sem_util.adb, [...] (From_Nested_Package): New predicate to determine whether a type...
[official-gcc.git] / libgfortran / generated / product_c4.c
blob3d097a9a3ec1f6bad2126a5950e74db1f3e63b86
1 /* Implementation of the PRODUCT intrinsic
2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
29 #if defined (HAVE_GFC_COMPLEX_4) && defined (HAVE_GFC_COMPLEX_4)
32 extern void product_c4 (gfc_array_c4 * const restrict,
33 gfc_array_c4 * const restrict, const index_type * const restrict);
34 export_proto(product_c4);
36 void
37 product_c4 (gfc_array_c4 * const restrict retarray,
38 gfc_array_c4 * const restrict array,
39 const index_type * const restrict pdim)
41 index_type count[GFC_MAX_DIMENSIONS];
42 index_type extent[GFC_MAX_DIMENSIONS];
43 index_type sstride[GFC_MAX_DIMENSIONS];
44 index_type dstride[GFC_MAX_DIMENSIONS];
45 const GFC_COMPLEX_4 * restrict base;
46 GFC_COMPLEX_4 * restrict dest;
47 index_type rank;
48 index_type n;
49 index_type len;
50 index_type delta;
51 index_type dim;
52 int continue_loop;
54 /* Make dim zero based to avoid confusion. */
55 dim = (*pdim) - 1;
56 rank = GFC_DESCRIPTOR_RANK (array) - 1;
58 len = GFC_DESCRIPTOR_EXTENT(array,dim);
59 if (len < 0)
60 len = 0;
61 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
63 for (n = 0; n < dim; n++)
65 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
66 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
68 if (extent[n] < 0)
69 extent[n] = 0;
71 for (n = dim; n < rank; n++)
73 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
74 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
76 if (extent[n] < 0)
77 extent[n] = 0;
80 if (retarray->base_addr == NULL)
82 size_t alloc_size, str;
84 for (n = 0; n < rank; n++)
86 if (n == 0)
87 str = 1;
88 else
89 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
91 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
95 retarray->offset = 0;
96 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
98 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
100 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_4));
101 if (alloc_size == 0)
103 /* Make sure we have a zero-sized array. */
104 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
105 return;
109 else
111 if (rank != GFC_DESCRIPTOR_RANK (retarray))
112 runtime_error ("rank of return array incorrect in"
113 " PRODUCT intrinsic: is %ld, should be %ld",
114 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
115 (long int) rank);
117 if (unlikely (compile_options.bounds_check))
118 bounds_ifunction_return ((array_t *) retarray, extent,
119 "return value", "PRODUCT");
122 for (n = 0; n < rank; n++)
124 count[n] = 0;
125 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
126 if (extent[n] <= 0)
127 return;
130 base = array->base_addr;
131 dest = retarray->base_addr;
133 continue_loop = 1;
134 while (continue_loop)
136 const GFC_COMPLEX_4 * restrict src;
137 GFC_COMPLEX_4 result;
138 src = base;
141 result = 1;
142 if (len <= 0)
143 *dest = 1;
144 else
146 for (n = 0; n < len; n++, src += delta)
149 result *= *src;
152 *dest = result;
155 /* Advance to the next element. */
156 count[0]++;
157 base += sstride[0];
158 dest += dstride[0];
159 n = 0;
160 while (count[n] == extent[n])
162 /* When we get to the end of a dimension, reset it and increment
163 the next dimension. */
164 count[n] = 0;
165 /* We could precalculate these products, but this is a less
166 frequently used path so probably not worth it. */
167 base -= sstride[n] * extent[n];
168 dest -= dstride[n] * extent[n];
169 n++;
170 if (n >= rank)
172 /* Break out of the loop. */
173 continue_loop = 0;
174 break;
176 else
178 count[n]++;
179 base += sstride[n];
180 dest += dstride[n];
187 extern void mproduct_c4 (gfc_array_c4 * const restrict,
188 gfc_array_c4 * const restrict, const index_type * const restrict,
189 gfc_array_l1 * const restrict);
190 export_proto(mproduct_c4);
192 void
193 mproduct_c4 (gfc_array_c4 * const restrict retarray,
194 gfc_array_c4 * const restrict array,
195 const index_type * const restrict pdim,
196 gfc_array_l1 * const restrict mask)
198 index_type count[GFC_MAX_DIMENSIONS];
199 index_type extent[GFC_MAX_DIMENSIONS];
200 index_type sstride[GFC_MAX_DIMENSIONS];
201 index_type dstride[GFC_MAX_DIMENSIONS];
202 index_type mstride[GFC_MAX_DIMENSIONS];
203 GFC_COMPLEX_4 * restrict dest;
204 const GFC_COMPLEX_4 * restrict base;
205 const GFC_LOGICAL_1 * restrict mbase;
206 int rank;
207 int dim;
208 index_type n;
209 index_type len;
210 index_type delta;
211 index_type mdelta;
212 int mask_kind;
214 dim = (*pdim) - 1;
215 rank = GFC_DESCRIPTOR_RANK (array) - 1;
217 len = GFC_DESCRIPTOR_EXTENT(array,dim);
218 if (len <= 0)
219 return;
221 mbase = mask->base_addr;
223 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
225 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
226 #ifdef HAVE_GFC_LOGICAL_16
227 || mask_kind == 16
228 #endif
230 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
231 else
232 runtime_error ("Funny sized logical array");
234 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
235 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
237 for (n = 0; n < dim; n++)
239 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
240 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
241 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
243 if (extent[n] < 0)
244 extent[n] = 0;
247 for (n = dim; n < rank; n++)
249 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
250 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
251 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
253 if (extent[n] < 0)
254 extent[n] = 0;
257 if (retarray->base_addr == NULL)
259 size_t alloc_size, str;
261 for (n = 0; n < rank; n++)
263 if (n == 0)
264 str = 1;
265 else
266 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
268 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
272 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
274 retarray->offset = 0;
275 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
277 if (alloc_size == 0)
279 /* Make sure we have a zero-sized array. */
280 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
281 return;
283 else
284 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_4));
287 else
289 if (rank != GFC_DESCRIPTOR_RANK (retarray))
290 runtime_error ("rank of return array incorrect in PRODUCT intrinsic");
292 if (unlikely (compile_options.bounds_check))
294 bounds_ifunction_return ((array_t *) retarray, extent,
295 "return value", "PRODUCT");
296 bounds_equal_extents ((array_t *) mask, (array_t *) array,
297 "MASK argument", "PRODUCT");
301 for (n = 0; n < rank; n++)
303 count[n] = 0;
304 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
305 if (extent[n] <= 0)
306 return;
309 dest = retarray->base_addr;
310 base = array->base_addr;
312 while (base)
314 const GFC_COMPLEX_4 * restrict src;
315 const GFC_LOGICAL_1 * restrict msrc;
316 GFC_COMPLEX_4 result;
317 src = base;
318 msrc = mbase;
321 result = 1;
322 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
325 if (*msrc)
326 result *= *src;
328 *dest = result;
330 /* Advance to the next element. */
331 count[0]++;
332 base += sstride[0];
333 mbase += mstride[0];
334 dest += dstride[0];
335 n = 0;
336 while (count[n] == extent[n])
338 /* When we get to the end of a dimension, reset it and increment
339 the next dimension. */
340 count[n] = 0;
341 /* We could precalculate these products, but this is a less
342 frequently used path so probably not worth it. */
343 base -= sstride[n] * extent[n];
344 mbase -= mstride[n] * extent[n];
345 dest -= dstride[n] * extent[n];
346 n++;
347 if (n >= rank)
349 /* Break out of the loop. */
350 base = NULL;
351 break;
353 else
355 count[n]++;
356 base += sstride[n];
357 mbase += mstride[n];
358 dest += dstride[n];
365 extern void sproduct_c4 (gfc_array_c4 * const restrict,
366 gfc_array_c4 * const restrict, const index_type * const restrict,
367 GFC_LOGICAL_4 *);
368 export_proto(sproduct_c4);
370 void
371 sproduct_c4 (gfc_array_c4 * const restrict retarray,
372 gfc_array_c4 * const restrict array,
373 const index_type * const restrict pdim,
374 GFC_LOGICAL_4 * mask)
376 index_type count[GFC_MAX_DIMENSIONS];
377 index_type extent[GFC_MAX_DIMENSIONS];
378 index_type dstride[GFC_MAX_DIMENSIONS];
379 GFC_COMPLEX_4 * restrict dest;
380 index_type rank;
381 index_type n;
382 index_type dim;
385 if (*mask)
387 product_c4 (retarray, array, pdim);
388 return;
390 /* Make dim zero based to avoid confusion. */
391 dim = (*pdim) - 1;
392 rank = GFC_DESCRIPTOR_RANK (array) - 1;
394 for (n = 0; n < dim; n++)
396 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
398 if (extent[n] <= 0)
399 extent[n] = 0;
402 for (n = dim; n < rank; n++)
404 extent[n] =
405 GFC_DESCRIPTOR_EXTENT(array,n + 1);
407 if (extent[n] <= 0)
408 extent[n] = 0;
411 if (retarray->base_addr == NULL)
413 size_t alloc_size, str;
415 for (n = 0; n < rank; n++)
417 if (n == 0)
418 str = 1;
419 else
420 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
422 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
426 retarray->offset = 0;
427 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
429 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
431 if (alloc_size == 0)
433 /* Make sure we have a zero-sized array. */
434 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
435 return;
437 else
438 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_4));
440 else
442 if (rank != GFC_DESCRIPTOR_RANK (retarray))
443 runtime_error ("rank of return array incorrect in"
444 " PRODUCT intrinsic: is %ld, should be %ld",
445 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
446 (long int) rank);
448 if (unlikely (compile_options.bounds_check))
450 for (n=0; n < rank; n++)
452 index_type ret_extent;
454 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
455 if (extent[n] != ret_extent)
456 runtime_error ("Incorrect extent in return value of"
457 " PRODUCT intrinsic in dimension %ld:"
458 " is %ld, should be %ld", (long int) n + 1,
459 (long int) ret_extent, (long int) extent[n]);
464 for (n = 0; n < rank; n++)
466 count[n] = 0;
467 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
470 dest = retarray->base_addr;
472 while(1)
474 *dest = 1;
475 count[0]++;
476 dest += dstride[0];
477 n = 0;
478 while (count[n] == extent[n])
480 /* When we get to the end of a dimension, reset it and increment
481 the next dimension. */
482 count[n] = 0;
483 /* We could precalculate these products, but this is a less
484 frequently used path so probably not worth it. */
485 dest -= dstride[n] * extent[n];
486 n++;
487 if (n >= rank)
488 return;
489 else
491 count[n]++;
492 dest += dstride[n];
498 #endif