
250 a way that their relative positions are known. */
251 struct GTY((for_user)) object_block {
252 /* The section in which these objects should be placed. */
253 section *sect;
255 /* The alignment of the first object, measured in bits. */
256 unsigned int alignment;
258 /* The total size of the objects, measured in bytes. */
259 HOST_WIDE_INT size;
261 /* The SYMBOL_REFs for each object. The vector is sorted in
262 order of increasing offset and the following conditions will
263 hold for each element X:
265 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
266 !SYMBOL_REF_ANCHOR_P (X)
267 SYMBOL_REF_BLOCK (X) == [address of this structure]
268 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
269 vec<rtx, va_gc> *objects;
271 /* All the anchor SYMBOL_REFs used to address these objects, sorted
272 in order of increasing offset, and then increasing TLS model.
273 The following conditions will hold for each element X in this vector:
275 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
276 SYMBOL_REF_ANCHOR_P (X)
277 SYMBOL_REF_BLOCK (X) == [address of this structure]
278 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
279 vec<rtx, va_gc> *anchors;
282 struct GTY((variable_size)) hwivec_def {
283 HOST_WIDE_INT elem[1];
286 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
287 #define CWI_GET_NUM_ELEM(RTX) \
288 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
289 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
290 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
292 struct GTY((variable_size)) const_poly_int_def {
293 trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
296 /* RTL expression ("rtx"). */
298 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
299 field for gengtype to recognize that inheritance is occurring,
300 so that all subclasses are redirected to the traversal hook for the
301 base class.
302 However, all of the fields are in the base class, and special-casing
303 is at work. Hence we use desc and tag of 0, generating a switch
304 statement of the form:
305 switch (0)
307 case 0: // all the work happens here
309 in order to work with the existing special-casing in gengtype. */
311 struct GTY((desc("0"), tag("0"),
312 chain_next ("RTX_NEXT (&%h)"),
313 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
314 /* The kind of value the expression has. */
315 ENUM_BITFIELD(machine_mode) mode : MACHINE_MODE_BITSIZE;
317 /* The kind of expression this is. */
318 ENUM_BITFIELD(rtx_code) code: RTX_CODE_BITSIZE;
320 /* 1 in a MEM if we should keep the alias set for this mem unchanged
321 when we access a component.
322 1 in a JUMP_INSN if it is a crossing jump.
323 1 in a CALL_INSN if it is a sibling call.
324 1 in a SET that is for a return.
325 In a CODE_LABEL, part of the two-bit alternate entry field.
326 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.cc.
327 1 in a VALUE is SP_BASED_VALUE_P in cselib.cc.
328 1 in a SUBREG generated by LRA for reload insns.
329 1 in a REG if this is a static chain register.
330 Dumped as "/j" in RTL dumps. */
331 unsigned int jump : 1;
332 /* In a CODE_LABEL, part of the two-bit alternate entry field.
333 1 in a MEM if it cannot trap.
334 1 in a CALL_INSN logically equivalent to
335 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
336 1 in a VALUE is SP_DERIVED_VALUE_P in cselib.cc.
337 Dumped as "/c" in RTL dumps. */
338 unsigned int call : 1;
339 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
340 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
341 1 in a SYMBOL_REF if it addresses something in the per-function
342 constants pool.
343 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
344 1 in a NOTE, or EXPR_LIST for a const call.
345 1 in a JUMP_INSN of an annulling branch.
346 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.cc.
347 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.cc.
348 1 in a clobber temporarily created for LRA.
349 Dumped as "/u" in RTL dumps. */
350 unsigned int unchanging : 1;
351 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
352 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
353 if it has been deleted.
354 1 in a REG expression if corresponds to a variable declared by the user,
355 0 for an internally generated temporary.
356 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
357 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
358 non-local label.
359 In a SYMBOL_REF, this flag is used for machine-specific purposes.
360 In a PREFETCH, this flag indicates that it should be considered a
361 scheduling barrier.
362 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.cc.
363 Dumped as "/v" in RTL dumps. */
364 unsigned int volatil : 1;
365 /* 1 in a REG if the register is used only in exit code a loop.
366 1 in a SUBREG expression if was generated from a variable with a
367 promoted mode.
368 1 in a CODE_LABEL if the label is used for nonlocal gotos
369 and must not be deleted even if its count is zero.
370 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
371 together with the preceding insn. Valid only within sched.
372 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
373 from the target of a branch. Valid from reorg until end of compilation;
374 cleared before used.
376 The name of the field is historical. It used to be used in MEMs
377 to record whether the MEM accessed part of a structure.
378 Dumped as "/s" in RTL dumps. */
379 unsigned int in_struct : 1;
380 /* At the end of RTL generation, 1 if this rtx is used. This is used for
381 copying shared structure. See `unshare_all_rtl'.
382 In a REG, this is not needed for that purpose, and used instead
383 in `leaf_renumber_regs_insn'.
384 1 in a SYMBOL_REF, means that emit_library_call
385 has used it as the function.
386 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.cc.
387 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.cc. */
388 unsigned int used : 1;
389 /* 1 in an INSN or a SET if this rtx is related to the call frame,
390 either changing how we compute the frame address or saving and
391 restoring registers in the prologue and epilogue.
392 1 in a REG or MEM if it is a pointer.
393 1 in a SYMBOL_REF if it addresses something in the per-function
394 constant string pool.
395 1 in a VALUE is VALUE_CHANGED in var-tracking.cc.
396 Dumped as "/f" in RTL dumps. */
397 unsigned frame_related : 1;
398 /* 1 in a REG or PARALLEL that is the current function's return value.
399 1 in a SYMBOL_REF for a weak symbol.
400 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
401 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.cc.
402 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.cc.
403 Dumped as "/i" in RTL dumps. */
404 unsigned return_val : 1;
406 union {
407 /* The final union field is aligned to 64 bits on LP64 hosts,
408 giving a 32-bit gap after the fields above. We optimize the
409 layout for that case and use the gap for extra code-specific
410 information. */
412 /* The ORIGINAL_REGNO of a REG. */
413 unsigned int original_regno;
415 /* The INSN_UID of an RTX_INSN-class code. */
416 int insn_uid;
418 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
419 unsigned int symbol_ref_flags;
421 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
422 enum var_init_status var_location_status;
424 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
425 HOST_WIDE_INTs in the hwivec_def. */
426 unsigned int num_elem;
428 /* Information about a CONST_VECTOR. */
429 struct
431 /* The value of CONST_VECTOR_NPATTERNS. */
432 unsigned int npatterns : 16;
434 /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */
435 unsigned int nelts_per_pattern : 8;
437 /* For future expansion. */
438 unsigned int unused : 8;
439 } const_vector;
440 } GTY ((skip)) u2;
442 /* The first element of the operands of this rtx.
443 The number of operands and their types are controlled
444 by the `code' field, according to rtl.def. */
445 union u {
446 rtunion fld[1];
447 HOST_WIDE_INT hwint[1];
448 struct reg_info reg;
449 struct block_symbol block_sym;
450 struct real_value rv;
451 struct fixed_value fv;
452 struct hwivec_def hwiv;
453 struct const_poly_int_def cpi;
454 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
457 /* A node for constructing singly-linked lists of rtx. */
459 struct GTY(()) rtx_expr_list : public rtx_def
461 private:
462 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
464 public:
465 /* Get next in list. */
466 rtx_expr_list *next () const;
468 /* Get at the underlying rtx. */
469 rtx element () const;
472 template <>
473 template <>
474 inline bool
475 is_a_helper <rtx_expr_list *>::test (rtx rt)
477 return rt->code == EXPR_LIST;
480 struct GTY(()) rtx_insn_list : public rtx_def
482 private:
483 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
485 This is an instance of:
487 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
489 i.e. a node for constructing singly-linked lists of rtx_insn *, where
490 the list is "external" to the insn (as opposed to the doubly-linked
491 list embedded within rtx_insn itself). */
493 public:
494 /* Get next in list. */
495 rtx_insn_list *next () const;
497 /* Get at the underlying instruction. */
498 rtx_insn *insn () const;
502 template <>
503 template <>
504 inline bool
505 is_a_helper <rtx_insn_list *>::test (rtx rt)
507 return rt->code == INSN_LIST;
510 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
511 typically (but not always) of rtx_insn *, used in the late passes. */
513 struct GTY(()) rtx_sequence : public rtx_def
515 private:
516 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
518 public:
519 /* Get number of elements in sequence. */
520 int len () const;
522 /* Get i-th element of the sequence. */
523 rtx element (int index) const;
525 /* Get i-th element of the sequence, with a checked cast to
526 rtx_insn *. */
527 rtx_insn *insn (int index) const;
530 template <>
531 template <>
532 inline bool
533 is_a_helper <rtx_sequence *>::test (rtx rt)
535 return rt->code == SEQUENCE;
538 template <>
539 template <>
540 inline bool
541 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
543 return rt->code == SEQUENCE;
546 struct GTY(()) rtx_insn : public rtx_def
548 public:
549 /* No extra fields, but adds the invariant:
551 (INSN_P (X)
552 || NOTE_P (X)
553 || JUMP_TABLE_DATA_P (X)
554 || BARRIER_P (X)
555 || LABEL_P (X))
557 i.e. that we must be able to use the following:
558 INSN_UID ()
559 NEXT_INSN ()
560 PREV_INSN ()
561 i.e. we have an rtx that has an INSN_UID field and can be part of
562 a linked list of insns.
565 /* Returns true if this insn has been deleted. */
567 bool deleted () const { return volatil; }
569 /* Mark this insn as deleted. */
571 void set_deleted () { volatil = true; }
573 /* Mark this insn as not deleted. */
575 void set_undeleted () { volatil = false; }
578 /* Subclasses of rtx_insn. */
580 struct GTY(()) rtx_debug_insn : public rtx_insn
582 /* No extra fields, but adds the invariant:
583 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
584 i.e. an annotation for tracking variable assignments.
586 This is an instance of:
587 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
588 from rtl.def. */
591 struct GTY(()) rtx_nonjump_insn : public rtx_insn
593 /* No extra fields, but adds the invariant:
594 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
595 i.e an instruction that cannot jump.
597 This is an instance of:
598 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
599 from rtl.def. */
602 struct GTY(()) rtx_jump_insn : public rtx_insn
604 public:
605 /* No extra fields, but adds the invariant:
606 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
607 i.e. an instruction that can possibly jump.
609 This is an instance of:
610 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
611 from rtl.def. */
613 /* Returns jump target of this instruction. The returned value is not
614 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
615 expression. Also, when the code label is marked "deleted", it is
616 replaced by a NOTE. In some cases the value is NULL_RTX. */
618 inline rtx jump_label () const;
620 /* Returns jump target cast to rtx_code_label *. */
622 inline rtx_code_label *jump_target () const;
624 /* Set jump target. */
626 inline void set_jump_target (rtx_code_label *);
629 struct GTY(()) rtx_call_insn : public rtx_insn
631 /* No extra fields, but adds the invariant:
632 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
633 i.e. an instruction that can possibly call a subroutine
634 but which will not change which instruction comes next
635 in the current function.
637 This is an instance of:
638 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
639 from rtl.def. */
642 struct GTY(()) rtx_jump_table_data : public rtx_insn
644 /* No extra fields, but adds the invariant:
645 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
646 i.e. a data for a jump table, considered an instruction for
647 historical reasons.
649 This is an instance of:
650 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
651 from rtl.def. */
653 /* This can be either:
655 (a) a table of absolute jumps, in which case PATTERN (this) is an
656 ADDR_VEC with arg 0 a vector of labels, or
658 (b) a table of relative jumps (e.g. for -fPIC), in which case
659 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
660 arg 1 the vector of labels.
662 This method gets the underlying vec. */
664 inline rtvec get_labels () const;
665 inline scalar_int_mode get_data_mode () const;
668 struct GTY(()) rtx_barrier : public rtx_insn
670 /* No extra fields, but adds the invariant:
671 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
672 i.e. a marker that indicates that control will not flow through.
674 This is an instance of:
675 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
676 from rtl.def. */
679 struct GTY(()) rtx_code_label : public rtx_insn
681 /* No extra fields, but adds the invariant:
682 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
683 i.e. a label in the assembler.
685 This is an instance of:
686 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
687 from rtl.def. */
690 struct GTY(()) rtx_note : public rtx_insn
692 /* No extra fields, but adds the invariant:
693 NOTE_P(X) aka (GET_CODE (X) == NOTE)
694 i.e. a note about the corresponding source code.
696 This is an instance of:
697 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
698 from rtl.def. */
701 /* The size in bytes of an rtx header (code, mode and flags). */
702 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
704 /* The size in bytes of an rtx with code CODE. */
705 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
707 #define NULL_RTX (rtx) 0
709 /* The "next" and "previous" RTX, relative to this one. */
711 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
712 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
714 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
716 #define RTX_PREV(X) ((INSN_P (X) \
717 || NOTE_P (X) \
718 || JUMP_TABLE_DATA_P (X) \
719 || BARRIER_P (X) \
720 || LABEL_P (X)) \
721 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
722 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
723 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
725 /* Define macros to access the `code' field of the rtx. */
727 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
728 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
730 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
731 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
733 /* RTL vector. These appear inside RTX's when there is a need
734 for a variable number of things. The principle use is inside
735 PARALLEL expressions. */
737 struct GTY(()) rtvec_def {
738 int num_elem; /* number of elements */
739 rtx GTY ((length ("%h.num_elem"))) elem[1];
742 #define NULL_RTVEC (rtvec) 0
744 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
745 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
747 /* Predicate yielding nonzero iff X is an rtx for a register. */
748 #define REG_P(X) (GET_CODE (X) == REG)
750 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
751 #define MEM_P(X) (GET_CODE (X) == MEM)
753 #if TARGET_SUPPORTS_WIDE_INT
755 /* Match CONST_*s that can represent compile-time constant integers. */
756 #define CASE_CONST_SCALAR_INT \
757 case CONST_INT: \
758 case CONST_WIDE_INT
760 /* Match CONST_*s for which pointer equality corresponds to value
761 equality. */
762 #define CASE_CONST_UNIQUE \
763 case CONST_INT: \
764 case CONST_WIDE_INT: \
765 case CONST_POLY_INT: \
766 case CONST_DOUBLE: \
767 case CONST_FIXED
769 /* Match all CONST_* rtxes. */
770 #define CASE_CONST_ANY \
771 case CONST_INT: \
772 case CONST_WIDE_INT: \
773 case CONST_POLY_INT: \
774 case CONST_DOUBLE: \
775 case CONST_FIXED: \
776 case CONST_VECTOR
778 #else
780 /* Match CONST_*s that can represent compile-time constant integers. */
781 #define CASE_CONST_SCALAR_INT \
782 case CONST_INT: \
783 case CONST_DOUBLE
785 /* Match CONST_*s for which pointer equality corresponds to value
786 equality. */
787 #define CASE_CONST_UNIQUE \
788 case CONST_INT: \
789 case CONST_DOUBLE: \
790 case CONST_FIXED
792 /* Match all CONST_* rtxes. */
793 #define CASE_CONST_ANY \
794 case CONST_INT: \
795 case CONST_DOUBLE: \
796 case CONST_FIXED: \
797 case CONST_VECTOR
798 #endif
800 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
801 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
803 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
804 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
806 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
807 integer. */
808 #define CONST_POLY_INT_P(X) \
809 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
811 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
812 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
814 /* Predicate yielding true iff X is an rtx for a double-int
815 or floating point constant. */
816 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
818 /* Predicate yielding true iff X is an rtx for a double-int. */
819 #define CONST_DOUBLE_AS_INT_P(X) \
820 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
822 /* Predicate yielding true iff X is an rtx for a integer const. */
823 #if TARGET_SUPPORTS_WIDE_INT
824 #define CONST_SCALAR_INT_P(X) \
825 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
826 #else
827 #define CONST_SCALAR_INT_P(X) \
828 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
829 #endif
831 /* Predicate yielding true iff X is an rtx for a double-int. */
832 #define CONST_DOUBLE_AS_FLOAT_P(X) \
833 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
835 /* Predicate yielding nonzero iff X is an rtx for a constant vector. */
836 #define CONST_VECTOR_P(X) (GET_CODE (X) == CONST_VECTOR)
838 /* Predicate yielding nonzero iff X is a label insn. */
839 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
841 /* Predicate yielding nonzero iff X is a jump insn. */
842 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
844 /* Predicate yielding nonzero iff X is a call insn. */
845 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
847 /* 1 if RTX is a call_insn for a fake call.
848 CALL_INSN use "used" flag to indicate it's a fake call. */
849 #define FAKE_CALL_P(RTX) \
850 (RTL_FLAG_CHECK1 ("FAKE_CALL_P", (RTX), CALL_INSN)->used)
852 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
853 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
855 /* Predicate yielding nonzero iff X is a debug note/insn. */
856 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
858 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
859 #define NONDEBUG_INSN_P(X) (NONJUMP_INSN_P (X) || JUMP_P (X) || CALL_P (X))
861 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
862 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
863 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
864 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
865 /* Nonzero if DEBUG_INSN_P may possibly hold. */
866 #define MAY_HAVE_DEBUG_INSNS \
867 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
869 /* Predicate yielding nonzero iff X is a real insn. */
870 #define INSN_P(X) (NONDEBUG_INSN_P (X) || DEBUG_INSN_P (X))
872 /* Predicate yielding nonzero iff X is a note insn. */
873 #define NOTE_P(X) (GET_CODE (X) == NOTE)
875 /* Predicate yielding nonzero iff X is a barrier insn. */
876 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
878 /* Predicate yielding nonzero iff X is a data for a jump table. */
879 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
881 /* Predicate yielding nonzero iff RTX is a subreg. */
882 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
884 /* Predicate yielding true iff RTX is a symbol ref. */
885 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
887 template <>
888 template <>
889 inline bool
890 is_a_helper <rtx_insn *>::test (rtx rt)
892 return (INSN_P (rt)
893 || NOTE_P (rt)
894 || JUMP_TABLE_DATA_P (rt)
895 || BARRIER_P (rt)
896 || LABEL_P (rt));
899 template <>
900 template <>
901 inline bool
902 is_a_helper <const rtx_insn *>::test (const_rtx rt)
904 return (INSN_P (rt)
905 || NOTE_P (rt)
906 || JUMP_TABLE_DATA_P (rt)
907 || BARRIER_P (rt)
908 || LABEL_P (rt));
911 template <>
912 template <>
913 inline bool
914 is_a_helper <rtx_debug_insn *>::test (rtx rt)
916 return DEBUG_INSN_P (rt);
919 template <>
920 template <>
921 inline bool
922 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
924 return NONJUMP_INSN_P (rt);
927 template <>
928 template <>
929 inline bool
930 is_a_helper <rtx_jump_insn *>::test (rtx rt)
932 return JUMP_P (rt);
935 template <>
936 template <>
937 inline bool
938 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
940 return JUMP_P (insn);
943 template <>
944 template <>
945 inline bool
946 is_a_helper <rtx_call_insn *>::test (rtx rt)
948 return CALL_P (rt);
951 template <>
952 template <>
953 inline bool
954 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
956 return CALL_P (insn);
959 template <>
960 template <>
961 inline bool
962 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
964 return JUMP_TABLE_DATA_P (rt);
967 template <>
968 template <>
969 inline bool
970 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
972 return JUMP_TABLE_DATA_P (insn);
975 template <>
976 template <>
977 inline bool
978 is_a_helper <rtx_barrier *>::test (rtx rt)
980 return BARRIER_P (rt);
983 template <>
984 template <>
985 inline bool
986 is_a_helper <rtx_code_label *>::test (rtx rt)
988 return LABEL_P (rt);
991 template <>
992 template <>
993 inline bool
994 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
996 return LABEL_P (insn);
999 template <>
1000 template <>
1001 inline bool
1002 is_a_helper <rtx_note *>::test (rtx rt)
1004 return NOTE_P (rt);
1007 template <>
1008 template <>
1009 inline bool
1010 is_a_helper <rtx_note *>::test (rtx_insn *insn)
1012 return NOTE_P (insn);
1015 /* Predicate yielding nonzero iff X is a return or simple_return. */
1016 #define ANY_RETURN_P(X) \
1017 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1019 /* 1 if X is a unary operator. */
1021 #define UNARY_P(X) \
1022 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1024 /* 1 if X is a binary operator. */
1026 #define BINARY_P(X) \
1027 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1029 /* 1 if X is an arithmetic operator. */
1031 #define ARITHMETIC_P(X) \
1032 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1033 == RTX_ARITHMETIC_RESULT)
1035 /* 1 if X is an arithmetic operator. */
1037 #define COMMUTATIVE_ARITH_P(X) \
1038 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1040 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1041 These two are sometimes selected together because it is possible to
1042 swap the two operands. */
1044 #define SWAPPABLE_OPERANDS_P(X) \
1045 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1046 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1047 | (1 << RTX_COMPARE)))
1049 /* 1 if X is a non-commutative operator. */
1051 #define NON_COMMUTATIVE_P(X) \
1052 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1053 == RTX_NON_COMMUTATIVE_RESULT)
1055 /* 1 if X is a commutative operator on integers. */
1057 #define COMMUTATIVE_P(X) \
1058 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1059 == RTX_COMMUTATIVE_RESULT)
1061 /* 1 if X is a relational operator. */
1063 #define COMPARISON_P(X) \
1064 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1066 /* 1 if X is a constant value that is an integer. */
1068 #define CONSTANT_P(X) \
1069 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1071 /* 1 if X is a LABEL_REF. */
1072 #define LABEL_REF_P(X) \
1073 (GET_CODE (X) == LABEL_REF)
1075 /* 1 if X can be used to represent an object. */
1076 #define OBJECT_P(X) \
1077 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1079 /* General accessor macros for accessing the fields of an rtx. */
1081 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1082 /* The bit with a star outside the statement expr and an & inside is
1083 so that N can be evaluated only once. */
1084 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1085 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1086 const enum rtx_code _code = GET_CODE (_rtx); \
1087 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1088 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1089 __FUNCTION__); \
1090 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1091 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1092 __FUNCTION__); \
1093 &_rtx->u.fld[_n]; }))
1095 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1096 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1097 const enum rtx_code _code = GET_CODE (_rtx); \
1098 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1099 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1100 __FUNCTION__); \
1101 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1102 && GET_RTX_FORMAT (_code)[_n] != C2) \
1103 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1104 __FUNCTION__); \
1105 &_rtx->u.fld[_n]; }))
1107 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1108 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1109 if (GET_CODE (_rtx) != (C)) \
1110 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1111 __FUNCTION__); \
1112 &_rtx->u.fld[_n]; }))
1114 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1115 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1116 const enum rtx_code _code = GET_CODE (_rtx); \
1117 if (_code != (C1) && _code != (C2)) \
1118 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1119 __FUNCTION__); \
1120 &_rtx->u.fld[_n]; }))
1122 #define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__ \
1123 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1124 const enum rtx_code _code = GET_CODE (_rtx); \
1125 if (_code != (C1) && _code != (C2) && _code != (C3)) \
1126 rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__, \
1127 __LINE__, __FUNCTION__); \
1128 &_rtx->u.fld[_n]; }))
1130 #define RTVEC_ELT(RTVEC, I) __extension__ \
1131 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1132 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1133 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1134 __FUNCTION__); \
1135 &_rtvec->elem[_i]; }))
1137 #define XWINT(RTX, N) __extension__ \
1138 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1139 const enum rtx_code _code = GET_CODE (_rtx); \
1140 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1141 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1142 __FUNCTION__); \
1143 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1144 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1145 __FUNCTION__); \
1146 &_rtx->u.hwint[_n]; }))
1148 #define CWI_ELT(RTX, I) __extension__ \
1149 (*({ __typeof (RTX) const _cwi = (RTX); \
1150 int _max = CWI_GET_NUM_ELEM (_cwi); \
1151 const int _i = (I); \
1152 if (_i < 0 || _i >= _max) \
1153 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1154 __FUNCTION__); \
1155 &_cwi->u.hwiv.elem[_i]; }))
1157 #define XCWINT(RTX, N, C) __extension__ \
1158 (*({ __typeof (RTX) const _rtx = (RTX); \
1159 if (GET_CODE (_rtx) != (C)) \
1160 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1161 __FUNCTION__); \
1162 &_rtx->u.hwint[N]; }))
1164 #define XCMWINT(RTX, N, C, M) __extension__ \
1165 (*({ __typeof (RTX) const _rtx = (RTX); \
1166 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1167 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1168 __LINE__, __FUNCTION__); \
1169 &_rtx->u.hwint[N]; }))
1171 #define XCNMPRV(RTX, C, M) __extension__ \
1172 ({ __typeof (RTX) const _rtx = (RTX); \
1173 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1174 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1175 __LINE__, __FUNCTION__); \
1176 &_rtx->u.rv; })
1178 #define XCNMPFV(RTX, C, M) __extension__ \
1179 ({ __typeof (RTX) const _rtx = (RTX); \
1180 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1181 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1182 __LINE__, __FUNCTION__); \
1183 &_rtx->u.fv; })
1185 #define REG_CHECK(RTX) __extension__ \
1186 ({ __typeof (RTX) const _rtx = (RTX); \
1187 if (GET_CODE (_rtx) != REG) \
1188 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1189 __FUNCTION__); \
1190 &_rtx->u.reg; })
1192 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1193 ({ __typeof (RTX) const _symbol = (RTX); \
1194 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1195 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1196 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1197 __FUNCTION__); \
1198 &_symbol->u.block_sym; })
1200 #define HWIVEC_CHECK(RTX,C) __extension__ \
1201 ({ __typeof (RTX) const _symbol = (RTX); \
1202 RTL_CHECKC1 (_symbol, 0, C); \
1203 &_symbol->u.hwiv; })
1205 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1206 const char *)
1207 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1208 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1209 const char *)
1210 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1211 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1212 int, const char *)
1213 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1214 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1215 int, const char *)
1216 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1217 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1218 const char *, int, const char *)
1219 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1220 extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code,
1221 enum rtx_code, const char *, int,
1222 const char *)
1223 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1224 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1225 bool, const char *, int, const char *)
1226 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1227 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1228 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1229 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1230 const char *)
1231 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1232 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1233 const char *)
1234 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1236 #else /* not ENABLE_RTL_CHECKING */
1238 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1239 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1240 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1241 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1242 #define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N])
1243 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1244 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1245 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1246 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1247 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1248 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1249 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1250 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1251 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1252 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1253 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1255 #endif
1257 /* General accessor macros for accessing the flags of an rtx. */
1259 /* Access an individual rtx flag, with no checking of any kind. */
1260 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1262 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1263 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1264 ({ __typeof (RTX) const _rtx = (RTX); \
1265 if (GET_CODE (_rtx) != C1) \
1266 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1267 __FUNCTION__); \
1268 _rtx; })
1270 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1271 ({ __typeof (RTX) const _rtx = (RTX); \
1272 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1273 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1274 __FUNCTION__); \
1275 _rtx; })
1277 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1278 ({ __typeof (RTX) const _rtx = (RTX); \
1279 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1280 && GET_CODE (_rtx) != C3) \
1281 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1282 __FUNCTION__); \
1283 _rtx; })
1285 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1286 ({ __typeof (RTX) const _rtx = (RTX); \
1287 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1288 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1289 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1290 __FUNCTION__); \
1291 _rtx; })
1293 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1294 ({ __typeof (RTX) const _rtx = (RTX); \
1295 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1296 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1297 && GET_CODE (_rtx) != C5) \
1298 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1299 __FUNCTION__); \
1300 _rtx; })
1302 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1303 __extension__ \
1304 ({ __typeof (RTX) const _rtx = (RTX); \
1305 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1306 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1307 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1308 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1309 __FUNCTION__); \
1310 _rtx; })
1312 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1313 __extension__ \
1314 ({ __typeof (RTX) const _rtx = (RTX); \
1315 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1316 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1317 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1318 && GET_CODE (_rtx) != C7) \
1319 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1320 __FUNCTION__); \
1321 _rtx; })
1323 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1324 __extension__ \
1325 ({ __typeof (RTX) const _rtx = (RTX); \
1326 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1327 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1328 __FUNCTION__); \
1329 _rtx; })
1331 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1332 int, const char *)
1333 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1336 #else /* not ENABLE_RTL_FLAG_CHECKING */
1338 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1339 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1340 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1341 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1342 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1343 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1344 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1345 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1346 #endif
1348 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1349 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1350 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1351 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1352 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1353 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1354 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1355 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1356 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1357 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1359 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1360 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1362 /* These are like XINT, etc. except that they expect a '0' field instead
1363 of the normal type code. */
1365 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1366 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1367 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1368 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1369 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1370 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1371 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1372 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1373 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1374 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1375 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1376 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1378 /* Access a '0' field with any type. */
1379 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1381 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1382 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1383 #define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1384 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1385 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1386 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1387 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1388 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1389 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1390 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1391 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1393 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1394 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1396 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1397 #define XC3EXP(RTX, N, C1, C2, C3) (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx)
1400 /* Methods of rtx_expr_list. */
1402 inline rtx_expr_list *rtx_expr_list::next () const
1404 rtx tmp = XEXP (this, 1);
1405 return safe_as_a <rtx_expr_list *> (tmp);
1408 inline rtx rtx_expr_list::element () const
1410 return XEXP (this, 0);
1413 /* Methods of rtx_insn_list. */
1415 inline rtx_insn_list *rtx_insn_list::next () const
1417 rtx tmp = XEXP (this, 1);
1418 return safe_as_a <rtx_insn_list *> (tmp);
1421 inline rtx_insn *rtx_insn_list::insn () const
1423 rtx tmp = XEXP (this, 0);
1424 return safe_as_a <rtx_insn *> (tmp);
1427 /* Methods of rtx_sequence. */
1429 inline int rtx_sequence::len () const
1431 return XVECLEN (this, 0);
1434 inline rtx rtx_sequence::element (int index) const
1436 return XVECEXP (this, 0, index);
1439 inline rtx_insn *rtx_sequence::insn (int index) const
1441 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1444 /* ACCESS MACROS for particular fields of insns. */
1446 /* Holds a unique number for each insn.
1447 These are not necessarily sequentially increasing. */
1448 inline int INSN_UID (const_rtx insn)
1450 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1451 (insn))->u2.insn_uid;
1453 inline int& INSN_UID (rtx insn)
1455 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1456 (insn))->u2.insn_uid;
1459 /* Chain insns together in sequence. */
1461 /* For now these are split in two: an rvalue form:
1462 PREV_INSN/NEXT_INSN
1463 and an lvalue form:
1464 SET_NEXT_INSN/SET_PREV_INSN. */
1466 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1468 rtx prev = XEXP (insn, 0);
1469 return safe_as_a <rtx_insn *> (prev);
1472 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1474 return XEXP (insn, 0);
1477 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1479 rtx next = XEXP (insn, 1);
1480 return safe_as_a <rtx_insn *> (next);
1483 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1485 return XEXP (insn, 1);
1488 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1490 return XBBDEF (insn, 2);
1493 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1495 return XBBDEF (insn, 2);
1498 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1500 BLOCK_FOR_INSN (insn) = bb;
1503 /* The body of an insn. */
1504 inline rtx PATTERN (const_rtx insn)
1506 return XEXP (insn, 3);
1509 inline rtx& PATTERN (rtx insn)
1511 return XEXP (insn, 3);
1514 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1516 return XUINT (insn, 4);
1519 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1521 return XUINT (insn, 4);
1524 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1526 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1529 /* LOCATION of an RTX if relevant. */
1530 #define RTL_LOCATION(X) (INSN_P (X) ? \
1531 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1532 : UNKNOWN_LOCATION)
1534 /* Code number of instruction, from when it was recognized.
1535 -1 means this instruction has not been recognized yet. */
1536 #define INSN_CODE(INSN) XINT (INSN, 5)
1538 inline rtvec rtx_jump_table_data::get_labels () const
1540 rtx pat = PATTERN (this);
1541 if (GET_CODE (pat) == ADDR_VEC)
1542 return XVEC (pat, 0);
1543 else
1544 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1547 /* Return the mode of the data in the table, which is always a scalar
1548 integer. */
1550 inline scalar_int_mode
1551 rtx_jump_table_data::get_data_mode () const
1553 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1556 /* If LABEL is followed by a jump table, return the table, otherwise
1557 return null. */
1559 inline rtx_jump_table_data *
1560 jump_table_for_label (const rtx_code_label *label)
1562 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1565 #define RTX_FRAME_RELATED_P(RTX) \
1566 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1567 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1569 /* 1 if JUMP RTX is a crossing jump. */
1570 #define CROSSING_JUMP_P(RTX) \
1571 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1573 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1574 TREE_READONLY. */
1575 #define RTL_CONST_CALL_P(RTX) \
1576 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1578 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1579 DECL_PURE_P. */
1580 #define RTL_PURE_CALL_P(RTX) \
1581 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1583 /* 1 if RTX is a call to a const or pure function. */
1584 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1585 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1587 /* 1 if RTX is a call to a looping const or pure function. Built from
1588 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1589 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1590 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1592 /* 1 if RTX is a call_insn for a sibling call. */
1593 #define SIBLING_CALL_P(RTX) \
1594 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1596 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1597 #define INSN_ANNULLED_BRANCH_P(RTX) \
1598 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1600 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1601 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1602 executed if the branch is taken. For annulled branches with this bit
1603 clear, the insn should be executed only if the branch is not taken. */
1604 #define INSN_FROM_TARGET_P(RTX) \
1605 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1606 CALL_INSN)->in_struct)
1608 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1609 See the comments for ADDR_DIFF_VEC in rtl.def. */
1610 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1612 /* In a VALUE, the value cselib has assigned to RTX.
1613 This is a "struct cselib_val", see cselib.h. */
1614 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1616 /* Holds a list of notes on what this insn does to various REGs.
1617 It is a chain of EXPR_LIST rtx's, where the second operand is the
1618 chain pointer and the first operand is the REG being described.
1619 The mode field of the EXPR_LIST contains not a real machine mode
1620 but a value from enum reg_note. */
1621 #define REG_NOTES(INSN) XEXP(INSN, 6)
1623 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1624 question. */
1625 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1627 enum reg_note
1629 #define DEF_REG_NOTE(NAME) NAME,
1630 #include "reg-notes.def"
1631 #undef DEF_REG_NOTE
1632 REG_NOTE_MAX
1635 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1636 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1637 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1638 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1640 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1642 extern const char * const reg_note_name[];
1643 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1645 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1646 USE, CLOBBER and SET expressions.
1647 USE expressions list the registers filled with arguments that
1648 are passed to the function.
1649 CLOBBER expressions document the registers explicitly clobbered
1650 by this CALL_INSN.
1651 SET expressions say that the return value of the call (the SET_DEST)
1652 is equivalent to a value available before the call (the SET_SRC).
1653 This kind of SET is used when the return value is predictable in
1654 advance. It is purely an optimisation hint; unlike USEs and CLOBBERs,
1655 it does not affect register liveness.
1657 Pseudo registers cannot be mentioned in this list. */
1658 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1660 /* The label-number of a code-label. The assembler label
1661 is made from `L' and the label-number printed in decimal.
1662 Label numbers are unique in a compilation. */
1663 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1665 /* In a NOTE that is a line number, this is a string for the file name that the
1666 line is in. We use the same field to record block numbers temporarily in
1667 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1668 between ints and pointers if we use a different macro for the block number.)
1671 /* Opaque data. */
1672 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1673 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1674 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1675 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1676 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1677 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1678 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1679 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1680 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1681 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1683 /* In a NOTE that is a line number, this is the line number.
1684 Other kinds of NOTEs are identified by negative numbers here. */
1685 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1687 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1688 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1689 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1691 /* Nonzero if INSN is a debug nonbind marker note,
1692 for which NOTE_MARKER_LOCATION can be used. */
1693 #define NOTE_MARKER_P(INSN) \
1694 (NOTE_P (INSN) && \
1695 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT \
1696 || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))
1698 /* Variable declaration and the location of a variable. */
1699 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1700 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1702 /* Initialization status of the variable in the location. Status
1703 can be unknown, uninitialized or initialized. See enumeration
1704 type below. */
1705 #define PAT_VAR_LOCATION_STATUS(PAT) \
1706 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1707 ->u2.var_location_status)
1709 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1710 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1711 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1712 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1713 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1714 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1715 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1717 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1718 location/value tracking annotation. */
1719 #define DEBUG_BIND_INSN_P(INSN) \
1720 (DEBUG_INSN_P (INSN) \
1721 && (GET_CODE (PATTERN (INSN)) \
1722 == VAR_LOCATION))
1723 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1724 source location marker. */
1725 #define DEBUG_MARKER_INSN_P(INSN) \
1726 (DEBUG_INSN_P (INSN) \
1727 && (GET_CODE (PATTERN (INSN)) \
1728 != VAR_LOCATION))
1729 /* Evaluate to the marker kind. */
1730 #define INSN_DEBUG_MARKER_KIND(INSN) \
1731 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1732 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1733 ? NOTE_INSN_BEGIN_STMT \
1734 : GET_MODE (PATTERN (INSN)) == BLKmode \
1735 ? NOTE_INSN_INLINE_ENTRY \
1736 : (enum insn_note)-1) \
1737 : (enum insn_note)-1)
1738 /* Create patterns for debug markers. These and the above abstract
1739 the representation, so that it's easier to get rid of the abuse of
1740 the mode to hold the marker kind. Other marker types are
1741 envisioned, so a single bit flag won't do; maybe separate RTL codes
1742 wouldn't be a problem. */
1743 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1744 gen_rtx_DEBUG_MARKER (VOIDmode)
1745 #define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
1746 gen_rtx_DEBUG_MARKER (BLKmode)
1748 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1749 #define INSN_VAR_LOCATION(INSN) \
1750 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1751 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1752 #define INSN_VAR_LOCATION_PTR(INSN) \
1753 (&PATTERN (INSN))
1755 /* Accessors for a tree-expanded var location debug insn. */
1756 #define INSN_VAR_LOCATION_DECL(INSN) \
1757 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1758 #define INSN_VAR_LOCATION_LOC(INSN) \
1759 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1760 #define INSN_VAR_LOCATION_STATUS(INSN) \
1761 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1763 /* Expand to the RTL that denotes an unknown variable location in a
1764 DEBUG_INSN. */
1765 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1767 /* Determine whether X is such an unknown location. */
1768 #define VAR_LOC_UNKNOWN_P(X) \
1769 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1771 /* 1 if RTX is emitted after a call, but it should take effect before
1772 the call returns. */
1773 #define NOTE_DURING_CALL_P(RTX) \
1774 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1776 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1777 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1779 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1780 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1782 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1783 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1785 /* Codes that appear in the NOTE_KIND field for kinds of notes
1786 that are not line numbers. These codes are all negative.
1788 Notice that we do not try to use zero here for any of
1789 the special note codes because sometimes the source line
1790 actually can be zero! This happens (for example) when we
1791 are generating code for the per-translation-unit constructor
1792 and destructor routines for some C++ translation unit. */
1794 enum insn_note
1796 #define DEF_INSN_NOTE(NAME) NAME,
1797 #include "insn-notes.def"
1798 #undef DEF_INSN_NOTE
1800 NOTE_INSN_MAX
1803 /* Names for NOTE insn's other than line numbers. */
1805 extern const char * const note_insn_name[NOTE_INSN_MAX];
1806 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1807 (note_insn_name[(NOTE_CODE)])
1809 /* The name of a label, in case it corresponds to an explicit label
1810 in the input source code. */
1811 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1813 /* In jump.cc, each label contains a count of the number
1814 of LABEL_REFs that point at it, so unused labels can be deleted. */
1815 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1817 /* Labels carry a two-bit field composed of the ->jump and ->call
1818 bits. This field indicates whether the label is an alternate
1819 entry point, and if so, what kind. */
1820 enum label_kind
1822 LABEL_NORMAL = 0, /* ordinary label */
1823 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1824 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1825 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1828 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1830 /* Retrieve the kind of LABEL. */
1831 #define LABEL_KIND(LABEL) __extension__ \
1832 ({ __typeof (LABEL) const _label = (LABEL); \
1833 if (! LABEL_P (_label)) \
1834 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1835 __FUNCTION__); \
1836 (enum label_kind) ((_label->jump << 1) | _label->call); })
1838 /* Set the kind of LABEL. */
1839 #define SET_LABEL_KIND(LABEL, KIND) do { \
1840 __typeof (LABEL) const _label = (LABEL); \
1841 const unsigned int _kind = (KIND); \
1842 if (! LABEL_P (_label)) \
1843 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1844 __FUNCTION__); \
1845 _label->jump = ((_kind >> 1) & 1); \
1846 _label->call = (_kind & 1); \
1847 } while (0)
1849 #else
1851 /* Retrieve the kind of LABEL. */
1852 #define LABEL_KIND(LABEL) \
1853 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1855 /* Set the kind of LABEL. */
1856 #define SET_LABEL_KIND(LABEL, KIND) do { \
1857 rtx const _label = (LABEL); \
1858 const unsigned int _kind = (KIND); \
1859 _label->jump = ((_kind >> 1) & 1); \
1860 _label->call = (_kind & 1); \
1861 } while (0)
1863 #endif /* rtl flag checking */
1865 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1867 /* In jump.cc, each JUMP_INSN can point to a label that it can jump to,
1868 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1869 be decremented and possibly the label can be deleted. */
1870 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1872 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1874 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1877 /* Methods of rtx_jump_insn. */
1879 inline rtx rtx_jump_insn::jump_label () const
1881 return JUMP_LABEL (this);
1884 inline rtx_code_label *rtx_jump_insn::jump_target () const
1886 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1889 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1891 JUMP_LABEL (this) = target;
1894 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1895 goes through all the LABEL_REFs that jump to that label. The chain
1896 eventually winds up at the CODE_LABEL: it is circular. */
1897 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1899 /* Get the label that a LABEL_REF references. */
1900 inline rtx_insn *
1901 label_ref_label (const_rtx ref)
1903 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1906 /* Set the label that LABEL_REF ref refers to. */
1908 inline void
1909 set_label_ref_label (rtx ref, rtx_insn *label)
1911 XCEXP (ref, 0, LABEL_REF) = label;
1914 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1915 be used on RHS. Use SET_REGNO to change the value. */
1916 #define REGNO(RTX) (rhs_regno(RTX))
1917 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1919 /* Return the number of consecutive registers in a REG. This is always
1920 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1921 hard registers. */
1922 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1924 /* ORIGINAL_REGNO holds the number the register originally had; for a
1925 pseudo register turned into a hard reg this will hold the old pseudo
1926 register number. */
1927 #define ORIGINAL_REGNO(RTX) \
1928 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1930 /* Force the REGNO macro to only be used on the lhs. */
1931 inline unsigned int
1932 rhs_regno (const_rtx x)
1934 return REG_CHECK (x)->regno;
1937 /* Return the final register in REG X plus one. */
1938 inline unsigned int
1939 END_REGNO (const_rtx x)
1941 return REGNO (x) + REG_NREGS (x);
1944 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1945 bypassing the df machinery. */
1946 inline void
1947 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1949 reg_info *reg = REG_CHECK (x);
1950 reg->regno = regno;
1951 reg->nregs = nregs;
1954 /* 1 if RTX is a reg or parallel that is the current function's return
1955 value. */
1956 #define REG_FUNCTION_VALUE_P(RTX) \
1957 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1959 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1960 #define REG_USERVAR_P(RTX) \
1961 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1963 /* 1 if RTX is a reg that holds a pointer value. */
1964 #define REG_POINTER(RTX) \
1965 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1967 /* 1 if RTX is a mem that holds a pointer value. */
1968 #define MEM_POINTER(RTX) \
1969 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1971 /* 1 if the given register REG corresponds to a hard register. */
1972 #define HARD_REGISTER_P(REG) HARD_REGISTER_NUM_P (REGNO (REG))
1974 /* 1 if the given register number REG_NO corresponds to a hard register. */
1975 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1977 /* 1 if the given register REG corresponds to a virtual register. */
1978 #define VIRTUAL_REGISTER_P(REG) VIRTUAL_REGISTER_NUM_P (REGNO (REG))
1980 /* 1 if the given register number REG_NO corresponds to a virtual register. */
1981 #define VIRTUAL_REGISTER_NUM_P(REG_NO) \
1982 IN_RANGE (REG_NO, FIRST_VIRTUAL_REGISTER, LAST_VIRTUAL_REGISTER)
1984 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1985 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1986 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1988 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1989 elements actually needed to represent the constant.
1990 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1991 significant HOST_WIDE_INT. */
1992 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1993 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1994 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1996 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1997 individual coefficients, in the form of a trailing_wide_ints structure. */
1998 #define CONST_POLY_INT_COEFFS(RTX) \
1999 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
2000 CONST_POLY_INT)->u.cpi.coeffs)
2002 /* For a CONST_DOUBLE:
2003 #if TARGET_SUPPORTS_WIDE_INT == 0
2004 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
2005 low-order word and ..._HIGH the high-order.
2006 #endif
2007 For a float, there is a REAL_VALUE_TYPE structure, and
2008 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
2009 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
2010 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
2011 #define CONST_DOUBLE_REAL_VALUE(r) \
2012 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
2014 #define CONST_FIXED_VALUE(r) \
2015 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
2016 #define CONST_FIXED_VALUE_HIGH(r) \
2017 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
2018 #define CONST_FIXED_VALUE_LOW(r) \
2019 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
2021 /* For a CONST_VECTOR, return element #n. */
2022 #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
2024 /* See rtl.texi for a description of these macros. */
2025 #define CONST_VECTOR_NPATTERNS(RTX) \
2026 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
2027 ->u2.const_vector.npatterns)
2029 #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
2030 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
2031 ->u2.const_vector.nelts_per_pattern)
2033 #define CONST_VECTOR_DUPLICATE_P(RTX) \
2034 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
2036 #define CONST_VECTOR_STEPPED_P(RTX) \
2037 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
2039 #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
2041 /* Return the number of elements encoded directly in a CONST_VECTOR. */
2043 inline unsigned int
2044 const_vector_encoded_nelts (const_rtx x)
2046 return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x);
2049 /* For a CONST_VECTOR, return the number of elements in a vector. */
2050 #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2052 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2053 SUBREG_BYTE extracts the byte-number. */
2055 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2056 #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2058 /* in rtlanal.cc */
2059 /* Return the right cost to give to an operation
2060 to make the cost of the corresponding register-to-register instruction
2061 N times that of a fast register-to-register instruction. */
2062 #define COSTS_N_INSNS(N) ((N) * 4)
2064 /* Maximum cost of an rtl expression. This value has the special meaning
2065 not to use an rtx with this cost under any circumstances. */
2066 #define MAX_COST INT_MAX
2068 /* Return true if CODE always has VOIDmode. */
2070 inline bool
2071 always_void_p (enum rtx_code code)
2073 return code == SET;
2076 /* A structure to hold all available cost information about an rtl
2077 expression. */
2078 struct full_rtx_costs
2080 int speed;
2081 int size;
2084 /* Initialize a full_rtx_costs structure C to the maximum cost. */
2085 inline void
2086 init_costs_to_max (struct full_rtx_costs *c)
2088 c->speed = MAX_COST;
2089 c->size = MAX_COST;
2092 /* Initialize a full_rtx_costs structure C to zero cost. */
2093 inline void
2094 init_costs_to_zero (struct full_rtx_costs *c)
2096 c->speed = 0;
2097 c->size = 0;
2100 /* Compare two full_rtx_costs structures A and B, returning true
2101 if A < B when optimizing for speed. */
2102 inline bool
2103 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2104 bool speed)
2106 if (speed)
2107 return (a->speed < b->speed
2108 || (a->speed == b->speed && a->size < b->size));
2109 else
2110 return (a->size < b->size
2111 || (a->size == b->size && a->speed < b->speed));
2114 /* Increase both members of the full_rtx_costs structure C by the
2115 cost of N insns. */
2116 inline void
2117 costs_add_n_insns (struct full_rtx_costs *c, int n)
2119 c->speed += COSTS_N_INSNS (n);
2120 c->size += COSTS_N_INSNS (n);
2123 /* Describes the shape of a subreg:
2125 inner_mode == the mode of the SUBREG_REG
2126 offset == the SUBREG_BYTE
2127 outer_mode == the mode of the SUBREG itself. */
2128 class subreg_shape {
2129 public:
2130 subreg_shape (machine_mode, poly_uint16, machine_mode);
2131 bool operator == (const subreg_shape &) const;
2132 bool operator != (const subreg_shape &) const;
2133 unsigned HOST_WIDE_INT unique_id () const;
2135 machine_mode inner_mode;
2136 poly_uint16 offset;
2137 machine_mode outer_mode;
2140 inline
2141 subreg_shape::subreg_shape (machine_mode inner_mode_in,
2142 poly_uint16 offset_in,
2143 machine_mode outer_mode_in)
2144 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2147 inline bool
2148 subreg_shape::operator == (const subreg_shape &other) const
2150 return (inner_mode == other.inner_mode
2151 && known_eq (offset, other.offset)
2152 && outer_mode == other.outer_mode);
2155 inline bool
2156 subreg_shape::operator != (const subreg_shape &other) const
2158 return !operator == (other);
2161 /* Return an integer that uniquely identifies this shape. Structures
2162 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2163 current mode is anywhere near being 65536 bytes in size, so the
2164 id comfortably fits in an int. */
2166 inline unsigned HOST_WIDE_INT
2167 subreg_shape::unique_id () const
2169 { STATIC_ASSERT (MAX_MACHINE_MODE <= (1 << MACHINE_MODE_BITSIZE)); }
2170 { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); }
2171 { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
2172 int res = (int) inner_mode + ((int) outer_mode << 8);
2173 for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2174 res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
2175 return res;
2178 /* Return the shape of a SUBREG rtx. */
2180 inline subreg_shape
2181 shape_of_subreg (const_rtx x)
2183 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2184 SUBREG_BYTE (x), GET_MODE (x));
2187 /* Information about an address. This structure is supposed to be able
2188 to represent all supported target addresses. Please extend it if it
2189 is not yet general enough. */
2190 struct address_info {
2191 /* The mode of the value being addressed, or VOIDmode if this is
2192 a load-address operation with no known address mode. */
2193 machine_mode mode;
2195 /* The address space. */
2196 addr_space_t as;
2198 /* True if this is an RTX_AUTOINC address. */
2199 bool autoinc_p;
2201 /* A pointer to the top-level address. */
2202 rtx *outer;
2204 /* A pointer to the inner address, after all address mutations
2205 have been stripped from the top-level address. It can be one
2206 of the following:
2208 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2210 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2211 points to the step value, depending on whether the step is variable
2212 or constant respectively. SEGMENT is null.
2214 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2215 with null fields evaluating to 0. */
2216 rtx *inner;
2218 /* Components that make up *INNER. Each one may be null or nonnull.
2219 When nonnull, their meanings are as follows:
2221 - *SEGMENT is the "segment" of memory to which the address refers.
2222 This value is entirely target-specific and is only called a "segment"
2223 because that's its most typical use. It contains exactly one UNSPEC,
2224 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2225 reloading.
2227 - *BASE is a variable expression representing a base address.
2228 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2230 - *INDEX is a variable expression representing an index value.
2231 It may be a scaled expression, such as a MULT. It has exactly
2232 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2234 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2235 unmutated RTX_CONST_OBJ. */
2236 rtx *segment;
2237 rtx *base;
2238 rtx *index;
2239 rtx *disp;
2241 rtx *segment_term;
2242 rtx *base_term;
2243 rtx *index_term;
2244 rtx *disp_term;
2246 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2247 of BASE_TERM, otherwise it is null. */
2248 rtx *base_term2;
2250 /* ADDRESS if this structure describes an address operand, MEM if
2251 it describes a MEM address. */
2252 enum rtx_code addr_outer_code;
2254 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2255 enum rtx_code base_outer_code;
2258 /* This is used to bundle an rtx and a mode together so that the pair
2259 can be used with the wi:: routines. If we ever put modes into rtx
2260 integer constants, this should go away and then just pass an rtx in. */
2261 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2263 namespace wi
2265 template <>
2266 struct int_traits <rtx_mode_t>
2268 static const enum precision_type precision_type = VAR_PRECISION;
2269 static const bool host_dependent_precision = false;
2270 /* This ought to be true, except for the special case that BImode
2271 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2272 static const bool is_sign_extended = false;
2273 static unsigned int get_precision (const rtx_mode_t &);
2274 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2275 const rtx_mode_t &);
2279 inline unsigned int
2280 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2282 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2285 inline wi::storage_ref
2286 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2287 unsigned int precision,
2288 const rtx_mode_t &x)
2290 gcc_checking_assert (precision == get_precision (x));
2291 switch (GET_CODE (x.first))
2293 case CONST_INT:
2294 if (precision < HOST_BITS_PER_WIDE_INT)
2295 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2296 targets is 1 rather than -1. */
2297 gcc_checking_assert (INTVAL (x.first)
2298 == sext_hwi (INTVAL (x.first), precision)
2299 || (x.second == BImode && INTVAL (x.first) == 1));
2301 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2303 case CONST_WIDE_INT:
2304 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2305 CONST_WIDE_INT_NUNITS (x.first), precision);
2307 #if TARGET_SUPPORTS_WIDE_INT == 0
2308 case CONST_DOUBLE:
2309 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2310 #endif
2312 default:
2313 gcc_unreachable ();
2317 namespace wi
2319 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2320 wide_int min_value (machine_mode, signop);
2321 wide_int max_value (machine_mode, signop);
2324 inline wi::hwi_with_prec
2325 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2327 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2330 /* Produce the smallest number that is represented in MODE. The precision
2331 is taken from MODE and the sign from SGN. */
2332 inline wide_int
2333 wi::min_value (machine_mode mode, signop sgn)
2335 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2338 /* Produce the largest number that is represented in MODE. The precision
2339 is taken from MODE and the sign from SGN. */
2340 inline wide_int
2341 wi::max_value (machine_mode mode, signop sgn)
2343 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2346 namespace wi
2348 typedef poly_int<NUM_POLY_INT_COEFFS,
2349 generic_wide_int <wide_int_ref_storage <false, false> > >
2350 rtx_to_poly_wide_ref;
2351 rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
2354 /* Return the value of a CONST_POLY_INT in its native precision. */
2356 inline wi::rtx_to_poly_wide_ref
2357 const_poly_int_value (const_rtx x)
2359 poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
2360 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2361 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2362 return res;
2365 /* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2366 can then be extracted using wi::to_poly_wide. */
2368 inline bool
2369 poly_int_rtx_p (const_rtx x)
2371 return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2374 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2375 MODE is the mode of X. */
2377 inline wi::rtx_to_poly_wide_ref
2378 wi::to_poly_wide (const_rtx x, machine_mode mode)
2380 if (CONST_POLY_INT_P (x))
2381 return const_poly_int_value (x);
2382 return rtx_mode_t (const_cast<rtx> (x), mode);
2385 /* Return the value of X as a poly_int64. */
2387 inline poly_int64
2388 rtx_to_poly_int64 (const_rtx x)
2390 if (CONST_POLY_INT_P (x))
2392 poly_int64 res;
2393 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2394 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2395 return res;
2397 return INTVAL (x);
2400 /* Return true if arbitrary value X is an integer constant that can
2401 be represented as a poly_int64. Store the value in *RES if so,
2402 otherwise leave it unmodified. */
2404 inline bool
2405 poly_int_rtx_p (const_rtx x, poly_int64_pod *res)
2407 if (CONST_INT_P (x))
2409 *res = INTVAL (x);
2410 return true;
2412 if (CONST_POLY_INT_P (x))
2414 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2415 if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
2416 return false;
2417 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2418 res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2419 return true;
2421 return false;
2424 extern void init_rtlanal (void);
2425 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2426 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2427 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2428 struct full_rtx_costs *);
2429 extern bool native_encode_rtx (machine_mode, rtx, vec<target_unit> &,
2430 unsigned int, unsigned int);
2431 extern rtx native_decode_rtx (machine_mode, const vec<target_unit> &,
2432 unsigned int);
2433 extern rtx native_decode_vector_rtx (machine_mode, const vec<target_unit> &,
2434 unsigned int, unsigned int, unsigned int);
2435 extern poly_uint64 subreg_lsb (const_rtx);
2436 extern poly_uint64 subreg_size_lsb (poly_uint64, poly_uint64, poly_uint64);
2437 extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64,
2438 poly_uint64);
2439 extern bool read_modify_subreg_p (const_rtx);
2441 /* Given a subreg's OUTER_MODE, INNER_MODE, and SUBREG_BYTE, return the
2442 bit offset at which the subreg begins (counting from the least significant
2443 bit of the operand). */
2445 inline poly_uint64
2446 subreg_lsb_1 (machine_mode outer_mode, machine_mode inner_mode,
2447 poly_uint64 subreg_byte)
2449 return subreg_size_lsb (GET_MODE_SIZE (outer_mode),
2450 GET_MODE_SIZE (inner_mode), subreg_byte);
2453 /* Return the subreg byte offset for a subreg whose outer mode is
2454 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2455 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2456 the inner value. This is the inverse of subreg_lsb_1 (which converts
2457 byte offsets to bit shifts). */
2459 inline poly_uint64
2460 subreg_offset_from_lsb (machine_mode outer_mode,
2461 machine_mode inner_mode,
2462 poly_uint64 lsb_shift)
2464 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2465 GET_MODE_SIZE (inner_mode), lsb_shift);
2468 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2469 poly_uint64, machine_mode);
2470 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2471 poly_uint64, machine_mode);
2472 extern unsigned int subreg_regno (const_rtx);
2473 extern int simplify_subreg_regno (unsigned int, machine_mode,
2474 poly_uint64, machine_mode);
2475 extern int lowpart_subreg_regno (unsigned int, machine_mode,
2476 machine_mode);
2477 extern unsigned int subreg_nregs (const_rtx);
2478 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2479 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2480 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2481 extern bool constant_pool_constant_p (rtx);
2482 extern bool truncated_to_mode (machine_mode, const_rtx);
2483 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2484 extern void split_double (rtx, rtx *, rtx *);
2485 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2486 extern void decompose_address (struct address_info *, rtx *,
2487 machine_mode, addr_space_t, enum rtx_code);
2488 extern void decompose_lea_address (struct address_info *, rtx *);
2489 extern void decompose_mem_address (struct address_info *, rtx);
2490 extern void update_address (struct address_info *);
2491 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2492 extern enum rtx_code get_index_code (const struct address_info *);
2494 /* 1 if RTX is a subreg containing a reg that is already known to be
2495 sign- or zero-extended from the mode of the subreg to the mode of
2496 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2497 extension.
2499 When used as a LHS, is means that this extension must be done
2500 when assigning to SUBREG_REG. */
2502 #define SUBREG_PROMOTED_VAR_P(RTX) \
2503 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2505 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2506 this gives the necessary extensions:
2507 0 - signed (SPR_SIGNED)
2508 1 - normal unsigned (SPR_UNSIGNED)
2509 2 - value is both sign and unsign extended for mode
2510 (SPR_SIGNED_AND_UNSIGNED).
2511 -1 - pointer unsigned, which most often can be handled like unsigned
2512 extension, except for generating instructions where we need to
2513 emit special code (ptr_extend insns) on some architectures
2514 (SPR_POINTER). */
2516 const int SRP_POINTER = -1;
2517 const int SRP_SIGNED = 0;
2518 const int SRP_UNSIGNED = 1;
2519 const int SRP_SIGNED_AND_UNSIGNED = 2;
2521 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2522 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2523 do { \
2524 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2525 (RTX), SUBREG); \
2526 switch (VAL) \
2528 case SRP_POINTER: \
2529 _rtx->volatil = 0; \
2530 _rtx->unchanging = 0; \
2531 break; \
2532 case SRP_SIGNED: \
2533 _rtx->volatil = 0; \
2534 _rtx->unchanging = 1; \
2535 break; \
2536 case SRP_UNSIGNED: \
2537 _rtx->volatil = 1; \
2538 _rtx->unchanging = 0; \
2539 break; \
2540 case SRP_SIGNED_AND_UNSIGNED: \
2541 _rtx->volatil = 1; \
2542 _rtx->unchanging = 1; \
2543 break; \
2545 } while (0)
2547 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2548 including SRP_SIGNED_AND_UNSIGNED if promoted for
2549 both signed and unsigned. */
2550 #define SUBREG_PROMOTED_GET(RTX) \
2551 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2552 + (RTX)->unchanging - 1)
2554 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2555 #define SUBREG_PROMOTED_SIGN(RTX) \
2556 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2557 : (RTX)->unchanging - 1)
2559 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2560 for SIGNED type. */
2561 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2562 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2564 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2565 for UNSIGNED type. */
2566 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2567 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2569 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2570 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2571 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2572 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2573 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2575 /* True if the REG is the static chain register for some CALL_INSN. */
2576 #define STATIC_CHAIN_REG_P(RTX) \
2577 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2579 /* True if the subreg was generated by LRA for reload insns. Such
2580 subregs are valid only during LRA. */
2581 #define LRA_SUBREG_P(RTX) \
2582 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2584 /* Access various components of an ASM_OPERANDS rtx. */
2586 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2587 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2588 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2589 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2590 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2591 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2592 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2593 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2594 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2595 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2596 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2597 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2598 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2599 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2600 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2601 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2602 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2603 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2605 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2606 #define MEM_READONLY_P(RTX) \
2607 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2609 /* 1 if RTX is a mem and we should keep the alias set for this mem
2610 unchanged when we access a component. Set to 1, or example, when we
2611 are already in a non-addressable component of an aggregate. */
2612 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2613 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2615 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2616 #define MEM_VOLATILE_P(RTX) \
2617 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2618 ASM_INPUT)->volatil)
2620 /* 1 if RTX is a mem that cannot trap. */
2621 #define MEM_NOTRAP_P(RTX) \
2622 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2624 /* The memory attribute block. We provide access macros for each value
2625 in the block and provide defaults if none specified. */
2626 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2628 /* The register attribute block. We provide access macros for each value
2629 in the block and provide defaults if none specified. */
2630 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2632 #ifndef GENERATOR_FILE
2633 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2634 set, and may alias anything. Otherwise, the MEM can only alias
2635 MEMs in a conflicting alias set. This value is set in a
2636 language-dependent manner in the front-end, and should not be
2637 altered in the back-end. These set numbers are tested with
2638 alias_sets_conflict_p. */
2639 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2641 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2642 refer to part of a DECL. It may also be a COMPONENT_REF. */
2643 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2645 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2646 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2648 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2649 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2651 /* For a MEM rtx, the address space. */
2652 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2654 /* For a MEM rtx, true if its MEM_SIZE is known. */
2655 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2657 /* For a MEM rtx, the size in bytes of the MEM. */
2658 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2660 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2661 mode as a default when STRICT_ALIGNMENT, but not if not. */
2662 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2663 #else
2664 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2665 #endif
2667 /* For a REG rtx, the decl it is known to refer to, if it is known to
2668 refer to part of a DECL. */
2669 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2671 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2672 HOST_WIDE_INT. */
2673 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2675 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2676 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2677 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2678 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2679 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2680 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2681 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2682 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2684 /* 1 if RTX is a label_ref for a nonlocal label. */
2685 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2686 REG_LABEL_TARGET note. */
2687 #define LABEL_REF_NONLOCAL_P(RTX) \
2688 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2690 /* 1 if RTX is a code_label that should always be considered to be needed. */
2691 #define LABEL_PRESERVE_P(RTX) \
2692 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2694 /* During sched, 1 if RTX is an insn that must be scheduled together
2695 with the preceding insn. */
2696 #define SCHED_GROUP_P(RTX) \
2697 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2698 JUMP_INSN, CALL_INSN)->in_struct)
2700 /* For a SET rtx, SET_DEST is the place that is set
2701 and SET_SRC is the value it is set to. */
2702 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2703 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2704 #define SET_IS_RETURN_P(RTX) \
2705 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2707 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2708 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2709 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2711 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2712 conditionally executing the code on, COND_EXEC_CODE is the code
2713 to execute if the condition is true. */
2714 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2715 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2717 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2718 constants pool. */
2719 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2720 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2722 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2723 tree constant pool. This information is private to varasm.cc. */
2724 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2725 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2726 (RTX), SYMBOL_REF)->frame_related)
2728 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2729 #define SYMBOL_REF_FLAG(RTX) \
2730 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2732 /* 1 if RTX is a symbol_ref that has been the library function in
2733 emit_library_call. */
2734 #define SYMBOL_REF_USED(RTX) \
2735 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2737 /* 1 if RTX is a symbol_ref for a weak symbol. */
2738 #define SYMBOL_REF_WEAK(RTX) \
2739 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2741 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2742 SYMBOL_REF_CONSTANT. */
2743 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2745 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2746 pool symbol. */
2747 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2748 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2750 /* The tree (decl or constant) associated with the symbol, or null. */
2751 #define SYMBOL_REF_DECL(RTX) \
2752 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2754 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2755 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2756 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2758 /* The rtx constant pool entry for a symbol, or null. */
2759 #define SYMBOL_REF_CONSTANT(RTX) \
2760 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2762 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2763 information derivable from the tree decl associated with this symbol.
2764 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2765 decl. In some cases this is a bug. But beyond that, it's nice to cache
2766 this information to avoid recomputing it. Finally, this allows space for
2767 the target to store more than one bit of information, as with
2768 SYMBOL_REF_FLAG. */
2769 #define SYMBOL_REF_FLAGS(RTX) \
2770 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2771 ->u2.symbol_ref_flags)
2773 /* These flags are common enough to be defined for all targets. They
2774 are computed by the default version of targetm.encode_section_info. */
2776 /* Set if this symbol is a function. */
2777 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2778 #define SYMBOL_REF_FUNCTION_P(RTX) \
2779 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2780 /* Set if targetm.binds_local_p is true. */
2781 #define SYMBOL_FLAG_LOCAL (1 << 1)
2782 #define SYMBOL_REF_LOCAL_P(RTX) \
2783 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2784 /* Set if targetm.in_small_data_p is true. */
2785 #define SYMBOL_FLAG_SMALL (1 << 2)
2786 #define SYMBOL_REF_SMALL_P(RTX) \
2787 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2788 /* The three-bit field at [5:3] is true for TLS variables; use
2789 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2790 #define SYMBOL_FLAG_TLS_SHIFT 3
2791 #define SYMBOL_REF_TLS_MODEL(RTX) \
2792 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2793 /* Set if this symbol is not defined in this translation unit. */
2794 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2795 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2796 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2797 /* Set if this symbol has a block_symbol structure associated with it. */
2798 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2799 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2800 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2801 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2802 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2803 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2804 #define SYMBOL_REF_ANCHOR_P(RTX) \
2805 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2807 /* Subsequent bits are available for the target to use. */
2808 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2809 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2811 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2812 structure to which the symbol belongs, or NULL if it has not been
2813 assigned a block. */
2814 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2816 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2817 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2818 RTX has not yet been assigned to a block, or it has not been given an
2819 offset within that block. */
2820 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2822 /* True if RTX is flagged to be a scheduling barrier. */
2823 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2824 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2826 /* Indicate whether the machine has any sort of auto increment addressing.
2827 If not, we can avoid checking for REG_INC notes. */
2829 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2830 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2831 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2832 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2833 #define AUTO_INC_DEC 1
2834 #else
2835 #define AUTO_INC_DEC 0
2836 #endif
2838 /* Define a macro to look for REG_INC notes,
2839 but save time on machines where they never exist. */
2841 #if AUTO_INC_DEC
2842 #define FIND_REG_INC_NOTE(INSN, REG) \
2843 ((REG) != NULL_RTX && REG_P ((REG)) \
2844 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2845 : find_reg_note ((INSN), REG_INC, (REG)))
2846 #else
2847 #define FIND_REG_INC_NOTE(INSN, REG) 0
2848 #endif
2850 #ifndef HAVE_PRE_INCREMENT
2851 #define HAVE_PRE_INCREMENT 0
2852 #endif
2854 #ifndef HAVE_PRE_DECREMENT
2855 #define HAVE_PRE_DECREMENT 0
2856 #endif
2858 #ifndef HAVE_POST_INCREMENT
2859 #define HAVE_POST_INCREMENT 0
2860 #endif
2862 #ifndef HAVE_POST_DECREMENT
2863 #define HAVE_POST_DECREMENT 0
2864 #endif
2866 #ifndef HAVE_POST_MODIFY_DISP
2867 #define HAVE_POST_MODIFY_DISP 0
2868 #endif
2870 #ifndef HAVE_POST_MODIFY_REG
2871 #define HAVE_POST_MODIFY_REG 0
2872 #endif
2874 #ifndef HAVE_PRE_MODIFY_DISP
2875 #define HAVE_PRE_MODIFY_DISP 0
2876 #endif
2878 #ifndef HAVE_PRE_MODIFY_REG
2879 #define HAVE_PRE_MODIFY_REG 0
2880 #endif
2883 /* Some architectures do not have complete pre/post increment/decrement
2884 instruction sets, or only move some modes efficiently. These macros
2885 allow us to tune autoincrement generation. */
2887 #ifndef USE_LOAD_POST_INCREMENT
2888 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2889 #endif
2891 #ifndef USE_LOAD_POST_DECREMENT
2892 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2893 #endif
2895 #ifndef USE_LOAD_PRE_INCREMENT
2896 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2897 #endif
2899 #ifndef USE_LOAD_PRE_DECREMENT
2900 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2901 #endif
2903 #ifndef USE_STORE_POST_INCREMENT
2904 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2905 #endif
2907 #ifndef USE_STORE_POST_DECREMENT
2908 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2909 #endif
2911 #ifndef USE_STORE_PRE_INCREMENT
2912 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2913 #endif
2915 #ifndef USE_STORE_PRE_DECREMENT
2916 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2917 #endif
2919 /* Nonzero when we are generating CONCATs. */
2920 extern int generating_concat_p;
2922 /* Nonzero when we are expanding trees to RTL. */
2923 extern int currently_expanding_to_rtl;
2925 /* Generally useful functions. */
2927 #ifndef GENERATOR_FILE
2928 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2929 rather than size. */
2931 inline int
2932 set_rtx_cost (rtx x, bool speed_p)
2934 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2937 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2939 inline void
2940 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2942 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2945 /* Return the cost of moving X into a register, relative to the cost
2946 of a register move. SPEED_P is true if optimizing for speed rather
2947 than size. */
2949 inline int
2950 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2952 return rtx_cost (x, mode, SET, 1, speed_p);
2955 /* Like set_src_cost, but return both the speed and size costs in C. */
2957 inline void
2958 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2960 get_full_rtx_cost (x, mode, SET, 1, c);
2962 #endif
2964 /* A convenience macro to validate the arguments of a zero_extract
2965 expression. It determines whether SIZE lies inclusively within
2966 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2967 and the sum lies inclusively within [1, RANGE]. RANGE must be
2968 >= 1, but SIZE and POS may be negative. */
2969 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2970 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2971 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2972 - (unsigned HOST_WIDE_INT)(POS)))
2974 /* In explow.cc */
2975 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2976 extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
2977 extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
2978 extern HOST_WIDE_INT get_stack_check_protect (void);
2980 /* In rtl.cc */
2981 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2982 inline rtx
2983 rtx_init (rtx rt, RTX_CODE code)
2985 memset (rt, 0, RTX_HDR_SIZE);
2986 PUT_CODE (rt, code);
2987 return rt;
2989 #define rtx_alloca(code) \
2990 rtx_init ((rtx) alloca (RTX_CODE_SIZE ((code))), (code))
2991 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2992 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2993 #define const_wide_int_alloc(NWORDS) \
2994 rtx_alloc_v (CONST_WIDE_INT, \
2995 (sizeof (struct hwivec_def) \
2996 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2998 extern rtvec rtvec_alloc (size_t);
2999 extern rtvec shallow_copy_rtvec (rtvec);
3000 extern bool shared_const_p (const_rtx);
3001 extern rtx copy_rtx (rtx);
3002 extern enum rtx_code classify_insn (rtx);
3003 extern void dump_rtx_statistics (void);
3005 /* In emit-rtl.cc */
3006 extern rtx copy_rtx_if_shared (rtx);
3008 /* In rtl.cc */
3009 extern unsigned int rtx_size (const_rtx);
3010 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
3012 typedef bool (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3013 rtx *, rtx *);
3014 extern bool rtx_equal_p (const_rtx, const_rtx,
3015 rtx_equal_p_callback_function = NULL);
3017 extern bool rtvec_all_equal_p (const_rtvec);
3018 extern bool rtvec_series_p (rtvec, int);
3020 /* Return true if X is a vector constant with a duplicated element value. */
3022 inline bool
3023 const_vec_duplicate_p (const_rtx x)
3025 return (GET_CODE (x) == CONST_VECTOR
3026 && CONST_VECTOR_NPATTERNS (x) == 1
3027 && CONST_VECTOR_DUPLICATE_P (x));
3030 /* Return true if X is a vector constant with a duplicated element value.
3031 Store the duplicated element in *ELT if so. */
3033 template <typename T>
3034 inline bool
3035 const_vec_duplicate_p (T x, T *elt)
3037 if (const_vec_duplicate_p (x))
3039 *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
3040 return true;
3042 return false;
3045 /* Return true if X is a vector with a duplicated element value, either
3046 constant or nonconstant. Store the duplicated element in *ELT if so. */
3048 template <typename T>
3049 inline bool
3050 vec_duplicate_p (T x, T *elt)
3052 if (GET_CODE (x) == VEC_DUPLICATE
3053 && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
3055 *elt = XEXP (x, 0);
3056 return true;
3058 return const_vec_duplicate_p (x, elt);
3061 /* If X is a vector constant with a duplicated element value, return that
3062 element value, otherwise return X. */
3064 template <typename T>
3065 inline T
3066 unwrap_const_vec_duplicate (T x)
3068 if (const_vec_duplicate_p (x))
3069 x = CONST_VECTOR_ELT (x, 0);
3070 return x;
3073 /* In emit-rtl.cc. */
3074 extern wide_int const_vector_int_elt (const_rtx, unsigned int);
3075 extern rtx const_vector_elt (const_rtx, unsigned int);
3076 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
3078 /* Return true if X is an integer constant vector that contains a linear
3079 series of the form:
3081 { B, B + S, B + 2 * S, B + 3 * S, ... }
3083 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
3085 inline bool
3086 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3088 if (GET_CODE (x) == CONST_VECTOR
3089 && CONST_VECTOR_NPATTERNS (x) == 1
3090 && !CONST_VECTOR_DUPLICATE_P (x))
3091 return const_vec_series_p_1 (x, base_out, step_out);
3092 return false;
3095 /* Return true if X is a vector that contains a linear series of the
3096 form:
3098 { B, B + S, B + 2 * S, B + 3 * S, ... }
3100 where B and S are constant or nonconstant. Store B and S in
3101 *BASE_OUT and *STEP_OUT on sucess. */
3103 inline bool
3104 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3106 if (GET_CODE (x) == VEC_SERIES)
3108 *base_out = XEXP (x, 0);
3109 *step_out = XEXP (x, 1);
3110 return true;
3112 return const_vec_series_p (x, base_out, step_out);
3115 /* Return true if CONST_VECTORs X and Y, which are known to have the same mode,
3116 also have the same encoding. This means that they are equal whenever their
3117 operands are equal. */
3119 inline bool
3120 same_vector_encodings_p (const_rtx x, const_rtx y)
3122 /* Don't be fussy about the encoding of constant-length vectors,
3123 since XVECEXP (X, 0) and XVECEXP (Y, 0) list all the elements anyway. */
3124 if (poly_uint64 (CONST_VECTOR_NUNITS (x)).is_constant ())
3125 return true;
3127 return (CONST_VECTOR_NPATTERNS (x) == CONST_VECTOR_NPATTERNS (y)
3128 && (CONST_VECTOR_NELTS_PER_PATTERN (x)
3129 == CONST_VECTOR_NELTS_PER_PATTERN (y)));
3132 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3134 inline scalar_int_mode
3135 subreg_unpromoted_mode (rtx x)
3137 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3138 return as_a <scalar_int_mode> (GET_MODE (x));
3141 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3143 inline scalar_int_mode
3144 subreg_promoted_mode (rtx x)
3146 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3147 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
3150 /* In emit-rtl.cc */
3151 extern rtvec gen_rtvec_v (int, rtx *);
3152 extern rtvec gen_rtvec_v (int, rtx_insn **);
3153 extern rtx gen_reg_rtx (machine_mode);
3154 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3155 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3156 extern rtx gen_reg_rtx_and_attrs (rtx);
3157 extern rtx_code_label *gen_label_rtx (void);
3158 extern rtx gen_lowpart_common (machine_mode, rtx);
3160 /* In cse.cc */
3161 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3163 /* In emit-rtl.cc */
3164 extern rtx gen_highpart (machine_mode, rtx);
3165 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3166 extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);
3168 /* In emit-rtl.cc */
3169 extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
3170 extern bool subreg_lowpart_p (const_rtx);
3171 extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64);
3173 /* Return true if a subreg of mode OUTERMODE would only access part of
3174 an inner register with mode INNERMODE. The other bits of the inner
3175 register would then be "don't care" on read. The behavior for writes
3176 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3177 chunk would be clobbered but other bits would be preserved. */
3179 inline bool
3180 partial_subreg_p (machine_mode outermode, machine_mode innermode)
3182 /* Modes involved in a subreg must be ordered. In particular, we must
3183 always know at compile time whether the subreg is paradoxical. */
3184 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3185 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3186 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3187 return maybe_lt (outer_prec, inner_prec);
3190 /* Likewise return true if X is a subreg that is smaller than the inner
3191 register. Use read_modify_subreg_p to test whether writing to such
3192 a subreg preserves any part of the inner register. */
3194 inline bool
3195 partial_subreg_p (const_rtx x)
3197 if (GET_CODE (x) != SUBREG)
3198 return false;
3199 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3202 /* Return true if a subreg with the given outer and inner modes is
3203 paradoxical. */
3205 inline bool
3206 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3208 /* Modes involved in a subreg must be ordered. In particular, we must
3209 always know at compile time whether the subreg is paradoxical. */
3210 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3211 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3212 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3213 return maybe_gt (outer_prec, inner_prec);
3216 /* Return true if X is a paradoxical subreg, false otherwise. */
3218 inline bool
3219 paradoxical_subreg_p (const_rtx x)
3221 if (GET_CODE (x) != SUBREG)
3222 return false;
3223 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3226 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3228 inline poly_uint64
3229 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3231 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
3232 GET_MODE_SIZE (innermode));
3235 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3236 return the smaller of the two modes if they are different sizes,
3237 otherwise return the outer mode. */
3239 inline machine_mode
3240 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3242 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3245 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3246 return the mode that is big enough to hold both the outer and inner
3247 values. Prefer the outer mode in the event of a tie. */
3249 inline machine_mode
3250 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3252 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3255 /* Likewise for subreg X. */
3257 inline machine_mode
3258 wider_subreg_mode (const_rtx x)
3260 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3263 extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64);
3265 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3267 inline poly_uint64
3268 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3270 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3271 GET_MODE_SIZE (innermode));
3274 extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
3275 extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
3276 poly_uint64);
3277 extern poly_int64 subreg_memory_offset (const_rtx);
3278 extern rtx make_safe_from (rtx, rtx);
3279 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3280 addr_space_t, bool, bool);
3281 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3282 addr_space_t);
3283 #define convert_memory_address(to_mode,x) \
3284 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3285 extern const char *get_insn_name (int);
3286 extern rtx_insn *get_last_insn_anywhere (void);
3287 extern rtx_insn *get_first_nonnote_insn (void);
3288 extern rtx_insn *get_last_nonnote_insn (void);
3289 extern void start_sequence (void);
3290 extern void push_to_sequence (rtx_insn *);
3291 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3292 extern void end_sequence (void);
3293 #if TARGET_SUPPORTS_WIDE_INT == 0
3294 extern double_int rtx_to_double_int (const_rtx);
3295 #endif
3296 extern void cwi_output_hex (FILE *, const_rtx);
3297 #if TARGET_SUPPORTS_WIDE_INT == 0
3298 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3299 machine_mode);
3300 #endif
3301 extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3303 /* In varasm.cc */
3304 extern rtx force_const_mem (machine_mode, rtx);
3306 /* In varasm.cc */
3308 struct function;
3309 extern rtx get_pool_constant (const_rtx);
3310 extern rtx get_pool_constant_mark (rtx, bool *);
3311 extern fixed_size_mode get_pool_mode (const_rtx);
3312 extern rtx simplify_subtraction (rtx);
3313 extern void decide_function_section (tree);
3315 /* In emit-rtl.cc */
3316 extern rtx_insn *emit_insn_before (rtx, rtx_insn *);
3317 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3318 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t);
3319 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *);
3320 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3321 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *,
3322 location_t);
3323 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3324 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3325 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t);
3326 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3327 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *);
3328 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t);
3329 extern rtx_barrier *emit_barrier_before (rtx_insn *);
3330 extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *);
3331 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3332 extern rtx_insn *emit_insn_after (rtx, rtx_insn *);
3333 extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block);
3334 extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t);
3335 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *);
3336 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *);
3337 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t);
3338 extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *);
3339 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *);
3340 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t);
3341 extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *);
3342 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *);
3343 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t);
3344 extern rtx_barrier *emit_barrier_after (rtx_insn *);
3345 extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *);
3346 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3347 extern rtx_insn *emit_insn (rtx);
3348 extern rtx_insn *emit_debug_insn (rtx);
3349 extern rtx_insn *emit_jump_insn (rtx);
3350 extern rtx_insn *emit_call_insn (rtx);
3351 extern rtx_code_label *emit_label (rtx);
3352 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3353 extern rtx_barrier *emit_barrier (void);
3354 extern rtx_note *emit_note (enum insn_note);
3355 extern rtx_note *emit_note_copy (rtx_note *);
3356 extern rtx_insn *gen_clobber (rtx);
3357 extern rtx_insn *emit_clobber (rtx);
3358 extern rtx_insn *gen_use (rtx);
3359 extern rtx_insn *emit_use (rtx);
3360 extern rtx_insn *make_insn_raw (rtx);
3361 extern void add_function_usage_to (rtx, rtx);
3362 extern rtx_call_insn *last_call_insn (void);
3363 extern rtx_insn *previous_insn (rtx_insn *);
3364 extern rtx_insn *next_insn (rtx_insn *);
3365 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3366 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3367 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3368 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3369 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3370 extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3371 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3372 extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3373 extern rtx_insn *prev_real_insn (rtx_insn *);
3374 extern rtx_insn *next_real_insn (rtx_insn *);
3375 extern rtx_insn *prev_real_nondebug_insn (rtx_insn *);
3376 extern rtx_insn *next_real_nondebug_insn (rtx);
3377 extern rtx_insn *prev_active_insn (rtx_insn *);
3378 extern rtx_insn *next_active_insn (rtx_insn *);
3379 extern bool active_insn_p (const rtx_insn *);
3381 /* In emit-rtl.cc */
3382 extern int insn_line (const rtx_insn *);
3383 extern const char * insn_file (const rtx_insn *);
3384 extern tree insn_scope (const rtx_insn *);
3385 extern expanded_location insn_location (const rtx_insn *);
3386 extern int insn_discriminator (const rtx_insn *);
3387 extern location_t prologue_location, epilogue_location;
3389 /* In jump.cc */
3390 extern enum rtx_code reverse_condition (enum rtx_code);
3391 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3392 extern enum rtx_code swap_condition (enum rtx_code);
3393 extern enum rtx_code unsigned_condition (enum rtx_code);
3394 extern enum rtx_code signed_condition (enum rtx_code);
3395 extern void mark_jump_label (rtx, rtx_insn *, int);
3397 /* Return true if integer comparison operator CODE interprets its operands
3398 as unsigned. */
3400 inline bool
3401 unsigned_condition_p (enum rtx_code code)
3403 return unsigned_condition (code) == code;
3406 /* In jump.cc */
3407 extern rtx_insn *delete_related_insns (rtx);
3409 /* In recog.cc */
3410 extern rtx *find_constant_term_loc (rtx *);
3412 /* In emit-rtl.cc */
3413 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3415 /* In insn-recog.cc (generated by genrecog). */
3416 extern rtx_insn *split_insns (rtx, rtx_insn *);
3418 /* In simplify-rtx.cc */
3420 /* A class that records the context in which a simplification
3421 is being mode. */
3422 class simplify_context
3424 public:
3425 rtx simplify_unary_operation (rtx_code, machine_mode, rtx, machine_mode);
3426 rtx simplify_binary_operation (rtx_code, machine_mode, rtx, rtx);
3427 rtx simplify_ternary_operation (rtx_code, machine_mode, machine_mode,
3428 rtx, rtx, rtx);
3429 rtx simplify_relational_operation (rtx_code, machine_mode, machine_mode,
3430 rtx, rtx);
3431 rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3433 rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3435 rtx simplify_merge_mask (rtx, rtx, int);
3437 rtx simplify_gen_unary (rtx_code, machine_mode, rtx, machine_mode);
3438 rtx simplify_gen_binary (rtx_code, machine_mode, rtx, rtx);
3439 rtx simplify_gen_ternary (rtx_code, machine_mode, machine_mode,
3440 rtx, rtx, rtx);
3441 rtx simplify_gen_relational (rtx_code, machine_mode, machine_mode, rtx, rtx);
3442 rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3443 rtx simplify_gen_vec_select (rtx, unsigned int);
3445 /* Tracks the level of MEM nesting for the value being simplified:
3446 0 means the value is not in a MEM, >0 means it is. This is needed
3447 because the canonical representation of multiplication is different
3448 inside a MEM than outside. */
3449 unsigned int mem_depth = 0;
3451 /* Tracks number of simplify_associative_operation calls performed during
3452 outermost simplify* call. */
3453 unsigned int assoc_count = 0;
3455 /* Limit for the above number, return NULL from
3456 simplify_associative_operation after we reach that assoc_count. */
3457 static const unsigned int max_assoc_count = 64;
3459 private:
3460 rtx simplify_truncation (machine_mode, rtx, machine_mode);
3461 rtx simplify_byte_swapping_operation (rtx_code, machine_mode, rtx, rtx);
3462 rtx simplify_associative_operation (rtx_code, machine_mode, rtx, rtx);
3463 rtx simplify_distributive_operation (rtx_code, machine_mode, rtx, rtx);
3464 rtx simplify_logical_relational_operation (rtx_code, machine_mode, rtx, rtx);
3465 rtx simplify_binary_operation_series (rtx_code, machine_mode, rtx, rtx);
3466 rtx simplify_distribute_over_subregs (rtx_code, machine_mode, rtx, rtx);
3467 rtx simplify_shift_const_int (rtx_code, machine_mode, rtx, unsigned int);
3468 rtx simplify_plus_minus (rtx_code, machine_mode, rtx, rtx);
3469 rtx simplify_cond_clz_ctz (rtx, rtx_code, rtx, rtx);
3471 rtx simplify_unary_operation_1 (rtx_code, machine_mode, rtx);
3472 rtx simplify_binary_operation_1 (rtx_code, machine_mode, rtx, rtx, rtx, rtx);
3473 rtx simplify_ternary_operation_1 (rtx_code, machine_mode, machine_mode,
3474 rtx, rtx, rtx);
3475 rtx simplify_relational_operation_1 (rtx_code, machine_mode, machine_mode,
3476 rtx, rtx);
3479 inline rtx
3480 simplify_unary_operation (rtx_code code, machine_mode mode, rtx op,
3481 machine_mode op_mode)
3483 return simplify_context ().simplify_unary_operation (code, mode, op,
3484 op_mode);
3487 inline rtx
3488 simplify_binary_operation (rtx_code code, machine_mode mode, rtx op0, rtx op1)
3490 return simplify_context ().simplify_binary_operation (code, mode, op0, op1);
3493 inline rtx
3494 simplify_ternary_operation (rtx_code code, machine_mode mode,
3495 machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
3497 return simplify_context ().simplify_ternary_operation (code, mode, op0_mode,
3498 op0, op1, op2);
3501 inline rtx
3502 simplify_relational_operation (rtx_code code, machine_mode mode,
3503 machine_mode op_mode, rtx op0, rtx op1)
3505 return simplify_context ().simplify_relational_operation (code, mode,
3506 op_mode, op0, op1);
3509 inline rtx
3510 simplify_subreg (machine_mode outermode, rtx op, machine_mode innermode,
3511 poly_uint64 byte)
3513 return simplify_context ().simplify_subreg (outermode, op, innermode, byte);
3516 inline rtx
3517 simplify_gen_unary (rtx_code code, machine_mode mode, rtx op,
3518 machine_mode op_mode)
3520 return simplify_context ().simplify_gen_unary (code, mode, op, op_mode);
3523 inline rtx
3524 simplify_gen_binary (rtx_code code, machine_mode mode, rtx op0, rtx op1)
3526 return simplify_context ().simplify_gen_binary (code, mode, op0, op1);
3529 inline rtx
3530 simplify_gen_ternary (rtx_code code, machine_mode mode, machine_mode op0_mode,
3531 rtx op0, rtx op1, rtx op2)
3533 return simplify_context ().simplify_gen_ternary (code, mode, op0_mode,
3534 op0, op1, op2);
3537 inline rtx
3538 simplify_gen_relational (rtx_code code, machine_mode mode,
3539 machine_mode op_mode, rtx op0, rtx op1)
3541 return simplify_context ().simplify_gen_relational (code, mode, op_mode,
3542 op0, op1);
3545 inline rtx
3546 simplify_gen_subreg (machine_mode outermode, rtx op, machine_mode innermode,
3547 poly_uint64 byte)
3549 return simplify_context ().simplify_gen_subreg (outermode, op,
3550 innermode, byte);
3553 inline rtx
3554 simplify_gen_vec_select (rtx op, unsigned int index)
3556 return simplify_context ().simplify_gen_vec_select (op, index);
3559 inline rtx
3560 lowpart_subreg (machine_mode outermode, rtx op, machine_mode innermode)
3562 return simplify_context ().lowpart_subreg (outermode, op, innermode);
3565 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3566 rtx, machine_mode);
3567 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3568 rtx, rtx);
3569 extern rtx simplify_const_relational_operation (enum rtx_code,
3570 machine_mode, rtx, rtx);
3571 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3572 rtx (*fn) (rtx, const_rtx, void *), void *);
3573 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3574 extern rtx simplify_rtx (const_rtx);
3575 extern rtx avoid_constant_pool_reference (rtx);
3576 extern rtx delegitimize_mem_from_attrs (rtx);
3577 extern bool mode_signbit_p (machine_mode, const_rtx);
3578 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3579 extern bool val_signbit_known_set_p (machine_mode,
3580 unsigned HOST_WIDE_INT);
3581 extern bool val_signbit_known_clear_p (machine_mode,
3582 unsigned HOST_WIDE_INT);
3583 extern bool reverse_rotate_by_imm_p (machine_mode, unsigned int, rtx);
3585 /* In reginfo.cc */
3586 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3587 const predefined_function_abi *);
3588 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3590 /* In emit-rtl.cc */
3591 extern rtx set_for_reg_notes (rtx);
3592 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3593 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3594 extern void set_insn_deleted (rtx_insn *);
3596 /* Functions in rtlanal.cc */
3598 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3599 extern rtx simple_regno_set (rtx, unsigned int);
3600 extern bool contains_symbol_ref_p (const_rtx);
3601 extern bool contains_symbolic_reference_p (const_rtx);
3602 extern bool contains_constant_pool_address_p (const_rtx);
3603 extern void add_auto_inc_notes (rtx_insn *, rtx);
3605 /* Handle the cheap and common cases inline for performance. */
3607 inline rtx single_set (const rtx_insn *insn)
3609 if (!INSN_P (insn))
3610 return NULL_RTX;
3612 if (GET_CODE (PATTERN (insn)) == SET)
3613 return PATTERN (insn);
3615 /* Defer to the more expensive case. */
3616 return single_set_2 (insn, PATTERN (insn));
3619 extern scalar_int_mode get_address_mode (rtx mem);
3620 extern bool rtx_addr_can_trap_p (const_rtx);
3621 extern bool nonzero_address_p (const_rtx);
3622 extern bool rtx_unstable_p (const_rtx);
3623 extern bool rtx_varies_p (const_rtx, bool);
3624 extern bool rtx_addr_varies_p (const_rtx, bool);
3625 extern rtx get_call_rtx_from (const rtx_insn *);
3626 extern tree get_call_fndecl (const rtx_insn *);
3627 extern HOST_WIDE_INT get_integer_term (const_rtx);
3628 extern rtx get_related_value (const_rtx);
3629 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3630 extern void split_const (rtx, rtx *, rtx *);
3631 extern rtx strip_offset (rtx, poly_int64_pod *);
3632 extern poly_int64 get_args_size (const_rtx);
3633 extern bool unsigned_reg_p (rtx);
3634 extern bool reg_mentioned_p (const_rtx, const_rtx);
3635 extern int count_occurrences (const_rtx, const_rtx, int);
3636 extern bool reg_referenced_p (const_rtx, const_rtx);
3637 extern bool reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3638 extern bool reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3639 extern int commutative_operand_precedence (rtx);
3640 extern bool swap_commutative_operands_p (rtx, rtx);
3641 extern bool modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3642 extern bool no_labels_between_p (const rtx_insn *, const rtx_insn *);
3643 extern bool modified_in_p (const_rtx, const_rtx);
3644 extern bool reg_set_p (const_rtx, const_rtx);
3645 extern bool multiple_sets (const_rtx);
3646 extern bool set_noop_p (const_rtx);
3647 extern bool noop_move_p (const rtx_insn *);
3648 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3649 extern bool reg_overlap_mentioned_p (const_rtx, const_rtx);
3650 extern const_rtx set_of (const_rtx, const_rtx);
3651 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3652 extern void record_hard_reg_uses (rtx *, void *);
3653 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3654 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3655 extern void note_pattern_stores (const_rtx,
3656 void (*) (rtx, const_rtx, void *), void *);
3657 extern void note_stores (const rtx_insn *,
3658 void (*) (rtx, const_rtx, void *), void *);
3659 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3660 extern bool dead_or_set_p (const rtx_insn *, const_rtx);
3661 extern bool dead_or_set_regno_p (const rtx_insn *, unsigned int);
3662 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3663 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3664 extern rtx find_reg_equal_equiv_note (const_rtx);
3665 extern rtx find_constant_src (const rtx_insn *);
3666 extern bool find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3667 extern bool find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3668 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3669 extern void add_reg_note (rtx, enum reg_note, rtx);
3670 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3671 extern void add_args_size_note (rtx_insn *, poly_int64);
3672 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3673 extern rtx duplicate_reg_note (rtx);
3674 extern void remove_note (rtx_insn *, const_rtx);
3675 extern bool remove_reg_equal_equiv_notes (rtx_insn *, bool = false);
3676 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3677 extern bool side_effects_p (const_rtx);
3678 extern bool volatile_refs_p (const_rtx);
3679 extern bool volatile_insn_p (const_rtx);
3680 extern bool may_trap_p_1 (const_rtx, unsigned);
3681 extern bool may_trap_p (const_rtx);
3682 extern bool may_trap_or_fault_p (const_rtx);
3683 extern bool can_throw_internal (const_rtx);
3684 extern bool can_throw_external (const_rtx);
3685 extern bool insn_could_throw_p (const_rtx);
3686 extern bool insn_nothrow_p (const_rtx);
3687 extern bool can_nonlocal_goto (const rtx_insn *);
3688 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3689 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3690 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3691 extern void replace_label (rtx *, rtx, rtx, bool);
3692 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3693 extern bool rtx_referenced_p (const_rtx, const_rtx);
3694 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3695 extern rtx tablejump_casesi_pattern (const rtx_insn *insn);
3696 extern bool computed_jump_p (const rtx_insn *);
3697 extern bool tls_referenced_p (const_rtx);
3698 extern bool contains_mem_rtx_p (rtx x);
3699 extern bool register_asm_p (const_rtx);
3701 /* Overload for refers_to_regno_p for checking a single register. */
3702 inline bool
3703 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3705 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3708 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3709 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3710 NULL. The callback is passed the same opaque ARG passed to
3711 for_each_inc_dec. Return zero to continue looking for other
3712 autoinc operations or any other value to interrupt the traversal and
3713 return that value to the caller of for_each_inc_dec. */
3714 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3715 rtx srcoff, void *arg);
3716 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3718 extern rtx regno_use_in (unsigned int, rtx);
3719 extern bool auto_inc_p (const_rtx);
3720 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3721 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3722 extern bool loc_mentioned_in_p (rtx *, const_rtx);
3723 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3724 extern bool keep_with_call_p (const rtx_insn *);
3725 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3726 extern int pattern_cost (rtx, bool);
3727 extern int insn_cost (rtx_insn *, bool);
3728 extern unsigned seq_cost (const rtx_insn *, bool);
3730 /* Given an insn and condition, return a canonical description of
3731 the test being made. */
3732 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3733 int, int);
3735 /* Given a JUMP_INSN, return a canonical description of the test
3736 being made. */
3737 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3739 /* Information about a subreg of a hard register. */
3740 struct subreg_info
3742 /* Offset of first hard register involved in the subreg. */
3743 int offset;
3744 /* Number of hard registers involved in the subreg. In the case of
3745 a paradoxical subreg, this is the number of registers that would
3746 be modified by writing to the subreg; some of them may be don't-care
3747 when reading from the subreg. */
3748 int nregs;
3749 /* Whether this subreg can be represented as a hard reg with the new
3750 mode (by adding OFFSET to the original hard register). */
3751 bool representable_p;
3754 extern void subreg_get_info (unsigned int, machine_mode,
3755 poly_uint64, machine_mode,
3756 struct subreg_info *);
3758 /* lists.cc */
3760 extern void free_EXPR_LIST_list (rtx_expr_list **);
3761 extern void free_INSN_LIST_list (rtx_insn_list **);
3762 extern void free_EXPR_LIST_node (rtx);
3763 extern void free_INSN_LIST_node (rtx);
3764 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3765 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3766 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3767 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3768 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3769 extern rtx remove_list_elem (rtx, rtx *);
3770 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3771 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3774 /* reginfo.cc */
3776 /* Resize reg info. */
3777 extern bool resize_reg_info (void);
3778 /* Free up register info memory. */
3779 extern void free_reg_info (void);
3780 extern void init_subregs_of_mode (void);
3781 extern void finish_subregs_of_mode (void);
3782 extern void reginfo_cc_finalize (void);
3784 /* recog.cc */
3785 extern rtx extract_asm_operands (rtx);
3786 extern int asm_noperands (const_rtx);
3787 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3788 machine_mode *, location_t *);
3789 extern void get_referenced_operands (const char *, bool *, unsigned int);
3791 extern enum reg_class reg_preferred_class (int);
3792 extern enum reg_class reg_alternate_class (int);
3793 extern enum reg_class reg_allocno_class (int);
3794 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3795 enum reg_class);
3797 extern void split_all_insns (void);
3798 extern void split_all_insns_noflow (void);
3800 #define MAX_SAVED_CONST_INT 64
3801 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3803 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3804 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3805 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3806 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3807 extern GTY(()) rtx const_true_rtx;
3809 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3811 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3812 same as VOIDmode. */
3814 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3816 /* Likewise, for the constants 1 and 2 and -1. */
3818 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3819 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3820 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3822 extern GTY(()) rtx pc_rtx;
3823 extern GTY(()) rtx ret_rtx;
3824 extern GTY(()) rtx simple_return_rtx;
3825 extern GTY(()) rtx_insn *invalid_insn_rtx;
3827 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3828 is used to represent the frame pointer. This is because the
3829 hard frame pointer and the automatic variables are separated by an amount
3830 that cannot be determined until after register allocation. We can assume
3831 that in this case ELIMINABLE_REGS will be defined, one action of which
3832 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3833 #ifndef HARD_FRAME_POINTER_REGNUM
3834 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3835 #endif
3837 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3838 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3839 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3840 #endif
3842 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3843 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3844 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3845 #endif
3847 /* Index labels for global_rtl. */
3848 enum global_rtl_index
3850 GR_STACK_POINTER,
3851 GR_FRAME_POINTER,
3852 /* For register elimination to work properly these hard_frame_pointer_rtx,
3853 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3854 the same register. */
3855 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3856 GR_ARG_POINTER = GR_FRAME_POINTER,
3857 #endif
3858 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3859 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3860 #else
3861 GR_HARD_FRAME_POINTER,
3862 #endif
3863 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3864 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3865 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3866 #else
3867 GR_ARG_POINTER,
3868 #endif
3869 #endif
3870 GR_VIRTUAL_INCOMING_ARGS,
3871 GR_VIRTUAL_STACK_ARGS,
3872 GR_VIRTUAL_STACK_DYNAMIC,
3873 GR_VIRTUAL_OUTGOING_ARGS,
3874 GR_VIRTUAL_CFA,
3875 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3877 GR_MAX
3880 /* Target-dependent globals. */
3881 struct GTY(()) target_rtl {
3882 /* All references to the hard registers in global_rtl_index go through
3883 these unique rtl objects. On machines where the frame-pointer and
3884 arg-pointer are the same register, they use the same unique object.
3886 After register allocation, other rtl objects which used to be pseudo-regs
3887 may be clobbered to refer to the frame-pointer register.
3888 But references that were originally to the frame-pointer can be
3889 distinguished from the others because they contain frame_pointer_rtx.
3891 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3892 tricky: until register elimination has taken place hard_frame_pointer_rtx
3893 should be used if it is being set, and frame_pointer_rtx otherwise. After
3894 register elimination hard_frame_pointer_rtx should always be used.
3895 On machines where the two registers are same (most) then these are the
3896 same. */
3897 rtx x_global_rtl[GR_MAX];
3899 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3900 rtx x_pic_offset_table_rtx;
3902 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3903 This is used to implement __builtin_return_address for some machines;
3904 see for instance the MIPS port. */
3905 rtx x_return_address_pointer_rtx;
3907 /* Commonly used RTL for hard registers. These objects are not
3908 necessarily unique, so we allocate them separately from global_rtl.
3909 They are initialized once per compilation unit, then copied into
3910 regno_reg_rtx at the beginning of each function. */
3911 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3913 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3914 rtx x_top_of_stack[MAX_MACHINE_MODE];
3916 /* Static hunks of RTL used by the aliasing code; these are treated
3917 as persistent to avoid unnecessary RTL allocations. */
3918 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3920 /* The default memory attributes for each mode. */
3921 class mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3923 /* Track if RTL has been initialized. */
3924 bool target_specific_initialized;
3927 extern GTY(()) struct target_rtl default_target_rtl;
3928 #if SWITCHABLE_TARGET
3929 extern struct target_rtl *this_target_rtl;
3930 #else
3931 #define this_target_rtl (&default_target_rtl)
3932 #endif
3934 #define global_rtl \
3935 (this_target_rtl->x_global_rtl)
3936 #define pic_offset_table_rtx \
3937 (this_target_rtl->x_pic_offset_table_rtx)
3938 #define return_address_pointer_rtx \
3939 (this_target_rtl->x_return_address_pointer_rtx)
3940 #define top_of_stack \
3941 (this_target_rtl->x_top_of_stack)
3942 #define mode_mem_attrs \
3943 (this_target_rtl->x_mode_mem_attrs)
3945 /* All references to certain hard regs, except those created
3946 by allocating pseudo regs into them (when that's possible),
3947 go through these unique rtx objects. */
3948 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3949 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3950 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3951 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3953 #ifndef GENERATOR_FILE
3954 /* Return the attributes of a MEM rtx. */
3955 inline const class mem_attrs *
3956 get_mem_attrs (const_rtx x)
3958 class mem_attrs *attrs;
3960 attrs = MEM_ATTRS (x);
3961 if (!attrs)
3962 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3963 return attrs;
3965 #endif
3967 /* Include the RTL generation functions. */
3969 #ifndef GENERATOR_FILE
3970 #include "genrtl.h"
3971 #undef gen_rtx_ASM_INPUT
3972 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3973 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3974 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3975 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3976 #endif
3978 /* There are some RTL codes that require special attention; the
3979 generation functions included above do the raw handling. If you
3980 add to this list, modify special_rtx in gengenrtl.cc as well. */
3982 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3983 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3984 extern rtx_insn *
3985 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3986 basic_block bb, rtx pattern, int location, int code,
3987 rtx reg_notes);
3988 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3989 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3990 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3991 extern rtx init_raw_REG (rtx, machine_mode, unsigned int);
3992 extern rtx gen_raw_REG (machine_mode, unsigned int);
3993 #define alloca_raw_REG(mode, regno) \
3994 init_raw_REG (rtx_alloca (REG), (mode), (regno))
3995 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3996 extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
3997 extern rtx gen_rtx_MEM (machine_mode, rtx);
3998 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3999 enum var_init_status);
4001 #ifdef GENERATOR_FILE
4002 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
4003 #else
4004 inline void
4005 PUT_MODE (rtx x, machine_mode mode)
4007 if (REG_P (x))
4008 set_mode_and_regno (x, mode, REGNO (x));
4009 else
4010 PUT_MODE_RAW (x, mode);
4012 #endif
4014 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
4016 /* Virtual registers are used during RTL generation to refer to locations into
4017 the stack frame when the actual location isn't known until RTL generation
4018 is complete. The routine instantiate_virtual_regs replaces these with
4019 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
4020 a constant. */
4022 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
4024 /* This points to the first word of the incoming arguments passed on the stack,
4025 either by the caller or by the callee when pretending it was passed by the
4026 caller. */
4028 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
4030 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
4032 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
4033 variable on the stack. Otherwise, it points to the first variable on
4034 the stack. */
4036 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
4038 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
4040 /* This points to the location of dynamically-allocated memory on the stack
4041 immediately after the stack pointer has been adjusted by the amount
4042 desired. */
4044 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
4046 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
4048 /* This points to the location in the stack at which outgoing arguments should
4049 be written when the stack is pre-pushed (arguments pushed using push
4050 insns always use sp). */
4052 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
4054 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
4056 /* This points to the Canonical Frame Address of the function. This
4057 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
4058 but is calculated relative to the arg pointer for simplicity; the
4059 frame pointer nor stack pointer are necessarily fixed relative to
4060 the CFA until after reload. */
4062 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
4064 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
4066 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
4068 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
4069 when finalized. */
4071 #define virtual_preferred_stack_boundary_rtx \
4072 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
4074 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
4075 ((FIRST_VIRTUAL_REGISTER) + 5)
4077 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
4079 /* Nonzero if REGNUM is a pointer into the stack frame. */
4080 #define REGNO_PTR_FRAME_P(REGNUM) \
4081 ((REGNUM) == STACK_POINTER_REGNUM \
4082 || (REGNUM) == FRAME_POINTER_REGNUM \
4083 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
4084 || (REGNUM) == ARG_POINTER_REGNUM \
4085 || VIRTUAL_REGISTER_NUM_P (REGNUM))
4087 /* REGNUM never really appearing in the INSN stream. */
4088 #define INVALID_REGNUM (~(unsigned int) 0)
4090 /* REGNUM for which no debug information can be generated. */
4091 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
4093 extern rtx output_constant_def (tree, int);
4094 extern rtx lookup_constant_def (tree);
4096 /* Nonzero after end of reload pass.
4097 Set to 1 or 0 by reload1.cc. */
4099 extern int reload_completed;
4101 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
4102 extern int epilogue_completed;
4104 /* Set to 1 while reload_as_needed is operating.
4105 Required by some machines to handle any generated moves differently. */
4107 extern int reload_in_progress;
4109 /* Set to 1 while in lra. */
4110 extern int lra_in_progress;
4112 /* This macro indicates whether you may create a new
4113 pseudo-register. */
4115 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
4117 #ifdef STACK_REGS
4118 /* Nonzero after end of regstack pass.
4119 Set to 1 or 0 by reg-stack.cc. */
4120 extern int regstack_completed;
4121 #endif
4123 /* If this is nonzero, we do not bother generating VOLATILE
4124 around volatile memory references, and we are willing to
4125 output indirect addresses. If cse is to follow, we reject
4126 indirect addresses so a useful potential cse is generated;
4127 if it is used only once, instruction combination will produce
4128 the same indirect address eventually. */
4129 extern int cse_not_expected;
4131 /* Translates rtx code to tree code, for those codes needed by
4132 real_arithmetic. The function returns an int because the caller may not
4133 know what `enum tree_code' means. */
4135 extern int rtx_to_tree_code (enum rtx_code);
4137 /* In cse.cc */
4138 extern int delete_trivially_dead_insns (rtx_insn *, int);
4139 extern bool exp_equiv_p (const_rtx, const_rtx, int, bool);
4141 typedef bool (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
4142 machine_mode *);
4143 extern unsigned hash_rtx (const_rtx, machine_mode, int *, int *,
4144 bool, hash_rtx_callback_function = NULL);
4146 /* In dse.cc */
4147 extern bool check_for_inc_dec (rtx_insn *insn);
4149 /* In jump.cc */
4150 extern bool comparison_dominates_p (enum rtx_code, enum rtx_code);
4151 extern bool jump_to_label_p (const rtx_insn *);
4152 extern bool condjump_p (const rtx_insn *);
4153 extern bool any_condjump_p (const rtx_insn *);
4154 extern bool any_uncondjump_p (const rtx_insn *);
4155 extern rtx pc_set (const rtx_insn *);
4156 extern rtx condjump_label (const rtx_insn *);
4157 extern bool simplejump_p (const rtx_insn *);
4158 extern bool returnjump_p (const rtx_insn *);
4159 extern bool eh_returnjump_p (rtx_insn *);
4160 extern bool onlyjump_p (const rtx_insn *);
4161 extern bool invert_jump_1 (rtx_jump_insn *, rtx);
4162 extern bool invert_jump (rtx_jump_insn *, rtx, int);
4163 extern bool rtx_renumbered_equal_p (const_rtx, const_rtx);
4164 extern int true_regnum (const_rtx);
4165 extern unsigned int reg_or_subregno (const_rtx);
4166 extern bool redirect_jump_1 (rtx_insn *, rtx);
4167 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
4168 extern bool redirect_jump (rtx_jump_insn *, rtx, int);
4169 extern void rebuild_jump_labels (rtx_insn *);
4170 extern void rebuild_jump_labels_chain (rtx_insn *);
4171 extern rtx reversed_comparison (const_rtx, machine_mode);
4172 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
4173 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
4174 const_rtx, const rtx_insn *);
4175 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
4176 extern bool condjump_in_parallel_p (const rtx_insn *);
4178 /* In emit-rtl.cc. */
4179 extern int max_reg_num (void);
4180 extern int max_label_num (void);
4181 extern int get_first_label_num (void);
4182 extern void maybe_set_first_label_num (rtx_code_label *);
4183 extern void delete_insns_since (rtx_insn *);
4184 extern void mark_reg_pointer (rtx, int);
4185 extern void mark_user_reg (rtx);
4186 extern void reset_used_flags (rtx);
4187 extern void set_used_flags (rtx);
4188 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
4189 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
4190 extern int get_max_insn_count (void);
4191 extern bool in_sequence_p (void);
4192 extern void init_emit (void);
4193 extern void init_emit_regs (void);
4194 extern void init_derived_machine_modes (void);
4195 extern void init_emit_once (void);
4196 extern void push_topmost_sequence (void);
4197 extern void pop_topmost_sequence (void);
4198 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
4199 extern void unshare_all_rtl (void);
4200 extern void unshare_all_rtl_again (rtx_insn *);
4201 extern void unshare_all_rtl_in_chain (rtx_insn *);
4202 extern void verify_rtl_sharing (void);
4203 extern void add_insn (rtx_insn *);
4204 extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block);
4205 extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block);
4206 extern void remove_insn (rtx_insn *);
4207 extern rtx_insn *emit (rtx, bool = true);
4208 extern void emit_insn_at_entry (rtx);
4209 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
4210 extern rtx gen_const_mem (machine_mode, rtx);
4211 extern rtx gen_frame_mem (machine_mode, rtx);
4212 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
4213 extern bool validate_subreg (machine_mode, machine_mode,
4214 const_rtx, poly_uint64);
4216 /* In combine.cc */
4217 extern unsigned int extended_count (const_rtx, machine_mode, bool);
4218 extern rtx remove_death (unsigned int, rtx_insn *);
4219 extern rtx make_compound_operation (rtx, enum rtx_code);
4221 /* In sched-rgn.cc. */
4222 extern void schedule_insns (void);
4224 /* In sched-ebb.cc. */
4225 extern void schedule_ebbs (void);
4227 /* In sel-sched-dump.cc. */
4228 extern void sel_sched_fix_param (const char *param, const char *val);
4230 /* In print-rtl.cc */
4231 extern const char *print_rtx_head;
4232 extern void debug (const rtx_def &ref);
4233 extern void debug (const rtx_def *ptr);
4234 extern void debug_rtx (const_rtx);
4235 extern void debug_rtx_list (const rtx_insn *, int);
4236 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
4237 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
4238 extern void print_mem_expr (FILE *, const_tree);
4239 extern void print_rtl (FILE *, const_rtx);
4240 extern void print_simple_rtl (FILE *, const_rtx);
4241 extern void print_rtl_single (FILE *, const_rtx);
4242 extern void print_rtl_single_with_indent (FILE *, const_rtx, int);
4243 extern void print_inline_rtx (FILE *, const_rtx, int);
4245 /* In stmt.cc */
4246 extern void expand_null_return (void);
4247 extern void expand_naked_return (void);
4248 extern void emit_jump (rtx);
4250 /* Memory operation built-ins differ by return value. Mapping
4251 of the enum values is following:
4252 - RETURN_BEGIN - return destination, e.g. memcpy
4253 - RETURN_END - return destination + n, e.g. mempcpy
4254 - RETURN_END_MINUS_ONE - return a pointer to the terminating
4255 null byte of the string, e.g. strcpy
4258 enum memop_ret
4260 RETURN_BEGIN,
4261 RETURN_END,
4262 RETURN_END_MINUS_ONE
4265 /* In expr.cc */
4266 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
4267 unsigned int, memop_ret);
4268 extern poly_int64 find_args_size_adjust (rtx_insn *);
4269 extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64);
4271 /* In expmed.cc */
4272 extern void init_expmed (void);
4273 extern void expand_inc (rtx, rtx);
4274 extern void expand_dec (rtx, rtx);
4276 /* In lower-subreg.cc */
4277 extern void init_lower_subreg (void);
4279 /* In gcse.cc */
4280 extern bool can_copy_p (machine_mode);
4281 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
4282 extern rtx_insn *prepare_copy_insn (rtx, rtx);
4284 /* In cprop.cc */
4285 extern rtx fis_get_condition (rtx_insn *);
4287 /* In ira.cc */
4288 extern HARD_REG_SET eliminable_regset;
4289 extern void mark_elimination (int, int);
4291 /* In reginfo.cc */
4292 extern bool reg_classes_intersect_p (reg_class_t, reg_class_t);
4293 extern bool reg_class_subset_p (reg_class_t, reg_class_t);
4294 extern void globalize_reg (tree, int);
4295 extern void init_reg_modes_target (void);
4296 extern void init_regs (void);
4297 extern void reinit_regs (void);
4298 extern void init_fake_stack_mems (void);
4299 extern void save_register_info (void);
4300 extern void init_reg_sets (void);
4301 extern void regclass (rtx, int);
4302 extern void reg_scan (rtx_insn *, unsigned int);
4303 extern void fix_register (const char *, int, int);
4304 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4306 /* In reload1.cc */
4307 extern bool function_invariant_p (const_rtx);
4309 /* In calls.cc */
4310 enum libcall_type
4312 LCT_NORMAL = 0,
4313 LCT_CONST = 1,
4314 LCT_PURE = 2,
4315 LCT_NORETURN = 3,
4316 LCT_THROW = 4,
4317 LCT_RETURNS_TWICE = 5
4320 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
4321 machine_mode, int, rtx_mode_t *);
4323 /* Output a library call and discard the returned value. FUN is the
4324 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4325 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4326 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4327 another LCT_ value for other types of library calls.
4329 There are different overloads of this function for different numbers
4330 of arguments. In each case the argument value is followed by its mode. */
4332 inline void
4333 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4335 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4338 inline void
4339 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4340 rtx arg1, machine_mode arg1_mode)
4342 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4343 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4346 inline void
4347 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4348 rtx arg1, machine_mode arg1_mode,
4349 rtx arg2, machine_mode arg2_mode)
4351 rtx_mode_t args[] = {
4352 rtx_mode_t (arg1, arg1_mode),
4353 rtx_mode_t (arg2, arg2_mode)
4355 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4358 inline void
4359 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4360 rtx arg1, machine_mode arg1_mode,
4361 rtx arg2, machine_mode arg2_mode,
4362 rtx arg3, machine_mode arg3_mode)
4364 rtx_mode_t args[] = {
4365 rtx_mode_t (arg1, arg1_mode),
4366 rtx_mode_t (arg2, arg2_mode),
4367 rtx_mode_t (arg3, arg3_mode)
4369 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4372 inline void
4373 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4374 rtx arg1, machine_mode arg1_mode,
4375 rtx arg2, machine_mode arg2_mode,
4376 rtx arg3, machine_mode arg3_mode,
4377 rtx arg4, machine_mode arg4_mode)
4379 rtx_mode_t args[] = {
4380 rtx_mode_t (arg1, arg1_mode),
4381 rtx_mode_t (arg2, arg2_mode),
4382 rtx_mode_t (arg3, arg3_mode),
4383 rtx_mode_t (arg4, arg4_mode)
4385 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4388 /* Like emit_library_call, but return the value produced by the call.
4389 Use VALUE to store the result if it is nonnull, otherwise pick a
4390 convenient location. */
4392 inline rtx
4393 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4394 machine_mode outmode)
4396 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4399 inline rtx
4400 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4401 machine_mode outmode,
4402 rtx arg1, machine_mode arg1_mode)
4404 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4405 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4408 inline rtx
4409 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4410 machine_mode outmode,
4411 rtx arg1, machine_mode arg1_mode,
4412 rtx arg2, machine_mode arg2_mode)
4414 rtx_mode_t args[] = {
4415 rtx_mode_t (arg1, arg1_mode),
4416 rtx_mode_t (arg2, arg2_mode)
4418 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4421 inline rtx
4422 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4423 machine_mode outmode,
4424 rtx arg1, machine_mode arg1_mode,
4425 rtx arg2, machine_mode arg2_mode,
4426 rtx arg3, machine_mode arg3_mode)
4428 rtx_mode_t args[] = {
4429 rtx_mode_t (arg1, arg1_mode),
4430 rtx_mode_t (arg2, arg2_mode),
4431 rtx_mode_t (arg3, arg3_mode)
4433 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4436 inline rtx
4437 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4438 machine_mode outmode,
4439 rtx arg1, machine_mode arg1_mode,
4440 rtx arg2, machine_mode arg2_mode,
4441 rtx arg3, machine_mode arg3_mode,
4442 rtx arg4, machine_mode arg4_mode)
4444 rtx_mode_t args[] = {
4445 rtx_mode_t (arg1, arg1_mode),
4446 rtx_mode_t (arg2, arg2_mode),
4447 rtx_mode_t (arg3, arg3_mode),
4448 rtx_mode_t (arg4, arg4_mode)
4450 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4453 /* In varasm.cc */
4454 extern void init_varasm_once (void);
4456 extern rtx make_debug_expr_from_rtl (const_rtx);
4458 /* In read-rtl.cc */
4459 #ifdef GENERATOR_FILE
4460 extern bool read_rtx (const char *, vec<rtx> *);
4461 #endif
4463 /* In alias.cc */
4464 extern rtx canon_rtx (rtx);
4465 extern rtx get_addr (rtx);
4466 extern bool read_dependence (const_rtx, const_rtx);
4467 extern bool true_dependence (const_rtx, machine_mode, const_rtx);
4468 extern bool canon_true_dependence (const_rtx, machine_mode, rtx,
4469 const_rtx, rtx);
4470 extern bool anti_dependence (const_rtx, const_rtx);
4471 extern bool canon_anti_dependence (const_rtx, bool,
4472 const_rtx, machine_mode, rtx);
4473 extern bool output_dependence (const_rtx, const_rtx);
4474 extern bool canon_output_dependence (const_rtx, bool,
4475 const_rtx, machine_mode, rtx);
4476 extern bool may_alias_p (const_rtx, const_rtx);
4477 extern void init_alias_target (void);
4478 extern void init_alias_analysis (void);
4479 extern void end_alias_analysis (void);
4480 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4481 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4482 extern bool may_be_sp_based_p (rtx);
4483 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4484 extern rtx get_reg_known_value (unsigned int);
4485 extern bool get_reg_known_equiv_p (unsigned int);
4486 extern rtx get_reg_base_value (unsigned int);
4487 extern rtx extract_mem_from_operand (rtx);
4489 #ifdef STACK_REGS
4490 extern bool stack_regs_mentioned (const_rtx insn);
4491 #endif
4493 /* In toplev.cc */
4494 extern GTY(()) rtx stack_limit_rtx;
4496 /* In var-tracking.cc */
4497 extern unsigned int variable_tracking_main (void);
4498 extern void delete_vta_debug_insns (bool);
4500 /* In stor-layout.cc. */
4501 extern void get_mode_bounds (scalar_int_mode, int,
4502 scalar_int_mode, rtx *, rtx *);
4504 /* In loop-iv.cc */
4505 extern rtx canon_condition (rtx);
4506 extern void simplify_using_condition (rtx, rtx *, bitmap);
4508 /* In final.cc */
4509 extern void compute_alignments (void);
4510 extern void update_alignments (vec<rtx> &);
4511 extern int asm_str_count (const char *templ);
4513 struct rtl_hooks
4515 rtx (*gen_lowpart) (machine_mode, rtx);
4516 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4517 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4518 unsigned HOST_WIDE_INT *);
4519 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4520 unsigned int *);
4521 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4523 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4526 /* Each pass can provide its own. */
4527 extern struct rtl_hooks rtl_hooks;
4529 /* ... but then it has to restore these. */
4530 extern const struct rtl_hooks general_rtl_hooks;
4532 /* Keep this for the nonce. */
4533 #define gen_lowpart rtl_hooks.gen_lowpart
4535 extern void insn_locations_init (void);
4536 extern void insn_locations_finalize (void);
4537 extern void set_curr_insn_location (location_t);
4538 extern location_t curr_insn_location (void);
4539 extern void set_insn_locations (rtx_insn *, location_t);
4541 /* rtl-error.cc */
4542 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4543 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4544 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4545 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4547 #define fatal_insn(msgid, insn) \
4548 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4549 #define fatal_insn_not_found(insn) \
4550 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4552 /* reginfo.cc */
4553 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4555 /* Information about the function that is propagated by the RTL backend.
4556 Available only for functions that has been already assembled. */
4558 struct GTY(()) cgraph_rtl_info {
4559 unsigned int preferred_incoming_stack_boundary;
4561 /* Which registers the function clobbers, either directly or by
4562 calling another function. */
4563 HARD_REG_SET function_used_regs;
4566 /* If loads from memories of mode MODE always sign or zero extend,
4567 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4568 otherwise. */
4570 inline rtx_code
4571 load_extend_op (machine_mode mode)
4573 scalar_int_mode int_mode;
4574 if (is_a <scalar_int_mode> (mode, &int_mode)
4575 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4576 return LOAD_EXTEND_OP (int_mode);
4577 return UNKNOWN;
4580 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4581 and return the base. Return X otherwise. */
4583 inline rtx
4584 strip_offset_and_add (rtx x, poly_int64_pod *offset)
4586 if (GET_CODE (x) == PLUS)
4588 poly_int64 suboffset;
4589 x = strip_offset (x, &suboffset);
4590 *offset = poly_uint64 (*offset) + suboffset;
4592 return x;
4595 /* Return true if X is an operation that always operates on the full
4596 registers for WORD_REGISTER_OPERATIONS architectures. */
4598 inline bool
4599 word_register_operation_p (const_rtx x)
4601 switch (GET_CODE (x))
4603 case CONST_INT:
4604 case ROTATE:
4605 case ROTATERT:
4606 case SIGN_EXTRACT:
4607 case ZERO_EXTRACT:
4608 return false;
4610 default:
4611 return true;
4615 /* Holds an rtx comparison to simplify passing many parameters pertaining to a
4616 single comparison. */
4618 struct rtx_comparison {
4619 rtx_code code;
4620 rtx op0, op1;
4621 machine_mode mode;
4624 /* gtype-desc.cc. */
4625 extern void gt_ggc_mx (rtx &);
4626 extern void gt_pch_nx (rtx &);
4627 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4629 #endif /* ! GCC_RTL_H */