* es.po: Update.
[official-gcc.git] / gcc / hsa-gen.c
blobaf0b33d658fb51ee9d2687c1f9445d4050535a81
1 /* A pass for lowering gimple to HSAIL
2 Copyright (C) 2013-2018 Free Software Foundation, Inc.
3 Contributed by Martin Jambor <mjambor@suse.cz> and
4 Martin Liska <mliska@suse.cz>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "memmodel.h"
26 #include "tm.h"
27 #include "is-a.h"
28 #include "hash-table.h"
29 #include "vec.h"
30 #include "tree.h"
31 #include "tree-pass.h"
32 #include "function.h"
33 #include "basic-block.h"
34 #include "cfg.h"
35 #include "fold-const.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "bitmap.h"
39 #include "dumpfile.h"
40 #include "gimple-pretty-print.h"
41 #include "diagnostic-core.h"
42 #include "gimple-ssa.h"
43 #include "tree-phinodes.h"
44 #include "stringpool.h"
45 #include "tree-vrp.h"
46 #include "tree-ssanames.h"
47 #include "tree-dfa.h"
48 #include "ssa-iterators.h"
49 #include "cgraph.h"
50 #include "print-tree.h"
51 #include "symbol-summary.h"
52 #include "hsa-common.h"
53 #include "cfghooks.h"
54 #include "tree-cfg.h"
55 #include "cfgloop.h"
56 #include "cfganal.h"
57 #include "builtins.h"
58 #include "params.h"
59 #include "gomp-constants.h"
60 #include "internal-fn.h"
61 #include "builtins.h"
62 #include "stor-layout.h"
63 #include "stringpool.h"
64 #include "attribs.h"
66 /* Print a warning message and set that we have seen an error. */
68 #define HSA_SORRY_ATV(location, message, ...) \
69 do \
70 { \
71 hsa_fail_cfun (); \
72 if (warning_at (EXPR_LOCATION (hsa_cfun->m_decl), OPT_Whsa, \
73 HSA_SORRY_MSG)) \
74 inform (location, message, __VA_ARGS__); \
75 } \
76 while (false)
78 /* Same as previous, but highlight a location. */
80 #define HSA_SORRY_AT(location, message) \
81 do \
82 { \
83 hsa_fail_cfun (); \
84 if (warning_at (EXPR_LOCATION (hsa_cfun->m_decl), OPT_Whsa, \
85 HSA_SORRY_MSG)) \
86 inform (location, message); \
87 } \
88 while (false)
90 /* Default number of threads used by kernel dispatch. */
92 #define HSA_DEFAULT_NUM_THREADS 64
94 /* Following structures are defined in the final version
95 of HSA specification. */
97 /* HSA queue packet is shadow structure, originally provided by AMD. */
99 struct hsa_queue_packet
101 uint16_t header;
102 uint16_t setup;
103 uint16_t workgroup_size_x;
104 uint16_t workgroup_size_y;
105 uint16_t workgroup_size_z;
106 uint16_t reserved0;
107 uint32_t grid_size_x;
108 uint32_t grid_size_y;
109 uint32_t grid_size_z;
110 uint32_t private_segment_size;
111 uint32_t group_segment_size;
112 uint64_t kernel_object;
113 void *kernarg_address;
114 uint64_t reserved2;
115 uint64_t completion_signal;
118 /* HSA queue is shadow structure, originally provided by AMD. */
120 struct hsa_queue
122 int type;
123 uint32_t features;
124 void *base_address;
125 uint64_t doorbell_signal;
126 uint32_t size;
127 uint32_t reserved1;
128 uint64_t id;
131 static struct obstack hsa_obstack;
133 /* List of pointers to all instructions that come from an object allocator. */
134 static vec <hsa_insn_basic *> hsa_instructions;
136 /* List of pointers to all operands that come from an object allocator. */
137 static vec <hsa_op_base *> hsa_operands;
139 hsa_symbol::hsa_symbol ()
140 : m_decl (NULL_TREE), m_name (NULL), m_name_number (0),
141 m_directive_offset (0), m_type (BRIG_TYPE_NONE),
142 m_segment (BRIG_SEGMENT_NONE), m_linkage (BRIG_LINKAGE_NONE), m_dim (0),
143 m_cst_value (NULL), m_global_scope_p (false), m_seen_error (false),
144 m_allocation (BRIG_ALLOCATION_AUTOMATIC), m_emitted_to_brig (false)
149 hsa_symbol::hsa_symbol (BrigType16_t type, BrigSegment8_t segment,
150 BrigLinkage8_t linkage, bool global_scope_p,
151 BrigAllocation allocation, BrigAlignment8_t align)
152 : m_decl (NULL_TREE), m_name (NULL), m_name_number (0),
153 m_directive_offset (0), m_type (type), m_segment (segment),
154 m_linkage (linkage), m_dim (0), m_cst_value (NULL),
155 m_global_scope_p (global_scope_p), m_seen_error (false),
156 m_allocation (allocation), m_emitted_to_brig (false), m_align (align)
160 unsigned HOST_WIDE_INT
161 hsa_symbol::total_byte_size ()
163 unsigned HOST_WIDE_INT s
164 = hsa_type_bit_size (~BRIG_TYPE_ARRAY_MASK & m_type);
165 gcc_assert (s % BITS_PER_UNIT == 0);
166 s /= BITS_PER_UNIT;
168 if (m_dim)
169 s *= m_dim;
171 return s;
174 /* Forward declaration. */
176 static BrigType16_t
177 hsa_type_for_tree_type (const_tree type, unsigned HOST_WIDE_INT *dim_p,
178 bool min32int);
180 void
181 hsa_symbol::fillup_for_decl (tree decl)
183 m_decl = decl;
184 m_type = hsa_type_for_tree_type (TREE_TYPE (decl), &m_dim, false);
185 if (hsa_seen_error ())
187 m_seen_error = true;
188 return;
191 m_align = MAX (m_align, hsa_natural_alignment (m_type));
194 /* Constructor of class representing global HSA function/kernel information and
195 state. FNDECL is function declaration, KERNEL_P is true if the function
196 is going to become a HSA kernel. If the function has body, SSA_NAMES_COUNT
197 should be set to number of SSA names used in the function.
198 MODIFIED_CFG is set to true in case we modified control-flow graph
199 of the function. */
201 hsa_function_representation::hsa_function_representation
202 (tree fdecl, bool kernel_p, unsigned ssa_names_count, bool modified_cfg)
203 : m_name (NULL),
204 m_reg_count (0), m_input_args (vNULL),
205 m_output_arg (NULL), m_spill_symbols (vNULL), m_global_symbols (vNULL),
206 m_private_variables (vNULL), m_called_functions (vNULL),
207 m_called_internal_fns (vNULL), m_hbb_count (0),
208 m_in_ssa (true), m_kern_p (kernel_p), m_declaration_p (false),
209 m_decl (fdecl), m_internal_fn (NULL), m_shadow_reg (NULL),
210 m_kernel_dispatch_count (0), m_maximum_omp_data_size (0),
211 m_seen_error (false), m_temp_symbol_count (0), m_ssa_map (),
212 m_modified_cfg (modified_cfg)
214 int sym_init_len = (vec_safe_length (cfun->local_decls) / 2) + 1;
215 m_local_symbols = new hash_table <hsa_noop_symbol_hasher> (sym_init_len);
216 m_ssa_map.safe_grow_cleared (ssa_names_count);
219 /* Constructor of class representing HSA function information that
220 is derived for an internal function. */
221 hsa_function_representation::hsa_function_representation (hsa_internal_fn *fn)
222 : m_reg_count (0), m_input_args (vNULL),
223 m_output_arg (NULL), m_local_symbols (NULL),
224 m_spill_symbols (vNULL), m_global_symbols (vNULL),
225 m_private_variables (vNULL), m_called_functions (vNULL),
226 m_called_internal_fns (vNULL), m_hbb_count (0),
227 m_in_ssa (true), m_kern_p (false), m_declaration_p (true), m_decl (NULL),
228 m_internal_fn (fn), m_shadow_reg (NULL), m_kernel_dispatch_count (0),
229 m_maximum_omp_data_size (0), m_seen_error (false), m_temp_symbol_count (0),
230 m_ssa_map () {}
232 /* Destructor of class holding function/kernel-wide information and state. */
234 hsa_function_representation::~hsa_function_representation ()
236 /* Kernel names are deallocated at the end of BRIG output when deallocating
237 hsa_decl_kernel_mapping. */
238 if (!m_kern_p || m_seen_error)
239 free (m_name);
241 for (unsigned i = 0; i < m_input_args.length (); i++)
242 delete m_input_args[i];
243 m_input_args.release ();
245 delete m_output_arg;
246 delete m_local_symbols;
248 for (unsigned i = 0; i < m_spill_symbols.length (); i++)
249 delete m_spill_symbols[i];
250 m_spill_symbols.release ();
252 hsa_symbol *sym;
253 for (unsigned i = 0; i < m_global_symbols.iterate (i, &sym); i++)
254 if (sym->m_linkage != BRIG_ALLOCATION_PROGRAM)
255 delete sym;
256 m_global_symbols.release ();
258 for (unsigned i = 0; i < m_private_variables.length (); i++)
259 delete m_private_variables[i];
260 m_private_variables.release ();
261 m_called_functions.release ();
262 m_ssa_map.release ();
264 for (unsigned i = 0; i < m_called_internal_fns.length (); i++)
265 delete m_called_internal_fns[i];
268 hsa_op_reg *
269 hsa_function_representation::get_shadow_reg ()
271 /* If we compile a function with kernel dispatch and does not set
272 an optimization level, the function won't be inlined and
273 we return NULL. */
274 if (!m_kern_p)
275 return NULL;
277 if (m_shadow_reg)
278 return m_shadow_reg;
280 /* Append the shadow argument. */
281 hsa_symbol *shadow = new hsa_symbol (BRIG_TYPE_U64, BRIG_SEGMENT_KERNARG,
282 BRIG_LINKAGE_FUNCTION);
283 m_input_args.safe_push (shadow);
284 shadow->m_name = "hsa_runtime_shadow";
286 hsa_op_reg *r = new hsa_op_reg (BRIG_TYPE_U64);
287 hsa_op_address *addr = new hsa_op_address (shadow);
289 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, BRIG_TYPE_U64, r, addr);
290 hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun))->append_insn (mem);
291 m_shadow_reg = r;
293 return r;
296 bool hsa_function_representation::has_shadow_reg_p ()
298 return m_shadow_reg != NULL;
301 void
302 hsa_function_representation::init_extra_bbs ()
304 hsa_init_new_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
305 hsa_init_new_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
308 void
309 hsa_function_representation::update_dominance ()
311 if (m_modified_cfg)
313 free_dominance_info (CDI_DOMINATORS);
314 calculate_dominance_info (CDI_DOMINATORS);
318 hsa_symbol *
319 hsa_function_representation::create_hsa_temporary (BrigType16_t type)
321 hsa_symbol *s = new hsa_symbol (type, BRIG_SEGMENT_PRIVATE,
322 BRIG_LINKAGE_FUNCTION);
323 s->m_name_number = m_temp_symbol_count++;
325 hsa_cfun->m_private_variables.safe_push (s);
326 return s;
329 BrigLinkage8_t
330 hsa_function_representation::get_linkage ()
332 if (m_internal_fn)
333 return BRIG_LINKAGE_PROGRAM;
335 return m_kern_p || TREE_PUBLIC (m_decl) ?
336 BRIG_LINKAGE_PROGRAM : BRIG_LINKAGE_MODULE;
339 /* Hash map of simple OMP builtins. */
340 static hash_map <nofree_string_hash, omp_simple_builtin> *omp_simple_builtins
341 = NULL;
343 /* Warning messages for OMP builtins. */
345 #define HSA_WARN_LOCK_ROUTINE "support for HSA does not implement OpenMP " \
346 "lock routines"
347 #define HSA_WARN_TIMING_ROUTINE "support for HSA does not implement OpenMP " \
348 "timing routines"
349 #define HSA_WARN_MEMORY_ROUTINE "OpenMP device memory library routines have " \
350 "undefined semantics within target regions, support for HSA ignores them"
351 #define HSA_WARN_AFFINITY "Support for HSA does not implement OpenMP " \
352 "affinity feateres"
354 /* Initialize hash map with simple OMP builtins. */
356 static void
357 hsa_init_simple_builtins ()
359 if (omp_simple_builtins != NULL)
360 return;
362 omp_simple_builtins
363 = new hash_map <nofree_string_hash, omp_simple_builtin> ();
365 omp_simple_builtin omp_builtins[] =
367 omp_simple_builtin ("omp_get_initial_device", NULL, false,
368 new hsa_op_immed (GOMP_DEVICE_HOST,
369 (BrigType16_t) BRIG_TYPE_S32)),
370 omp_simple_builtin ("omp_is_initial_device", NULL, false,
371 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
372 omp_simple_builtin ("omp_get_dynamic", NULL, false,
373 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
374 omp_simple_builtin ("omp_set_dynamic", NULL, false, NULL),
375 omp_simple_builtin ("omp_init_lock", HSA_WARN_LOCK_ROUTINE, true),
376 omp_simple_builtin ("omp_init_lock_with_hint", HSA_WARN_LOCK_ROUTINE,
377 true),
378 omp_simple_builtin ("omp_init_nest_lock_with_hint", HSA_WARN_LOCK_ROUTINE,
379 true),
380 omp_simple_builtin ("omp_destroy_lock", HSA_WARN_LOCK_ROUTINE, true),
381 omp_simple_builtin ("omp_set_lock", HSA_WARN_LOCK_ROUTINE, true),
382 omp_simple_builtin ("omp_unset_lock", HSA_WARN_LOCK_ROUTINE, true),
383 omp_simple_builtin ("omp_test_lock", HSA_WARN_LOCK_ROUTINE, true),
384 omp_simple_builtin ("omp_get_wtime", HSA_WARN_TIMING_ROUTINE, true),
385 omp_simple_builtin ("omp_get_wtick", HSA_WARN_TIMING_ROUTINE, true),
386 omp_simple_builtin ("omp_target_alloc", HSA_WARN_MEMORY_ROUTINE, false,
387 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_U64)),
388 omp_simple_builtin ("omp_target_free", HSA_WARN_MEMORY_ROUTINE, false),
389 omp_simple_builtin ("omp_target_is_present", HSA_WARN_MEMORY_ROUTINE,
390 false,
391 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
392 omp_simple_builtin ("omp_target_memcpy", HSA_WARN_MEMORY_ROUTINE, false,
393 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
394 omp_simple_builtin ("omp_target_memcpy_rect", HSA_WARN_MEMORY_ROUTINE,
395 false,
396 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
397 omp_simple_builtin ("omp_target_associate_ptr", HSA_WARN_MEMORY_ROUTINE,
398 false,
399 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
400 omp_simple_builtin ("omp_target_disassociate_ptr",
401 HSA_WARN_MEMORY_ROUTINE,
402 false,
403 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
404 omp_simple_builtin ("omp_set_max_active_levels",
405 "Support for HSA only allows only one active level, "
406 "call to omp_set_max_active_levels will be ignored "
407 "in the generated HSAIL",
408 false, NULL),
409 omp_simple_builtin ("omp_get_max_active_levels", NULL, false,
410 new hsa_op_immed (1, (BrigType16_t) BRIG_TYPE_S32)),
411 omp_simple_builtin ("omp_in_final", NULL, false,
412 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
413 omp_simple_builtin ("omp_get_proc_bind", HSA_WARN_AFFINITY, false,
414 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
415 omp_simple_builtin ("omp_get_num_places", HSA_WARN_AFFINITY, false,
416 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
417 omp_simple_builtin ("omp_get_place_num_procs", HSA_WARN_AFFINITY, false,
418 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
419 omp_simple_builtin ("omp_get_place_proc_ids", HSA_WARN_AFFINITY, false,
420 NULL),
421 omp_simple_builtin ("omp_get_place_num", HSA_WARN_AFFINITY, false,
422 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
423 omp_simple_builtin ("omp_get_partition_num_places", HSA_WARN_AFFINITY,
424 false,
425 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
426 omp_simple_builtin ("omp_get_partition_place_nums", HSA_WARN_AFFINITY,
427 false, NULL),
428 omp_simple_builtin ("omp_set_default_device",
429 "omp_set_default_device has undefined semantics "
430 "within target regions, support for HSA ignores it",
431 false, NULL),
432 omp_simple_builtin ("omp_get_default_device",
433 "omp_get_default_device has undefined semantics "
434 "within target regions, support for HSA ignores it",
435 false,
436 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
437 omp_simple_builtin ("omp_get_num_devices",
438 "omp_get_num_devices has undefined semantics "
439 "within target regions, support for HSA ignores it",
440 false,
441 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
442 omp_simple_builtin ("omp_get_num_procs", NULL, true, NULL),
443 omp_simple_builtin ("omp_get_cancellation", NULL, true, NULL),
444 omp_simple_builtin ("omp_set_nested", NULL, true, NULL),
445 omp_simple_builtin ("omp_get_nested", NULL, true, NULL),
446 omp_simple_builtin ("omp_set_schedule", NULL, true, NULL),
447 omp_simple_builtin ("omp_get_schedule", NULL, true, NULL),
448 omp_simple_builtin ("omp_get_thread_limit", NULL, true, NULL),
449 omp_simple_builtin ("omp_get_team_size", NULL, true, NULL),
450 omp_simple_builtin ("omp_get_ancestor_thread_num", NULL, true, NULL),
451 omp_simple_builtin ("omp_get_max_task_priority", NULL, true, NULL)
454 unsigned count = sizeof (omp_builtins) / sizeof (omp_simple_builtin);
456 for (unsigned i = 0; i < count; i++)
457 omp_simple_builtins->put (omp_builtins[i].m_name, omp_builtins[i]);
460 /* Allocate HSA structures that we need only while generating with this. */
462 static void
463 hsa_init_data_for_cfun ()
465 hsa_init_compilation_unit_data ();
466 gcc_obstack_init (&hsa_obstack);
469 /* Deinitialize HSA subsystem and free all allocated memory. */
471 static void
472 hsa_deinit_data_for_cfun (void)
474 basic_block bb;
476 FOR_ALL_BB_FN (bb, cfun)
477 if (bb->aux)
479 hsa_bb *hbb = hsa_bb_for_bb (bb);
480 hbb->~hsa_bb ();
481 bb->aux = NULL;
484 for (unsigned int i = 0; i < hsa_operands.length (); i++)
485 hsa_destroy_operand (hsa_operands[i]);
487 hsa_operands.release ();
489 for (unsigned i = 0; i < hsa_instructions.length (); i++)
490 hsa_destroy_insn (hsa_instructions[i]);
492 hsa_instructions.release ();
494 if (omp_simple_builtins != NULL)
496 delete omp_simple_builtins;
497 omp_simple_builtins = NULL;
500 obstack_free (&hsa_obstack, NULL);
501 delete hsa_cfun;
504 /* Return the type which holds addresses in the given SEGMENT. */
506 static BrigType16_t
507 hsa_get_segment_addr_type (BrigSegment8_t segment)
509 switch (segment)
511 case BRIG_SEGMENT_NONE:
512 gcc_unreachable ();
514 case BRIG_SEGMENT_FLAT:
515 case BRIG_SEGMENT_GLOBAL:
516 case BRIG_SEGMENT_READONLY:
517 case BRIG_SEGMENT_KERNARG:
518 return hsa_machine_large_p () ? BRIG_TYPE_U64 : BRIG_TYPE_U32;
520 case BRIG_SEGMENT_GROUP:
521 case BRIG_SEGMENT_PRIVATE:
522 case BRIG_SEGMENT_SPILL:
523 case BRIG_SEGMENT_ARG:
524 return BRIG_TYPE_U32;
526 gcc_unreachable ();
529 /* Return integer brig type according to provided SIZE in bytes. If SIGN
530 is set to true, return signed integer type. */
532 static BrigType16_t
533 get_integer_type_by_bytes (unsigned size, bool sign)
535 if (sign)
536 switch (size)
538 case 1:
539 return BRIG_TYPE_S8;
540 case 2:
541 return BRIG_TYPE_S16;
542 case 4:
543 return BRIG_TYPE_S32;
544 case 8:
545 return BRIG_TYPE_S64;
546 default:
547 break;
549 else
550 switch (size)
552 case 1:
553 return BRIG_TYPE_U8;
554 case 2:
555 return BRIG_TYPE_U16;
556 case 4:
557 return BRIG_TYPE_U32;
558 case 8:
559 return BRIG_TYPE_U64;
560 default:
561 break;
564 return 0;
567 /* If T points to an integral type smaller than 32 bits, change it to a 32bit
568 equivalent and return the result. Otherwise just return the result. */
570 static BrigType16_t
571 hsa_extend_inttype_to_32bit (BrigType16_t t)
573 if (t == BRIG_TYPE_U8 || t == BRIG_TYPE_U16)
574 return BRIG_TYPE_U32;
575 else if (t == BRIG_TYPE_S8 || t == BRIG_TYPE_S16)
576 return BRIG_TYPE_S32;
577 return t;
580 /* Return HSA type for tree TYPE, which has to fit into BrigType16_t. Pointers
581 are assumed to use flat addressing. If min32int is true, always expand
582 integer types to one that has at least 32 bits. */
584 static BrigType16_t
585 hsa_type_for_scalar_tree_type (const_tree type, bool min32int)
587 HOST_WIDE_INT bsize;
588 const_tree base;
589 BrigType16_t res = BRIG_TYPE_NONE;
591 gcc_checking_assert (TYPE_P (type));
592 gcc_checking_assert (!AGGREGATE_TYPE_P (type));
593 if (POINTER_TYPE_P (type))
594 return hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
596 if (TREE_CODE (type) == VECTOR_TYPE)
597 base = TREE_TYPE (type);
598 else if (TREE_CODE (type) == COMPLEX_TYPE)
600 base = TREE_TYPE (type);
601 min32int = true;
603 else
604 base = type;
606 if (!tree_fits_uhwi_p (TYPE_SIZE (base)))
608 HSA_SORRY_ATV (EXPR_LOCATION (type),
609 "support for HSA does not implement huge or "
610 "variable-sized type %qT", type);
611 return res;
614 bsize = tree_to_uhwi (TYPE_SIZE (base));
615 unsigned byte_size = bsize / BITS_PER_UNIT;
616 if (INTEGRAL_TYPE_P (base))
617 res = get_integer_type_by_bytes (byte_size, !TYPE_UNSIGNED (base));
618 else if (SCALAR_FLOAT_TYPE_P (base))
620 switch (bsize)
622 case 16:
623 res = BRIG_TYPE_F16;
624 break;
625 case 32:
626 res = BRIG_TYPE_F32;
627 break;
628 case 64:
629 res = BRIG_TYPE_F64;
630 break;
631 default:
632 break;
636 if (res == BRIG_TYPE_NONE)
638 HSA_SORRY_ATV (EXPR_LOCATION (type),
639 "support for HSA does not implement type %qT", type);
640 return res;
643 if (TREE_CODE (type) == VECTOR_TYPE)
645 HOST_WIDE_INT tsize = tree_to_uhwi (TYPE_SIZE (type));
647 if (bsize == tsize)
649 HSA_SORRY_ATV (EXPR_LOCATION (type),
650 "support for HSA does not implement a vector type "
651 "where a type and unit size are equal: %qT", type);
652 return res;
655 switch (tsize)
657 case 32:
658 res |= BRIG_TYPE_PACK_32;
659 break;
660 case 64:
661 res |= BRIG_TYPE_PACK_64;
662 break;
663 case 128:
664 res |= BRIG_TYPE_PACK_128;
665 break;
666 default:
667 HSA_SORRY_ATV (EXPR_LOCATION (type),
668 "support for HSA does not implement type %qT", type);
672 if (min32int)
673 /* Registers/immediate operands can only be 32bit or more except for
674 f16. */
675 res = hsa_extend_inttype_to_32bit (res);
677 if (TREE_CODE (type) == COMPLEX_TYPE)
679 unsigned bsize = 2 * hsa_type_bit_size (res);
680 res = hsa_bittype_for_bitsize (bsize);
683 return res;
686 /* Returns the BRIG type we need to load/store entities of TYPE. */
688 static BrigType16_t
689 mem_type_for_type (BrigType16_t type)
691 /* HSA has non-intuitive constraints on load/store types. If it's
692 a bit-type it _must_ be B128, if it's not a bit-type it must be
693 64bit max. So for loading entities of 128 bits (e.g. vectors)
694 we have to to B128, while for loading the rest we have to use the
695 input type (??? or maybe also flattened to a equally sized non-vector
696 unsigned type?). */
697 if ((type & BRIG_TYPE_PACK_MASK) == BRIG_TYPE_PACK_128)
698 return BRIG_TYPE_B128;
699 else if (hsa_btype_p (type) || hsa_type_packed_p (type))
701 unsigned bitsize = hsa_type_bit_size (type);
702 if (bitsize < 128)
703 return hsa_uint_for_bitsize (bitsize);
704 else
705 return hsa_bittype_for_bitsize (bitsize);
707 return type;
710 /* Return HSA type for tree TYPE. If it cannot fit into BrigType16_t, some
711 kind of array will be generated, setting DIM appropriately. Otherwise, it
712 will be set to zero. */
714 static BrigType16_t
715 hsa_type_for_tree_type (const_tree type, unsigned HOST_WIDE_INT *dim_p = NULL,
716 bool min32int = false)
718 gcc_checking_assert (TYPE_P (type));
719 if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
721 HSA_SORRY_ATV (EXPR_LOCATION (type), "support for HSA does not "
722 "implement huge or variable-sized type %qT", type);
723 return BRIG_TYPE_NONE;
726 if (RECORD_OR_UNION_TYPE_P (type))
728 if (dim_p)
729 *dim_p = tree_to_uhwi (TYPE_SIZE_UNIT (type));
730 return BRIG_TYPE_U8 | BRIG_TYPE_ARRAY;
733 if (TREE_CODE (type) == ARRAY_TYPE)
735 /* We try to be nice and use the real base-type when this is an array of
736 scalars and only resort to an array of bytes if the type is more
737 complex. */
739 unsigned HOST_WIDE_INT dim = 1;
741 while (TREE_CODE (type) == ARRAY_TYPE)
743 tree domain = TYPE_DOMAIN (type);
744 if (!TYPE_MIN_VALUE (domain)
745 || !TYPE_MAX_VALUE (domain)
746 || !tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
747 || !tree_fits_shwi_p (TYPE_MAX_VALUE (domain)))
749 HSA_SORRY_ATV (EXPR_LOCATION (type),
750 "support for HSA does not implement array "
751 "%qT with unknown bounds", type);
752 return BRIG_TYPE_NONE;
754 HOST_WIDE_INT min = tree_to_shwi (TYPE_MIN_VALUE (domain));
755 HOST_WIDE_INT max = tree_to_shwi (TYPE_MAX_VALUE (domain));
756 dim = dim * (unsigned HOST_WIDE_INT) (max - min + 1);
757 type = TREE_TYPE (type);
760 BrigType16_t res;
761 if (RECORD_OR_UNION_TYPE_P (type))
763 dim = dim * tree_to_uhwi (TYPE_SIZE_UNIT (type));
764 res = BRIG_TYPE_U8;
766 else
767 res = hsa_type_for_scalar_tree_type (type, false);
769 if (dim_p)
770 *dim_p = dim;
771 return res | BRIG_TYPE_ARRAY;
774 /* Scalar case: */
775 if (dim_p)
776 *dim_p = 0;
778 return hsa_type_for_scalar_tree_type (type, min32int);
781 /* Returns true if converting from STYPE into DTYPE needs the _CVT
782 opcode. If false a normal _MOV is enough. */
784 static bool
785 hsa_needs_cvt (BrigType16_t dtype, BrigType16_t stype)
787 if (hsa_btype_p (dtype))
788 return false;
790 /* float <-> int conversions are real converts. */
791 if (hsa_type_float_p (dtype) != hsa_type_float_p (stype))
792 return true;
793 /* When both types have different size, then we need CVT as well. */
794 if (hsa_type_bit_size (dtype) != hsa_type_bit_size (stype))
795 return true;
796 return false;
799 /* Return declaration name if it exists or create one from UID if it does not.
800 If DECL is a local variable, make UID part of its name. */
802 const char *
803 hsa_get_declaration_name (tree decl)
805 if (!DECL_NAME (decl))
807 char buf[64];
808 snprintf (buf, 64, "__hsa_anon_%u", DECL_UID (decl));
809 size_t len = strlen (buf);
810 char *copy = (char *) obstack_alloc (&hsa_obstack, len + 1);
811 memcpy (copy, buf, len + 1);
812 return copy;
815 tree name_tree;
816 if (TREE_CODE (decl) == FUNCTION_DECL
817 || (TREE_CODE (decl) == VAR_DECL && is_global_var (decl)))
818 name_tree = DECL_ASSEMBLER_NAME (decl);
819 else
820 name_tree = DECL_NAME (decl);
822 const char *name = IDENTIFIER_POINTER (name_tree);
823 /* User-defined assembly names have prepended asterisk symbol. */
824 if (name[0] == '*')
825 name++;
827 if ((TREE_CODE (decl) == VAR_DECL)
828 && decl_function_context (decl))
830 size_t len = strlen (name);
831 char *buf = (char *) alloca (len + 32);
832 snprintf (buf, len + 32, "%s_%u", name, DECL_UID (decl));
833 len = strlen (buf);
834 char *copy = (char *) obstack_alloc (&hsa_obstack, len + 1);
835 memcpy (copy, buf, len + 1);
836 return copy;
838 else
839 return name;
842 /* Lookup or create the associated hsa_symbol structure with a given VAR_DECL
843 or lookup the hsa_structure corresponding to a PARM_DECL. */
845 static hsa_symbol *
846 get_symbol_for_decl (tree decl)
848 hsa_symbol **slot;
849 hsa_symbol dummy (BRIG_TYPE_NONE, BRIG_SEGMENT_NONE, BRIG_LINKAGE_NONE);
851 gcc_assert (TREE_CODE (decl) == PARM_DECL
852 || TREE_CODE (decl) == RESULT_DECL
853 || TREE_CODE (decl) == VAR_DECL
854 || TREE_CODE (decl) == CONST_DECL);
856 dummy.m_decl = decl;
858 bool is_in_global_vars = ((TREE_CODE (decl) == VAR_DECL)
859 && !decl_function_context (decl));
861 if (is_in_global_vars)
862 slot = hsa_global_variable_symbols->find_slot (&dummy, INSERT);
863 else
864 slot = hsa_cfun->m_local_symbols->find_slot (&dummy, INSERT);
866 gcc_checking_assert (slot);
867 if (*slot)
869 hsa_symbol *sym = (*slot);
871 /* If the symbol is problematic, mark current function also as
872 problematic. */
873 if (sym->m_seen_error)
874 hsa_fail_cfun ();
876 /* PR hsa/70234: If a global variable was marked to be emitted,
877 but HSAIL generation of a function using the variable fails,
878 we should retry to emit the variable in context of a different
879 function.
881 Iterate elements whether a symbol is already in m_global_symbols
882 of not. */
883 if (is_in_global_vars && !sym->m_emitted_to_brig)
885 for (unsigned i = 0; i < hsa_cfun->m_global_symbols.length (); i++)
886 if (hsa_cfun->m_global_symbols[i] == sym)
887 return *slot;
888 hsa_cfun->m_global_symbols.safe_push (sym);
891 return *slot;
893 else
895 hsa_symbol *sym;
896 /* PARM_DECLs and RESULT_DECL should be already in m_local_symbols. */
897 gcc_assert (TREE_CODE (decl) == VAR_DECL
898 || TREE_CODE (decl) == CONST_DECL);
899 BrigAlignment8_t align = hsa_object_alignment (decl);
901 if (is_in_global_vars)
903 gcc_checking_assert (TREE_CODE (decl) != CONST_DECL);
904 sym = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_GLOBAL,
905 BRIG_LINKAGE_PROGRAM, true,
906 BRIG_ALLOCATION_PROGRAM, align);
907 hsa_cfun->m_global_symbols.safe_push (sym);
908 sym->fillup_for_decl (decl);
909 if (sym->m_align > align)
911 sym->m_seen_error = true;
912 HSA_SORRY_ATV (EXPR_LOCATION (decl),
913 "HSA specification requires that %E is at least "
914 "naturally aligned", decl);
917 else
919 /* As generation of efficient memory copy instructions relies
920 on alignment greater or equal to 8 bytes,
921 we need to increase alignment of all aggregate types.. */
922 if (AGGREGATE_TYPE_P (TREE_TYPE (decl)))
923 align = MAX ((BrigAlignment8_t) BRIG_ALIGNMENT_8, align);
925 BrigAllocation allocation = BRIG_ALLOCATION_AUTOMATIC;
926 BrigSegment8_t segment;
927 if (TREE_CODE (decl) == CONST_DECL)
929 segment = BRIG_SEGMENT_READONLY;
930 allocation = BRIG_ALLOCATION_AGENT;
932 else if (lookup_attribute ("hsa_group_segment",
933 DECL_ATTRIBUTES (decl)))
934 segment = BRIG_SEGMENT_GROUP;
935 else if (TREE_STATIC (decl)
936 || lookup_attribute ("hsa_global_segment",
937 DECL_ATTRIBUTES (decl)))
938 segment = BRIG_SEGMENT_GLOBAL;
939 else
940 segment = BRIG_SEGMENT_PRIVATE;
942 sym = new hsa_symbol (BRIG_TYPE_NONE, segment, BRIG_LINKAGE_FUNCTION,
943 false, allocation, align);
944 sym->fillup_for_decl (decl);
945 hsa_cfun->m_private_variables.safe_push (sym);
948 sym->m_name = hsa_get_declaration_name (decl);
949 *slot = sym;
950 return sym;
954 /* For a given HSA function declaration, return a host
955 function declaration. */
957 tree
958 hsa_get_host_function (tree decl)
960 hsa_function_summary *s
961 = hsa_summaries->get (cgraph_node::get_create (decl));
962 gcc_assert (s->m_kind != HSA_NONE);
963 gcc_assert (s->m_gpu_implementation_p);
965 return s->m_bound_function ? s->m_bound_function->decl : NULL;
968 /* Return true if function DECL has a host equivalent function. */
970 static char *
971 get_brig_function_name (tree decl)
973 tree d = decl;
975 hsa_function_summary *s = hsa_summaries->get (cgraph_node::get_create (d));
976 if (s->m_kind != HSA_NONE
977 && s->m_gpu_implementation_p
978 && s->m_bound_function)
979 d = s->m_bound_function->decl;
981 /* IPA split can create a function that has no host equivalent. */
982 if (d == NULL)
983 d = decl;
985 char *name = xstrdup (hsa_get_declaration_name (d));
986 hsa_sanitize_name (name);
988 return name;
991 /* Create a spill symbol of type TYPE. */
993 hsa_symbol *
994 hsa_get_spill_symbol (BrigType16_t type)
996 hsa_symbol *sym = new hsa_symbol (type, BRIG_SEGMENT_SPILL,
997 BRIG_LINKAGE_FUNCTION);
998 hsa_cfun->m_spill_symbols.safe_push (sym);
999 return sym;
1002 /* Create a symbol for a read-only string constant. */
1003 hsa_symbol *
1004 hsa_get_string_cst_symbol (tree string_cst)
1006 gcc_checking_assert (TREE_CODE (string_cst) == STRING_CST);
1008 hsa_symbol **slot = hsa_cfun->m_string_constants_map.get (string_cst);
1009 if (slot)
1010 return *slot;
1012 hsa_op_immed *cst = new hsa_op_immed (string_cst);
1013 hsa_symbol *sym = new hsa_symbol (cst->m_type, BRIG_SEGMENT_GLOBAL,
1014 BRIG_LINKAGE_MODULE, true,
1015 BRIG_ALLOCATION_AGENT);
1016 sym->m_cst_value = cst;
1017 sym->m_dim = TREE_STRING_LENGTH (string_cst);
1018 sym->m_name_number = hsa_cfun->m_global_symbols.length ();
1020 hsa_cfun->m_global_symbols.safe_push (sym);
1021 hsa_cfun->m_string_constants_map.put (string_cst, sym);
1022 return sym;
1025 /* Make the type of a MOV instruction larger if mandated by HSAIL rules. */
1027 static void
1028 hsa_fixup_mov_insn_type (hsa_insn_basic *insn)
1030 insn->m_type = hsa_extend_inttype_to_32bit (insn->m_type);
1031 if (insn->m_type == BRIG_TYPE_B8 || insn->m_type == BRIG_TYPE_B16)
1032 insn->m_type = BRIG_TYPE_B32;
1035 /* Constructor of the ancestor of all operands. K is BRIG kind that identified
1036 what the operator is. */
1038 hsa_op_base::hsa_op_base (BrigKind16_t k)
1039 : m_next (NULL), m_brig_op_offset (0), m_kind (k)
1041 hsa_operands.safe_push (this);
1044 /* Constructor of ancestor of all operands which have a type. K is BRIG kind
1045 that identified what the operator is. T is the type of the operator. */
1047 hsa_op_with_type::hsa_op_with_type (BrigKind16_t k, BrigType16_t t)
1048 : hsa_op_base (k), m_type (t)
1052 hsa_op_with_type *
1053 hsa_op_with_type::get_in_type (BrigType16_t dtype, hsa_bb *hbb)
1055 if (m_type == dtype)
1056 return this;
1058 hsa_op_reg *dest;
1060 if (hsa_needs_cvt (dtype, m_type))
1062 dest = new hsa_op_reg (dtype);
1063 hbb->append_insn (new hsa_insn_cvt (dest, this));
1065 else if (is_a <hsa_op_reg *> (this))
1067 /* In the end, HSA registers do not really have types, only sizes, so if
1068 the sizes match, we can use the register directly. */
1069 gcc_checking_assert (hsa_type_bit_size (dtype)
1070 == hsa_type_bit_size (m_type));
1071 return this;
1073 else
1075 dest = new hsa_op_reg (m_type);
1077 hsa_insn_basic *mov = new hsa_insn_basic (2, BRIG_OPCODE_MOV,
1078 dest->m_type, dest, this);
1079 hsa_fixup_mov_insn_type (mov);
1080 hbb->append_insn (mov);
1081 /* We cannot simply for instance: 'mov_u32 $_3, 48 (s32)' because
1082 type of the operand must be same as type of the instruction. */
1083 dest->m_type = dtype;
1086 return dest;
1089 /* If this operand has integer type smaller than 32 bits, extend it to 32 bits,
1090 adding instructions to HBB if needed. */
1092 hsa_op_with_type *
1093 hsa_op_with_type::extend_int_to_32bit (hsa_bb *hbb)
1095 if (m_type == BRIG_TYPE_U8 || m_type == BRIG_TYPE_U16)
1096 return get_in_type (BRIG_TYPE_U32, hbb);
1097 else if (m_type == BRIG_TYPE_S8 || m_type == BRIG_TYPE_S16)
1098 return get_in_type (BRIG_TYPE_S32, hbb);
1099 else
1100 return this;
1103 /* Constructor of class representing HSA immediate values. TREE_VAL is the
1104 tree representation of the immediate value. If min32int is true,
1105 always expand integer types to one that has at least 32 bits. */
1107 hsa_op_immed::hsa_op_immed (tree tree_val, bool min32int)
1108 : hsa_op_with_type (BRIG_KIND_OPERAND_CONSTANT_BYTES,
1109 hsa_type_for_tree_type (TREE_TYPE (tree_val), NULL,
1110 min32int))
1112 if (hsa_seen_error ())
1113 return;
1115 gcc_checking_assert ((is_gimple_min_invariant (tree_val)
1116 && (!POINTER_TYPE_P (TREE_TYPE (tree_val))
1117 || TREE_CODE (tree_val) == INTEGER_CST))
1118 || TREE_CODE (tree_val) == CONSTRUCTOR);
1119 m_tree_value = tree_val;
1121 /* Verify that all elements of a constructor are constants. */
1122 if (TREE_CODE (m_tree_value) == CONSTRUCTOR)
1123 for (unsigned i = 0; i < CONSTRUCTOR_NELTS (m_tree_value); i++)
1125 tree v = CONSTRUCTOR_ELT (m_tree_value, i)->value;
1126 if (!CONSTANT_CLASS_P (v))
1128 HSA_SORRY_AT (EXPR_LOCATION (tree_val),
1129 "HSA ctor should have only constants");
1130 return;
1135 /* Constructor of class representing HSA immediate values. INTEGER_VALUE is the
1136 integer representation of the immediate value. TYPE is BRIG type. */
1138 hsa_op_immed::hsa_op_immed (HOST_WIDE_INT integer_value, BrigType16_t type)
1139 : hsa_op_with_type (BRIG_KIND_OPERAND_CONSTANT_BYTES, type),
1140 m_tree_value (NULL)
1142 gcc_assert (hsa_type_integer_p (type));
1143 m_int_value = integer_value;
1146 hsa_op_immed::hsa_op_immed ()
1147 : hsa_op_with_type (BRIG_KIND_NONE, BRIG_TYPE_NONE)
1151 /* New operator to allocate immediate operands from obstack. */
1153 void *
1154 hsa_op_immed::operator new (size_t size)
1156 return obstack_alloc (&hsa_obstack, size);
1159 /* Destructor. */
1161 hsa_op_immed::~hsa_op_immed ()
1165 /* Change type of the immediate value to T. */
1167 void
1168 hsa_op_immed::set_type (BrigType16_t t)
1170 m_type = t;
1173 /* Constructor of class representing HSA registers and pseudo-registers. T is
1174 the BRIG type of the new register. */
1176 hsa_op_reg::hsa_op_reg (BrigType16_t t)
1177 : hsa_op_with_type (BRIG_KIND_OPERAND_REGISTER, t), m_gimple_ssa (NULL_TREE),
1178 m_def_insn (NULL), m_spill_sym (NULL), m_order (hsa_cfun->m_reg_count++),
1179 m_lr_begin (0), m_lr_end (0), m_reg_class (0), m_hard_num (0)
1183 /* New operator to allocate a register from obstack. */
1185 void *
1186 hsa_op_reg::operator new (size_t size)
1188 return obstack_alloc (&hsa_obstack, size);
1191 /* Verify register operand. */
1193 void
1194 hsa_op_reg::verify_ssa ()
1196 /* Verify that each HSA register has a definition assigned.
1197 Exceptions are VAR_DECL and PARM_DECL that are a default
1198 definition. */
1199 gcc_checking_assert (m_def_insn
1200 || (m_gimple_ssa != NULL
1201 && (!SSA_NAME_VAR (m_gimple_ssa)
1202 || (TREE_CODE (SSA_NAME_VAR (m_gimple_ssa))
1203 != PARM_DECL))
1204 && SSA_NAME_IS_DEFAULT_DEF (m_gimple_ssa)));
1206 /* Verify that every use of the register is really present
1207 in an instruction. */
1208 for (unsigned i = 0; i < m_uses.length (); i++)
1210 hsa_insn_basic *use = m_uses[i];
1212 bool is_visited = false;
1213 for (unsigned j = 0; j < use->operand_count (); j++)
1215 hsa_op_base *u = use->get_op (j);
1216 hsa_op_address *addr; addr = dyn_cast <hsa_op_address *> (u);
1217 if (addr && addr->m_reg)
1218 u = addr->m_reg;
1220 if (u == this)
1222 bool r = !addr && use->op_output_p (j);
1224 if (r)
1226 error ("HSA SSA name defined by instruction that is supposed "
1227 "to be using it");
1228 debug_hsa_operand (this);
1229 debug_hsa_insn (use);
1230 internal_error ("HSA SSA verification failed");
1233 is_visited = true;
1237 if (!is_visited)
1239 error ("HSA SSA name not among operands of instruction that is "
1240 "supposed to use it");
1241 debug_hsa_operand (this);
1242 debug_hsa_insn (use);
1243 internal_error ("HSA SSA verification failed");
1248 hsa_op_address::hsa_op_address (hsa_symbol *sym, hsa_op_reg *r,
1249 HOST_WIDE_INT offset)
1250 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS), m_symbol (sym), m_reg (r),
1251 m_imm_offset (offset)
1255 hsa_op_address::hsa_op_address (hsa_symbol *sym, HOST_WIDE_INT offset)
1256 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS), m_symbol (sym), m_reg (NULL),
1257 m_imm_offset (offset)
1261 hsa_op_address::hsa_op_address (hsa_op_reg *r, HOST_WIDE_INT offset)
1262 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS), m_symbol (NULL), m_reg (r),
1263 m_imm_offset (offset)
1267 /* New operator to allocate address operands from obstack. */
1269 void *
1270 hsa_op_address::operator new (size_t size)
1272 return obstack_alloc (&hsa_obstack, size);
1275 /* Constructor of an operand referring to HSAIL code. */
1277 hsa_op_code_ref::hsa_op_code_ref () : hsa_op_base (BRIG_KIND_OPERAND_CODE_REF),
1278 m_directive_offset (0)
1282 /* Constructor of an operand representing a code list. Set it up so that it
1283 can contain ELEMENTS number of elements. */
1285 hsa_op_code_list::hsa_op_code_list (unsigned elements)
1286 : hsa_op_base (BRIG_KIND_OPERAND_CODE_LIST)
1288 m_offsets.create (1);
1289 m_offsets.safe_grow_cleared (elements);
1292 /* New operator to allocate code list operands from obstack. */
1294 void *
1295 hsa_op_code_list::operator new (size_t size)
1297 return obstack_alloc (&hsa_obstack, size);
1300 /* Constructor of an operand representing an operand list.
1301 Set it up so that it can contain ELEMENTS number of elements. */
1303 hsa_op_operand_list::hsa_op_operand_list (unsigned elements)
1304 : hsa_op_base (BRIG_KIND_OPERAND_OPERAND_LIST)
1306 m_offsets.create (elements);
1307 m_offsets.safe_grow (elements);
1310 /* New operator to allocate operand list operands from obstack. */
1312 void *
1313 hsa_op_operand_list::operator new (size_t size)
1315 return obstack_alloc (&hsa_obstack, size);
1318 hsa_op_operand_list::~hsa_op_operand_list ()
1320 m_offsets.release ();
1324 hsa_op_reg *
1325 hsa_function_representation::reg_for_gimple_ssa (tree ssa)
1327 hsa_op_reg *hreg;
1329 gcc_checking_assert (TREE_CODE (ssa) == SSA_NAME);
1330 if (m_ssa_map[SSA_NAME_VERSION (ssa)])
1331 return m_ssa_map[SSA_NAME_VERSION (ssa)];
1333 hreg = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (ssa),
1334 false));
1335 hreg->m_gimple_ssa = ssa;
1336 m_ssa_map[SSA_NAME_VERSION (ssa)] = hreg;
1338 return hreg;
1341 void
1342 hsa_op_reg::set_definition (hsa_insn_basic *insn)
1344 if (hsa_cfun->m_in_ssa)
1346 gcc_checking_assert (!m_def_insn);
1347 m_def_insn = insn;
1349 else
1350 m_def_insn = NULL;
1353 /* Constructor of the class which is the bases of all instructions and directly
1354 represents the most basic ones. NOPS is the number of operands that the
1355 operand vector will contain (and which will be cleared). OP is the opcode
1356 of the instruction. This constructor does not set type. */
1358 hsa_insn_basic::hsa_insn_basic (unsigned nops, int opc)
1359 : m_prev (NULL),
1360 m_next (NULL), m_bb (NULL), m_opcode (opc), m_number (0),
1361 m_type (BRIG_TYPE_NONE), m_brig_offset (0)
1363 if (nops > 0)
1364 m_operands.safe_grow_cleared (nops);
1366 hsa_instructions.safe_push (this);
1369 /* Make OP the operand number INDEX of operands of this instruction. If OP is a
1370 register or an address containing a register, then either set the definition
1371 of the register to this instruction if it an output operand or add this
1372 instruction to the uses if it is an input one. */
1374 void
1375 hsa_insn_basic::set_op (int index, hsa_op_base *op)
1377 /* Each address operand is always use. */
1378 hsa_op_address *addr = dyn_cast <hsa_op_address *> (op);
1379 if (addr && addr->m_reg)
1380 addr->m_reg->m_uses.safe_push (this);
1381 else
1383 hsa_op_reg *reg = dyn_cast <hsa_op_reg *> (op);
1384 if (reg)
1386 if (op_output_p (index))
1387 reg->set_definition (this);
1388 else
1389 reg->m_uses.safe_push (this);
1393 m_operands[index] = op;
1396 /* Get INDEX-th operand of the instruction. */
1398 hsa_op_base *
1399 hsa_insn_basic::get_op (int index)
1401 return m_operands[index];
1404 /* Get address of INDEX-th operand of the instruction. */
1406 hsa_op_base **
1407 hsa_insn_basic::get_op_addr (int index)
1409 return &m_operands[index];
1412 /* Get number of operands of the instruction. */
1413 unsigned int
1414 hsa_insn_basic::operand_count ()
1416 return m_operands.length ();
1419 /* Constructor of the class which is the bases of all instructions and directly
1420 represents the most basic ones. NOPS is the number of operands that the
1421 operand vector will contain (and which will be cleared). OPC is the opcode
1422 of the instruction, T is the type of the instruction. */
1424 hsa_insn_basic::hsa_insn_basic (unsigned nops, int opc, BrigType16_t t,
1425 hsa_op_base *arg0, hsa_op_base *arg1,
1426 hsa_op_base *arg2, hsa_op_base *arg3)
1427 : m_prev (NULL), m_next (NULL), m_bb (NULL), m_opcode (opc),m_number (0),
1428 m_type (t), m_brig_offset (0)
1430 if (nops > 0)
1431 m_operands.safe_grow_cleared (nops);
1433 if (arg0 != NULL)
1435 gcc_checking_assert (nops >= 1);
1436 set_op (0, arg0);
1439 if (arg1 != NULL)
1441 gcc_checking_assert (nops >= 2);
1442 set_op (1, arg1);
1445 if (arg2 != NULL)
1447 gcc_checking_assert (nops >= 3);
1448 set_op (2, arg2);
1451 if (arg3 != NULL)
1453 gcc_checking_assert (nops >= 4);
1454 set_op (3, arg3);
1457 hsa_instructions.safe_push (this);
1460 /* New operator to allocate basic instruction from obstack. */
1462 void *
1463 hsa_insn_basic::operator new (size_t size)
1465 return obstack_alloc (&hsa_obstack, size);
1468 /* Verify the instruction. */
1470 void
1471 hsa_insn_basic::verify ()
1473 hsa_op_address *addr;
1474 hsa_op_reg *reg;
1476 /* Iterate all register operands and verify that the instruction
1477 is set in uses of the register. */
1478 for (unsigned i = 0; i < operand_count (); i++)
1480 hsa_op_base *use = get_op (i);
1482 if ((addr = dyn_cast <hsa_op_address *> (use)) && addr->m_reg)
1484 gcc_assert (addr->m_reg->m_def_insn != this);
1485 use = addr->m_reg;
1488 if ((reg = dyn_cast <hsa_op_reg *> (use)) && !op_output_p (i))
1490 unsigned j;
1491 for (j = 0; j < reg->m_uses.length (); j++)
1493 if (reg->m_uses[j] == this)
1494 break;
1497 if (j == reg->m_uses.length ())
1499 error ("HSA instruction uses a register but is not among "
1500 "recorded register uses");
1501 debug_hsa_operand (reg);
1502 debug_hsa_insn (this);
1503 internal_error ("HSA instruction verification failed");
1509 /* Constructor of an instruction representing a PHI node. NOPS is the number
1510 of operands (equal to the number of predecessors). */
1512 hsa_insn_phi::hsa_insn_phi (unsigned nops, hsa_op_reg *dst)
1513 : hsa_insn_basic (nops, HSA_OPCODE_PHI), m_dest (dst)
1515 dst->set_definition (this);
1518 /* Constructor of class representing instructions for control flow and
1519 sychronization, */
1521 hsa_insn_br::hsa_insn_br (unsigned nops, int opc, BrigType16_t t,
1522 BrigWidth8_t width, hsa_op_base *arg0,
1523 hsa_op_base *arg1, hsa_op_base *arg2,
1524 hsa_op_base *arg3)
1525 : hsa_insn_basic (nops, opc, t, arg0, arg1, arg2, arg3),
1526 m_width (width)
1530 /* Constructor of class representing instruction for conditional jump, CTRL is
1531 the control register determining whether the jump will be carried out, the
1532 new instruction is automatically added to its uses list. */
1534 hsa_insn_cbr::hsa_insn_cbr (hsa_op_reg *ctrl)
1535 : hsa_insn_br (1, BRIG_OPCODE_CBR, BRIG_TYPE_B1, BRIG_WIDTH_1, ctrl)
1539 /* Constructor of class representing instruction for switch jump, CTRL is
1540 the index register. */
1542 hsa_insn_sbr::hsa_insn_sbr (hsa_op_reg *index, unsigned jump_count)
1543 : hsa_insn_basic (1, BRIG_OPCODE_SBR, BRIG_TYPE_B1, index),
1544 m_width (BRIG_WIDTH_1), m_jump_table (vNULL),
1545 m_label_code_list (new hsa_op_code_list (jump_count))
1549 /* Replace all occurrences of OLD_BB with NEW_BB in the statements
1550 jump table. */
1552 void
1553 hsa_insn_sbr::replace_all_labels (basic_block old_bb, basic_block new_bb)
1555 for (unsigned i = 0; i < m_jump_table.length (); i++)
1556 if (m_jump_table[i] == old_bb)
1557 m_jump_table[i] = new_bb;
1560 hsa_insn_sbr::~hsa_insn_sbr ()
1562 m_jump_table.release ();
1565 /* Constructor of comparison instruction. CMP is the comparison operation and T
1566 is the result type. */
1568 hsa_insn_cmp::hsa_insn_cmp (BrigCompareOperation8_t cmp, BrigType16_t t,
1569 hsa_op_base *arg0, hsa_op_base *arg1,
1570 hsa_op_base *arg2)
1571 : hsa_insn_basic (3 , BRIG_OPCODE_CMP, t, arg0, arg1, arg2), m_compare (cmp)
1575 /* Constructor of classes representing memory accesses. OPC is the opcode (must
1576 be BRIG_OPCODE_ST or BRIG_OPCODE_LD) and T is the type. The instruction
1577 operands are provided as ARG0 and ARG1. */
1579 hsa_insn_mem::hsa_insn_mem (int opc, BrigType16_t t, hsa_op_base *arg0,
1580 hsa_op_base *arg1)
1581 : hsa_insn_basic (2, opc, t, arg0, arg1),
1582 m_align (hsa_natural_alignment (t)), m_equiv_class (0)
1584 gcc_checking_assert (opc == BRIG_OPCODE_LD || opc == BRIG_OPCODE_ST);
1587 /* Constructor for descendants allowing different opcodes and number of
1588 operands, it passes its arguments directly to hsa_insn_basic
1589 constructor. The instruction operands are provided as ARG[0-3]. */
1592 hsa_insn_mem::hsa_insn_mem (unsigned nops, int opc, BrigType16_t t,
1593 hsa_op_base *arg0, hsa_op_base *arg1,
1594 hsa_op_base *arg2, hsa_op_base *arg3)
1595 : hsa_insn_basic (nops, opc, t, arg0, arg1, arg2, arg3),
1596 m_align (hsa_natural_alignment (t)), m_equiv_class (0)
1600 /* Constructor of class representing atomic instructions. OPC is the principal
1601 opcode, AOP is the specific atomic operation opcode. T is the type of the
1602 instruction. The instruction operands are provided as ARG[0-3]. */
1604 hsa_insn_atomic::hsa_insn_atomic (int nops, int opc,
1605 enum BrigAtomicOperation aop,
1606 BrigType16_t t, BrigMemoryOrder memorder,
1607 hsa_op_base *arg0,
1608 hsa_op_base *arg1, hsa_op_base *arg2,
1609 hsa_op_base *arg3)
1610 : hsa_insn_mem (nops, opc, t, arg0, arg1, arg2, arg3), m_atomicop (aop),
1611 m_memoryorder (memorder),
1612 m_memoryscope (BRIG_MEMORY_SCOPE_SYSTEM)
1614 gcc_checking_assert (opc == BRIG_OPCODE_ATOMICNORET ||
1615 opc == BRIG_OPCODE_ATOMIC ||
1616 opc == BRIG_OPCODE_SIGNAL ||
1617 opc == BRIG_OPCODE_SIGNALNORET);
1620 /* Constructor of class representing signal instructions. OPC is the prinicpal
1621 opcode, SOP is the specific signal operation opcode. T is the type of the
1622 instruction. The instruction operands are provided as ARG[0-3]. */
1624 hsa_insn_signal::hsa_insn_signal (int nops, int opc,
1625 enum BrigAtomicOperation sop,
1626 BrigType16_t t, BrigMemoryOrder memorder,
1627 hsa_op_base *arg0, hsa_op_base *arg1,
1628 hsa_op_base *arg2, hsa_op_base *arg3)
1629 : hsa_insn_basic (nops, opc, t, arg0, arg1, arg2, arg3),
1630 m_memory_order (memorder), m_signalop (sop)
1634 /* Constructor of class representing segment conversion instructions. OPC is
1635 the opcode which must be either BRIG_OPCODE_STOF or BRIG_OPCODE_FTOS. DEST
1636 and SRCT are destination and source types respectively, SEG is the segment
1637 we are converting to or from. The instruction operands are
1638 provided as ARG0 and ARG1. */
1640 hsa_insn_seg::hsa_insn_seg (int opc, BrigType16_t dest, BrigType16_t srct,
1641 BrigSegment8_t seg, hsa_op_base *arg0,
1642 hsa_op_base *arg1)
1643 : hsa_insn_basic (2, opc, dest, arg0, arg1), m_src_type (srct),
1644 m_segment (seg)
1646 gcc_checking_assert (opc == BRIG_OPCODE_STOF || opc == BRIG_OPCODE_FTOS);
1649 /* Constructor of class representing a call instruction. CALLEE is the tree
1650 representation of the function being called. */
1652 hsa_insn_call::hsa_insn_call (tree callee)
1653 : hsa_insn_basic (0, BRIG_OPCODE_CALL), m_called_function (callee),
1654 m_output_arg (NULL), m_args_code_list (NULL), m_result_code_list (NULL)
1658 hsa_insn_call::hsa_insn_call (hsa_internal_fn *fn)
1659 : hsa_insn_basic (0, BRIG_OPCODE_CALL), m_called_function (NULL),
1660 m_called_internal_fn (fn), m_output_arg (NULL), m_args_code_list (NULL),
1661 m_result_code_list (NULL)
1665 hsa_insn_call::~hsa_insn_call ()
1667 for (unsigned i = 0; i < m_input_args.length (); i++)
1668 delete m_input_args[i];
1670 delete m_output_arg;
1672 m_input_args.release ();
1673 m_input_arg_insns.release ();
1676 /* Constructor of class representing the argument block required to invoke
1677 a call in HSAIL. */
1678 hsa_insn_arg_block::hsa_insn_arg_block (BrigKind brig_kind,
1679 hsa_insn_call * call)
1680 : hsa_insn_basic (0, HSA_OPCODE_ARG_BLOCK), m_kind (brig_kind),
1681 m_call_insn (call)
1685 hsa_insn_comment::hsa_insn_comment (const char *s)
1686 : hsa_insn_basic (0, BRIG_KIND_DIRECTIVE_COMMENT)
1688 unsigned l = strlen (s);
1690 /* Append '// ' to the string. */
1691 char *buf = XNEWVEC (char, l + 4);
1692 sprintf (buf, "// %s", s);
1693 m_comment = buf;
1696 hsa_insn_comment::~hsa_insn_comment ()
1698 gcc_checking_assert (m_comment);
1699 free (m_comment);
1700 m_comment = NULL;
1703 /* Constructor of class representing the queue instruction in HSAIL. */
1705 hsa_insn_queue::hsa_insn_queue (int nops, int opcode, BrigSegment segment,
1706 BrigMemoryOrder memory_order,
1707 hsa_op_base *arg0, hsa_op_base *arg1,
1708 hsa_op_base *arg2, hsa_op_base *arg3)
1709 : hsa_insn_basic (nops, opcode, BRIG_TYPE_U64, arg0, arg1, arg2, arg3),
1710 m_segment (segment), m_memory_order (memory_order)
1714 /* Constructor of class representing the source type instruction in HSAIL. */
1716 hsa_insn_srctype::hsa_insn_srctype (int nops, BrigOpcode opcode,
1717 BrigType16_t destt, BrigType16_t srct,
1718 hsa_op_base *arg0, hsa_op_base *arg1,
1719 hsa_op_base *arg2 = NULL)
1720 : hsa_insn_basic (nops, opcode, destt, arg0, arg1, arg2),
1721 m_source_type (srct)
1724 /* Constructor of class representing the packed instruction in HSAIL. */
1726 hsa_insn_packed::hsa_insn_packed (int nops, BrigOpcode opcode,
1727 BrigType16_t destt, BrigType16_t srct,
1728 hsa_op_base *arg0, hsa_op_base *arg1,
1729 hsa_op_base *arg2)
1730 : hsa_insn_srctype (nops, opcode, destt, srct, arg0, arg1, arg2)
1732 m_operand_list = new hsa_op_operand_list (nops - 1);
1735 /* Constructor of class representing the convert instruction in HSAIL. */
1737 hsa_insn_cvt::hsa_insn_cvt (hsa_op_with_type *dest, hsa_op_with_type *src)
1738 : hsa_insn_basic (2, BRIG_OPCODE_CVT, dest->m_type, dest, src)
1742 /* Constructor of class representing the alloca in HSAIL. */
1744 hsa_insn_alloca::hsa_insn_alloca (hsa_op_with_type *dest,
1745 hsa_op_with_type *size, unsigned alignment)
1746 : hsa_insn_basic (2, BRIG_OPCODE_ALLOCA, dest->m_type, dest, size),
1747 m_align (BRIG_ALIGNMENT_8)
1749 gcc_assert (dest->m_type == BRIG_TYPE_U32);
1750 if (alignment)
1751 m_align = hsa_alignment_encoding (alignment);
1754 /* Append an instruction INSN into the basic block. */
1756 void
1757 hsa_bb::append_insn (hsa_insn_basic *insn)
1759 gcc_assert (insn->m_opcode != 0 || insn->operand_count () == 0);
1760 gcc_assert (!insn->m_bb);
1762 insn->m_bb = m_bb;
1763 insn->m_prev = m_last_insn;
1764 insn->m_next = NULL;
1765 if (m_last_insn)
1766 m_last_insn->m_next = insn;
1767 m_last_insn = insn;
1768 if (!m_first_insn)
1769 m_first_insn = insn;
1772 void
1773 hsa_bb::append_phi (hsa_insn_phi *hphi)
1775 hphi->m_bb = m_bb;
1777 hphi->m_prev = m_last_phi;
1778 hphi->m_next = NULL;
1779 if (m_last_phi)
1780 m_last_phi->m_next = hphi;
1781 m_last_phi = hphi;
1782 if (!m_first_phi)
1783 m_first_phi = hphi;
1786 /* Insert HSA instruction NEW_INSN immediately before an existing instruction
1787 OLD_INSN. */
1789 static void
1790 hsa_insert_insn_before (hsa_insn_basic *new_insn, hsa_insn_basic *old_insn)
1792 hsa_bb *hbb = hsa_bb_for_bb (old_insn->m_bb);
1794 if (hbb->m_first_insn == old_insn)
1795 hbb->m_first_insn = new_insn;
1796 new_insn->m_prev = old_insn->m_prev;
1797 new_insn->m_next = old_insn;
1798 if (old_insn->m_prev)
1799 old_insn->m_prev->m_next = new_insn;
1800 old_insn->m_prev = new_insn;
1803 /* Append HSA instruction NEW_INSN immediately after an existing instruction
1804 OLD_INSN. */
1806 static void
1807 hsa_append_insn_after (hsa_insn_basic *new_insn, hsa_insn_basic *old_insn)
1809 hsa_bb *hbb = hsa_bb_for_bb (old_insn->m_bb);
1811 if (hbb->m_last_insn == old_insn)
1812 hbb->m_last_insn = new_insn;
1813 new_insn->m_prev = old_insn;
1814 new_insn->m_next = old_insn->m_next;
1815 if (old_insn->m_next)
1816 old_insn->m_next->m_prev = new_insn;
1817 old_insn->m_next = new_insn;
1820 /* Return a register containing the calculated value of EXP which must be an
1821 expression consisting of PLUS_EXPRs, MULT_EXPRs, NOP_EXPRs, SSA_NAMEs and
1822 integer constants as returned by get_inner_reference.
1823 Newly generated HSA instructions will be appended to HBB.
1824 Perform all calculations in ADDRTYPE. */
1826 static hsa_op_with_type *
1827 gen_address_calculation (tree exp, hsa_bb *hbb, BrigType16_t addrtype)
1829 int opcode;
1831 if (TREE_CODE (exp) == NOP_EXPR)
1832 exp = TREE_OPERAND (exp, 0);
1834 switch (TREE_CODE (exp))
1836 case SSA_NAME:
1837 return hsa_cfun->reg_for_gimple_ssa (exp)->get_in_type (addrtype, hbb);
1839 case INTEGER_CST:
1841 hsa_op_immed *imm = new hsa_op_immed (exp);
1842 if (addrtype != imm->m_type)
1843 imm->m_type = addrtype;
1844 return imm;
1847 case PLUS_EXPR:
1848 opcode = BRIG_OPCODE_ADD;
1849 break;
1851 case MULT_EXPR:
1852 opcode = BRIG_OPCODE_MUL;
1853 break;
1855 default:
1856 gcc_unreachable ();
1859 hsa_op_reg *res = new hsa_op_reg (addrtype);
1860 hsa_insn_basic *insn = new hsa_insn_basic (3, opcode, addrtype);
1861 insn->set_op (0, res);
1863 hsa_op_with_type *op1 = gen_address_calculation (TREE_OPERAND (exp, 0), hbb,
1864 addrtype);
1865 hsa_op_with_type *op2 = gen_address_calculation (TREE_OPERAND (exp, 1), hbb,
1866 addrtype);
1867 insn->set_op (1, op1);
1868 insn->set_op (2, op2);
1870 hbb->append_insn (insn);
1871 return res;
1874 /* If R1 is NULL, just return R2, otherwise append an instruction adding them
1875 to HBB and return the register holding the result. */
1877 static hsa_op_reg *
1878 add_addr_regs_if_needed (hsa_op_reg *r1, hsa_op_reg *r2, hsa_bb *hbb)
1880 gcc_checking_assert (r2);
1881 if (!r1)
1882 return r2;
1884 hsa_op_reg *res = new hsa_op_reg (r1->m_type);
1885 gcc_assert (!hsa_needs_cvt (r1->m_type, r2->m_type));
1886 hsa_insn_basic *insn = new hsa_insn_basic (3, BRIG_OPCODE_ADD, res->m_type);
1887 insn->set_op (0, res);
1888 insn->set_op (1, r1);
1889 insn->set_op (2, r2);
1890 hbb->append_insn (insn);
1891 return res;
1894 /* Helper of gen_hsa_addr. Update *SYMBOL, *ADDRTYPE, *REG and *OFFSET to
1895 reflect BASE which is the first operand of a MEM_REF or a TARGET_MEM_REF. */
1897 static void
1898 process_mem_base (tree base, hsa_symbol **symbol, BrigType16_t *addrtype,
1899 hsa_op_reg **reg, offset_int *offset, hsa_bb *hbb)
1901 if (TREE_CODE (base) == SSA_NAME)
1903 gcc_assert (!*reg);
1904 hsa_op_with_type *ssa
1905 = hsa_cfun->reg_for_gimple_ssa (base)->get_in_type (*addrtype, hbb);
1906 *reg = dyn_cast <hsa_op_reg *> (ssa);
1908 else if (TREE_CODE (base) == ADDR_EXPR)
1910 tree decl = TREE_OPERAND (base, 0);
1912 if (!DECL_P (decl) || TREE_CODE (decl) == FUNCTION_DECL)
1914 HSA_SORRY_AT (EXPR_LOCATION (base),
1915 "support for HSA does not implement a memory reference "
1916 "to a non-declaration type");
1917 return;
1920 gcc_assert (!*symbol);
1922 *symbol = get_symbol_for_decl (decl);
1923 *addrtype = hsa_get_segment_addr_type ((*symbol)->m_segment);
1925 else if (TREE_CODE (base) == INTEGER_CST)
1926 *offset += wi::to_offset (base);
1927 else
1928 gcc_unreachable ();
1931 /* Forward declaration of a function. */
1933 static void
1934 gen_hsa_addr_insns (tree val, hsa_op_reg *dest, hsa_bb *hbb);
1936 /* Generate HSA address operand for a given tree memory reference REF. If
1937 instructions need to be created to calculate the address, they will be added
1938 to the end of HBB. If a caller provider OUTPUT_BITSIZE and OUTPUT_BITPOS,
1939 the function assumes that the caller will handle possible
1940 bit-field references. Otherwise if we reference a bit-field, sorry message
1941 is displayed. */
1943 static hsa_op_address *
1944 gen_hsa_addr (tree ref, hsa_bb *hbb, HOST_WIDE_INT *output_bitsize = NULL,
1945 HOST_WIDE_INT *output_bitpos = NULL)
1947 hsa_symbol *symbol = NULL;
1948 hsa_op_reg *reg = NULL;
1949 offset_int offset = 0;
1950 tree origref = ref;
1951 tree varoffset = NULL_TREE;
1952 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
1953 HOST_WIDE_INT bitsize = 0, bitpos = 0;
1954 BrigType16_t flat_addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
1956 if (TREE_CODE (ref) == STRING_CST)
1958 symbol = hsa_get_string_cst_symbol (ref);
1959 goto out;
1961 else if (TREE_CODE (ref) == BIT_FIELD_REF
1962 && (!multiple_p (bit_field_size (ref), BITS_PER_UNIT)
1963 || !multiple_p (bit_field_offset (ref), BITS_PER_UNIT)))
1965 HSA_SORRY_ATV (EXPR_LOCATION (origref),
1966 "support for HSA does not implement "
1967 "bit field references such as %E", ref);
1968 goto out;
1971 if (handled_component_p (ref))
1973 machine_mode mode;
1974 int unsignedp, volatilep, preversep;
1975 poly_int64 pbitsize, pbitpos;
1976 tree new_ref;
1978 new_ref = get_inner_reference (ref, &pbitsize, &pbitpos, &varoffset,
1979 &mode, &unsignedp, &preversep,
1980 &volatilep);
1981 /* When this isn't true, the switch below will report an
1982 appropriate error. */
1983 if (pbitsize.is_constant () && pbitpos.is_constant ())
1985 bitsize = pbitsize.to_constant ();
1986 bitpos = pbitpos.to_constant ();
1987 ref = new_ref;
1988 offset = bitpos;
1989 offset = wi::rshift (offset, LOG2_BITS_PER_UNIT, SIGNED);
1993 switch (TREE_CODE (ref))
1995 case ADDR_EXPR:
1997 addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE);
1998 symbol = hsa_cfun->create_hsa_temporary (flat_addrtype);
1999 hsa_op_reg *r = new hsa_op_reg (flat_addrtype);
2000 gen_hsa_addr_insns (ref, r, hbb);
2001 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_ST, r->m_type,
2002 r, new hsa_op_address (symbol)));
2004 break;
2006 case SSA_NAME:
2008 addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE);
2009 hsa_op_with_type *r = hsa_cfun->reg_for_gimple_ssa (ref);
2010 if (r->m_type == BRIG_TYPE_B1)
2011 r = r->get_in_type (BRIG_TYPE_U32, hbb);
2012 symbol = hsa_cfun->create_hsa_temporary (r->m_type);
2014 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_ST, r->m_type,
2015 r, new hsa_op_address (symbol)));
2017 break;
2019 case PARM_DECL:
2020 case VAR_DECL:
2021 case RESULT_DECL:
2022 case CONST_DECL:
2023 gcc_assert (!symbol);
2024 symbol = get_symbol_for_decl (ref);
2025 addrtype = hsa_get_segment_addr_type (symbol->m_segment);
2026 break;
2028 case MEM_REF:
2029 process_mem_base (TREE_OPERAND (ref, 0), &symbol, &addrtype, &reg,
2030 &offset, hbb);
2032 if (!integer_zerop (TREE_OPERAND (ref, 1)))
2033 offset += wi::to_offset (TREE_OPERAND (ref, 1));
2034 break;
2036 case TARGET_MEM_REF:
2037 process_mem_base (TMR_BASE (ref), &symbol, &addrtype, &reg, &offset, hbb);
2038 if (TMR_INDEX (ref))
2040 hsa_op_reg *disp1;
2041 hsa_op_base *idx = hsa_cfun->reg_for_gimple_ssa
2042 (TMR_INDEX (ref))->get_in_type (addrtype, hbb);
2043 if (TMR_STEP (ref) && !integer_onep (TMR_STEP (ref)))
2045 disp1 = new hsa_op_reg (addrtype);
2046 hsa_insn_basic *insn = new hsa_insn_basic (3, BRIG_OPCODE_MUL,
2047 addrtype);
2049 /* As step must respect addrtype, we overwrite the type
2050 of an immediate value. */
2051 hsa_op_immed *step = new hsa_op_immed (TMR_STEP (ref));
2052 step->m_type = addrtype;
2054 insn->set_op (0, disp1);
2055 insn->set_op (1, idx);
2056 insn->set_op (2, step);
2057 hbb->append_insn (insn);
2059 else
2060 disp1 = as_a <hsa_op_reg *> (idx);
2061 reg = add_addr_regs_if_needed (reg, disp1, hbb);
2063 if (TMR_INDEX2 (ref))
2065 if (TREE_CODE (TMR_INDEX2 (ref)) == SSA_NAME)
2067 hsa_op_base *disp2 = hsa_cfun->reg_for_gimple_ssa
2068 (TMR_INDEX2 (ref))->get_in_type (addrtype, hbb);
2069 reg = add_addr_regs_if_needed (reg, as_a <hsa_op_reg *> (disp2),
2070 hbb);
2072 else if (TREE_CODE (TMR_INDEX2 (ref)) == INTEGER_CST)
2073 offset += wi::to_offset (TMR_INDEX2 (ref));
2074 else
2075 gcc_unreachable ();
2077 offset += wi::to_offset (TMR_OFFSET (ref));
2078 break;
2079 case FUNCTION_DECL:
2080 HSA_SORRY_AT (EXPR_LOCATION (origref),
2081 "support for HSA does not implement function pointers");
2082 goto out;
2083 default:
2084 HSA_SORRY_ATV (EXPR_LOCATION (origref), "support for HSA does "
2085 "not implement memory access to %E", origref);
2086 goto out;
2089 if (varoffset)
2091 if (TREE_CODE (varoffset) == INTEGER_CST)
2092 offset += wi::to_offset (varoffset);
2093 else
2095 hsa_op_base *off_op = gen_address_calculation (varoffset, hbb,
2096 addrtype);
2097 reg = add_addr_regs_if_needed (reg, as_a <hsa_op_reg *> (off_op),
2098 hbb);
2102 gcc_checking_assert ((symbol
2103 && addrtype
2104 == hsa_get_segment_addr_type (symbol->m_segment))
2105 || (!symbol
2106 && addrtype
2107 == hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT)));
2108 out:
2109 HOST_WIDE_INT hwi_offset = offset.to_shwi ();
2111 /* Calculate remaining bitsize offset (if presented). */
2112 bitpos %= BITS_PER_UNIT;
2113 /* If bitsize is a power of two that is greater or equal to BITS_PER_UNIT, it
2114 is not a reason to think this is a bit-field access. */
2115 if (bitpos == 0
2116 && (bitsize >= BITS_PER_UNIT)
2117 && !(bitsize & (bitsize - 1)))
2118 bitsize = 0;
2120 if ((bitpos || bitsize) && (output_bitpos == NULL || output_bitsize == NULL))
2121 HSA_SORRY_ATV (EXPR_LOCATION (origref), "support for HSA does not "
2122 "implement unhandled bit field reference such as %E", ref);
2124 if (output_bitsize != NULL && output_bitpos != NULL)
2126 *output_bitsize = bitsize;
2127 *output_bitpos = bitpos;
2130 return new hsa_op_address (symbol, reg, hwi_offset);
2133 /* Generate HSA address operand for a given tree memory reference REF. If
2134 instructions need to be created to calculate the address, they will be added
2135 to the end of HBB. OUTPUT_ALIGN is alignment of the created address. */
2137 static hsa_op_address *
2138 gen_hsa_addr_with_align (tree ref, hsa_bb *hbb, BrigAlignment8_t *output_align)
2140 hsa_op_address *addr = gen_hsa_addr (ref, hbb);
2141 if (addr->m_reg || !addr->m_symbol)
2142 *output_align = hsa_object_alignment (ref);
2143 else
2145 /* If the address consists only of a symbol and an offset, we
2146 compute the alignment ourselves to take into account any alignment
2147 promotions we might have done for the HSA symbol representation. */
2148 unsigned align = hsa_byte_alignment (addr->m_symbol->m_align);
2149 unsigned misalign = addr->m_imm_offset & (align - 1);
2150 if (misalign)
2151 align = least_bit_hwi (misalign);
2152 *output_align = hsa_alignment_encoding (BITS_PER_UNIT * align);
2154 return addr;
2157 /* Generate HSA address for a function call argument of given TYPE.
2158 INDEX is used to generate corresponding name of the arguments.
2159 Special value -1 represents fact that result value is created. */
2161 static hsa_op_address *
2162 gen_hsa_addr_for_arg (tree tree_type, int index)
2164 hsa_symbol *sym = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
2165 BRIG_LINKAGE_ARG);
2166 sym->m_type = hsa_type_for_tree_type (tree_type, &sym->m_dim);
2168 if (index == -1) /* Function result. */
2169 sym->m_name = "res";
2170 else /* Function call arguments. */
2172 sym->m_name = NULL;
2173 sym->m_name_number = index;
2176 return new hsa_op_address (sym);
2179 /* Generate HSA instructions that process all necessary conversions
2180 of an ADDR to flat addressing and place the result into DEST.
2181 Instructions are appended to HBB. */
2183 static void
2184 convert_addr_to_flat_segment (hsa_op_address *addr, hsa_op_reg *dest,
2185 hsa_bb *hbb)
2187 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_LDA);
2188 insn->set_op (1, addr);
2189 if (addr->m_symbol && addr->m_symbol->m_segment != BRIG_SEGMENT_GLOBAL)
2191 /* LDA produces segment-relative address, we need to convert
2192 it to the flat one. */
2193 hsa_op_reg *tmp;
2194 tmp = new hsa_op_reg (hsa_get_segment_addr_type
2195 (addr->m_symbol->m_segment));
2196 hsa_insn_seg *seg;
2197 seg = new hsa_insn_seg (BRIG_OPCODE_STOF,
2198 hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT),
2199 tmp->m_type, addr->m_symbol->m_segment, dest,
2200 tmp);
2202 insn->set_op (0, tmp);
2203 insn->m_type = tmp->m_type;
2204 hbb->append_insn (insn);
2205 hbb->append_insn (seg);
2207 else
2209 insn->set_op (0, dest);
2210 insn->m_type = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
2211 hbb->append_insn (insn);
2215 /* Generate HSA instructions that calculate address of VAL including all
2216 necessary conversions to flat addressing and place the result into DEST.
2217 Instructions are appended to HBB. */
2219 static void
2220 gen_hsa_addr_insns (tree val, hsa_op_reg *dest, hsa_bb *hbb)
2222 /* Handle cases like tmp = NULL, where we just emit a move instruction
2223 to a register. */
2224 if (TREE_CODE (val) == INTEGER_CST)
2226 hsa_op_immed *c = new hsa_op_immed (val);
2227 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV,
2228 dest->m_type, dest, c);
2229 hbb->append_insn (insn);
2230 return;
2233 hsa_op_address *addr;
2235 gcc_assert (dest->m_type == hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT));
2236 if (TREE_CODE (val) == ADDR_EXPR)
2237 val = TREE_OPERAND (val, 0);
2238 addr = gen_hsa_addr (val, hbb);
2240 if (TREE_CODE (val) == CONST_DECL
2241 && is_gimple_reg_type (TREE_TYPE (val)))
2243 gcc_assert (addr->m_symbol
2244 && addr->m_symbol->m_segment == BRIG_SEGMENT_READONLY);
2245 /* CONST_DECLs are in readonly segment which however does not have
2246 addresses convertible to flat segments. So copy it to a private one
2247 and take address of that. */
2248 BrigType16_t csttype
2249 = mem_type_for_type (hsa_type_for_scalar_tree_type (TREE_TYPE (val),
2250 false));
2251 hsa_op_reg *r = new hsa_op_reg (csttype);
2252 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_LD, csttype, r,
2253 new hsa_op_address (addr->m_symbol)));
2254 hsa_symbol *copysym = hsa_cfun->create_hsa_temporary (csttype);
2255 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_ST, csttype, r,
2256 new hsa_op_address (copysym)));
2257 addr->m_symbol = copysym;
2259 else if (addr->m_symbol && addr->m_symbol->m_segment == BRIG_SEGMENT_READONLY)
2261 HSA_SORRY_ATV (EXPR_LOCATION (val), "support for HSA does "
2262 "not implement taking addresses of complex "
2263 "CONST_DECLs such as %E", val);
2264 return;
2268 convert_addr_to_flat_segment (addr, dest, hbb);
2271 /* Return an HSA register or HSA immediate value operand corresponding to
2272 gimple operand OP. */
2274 static hsa_op_with_type *
2275 hsa_reg_or_immed_for_gimple_op (tree op, hsa_bb *hbb)
2277 hsa_op_reg *tmp;
2279 if (TREE_CODE (op) == SSA_NAME)
2280 tmp = hsa_cfun->reg_for_gimple_ssa (op);
2281 else if (!POINTER_TYPE_P (TREE_TYPE (op)))
2282 return new hsa_op_immed (op);
2283 else
2285 tmp = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT));
2286 gen_hsa_addr_insns (op, tmp, hbb);
2288 return tmp;
2291 /* Create a simple movement instruction with register destination DEST and
2292 register or immediate source SRC and append it to the end of HBB. */
2294 void
2295 hsa_build_append_simple_mov (hsa_op_reg *dest, hsa_op_base *src, hsa_bb *hbb)
2297 /* Moves of packed data between registers need to adhere to the same type
2298 rules like when dealing with memory. */
2299 BrigType16_t tp = mem_type_for_type (dest->m_type);
2300 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV, tp, dest, src);
2301 hsa_fixup_mov_insn_type (insn);
2302 unsigned dest_size = hsa_type_bit_size (dest->m_type);
2303 if (hsa_op_reg *sreg = dyn_cast <hsa_op_reg *> (src))
2304 gcc_assert (dest_size == hsa_type_bit_size (sreg->m_type));
2305 else
2307 unsigned imm_size
2308 = hsa_type_bit_size (as_a <hsa_op_immed *> (src)->m_type);
2309 gcc_assert ((dest_size == imm_size)
2310 /* Eventually < 32bit registers will be promoted to 32bit. */
2311 || (dest_size < 32 && imm_size == 32));
2313 hbb->append_insn (insn);
2316 /* Generate HSAIL instructions loading a bit field into register DEST.
2317 VALUE_REG is a register of a SSA name that is used in the bit field
2318 reference. To identify a bit field BITPOS is offset to the loaded memory
2319 and BITSIZE is number of bits of the bit field.
2320 Add instructions to HBB. */
2322 static void
2323 gen_hsa_insns_for_bitfield (hsa_op_reg *dest, hsa_op_reg *value_reg,
2324 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2325 hsa_bb *hbb)
2327 unsigned type_bitsize
2328 = hsa_type_bit_size (hsa_extend_inttype_to_32bit (dest->m_type));
2329 unsigned left_shift = type_bitsize - (bitsize + bitpos);
2330 unsigned right_shift = left_shift + bitpos;
2332 if (left_shift)
2334 hsa_op_reg *value_reg_2
2335 = new hsa_op_reg (hsa_extend_inttype_to_32bit (dest->m_type));
2336 hsa_op_immed *c = new hsa_op_immed (left_shift, BRIG_TYPE_U32);
2338 hsa_insn_basic *lshift
2339 = new hsa_insn_basic (3, BRIG_OPCODE_SHL, value_reg_2->m_type,
2340 value_reg_2, value_reg, c);
2342 hbb->append_insn (lshift);
2344 value_reg = value_reg_2;
2347 if (right_shift)
2349 hsa_op_reg *value_reg_2
2350 = new hsa_op_reg (hsa_extend_inttype_to_32bit (dest->m_type));
2351 hsa_op_immed *c = new hsa_op_immed (right_shift, BRIG_TYPE_U32);
2353 hsa_insn_basic *rshift
2354 = new hsa_insn_basic (3, BRIG_OPCODE_SHR, value_reg_2->m_type,
2355 value_reg_2, value_reg, c);
2357 hbb->append_insn (rshift);
2359 value_reg = value_reg_2;
2362 hsa_insn_basic *assignment
2363 = new hsa_insn_basic (2, BRIG_OPCODE_MOV, dest->m_type, NULL, value_reg);
2364 hsa_fixup_mov_insn_type (assignment);
2365 hbb->append_insn (assignment);
2366 assignment->set_output_in_type (dest, 0, hbb);
2370 /* Generate HSAIL instructions loading a bit field into register DEST. ADDR is
2371 prepared memory address which is used to load the bit field. To identify a
2372 bit field BITPOS is offset to the loaded memory and BITSIZE is number of
2373 bits of the bit field. Add instructions to HBB. Load must be performed in
2374 alignment ALIGN. */
2376 static void
2377 gen_hsa_insns_for_bitfield_load (hsa_op_reg *dest, hsa_op_address *addr,
2378 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2379 hsa_bb *hbb, BrigAlignment8_t align)
2381 hsa_op_reg *value_reg = new hsa_op_reg (dest->m_type);
2382 hsa_insn_mem *mem
2383 = new hsa_insn_mem (BRIG_OPCODE_LD,
2384 hsa_extend_inttype_to_32bit (dest->m_type),
2385 value_reg, addr);
2386 mem->set_align (align);
2387 hbb->append_insn (mem);
2388 gen_hsa_insns_for_bitfield (dest, value_reg, bitsize, bitpos, hbb);
2391 /* Return the alignment of base memory accesses we issue to perform bit-field
2392 memory access REF. */
2394 static BrigAlignment8_t
2395 hsa_bitmemref_alignment (tree ref)
2397 unsigned HOST_WIDE_INT bit_offset = 0;
2399 while (true)
2401 if (TREE_CODE (ref) == BIT_FIELD_REF)
2403 if (!tree_fits_uhwi_p (TREE_OPERAND (ref, 2)))
2404 return BRIG_ALIGNMENT_1;
2405 bit_offset += tree_to_uhwi (TREE_OPERAND (ref, 2));
2407 else if (TREE_CODE (ref) == COMPONENT_REF
2408 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2409 bit_offset += int_bit_position (TREE_OPERAND (ref, 1));
2410 else
2411 break;
2412 ref = TREE_OPERAND (ref, 0);
2415 unsigned HOST_WIDE_INT bits = bit_offset % BITS_PER_UNIT;
2416 unsigned HOST_WIDE_INT byte_bits = bit_offset - bits;
2417 BrigAlignment8_t base = hsa_object_alignment (ref);
2418 if (byte_bits == 0)
2419 return base;
2420 return MIN (base, hsa_alignment_encoding (least_bit_hwi (byte_bits)));
2423 /* Generate HSAIL instructions loading something into register DEST. RHS is
2424 tree representation of the loaded data, which are loaded as type TYPE. Add
2425 instructions to HBB. */
2427 static void
2428 gen_hsa_insns_for_load (hsa_op_reg *dest, tree rhs, tree type, hsa_bb *hbb)
2430 /* The destination SSA name will give us the type. */
2431 if (TREE_CODE (rhs) == VIEW_CONVERT_EXPR)
2432 rhs = TREE_OPERAND (rhs, 0);
2434 if (TREE_CODE (rhs) == SSA_NAME)
2436 hsa_op_reg *src = hsa_cfun->reg_for_gimple_ssa (rhs);
2437 hsa_build_append_simple_mov (dest, src, hbb);
2439 else if (is_gimple_min_invariant (rhs)
2440 || TREE_CODE (rhs) == ADDR_EXPR)
2442 if (POINTER_TYPE_P (TREE_TYPE (rhs)))
2444 if (dest->m_type != hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT))
2446 HSA_SORRY_ATV (EXPR_LOCATION (rhs),
2447 "support for HSA does not implement conversion "
2448 "of %E to the requested non-pointer type.", rhs);
2449 return;
2452 gen_hsa_addr_insns (rhs, dest, hbb);
2454 else if (TREE_CODE (rhs) == COMPLEX_CST)
2456 hsa_op_immed *real_part = new hsa_op_immed (TREE_REALPART (rhs));
2457 hsa_op_immed *imag_part = new hsa_op_immed (TREE_IMAGPART (rhs));
2459 hsa_op_reg *real_part_reg
2460 = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (type),
2461 true));
2462 hsa_op_reg *imag_part_reg
2463 = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (type),
2464 true));
2466 hsa_build_append_simple_mov (real_part_reg, real_part, hbb);
2467 hsa_build_append_simple_mov (imag_part_reg, imag_part, hbb);
2469 BrigType16_t src_type = hsa_bittype_for_type (real_part_reg->m_type);
2471 hsa_insn_packed *insn
2472 = new hsa_insn_packed (3, BRIG_OPCODE_COMBINE, dest->m_type,
2473 src_type, dest, real_part_reg,
2474 imag_part_reg);
2475 hbb->append_insn (insn);
2477 else
2479 hsa_op_immed *imm = new hsa_op_immed (rhs);
2480 hsa_build_append_simple_mov (dest, imm, hbb);
2483 else if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (rhs) == IMAGPART_EXPR)
2485 tree pack_type = TREE_TYPE (TREE_OPERAND (rhs, 0));
2487 hsa_op_reg *packed_reg
2488 = new hsa_op_reg (hsa_type_for_scalar_tree_type (pack_type, true));
2490 tree complex_rhs = TREE_OPERAND (rhs, 0);
2491 gen_hsa_insns_for_load (packed_reg, complex_rhs, TREE_TYPE (complex_rhs),
2492 hbb);
2494 hsa_op_reg *real_reg
2495 = new hsa_op_reg (hsa_type_for_scalar_tree_type (type, true));
2497 hsa_op_reg *imag_reg
2498 = new hsa_op_reg (hsa_type_for_scalar_tree_type (type, true));
2500 BrigKind16_t brig_type = packed_reg->m_type;
2501 hsa_insn_packed *packed
2502 = new hsa_insn_packed (3, BRIG_OPCODE_EXPAND,
2503 hsa_bittype_for_type (real_reg->m_type),
2504 brig_type, real_reg, imag_reg, packed_reg);
2506 hbb->append_insn (packed);
2508 hsa_op_reg *source = TREE_CODE (rhs) == REALPART_EXPR ?
2509 real_reg : imag_reg;
2511 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV,
2512 dest->m_type, NULL, source);
2513 hsa_fixup_mov_insn_type (insn);
2514 hbb->append_insn (insn);
2515 insn->set_output_in_type (dest, 0, hbb);
2517 else if (TREE_CODE (rhs) == BIT_FIELD_REF
2518 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
2520 tree ssa_name = TREE_OPERAND (rhs, 0);
2521 HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs, 1));
2522 HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs, 2));
2524 hsa_op_reg *imm_value = hsa_cfun->reg_for_gimple_ssa (ssa_name);
2525 gen_hsa_insns_for_bitfield (dest, imm_value, bitsize, bitpos, hbb);
2527 else if (DECL_P (rhs) || TREE_CODE (rhs) == MEM_REF
2528 || TREE_CODE (rhs) == TARGET_MEM_REF
2529 || handled_component_p (rhs))
2531 HOST_WIDE_INT bitsize, bitpos;
2533 /* Load from memory. */
2534 hsa_op_address *addr;
2535 addr = gen_hsa_addr (rhs, hbb, &bitsize, &bitpos);
2537 /* Handle load of a bit field. */
2538 if (bitsize > 64)
2540 HSA_SORRY_AT (EXPR_LOCATION (rhs),
2541 "support for HSA does not implement load from a bit "
2542 "field bigger than 64 bits");
2543 return;
2546 if (bitsize || bitpos)
2547 gen_hsa_insns_for_bitfield_load (dest, addr, bitsize, bitpos, hbb,
2548 hsa_bitmemref_alignment (rhs));
2549 else
2551 BrigType16_t mtype;
2552 /* Not dest->m_type, that's possibly extended. */
2553 mtype = mem_type_for_type (hsa_type_for_scalar_tree_type (type,
2554 false));
2555 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, mtype, dest,
2556 addr);
2557 mem->set_align (hsa_object_alignment (rhs));
2558 hbb->append_insn (mem);
2561 else
2562 HSA_SORRY_ATV (EXPR_LOCATION (rhs),
2563 "support for HSA does not implement loading "
2564 "of expression %E",
2565 rhs);
2568 /* Return number of bits necessary for representation of a bit field,
2569 starting at BITPOS with size of BITSIZE. */
2571 static unsigned
2572 get_bitfield_size (unsigned bitpos, unsigned bitsize)
2574 unsigned s = bitpos + bitsize;
2575 unsigned sizes[] = {8, 16, 32, 64};
2577 for (unsigned i = 0; i < 4; i++)
2578 if (s <= sizes[i])
2579 return sizes[i];
2581 gcc_unreachable ();
2582 return 0;
2585 /* Generate HSAIL instructions storing into memory. LHS is the destination of
2586 the store, SRC is the source operand. Add instructions to HBB. */
2588 static void
2589 gen_hsa_insns_for_store (tree lhs, hsa_op_base *src, hsa_bb *hbb)
2591 HOST_WIDE_INT bitsize = 0, bitpos = 0;
2592 BrigAlignment8_t req_align;
2593 BrigType16_t mtype;
2594 mtype = mem_type_for_type (hsa_type_for_scalar_tree_type (TREE_TYPE (lhs),
2595 false));
2596 hsa_op_address *addr;
2597 addr = gen_hsa_addr (lhs, hbb, &bitsize, &bitpos);
2599 /* Handle store to a bit field. */
2600 if (bitsize > 64)
2602 HSA_SORRY_AT (EXPR_LOCATION (lhs),
2603 "support for HSA does not implement store to a bit field "
2604 "bigger than 64 bits");
2605 return;
2608 unsigned type_bitsize = get_bitfield_size (bitpos, bitsize);
2610 /* HSAIL does not support MOV insn with 16-bits integers. */
2611 if (type_bitsize < 32)
2612 type_bitsize = 32;
2614 if (bitpos || (bitsize && type_bitsize != bitsize))
2616 unsigned HOST_WIDE_INT mask = 0;
2617 BrigType16_t mem_type
2618 = get_integer_type_by_bytes (type_bitsize / BITS_PER_UNIT,
2619 !TYPE_UNSIGNED (TREE_TYPE (lhs)));
2621 for (unsigned i = 0; i < type_bitsize; i++)
2622 if (i < bitpos || i >= bitpos + bitsize)
2623 mask |= ((unsigned HOST_WIDE_INT)1 << i);
2625 hsa_op_reg *value_reg = new hsa_op_reg (mem_type);
2627 req_align = hsa_bitmemref_alignment (lhs);
2628 /* Load value from memory. */
2629 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, mem_type,
2630 value_reg, addr);
2631 mem->set_align (req_align);
2632 hbb->append_insn (mem);
2634 /* AND the loaded value with prepared mask. */
2635 hsa_op_reg *cleared_reg = new hsa_op_reg (mem_type);
2637 BrigType16_t t
2638 = get_integer_type_by_bytes (type_bitsize / BITS_PER_UNIT, false);
2639 hsa_op_immed *c = new hsa_op_immed (mask, t);
2641 hsa_insn_basic *clearing
2642 = new hsa_insn_basic (3, BRIG_OPCODE_AND, mem_type, cleared_reg,
2643 value_reg, c);
2644 hbb->append_insn (clearing);
2646 /* Shift to left a value that is going to be stored. */
2647 hsa_op_reg *new_value_reg = new hsa_op_reg (mem_type);
2649 hsa_insn_basic *basic = new hsa_insn_basic (2, BRIG_OPCODE_MOV, mem_type,
2650 new_value_reg, src);
2651 hsa_fixup_mov_insn_type (basic);
2652 hbb->append_insn (basic);
2654 if (bitpos)
2656 hsa_op_reg *shifted_value_reg = new hsa_op_reg (mem_type);
2657 c = new hsa_op_immed (bitpos, BRIG_TYPE_U32);
2659 hsa_insn_basic *basic
2660 = new hsa_insn_basic (3, BRIG_OPCODE_SHL, mem_type,
2661 shifted_value_reg, new_value_reg, c);
2662 hbb->append_insn (basic);
2664 new_value_reg = shifted_value_reg;
2667 /* OR the prepared value with prepared chunk loaded from memory. */
2668 hsa_op_reg *prepared_reg= new hsa_op_reg (mem_type);
2669 basic = new hsa_insn_basic (3, BRIG_OPCODE_OR, mem_type, prepared_reg,
2670 new_value_reg, cleared_reg);
2671 hbb->append_insn (basic);
2673 src = prepared_reg;
2674 mtype = mem_type;
2676 else
2677 req_align = hsa_object_alignment (lhs);
2679 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, mtype, src, addr);
2680 mem->set_align (req_align);
2682 /* The HSAIL verifier has another constraint: if the source is an immediate
2683 then it must match the destination type. If it's a register the low bits
2684 will be used for sub-word stores. We're always allocating new operands so
2685 we can modify the above in place. */
2686 if (hsa_op_immed *imm = dyn_cast <hsa_op_immed *> (src))
2688 if (!hsa_type_packed_p (imm->m_type))
2689 imm->m_type = mem->m_type;
2690 else
2692 /* ...and all vector immediates apparently need to be vectors of
2693 unsigned bytes. */
2694 unsigned bs = hsa_type_bit_size (imm->m_type);
2695 gcc_assert (bs == hsa_type_bit_size (mem->m_type));
2696 switch (bs)
2698 case 32:
2699 imm->m_type = BRIG_TYPE_U8X4;
2700 break;
2701 case 64:
2702 imm->m_type = BRIG_TYPE_U8X8;
2703 break;
2704 case 128:
2705 imm->m_type = BRIG_TYPE_U8X16;
2706 break;
2707 default:
2708 gcc_unreachable ();
2713 hbb->append_insn (mem);
2716 /* Generate memory copy instructions that are going to be used
2717 for copying a SRC memory to TARGET memory,
2718 represented by pointer in a register. MIN_ALIGN is minimal alignment
2719 of provided HSA addresses. */
2721 static void
2722 gen_hsa_memory_copy (hsa_bb *hbb, hsa_op_address *target, hsa_op_address *src,
2723 unsigned size, BrigAlignment8_t min_align)
2725 hsa_op_address *addr;
2726 hsa_insn_mem *mem;
2728 unsigned offset = 0;
2729 unsigned min_byte_align = hsa_byte_alignment (min_align);
2731 while (size)
2733 unsigned s;
2734 if (size >= 8)
2735 s = 8;
2736 else if (size >= 4)
2737 s = 4;
2738 else if (size >= 2)
2739 s = 2;
2740 else
2741 s = 1;
2743 if (s > min_byte_align)
2744 s = min_byte_align;
2746 BrigType16_t t = get_integer_type_by_bytes (s, false);
2748 hsa_op_reg *tmp = new hsa_op_reg (t);
2749 addr = new hsa_op_address (src->m_symbol, src->m_reg,
2750 src->m_imm_offset + offset);
2751 mem = new hsa_insn_mem (BRIG_OPCODE_LD, t, tmp, addr);
2752 hbb->append_insn (mem);
2754 addr = new hsa_op_address (target->m_symbol, target->m_reg,
2755 target->m_imm_offset + offset);
2756 mem = new hsa_insn_mem (BRIG_OPCODE_ST, t, tmp, addr);
2757 hbb->append_insn (mem);
2758 offset += s;
2759 size -= s;
2763 /* Create a memset mask that is created by copying a CONSTANT byte value
2764 to an integer of BYTE_SIZE bytes. */
2766 static unsigned HOST_WIDE_INT
2767 build_memset_value (unsigned HOST_WIDE_INT constant, unsigned byte_size)
2769 if (constant == 0)
2770 return 0;
2772 HOST_WIDE_INT v = constant;
2774 for (unsigned i = 1; i < byte_size; i++)
2775 v |= constant << (8 * i);
2777 return v;
2780 /* Generate memory set instructions that are going to be used
2781 for setting a CONSTANT byte value to TARGET memory of SIZE bytes.
2782 MIN_ALIGN is minimal alignment of provided HSA addresses. */
2784 static void
2785 gen_hsa_memory_set (hsa_bb *hbb, hsa_op_address *target,
2786 unsigned HOST_WIDE_INT constant,
2787 unsigned size, BrigAlignment8_t min_align)
2789 hsa_op_address *addr;
2790 hsa_insn_mem *mem;
2792 unsigned offset = 0;
2793 unsigned min_byte_align = hsa_byte_alignment (min_align);
2795 while (size)
2797 unsigned s;
2798 if (size >= 8)
2799 s = 8;
2800 else if (size >= 4)
2801 s = 4;
2802 else if (size >= 2)
2803 s = 2;
2804 else
2805 s = 1;
2807 if (s > min_byte_align)
2808 s = min_byte_align;
2810 addr = new hsa_op_address (target->m_symbol, target->m_reg,
2811 target->m_imm_offset + offset);
2813 BrigType16_t t = get_integer_type_by_bytes (s, false);
2814 HOST_WIDE_INT c = build_memset_value (constant, s);
2816 mem = new hsa_insn_mem (BRIG_OPCODE_ST, t, new hsa_op_immed (c, t),
2817 addr);
2818 hbb->append_insn (mem);
2819 offset += s;
2820 size -= s;
2824 /* Generate HSAIL instructions for a single assignment
2825 of an empty constructor to an ADDR_LHS. Constructor is passed as a
2826 tree RHS and all instructions are appended to HBB. ALIGN is
2827 alignment of the address. */
2829 void
2830 gen_hsa_ctor_assignment (hsa_op_address *addr_lhs, tree rhs, hsa_bb *hbb,
2831 BrigAlignment8_t align)
2833 if (CONSTRUCTOR_NELTS (rhs))
2835 HSA_SORRY_AT (EXPR_LOCATION (rhs),
2836 "support for HSA does not implement load from constructor");
2837 return;
2840 unsigned size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (rhs)));
2841 gen_hsa_memory_set (hbb, addr_lhs, 0, size, align);
2844 /* Generate HSA instructions for a single assignment of RHS to LHS.
2845 HBB is the basic block they will be appended to. */
2847 static void
2848 gen_hsa_insns_for_single_assignment (tree lhs, tree rhs, hsa_bb *hbb)
2850 if (TREE_CODE (lhs) == SSA_NAME)
2852 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
2853 if (hsa_seen_error ())
2854 return;
2856 gen_hsa_insns_for_load (dest, rhs, TREE_TYPE (lhs), hbb);
2858 else if (TREE_CODE (rhs) == SSA_NAME
2859 || (is_gimple_min_invariant (rhs) && TREE_CODE (rhs) != STRING_CST))
2861 /* Store to memory. */
2862 hsa_op_base *src = hsa_reg_or_immed_for_gimple_op (rhs, hbb);
2863 if (hsa_seen_error ())
2864 return;
2866 gen_hsa_insns_for_store (lhs, src, hbb);
2868 else
2870 BrigAlignment8_t lhs_align;
2871 hsa_op_address *addr_lhs = gen_hsa_addr_with_align (lhs, hbb,
2872 &lhs_align);
2874 if (TREE_CODE (rhs) == CONSTRUCTOR)
2875 gen_hsa_ctor_assignment (addr_lhs, rhs, hbb, lhs_align);
2876 else
2878 BrigAlignment8_t rhs_align;
2879 hsa_op_address *addr_rhs = gen_hsa_addr_with_align (rhs, hbb,
2880 &rhs_align);
2882 unsigned size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (rhs)));
2883 gen_hsa_memory_copy (hbb, addr_lhs, addr_rhs, size,
2884 MIN (lhs_align, rhs_align));
2889 /* Prepend before INSN a load from spill symbol of SPILL_REG. Return the
2890 register into which we loaded. If this required another register to convert
2891 from a B1 type, return it in *PTMP2, otherwise store NULL into it. We
2892 assume we are out of SSA so the returned register does not have its
2893 definition set. */
2895 hsa_op_reg *
2896 hsa_spill_in (hsa_insn_basic *insn, hsa_op_reg *spill_reg, hsa_op_reg **ptmp2)
2898 hsa_symbol *spill_sym = spill_reg->m_spill_sym;
2899 hsa_op_reg *reg = new hsa_op_reg (spill_sym->m_type);
2900 hsa_op_address *addr = new hsa_op_address (spill_sym);
2902 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, spill_sym->m_type,
2903 reg, addr);
2904 hsa_insert_insn_before (mem, insn);
2906 *ptmp2 = NULL;
2907 if (spill_reg->m_type == BRIG_TYPE_B1)
2909 hsa_insn_basic *cvtinsn;
2910 *ptmp2 = reg;
2911 reg = new hsa_op_reg (spill_reg->m_type);
2913 cvtinsn = new hsa_insn_cvt (reg, *ptmp2);
2914 hsa_insert_insn_before (cvtinsn, insn);
2916 return reg;
2919 /* Append after INSN a store to spill symbol of SPILL_REG. Return the register
2920 from which we stored. If this required another register to convert to a B1
2921 type, return it in *PTMP2, otherwise store NULL into it. We assume we are
2922 out of SSA so the returned register does not have its use updated. */
2924 hsa_op_reg *
2925 hsa_spill_out (hsa_insn_basic *insn, hsa_op_reg *spill_reg, hsa_op_reg **ptmp2)
2927 hsa_symbol *spill_sym = spill_reg->m_spill_sym;
2928 hsa_op_reg *reg = new hsa_op_reg (spill_sym->m_type);
2929 hsa_op_address *addr = new hsa_op_address (spill_sym);
2930 hsa_op_reg *returnreg;
2932 *ptmp2 = NULL;
2933 returnreg = reg;
2934 if (spill_reg->m_type == BRIG_TYPE_B1)
2936 hsa_insn_basic *cvtinsn;
2937 *ptmp2 = new hsa_op_reg (spill_sym->m_type);
2938 reg->m_type = spill_reg->m_type;
2940 cvtinsn = new hsa_insn_cvt (*ptmp2, returnreg);
2941 hsa_append_insn_after (cvtinsn, insn);
2942 insn = cvtinsn;
2943 reg = *ptmp2;
2946 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, spill_sym->m_type, reg,
2947 addr);
2948 hsa_append_insn_after (mem, insn);
2949 return returnreg;
2952 /* Generate a comparison instruction that will compare LHS and RHS with
2953 comparison specified by CODE and put result into register DEST. DEST has to
2954 have its type set already but must not have its definition set yet.
2955 Generated instructions will be added to HBB. */
2957 static void
2958 gen_hsa_cmp_insn_from_gimple (enum tree_code code, tree lhs, tree rhs,
2959 hsa_op_reg *dest, hsa_bb *hbb)
2961 BrigCompareOperation8_t compare;
2963 switch (code)
2965 case LT_EXPR:
2966 compare = BRIG_COMPARE_LT;
2967 break;
2968 case LE_EXPR:
2969 compare = BRIG_COMPARE_LE;
2970 break;
2971 case GT_EXPR:
2972 compare = BRIG_COMPARE_GT;
2973 break;
2974 case GE_EXPR:
2975 compare = BRIG_COMPARE_GE;
2976 break;
2977 case EQ_EXPR:
2978 compare = BRIG_COMPARE_EQ;
2979 break;
2980 case NE_EXPR:
2981 compare = BRIG_COMPARE_NE;
2982 break;
2983 case UNORDERED_EXPR:
2984 compare = BRIG_COMPARE_NAN;
2985 break;
2986 case ORDERED_EXPR:
2987 compare = BRIG_COMPARE_NUM;
2988 break;
2989 case UNLT_EXPR:
2990 compare = BRIG_COMPARE_LTU;
2991 break;
2992 case UNLE_EXPR:
2993 compare = BRIG_COMPARE_LEU;
2994 break;
2995 case UNGT_EXPR:
2996 compare = BRIG_COMPARE_GTU;
2997 break;
2998 case UNGE_EXPR:
2999 compare = BRIG_COMPARE_GEU;
3000 break;
3001 case UNEQ_EXPR:
3002 compare = BRIG_COMPARE_EQU;
3003 break;
3004 case LTGT_EXPR:
3005 compare = BRIG_COMPARE_NEU;
3006 break;
3008 default:
3009 HSA_SORRY_ATV (EXPR_LOCATION (lhs),
3010 "support for HSA does not implement comparison tree "
3011 "code %s\n", get_tree_code_name (code));
3012 return;
3015 /* CMP instruction returns e.g. 0xffffffff (for a 32-bit with integer)
3016 as a result of comparison. */
3018 BrigType16_t dest_type = hsa_type_integer_p (dest->m_type)
3019 ? (BrigType16_t) BRIG_TYPE_B1 : dest->m_type;
3021 hsa_insn_cmp *cmp = new hsa_insn_cmp (compare, dest_type);
3022 hsa_op_with_type *op1 = hsa_reg_or_immed_for_gimple_op (lhs, hbb);
3023 cmp->set_op (1, op1->extend_int_to_32bit (hbb));
3024 hsa_op_with_type *op2 = hsa_reg_or_immed_for_gimple_op (rhs, hbb);
3025 cmp->set_op (2, op2->extend_int_to_32bit (hbb));
3027 hbb->append_insn (cmp);
3028 cmp->set_output_in_type (dest, 0, hbb);
3031 /* Generate an unary instruction with OPCODE and append it to a basic block
3032 HBB. The instruction uses DEST as a destination and OP1
3033 as a single operand. */
3035 static void
3036 gen_hsa_unary_operation (BrigOpcode opcode, hsa_op_reg *dest,
3037 hsa_op_with_type *op1, hsa_bb *hbb)
3039 gcc_checking_assert (dest);
3040 hsa_insn_basic *insn;
3042 if (opcode == BRIG_OPCODE_MOV && hsa_needs_cvt (dest->m_type, op1->m_type))
3044 insn = new hsa_insn_cvt (dest, op1);
3045 hbb->append_insn (insn);
3046 return;
3049 op1 = op1->extend_int_to_32bit (hbb);
3050 if (opcode == BRIG_OPCODE_FIRSTBIT || opcode == BRIG_OPCODE_LASTBIT)
3052 BrigType16_t srctype = hsa_type_integer_p (op1->m_type) ? op1->m_type
3053 : hsa_unsigned_type_for_type (op1->m_type);
3054 insn = new hsa_insn_srctype (2, opcode, BRIG_TYPE_U32, srctype, NULL,
3055 op1);
3057 else
3059 BrigType16_t optype = hsa_extend_inttype_to_32bit (dest->m_type);
3060 insn = new hsa_insn_basic (2, opcode, optype, NULL, op1);
3062 if (opcode == BRIG_OPCODE_MOV)
3063 hsa_fixup_mov_insn_type (insn);
3064 else if (opcode == BRIG_OPCODE_ABS || opcode == BRIG_OPCODE_NEG)
3066 /* ABS and NEG only exist in _s form :-/ */
3067 if (insn->m_type == BRIG_TYPE_U32)
3068 insn->m_type = BRIG_TYPE_S32;
3069 else if (insn->m_type == BRIG_TYPE_U64)
3070 insn->m_type = BRIG_TYPE_S64;
3074 hbb->append_insn (insn);
3075 insn->set_output_in_type (dest, 0, hbb);
3078 /* Generate a binary instruction with OPCODE and append it to a basic block
3079 HBB. The instruction uses DEST as a destination and operands OP1
3080 and OP2. */
3082 static void
3083 gen_hsa_binary_operation (int opcode, hsa_op_reg *dest,
3084 hsa_op_with_type *op1, hsa_op_with_type *op2,
3085 hsa_bb *hbb)
3087 gcc_checking_assert (dest);
3089 BrigType16_t optype = hsa_extend_inttype_to_32bit (dest->m_type);
3090 op1 = op1->extend_int_to_32bit (hbb);
3091 op2 = op2->extend_int_to_32bit (hbb);
3093 if ((opcode == BRIG_OPCODE_SHL || opcode == BRIG_OPCODE_SHR)
3094 && is_a <hsa_op_immed *> (op2))
3096 hsa_op_immed *i = dyn_cast <hsa_op_immed *> (op2);
3097 i->set_type (BRIG_TYPE_U32);
3099 if ((opcode == BRIG_OPCODE_OR
3100 || opcode == BRIG_OPCODE_XOR
3101 || opcode == BRIG_OPCODE_AND)
3102 && is_a <hsa_op_immed *> (op2))
3104 hsa_op_immed *i = dyn_cast <hsa_op_immed *> (op2);
3105 i->set_type (hsa_unsigned_type_for_type (i->m_type));
3108 hsa_insn_basic *insn = new hsa_insn_basic (3, opcode, optype, NULL,
3109 op1, op2);
3110 hbb->append_insn (insn);
3111 insn->set_output_in_type (dest, 0, hbb);
3114 /* Generate HSA instructions for a single assignment. HBB is the basic block
3115 they will be appended to. */
3117 static void
3118 gen_hsa_insns_for_operation_assignment (gimple *assign, hsa_bb *hbb)
3120 tree_code code = gimple_assign_rhs_code (assign);
3121 gimple_rhs_class rhs_class = get_gimple_rhs_class (gimple_expr_code (assign));
3123 tree lhs = gimple_assign_lhs (assign);
3124 tree rhs1 = gimple_assign_rhs1 (assign);
3125 tree rhs2 = gimple_assign_rhs2 (assign);
3126 tree rhs3 = gimple_assign_rhs3 (assign);
3128 BrigOpcode opcode;
3130 switch (code)
3132 CASE_CONVERT:
3133 case FLOAT_EXPR:
3134 /* The opcode is changed to BRIG_OPCODE_CVT if BRIG types
3135 needs a conversion. */
3136 opcode = BRIG_OPCODE_MOV;
3137 break;
3139 case PLUS_EXPR:
3140 case POINTER_PLUS_EXPR:
3141 opcode = BRIG_OPCODE_ADD;
3142 break;
3143 case MINUS_EXPR:
3144 opcode = BRIG_OPCODE_SUB;
3145 break;
3146 case MULT_EXPR:
3147 opcode = BRIG_OPCODE_MUL;
3148 break;
3149 case MULT_HIGHPART_EXPR:
3150 opcode = BRIG_OPCODE_MULHI;
3151 break;
3152 case RDIV_EXPR:
3153 case TRUNC_DIV_EXPR:
3154 case EXACT_DIV_EXPR:
3155 opcode = BRIG_OPCODE_DIV;
3156 break;
3157 case CEIL_DIV_EXPR:
3158 case FLOOR_DIV_EXPR:
3159 case ROUND_DIV_EXPR:
3160 HSA_SORRY_AT (gimple_location (assign),
3161 "support for HSA does not implement CEIL_DIV_EXPR, "
3162 "FLOOR_DIV_EXPR or ROUND_DIV_EXPR");
3163 return;
3164 case TRUNC_MOD_EXPR:
3165 opcode = BRIG_OPCODE_REM;
3166 break;
3167 case CEIL_MOD_EXPR:
3168 case FLOOR_MOD_EXPR:
3169 case ROUND_MOD_EXPR:
3170 HSA_SORRY_AT (gimple_location (assign),
3171 "support for HSA does not implement CEIL_MOD_EXPR, "
3172 "FLOOR_MOD_EXPR or ROUND_MOD_EXPR");
3173 return;
3174 case NEGATE_EXPR:
3175 opcode = BRIG_OPCODE_NEG;
3176 break;
3177 case FMA_EXPR:
3178 /* There is a native HSA instruction for scalar FMAs but not for vector
3179 ones. */
3180 if (TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE)
3182 hsa_op_reg *dest
3183 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3184 hsa_op_with_type *op1 = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3185 hsa_op_with_type *op2 = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3186 hsa_op_with_type *op3 = hsa_reg_or_immed_for_gimple_op (rhs3, hbb);
3187 hsa_op_reg *tmp = new hsa_op_reg (dest->m_type);
3188 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp, op1, op2, hbb);
3189 gen_hsa_binary_operation (BRIG_OPCODE_ADD, dest, tmp, op3, hbb);
3190 return;
3192 opcode = BRIG_OPCODE_MAD;
3193 break;
3194 case MIN_EXPR:
3195 opcode = BRIG_OPCODE_MIN;
3196 break;
3197 case MAX_EXPR:
3198 opcode = BRIG_OPCODE_MAX;
3199 break;
3200 case ABS_EXPR:
3201 opcode = BRIG_OPCODE_ABS;
3202 break;
3203 case LSHIFT_EXPR:
3204 opcode = BRIG_OPCODE_SHL;
3205 break;
3206 case RSHIFT_EXPR:
3207 opcode = BRIG_OPCODE_SHR;
3208 break;
3209 case LROTATE_EXPR:
3210 case RROTATE_EXPR:
3212 hsa_insn_basic *insn = NULL;
3213 int code1 = code == LROTATE_EXPR ? BRIG_OPCODE_SHL : BRIG_OPCODE_SHR;
3214 int code2 = code != LROTATE_EXPR ? BRIG_OPCODE_SHL : BRIG_OPCODE_SHR;
3215 BrigType16_t btype = hsa_type_for_scalar_tree_type (TREE_TYPE (lhs),
3216 true);
3218 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3219 hsa_op_reg *op1 = new hsa_op_reg (btype);
3220 hsa_op_reg *op2 = new hsa_op_reg (btype);
3221 hsa_op_with_type *shift1 = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3223 tree type = TREE_TYPE (rhs2);
3224 unsigned HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (TYPE_SIZE (type));
3226 hsa_op_with_type *shift2 = NULL;
3227 if (TREE_CODE (rhs2) == INTEGER_CST)
3228 shift2 = new hsa_op_immed (bitsize - tree_to_uhwi (rhs2),
3229 BRIG_TYPE_U32);
3230 else if (TREE_CODE (rhs2) == SSA_NAME)
3232 hsa_op_reg *s = hsa_cfun->reg_for_gimple_ssa (rhs2);
3233 s = as_a <hsa_op_reg *> (s->extend_int_to_32bit (hbb));
3234 hsa_op_reg *d = new hsa_op_reg (s->m_type);
3235 hsa_op_immed *size_imm = new hsa_op_immed (bitsize, BRIG_TYPE_U32);
3237 insn = new hsa_insn_basic (3, BRIG_OPCODE_SUB, d->m_type,
3238 d, s, size_imm);
3239 hbb->append_insn (insn);
3241 shift2 = d;
3243 else
3244 gcc_unreachable ();
3246 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3247 gen_hsa_binary_operation (code1, op1, src, shift1, hbb);
3248 gen_hsa_binary_operation (code2, op2, src, shift2, hbb);
3249 gen_hsa_binary_operation (BRIG_OPCODE_OR, dest, op1, op2, hbb);
3251 return;
3253 case BIT_IOR_EXPR:
3254 opcode = BRIG_OPCODE_OR;
3255 break;
3256 case BIT_XOR_EXPR:
3257 opcode = BRIG_OPCODE_XOR;
3258 break;
3259 case BIT_AND_EXPR:
3260 opcode = BRIG_OPCODE_AND;
3261 break;
3262 case BIT_NOT_EXPR:
3263 opcode = BRIG_OPCODE_NOT;
3264 break;
3265 case FIX_TRUNC_EXPR:
3267 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3268 hsa_op_with_type *v = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3270 if (hsa_needs_cvt (dest->m_type, v->m_type))
3272 hsa_op_reg *tmp = new hsa_op_reg (v->m_type);
3274 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_TRUNC,
3275 tmp->m_type, tmp, v);
3276 hbb->append_insn (insn);
3278 hsa_insn_basic *cvtinsn = new hsa_insn_cvt (dest, tmp);
3279 hbb->append_insn (cvtinsn);
3281 else
3283 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_TRUNC,
3284 dest->m_type, dest, v);
3285 hbb->append_insn (insn);
3288 return;
3290 opcode = BRIG_OPCODE_TRUNC;
3291 break;
3293 case LT_EXPR:
3294 case LE_EXPR:
3295 case GT_EXPR:
3296 case GE_EXPR:
3297 case EQ_EXPR:
3298 case NE_EXPR:
3299 case UNORDERED_EXPR:
3300 case ORDERED_EXPR:
3301 case UNLT_EXPR:
3302 case UNLE_EXPR:
3303 case UNGT_EXPR:
3304 case UNGE_EXPR:
3305 case UNEQ_EXPR:
3306 case LTGT_EXPR:
3308 hsa_op_reg *dest
3309 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3311 gen_hsa_cmp_insn_from_gimple (code, rhs1, rhs2, dest, hbb);
3312 return;
3314 case COND_EXPR:
3316 hsa_op_reg *dest
3317 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3318 hsa_op_with_type *ctrl = NULL;
3319 tree cond = rhs1;
3321 if (CONSTANT_CLASS_P (cond) || TREE_CODE (cond) == SSA_NAME)
3322 ctrl = hsa_reg_or_immed_for_gimple_op (cond, hbb);
3323 else
3325 hsa_op_reg *r = new hsa_op_reg (BRIG_TYPE_B1);
3327 gen_hsa_cmp_insn_from_gimple (TREE_CODE (cond),
3328 TREE_OPERAND (cond, 0),
3329 TREE_OPERAND (cond, 1),
3330 r, hbb);
3332 ctrl = r;
3335 hsa_op_with_type *op2 = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3336 hsa_op_with_type *op3 = hsa_reg_or_immed_for_gimple_op (rhs3, hbb);
3337 op2 = op2->extend_int_to_32bit (hbb);
3338 op3 = op3->extend_int_to_32bit (hbb);
3340 BrigType16_t type = hsa_extend_inttype_to_32bit (dest->m_type);
3341 BrigType16_t utype = hsa_unsigned_type_for_type (type);
3342 if (is_a <hsa_op_immed *> (op2))
3343 op2->m_type = utype;
3344 if (is_a <hsa_op_immed *> (op3))
3345 op3->m_type = utype;
3347 hsa_insn_basic *insn
3348 = new hsa_insn_basic (4, BRIG_OPCODE_CMOV,
3349 hsa_bittype_for_type (type),
3350 NULL, ctrl, op2, op3);
3352 hbb->append_insn (insn);
3353 insn->set_output_in_type (dest, 0, hbb);
3354 return;
3356 case COMPLEX_EXPR:
3358 hsa_op_reg *dest
3359 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3360 hsa_op_with_type *rhs1_reg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3361 rhs1_reg = rhs1_reg->extend_int_to_32bit (hbb);
3362 hsa_op_with_type *rhs2_reg = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3363 rhs2_reg = rhs2_reg->extend_int_to_32bit (hbb);
3365 if (hsa_seen_error ())
3366 return;
3368 BrigType16_t src_type = hsa_bittype_for_type (rhs1_reg->m_type);
3369 rhs1_reg = rhs1_reg->get_in_type (src_type, hbb);
3370 rhs2_reg = rhs2_reg->get_in_type (src_type, hbb);
3372 hsa_insn_packed *insn
3373 = new hsa_insn_packed (3, BRIG_OPCODE_COMBINE, dest->m_type, src_type,
3374 dest, rhs1_reg, rhs2_reg);
3375 hbb->append_insn (insn);
3377 return;
3379 default:
3380 /* Implement others as we come across them. */
3381 HSA_SORRY_ATV (gimple_location (assign),
3382 "support for HSA does not implement operation %s",
3383 get_tree_code_name (code));
3384 return;
3388 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3389 hsa_op_with_type *op1 = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3390 hsa_op_with_type *op2
3391 = rhs2 ? hsa_reg_or_immed_for_gimple_op (rhs2, hbb) : NULL;
3393 if (hsa_seen_error ())
3394 return;
3396 switch (rhs_class)
3398 case GIMPLE_TERNARY_RHS:
3400 hsa_op_with_type *op3 = hsa_reg_or_immed_for_gimple_op (rhs3, hbb);
3401 op3 = op3->extend_int_to_32bit (hbb);
3402 hsa_insn_basic *insn = new hsa_insn_basic (4, opcode, dest->m_type, dest,
3403 op1, op2, op3);
3404 hbb->append_insn (insn);
3406 return;
3408 case GIMPLE_BINARY_RHS:
3409 gen_hsa_binary_operation (opcode, dest, op1, op2, hbb);
3410 break;
3412 case GIMPLE_UNARY_RHS:
3413 gen_hsa_unary_operation (opcode, dest, op1, hbb);
3414 break;
3415 default:
3416 gcc_unreachable ();
3420 /* Generate HSA instructions for a given gimple condition statement COND.
3421 Instructions will be appended to HBB, which also needs to be the
3422 corresponding structure to the basic_block of COND. */
3424 static void
3425 gen_hsa_insns_for_cond_stmt (gimple *cond, hsa_bb *hbb)
3427 hsa_op_reg *ctrl = new hsa_op_reg (BRIG_TYPE_B1);
3428 hsa_insn_cbr *cbr;
3430 gen_hsa_cmp_insn_from_gimple (gimple_cond_code (cond),
3431 gimple_cond_lhs (cond),
3432 gimple_cond_rhs (cond),
3433 ctrl, hbb);
3435 cbr = new hsa_insn_cbr (ctrl);
3436 hbb->append_insn (cbr);
3439 /* Maximum number of elements in a jump table for an HSA SBR instruction. */
3441 #define HSA_MAXIMUM_SBR_LABELS 16
3443 /* Return lowest value of a switch S that is handled in a non-default
3444 label. */
3446 static tree
3447 get_switch_low (gswitch *s)
3449 unsigned labels = gimple_switch_num_labels (s);
3450 gcc_checking_assert (labels >= 1);
3452 return CASE_LOW (gimple_switch_label (s, 1));
3455 /* Return highest value of a switch S that is handled in a non-default
3456 label. */
3458 static tree
3459 get_switch_high (gswitch *s)
3461 unsigned labels = gimple_switch_num_labels (s);
3463 /* Compare last label to maximum number of labels. */
3464 tree label = gimple_switch_label (s, labels - 1);
3465 tree low = CASE_LOW (label);
3466 tree high = CASE_HIGH (label);
3468 return high != NULL_TREE ? high : low;
3471 static tree
3472 get_switch_size (gswitch *s)
3474 return int_const_binop (MINUS_EXPR, get_switch_high (s), get_switch_low (s));
3477 /* Generate HSA instructions for a given gimple switch.
3478 Instructions will be appended to HBB. */
3480 static void
3481 gen_hsa_insns_for_switch_stmt (gswitch *s, hsa_bb *hbb)
3483 gimple_stmt_iterator it = gsi_for_stmt (s);
3484 gsi_prev (&it);
3486 /* Create preambule that verifies that index - lowest_label >= 0. */
3487 edge e = split_block (hbb->m_bb, gsi_stmt (it));
3488 e->flags &= ~EDGE_FALLTHRU;
3489 e->flags |= EDGE_TRUE_VALUE;
3491 function *func = DECL_STRUCT_FUNCTION (current_function_decl);
3492 tree index_tree = gimple_switch_index (s);
3493 tree lowest = get_switch_low (s);
3494 tree highest = get_switch_high (s);
3496 hsa_op_reg *index = hsa_cfun->reg_for_gimple_ssa (index_tree);
3497 index = as_a <hsa_op_reg *> (index->extend_int_to_32bit (hbb));
3499 hsa_op_reg *cmp1_reg = new hsa_op_reg (BRIG_TYPE_B1);
3500 hsa_op_immed *cmp1_immed = new hsa_op_immed (lowest, true);
3501 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_GE, cmp1_reg->m_type,
3502 cmp1_reg, index, cmp1_immed));
3504 hsa_op_reg *cmp2_reg = new hsa_op_reg (BRIG_TYPE_B1);
3505 hsa_op_immed *cmp2_immed = new hsa_op_immed (highest, true);
3506 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_LE, cmp2_reg->m_type,
3507 cmp2_reg, index, cmp2_immed));
3509 hsa_op_reg *cmp_reg = new hsa_op_reg (BRIG_TYPE_B1);
3510 hbb->append_insn (new hsa_insn_basic (3, BRIG_OPCODE_AND, cmp_reg->m_type,
3511 cmp_reg, cmp1_reg, cmp2_reg));
3513 hbb->append_insn (new hsa_insn_cbr (cmp_reg));
3515 tree default_label = gimple_switch_default_label (s);
3516 basic_block default_label_bb = label_to_block_fn (func,
3517 CASE_LABEL (default_label));
3519 if (!gimple_seq_empty_p (phi_nodes (default_label_bb)))
3521 default_label_bb = split_edge (find_edge (e->dest, default_label_bb));
3522 hsa_init_new_bb (default_label_bb);
3525 make_edge (e->src, default_label_bb, EDGE_FALSE_VALUE);
3527 hsa_cfun->m_modified_cfg = true;
3529 /* Basic block with the SBR instruction. */
3530 hbb = hsa_init_new_bb (e->dest);
3532 hsa_op_reg *sub_index = new hsa_op_reg (index->m_type);
3533 hbb->append_insn (new hsa_insn_basic (3, BRIG_OPCODE_SUB, sub_index->m_type,
3534 sub_index, index,
3535 new hsa_op_immed (lowest, true)));
3537 hsa_op_base *tmp = sub_index->get_in_type (BRIG_TYPE_U64, hbb);
3538 sub_index = as_a <hsa_op_reg *> (tmp);
3539 unsigned labels = gimple_switch_num_labels (s);
3540 unsigned HOST_WIDE_INT size = tree_to_uhwi (get_switch_size (s));
3542 hsa_insn_sbr *sbr = new hsa_insn_sbr (sub_index, size + 1);
3544 /* Prepare array with default label destination. */
3545 for (unsigned HOST_WIDE_INT i = 0; i <= size; i++)
3546 sbr->m_jump_table.safe_push (default_label_bb);
3548 /* Iterate all labels and fill up the jump table. */
3549 for (unsigned i = 1; i < labels; i++)
3551 tree label = gimple_switch_label (s, i);
3552 basic_block bb = label_to_block_fn (func, CASE_LABEL (label));
3554 unsigned HOST_WIDE_INT sub_low
3555 = tree_to_uhwi (int_const_binop (MINUS_EXPR, CASE_LOW (label), lowest));
3557 unsigned HOST_WIDE_INT sub_high = sub_low;
3558 tree high = CASE_HIGH (label);
3559 if (high != NULL)
3560 sub_high = tree_to_uhwi (int_const_binop (MINUS_EXPR, high, lowest));
3562 for (unsigned HOST_WIDE_INT j = sub_low; j <= sub_high; j++)
3563 sbr->m_jump_table[j] = bb;
3566 hbb->append_insn (sbr);
3569 /* Verify that the function DECL can be handled by HSA. */
3571 static void
3572 verify_function_arguments (tree decl)
3574 tree type = TREE_TYPE (decl);
3575 if (DECL_STATIC_CHAIN (decl))
3577 HSA_SORRY_ATV (EXPR_LOCATION (decl),
3578 "HSA does not support nested functions: %qD", decl);
3579 return;
3581 else if (!TYPE_ARG_TYPES (type) || stdarg_p (type))
3583 HSA_SORRY_ATV (EXPR_LOCATION (decl),
3584 "HSA does not support functions with variadic arguments "
3585 "(or unknown return type): %qD", decl);
3586 return;
3590 /* Return BRIG type for FORMAL_ARG_TYPE. If the formal argument type is NULL,
3591 return ACTUAL_ARG_TYPE. */
3593 static BrigType16_t
3594 get_format_argument_type (tree formal_arg_type, BrigType16_t actual_arg_type)
3596 if (formal_arg_type == NULL)
3597 return actual_arg_type;
3599 BrigType16_t decl_type
3600 = hsa_type_for_scalar_tree_type (formal_arg_type, false);
3601 return mem_type_for_type (decl_type);
3604 /* Generate HSA instructions for a direct call instruction.
3605 Instructions will be appended to HBB, which also needs to be the
3606 corresponding structure to the basic_block of STMT.
3607 If ASSIGN_LHS is false, do not copy HSA function result argument into the
3608 corresponding HSA representation of the gimple statement LHS. */
3610 static void
3611 gen_hsa_insns_for_direct_call (gimple *stmt, hsa_bb *hbb,
3612 bool assign_lhs = true)
3614 tree decl = gimple_call_fndecl (stmt);
3615 verify_function_arguments (decl);
3616 if (hsa_seen_error ())
3617 return;
3619 hsa_insn_call *call_insn = new hsa_insn_call (decl);
3620 hsa_cfun->m_called_functions.safe_push (call_insn->m_called_function);
3622 /* Argument block start. */
3623 hsa_insn_arg_block *arg_start
3624 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_START, call_insn);
3625 hbb->append_insn (arg_start);
3627 tree parm_type_chain = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
3629 /* Preparation of arguments that will be passed to function. */
3630 const unsigned args = gimple_call_num_args (stmt);
3631 for (unsigned i = 0; i < args; ++i)
3633 tree parm = gimple_call_arg (stmt, (int)i);
3634 tree parm_decl_type = parm_type_chain != NULL_TREE
3635 ? TREE_VALUE (parm_type_chain) : NULL_TREE;
3636 hsa_op_address *addr;
3638 if (AGGREGATE_TYPE_P (TREE_TYPE (parm)))
3640 addr = gen_hsa_addr_for_arg (TREE_TYPE (parm), i);
3641 BrigAlignment8_t align;
3642 hsa_op_address *src = gen_hsa_addr_with_align (parm, hbb, &align);
3643 gen_hsa_memory_copy (hbb, addr, src,
3644 addr->m_symbol->total_byte_size (), align);
3646 else
3648 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (parm, hbb);
3650 if (parm_decl_type != NULL && AGGREGATE_TYPE_P (parm_decl_type))
3652 HSA_SORRY_AT (gimple_location (stmt),
3653 "support for HSA does not implement an aggregate "
3654 "formal argument in a function call, while actual "
3655 "argument is not an aggregate");
3656 return;
3659 BrigType16_t formal_arg_type
3660 = get_format_argument_type (parm_decl_type, src->m_type);
3661 if (hsa_seen_error ())
3662 return;
3664 if (src->m_type != formal_arg_type)
3665 src = src->get_in_type (formal_arg_type, hbb);
3667 addr
3668 = gen_hsa_addr_for_arg (parm_decl_type != NULL_TREE ?
3669 parm_decl_type: TREE_TYPE (parm), i);
3670 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, formal_arg_type,
3671 src, addr);
3673 hbb->append_insn (mem);
3676 call_insn->m_input_args.safe_push (addr->m_symbol);
3677 if (parm_type_chain)
3678 parm_type_chain = TREE_CHAIN (parm_type_chain);
3681 call_insn->m_args_code_list = new hsa_op_code_list (args);
3682 hbb->append_insn (call_insn);
3684 tree result_type = TREE_TYPE (TREE_TYPE (decl));
3686 tree result = gimple_call_lhs (stmt);
3687 hsa_insn_mem *result_insn = NULL;
3688 if (!VOID_TYPE_P (result_type))
3690 hsa_op_address *addr = gen_hsa_addr_for_arg (result_type, -1);
3692 /* Even if result of a function call is unused, we have to emit
3693 declaration for the result. */
3694 if (result && assign_lhs)
3696 tree lhs_type = TREE_TYPE (result);
3698 if (hsa_seen_error ())
3699 return;
3701 if (AGGREGATE_TYPE_P (lhs_type))
3703 BrigAlignment8_t align;
3704 hsa_op_address *result_addr
3705 = gen_hsa_addr_with_align (result, hbb, &align);
3706 gen_hsa_memory_copy (hbb, result_addr, addr,
3707 addr->m_symbol->total_byte_size (), align);
3709 else
3711 BrigType16_t mtype
3712 = mem_type_for_type (hsa_type_for_scalar_tree_type (lhs_type,
3713 false));
3715 hsa_op_reg *dst = hsa_cfun->reg_for_gimple_ssa (result);
3716 result_insn = new hsa_insn_mem (BRIG_OPCODE_LD, mtype, dst, addr);
3717 hbb->append_insn (result_insn);
3721 call_insn->m_output_arg = addr->m_symbol;
3722 call_insn->m_result_code_list = new hsa_op_code_list (1);
3724 else
3726 if (result)
3728 HSA_SORRY_AT (gimple_location (stmt),
3729 "support for HSA does not implement an assignment of "
3730 "return value from a void function");
3731 return;
3734 call_insn->m_result_code_list = new hsa_op_code_list (0);
3737 /* Argument block end. */
3738 hsa_insn_arg_block *arg_end
3739 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_END, call_insn);
3740 hbb->append_insn (arg_end);
3743 /* Generate HSA instructions for a direct call of an internal fn.
3744 Instructions will be appended to HBB, which also needs to be the
3745 corresponding structure to the basic_block of STMT. */
3747 static void
3748 gen_hsa_insns_for_call_of_internal_fn (gimple *stmt, hsa_bb *hbb)
3750 tree lhs = gimple_call_lhs (stmt);
3751 if (!lhs)
3752 return;
3754 tree lhs_type = TREE_TYPE (lhs);
3755 tree rhs1 = gimple_call_arg (stmt, 0);
3756 tree rhs1_type = TREE_TYPE (rhs1);
3757 enum internal_fn fn = gimple_call_internal_fn (stmt);
3758 hsa_internal_fn *ifn
3759 = new hsa_internal_fn (fn, tree_to_uhwi (TYPE_SIZE (rhs1_type)));
3760 hsa_insn_call *call_insn = new hsa_insn_call (ifn);
3762 gcc_checking_assert (FLOAT_TYPE_P (rhs1_type));
3764 if (!hsa_emitted_internal_decls->find (call_insn->m_called_internal_fn))
3765 hsa_cfun->m_called_internal_fns.safe_push (call_insn->m_called_internal_fn);
3767 hsa_insn_arg_block *arg_start
3768 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_START, call_insn);
3769 hbb->append_insn (arg_start);
3771 unsigned num_args = gimple_call_num_args (stmt);
3773 /* Function arguments. */
3774 for (unsigned i = 0; i < num_args; i++)
3776 tree parm = gimple_call_arg (stmt, (int)i);
3777 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (parm, hbb);
3779 hsa_op_address *addr = gen_hsa_addr_for_arg (TREE_TYPE (parm), i);
3780 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, src->m_type,
3781 src, addr);
3783 call_insn->m_input_args.safe_push (addr->m_symbol);
3784 hbb->append_insn (mem);
3787 call_insn->m_args_code_list = new hsa_op_code_list (num_args);
3788 hbb->append_insn (call_insn);
3790 /* Assign returned value. */
3791 hsa_op_address *addr = gen_hsa_addr_for_arg (lhs_type, -1);
3793 call_insn->m_output_arg = addr->m_symbol;
3794 call_insn->m_result_code_list = new hsa_op_code_list (1);
3796 /* Argument block end. */
3797 hsa_insn_arg_block *arg_end
3798 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_END, call_insn);
3799 hbb->append_insn (arg_end);
3802 /* Generate HSA instructions for a return value instruction.
3803 Instructions will be appended to HBB, which also needs to be the
3804 corresponding structure to the basic_block of STMT. */
3806 static void
3807 gen_hsa_insns_for_return (greturn *stmt, hsa_bb *hbb)
3809 tree retval = gimple_return_retval (stmt);
3810 if (retval)
3812 hsa_op_address *addr = new hsa_op_address (hsa_cfun->m_output_arg);
3814 if (AGGREGATE_TYPE_P (TREE_TYPE (retval)))
3816 BrigAlignment8_t align;
3817 hsa_op_address *retval_addr = gen_hsa_addr_with_align (retval, hbb,
3818 &align);
3819 gen_hsa_memory_copy (hbb, addr, retval_addr,
3820 hsa_cfun->m_output_arg->total_byte_size (),
3821 align);
3823 else
3825 BrigType16_t t = hsa_type_for_scalar_tree_type (TREE_TYPE (retval),
3826 false);
3827 BrigType16_t mtype = mem_type_for_type (t);
3829 /* Store of return value. */
3830 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (retval, hbb);
3831 src = src->get_in_type (mtype, hbb);
3832 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, mtype, src,
3833 addr);
3834 hbb->append_insn (mem);
3838 /* HSAIL return instruction emission. */
3839 hsa_insn_basic *ret = new hsa_insn_basic (0, BRIG_OPCODE_RET);
3840 hbb->append_insn (ret);
3843 /* Set OP_INDEX-th operand of the instruction to DEST, as the DEST
3844 can have a different type, conversion instructions are possibly
3845 appended to HBB. */
3847 void
3848 hsa_insn_basic::set_output_in_type (hsa_op_reg *dest, unsigned op_index,
3849 hsa_bb *hbb)
3851 gcc_checking_assert (op_output_p (op_index));
3853 if (dest->m_type == m_type)
3855 set_op (op_index, dest);
3856 return;
3859 hsa_insn_basic *insn;
3860 hsa_op_reg *tmp;
3861 if (hsa_needs_cvt (dest->m_type, m_type))
3863 tmp = new hsa_op_reg (m_type);
3864 insn = new hsa_insn_cvt (dest, tmp);
3866 else if (hsa_type_bit_size (dest->m_type) == hsa_type_bit_size (m_type))
3868 /* When output, HSA registers do not really have types, only sizes, so if
3869 the sizes match, we can use the register directly. */
3870 set_op (op_index, dest);
3871 return;
3873 else
3875 tmp = new hsa_op_reg (m_type);
3876 insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV, dest->m_type,
3877 dest, tmp->get_in_type (dest->m_type, hbb));
3878 hsa_fixup_mov_insn_type (insn);
3880 set_op (op_index, tmp);
3881 hbb->append_insn (insn);
3884 /* Generate instruction OPCODE to query a property of HSA grid along the
3885 given DIMENSION. Store result into DEST and append the instruction to
3886 HBB. */
3888 static void
3889 query_hsa_grid_dim (hsa_op_reg *dest, int opcode, hsa_op_immed *dimension,
3890 hsa_bb *hbb)
3892 hsa_insn_basic *insn = new hsa_insn_basic (2, opcode, BRIG_TYPE_U32, NULL,
3893 dimension);
3894 hbb->append_insn (insn);
3895 insn->set_output_in_type (dest, 0, hbb);
3898 /* Generate instruction OPCODE to query a property of HSA grid along the given
3899 dimension which is an immediate in first argument of STMT. Store result
3900 into the register corresponding to LHS of STMT and append the instruction to
3901 HBB. */
3903 static void
3904 query_hsa_grid_dim (gimple *stmt, int opcode, hsa_bb *hbb)
3906 tree lhs = gimple_call_lhs (dyn_cast <gcall *> (stmt));
3907 if (lhs == NULL_TREE)
3908 return;
3910 tree arg = gimple_call_arg (stmt, 0);
3911 unsigned HOST_WIDE_INT dim = 5;
3912 if (tree_fits_uhwi_p (arg))
3913 dim = tree_to_uhwi (arg);
3914 if (dim > 2)
3916 HSA_SORRY_AT (gimple_location (stmt),
3917 "HSA grid query dimension must be immediate constant 0, 1 "
3918 "or 2");
3919 return;
3922 hsa_op_immed *hdim = new hsa_op_immed (dim, (BrigKind16_t) BRIG_TYPE_U32);
3923 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3924 query_hsa_grid_dim (dest, opcode, hdim, hbb);
3927 /* Generate instruction OPCODE to query a property of HSA grid that is
3928 independent of any dimension. Store result into the register corresponding
3929 to LHS of STMT and append the instruction to HBB. */
3931 static void
3932 query_hsa_grid_nodim (gimple *stmt, BrigOpcode16_t opcode, hsa_bb *hbb)
3934 tree lhs = gimple_call_lhs (dyn_cast <gcall *> (stmt));
3935 if (lhs == NULL_TREE)
3936 return;
3937 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3938 BrigType16_t brig_type = hsa_unsigned_type_for_type (dest->m_type);
3939 hsa_insn_basic *insn = new hsa_insn_basic (1, opcode, brig_type, dest);
3940 hbb->append_insn (insn);
3943 /* Emit instructions that set hsa_num_threads according to provided VALUE.
3944 Instructions are appended to basic block HBB. */
3946 static void
3947 gen_set_num_threads (tree value, hsa_bb *hbb)
3949 hbb->append_insn (new hsa_insn_comment ("omp_set_num_threads"));
3950 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (value, hbb);
3952 src = src->get_in_type (hsa_num_threads->m_type, hbb);
3953 hsa_op_address *addr = new hsa_op_address (hsa_num_threads);
3955 hsa_insn_basic *basic
3956 = new hsa_insn_mem (BRIG_OPCODE_ST, hsa_num_threads->m_type, src, addr);
3957 hbb->append_insn (basic);
3960 /* Return byte offset of a FIELD_NAME in GOMP_hsa_kernel_dispatch which
3961 is defined in plugin-hsa.c. */
3963 static HOST_WIDE_INT
3964 get_hsa_kernel_dispatch_offset (const char *field_name)
3966 tree *hsa_kernel_dispatch_type = hsa_get_kernel_dispatch_type ();
3967 if (*hsa_kernel_dispatch_type == NULL)
3969 /* Collection of information needed for a dispatch of a kernel from a
3970 kernel. Keep in sync with libgomp's plugin-hsa.c. */
3972 *hsa_kernel_dispatch_type = make_node (RECORD_TYPE);
3973 tree id_f1 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3974 get_identifier ("queue"), ptr_type_node);
3975 DECL_CHAIN (id_f1) = NULL_TREE;
3976 tree id_f2 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3977 get_identifier ("omp_data_memory"),
3978 ptr_type_node);
3979 DECL_CHAIN (id_f2) = id_f1;
3980 tree id_f3 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3981 get_identifier ("kernarg_address"),
3982 ptr_type_node);
3983 DECL_CHAIN (id_f3) = id_f2;
3984 tree id_f4 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3985 get_identifier ("object"),
3986 uint64_type_node);
3987 DECL_CHAIN (id_f4) = id_f3;
3988 tree id_f5 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3989 get_identifier ("signal"),
3990 uint64_type_node);
3991 DECL_CHAIN (id_f5) = id_f4;
3992 tree id_f6 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3993 get_identifier ("private_segment_size"),
3994 uint32_type_node);
3995 DECL_CHAIN (id_f6) = id_f5;
3996 tree id_f7 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3997 get_identifier ("group_segment_size"),
3998 uint32_type_node);
3999 DECL_CHAIN (id_f7) = id_f6;
4000 tree id_f8 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
4001 get_identifier ("kernel_dispatch_count"),
4002 uint64_type_node);
4003 DECL_CHAIN (id_f8) = id_f7;
4004 tree id_f9 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
4005 get_identifier ("debug"),
4006 uint64_type_node);
4007 DECL_CHAIN (id_f9) = id_f8;
4008 tree id_f10 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
4009 get_identifier ("omp_level"),
4010 uint64_type_node);
4011 DECL_CHAIN (id_f10) = id_f9;
4012 tree id_f11 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
4013 get_identifier ("children_dispatches"),
4014 ptr_type_node);
4015 DECL_CHAIN (id_f11) = id_f10;
4016 tree id_f12 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
4017 get_identifier ("omp_num_threads"),
4018 uint32_type_node);
4019 DECL_CHAIN (id_f12) = id_f11;
4022 finish_builtin_struct (*hsa_kernel_dispatch_type, "__hsa_kernel_dispatch",
4023 id_f12, NULL_TREE);
4024 TYPE_ARTIFICIAL (*hsa_kernel_dispatch_type) = 1;
4027 for (tree chain = TYPE_FIELDS (*hsa_kernel_dispatch_type);
4028 chain != NULL_TREE; chain = TREE_CHAIN (chain))
4029 if (id_equal (DECL_NAME (chain), field_name))
4030 return int_byte_position (chain);
4032 gcc_unreachable ();
4035 /* Return an HSA register that will contain number of threads for
4036 a future dispatched kernel. Instructions are added to HBB. */
4038 static hsa_op_reg *
4039 gen_num_threads_for_dispatch (hsa_bb *hbb)
4041 /* Step 1) Assign to number of threads:
4042 MIN (HSA_DEFAULT_NUM_THREADS, hsa_num_threads). */
4043 hsa_op_reg *threads = new hsa_op_reg (hsa_num_threads->m_type);
4044 hsa_op_address *addr = new hsa_op_address (hsa_num_threads);
4046 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_LD, threads->m_type,
4047 threads, addr));
4049 hsa_op_immed *limit = new hsa_op_immed (HSA_DEFAULT_NUM_THREADS,
4050 BRIG_TYPE_U32);
4051 hsa_op_reg *r = new hsa_op_reg (BRIG_TYPE_B1);
4052 hsa_insn_cmp * cmp
4053 = new hsa_insn_cmp (BRIG_COMPARE_LT, r->m_type, r, threads, limit);
4054 hbb->append_insn (cmp);
4056 BrigType16_t btype = hsa_bittype_for_type (threads->m_type);
4057 hsa_op_reg *tmp = new hsa_op_reg (threads->m_type);
4059 hbb->append_insn (new hsa_insn_basic (4, BRIG_OPCODE_CMOV, btype, tmp, r,
4060 threads, limit));
4062 /* Step 2) If the number is equal to zero,
4063 return shadow->omp_num_threads. */
4064 hsa_op_reg *shadow_reg_ptr = hsa_cfun->get_shadow_reg ();
4066 hsa_op_reg *shadow_thread_count = new hsa_op_reg (BRIG_TYPE_U32);
4067 addr
4068 = new hsa_op_address (shadow_reg_ptr,
4069 get_hsa_kernel_dispatch_offset ("omp_num_threads"));
4070 hsa_insn_basic *basic
4071 = new hsa_insn_mem (BRIG_OPCODE_LD, shadow_thread_count->m_type,
4072 shadow_thread_count, addr);
4073 hbb->append_insn (basic);
4075 hsa_op_reg *tmp2 = new hsa_op_reg (threads->m_type);
4076 r = new hsa_op_reg (BRIG_TYPE_B1);
4077 hsa_op_immed *imm = new hsa_op_immed (0, shadow_thread_count->m_type);
4078 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_EQ, r->m_type, r, tmp, imm));
4079 hbb->append_insn (new hsa_insn_basic (4, BRIG_OPCODE_CMOV, btype, tmp2, r,
4080 shadow_thread_count, tmp));
4082 hsa_op_base *dest = tmp2->get_in_type (BRIG_TYPE_U16, hbb);
4084 return as_a <hsa_op_reg *> (dest);
4087 /* Build OPCODE query for all three hsa dimensions, multiply them and store the
4088 result into DEST. */
4090 static void
4091 multiply_grid_dim_characteristics (hsa_op_reg *dest, int opcode, hsa_bb *hbb)
4093 hsa_op_reg *dimx = new hsa_op_reg (BRIG_TYPE_U32);
4094 query_hsa_grid_dim (dimx, opcode,
4095 new hsa_op_immed (0, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4096 hsa_op_reg *dimy = new hsa_op_reg (BRIG_TYPE_U32);
4097 query_hsa_grid_dim (dimy, opcode,
4098 new hsa_op_immed (1, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4099 hsa_op_reg *dimz = new hsa_op_reg (BRIG_TYPE_U32);
4100 query_hsa_grid_dim (dimz, opcode,
4101 new hsa_op_immed (2, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4102 hsa_op_reg *tmp = new hsa_op_reg (dest->m_type);
4103 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp,
4104 dimx->get_in_type (dest->m_type, hbb),
4105 dimy->get_in_type (dest->m_type, hbb), hbb);
4106 gen_hsa_binary_operation (BRIG_OPCODE_MUL, dest, tmp,
4107 dimz->get_in_type (dest->m_type, hbb), hbb);
4110 /* Emit instructions that assign number of threads to lhs of gimple STMT.
4111 Instructions are appended to basic block HBB. */
4113 static void
4114 gen_get_num_threads (gimple *stmt, hsa_bb *hbb)
4116 if (gimple_call_lhs (stmt) == NULL_TREE)
4117 return;
4119 hbb->append_insn (new hsa_insn_comment ("omp_get_num_threads"));
4120 tree lhs = gimple_call_lhs (stmt);
4121 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4122 multiply_grid_dim_characteristics (dest, BRIG_OPCODE_CURRENTWORKGROUPSIZE,
4123 hbb);
4126 /* Emit instructions that assign number of teams to lhs of gimple STMT.
4127 Instructions are appended to basic block HBB. */
4129 static void
4130 gen_get_num_teams (gimple *stmt, hsa_bb *hbb)
4132 if (gimple_call_lhs (stmt) == NULL_TREE)
4133 return;
4135 hbb->append_insn (new hsa_insn_comment ("omp_get_num_teams"));
4136 tree lhs = gimple_call_lhs (stmt);
4137 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4138 multiply_grid_dim_characteristics (dest, BRIG_OPCODE_GRIDGROUPS, hbb);
4141 /* Emit instructions that assign a team number to lhs of gimple STMT.
4142 Instructions are appended to basic block HBB. */
4144 static void
4145 gen_get_team_num (gimple *stmt, hsa_bb *hbb)
4147 if (gimple_call_lhs (stmt) == NULL_TREE)
4148 return;
4150 hbb->append_insn (new hsa_insn_comment ("omp_get_team_num"));
4151 tree lhs = gimple_call_lhs (stmt);
4152 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4154 hsa_op_reg *gnum_x = new hsa_op_reg (BRIG_TYPE_U32);
4155 query_hsa_grid_dim (gnum_x, BRIG_OPCODE_GRIDGROUPS,
4156 new hsa_op_immed (0, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4157 hsa_op_reg *gnum_y = new hsa_op_reg (BRIG_TYPE_U32);
4158 query_hsa_grid_dim (gnum_y, BRIG_OPCODE_GRIDGROUPS,
4159 new hsa_op_immed (1, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4161 hsa_op_reg *gno_z = new hsa_op_reg (BRIG_TYPE_U32);
4162 query_hsa_grid_dim (gno_z, BRIG_OPCODE_WORKGROUPID,
4163 new hsa_op_immed (2, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4165 hsa_op_reg *tmp1 = new hsa_op_reg (dest->m_type);
4166 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp1,
4167 gnum_x->get_in_type (dest->m_type, hbb),
4168 gnum_y->get_in_type (dest->m_type, hbb), hbb);
4169 hsa_op_reg *tmp2 = new hsa_op_reg (dest->m_type);
4170 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp2, tmp1,
4171 gno_z->get_in_type (dest->m_type, hbb), hbb);
4173 hsa_op_reg *gno_y = new hsa_op_reg (BRIG_TYPE_U32);
4174 query_hsa_grid_dim (gno_y, BRIG_OPCODE_WORKGROUPID,
4175 new hsa_op_immed (1, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4176 hsa_op_reg *tmp3 = new hsa_op_reg (dest->m_type);
4177 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp3,
4178 gnum_x->get_in_type (dest->m_type, hbb),
4179 gno_y->get_in_type (dest->m_type, hbb), hbb);
4180 hsa_op_reg *tmp4 = new hsa_op_reg (dest->m_type);
4181 gen_hsa_binary_operation (BRIG_OPCODE_ADD, tmp4, tmp3, tmp2, hbb);
4182 hsa_op_reg *gno_x = new hsa_op_reg (BRIG_TYPE_U32);
4183 query_hsa_grid_dim (gno_x, BRIG_OPCODE_WORKGROUPID,
4184 new hsa_op_immed (0, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4185 gen_hsa_binary_operation (BRIG_OPCODE_ADD, dest, tmp4,
4186 gno_x->get_in_type (dest->m_type, hbb), hbb);
4189 /* Emit instructions that get levels-var ICV to lhs of gimple STMT.
4190 Instructions are appended to basic block HBB. */
4192 static void
4193 gen_get_level (gimple *stmt, hsa_bb *hbb)
4195 if (gimple_call_lhs (stmt) == NULL_TREE)
4196 return;
4198 hbb->append_insn (new hsa_insn_comment ("omp_get_level"));
4200 tree lhs = gimple_call_lhs (stmt);
4201 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4203 hsa_op_reg *shadow_reg_ptr = hsa_cfun->get_shadow_reg ();
4204 if (shadow_reg_ptr == NULL)
4206 HSA_SORRY_AT (gimple_location (stmt),
4207 "support for HSA does not implement omp_get_level called "
4208 "from a function not being inlined within a kernel");
4209 return;
4212 hsa_op_address *addr
4213 = new hsa_op_address (shadow_reg_ptr,
4214 get_hsa_kernel_dispatch_offset ("omp_level"));
4216 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, BRIG_TYPE_U64,
4217 (hsa_op_base *) NULL, addr);
4218 hbb->append_insn (mem);
4219 mem->set_output_in_type (dest, 0, hbb);
4222 /* Emit instruction that implement omp_get_max_threads of gimple STMT. */
4224 static void
4225 gen_get_max_threads (gimple *stmt, hsa_bb *hbb)
4227 tree lhs = gimple_call_lhs (stmt);
4228 if (!lhs)
4229 return;
4231 hbb->append_insn (new hsa_insn_comment ("omp_get_max_threads"));
4233 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4234 hsa_op_with_type *num_theads_reg = gen_num_threads_for_dispatch (hbb)
4235 ->get_in_type (dest->m_type, hbb);
4236 hsa_build_append_simple_mov (dest, num_theads_reg, hbb);
4239 /* Emit instructions that implement alloca builtin gimple STMT.
4240 Instructions are appended to basic block HBB. */
4242 static void
4243 gen_hsa_alloca (gcall *call, hsa_bb *hbb)
4245 tree lhs = gimple_call_lhs (call);
4246 if (lhs == NULL_TREE)
4247 return;
4249 built_in_function fn = DECL_FUNCTION_CODE (gimple_call_fndecl (call));
4251 gcc_checking_assert (ALLOCA_FUNCTION_CODE_P (fn));
4253 unsigned bit_alignment = 0;
4255 if (fn != BUILT_IN_ALLOCA)
4257 tree alignment_tree = gimple_call_arg (call, 1);
4258 if (TREE_CODE (alignment_tree) != INTEGER_CST)
4260 HSA_SORRY_ATV (gimple_location (call),
4261 "support for HSA does not implement "
4262 "__builtin_alloca_with_align with a non-constant "
4263 "alignment: %E", alignment_tree);
4266 bit_alignment = tree_to_uhwi (alignment_tree);
4269 tree rhs1 = gimple_call_arg (call, 0);
4270 hsa_op_with_type *size = hsa_reg_or_immed_for_gimple_op (rhs1, hbb)
4271 ->get_in_type (BRIG_TYPE_U32, hbb);
4272 hsa_op_with_type *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4274 hsa_op_reg *tmp
4275 = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE));
4276 hsa_insn_alloca *a = new hsa_insn_alloca (tmp, size, bit_alignment);
4277 hbb->append_insn (a);
4279 hsa_insn_seg *seg
4280 = new hsa_insn_seg (BRIG_OPCODE_STOF,
4281 hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT),
4282 tmp->m_type, BRIG_SEGMENT_PRIVATE, dest, tmp);
4283 hbb->append_insn (seg);
4286 /* Emit instructions that implement clrsb builtin STMT:
4287 Returns the number of leading redundant sign bits in x, i.e. the number
4288 of bits following the most significant bit that are identical to it.
4289 There are no special cases for 0 or other values.
4290 Instructions are appended to basic block HBB. */
4292 static void
4293 gen_hsa_clrsb (gcall *call, hsa_bb *hbb)
4295 tree lhs = gimple_call_lhs (call);
4296 if (lhs == NULL_TREE)
4297 return;
4299 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4300 tree rhs1 = gimple_call_arg (call, 0);
4301 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4302 arg->extend_int_to_32bit (hbb);
4303 BrigType16_t bittype = hsa_bittype_for_type (arg->m_type);
4304 unsigned bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (rhs1)));
4306 /* FIRSTBIT instruction is defined just for 32 and 64-bits wide integers. */
4307 gcc_checking_assert (bitsize == 32 || bitsize == 64);
4309 /* Set true to MOST_SIG if the most significant bit is set to one. */
4310 hsa_op_immed *c = new hsa_op_immed (1ul << (bitsize - 1),
4311 hsa_uint_for_bitsize (bitsize));
4313 hsa_op_reg *and_reg = new hsa_op_reg (bittype);
4314 gen_hsa_binary_operation (BRIG_OPCODE_AND, and_reg, arg, c, hbb);
4316 hsa_op_reg *most_sign = new hsa_op_reg (BRIG_TYPE_B1);
4317 hsa_insn_cmp *cmp
4318 = new hsa_insn_cmp (BRIG_COMPARE_EQ, most_sign->m_type, most_sign,
4319 and_reg, c);
4320 hbb->append_insn (cmp);
4322 /* If the most significant bit is one, negate the input. Otherwise
4323 shift the input value to left by one bit. */
4324 hsa_op_reg *arg_neg = new hsa_op_reg (arg->m_type);
4325 gen_hsa_unary_operation (BRIG_OPCODE_NEG, arg_neg, arg, hbb);
4327 hsa_op_reg *shifted_arg = new hsa_op_reg (arg->m_type);
4328 gen_hsa_binary_operation (BRIG_OPCODE_SHL, shifted_arg, arg,
4329 new hsa_op_immed (1, BRIG_TYPE_U64), hbb);
4331 /* Assign the value that can be used for FIRSTBIT instruction according
4332 to the most significant bit. */
4333 hsa_op_reg *tmp = new hsa_op_reg (bittype);
4334 hsa_insn_basic *cmov
4335 = new hsa_insn_basic (4, BRIG_OPCODE_CMOV, bittype, tmp, most_sign,
4336 arg_neg, shifted_arg);
4337 hbb->append_insn (cmov);
4339 hsa_op_reg *leading_bits = new hsa_op_reg (BRIG_TYPE_S32);
4340 gen_hsa_unary_operation (BRIG_OPCODE_FIRSTBIT, leading_bits,
4341 tmp->get_in_type (hsa_uint_for_bitsize (bitsize),
4342 hbb), hbb);
4344 /* Set flag if the input value is equal to zero. */
4345 hsa_op_reg *is_zero = new hsa_op_reg (BRIG_TYPE_B1);
4346 cmp = new hsa_insn_cmp (BRIG_COMPARE_EQ, is_zero->m_type, is_zero, arg,
4347 new hsa_op_immed (0, arg->m_type));
4348 hbb->append_insn (cmp);
4350 /* Return the number of leading bits,
4351 or (bitsize - 1) if the input value is zero. */
4352 cmov = new hsa_insn_basic (4, BRIG_OPCODE_CMOV, BRIG_TYPE_B32, NULL, is_zero,
4353 new hsa_op_immed (bitsize - 1, BRIG_TYPE_U32),
4354 leading_bits->get_in_type (BRIG_TYPE_B32, hbb));
4355 hbb->append_insn (cmov);
4356 cmov->set_output_in_type (dest, 0, hbb);
4359 /* Emit instructions that implement ffs builtin STMT:
4360 Returns one plus the index of the least significant 1-bit of x,
4361 or if x is zero, returns zero.
4362 Instructions are appended to basic block HBB. */
4364 static void
4365 gen_hsa_ffs (gcall *call, hsa_bb *hbb)
4367 tree lhs = gimple_call_lhs (call);
4368 if (lhs == NULL_TREE)
4369 return;
4371 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4373 tree rhs1 = gimple_call_arg (call, 0);
4374 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4375 arg = arg->extend_int_to_32bit (hbb);
4377 hsa_op_reg *tmp = new hsa_op_reg (BRIG_TYPE_U32);
4378 hsa_insn_srctype *insn = new hsa_insn_srctype (2, BRIG_OPCODE_LASTBIT,
4379 tmp->m_type, arg->m_type,
4380 tmp, arg);
4381 hbb->append_insn (insn);
4383 hsa_insn_basic *addition
4384 = new hsa_insn_basic (3, BRIG_OPCODE_ADD, tmp->m_type, NULL, tmp,
4385 new hsa_op_immed (1, tmp->m_type));
4386 hbb->append_insn (addition);
4387 addition->set_output_in_type (dest, 0, hbb);
4390 static void
4391 gen_hsa_popcount_to_dest (hsa_op_reg *dest, hsa_op_with_type *arg, hsa_bb *hbb)
4393 gcc_checking_assert (hsa_type_integer_p (arg->m_type));
4395 if (hsa_type_bit_size (arg->m_type) < 32)
4396 arg = arg->get_in_type (BRIG_TYPE_B32, hbb);
4398 BrigType16_t srctype = hsa_bittype_for_type (arg->m_type);
4399 if (!hsa_btype_p (arg->m_type))
4400 arg = arg->get_in_type (srctype, hbb);
4402 hsa_insn_srctype *popcount
4403 = new hsa_insn_srctype (2, BRIG_OPCODE_POPCOUNT, BRIG_TYPE_U32,
4404 srctype, NULL, arg);
4405 hbb->append_insn (popcount);
4406 popcount->set_output_in_type (dest, 0, hbb);
4409 /* Emit instructions that implement parity builtin STMT:
4410 Returns the parity of x, i.e. the number of 1-bits in x modulo 2.
4411 Instructions are appended to basic block HBB. */
4413 static void
4414 gen_hsa_parity (gcall *call, hsa_bb *hbb)
4416 tree lhs = gimple_call_lhs (call);
4417 if (lhs == NULL_TREE)
4418 return;
4420 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4421 tree rhs1 = gimple_call_arg (call, 0);
4422 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4424 hsa_op_reg *popcount = new hsa_op_reg (BRIG_TYPE_U32);
4425 gen_hsa_popcount_to_dest (popcount, arg, hbb);
4427 hsa_insn_basic *insn
4428 = new hsa_insn_basic (3, BRIG_OPCODE_REM, popcount->m_type, NULL, popcount,
4429 new hsa_op_immed (2, popcount->m_type));
4430 hbb->append_insn (insn);
4431 insn->set_output_in_type (dest, 0, hbb);
4434 /* Emit instructions that implement popcount builtin STMT.
4435 Instructions are appended to basic block HBB. */
4437 static void
4438 gen_hsa_popcount (gcall *call, hsa_bb *hbb)
4440 tree lhs = gimple_call_lhs (call);
4441 if (lhs == NULL_TREE)
4442 return;
4444 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4445 tree rhs1 = gimple_call_arg (call, 0);
4446 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4448 gen_hsa_popcount_to_dest (dest, arg, hbb);
4451 /* Emit instructions that implement DIVMOD builtin STMT.
4452 Instructions are appended to basic block HBB. */
4454 static void
4455 gen_hsa_divmod (gcall *call, hsa_bb *hbb)
4457 tree lhs = gimple_call_lhs (call);
4458 if (lhs == NULL_TREE)
4459 return;
4461 tree rhs0 = gimple_call_arg (call, 0);
4462 tree rhs1 = gimple_call_arg (call, 1);
4464 hsa_op_with_type *arg0 = hsa_reg_or_immed_for_gimple_op (rhs0, hbb);
4465 arg0 = arg0->extend_int_to_32bit (hbb);
4466 hsa_op_with_type *arg1 = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4467 arg1 = arg1->extend_int_to_32bit (hbb);
4469 hsa_op_reg *dest0 = new hsa_op_reg (arg0->m_type);
4470 hsa_op_reg *dest1 = new hsa_op_reg (arg1->m_type);
4472 hsa_insn_basic *insn = new hsa_insn_basic (3, BRIG_OPCODE_DIV, dest0->m_type,
4473 dest0, arg0, arg1);
4474 hbb->append_insn (insn);
4475 insn = new hsa_insn_basic (3, BRIG_OPCODE_REM, dest1->m_type, dest1, arg0,
4476 arg1);
4477 hbb->append_insn (insn);
4479 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4480 BrigType16_t dst_type = hsa_extend_inttype_to_32bit (dest->m_type);
4481 BrigType16_t src_type = hsa_bittype_for_type (dest0->m_type);
4483 insn = new hsa_insn_packed (3, BRIG_OPCODE_COMBINE, dst_type,
4484 src_type, NULL, dest0, dest1);
4485 hbb->append_insn (insn);
4486 insn->set_output_in_type (dest, 0, hbb);
4489 /* Set VALUE to a shadow kernel debug argument and append a new instruction
4490 to HBB basic block. */
4492 static void
4493 set_debug_value (hsa_bb *hbb, hsa_op_with_type *value)
4495 hsa_op_reg *shadow_reg_ptr = hsa_cfun->get_shadow_reg ();
4496 if (shadow_reg_ptr == NULL)
4497 return;
4499 hsa_op_address *addr
4500 = new hsa_op_address (shadow_reg_ptr,
4501 get_hsa_kernel_dispatch_offset ("debug"));
4502 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, BRIG_TYPE_U64, value,
4503 addr);
4504 hbb->append_insn (mem);
4507 void
4508 omp_simple_builtin::generate (gimple *stmt, hsa_bb *hbb)
4510 if (m_sorry)
4512 if (m_warning_message)
4513 HSA_SORRY_AT (gimple_location (stmt), m_warning_message);
4514 else
4515 HSA_SORRY_ATV (gimple_location (stmt),
4516 "Support for HSA does not implement calls to %s\n",
4517 m_name);
4519 else if (m_warning_message != NULL)
4520 warning_at (gimple_location (stmt), OPT_Whsa, m_warning_message);
4522 if (m_return_value != NULL)
4524 tree lhs = gimple_call_lhs (stmt);
4525 if (!lhs)
4526 return;
4528 hbb->append_insn (new hsa_insn_comment (m_name));
4530 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4531 hsa_op_with_type *op = m_return_value->get_in_type (dest->m_type, hbb);
4532 hsa_build_append_simple_mov (dest, op, hbb);
4536 /* If STMT is a call of a known library function, generate code to perform
4537 it and return true. */
4539 static bool
4540 gen_hsa_insns_for_known_library_call (gimple *stmt, hsa_bb *hbb)
4542 bool handled = false;
4543 const char *name = hsa_get_declaration_name (gimple_call_fndecl (stmt));
4545 char *copy = NULL;
4546 size_t len = strlen (name);
4547 if (len > 0 && name[len - 1] == '_')
4549 copy = XNEWVEC (char, len + 1);
4550 strcpy (copy, name);
4551 copy[len - 1] = '\0';
4552 name = copy;
4555 /* Handle omp_* routines. */
4556 if (strstr (name, "omp_") == name)
4558 hsa_init_simple_builtins ();
4559 omp_simple_builtin *builtin = omp_simple_builtins->get (name);
4560 if (builtin)
4562 builtin->generate (stmt, hbb);
4563 return true;
4566 handled = true;
4567 if (strcmp (name, "omp_set_num_threads") == 0)
4568 gen_set_num_threads (gimple_call_arg (stmt, 0), hbb);
4569 else if (strcmp (name, "omp_get_thread_num") == 0)
4571 hbb->append_insn (new hsa_insn_comment (name));
4572 query_hsa_grid_nodim (stmt, BRIG_OPCODE_WORKITEMFLATABSID, hbb);
4574 else if (strcmp (name, "omp_get_num_threads") == 0)
4576 hbb->append_insn (new hsa_insn_comment (name));
4577 gen_get_num_threads (stmt, hbb);
4579 else if (strcmp (name, "omp_get_num_teams") == 0)
4580 gen_get_num_teams (stmt, hbb);
4581 else if (strcmp (name, "omp_get_team_num") == 0)
4582 gen_get_team_num (stmt, hbb);
4583 else if (strcmp (name, "omp_get_level") == 0)
4584 gen_get_level (stmt, hbb);
4585 else if (strcmp (name, "omp_get_active_level") == 0)
4586 gen_get_level (stmt, hbb);
4587 else if (strcmp (name, "omp_in_parallel") == 0)
4588 gen_get_level (stmt, hbb);
4589 else if (strcmp (name, "omp_get_max_threads") == 0)
4590 gen_get_max_threads (stmt, hbb);
4591 else
4592 handled = false;
4594 if (handled)
4596 if (copy)
4597 free (copy);
4598 return true;
4602 if (strcmp (name, "__hsa_set_debug_value") == 0)
4604 handled = true;
4605 if (hsa_cfun->has_shadow_reg_p ())
4607 tree rhs1 = gimple_call_arg (stmt, 0);
4608 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4610 src = src->get_in_type (BRIG_TYPE_U64, hbb);
4611 set_debug_value (hbb, src);
4615 if (copy)
4616 free (copy);
4617 return handled;
4620 /* Helper functions to create a single unary HSA operations out of calls to
4621 builtins. OPCODE is the HSA operation to be generated. STMT is a gimple
4622 call to a builtin. HBB is the HSA BB to which the instruction should be
4623 added. Note that nothing will be created if STMT does not have a LHS. */
4625 static void
4626 gen_hsa_unaryop_for_builtin (BrigOpcode opcode, gimple *stmt, hsa_bb *hbb)
4628 tree lhs = gimple_call_lhs (stmt);
4629 if (!lhs)
4630 return;
4631 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4632 hsa_op_with_type *op
4633 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 0), hbb);
4634 gen_hsa_unary_operation (opcode, dest, op, hbb);
4637 /* Helper functions to create a call to standard library if LHS of the
4638 STMT is used. HBB is the HSA BB to which the instruction should be
4639 added. */
4641 static void
4642 gen_hsa_unaryop_builtin_call (gimple *stmt, hsa_bb *hbb)
4644 tree lhs = gimple_call_lhs (stmt);
4645 if (!lhs)
4646 return;
4648 if (gimple_call_internal_p (stmt))
4649 gen_hsa_insns_for_call_of_internal_fn (stmt, hbb);
4650 else
4651 gen_hsa_insns_for_direct_call (stmt, hbb);
4654 /* Helper functions to create a single unary HSA operations out of calls to
4655 builtins (if unsafe math optimizations are enable). Otherwise, create
4656 a call to standard library function.
4657 OPCODE is the HSA operation to be generated. STMT is a gimple
4658 call to a builtin. HBB is the HSA BB to which the instruction should be
4659 added. Note that nothing will be created if STMT does not have a LHS. */
4661 static void
4662 gen_hsa_unaryop_or_call_for_builtin (BrigOpcode opcode, gimple *stmt,
4663 hsa_bb *hbb)
4665 if (flag_unsafe_math_optimizations)
4666 gen_hsa_unaryop_for_builtin (opcode, stmt, hbb);
4667 else
4668 gen_hsa_unaryop_builtin_call (stmt, hbb);
4671 /* Generate HSA address corresponding to a value VAL (as opposed to a memory
4672 reference tree), for example an SSA_NAME or an ADDR_EXPR. HBB is the HSA BB
4673 to which the instruction should be added. */
4675 static hsa_op_address *
4676 get_address_from_value (tree val, hsa_bb *hbb)
4678 switch (TREE_CODE (val))
4680 case SSA_NAME:
4682 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
4683 hsa_op_base *reg
4684 = hsa_cfun->reg_for_gimple_ssa (val)->get_in_type (addrtype, hbb);
4685 return new hsa_op_address (NULL, as_a <hsa_op_reg *> (reg), 0);
4687 case ADDR_EXPR:
4688 return gen_hsa_addr (TREE_OPERAND (val, 0), hbb);
4690 case INTEGER_CST:
4691 if (tree_fits_shwi_p (val))
4692 return new hsa_op_address (NULL, NULL, tree_to_shwi (val));
4693 /* fall-through */
4695 default:
4696 HSA_SORRY_ATV (EXPR_LOCATION (val),
4697 "support for HSA does not implement memory access to %E",
4698 val);
4699 return new hsa_op_address (NULL, NULL, 0);
4703 /* Expand assignment of a result of a string BUILTIN to DST.
4704 Size of the operation is N bytes, where instructions
4705 will be append to HBB. */
4707 static void
4708 expand_lhs_of_string_op (gimple *stmt,
4709 unsigned HOST_WIDE_INT n, hsa_bb *hbb,
4710 enum built_in_function builtin)
4712 /* If LHS is expected, we need to emit a PHI instruction. */
4713 tree lhs = gimple_call_lhs (stmt);
4714 if (!lhs)
4715 return;
4717 hsa_op_reg *lhs_reg = hsa_cfun->reg_for_gimple_ssa (lhs);
4719 hsa_op_with_type *dst_reg
4720 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 0), hbb);
4721 hsa_op_with_type *tmp;
4723 switch (builtin)
4725 case BUILT_IN_MEMPCPY:
4727 tmp = new hsa_op_reg (dst_reg->m_type);
4728 hsa_insn_basic *add
4729 = new hsa_insn_basic (3, BRIG_OPCODE_ADD, tmp->m_type,
4730 tmp, dst_reg,
4731 new hsa_op_immed (n, dst_reg->m_type));
4732 hbb->append_insn (add);
4733 break;
4735 case BUILT_IN_MEMCPY:
4736 case BUILT_IN_MEMSET:
4737 tmp = dst_reg;
4738 break;
4739 default:
4740 gcc_unreachable ();
4743 hbb->append_insn (new hsa_insn_basic (2, BRIG_OPCODE_MOV, lhs_reg->m_type,
4744 lhs_reg, tmp));
4747 #define HSA_MEMORY_BUILTINS_LIMIT 128
4749 /* Expand a string builtin (from a gimple STMT) in a way that
4750 according to MISALIGNED_FLAG we process either direct emission
4751 (a bunch of memory load and store instructions), or we emit a function call
4752 of a library function (for instance 'memcpy'). Actually, a basic block
4753 for direct emission is just prepared, where caller is responsible
4754 for emission of corresponding instructions.
4755 All instruction are appended to HBB. */
4757 hsa_bb *
4758 expand_string_operation_builtin (gimple *stmt, hsa_bb *hbb,
4759 hsa_op_reg *misaligned_flag)
4761 edge e = split_block (hbb->m_bb, stmt);
4762 basic_block condition_bb = e->src;
4763 hbb->append_insn (new hsa_insn_cbr (misaligned_flag));
4765 /* Prepare the control flow. */
4766 edge condition_edge = EDGE_SUCC (condition_bb, 0);
4767 basic_block call_bb = split_edge (condition_edge);
4769 basic_block expanded_bb = split_edge (EDGE_SUCC (call_bb, 0));
4770 basic_block cont_bb = EDGE_SUCC (expanded_bb, 0)->dest;
4771 basic_block merge_bb = split_edge (EDGE_PRED (cont_bb, 0));
4773 condition_edge->flags &= ~EDGE_FALLTHRU;
4774 condition_edge->flags |= EDGE_TRUE_VALUE;
4775 make_edge (condition_bb, expanded_bb, EDGE_FALSE_VALUE);
4777 redirect_edge_succ (EDGE_SUCC (call_bb, 0), merge_bb);
4779 hsa_cfun->m_modified_cfg = true;
4781 hsa_init_new_bb (expanded_bb);
4783 /* Slow path: function call. */
4784 gen_hsa_insns_for_direct_call (stmt, hsa_init_new_bb (call_bb), false);
4786 return hsa_bb_for_bb (expanded_bb);
4789 /* Expand a memory copy BUILTIN (BUILT_IN_MEMCPY, BUILT_IN_MEMPCPY) from
4790 a gimple STMT and store all necessary instruction to HBB basic block. */
4792 static void
4793 expand_memory_copy (gimple *stmt, hsa_bb *hbb, enum built_in_function builtin)
4795 tree byte_size = gimple_call_arg (stmt, 2);
4797 if (!tree_fits_uhwi_p (byte_size))
4799 gen_hsa_insns_for_direct_call (stmt, hbb);
4800 return;
4803 unsigned HOST_WIDE_INT n = tree_to_uhwi (byte_size);
4805 if (n > HSA_MEMORY_BUILTINS_LIMIT)
4807 gen_hsa_insns_for_direct_call (stmt, hbb);
4808 return;
4811 tree dst = gimple_call_arg (stmt, 0);
4812 tree src = gimple_call_arg (stmt, 1);
4814 hsa_op_address *dst_addr = get_address_from_value (dst, hbb);
4815 hsa_op_address *src_addr = get_address_from_value (src, hbb);
4817 /* As gen_hsa_memory_copy relies on memory alignment
4818 greater or equal to 8 bytes, we need to verify the alignment. */
4819 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
4820 hsa_op_reg *src_addr_reg = new hsa_op_reg (addrtype);
4821 hsa_op_reg *dst_addr_reg = new hsa_op_reg (addrtype);
4823 convert_addr_to_flat_segment (src_addr, src_addr_reg, hbb);
4824 convert_addr_to_flat_segment (dst_addr, dst_addr_reg, hbb);
4826 /* Process BIT OR for source and destination addresses. */
4827 hsa_op_reg *or_reg = new hsa_op_reg (addrtype);
4828 gen_hsa_binary_operation (BRIG_OPCODE_OR, or_reg, src_addr_reg,
4829 dst_addr_reg, hbb);
4831 /* Process BIT AND with 0x7 to identify the desired alignment
4832 of 8 bytes. */
4833 hsa_op_reg *masked = new hsa_op_reg (addrtype);
4835 gen_hsa_binary_operation (BRIG_OPCODE_AND, masked, or_reg,
4836 new hsa_op_immed (7, addrtype), hbb);
4838 hsa_op_reg *misaligned = new hsa_op_reg (BRIG_TYPE_B1);
4839 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_NE, misaligned->m_type,
4840 misaligned, masked,
4841 new hsa_op_immed (0, masked->m_type)));
4843 hsa_bb *native_impl_bb
4844 = expand_string_operation_builtin (stmt, hbb, misaligned);
4846 gen_hsa_memory_copy (native_impl_bb, dst_addr, src_addr, n, BRIG_ALIGNMENT_8);
4847 hsa_bb *merge_bb
4848 = hsa_init_new_bb (EDGE_SUCC (native_impl_bb->m_bb, 0)->dest);
4849 expand_lhs_of_string_op (stmt, n, merge_bb, builtin);
4853 /* Expand a memory set BUILTIN (BUILT_IN_MEMSET, BUILT_IN_BZERO) from
4854 a gimple STMT and store all necessary instruction to HBB basic block.
4855 The operation set N bytes with a CONSTANT value. */
4857 static void
4858 expand_memory_set (gimple *stmt, unsigned HOST_WIDE_INT n,
4859 unsigned HOST_WIDE_INT constant, hsa_bb *hbb,
4860 enum built_in_function builtin)
4862 tree dst = gimple_call_arg (stmt, 0);
4863 hsa_op_address *dst_addr = get_address_from_value (dst, hbb);
4865 /* As gen_hsa_memory_set relies on memory alignment
4866 greater or equal to 8 bytes, we need to verify the alignment. */
4867 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
4868 hsa_op_reg *dst_addr_reg = new hsa_op_reg (addrtype);
4869 convert_addr_to_flat_segment (dst_addr, dst_addr_reg, hbb);
4871 /* Process BIT AND with 0x7 to identify the desired alignment
4872 of 8 bytes. */
4873 hsa_op_reg *masked = new hsa_op_reg (addrtype);
4875 gen_hsa_binary_operation (BRIG_OPCODE_AND, masked, dst_addr_reg,
4876 new hsa_op_immed (7, addrtype), hbb);
4878 hsa_op_reg *misaligned = new hsa_op_reg (BRIG_TYPE_B1);
4879 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_NE, misaligned->m_type,
4880 misaligned, masked,
4881 new hsa_op_immed (0, masked->m_type)));
4883 hsa_bb *native_impl_bb
4884 = expand_string_operation_builtin (stmt, hbb, misaligned);
4886 gen_hsa_memory_set (native_impl_bb, dst_addr, constant, n, BRIG_ALIGNMENT_8);
4887 hsa_bb *merge_bb
4888 = hsa_init_new_bb (EDGE_SUCC (native_impl_bb->m_bb, 0)->dest);
4889 expand_lhs_of_string_op (stmt, n, merge_bb, builtin);
4892 /* Store into MEMORDER the memory order specified by tree T, which must be an
4893 integer constant representing a C++ memory order. If it isn't, issue an HSA
4894 sorry message using LOC and return true, otherwise return false and store
4895 the name of the requested order to *MNAME. */
4897 static bool
4898 hsa_memorder_from_tree (tree t, BrigMemoryOrder *memorder, const char **mname,
4899 location_t loc)
4901 if (!tree_fits_uhwi_p (t))
4903 HSA_SORRY_ATV (loc, "support for HSA does not implement memory model %E",
4905 return true;
4908 unsigned HOST_WIDE_INT mm = tree_to_uhwi (t);
4909 switch (mm & MEMMODEL_BASE_MASK)
4911 case MEMMODEL_RELAXED:
4912 *memorder = BRIG_MEMORY_ORDER_RELAXED;
4913 *mname = "relaxed";
4914 break;
4915 case MEMMODEL_CONSUME:
4916 /* HSA does not have an equivalent, but we can use the slightly stronger
4917 ACQUIRE. */
4918 *memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE;
4919 *mname = "consume";
4920 break;
4921 case MEMMODEL_ACQUIRE:
4922 *memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE;
4923 *mname = "acquire";
4924 break;
4925 case MEMMODEL_RELEASE:
4926 *memorder = BRIG_MEMORY_ORDER_SC_RELEASE;
4927 *mname = "release";
4928 break;
4929 case MEMMODEL_ACQ_REL:
4930 *memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE;
4931 *mname = "acq_rel";
4932 break;
4933 case MEMMODEL_SEQ_CST:
4934 /* Callers implementing a simple load or store need to remove the release
4935 or acquire part respectively. */
4936 *memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE;
4937 *mname = "seq_cst";
4938 break;
4939 default:
4941 HSA_SORRY_AT (loc, "support for HSA does not implement the specified "
4942 "memory model");
4943 return true;
4946 return false;
4949 /* Helper function to create an HSA atomic operation instruction out of calls
4950 to atomic builtins. RET_ORIG is true if the built-in is the variant that
4951 return s the value before applying operation, and false if it should return
4952 the value after applying the operation (if it returns value at all). ACODE
4953 is the atomic operation code, STMT is a gimple call to a builtin. HBB is
4954 the HSA BB to which the instruction should be added. If SIGNAL is true, the
4955 created operation will work on HSA signals rather than atomic variables. */
4957 static void
4958 gen_hsa_atomic_for_builtin (bool ret_orig, enum BrigAtomicOperation acode,
4959 gimple *stmt, hsa_bb *hbb, bool signal)
4961 tree lhs = gimple_call_lhs (stmt);
4963 tree type = TREE_TYPE (gimple_call_arg (stmt, 1));
4964 BrigType16_t hsa_type = hsa_type_for_scalar_tree_type (type, false);
4965 BrigType16_t mtype = mem_type_for_type (hsa_type);
4966 BrigMemoryOrder memorder;
4967 const char *mmname;
4969 if (hsa_memorder_from_tree (gimple_call_arg (stmt, 2), &memorder, &mmname,
4970 gimple_location (stmt)))
4971 return;
4973 /* Certain atomic insns must have Bx memory types. */
4974 switch (acode)
4976 case BRIG_ATOMIC_LD:
4977 case BRIG_ATOMIC_ST:
4978 case BRIG_ATOMIC_AND:
4979 case BRIG_ATOMIC_OR:
4980 case BRIG_ATOMIC_XOR:
4981 case BRIG_ATOMIC_EXCH:
4982 mtype = hsa_bittype_for_type (mtype);
4983 break;
4984 default:
4985 break;
4988 hsa_op_reg *dest;
4989 int nops, opcode;
4990 if (lhs)
4992 if (ret_orig)
4993 dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4994 else
4995 dest = new hsa_op_reg (hsa_type);
4996 opcode = signal ? BRIG_OPCODE_SIGNAL : BRIG_OPCODE_ATOMIC;
4997 nops = 3;
4999 else
5001 dest = NULL;
5002 opcode = signal ? BRIG_OPCODE_SIGNALNORET : BRIG_OPCODE_ATOMICNORET;
5003 nops = 2;
5006 if (acode == BRIG_ATOMIC_ST)
5008 if (memorder == BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE)
5009 memorder = BRIG_MEMORY_ORDER_SC_RELEASE;
5011 if (memorder != BRIG_MEMORY_ORDER_RELAXED
5012 && memorder != BRIG_MEMORY_ORDER_SC_RELEASE
5013 && memorder != BRIG_MEMORY_ORDER_NONE)
5015 HSA_SORRY_ATV (gimple_location (stmt),
5016 "support for HSA does not implement memory model for "
5017 "ATOMIC_ST: %s", mmname);
5018 return;
5022 hsa_insn_basic *atominsn;
5023 hsa_op_base *tgt;
5024 if (signal)
5026 atominsn = new hsa_insn_signal (nops, opcode, acode, mtype, memorder);
5027 tgt = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 0), hbb);
5029 else
5031 atominsn = new hsa_insn_atomic (nops, opcode, acode, mtype, memorder);
5032 hsa_op_address *addr;
5033 addr = get_address_from_value (gimple_call_arg (stmt, 0), hbb);
5034 if (addr->m_symbol && addr->m_symbol->m_segment == BRIG_SEGMENT_PRIVATE)
5036 HSA_SORRY_AT (gimple_location (stmt),
5037 "HSA does not implement atomic operations in private "
5038 "segment");
5039 return;
5041 tgt = addr;
5044 hsa_op_with_type *op
5045 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 1), hbb);
5046 if (lhs)
5048 atominsn->set_op (0, dest);
5049 atominsn->set_op (1, tgt);
5050 atominsn->set_op (2, op);
5052 else
5054 atominsn->set_op (0, tgt);
5055 atominsn->set_op (1, op);
5058 hbb->append_insn (atominsn);
5060 /* HSA does not natively support the variants that return the modified value,
5061 so re-do the operation again non-atomically if that is what was
5062 requested. */
5063 if (lhs && !ret_orig)
5065 int arith;
5066 switch (acode)
5068 case BRIG_ATOMIC_ADD:
5069 arith = BRIG_OPCODE_ADD;
5070 break;
5071 case BRIG_ATOMIC_AND:
5072 arith = BRIG_OPCODE_AND;
5073 break;
5074 case BRIG_ATOMIC_OR:
5075 arith = BRIG_OPCODE_OR;
5076 break;
5077 case BRIG_ATOMIC_SUB:
5078 arith = BRIG_OPCODE_SUB;
5079 break;
5080 case BRIG_ATOMIC_XOR:
5081 arith = BRIG_OPCODE_XOR;
5082 break;
5083 default:
5084 gcc_unreachable ();
5086 hsa_op_reg *real_dest = hsa_cfun->reg_for_gimple_ssa (lhs);
5087 gen_hsa_binary_operation (arith, real_dest, dest, op, hbb);
5091 /* Generate HSA instructions for an internal fn.
5092 Instructions will be appended to HBB, which also needs to be the
5093 corresponding structure to the basic_block of STMT. */
5095 static void
5096 gen_hsa_insn_for_internal_fn_call (gcall *stmt, hsa_bb *hbb)
5098 gcc_checking_assert (gimple_call_internal_fn (stmt));
5099 internal_fn fn = gimple_call_internal_fn (stmt);
5101 bool is_float_type_p = false;
5102 if (gimple_call_lhs (stmt) != NULL
5103 && TREE_TYPE (gimple_call_lhs (stmt)) == float_type_node)
5104 is_float_type_p = true;
5106 switch (fn)
5108 case IFN_CEIL:
5109 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_CEIL, stmt, hbb);
5110 break;
5112 case IFN_FLOOR:
5113 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FLOOR, stmt, hbb);
5114 break;
5116 case IFN_RINT:
5117 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_RINT, stmt, hbb);
5118 break;
5120 case IFN_SQRT:
5121 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_SQRT, stmt, hbb);
5122 break;
5124 case IFN_RSQRT:
5125 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_NRSQRT, stmt, hbb);
5126 break;
5128 case IFN_TRUNC:
5129 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_TRUNC, stmt, hbb);
5130 break;
5132 case IFN_COS:
5134 if (is_float_type_p)
5135 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NCOS, stmt, hbb);
5136 else
5137 gen_hsa_unaryop_builtin_call (stmt, hbb);
5139 break;
5141 case IFN_EXP2:
5143 if (is_float_type_p)
5144 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NEXP2, stmt, hbb);
5145 else
5146 gen_hsa_unaryop_builtin_call (stmt, hbb);
5148 break;
5151 case IFN_LOG2:
5153 if (is_float_type_p)
5154 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NLOG2, stmt, hbb);
5155 else
5156 gen_hsa_unaryop_builtin_call (stmt, hbb);
5158 break;
5161 case IFN_SIN:
5163 if (is_float_type_p)
5164 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NSIN, stmt, hbb);
5165 else
5166 gen_hsa_unaryop_builtin_call (stmt, hbb);
5167 break;
5170 case IFN_CLRSB:
5171 gen_hsa_clrsb (stmt, hbb);
5172 break;
5174 case IFN_CLZ:
5175 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FIRSTBIT, stmt, hbb);
5176 break;
5178 case IFN_CTZ:
5179 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_LASTBIT, stmt, hbb);
5180 break;
5182 case IFN_FFS:
5183 gen_hsa_ffs (stmt, hbb);
5184 break;
5186 case IFN_PARITY:
5187 gen_hsa_parity (stmt, hbb);
5188 break;
5190 case IFN_POPCOUNT:
5191 gen_hsa_popcount (stmt, hbb);
5192 break;
5194 case IFN_DIVMOD:
5195 gen_hsa_divmod (stmt, hbb);
5196 break;
5198 case IFN_ACOS:
5199 case IFN_ASIN:
5200 case IFN_ATAN:
5201 case IFN_EXP:
5202 case IFN_EXP10:
5203 case IFN_EXPM1:
5204 case IFN_LOG:
5205 case IFN_LOG10:
5206 case IFN_LOG1P:
5207 case IFN_LOGB:
5208 case IFN_SIGNIFICAND:
5209 case IFN_TAN:
5210 case IFN_NEARBYINT:
5211 case IFN_ROUND:
5212 case IFN_ATAN2:
5213 case IFN_COPYSIGN:
5214 case IFN_FMOD:
5215 case IFN_POW:
5216 case IFN_REMAINDER:
5217 case IFN_SCALB:
5218 case IFN_FMIN:
5219 case IFN_FMAX:
5220 gen_hsa_insns_for_call_of_internal_fn (stmt, hbb);
5221 break;
5223 default:
5224 HSA_SORRY_ATV (gimple_location (stmt),
5225 "support for HSA does not implement internal function: %s",
5226 internal_fn_name (fn));
5227 break;
5231 /* Generate HSA instructions for the given call statement STMT. Instructions
5232 will be appended to HBB. */
5234 static void
5235 gen_hsa_insns_for_call (gimple *stmt, hsa_bb *hbb)
5237 gcall *call = as_a <gcall *> (stmt);
5238 tree lhs = gimple_call_lhs (stmt);
5239 hsa_op_reg *dest;
5241 if (gimple_call_internal_p (stmt))
5243 gen_hsa_insn_for_internal_fn_call (call, hbb);
5244 return;
5247 if (!gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
5249 tree function_decl = gimple_call_fndecl (stmt);
5250 /* Prefetch pass can create type-mismatching prefetch builtin calls which
5251 fail the gimple_call_builtin_p test above. Handle them here. */
5252 if (DECL_BUILT_IN_CLASS (function_decl)
5253 && DECL_FUNCTION_CODE (function_decl) == BUILT_IN_PREFETCH)
5254 return;
5256 if (function_decl == NULL_TREE)
5258 HSA_SORRY_AT (gimple_location (stmt),
5259 "support for HSA does not implement indirect calls");
5260 return;
5263 if (hsa_callable_function_p (function_decl))
5264 gen_hsa_insns_for_direct_call (stmt, hbb);
5265 else if (!gen_hsa_insns_for_known_library_call (stmt, hbb))
5266 HSA_SORRY_AT (gimple_location (stmt),
5267 "HSA supports only calls of functions marked with pragma "
5268 "omp declare target");
5269 return;
5272 tree fndecl = gimple_call_fndecl (stmt);
5273 enum built_in_function builtin = DECL_FUNCTION_CODE (fndecl);
5274 switch (builtin)
5276 case BUILT_IN_FABS:
5277 case BUILT_IN_FABSF:
5278 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_ABS, stmt, hbb);
5279 break;
5281 case BUILT_IN_CEIL:
5282 case BUILT_IN_CEILF:
5283 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_CEIL, stmt, hbb);
5284 break;
5286 case BUILT_IN_FLOOR:
5287 case BUILT_IN_FLOORF:
5288 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FLOOR, stmt, hbb);
5289 break;
5291 case BUILT_IN_RINT:
5292 case BUILT_IN_RINTF:
5293 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_RINT, stmt, hbb);
5294 break;
5296 case BUILT_IN_SQRT:
5297 case BUILT_IN_SQRTF:
5298 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_SQRT, stmt, hbb);
5299 break;
5301 case BUILT_IN_TRUNC:
5302 case BUILT_IN_TRUNCF:
5303 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_TRUNC, stmt, hbb);
5304 break;
5306 case BUILT_IN_COS:
5307 case BUILT_IN_SIN:
5308 case BUILT_IN_EXP2:
5309 case BUILT_IN_LOG2:
5310 /* HSAIL does not provide an instruction for double argument type. */
5311 gen_hsa_unaryop_builtin_call (stmt, hbb);
5312 break;
5314 case BUILT_IN_COSF:
5315 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NCOS, stmt, hbb);
5316 break;
5318 case BUILT_IN_EXP2F:
5319 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NEXP2, stmt, hbb);
5320 break;
5322 case BUILT_IN_LOG2F:
5323 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NLOG2, stmt, hbb);
5324 break;
5326 case BUILT_IN_SINF:
5327 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NSIN, stmt, hbb);
5328 break;
5330 case BUILT_IN_CLRSB:
5331 case BUILT_IN_CLRSBL:
5332 case BUILT_IN_CLRSBLL:
5333 gen_hsa_clrsb (call, hbb);
5334 break;
5336 case BUILT_IN_CLZ:
5337 case BUILT_IN_CLZL:
5338 case BUILT_IN_CLZLL:
5339 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FIRSTBIT, stmt, hbb);
5340 break;
5342 case BUILT_IN_CTZ:
5343 case BUILT_IN_CTZL:
5344 case BUILT_IN_CTZLL:
5345 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_LASTBIT, stmt, hbb);
5346 break;
5348 case BUILT_IN_FFS:
5349 case BUILT_IN_FFSL:
5350 case BUILT_IN_FFSLL:
5351 gen_hsa_ffs (call, hbb);
5352 break;
5354 case BUILT_IN_PARITY:
5355 case BUILT_IN_PARITYL:
5356 case BUILT_IN_PARITYLL:
5357 gen_hsa_parity (call, hbb);
5358 break;
5360 case BUILT_IN_POPCOUNT:
5361 case BUILT_IN_POPCOUNTL:
5362 case BUILT_IN_POPCOUNTLL:
5363 gen_hsa_popcount (call, hbb);
5364 break;
5366 case BUILT_IN_ATOMIC_LOAD_1:
5367 case BUILT_IN_ATOMIC_LOAD_2:
5368 case BUILT_IN_ATOMIC_LOAD_4:
5369 case BUILT_IN_ATOMIC_LOAD_8:
5370 case BUILT_IN_ATOMIC_LOAD_16:
5372 BrigType16_t mtype;
5373 hsa_op_base *src;
5374 src = get_address_from_value (gimple_call_arg (stmt, 0), hbb);
5376 BrigMemoryOrder memorder;
5377 const char *mmname;
5378 if (hsa_memorder_from_tree (gimple_call_arg (stmt, 1), &memorder,
5379 &mmname, gimple_location (stmt)))
5380 return;
5382 if (memorder == BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE)
5383 memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE;
5385 if (memorder != BRIG_MEMORY_ORDER_RELAXED
5386 && memorder != BRIG_MEMORY_ORDER_SC_ACQUIRE
5387 && memorder != BRIG_MEMORY_ORDER_NONE)
5389 HSA_SORRY_ATV (gimple_location (stmt),
5390 "support for HSA does not implement "
5391 "memory model for atomic loads: %s", mmname);
5392 return;
5395 if (lhs)
5397 BrigType16_t t = hsa_type_for_scalar_tree_type (TREE_TYPE (lhs),
5398 false);
5399 mtype = mem_type_for_type (t);
5400 mtype = hsa_bittype_for_type (mtype);
5401 dest = hsa_cfun->reg_for_gimple_ssa (lhs);
5403 else
5405 mtype = BRIG_TYPE_B64;
5406 dest = new hsa_op_reg (mtype);
5409 hsa_insn_basic *atominsn;
5410 atominsn = new hsa_insn_atomic (2, BRIG_OPCODE_ATOMIC, BRIG_ATOMIC_LD,
5411 mtype, memorder, dest, src);
5413 hbb->append_insn (atominsn);
5414 break;
5417 case BUILT_IN_ATOMIC_EXCHANGE_1:
5418 case BUILT_IN_ATOMIC_EXCHANGE_2:
5419 case BUILT_IN_ATOMIC_EXCHANGE_4:
5420 case BUILT_IN_ATOMIC_EXCHANGE_8:
5421 case BUILT_IN_ATOMIC_EXCHANGE_16:
5422 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_EXCH, stmt, hbb, false);
5423 break;
5424 break;
5426 case BUILT_IN_ATOMIC_FETCH_ADD_1:
5427 case BUILT_IN_ATOMIC_FETCH_ADD_2:
5428 case BUILT_IN_ATOMIC_FETCH_ADD_4:
5429 case BUILT_IN_ATOMIC_FETCH_ADD_8:
5430 case BUILT_IN_ATOMIC_FETCH_ADD_16:
5431 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_ADD, stmt, hbb, false);
5432 break;
5433 break;
5435 case BUILT_IN_ATOMIC_FETCH_SUB_1:
5436 case BUILT_IN_ATOMIC_FETCH_SUB_2:
5437 case BUILT_IN_ATOMIC_FETCH_SUB_4:
5438 case BUILT_IN_ATOMIC_FETCH_SUB_8:
5439 case BUILT_IN_ATOMIC_FETCH_SUB_16:
5440 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_SUB, stmt, hbb, false);
5441 break;
5442 break;
5444 case BUILT_IN_ATOMIC_FETCH_AND_1:
5445 case BUILT_IN_ATOMIC_FETCH_AND_2:
5446 case BUILT_IN_ATOMIC_FETCH_AND_4:
5447 case BUILT_IN_ATOMIC_FETCH_AND_8:
5448 case BUILT_IN_ATOMIC_FETCH_AND_16:
5449 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_AND, stmt, hbb, false);
5450 break;
5451 break;
5453 case BUILT_IN_ATOMIC_FETCH_XOR_1:
5454 case BUILT_IN_ATOMIC_FETCH_XOR_2:
5455 case BUILT_IN_ATOMIC_FETCH_XOR_4:
5456 case BUILT_IN_ATOMIC_FETCH_XOR_8:
5457 case BUILT_IN_ATOMIC_FETCH_XOR_16:
5458 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_XOR, stmt, hbb, false);
5459 break;
5460 break;
5462 case BUILT_IN_ATOMIC_FETCH_OR_1:
5463 case BUILT_IN_ATOMIC_FETCH_OR_2:
5464 case BUILT_IN_ATOMIC_FETCH_OR_4:
5465 case BUILT_IN_ATOMIC_FETCH_OR_8:
5466 case BUILT_IN_ATOMIC_FETCH_OR_16:
5467 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_OR, stmt, hbb, false);
5468 break;
5469 break;
5471 case BUILT_IN_ATOMIC_STORE_1:
5472 case BUILT_IN_ATOMIC_STORE_2:
5473 case BUILT_IN_ATOMIC_STORE_4:
5474 case BUILT_IN_ATOMIC_STORE_8:
5475 case BUILT_IN_ATOMIC_STORE_16:
5476 /* Since there cannot be any LHS, the first parameter is meaningless. */
5477 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_ST, stmt, hbb, false);
5478 break;
5479 break;
5481 case BUILT_IN_ATOMIC_ADD_FETCH_1:
5482 case BUILT_IN_ATOMIC_ADD_FETCH_2:
5483 case BUILT_IN_ATOMIC_ADD_FETCH_4:
5484 case BUILT_IN_ATOMIC_ADD_FETCH_8:
5485 case BUILT_IN_ATOMIC_ADD_FETCH_16:
5486 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_ADD, stmt, hbb, false);
5487 break;
5489 case BUILT_IN_ATOMIC_SUB_FETCH_1:
5490 case BUILT_IN_ATOMIC_SUB_FETCH_2:
5491 case BUILT_IN_ATOMIC_SUB_FETCH_4:
5492 case BUILT_IN_ATOMIC_SUB_FETCH_8:
5493 case BUILT_IN_ATOMIC_SUB_FETCH_16:
5494 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_SUB, stmt, hbb, false);
5495 break;
5497 case BUILT_IN_ATOMIC_AND_FETCH_1:
5498 case BUILT_IN_ATOMIC_AND_FETCH_2:
5499 case BUILT_IN_ATOMIC_AND_FETCH_4:
5500 case BUILT_IN_ATOMIC_AND_FETCH_8:
5501 case BUILT_IN_ATOMIC_AND_FETCH_16:
5502 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_AND, stmt, hbb, false);
5503 break;
5505 case BUILT_IN_ATOMIC_XOR_FETCH_1:
5506 case BUILT_IN_ATOMIC_XOR_FETCH_2:
5507 case BUILT_IN_ATOMIC_XOR_FETCH_4:
5508 case BUILT_IN_ATOMIC_XOR_FETCH_8:
5509 case BUILT_IN_ATOMIC_XOR_FETCH_16:
5510 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_XOR, stmt, hbb, false);
5511 break;
5513 case BUILT_IN_ATOMIC_OR_FETCH_1:
5514 case BUILT_IN_ATOMIC_OR_FETCH_2:
5515 case BUILT_IN_ATOMIC_OR_FETCH_4:
5516 case BUILT_IN_ATOMIC_OR_FETCH_8:
5517 case BUILT_IN_ATOMIC_OR_FETCH_16:
5518 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_OR, stmt, hbb, false);
5519 break;
5521 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
5522 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
5523 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
5524 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
5525 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
5527 tree type = TREE_TYPE (gimple_call_arg (stmt, 1));
5528 BrigType16_t atype
5529 = hsa_bittype_for_type (hsa_type_for_scalar_tree_type (type, false));
5530 BrigMemoryOrder memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE;
5531 hsa_insn_basic *atominsn;
5532 hsa_op_base *tgt;
5533 atominsn = new hsa_insn_atomic (4, BRIG_OPCODE_ATOMIC,
5534 BRIG_ATOMIC_CAS, atype, memorder);
5535 tgt = get_address_from_value (gimple_call_arg (stmt, 0), hbb);
5537 if (lhs != NULL)
5538 dest = hsa_cfun->reg_for_gimple_ssa (lhs);
5539 else
5540 dest = new hsa_op_reg (atype);
5542 atominsn->set_op (0, dest);
5543 atominsn->set_op (1, tgt);
5545 hsa_op_with_type *op
5546 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 1), hbb);
5547 atominsn->set_op (2, op);
5548 op = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 2), hbb);
5549 atominsn->set_op (3, op);
5551 hbb->append_insn (atominsn);
5552 break;
5555 case BUILT_IN_HSA_WORKGROUPID:
5556 query_hsa_grid_dim (stmt, BRIG_OPCODE_WORKGROUPID, hbb);
5557 break;
5558 case BUILT_IN_HSA_WORKITEMID:
5559 query_hsa_grid_dim (stmt, BRIG_OPCODE_WORKITEMID, hbb);
5560 break;
5561 case BUILT_IN_HSA_WORKITEMABSID:
5562 query_hsa_grid_dim (stmt, BRIG_OPCODE_WORKITEMABSID, hbb);
5563 break;
5564 case BUILT_IN_HSA_GRIDSIZE:
5565 query_hsa_grid_dim (stmt, BRIG_OPCODE_GRIDSIZE, hbb);
5566 break;
5567 case BUILT_IN_HSA_CURRENTWORKGROUPSIZE:
5568 query_hsa_grid_dim (stmt, BRIG_OPCODE_CURRENTWORKGROUPSIZE, hbb);
5569 break;
5571 case BUILT_IN_GOMP_BARRIER:
5572 hbb->append_insn (new hsa_insn_br (0, BRIG_OPCODE_BARRIER, BRIG_TYPE_NONE,
5573 BRIG_WIDTH_ALL));
5574 break;
5575 case BUILT_IN_GOMP_PARALLEL:
5576 HSA_SORRY_AT (gimple_location (stmt),
5577 "support for HSA does not implement non-gridified "
5578 "OpenMP parallel constructs.");
5579 break;
5581 case BUILT_IN_OMP_GET_THREAD_NUM:
5583 query_hsa_grid_nodim (stmt, BRIG_OPCODE_WORKITEMFLATABSID, hbb);
5584 break;
5587 case BUILT_IN_OMP_GET_NUM_THREADS:
5589 gen_get_num_threads (stmt, hbb);
5590 break;
5592 case BUILT_IN_GOMP_TEAMS:
5594 gen_set_num_threads (gimple_call_arg (stmt, 1), hbb);
5595 break;
5597 case BUILT_IN_OMP_GET_NUM_TEAMS:
5599 gen_get_num_teams (stmt, hbb);
5600 break;
5602 case BUILT_IN_OMP_GET_TEAM_NUM:
5604 gen_get_team_num (stmt, hbb);
5605 break;
5607 case BUILT_IN_MEMCPY:
5608 case BUILT_IN_MEMPCPY:
5610 expand_memory_copy (stmt, hbb, builtin);
5611 break;
5613 case BUILT_IN_MEMSET:
5615 tree c = gimple_call_arg (stmt, 1);
5617 if (TREE_CODE (c) != INTEGER_CST)
5619 gen_hsa_insns_for_direct_call (stmt, hbb);
5620 return;
5623 tree byte_size = gimple_call_arg (stmt, 2);
5625 if (!tree_fits_uhwi_p (byte_size))
5627 gen_hsa_insns_for_direct_call (stmt, hbb);
5628 return;
5631 unsigned HOST_WIDE_INT n = tree_to_uhwi (byte_size);
5633 if (n > HSA_MEMORY_BUILTINS_LIMIT)
5635 gen_hsa_insns_for_direct_call (stmt, hbb);
5636 return;
5639 unsigned HOST_WIDE_INT constant
5640 = tree_to_uhwi (fold_convert (unsigned_char_type_node, c));
5642 expand_memory_set (stmt, n, constant, hbb, builtin);
5644 break;
5646 case BUILT_IN_BZERO:
5648 tree byte_size = gimple_call_arg (stmt, 1);
5650 if (!tree_fits_uhwi_p (byte_size))
5652 gen_hsa_insns_for_direct_call (stmt, hbb);
5653 return;
5656 unsigned HOST_WIDE_INT n = tree_to_uhwi (byte_size);
5658 if (n > HSA_MEMORY_BUILTINS_LIMIT)
5660 gen_hsa_insns_for_direct_call (stmt, hbb);
5661 return;
5664 expand_memory_set (stmt, n, 0, hbb, builtin);
5666 break;
5668 CASE_BUILT_IN_ALLOCA:
5670 gen_hsa_alloca (call, hbb);
5671 break;
5673 case BUILT_IN_PREFETCH:
5674 break;
5675 default:
5677 tree name_tree = DECL_NAME (fndecl);
5678 const char *s = IDENTIFIER_POINTER (name_tree);
5679 size_t len = strlen (s);
5680 if (len > 4 && (strncmp (s, "__builtin_GOMP_", 15) == 0))
5681 HSA_SORRY_ATV (gimple_location (stmt),
5682 "support for HSA does not implement GOMP function %s",
5684 else
5685 gen_hsa_insns_for_direct_call (stmt, hbb);
5686 return;
5691 /* Generate HSA instructions for a given gimple statement. Instructions will be
5692 appended to HBB. */
5694 static void
5695 gen_hsa_insns_for_gimple_stmt (gimple *stmt, hsa_bb *hbb)
5697 switch (gimple_code (stmt))
5699 case GIMPLE_ASSIGN:
5700 if (gimple_clobber_p (stmt))
5701 break;
5703 if (gimple_assign_single_p (stmt))
5705 tree lhs = gimple_assign_lhs (stmt);
5706 tree rhs = gimple_assign_rhs1 (stmt);
5707 gen_hsa_insns_for_single_assignment (lhs, rhs, hbb);
5709 else
5710 gen_hsa_insns_for_operation_assignment (stmt, hbb);
5711 break;
5712 case GIMPLE_RETURN:
5713 gen_hsa_insns_for_return (as_a <greturn *> (stmt), hbb);
5714 break;
5715 case GIMPLE_COND:
5716 gen_hsa_insns_for_cond_stmt (stmt, hbb);
5717 break;
5718 case GIMPLE_CALL:
5719 gen_hsa_insns_for_call (stmt, hbb);
5720 break;
5721 case GIMPLE_DEBUG:
5722 /* ??? HSA supports some debug facilities. */
5723 break;
5724 case GIMPLE_LABEL:
5726 tree label = gimple_label_label (as_a <glabel *> (stmt));
5727 if (FORCED_LABEL (label))
5728 HSA_SORRY_AT (gimple_location (stmt),
5729 "support for HSA does not implement gimple label with "
5730 "address taken");
5732 break;
5734 case GIMPLE_NOP:
5736 hbb->append_insn (new hsa_insn_basic (0, BRIG_OPCODE_NOP));
5737 break;
5739 case GIMPLE_SWITCH:
5741 gen_hsa_insns_for_switch_stmt (as_a <gswitch *> (stmt), hbb);
5742 break;
5744 default:
5745 HSA_SORRY_ATV (gimple_location (stmt),
5746 "support for HSA does not implement gimple statement %s",
5747 gimple_code_name[(int) gimple_code (stmt)]);
5751 /* Generate a HSA PHI from a gimple PHI. */
5753 static void
5754 gen_hsa_phi_from_gimple_phi (gimple *phi_stmt, hsa_bb *hbb)
5756 hsa_insn_phi *hphi;
5757 unsigned count = gimple_phi_num_args (phi_stmt);
5759 hsa_op_reg *dest
5760 = hsa_cfun->reg_for_gimple_ssa (gimple_phi_result (phi_stmt));
5761 hphi = new hsa_insn_phi (count, dest);
5762 hphi->m_bb = hbb->m_bb;
5764 auto_vec <tree, 8> aexprs;
5765 auto_vec <hsa_op_reg *, 8> aregs;
5767 /* Calling split_edge when processing a PHI node messes up with the order of
5768 gimple phi node arguments (it moves the one associated with the edge to
5769 the end). We need to keep the order of edges and arguments of HSA phi
5770 node arguments consistent, so we do all required splitting as the first
5771 step, and in reverse order as to not be affected by the re-orderings. */
5772 for (unsigned j = count; j != 0; j--)
5774 unsigned i = j - 1;
5775 tree op = gimple_phi_arg_def (phi_stmt, i);
5776 if (TREE_CODE (op) != ADDR_EXPR)
5777 continue;
5779 edge e = gimple_phi_arg_edge (as_a <gphi *> (phi_stmt), i);
5780 hsa_bb *hbb_src = hsa_init_new_bb (split_edge (e));
5781 hsa_op_address *addr = gen_hsa_addr (TREE_OPERAND (op, 0),
5782 hbb_src);
5784 hsa_op_reg *dest
5785 = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT));
5786 hsa_insn_basic *insn
5787 = new hsa_insn_basic (2, BRIG_OPCODE_LDA, BRIG_TYPE_U64,
5788 dest, addr);
5789 hbb_src->append_insn (insn);
5790 aexprs.safe_push (op);
5791 aregs.safe_push (dest);
5794 tree lhs = gimple_phi_result (phi_stmt);
5795 for (unsigned i = 0; i < count; i++)
5797 tree op = gimple_phi_arg_def (phi_stmt, i);
5799 if (TREE_CODE (op) == SSA_NAME)
5801 hsa_op_reg *hreg = hsa_cfun->reg_for_gimple_ssa (op);
5802 hphi->set_op (i, hreg);
5804 else
5806 gcc_assert (is_gimple_min_invariant (op));
5807 tree t = TREE_TYPE (op);
5808 if (!POINTER_TYPE_P (t)
5809 || (TREE_CODE (op) == STRING_CST
5810 && TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE))
5811 hphi->set_op (i, new hsa_op_immed (op));
5812 else if (POINTER_TYPE_P (TREE_TYPE (lhs))
5813 && TREE_CODE (op) == INTEGER_CST)
5815 /* Handle assignment of NULL value to a pointer type. */
5816 hphi->set_op (i, new hsa_op_immed (op));
5818 else if (TREE_CODE (op) == ADDR_EXPR)
5820 hsa_op_reg *dest = NULL;
5821 for (unsigned a_idx = 0; a_idx < aexprs.length (); a_idx++)
5822 if (aexprs[a_idx] == op)
5824 dest = aregs[a_idx];
5825 break;
5827 gcc_assert (dest);
5828 hphi->set_op (i, dest);
5830 else
5832 HSA_SORRY_AT (gimple_location (phi_stmt),
5833 "support for HSA does not handle PHI nodes with "
5834 "constant address operands");
5835 return;
5840 hbb->append_phi (hphi);
5843 /* Constructor of class containing HSA-specific information about a basic
5844 block. CFG_BB is the CFG BB this HSA BB is associated with. IDX is the new
5845 index of this BB (so that the constructor does not attempt to use
5846 hsa_cfun during its construction). */
5848 hsa_bb::hsa_bb (basic_block cfg_bb, int idx)
5849 : m_bb (cfg_bb), m_first_insn (NULL), m_last_insn (NULL), m_first_phi (NULL),
5850 m_last_phi (NULL), m_index (idx)
5852 gcc_assert (!cfg_bb->aux);
5853 cfg_bb->aux = this;
5856 /* Constructor of class containing HSA-specific information about a basic
5857 block. CFG_BB is the CFG BB this HSA BB is associated with. */
5859 hsa_bb::hsa_bb (basic_block cfg_bb)
5860 : m_bb (cfg_bb), m_first_insn (NULL), m_last_insn (NULL), m_first_phi (NULL),
5861 m_last_phi (NULL), m_index (hsa_cfun->m_hbb_count++)
5863 gcc_assert (!cfg_bb->aux);
5864 cfg_bb->aux = this;
5867 /* Create and initialize and return a new hsa_bb structure for a given CFG
5868 basic block BB. */
5870 hsa_bb *
5871 hsa_init_new_bb (basic_block bb)
5873 void *m = obstack_alloc (&hsa_obstack, sizeof (hsa_bb));
5874 return new (m) hsa_bb (bb);
5877 /* Initialize OMP in an HSA basic block PROLOGUE. */
5879 static void
5880 init_prologue (void)
5882 if (!hsa_cfun->m_kern_p)
5883 return;
5885 hsa_bb *prologue = hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5887 /* Create a magic number that is going to be printed by libgomp. */
5888 unsigned index = hsa_get_number_decl_kernel_mappings ();
5890 /* Emit store to debug argument. */
5891 if (PARAM_VALUE (PARAM_HSA_GEN_DEBUG_STORES) > 0)
5892 set_debug_value (prologue, new hsa_op_immed (1000 + index, BRIG_TYPE_U64));
5895 /* Initialize hsa_num_threads to a default value. */
5897 static void
5898 init_hsa_num_threads (void)
5900 hsa_bb *prologue = hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5902 /* Save the default value to private variable hsa_num_threads. */
5903 hsa_insn_basic *basic
5904 = new hsa_insn_mem (BRIG_OPCODE_ST, hsa_num_threads->m_type,
5905 new hsa_op_immed (0, hsa_num_threads->m_type),
5906 new hsa_op_address (hsa_num_threads));
5907 prologue->append_insn (basic);
5910 /* Go over gimple representation and generate our internal HSA one. */
5912 static void
5913 gen_body_from_gimple ()
5915 basic_block bb;
5917 /* Verify CFG for complex edges we are unable to handle. */
5918 edge_iterator ei;
5919 edge e;
5921 FOR_EACH_BB_FN (bb, cfun)
5923 FOR_EACH_EDGE (e, ei, bb->succs)
5925 /* Verify all unsupported flags for edges that point
5926 to the same basic block. */
5927 if (e->flags & EDGE_EH)
5929 HSA_SORRY_AT (UNKNOWN_LOCATION,
5930 "support for HSA does not implement exception "
5931 "handling");
5932 return;
5937 FOR_EACH_BB_FN (bb, cfun)
5939 gimple_stmt_iterator gsi;
5940 hsa_bb *hbb = hsa_bb_for_bb (bb);
5941 if (hbb)
5942 continue;
5944 hbb = hsa_init_new_bb (bb);
5946 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5948 gen_hsa_insns_for_gimple_stmt (gsi_stmt (gsi), hbb);
5949 if (hsa_seen_error ())
5950 return;
5954 FOR_EACH_BB_FN (bb, cfun)
5956 gimple_stmt_iterator gsi;
5957 hsa_bb *hbb = hsa_bb_for_bb (bb);
5958 gcc_assert (hbb != NULL);
5960 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5961 if (!virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
5962 gen_hsa_phi_from_gimple_phi (gsi_stmt (gsi), hbb);
5965 if (dump_file && (dump_flags & TDF_DETAILS))
5967 fprintf (dump_file, "------- Generated SSA form -------\n");
5968 dump_hsa_cfun (dump_file);
5972 static void
5973 gen_function_decl_parameters (hsa_function_representation *f,
5974 tree decl)
5976 tree parm;
5977 unsigned i;
5979 for (parm = TYPE_ARG_TYPES (TREE_TYPE (decl)), i = 0;
5980 parm;
5981 parm = TREE_CHAIN (parm), i++)
5983 /* Result type if last in the tree list. */
5984 if (TREE_CHAIN (parm) == NULL)
5985 break;
5987 tree v = TREE_VALUE (parm);
5989 hsa_symbol *arg = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
5990 BRIG_LINKAGE_NONE);
5991 arg->m_type = hsa_type_for_tree_type (v, &arg->m_dim);
5992 arg->m_name_number = i;
5994 f->m_input_args.safe_push (arg);
5997 tree result_type = TREE_TYPE (TREE_TYPE (decl));
5998 if (!VOID_TYPE_P (result_type))
6000 f->m_output_arg = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
6001 BRIG_LINKAGE_NONE);
6002 f->m_output_arg->m_type
6003 = hsa_type_for_tree_type (result_type, &f->m_output_arg->m_dim);
6004 f->m_output_arg->m_name = "res";
6008 /* Generate the vector of parameters of the HSA representation of the current
6009 function. This also includes the output parameter representing the
6010 result. */
6012 static void
6013 gen_function_def_parameters ()
6015 tree parm;
6017 hsa_bb *prologue = hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6019 for (parm = DECL_ARGUMENTS (cfun->decl); parm;
6020 parm = DECL_CHAIN (parm))
6022 struct hsa_symbol **slot;
6024 hsa_symbol *arg
6025 = new hsa_symbol (BRIG_TYPE_NONE, hsa_cfun->m_kern_p
6026 ? BRIG_SEGMENT_KERNARG : BRIG_SEGMENT_ARG,
6027 BRIG_LINKAGE_FUNCTION);
6028 arg->fillup_for_decl (parm);
6030 hsa_cfun->m_input_args.safe_push (arg);
6032 if (hsa_seen_error ())
6033 return;
6035 arg->m_name = hsa_get_declaration_name (parm);
6037 /* Copy all input arguments and create corresponding private symbols
6038 for them. */
6039 hsa_symbol *private_arg;
6040 hsa_op_address *parm_addr = new hsa_op_address (arg);
6042 if (TREE_ADDRESSABLE (parm)
6043 || (!is_gimple_reg (parm) && !TREE_READONLY (parm)))
6045 private_arg = hsa_cfun->create_hsa_temporary (arg->m_type);
6046 private_arg->fillup_for_decl (parm);
6048 BrigAlignment8_t align = MIN (arg->m_align, private_arg->m_align);
6050 hsa_op_address *private_arg_addr = new hsa_op_address (private_arg);
6051 gen_hsa_memory_copy (prologue, private_arg_addr, parm_addr,
6052 arg->total_byte_size (), align);
6054 else
6055 private_arg = arg;
6057 slot = hsa_cfun->m_local_symbols->find_slot (private_arg, INSERT);
6058 gcc_assert (!*slot);
6059 *slot = private_arg;
6061 if (is_gimple_reg (parm))
6063 tree ddef = ssa_default_def (cfun, parm);
6064 if (ddef && !has_zero_uses (ddef))
6066 BrigType16_t t = hsa_type_for_scalar_tree_type (TREE_TYPE (ddef),
6067 false);
6068 BrigType16_t mtype = mem_type_for_type (t);
6069 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (ddef);
6070 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, mtype,
6071 dest, parm_addr);
6072 gcc_assert (!parm_addr->m_reg);
6073 prologue->append_insn (mem);
6078 if (!VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
6080 struct hsa_symbol **slot;
6082 hsa_cfun->m_output_arg = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
6083 BRIG_LINKAGE_FUNCTION);
6084 hsa_cfun->m_output_arg->fillup_for_decl (DECL_RESULT (cfun->decl));
6086 if (hsa_seen_error ())
6087 return;
6089 hsa_cfun->m_output_arg->m_name = "res";
6090 slot = hsa_cfun->m_local_symbols->find_slot (hsa_cfun->m_output_arg,
6091 INSERT);
6092 gcc_assert (!*slot);
6093 *slot = hsa_cfun->m_output_arg;
6097 /* Generate function representation that corresponds to
6098 a function declaration. */
6100 hsa_function_representation *
6101 hsa_generate_function_declaration (tree decl)
6103 hsa_function_representation *fun
6104 = new hsa_function_representation (decl, false, 0);
6106 fun->m_declaration_p = true;
6107 fun->m_name = get_brig_function_name (decl);
6108 gen_function_decl_parameters (fun, decl);
6110 return fun;
6114 /* Generate function representation that corresponds to
6115 an internal FN. */
6117 hsa_function_representation *
6118 hsa_generate_internal_fn_decl (hsa_internal_fn *fn)
6120 hsa_function_representation *fun = new hsa_function_representation (fn);
6122 fun->m_name = fn->name ();
6124 for (unsigned i = 0; i < fn->get_arity (); i++)
6126 hsa_symbol *arg
6127 = new hsa_symbol (fn->get_argument_type (i), BRIG_SEGMENT_ARG,
6128 BRIG_LINKAGE_NONE);
6129 arg->m_name_number = i;
6130 fun->m_input_args.safe_push (arg);
6133 fun->m_output_arg = new hsa_symbol (fn->get_argument_type (-1),
6134 BRIG_SEGMENT_ARG, BRIG_LINKAGE_NONE);
6135 fun->m_output_arg->m_name = "res";
6137 return fun;
6140 /* Return true if switch statement S can be transformed
6141 to a SBR instruction in HSAIL. */
6143 static bool
6144 transformable_switch_to_sbr_p (gswitch *s)
6146 /* Identify if a switch statement can be transformed to
6147 SBR instruction, like:
6149 sbr_u32 $s1 [@label1, @label2, @label3];
6152 tree size = get_switch_size (s);
6153 if (!tree_fits_uhwi_p (size))
6154 return false;
6156 if (tree_to_uhwi (size) > HSA_MAXIMUM_SBR_LABELS)
6157 return false;
6159 return true;
6162 /* Structure hold connection between PHI nodes and immediate
6163 values hold by there nodes. */
6165 struct phi_definition
6167 phi_definition (unsigned phi_i, unsigned label_i, tree imm):
6168 phi_index (phi_i), label_index (label_i), phi_value (imm)
6171 unsigned phi_index;
6172 unsigned label_index;
6173 tree phi_value;
6176 /* Sum slice of a vector V, starting from index START and ending
6177 at the index END - 1. */
6179 template <typename T>
6180 static
6181 T sum_slice (const auto_vec <T> &v, unsigned start, unsigned end,
6182 T zero)
6184 T s = zero;
6186 for (unsigned i = start; i < end; i++)
6187 s += v[i];
6189 return s;
6192 /* Function transforms GIMPLE SWITCH statements to a series of IF statements.
6193 Let's assume following example:
6196 switch (index)
6197 case C1:
6198 L1: hard_work_1 ();
6199 break;
6200 case C2..C3:
6201 L2: hard_work_2 ();
6202 break;
6203 default:
6204 LD: hard_work_3 ();
6205 break;
6207 The transformation encompasses following steps:
6208 1) all immediate values used by edges coming from the switch basic block
6209 are saved
6210 2) all these edges are removed
6211 3) the switch statement (in L0) is replaced by:
6212 if (index == C1)
6213 goto L1;
6214 else
6215 goto L1';
6217 4) newly created basic block Lx' is used for generation of
6218 a next condition
6219 5) else branch of the last condition goes to LD
6220 6) fix all immediate values in PHI nodes that were propagated though
6221 edges that were removed in step 2
6223 Note: if a case is made by a range C1..C2, then process
6224 following transformation:
6226 switch_cond_op1 = C1 <= index;
6227 switch_cond_op2 = index <= C2;
6228 switch_cond_and = switch_cond_op1 & switch_cond_op2;
6229 if (switch_cond_and != 0)
6230 goto Lx;
6231 else
6232 goto Ly;
6236 static bool
6237 convert_switch_statements (void)
6239 function *func = DECL_STRUCT_FUNCTION (current_function_decl);
6240 basic_block bb;
6242 bool modified_cfg = false;
6244 FOR_EACH_BB_FN (bb, func)
6246 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6247 if (gsi_end_p (gsi))
6248 continue;
6250 gimple *stmt = gsi_stmt (gsi);
6252 if (gimple_code (stmt) == GIMPLE_SWITCH)
6254 gswitch *s = as_a <gswitch *> (stmt);
6256 /* If the switch can utilize SBR insn, skip the statement. */
6257 if (transformable_switch_to_sbr_p (s))
6258 continue;
6260 modified_cfg = true;
6262 unsigned labels = gimple_switch_num_labels (s);
6263 tree index = gimple_switch_index (s);
6264 tree index_type = TREE_TYPE (index);
6265 tree default_label = gimple_switch_default_label (s);
6266 basic_block default_label_bb
6267 = label_to_block_fn (func, CASE_LABEL (default_label));
6268 basic_block cur_bb = bb;
6270 auto_vec <edge> new_edges;
6271 auto_vec <phi_definition *> phi_todo_list;
6272 auto_vec <profile_count> edge_counts;
6273 auto_vec <profile_probability> edge_probabilities;
6275 /* Investigate all labels that and PHI nodes in these edges which
6276 should be fixed after we add new collection of edges. */
6277 for (unsigned i = 0; i < labels; i++)
6279 tree label = gimple_switch_label (s, i);
6280 basic_block label_bb = label_to_block_fn (func, CASE_LABEL (label));
6281 edge e = find_edge (bb, label_bb);
6282 edge_counts.safe_push (e->count ());
6283 edge_probabilities.safe_push (e->probability);
6284 gphi_iterator phi_gsi;
6286 /* Save PHI definitions that will be destroyed because of an edge
6287 is going to be removed. */
6288 unsigned phi_index = 0;
6289 for (phi_gsi = gsi_start_phis (e->dest);
6290 !gsi_end_p (phi_gsi); gsi_next (&phi_gsi))
6292 gphi *phi = phi_gsi.phi ();
6293 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
6295 if (gimple_phi_arg_edge (phi, j) == e)
6297 tree imm = gimple_phi_arg_def (phi, j);
6298 phi_definition *p = new phi_definition (phi_index, i,
6299 imm);
6300 phi_todo_list.safe_push (p);
6301 break;
6304 phi_index++;
6308 /* Remove all edges for the current basic block. */
6309 for (int i = EDGE_COUNT (bb->succs) - 1; i >= 0; i--)
6311 edge e = EDGE_SUCC (bb, i);
6312 remove_edge (e);
6315 /* Iterate all non-default labels. */
6316 for (unsigned i = 1; i < labels; i++)
6318 tree label = gimple_switch_label (s, i);
6319 tree low = CASE_LOW (label);
6320 tree high = CASE_HIGH (label);
6322 if (!useless_type_conversion_p (TREE_TYPE (low), index_type))
6323 low = fold_convert (index_type, low);
6325 gimple_stmt_iterator cond_gsi = gsi_last_bb (cur_bb);
6326 gimple *c = NULL;
6327 if (high)
6329 tree tmp1 = make_temp_ssa_name (boolean_type_node, NULL,
6330 "switch_cond_op1");
6332 gimple *assign1 = gimple_build_assign (tmp1, LE_EXPR, low,
6333 index);
6335 tree tmp2 = make_temp_ssa_name (boolean_type_node, NULL,
6336 "switch_cond_op2");
6338 if (!useless_type_conversion_p (TREE_TYPE (high), index_type))
6339 high = fold_convert (index_type, high);
6340 gimple *assign2 = gimple_build_assign (tmp2, LE_EXPR, index,
6341 high);
6343 tree tmp3 = make_temp_ssa_name (boolean_type_node, NULL,
6344 "switch_cond_and");
6345 gimple *assign3 = gimple_build_assign (tmp3, BIT_AND_EXPR, tmp1,
6346 tmp2);
6348 gsi_insert_before (&cond_gsi, assign1, GSI_SAME_STMT);
6349 gsi_insert_before (&cond_gsi, assign2, GSI_SAME_STMT);
6350 gsi_insert_before (&cond_gsi, assign3, GSI_SAME_STMT);
6352 tree b = constant_boolean_node (false, boolean_type_node);
6353 c = gimple_build_cond (NE_EXPR, tmp3, b, NULL, NULL);
6355 else
6356 c = gimple_build_cond (EQ_EXPR, index, low, NULL, NULL);
6358 gimple_set_location (c, gimple_location (stmt));
6360 gsi_insert_before (&cond_gsi, c, GSI_SAME_STMT);
6362 basic_block label_bb
6363 = label_to_block_fn (func, CASE_LABEL (label));
6364 edge new_edge = make_edge (cur_bb, label_bb, EDGE_TRUE_VALUE);
6365 profile_probability prob_sum = sum_slice <profile_probability>
6366 (edge_probabilities, i, labels, profile_probability::never ())
6367 + edge_probabilities[0];
6369 if (prob_sum.initialized_p ())
6370 new_edge->probability = edge_probabilities[i] / prob_sum;
6372 new_edges.safe_push (new_edge);
6374 if (i < labels - 1)
6376 /* Prepare another basic block that will contain
6377 next condition. */
6378 basic_block next_bb = create_empty_bb (cur_bb);
6379 if (current_loops)
6381 add_bb_to_loop (next_bb, cur_bb->loop_father);
6382 loops_state_set (LOOPS_NEED_FIXUP);
6385 edge next_edge = make_edge (cur_bb, next_bb, EDGE_FALSE_VALUE);
6386 next_edge->probability = new_edge->probability.invert ();
6387 next_bb->count = next_edge->count ();
6388 cur_bb = next_bb;
6390 else /* Link last IF statement and default label
6391 of the switch. */
6393 edge e = make_edge (cur_bb, default_label_bb, EDGE_FALSE_VALUE);
6394 e->probability = new_edge->probability.invert ();
6395 new_edges.safe_insert (0, e);
6399 /* Restore original PHI immediate value. */
6400 for (unsigned i = 0; i < phi_todo_list.length (); i++)
6402 phi_definition *phi_def = phi_todo_list[i];
6403 edge new_edge = new_edges[phi_def->label_index];
6405 gphi_iterator it = gsi_start_phis (new_edge->dest);
6406 for (unsigned i = 0; i < phi_def->phi_index; i++)
6407 gsi_next (&it);
6409 gphi *phi = it.phi ();
6410 add_phi_arg (phi, phi_def->phi_value, new_edge, UNKNOWN_LOCATION);
6411 delete phi_def;
6414 /* Remove the original GIMPLE switch statement. */
6415 gsi_remove (&gsi, true);
6419 if (dump_file)
6420 dump_function_to_file (current_function_decl, dump_file, TDF_DETAILS);
6422 return modified_cfg;
6425 /* Expand builtins that can't be handled by HSA back-end. */
6427 static void
6428 expand_builtins ()
6430 function *func = DECL_STRUCT_FUNCTION (current_function_decl);
6431 basic_block bb;
6433 FOR_EACH_BB_FN (bb, func)
6435 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
6436 gsi_next (&gsi))
6438 gimple *stmt = gsi_stmt (gsi);
6440 if (gimple_code (stmt) != GIMPLE_CALL)
6441 continue;
6443 gcall *call = as_a <gcall *> (stmt);
6445 if (!gimple_call_builtin_p (call, BUILT_IN_NORMAL))
6446 continue;
6448 tree fndecl = gimple_call_fndecl (stmt);
6449 enum built_in_function fn = DECL_FUNCTION_CODE (fndecl);
6450 switch (fn)
6452 case BUILT_IN_CEXPF:
6453 case BUILT_IN_CEXPIF:
6454 case BUILT_IN_CEXPI:
6456 /* Similar to builtins.c (expand_builtin_cexpi), the builtin
6457 can be transformed to: cexp(I * z) = ccos(z) + I * csin(z). */
6458 tree lhs = gimple_call_lhs (stmt);
6459 tree rhs = gimple_call_arg (stmt, 0);
6460 tree rhs_type = TREE_TYPE (rhs);
6461 bool float_type_p = rhs_type == float_type_node;
6462 tree real_part = make_temp_ssa_name (rhs_type, NULL,
6463 "cexp_real_part");
6464 tree imag_part = make_temp_ssa_name (rhs_type, NULL,
6465 "cexp_imag_part");
6467 tree cos_fndecl
6468 = mathfn_built_in (rhs_type, fn == float_type_p
6469 ? BUILT_IN_COSF : BUILT_IN_COS);
6470 gcall *cos = gimple_build_call (cos_fndecl, 1, rhs);
6471 gimple_call_set_lhs (cos, real_part);
6472 gsi_insert_before (&gsi, cos, GSI_SAME_STMT);
6474 tree sin_fndecl
6475 = mathfn_built_in (rhs_type, fn == float_type_p
6476 ? BUILT_IN_SINF : BUILT_IN_SIN);
6477 gcall *sin = gimple_build_call (sin_fndecl, 1, rhs);
6478 gimple_call_set_lhs (sin, imag_part);
6479 gsi_insert_before (&gsi, sin, GSI_SAME_STMT);
6482 gassign *assign = gimple_build_assign (lhs, COMPLEX_EXPR,
6483 real_part, imag_part);
6484 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
6485 gsi_remove (&gsi, true);
6487 break;
6489 default:
6490 break;
6496 /* Emit HSA module variables that are global for the entire module. */
6498 static void
6499 emit_hsa_module_variables (void)
6501 hsa_num_threads = new hsa_symbol (BRIG_TYPE_U32, BRIG_SEGMENT_PRIVATE,
6502 BRIG_LINKAGE_MODULE, true);
6504 hsa_num_threads->m_name = "hsa_num_threads";
6506 hsa_brig_emit_omp_symbols ();
6509 /* Generate HSAIL representation of the current function and write into a
6510 special section of the output file. If KERNEL is set, the function will be
6511 considered an HSA kernel callable from the host, otherwise it will be
6512 compiled as an HSA function callable from other HSA code. */
6514 static void
6515 generate_hsa (bool kernel)
6517 hsa_init_data_for_cfun ();
6519 if (hsa_num_threads == NULL)
6520 emit_hsa_module_variables ();
6522 bool modified_cfg = convert_switch_statements ();
6523 /* Initialize hsa_cfun. */
6524 hsa_cfun = new hsa_function_representation (cfun->decl, kernel,
6525 SSANAMES (cfun)->length (),
6526 modified_cfg);
6527 hsa_cfun->init_extra_bbs ();
6529 if (flag_tm)
6531 HSA_SORRY_AT (UNKNOWN_LOCATION,
6532 "support for HSA does not implement transactional memory");
6533 goto fail;
6536 verify_function_arguments (cfun->decl);
6537 if (hsa_seen_error ())
6538 goto fail;
6540 hsa_cfun->m_name = get_brig_function_name (cfun->decl);
6542 gen_function_def_parameters ();
6543 if (hsa_seen_error ())
6544 goto fail;
6546 init_prologue ();
6548 gen_body_from_gimple ();
6549 if (hsa_seen_error ())
6550 goto fail;
6552 if (hsa_cfun->m_kernel_dispatch_count)
6553 init_hsa_num_threads ();
6555 if (hsa_cfun->m_kern_p)
6557 hsa_function_summary *s
6558 = hsa_summaries->get (cgraph_node::get (hsa_cfun->m_decl));
6559 hsa_add_kern_decl_mapping (current_function_decl, hsa_cfun->m_name,
6560 hsa_cfun->m_maximum_omp_data_size,
6561 s->m_gridified_kernel_p);
6564 if (flag_checking)
6566 for (unsigned i = 0; i < hsa_cfun->m_ssa_map.length (); i++)
6567 if (hsa_cfun->m_ssa_map[i])
6568 hsa_cfun->m_ssa_map[i]->verify_ssa ();
6570 basic_block bb;
6571 FOR_EACH_BB_FN (bb, cfun)
6573 hsa_bb *hbb = hsa_bb_for_bb (bb);
6575 for (hsa_insn_basic *insn = hbb->m_first_insn; insn;
6576 insn = insn->m_next)
6577 insn->verify ();
6581 hsa_regalloc ();
6582 hsa_brig_emit_function ();
6584 fail:
6585 hsa_deinit_data_for_cfun ();
6588 namespace {
6590 const pass_data pass_data_gen_hsail =
6592 GIMPLE_PASS,
6593 "hsagen", /* name */
6594 OPTGROUP_OMP, /* optinfo_flags */
6595 TV_NONE, /* tv_id */
6596 PROP_cfg | PROP_ssa, /* properties_required */
6597 0, /* properties_provided */
6598 0, /* properties_destroyed */
6599 0, /* todo_flags_start */
6600 0 /* todo_flags_finish */
6603 class pass_gen_hsail : public gimple_opt_pass
6605 public:
6606 pass_gen_hsail (gcc::context *ctxt)
6607 : gimple_opt_pass(pass_data_gen_hsail, ctxt)
6610 /* opt_pass methods: */
6611 bool gate (function *);
6612 unsigned int execute (function *);
6614 }; // class pass_gen_hsail
6616 /* Determine whether or not to run generation of HSAIL. */
6618 bool
6619 pass_gen_hsail::gate (function *f)
6621 return hsa_gen_requested_p ()
6622 && hsa_gpu_implementation_p (f->decl);
6625 unsigned int
6626 pass_gen_hsail::execute (function *)
6628 hsa_function_summary *s
6629 = hsa_summaries->get (cgraph_node::get_create (current_function_decl));
6631 expand_builtins ();
6632 generate_hsa (s->m_kind == HSA_KERNEL);
6633 TREE_ASM_WRITTEN (current_function_decl) = 1;
6634 return TODO_discard_function;
6637 } // anon namespace
6639 /* Create the instance of hsa gen pass. */
6641 gimple_opt_pass *
6642 make_pass_gen_hsail (gcc::context *ctxt)
6644 return new pass_gen_hsail (ctxt);