libgo: update to go1.9
[official-gcc.git] / libgo / go / net / http / server.go
blob2fa8ab23d8a10ffa4153d61ef82651c07b492b55
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // HTTP server. See RFC 2616.
7 package http
9 import (
10 "bufio"
11 "bytes"
12 "context"
13 "crypto/tls"
14 "errors"
15 "fmt"
16 "io"
17 "io/ioutil"
18 "log"
19 "net"
20 "net/textproto"
21 "net/url"
22 "os"
23 "path"
24 "runtime"
25 "strconv"
26 "strings"
27 "sync"
28 "sync/atomic"
29 "time"
31 "golang_org/x/net/lex/httplex"
34 // Errors used by the HTTP server.
35 var (
36 // ErrBodyNotAllowed is returned by ResponseWriter.Write calls
37 // when the HTTP method or response code does not permit a
38 // body.
39 ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body")
41 // ErrHijacked is returned by ResponseWriter.Write calls when
42 // the underlying connection has been hijacked using the
43 // Hijacker interface. A zero-byte write on a hijacked
44 // connection will return ErrHijacked without any other side
45 // effects.
46 ErrHijacked = errors.New("http: connection has been hijacked")
48 // ErrContentLength is returned by ResponseWriter.Write calls
49 // when a Handler set a Content-Length response header with a
50 // declared size and then attempted to write more bytes than
51 // declared.
52 ErrContentLength = errors.New("http: wrote more than the declared Content-Length")
54 // Deprecated: ErrWriteAfterFlush is no longer used.
55 ErrWriteAfterFlush = errors.New("unused")
58 // A Handler responds to an HTTP request.
60 // ServeHTTP should write reply headers and data to the ResponseWriter
61 // and then return. Returning signals that the request is finished; it
62 // is not valid to use the ResponseWriter or read from the
63 // Request.Body after or concurrently with the completion of the
64 // ServeHTTP call.
66 // Depending on the HTTP client software, HTTP protocol version, and
67 // any intermediaries between the client and the Go server, it may not
68 // be possible to read from the Request.Body after writing to the
69 // ResponseWriter. Cautious handlers should read the Request.Body
70 // first, and then reply.
72 // Except for reading the body, handlers should not modify the
73 // provided Request.
75 // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes
76 // that the effect of the panic was isolated to the active request.
77 // It recovers the panic, logs a stack trace to the server error log,
78 // and either closes the network connection or sends an HTTP/2
79 // RST_STREAM, depending on the HTTP protocol. To abort a handler so
80 // the client sees an interrupted response but the server doesn't log
81 // an error, panic with the value ErrAbortHandler.
82 type Handler interface {
83 ServeHTTP(ResponseWriter, *Request)
86 // A ResponseWriter interface is used by an HTTP handler to
87 // construct an HTTP response.
89 // A ResponseWriter may not be used after the Handler.ServeHTTP method
90 // has returned.
91 type ResponseWriter interface {
92 // Header returns the header map that will be sent by
93 // WriteHeader. The Header map also is the mechanism with which
94 // Handlers can set HTTP trailers.
96 // Changing the header map after a call to WriteHeader (or
97 // Write) has no effect unless the modified headers are
98 // trailers.
100 // There are two ways to set Trailers. The preferred way is to
101 // predeclare in the headers which trailers you will later
102 // send by setting the "Trailer" header to the names of the
103 // trailer keys which will come later. In this case, those
104 // keys of the Header map are treated as if they were
105 // trailers. See the example. The second way, for trailer
106 // keys not known to the Handler until after the first Write,
107 // is to prefix the Header map keys with the TrailerPrefix
108 // constant value. See TrailerPrefix.
110 // To suppress implicit response headers (such as "Date"), set
111 // their value to nil.
112 Header() Header
114 // Write writes the data to the connection as part of an HTTP reply.
116 // If WriteHeader has not yet been called, Write calls
117 // WriteHeader(http.StatusOK) before writing the data. If the Header
118 // does not contain a Content-Type line, Write adds a Content-Type set
119 // to the result of passing the initial 512 bytes of written data to
120 // DetectContentType.
122 // Depending on the HTTP protocol version and the client, calling
123 // Write or WriteHeader may prevent future reads on the
124 // Request.Body. For HTTP/1.x requests, handlers should read any
125 // needed request body data before writing the response. Once the
126 // headers have been flushed (due to either an explicit Flusher.Flush
127 // call or writing enough data to trigger a flush), the request body
128 // may be unavailable. For HTTP/2 requests, the Go HTTP server permits
129 // handlers to continue to read the request body while concurrently
130 // writing the response. However, such behavior may not be supported
131 // by all HTTP/2 clients. Handlers should read before writing if
132 // possible to maximize compatibility.
133 Write([]byte) (int, error)
135 // WriteHeader sends an HTTP response header with status code.
136 // If WriteHeader is not called explicitly, the first call to Write
137 // will trigger an implicit WriteHeader(http.StatusOK).
138 // Thus explicit calls to WriteHeader are mainly used to
139 // send error codes.
140 WriteHeader(int)
143 // The Flusher interface is implemented by ResponseWriters that allow
144 // an HTTP handler to flush buffered data to the client.
146 // The default HTTP/1.x and HTTP/2 ResponseWriter implementations
147 // support Flusher, but ResponseWriter wrappers may not. Handlers
148 // should always test for this ability at runtime.
150 // Note that even for ResponseWriters that support Flush,
151 // if the client is connected through an HTTP proxy,
152 // the buffered data may not reach the client until the response
153 // completes.
154 type Flusher interface {
155 // Flush sends any buffered data to the client.
156 Flush()
159 // The Hijacker interface is implemented by ResponseWriters that allow
160 // an HTTP handler to take over the connection.
162 // The default ResponseWriter for HTTP/1.x connections supports
163 // Hijacker, but HTTP/2 connections intentionally do not.
164 // ResponseWriter wrappers may also not support Hijacker. Handlers
165 // should always test for this ability at runtime.
166 type Hijacker interface {
167 // Hijack lets the caller take over the connection.
168 // After a call to Hijack the HTTP server library
169 // will not do anything else with the connection.
171 // It becomes the caller's responsibility to manage
172 // and close the connection.
174 // The returned net.Conn may have read or write deadlines
175 // already set, depending on the configuration of the
176 // Server. It is the caller's responsibility to set
177 // or clear those deadlines as needed.
179 // The returned bufio.Reader may contain unprocessed buffered
180 // data from the client.
182 // After a call to Hijack, the original Request.Body should
183 // not be used.
184 Hijack() (net.Conn, *bufio.ReadWriter, error)
187 // The CloseNotifier interface is implemented by ResponseWriters which
188 // allow detecting when the underlying connection has gone away.
190 // This mechanism can be used to cancel long operations on the server
191 // if the client has disconnected before the response is ready.
192 type CloseNotifier interface {
193 // CloseNotify returns a channel that receives at most a
194 // single value (true) when the client connection has gone
195 // away.
197 // CloseNotify may wait to notify until Request.Body has been
198 // fully read.
200 // After the Handler has returned, there is no guarantee
201 // that the channel receives a value.
203 // If the protocol is HTTP/1.1 and CloseNotify is called while
204 // processing an idempotent request (such a GET) while
205 // HTTP/1.1 pipelining is in use, the arrival of a subsequent
206 // pipelined request may cause a value to be sent on the
207 // returned channel. In practice HTTP/1.1 pipelining is not
208 // enabled in browsers and not seen often in the wild. If this
209 // is a problem, use HTTP/2 or only use CloseNotify on methods
210 // such as POST.
211 CloseNotify() <-chan bool
214 var (
215 // ServerContextKey is a context key. It can be used in HTTP
216 // handlers with context.WithValue to access the server that
217 // started the handler. The associated value will be of
218 // type *Server.
219 ServerContextKey = &contextKey{"http-server"}
221 // LocalAddrContextKey is a context key. It can be used in
222 // HTTP handlers with context.WithValue to access the address
223 // the local address the connection arrived on.
224 // The associated value will be of type net.Addr.
225 LocalAddrContextKey = &contextKey{"local-addr"}
228 // A conn represents the server side of an HTTP connection.
229 type conn struct {
230 // server is the server on which the connection arrived.
231 // Immutable; never nil.
232 server *Server
234 // cancelCtx cancels the connection-level context.
235 cancelCtx context.CancelFunc
237 // rwc is the underlying network connection.
238 // This is never wrapped by other types and is the value given out
239 // to CloseNotifier callers. It is usually of type *net.TCPConn or
240 // *tls.Conn.
241 rwc net.Conn
243 // remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously
244 // inside the Listener's Accept goroutine, as some implementations block.
245 // It is populated immediately inside the (*conn).serve goroutine.
246 // This is the value of a Handler's (*Request).RemoteAddr.
247 remoteAddr string
249 // tlsState is the TLS connection state when using TLS.
250 // nil means not TLS.
251 tlsState *tls.ConnectionState
253 // werr is set to the first write error to rwc.
254 // It is set via checkConnErrorWriter{w}, where bufw writes.
255 werr error
257 // r is bufr's read source. It's a wrapper around rwc that provides
258 // io.LimitedReader-style limiting (while reading request headers)
259 // and functionality to support CloseNotifier. See *connReader docs.
260 r *connReader
262 // bufr reads from r.
263 bufr *bufio.Reader
265 // bufw writes to checkConnErrorWriter{c}, which populates werr on error.
266 bufw *bufio.Writer
268 // lastMethod is the method of the most recent request
269 // on this connection, if any.
270 lastMethod string
272 curReq atomic.Value // of *response (which has a Request in it)
274 curState atomic.Value // of ConnState
276 // mu guards hijackedv
277 mu sync.Mutex
279 // hijackedv is whether this connection has been hijacked
280 // by a Handler with the Hijacker interface.
281 // It is guarded by mu.
282 hijackedv bool
285 func (c *conn) hijacked() bool {
286 c.mu.Lock()
287 defer c.mu.Unlock()
288 return c.hijackedv
291 // c.mu must be held.
292 func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
293 if c.hijackedv {
294 return nil, nil, ErrHijacked
296 c.r.abortPendingRead()
298 c.hijackedv = true
299 rwc = c.rwc
300 rwc.SetDeadline(time.Time{})
302 buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc))
303 if c.r.hasByte {
304 if _, err := c.bufr.Peek(c.bufr.Buffered() + 1); err != nil {
305 return nil, nil, fmt.Errorf("unexpected Peek failure reading buffered byte: %v", err)
308 c.setState(rwc, StateHijacked)
309 return
312 // This should be >= 512 bytes for DetectContentType,
313 // but otherwise it's somewhat arbitrary.
314 const bufferBeforeChunkingSize = 2048
316 // chunkWriter writes to a response's conn buffer, and is the writer
317 // wrapped by the response.bufw buffered writer.
319 // chunkWriter also is responsible for finalizing the Header, including
320 // conditionally setting the Content-Type and setting a Content-Length
321 // in cases where the handler's final output is smaller than the buffer
322 // size. It also conditionally adds chunk headers, when in chunking mode.
324 // See the comment above (*response).Write for the entire write flow.
325 type chunkWriter struct {
326 res *response
328 // header is either nil or a deep clone of res.handlerHeader
329 // at the time of res.WriteHeader, if res.WriteHeader is
330 // called and extra buffering is being done to calculate
331 // Content-Type and/or Content-Length.
332 header Header
334 // wroteHeader tells whether the header's been written to "the
335 // wire" (or rather: w.conn.buf). this is unlike
336 // (*response).wroteHeader, which tells only whether it was
337 // logically written.
338 wroteHeader bool
340 // set by the writeHeader method:
341 chunking bool // using chunked transfer encoding for reply body
344 var (
345 crlf = []byte("\r\n")
346 colonSpace = []byte(": ")
349 func (cw *chunkWriter) Write(p []byte) (n int, err error) {
350 if !cw.wroteHeader {
351 cw.writeHeader(p)
353 if cw.res.req.Method == "HEAD" {
354 // Eat writes.
355 return len(p), nil
357 if cw.chunking {
358 _, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p))
359 if err != nil {
360 cw.res.conn.rwc.Close()
361 return
364 n, err = cw.res.conn.bufw.Write(p)
365 if cw.chunking && err == nil {
366 _, err = cw.res.conn.bufw.Write(crlf)
368 if err != nil {
369 cw.res.conn.rwc.Close()
371 return
374 func (cw *chunkWriter) flush() {
375 if !cw.wroteHeader {
376 cw.writeHeader(nil)
378 cw.res.conn.bufw.Flush()
381 func (cw *chunkWriter) close() {
382 if !cw.wroteHeader {
383 cw.writeHeader(nil)
385 if cw.chunking {
386 bw := cw.res.conn.bufw // conn's bufio writer
387 // zero chunk to mark EOF
388 bw.WriteString("0\r\n")
389 if trailers := cw.res.finalTrailers(); trailers != nil {
390 trailers.Write(bw) // the writer handles noting errors
392 // final blank line after the trailers (whether
393 // present or not)
394 bw.WriteString("\r\n")
398 // A response represents the server side of an HTTP response.
399 type response struct {
400 conn *conn
401 req *Request // request for this response
402 reqBody io.ReadCloser
403 cancelCtx context.CancelFunc // when ServeHTTP exits
404 wroteHeader bool // reply header has been (logically) written
405 wroteContinue bool // 100 Continue response was written
406 wants10KeepAlive bool // HTTP/1.0 w/ Connection "keep-alive"
407 wantsClose bool // HTTP request has Connection "close"
409 w *bufio.Writer // buffers output in chunks to chunkWriter
410 cw chunkWriter
412 // handlerHeader is the Header that Handlers get access to,
413 // which may be retained and mutated even after WriteHeader.
414 // handlerHeader is copied into cw.header at WriteHeader
415 // time, and privately mutated thereafter.
416 handlerHeader Header
417 calledHeader bool // handler accessed handlerHeader via Header
419 written int64 // number of bytes written in body
420 contentLength int64 // explicitly-declared Content-Length; or -1
421 status int // status code passed to WriteHeader
423 // close connection after this reply. set on request and
424 // updated after response from handler if there's a
425 // "Connection: keep-alive" response header and a
426 // Content-Length.
427 closeAfterReply bool
429 // requestBodyLimitHit is set by requestTooLarge when
430 // maxBytesReader hits its max size. It is checked in
431 // WriteHeader, to make sure we don't consume the
432 // remaining request body to try to advance to the next HTTP
433 // request. Instead, when this is set, we stop reading
434 // subsequent requests on this connection and stop reading
435 // input from it.
436 requestBodyLimitHit bool
438 // trailers are the headers to be sent after the handler
439 // finishes writing the body. This field is initialized from
440 // the Trailer response header when the response header is
441 // written.
442 trailers []string
444 handlerDone atomicBool // set true when the handler exits
446 // Buffers for Date, Content-Length, and status code
447 dateBuf [len(TimeFormat)]byte
448 clenBuf [10]byte
449 statusBuf [3]byte
451 // closeNotifyCh is the channel returned by CloseNotify.
452 // TODO(bradfitz): this is currently (for Go 1.8) always
453 // non-nil. Make this lazily-created again as it used to be?
454 closeNotifyCh chan bool
455 didCloseNotify int32 // atomic (only 0->1 winner should send)
458 // TrailerPrefix is a magic prefix for ResponseWriter.Header map keys
459 // that, if present, signals that the map entry is actually for
460 // the response trailers, and not the response headers. The prefix
461 // is stripped after the ServeHTTP call finishes and the values are
462 // sent in the trailers.
464 // This mechanism is intended only for trailers that are not known
465 // prior to the headers being written. If the set of trailers is fixed
466 // or known before the header is written, the normal Go trailers mechanism
467 // is preferred:
468 // https://golang.org/pkg/net/http/#ResponseWriter
469 // https://golang.org/pkg/net/http/#example_ResponseWriter_trailers
470 const TrailerPrefix = "Trailer:"
472 // finalTrailers is called after the Handler exits and returns a non-nil
473 // value if the Handler set any trailers.
474 func (w *response) finalTrailers() Header {
475 var t Header
476 for k, vv := range w.handlerHeader {
477 if strings.HasPrefix(k, TrailerPrefix) {
478 if t == nil {
479 t = make(Header)
481 t[strings.TrimPrefix(k, TrailerPrefix)] = vv
484 for _, k := range w.trailers {
485 if t == nil {
486 t = make(Header)
488 for _, v := range w.handlerHeader[k] {
489 t.Add(k, v)
492 return t
495 type atomicBool int32
497 func (b *atomicBool) isSet() bool { return atomic.LoadInt32((*int32)(b)) != 0 }
498 func (b *atomicBool) setTrue() { atomic.StoreInt32((*int32)(b), 1) }
500 // declareTrailer is called for each Trailer header when the
501 // response header is written. It notes that a header will need to be
502 // written in the trailers at the end of the response.
503 func (w *response) declareTrailer(k string) {
504 k = CanonicalHeaderKey(k)
505 switch k {
506 case "Transfer-Encoding", "Content-Length", "Trailer":
507 // Forbidden by RFC 2616 14.40.
508 return
510 w.trailers = append(w.trailers, k)
513 // requestTooLarge is called by maxBytesReader when too much input has
514 // been read from the client.
515 func (w *response) requestTooLarge() {
516 w.closeAfterReply = true
517 w.requestBodyLimitHit = true
518 if !w.wroteHeader {
519 w.Header().Set("Connection", "close")
523 // needsSniff reports whether a Content-Type still needs to be sniffed.
524 func (w *response) needsSniff() bool {
525 _, haveType := w.handlerHeader["Content-Type"]
526 return !w.cw.wroteHeader && !haveType && w.written < sniffLen
529 // writerOnly hides an io.Writer value's optional ReadFrom method
530 // from io.Copy.
531 type writerOnly struct {
532 io.Writer
535 func srcIsRegularFile(src io.Reader) (isRegular bool, err error) {
536 switch v := src.(type) {
537 case *os.File:
538 fi, err := v.Stat()
539 if err != nil {
540 return false, err
542 return fi.Mode().IsRegular(), nil
543 case *io.LimitedReader:
544 return srcIsRegularFile(v.R)
545 default:
546 return
550 // ReadFrom is here to optimize copying from an *os.File regular file
551 // to a *net.TCPConn with sendfile.
552 func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
553 // Our underlying w.conn.rwc is usually a *TCPConn (with its
554 // own ReadFrom method). If not, or if our src isn't a regular
555 // file, just fall back to the normal copy method.
556 rf, ok := w.conn.rwc.(io.ReaderFrom)
557 regFile, err := srcIsRegularFile(src)
558 if err != nil {
559 return 0, err
561 if !ok || !regFile {
562 bufp := copyBufPool.Get().(*[]byte)
563 defer copyBufPool.Put(bufp)
564 return io.CopyBuffer(writerOnly{w}, src, *bufp)
567 // sendfile path:
569 if !w.wroteHeader {
570 w.WriteHeader(StatusOK)
573 if w.needsSniff() {
574 n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen))
575 n += n0
576 if err != nil {
577 return n, err
581 w.w.Flush() // get rid of any previous writes
582 w.cw.flush() // make sure Header is written; flush data to rwc
584 // Now that cw has been flushed, its chunking field is guaranteed initialized.
585 if !w.cw.chunking && w.bodyAllowed() {
586 n0, err := rf.ReadFrom(src)
587 n += n0
588 w.written += n0
589 return n, err
592 n0, err := io.Copy(writerOnly{w}, src)
593 n += n0
594 return n, err
597 // debugServerConnections controls whether all server connections are wrapped
598 // with a verbose logging wrapper.
599 const debugServerConnections = false
601 // Create new connection from rwc.
602 func (srv *Server) newConn(rwc net.Conn) *conn {
603 c := &conn{
604 server: srv,
605 rwc: rwc,
607 if debugServerConnections {
608 c.rwc = newLoggingConn("server", c.rwc)
610 return c
613 type readResult struct {
614 n int
615 err error
616 b byte // byte read, if n == 1
619 // connReader is the io.Reader wrapper used by *conn. It combines a
620 // selectively-activated io.LimitedReader (to bound request header
621 // read sizes) with support for selectively keeping an io.Reader.Read
622 // call blocked in a background goroutine to wait for activity and
623 // trigger a CloseNotifier channel.
624 type connReader struct {
625 conn *conn
627 mu sync.Mutex // guards following
628 hasByte bool
629 byteBuf [1]byte
630 cond *sync.Cond
631 inRead bool
632 aborted bool // set true before conn.rwc deadline is set to past
633 remain int64 // bytes remaining
636 func (cr *connReader) lock() {
637 cr.mu.Lock()
638 if cr.cond == nil {
639 cr.cond = sync.NewCond(&cr.mu)
643 func (cr *connReader) unlock() { cr.mu.Unlock() }
645 func (cr *connReader) startBackgroundRead() {
646 cr.lock()
647 defer cr.unlock()
648 if cr.inRead {
649 panic("invalid concurrent Body.Read call")
651 if cr.hasByte {
652 return
654 cr.inRead = true
655 cr.conn.rwc.SetReadDeadline(time.Time{})
656 go cr.backgroundRead()
659 func (cr *connReader) backgroundRead() {
660 n, err := cr.conn.rwc.Read(cr.byteBuf[:])
661 cr.lock()
662 if n == 1 {
663 cr.hasByte = true
664 // We were at EOF already (since we wouldn't be in a
665 // background read otherwise), so this is a pipelined
666 // HTTP request.
667 cr.closeNotifyFromPipelinedRequest()
669 if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() {
670 // Ignore this error. It's the expected error from
671 // another goroutine calling abortPendingRead.
672 } else if err != nil {
673 cr.handleReadError(err)
675 cr.aborted = false
676 cr.inRead = false
677 cr.unlock()
678 cr.cond.Broadcast()
681 func (cr *connReader) abortPendingRead() {
682 cr.lock()
683 defer cr.unlock()
684 if !cr.inRead {
685 return
687 cr.aborted = true
688 cr.conn.rwc.SetReadDeadline(aLongTimeAgo)
689 for cr.inRead {
690 cr.cond.Wait()
692 cr.conn.rwc.SetReadDeadline(time.Time{})
695 func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain }
696 func (cr *connReader) setInfiniteReadLimit() { cr.remain = maxInt64 }
697 func (cr *connReader) hitReadLimit() bool { return cr.remain <= 0 }
699 // may be called from multiple goroutines.
700 func (cr *connReader) handleReadError(err error) {
701 cr.conn.cancelCtx()
702 cr.closeNotify()
705 // closeNotifyFromPipelinedRequest simply calls closeNotify.
707 // This method wrapper is here for documentation. The callers are the
708 // cases where we send on the closenotify channel because of a
709 // pipelined HTTP request, per the previous Go behavior and
710 // documentation (that this "MAY" happen).
712 // TODO: consider changing this behavior and making context
713 // cancelation and closenotify work the same.
714 func (cr *connReader) closeNotifyFromPipelinedRequest() {
715 cr.closeNotify()
718 // may be called from multiple goroutines.
719 func (cr *connReader) closeNotify() {
720 res, _ := cr.conn.curReq.Load().(*response)
721 if res != nil {
722 if atomic.CompareAndSwapInt32(&res.didCloseNotify, 0, 1) {
723 res.closeNotifyCh <- true
728 func (cr *connReader) Read(p []byte) (n int, err error) {
729 cr.lock()
730 if cr.inRead {
731 cr.unlock()
732 panic("invalid concurrent Body.Read call")
734 if cr.hitReadLimit() {
735 cr.unlock()
736 return 0, io.EOF
738 if len(p) == 0 {
739 cr.unlock()
740 return 0, nil
742 if int64(len(p)) > cr.remain {
743 p = p[:cr.remain]
745 if cr.hasByte {
746 p[0] = cr.byteBuf[0]
747 cr.hasByte = false
748 cr.unlock()
749 return 1, nil
751 cr.inRead = true
752 cr.unlock()
753 n, err = cr.conn.rwc.Read(p)
755 cr.lock()
756 cr.inRead = false
757 if err != nil {
758 cr.handleReadError(err)
760 cr.remain -= int64(n)
761 cr.unlock()
763 cr.cond.Broadcast()
764 return n, err
767 var (
768 bufioReaderPool sync.Pool
769 bufioWriter2kPool sync.Pool
770 bufioWriter4kPool sync.Pool
773 var copyBufPool = sync.Pool{
774 New: func() interface{} {
775 b := make([]byte, 32*1024)
776 return &b
780 func bufioWriterPool(size int) *sync.Pool {
781 switch size {
782 case 2 << 10:
783 return &bufioWriter2kPool
784 case 4 << 10:
785 return &bufioWriter4kPool
787 return nil
790 func newBufioReader(r io.Reader) *bufio.Reader {
791 if v := bufioReaderPool.Get(); v != nil {
792 br := v.(*bufio.Reader)
793 br.Reset(r)
794 return br
796 // Note: if this reader size is ever changed, update
797 // TestHandlerBodyClose's assumptions.
798 return bufio.NewReader(r)
801 func putBufioReader(br *bufio.Reader) {
802 br.Reset(nil)
803 bufioReaderPool.Put(br)
806 func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
807 pool := bufioWriterPool(size)
808 if pool != nil {
809 if v := pool.Get(); v != nil {
810 bw := v.(*bufio.Writer)
811 bw.Reset(w)
812 return bw
815 return bufio.NewWriterSize(w, size)
818 func putBufioWriter(bw *bufio.Writer) {
819 bw.Reset(nil)
820 if pool := bufioWriterPool(bw.Available()); pool != nil {
821 pool.Put(bw)
825 // DefaultMaxHeaderBytes is the maximum permitted size of the headers
826 // in an HTTP request.
827 // This can be overridden by setting Server.MaxHeaderBytes.
828 const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
830 func (srv *Server) maxHeaderBytes() int {
831 if srv.MaxHeaderBytes > 0 {
832 return srv.MaxHeaderBytes
834 return DefaultMaxHeaderBytes
837 func (srv *Server) initialReadLimitSize() int64 {
838 return int64(srv.maxHeaderBytes()) + 4096 // bufio slop
841 // wrapper around io.ReadCloser which on first read, sends an
842 // HTTP/1.1 100 Continue header
843 type expectContinueReader struct {
844 resp *response
845 readCloser io.ReadCloser
846 closed bool
847 sawEOF bool
850 func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
851 if ecr.closed {
852 return 0, ErrBodyReadAfterClose
854 if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() {
855 ecr.resp.wroteContinue = true
856 ecr.resp.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
857 ecr.resp.conn.bufw.Flush()
859 n, err = ecr.readCloser.Read(p)
860 if err == io.EOF {
861 ecr.sawEOF = true
863 return
866 func (ecr *expectContinueReader) Close() error {
867 ecr.closed = true
868 return ecr.readCloser.Close()
871 // TimeFormat is the time format to use when generating times in HTTP
872 // headers. It is like time.RFC1123 but hard-codes GMT as the time
873 // zone. The time being formatted must be in UTC for Format to
874 // generate the correct format.
876 // For parsing this time format, see ParseTime.
877 const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
879 // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
880 func appendTime(b []byte, t time.Time) []byte {
881 const days = "SunMonTueWedThuFriSat"
882 const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
884 t = t.UTC()
885 yy, mm, dd := t.Date()
886 hh, mn, ss := t.Clock()
887 day := days[3*t.Weekday():]
888 mon := months[3*(mm-1):]
890 return append(b,
891 day[0], day[1], day[2], ',', ' ',
892 byte('0'+dd/10), byte('0'+dd%10), ' ',
893 mon[0], mon[1], mon[2], ' ',
894 byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
895 byte('0'+hh/10), byte('0'+hh%10), ':',
896 byte('0'+mn/10), byte('0'+mn%10), ':',
897 byte('0'+ss/10), byte('0'+ss%10), ' ',
898 'G', 'M', 'T')
901 var errTooLarge = errors.New("http: request too large")
903 // Read next request from connection.
904 func (c *conn) readRequest(ctx context.Context) (w *response, err error) {
905 if c.hijacked() {
906 return nil, ErrHijacked
909 var (
910 wholeReqDeadline time.Time // or zero if none
911 hdrDeadline time.Time // or zero if none
913 t0 := time.Now()
914 if d := c.server.readHeaderTimeout(); d != 0 {
915 hdrDeadline = t0.Add(d)
917 if d := c.server.ReadTimeout; d != 0 {
918 wholeReqDeadline = t0.Add(d)
920 c.rwc.SetReadDeadline(hdrDeadline)
921 if d := c.server.WriteTimeout; d != 0 {
922 defer func() {
923 c.rwc.SetWriteDeadline(time.Now().Add(d))
927 c.r.setReadLimit(c.server.initialReadLimitSize())
928 if c.lastMethod == "POST" {
929 // RFC 2616 section 4.1 tolerance for old buggy clients.
930 peek, _ := c.bufr.Peek(4) // ReadRequest will get err below
931 c.bufr.Discard(numLeadingCRorLF(peek))
933 req, err := readRequest(c.bufr, keepHostHeader)
934 if err != nil {
935 if c.r.hitReadLimit() {
936 return nil, errTooLarge
938 return nil, err
941 if !http1ServerSupportsRequest(req) {
942 return nil, badRequestError("unsupported protocol version")
945 c.lastMethod = req.Method
946 c.r.setInfiniteReadLimit()
948 hosts, haveHost := req.Header["Host"]
949 isH2Upgrade := req.isH2Upgrade()
950 if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade && req.Method != "CONNECT" {
951 return nil, badRequestError("missing required Host header")
953 if len(hosts) > 1 {
954 return nil, badRequestError("too many Host headers")
956 if len(hosts) == 1 && !httplex.ValidHostHeader(hosts[0]) {
957 return nil, badRequestError("malformed Host header")
959 for k, vv := range req.Header {
960 if !httplex.ValidHeaderFieldName(k) {
961 return nil, badRequestError("invalid header name")
963 for _, v := range vv {
964 if !httplex.ValidHeaderFieldValue(v) {
965 return nil, badRequestError("invalid header value")
969 delete(req.Header, "Host")
971 ctx, cancelCtx := context.WithCancel(ctx)
972 req.ctx = ctx
973 req.RemoteAddr = c.remoteAddr
974 req.TLS = c.tlsState
975 if body, ok := req.Body.(*body); ok {
976 body.doEarlyClose = true
979 // Adjust the read deadline if necessary.
980 if !hdrDeadline.Equal(wholeReqDeadline) {
981 c.rwc.SetReadDeadline(wholeReqDeadline)
984 w = &response{
985 conn: c,
986 cancelCtx: cancelCtx,
987 req: req,
988 reqBody: req.Body,
989 handlerHeader: make(Header),
990 contentLength: -1,
991 closeNotifyCh: make(chan bool, 1),
993 // We populate these ahead of time so we're not
994 // reading from req.Header after their Handler starts
995 // and maybe mutates it (Issue 14940)
996 wants10KeepAlive: req.wantsHttp10KeepAlive(),
997 wantsClose: req.wantsClose(),
999 if isH2Upgrade {
1000 w.closeAfterReply = true
1002 w.cw.res = w
1003 w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
1004 return w, nil
1007 // http1ServerSupportsRequest reports whether Go's HTTP/1.x server
1008 // supports the given request.
1009 func http1ServerSupportsRequest(req *Request) bool {
1010 if req.ProtoMajor == 1 {
1011 return true
1013 // Accept "PRI * HTTP/2.0" upgrade requests, so Handlers can
1014 // wire up their own HTTP/2 upgrades.
1015 if req.ProtoMajor == 2 && req.ProtoMinor == 0 &&
1016 req.Method == "PRI" && req.RequestURI == "*" {
1017 return true
1019 // Reject HTTP/0.x, and all other HTTP/2+ requests (which
1020 // aren't encoded in ASCII anyway).
1021 return false
1024 func (w *response) Header() Header {
1025 if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
1026 // Accessing the header between logically writing it
1027 // and physically writing it means we need to allocate
1028 // a clone to snapshot the logically written state.
1029 w.cw.header = w.handlerHeader.clone()
1031 w.calledHeader = true
1032 return w.handlerHeader
1035 // maxPostHandlerReadBytes is the max number of Request.Body bytes not
1036 // consumed by a handler that the server will read from the client
1037 // in order to keep a connection alive. If there are more bytes than
1038 // this then the server to be paranoid instead sends a "Connection:
1039 // close" response.
1041 // This number is approximately what a typical machine's TCP buffer
1042 // size is anyway. (if we have the bytes on the machine, we might as
1043 // well read them)
1044 const maxPostHandlerReadBytes = 256 << 10
1046 func (w *response) WriteHeader(code int) {
1047 if w.conn.hijacked() {
1048 w.conn.server.logf("http: response.WriteHeader on hijacked connection")
1049 return
1051 if w.wroteHeader {
1052 w.conn.server.logf("http: multiple response.WriteHeader calls")
1053 return
1055 w.wroteHeader = true
1056 w.status = code
1058 if w.calledHeader && w.cw.header == nil {
1059 w.cw.header = w.handlerHeader.clone()
1062 if cl := w.handlerHeader.get("Content-Length"); cl != "" {
1063 v, err := strconv.ParseInt(cl, 10, 64)
1064 if err == nil && v >= 0 {
1065 w.contentLength = v
1066 } else {
1067 w.conn.server.logf("http: invalid Content-Length of %q", cl)
1068 w.handlerHeader.Del("Content-Length")
1073 // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
1074 // This type is used to avoid extra allocations from cloning and/or populating
1075 // the response Header map and all its 1-element slices.
1076 type extraHeader struct {
1077 contentType string
1078 connection string
1079 transferEncoding string
1080 date []byte // written if not nil
1081 contentLength []byte // written if not nil
1084 // Sorted the same as extraHeader.Write's loop.
1085 var extraHeaderKeys = [][]byte{
1086 []byte("Content-Type"),
1087 []byte("Connection"),
1088 []byte("Transfer-Encoding"),
1091 var (
1092 headerContentLength = []byte("Content-Length: ")
1093 headerDate = []byte("Date: ")
1096 // Write writes the headers described in h to w.
1098 // This method has a value receiver, despite the somewhat large size
1099 // of h, because it prevents an allocation. The escape analysis isn't
1100 // smart enough to realize this function doesn't mutate h.
1101 func (h extraHeader) Write(w *bufio.Writer) {
1102 if h.date != nil {
1103 w.Write(headerDate)
1104 w.Write(h.date)
1105 w.Write(crlf)
1107 if h.contentLength != nil {
1108 w.Write(headerContentLength)
1109 w.Write(h.contentLength)
1110 w.Write(crlf)
1112 for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
1113 if v != "" {
1114 w.Write(extraHeaderKeys[i])
1115 w.Write(colonSpace)
1116 w.WriteString(v)
1117 w.Write(crlf)
1122 // writeHeader finalizes the header sent to the client and writes it
1123 // to cw.res.conn.bufw.
1125 // p is not written by writeHeader, but is the first chunk of the body
1126 // that will be written. It is sniffed for a Content-Type if none is
1127 // set explicitly. It's also used to set the Content-Length, if the
1128 // total body size was small and the handler has already finished
1129 // running.
1130 func (cw *chunkWriter) writeHeader(p []byte) {
1131 if cw.wroteHeader {
1132 return
1134 cw.wroteHeader = true
1136 w := cw.res
1137 keepAlivesEnabled := w.conn.server.doKeepAlives()
1138 isHEAD := w.req.Method == "HEAD"
1140 // header is written out to w.conn.buf below. Depending on the
1141 // state of the handler, we either own the map or not. If we
1142 // don't own it, the exclude map is created lazily for
1143 // WriteSubset to remove headers. The setHeader struct holds
1144 // headers we need to add.
1145 header := cw.header
1146 owned := header != nil
1147 if !owned {
1148 header = w.handlerHeader
1150 var excludeHeader map[string]bool
1151 delHeader := func(key string) {
1152 if owned {
1153 header.Del(key)
1154 return
1156 if _, ok := header[key]; !ok {
1157 return
1159 if excludeHeader == nil {
1160 excludeHeader = make(map[string]bool)
1162 excludeHeader[key] = true
1164 var setHeader extraHeader
1166 // Don't write out the fake "Trailer:foo" keys. See TrailerPrefix.
1167 trailers := false
1168 for k := range cw.header {
1169 if strings.HasPrefix(k, TrailerPrefix) {
1170 if excludeHeader == nil {
1171 excludeHeader = make(map[string]bool)
1173 excludeHeader[k] = true
1174 trailers = true
1177 for _, v := range cw.header["Trailer"] {
1178 trailers = true
1179 foreachHeaderElement(v, cw.res.declareTrailer)
1182 te := header.get("Transfer-Encoding")
1183 hasTE := te != ""
1185 // If the handler is done but never sent a Content-Length
1186 // response header and this is our first (and last) write, set
1187 // it, even to zero. This helps HTTP/1.0 clients keep their
1188 // "keep-alive" connections alive.
1189 // Exceptions: 304/204/1xx responses never get Content-Length, and if
1190 // it was a HEAD request, we don't know the difference between
1191 // 0 actual bytes and 0 bytes because the handler noticed it
1192 // was a HEAD request and chose not to write anything. So for
1193 // HEAD, the handler should either write the Content-Length or
1194 // write non-zero bytes. If it's actually 0 bytes and the
1195 // handler never looked at the Request.Method, we just don't
1196 // send a Content-Length header.
1197 // Further, we don't send an automatic Content-Length if they
1198 // set a Transfer-Encoding, because they're generally incompatible.
1199 if w.handlerDone.isSet() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
1200 w.contentLength = int64(len(p))
1201 setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
1204 // If this was an HTTP/1.0 request with keep-alive and we sent a
1205 // Content-Length back, we can make this a keep-alive response ...
1206 if w.wants10KeepAlive && keepAlivesEnabled {
1207 sentLength := header.get("Content-Length") != ""
1208 if sentLength && header.get("Connection") == "keep-alive" {
1209 w.closeAfterReply = false
1213 // Check for a explicit (and valid) Content-Length header.
1214 hasCL := w.contentLength != -1
1216 if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) {
1217 _, connectionHeaderSet := header["Connection"]
1218 if !connectionHeaderSet {
1219 setHeader.connection = "keep-alive"
1221 } else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose {
1222 w.closeAfterReply = true
1225 if header.get("Connection") == "close" || !keepAlivesEnabled {
1226 w.closeAfterReply = true
1229 // If the client wanted a 100-continue but we never sent it to
1230 // them (or, more strictly: we never finished reading their
1231 // request body), don't reuse this connection because it's now
1232 // in an unknown state: we might be sending this response at
1233 // the same time the client is now sending its request body
1234 // after a timeout. (Some HTTP clients send Expect:
1235 // 100-continue but knowing that some servers don't support
1236 // it, the clients set a timer and send the body later anyway)
1237 // If we haven't seen EOF, we can't skip over the unread body
1238 // because we don't know if the next bytes on the wire will be
1239 // the body-following-the-timer or the subsequent request.
1240 // See Issue 11549.
1241 if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF {
1242 w.closeAfterReply = true
1245 // Per RFC 2616, we should consume the request body before
1246 // replying, if the handler hasn't already done so. But we
1247 // don't want to do an unbounded amount of reading here for
1248 // DoS reasons, so we only try up to a threshold.
1249 // TODO(bradfitz): where does RFC 2616 say that? See Issue 15527
1250 // about HTTP/1.x Handlers concurrently reading and writing, like
1251 // HTTP/2 handlers can do. Maybe this code should be relaxed?
1252 if w.req.ContentLength != 0 && !w.closeAfterReply {
1253 var discard, tooBig bool
1255 switch bdy := w.req.Body.(type) {
1256 case *expectContinueReader:
1257 if bdy.resp.wroteContinue {
1258 discard = true
1260 case *body:
1261 bdy.mu.Lock()
1262 switch {
1263 case bdy.closed:
1264 if !bdy.sawEOF {
1265 // Body was closed in handler with non-EOF error.
1266 w.closeAfterReply = true
1268 case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes:
1269 tooBig = true
1270 default:
1271 discard = true
1273 bdy.mu.Unlock()
1274 default:
1275 discard = true
1278 if discard {
1279 _, err := io.CopyN(ioutil.Discard, w.reqBody, maxPostHandlerReadBytes+1)
1280 switch err {
1281 case nil:
1282 // There must be even more data left over.
1283 tooBig = true
1284 case ErrBodyReadAfterClose:
1285 // Body was already consumed and closed.
1286 case io.EOF:
1287 // The remaining body was just consumed, close it.
1288 err = w.reqBody.Close()
1289 if err != nil {
1290 w.closeAfterReply = true
1292 default:
1293 // Some other kind of error occurred, like a read timeout, or
1294 // corrupt chunked encoding. In any case, whatever remains
1295 // on the wire must not be parsed as another HTTP request.
1296 w.closeAfterReply = true
1300 if tooBig {
1301 w.requestTooLarge()
1302 delHeader("Connection")
1303 setHeader.connection = "close"
1307 code := w.status
1308 if bodyAllowedForStatus(code) {
1309 // If no content type, apply sniffing algorithm to body.
1310 _, haveType := header["Content-Type"]
1311 if !haveType && !hasTE {
1312 setHeader.contentType = DetectContentType(p)
1314 } else {
1315 for _, k := range suppressedHeaders(code) {
1316 delHeader(k)
1320 if _, ok := header["Date"]; !ok {
1321 setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
1324 if hasCL && hasTE && te != "identity" {
1325 // TODO: return an error if WriteHeader gets a return parameter
1326 // For now just ignore the Content-Length.
1327 w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
1328 te, w.contentLength)
1329 delHeader("Content-Length")
1330 hasCL = false
1333 if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) {
1334 // do nothing
1335 } else if code == StatusNoContent {
1336 delHeader("Transfer-Encoding")
1337 } else if hasCL {
1338 delHeader("Transfer-Encoding")
1339 } else if w.req.ProtoAtLeast(1, 1) {
1340 // HTTP/1.1 or greater: Transfer-Encoding has been set to identity, and no
1341 // content-length has been provided. The connection must be closed after the
1342 // reply is written, and no chunking is to be done. This is the setup
1343 // recommended in the Server-Sent Events candidate recommendation 11,
1344 // section 8.
1345 if hasTE && te == "identity" {
1346 cw.chunking = false
1347 w.closeAfterReply = true
1348 } else {
1349 // HTTP/1.1 or greater: use chunked transfer encoding
1350 // to avoid closing the connection at EOF.
1351 cw.chunking = true
1352 setHeader.transferEncoding = "chunked"
1353 if hasTE && te == "chunked" {
1354 // We will send the chunked Transfer-Encoding header later.
1355 delHeader("Transfer-Encoding")
1358 } else {
1359 // HTTP version < 1.1: cannot do chunked transfer
1360 // encoding and we don't know the Content-Length so
1361 // signal EOF by closing connection.
1362 w.closeAfterReply = true
1363 delHeader("Transfer-Encoding") // in case already set
1366 // Cannot use Content-Length with non-identity Transfer-Encoding.
1367 if cw.chunking {
1368 delHeader("Content-Length")
1370 if !w.req.ProtoAtLeast(1, 0) {
1371 return
1374 if w.closeAfterReply && (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) {
1375 delHeader("Connection")
1376 if w.req.ProtoAtLeast(1, 1) {
1377 setHeader.connection = "close"
1381 writeStatusLine(w.conn.bufw, w.req.ProtoAtLeast(1, 1), code, w.statusBuf[:])
1382 cw.header.WriteSubset(w.conn.bufw, excludeHeader)
1383 setHeader.Write(w.conn.bufw)
1384 w.conn.bufw.Write(crlf)
1387 // foreachHeaderElement splits v according to the "#rule" construction
1388 // in RFC 2616 section 2.1 and calls fn for each non-empty element.
1389 func foreachHeaderElement(v string, fn func(string)) {
1390 v = textproto.TrimString(v)
1391 if v == "" {
1392 return
1394 if !strings.Contains(v, ",") {
1395 fn(v)
1396 return
1398 for _, f := range strings.Split(v, ",") {
1399 if f = textproto.TrimString(f); f != "" {
1400 fn(f)
1405 // writeStatusLine writes an HTTP/1.x Status-Line (RFC 2616 Section 6.1)
1406 // to bw. is11 is whether the HTTP request is HTTP/1.1. false means HTTP/1.0.
1407 // code is the response status code.
1408 // scratch is an optional scratch buffer. If it has at least capacity 3, it's used.
1409 func writeStatusLine(bw *bufio.Writer, is11 bool, code int, scratch []byte) {
1410 if is11 {
1411 bw.WriteString("HTTP/1.1 ")
1412 } else {
1413 bw.WriteString("HTTP/1.0 ")
1415 if text, ok := statusText[code]; ok {
1416 bw.Write(strconv.AppendInt(scratch[:0], int64(code), 10))
1417 bw.WriteByte(' ')
1418 bw.WriteString(text)
1419 bw.WriteString("\r\n")
1420 } else {
1421 // don't worry about performance
1422 fmt.Fprintf(bw, "%03d status code %d\r\n", code, code)
1426 // bodyAllowed reports whether a Write is allowed for this response type.
1427 // It's illegal to call this before the header has been flushed.
1428 func (w *response) bodyAllowed() bool {
1429 if !w.wroteHeader {
1430 panic("")
1432 return bodyAllowedForStatus(w.status)
1435 // The Life Of A Write is like this:
1437 // Handler starts. No header has been sent. The handler can either
1438 // write a header, or just start writing. Writing before sending a header
1439 // sends an implicitly empty 200 OK header.
1441 // If the handler didn't declare a Content-Length up front, we either
1442 // go into chunking mode or, if the handler finishes running before
1443 // the chunking buffer size, we compute a Content-Length and send that
1444 // in the header instead.
1446 // Likewise, if the handler didn't set a Content-Type, we sniff that
1447 // from the initial chunk of output.
1449 // The Writers are wired together like:
1451 // 1. *response (the ResponseWriter) ->
1452 // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
1453 // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
1454 // and which writes the chunk headers, if needed.
1455 // 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to ->
1456 // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write
1457 // and populates c.werr with it if so. but otherwise writes to:
1458 // 6. the rwc, the net.Conn.
1460 // TODO(bradfitz): short-circuit some of the buffering when the
1461 // initial header contains both a Content-Type and Content-Length.
1462 // Also short-circuit in (1) when the header's been sent and not in
1463 // chunking mode, writing directly to (4) instead, if (2) has no
1464 // buffered data. More generally, we could short-circuit from (1) to
1465 // (3) even in chunking mode if the write size from (1) is over some
1466 // threshold and nothing is in (2). The answer might be mostly making
1467 // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
1468 // with this instead.
1469 func (w *response) Write(data []byte) (n int, err error) {
1470 return w.write(len(data), data, "")
1473 func (w *response) WriteString(data string) (n int, err error) {
1474 return w.write(len(data), nil, data)
1477 // either dataB or dataS is non-zero.
1478 func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
1479 if w.conn.hijacked() {
1480 if lenData > 0 {
1481 w.conn.server.logf("http: response.Write on hijacked connection")
1483 return 0, ErrHijacked
1485 if !w.wroteHeader {
1486 w.WriteHeader(StatusOK)
1488 if lenData == 0 {
1489 return 0, nil
1491 if !w.bodyAllowed() {
1492 return 0, ErrBodyNotAllowed
1495 w.written += int64(lenData) // ignoring errors, for errorKludge
1496 if w.contentLength != -1 && w.written > w.contentLength {
1497 return 0, ErrContentLength
1499 if dataB != nil {
1500 return w.w.Write(dataB)
1501 } else {
1502 return w.w.WriteString(dataS)
1506 func (w *response) finishRequest() {
1507 w.handlerDone.setTrue()
1509 if !w.wroteHeader {
1510 w.WriteHeader(StatusOK)
1513 w.w.Flush()
1514 putBufioWriter(w.w)
1515 w.cw.close()
1516 w.conn.bufw.Flush()
1518 w.conn.r.abortPendingRead()
1520 // Close the body (regardless of w.closeAfterReply) so we can
1521 // re-use its bufio.Reader later safely.
1522 w.reqBody.Close()
1524 if w.req.MultipartForm != nil {
1525 w.req.MultipartForm.RemoveAll()
1529 // shouldReuseConnection reports whether the underlying TCP connection can be reused.
1530 // It must only be called after the handler is done executing.
1531 func (w *response) shouldReuseConnection() bool {
1532 if w.closeAfterReply {
1533 // The request or something set while executing the
1534 // handler indicated we shouldn't reuse this
1535 // connection.
1536 return false
1539 if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
1540 // Did not write enough. Avoid getting out of sync.
1541 return false
1544 // There was some error writing to the underlying connection
1545 // during the request, so don't re-use this conn.
1546 if w.conn.werr != nil {
1547 return false
1550 if w.closedRequestBodyEarly() {
1551 return false
1554 return true
1557 func (w *response) closedRequestBodyEarly() bool {
1558 body, ok := w.req.Body.(*body)
1559 return ok && body.didEarlyClose()
1562 func (w *response) Flush() {
1563 if !w.wroteHeader {
1564 w.WriteHeader(StatusOK)
1566 w.w.Flush()
1567 w.cw.flush()
1570 func (c *conn) finalFlush() {
1571 if c.bufr != nil {
1572 // Steal the bufio.Reader (~4KB worth of memory) and its associated
1573 // reader for a future connection.
1574 putBufioReader(c.bufr)
1575 c.bufr = nil
1578 if c.bufw != nil {
1579 c.bufw.Flush()
1580 // Steal the bufio.Writer (~4KB worth of memory) and its associated
1581 // writer for a future connection.
1582 putBufioWriter(c.bufw)
1583 c.bufw = nil
1587 // Close the connection.
1588 func (c *conn) close() {
1589 c.finalFlush()
1590 c.rwc.Close()
1593 // rstAvoidanceDelay is the amount of time we sleep after closing the
1594 // write side of a TCP connection before closing the entire socket.
1595 // By sleeping, we increase the chances that the client sees our FIN
1596 // and processes its final data before they process the subsequent RST
1597 // from closing a connection with known unread data.
1598 // This RST seems to occur mostly on BSD systems. (And Windows?)
1599 // This timeout is somewhat arbitrary (~latency around the planet).
1600 const rstAvoidanceDelay = 500 * time.Millisecond
1602 type closeWriter interface {
1603 CloseWrite() error
1606 var _ closeWriter = (*net.TCPConn)(nil)
1608 // closeWrite flushes any outstanding data and sends a FIN packet (if
1609 // client is connected via TCP), signalling that we're done. We then
1610 // pause for a bit, hoping the client processes it before any
1611 // subsequent RST.
1613 // See https://golang.org/issue/3595
1614 func (c *conn) closeWriteAndWait() {
1615 c.finalFlush()
1616 if tcp, ok := c.rwc.(closeWriter); ok {
1617 tcp.CloseWrite()
1619 time.Sleep(rstAvoidanceDelay)
1622 // validNPN reports whether the proto is not a blacklisted Next
1623 // Protocol Negotiation protocol. Empty and built-in protocol types
1624 // are blacklisted and can't be overridden with alternate
1625 // implementations.
1626 func validNPN(proto string) bool {
1627 switch proto {
1628 case "", "http/1.1", "http/1.0":
1629 return false
1631 return true
1634 func (c *conn) setState(nc net.Conn, state ConnState) {
1635 srv := c.server
1636 switch state {
1637 case StateNew:
1638 srv.trackConn(c, true)
1639 case StateHijacked, StateClosed:
1640 srv.trackConn(c, false)
1642 c.curState.Store(connStateInterface[state])
1643 if hook := srv.ConnState; hook != nil {
1644 hook(nc, state)
1648 // connStateInterface is an array of the interface{} versions of
1649 // ConnState values, so we can use them in atomic.Values later without
1650 // paying the cost of shoving their integers in an interface{}.
1651 var connStateInterface = [...]interface{}{
1652 StateNew: StateNew,
1653 StateActive: StateActive,
1654 StateIdle: StateIdle,
1655 StateHijacked: StateHijacked,
1656 StateClosed: StateClosed,
1659 // badRequestError is a literal string (used by in the server in HTML,
1660 // unescaped) to tell the user why their request was bad. It should
1661 // be plain text without user info or other embedded errors.
1662 type badRequestError string
1664 func (e badRequestError) Error() string { return "Bad Request: " + string(e) }
1666 // ErrAbortHandler is a sentinel panic value to abort a handler.
1667 // While any panic from ServeHTTP aborts the response to the client,
1668 // panicking with ErrAbortHandler also suppresses logging of a stack
1669 // trace to the server's error log.
1670 var ErrAbortHandler = errors.New("net/http: abort Handler")
1672 // isCommonNetReadError reports whether err is a common error
1673 // encountered during reading a request off the network when the
1674 // client has gone away or had its read fail somehow. This is used to
1675 // determine which logs are interesting enough to log about.
1676 func isCommonNetReadError(err error) bool {
1677 if err == io.EOF {
1678 return true
1680 if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
1681 return true
1683 if oe, ok := err.(*net.OpError); ok && oe.Op == "read" {
1684 return true
1686 return false
1689 // Serve a new connection.
1690 func (c *conn) serve(ctx context.Context) {
1691 c.remoteAddr = c.rwc.RemoteAddr().String()
1692 ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
1693 defer func() {
1694 if err := recover(); err != nil && err != ErrAbortHandler {
1695 const size = 64 << 10
1696 buf := make([]byte, size)
1697 buf = buf[:runtime.Stack(buf, false)]
1698 c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
1700 if !c.hijacked() {
1701 c.close()
1702 c.setState(c.rwc, StateClosed)
1706 if tlsConn, ok := c.rwc.(*tls.Conn); ok {
1707 if d := c.server.ReadTimeout; d != 0 {
1708 c.rwc.SetReadDeadline(time.Now().Add(d))
1710 if d := c.server.WriteTimeout; d != 0 {
1711 c.rwc.SetWriteDeadline(time.Now().Add(d))
1713 if err := tlsConn.Handshake(); err != nil {
1714 c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
1715 return
1717 c.tlsState = new(tls.ConnectionState)
1718 *c.tlsState = tlsConn.ConnectionState()
1719 if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
1720 if fn := c.server.TLSNextProto[proto]; fn != nil {
1721 h := initNPNRequest{tlsConn, serverHandler{c.server}}
1722 fn(c.server, tlsConn, h)
1724 return
1728 // HTTP/1.x from here on.
1730 ctx, cancelCtx := context.WithCancel(ctx)
1731 c.cancelCtx = cancelCtx
1732 defer cancelCtx()
1734 c.r = &connReader{conn: c}
1735 c.bufr = newBufioReader(c.r)
1736 c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
1738 for {
1739 w, err := c.readRequest(ctx)
1740 if c.r.remain != c.server.initialReadLimitSize() {
1741 // If we read any bytes off the wire, we're active.
1742 c.setState(c.rwc, StateActive)
1744 if err != nil {
1745 const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n"
1747 if err == errTooLarge {
1748 // Their HTTP client may or may not be
1749 // able to read this if we're
1750 // responding to them and hanging up
1751 // while they're still writing their
1752 // request. Undefined behavior.
1753 const publicErr = "431 Request Header Fields Too Large"
1754 fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
1755 c.closeWriteAndWait()
1756 return
1758 if isCommonNetReadError(err) {
1759 return // don't reply
1762 publicErr := "400 Bad Request"
1763 if v, ok := err.(badRequestError); ok {
1764 publicErr = publicErr + ": " + string(v)
1767 fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
1768 return
1771 // Expect 100 Continue support
1772 req := w.req
1773 if req.expectsContinue() {
1774 if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
1775 // Wrap the Body reader with one that replies on the connection
1776 req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
1778 } else if req.Header.get("Expect") != "" {
1779 w.sendExpectationFailed()
1780 return
1783 c.curReq.Store(w)
1785 if requestBodyRemains(req.Body) {
1786 registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
1787 } else {
1788 if w.conn.bufr.Buffered() > 0 {
1789 w.conn.r.closeNotifyFromPipelinedRequest()
1791 w.conn.r.startBackgroundRead()
1794 // HTTP cannot have multiple simultaneous active requests.[*]
1795 // Until the server replies to this request, it can't read another,
1796 // so we might as well run the handler in this goroutine.
1797 // [*] Not strictly true: HTTP pipelining. We could let them all process
1798 // in parallel even if their responses need to be serialized.
1799 // But we're not going to implement HTTP pipelining because it
1800 // was never deployed in the wild and the answer is HTTP/2.
1801 serverHandler{c.server}.ServeHTTP(w, w.req)
1802 w.cancelCtx()
1803 if c.hijacked() {
1804 return
1806 w.finishRequest()
1807 if !w.shouldReuseConnection() {
1808 if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
1809 c.closeWriteAndWait()
1811 return
1813 c.setState(c.rwc, StateIdle)
1814 c.curReq.Store((*response)(nil))
1816 if !w.conn.server.doKeepAlives() {
1817 // We're in shutdown mode. We might've replied
1818 // to the user without "Connection: close" and
1819 // they might think they can send another
1820 // request, but such is life with HTTP/1.1.
1821 return
1824 if d := c.server.idleTimeout(); d != 0 {
1825 c.rwc.SetReadDeadline(time.Now().Add(d))
1826 if _, err := c.bufr.Peek(4); err != nil {
1827 return
1830 c.rwc.SetReadDeadline(time.Time{})
1834 func (w *response) sendExpectationFailed() {
1835 // TODO(bradfitz): let ServeHTTP handlers handle
1836 // requests with non-standard expectation[s]? Seems
1837 // theoretical at best, and doesn't fit into the
1838 // current ServeHTTP model anyway. We'd need to
1839 // make the ResponseWriter an optional
1840 // "ExpectReplier" interface or something.
1842 // For now we'll just obey RFC 2616 14.20 which says
1843 // "If a server receives a request containing an
1844 // Expect field that includes an expectation-
1845 // extension that it does not support, it MUST
1846 // respond with a 417 (Expectation Failed) status."
1847 w.Header().Set("Connection", "close")
1848 w.WriteHeader(StatusExpectationFailed)
1849 w.finishRequest()
1852 // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
1853 // and a Hijacker.
1854 func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
1855 if w.handlerDone.isSet() {
1856 panic("net/http: Hijack called after ServeHTTP finished")
1858 if w.wroteHeader {
1859 w.cw.flush()
1862 c := w.conn
1863 c.mu.Lock()
1864 defer c.mu.Unlock()
1866 // Release the bufioWriter that writes to the chunk writer, it is not
1867 // used after a connection has been hijacked.
1868 rwc, buf, err = c.hijackLocked()
1869 if err == nil {
1870 putBufioWriter(w.w)
1871 w.w = nil
1873 return rwc, buf, err
1876 func (w *response) CloseNotify() <-chan bool {
1877 if w.handlerDone.isSet() {
1878 panic("net/http: CloseNotify called after ServeHTTP finished")
1880 return w.closeNotifyCh
1883 func registerOnHitEOF(rc io.ReadCloser, fn func()) {
1884 switch v := rc.(type) {
1885 case *expectContinueReader:
1886 registerOnHitEOF(v.readCloser, fn)
1887 case *body:
1888 v.registerOnHitEOF(fn)
1889 default:
1890 panic("unexpected type " + fmt.Sprintf("%T", rc))
1894 // requestBodyRemains reports whether future calls to Read
1895 // on rc might yield more data.
1896 func requestBodyRemains(rc io.ReadCloser) bool {
1897 if rc == NoBody {
1898 return false
1900 switch v := rc.(type) {
1901 case *expectContinueReader:
1902 return requestBodyRemains(v.readCloser)
1903 case *body:
1904 return v.bodyRemains()
1905 default:
1906 panic("unexpected type " + fmt.Sprintf("%T", rc))
1910 // The HandlerFunc type is an adapter to allow the use of
1911 // ordinary functions as HTTP handlers. If f is a function
1912 // with the appropriate signature, HandlerFunc(f) is a
1913 // Handler that calls f.
1914 type HandlerFunc func(ResponseWriter, *Request)
1916 // ServeHTTP calls f(w, r).
1917 func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
1918 f(w, r)
1921 // Helper handlers
1923 // Error replies to the request with the specified error message and HTTP code.
1924 // It does not otherwise end the request; the caller should ensure no further
1925 // writes are done to w.
1926 // The error message should be plain text.
1927 func Error(w ResponseWriter, error string, code int) {
1928 w.Header().Set("Content-Type", "text/plain; charset=utf-8")
1929 w.Header().Set("X-Content-Type-Options", "nosniff")
1930 w.WriteHeader(code)
1931 fmt.Fprintln(w, error)
1934 // NotFound replies to the request with an HTTP 404 not found error.
1935 func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
1937 // NotFoundHandler returns a simple request handler
1938 // that replies to each request with a ``404 page not found'' reply.
1939 func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
1941 // StripPrefix returns a handler that serves HTTP requests
1942 // by removing the given prefix from the request URL's Path
1943 // and invoking the handler h. StripPrefix handles a
1944 // request for a path that doesn't begin with prefix by
1945 // replying with an HTTP 404 not found error.
1946 func StripPrefix(prefix string, h Handler) Handler {
1947 if prefix == "" {
1948 return h
1950 return HandlerFunc(func(w ResponseWriter, r *Request) {
1951 if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
1952 r2 := new(Request)
1953 *r2 = *r
1954 r2.URL = new(url.URL)
1955 *r2.URL = *r.URL
1956 r2.URL.Path = p
1957 h.ServeHTTP(w, r2)
1958 } else {
1959 NotFound(w, r)
1964 // Redirect replies to the request with a redirect to url,
1965 // which may be a path relative to the request path.
1967 // The provided code should be in the 3xx range and is usually
1968 // StatusMovedPermanently, StatusFound or StatusSeeOther.
1969 func Redirect(w ResponseWriter, r *Request, url string, code int) {
1970 // parseURL is just url.Parse (url is shadowed for godoc).
1971 if u, err := parseURL(url); err == nil {
1972 // If url was relative, make absolute by
1973 // combining with request path.
1974 // The browser would probably do this for us,
1975 // but doing it ourselves is more reliable.
1977 // NOTE(rsc): RFC 2616 says that the Location
1978 // line must be an absolute URI, like
1979 // "http://www.google.com/redirect/",
1980 // not a path like "/redirect/".
1981 // Unfortunately, we don't know what to
1982 // put in the host name section to get the
1983 // client to connect to us again, so we can't
1984 // know the right absolute URI to send back.
1985 // Because of this problem, no one pays attention
1986 // to the RFC; they all send back just a new path.
1987 // So do we.
1988 if u.Scheme == "" && u.Host == "" {
1989 oldpath := r.URL.Path
1990 if oldpath == "" { // should not happen, but avoid a crash if it does
1991 oldpath = "/"
1994 // no leading http://server
1995 if url == "" || url[0] != '/' {
1996 // make relative path absolute
1997 olddir, _ := path.Split(oldpath)
1998 url = olddir + url
2001 var query string
2002 if i := strings.Index(url, "?"); i != -1 {
2003 url, query = url[:i], url[i:]
2006 // clean up but preserve trailing slash
2007 trailing := strings.HasSuffix(url, "/")
2008 url = path.Clean(url)
2009 if trailing && !strings.HasSuffix(url, "/") {
2010 url += "/"
2012 url += query
2016 w.Header().Set("Location", hexEscapeNonASCII(url))
2017 w.WriteHeader(code)
2019 // RFC 2616 recommends that a short note "SHOULD" be included in the
2020 // response because older user agents may not understand 301/307.
2021 // Shouldn't send the response for POST or HEAD; that leaves GET.
2022 if r.Method == "GET" {
2023 note := "<a href=\"" + htmlEscape(url) + "\">" + statusText[code] + "</a>.\n"
2024 fmt.Fprintln(w, note)
2028 // parseURL is just url.Parse. It exists only so that url.Parse can be called
2029 // in places where url is shadowed for godoc. See https://golang.org/cl/49930.
2030 var parseURL = url.Parse
2032 var htmlReplacer = strings.NewReplacer(
2033 "&", "&amp;",
2034 "<", "&lt;",
2035 ">", "&gt;",
2036 // "&#34;" is shorter than "&quot;".
2037 `"`, "&#34;",
2038 // "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
2039 "'", "&#39;",
2042 func htmlEscape(s string) string {
2043 return htmlReplacer.Replace(s)
2046 // Redirect to a fixed URL
2047 type redirectHandler struct {
2048 url string
2049 code int
2052 func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
2053 Redirect(w, r, rh.url, rh.code)
2056 // RedirectHandler returns a request handler that redirects
2057 // each request it receives to the given url using the given
2058 // status code.
2060 // The provided code should be in the 3xx range and is usually
2061 // StatusMovedPermanently, StatusFound or StatusSeeOther.
2062 func RedirectHandler(url string, code int) Handler {
2063 return &redirectHandler{url, code}
2066 // ServeMux is an HTTP request multiplexer.
2067 // It matches the URL of each incoming request against a list of registered
2068 // patterns and calls the handler for the pattern that
2069 // most closely matches the URL.
2071 // Patterns name fixed, rooted paths, like "/favicon.ico",
2072 // or rooted subtrees, like "/images/" (note the trailing slash).
2073 // Longer patterns take precedence over shorter ones, so that
2074 // if there are handlers registered for both "/images/"
2075 // and "/images/thumbnails/", the latter handler will be
2076 // called for paths beginning "/images/thumbnails/" and the
2077 // former will receive requests for any other paths in the
2078 // "/images/" subtree.
2080 // Note that since a pattern ending in a slash names a rooted subtree,
2081 // the pattern "/" matches all paths not matched by other registered
2082 // patterns, not just the URL with Path == "/".
2084 // If a subtree has been registered and a request is received naming the
2085 // subtree root without its trailing slash, ServeMux redirects that
2086 // request to the subtree root (adding the trailing slash). This behavior can
2087 // be overridden with a separate registration for the path without
2088 // the trailing slash. For example, registering "/images/" causes ServeMux
2089 // to redirect a request for "/images" to "/images/", unless "/images" has
2090 // been registered separately.
2092 // Patterns may optionally begin with a host name, restricting matches to
2093 // URLs on that host only. Host-specific patterns take precedence over
2094 // general patterns, so that a handler might register for the two patterns
2095 // "/codesearch" and "codesearch.google.com/" without also taking over
2096 // requests for "http://www.google.com/".
2098 // ServeMux also takes care of sanitizing the URL request path,
2099 // redirecting any request containing . or .. elements or repeated slashes
2100 // to an equivalent, cleaner URL.
2101 type ServeMux struct {
2102 mu sync.RWMutex
2103 m map[string]muxEntry
2104 hosts bool // whether any patterns contain hostnames
2107 type muxEntry struct {
2108 explicit bool
2109 h Handler
2110 pattern string
2113 // NewServeMux allocates and returns a new ServeMux.
2114 func NewServeMux() *ServeMux { return new(ServeMux) }
2116 // DefaultServeMux is the default ServeMux used by Serve.
2117 var DefaultServeMux = &defaultServeMux
2119 var defaultServeMux ServeMux
2121 // Does path match pattern?
2122 func pathMatch(pattern, path string) bool {
2123 if len(pattern) == 0 {
2124 // should not happen
2125 return false
2127 n := len(pattern)
2128 if pattern[n-1] != '/' {
2129 return pattern == path
2131 return len(path) >= n && path[0:n] == pattern
2134 // Return the canonical path for p, eliminating . and .. elements.
2135 func cleanPath(p string) string {
2136 if p == "" {
2137 return "/"
2139 if p[0] != '/' {
2140 p = "/" + p
2142 np := path.Clean(p)
2143 // path.Clean removes trailing slash except for root;
2144 // put the trailing slash back if necessary.
2145 if p[len(p)-1] == '/' && np != "/" {
2146 np += "/"
2148 return np
2151 // stripHostPort returns h without any trailing ":<port>".
2152 func stripHostPort(h string) string {
2153 // If no port on host, return unchanged
2154 if strings.IndexByte(h, ':') == -1 {
2155 return h
2157 host, _, err := net.SplitHostPort(h)
2158 if err != nil {
2159 return h // on error, return unchanged
2161 return host
2164 // Find a handler on a handler map given a path string.
2165 // Most-specific (longest) pattern wins.
2166 func (mux *ServeMux) match(path string) (h Handler, pattern string) {
2167 // Check for exact match first.
2168 v, ok := mux.m[path]
2169 if ok {
2170 return v.h, v.pattern
2173 // Check for longest valid match.
2174 var n = 0
2175 for k, v := range mux.m {
2176 if !pathMatch(k, path) {
2177 continue
2179 if h == nil || len(k) > n {
2180 n = len(k)
2181 h = v.h
2182 pattern = v.pattern
2185 return
2188 // Handler returns the handler to use for the given request,
2189 // consulting r.Method, r.Host, and r.URL.Path. It always returns
2190 // a non-nil handler. If the path is not in its canonical form, the
2191 // handler will be an internally-generated handler that redirects
2192 // to the canonical path. If the host contains a port, it is ignored
2193 // when matching handlers.
2195 // The path and host are used unchanged for CONNECT requests.
2197 // Handler also returns the registered pattern that matches the
2198 // request or, in the case of internally-generated redirects,
2199 // the pattern that will match after following the redirect.
2201 // If there is no registered handler that applies to the request,
2202 // Handler returns a ``page not found'' handler and an empty pattern.
2203 func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
2205 // CONNECT requests are not canonicalized.
2206 if r.Method == "CONNECT" {
2207 return mux.handler(r.Host, r.URL.Path)
2210 // All other requests have any port stripped and path cleaned
2211 // before passing to mux.handler.
2212 host := stripHostPort(r.Host)
2213 path := cleanPath(r.URL.Path)
2214 if path != r.URL.Path {
2215 _, pattern = mux.handler(host, path)
2216 url := *r.URL
2217 url.Path = path
2218 return RedirectHandler(url.String(), StatusMovedPermanently), pattern
2221 return mux.handler(host, r.URL.Path)
2224 // handler is the main implementation of Handler.
2225 // The path is known to be in canonical form, except for CONNECT methods.
2226 func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
2227 mux.mu.RLock()
2228 defer mux.mu.RUnlock()
2230 // Host-specific pattern takes precedence over generic ones
2231 if mux.hosts {
2232 h, pattern = mux.match(host + path)
2234 if h == nil {
2235 h, pattern = mux.match(path)
2237 if h == nil {
2238 h, pattern = NotFoundHandler(), ""
2240 return
2243 // ServeHTTP dispatches the request to the handler whose
2244 // pattern most closely matches the request URL.
2245 func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
2246 if r.RequestURI == "*" {
2247 if r.ProtoAtLeast(1, 1) {
2248 w.Header().Set("Connection", "close")
2250 w.WriteHeader(StatusBadRequest)
2251 return
2253 h, _ := mux.Handler(r)
2254 h.ServeHTTP(w, r)
2257 // Handle registers the handler for the given pattern.
2258 // If a handler already exists for pattern, Handle panics.
2259 func (mux *ServeMux) Handle(pattern string, handler Handler) {
2260 mux.mu.Lock()
2261 defer mux.mu.Unlock()
2263 if pattern == "" {
2264 panic("http: invalid pattern " + pattern)
2266 if handler == nil {
2267 panic("http: nil handler")
2269 if mux.m[pattern].explicit {
2270 panic("http: multiple registrations for " + pattern)
2273 if mux.m == nil {
2274 mux.m = make(map[string]muxEntry)
2276 mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}
2278 if pattern[0] != '/' {
2279 mux.hosts = true
2282 // Helpful behavior:
2283 // If pattern is /tree/, insert an implicit permanent redirect for /tree.
2284 // It can be overridden by an explicit registration.
2285 n := len(pattern)
2286 if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
2287 // If pattern contains a host name, strip it and use remaining
2288 // path for redirect.
2289 path := pattern
2290 if pattern[0] != '/' {
2291 // In pattern, at least the last character is a '/', so
2292 // strings.Index can't be -1.
2293 path = pattern[strings.Index(pattern, "/"):]
2295 url := &url.URL{Path: path}
2296 mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(url.String(), StatusMovedPermanently), pattern: pattern}
2300 // HandleFunc registers the handler function for the given pattern.
2301 func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
2302 mux.Handle(pattern, HandlerFunc(handler))
2305 // Handle registers the handler for the given pattern
2306 // in the DefaultServeMux.
2307 // The documentation for ServeMux explains how patterns are matched.
2308 func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
2310 // HandleFunc registers the handler function for the given pattern
2311 // in the DefaultServeMux.
2312 // The documentation for ServeMux explains how patterns are matched.
2313 func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
2314 DefaultServeMux.HandleFunc(pattern, handler)
2317 // Serve accepts incoming HTTP connections on the listener l,
2318 // creating a new service goroutine for each. The service goroutines
2319 // read requests and then call handler to reply to them.
2320 // Handler is typically nil, in which case the DefaultServeMux is used.
2321 func Serve(l net.Listener, handler Handler) error {
2322 srv := &Server{Handler: handler}
2323 return srv.Serve(l)
2326 // Serve accepts incoming HTTPS connections on the listener l,
2327 // creating a new service goroutine for each. The service goroutines
2328 // read requests and then call handler to reply to them.
2330 // Handler is typically nil, in which case the DefaultServeMux is used.
2332 // Additionally, files containing a certificate and matching private key
2333 // for the server must be provided. If the certificate is signed by a
2334 // certificate authority, the certFile should be the concatenation
2335 // of the server's certificate, any intermediates, and the CA's certificate.
2336 func ServeTLS(l net.Listener, handler Handler, certFile, keyFile string) error {
2337 srv := &Server{Handler: handler}
2338 return srv.ServeTLS(l, certFile, keyFile)
2341 // A Server defines parameters for running an HTTP server.
2342 // The zero value for Server is a valid configuration.
2343 type Server struct {
2344 Addr string // TCP address to listen on, ":http" if empty
2345 Handler Handler // handler to invoke, http.DefaultServeMux if nil
2346 TLSConfig *tls.Config // optional TLS config, used by ServeTLS and ListenAndServeTLS
2348 // ReadTimeout is the maximum duration for reading the entire
2349 // request, including the body.
2351 // Because ReadTimeout does not let Handlers make per-request
2352 // decisions on each request body's acceptable deadline or
2353 // upload rate, most users will prefer to use
2354 // ReadHeaderTimeout. It is valid to use them both.
2355 ReadTimeout time.Duration
2357 // ReadHeaderTimeout is the amount of time allowed to read
2358 // request headers. The connection's read deadline is reset
2359 // after reading the headers and the Handler can decide what
2360 // is considered too slow for the body.
2361 ReadHeaderTimeout time.Duration
2363 // WriteTimeout is the maximum duration before timing out
2364 // writes of the response. It is reset whenever a new
2365 // request's header is read. Like ReadTimeout, it does not
2366 // let Handlers make decisions on a per-request basis.
2367 WriteTimeout time.Duration
2369 // IdleTimeout is the maximum amount of time to wait for the
2370 // next request when keep-alives are enabled. If IdleTimeout
2371 // is zero, the value of ReadTimeout is used. If both are
2372 // zero, ReadHeaderTimeout is used.
2373 IdleTimeout time.Duration
2375 // MaxHeaderBytes controls the maximum number of bytes the
2376 // server will read parsing the request header's keys and
2377 // values, including the request line. It does not limit the
2378 // size of the request body.
2379 // If zero, DefaultMaxHeaderBytes is used.
2380 MaxHeaderBytes int
2382 // TLSNextProto optionally specifies a function to take over
2383 // ownership of the provided TLS connection when an NPN/ALPN
2384 // protocol upgrade has occurred. The map key is the protocol
2385 // name negotiated. The Handler argument should be used to
2386 // handle HTTP requests and will initialize the Request's TLS
2387 // and RemoteAddr if not already set. The connection is
2388 // automatically closed when the function returns.
2389 // If TLSNextProto is not nil, HTTP/2 support is not enabled
2390 // automatically.
2391 TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
2393 // ConnState specifies an optional callback function that is
2394 // called when a client connection changes state. See the
2395 // ConnState type and associated constants for details.
2396 ConnState func(net.Conn, ConnState)
2398 // ErrorLog specifies an optional logger for errors accepting
2399 // connections and unexpected behavior from handlers.
2400 // If nil, logging goes to os.Stderr via the log package's
2401 // standard logger.
2402 ErrorLog *log.Logger
2404 disableKeepAlives int32 // accessed atomically.
2405 inShutdown int32 // accessed atomically (non-zero means we're in Shutdown)
2406 nextProtoOnce sync.Once // guards setupHTTP2_* init
2407 nextProtoErr error // result of http2.ConfigureServer if used
2409 mu sync.Mutex
2410 listeners map[net.Listener]struct{}
2411 activeConn map[*conn]struct{}
2412 doneChan chan struct{}
2413 onShutdown []func()
2416 func (s *Server) getDoneChan() <-chan struct{} {
2417 s.mu.Lock()
2418 defer s.mu.Unlock()
2419 return s.getDoneChanLocked()
2422 func (s *Server) getDoneChanLocked() chan struct{} {
2423 if s.doneChan == nil {
2424 s.doneChan = make(chan struct{})
2426 return s.doneChan
2429 func (s *Server) closeDoneChanLocked() {
2430 ch := s.getDoneChanLocked()
2431 select {
2432 case <-ch:
2433 // Already closed. Don't close again.
2434 default:
2435 // Safe to close here. We're the only closer, guarded
2436 // by s.mu.
2437 close(ch)
2441 // Close immediately closes all active net.Listeners and any
2442 // connections in state StateNew, StateActive, or StateIdle. For a
2443 // graceful shutdown, use Shutdown.
2445 // Close does not attempt to close (and does not even know about)
2446 // any hijacked connections, such as WebSockets.
2448 // Close returns any error returned from closing the Server's
2449 // underlying Listener(s).
2450 func (srv *Server) Close() error {
2451 srv.mu.Lock()
2452 defer srv.mu.Unlock()
2453 srv.closeDoneChanLocked()
2454 err := srv.closeListenersLocked()
2455 for c := range srv.activeConn {
2456 c.rwc.Close()
2457 delete(srv.activeConn, c)
2459 return err
2462 // shutdownPollInterval is how often we poll for quiescence
2463 // during Server.Shutdown. This is lower during tests, to
2464 // speed up tests.
2465 // Ideally we could find a solution that doesn't involve polling,
2466 // but which also doesn't have a high runtime cost (and doesn't
2467 // involve any contentious mutexes), but that is left as an
2468 // exercise for the reader.
2469 var shutdownPollInterval = 500 * time.Millisecond
2471 // Shutdown gracefully shuts down the server without interrupting any
2472 // active connections. Shutdown works by first closing all open
2473 // listeners, then closing all idle connections, and then waiting
2474 // indefinitely for connections to return to idle and then shut down.
2475 // If the provided context expires before the shutdown is complete,
2476 // Shutdown returns the context's error, otherwise it returns any
2477 // error returned from closing the Server's underlying Listener(s).
2479 // When Shutdown is called, Serve, ListenAndServe, and
2480 // ListenAndServeTLS immediately return ErrServerClosed. Make sure the
2481 // program doesn't exit and waits instead for Shutdown to return.
2483 // Shutdown does not attempt to close nor wait for hijacked
2484 // connections such as WebSockets. The caller of Shutdown should
2485 // separately notify such long-lived connections of shutdown and wait
2486 // for them to close, if desired.
2487 func (srv *Server) Shutdown(ctx context.Context) error {
2488 atomic.AddInt32(&srv.inShutdown, 1)
2489 defer atomic.AddInt32(&srv.inShutdown, -1)
2491 srv.mu.Lock()
2492 lnerr := srv.closeListenersLocked()
2493 srv.closeDoneChanLocked()
2494 for _, f := range srv.onShutdown {
2495 go f()
2497 srv.mu.Unlock()
2499 ticker := time.NewTicker(shutdownPollInterval)
2500 defer ticker.Stop()
2501 for {
2502 if srv.closeIdleConns() {
2503 return lnerr
2505 select {
2506 case <-ctx.Done():
2507 return ctx.Err()
2508 case <-ticker.C:
2513 // RegisterOnShutdown registers a function to call on Shutdown.
2514 // This can be used to gracefully shutdown connections that have
2515 // undergone NPN/ALPN protocol upgrade or that have been hijacked.
2516 // This function should start protocol-specific graceful shutdown,
2517 // but should not wait for shutdown to complete.
2518 func (srv *Server) RegisterOnShutdown(f func()) {
2519 srv.mu.Lock()
2520 srv.onShutdown = append(srv.onShutdown, f)
2521 srv.mu.Unlock()
2524 // closeIdleConns closes all idle connections and reports whether the
2525 // server is quiescent.
2526 func (s *Server) closeIdleConns() bool {
2527 s.mu.Lock()
2528 defer s.mu.Unlock()
2529 quiescent := true
2530 for c := range s.activeConn {
2531 st, ok := c.curState.Load().(ConnState)
2532 if !ok || st != StateIdle {
2533 quiescent = false
2534 continue
2536 c.rwc.Close()
2537 delete(s.activeConn, c)
2539 return quiescent
2542 func (s *Server) closeListenersLocked() error {
2543 var err error
2544 for ln := range s.listeners {
2545 if cerr := ln.Close(); cerr != nil && err == nil {
2546 err = cerr
2548 delete(s.listeners, ln)
2550 return err
2553 // A ConnState represents the state of a client connection to a server.
2554 // It's used by the optional Server.ConnState hook.
2555 type ConnState int
2557 const (
2558 // StateNew represents a new connection that is expected to
2559 // send a request immediately. Connections begin at this
2560 // state and then transition to either StateActive or
2561 // StateClosed.
2562 StateNew ConnState = iota
2564 // StateActive represents a connection that has read 1 or more
2565 // bytes of a request. The Server.ConnState hook for
2566 // StateActive fires before the request has entered a handler
2567 // and doesn't fire again until the request has been
2568 // handled. After the request is handled, the state
2569 // transitions to StateClosed, StateHijacked, or StateIdle.
2570 // For HTTP/2, StateActive fires on the transition from zero
2571 // to one active request, and only transitions away once all
2572 // active requests are complete. That means that ConnState
2573 // cannot be used to do per-request work; ConnState only notes
2574 // the overall state of the connection.
2575 StateActive
2577 // StateIdle represents a connection that has finished
2578 // handling a request and is in the keep-alive state, waiting
2579 // for a new request. Connections transition from StateIdle
2580 // to either StateActive or StateClosed.
2581 StateIdle
2583 // StateHijacked represents a hijacked connection.
2584 // This is a terminal state. It does not transition to StateClosed.
2585 StateHijacked
2587 // StateClosed represents a closed connection.
2588 // This is a terminal state. Hijacked connections do not
2589 // transition to StateClosed.
2590 StateClosed
2593 var stateName = map[ConnState]string{
2594 StateNew: "new",
2595 StateActive: "active",
2596 StateIdle: "idle",
2597 StateHijacked: "hijacked",
2598 StateClosed: "closed",
2601 func (c ConnState) String() string {
2602 return stateName[c]
2605 // serverHandler delegates to either the server's Handler or
2606 // DefaultServeMux and also handles "OPTIONS *" requests.
2607 type serverHandler struct {
2608 srv *Server
2611 func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
2612 handler := sh.srv.Handler
2613 if handler == nil {
2614 handler = DefaultServeMux
2616 if req.RequestURI == "*" && req.Method == "OPTIONS" {
2617 handler = globalOptionsHandler{}
2619 handler.ServeHTTP(rw, req)
2622 // ListenAndServe listens on the TCP network address srv.Addr and then
2623 // calls Serve to handle requests on incoming connections.
2624 // Accepted connections are configured to enable TCP keep-alives.
2625 // If srv.Addr is blank, ":http" is used.
2626 // ListenAndServe always returns a non-nil error.
2627 func (srv *Server) ListenAndServe() error {
2628 addr := srv.Addr
2629 if addr == "" {
2630 addr = ":http"
2632 ln, err := net.Listen("tcp", addr)
2633 if err != nil {
2634 return err
2636 return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
2639 var testHookServerServe func(*Server, net.Listener) // used if non-nil
2641 // shouldDoServeHTTP2 reports whether Server.Serve should configure
2642 // automatic HTTP/2. (which sets up the srv.TLSNextProto map)
2643 func (srv *Server) shouldConfigureHTTP2ForServe() bool {
2644 if srv.TLSConfig == nil {
2645 // Compatibility with Go 1.6:
2646 // If there's no TLSConfig, it's possible that the user just
2647 // didn't set it on the http.Server, but did pass it to
2648 // tls.NewListener and passed that listener to Serve.
2649 // So we should configure HTTP/2 (to set up srv.TLSNextProto)
2650 // in case the listener returns an "h2" *tls.Conn.
2651 return true
2653 // The user specified a TLSConfig on their http.Server.
2654 // In this, case, only configure HTTP/2 if their tls.Config
2655 // explicitly mentions "h2". Otherwise http2.ConfigureServer
2656 // would modify the tls.Config to add it, but they probably already
2657 // passed this tls.Config to tls.NewListener. And if they did,
2658 // it's too late anyway to fix it. It would only be potentially racy.
2659 // See Issue 15908.
2660 return strSliceContains(srv.TLSConfig.NextProtos, http2NextProtoTLS)
2663 // ErrServerClosed is returned by the Server's Serve, ServeTLS, ListenAndServe,
2664 // and ListenAndServeTLS methods after a call to Shutdown or Close.
2665 var ErrServerClosed = errors.New("http: Server closed")
2667 // Serve accepts incoming connections on the Listener l, creating a
2668 // new service goroutine for each. The service goroutines read requests and
2669 // then call srv.Handler to reply to them.
2671 // For HTTP/2 support, srv.TLSConfig should be initialized to the
2672 // provided listener's TLS Config before calling Serve. If
2673 // srv.TLSConfig is non-nil and doesn't include the string "h2" in
2674 // Config.NextProtos, HTTP/2 support is not enabled.
2676 // Serve always returns a non-nil error. After Shutdown or Close, the
2677 // returned error is ErrServerClosed.
2678 func (srv *Server) Serve(l net.Listener) error {
2679 defer l.Close()
2680 if fn := testHookServerServe; fn != nil {
2681 fn(srv, l)
2683 var tempDelay time.Duration // how long to sleep on accept failure
2685 if err := srv.setupHTTP2_Serve(); err != nil {
2686 return err
2689 srv.trackListener(l, true)
2690 defer srv.trackListener(l, false)
2692 baseCtx := context.Background() // base is always background, per Issue 16220
2693 ctx := context.WithValue(baseCtx, ServerContextKey, srv)
2694 for {
2695 rw, e := l.Accept()
2696 if e != nil {
2697 select {
2698 case <-srv.getDoneChan():
2699 return ErrServerClosed
2700 default:
2702 if ne, ok := e.(net.Error); ok && ne.Temporary() {
2703 if tempDelay == 0 {
2704 tempDelay = 5 * time.Millisecond
2705 } else {
2706 tempDelay *= 2
2708 if max := 1 * time.Second; tempDelay > max {
2709 tempDelay = max
2711 srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
2712 time.Sleep(tempDelay)
2713 continue
2715 return e
2717 tempDelay = 0
2718 c := srv.newConn(rw)
2719 c.setState(c.rwc, StateNew) // before Serve can return
2720 go c.serve(ctx)
2724 // ServeTLS accepts incoming connections on the Listener l, creating a
2725 // new service goroutine for each. The service goroutines read requests and
2726 // then call srv.Handler to reply to them.
2728 // Additionally, files containing a certificate and matching private key for
2729 // the server must be provided if neither the Server's TLSConfig.Certificates
2730 // nor TLSConfig.GetCertificate are populated.. If the certificate is signed by
2731 // a certificate authority, the certFile should be the concatenation of the
2732 // server's certificate, any intermediates, and the CA's certificate.
2734 // For HTTP/2 support, srv.TLSConfig should be initialized to the
2735 // provided listener's TLS Config before calling Serve. If
2736 // srv.TLSConfig is non-nil and doesn't include the string "h2" in
2737 // Config.NextProtos, HTTP/2 support is not enabled.
2739 // ServeTLS always returns a non-nil error. After Shutdown or Close, the
2740 // returned error is ErrServerClosed.
2741 func (srv *Server) ServeTLS(l net.Listener, certFile, keyFile string) error {
2742 // Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig
2743 // before we clone it and create the TLS Listener.
2744 if err := srv.setupHTTP2_ServeTLS(); err != nil {
2745 return err
2748 config := cloneTLSConfig(srv.TLSConfig)
2749 if !strSliceContains(config.NextProtos, "http/1.1") {
2750 config.NextProtos = append(config.NextProtos, "http/1.1")
2753 configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil
2754 if !configHasCert || certFile != "" || keyFile != "" {
2755 var err error
2756 config.Certificates = make([]tls.Certificate, 1)
2757 config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
2758 if err != nil {
2759 return err
2763 tlsListener := tls.NewListener(l, config)
2764 return srv.Serve(tlsListener)
2767 func (s *Server) trackListener(ln net.Listener, add bool) {
2768 s.mu.Lock()
2769 defer s.mu.Unlock()
2770 if s.listeners == nil {
2771 s.listeners = make(map[net.Listener]struct{})
2773 if add {
2774 // If the *Server is being reused after a previous
2775 // Close or Shutdown, reset its doneChan:
2776 if len(s.listeners) == 0 && len(s.activeConn) == 0 {
2777 s.doneChan = nil
2779 s.listeners[ln] = struct{}{}
2780 } else {
2781 delete(s.listeners, ln)
2785 func (s *Server) trackConn(c *conn, add bool) {
2786 s.mu.Lock()
2787 defer s.mu.Unlock()
2788 if s.activeConn == nil {
2789 s.activeConn = make(map[*conn]struct{})
2791 if add {
2792 s.activeConn[c] = struct{}{}
2793 } else {
2794 delete(s.activeConn, c)
2798 func (s *Server) idleTimeout() time.Duration {
2799 if s.IdleTimeout != 0 {
2800 return s.IdleTimeout
2802 return s.ReadTimeout
2805 func (s *Server) readHeaderTimeout() time.Duration {
2806 if s.ReadHeaderTimeout != 0 {
2807 return s.ReadHeaderTimeout
2809 return s.ReadTimeout
2812 func (s *Server) doKeepAlives() bool {
2813 return atomic.LoadInt32(&s.disableKeepAlives) == 0 && !s.shuttingDown()
2816 func (s *Server) shuttingDown() bool {
2817 return atomic.LoadInt32(&s.inShutdown) != 0
2820 // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled.
2821 // By default, keep-alives are always enabled. Only very
2822 // resource-constrained environments or servers in the process of
2823 // shutting down should disable them.
2824 func (srv *Server) SetKeepAlivesEnabled(v bool) {
2825 if v {
2826 atomic.StoreInt32(&srv.disableKeepAlives, 0)
2827 return
2829 atomic.StoreInt32(&srv.disableKeepAlives, 1)
2831 // Close idle HTTP/1 conns:
2832 srv.closeIdleConns()
2834 // Close HTTP/2 conns, as soon as they become idle, but reset
2835 // the chan so future conns (if the listener is still active)
2836 // still work and don't get a GOAWAY immediately, before their
2837 // first request:
2838 srv.mu.Lock()
2839 defer srv.mu.Unlock()
2840 srv.closeDoneChanLocked() // closes http2 conns
2841 srv.doneChan = nil
2844 func (s *Server) logf(format string, args ...interface{}) {
2845 if s.ErrorLog != nil {
2846 s.ErrorLog.Printf(format, args...)
2847 } else {
2848 log.Printf(format, args...)
2852 // ListenAndServe listens on the TCP network address addr
2853 // and then calls Serve with handler to handle requests
2854 // on incoming connections.
2855 // Accepted connections are configured to enable TCP keep-alives.
2856 // Handler is typically nil, in which case the DefaultServeMux is
2857 // used.
2859 // A trivial example server is:
2861 // package main
2863 // import (
2864 // "io"
2865 // "net/http"
2866 // "log"
2867 // )
2869 // // hello world, the web server
2870 // func HelloServer(w http.ResponseWriter, req *http.Request) {
2871 // io.WriteString(w, "hello, world!\n")
2872 // }
2874 // func main() {
2875 // http.HandleFunc("/hello", HelloServer)
2876 // log.Fatal(http.ListenAndServe(":12345", nil))
2877 // }
2879 // ListenAndServe always returns a non-nil error.
2880 func ListenAndServe(addr string, handler Handler) error {
2881 server := &Server{Addr: addr, Handler: handler}
2882 return server.ListenAndServe()
2885 // ListenAndServeTLS acts identically to ListenAndServe, except that it
2886 // expects HTTPS connections. Additionally, files containing a certificate and
2887 // matching private key for the server must be provided. If the certificate
2888 // is signed by a certificate authority, the certFile should be the concatenation
2889 // of the server's certificate, any intermediates, and the CA's certificate.
2891 // A trivial example server is:
2893 // import (
2894 // "log"
2895 // "net/http"
2896 // )
2898 // func handler(w http.ResponseWriter, req *http.Request) {
2899 // w.Header().Set("Content-Type", "text/plain")
2900 // w.Write([]byte("This is an example server.\n"))
2901 // }
2903 // func main() {
2904 // http.HandleFunc("/", handler)
2905 // log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/")
2906 // err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil)
2907 // log.Fatal(err)
2908 // }
2910 // One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
2912 // ListenAndServeTLS always returns a non-nil error.
2913 func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error {
2914 server := &Server{Addr: addr, Handler: handler}
2915 return server.ListenAndServeTLS(certFile, keyFile)
2918 // ListenAndServeTLS listens on the TCP network address srv.Addr and
2919 // then calls Serve to handle requests on incoming TLS connections.
2920 // Accepted connections are configured to enable TCP keep-alives.
2922 // Filenames containing a certificate and matching private key for the
2923 // server must be provided if neither the Server's TLSConfig.Certificates
2924 // nor TLSConfig.GetCertificate are populated. If the certificate is
2925 // signed by a certificate authority, the certFile should be the
2926 // concatenation of the server's certificate, any intermediates, and
2927 // the CA's certificate.
2929 // If srv.Addr is blank, ":https" is used.
2931 // ListenAndServeTLS always returns a non-nil error.
2932 func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
2933 addr := srv.Addr
2934 if addr == "" {
2935 addr = ":https"
2938 ln, err := net.Listen("tcp", addr)
2939 if err != nil {
2940 return err
2943 return srv.ServeTLS(tcpKeepAliveListener{ln.(*net.TCPListener)}, certFile, keyFile)
2946 // setupHTTP2_ServeTLS conditionally configures HTTP/2 on
2947 // srv and returns whether there was an error setting it up. If it is
2948 // not configured for policy reasons, nil is returned.
2949 func (srv *Server) setupHTTP2_ServeTLS() error {
2950 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults)
2951 return srv.nextProtoErr
2954 // setupHTTP2_Serve is called from (*Server).Serve and conditionally
2955 // configures HTTP/2 on srv using a more conservative policy than
2956 // setupHTTP2_ServeTLS because Serve may be called
2957 // concurrently.
2959 // The tests named TestTransportAutomaticHTTP2* and
2960 // TestConcurrentServerServe in server_test.go demonstrate some
2961 // of the supported use cases and motivations.
2962 func (srv *Server) setupHTTP2_Serve() error {
2963 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults_Serve)
2964 return srv.nextProtoErr
2967 func (srv *Server) onceSetNextProtoDefaults_Serve() {
2968 if srv.shouldConfigureHTTP2ForServe() {
2969 srv.onceSetNextProtoDefaults()
2973 // onceSetNextProtoDefaults configures HTTP/2, if the user hasn't
2974 // configured otherwise. (by setting srv.TLSNextProto non-nil)
2975 // It must only be called via srv.nextProtoOnce (use srv.setupHTTP2_*).
2976 func (srv *Server) onceSetNextProtoDefaults() {
2977 if strings.Contains(os.Getenv("GODEBUG"), "http2server=0") {
2978 return
2980 // Enable HTTP/2 by default if the user hasn't otherwise
2981 // configured their TLSNextProto map.
2982 if srv.TLSNextProto == nil {
2983 conf := &http2Server{
2984 NewWriteScheduler: func() http2WriteScheduler { return http2NewPriorityWriteScheduler(nil) },
2986 srv.nextProtoErr = http2ConfigureServer(srv, conf)
2990 // TimeoutHandler returns a Handler that runs h with the given time limit.
2992 // The new Handler calls h.ServeHTTP to handle each request, but if a
2993 // call runs for longer than its time limit, the handler responds with
2994 // a 503 Service Unavailable error and the given message in its body.
2995 // (If msg is empty, a suitable default message will be sent.)
2996 // After such a timeout, writes by h to its ResponseWriter will return
2997 // ErrHandlerTimeout.
2999 // TimeoutHandler buffers all Handler writes to memory and does not
3000 // support the Hijacker or Flusher interfaces.
3001 func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
3002 return &timeoutHandler{
3003 handler: h,
3004 body: msg,
3005 dt: dt,
3009 // ErrHandlerTimeout is returned on ResponseWriter Write calls
3010 // in handlers which have timed out.
3011 var ErrHandlerTimeout = errors.New("http: Handler timeout")
3013 type timeoutHandler struct {
3014 handler Handler
3015 body string
3016 dt time.Duration
3018 // When set, no timer will be created and this channel will
3019 // be used instead.
3020 testTimeout <-chan time.Time
3023 func (h *timeoutHandler) errorBody() string {
3024 if h.body != "" {
3025 return h.body
3027 return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
3030 func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
3031 var t *time.Timer
3032 timeout := h.testTimeout
3033 if timeout == nil {
3034 t = time.NewTimer(h.dt)
3035 timeout = t.C
3037 done := make(chan struct{})
3038 tw := &timeoutWriter{
3039 w: w,
3040 h: make(Header),
3042 go func() {
3043 h.handler.ServeHTTP(tw, r)
3044 close(done)
3046 select {
3047 case <-done:
3048 tw.mu.Lock()
3049 defer tw.mu.Unlock()
3050 dst := w.Header()
3051 for k, vv := range tw.h {
3052 dst[k] = vv
3054 if !tw.wroteHeader {
3055 tw.code = StatusOK
3057 w.WriteHeader(tw.code)
3058 w.Write(tw.wbuf.Bytes())
3059 if t != nil {
3060 t.Stop()
3062 case <-timeout:
3063 tw.mu.Lock()
3064 defer tw.mu.Unlock()
3065 w.WriteHeader(StatusServiceUnavailable)
3066 io.WriteString(w, h.errorBody())
3067 tw.timedOut = true
3068 return
3072 type timeoutWriter struct {
3073 w ResponseWriter
3074 h Header
3075 wbuf bytes.Buffer
3077 mu sync.Mutex
3078 timedOut bool
3079 wroteHeader bool
3080 code int
3083 func (tw *timeoutWriter) Header() Header { return tw.h }
3085 func (tw *timeoutWriter) Write(p []byte) (int, error) {
3086 tw.mu.Lock()
3087 defer tw.mu.Unlock()
3088 if tw.timedOut {
3089 return 0, ErrHandlerTimeout
3091 if !tw.wroteHeader {
3092 tw.writeHeader(StatusOK)
3094 return tw.wbuf.Write(p)
3097 func (tw *timeoutWriter) WriteHeader(code int) {
3098 tw.mu.Lock()
3099 defer tw.mu.Unlock()
3100 if tw.timedOut || tw.wroteHeader {
3101 return
3103 tw.writeHeader(code)
3106 func (tw *timeoutWriter) writeHeader(code int) {
3107 tw.wroteHeader = true
3108 tw.code = code
3111 // tcpKeepAliveListener sets TCP keep-alive timeouts on accepted
3112 // connections. It's used by ListenAndServe and ListenAndServeTLS so
3113 // dead TCP connections (e.g. closing laptop mid-download) eventually
3114 // go away.
3115 type tcpKeepAliveListener struct {
3116 *net.TCPListener
3119 func (ln tcpKeepAliveListener) Accept() (c net.Conn, err error) {
3120 tc, err := ln.AcceptTCP()
3121 if err != nil {
3122 return
3124 tc.SetKeepAlive(true)
3125 tc.SetKeepAlivePeriod(3 * time.Minute)
3126 return tc, nil
3129 // globalOptionsHandler responds to "OPTIONS *" requests.
3130 type globalOptionsHandler struct{}
3132 func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
3133 w.Header().Set("Content-Length", "0")
3134 if r.ContentLength != 0 {
3135 // Read up to 4KB of OPTIONS body (as mentioned in the
3136 // spec as being reserved for future use), but anything
3137 // over that is considered a waste of server resources
3138 // (or an attack) and we abort and close the connection,
3139 // courtesy of MaxBytesReader's EOF behavior.
3140 mb := MaxBytesReader(w, r.Body, 4<<10)
3141 io.Copy(ioutil.Discard, mb)
3145 // initNPNRequest is an HTTP handler that initializes certain
3146 // uninitialized fields in its *Request. Such partially-initialized
3147 // Requests come from NPN protocol handlers.
3148 type initNPNRequest struct {
3149 c *tls.Conn
3150 h serverHandler
3153 func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
3154 if req.TLS == nil {
3155 req.TLS = &tls.ConnectionState{}
3156 *req.TLS = h.c.ConnectionState()
3158 if req.Body == nil {
3159 req.Body = NoBody
3161 if req.RemoteAddr == "" {
3162 req.RemoteAddr = h.c.RemoteAddr().String()
3164 h.h.ServeHTTP(rw, req)
3167 // loggingConn is used for debugging.
3168 type loggingConn struct {
3169 name string
3170 net.Conn
3173 var (
3174 uniqNameMu sync.Mutex
3175 uniqNameNext = make(map[string]int)
3178 func newLoggingConn(baseName string, c net.Conn) net.Conn {
3179 uniqNameMu.Lock()
3180 defer uniqNameMu.Unlock()
3181 uniqNameNext[baseName]++
3182 return &loggingConn{
3183 name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
3184 Conn: c,
3188 func (c *loggingConn) Write(p []byte) (n int, err error) {
3189 log.Printf("%s.Write(%d) = ....", c.name, len(p))
3190 n, err = c.Conn.Write(p)
3191 log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
3192 return
3195 func (c *loggingConn) Read(p []byte) (n int, err error) {
3196 log.Printf("%s.Read(%d) = ....", c.name, len(p))
3197 n, err = c.Conn.Read(p)
3198 log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
3199 return
3202 func (c *loggingConn) Close() (err error) {
3203 log.Printf("%s.Close() = ...", c.name)
3204 err = c.Conn.Close()
3205 log.Printf("%s.Close() = %v", c.name, err)
3206 return
3209 // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr.
3210 // It only contains one field (and a pointer field at that), so it
3211 // fits in an interface value without an extra allocation.
3212 type checkConnErrorWriter struct {
3213 c *conn
3216 func (w checkConnErrorWriter) Write(p []byte) (n int, err error) {
3217 n, err = w.c.rwc.Write(p)
3218 if err != nil && w.c.werr == nil {
3219 w.c.werr = err
3220 w.c.cancelCtx()
3222 return
3225 func numLeadingCRorLF(v []byte) (n int) {
3226 for _, b := range v {
3227 if b == '\r' || b == '\n' {
3229 continue
3231 break
3233 return
3237 func strSliceContains(ss []string, s string) bool {
3238 for _, v := range ss {
3239 if v == s {
3240 return true
3243 return false