3 # Script to analyze results of our branch prediction heuristics
5 # This file is part of GCC.
7 # GCC is free software; you can redistribute it and/or modify it under
8 # the terms of the GNU General Public License as published by the Free
9 # Software Foundation; either version 3, or (at your option) any later
12 # GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 # WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 # You should have received a copy of the GNU General Public License
18 # along with GCC; see the file COPYING3. If not see
19 # <http://www.gnu.org/licenses/>. */
23 # This script is used to calculate two basic properties of the branch prediction
24 # heuristics - coverage and hitrate. Coverage is number of executions
25 # of a given branch matched by the heuristics and hitrate is probability
26 # that once branch is predicted as taken it is really taken.
28 # These values are useful to determine the quality of given heuristics.
29 # Hitrate may be directly used in predict.def.
32 # Step 1: Compile and profile your program. You need to use -fprofile-generate
33 # flag to get the profiles.
34 # Step 2: Make a reference run of the intrumented application.
35 # Step 3: Compile the program with collected profile and dump IPA profiles
36 # (-fprofile-use -fdump-ipa-profile-details)
37 # Step 4: Collect all generated dump files:
38 # find . -name '*.profile' | xargs cat > dump_file
39 # Step 5: Run the script:
40 # ./analyze_brprob.py dump_file
41 # and read results. Basically the following table is printed:
43 # HEURISTICS BRANCHES (REL) HITRATE COVERAGE (REL)
44 # early return (on trees) 3 0.2% 35.83% / 93.64% 66360 0.0%
45 # guess loop iv compare 8 0.6% 53.35% / 53.73% 11183344 0.0%
46 # call 18 1.4% 31.95% / 69.95% 51880179 0.2%
47 # loop guard 23 1.8% 84.13% / 84.85% 13749065956 42.2%
48 # opcode values positive (on trees) 42 3.3% 15.71% / 84.81% 6771097902 20.8%
49 # opcode values nonequal (on trees) 226 17.6% 72.48% / 72.84% 844753864 2.6%
50 # loop exit 231 18.0% 86.97% / 86.98% 8952666897 27.5%
51 # loop iterations 239 18.6% 91.10% / 91.10% 3062707264 9.4%
52 # DS theory 281 21.9% 82.08% / 83.39% 7787264075 23.9%
53 # no prediction 293 22.9% 46.92% / 70.70% 2293267840 7.0%
54 # guessed loop iterations 313 24.4% 76.41% / 76.41% 10782750177 33.1%
55 # first match 708 55.2% 82.30% / 82.31% 22489588691 69.0%
56 # combined 1282 100.0% 79.76% / 81.75% 32570120606 100.0%
59 # The heuristics called "first match" is a heuristics used by GCC branch
60 # prediction pass and it predicts 55.2% branches correctly. As you can,
61 # the heuristics has very good covertage (69.05%). On the other hand,
62 # "opcode values nonequal (on trees)" heuristics has good hirate, but poor
72 counter_aggregates
= set(['combined', 'first match', 'DS theory',
79 return 1.0 * sum(values
) / len(values
)
81 def average_cutoff(values
, cut
):
83 skip
= floor(l
* cut
/ 2)
86 values
= values
[skip
:-skip
]
87 return average(values
)
91 return values
[int(len(values
) / 2)]
94 def __init__(self
, name
):
97 self
.successfull_branches
= 0
102 def get_hitrate(self
):
103 return 100.0 * self
.hits
/ self
.count
105 def get_branch_hitrate(self
):
106 return 100.0 * self
.successfull_branches
/ self
.branches
108 def count_formatted(self
):
110 for unit
in ['','K','M','G','T','P','E','Z']:
112 return "%3.2f%s" % (v
, unit
)
114 return "%.1f%s" % (v
, 'Y')
116 def print(self
, branches_max
, count_max
):
117 print('%-40s %8i %5.1f%% %11.2f%% %7.2f%% / %6.2f%% %14i %8s %5.1f%%' %
118 (self
.name
, self
.branches
,
119 percentage(self
.branches
, branches_max
),
120 self
.get_branch_hitrate(),
122 percentage(self
.fits
, self
.count
),
123 self
.count
, self
.count_formatted(),
124 percentage(self
.count
, count_max
)))
127 def __init__(self
, filename
):
128 self
.filename
= filename
130 self
.niter_vector
= []
132 def add(self
, name
, prediction
, count
, hits
):
133 if not name
in self
.heuristics
:
134 self
.heuristics
[name
] = Summary(name
)
136 s
= self
.heuristics
[name
]
142 remaining
= count
- hits
143 if hits
>= remaining
:
144 s
.successfull_branches
+= 1
147 s
.fits
+= max(hits
, remaining
)
149 def add_loop_niter(self
, niter
):
151 self
.niter_vector
.append(niter
)
153 def branches_max(self
):
154 return max([v
.branches
for k
, v
in self
.heuristics
.items()])
157 return max([v
.count
for k
, v
in self
.heuristics
.items()])
159 def print_group(self
, sorting
, group_name
, heuristics
):
160 count_max
= self
.count_max()
161 branches_max
= self
.branches_max()
163 sorter
= lambda x
: x
.branches
164 if sorting
== 'branch-hitrate':
165 sorter
= lambda x
: x
.get_branch_hitrate()
166 elif sorting
== 'hitrate':
167 sorter
= lambda x
: x
.get_hitrate()
168 elif sorting
== 'coverage':
169 sorter
= lambda x
: x
.count
170 elif sorting
== 'name':
171 sorter
= lambda x
: x
.name
.lower()
173 print('%-40s %8s %6s %12s %18s %14s %8s %6s' %
174 ('HEURISTICS', 'BRANCHES', '(REL)',
175 'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)'))
176 for h
in sorted(heuristics
, key
= sorter
):
177 h
.print(branches_max
, count_max
)
179 def dump(self
, sorting
):
180 heuristics
= self
.heuristics
.values()
181 if len(heuristics
) == 0:
182 print('No heuristics available')
185 special
= list(filter(lambda x
: x
.name
in counter_aggregates
,
187 normal
= list(filter(lambda x
: x
.name
not in counter_aggregates
,
190 self
.print_group(sorting
, 'HEURISTICS', normal
)
192 self
.print_group(sorting
, 'HEURISTIC AGGREGATES', special
)
194 if len(self
.niter_vector
) > 0:
195 print ('\nLoop count: %d' % len(self
.niter_vector
)),
196 print(' avg. # of iter: %.2f' % average(self
.niter_vector
))
197 print(' median # of iter: %.2f' % median(self
.niter_vector
))
198 for v
in [1, 5, 10, 20, 30]:
200 print(' avg. (%d%% cutoff) # of iter: %.2f'
201 % (v
, average_cutoff(self
.niter_vector
, cut
)))
203 parser
= argparse
.ArgumentParser()
204 parser
.add_argument('dump_file', metavar
= 'dump_file',
205 help = 'IPA profile dump file')
206 parser
.add_argument('-s', '--sorting', dest
= 'sorting',
207 choices
= ['branches', 'branch-hitrate', 'hitrate', 'coverage', 'name'],
208 default
= 'branches')
210 args
= parser
.parse_args()
212 profile
= Profile(sys
.argv
[1])
213 r
= re
.compile(' (.*) heuristics( of edge [0-9]*->[0-9]*)?( \\(.*\\))?: (.*)%.*exec ([0-9]*) hit ([0-9]*)')
214 loop_niter_str
= ';; profile-based iteration count: '
215 for l
in open(args
.dump_file
).readlines():
217 if m
!= None and m
.group(3) == None:
219 prediction
= float(m
.group(4))
220 count
= int(m
.group(5))
221 hits
= int(m
.group(6))
223 profile
.add(name
, prediction
, count
, hits
)
224 elif l
.startswith(loop_niter_str
):
225 v
= int(l
[len(loop_niter_str
):])
226 profile
.add_loop_niter(v
)
228 profile
.dump(args
.sorting
)