libgo: update to go1.9
[official-gcc.git] / libgo / go / image / jpeg / reader.go
bloba915e96a4cf4f4a61db27025a91079076fdac8f3
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Package jpeg implements a JPEG image decoder and encoder.
6 //
7 // JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf.
8 package jpeg
10 import (
11 "image"
12 "image/color"
13 "image/internal/imageutil"
14 "io"
17 // TODO(nigeltao): fix up the doc comment style so that sentences start with
18 // the name of the type or function that they annotate.
20 // A FormatError reports that the input is not a valid JPEG.
21 type FormatError string
23 func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }
25 // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
26 type UnsupportedError string
28 func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }
30 var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio")
32 // Component specification, specified in section B.2.2.
33 type component struct {
34 h int // Horizontal sampling factor.
35 v int // Vertical sampling factor.
36 c uint8 // Component identifier.
37 tq uint8 // Quantization table destination selector.
40 const (
41 dcTable = 0
42 acTable = 1
43 maxTc = 1
44 maxTh = 3
45 maxTq = 3
47 maxComponents = 4
50 const (
51 sof0Marker = 0xc0 // Start Of Frame (Baseline Sequential).
52 sof1Marker = 0xc1 // Start Of Frame (Extended Sequential).
53 sof2Marker = 0xc2 // Start Of Frame (Progressive).
54 dhtMarker = 0xc4 // Define Huffman Table.
55 rst0Marker = 0xd0 // ReSTart (0).
56 rst7Marker = 0xd7 // ReSTart (7).
57 soiMarker = 0xd8 // Start Of Image.
58 eoiMarker = 0xd9 // End Of Image.
59 sosMarker = 0xda // Start Of Scan.
60 dqtMarker = 0xdb // Define Quantization Table.
61 driMarker = 0xdd // Define Restart Interval.
62 comMarker = 0xfe // COMment.
63 // "APPlication specific" markers aren't part of the JPEG spec per se,
64 // but in practice, their use is described at
65 // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html
66 app0Marker = 0xe0
67 app14Marker = 0xee
68 app15Marker = 0xef
71 // See http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
72 const (
73 adobeTransformUnknown = 0
74 adobeTransformYCbCr = 1
75 adobeTransformYCbCrK = 2
78 // unzig maps from the zig-zag ordering to the natural ordering. For example,
79 // unzig[3] is the column and row of the fourth element in zig-zag order. The
80 // value is 16, which means first column (16%8 == 0) and third row (16/8 == 2).
81 var unzig = [blockSize]int{
82 0, 1, 8, 16, 9, 2, 3, 10,
83 17, 24, 32, 25, 18, 11, 4, 5,
84 12, 19, 26, 33, 40, 48, 41, 34,
85 27, 20, 13, 6, 7, 14, 21, 28,
86 35, 42, 49, 56, 57, 50, 43, 36,
87 29, 22, 15, 23, 30, 37, 44, 51,
88 58, 59, 52, 45, 38, 31, 39, 46,
89 53, 60, 61, 54, 47, 55, 62, 63,
92 // Deprecated: Reader is deprecated.
93 type Reader interface {
94 io.ByteReader
95 io.Reader
98 // bits holds the unprocessed bits that have been taken from the byte-stream.
99 // The n least significant bits of a form the unread bits, to be read in MSB to
100 // LSB order.
101 type bits struct {
102 a uint32 // accumulator.
103 m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0.
104 n int32 // the number of unread bits in a.
107 type decoder struct {
108 r io.Reader
109 bits bits
110 // bytes is a byte buffer, similar to a bufio.Reader, except that it
111 // has to be able to unread more than 1 byte, due to byte stuffing.
112 // Byte stuffing is specified in section F.1.2.3.
113 bytes struct {
114 // buf[i:j] are the buffered bytes read from the underlying
115 // io.Reader that haven't yet been passed further on.
116 buf [4096]byte
117 i, j int
118 // nUnreadable is the number of bytes to back up i after
119 // overshooting. It can be 0, 1 or 2.
120 nUnreadable int
122 width, height int
124 img1 *image.Gray
125 img3 *image.YCbCr
126 blackPix []byte
127 blackStride int
129 ri int // Restart Interval.
130 nComp int
132 // As per section 4.5, there are four modes of operation (selected by the
133 // SOF? markers): sequential DCT, progressive DCT, lossless and
134 // hierarchical, although this implementation does not support the latter
135 // two non-DCT modes. Sequential DCT is further split into baseline and
136 // extended, as per section 4.11.
137 baseline bool
138 progressive bool
140 jfif bool
141 adobeTransformValid bool
142 adobeTransform uint8
143 eobRun uint16 // End-of-Band run, specified in section G.1.2.2.
145 comp [maxComponents]component
146 progCoeffs [maxComponents][]block // Saved state between progressive-mode scans.
147 huff [maxTc + 1][maxTh + 1]huffman
148 quant [maxTq + 1]block // Quantization tables, in zig-zag order.
149 tmp [2 * blockSize]byte
152 // fill fills up the d.bytes.buf buffer from the underlying io.Reader. It
153 // should only be called when there are no unread bytes in d.bytes.
154 func (d *decoder) fill() error {
155 if d.bytes.i != d.bytes.j {
156 panic("jpeg: fill called when unread bytes exist")
158 // Move the last 2 bytes to the start of the buffer, in case we need
159 // to call unreadByteStuffedByte.
160 if d.bytes.j > 2 {
161 d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2]
162 d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1]
163 d.bytes.i, d.bytes.j = 2, 2
165 // Fill in the rest of the buffer.
166 n, err := d.r.Read(d.bytes.buf[d.bytes.j:])
167 d.bytes.j += n
168 if n > 0 {
169 err = nil
171 return err
174 // unreadByteStuffedByte undoes the most recent readByteStuffedByte call,
175 // giving a byte of data back from d.bits to d.bytes. The Huffman look-up table
176 // requires at least 8 bits for look-up, which means that Huffman decoding can
177 // sometimes overshoot and read one or two too many bytes. Two-byte overshoot
178 // can happen when expecting to read a 0xff 0x00 byte-stuffed byte.
179 func (d *decoder) unreadByteStuffedByte() {
180 d.bytes.i -= d.bytes.nUnreadable
181 d.bytes.nUnreadable = 0
182 if d.bits.n >= 8 {
183 d.bits.a >>= 8
184 d.bits.n -= 8
185 d.bits.m >>= 8
189 // readByte returns the next byte, whether buffered or not buffered. It does
190 // not care about byte stuffing.
191 func (d *decoder) readByte() (x byte, err error) {
192 for d.bytes.i == d.bytes.j {
193 if err = d.fill(); err != nil {
194 return 0, err
197 x = d.bytes.buf[d.bytes.i]
198 d.bytes.i++
199 d.bytes.nUnreadable = 0
200 return x, nil
203 // errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a
204 // marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00.
205 var errMissingFF00 = FormatError("missing 0xff00 sequence")
207 // readByteStuffedByte is like readByte but is for byte-stuffed Huffman data.
208 func (d *decoder) readByteStuffedByte() (x byte, err error) {
209 // Take the fast path if d.bytes.buf contains at least two bytes.
210 if d.bytes.i+2 <= d.bytes.j {
211 x = d.bytes.buf[d.bytes.i]
212 d.bytes.i++
213 d.bytes.nUnreadable = 1
214 if x != 0xff {
215 return x, err
217 if d.bytes.buf[d.bytes.i] != 0x00 {
218 return 0, errMissingFF00
220 d.bytes.i++
221 d.bytes.nUnreadable = 2
222 return 0xff, nil
225 d.bytes.nUnreadable = 0
227 x, err = d.readByte()
228 if err != nil {
229 return 0, err
231 d.bytes.nUnreadable = 1
232 if x != 0xff {
233 return x, nil
236 x, err = d.readByte()
237 if err != nil {
238 return 0, err
240 d.bytes.nUnreadable = 2
241 if x != 0x00 {
242 return 0, errMissingFF00
244 return 0xff, nil
247 // readFull reads exactly len(p) bytes into p. It does not care about byte
248 // stuffing.
249 func (d *decoder) readFull(p []byte) error {
250 // Unread the overshot bytes, if any.
251 if d.bytes.nUnreadable != 0 {
252 if d.bits.n >= 8 {
253 d.unreadByteStuffedByte()
255 d.bytes.nUnreadable = 0
258 for {
259 n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j])
260 p = p[n:]
261 d.bytes.i += n
262 if len(p) == 0 {
263 break
265 if err := d.fill(); err != nil {
266 if err == io.EOF {
267 err = io.ErrUnexpectedEOF
269 return err
272 return nil
275 // ignore ignores the next n bytes.
276 func (d *decoder) ignore(n int) error {
277 // Unread the overshot bytes, if any.
278 if d.bytes.nUnreadable != 0 {
279 if d.bits.n >= 8 {
280 d.unreadByteStuffedByte()
282 d.bytes.nUnreadable = 0
285 for {
286 m := d.bytes.j - d.bytes.i
287 if m > n {
288 m = n
290 d.bytes.i += m
291 n -= m
292 if n == 0 {
293 break
295 if err := d.fill(); err != nil {
296 if err == io.EOF {
297 err = io.ErrUnexpectedEOF
299 return err
302 return nil
305 // Specified in section B.2.2.
306 func (d *decoder) processSOF(n int) error {
307 if d.nComp != 0 {
308 return FormatError("multiple SOF markers")
310 switch n {
311 case 6 + 3*1: // Grayscale image.
312 d.nComp = 1
313 case 6 + 3*3: // YCbCr or RGB image.
314 d.nComp = 3
315 case 6 + 3*4: // YCbCrK or CMYK image.
316 d.nComp = 4
317 default:
318 return UnsupportedError("number of components")
320 if err := d.readFull(d.tmp[:n]); err != nil {
321 return err
323 // We only support 8-bit precision.
324 if d.tmp[0] != 8 {
325 return UnsupportedError("precision")
327 d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
328 d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
329 if int(d.tmp[5]) != d.nComp {
330 return FormatError("SOF has wrong length")
333 for i := 0; i < d.nComp; i++ {
334 d.comp[i].c = d.tmp[6+3*i]
335 // Section B.2.2 states that "the value of C_i shall be different from
336 // the values of C_1 through C_(i-1)".
337 for j := 0; j < i; j++ {
338 if d.comp[i].c == d.comp[j].c {
339 return FormatError("repeated component identifier")
343 d.comp[i].tq = d.tmp[8+3*i]
344 if d.comp[i].tq > maxTq {
345 return FormatError("bad Tq value")
348 hv := d.tmp[7+3*i]
349 h, v := int(hv>>4), int(hv&0x0f)
350 if h < 1 || 4 < h || v < 1 || 4 < v {
351 return FormatError("luma/chroma subsampling ratio")
353 if h == 3 || v == 3 {
354 return errUnsupportedSubsamplingRatio
356 switch d.nComp {
357 case 1:
358 // If a JPEG image has only one component, section A.2 says "this data
359 // is non-interleaved by definition" and section A.2.2 says "[in this
360 // case...] the order of data units within a scan shall be left-to-right
361 // and top-to-bottom... regardless of the values of H_1 and V_1". Section
362 // 4.8.2 also says "[for non-interleaved data], the MCU is defined to be
363 // one data unit". Similarly, section A.1.1 explains that it is the ratio
364 // of H_i to max_j(H_j) that matters, and similarly for V. For grayscale
365 // images, H_1 is the maximum H_j for all components j, so that ratio is
366 // always 1. The component's (h, v) is effectively always (1, 1): even if
367 // the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8
368 // MCUs, not two 16x8 MCUs.
369 h, v = 1, 1
371 case 3:
372 // For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0,
373 // 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the
374 // (h, v) values for the Y component are either (1, 1), (1, 2),
375 // (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values
376 // must be a multiple of the Cb and Cr component's values. We also
377 // assume that the two chroma components have the same subsampling
378 // ratio.
379 switch i {
380 case 0: // Y.
381 // We have already verified, above, that h and v are both
382 // either 1, 2 or 4, so invalid (h, v) combinations are those
383 // with v == 4.
384 if v == 4 {
385 return errUnsupportedSubsamplingRatio
387 case 1: // Cb.
388 if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 {
389 return errUnsupportedSubsamplingRatio
391 case 2: // Cr.
392 if d.comp[1].h != h || d.comp[1].v != v {
393 return errUnsupportedSubsamplingRatio
397 case 4:
398 // For 4-component images (either CMYK or YCbCrK), we only support two
399 // hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22].
400 // Theoretically, 4-component JPEG images could mix and match hv values
401 // but in practice, those two combinations are the only ones in use,
402 // and it simplifies the applyBlack code below if we can assume that:
403 // - for CMYK, the C and K channels have full samples, and if the M
404 // and Y channels subsample, they subsample both horizontally and
405 // vertically.
406 // - for YCbCrK, the Y and K channels have full samples.
407 switch i {
408 case 0:
409 if hv != 0x11 && hv != 0x22 {
410 return errUnsupportedSubsamplingRatio
412 case 1, 2:
413 if hv != 0x11 {
414 return errUnsupportedSubsamplingRatio
416 case 3:
417 if d.comp[0].h != h || d.comp[0].v != v {
418 return errUnsupportedSubsamplingRatio
423 d.comp[i].h = h
424 d.comp[i].v = v
426 return nil
429 // Specified in section B.2.4.1.
430 func (d *decoder) processDQT(n int) error {
431 loop:
432 for n > 0 {
434 x, err := d.readByte()
435 if err != nil {
436 return err
438 tq := x & 0x0f
439 if tq > maxTq {
440 return FormatError("bad Tq value")
442 switch x >> 4 {
443 default:
444 return FormatError("bad Pq value")
445 case 0:
446 if n < blockSize {
447 break loop
449 n -= blockSize
450 if err := d.readFull(d.tmp[:blockSize]); err != nil {
451 return err
453 for i := range d.quant[tq] {
454 d.quant[tq][i] = int32(d.tmp[i])
456 case 1:
457 if n < 2*blockSize {
458 break loop
460 n -= 2 * blockSize
461 if err := d.readFull(d.tmp[:2*blockSize]); err != nil {
462 return err
464 for i := range d.quant[tq] {
465 d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1])
469 if n != 0 {
470 return FormatError("DQT has wrong length")
472 return nil
475 // Specified in section B.2.4.4.
476 func (d *decoder) processDRI(n int) error {
477 if n != 2 {
478 return FormatError("DRI has wrong length")
480 if err := d.readFull(d.tmp[:2]); err != nil {
481 return err
483 d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
484 return nil
487 func (d *decoder) processApp0Marker(n int) error {
488 if n < 5 {
489 return d.ignore(n)
491 if err := d.readFull(d.tmp[:5]); err != nil {
492 return err
494 n -= 5
496 d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00'
498 if n > 0 {
499 return d.ignore(n)
501 return nil
504 func (d *decoder) processApp14Marker(n int) error {
505 if n < 12 {
506 return d.ignore(n)
508 if err := d.readFull(d.tmp[:12]); err != nil {
509 return err
511 n -= 12
513 if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' {
514 d.adobeTransformValid = true
515 d.adobeTransform = d.tmp[11]
518 if n > 0 {
519 return d.ignore(n)
521 return nil
524 // decode reads a JPEG image from r and returns it as an image.Image.
525 func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
526 d.r = r
528 // Check for the Start Of Image marker.
529 if err := d.readFull(d.tmp[:2]); err != nil {
530 return nil, err
532 if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
533 return nil, FormatError("missing SOI marker")
536 // Process the remaining segments until the End Of Image marker.
537 for {
538 err := d.readFull(d.tmp[:2])
539 if err != nil {
540 return nil, err
542 for d.tmp[0] != 0xff {
543 // Strictly speaking, this is a format error. However, libjpeg is
544 // liberal in what it accepts. As of version 9, next_marker in
545 // jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and
546 // continues to decode the stream. Even before next_marker sees
547 // extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many
548 // bytes as it can, possibly past the end of a scan's data. It
549 // effectively puts back any markers that it overscanned (e.g. an
550 // "\xff\xd9" EOI marker), but it does not put back non-marker data,
551 // and thus it can silently ignore a small number of extraneous
552 // non-marker bytes before next_marker has a chance to see them (and
553 // print a warning).
555 // We are therefore also liberal in what we accept. Extraneous data
556 // is silently ignored.
558 // This is similar to, but not exactly the same as, the restart
559 // mechanism within a scan (the RST[0-7] markers).
561 // Note that extraneous 0xff bytes in e.g. SOS data are escaped as
562 // "\xff\x00", and so are detected a little further down below.
563 d.tmp[0] = d.tmp[1]
564 d.tmp[1], err = d.readByte()
565 if err != nil {
566 return nil, err
569 marker := d.tmp[1]
570 if marker == 0 {
571 // Treat "\xff\x00" as extraneous data.
572 continue
574 for marker == 0xff {
575 // Section B.1.1.2 says, "Any marker may optionally be preceded by any
576 // number of fill bytes, which are bytes assigned code X'FF'".
577 marker, err = d.readByte()
578 if err != nil {
579 return nil, err
582 if marker == eoiMarker { // End Of Image.
583 break
585 if rst0Marker <= marker && marker <= rst7Marker {
586 // Figures B.2 and B.16 of the specification suggest that restart markers should
587 // only occur between Entropy Coded Segments and not after the final ECS.
588 // However, some encoders may generate incorrect JPEGs with a final restart
589 // marker. That restart marker will be seen here instead of inside the processSOS
590 // method, and is ignored as a harmless error. Restart markers have no extra data,
591 // so we check for this before we read the 16-bit length of the segment.
592 continue
595 // Read the 16-bit length of the segment. The value includes the 2 bytes for the
596 // length itself, so we subtract 2 to get the number of remaining bytes.
597 if err = d.readFull(d.tmp[:2]); err != nil {
598 return nil, err
600 n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
601 if n < 0 {
602 return nil, FormatError("short segment length")
605 switch marker {
606 case sof0Marker, sof1Marker, sof2Marker:
607 d.baseline = marker == sof0Marker
608 d.progressive = marker == sof2Marker
609 err = d.processSOF(n)
610 if configOnly && d.jfif {
611 return nil, err
613 case dhtMarker:
614 if configOnly {
615 err = d.ignore(n)
616 } else {
617 err = d.processDHT(n)
619 case dqtMarker:
620 if configOnly {
621 err = d.ignore(n)
622 } else {
623 err = d.processDQT(n)
625 case sosMarker:
626 if configOnly {
627 return nil, nil
629 err = d.processSOS(n)
630 case driMarker:
631 if configOnly {
632 err = d.ignore(n)
633 } else {
634 err = d.processDRI(n)
636 case app0Marker:
637 err = d.processApp0Marker(n)
638 case app14Marker:
639 err = d.processApp14Marker(n)
640 default:
641 if app0Marker <= marker && marker <= app15Marker || marker == comMarker {
642 err = d.ignore(n)
643 } else if marker < 0xc0 { // See Table B.1 "Marker code assignments".
644 err = FormatError("unknown marker")
645 } else {
646 err = UnsupportedError("unknown marker")
649 if err != nil {
650 return nil, err
654 if d.progressive {
655 if err := d.reconstructProgressiveImage(); err != nil {
656 return nil, err
659 if d.img1 != nil {
660 return d.img1, nil
662 if d.img3 != nil {
663 if d.blackPix != nil {
664 return d.applyBlack()
665 } else if d.isRGB() {
666 return d.convertToRGB()
668 return d.img3, nil
670 return nil, FormatError("missing SOS marker")
673 // applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula
674 // used depends on whether the JPEG image is stored as CMYK or YCbCrK,
675 // indicated by the APP14 (Adobe) metadata.
677 // Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full
678 // ink, so we apply "v = 255 - v" at various points. Note that a double
679 // inversion is a no-op, so inversions might be implicit in the code below.
680 func (d *decoder) applyBlack() (image.Image, error) {
681 if !d.adobeTransformValid {
682 return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata")
685 // If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB
686 // or CMYK)" as per
687 // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
688 // we assume that it is YCbCrK. This matches libjpeg's jdapimin.c.
689 if d.adobeTransform != adobeTransformUnknown {
690 // Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get
691 // CMY, and patch in the original K. The RGB to CMY inversion cancels
692 // out the 'Adobe inversion' described in the applyBlack doc comment
693 // above, so in practice, only the fourth channel (black) is inverted.
694 bounds := d.img3.Bounds()
695 img := image.NewRGBA(bounds)
696 imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min)
697 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
698 for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
699 img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)]
702 return &image.CMYK{
703 Pix: img.Pix,
704 Stride: img.Stride,
705 Rect: img.Rect,
706 }, nil
709 // The first three channels (cyan, magenta, yellow) of the CMYK
710 // were decoded into d.img3, but each channel was decoded into a separate
711 // []byte slice, and some channels may be subsampled. We interleave the
712 // separate channels into an image.CMYK's single []byte slice containing 4
713 // contiguous bytes per pixel.
714 bounds := d.img3.Bounds()
715 img := image.NewCMYK(bounds)
717 translations := [4]struct {
718 src []byte
719 stride int
721 {d.img3.Y, d.img3.YStride},
722 {d.img3.Cb, d.img3.CStride},
723 {d.img3.Cr, d.img3.CStride},
724 {d.blackPix, d.blackStride},
726 for t, translation := range translations {
727 subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v
728 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
729 sy := y - bounds.Min.Y
730 if subsample {
731 sy /= 2
733 for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
734 sx := x - bounds.Min.X
735 if subsample {
736 sx /= 2
738 img.Pix[i] = 255 - translation.src[sy*translation.stride+sx]
742 return img, nil
745 func (d *decoder) isRGB() bool {
746 if d.jfif {
747 return false
749 if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown {
750 // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
751 // says that 0 means Unknown (and in practice RGB) and 1 means YCbCr.
752 return true
754 return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B'
757 func (d *decoder) convertToRGB() (image.Image, error) {
758 cScale := d.comp[0].h / d.comp[1].h
759 bounds := d.img3.Bounds()
760 img := image.NewRGBA(bounds)
761 for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
762 po := img.PixOffset(bounds.Min.X, y)
763 yo := d.img3.YOffset(bounds.Min.X, y)
764 co := d.img3.COffset(bounds.Min.X, y)
765 for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ {
766 img.Pix[po+4*i+0] = d.img3.Y[yo+i]
767 img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale]
768 img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale]
769 img.Pix[po+4*i+3] = 255
772 return img, nil
775 // Decode reads a JPEG image from r and returns it as an image.Image.
776 func Decode(r io.Reader) (image.Image, error) {
777 var d decoder
778 return d.decode(r, false)
781 // DecodeConfig returns the color model and dimensions of a JPEG image without
782 // decoding the entire image.
783 func DecodeConfig(r io.Reader) (image.Config, error) {
784 var d decoder
785 if _, err := d.decode(r, true); err != nil {
786 return image.Config{}, err
788 switch d.nComp {
789 case 1:
790 return image.Config{
791 ColorModel: color.GrayModel,
792 Width: d.width,
793 Height: d.height,
794 }, nil
795 case 3:
796 cm := color.YCbCrModel
797 if d.isRGB() {
798 cm = color.RGBAModel
800 return image.Config{
801 ColorModel: cm,
802 Width: d.width,
803 Height: d.height,
804 }, nil
805 case 4:
806 return image.Config{
807 ColorModel: color.CMYKModel,
808 Width: d.width,
809 Height: d.height,
810 }, nil
812 return image.Config{}, FormatError("missing SOF marker")
815 func init() {
816 image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)